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Preface

J. Robin Harris and Viktor I. Korolchuk

This fourth book on Ageing in the Biochemistry and Cell Biology of Ageing “sub-
series” of Subcellular Biochemistry continues the approach established in our first
three books, that is, to cover as many as possible relevant and interesting Ageing
research topics in advanced review chapter format.

The seemingly almost endless expansion of Ageing research over recent years
indicates the priority being given to the broad understanding sought by scientists,
clinicians and others, with the overall aim of improving the life quality of elderly
people. Thus, we anticipate incorporating new topics and updating previously
included chapter topics in future books. Indeed, a fifth book, Anti-ageing Interven-
tions has already been commissioned by Springer Nature.

The diverse chapters of the present book (see Chapter list immediately following)
can be readily appreciated and should be considered alongside the content of the
three earlier books at the series Website: https://www.springer.com/series/6515/
books. Following a useful introductory chapter, covering the Historical Develop-
ment and Progression of Clinical Research on Ageing by Carmen García-Peña and
colleagues, 14 further chapters present the strong themes of the book. Indeed, there
were initially due to be two other chapters, but undoubtedly owing to the increasing
pressures of academic work post-COVID, these were lost. The final 16th chapter of
the book, by Aurel Popa-Wagner and colleagues, presents a broad survey of Clinical
Ageing, highly pertinent to the book’s overall content.

Each chapter is written by authoritative clinical scientists who have published
extensively in the Ageing field. We hope that this book, along with the three others,
cumulatively provides an almost encyclopaedic coverage of the subject. The book
will be of interest and value to undergraduate biomedical science students, medical
students, postgraduate researchers, clinicians and academics involved with and
interested in aspects of Ageing research. The parallel availability of the e-book
and e-chapters greatly opens up the broad accessibility.
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Chapter 1
Introduction: Historical Development
and Progression of Clinical Research
on Ageing

Carmen García-Peña, Pamela Tella-Vega, Raúl Hernán Medina-Campos,
and Héctor García-Hernández

Abstract Research on ageing has developed since Greek times. It had a very slow
advance during the Middle Ages and a big increase in the Renaissance. Darwin
contributed somehow to the understanding of the ageing process and initiated a
cumulus of ageing explications under the name of Evolutionary Theories. Subse-
quently, science discovered a great number of genes, molecules, and cell processes
that intervened in ageing. This led to the beginning of trials in animals to retard or
avoid the ageing process. Alongside this, improvements, geriatric clinical investi-
gations (with the evidence-based medicine tools) started to consolidate as a disci-
pline and commenced to show the challenges and deficiencies of actual clinical trials
in ageing; the COVID-19 outbreak revealed some of them. The history of clinical
research in ageing has already begun and is essential to affront the challenges that the
world will face with the increasing ageing population.

Keywords Ageing · Clinical research · Geriatrics · Geroscience · History

Introduction

Clinical research on ageing is closely intertwined with the development of geriatrics
as a medical specialty, but it is also related to and preceded by the development of the
broader field of biomedical research on the ageing process itself. In this introductory
chapter, we will briefly review the historical development of notions of the process
of ageing. Then, we will delve into the origins and progression of clinical research on
ageing. Finally, we will discuss the emergence of geroscience as a point of conver-
gence for basic, clinical and translational research in the field of ageing.
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Although ageing can occur in most animal species, it is a relatively rare phenom-
enon in nature. Our own species is an example of this—for the most part of our
history on Earth since the mid-Pleistocene, the life expectancy of Homo sapiens is
thought to have been less than 25 years. No prehistoric human remains have been
found that can be assigned an age at death older than 50 years (Hayflick 2004). Life
expectancy in ancient Greece and the Roman Empire is thought to have been
between 18 and 22, while in medieval Britain, it is estimated to have ranged from
17 to 35 (Omran 1971). It was not until the twentieth century that life expectancy
dramatically increased from 47 to 72 years (United Nations 2015). One can argue
that old age, as a massive, everyday phenomenon, is a very recent occurrence in
human history. Notwithstanding, ageing has been the source of multiple philosoph-
ical, theological, and biological questions throughout the history of human thought.
It has generated remarkably diverse views and explanations on the matter, which
have changed in accordance with the dominant paradigm.

From the biological point of view, there might be three main broad questions that
have driven scientific research on ageing, two of them pertaining to the nature of
ageing itself: why do we age? and how do we age? The first question pursues an
explanation of the very existence of a biological process that seems to be, at first
sight, counterintuitive from the evolutionary point of view. There are no clear
survival advantages or fitness traits that come with ageing, but on the contrary,
ageing entails an increase in the risk of dying from extrinsic and intrinsic causes.
Older individuals are more susceptible to dying from degenerative disease, infection,
environmental harm and depredation than younger—fitter—individuals. The second
question pertains to the biological mechanisms that transform a young, fit individual
into an old, frail one. A large corpus of research has focused on these mechanisms of
ageing, especially through the second half of the twentieth century (Kirkwood and
Austad 2000; López et al. 2013).

A third relevant broad question in the field of ageing is whether the mechanisms
of ageing can be modified or intervened to prevent, slow or reverse ageing itself, and
whether the diseases that are associated with ageing and old age can be prevented,
delayed, treated, rehabilitated, or cured. These three questions pertain not only to a
biological perspective but to the field of clinical research. Biological and clinical
research on ageing have found an intersection in the emerging field of geroscience,
which we will briefly touch upon later in this chapter.

From Early Civilizations to the Age of Enlightenment

In his Republic, Plato argued that people gained experience at every stage of life,
which conferred a natural wisdom to old age (Scarre 2016). Most importantly, he
also posed that ageing and disease are different concepts (Weintrob 2022).

Aristotle considered ageing as a natural process, but one with negative connota-
tions, as can be noted in his work On Youth, Old Age, Life and Death, and
Respiration (Woodcox 2018). He viewed old age as lack of virtue, responsibility,



moderation, and rationality (Scarre 2016) and associated it with the decay of the
body and intellect (Weintrob 2022).
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Cicero had a notion of old age closer to Plato’s. In his work De Senectute, he
argued that old age could be enjoyable, and that physical health could be enhanced
by practicing virtue, thus suggesting the possibility of a healthy ageing (Scarre
2016).

During the Middle Ages, the dominant worldview was marked by religious
determinism. As such, the course of human life was considered the reflection of
the divine will. Older persons were not subject of any considerations, as far as it is
known (Shahar 1993). The charity of the church was intended for orphans, widows
and those disabled by war or illness, but not for older persons (Gilleard 2002).
However, it is curious to find that in some medieval evidence older age was related to
wealthiness and to have benefits, like non-payment of taxes. Also, the scientific and
intellectual advance was too small in that period and the ideas of sickness were
dominated by the miasmatic and the humors equilibrium theories. Thus, the study of
ageing had no significant progress during this time (Shahar 1993).

By the late Middle Ages, several economic, cultural, political, and social changes
took place in Europe. The figure of the State emerged and began to claim relevance.
Population censuses started being undertaken during the fifteenth and sixteenth
centuries, which would end up making older persons visible (Gilleard 2002).
However, life expectancy was still not higher than 30 years (Shahar 1993).

Also, during this period, many works were developed about ageing. Their content
was about how to delay ageing by having healthy lifestyles. The books were written
mostly by Italian physicians, because in Italy the “scholar”medical discipline began.
But they were greatly influenced by the Galenic notion of sickness (the “non-
naturals” external factors that attack somehow the body and cause ageing) that
dominated the paradigm of getting old. Now these are considered as precursors of
modern gerontology and geriatrics (Gilleard 2013).

An interesting fact during the Renaissance was that the humoral model of old age,
which prevailed in the Middle Age (the “non-natural” forces like magic or witch-
craft), was not challenged or modified by the Renaissances physicians. However,
none of them treated old age as a pathological status. It was not until the nineteenth
century that old age was discussed as a form of pathology through scientific
discoveries (Gilleard 2013).

Modern Ageing Research

The social, economic, and political changes that followed the Industrial Revolution,
together with the advancement of science and technology, paved the way for an
accelerated increase in life expectancy for the human species during the nineteenth
and twentieth centuries. This demographic transition occurred first in European
countries and later spread to the rest of the world, with some regions such as Africa
still lagging but nonetheless moving in the same direction. The main features of the



demographic transition are reduced mortality, reduced fertility, and increased life
expectancy. An epidemiological transition followed, with chronic, non-transmissible
diseases gradually replacing transmissible diseases as the main causes of morbidity
and mortality (Omran 1971). Ageing and old age gradually became a more common
occurrence in human societies, thus increasing the interest in this topic.
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Evolutionary Theories of Ageing

Prior to the nineteenth century, there was little scientific interest in the mechanisms
of ageing. The common belief was that organisms deteriorated gradually in a similar
way to inanimate objects. Charles Darwin changed the paradigm in the biological
sciences with his survival of the fittest theory of evolution published in The Origin of
Species in 1859 (Goldsmith 2017). Elaborating on Darwin’s theory, August
Weissman—a recognized biologist—suggested that the death of older individuals
was part of the natural selection as it favored the evolution process by making space
for the younger, reproductively active individuals (Fabian and Flatt 2011). However,
this theory failed to explain certain ageing processes in mammals and other multip-
arous species (Goldsmith 2017). Moreover, in some cases the long-lived individuals
may produce more offspring (Fabian and Flatt 2011).

In the middle of the 1900s, the biologists Peter B. Medawar and George
C. Williams argued that ageing appeared because of a gradual deterioration of the
natural selection process that resulted in a malfunction at old age (Medawar 1957;
Williams 1957) which varied across species and among individuals of the same
species. This spawned several theories, collectively known as non-programmed
theories of ageing: the mutation accumulation theory (MA), antagonistic pleiotropy
theory (AP) and disposable soma theory (DS) (Goldsmith 2017). In the MA theory,
Medawar hypothesized that mutations producing the deleterious effects of ageing
were not suppressed because of a weak effect of natural selection in late life, thus
allowing these mutations to be carried on generation after generation. The AP theory
suggested that genetic traits with pleiotropic effects might be responsible for ageing
and be allowed to subsist by natural selection because of their positive effects at the
early stages of life, despite deleterious effects in late life. Kirkwood in his disposable
soma theory, posed that the main purpose of individuals is to reproduce, and that
their bodies (somas) are maintained and repaired for as long as their reproductive
fitness is relevant to the survival of the species; once reproductive fitness begins to
decline with age, maintenance, and repair systems decline as well, thus resulting in
the appearance of ageing (Kirkwood and Austad 2000).

Although evolutionary theories did not originally consider ageing as a regulated
process, evidence began to emerge during the twentieth century that changed this
perspective. Researchers in this field continue to identify and describe key factors
involved in the rate of ageing. Processes and changes at the cellular and molecular
level that increase morbidity and influence the response to related interventions were



identified. The importance of these discoveries now lies in the identification of
factors that lead to successful ageing and improved quality of life.
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Molecular Research on Ageing

Biological and biochemical techniques for research started to develop at the begin-
ning of the twentieth century, but it was not until the second half that they had an
impact on the field of ageing research. At the same time, the idea that ageing was the
cause of age-related diseases emerged. Even though formal causality has never been
proven, it is now established that ageing is the most important risk factor for many of
these diseases (Campisi et al. 2019).

One of the first breakthroughs in the understanding of the mechanisms of ageing
was the finding that calorie restriction (CR) increased lifespan in mice in 1939. Later,
it was observed that human diseases such as Hutchinson-Guilford and Werner
Syndromes appeared to accelerate the ageing process, with the early appearance of
features of old age, including alopecia, osteoporosis, cataracts, skin atrophy, and an
elevated risk of malignant tumors. These observations led to the notion that the pace
of ageing can be modified (Zainabadi 2018).

Fundamental discoveries followed that helped the understanding of the mecha-
nisms of ageing, including apoptosis, telomere function, insulin-like growth factor
signaling pathway (ILS), target of rapamycin (TOR) proteins, sirtuins (Sir), NAD+
coenzyme, reactive oxygen species and senolytics (molecules that destroys old cells)
(Goldsmith 2017; Campisi et al. 2019; Zainabadi 2018). Eventually, the manipula-
tion of some of these mechanisms would prove to prolong lifespan in several animal
models, including mammals (Zainabadi 2018). Research in humans followed, with
relevant findings such as the association of ILS genes and the sirtuin pathway with
increased longevity in human populations across the globe (Campisi et al. 2019;
Zainabadi 2018).

At least five major classes of drugs had being tested in humans for their
geroprotective potential. These include metformin, rapamycin analogues that inhibit
the TOR pathway, senolytics that eliminate senescent cells, sirtuin activators which
enhance sirtuin activity and NAD+ precursors, which counter the decrease in
intracellular NAD (Campisi et al. 2019).

Yet, the intervention which most consistently prolongs lifespan and improves
health in animals and humans is the combination of exercise and a healthy diet.
Exercise has shown a great efficacy in reducing the incidence of age-related disease,
increasing lifespan and improving quality of life. Healthy diets, although variable in
their characteristics, have been shown to favor longevity. Common features to
nutritional interventions of healthy diet include a minimum of processed foods,
predominantly plant-based, low alcohol level and a lack of overeating (Campisi
et al. 2019).

The advances in genetical, biological, and biochemical sciences in the past
century have already demonstrated that ageing is a complex process that involves



a lot of genes, multiple molecules pathways and various mechanisms inside cells that
could somehow be modified and regulated. Also, there is sufficient evidence to
affirm that ageing is not part of a big evolutionary plan of nature, and obviously, it is
not a disease. As well, science has brought us a bunch of pharmacological drugs that
could intervene to prolong life and improve health in populations (Zainabadi 2018).
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1939-Increase in lifespan in mice with calorie restric�on.

1995: Sirtuins were iden�fied as longevity genes.

1993-Discovery of two genes (daf-2 and daf-16) that
influence adult lifespan in worms. 

1999: Iden�fica�on of Sir2 as the key Sirtuin protein in 
the extension of lifespan.

2000: Discovery of NAD+ and his rela�on with aging.

2003: First evidence of the rela�on of TOR in aging.

2008: First evidence that me�ormin could increase 
lifespan in mice.

2009: Descrip�on of insulin-IGF1 signaling in human 
longevity.

2009: First evidence that rapamycin extend lifespan in 
mice.

2016: Demonstra�on that combina�on of drugs 
(me�ormin and rapamycin) can increase lifespan.

2018: First senoly�c clinical trial.

Evolu�onary theories.
H
al
lm
ar
ks
  o
f  
m
ol
ec
ul
ar
  a
n
d 
 g
en
et
ic
al
  a
d
va
nc
es
  i
n
  a
gi
ng

Fig. 1.1 Hallmarks of molecular and genetical advances in ageing. Self-made figure based on
Campisi et al. (2019) and Zainabadi (2018)

In Fig. 1.1 we summarize the hallmarks of molecular and genetical advances in
ageing.

Geroscience: An Integrative Approach

With ageing research advancing at the molecular level, it soon became evident that
many age-related diseases shared fundamental biological mechanisms with the
process of ageing itself. This led to the development of geroscience, a new, trans-
disciplinary field that aims to understand the link between ageing and disease, while
recognizing the importance of both genetic and environmental influences throughout
the life course in the ageing process.
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One of the main goals of geroscience is to achieve translation of scientific
knowledge into clinical practice and public health policies. This can be achieved
by five main routes: (1) Moving geroprotective therapies from animals to clinical
trials; (2) Performing geroprotective trials incorporating expertise in inclusive sam-
pling, adherence and retention; (3) Having solid measures of ageing and outcome
metrics (noninvasive, inexpensive, repeatable, reliable, and sensitive to biological
change); (4) Appropriately identifying fast- and slow-agers in clinical trials, and
(5) Bringing the benefits of geroscience to people who need it most (Sierra et al.
2021; Sierra 2019).

Clinical Research on Ageing

The term “geriatrics” was introduced in 1909 by Ignatz Leo Nascher in a homony-
mous article and later in his book “Geriatrics: The Diseases of Old Age and Their
Treatment” (Nascher 1914). The development of modern geriatrics is usually attrib-
uted to Marjory Warren and several other physicians in the United Kingdom
(UK) during the twentieth century. In that country the development of modern
geriatric treatments was taking place: innovations to enhance the environment,
introduction of active rehabilitation programs, the implementation of domiciliary
(home) visits for rehabilitation, environmental modification to prevent falls, the
creation of the first geriatric syndromes terms (instability, immobility, intellectual
impairment, and incontinence), among others (Morley 2004).

Also, geriatric scientific journals were developed principally in the United States
and UK to disseminate ageing research, for example: The Journal of Gerontology in
1946, The Gerontologist in 1961 or the Journal of the American Geriatrics Society in
1953 (Morley 2004).

During the end of the second half of the twentieth century, a great advance in
clinical geriatric investigation field took place around the globe. It was boosted by
the concept of evidence-based medicine (EBM). EBM was defined as the conscien-
tious, explicit, and judicious use of current best evidence in making decisions about
the care of individual patients (Guyatt 1991). This practice started to have a great
progress based on the multiple clinical trials that were carried out. However, the
evidence generated was obtained principally from younger persons participating in
such clinical trials. The validity of the conclusions of such trials for older persons
was soon brought into question, because of the evident differences between these
age groups (Mooijaart et al. 2015). Physiologic changes that accompany ageing, a
higher degree of multimorbidity and a greater probability of multiple-system
involvement with every episode of disease, make older persons a very distinct
population to study in clinical trials (Fontana et al. 2014). In addition, older persons
are more likely to drop out of trials, be lost to follow-up and tend to exhibit higher
risks—for example, more side effects or complications—and lesser benefits than
younger adults (Mooijaart et al. 2015).



8 C. García-Peña et al.

Evidence from clinical trials involving younger adults cannot be readily trans-
lated into clinical practice for older persons. In randomized controlled trials (RCTs),
older persons are often underrepresented because the inclusion and exclusion criteria
discriminate against them. Most of the time treatment recommendations are based on
younger populations, as older adults are more vulnerable to adverse effects. Seldom
are older persons with multimorbidity, cognitive impairment, frailty, and
polypharmacy included in randomized controlled trials (Tan et al. 2018).

Certainly, clinical research in older adults has specific complications that differ in
essential aspects from research in other fields. RCT are complicated to implement
due to issues related to recruitment, selection, and follow-up of participants, as well
as monitoring the safety and appropriateness of interventions in this population
group (Faes et al. 2007).

A higher burden of comorbidities—chronic diseases, cognitive impairment, and
frailty—make it difficult to discriminate whether a specific outcome resulted from
the disease being studied or from a concomitant condition (Tan et al. 2018; Faes
et al. 2007). Older persons are less likely to be able to attend to the study center
multiple times or may have difficulty recalling important self-reported data. Most of
these trials require long-term follow-up, so attrition rates (total loss to follow-up) are
higher compared to other age groups (Gardette et al. 2007). So, there is limited
evidence for decision-making in prescribing treatments in this group.

The global research response to the COVID-19 pandemic highlighted the under-
representation of older persons in research. Clinical researchers appear to have not
understood the specific needs of this population. Clinical research has focused on
treatment more than prevention, on younger rather than older persons and on
hospital care rather than community-based care. During the pandemic, most publi-
cations in the geriatric field focused on COVID-19 vaccines, frailty, outcome
prediction and managing nursing home outbreaks (Witham et al. 2021).

In order to better respond to the care needs of older persons, it is necessary to
prioritize clinical research on ageing, adapt research protocols and implement an
interdisciplinary approach (Witham et al. 2021). Also, it is of great importance that
the knowledge can be translated into clear and useful strategies that impact clinical
practice, public health policies and the health and quality of life of older populations.

Innovative tools are being developed to improve and facilitate clinical research in
older persons. Artificial intelligence (AI) and machine learning techniques can be
used to analyze large amounts of routinely collected data (RCD). These data are
usually available in clinical records, census databases, hospital databases and other
sources, and can be used to understand differentiated clinical presentations, diagno-
ses, health status, health service use, economic health impact and other relevant
outcomes for the care of older persons. These approaches, however useful, may fail
to capture what in geriatrics is called “what matters the most to older persons”—i.e.,
they may not be useful for understanding patient-centered outcomes (Todd et al.
2020).

RCD has the potential to reduce research costs and allow the inclusion of older
persons that would not be able to readily participate in clinical trials because of
disability, distance, discrimination, or other reasons. Moreover, they could improve



the accuracy of prediction tools and allow for a more thorough assessment of the
performance of health systems and their ability to meet older persons’ care needs
(Todd et al. 2020).
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For RCD to be used in clinical research in older persons, a suitable data platform
is needed that contains all data and makes it comparable and shareable. Subse-
quently, a collaborative web of clinical (and multidisciplinary) researchers should
support each other to generate protocols, clean data and develop analytic methods
and tools. An example of such a data platform is the Strategic Information System on
Health, Functional Dependence and Ageing (Sistema de Información Estratégica en
salud, Dependencia funcional y Envejecimiento—SIESDE) that was developed by
the National Institute of Geriatrics in Mexico.

Challenges for Future Trials

Several challenges lie ahead in the path to achieving clinical research that yields
interventions, drugs, and technologies to increase longevity and the quality of life of
older persons. The first is related with animal research. Studies that assess molecules
and processes related with age are often done under conditions with little relevance
to human ageing. For example, experiments where inflammation effects are induced
by a certain concentration of molecules that will never be seen in humans or the
studies that tried to explore the effect of obesity on ageing in mice that are fed with
high trans and saturated fats diet that no human would tolerate. Thus, experimental
studies in animals should resemble human conditions as much as possible (Fontana
et al. 2014). Also, the use of young animal models instead of aged models is
inaccurate, since most biologic processes leading to age-related diseases occur
predominantly in aged individuals (Kaeberlein and Tyler 2021).

As previously stated, plenty of molecular pathways are involved in the ageing
process. Most of the experimental evidence in this regard comes from animal
models, including worms, flies, and rodents. This evidence needs to be corroborated
and validated in humans, within the appropriate ethical framework (Fontana et al.
2014). This is the second challenge for the clinical investigation in ageing.

One more challenge is the inclusion of real-world, older persons in clinical trials,
so that the results can be readily translated to the point of care (Mooijaart et al. 2015).

The fourth challenge is guaranteeing a continuous financial funding for clinical
ageing research. This field receives a little budget when compared to disease-
centered research, such as Alzheimer’s disease. In the USA, the National Institute
of Ageing receives less than 1% of the National Institutes of Health’s budget even
though healthy ageing is one of the most important priorities in our time due to its
financial, social, and health implications. A similar scenario is observed in Japan and
Europe (Fontana et al. 2014).

The fifth is about the translational integration of all the knowledge generate in the
basic and clinic science (Fontana et al. 2014). Scientific discoveries should benefit
all societies.
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While the sixth challenge is to ensure the clinical research investigation legiti-
macy. At the end of the twentieth century, the growing understanding of the ageing
process and the identification of molecules and interventions that could extend the
lifespan in animal models provided a fertile field for pseudoscience. By posing that
ageing can be arrested and avoided, or treated as a disease, the Anti-ageing move-
ment has developed mainly as a pseudoscientific field, albeit with considerable
commercial success. Several anti-ageing books and publications have been followed
by an expanding market of compounds, cosmetic treatments, exercise programs,
therapies, foods, beverages, and supplements that claim to prevent, treat, or reverse
ageing. It is a billion-dollar business that has brought struggle to the credibility of
biomedical and clinical research in ageing (Binstock 2004).

On the other hand, both (biomedical and clinical research and the anti-ageing
movement) have a big ethical issue. If one of them could accomplish the increase in
lifespan beyond the “natural human process,” humanity would face important
political, social, and economic challenges related to poverty, inequity, violence,
and discrimination in all its forms (Binstock 2004).

At present, the question remains whether scientific research should continue to
pursue the extension of the human lifespan, or instead focus on enhancing quality of
life, improving health status and promoting well-being in old age.

Final Remarks

This chapter focuses principally on history of clinical experimental research but we
should not forget that observational designs in clinical ageing research are also
important. Longitudinal studies are a source of fundamental evidence of the multi-
factor changes over time, but also case-control and descriptive designs are crucial to
study causality, prognostic, and diagnostic topics. However, the discussion of
observational research is beyond the scope of the present chapter (García et al.
2018).

Research in ageing requires interdisciplinary work from different perspectives
that can address the complex problems and situations associated with this process.
With the emergence of COVID-19 in 2020, a further challenge has been added to
this work. This global situation has led researchers from different disciplines to adapt
by modifying methods and procedures in their work. In the area of ageing, the social
distancing and safety of participants and researchers had a major impact on the
follow-up of many cohorts of older adults. In response to this scenario, it will be
necessary to work on the introduction of important changes in the design of pro-
tocols in older adults and in the implementation of interdisciplinary approaches in
response to the situations inherent to ageing and those derived from COVID-19.

There is currently an imbalance between the magnitude of the health needs of
older adults and research activities. Although new service models have been devel-
oped in clinical practice, there is still a lack of rigorous evaluation of them. On the
other hand, much of the clinical research that is conducted in geriatrics most often



lacks the impact to directly influence practice. For this reason, not only is a holistic
and multidisciplinary approach essential, but it is also of great importance that this
knowledge is translated into clear and useful messages that can be applied in
different areas.

1 Introduction: Historical Development and Progression of Clinical. . . 11
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Chapter 2
Bone Cells Metabolic Changes Induced by
Ageing

Anca Cardoneanu, Ciprian Rezus, Bogdan Ionel Tamba, and Elena Rezus

Abstract Bone is a living organ that exhibits active metabolic processes, presenting
constant bone formation and resorption. The bone cells that maintain local homeo-
stasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their
progenitor cells. Osteoblasts are the main cells that govern bone formation, osteo-
clasts are involved in bone resorption, and osteocytes, the most abundant bone cells,
also participate in bone remodeling. All these cells have active metabolic activities,
are interconnected and influence each other, having both autocrine and paracrine
effects. Ageing is associated with multiple and complex bone metabolic changes,
some of which are currently incompletely elucidated. Ageing causes important
functional changes in bone metabolism, influencing all resident cells, including the
mineralization process of the extracellular matrix. With advancing age, a decrease in
bone mass, the appearance of specific changes in the local microarchitecture, a
reduction in mineralized components and in load-bearing capacity, as well as the
appearance of an abnormal response to different humoral molecules have been
observed. The present review points out the most important data regarding the
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formation, activation, functioning, and interconnection of these bone cells, as well as
data on the metabolic changes that occur due to ageing.
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Keywords Ageing · Metabolic changes · Osteoblast · Osteoclasts · Osteocytes ·
Bone marrow stem cells

Introduction

Bone is a living organ with complex properties, having an essential role in the body.
It is in a perpetual dynamic, having both metabolic functions and an important role in
protection, support, and locomotion. Moreover, the bone system participates directly
in the mechanism of hematopoiesis and mineral homeostasis (Asada et al. 2015; Su
et al. 2019).

According to World Health Organization (WHO) estimates, the world’s popula-
tion is ageing at a rapid manner, with the number of people over 60 doubling by 2051
(Veronese et al. 2021). Ageing causes an important alteration in the functionality of
the bone system. The main bone changes highlighted are decrease in bone mass,
modification of specific microarchitecture, reduction of mineral components, reduc-
tion of load-bearing capacity, and the appearance of an abnormal response to
different humoral molecules (Corrado et al. 2020).

The most important secondary clinical manifestations of ageing are osteoporosis
and the increased risk of osteoporotic fracture, advanced age being an independent
risk factor for the development of fractures (Boros and Freemont 2017; Corrado et al.
2020). The results of a study that included laboratory mice confirm the fact that both
trabecular and cortical bone deteriorates with ageing (Ramanadham et al. 2008). At
the level of the cortical bone, thinning and an increase in bone marrow volume have
been observed due to periosteal bone production and increased endocortical resorp-
tion (Tong et al. 2017; Corrado et al. 2020). At the level of the trabecular bone, a
decrease in the number and trabecular thickenings is found, accompanied by a
widening of the trabecular space (Corrado et al. 2020; Kim et al. 2020). Moreover,
due to the increased porosity of the bone cortex associated with increased osteoclas-
tic resorption, a non-smooth endosteal area can be observed (Zhang et al. 2019).
Therefore, the mechanism of ageing bone mass loss is particularly complex, not yet
fully understood and includes both local and systemic pathogenic factors (Khosla
et al. 2018; Feehan et al. 2019).

Bone Cells and Ageing

At the bone tissue level, there is well-defined homeostasis between the formation and
resorption processes, bone remodeling being governed by hormones such as 1,25-
hydroxyvitamin D3 (1,25-D3) or parathyroid hormone (PTH), as well as by mechan-
ical loading (Hadjidakis and Androulakis 2006).
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Osteoblasts and Ageing

Bone formation is governed by osteoblasts, actively present in all three osteoforming
phases: the production of the organic matrix rich in type I collagen, its maturation
and mineralization (Hadjidakis and Androulakis 2006). Osteoblasts originate from
the differentiation of multipotent mesenchymal stem cells (BMSC) from which other
cells such as osteocytes, adipocytes, fibroblasts, or chondrocytes are also formed
(Bianco et al. 2001). The differentiation of MBSC into pre-osteoblasts and then into
osteoblasts is achieved by binding of certain growth factors such as transforming
growth factor β (TGFβ), fibroblast growth factor 3 (FGF3) or bone morphogenetic
proteins-2 (BMP-2) (Saedi et al. 2020). Then follows the activation of transcription
molecules such as osterix and runt-related transcription factor 2 (Runx2). In addi-
tion, the TGFβ signal can also be transmitted through the mitogen-activated protein
kinase (MAPK) pathway. Moreover, the tyrosine kinase domains through which the
FGF receptor signals determine the phosphorylation and activation of protein kinase
C (PKC) and MAPK, the latter being associated with the differentiation, mobility,
and survival of osteoblasts (Chen et al. 2004; Galea et al. 2014; Pan et al. 2018).

The most important mechanism of differentiation, activation, and proliferation of
osteoblasts is realized through the Wingless/Integrated (Wnt) pathway. Depending
on the ligand molecules and the biological processes they carry out, there are 2 Wnt
pathways: canonical and non-canonical Wnt signaling paths (Corrado et al. 2020).
The canonical Wnt pathway is closely related to the intracellular concentration of
β-catenin and modulates bone formation by activating and differentiating osteoblasts
and participates in bone mineralization. The non-canonical Wnt pathway is inde-
pendent of β-catenin. The activation of the canonical Wnt pathway is achieved by
some proteins (low-density lipoprotein receptor-related protein (LRP) 5 and 6) that,
by binding to the transmembrane frizzled (FZZ) receptors, prevent the phosphory-
lation and degradation of β-catenin and favor gene transcription (Maruotti et al.
2013; Cici et al. 2019). The inactivation of canonical pathway is due to the
phosphorylation of β-catenin by glycogen synthase kinase-3β (GSK3β) and caseine
kinase I (CKI), followed by degradation via the ubiquitin-proteasome pathway
(Corrado et al. 2020).

Differentiation and maturation of osteoblasts can be blocked by extracellular
antagonists of the Wnt pathways such as dickkopfs (Dkk-1), secreted frizzled-
related proteins, and sclerostin (Westendorf et al. 2004; Pinzone et al. 2009).
Naturally, after differentiation, osteoblasts settle on the bone surface in areas called
bone structural units where they determine the synthesis and mineralization of the
matrix (Hadjidakis and Androulakis 2006). At the end of this process, 15% trans-
form into osteocytes, the rest following the process of apoptosis (Heino and
Hentunen 2008).

In older age, osteoblasts directly participate in the loss of bone volume and
quality through several mechanisms. The main pathogenic mechanisms are
represented by the decrease in cellular activity and a reduction in the differentiation
capacity (Corrado et al. 2020). Senescent osteoblasts lose their ability to secrete type



I collagen, osteocalcin, decorin and C1CP, a marker of collagen synthesis (Corrado
et al. 2013; Zhang et al. 2018). In addition, osteoblasts respond more less to
stimulation by growth factors such as insulin growth factor I (IGF-I) (Wei and Sun
2018). Also, with advancing age, the secretion of cAMP at the level of osteoblasts
decreases, even under the stimulation of PTH (Wei and Sun 2018).
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Another important mechanism related to ageing is represented by alterations in
the Wnt activation pathway characterized by the imbalance between Wnt inhibitors
and Wnt ligands. Thus, the studies showed an important decrease in Wnt inhibitors
such as Dkk-1 or secreted frizzled-related protein 1 (sFRP1) and a reduction in the
expression of numerous Wnt proteins (1, 4, 5, 7, 10b) and LRP-5 (Rauner et al. 2008;
Stevens et al. 2010). All of these affect the activity of osteoblasts and decrease
osteoblastogenesis.

Other data support the fact that ageing osteoblasts can stimulate the formation of
osteoclasts by developing an IL-6 secretory phenotype (Luo et al. 2016). In addition,
senescent osteoblasts respond poorly to fluid flow and flow-induced intracellular
calcium oscillations (Ota et al. 2013). Other pathogenic mechanisms involved in the
decrease in bone mineral density in the elderly refer to the decrease in receptor
activator of NFkb ligand (RANKL), matrix metalloproteinase 9 (MMP-9),
osteopontin, osteocalcin, osterix and runt-related transcription factor 2 (RUNX-2)
(Becerikli et al. 2017; Corrado et al. 2020).

Last, but not least, it seems that an increased rate of osteoblast apoptosis is
associated with ageing, leading to bone loss (Komori 2016). Among the pathogenic
mechanisms, it seems that increased oxidative stress plays a decisive role in accel-
erating this programmed cell death for both osteoblasts and osteocytes (Almeida
et al. 2007).

Figure 2.1 summarizes the mechanisms of activation and differentiation of
osteoblasts, as well as the main metabolic changes that correlate with advanced age.

Osteoclasts and Ageing

The main bone cells involved in the resorption process are osteoclasts. These are
large multinucleated cells that have precursors in the bone marrow, originating from
monocyte/macrophage precursors (Corrado et al. 2020). The most important ways of
activation and differentiation of osteoclasts are represented by RANK-RANKL-
osteoprotegerin (OPG) and by macrophage-colony stimulating factor (M-CSF)
(Corrado et al. 2020). Achieving the RANK- RANKL link at the level of
pre-osteoclasts and osteoclasts determines the expression of specific genes for the
osteoclast family (Saedi et al. 2020). OPG, secreted by many cells, including
osteoblasts, is an inhibitor of osteoclastogenesis, being a trap receptor for RANKL
(Boyce and Xing 2008).

Initially, tumor necrosis factor receptor (TNFR)- associated factor 6 (TRAF6) has
an important role in the activation of signal transduction pathways for osteoclast
formation (Tan et al. 2017; Park et al. 2017). Then, the differentiation and activation



of osteoclasts are dependent on four major signaling pathways that include:
protooncogene tyrosine-protein kinase (Src), protein kinase inhibitor of IkB kinase
(IKK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase
(JNK) (Cappariello et al. 2014; Saedi et al. 2020). In addition, there are specific
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Fig. 2.1 The mechanism of activation and differentiation of osteoblasts and the main metabolic
changes occurring due to old age. FGFβ transforming growth factor β, FGF3 fibroblast growth
factor 3, BMP-2 bone morphogenetic proteins-2, RUNX2 runt-related transcription factor 2, MAPK
mitogen-activated protein kinase, PKC protein kinase C, LRP lipoprotein receptor-related protein,
DKK-1 dickkopfs-1, CICP C-terminal collagen propeptide, IFG-I insulin growth factor I, IL-6
interleukin 6, RANKL receptor activator of NFkb ligand



transcription factors for osteoclasts such as Fos, p50, or nuclear factor of activated
T-cells cytoplasmic 1 (NFATc1) (Saedi et al. 2020). After achieving the RANK-
RANKL link, TRAF6 determines the following: (1) it will bind to JNK and activate
the c-Fos transcription factor involved in osteoclast differentiation; (2) it will bind to
interleukin-1 receptor-associated kinase 1 (IRAK1), then to the non-canonical NFkB
signaling pathway and activate osteoclastogenesis; (3) it will induce
phosphatidylinositol 3-kinase (PI3K) formation, Akt phosphorylation and mamma-
lian target of rapamycin (mTOR) activation (Wesche et al. 1999; Park et al. 2017;
Shi and Sun 2018).
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Another important way of osteoclastic differentiation and activation is
represented by macrophage-colony-stimulating factor (M-CSF). Binding of
M-CSF to c-Fms receptors on the surface of pre-osteoclasts leads to an increase in
RANK expression (Kim et al. 2016). Moreover, by this link, TRAF6 signaling is
favored through motif kinase (EMK)/ERK/NFATc1 and PI3K/Akt/mTOR
(Yamashita et al. 2012).

Older age is characterized by an increased bone turnover determined by a high
number of osteoclasts, as well as by their increased activity. The data support the
presence of an accelerated osteoclastogenesis mediated by osteoblasts, which leads
to increased expression of M-CFS and RANKL at the level of bone stromal cells and
osteoblasts (Cao et al. 2003, 2005). In addition, a decrease in OPG has been
identified to the elderly subjects (Makhluf et al. 2000).

Other essential factors associated with ageing and favoring osteoclastogenesis,
resorption and loss of bone mass are: changes in the extracellular matrix,
microfractures, reduced mechanical loading, increased inflammation, sclerostin pro-
duction, decreased testosterone and estrogens, secondary hyperparathyroidism,
increased expression of c-Fms, RANK, and RANKL (Chung et al. 2014; Boskey
and Imbert 2017). Estrogen deficiency leads to increased secretion of
pro-inflammatory cytokines such as IL-1β, TNFα, IL-6, TGFβ and these modulate
the RANK signaling pathway, thus stimulating the formation and activation of
osteoclasts (Shulman 2009; Gibon et al. 2016). IL-1 and TNF receptors act through
TRAF6 and have similar effects on RANK-mediated TRAF6 activation (Yan et al.
2001). Stimulation of osteoclast differentiation is also achieved by TGFβ which,
through Smad1, activates the RANK pathway (Battaglino et al. 2002).

On the other hand, the degradation of the extracellular matrix can be associated
with the activation and differentiation of osteoclasts. Thus, in the elderly, an
important increase, up to 300%, of type I collagen β-isomerization of
C-telopeptide has been observed (Henriksen et al. 2007). Moreover, for differenti-
ation and good functionality, osteoclasts need very low levels of reactive oxygen
species (ROS). In the elderly, a decrease in the oxidative stress-induced apoptosis of
the osteoclasts has been highlighted due to the loss of caspase-2 (Sharma et al. 2014).

Figure 2.2 summarizes the mechanisms of activation and differentiation of
osteoclasts, as well as the main metabolic changes that correlate with advanced age.
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Fig. 2.2 The mechanism of activation and differentiation of osteoclasts and the main metabolic
changes occurring due to old age. RANK receptor activator of NFkb, RANKL receptor activator of
NFkb ligand, OPG osteoprotegerin, M-CSF macrophage-colony stimulating factor, TRAF6 tumor
necrosis factor receptor-associated factor 6, Src protooncogene tyrosine-protein kinase, IKK protein
kinase inhibitor of IkB kinase, ERK extracellular signal-regulated kinase, JNK c-Jun N- terminal
kinase, IL-1 interleukin 1, TNF tumor necrosis factor, IL-6 interleukin 6, TGF transforming growth
factor, ROS reactive oxygen species
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Osteocytes and Ageing

Osteocytes, similar to osteoblasts, are formed from mesenchymal stem cells
(BMSC). They can survive up to 50 years and represent 90% of bone cells
(Manolagas and Parfitt 2010). The main role of osteocytes is to modulate bone
remodeling by secreting RANKL and OPG (Jilka et al. 2010; Jilka and O’Brien
2016). Osteocytes are interconnected and also connected with other cells through a
network made up of long cytoplasmic connections called dendrites (Bonewald
2011). Due to their increased survival, these cells accumulate molecular damage
over time (Jilka and O’Brien 2016). Osteocytes control bone turnover and maintain a
balance between bone formation and resorption through apoptosis (Chen et al.
2015).

Normally, osteocytes, due to the secretion of sclerostin, modulate the activity of
osteoblasts through the Wnt signaling pathway, while the activation of osteoclasts is
achieved through the secretion of RANKL and macrophage-colony-stimulating
factor (M-CSF) (Nakashima et al. 2011). Sclerostin binds to osteoblasts through
LRP5 and 6, thus inactivating the Wnt pathway and osteoblast differentiation,
leading to bone loss (Gaudio et al. 2010). On the other hand, the activation of
osteoclasts is achieved by the increased expression of RANKL (Ominsky et al.
2014). Other molecules produced by osteocytes and participating in bone
homeostasis are: nitric oxide (NO), bone morphogenic proteins (BMPs) and prosta-
glandin E2 (PGE2) (Corrado et al. 2020).

Osteocytes participate in the bone mineralization process and in phosphocalcium
metabolism by secreting proteins such as dentin matrix acidic phosphoprotein
1 (DMP1), bone sialoprotein (BSP), fibroblast growth factor 23 (FGF23),
phosphate-regulating gene with homologies to endopeptidases on the X chromo-
some (PHEX) and matrix extracellular phosphoglycoprotein (MEPE) (Dallas et al.
2013). In addition, these cells have receptors for PTH and vitamin D. PTH favors
bone resorption, stimulates RANKL expression and decreases OPG secretion
(Ma et al. 2001; Onal et al. 2012; Saini et al. 2013).

Ageing is associated with a decrease in the number of osteocytes and lacunar
density (Corrado et al. 2020). The deterioration of the canalicular structure due to old
age is associated with the decrease of connections between osteocytes, thus leading
to changes in mechanotransduction (Hemmatian et al. 2017). The lacuno-canalicular
system is indispensable for the normal flow of canalicular fluid which, apart from its
important role in bone nutrition, in moments of mechanical loading, represents the
stimulus for osteocytes to mediate mechanotransduction (Fritton and Weinbaum
2009). Ageing causes a decrease in bone response to mechanical stimuli. Also,
reducing physical activity with older age is associated with a decrease in mechanical
load, favoring bone loss (Javaheri and Pitsillides 2019).

With age, the morphology of the lacunae changes, becoming smaller and more
spherical (Hemmatian et al. 2017). This seems to be due to an increase in the activity
of the pro-apoptotic system and secondary to mechanical factors (Hunter and Agnew
2016). The data have shown that there is no correlation between the number of



osteocytes and the number of lacunae, the percentage of empty lacunae increasing
with older age (Piemontese et al. 2017; Heveran et al. 2018).
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Further, in old age it was observed that osteocytes show increased rates of
apoptosis due to the decrease of connexin 43, a protein that participates in
mechanotransduction (Davis et al. 2018). The pathogenic mechanisms underlying
the accelerated apoptosis of osteocytes include: increased cortisol levels, increased
ROS and NOS in osteocytes, increased ATP release and damage-associated molec-
ular patterns (DAMPs) accumulation and impaired autophagy (Jilka and O’Brien
2016; Komori 2016). Osteocyte autophagy, the mechanism by which cellular debris
is presented to lysosomes for degradation, shows a lower rate with ageing, which
favors apoptosis and bone loss (Jilka and O’Brien 2016).

Last but not least, it should be remembered that the network of osteocytes is
essential in maintaining bone mass, the reduction of connections between these cells
being associated with a poor bone quality and a decrease in mechanical properties
(Tiede-Lewis et al. 2017). Studies that used electron microscopy highlighted a
reduction in osteocyte dendrites that was associated with thinning of the bone cortex
(Milovanovic and Busse 2019).

Figure 2.3 summarizes the mechanisms of activation and differentiation of
osteocytes, as well as the main metabolic changes that correlate with advanced age.

Multipotent Mesenchymal Stem Cells and Ageing

Bone marrow also plays an important role in bone homeostasis. It consists of
extracellular matrix, stromal cells that include hematopoietic precursors of osteo-
clasts and bone multipotent mesenchymal stem cells (BMSC), as well as numerous
cytokines that participate in cell survival and activity (Farr and Khosla 2019).
BMSCs are formed from mesoderm and ectoderm cells and have the ability to
self-renew and transform into numerous cells such as bone cells (osteoblasts,
osteocytes), chondrocytes or adipocytes (Farr and Khosla 2019). BMSCs are some
of the most important stem cells of the bone marrow, maintaining a balance between
the formation of osteoblasts, osteoclasts and hematopoiesis (Bianco and Robey
2015).

Advanced age is associated with the decrease of bone tissue and its replacement
with fat cells formed in the bone marrow from BMSC (Paccou et al. 2019). This
increased differentiation of BMSC into adipocytes and the decrease in the number
and functionality of osteoblasts is the main factor involved in the pathogenesis of
osteoporosis (Stenderup et al. 2003; Hu et al. 2018; Qadir et al. 2020). These fat cells
of the bone marrow have a special metabolism, depending on the lipolysis of their
own lipids stored intracellularly to release fatty acids for oxidative metabolism
(Bartelt et al. 2017). Then follows an accumulation of free saturated fatty acids
that exert a negative effect on the bone marrow (Gasparrini et al. 2009). One of the
most toxic and intensively secreted free fatty acids is palmitate, directly involved in
bone destruction processes in ageing (Elbaz et al. 2010). Studies have highlighted its



toxic effect on both osteoblasts and osteocytes (Gunaratnam et al. 2014; Al Saedi
et al. 2019). The main pathogenic mechanisms involved in the loss of bone mass are
the decrease in the formation of osteoblasts, the reduction in the deposition and
mineralization capacity of the extracellular organic matrix, the increase in the
process of apoptosis and dysfunctional autophagy of osteoblasts (Gunaratnam
et al. 2014; Al Saedi et al. 2019).
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Fig. 2.3 The main actions of osteocytes in bone homostasy and the most important metabolic
changes occurring due to old age. BMSC multipotent bone mesenchymal stem cells, RANKL
receptor activator of NFkb ligand, M-CSF macrophage-colony stimulating factor, DMP1 dentin
matrix acidic phosphoprotein 1, BSP bone sialoprotein, FGF23 fibroblast growth factor 23, PHEX
phosphate-regulating gene with homologies to endopeptidases on the X chromosome, MEPE
matrix extracellular phosphoglycoprotein

The main factors that participate in the differentiation of BMSCs into osteoblasts
are osterix, RUNX2, and forkhead transcription factor P (FOXP) (Ducy et al. 1997;
Li et al. 2017). With ageing, RUNX2 expression decreases, which leads to decreased



bone matrix formation, osteoblast differentiation being blocked (Jiang et al. 2008).
On the other hand, the decrease in FOXP directly influences BMSC, leading to an
increase in adipogenesis, a decrease in the formation of osteoblasts and, finally, to
the degradation of the bone structure (Li et al. 2017). Other metabolic changes
attributed to BMSC and observed in old age are decrease in response to bone
morphogenic protein (BMP), decrease in alkaline phosphatase (ALP), osteocalcin,
and reduction in type I collagen secretion (Fleet et al. 1996; Abdallah et al. 2006).
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The pathogenic mechanisms involved in the adipose transformation of the bone
marrow are not yet fully understood (Boros and Freemont 2017). Some results
support the role of the increased expression of miRNAs and peroxisome
proliferator-activated receptor γ (PPARγ), as well as the decrease of nuclear factor
erythroid-related factor 2 (NRF2) (Sen et al. 2014; Bionaz et al. 2015; Sun et al.
2015; Li et al. 2015). miRNA, especially miR188, acts through rapamycin-sensitive
companion of mammalian target of rapamycin (RICTOR) mRNAs and histone
deacetylase 9 (HDAC9), the expression of which decreases with age, leading to an
increase in PPARγ and consequently to the adipose transformation of BMSC (Sen
et al. 2014; Li et al. 2015).

Last but not least, it seems that the inactivation of osteoblasts and the stimulation
of the formation of medullary adipose tissue is influenced by the Wnt signaling
pathway whose activity is reduced in old age (especially the Wnt10b pathway)
(Stevens et al. 2010).

Figure 2.4 summarizes the mechanisms of activation and differentiation of
BMSC, as well as the main metabolic changes that correlate with advanced age.

Concluding Remarks

Ageing strongly influences bone dynamics characterized by increased resorption
processes and decreased bone formation. Thus, the most important clinical manifes-
tations are the occurrence of osteoporosis and the risk of fracture, advanced age
being considered an independent risk factor. Senile osteoporotic bone is character-
ized by the decrease in the number and thickness of trabecular bone, by the increase
in trabecular spacing, by the bone cortex thinning and the expansion of the bone
marrow. Due to the complex metabolic processes secondary to ageing, there is an
increase in bone resorption related to the increase in the number and activity of
osteoclasts, as well as a decrease in new bone formation due to the decrease in
osteogenic differentiation from BMSC, the increase in osteoblast apoptosis and the
decrease in their metabolic activity. Moreover, there is a reduction in the bone
anabolic response to mechanical loading, which has as a substrate the decrease in
the number of osteocytes and dendrites, as well as the reduction in lacunar density.
Finally, the increase in oxidative stress correlates with the acceleration of cellular
apoptosis processes, which translates into bone mass loss.
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Fig. 2.4 Formation, differentiation and the main metabolic effects of ageing on BMSC. RUNX2
Runt-related transcription factor 2, FOXP forkhead transcription factor P, PPARγ peroxisome
proliferator-activated receptor γ, NRF2 nuclear factor erythroid 2-related factor 2, BMSC bone
marrow stem cells, ALP alkaline phosphate, BMP bone morphogenic protein
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Chapter 3
Chronic Inflammation as an Underlying
Mechanism of Ageing and Ageing-Related
Diseases

Ki Wung Chung, Dae Hyun Kim, Hee Jin Jung, Radha Arulkumar,
Hae Young Chung, and Byung Pal Yu

Abstract Age-related chronic inflammation is characterized as the unresolved
low-grade inflammatory process underlying the ageing process and various
age-related diseases. In this chapter, we review the age-related changes in the
oxidative stress-sensitive pro-inflammatory NF-κB signaling pathways causally
linked with chronic inflammation during ageing based on senoinflammation schema.
We describe various age-related dysregulated pro- and anti-inflammatory cytokines,
chemokines, and senescence-associated secretory phenotype (SASP), and alterations
of inflammasome, specialized pro-resolving lipid mediators (SPM), and autophagy
as major players in the chronic inflammatory intracellular signaling network. A
better understanding of the molecular, cellular, and systemic mechanisms involved
in chronic inflammation in the ageing process would provide further insights into the
potential anti-inflammatory strategies.
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Introduction

The chronic inflammatory response is an essential immune defense function that has
evolved to promote survival under specific stressors. Acutely activated inflammation
is the first line of defense against harmful agents such as pathogens, toxins, and
allergens. Normal conditions enable the elimination of pathogens, infected cells, and
damaged tissue for full recovery through the tightly coordinated actions of various
defense components, including immune cell function and tissue remodeling pro-
cesses (Freire and Van Dyke 2013).

When the acute inflammatory response does not subside, the immune system
responds in a more complex, long-term manner. The chronic inflammatory response
is usually low in intensity and involves many proinflammatory cellular components,
including leukocytes enriched with macrophages and lymphocytes (Chen and Xu
2015). The ageing process and numerous age-related chronic diseases are charac-
terized by chronic inflammation due to changes in the cellular redox state and cell
death signaling pathways (Chung et al. 2006).

One of the well-known characteristics of age-related dysregulation of immune
response is low-grade systemic inflammatory activity. Cytokines and chemokines
are among the many dysregulated proinflammatory mediators that contribute to
prolonged chronic inflammation and immunosenescence. According to previous
studies, the expression of cytokines, such as interleukin-6 and tumor necrosis factor
(TNF)-α, increases substantially in aged tissues (Chung et al. 2006; Franceschi et al.
2000). Several studies have linked high levels of chemokines, C-reactive protein
(CRP), and prostanoid synthesis to age-related diseases and ageing development
(Wyczalkowska-Tomasik et al. 2016). We have previously reported that several
important intra- or intercellular signaling pathways are closely associated with
chronic inflammation and age-related inflammatory changes in cellular status during
ageing (Park et al. 2013; Kim et al. 2016).

In the literature on ageing, two major hypotheses exist regarding chronic inflam-
mation associated with ageing: inflammageing (Franceschi et al. 2000) and
senoinflammation (Chung et al. 2019). These two hypotheses are complementary,
as the widely observed inflammatory phenomenon with ageing is the major point of
the inflammageing hypothesis, whereas senoinflammation focuses on a broad spec-
trum of proinflammatory molecular, cellular, and systemic components that underlie
the chronic inflammatory process. Importantly, recent research on chronic inflam-
mation has produced more supportive experimental data for senoinflammatory
hypothesis, necessitating an in-depth discussion of molecular, cellular, and systemic
aspects of chronic inflammation, as described in this chapter.
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Key Factors Influencing Chronic Inflammation in Ageing

Pro- and Anti-inflammatory Cytokines and SASP

Inflammation is an essential aspect of the body’s immune response and defense. An
acute state of inflammation over a short period promotes immunity and protects the
host in various ways (Chung et al. 2019). Because of its potentially adverse effects,
inflammation is generally transient and tightly regulated. The development of
chronic diseases, such as cancer, dementia, and atherosclerosis, is an inevitable
consequence when inflammation is prolonged and unresolved, that is when it
becomes chronically dysregulated immune system (Chung et al. 2019). Therefore,
the disruption of the homeostatic inflammatory response is a significant risk factor
for ageing process. The influence of the major mediators of chronic inflammation
and immunosenescence, cytokines, and chemokines persists throughout this sce-
nario. Chronic inflammation has a much more complex and intricate connection to
ageing. M1-like macrophages have been found to release proinflammatory mole-
cules such as TNFα, IL-1β, and IL-12 as a result of prolonged overeating and
obesity, which have been linked to numerous metabolic disorders (Li et al. 2018).
Additionally, PPARα and SREBP-1c have been implicated in lipid accumulation
associated with proinflammatory IL-1β activation by inflammasomes (Chung et al.
2015). Moreover, chronic adipokine-mediated systemic inflammation is widely
recognized to be exacerbated by chronic inflammation in adipose tissues (Bluher
2016).

Senescence-associated secretory phenotype (SASP) has recently proved to be a
major proinflammatory contributor to numerous pathophysiological conditions
(Wiley and Campisi 2021). Senescent cells secrete extracellular modulators such
as cytokines, chemokines, proteases, growth factors, and bioactive lipids (Lopes-
Paciencia et al. 2019). As a result, macrophages are activated to eliminate senescent
cells that produce a senescence-associated (SA) secretome containing inflammatory
senescence-associated protein. However, aged macrophages may not properly elim-
inate senescent cells, leading to a chronic inflammatory state (Oishi and Manabe
2016).

The secretion of inflammatory mediators such as cytokines and chemokines is
dependent on the activation of redox-sensitive nuclear factor (NF-κB) (Chung et al.
2019). NF-κB is now regarded as one of the most important proinflammatory
transcription factors. NF-κB signaling during ageing has been shown to involve
cytokines (IL-1β, IL-2, and IL-6), chemokines (IL-8, RANTES, and T cells), and
adhesion molecules, all of which contribute to chronic diseases and symptoms
associated with ageing (Chung et al. 2006). Substantial evidence suggests that
NF-κB plays an important role in cancer progression and initiation (Xia et al.
2014). Many other proinflammatory mediators are also induced by NF-κB stimula-
tion, leading to major age-related chronic diseases (Wang et al. 2022; Esparza-Lopez
et al. 2019).
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NF-κB also interacts with various factors such as signal transduction factors and
transcriptional activators 3 (STAT3) and p53. These factors are implicated in
age-related chronic inflammatory diseases such as cancer and type 2 diabetes
mellitus (Fan et al. 2013; Lowe et al. 2014). Crosstalk has been reported between
upstream signaling components as well as at the transcriptional level. In addition to
GSK3, MAPK, and protein kinase B (PKB), kinases that regulate NF-κB transcrip-
tion can also regulate the activity of other cancer-related kinases (Park and Hong
2016). Numerous proinflammatory genes, metabolic signaling pathways, and SASP
have been identified to be systemically involved in inflammatory and metabolic
disorders (Wiley and Campisi 2021). A more detailed discussion on NF-κB i
presented below.

Anti-inflammatory cytokines also play essential roles in balancing the immune
response and preventing immune homeostasis from falling into proinflammatory
ageing and disease-induced states. These cytokines play a key role in alleviating
inflammation. By blocking or modulating IL-1α, TNF, and other major
proinflammatory cytokines, they dampen and ultimately resolve the inflammation
response. In addition to soluble receptor antagonists, chemokines, microRNAs, and
siRNAs, specific cytokine receptors for IL-1, TNF-α, and IL-18 also inhibit
proinflammatory cytokines (Rea et al. 2018). The anti-inflammatory cytokines
interleukin 10 (IL-10) and IL-37, members of the IL-1 family, are crucial factors
in controlling inflammation, along with TGF-β released by monocytes and platelets.
Inflammatory pathways are reduced by the soluble receptors TNFR and IL-1 recep-
tor (IL-1R), which bind to cytokines and neutralize them (Levine 2008). Many other
anti-inflammatory mediators are observed, including stress hormones—primarily
corticosteroids and catecholamines—and negative regulators such as microRNAs
(MiR-146 and MiR-125) (Schulze et al. 2014; Lee et al. 2016). Previously reported
observations clearly demonstrate that proinflammatory and anti-inflammatory cyto-
kines and SASP modulate the outcome of chronic inflammation underlying the
ageing process and age-related disease pathogenesis.

Changes in Endogenous Anti-inflammatory Lipid Mediators
During Ageing

The complete resolution of an inflammatory response is essential for maintaining
cellular homeostasis, and inflammation resolution is a highly sophisticated process
that involves important anti-inflammatory mediators. Endogenous anti-
inflammatory mediators, including lipoxins, resolvins, and protectins, play key
roles in resolving inflammation (Basil and Levy 2016). These mediators are derived
from lipid precursors and produced by the enzymatic activity of lipoxygenases.
Among these mediators, lipoxins are the most well-characterized. Lipoxins and
their epimers are bioactive autacoid metabolites of arachidonic acid that are pro-
duced by several cell types. Initially, two lipoxins were identified: lipoxin A4



(LXA4) and lipoxin B4 (LXB4), and further studies have identified epimers of these
two lipoxins. In addition, other lipid mediators including resolvins and protectins
were found to be derived from omega 3 fatty acids or other families of polyunsat-
urated fatty acids with functions and activities similar to those of lipoxins (Kohli and
Levy 2009). Because of their specific role in inflammation resolution, these anti-
inflammatory lipid mediators are often called specialized pro-resolving lipid medi-
ators (SPMs). In addition to the chemical properties of SPMs, their physiological
roles and mechanisms at the site of inflammation have been extensively studied
during the last decade (Basil and Levy 2016).
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Accumulating evidence suggests that changes in lipid mediators are age-related.
Gangemi et al. (2005) first reported that ageing was associated with reduced LXA4
levels. They evaluated urinary arachidonic acid metabolites, including anti-
inflammatory LXA4 and proinflammatory cysteinyl leukotrienes in volunteers
aged 26 to over 100 years. A significant inverse correlation between age and
LXA4 levels was found, suggesting that reduced LXA4 levels over the course of
ageing may contribute to the development of disease. Another study conducted by
Dunn et al. (2015) showed a similar reduction in LXA4 levels in the ageing brain.
The same researchers assessed age-related changes in proinflammatory leukotriene
B4 (LTB4) and pro-resolving LXA4 levels in the brain. Age-dependent increases in
LTB4 levels and decreases in LXA4 levels have been detected during brain ageing.
Furthermore, these changes were exacerbated in the 3xTG Alzheimer mouse model.
Pamplona et al. (2021) showed interesting results in aged brains by showing that
neurons and microglia are responsible for LXA4 production in the brain, and ageing
reduces the brain and systemic LXA4 levels in mice. Also, LXA4 levels in cerebro-
spinal fluid decrease with age and dementia in humans.

Crucial Role of Oxidative Stress in Age-Related Chronic
Inflammation

Among the several well-known hypotheses of ageing, the most widely accepted
theory is that ageing is caused by oxidative stress (Yu 1996). The oxidative stress
hypothesis explains the characteristic changes during ageing as a net effect of redox
imbalances caused by the difference between oxidative stress and reactive antioxi-
dant forces (Kim et al. 2002). This redox imbalance is likely due to an increase in
ROS and reactive lipid aldehydes associated with a weakened antioxidant defense
system. The main contributors to the redox imbalance caused by age-related oxida-
tive stress are uncontrolled production of reactive species such as reactive oxygen
species (ROS), reactive nitrogen species, and reactive lipid species, in conjunction
with a weakened antioxidant defense capacity. A gradual increase in oxidative stress
due to impaired redox regulation during ageing may affect gene transcription and
signal transduction pathways.
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A seminal finding in oxidative stress and inflammatory processes is the profound
activation of NF-κB, a highly sensitive and critical proinflammatory mediator (Kim
et al. 2002). By activating proinflammatory cells and expressing various cytokines
and chemokines, NF-κB plays a crucial role in maintaining an immune response
while ageing. According to motif mapping of gene promoters, NF-κB is the tran-
scription factor most closely associated with ageing (Adler et al. 2007). Furthermore,
chronic activation of NF-κB has been demonstrated in various tissues, such as the
skin, kidneys, cardiac muscle, and brain (cerebellum and hypothalamus) (Helenius
et al. 1996; Korhonen et al. 1997; Zhang et al. 2013; Tilstra et al. 2012).

Molecular and Cellular Constituents
in Inflammation-Related Pathophysiological Conditions

NF-κB Involvement

The NF-κB signaling pathway is implicated in ageing, along with the insulin-like
growth factor-1 (IGF-1), mTOR, SIRT, and p53 pathways. Several lines of evidence
have shown that NF-κB activity increases with age. NF-κB/p65 DNA binding
increased in the skin, liver, kidney, muscle, and gastric mucosa of aged mice. In
addition, chronic NF-κB activation has been observed in various age-related dis-
eases, including muscular atrophy, atherosclerosis, osteoporosis, heart diseases, type
1 and type 2 diabetes, osteoarthritis, and neurodegenerative diseases, such as
Alzheimer’s disease and Parkinson’s disease (Chung et al. 2019).

Another line of evidence further demonstrated the tissue-specific role of NF-κB in
ageing phenotypes. Cai et al. (2004) identified NF-κB activation through muscle-
specific transgenic expression of activated IKK beta. These mice exhibited profound
muscle wasting resembling clinical cachexia. Muscle loss occurred due to increased
protein breakdown through E3 ligase MuRF1 expression, and pharmacological or
genetic inhibition of the NF-κB pathway reversed muscle atrophy. Similar results
were also obtained in the Duchenne muscular dystrophy model. Another study, by
Zhang and colleagues, showed that IKK-NF-κB signaling is involved in the hypo-
thalamic programming of systemic ageing (Zhang et al. 2013). They found ageing-
dependent hypothalamic NF-κB activation with an increase in the innate immune
pathway. NF-κB inhibition in genetically engineered mice increased lifespan with a
less age-related phenotype, suggesting that hypothalamus NF-κB activation has a
unique role in the development of systemic ageing. They further showed that
activation of NF-κB mediates gonadotropin-releasing hormone (GnRH) decline in
the aged hypothalamus, and GnRH treatment adjusts ageing-impaired neurogenesis
and decelerates ageing.
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Inflammasome in Chronic Inflammation

Recent studies have revealed that NACHT, LRR, and PYD domain-containing
protein 3 (NLRP3) inflammasome are major regulators of age-related inflammation
(Gritsenko et al. 2020). The inflammasome is activated by a wide range of extra and
intracellular stimuli include pathogen-associated molecular patterns and danger-
associated molecular patterns (Broz and Dixit 2016). Activation of NLRP3 proteins
further oligomerizes and recruits an adaptor protein known as ASC, which consists
of two death-fold domains, a pyrin domain (PYD) and a caspase recruitment domain
(CARD). These domains allow ASC to bridge the upstream inflammasome sensor
molecule with caspase 1. Activated caspase 1 further facilitates the release of
interleukin-1β (IL-1β) and IL-18 and induces inflammation and pyroptosis, which
is a lytic form of cell death. Inflammasome activation plays a crucial role in host
defense against pathogens; however, dysregulated inflammasomes are also linked to
the development of numerous age-related diseases.

Experimental data clearly demonstrated the role of inflammasome in ageing-
associated phenotypic changes. Youm et al. (2013) utilized Nlrp3 deficient mice to
observe age-related functional changes. NLRP3 inflammasome-deficient mice were
protected from age-related increases in innate immune activation, alterations in CNS
transcriptomes, and astrogliosis. They further demonstrated that increased IL-1
expression plays an essential role in regulating age-related CNS inflammation and
functional decline. They also demonstrated that the NLRP3 inflammasome promotes
ageing-related thymic demise and immunosenescence. Another study, by Camell
et al. (2019), revealed the role of the NLRP3-inflammasome in age-related adipose
tissue B-cell expansion. They identified unique resident aged adipose B cells that
impair the basal role of adipose tissue during ageing. The accumulation of unique B
cells and age-induced defects in lipolysis are dependent on the NLRP3
inflammasome and IL-1 signaling. The acetylation status of NLRP3 during ageing
was reported by He et al. (2020). These authors showed that NLRP3 is deacetylated
during the ageing process owing to decreased SIRT2 expression in macrophages.
Deacetylated NLRP3 facilitates hyperactivation of the NLRP3 inflammasome,
increasing inflammation during ageing. They provided evidence that the acetylation
switch of the inflammasome, regulated by SIRT2, is a physiological factor that
regulates age-associated chronic inflammation.

Role of Autophagy in Inflammation

Autophagy is an evolutionarily conserved process that occurs in all eukaryotic cells
from yeast to humans. The highly complex autophagy machinery and related
signaling pathways have been extensively studied over the last 30 years. The
primary function of autophagy is to degrade self-components; once activated,
autophagy involves the sequestration of cytosolic components, including damaged



cell organelles, proteins, or other macromolecule nutrients, and provides energy to
maintain cell homeostasis. In ageing and age-related diseases, there are significant
reductions in these processes that lead to the accumulation of damaged molecules,
proteins, DNA, and lipids, leading to the loss of cellular integrity, as defective
autophagy has been implicated in various age-associated diseases (Aman et al.
2021).
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Understanding the relationship between autophagy and inflammation provides
insights into ageing and age-related diseases. Reviewing studies that use animal
models and human samples support the important role of autophagy in maintaining
tissue homeostasis through inflammation suppression. Impaired autophagy often
results in increased inflammation and has been demonstrated as a major driver of
age-related tissue damage using evidence obtained from studies on the role of
autophagy in modulating the differentiation and metabolic state of inflammatory
cells (Aman et al. 2021). It has been shown that immune cell differentiation is
dependent on the balance between mTOR and AMPK signaling activation
(Riffelmacher et al. 2018). When mTOR is activated, autophagic flux decreases
and the cells exhibit proinflammatory phenotypes. In contrast, shifting the balance
toward AMPK signaling results in increased autophagic activity with differentiation
into non- or anti-inflammatory immune cells. Because overall autophagy responses
decrease during ageing, this may be an important mechanism for promoting
proinflammatory responses during ageing (Aman et al. 2021).

Senoinflammation Schema: Exacerbation by SASP
and Suppression by Calorie Restriction (CR)

Previous literature has extensively shown the role of low-grade inflammation in
ageing and age-related diseases. To clarify distinctions among widely used expla-
nations and concepts, a number of terms and perspectives have been proposed.
Chronic inflammation associated with ageing has been suggested to occur through
a variety of mechanisms, including molecular inflammation, micro-inflammation,
pan-inflammation, and gero-inflammation, which describe the actions of chronic
inflammation and proinflammatory mediators (Fulop et al. 2017; Chhetri et al.
2018). Despite these attempts, the precise age-related chronic inflammatory pro-
cesses remain poorly understood and under-characterized.

The senoinflammation (senescent chronic inflammation) schema presented herein
(see Fig. 3.1) was developed in 2019, based on available data showing the initiation
of the chronic inflammatory process triggered by oxidative stress-induced redox
imbalance, which is associated with ageing and numerous chronic diseases (Chung
et al. 2019). By understanding molecular, cellular, and systemic senoinflammation,
one could gain a better understanding of how chronic inflammation exacerbates the
age-related functional declines and metabolic alterations that occur.
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Fig. 3.1 Chronic inflammation as an underlying mechanism of ageing and ageing-related
diseases. CR: calorie restriction, SPM: specialized pro-resolving lipid mediators, SASP:
senescence-associated secretory phenotype

As described earlier, senescent cells secrete soluble mediators called SASP
(Coppe et al. 2010). Recent studies have shown that SASP is a significant patho-
physiological risk factor exacerbating the ageing process and metabolic diseases
(Chung et al. 2019). The SASP plays a multifaceted role as an active mediator in the
senoinflammatory process and metabolic changes associated with ageing (Shakeri
et al. 2018). Despite considerable progress in understanding the cellular mechanisms
of the SASP, its precise role and contribution to ageing and proinflammatory
molecular pathways require further exploration. Reports have shown that senolysis
(i.e., senescent cell removal) improves glucose metabolism and β-cell function while
reducing SASP and senescent biomarker expression in mice (Aguayo-Mazzucato
et al. 2019).

Senescence-associated secretory proinflammatory mediators and SASP are
released by senescent cells (Salminen et al. 2012). To remove senescent cells from
the secretome, macrophages are recruited by chemotactic factors (Childs et al. 2017).
However, the polarized M2 phenotype of senescent macrophages secretes
proinflammatory cytokines, exhibits impaired phagocytosis, and is characterized
by lower growth rates (Yarbro et al. 2020). In keratinocytes, melanocytes, mono-
cytes, fibroblasts, and epithelial cells, IL-1β, IL-6, and IL-8 are the most potent
proinflammatory cytokines secreted by SA-induced stress (Freund et al. 2010). Most
senescent cells contain elevated levels of matrix metalloproteases (MMPs), another
proinflammatory component of SASP. MMPs regulate the production of cytokines
and chemokines that are associated with inflammation (Coppe et al. 2010). Several



recent studies have reported that PTBP1 and HSP90 regulate the SASP (Georgilis
et al. 2018; Fuhrmann-Stroissnigg et al. 2018). In summary, SASP and related
mediators impose a substantial impact on senoinflamatory process with ageing.
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Caloric restriction (CR) has been demonstrated to be effective in combating the
ageing process and age-related diseases such as diabetes, obesity, cardiovascular
disease, rheumatoid arthritis, and Alzheimer’s disease (Chung et al. 2013). It is the
only known intervention of ageing that extends not only the mean lifespan but also
the maximum life span of experimental animals. Our lab reported the first experi-
mental evidence showing CR’s potent and broad anti-inflammatory action by
suppressing key proinflammatory NF-κB activation (Kim et al. 2002). Recent
work also showed CR’s powerful modulation of many proinflammatory factors,
including IL-1β, IL-6, TNF, and COX-2 (inducible nitric oxide synthase) (Allen
et al. 2019). After two monthly applications of 30% CR to obese mice, cytokines,
and chemokines such as IL-6, IL-2, IL1Rα, MCP-1, and CXCL16, which are
important components of the SASP (Kurki et al. 2012). The expression of
proinflammatory and lipogenic genes, such as MCP-1, SREBPs, and peroxisome
proliferator-activated receptor (PPAR)-γ, was significantly suppressed by even mild
CR in liver tissue (Park et al. 2017). As a result, CR has been shown to regulate the
symptomatic prevalence of senoinflammation, which progresses to pathological
conditions such as chronic inflammation, insulin resistance, and low energy metab-
olism resulting from chronic inflammation (Chung et al. 2019; Johansson et al.
2019).

Researchers have studied the effects of CR on inflammatory and metabolic
signaling pathways as well as the relationship between ageing and CR. According
to evidence from previous studies, CR modulates nuclear signaling pathways by
regulating NF-κB, SIRT, and other nuclear molecules, which results in reduced
senoinflammation during ageing. Such evidence strongly supports the notion that
CR’s unique anti-ageing action may be based on its diversified anti-inflammatory
capability.

Conclusion

Considering the available evidence and data on age-related chronic inflammation
through biochemical, molecular, and systems biology analyses, we concluded that
chronic inflammation is a major factor underlying ageing and age-related disease
processes. The proinflammatory cytokines and chemokines that comprise the SASP
increase stress on the intracellular signaling network, tissues, organs, and systems,
leading to various metabolic disorders and chronic inflammation. Alterations in
inflammasome, SPM, and autophagy trigger chronic inflammation, thus leading to
accelerated ageing and age-related chronic diseases. Therefore, a better understand-
ing of the molecular mechanisms involved in chronic inflammation may provide a
fundamental platform for developing effective interventions that delay



ageing-related dysfunction and prevent age-related proinflammatory, i.e.,
senoinflammatory diseases.
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Chapter 4
Heart Disease and Ageing: The Roles
of Senescence, Mitochondria,
and Telomerase in Cardiovascular Disease

Laura K. Booth , Rachael E. Redgrave, Simon Tual-Chalot ,
Ioakim Spyridopoulos , Helen M. Phillips , and Gavin D. Richardson

Abstract During ageing molecular damage leads to the accumulation of several
hallmarks of ageing including mitochondrial dysfunction, cellular senescence,
genetic instability and chronic inflammation, which contribute to the development
and progression of ageing-associated diseases including cardiovascular disease.
Consequently, understanding how these hallmarks of biological ageing interact
with the cardiovascular system and each other is fundamental to the pursuit of
improving cardiovascular health globally. This review provides an overview of
our current understanding of how candidate hallmarks contribute to cardiovascular
diseases such as atherosclerosis, coronary artery disease and subsequent myocardial
infarction, and age-related heart failure. Further, we consider the evidence that, even
in the absence of chronological age, acute cellular stress leading to accelerated
biological ageing expedites cardiovascular dysfunction and impacts on cardiovas-
cular health. Finally, we consider the opportunities that modulating hallmarks of
ageing offer for the development of novel cardiovascular therapeutics.
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Introduction: Cardiovascular Ageing

More than 75% of Americans between the ages of 60 and 79, and nearly 90% of
those over 80, suffer from cardiovascular disease (CVD) (Virani et al. 2021). It is
therefore unsurprising that CVD is the leading cause of death for people over the age
of 65 (North and Sinclair 2012). In the decades to come, increased prevalence of
age-related CVDs such as atherosclerosis, coronary artery disease, myocardial
infarction (MI), thoracic aortic aneurysm, valvular heart disease, and heart failure
(HF) will contribute to even greater health and economic burden as the world’s
population continues to age (Childs et al. 2017; Olivieri et al. 2013). In this review,
the mechanisms of cardiovascular ageing concerning several age-related CVDs will
be described, with a focus on mitochondrial dysfunction and the non-canonical roles
of telomerase.

Cardiovascular Ageing and Atherosclerosis

Atherosclerosis is classed as a disease of ageing and is the leading cause of vascular
disease worldwide (Wang and Bennett 2012). Atherosclerosis is initiated by endo-
thelial injury or accumulation of low-density lipoproteins (LDLs) within the arterial
wall which leads to the development of lipid and protein-filled “plaques”, triggering
both the innate and adaptive immune responses (Moriya 2019). Inflammation
stimulates necrotic core enlargement, extracellular matrix degeneration and cap
thinning, erosion, calcification, and intra-plaque angiogenesis (Stojanović et al.
2020). Ultimately the atherosclerotic plaque can become unstable until rupture
triggers thrombus formation, leading to blockage of the artery and thus cessation
of blood flow distal to the occlusion leading to severe ischaemic injuries including
MI and stroke (Montecucco et al. 2016; Thygesen et al. 2012; Moriya 2019).

Ageing and Heart Failure

An estimated 6.2 million adults in the USA are currently living with clinical HF with
approximately 90% of these individuals being over 60 years old (Benjamin et al.
2019). HF is associated with ageing as a result of several pathophysiologies that
contribute to impaired myocardial function and the inability of the heart to provide
the circulatory efficiency required to meet organ demand.

At a cellular level, myocardial ageing is associated with structural, biochemical,
and biomechanical changes including increased arterial stiffness, cardiomyocyte
hypertrophy, chronic sterile inflammation, amyloid deposition, and increased inter-
stitial fibrosis (Horn and Trafford 2016). Interestingly, fibrosis can occur in the
absence of hypertension (Lin et al. 2008), suggesting that age-related fibrosis is



driven by an independent mechanism. Together these cellular changes affect the
heart at the tissue level, leading to myocardial remodelling which is characterised by
increased left ventricular (LV) mass, due to the thickening and stiffening of the LV
walls and interventricular septum, and a decrease in diastolic functions such as
myocardial relaxation and peak contractility (Triposkiadis et al. 2019). The apparent
lack of systolic dysfunction with age has led to age-associated HF often being
considered as HF with preserved ejection fraction (HFpEF) (Borlaug and Paulus
2011). However, it is becoming evident that with age, the systolic functional reserve
is also diminished, and the heart is unable to respond to periods of increased cardiac
demand (Norman et al. 2011). Over 50% of hospitalised HF patients exhibit HFpEF
and the prevalence is expected to increase at a rate of over 10% per decade with
population ageing (Benjamin et al. 2019; Borlaug and Paulus 2011).
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As discussed above, atherosclerosis is ageing-associated and therefore there is
also an increased prevalence of coronary heart disease (CHD) in the older popula-
tion. The critical outcome of CHD is plaque rupture, causing artery blockage and
myocardial infarction. If the blockage is not rapidly removed and sustained ischemia
occurs, extensive cardiomyocyte death and cellular necrosis may take place,
impacting cardiac function which can result in death. Following MI, the hearts of
surviving patients undergo a rapid maladaptive myocardial remodelling
characterised by dilatation, hypertrophy, and the formation of a discrete collagen
scar. Additionally, progressive ventricular remodelling can continue for weeks or
months following MI (Sutton and Sharpe 2000). Most patients receiving interven-
tion for MI are in the older age range (mean age of 65 years old), and age remains the
most important predictor of outcomes following MI, with the older population
having increased mortality and poorer functional outcomes than younger individ-
uals. Patients older than 70 account for up to half of those admitted to hospital with
MI and 80% of deaths due to MI occur in those aged over 65 years (McMechan and
Adgey 1998). Age is associated with an increased risk of developing heart failure: in
a study of 896 patients, Torabi et al. observed that in the six years after MI, 50% of
patients aged younger than 65 years, 73% of patients aged between 65–75 years, and
87% of patients over 75 years had developed heart failure (Torabi et al. 2014).

Ageing and Cardiothoracic Surgery

Ageing impacts, and is the most important prognostic indicator of cardiothoracic
surgical outcome (Duncan et al. 2020). Subsequent to surgery, including that
required to treat CVD, older individuals have increased mortality and are at higher
risk of developing organ injury (Benedetto et al. 2021; Baquero and Rich 2015)
which can lead to the progression of multiple chronic conditions (DiMaria-Ghalili
et al. 2014; Matsuura et al. 2020), disability (Hong et al. 2021), and lower quality of
life (Koch et al. 2007). The cost of treating organ injury as a result of cardiac surgery
alone is >£100M per year in the UK (Sergin et al. 2016).
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Senescence as a Driver of Cardiovascular Disease

Cellular senescence is considered a hallmark of ageing (López-Otín et al. 2013)
defined as a loss of the division potential of mitotic cells and the production of the
senescence-associated secretory phenotype (SASP), a cocktail of proinflammatory
cytokines, chemokines, and growth factors. Therefore, senescence contributes to
age-related tissue dysfunction through impaired homeostasis and elevated inflam-
mation (Wiley and Campisi 2021). Senescent cells accumulate in most organ tissues
with age, as well as in several age-related diseases and can be driven by several
interconnected mechanisms including mitochondrial dysfunction, increased reactive
oxygen species (ROS), DNA damage and telomere attrition (Kuilman et al. 2010).
The identification of senescent cells is difficult as there are currently no known
specific markers that unambiguously identify all senescent cells (Sharpless and Sherr
2015). As such, multiple markers including senescence-associated β-galactosidase
(SA-β-Gal) activity, expression of cyclin-dependent kinase inhibitors (p21Cip,
p16Ink4a, and p53), presence of DNA damage or critically short telomere length,
and lack of proliferation, are often used in combination with each other to facilitate
the characterisation of senescent cells (González-Gualda et al. 2021; de Magalhaes
and Passos 2018). Transgenic mice which allow pharmacogenetic induction of
apoptosis in p16-expressing senescent cells have been developed to investigate the
contribution of senescence to ageing and age-associated disease (Baker et al. 2011;
Demaria et al. 2014). The p16-INKATTAC and p16-3MR transgenic mice share a
similar approach, as they both contain an apoptosis-inducing protein transgene,
driven by the p16Ink4a promoter, which is only functional after the administration
of pharmacological agents (Baker et al. 2011; Demaria et al. 2014). More recently,
senescent cells have been shown to upregulate pro-survival pathways, thus
protecting themselves from a hostile microenvironment (Zhu et al. 2015; Wang
1995). This not only aids senescent cell identification but can be exploited scientif-
ically, as inhibiting these pathways causes apoptosis in senescent cells (Zhu et al.
2015). Several compounds that inhibit these pathways, including Bcl-2 family
members, p53/p21Cip, ephrins, phosphatidylinositol-4,5-bisphosphate 3-kinase,
plasminogen-activated inhibitor-1 and 2 and hypoxia-inducible factor-1α, have
now been identified as promoting apoptosis in senescent cells, and have therefore
been termed senolytics (Zhu et al. 2015). Together, these tools for senescent cell
elimination have been used to demonstrate that in preclinical models, senescence is
causal to the pathophysiology of multiple age-related diseases, including several
CVDs (Anderson et al. 2019; Dookun et al. 2020; Martin-Ruiz et al. 2020;
Walaszczyk et al. 2019; Baker et al. 2016; Demaria et al. 2017; Childs et al. 2016;
Roos et al. 2016).

Clinically, there is extensive evidence of the association between vessel wall
senescence accumulation and atherosclerosis (Stojanović et al. 2020). Histological
analysis of post-mortem tissues has identified that atherosclerotic vessels contain
more senescent endothelial and vascular smooth muscle cells than aged-matched
healthy arteries (Stojanović et al. 2020). Moreover, expression of p16 in diseased



human coronary arteries positively correlates with plaque instability (Holdt et al.
2011), and the capability of cellular senescence to drive atherosclerosis is indicated
by the increased risk of MI in relatively chronologically young patients with human
progeria syndromes (Prakash et al. 2018).
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Preclinically, LDL receptor-deficient and apolipoprotein E–deficient mouse
models of atherosclerosis demonstrate that senescence accumulates in several cell
populations in and around the atherogenic plaque during atherogenesis (Childs et al.
2016; Roos et al. 2016). These populations contribute to a proinflammatory envi-
ronment and plaque development, indicated by the fact that senescent cell elimina-
tion reduces the expression of typical proinflammatory SASP proteins including
matrix metalloproteinases (MMP) MMP-3, MMP-13, and the inflammatory cyto-
kines IL-1α and tumour necrosis factor-α, and furthermore decreases plaque burden
(Childs et al., 2016).

Senescence of immune cells, including the T cell population, is associated with
atherogenesis and is a biomarker of CVD risk (Martin-Ruiz et al. 2020). Senescent,
terminally differentiated CD8+ T-cells (TEMRA) are found inside unstable plaques
and are an independent predictor of all-cause mortality in the elderly (Martin-Ruiz
et al. 2020; Nakajima et al. 2002). While the studies of Childs et al. (2016) did not
investigate if the elimination of senescent T-cells contributed to a reduced plaque
burden, senolytics have been demonstrated to reduce T-cell immunosenescence in
aged mice (Martin-Ruiz et al. 2020).

Senescence accumulates in cardiomyocytes, endothelial cells, cardiac fibroblasts
and cardiac progenitor cells within the myocardium during ageing and is increased in
the myocardium with age-associated CVD (Shimizu and Minamino 2019). Clini-
cally, aged patients presenting with ventricular dysfunction have increased
cardiomyocyte expression of p53 and p16, with increased expression being associ-
ated with hypertrophy at either an organ or cellular level (Song et al. 1999; Birks
et al. 2008; Predmore et al. 2010). Cardiomyocyte senescence has also been linked to
an increased risk of ventricular arrhythmias (Chadda et al. 2018). Endothelial cell
senescence is observed with HF, particularly in patients suffering from HFpEF
(Gevaert et al. 2017) and myocardial fibrosis and myofibroblast differentiation,
which are increased with age and associated with HFpEF, are induced by senescent
stimuli (Mellone et al. 2016; Zhu et al. 2013).

In vitro, paracrine SASP signalling from senescent myocardial cells, such as
cardiomyocytes, endothelial cells, and fibroblasts, causes phenotypic alterations
associated with cardiac remodelling. Several independent studies have also demon-
strated that senescence promotes cardiac remodelling in preclinical studies: using
senomorphic, senolytic, or pharmacogenetic approaches to reduce senescence, it has
been demonstrated that attenuation of cardiac senescence decreases inflammation,
cardiomyocyte hypertrophy and fibrosis in several different models of cardiovascu-
lar ageing (Anderson et al. 2019; Walaszczyk et al. 2019; Lewis-McDougall et al.
2019; Zhu et al. 2015; Baker et al. 2016; Iske et al. 2020; Demaria et al. 2017;
Correia-Melo et al. 2019). In particular, elimination of senescent cells from aged
mice also reduced LV mass and improved LV function (Walaszczyk et al. 2019; Zhu
et al. 2015).
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It is well-recognised that biological processes and phenomena associated with
increased senescence are also associated with poorer surgical outcomes. Frailty, one
of the best indicators of accumulated senescence, is prognostic of surgical outcome
and increased age is associated with an increased peri-surgical likelihood of myo-
cardial injury, accelerated progression of chronic conditions, disability, lower qual-
ity of life, and death (Koch et al. 2007; DiMaria-Ghalili et al. 2014; Matsuura et al.
2020; Nashef et al. 2012; Sun et al. 2021; Hong et al. 2021; Duncan et al. 2020).
Preclinical studies have demonstrated a direct link between increased myocardial
senescence, increased mortality and poorer outcomes following surgery
(Walaszczyk et al. 2019; Iske et al. 2020). Interestingly, an accumulation of myo-
cardial senescence is also associated with reduced resilience to isoproterenol-
induced myocardial stress (Baker et al. 2016). Taken together, it is possible that
increased myocardial senescence reduces a patient’s resilience to cardiac surgery and
contributes to poorer outcomes. If this is the case, blood sampling and SASP
quantification prior to surgery may allow for better risk stratification of patients
and would also suggest that targeting senescence is a potential therapeutic interven-
tion to improve surgical outcomes.

Mitochondrial Dysfunction and Oxidative Stress

Progressive or chronic alterations in mitochondrial function and bioenergetics such
as increased production of ROS, mitochondrial DNA (mtDNA) damage and respi-
ratory chain dysfunction, occur in both the heart and vascular system (Judge et al.
2005; Ungvari et al. 2007; Navarro and Boveris 2007) and are associated with
several age-related CVDs (Poznyak et al. 2020). Reduced mitochondrial bioener-
getics is suggested to be a key contributor to the progression of heart failure. For
example, polymorphisms in the gene peroxisome proliferator-activated receptor-
gamma coactivator (PGC-1α), responsible for controlling and maintaining mito-
chondrial content, are linked to an increased risk of hypertrophic cardiomyopathy
(Oka et al. 2020). Furthermore, a significant positive relationship exists between
myocardial ROS levels and LV contractile dysfunction in failing hearts (Ide et al.
2000). Experimentally, mice deficient in mitochondrial superoxide dismutase, a
ROS scavenger, exhibit characteristics of dilated cardiomyopathy (Lebovitz et al.
1996).

Age-related mitochondrial dysfunction has also been proposed as a key driver of
the atherogenic processes (Nowak et al. 2017). Oxidative modification of LDL, and
its transport into the subendothelial space of the arterial wall, is considered an
initiating event for atherosclerosis (Nowak et al. 2017). Increased ROS and oxidative
stress also promote endothelial dysfunction and apoptosis, as well as influencing
T-cell and vascular smooth muscle cell proliferation and apoptosis (Richardson et al.
2018; Nowak et al. 2017). Together, this increases inflammation and the develop-
ment of the atherosclerotic plaque, ultimately contributing to plaque rupture
(Madamanchi and Runge 2007; Anderson et al. 2018). PGC-1α dysfunction leading



to increased ROS production can drive telomere shortening alongside both telomeric
and non-telomeric DNA damage, accelerating vascular ageing and promoting ath-
erosclerosis (Xiong et al. 2015). T cell mitochondrial function also declines with
increased age (Ron-Harel et al. 2018) and T cells with dysfunctional mitochondria
accelerate senescence in mice, leading to a premature ageing phenotype triggered by
the induction of proinflammatory cytokines: so-called “inflammageing” (Desdín-
Micó et al. 2020).
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Similar to senescence, mitochondrial dysfunction is considered a key hallmark of
ageing (López-Otín et al. 2013). However, only recently has the intricate and
complex relationship between these two processes been identified. It is now clear
that mitochondrial dysfunction is both a driver and consequence of cellular senes-
cence (Chapman et al. 2019). Mitochondrial dysfunction, increased ROS production
and associated oxidative stress activate the DNA damage response (DDR) and drive
senescence (Chapman et al. 2019). ROS can cause DNA damage in the form of
either single or double-stranded breaks (DSBs) throughout the genome, and telo-
meres appear to be particularly sensitive to ROS-induced damage due to their
guanine-rich regions which have increased susceptibility to oxidation (Grollman
and Moriya 1993). Single-strand DNA damage within telomeric regions can also
accelerate telomere shortening due to the low efficiency of single-strand telomeric
DNA damage repair (von Zglinicki et al. 2000). Telomeres containing single-strand
DNA damage do not fully replicate during cellular division and shorten more in the
following cellular division as the sequence beyond the damage is lost (von Zglinicki
et al. 2000).

While many senescent cells have an increase in mitochondrial mass, their mito-
chondria are dysfunctional and demonstrate a decreased mitochondrial membrane
potential, an increased proton leak and elevated ROS (Passos et al. 2007).
Mitochondrial-derived ROS are a component of the SASP (Nelson et al. 2018),
and mitochondria themselves are essential for the expression of SASP proteins
(Correia-Melo et al. 2016). Senescent cells with depleted mitochondria lose their
proinflammatory and pro-oxidant phenotype as well as the expression of the cyclin-
dependent kinase inhibitors p21 and p16, however they remain in cell cycle arrest
(Correia-Melo et al. 2016). Mitochondrial-mediated SASP production is at least in
part controlled by a ROS–JNK signalling pathway which drives the release of
cytoplasmic chromatin fragments, triggering the innate immunity cytosolic
DNA-sensing cGAS-STING pathway (Vizioli et al. 2020). This in turn activates
NFκB signalling, switching on the transcription of proinflammatory genes and the
SASP (Vizioli et al. 2020). It has also been suggested that in senescent cells,
increased mitochondrial outer membrane permeability (MOMP) allows the release
of mtDNA which also activates cGAS-STING signalling, thus increasing
proinflammatory gene expression. Further, the expression of pro-survival pathways
may allow for sublethal apoptosis, termed minority MOMP, in which cytochrome c
release and caspase activation induce DNA damage in the absence of apoptosis,
contributing to genetic instability and perhaps deeper senescence (Birch and Passos
2017).
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The mitochondrial genome is relatively sensitive to oxidative stress (Richter et al.
1988), further exacerbating the effects of mitochondrial dysfunction on disease
pathophysiology: mitochondrial dysfunction ultimately leads to DNA damage in
the mitochondrial genome and further mitochondrial dysfunction (Hollensworth
et al. 2000). While the precise mechanisms for this remain unclear, the proximity
of the mitochondrial genome to sites of ROS production and the lack of histones to
provide protection have all been discussed (Miller et al. 2021). Together, these
observations highlight the cyclical interactions between mitochondrial dysfunction,
oxidative stress and senescence, and illustrate how the initiation of any of these
processes could lead to a downward spiral in tissue function (Fig. 4.1).

In the heart, the cardiomyocytes of aged mice display a decline in expression of
most mitochondrial genes, including those involved in the electron transport chain
(Anderson et al. 2019). Moreover, and demonstrating that oxidative stress can drive
cardiomyocyte senescence, transgenic mice overexpressing the pro-oxidant enzyme
monoamine oxidase A (MAO-A), specifically in the cardiomyocytes, show
increased myocardial senescence and exhibit myocardial dysfunction (Anderson
et al. 2019).

Mitochondria also have mechanistic roles in acute CVD. This is notably seen in
the context of ischaemia-reperfusion injury (IRI) which, though not an age-related
disease per se, does primarily affect the older population since it is a significant
consequence of reperfusion therapies used to return the blood supply to the myo-
cardium following a heart attack (Aversano et al. 2002). IRI is a highly complex and
multifactorial process (Neri et al. 2017; Halladin 2015; Hausenloy and Yellon 2013),
but mitochondrial ROS generation is key to the pathophysiology driving
cardiomyocyte death, endothelial dysfunction and microvascular occlusion, and
promotes inflammation in this injury setting (Kalogeris et al. 2012; Neri et al.
2017; Hausenloy and Yellon 2013). As ROS can act as a contributor to mitochon-
drial Ca2+ overload, it can further increase ROS levels, creating a feedback loop
whereby a state of Ca2+ overload is maintained and ROS generation is increased
(Penna et al. 2009; Murphy and Steenbergen 2007; Kaneko et al. 1990). Unfortu-
nately, while it is clear mitochondria and oxidative stress contribute to the patho-
physiology of IRI, and several preclinical studies have reported antioxidants to
protect against cardiac IRI (Dhalla et al. 2000), these results have failed to transfer
clinically (Hausenloy and Yellon 2013; Desmet et al. 2011; Siddiqi et al. 2014; Atar
et al. 2015). However, it may be that targeting the downstream effects of oxidative
stress such as senescence, rather than oxidative stress itself, is a preferable strategy
which may provide a longer treatment window to attenuate maladaptive remodelling
post-cardiac IRI. In preclinical models of cardiac IRI, increased senescence has been
observed in multiple cell types within the area of myocardium that experienced
increased oxidative stress (Dookun et al. 2020). Interestingly, elimination of senes-
cence following cardiac IRI using a senolytic approach improved cellular respira-
tion, attenuated inflammation and remodelling, and enhanced revascularisation, all
of which were associated with an improved myocardial function (Dookun et al.
2020). Numerous clinical conditions besides MI including stroke, organ



transplantation, and peripheral vascular disease (Widgerow 2014; Kalogeris et al.
2012) are linked to the occurrence of IRI, however, it has yet to be identified if
senescence contributes to pathophysiology in these disease settings.
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Fig. 4.1 Mitochondrial senescence and the SASP. (1) Mitochondrial dysfunction contributes to
increased ROS production. (2) ROS can directly induce DNA damage in the form of double and
single-stranded breaks in the genomic and telomeric DNA. DNA damage can also accelerate
telomere shortening. Together these induce senescence. (3) Mitochondrial-derived ROS drives
autocrine and paracrine mtDNA damage, further contributing to mitochondrial dysfunction.
(4) Senescent cells have increased MOMP, allowing the release of caspase-activating cytochrome
c. However, due to increased pro-survival protein expression in senescent cells, this release is
insufficient to induce apoptosis (minority MOMP) and instead leads to increased mitochondrial and
genomic DNA damage. (5) ROS activation of JNK inhibits tumour suppressor P53-binding protein
1 (53BP1) and thereby DSB end restriction, contributing to the release of cytoplasmic chromatin
fragments which are detected by the cGAS-STING pathway (6), an innate immune system double-
stranded DNA sensor which responds to CCF and (7) mtDNA release, due to increased mitochon-
drial membrane permeability, with NFκβ activation and expression of proinflammatory SASP
genes which increases inflammation (8). These proinflammatory proteins, together with ROS,
maintain autocrine cellular senescence but also induce senescence in surrounding tissues (bystander
effect), propagating mitochondrial dysfunction and leading to a cascade in mitochondrial dysfunc-
tion and senescence
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Telomeres and Telomerase in Cardiovascular Disease,
Replicative Senescence and Beyond

The association between telomere length and CVD is well-established and reviewed
(Hoffmann et al. 2021). Telomerase reporter mice and knockout models, such as
those lacking expression of either the telomerase RNA component (TERC) or
telomerase reverse transcriptase (TERT), have aided our understanding of how
experimentally-induced myocardial senescence can contribute to CVD (Blasco
et al. 1997; Leri et al. 2003; Richardson et al. 2012, 2018). However, it is now
apparent that telomeres and telomerase interact with CVD beyond their roles in
regulating replicative senescence.

It had long been debated as to how predominantly post-mitotic cardiomyocytes,
which rarely proliferate and therefore are protected from replicative stress, can
acquire a senescent phenotype. Data from recent studies, including our own, have
now determined that senescence can also be induced by DNA-damaging agents
including oxidative stress, which cause DNA damage foci that are preferentially
located within telomeres, termed telomere-associated foci (TAF) (Hewitt et al. 2012;
Anderson et al. 2019). During physiological ageing, cardiomyocytes in humans and
mice accumulate TAF (Anderson et al. 2019). TAF are persistent (they are not as
efficiently repaired as non-telomeric damaged DNA), induce senescence via activa-
tion of the p16 and p21 pathways, and occur independently of telomere shortening
and proliferation (Anderson et al. 2019) (Fig. 4.2). Pharmacogenetic elimination of
senescent cells from aged mice reduces the number of TAF-positive cardiomyocytes
but does not affect telomere length (Anderson et al. 2019), suggesting that TAF
accumulation is the primary trigger of cardiomyocyte senescence during ageing.

Telomerase activity is protective against senescence: cells stably transfected with
human telomerase can divide indefinitely (Bodnar et al. 1998). Conversely, inhibi-
tion of either TERT or TERC promotes senescence, reduces lifespan and accelerates
ageing in cells and small animal models (Shay andWright 2004). Clinically, patients
suffering from mutations in genes that encode TERT demonstrate an accelerated
ageing phenotype that includes an increased prevalence of CVD (Armanios et al.
2005; Vulliamy et al. 2001; Ballew and Savage 2013; Khincha et al. 2017; Lina et al.
2008). While telomere maintenance contributes to these anti-senescence effects,
TERT has activity independent of telomere preservation that may also protect
against senescence. In particular, mitochondrial-localised TERT expression
improves mitochondrial function, reduces mitochondrial ROS production, and pro-
tects against DNA damage and instability in both genomic and mitochondrial DNA
(Haendeler et al. 2009; Ahmed et al. 2008; Fleisig et al. 2016). Mice which
constitutively express TERT but are cancer-resistant (due to enhanced expression
of the tumour suppressors p53, p16, and p19ARF) demonstrate decreased ageing-
associated pathologies and an increase in median lifespan (Tomás-Loba et al. 2008).
Interestingly, this anti-aged phenotype was associated not only with telomere main-
tenance but also a reduction in both genomic and telomere-associated DNA damage



(Tomás-Loba et al. 2008), supporting a senoprotective role of telomerase that is
independent of telomere maintenance.
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Fig. 4.2 Cardiomyocyte senescence is induced independently of telomere shortening. Mitochon-
drial dysfunction and increased ROS generation induce telomeric DNA damage in cardiomyocytes.
While DNA damage occurs in both genomic and telomeric regions, genomic DNA damage is
repaired, resulting in a transient DDR that may not be sufficient for senescence establishment.
Alternatively, irreparable and therefore persistent DNA damage at telomeres causes a persis-
tent DDR and cardiomyocyte senescence, which is associated with SASP-mediated inflammation

The senescent phenotype is associated with a reduction in both canonical and
non-canonical telomerase function, as p53 attenuates TERT expression via the
inhibition of PGC-1α, which upregulates TERT expression in proliferative cells.
As such, a crisis point must be reached in conditions of oxidative stress whereby
sufficient DDR signalling activates p53, and presumably the senescence pathway,
which then inhibits both mitochondrial biogenesis and the defensive functions of
TERT. This facilitates escalating ROS generation, DNA damage (both mitochon-
drial and genomic) and ROS-mediated telomere shortening (Fig. 4.3). Indicating this
may contribute to CVD are the observations that, in both cardiomyocytes and
T-cells, p53 downregulates PGC-1α, resulting in increased mitochondrial oxidative
damage (Villeneuve et al. 2013; Schank et al. 2020).

TERT is increased in multiple cell populations including cardiomyocytes in
response to cardiac injury (Richardson et al. 2012). While the functionality of this



expression is not yet known, given the post-mitotic nature of cardiomyocytes, it is
arguably unlikely that TERT is upregulated to maintain telomeres during extensive
proliferation. Instead, TERT upregulation could provide a mechanism for the
cardiomyocyte, and potentially other cell types, to protect against mitochondrial
dysfunction and oxidative stress, which in turn may protect against DNA damage
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Fig. 4.3 TERT mediated protection from senescence. (1) In conditions of increased oxidative
stress, PGC-1α promotes mitochondrial biogenesis and upregulates TERT expression. (2) Through
canonical roles and telomerase function, TERT maintains telomeres, and oxidative stress promotes
the export of TERT from the nucleus. (3) Through unknown mechanisms TERT translocates into
the mitochondria. (4) Increases in mitochondrial-located TERT are associated with improved
electron transport chain function and a decrease in ROS, processes which will attenuate DNA
damage and telomere shortening. (5) TERT interacts with mtDNA and protects mtDNA from dam-
age, maintaining mitochondrial biogenesis and thereby function. (A) If telomeres reach a crisis
point or DNA damage is persistent, activation of the classical senescence pathways that converge in
p53 activation (B). (C) p53 inhibits PGC-1α and therefore both mitochondrial biogenesis and TERT
expression, preventing the defensive functions of TERT enabling increased oxidative stress,
telomere attrition, and further DNA damage



and senescence/apoptosis. In support of this notion, recent studies have demon-
strated that mice which overexpress mitochondrial TERT, but lacked nuclear TERT,
had improved mitochondrial respiration, attenuated myocardial remodelling and
increased revascularization after they were subjected to cardiac IRI; these factors
contributed to improved cardiac function (Ale-Agha et al. 2021). These benefits
overlap with the outcome of the studies described earlier, in which senescence was
eliminated following cardiac IRI (Dookun et al. 2020).
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While the relationship between telomere length, atherosclerosis and the develop-
ment of CHD has been studied extensively (Harst et al. 2007; Samani et al. 2001;
Brouilette et al. 2007), little is known regarding the interactions between
non-canonical telomerase activities and these diseases. T-cells express telomerase
to maintain telomere length and protect against senescence (Weng et al. 1996). It has
been demonstrated that oxidative stress can suppress telomerase activity within
T-cells (Callender et al. 2018) which could accelerate T-cell senescence through
two mechanisms: (i) as a result of replication in the absence of telomerase and (ii)
through increased mitochondrial dysfunction and ROS generation due to suppres-
sion of mitochondrial TERT activity. Given that T-cell senescence is associated with
a proinflammatory phenotype, chronic oxidative stress within an atherosclerotic
plaque could contribute to disease pathophysiology. Furthermore, subpopulations
of T-cells, such as TReg cells, are anti-atherogenic, and therefore senescence in these
populations could also promote atherosclerosis.

Taken together this data suggests that if the pro-tumourigenic activities of TERT
can be overcome, enhancing telomerase expression may have therapeutic value for a
wide range of CVDs through senescence protection (telomere-dependent and -inde-
pendent mechanisms), improved mitochondrial function, reduced oxidative stress
and reduced inflammation. Interestingly statins, one of the most potent drug families
which can slow the progression of atherosclerosis (by delaying age-related inflam-
matory changes in the arterial vessel wall), have been shown to stimulate telomerase
activity (Bennaceur et al. 2014). Although, it remains unknown if stimulation of
TERT’s non-canonical activities contributes to the benefits associated with
statin use.

Mitochondrial Dysfunction of T Lymphocytes as a Potential
Mechanism of Enhanced Inflammation Post-myocardial
Infarction

In vertebrates, premature ageing of the immune system (termed
“immunosenescence”) is mainly linked to thymic involution and changes in cellular
immunity as a response to pathogens, such as recurrent viral infections, throughout
life (Müller et al. 2013). These include a reduction in circulating lymphocytes and
naïve T lymphocytes, the loss of stimulatory T lymphocyte co-receptors, the increase
of oligoclonal memory cells, and finally, increased levels of proinflammatory



cytokines. Immune ageing has been proven to correlate with higher mortality across
different age groups (Strindhall et al. 2007; Alpert et al. 2019). Relative
lymphopenia in over 50,000 otherwise healthy middle-aged Americans has recently
been identified as a strong predictor of overall mortality as well as cardiovascular
mortality (Zidar et al. 2019). In the Newcastle 85+ study, we have previously shown
that women exhibited higher lymphocyte counts and a higher frequency of naïve
T-cells, paralleled by lower cardiovascular mortality, without differences in
non-cardiovascular mortality (Martin-Ruiz et al. 2020; Spyridopoulos et al. 2016).
We also found in a different study that MI leads to accelerated immunosenescence
and shorter leukocyte telomere length (Hoffmann et al. 2015; Spyridopoulos et al.
2009). Finally, fewer lymphocytes following MI also predicted higher mortality in
our patients (Boag et al. 2015; Spray et al. 2021). Lymphocyte proliferation can be
enhanced in vitro by activating telomerase (Richardson et al. 2018). We have shown
that T lymphocyte proliferation can be induced in a TERT-dependent manner
in vitro by the telomerase activator (Richardson et al. 2018), TA-65MD®
(T.A. Sciences, New York, USA). Further, TA-65 treatment has been shown to
improve the outcome of mice after experimental MI, a function that required the
presence of mitochondrial TERT (Ale-Agha et al. 2021; Jabbour et al. 2019).
Importantly, mice that express mitochondrial-localised but lack nuclear-localised
TERT are phenotypically normal and show no obvious signs of hyperproliferative
diseases (Ale-Agha et al. 2021), suggesting that the TA-65-enhanced mitochondrial-
TERT expression is not pro-tumourigenic. Our TACTIC (Telomerase Activator to
Reverse Immunosenescence in Acute Coronary Syndrome: A Double-Blind, Phase
II, Randomised Controlled Trial) study 5 is the first randomised clinical trial using a
telomerase activator in patients following myocardial infarction, and will investigate
whether treatment reduces inflammation while simultaneously enhancing immunity
following MI.
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Inflammation Is an Important Residual Risk
Post-myocardial Infarction

Following myocardial infarction, secondary prevention for patients nowadays con-
sists of targeting their residual risk, which is thought to be largely attributed to either
hypercholesterolemia (which can be targeted with statins and proprotein convertase
subtilisin/kexin type 9 inhibitors) or platelet aggregation (which can be treated with
dual antiplatelet therapy). Recently inflammation, as quantified by high-sensitivity
C-reactive protein (hsCRP), has been added to this. The CANTOS trial has success-
fully proven that reducing inflammation in CAD patients with elevated hsCRP
(>2 mg/L) improves outcomes (Ridker et al. 2017). In a more detailed subanalysis
of the CANTOS trial, the authors found that the relative improvement of outcome
correlated directly to the magnitude of hsCRP reduction (Ridker et al. 2018).
Secondly, adverse remodelling is also propagated by excessive inflammation;



early studies with the IL-1 antagonist Anakinra following MI suggest treatment can
reduce the progression to heart failure (Abbate et al. 2020). However, a major
limitation of the CANTOS trial was the effect of IL-1β blockade on immunity, as
patients in the treatment group had a higher risk for infections as well as a higher risk
of dying from sepsis. Clearly, there is a need for anti-inflammatory targets post-MI
without compromising immunity; targeting immune ageing directly could present a
viable option.
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Mitophagy and Age-Related Cardiovascular Disease

In the heart, the mitochondria can metabolically adapt to changes in cardiac stress,
ensuring they meet the high energy demand of the heart. However, as previously
mentioned, ageing is associated with altered cardiac mitochondrial metabolism and
mitochondrial dysfunction (Lesnefsky et al. 2016; Lesnefsky and Hoppel 2006). In
order to prevent cardiomyocytes containing damaged mitochondria from undergoing
cell death, the adaptive process mitophagy facilitates the efficient removal of dys-
functional and damaged mitochondria within a cell. Thus, the physiological conse-
quences of mitophagy prevent ROS-mediated damage to proteins and DNA, and
prevents inflammation. Hence, mitophagy maintains cardiac homeostasis by con-
trolling a dynamic balance between the elimination of mitochondria and mitochon-
drial biogenesis, maintaining a healthy mitochondrial network. Mitophagy is defined
as mitochondrial autophagy and is a selective form of autophagy specifically elim-
inating dysfunctional mitochondria in cells (Narendra et al. 2008). Autophagy is a
key catabolic pathway in cellular quality control. During autophagy, damaged
organelles are engulfed by autophagosomes and are subsequently degraded by
fusion with lysosomes. There are two known mechanisms for mitophagy: adaptor-
mediated and receptor-mediated. The former pathway functions via Phosphatase and
Tensin Homolog (PTEN)-induced putative kinase 1 (PINK) and Parkin-mediated
mitophagy, and this is the most well-characterised pathway. When a mitochondrion
is dysfunctional or damaged, PINK1 accumulates on the outer surface of the
mitochondrion (Lazarou et al. 2015). Here, PINK1 phosphorylates ubiquitin and
the E3 ubiquitin ligase, Parkin, which ubiquitinates key mitochondrion-associated
proteins (Jin et al. 2010; Matsuda et al. 2010; Narendra et al. 2008). These signals are
bound by autophagic adaptor proteins such as p62/SQSTM1 that subsequently bind
with microtubule-associated protein 1A/1B-light chain 3 (LC3), which is tethered on
the phagophore membranes (Gustafsson and Dorn 2019), hence sequestering the
ubiquitinated mitochondrion within the autophagosome. This fuses with a lysosome
leading to the degradation of the damaged mitochondria (Pankiv et al. 2007; Lazarou
et al. 2015). As such, impaired mitophagy leads to an accumulation of “old”,
defective mitochondria. While it remains unclear if impaired mitophagy contributes
to senescence induction, is a result of senescence, or both, there are clear interactions
between senescence-inducing pathways, the senescent phenotype and attenuated



mitophagy. The senescence regulator p53 can interact with Parkin by blocking the
translocation of Parkin, p53 can suppress mitophagy (Ahmad et al. 2015).
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Impaired mitophagy has been implicated in the pathology of various age-related
CVDs (Dominic et al. 2014). In healthy young hearts, there is an underlying level of
baseline mitophagy essential for maintaining the cellular homeostasis in an energy-
efficient heart, and for responding and adapting to stress. Thus, the mitophagy
pathways are tightly regulated. However, there is evidence that a decrease in
mitophagy is associated with ageing (Zhou et al. 2017) and also with the pathogen-
esis of the CVD (Taneike et al. 2010), due to the accumulation of dysfunctional
mitochondrial which reduces the ability of the heart to adapt to stress. In patients
with the late stages of heart disease, a low number of autophagosomes is associated
with a poor prognosis (Saito et al. 2016). This accounts for the pathological changes
which are observed in the cardiac mitochondria of CVD patients, including the
presence of giant megamitochondria, the loss, reorientation, or change in the shape
of the cristae, formation of intramitochondrial rods and crystalloids (Hoppel et al.
2009).

In atherosclerosis, destabilisation of the atherosclerotic plaques has been associ-
ated with deficient mitophagy which in turn is linked to cell death, cell stress, and
ROS accumulation in the plaques (Madamanchi and Runge 2007; Grootaert et al.
2018). Various studies have shown that within atherosclerotic plaques from human
samples and mouse models, autophagy is either decreased or dysfunctional, shown
by reduced expression of autophagic markers p62 and LC3-II (Razani et al. 2012;
Sergin et al. 2016; Swaminathan et al. 2014). Activation of mitophagy has been
suggested as a possible mechanism to slow disease progression. Antioxidant thera-
peutic strategies, such as melatonin treatment (which has anti-inflammatory proper-
ties) (Ma et al. 2018), activate mitophagy and as a consequence stabilise
atherosclerotic plaques.

One important role of mitophagy is to suppress inflammation, which can lead to
myocardial damage and is described as a key feature of CVD. ROS excretion and
release of mtDNA from dysfunctional mitochondria activate the NLRP3
inflammasome (Nakahira et al. 2011; Heid et al. 2013) leading to inflammation in
the heart. However, mitophagy can remove these damaged mitochondria and thus
has an important role in suppressing inflammation. This was highlighted when
transgenic mice with cardiac-specific overexpression of Beclin1 (a key regulator of
autophagy) were exposed to lipopolysaccharide-induced sepsis, and an activation of
the PINK1/Parkin mitophagy pathway was observed—this was noted alongside
reduced inflammation, fibrosis and improved cardiac function in the mice (Sun
et al. 2018).

Mouse models which are Parkin-deficient or overexpress Parkin have illustrated
that loss of mitophagy accelerates ageing in the heart (Kubli et al. 2013; Hoshino
et al. 2013) or that enhancement of mitophagy delays cardiac ageing (Hoshino et al.
2013; Gao et al. 2021), respectively, highlighting the benefits of promoting Parkin-
mediated mitophagy. Furthermore, following MI, cardiac-specific Parkin-deficient
mice show that mitophagy is essential to reduce cardiac injury. After MI, the Parkin-
deficient mice had reduced survival and developed larger infarcts: when compared to



the control mice, these infarcts had reduced mitophagy and increased dysfunctional
mitochondria in the border zone, accounting for the observed heart failure (Kubli
et al. 2013). Hence it has been demonstrated that loss of mitophagy exacerbates
cardiac injury, leading to reduced survival.
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Myocardial IRI leads to mitochondrial damage accompanied by an initial adap-
tive autophagic response to cardiac injury (Gustafsson and Gottlieb 2009), which is
shown by an increase in mitophagy in both cardiomyocytes and platelets (Zhang
et al. 2018). However, this response may be short-lived: Billia and colleagues
showed that acute cardiac IRI ultimately leads to a reduction of autophagy flux, as
seen in heart tissue from patients with end-stage heart failure (Billia et al. 2011). In
the tissue, PINK1 protein levels were reduced compared to control samples, thus
leading to the accumulation of damaged mitochondria, severe oxidative stress and
apoptosis of cardiomyocytes (Campos et al. 2016). Studies from transgenic mouse
models illustrate the initial cardioprotective role of mitophagy. In one example,
cardiac-specific deletion of Drp1 (a mitochondrial fission mediator) leads to an
accumulation of elongated and damaged mitochondria, and suppresses mitophagy,
thus promoting cardiac dysfunction and increasing susceptibility to IRI (Ikeda et al.
2015). An alternative mitophagy pathway is via the autophagy receptor Fun14
domain-containing protein 1 (FUNDC1), which interacts directly with LC3. In
response to IRI-induced hypoxia, the Fund1 knockout mouse model is unable to
protect the heart from IRI due to a lack of mitophagy specifically (Zhang et al. 2017).
It was later shown that general autophagy remained unchanged (Xu et al. 2022).
Similarly, Pink1-deficient mice are more susceptible to IRI (Siddall et al. 2013), a
phenotype which is rescued when Pink1 is overexpressed, as this reduces cell death
and decreases infarct size (Wang et al. 2015). Thus, it is the induction of mitophagy
that contributes to the cardioprotective effect of attenuating cardiac injury. This has
been proposed as a strategy to protect the cardiac environment in CVD, although this
needs to be carefully appraised as excessive mitochondrial removal in response to
IRI can increase cardiomyocyte death (Lesnefsky et al. 2017).

The association between mitophagy and senescence in CVD is evidenced by two
independent studies which demonstrated that restoration of mitophagy prevents
age-related CVDs by delaying cellular senescence. D-galactose-induced accelerated
ageing mice display a phenotype which, when untreated, leads to increased cardiac
cellular senescence and impaired cardiac function: mice were administered acacetin
(Cui et al. 2018) or Kanglexin (KLX) (Li et al. 2022) and both treatments improved
the cardiac function of these mice. In the former study, the authors found that the
underlying mechanism for this improvement was protection from cellular senes-
cence which was attributed to an upregulation of mitophagy (Hong et al. 2021).
After treatment with KLX, a similar increase in mitophagy is noted, specifically in
senescent cardiomyocytes, which was shown to be due to the enhanced stability of
Parkin (Li et al. 2022). Moreover, treatment of a mouse model of accelerated ageing
(caused by activation of the major proinflammatory NF-κB pathway) with
rapamycin (a known autophagy and mitophagy activator) reduced cellular senes-
cence, prevented age-related frailty and reduced histopathological evidence of
age-related disease in several organs including the heart (Correia-Melo et al.



2019). Thus, enhancing mitophagy could represent a useful strategy for targeting
age/senescence-related CVD. Manipulation of mitophagy is an attractive model to
delay cardiac ageing and disease, however there are challenges as the level of
mitophagy must be tightly regulated and is dose-dependent. Increasing autophagy
excessively can lead to unnecessary degradation of cellular organelles and proteins
leading to counterproductive energy deficiency.
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Accelerated Ageing and Cardiovascular Disease:
Chemotherapy-Induced Cardiotoxicity

Though cancer survival is improving globally, many anticancer interventions leave
survivors with lasting off-target effects. Though radiation therapy has been reported
to increase frailty, especially in the context of neurocognitive defects from cranial
radiotherapy (Armstrong et al. 2013), pharmacological approaches can also promote
an ageing phenotype in various organ systems. Given the increasing population of
cancer survivors, understanding the long-term impacts of these off-target effects is a
priority for clinicians, and chemotherapy-induced cardiotoxicity (CIC) is a major
player in the field, which plagues even newer-generation chemotherapies such as
tyrosine kinase inhibitors (Chaar et al. 2018). The anthracycline drug class, which
remains a cornerstone of anticancer treatment for countless patients globally, is one
of the most well-studied examples of CIC-inducing drugs. Most commonly used for
breast cancer and sarcoma treatments, these drugs have long been associated with
cardiovascular toxicity, most notoriously in a delayed symptomatic form, whereby
cardiovascular phenomena arise many years after therapy conclusion. Typically,
patients may present with arrhythmias, reduced LV function or fulminant heart
failure, and interventions at this late stage in the disease are often inefficient. In
the past, anthracycline-induced cardiotoxicity was categorised as either acute, early-
onset, or late-onset. More recently, however, studies by Cardinale et al. have pointed
towards anthracycline-induced cardiotoxicity (AIC) being one continuous phenom-
enon, with the temporal difference in presentation being perhaps due to patient risk
factors and cumulative anthracycline dosage (Cardinale et al. 2015). This paradigm
shift has facilitated a re-appraisal of how AIC may play out over time mechanisti-
cally, and this has allowed for more intuitive parallels to be drawn between progres-
sive AIC and an accelerated ageing phenotype in the cardiac environment (Mitry
et al. 2020; Maejima et al. 2008; Rebbaa et al. 2003). There is increasing interest in
the concept that anthracycline-induced senescence may contribute to the long-term
cardiotoxicity associated with these drugs (Saleh et al. 2020). Senescence induction
is a recognised response to chemotherapy (Perkins et al. 2020; Ewald et al. 2010;
Wang et al. 2020; Saleh et al. 2020; Wyld et al. 2020) and cancer survivors
demonstrate an accelerated ageing phenotype overall, including increased comor-
bidity manifesting as conditions usually associated with ageing, including increased
cardiac events, peripheral neuropathy, a decline in bone health and cognitive decline,



all consistent with an increase in systemic senescence (Cupit-Link et al. 2017). With
regards to the heart, the commonly used anthracycline doxorubicin (DOX), for
which DNA damage is a primary therapeutic mechanism, can induce fibroblasts
and cardiomyocytes to senescence in vitro (Zhang et al. 2009; Maejima et al. 2008;
Fourie et al. 2019). Murine studies have also implicated the accumulation of
senescent cells within the heart as causal to AIC (Demaria et al. 2017). Using a
transgenic model that allows the identification and elimination of p16-expressing
senescent cells, Demaria et al. demonstrated that following exposure to DOX,
senescence is increased, and cardiac function is reduced (Demaria et al. 2017).
However, the elimination of senescent cells prevented the functional decline
(Demaria et al. 2017). Similarly, elimination of senescence with the senolytic
navitoclax reduced markers of cardiotoxicity and restored cardiac function in
DOX-treated mice (Lérida-Viso et al. 2022). These data suggest that senescence is
an active participant in the progression to myocardial dysfunction and not just a
passive bystander. Interestingly, first-generation TERT-knockout mice (which retain
long telomeres but lack the non-canonical activities of TERT) are more sensitive to
DOX-induced cardiotoxicity than littermates (Werner et al. 2008), further supporting
the notion that mitochondrial TERT is senoprotective. Moreover, cardiomyocyte-
specific overexpression of TERT also protects from DOX-induced cardiac dysfunc-
tion (Chatterjee et al. 2021). Upon DOX exposure, TERT overexpression enhances
TERT mitochondrial translocation, which protects against mitochondrial dysfunc-
tion and ROS generation (Chatterjee et al. 2021). While this study did not quantify
senescence, the obvious DNA-damaging properties of DOX coupled with mitochon-
drial dysfunction/ROS being drivers of cardiomyocyte senescence prompt the idea
that mitochondrial TERT may prevent or delay cardiomyocyte senescence,
preventing senescence-induced myocardial remodelling and cardiac dysfunction.
To date, most studies regarding CIC have focused on the anthracycline class of
drugs. However, due to aforementioned improvements in cancer survivorship, it is
now becoming evident that delayed and chronic cardiotoxicity may also be a factor
with other classes of chemotherapeutic agents (Florescu et al. 2013; Michel et al.
2019) Interestingly, chemotherapeutics including paclitaxel, temozolomide, and
cisplatin can induce senescence in murine skin (Demaria et al. 2017). Despite
these studies, it remains unknown if senescence induction underlies the
cardiotoxicity of these chemotherapies. Furthermore, as with ageing, interactions
between the senescent myocardium and the adaptive immune system may contribute
to CIC.
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Figure 4.4 summarises how intrinsic and extrinsic stresses may drive mitochon-
drial dysfunction and oxidative stress leading senescence and CVD.
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Fig. 4.4 Intrinsic and extrinsic stresses drive mitochondrial dysfunction and oxidative stress. This
stress leads to increased TERT expression, which is senoprotective. If stress outweighs these
protective functions, DNA damage leads to p53 activation, which downregulates TERT expression,
and expression of p53 targets leads to senescence. Senescence drives local and systemic inflamma-
tion via the SASP, leading to age-related disease and a cascade of oxidative stress through a positive
feedback loop. Activation of mitochondrial TERT with TA65 or pharmacological elimination of
senescent cells reduces oxidative stress at a cellular- and organ-level, attenuating the cascade of
oxidative stress. DNA-damaging agents such as anthracyclines may directly induce cellular senes-
cence, contributing to increased systemic inflammation and oxidative stress through the same
mechanisms

Viral Infection, Inflammation, Senescence,
and Cardiovascular Disease

The presence of senescent immune cells can lead to a reduction in effective immu-
nity, enhanced inflammation (by driving the secretion of inflammatory cytokines via
the SASP), and as a result of endothelial and myocardial cell targeting through
cytotoxic, pro-apoptotic mediators (granzyme, perforin) as previously reviewed (Liu



et al. 2020). Ageing is related to chronic low-grade sterile inflammation, increased
immunosenescence and a high risk for cardiovascular-related mortality. We have
observed that viral infection may accelerate immunosenescence as cytomegalovirus
(CMV)-seropositive patients demonstrate signs of accelerated immune ageing fol-
lowing myocardial infarction, that seem to link with impaired myocardial healing
(Spyridopoulos et al. 2009; Hoffmann et al. 2015). Importantly, in patients with
previous CMV infection, where there is a known abundance of virus-specific
cytotoxic T lymphocytes, we have found an (i) increased Th1 proinflammatory
response, (ii) enhanced infiltration of the heart with T lymphocytes, and finally
(iii) adverse cardiac remodelling (Martin-Ruiz et al. 2020; Hoffmann et al. 2015;
Spyridopoulos et al. 2016; Spray et al. 2021). Accumulation of T-cell senescence is
associated with higher mortality, age-related myocardial decline and a predisposition
towards CVDs (Martin-Ruiz et al. 2020; Hoffmann et al. 2015; Spyridopoulos et al.
2016). Together, this suggests that CMV infection mediates immunosenescence, and
the associated immune cell dysregulation contributes to excessive inflammation and
thereby adverse remodelling following a myocardial infarction.
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Acute cardiovascular complications are also associated with severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) and it is established that age is the
greatest risk for mortality and morbidity post-infection (Xie et al. 2022). It is possible
that these associations are a result of viral induction of senescence: it has been
demonstrated that similar to CMV, albeit in a more acute setting, SARS-CoV-2
infection increases immune cell senescence, compromises cytotoxic T-cell activity,
and that the SASP has been implicated in contributing to cytokine storm in corona-
virus disease 2019 (COVID-19) patients (Lee et al. 2022). While the interaction
between SARS-CoV-2 and senescence is not yet fully understood, the best indica-
tion that senescence contributes to COVID-19 are studies which have shown that the
elimination of senescent cells improves the survival of aged mice against
ß-coronavirus infection (Camell et al. 2021), and those that show that senescence
elimination post SARS-CoV-2 infection reduced inflammation and mitigated a
COVID-19-reminiscent lung disease in both hamsters and mice (Lee et al. 2021).
Studies are underway to explore whether the senolytic Fisetin can reduce the
requirement for hospitalisation in a cohort of older COVID-19 patients (Camell
et al. 2021). Given the association between senescence and chronic diseases, includ-
ing those of the cardiovascular system, it is possible that SARS-CoV-2-induced
senescence may underlie several post-infection conditions, perhaps including
so-called “long-COVID”.
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Chapter 5
Chronic Kidney Disease and the Exposome
of Ageing

Paul Shiels, Ngoc Tran, Jen McCavitt, Ognian Neytchev,
and Peter Stenvinkel

Abstract The gap between improvements in lifespan and age-related health is
widening. Globally, the demographic of ageing is increasing and there has emerged
a ‘diseasome of ageing’, typified by a range of non-communicable diseases which
share a common underlying component of a dysregulated ageing process. Within
this, chronic kidney disease is an emerging global epidemic.

The extensive inter-individual variation displayed in how people age and how
their diseasome manifests and progresses, has required a renewed focus on their life
course exposures and the interplay between the environment and the (epi)genome.
Termed the exposome, life course abiotic and biotic factors have a significant impact
on renal health.

We explore how the exposome of renal ageing can predispose and affect CKD
progression. We discuss how the kidney can be used as a model to understand the
impact of the exposome in health and chronic kidney disease and how this might be
manipulated to improve health span.

Notably, we discuss the manipulation of the foodome to mitigate acceleration of
ageing processes by phosphate and to explore use of emerging senotherapies. A
range of senotherapies, for removing senescent cells, diminishing inflammatory
burden and either directly targeting Nrf2, or manipulating it indirectly via modifi-
cation of the microbiome are discussed.
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Introduction

Improvement in human life expectancy over the preceding 150 years has not been
matched by a similar improvement in health span (i.e., years of healthy living).
Consequently, there has been a significant shift in the global demographic of ageing,
with the >60s predicted to outnumber the <15 year olds by 2050 (United Nations
2018).

This situation is compounded by the sequiturs of (i) multi-morbidity among the
aged as they develop a ‘diseasome of ageing’ (ii) the staggering cost of addressing
this, imposed on global social and health care systems (estimated pre-Covid pan-
demic at ~$47 trillion between 2010–2030) (Chen et al. 2018), (iii) low quality of
life and (iv) the amplification of its effects by social deprivation (Shiels et al. 2021).
Understanding the extrinsic factors underlying these health disparities is critical if
we are to develop and apply suitable mitigation strategies to improve health and
wellbeing. It is thus crucial that we have a better understanding of how we age at
both a mechanistic biological level and an environmental/planetary level.

Ageing Is a Process

Ageing is a process starting pre-conception and ending in death. It is segmental,
occurring at different rates in different organ systems and exhibiting significant inter-
individual variation (Shiels et al. 2017; Stenvinkel and Shiels 2019). Its phenotype
can be hallmarked with a series of features that are common across taxa (Stenvinkel
and Shiels 2019). These comprise genomic instability, epigenetic dysregulation,
telomere attrition, increasing cellular senescence, stem cell exhaustion, loss of
proteostasis, dysregulated nutrient-sensing, mitochondrial dysfunction, and altered
intercellular communication (López-Otín et al. 2013). In mammals, these are
interfaced with diminished expression of the master cytoprotective regulator nuclear
factor erythroid 2-related factor 2 (Nrf2), the chronic sterile inflammatory burden of
‘inflammageing’, alongside derepression of genomic retrotransposons and microbial
dysbiosis (De Cecco et al. 2019; Simon et al. 2019; Mafra et al. 2022c, d). Whether
these hallmarks act independently, cumulatively, or synergistically, remains to be
determined (Shiels et al. 2019).

A Geroscience Approach to Age-Related Disease

Ageing is malleable and ill health in late life is not inevitable. Unequivocal evidence
has shown that ageing can be forestalled by interventions that mitigate age-related
deterioration of physiological function. The ‘diseasome of ageing’ comprises
age-related non-communicable diseases where chronological age is a major risk



factor. These include cancer, neurodegenerative diseases, osteoporosis, arthritis,
non-alcoholic steatohepatitis, type 2 diabetes, and chronic kidney disease (CKD)
(Shiels et al. 2021). They all, however, share a common underpinning feature of a
dysregulated ageing process, in concert with inflammageing (chronic sterile inflam-
matory burden), phosphate toxicity, diminished systemic Nrf2 expression, and
microbial dysbiosis (Ebert et al. 2020). The emergent phenotype of ageing reflects
an interplay between the (epi)genome and the exposome (Fig. 5.1). The exposome
constitutes the sum of all environmental exposures across the life course (Wild
2005). This entails interplay between biotic and abiotic environmental factors and
the (epi)genome (Horton et al. 2014). Notably, only three basic exposome factors,
comprising air pollution, tobacco smoke, and diet, are thought to be responsible for
~50% of annual global deaths (Lim et al. 2012).
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Fig. 5.1 The exposome of ageing. The totality of biotic and abiotic environmental exposures over
the life course has a dramatic impact on health and is reflected in substantial inter-individual
variation in health and both physical and physiological capability. Exposome effects are mediated
by interaction with the (epi)genome

Conventionally, the individual disease modalities within the ‘diseasome of age-
ing’ are treated separately, typically resulting in a short improvement in health span.
This is pertinent to the prediction that curing cancer or heart disease in a typical
50-year-old woman would only add 2–3 years of extra health span, while treating the
underpinning component of ageing may add up to 25 years (Burch et al. 2014).
Geroscientists have thus been characterizing basic mechanisms of ageing across a
range of species to develop candidate anti-ageing therapies (e.g., nutritional, life-
style, and pharmacological interventional strategies) that are now tested in human
trials. This approach is not always as straightforward, or intuitive, as it first appears.
Extrapolation of data from standard laboratory pre-clinical models to human



interventions is often fraught. A consistent feature of this is the failure of drug
therapies in late-stage clinical trials after successful pre-clinical testing. Addition-
ally, many standard laboratory models are metabolically morbid (Stenvinkel et al.
2021a) and neglect to test for the effects of antagonistic pleiotropy (i.e., what is good
for you when young, is not necessarily good for you when you are old and vice
versa) (Williams 1957). In this instance, cellular senescence is a case in point, being
onco-protective at older age, but diminishing physiological capability and increasing
inflammatory burden at younger age. This is important when determining when and
where in the life course any interventions need to be instigated, as these may
engender substantially different effects. As such, age-related physical and physio-
logical decline can be ameliorated differentially. To compensate for this, it may be
better to consider ageing as a systemic burden of ‘wear and tear’. In this respect, we
have modelled ageing in the kidney to explore how this might be used to mitigate
decline in age-related health span (Kooman et al. 2014; Mafra et al. 2021).
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Modelling Ageing Using the Kidney

Studies of patients with kidney failure have presented a unique opportunity to
compare the ageing process in terms of both normative and dysregulated ageing.
While analysis of renal transplants as a source of healthy tissue has been used to
track normative age-related renal function (Shiels et al. 2017), CKD represents the
flip side of the coin. CKD is a progressive and deteriorating health condition that
poses a major social and economic challenge to the global population (Carney 2020).
As the ageing population continues to grow around the globe, more people are
presenting with CKD, either independently or together with other co-morbidities
within the ‘diseasome of ageing’. Emerging data show that changes in the environ-
ment, such as air pollution and global warming, increase the risk of kidney disease
(Stenvinkel et al. 2020). CKD is characterized by a gradual decline in the physio-
logical functions of the kidney over time. As the disease progresses, the kidneys are
unable to remove harmful substances and excess fluids from the bloodstream,
leading to the build-up of toxins, water, and electrolytes in the body. This eventually
causes kidney failure in patients and earlier age-related mortality. Compared with the
general population, CKD patients have an approximately 20–70% reduction in
overall life expectancy depending on their levels of kidney function and the age of
onset (Bikbov et al. 2020).

The estimated global prevalence of CKD is around 10–12% with the all-cause
mortality rate increasing by >40% within 27 years (1990–2017). The growing
burden of CKD is directly proportional to the dominant demographic of ageing,
regional socioeconomic disparities, as well as associated risk factors, including
hypertension and diabetes. These contributing factors were estimated to be respon-
sible for more than half of the CKD-associated mortality rate in 2017 (Bikbov et al.
2020). CKD-associated premature ageing has been linked with a range of biochem-
ical features, including the excessive accumulation of uremic toxins,



hyperphosphatemia, and mitochondrial dysfunction/oxidative stress (Kooman et al.
2014). The impact of accumulated levels of uremic toxins on the phenotype has been
described in depth elsewhere (Ebert et al. 2020). Presently, >150 uremic solutes
have been reported (Falconi et al. 2021). Many of these uremic toxins including
indoxyl sulfate and p-cresyl sulfate cause extreme and irreversible damage to the
kidney and surrounding organs (e.g., heart, liver, brain, or lung) (Vanholder et al.
2014).
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health span

Potential underlying mechanisms (Fig. 5.2) include accelerating cellular senes-
cence, impairing Nrf2-mediated stress responses, increasing oxidative stress, and
increasing inflammatory burden (Lisowska-Myjak 2014). A clear evidence base
indicates that uremia shares underpinning molecular processes with the ageing
process, including the hallmarks of cumulative cellular senescence, telomere attri-
tion, post-translational protein modification, stem cell exhaustion, epigenetic
dysregulation, and mitochondrial dysfunction (Kooman et al. 2014; Ebert et al.
2022).

Akin to chronic exposure to uremic toxins, CKD patients also develop immuno-
senescence and vascular senescence, due to dialysis bio-incompatibility with com-
plement activation (Losappio et al. 2020). Overactivation of both immune cells
(particularly macrophages and neutrophils) and the renin-angiotensin system result
from this (Losappio et al. 2020). As Nrf2 expression diminishes in the course of
CKD, cytoprotection via antioxidant factors also systemically diminishes
(Stenvinkel and Shiels 2021). Even early-stage CKD patients experience this



systemic loss of redox homeostasis and display increased catabolic metabolism.
These events trigger an increase in ATP consumption, thus forming a vicious cycle
of mitochondrial dysfunction-oxidative stress-inflammation as CKD progresses
(Peter 2021).
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CKD also reflects a substantial relationship between the exposome and
age-related renal health. Patients with CKD are predominantly reported in low-
and middle-income nations (78% of the total patients), as well as less-developed
regions in richer countries, where a significant health disparity exists (Mills et al.
2015). Exposome factors, such as socioeconomic position (SEP) and imbalanced
diet are significant drivers of this health disparity (Craven et al. 2021). The mech-
anistic basis of this is not fully determined, but recent research from the National
Longitudinal Study of Adolescent to Adult Health has indicated that the influence of
SEP can be tracked from the late third decade of life using transcriptional signatures
that can predict later life disease risk (Shanahan et al. 2022). These data have
highlighted SEP-based inequalities in immune, inflammatory, and metabolic path-
ways which play key roles in the ageing process. Other exposome factors, such as
microbial dysbiosis and hyperphosphataemia have already been linked directly to
poorer renal function and increased disease risk among those at lower SEP, corre-
lated with an imbalanced diet (McClelland et al. 2016; Craven et al. 2021). This
pattern has also been confirmed by the mechanistic correlation between global DNA
hypermethylation and renal dysfunction (Shiels et al. 2017). Further exposome
effects on renal dysfunction can be gauged by the impact of the Covid pandemic
(Stenvinkel et al. 2021b), global warming, and air pollution which have had a
disproportionate effect on the renal health of the elderly (Stenvinkel et al. 2020;
Avesani et al. 2022).

These environmental risk factors trigger an inflammatory response that acceler-
ates the ageing process in CKD patients (Kooman et al. 2017). Consistent with this,
global warming negatively affects the diversity of microbiota composition (Bestion
et al. 2017). This condition might be worsened by long-term exposure to air
pollution, which increases the risk of CKD and CVD. It has been shown that
exposure to traffic-related air pollution for one year increases CKD incidence and
risk of CKD development in older individuals (Kuźma et al. 2021). A more tractable
exposome factor affecting renal health is the diet. In this respect, phosphate biology
is highly pertinent.

Phosphate Biology

Serum phosphate (PO4, often denoted as Pi for ‘inorganic phosphate’) levels corre-
late strongly with lifespan in mammals (Kuro-o 2010a; Stenvinkel et al. 2018). In
man, high serum Pi levels correlate with accelerated biological ageing and poorer
renal function (McClelland et al. 2016), as well as all-cause and cardiovascular
mortality risk (Chang et al. 2014). Additionally, in the general population higher Pi
levels are associated with accelerated vascular ageing (Yoo et al. 2016). In CKD,



phosphate is also considered a uremic toxin which provides a direct mechanistic link
with the exposome of ageing. The source of phosphate, which mostly comes from
protein-rich food consumption such as meat, fish, and eggs, is naturally regulated by
vitamin D, parathyroid hormone and FGF-23/Klotho (Buchanan et al. 2020). Food
additives contain phosphate (Ritz et al. 2012). Dietary-induced hyperphosphatemia
contributes to poorer health in the general population while acting as a key driver of
premature ageing in CKD patients (McClelland et al. 2016).
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acquired Pi via Vit D, PTH and FGF23

Phosphorus is one of the most abundant atoms in our bodies and an essential
element for all known forms of life (Penido and Alon 2012). Phosphate has numer-
ous vital biological functions: it is present in nucleic acids (DNA and RNA), energy-
storing molecules such as ATP and GTP, the phospholipids that make up cellular
and organellar bio-membranes, and mineralised tissues such as bone and teeth
(Penido and Alon 2012). The addition or removal of Pi groups from proteins
(phosphorylation and dephosphorylation), carried out by kinases, phosphatases,
and phosphorylases, is a key mechanism of post-translational regulation of protein
activity (Johnson 1997). Thus, it is of paramount importance for organisms to ensure
adequate availability of this molecule. Indeed, one of the functions of mineralised
bone is to serve as a reservoir of calcium and Pi and to buffer the levels of these ions
in the blood (Copp and Shim 1963).

Serum phosphate levels are regulated by a bone-kidney endocrine axis that
includes fibroblast growth factor-23 (FGF-23), Klotho, vitamin D, and parathyroid
hormone (PTH) (Fig. 5.3) (Ebert et al. 2020). When the Pi level is high, FGF-23
secreted from the bone stimulates Pi excretion in the kidneys by binding to the
FGF-23 receptor (and the transmembrane form of Klotho as obligate co-receptor)
and reduces absorption in the intestine by lowering serum vitamin D levels (Kuro-o
2010b). Vitamin D, on the other hand, is transformed into the active 1,25-
dihydroxyvitamin D3 in the kidneys and promotes Pi absorption in the intestine
and release from the bone (Kuro-o 2010b). Parathyroid hormone stimulates vitamin



D synthesis, but also has a parallel effect that induces Pi excretion, thus leading to an
increase in blood calcium concentration without a parallel increase in blood Pi
concentration (Kuro-o 2010b).
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Interestingly, Klotho also has a soluble form, whose role in Pi homeostasis is still
poorly understood (Tan et al. 2017; Batlahally et al. 2020). Soluble Klotho concen-
tration decreases with age and negatively correlates with morbidity and mortality
risk (Tan et al. 2017; Batlahally et al. 2020). The FGF23-Klotho pathway is
dysregulated in CKD, leading to hyperphosphatemia, upregulation of the
pro-inflammatory NF-κB signalling, systemic inflammation, and premature ageing
(Ebert et al. 2020). Mice with a defective Klotho gene display a progeroid phenotype
and have a greatly reduced lifespan (2–3 months) compared to wild-type (wt) mice
(2–3 years), as well as increased serum Pi concentration (~50% higher than wt mice)
(Kuro-o 2010a).

The normal serum calcium and Pi concentration ranges in humans are
2.2–2.5 mM (8.8–10.2 mg/dL) and 0.8–1.5 mM (2.5–4.5 mg/dL), respectively
(Kuro-o 2010a). These physiological concentrations are high enough for the spon-
taneous formation of calcium phosphate (CaP) crystals (Brylka and Jahnen-Dechent
2013). CaP crystals are also toxic to cells, especially in the vasculature, and cause
cellular damage, oxidative stress, and ectopic calcification (Ewence et al. 2008;
Montezano et al. 2010). One of the main mechanisms of toxicity is thought to be
the endocytosis of CaP particles by vascular smooth muscle cells (VSMCs), the
dissolution of the crystals, and the release of calcium ions, which thus disrupt
cytoplasmic calcium signalling (Ewence et al. 2008). This in turn can trigger cell
death through apoptosis, osteogenic differentiation, deposition of extracellular CaP
crystals (and thus ectopic vascular calcification), and inflammation (Ewence et al.
2008; Montezano et al. 2010). Magnesium deficiency has been shown to increase
calcification and osteogenic differentiation of VSMCs, while magnesium supple-
mentation has a protective effect (Montezano et al. 2010).

Several defence mechanisms have evolved to prevent the growth of CaP crystals.
The plasma protein fetuin-A has a key role in preventing calcification by binding to
and sequestering circulating CaP crystals into calciprotein particles (CPP) and
preventing their further growth (Brylka and Jahnen-Dechent 2013). Indeed, fetuin-
A deficiency has been associated with ectopic calcification (Brylka and Jahnen-
Dechent 2013). Similarly, an increase in calcium and Pi concentration in the blood,
commonly observed in CKD patients due to the diminished clearance capacity of the
kidneys, can overwhelm the body’s protective capacity and lead to calcification
(Kuro-o 2013; Ebert et al. 2020). For this reason, a diet low in Pi is recommended for
CKD patients (Kuro-o 2013). Indeed, fetuin-A functions as a circulating inhibitor of
vascular calcification and its levels have been associated with accelerated ageing in
CKD (Carrero et al. 2008).

The fundamental importance of phosphate to the ageing process can also be
gauged from the observation that its progeric phenotype in the Klotho mouse can
be reversed by knock-out of the NaPi2a transporter (a Pi transporter) when the
animal is fed a normal diet. However, when these animals are fed a high Pi diet,
the phenotype reappears, indicating that elevated Pi is driving ageing in these



animals (Ohnishi et al. 2009; Ohnishi and Razzaque 2010). The mechanistic basis of
this is well understood. High concentrations of extracellular phosphate are toxic to
cells. Calciprotein particles have the potential to induce extra-osteogenic transfor-
mation of vascular smooth muscle cells and cause cell death when endocytosed as a
consequence of intra-cellular calcium release resulting in elevated oxidative stress
and mitochondrial dysfunction (Buchanan et al. 2020). Conversely, high intake of
dietary Pi can shorten life span in Klotho-deficient mice via activation of the
AKT/mammalian target of rapamycin complex 1 (mTORC1) (Kawai et al. 2016).
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Modulating the Exposome to Treat CKD

Diet has been considered the single easiest lever with which to leverage improved
renal health. The Global Burden of Disease Study 2017 has indicated that 22% of
global deaths were attributable to poor diet in 2017 (Willett et al. 2019; Afshin et al.
2019). Modulation of the diet to reduce intake of inorganic phosphate, maintain a
salutogenic microbiome, and promote Nrf2-mediated cytoprotective responses is
readily achievable. This firmly falls within the concept of Food as Medicine (Mafra
et al. 2021). In this respect, increased intake of more plant-based protein, while still
maintaining an omnivorous diet, offers renal health benefits. This approach has
already shown some success, as it has been demonstrated to decrease CKD risk
and progression and to improve on comorbid burden (Carrero et al. 2020; Avesani
et al. 2022). Importantly, it has been applied successfully to the treatment of patients
undergoing haemodialysis, where use of resistant starch cookies to support growth
of saccharolytic salutobionts resulted in reduction of inflammatory burden and
enhanced Nrf2 expression (Esgalhado et al. 2020; Kemp et al. 2021; Mafra et al.
2022b).

A positive sequitur from this strategy of eating more plant protein and reducing
red meat consumption, is that it offers the possibility to alter food production
systems to reduce factory farming, industrial mono-culture farming, and the impact
of beef production (Stenvinkel et al. 2020), and thus improve Planetary health
(Avesani et al. 2022). Additionally, a shift from a Western diet containing high
levels of Ultra Processed Foods (UPFs) would have profound benefits, again medi-
ated through supporting a salutogenic microbiome and better maintenance of Nrf2
agonism. The Western diet supports an industrialized human microbiome, that has
outpaced its natural symbiotic evolution with humans and thus presents as a poten-
tially dangerous unknown for human health. Its link to the prevalence of mild to
moderate CKD (Craven et al. 2021; Chen et al. 2019) is already indicative of this.

Nutritional modulation of Pi intake can also radically affect age-related renal
health, including through modulation of vitamin D metabolism and renal Klotho
expression. Low Pi diets can be challenging and difficult to adhere to, as Pi and
protein content in food tend to be positively correlated. While low protein intake can
help slow down progression of CKD, it can also lead to malnutrition and adverse
health outcomes (Buchanan et al. 2020). A high-fat diet (HFD) has been shown to



alter renal Klotho expression in older mice and impair the balance between dietary Pi
absorption and vitamin D (Yoshikawa et al. 2018).
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Iron deficiency and anaemia upregulate FGF23 and are commonly observed in
CKD patients. Thus, iron-based phosphate binders such as ferric citrate have been
successfully used to decrease FGF23 expression, and ameliorate both
hyperphosphatemia and iron deficiency, and slow CKD progression in mice
(Courbon et al. 2020). At the same time, caution is warranted, as excess iron intake
has been associated with increased oxidative stress and risk of accelerated ageing
(Arruda et al. 2013; Tian et al. 2022). The role of iron in ageing is also supported by a
recent multivariate genomic scan (Timmers et al. 2020). A diet high in magnesium
can also reduce vascular calcification, but it can also lead to lower bone mineral
density and carries a risk of osteomalacia (Buchanan et al. 2020).

Notably, poor quality diets, often observed in lower SEP strata, are typically
characterized by high phosphate intake (including from additives), high fat, low
vitamin D, and limited quantities of fruits and vegetables rich in polyphenolic and
other bioactive compounds (Buchanan et al. 2020). This contributes to an increased
risk of CKD and poor health outcomes in people of lower socioeconomic status or
who experience food insecurity, at least in part mediated by overexpression of
FGF23. Encouragingly, this demographic appears to be also more amenable to
improvement upon dietary supplementation, e.g., with vitamin D (Buchanan et al.
2020).

Dietary fibre intake and supplementation with pre- and probiotics are also param-
eters of interest in the context of CKD, as they are powerful tools for promoting a
healthy gut microbiome and avoiding CKD-associated gut dysbiosis (Buchanan
et al. 2020; Kemp et al. 2021, p. 2021). Salutogenic intestinal microbes can produce
Nrf2-activating compounds, modulate vitamin D/FGF23 homeostasis, produce
short-chain fatty acids (SCFA) that promote the health of the intestinal epithelium,
maintain integrity of the intestinal barrier, and reduce inflammation (Buchanan et al.
2020; Kemp et al. 2021, p. 2021).

Future Treatment Strategies

Changing medical interventions and tackling exposome factors concurrently may
have lasting beneficial effects for health span. An emerging treatment category,
termed senotherapy, tackles cumulative cellular senescence and its senescence-
associated secretory phenotype (SASP); these often manifest in old age as inflam-
mation and diminished cellular stress responses (Kooman et al. 2014).
Senotherapeutics is a broad term which encompasses both pharmaceutical and
bioactive agents which affect physiological senescence, often by directly targeting
senescent cells (SCs) and their secretome. These agents can have specific effects. For
example, senolytics induce SC apoptosis, geroprotectors inhibit or reverse senes-
cence, whilst senomorphics (also known as senostatics) target products of the SASP
and its by-products (Tchkonia et al. 2013; Mafra et al. 2021). These treatments can



be applied to improve the dysregulation of ageing in CKD, thus pre-empting the
development of the disease or mitigating its effects.
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Examples of senotherapeutic interventions include use of Rapamycin and met-
formin, two repurposed clinical agents targeting the mTOR pathway. These attempt
to switch cellular metabolism from catabolic to anabolic, and thus reduce the SASP
phenotype (Nayeri Rad et al. 2022). Senolytic drugs, including dasatinib, in combi-
nation with quercetin, fisetin, navitoclax, or piperlongumine can induce apoptosis
pathways in SCs, which are naturally resistant to apoptosis by nature of their
senescent state of growth arrest, thus driving removal of SCs from tissues and organs
(Nayeri Rad et al. 2022). However, dual approaches are also beneficial; the first
in-human CKD trial using senotherapy, produced encouraging results, demonstrat-
ing improvement in renal function with the combination of dasatinib (a repurposed
clinical chemotherapeutic agent) and quercetin (a bioactive agent), which comple-
ment each other in creating a senolytic effect (Nayeri Rad et al. 2022).

A further strategic development has been the adoption of a biomimetic approach
to understand and treat diseases of ageing (Stenvinkel et al. 2018). The application of
biomimetics to human health takes advantage of evolution by natural selection to
produce, from within the natural world, solutions to human health problems
(Stenvinkel et al. 2021a). One example of the insight such an approach can provide
has been the identification and subsequent therapeutic targeting of Nrf2. Nrf2
responds to cellular stressors by upregulating over 350 cytoprotective genes which
act in concert to reduce oxidative stress and damage, inflammatory burden, as well as
modulating energy metabolism (Shiels et al. 2017, 2021; Stenvinkel et al. 2018).
Additionally, it has provided a nexus for the re-envisionment of the Hippocratic
concept of ‘Food as Medicine’. Foods, particularly fruits and vegetables, are rich in
phenolic acids broken down by the gut microbiota to generate alkyl catechols, which
are potent agonists for Nrf2, thus improving cytoprotection in response to stress
(Shiels et al. 2021; Mafra et al. 2022a). A direct sequitur of this approach is a
reduction in the number of SCs and thus the effects of the SASP. Notably, within the
animal kingdom, Nrf2 forms the molecular basis of stress responses, particularly in
long-lived animals, such as the naked mole rat and animals living under extremes of
environmental stress, such as the ocean Quahog (Stenvinkel and Shiels 2019). A
further benefit of this approach is the reduction in the use of inorganic phosphate
preservatives within food stuffs and a return to fermentation of food stuffs to
preserve them. This enhances the maintenance of a salutogenic microbiome and
promotes renal health (Esgalhado et al. 2020; Kemp et al. 2021; Mafra et al. 2022b).

Similarly, this approach has also identified several bioactive molecules with
promise as senotherapeutic agents. One of these, sulforaphane, found naturally in
cruciferous vegetables, is a candidate senotherapeutic of promise, exhibiting both
geroprotective and senolytic properties and already in a range of human trials
(Cardozo et al. 2021). Another natural compound, fisetin, has also been shown to
have a senolytic effect, improving both health and life span in a range of pre-clinical
testing (Shiels et al. 2021). Whilst both bioactive and pharmaceutical agents have
been identified as improving organ function, it is also important to consider that the
promotion of cytoprotective effects and impairment of senescence may have adverse
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consequences, possibly increasing the risk of diseases such as B cell lymphoma
(Franzin et al. 2021; Chaib et al. 2022).
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As senolytics remove senescent cells which must be replaced to maintain tissue
and organ homeostasis, it may lead to replicative exhaustion and dysfunction.
Clearance of senescent pancreatic β-cells using senolytics has already been shown
to lead to diabetes in mice (Helman et al. 2016). Additionally, senomorphic or
senostatic drugs cannot eliminate SASP sources permanently, requiring repeated
administration to ensure efficacy. This may result in suppression of other essential
pathways and disturbance in tissue homeostasis, due to blocking of the SASP.
Another concern is the lack of information regarding the optimal time points of
administration of senolytic or senomorphic agents within the life course, pertinent
considering antagonistic pleiotropy. Therapeutics may exert either beneficial, neu-
tral, or negative impacts on different organs at a specific point over the life course. It
remains unclear whether they provide protection and improve future health span
when administered early in life or should only be administered at middle age or later.
Indeed, it remains to be seen if, used in combination, they work synergistically,
independently, cumulatively, or competitively. Furthermore, cryptic side effects
need to be considered. Already, such effects have been identified while using
senotherapeutic drugs. For instance, sulforaphane significantly reduces the water
intake in young mice (Bose et al. 2020), which resonates with fluid retention issues
observed clinically with the original use of Bardoxolone (Bose et al. 2020). To
minimize the risks, further research is needed to determine the safety of these
approaches.

Despite these concerns, it would be churlish not to recognize the genuine benefits
and promise that senotherapies offer to the treatment of renal disease and the
‘diseasome of ageing’ in general. Their regular clinical use is now much anticipated.
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Chapter 6
Sarcopenia and Ageing

Keith Yu-Kin Cheng, Zhengyuan Bao, Yufeng Long, Chaoran Liu,
Tao Huang, Can Cui, Simon Kwoon-Ho Chow, Ronald Man Yeung Wong,
and Wing-Hoi Cheung

Abstract Musculoskeletal ageing is a major health challenge as muscles and bones
constitute around 55–60% of body weight. Ageing muscles will result in sarcopenia
that is characterized by progressive and generalized loss of skeletal muscle mass and
strength with a risk of adverse outcomes. In recent years, a few consensus panels
provide new definitions for sarcopenia. It was officially recognized as a disease in
2016 with an ICD-10-CM disease code, M62.84, in the International Classification
of Diseases (ICD). With the new definitions, there are many studies emerging to
investigate the pathogenesis of sarcopenia, exploring new interventions to treat
sarcopenia and evaluating the efficacy of combination treatments for sarcopenia.
The scope of this chapter is to summarize and appraise the evidence in terms of
(1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of
sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat
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infiltration and neuromuscular junction deterioration, and (3) current treatments with
regard to physical exercises and nutritional supplement.
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Keywords Sarcopenia · Muscle mass · Muscle strength · Mitochondrial
dysfunction · Intramuscular fat infiltration · Myosteatosis · Neuromuscular junction ·
Physical exercise · Nutrition

Ageing

The ageing population is a global phenomenon and countries are experiencing a
growth in both size and proportion of older persons in their population. In 2019,
there were over 700 million older people aged ≥65. This older population was
projected to double to 1.5 billion in 2050, with one in six people in the world aged
≥65 (United Nations, Department of Economic and Social Affairs, Population
Division (2019). World Population Ageing 2019: Highlights). Despite life expec-
tancy increasing globally, a significant proportion of these additional years is lived
with disability (Scuteri et al. 2016). An ageing population inevitably leads to an
increase in the prevalence of age-related morbidities where the musculoskeletal
system is heavily involved, such as sarcopenia, osteoporosis, or osteosarcopenia.

Musculoskeletal ageing is one of the most common problems with ageing, such
as the loss of bone mineral density with microarchitectural deterioration known as
osteoporosis that directly increases the risk of fractures (Novotny et al. 2015); the
reduction in muscle mass and muscle functional performance known as sarcopenia
(Chen et al. 2020). Both of these conditions share some common risk factors and
pathogenesis (Kirk et al. 2019). Sarcopenia is associated with a range of adverse
health outcomes (Landi et al. 2012, 2013; Tanimoto et al. 2013) which incur a high
socioeconomic burden.

Sarcopenia

Sarcopenia is generally defined as low appendicular skeletal muscle mass with either
reduced muscle strength or muscle performance. Primary sarcopenia is age-related
with no other cause evident, while secondary sarcopenia is related to other causes,
such as activity-related, disease-related, and nutrition-related (Cruz-Jentoft et al.
2010). Over the past decade, several consensus panels have announced the latest
operational sarcopenia definitions and their diagnostic criteria. These consensus
panels (summarized in Table 6.1) mainly include the European Working Group on
Sarcopenia in Older People (EWGSOP) first in 2010 (Cruz-Jentoft et al. 2010) and
updated in 2019 (Cruz-Jentoft et al. 2019), the International Working Group on
Sarcopenia (IWGS) in 2011 (Fielding et al. 2011), the Asian Working Group for
Sarcopenia (AWGS) first in 2014 (Chen et al. 2014) and updated in 2019 (Chen et al.
2020), and the Foundation for the National Institutes of Health (FNIH) in 2014



Table 6.1 Summary of different sarcopenia consensus panels and their respective diagnostic
criteria

Sarcopenia definition Latest diagnostic criteria and cutoff points

Consensus
panel

First
published Updated

ASMIa (ASM/height2 or
ASM/BMIb) HS (kg)

GS
(m/s)

EWGSOP 2010 2019 M < 7.0 M < 27 ≤0.8
F < 5.5 F < 16

IWGS 2011 – M ≤ 7.23 – <1.0

F ≤ 5.67

AWGS 2014

(Studenski et al. 2014). Sarcopenia was officially considered a disease in 2016 when
it received an ICD-10-CM disease code, M62.84, in the International Classification
of Diseases (ICD) (Vellas et al. 2018), facilitating the progress of international
sarcopenia research and eventually clinical management.
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2019 M < 7.0 M < 28 <1.0

F < 5.4 F < 18

FNIHb 2014 – M < 0.789 M < 26 ≤0.8
F < 0.512 F < 16

ASMI, appendicular skeletal muscle index; ASM, appendicular skeletal muscle mass; BMI, body
mass index; HS, handgrip strength; GS, gait speed; M, male; F, female
a Muscle mass assessed by DXA; ASM measured in kg and height in m
b ASMI is defined by ASM/BMI for FNIH only

Clinical Signs, Symptoms, and Screening

Skeletal muscles undergo physiological and morphological changes as age
increases. Fibrous and adipose tissues infiltrate muscles (Marcus et al. 2010),
while the size and number of skeletal muscle fibres decrease with advancing age
(Walston 2012; Lexell 1995). Symptoms or signs of sarcopenia include falling,
muscle weakness, slow walking speed, difficulty rising from a chair or weight loss
(Cruz-Jentoft et al. 2019). The screening of sarcopenia is currently not yet a common
practice in typical clinical settings, as the public awareness of sarcopenia is not high
enough and diagnosis requires a series of tests to confirm. Due to the complexity of
the screening tests, EWGSOP recommends using SARC-F questionnaire while
AWGS also recommends the measurement of calf circumference as an alternative
for case finding or confirming clinical suspicion. SARC-F is a screening tool in the
form of a questionnaire that assesses five components, namely “Strength”, “Assis-
tance in walking” “Rising from a chair”, “Climbing stairs” and “Fall”, hence the
acronym SARC-F. Each parameter is scored between 0 and 2, with 2 being a worse
score. A SARC-F score total ≥4 or calf circumference <34 cm for male or <33 cm
for female (AWGS 2019 criteria) are considered as probable sarcopenia for follow-
up. SARC-F has a high specificity but only a low-to-moderate sensitivity, limiting
the ability to detect non-severe cases (Cruz-Jentoft et al. 2019) or those at the early



onset of sarcopenia. Both case finding methods are simple that can be introduced into
clinical practice to facilitate sarcopenia screening and diagnosis.
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Diagnosis

The diagnosis of sarcopenia requires separate assessments to measure muscle mass,
strength, and performance. Individuals with low muscle mass, with either low
muscle strength or muscle performance are considered to have sarcopenia. Those
who meet all three criteria have severe sarcopenia. For individual diagnostic cutoff
points for various sarcopenia definitions, please refer to Table 6.1.

Dual-energy x-ray absorptiometry (DXA) is the recommended method for the
assessment of muscle mass. DXA is a non-invasive imaging technique that is one of
the gold standards for body composition measurements, but it is not portable for use
in community for sarcopenia screening. Bioelectrical impedance analysis (BIA) is
another method recommended by some such as AWGS. BIA estimates fat mass and
muscle mass using electrical impedance and is portable with high scanning speed.
However, prediction models used by BIA to evaluate muscle mass are mostly
relevant only in the populations in which they have been derived (Janssen et al.
2000; Cheng et al. 2021) and the equations used are usually not disclosed, poten-
tially leading to inconsistency in the measurements across various BIA machines by
different manufacturers (Yamada et al. 2017). Regardless, AWGS recommended a
BIA cutoff for low ASMI at 7.0 kg/m2 and 5.7 kg/m2 for male and female respec-
tively. Establishing local reference values and adjustments have been found to
improve the accuracy of muscle mass assessment with BIA (Alkahtani 2017;
Cheng et al. 2021).

Handgrip strength is the recommended assessment for muscle strength using
dynamometer. Grip strength has been found to be associated with mortality and
poor quality of life (Leong et al. 2015). It is a convenient and representative measure
of strength as it has been proven to correlate with strength in other body parts
(Bohannon et al. 2012).

Muscle performance is commonly assessed by testing gait speed in a 6-m walk
test. Gait speed is a quick and inexpensive measure of functional performance,
which has been found to reliably predict adverse outcomes such as disability,
cognitive impairment, institutionalization, falls and/or mortality (Abellan van Kan
et al. 2009; Peel et al. 2013; Studenski et al. 2011).

Prevalence

A recent systematic review reported a global sarcopenia prevalence of 8% to 36% in
people <60 years and 10% to 27% in people ≥60 years of age, while the prevalence
of severe sarcopenia was 2% to 9% (Petermann-Rocha et al. 2022). The prevalence



of sarcopenia varies greatly depending on the sarcopenia definition used (Woo et al.
2015; Mayhew et al. 2019). Sarcopenia prevalence also differs dramatically in
different settings, such as in nursing homes with 51% men and 31% women, in
hospitalization with 23% men and 24% women or in community settings with 11%
men and 9% women with sarcopenia (Papadopoulou et al. 2020). Certain morbid-
ities, such as cardiovascular disease, dementia, diabetes mellitus and respiratory
disease (Pacifico et al. 2020), are the risk factors that increase sarcopenia prevalence.
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Pathogenesis of Sarcopenia

Pathogenesis of sarcopenia is well known to be multifactorial, including inactivity,
mitochondrial dysfunction, apoptosis, low growth hormone, neuromuscular junction
deterioration, inflammation, vascular problem, malnutrition, etc. Here we look into
the following three major areas: mitochondrial dysfunction, intramuscular fat infil-
tration and neuromuscular junction deterioration.

Mitochondrial Dysfunction

The mitochondrion is an important organelle and crucial integrator of intermediary
metabolism in various metabolic pathways, such as oxidative phosphorylation
(Gorman et al. 2016). Normally, to prevent the damage from daily produced
mitochondrial reactive oxidative stress (mtROS), mitochondria have developed a
quality control mechanism to maintain mitochondrial dynamics. Mitochondrial
quality control involves the dynamic processes of biogenesis, fission, fusion, and
mitophagy (Anzell et al. 2018; Pickles et al. 2018; Song et al. 2021). Once mito-
chondrial quality control is impaired, mtROS will be accumulated, resulting in
further mitochondrial dysfunction in skeletal muscles and hence sarcopenia.

Mitochondrial biogenesis is an important biological process to maintain the
homeostasis of mitochondria, in which peroxisome proliferative activated receptor
gamma coactivator 1 alpha (PGC-1α) is a major regulator. The expression level of
PGC-1α is prominently enhanced in organs or tissues with high energy demands
such as skeletal muscle (Wenz 2009). In these organs or tissues, PGC-1α can be
activated by specific stimuli (such as physical exercise) and the activated PGC-1α
can induce the initiation of several transcription factors, such as nuclear respiratory
factors (NRF-1 and 2), and mitochondrial transcription factor A (Tfam) (Bhatti et al.
2017). The decrease of PGC-1α was observed during the progression of sarcopenia
(Muhammad and Allam 2018; Liang et al. 2021; Liu et al. 2021b; Aoki et al. 2020),
accompanied by the mitochondrial dysfunction and muscle atrophy. Additionally,
low mitochondrial function and muscle performance were observed after knocking
out PGC-1α in mice (Derbré et al. 2012). These results provided evidence to support
that low level of mitochondrial biogenesis could lead to sarcopenia.
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Mitochondrial fusion and fission are two critical processes to maintain mitochon-
drial dynamic balance and prevent the mitochondrial dysfunction due to the dam-
aged mitochondria or mistranslated proteins in mitochondria. Longer and fused
mitochondria are optimal for ATP generation, whereas fission of mitochondria
promotes mitophagy and cell division (Farmer et al. 2018). Mitofusin 1 and
mitofusin 2 (Mfn1 and Mfn2) are two mitochondrial membrane proteins that control
the mitochondrial fusion of the outer mitochondrial membrane, while fusion of the
inner mitochondrial membrane requires the membrane-bound protein of optic atro-
phy 1 (OPA1) (Farmer et al. 2018). Mfn2 is a critical factor in mitochondrial
dysfunction in skeletal muscles and the progressive reduction in Mfn2 is reported
to associate with ageing (Sebastián et al. 2016). Previous studies showed that the
process of mitochondrial fusion was compromised during ageing, then ATP pro-
duction and transfer of both mitochondrial mtDNA and protein were impaired
resulting in the accumulation of mtDNA mutation and hence mitochondrial-related
disease such as sarcopenia. Mitochondrial fission is mainly responsible for segre-
gating dysfunctional mitochondria that contain damaged proteins, destabilized mem-
branes, mutated or damaged mtDNA for mitochondrial remodelling to maintain
mitochondrial dynamic equilibrium (Pagliuso et al. 2018). Dynamin-related protein
1 (DRP1) plays a crucial role in fission. Briefly, DRP1 in the cytoplasm can be
recruited by the DRP1 receptor on mitochondrial membrane to form oligomers
around the constriction site, which will constrict the “marked” mitochondrial mem-
brane. In addition, Kleele et al. reported that there were two functionally and
mechanistically distinct types of fission, and both are mediated by DRP1 (Kleele
et al. 2021). One was the division at the periphery which enabled damaged or
mistranslated proteins in mitochondria to be shelled into smaller mitochondria for
mitophagy; another one was the division in the middle of mitochondria which is
regarded as one of the ways to increase mitochondrial mass. Several studies showed
that the functions of fusion and fission decreased during ageing which finally
weakened skeletal muscle performance (Zeng et al. 2020; Liu et al. 2021b). Addi-
tionally, current studies suggested that the decreased levels of mitochondrial fusion
and fission were related to the progression of sarcopenia (Favaro et al. 2019; Liu
et al. 2021a; Romanello and Sandri 2021).

Mitophagy is a specific autophagic elimination of mitochondria that is an impor-
tant mechanism in preserving mitochondria when severe mitochondrial damage
occurs. PINK1-Parkin-mediated mitophagy pathway is one of the most significant
pathways to maintain mitochondrial homeostasis. PTEN-induced putative protein
kinase 1 (PINK1) is a mitochondrial serine or threonine kinase. Normally, PINK1 is
easily cleaved in mitochondria (Jin et al. 2010), and Parkin is a kind of cytosolic E3
ubiquitin ligase in cytoplasm (Ni et al. 2015). During ageing, PINK1 is stabilized on
the outer membrane of damaged mitochondria where it recruits cytosolic Parkin
(Ashrafi and Schwarz 2013; Onishi et al. 2021). Stable PINK1 can phosphorylate
Parkin to promote Parkin E3 ligase activity to trigger mitophagy and facilitate the
clearance of damaged mitochondria. Parkin ubiquitylates mitochondrial proteins and
causes mitochondria to become autophagosome by isolation membranes that fuse
with lysosomes for mitochondrial degradation (Ni et al. 2015; Ashrafi and Schwarz



2013). Several studies showed that decrease of PINK1 and Parkin led to a decrease
of muscle performances that is accompanied with an increase of mtROS and
decreased muscle strength (Gao et al. 2021; Liang et al. 2021; Liu et al. 2021b).
Studies have suggested that mitophagy plays an important role in maintaining
mitochondrial quality in skeletal muscle by selectively removing dysfunctional
and depolarized mitochondria, while decreased level of mitophagy could lead to
an accumulation of mitochondrial dysfunctions and hence sarcopenia (Henríquez-
Olguin and Knudsen 2019; Wrighton et al. 2021).
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Intramuscular Fat Infiltration

Body composition is altered markedly in older people, as reflected in the increased
proportion of body fat mass and declined proportion of muscle mass (Macek et al.
2020). Meanwhile, more adipose tissues will be accumulated in skeletal muscles
with advancing age (Hioki et al. 2020). Human muscle transcriptome profile showed
that lipid metabolism might play an important role in age-related muscle impairment,
such as sarcopenia (Tumasian et al. 2021). Satellite cells derived from old animal
muscle had higher potential to differentiate into adipocytes. Also, higher levels of
muscular adipokines, adipose tissues and lipogenic regulators were found in aged
animals (Yada et al. 2006; Tazawa et al. 2019; Zhu et al. 2019; Rivas et al. 2011).

Fat deposition impacts muscle homeostasis in various molecular pathways,
including protein synthesis, muscular mitochondrial function, metabolism, and
inflammation, thus leading to sarcopenia. Diet-induced obesity (DIO), glycerin-
injected and transgenic animals, such as db/db and ob/ob mice, were utilized to
investigate the underlying mechanisms on how adipose tissues affected skeletal
muscles (Bollheimer et al. 2012; Lukjanenko et al. 2013; Zhu et al. 2019; Choi
et al. 2021). Similar to older individuals, increased muscular fat infiltration and
triglyceride were also found in obese animal models (Correa-de-Araujo et al. 2020;
Huang et al. 2019). The phenomena of the negative correlations between muscular
fat infiltration and muscle mass, strength, as well as mobility were observed in
humans and can be verified in obese animal models (Xie et al. 2021). Obese mice
had 20% lower lean mass percentage compared to control mice (Rivas et al. 2016).
Absolute hindlimb muscle mass was also reduced in obese mice, which was signif-
icant in aged but not younger groups (Tardif et al. 2014). The myofiber size in old
DIO mice was a third less than that in the chow-diet natural old mice (Huang et al.
2019). Decreased muscle satellite cells and delayed muscle regeneration were also
shown in fat infiltration animal models. After fed with high-fat diet, the mice had an
estimated 12% reduction of total satellite cells (Lee et al. 2015). Obese animals
needed more time for regeneration after muscle injury induced by cardiotoxin
injection, indicating the resident satellite cells were blunt (Nguyen et al. 2011).
Additionally, reduced grip strength and physical activities also resulted (Burchfield
et al. 2018; Huang et al. 2019). This may be explained by the impediment of muscle



contraction caused by the increased myosteatosis and myofibrosis (Zoico et al. 2013;
Bai et al. 2020).
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Normal muscle Affected muscle

Mitochondria Lipid droplet

Macrophage
T cell

Adipose tissue

Fibroblast

Extracellular matrix

Glucose

Mitochondrial Dysfunction
↑ Abnormal structure
↓ ATP content
↑ Oxidative stress (inactive antioxidant enzyme)
↓ Biogenesis (↓ PGC-1α, Tfam)
↑ Fusion and fission defect (↓ Mfn2, ↑ Drp1)
↓ Electron transport chain function

Muscle Atrophy
↑ Anabolic disorder (↓ 4E-BP1, S6K1, 
   eIF2α, mTOR)  
↑ Protein degradation (↑ Atrogin-1, MuRF1,
   total ubiquitination)
↓ Regeneration

Pro-inflammatory Status
↑ Cytokines (↑ TNFα, IL-6, MCP-1)
↑ Immune cells

Lipid Accumulation
↑ Intramuscular lipids
↑ Intermuscular adipose tissue
↑ Total triglyceride
↑ Changes of adipokines in blood
  (↑ leptin, ↓adiponectin)

Metabolic Impairment
↑ Glucose intolerance
↓ AMPK pathway activation

Fibrosis
↑ Fibroblast/FAPs
↑ ECM (↑ MMP2, MMP9)
↑ Intramuscular fibrosis

Fig. 6.1 Summary of effects and changes in adiposity-affected sarcopenic muscles. Impaired
mitochondrial structure and function, accelerated muscle atrophy, increased inflammation, fibrosis,
lipid accumulation, as well as metabolic dysfunction were found in muscle with excess fat deposit.
4E-BP1, eukaryotic translation initiation factor 4E eIF4E-binding protein 1; AMPK, adenosine
monophosphate-activated protein kinase; ATP, adenosine triphosphate; ECM, extracellular matrix;
eIF2α, eukaryotic initiation factor-2α; FAPs, fibro-adipogenic progenitors; IL-6, interleukin-6;
MCP-1, monocyte chemoattractant protein-1; MMP, matrix metallopeptidase; MuRF1, muscle
RING finger 1; S6K1, ribosomal protein S6 kinase beta-1; TNFα, tumour necrosis factor α

At the molecular level, imbalanced muscle protein synthesis and degradation
were detected in not only obese animal models, but also glycerin-injected and
transgenic animals. To be specific, the down-regulation of mTOR, 4E-BP1, S6K1,
eIF2α (known as muscle anabolic regulators) and up-regulation of ubiquitin E3
ligases genes (MuRF1 and Atrogin-1, known as muscle atrophy genes) were
found (Bollheimer et al. 2012; Tardif et al. 2014; Le et al. 2014, 2017; Choi et al.
2021) (Fig. 6.1). When the protein degradation rate is higher than the synthesis rate,
the muscle volume is difficult to sustain. In addition, fat accumulation was also
found to associate with deterioration of mitochondrial structure and function in
skeletal muscles, including distorted mitochondrial cristae, lower expression of
PGC-1α, antioxidant enzyme activities, and altered electron transport pathways
(Bollheimer et al. 2012; Tardif et al. 2014; Huang et al. 2019; Bai et al. 2020).
Damaged mitochondrial homeostasis was unable to meet the energy demand of
myocytes and would potentially activate apoptosis (Bellanti et al. 2021). Therefore,
once fat deposition level increases that threatens mitochondrial homeostasis in
skeletal muscle, sarcopenia may result. Glucose intolerance and pro-inflammatory
status (TNFα, MCP-1, IL-6) were also observed in fat-infiltrated skeletal muscle



(Burchfield et al. 2018; Le et al. 2014, 2017; Collins et al. 2016; Laurentius et al.
2019; Bai et al. 2020; Xu et al. 2021; Choi et al. 2021). It is well known that the
skeletal muscle plays essential roles in insulin sensitivity and glycemic stability
(Sylow et al. 2021). Reduced lipid oxidative capacity of fat-deposited muscle may
aggravate metabolic syndromes and muscle atrophy (Turcotte and Fisher 2008).
Adipose tissue is a secretory organ that produces pro-inflammatory cytokines to
skeletal muscle by paracrine actions. The high muscle inflammatory level was
observed in mice with glycerin injection or high-fat diet. It indicated that both
circulating lipid and myosteatosis contributed to the adverse muscle status in terms
of inflammation (Le et al. 2014; Xu et al. 2021).
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Intramuscular fat not only negatively correlated with physical ability in older
people, but also related to the hospitalization, disease prognosis, and mortality
(Waters 2019; Cawthon et al. 2009; Perkisas et al. 2017, 2018). In addition to
muscle mass and strength, diagnosis or screening of sarcopenia is also
recommended, focusing on intramuscular fat infiltration, since it is a strong predictor
of functional disability and clinical outcomes (Addison et al. 2014).

Neuromuscular Junction Deterioration

The neuromuscular junction (NMJ) is a chemical synapse serving as a bridge
between motor neurons and muscle fibres, which is composed of pre-synaptic active
zones in motor nerve terminals, post-synaptic acetylcholine receptors (AChRs) in
muscle membranes and intra-synaptic clefts (Gonzalez-Freire et al. 2014). Consid-
ering the influence of NMJ on skeletal muscles, NMJ maintenance is important for
the maintenance of muscle mass through muscle contraction triggered by action
potentials originated from motor neurons and transferred to the muscle cell at the
NMJ (Tamaki et al. 2014). NMJ degeneration is regarded as an important cause of
sarcopenia (Larsson et al. 2019). However, whether NMJ deterioration is a primary
cause of sarcopenia or whether impaired NMJ structure and function is secondary to
sarcopenia is still not clear.

Numerous alterations in the structure and function of NMJ have been observed
during the ageing process. In human studies, ageing-related morphological changes
include increased NMJ branching and peri-junctional AChRs area (Oda 1984;
Wokke et al. 1990). Jitter values and the fibre density examined by single-fibre
electromyography (SFEMG) were reported to increase with ageing, indicating the
reduced efficacy of neuromuscular transmission (Balci et al. 2005; Juel 2012). As
humans are not suitable for detailed studies of NMJ, most studies have been
conducted in old animals. A recent systematic review summarized muscle fibre
type dependent changes of NMJ with increasing age (Bao et al. 2020). Reduced
overlapping between nerve terminals and AChRs as well as increased post-synaptic
endplate fragmentation are commonly observed in different skeletal muscles of old
animals (Bao et al. 2020), which are consistent with reduced compound muscle
action potentials (CMAP) amplitude with ageing (Xie et al. 2018). In addition,



ageing-related denervation is more likely to be involved in fast-twitch skeletal
muscles, while type I motor units tend to regain control of denervated muscle fibres
by collateral reinnervation (Yuan et al. 2011). Fast-twitch skeletal muscles mainly
composed of MHC IIb fibres were shown with reduced AChR number during ageing
(Banker et al. 1983; Herscovich and Gershon 1987), while there was no significant
difference of miniature endplate potential (MEPP) amplitude between young and old
muscles (Banker et al. 1983; Willadt et al. 2016), which may be explained by
increased release of acetylcholine (ACh) quanta (Banker et al. 1983; Zhao et al.
2018). The same increased release of ACh quanta is also observed in slow-twitch
muscles, explaining the more severe neurotransmission failure after tetanic stimula-
tions (Banker et al. 1983; Kulakowski et al. 2011). In contrast, AChR number and
ACh quanta release present no changes during ageing in diaphragm that is mainly
composed of MHC IIa fibers (Banker et al. 1983; Willadt et al. 2016). The reduced
association rate constant between α-BuTx and AChRs and increased acetylcholin-
esterase (AChE) activity in old diaphragm explain the increased MEPP amplitude
(Banker et al. 1983; Smith et al. 1990; Smith and Chapman 1987). The AChR area is
another important parameter to assess morphological changes of post-synaptic
endplate, which changes in AChR area are associated with muscle fibre types and
the progress of muscle atrophy.
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Agrin-LRP4-MuSk-Rapsyn-Dok7 is a major signalling pathway driving AChR
clustering and ensuring an efficient signal transduction at NMJ. Agrin cleavage can
induce endplate fragmentation, along with sarcopenia-like syndrome (Bütikofer
et al. 2011). Meanwhile, the serum level of cleaved C-terminal Agrin fragments is
higher in the patients with sarcopenia (Marzetti et al. 2014). Increased LRP4 mRNA
level but reduced LRP4 protein expression was reported by Zhao and colleagues,
which is related with increased LRP4 ubiquitination (Zhao et al. 2018). MuSk
mRNA expression is also increased with ageing in both rodents and humans (Aare
et al. 2016; Soendenbroe et al. 2019), while MuSk phosphorylation is reduced
during ageing (Zhao et al. 2018). Other molecules like MRF4 (Apel et al. 2009),
Dystrophin-Glycoprotein Complex (including Sarcospan, Sarcoglycan-α,
Syntrophin and Dystrophin) (Zhao et al. 2018; Hughes et al. 2017), TrkB (Personius
and Parker 2013) and mTORC1 (Ham et al. 2020) also have been reported to be
associated with NMJ degeneration during ageing, but require further evidence from
human studies. In summary, the NMJ undergoes both morphological and functional
alterations during ageing and this degeneration may ultimately lead to ageing-related
sarcopenia. Further investigating the mechanisms of NMJ degeneration with ageing
is essential to provide us with new directions and targets for the diagnosis and
treatment of sarcopenia.

Current Treatments

Epidemiology proposes a life course approach to tackling sarcopenia and frailty
(Dodds and Sayer 2015). The life course approach comprises a maximum peak of
muscle mass and strength in early life from growth and development, and the



subsequent age-related decline is determined by maintenance in adult life and
minimizing loss in older life (Fig. 6.2). The prevention of sarcopenia and frailty
need to start early to decelerate the decline associated with ageing (Azzolino et al.
2021).
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Fig. 6.2 The life course approach to maintaining physical fitness in old age to minimize physical
performance limitations; green line represents the life course approach. The figure is modified from
(Dodds and Sayer 2015)

Physical exercises are essential for health which include aerobic exercises,
resistance exercises and combined exercises in the context of sarcopenia and the
maintenance of muscle health. Combined or multimodal exercises comprise a
mixture of aerobic and resistance exercise training, and sometimes together with
flexibility and balance exercises. Combined exercises can complement each other
and offer the benefits from different exercises (Takeshima et al. 2004). It has been
shown that in combined training, aerobic exercises can even provide systemic
factors that can promote muscle improvements by resistance exercises (Moberg
et al. 2021; Mascher et al. 2011). Studies have demonstrated that both endurance
and resistance training can stimulate morphological adaptations of the NMJ, thus
counteracting NMJ degeneration with ageing (Kreko-Pierce and Eaton 2018).

Aerobic Exercises

Aerobic or endurance exercises are the performance of light-to-moderate intensity
activities for extended periods of time that would increase breathing and heart rate
due to increased oxygen demand. Aerobic exercises have been found to improve
overall fitness, cardiovascular health, and metabolism, specifically metabolic syn-
drome by reducing obesity and hypertension and increasing insulin sensitivity
(Marcus et al. 2010). Aerobic exercise also suppresses the expression of myostatin
mRNA, reducing the inhibition on muscle growth associated with ageing (Ko et al.
2014). The benefits of aerobic exercises on prevention and treatment of major



chronic disease have been well established (Nunan et al. 2013), however, resistance
exercises can provide a more immediate improvement in muscle mass, strength,
power in older adults (Lovell et al. 2010).
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Resistance Exercises

Resistance exercises are considered the first-line treatment for sarcopenia (Dent et al.
2018). This type of training refers to activities which produces skeletal muscle
contraction using external resistance such as elastic band, training weights or even
body weight. Resistance exercises have been shown to increase muscle protein
synthesis and the size of muscle fibres, resulting in improvements of physical
performance, muscle strength and muscle mass in older adults (Chen et al. 2021;
Kim et al. 2012; Liu and Latham 2009). A meta-analysis with 1328 participants over
50 years of age showed a weighted pool estimate of mean lean body mass increase of
1.1 kg after resistance exercise training that lasted an average of 20 weeks with 2–3
sessions per week (Peterson et al. 2011). Resistance exercises can also combat the
morphological changes in muscle associated with ageing by incorporating new
nuclei into muscle fibres (Hikida et al. 2000), increasing mitochondrial density in
muscle (White et al. 2016) and reducing intramuscular fat infiltration (Goodpaster
et al. 2008), thus improving muscle quality, muscle strength (Goodpaster et al. 2001)
and risk of future mobility limitations (Visser et al. 2005). Progressive increase of the
intensity of resistance exercise is recommended throughout the course of a training
to drive continued muscular adaptation and muscle hypertrophy (Hurst et al. 2022).
Recommended resistance exercise prescription for older people with sarcopenia is
summarized in Table 6.2. Resistance exercise training sessions of more than twice

Table 6.2 Table summary showing recommended resistance exercise prescription for older adults
with sarcopenia. The table is modified from Hurst et al. (2022)

Training frequency 2–3 sessions per week

Exercise selection Upper body
• Chest press
• Seated row
• Pull down

Lower body
• Squat/leg press
• Knee extension
• Leg curl
• Calf raise

Exercise volume 1–3 sets of 6–12 repetitions

Exercise intensity (per set) Repetition-continuum based
• 40–60% 1RM, progressing to 70–85% 1RM

Rating of perceived exertion (RPE) based
• RPE 3–5 on CR10 scale, progressing to RPE 6–8

Rest periods Within exercise session:
• 1–2 min rest between sets; 3–5 min rest between exercises

Between exercise sessions:
• At least 48 h

1RM, 1 repetition maximum (maximal amount of weight that can be lifted for one complete
repetition); CR10, category ratio 10 scale



per week have been shown to improve muscle strength more than a training
frequency of once weekly (Kneffel et al. 2021; Borde et al. 2015). Rest periods
between training sessions are also important in providing adequate time for recovery
between training. The frequency of training can be increased over time to ensure
appropriate amount of overload and stimulus is received (Dodds and Sayer 2015).
Targeted training for specific regions to fit the needs of an individual is
recommended, taking into account of a person’s limitations. Correct technique
should be focused, rather than simply overloading with many training exercises or
high exercise volume early in the training programme, which may lead to fatigue and
discomfort that discourage older adults. Resistance exercise intensity or effort is
usually recommended based on the repetition maximum (RM) (Buckner et al. 2017),
ratings of perceived exertion (RPE) or an effort-based approach (Buckley and Borg
2011), while resistance exercise volume is quantified by the number of sets of
repetitions. A meta-analysis found that a high level of effort in resistance exercises
is the most effective way for improving muscle strength (Peterson et al. 2010), while
high-volume programmes are more effective for lean muscle mass gains (Peterson
et al. 2011). Ageing individuals are recommended to take up resistance exercise
training as early as possible and progress to high-effort exercise intensity for optimal
training efficiency.
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Whole body vibration is a novel treatment approach that can be offered as an
alternative for older adults especially those unfit for regular exercise training
(Kemmler and von Stengel 2012). It is a biophysical intervention that provides
non-invasive and systemic mechanical stimulation, proven to improve muscle
strength, balancing ability and fall prevention, among other benefits (Ren et al.
2020; Roelants et al. 2004). The improvement effects from vibration therapy were
observed as early as 9 months after treatment commencement and were found to be
retained 1 year after an 18-month treatment has ended (Cheung et al. 2016). Muscle
strength and performance have been shown to significantly improve after vibration
therapy (Osawa et al. 2013; Verschueren et al. 2004; Wu et al. 2020).

Nutritional Supplementation

With the increase of age and the decrease in the body absorption efficiency,
malnutrition is becoming a problem for the elderly. Affected by the loss of taste
and smell, chewing troubles, and damaged gut function (Murphy 2008), the food
intake of older people will reduce by around 25% between 40 and 70 years of age
(Nieuwenhuizen et al. 2010). Low food intake and repetitive diets may result in a
risk of insufficient nutrient intakes (Wolfe et al. 2008), which aggravates muscle loss
and muscle strength decrease in older people. Currently, the gold standard clinical
treatment for sarcopenia is nutritional supplementation (Bauer et al. 2013; Deutz
et al. 2014) combined with physical activity intervention. According to the consen-
sus statements, to maintain sufficient protein intake, a daily protein intake of ≥1.0 g/
kg body weight for healthy older adults and ≥1.2 g/kg body weight for those with



sarcopenia and frailty is recommended. For older adults in need of supplementation,
high-quality protein, amino acids such as leucine and l-carnitine, or beta-hydroxy-
beta-methyl butyrate (HMB) may be considered according to the specific prescribing
information.
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High-quality protein provides amino acids needed for the synthesis of muscle
proteins, the balance between anabolism and catabolism, and preventing loss of
muscle mass and strength (Wolfe et al. 2008); for some sarcopenic patients with
malnutrition condition, high-protein oral nutritional supplements may be more
effective. Milk fat globule membrane (MFGM) (Watanabe et al. 2020) and whey
protein (Mori and Tokuda 2018; Lin et al. 2021; Nabuco et al. 2018) are mostly used
in randomized controlled trials (RCT). A study by Mori and Tokuda (2018) assessed
the effect of whey protein supplementation (22.3 g for 24 weeks) along with exercise
on aged women (aged 65–80 years), which showed a significant increase in muscle
function (grip strength increase about 1.2 kg, P < 0.05) and muscle mass (increase
about 0.5 kg, P < 0.01). Other studies (Bo et al. 2019; Rondanelli et al. 2016) used
whey protein with additional nutrition like vitamin D (100–702 IU) and leucine
(2.5–4 g) and reported similar results. Mariangela et al. (Rondanelli et al. 2020) used
a mixed formula (20 g of whey proteins, 2.8 g of leucine, 9 g of carbohydrates, 3 g of
fat, 800 IU of vitamin D) for sarcopenic patients (according to EWGSOP, n = 140,
age ≥65 years) for 4–8 weeks. They resulted in an increase of mean gait speed
(0.061 m/s/month [95% CI, 0.043–0.080]) and muscle mass (0.40 [95% CI:
0.06–0.73], P < 0.03) compared to the placebo group. These studies support that
high-quality protein can benefit the prevention or treatment of sarcopenia.

Studies demonstrated that essential amino acid leucine and its metabolite
β-methyl butyric acid (HMB) had some effects in improving muscle mass and
function (Cruz-Jentoft 2018; Sanz-Paris et al. 2018). HMB (Pasiakos and Carbone
2014) has been reported to have an impact on anabolic protein metabolism. Several
human studies reported the benefits of HMB in both strength-power and endurance
sports. The HMB dose used is 1.5–6 g/day for 4–12 weeks, of which 3 g/day is most
effective (Chen et al. 2022). Combining with exercise, HMB tends to provide better
effects on protecting muscles from injuries and soreness, which may improve the
exercise capacity and duration (Thomson et al. 2009). By critically analyzing the
existing literature on HMB supplementation before 2013, the International Society
of Sports Nutrition declared that HMB enhances muscle recovery from exercise-
induced muscle damage. From a variety of supplement protocols (1 day to 6 weeks;
with or without exercise), age range (from 19 to 50 years old), and training status
(untrained and moderately to highly resistance-trained), studies show that HMB
appears to be most effective when taking 2 weeks before exercise bout (Wilson et al.
2013).

Studies (Robinson et al. 2018) about other supplements like vitamin D
(Prokopidis et al. 2022), antioxidant nutrients (Cesare et al. 2020), and long-chain
polyunsaturated fatty acids (Troesch et al. 2020) are observational, and the outcomes
from some clinical studies are less common. These studies focused on particular
groups like postmenopausal women or obese elderly, while the protocols involved a
variety of outcome measures or different duration of medication. For example,



Stephen (Cornish et al. 2018) used 3.0 g/day Omega-3, a long-chain fatty acid, as a
supplement for 23 older men (≥65 years old) for 12 weeks, which showed not
adequate to enhance muscle mass or muscle function. While Mariasole (Da Boit
et al. 2017) used a similar supplement (3 g fish oil/d) for 50 aged men and women
(≥65 years old), which found muscle quality was significantly increased (P < 0.05).
The existing evidence for nutrition supplements is not consistent (Dent et al. 2018).
Large-scale trials are now undergoing to specifically address the efficacy of exercise
and nutritional supplements for patients with sarcopenia, such as the European
SPRINTT trial (NCT02582138) (Landi et al. 2017). Although there is insufficient
evidence on the benefits of nutritional supplementation in terms of muscle health, it
is believed that ongoing RCT and preclinical studies will provide more evidence to
validate the efficacy of nutritional supplements on muscle health for future clinical
application.
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Conclusions and Future Directions

Musculoskeletal deterioration due to advancing age is a prevalent issue especially in
an ageing population. Sarcopenia is defined as low appendicular skeletal muscle
mass with either reduced muscle strength and/or muscle performance. Proper train-
ing and nutritional supplementation are required to achieve the maximum peak of
muscle health at early age, maintained throughout adult life and into old age to
minimize loss of muscle mass, strength, and function. Ageing increases the suscep-
tibility of developing multiple comorbidities and syndromes. The traditional models
of care built around single-disease treatment are unprepared for the complexity of
managing geriatric health. More large-scale clinical studies are required to develop
validated, ethnicity/region-based, and gender-specific cutoff points for sarcopenia;
to investigate the opportunities for sarcopenia intervention across the life course; and
to apply optimal sarcopenia treatments to avoid physical performance limitation,
disability and the associated risks such as falls, fractures, and mortality in sarcopenic
older adults.
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Chapter 7
Tendon Aging

Ana Luísa Graça, Manuel Gomez-Florit, Manuela Estima Gomes,
and Denitsa Docheva

Abstract Tendons are mechanosensitive connective tissues responsible for the
connection between muscles and bones by transmitting forces that allow the move-
ment of the body, yet, with advancing age, tendons become more prone to degen-
eration followed by injuries. Tendon diseases are one of the main causes of
incapacity worldwide, leading to changes in tendon composition, structure, and
biomechanical properties, as well as a decline in regenerative potential. There is
still a great lack of knowledge regarding tendon cellular and molecular biology,
interplay between biochemistry and biomechanics, and the complex
pathomechanisms involved in tendon diseases. Consequently, this reflects a huge
need for basic and clinical research to better elucidate the nature of healthy tendon
tissue and also tendon aging process and associated diseases. This chapter concisely
describes the effects that the aging process has on tendons at the tissue, cellular, and
molecular levels and briefly reviews potential biological predictors of tendon aging.
Recent research findings that are herein reviewed and discussed might contribute
to the development of precision tendon therapies targeting the elderly population.
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Introduction

This chapter was designed as a concise overview on the tendon aging process and
prospective analysis of possible therapies. Firstly, we provide a short summary on
the biology of aging, tendon tissue structure, and its cellular and biochemical
composition. Then, we focus on the main age-related alterations in tendon structure,
biomechanical properties, tendon cells, and changes in the tendon microenviron-
ment. Subsequently, we discuss the relation between aging and tendon diseases.
Lastly, we briefly review and discuss some recent research studies that can lead
to better future therapies for the management of tendon aging/disease.

Aging Hallmarks

Aging is defined as an overall decline in the functional capacity of various organs to
maintain tissue homeostasis accompanied by a diminished regeneration response
(Sahin and DePinho 2010). The process of cellular and organismal aging is complex
and mainly influenced by genetic factors, but as well as by external factors such as
obesity, diabetes, mutagens, like alcohol or tobacco smoke, or intrinsic stresses
including reactive oxygen species (ROS) and telomere erosion (Sharpless and
DePinho 2007). Diverse studies have indicated that the reduced regenerative poten-
tial of adult tissues is linked to a functional decline of the stem and progenitor cell
pools, which has been associated with human aging and age-associated diseases
such as osteoporosis, tendon disorders, sarcopenia, anemia, dementia, cancer, or
impaired wound healing (Rando 2006; Sahin and DePinho 2010). Thus, it is
assumed that aging is partly driven by an age-associated decline in the number
and repair capacity of tissue-specific adult stem and progenitor cells (Sharpless and
DePinho 2007).

In general, cellular aging has been postulated to be linked to cellular senescence,
which in turn is triggered by epigenetic alterations such as DNA methylation and
histone modifications, and through DNA damage accumulation caused via ROS
(Sharpless and DePinho 2007), and telomere erosion leading to the activation of the
p14ARF and p16INK4A tumor suppressor pathways.

The two tumor suppressors p14ARF and p16INK4A are encoded by the cyclin-
dependent kinase inhibitor 2A (CDKN2A) locus on chromosome 9p21. On the one
hand, p14ARF sequesters the p53-specific ubiquitin ligase human double minute
2 protein (HDM2) and prevents p53 degradation. On the other hand, p16INK4A

sequesters cyclin-dependent kinase 4 (CDK4) and 6 (CDK6), which keeps retino-
blastoma protein (pRb) in a hypo-phosphorylated active state, thereby arresting the
cell cycle in G1 (Chudnovsky et al. 2005; Hirschi et al. 2010).

Telomere erosion also contributes to age-associated declines in the adult stem cell
pool (Ju et al. 2007). Moreover, it is assumed that aging is not purely an intracellular
process but is also linked to interactions with the cellular microenvironment.



Independently of telomere shortening, emerging evidence suggests that changes in
cellular niches, which keep adult stem cells in a quiescent state, strongly contribute
to the regulation of replicative senescence (Wilson et al. 2008).
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In summary, distinct molecular and cellular alterations accumulate slowly during
aging resulting in degeneration and atrophy, paralleled by reduction in functional
properties as well as homeostatic and repair capacity of tissues and organs.

Tendon Tissues

Tendon Structure and Composition

Tendons connect muscles to bones, through the myotendinous and osteotendinous
(enthesis) junctions, respectively, and thereby ensure joint movements (Sharma and
Maffulli 2008). Tendons have been subclassified into energy storing tendons, which
store and return energy during locomotion, such as the Achilles tendon, and posi-
tional tendons, which help in maintaining the position of certain joints. Ligaments
interconnect bone to bone and exhibit a similar molecular and cellular composition
to tendons. Tendons are dense connective tissues and are predominantly composed
of parallel, closely packed collagen fibers and cells within well-ordered extracellular
matrix (ECM). The basic tissue structure of tendons consists of collagen type I (COL
I) that is arranged in hierarchical levels of complexity and constitutes 65–80% of the
tendon dry mass. There are also 2–3% of other collagen types such as collagen type
II (COL II) in the cartilaginous zones and collagen type X (COL X) in the miner-
alized fibrocartilage zone of the enthesis, collagen type III (COL III) in reticular
fibers of blood vessels, collagen type IV (COL IV) in capillary membranes, collagen
type V (COL V) in vascular membranes, and collagen types XII, XIV, and XV (COL
XII, COL XIV, COL XV) as fibril-associated collagens (Jósza et al. 1993; Fukuta
et al. 1998; Fukushige et al. 2005). The smallest collagen unit is tropocollagen,
consisting of a triple-helix polypeptide containing two α1 chains and one α2 chain,
which are first synthesized inside the tendon cell and then secreted into the ECM.
There, the triple helix self-assembles via intermolecular enzymatic (lysyl oxidase
(LOX) enzyme activity) and nonenzymatic (formation of advanced glycation
end-products—AGEs) cross-links into parallel organized collagen fibrils responsible
for the crimp and wave-like appearance of the tendon ECM. Fibrils in turn are
bundled mainly longitudinally into collagen fibers, sub-fascicles (primary bundle),
fascicles (secondary bundle), tertiary bundles, and the tendon itself. Each tendon
fascicle is surrounded by a thin reticular network of connective tissue—the
endotenon (or interfascicular matrix, IFM). Tertiary bundles as well as the whole
tendon are covered by a fine, loose connective tissue sheath—the epitenon ensuring
vascular, lymphatic, and nerve supply (Fig. 7.1a) (Hulmes 2002; James et al. 2008;
Sharma and Maffulli 2008).

The ground substance of the ECM in tendons, surrounding the collagen and
tendon cells, is composed of 1–5% proteoglycans and glycoproteins, 2% elastin



(ELN), and 0.2% inorganic molecules, including copper, manganese, and calcium
(Lin et al. 2004). Via their glycosaminoglycan (GAG) side chains, proteoglycans
bind to the collagen fibrils to interconnect the fibrils in a parallel alignment and to
ensure gliding of collagen fibrils during locomotion. They also enable rapid diffu-
sion of water-soluble molecules and the migration of cells. Major GAG components
of the tendon are dermatan and chondroitin sulfates (Zhang et al. 2006; Sharma and
Maffulli 2008). The tendon ECM contains several proteoglycans and glycoproteins
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Fig. 7.1 (a) Hierarchical structure of tendon tissue. Tendon unit, fascicle, fiber, fibril, and
tropocollagen are depicted. Adapted from Docheva et al. (2015) using mindthegraph.com software.
(b) Tendon mechanical behavior when load is applied to the tissue. Upon increasing load, the
tendon tissue experience deformation in three stages: first, toe region (crimp extension); next, linear
region (microdamage); and last failure (complete rupture), from which the stress and strain can be
determined. Adapted from Robi et al. (2013)

http://mindthegraph.com


such as tenomodulin (TNMD), tenascin C (TNC), cartilage oligo matrix protein
(COMP), decorin (DCN), fibromodulin (FMOD), biglycan (BGN), and lumican
(LUM). Among these, TNMD, a type II transmembrane glycoprotein, which con-
tains a highly conserved C-terminal cysteine-rich domain that after cleavage is
co-localized with COL I fibrils into the tendon ECM, is a marker of mature tenocytes
(Docheva et al. 2005). The glycoprotein TCN, a member of the tenascin gene family,
is abundantly found in the ECM of developing vertebrate embryos, interacts with
fibronectin (FN), and binds to integrins and ECM components such as collagens
(Jones and Jones 2000; Pajala et al. 2009). The pentameric, non-collagenous
ECM-protein COMP belongs to the thrombospondin family of extracellular
calcium-binding proteins. It consists of a five-stranded coiled coil including five
identical glycoprotein subunits, and its three-dimensional (3D) structure is stabilized
by disulfide bonds. COMP plays a catalytic role in the assembly of the tendon ECM
by binding to collagens (Paulsson and Heinegård 1981; Rock et al. 2010). DCN,
FMOD, BGN, and LUM belong to the small leucine-rich proteoglycan family and
consist of a protein core containing leucine repeats with varying GAG chains. DCN
is known to bind directly to COL I fibrils and has been implicated in the lateral
collagen fibrillogenesis (Yoon and Halper 2005). Similarly, FMOD, BGN, and
LUM bind to COL I fibrils, thus participating in the lateral collagen fibrillogenesis
in the tendon (Svensson et al. 2000; Rees et al. 2009).
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Tendon tissue formation and homeostasis depend on a combination of transcrip-
tions factors such as Scleraxis (SCX), Mohawk (MKX), and Early growth response
protein 1 and 2 (EGR1, EGR2). SCX, a member of the basic-helix-loop-helix
(bHLH) superfamily of transcription factors expressed in tendon lineage cells, is
an early marker of tendon development, positively regulating COL I and TNMD
expression (Bagchi and Czubryt 2011). Likewise, MKX, a member of the three
amino acid loop extension (TALE) superclass of atypical homeobox genes, also
regulates COL I production in tendon cells (Ito et al. 2010). Furthermore, EGR1/2,
two zinc finger proteins, act as mechano-sensing molecules during tendon matura-
tion, and are markers of mature tenocytes (Guerquin et al. 2013; Liu et al. 2014;
Caceres et al. 2018).

Tendon Vasculature

The blood supply of tendons is assured by vessels originating from three different
sites: the myotendinous junction, the enthesis, and the paratenon. At the
myotendinous junction, the muscle provides the tendon with blood vessels running
down to the proximal third of the tendon (Kvist et al. 1995). The sparse blood supply
from the enthesis is restricted to the insertion site (Carr and Norris 1989). The main
vascularization of the tendon is provided by the tendon sheets, where a vascular
network penetrates deep into the tendon and reaches the endotenon sheets (Reynolds
and Worrell 1991; Zantop et al. 2003). Nevertheless, since tendon tissues are
predominantly composed of ECM showing a low metabolic rate of endogenous



cells, their vascularity and healing capability is much inferior compared to many
other tissues (Jósza et al. 1993; Milz et al. 2004; Benjamin et al. 2008).
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Tendon Biomechanical Properties

Tendons transmit the force generated in the muscle to the bone allowing body
movements. The force transmission depends on the tendon biomechanical properties
such as elasticity and tensile strength, which in turn are related to the collagen fiber
diameter and orientation. Collagen fibrils and proteoglycans are differently involved
in the mechanical properties: collagen fibrils allow tendons to resist tensile stress,
whereas proteoglycans withstand compressive stress and enable gliding. Moreover,
the crimped configuration of the collagen fibrils contributes to elasticity and com-
pressive resistance (Ker 2002; Sharma and Maffulli 2008). The viscoelastic behavior
of the tendon, generally, is characterized by stress relaxation and creep under
maintained strain or stress, respectively (Fig. 7.1b). The crimped, wavy configura-
tion of collagen fibrils disappears when the tendon is stretched up to 2%. If the strain
remains between 2 and 4%, the tendon keeps its viscoelastic behavior and can return
to its original length and crimp pattern after stress release. If the strain exceeds 4%,
fibers are damaged on microscopic level, and a strain beyond 8–10% causes intra-
fibril damage leading to tendon rupture (James et al. 2008; Sharma and Maffulli
2008). The viscoelastic behavior of the tendon provides a high buffer capacity
against longitudinal, transversal, horizontal, and rotational forces. Mechanical
forces, generated during movements, are transmitted by focal adhesions including
integrin receptors and cell–cell adherent junctions. Tendon cells transduce the
physical force-induced signals into biochemical responses, a process called
mechano-transduction, by inducing the mitogen-activated protein (MAP) kinase
pathways such as the extracellular signal-related kinase (ERK1/2), protein kinase
38 (p38), and c-Jun-N-terminal kinase (JNK) pathways (Franchi et al. 2007a, b;
James et al. 2008). In turn, kinase-dependent downstream signaling is activated
resulting in mechano-adaptation of the cells.

Tendon Cell Types

Tendon cells such as tenoblasts and tenocytes constitute 90–95% of the cellular
elements and are responsible for the deposition and remodeling of the tendon ECM
(Fig. 7.2a). Tenoblasts are progenitor, spindle-shaped cells with high metabolic
activity that are located primarily in the IFM; they are suggested to be an heteroge-
neous population (Thorpe and Screen 2016), which plays significant roles in tissue
repair (Spiesz et al. 2015). During the tendon maturation process, the tenoblasts
transform into tenocytes, which have a lower abundance (10-fold lower) as well as
metabolic activity (Sharma and Maffulli 2008). Tenocytes are the terminally differ-
entiated, specialized spindle-shaped fibroblastic cells with long membranous pro-
trusions. They are organized in parallel rows within the longitudinally oriented



collagen fibers. The cell protrusions are connected via gap junctions among the
tenocytes in a 3D cellular network through the tissue. The cell-to-cell communica-
tion allows for appropriate and synchronized response to mechanical loading and
external and internal biochemical signals (Chuen et al. 2004; Grinstein and Gallo-
way 2018). Both tenoblasts and tenocytes synthesize collagen as well as other ECM
components and are capable of protein catabolizing. Thereby, they contribute to
ECM assembly and remodeling (Jósza et al. 1993; Sharma and Maffulli 2008). The
remaining 5–10% of cells include chondrocytes at the enthesis site, synovial cells in
the tendon sheath (Sharma and Maffulli 2008), endothelial cells, pericytes, and
immune and fat cells (Kendal et al. 2020; Akbar et al. 2021). The ratio between
the different cell types seems to be dynamic, varying in healthy and diseased human
tendon (Kendal et al. 2020; Akbar et al. 2021).
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Fig. 7.2 Cartoon depicting the main biological features of (a) healthy, (b) aged, and (c) diseased
tendon tissue. Adapted from (Kohler et al. 2013) using BioRender.com software

Bi and colleagues identified within human hamstring tendons containing a rare
population of residing tendon stem/progenitor cells (TSPCs) (Bi et al. 2007). They
showed that isolated TSPCs exhibit classical stem cell criteria such as self-renewal,
clonogenicity, and the capability to differentiate into more specialized cell types
such as adipocytes, osteoblasts, and chondrocytes (Bi et al. 2007). Since then,
TSPCs have been described in various tendons from different species (Schneider
and Docheva 2017). They can be found in the tendon fascicles, in the paratenon/
epitenon, and in the vascularized tendon area (Walia and Huang 2019; Huang et al.
2021). The TSPCs present in these three main regions are distinguished by the
different markers they express (Runesson et al. 2013). TSPCs from tendon fascicles
express bone marrow stromal cell (BMSC) markers such as CD73, CD90.2, and
CD105, as well as stem cell antigen 1 (SCA-1), CD44, SCX, TNC, and TNMD
(Bi et al. 2007; Mienaltowski et al. 2013). On the other hand, the TSPCs in the

http://biorender.com


paratenon/epitenon area are characterized by tubulin polymerization-promotion
protein family member 3 (TPP3) (Harvey et al. 2019), laminin, alpha-smooth muscle
actin (αSMA), platelet-derived growth factor receptor α (PDGFRα) (Mienaltowski
et al. 2014; Walia and Huang 2019), and osteocalcin (OCN) expression (Wang et al.
2017a). The TSPCs of the perivascular region express CD146, CD133, endomucin
(EMCN), musashi-1 (MSI1) (Tempfer et al. 2009), and p75 neurotrophin receptor
(Xu et al. 2015) and co-express αSMA (Walia and Huang 2019). In addition, Yin
et al. (2016) showed that the perivascular subpopulation of TSPCs expresses nestin
(NES) and high levels of tendon-related genes and exhibits elevated tenogenic
potential. However, so far, there is still limited understanding of factors that regulate
the tendon stem cell niche formation and maintenance. Nevertheless, the discovery
of TSPCs, which fulfill the adult stem cell criteria and possess regenerative capabil-
ities, provided new insights into tendon cell biology as well as opened new strategies
for the treatment of injured or aged tendons.
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Characteristics of Aged Tendon Tissue

The transition from immature (embryonic and early postnatal) to mature tendon
tissue is characterized by marked changes in its structure, biomechanical properties,
and the cellular and molecular composition (Figs. 7.2 and 7.3) (Lacroix et al. 2013;
Magnusson and Kjaer 2019). However, the discrete changes in tendons during aging

Fig. 7.3 Schematic representation of tendon alterations over time. Adapted from (Svensson et al.
2016)



are largely unknown due to the aging process complexity as well as the nonexistence
of suitable age-related biomarkers for tendon tissues. There is also a lack of animal
models that mimic human longevity, size to mass ratio, and the onset and progres-
sion of the multifaceted degenerative changes known to contribute to human tendon
pathology. Moreover, the use of human tendon tissues is limited as they are difficult
to obtain for ethical and surgical reasons. Still, human and horses share some
structural and age-related degenerative characteristics, which makes the equine
tendon a useful model. Tendon age-related changes have been shown to increase
the susceptibility to tendon degeneration, injury, and re-injuries, as well as the risk of
treatment failure and long-term rehabilitation process. In addition, with aging there is
a great reduction in the regenerative capacity of the tissue (addressed in the follow-
ing section). Since data from small animal models do not provide a coherent picture
of the age-related changes in human tendon, in this section, we will mainly focus on
data derived from human and equine studies.
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Effects of Aging on Tendon Structure and Mechanical
Properties

At the structural level, it is accepted that aging does not induce significant loss of
tendon tissue, since only minor changes in tendon cross-sectional area (CSA) are
observed in human studies (Magnusson et al. 2003; Carroll et al. 2008; Couppé et al.
2009, 2014; Stenroth et al. 2012). Regarding tendon composition, the total collagen
content and collagen fibril diameter remain largely unaltered with aging in human
models (Couppé et al. 2014). On the other hand, aging has been shown to induce a
decrease in proteoglycans, at least in some tendons (Ippolito et al. 1980; Torricelli
et al. 2013), and in elastin content and organization, in the endotenon compartment
of horse energy storing tendons (Godinho et al. 2017).

The main change related to aging of human tendons is a significantly increased
nonenzymatic cross-linking, resulting from the accumulation of AGEs throughout
life (Couppé et al. 2009; Heinemeier et al. 2013b; Lacroix et al. 2013). In addition,
Thorpe et al. (2016) analyzed aged equine tendons and reported that the rate of
protein turnover is decreased especially in the IFM. AGEs also likely contribute to
the loss of water with age observed in the tendon (Carroll et al. 2008), since cross-
links cause dehydration of collagen. The lower proteoglycan content observed in
aged horses (Ippolito et al. 1980; Torricelli et al. 2013) also contributes to a
reduction in water content. In addition, different human studies reported a decrease
of vascularity and associated blood flow in the elderly compared with younger
subjects (Funakoshi et al. 2010). Moreover, fat and cartilage formation as well as
calcification was reported in aged tendons, which compromise tendon structure and
function (Zhang and Wang 2015; Gehwolf et al. 2016; Wood and Brooks 2016;
Zaseck et al. 2016). Nonetheless, aged tenocytes are able to remain metabolically
active and actively remodel the ECM in response to mechanical stimulus
(Heinemeier et al. 2013a).
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As a consequence of the above changes, tendon mechanical properties (elastic
modulus and strength) in aged human tendons decline especially in energy storing
tendons (Carroll et al. 2008; Couppé et al. 2009, 2014; Stenroth et al. 2012; Thorpe
et al. 2017; Quinlan et al. 2018), resulting in a diminished tendon function, which is
in agreement with most of the findings in animal studies. Turan et al. demonstrated
that aged human Achilles tendons were stiffer (less elastic) when compared to young
tendons (Turan et al. 2015). Also, Hsiao et al. showed that aged human patellar
tendons had lower elastic modulus and shear wave velocity in comparison with
young tendons (Hsiao et al. 2015). More recently, age-related alterations to tendon
structure have been shown to decrease its ability to withstand fatigue loading,
resulting from localized areas of stiffening within the endotenon, rather than a
decrease of mechanical properties of the gross structure, which was probably caused
by improper repair of microdamages (Thorpe et al. 2017). Nevertheless, some
in vivo human studies have reported unchanged mechanical properties (modulus)
with aging (Carroll et al. 2008; Couppé et al. 2009). Some of these discrepancies
might be related to the decreased strain applied to tendon as a consequence of a lower
force placed on the tissue due to age-related loss of muscle mass and strength
(sarcopenia) (Doherty 2003). Hence, it is of great importance to match old and
young specimens for activity levels when evaluating tendon mechanical perfor-
mance. Furthermore, research evidence has suggested that tendon aging also causes
loss of distal myelinated sensory fibers and decrease in mechanoreceptor numbers
accompanied with morphology changes (Aydoǧ et al. 2006). Table 7.1 summarizes
the effects of the aging process on human and animal tendon tissue characteristics.

Age-Related Changes in Tendon Cells

Studies evaluating changes in tendon cells, their numbers, and functions in humans
are limited. Instead, animal studies have shown that aging induces a decline in
tendon cell density in rabbits and rats, whereas in horses there is no clear decline
in cell density with age (Zs-Nagy et al. 1969; Nakagawa et al. 1996; Thorpe et al.
2015).

A cell type that has been largely studied due to its easier accessibility are
mesenchymal stromal cells (MSCs) isolated from bone marrow (BM). These cells
exhibit age-dependent changes in clonogenicity, proliferative capacity, and differ-
entiation potential, an observation consistent among different species (Baxter et al.
2004; Stolzing et al. 2008; Kasper et al. 2009; Zhou et al. 2010; Yu et al. 2011).
Stolzing et al. demonstrated that BM-MSCs derived from human young individuals
expanded more rapidly and had a longer lifespan in vitro compared to human MSCs
from elderly patients (Stolzing et al. 2008). MSCs isolated from BM of the young,
middle, and older rhesus monkeys exhibited a decreased proliferation and
two-lineage differentiation capacity with aging (Yu et al. 2011). Interestingly,
Zhou and colleagues compared cells isolated from tendon tissue of young and
aged rats and also revealed a decline in clonogenicity, proliferation rate, and



chondrogenic potential; however, osteogenic and adipogenic differentiation capac-
ities were unaffected (Zhou et al. 2010). In a recent study, using the self-assembly
cell sheet model for tendon differentiation, it has been demonstrated that aged
TSPCs are in fact less competent in forming tendon organoids, which were charac-
terized by higher failure rate, smaller diameters, poorer ECM composition and
quality, and reduced cell density due to increased cell death (Yan et al. 2020). In
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Table 7.1 Changes in tendon tissue over the aging process

Structural changes Species Biomechanical changes References

Change in gross appearance
Yellowish color
Disrupted collagen fiber struc-
ture Accumulation of proteo-
glycan/glycosaminoglycan
Mucoid and lipoid
accumulation

Human Not assessed (Adams et al. 1974;
Kannus and Józsa 1991)

Decrease in water and muco-
polysaccharide content

Rabbit Change in stiffness and
reduction of tendon
gliding properties

(Ippolito et al. 1980; Tuite
et al. 1997)

Reduction of collagen turnover
and synthesis
Increased presence of COL III
Delayed repair

Equine
Human

Impaired adaptive
response to mechanical
loading

(Birch et al. 1999; Kjaer
et al. 2009; Peffers et al.
2014)

Decrease of ELN and proteo-
glycans in tendon ECM

Rat Reduced tissue elastic-
ity
Increased tendon
stiffness

(Kostrominova and
Brooks 2013)

Increased collagen cross-
linking

Rabbit
Human
Rat

Loss of mechanical
competence
Decrease in ultimate
strain
Changes in ultimate load
modulus and elasticity
Increased stiffness

(Carlstedt 1987;
Thermann et al. 1995;
Lewis and Shaw 1997;
Pardes et al. 2017)

Thickening of collagen fibril
diameter

Mice
Equine

Increased stiffening and
elastic modulus

(Gehwolf et al. 2016;
Ribitsch et al. 2020)

Increased cross-sectional ten-
don area

Human Variation in tendon
stiffness and Young’s
modulus

(Stenroth et al. 2012)

Loss of waviness
Uncrimped collagen fibrils
Disintegrated and frayed colla-
gen bundles

Equine
Mice

Impaired energy stor-
age and release
Loss of tissue integrity
and diminished biome-
chanical properties

(Thorpe et al. 2014;
Zuskov et al. 2020)

Enlarging of COL
II-containing region from the
enthesis to the tendon
mid-portion and accumulation
of calcium deposits

Mice
Human

Detriment of mechani-
cal and viscoelastic
properties

(Rooney et al. 1993;
Kawashiri et al. 2021)



vitro studies of aged human tendon-derived cells and TSPCs also reported signifi-
cantly decreased proliferative, metabolic, and migratory capacity (Klatte-Schulz
et al. 2012; Kohler et al. 2013). Consequently, the early entry into the growth plateau
phase, the flattened cell morphology, and the reduced self-renewability of aged
tendon cells and TSPCs suggested that these cells experience an early onset of
cellular senescence, a phenomenon validated by increased activity of
β-galactosidase and higher expression levels of the cell cycle regulator gene p16,
both being hallmarks of senescence (Collado et al. 2007; Hoare et al. 2010; Kohler
et al. 2013). Hence, the decrease of cell proliferation capacity and the increase in
cellular senescence are among the best features to describe the aging process in
tendons (Fig. 7.2b) (Tsai et al. 2011; Kohler et al. 2013; Hu et al. 2017).
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Senescence is the phenomenon when cells lose their ability to divide and enter a
growth arrest state. This also occurs in vitro after approximately 55 cell divisions,
which is also known as Hayflick’s limit or replicative senescence (Hermann et al.
2004). Cellular senescence is linked to organismal and tissue aging, and the under-
lying complex process is triggered by several partially known mechanisms. A
number of studies have reported increased levels of senescence-associated genes
such as p14ARF, p16INK4A, p21WAF1, p53, and pRb in MSCs derived from aged BM
aspirates (Shibata et al. 2007; Stolzing et al. 2008; Wagner et al. 2010). Janzen et al.
created a p16INK4A knockout mice model and showed that hematopoietic cells
(HSCs) of aged mutant mice exhibited diminished proliferation and apoptosis rates
as well as improved stress tolerance (Janzen et al. 2006). Therefore, on the one hand,
senescence prevents the proliferation of damaged cells, acting as a tumor suppressor
mechanism. However, on the other hand, the p14ARF and p16INK4A pathways
possess pro-aging effects which are linked to a reduced regeneration potential of
adult stem cells accompanied by an increasing accumulation of senescent cells in the
tissue over time (Sharpless and DePinho 2007). Senescent cells have been shown to
exert side effects on neighboring cells and contribute to an inflammatory profile,
which originated the term “inflammageing” (Franceschi et al. 2000).

Tendon healing involves the migration of tendon cells to the repair or damaged
site. Subsequently, the cells begin to proliferate and synthesize collagen, proteogly-
cans, and other proteins, as well as they remodel the ECM ensuring tissue continuity
at the injury site. However, the repaired tissue usually does not regain the charac-
teristics of normal tendons, especially in aged people whose healing rates are
retarded (James et al. 2008). Aged TSPCs have been reported to display reduced
migratory activity along with increased content of actin stress fibers (Ross et al.
2011; Wei et al. 2011; Kohler et al. 2013). A lower migration potential of different
cell types due to aging was stated in numerous studies (Sandeman et al. 2000; Xia
et al. 2001; Mogford et al. 2002; Ruiz-Torres et al. 2003; Mishima and Lotz 2008;
Sopko et al. 2010; Ross et al. 2011). Cell migration is a complex process that
involves cell–matrix interaction and profound actin cytoskeleton reorganization.
The actin cytoskeleton is composed of actin filaments which in turn are attached to
the ECM proteins via focal adhesions. Actin stress fibers are composed of linear
polymers of actin subunits that are elongated at one end and simultaneously shrunk
at the other end. This dynamical process of polymerization and depolymerization of



actin stress fibers along with the assembly and disassembly of focal adhesions
enables the cell to migrate (Wei et al. 2011). So far, literature indicates that cells
derived from aged donors have a lower migratory capacity than cells derived from
young donors which are probably induced by an altered turnover of actin fibers.
Indeed, Kohler et al. (2013) demonstrated that human aged TSPCs not only have
larger size filled with robust stress fibers, but also that the acting turnover is
significantly lower. Actin dynamics are critical to cell migration but also to cell
division and differentiation processes. Thus, actin-related alterations might be a
central problem in tendon aging.
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Beyond accumulation of senescence and decline in migratory properties, the
expression of stemness cell markers, octamer-binding transcription factor 4 (OCT-
4), nucleostemin (NS), SCA-1, and stage-specific embryonic antigen-1 (SSEA-1), in
TSPCs reduces with aging and compromises the TSPC multipotential (Zhang and
Wang 2015). By implementing microarray technology, Kohler et al. (2013) inves-
tigated the transcriptomal shift in human TSPCs with aging, revealing the differen-
tial expression of multiple genes. Interestingly, gene ontology and literature
annotation aproaches showed that genes with a significant change in their mRNA
expression levels relate to cell–cell and cell–ECM communication, cytoskeleton and
actin dynamics, and motility and migration. Similarly, Peffers and colleagues have
shown that the transcriptome of macroscopically normal human Achilles tendon is
dynamically altered with age (Peffers et al. 2015). It was found that tendon aging
does not result in affected expression of ECM-encoding genes. However, the authors
identified differentially expressed gene sets with aging related to a dysregulation of
cellular function and maintenance, cellular growth, and cellular development. There-
fore, the above studies suggest that the cellular component of tendon tissues may
lose the ability to respond appropriately to mechanical and chemical signals.

In Table 7.2, the main characteristics that tendon cells present during the progress
of the aging process are described.

Aging and Tendon Diseases

Although aging and tendon diseases share common mechanisms, there are some
molecular and cellular differences that distinguish these processes. Tendon disease
can occur at earlier age, while aging is not a disease but a significant risk factor for
development of many major chronic diseases (Hopkins et al. 2016; Riel et al. 2019).

In contrast to aging, tendon diseases, representing 30–50% of musculoskeletal-
related clinical visits (Vos et al. 2017), are medical conditions including inflamma-
tion and degeneration as well as ruptures and overuse injuries. Tendinopathy is the
broader term encompassing tendinitis that is tendon inflammation and pain, and
tendinosis that is inter-tendinous degeneration without an evidence of robust inflam-
matory processes (Fig. 7.2c) (Mazzone and McCue 2002; Zafar et al. 2009). Tendon
diseases cause patient disability and reduced work productivity, representing a
significant economic burden (Sleeswijk Visser et al. 2021). Tendinopathy and



rupture can happen in all age groups, in physically active youths and adults, and
among the sedentary population with moderate physical activity. Next to sports,
several intrinsic factors including body weight, nutrition, and age may be responsible
for tendon damage. For detailed information, readers are addressed to a comprehen-
sive review on tendinopathy by Millar et al. (2021).
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Table 7.2 Most common features of aged tendon cells

Cellular changes Species Gene changes References

Decreased cell prolifera-
tion capacity
Increased cellular
senescence

Rat
Human

Low CITED2 mRNA and protein
levels

(Zhou et al. 2010;
Hu et al. 2017; Yan
et al. 2020)

Lower proliferation rates
Increased number of cells
in cycle arrest
Higher fraction of cells in
G2/M phase
Impaired multipotency
Reduced tenocyte but
increased adipocyte
differentiation

Rat Lower expression levels of CD90.1
and higher levels of CD44

(Zhou et al. 2010)

Decreased population
doubling rate and
response to growth factors
Lower colony numbers
Increased senescence and
β-galactosidase activity
Enlarged cell area and
robust actin stress fibers
Slower actin turnover
Reduced migratory ability
Retained multipotential

Human Upregulation of p16INKA

Altered expression of multiple
genes
Augmented ROCK protein levels
and activity

(Kohler et al. 2013)

Altered cell morphology
Cells with few protrusions
Increased cell volume
Change in actin cytoskel-
eton organization
Increased cellular stiffness

Rat
Human

Not assessed (Wu et al. 2015;
Kiderlen et al.
2019)

Reduction of self-renewal
and proliferation
G1/S phase cell cycle
arrest
Increased senescence
Lesser migration

Rat Downregulation of Forkhead box
P1 (FOXP1), E2F1, cyclin D1, and
pRb protein levels

(Xu and Liu 2018)

Increased senescence Human Increased expression of Pin1 (Chen et al. 2015)

At present, common conservative treatments for tendinopathies include immobi-
lization, physiotherapy, shockwave-, ultrasound-, and magnetic-based therapies, the
administration of steroidal and nonsteroidal anti-inflammatory drugs, and injection
of platelet-rich plasma (Leadbetter 2005; Mishra et al. 2009; Lomas et al. 2015;



Zhou and Wang 2016; Aicale et al. 2020). Among these options, platelet-rich
therapies are being used increasingly in the treatment of injuries of musculoskeletal
soft tissues, including tendon (Costa-Almeida et al. 2020). Theoretically, platelet-
rich content in growth factors and other scaffolding proteins should support healing
and regeneration of tendon. However, systematic reviews of clinical trials have not
confirmed the significant efficacy of platelet-rich plasma in the management of
tendinopathies (De Vos et al. 2014; Liddle and Rodríguez-Merchán 2015; Scott
et al. 2019). In severe cases, when the conservative approaches fail, surgery is also a
therapeutic option, although a recent systematic review of clinical trials found that it
was as good as exercise-based therapies in mid- and long-term pain reduction and in
quality of life in patients (Challoumas et al. 2019). However, surgery can prevail
conservative therapy in terms of time for return to function and can reduce the risk of
chronic rupture. Tendon treatment often requires long periods of rehabilitation,
while the original biological properties and mechanical strengths are rarely restored,
and often result in chronic pain (Millar et al. 2021). Despite the great incidence of
tendinopathies in the worldwide population, the currently available clinical strate-
gies do not tackle the etiology of the disease which increases the susceptibility to
acute tendon rupture.
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Beyond the different above-mentioned pathophysiological features that lead to
the tendon aging progression, the unbalance of immune cell populations, the cell-to-
cell communication, and the cell–matrix interactions have also crucial roles in
tendon diseases and rupture (Kuhn and Tuan 2010). Tendon pain, edema, and
inflammation represent the immediate response to tendon micro- and macrodamage
(Bianchi et al. 2021). The initial inflammatory stage begins with the formation of a
hematoma. Inflammatory cells, such as neutrophils and macrophages, are attracted to
the tendon injury site by pro-inflammatory cytokines. It has been suggested that
resident tenocytes have the capacity to trigger the inflammatory response, potentially
through the recognition of damage-associated molecular patterns (DAMPs) (Millar
et al. 2017). A high macrophage number accompanied by hypervascularization as
well as erroneous ECM deposition was identified in the early phase of tendon repair
(Lin et al. 2017). Imbalanced and activated immune cells, primed by both endothelial
and tendon cells, promote a cycle of inflammation and aberrant tissue repair that
drives disease chronicity rather than regeneration (Akbar et al. 2021). Due to this
failed regenerative response, the second hallmark of tendinopathies is fibrosis, which
is characterized by the exacerbated accumulation of ECM in a highly disorganized
matter (Wynn and Ramalingam 2012).

Another characteristic of diseased tendon microenvironments is
hypervascularization of tendon ECM, in comparison to the poorly vascularized
healthy tendons (Tempfer and Traweger 2015). The subsequent increase in oxygen
and nutrients supply has been shown to promote degenerative ECM remodeling
within the tissue stroma (Wunderli et al. 2020). Nevertheless, newly formed blood
vessels harbor high numbers of perivascular cells, which hold a subpopulation of
TSPCs (Tempfer et al. 2009). The neovascularization process is mainly governed by
vascular endothelial growth factor (VEGF) signaling, the negligible levels of which
found in healthy tendon show a significant increase during disease (Liu et al. 2021).



VEGF signaling is critical for blood and lymph vessel formation, although it can also
elicit responses in other cells (Liu et al. 2021). Among these, tendon cells express
VEGF receptors in response to inflammatory stimulation and injury, and binding
with its ligand promotes tendon degeneration-associated events (Tempfer et al.
2022). Moreover, TNMD has also been suggested to play a role in vasculature-
related processes in tendon. In healthy conditions, TNMD expressed by tendon-
resident cells exhibits antiangiogenic properties, when released in a secreted form,
indicating a crucial role in maintaining a low vascularized state of tendon tissue
(Oshima et al. 2004). Further, TNMD has recently been demonstrated to limit the
formation of a fibrovascular scar during early events in tendon healing (Lin et al.
2017) and ameliorate in-tendinous heterotopic ossification at the later repair stages
(Delgado Caceres et al. 2021). Even though neovascularization is indispensable
during the regeneration of the majority of tissues, including tendon, it may also
exert a negative role in tendinopathy (Tempfer and Traweger 2015; Korntner et al.
2019).
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A number of molecular studies have advanced the understanding that underlines
tendon degenerative process, which often goes hand in hand with aging (Jones and
Jones 2000). The major molecular changes include a shift to a higher COL III
abundance in relation to COL I in the ECM, as well as higher levels of FN, TNC,
GAGs, aggrecan (ACAN), and BGN (Riley 2008). There are also changes in the
activity of various metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinases (TIMPs), contributing to a weaker tendon ECM (Riley 2008;
Sharma and Maffulli 2008). In tendon ruptures, it has been reported that levels of
metalloproteinase-1, -9, -19, and -25 (MMP1, MMP9, MMP19, MMP25) and tissue
inhibitor factor-1 (TIMP1) were increased, while the expression of
metalloproteinase-3 and -7 (MMP3, MMP7) and tissue inhibitor-2, -3, and -4
(TIMP2, TIMP3, TIMP4) were decreased (Jones and Jones 2000; Riley 2008).
Tendinopathy also involves an increase of inflammatory mediators such as prosta-
glandin E2 (PGE2) and interleukin -1 (IL-1), an enhanced expression of cyclooxy-
genase 2 (COX2), different growth factors (GF), including transforming growth
factor beta (TGF-β), platelet-derived growth factor (PDGF), and insulin-like growth
factor-1 (IGF-1), and neurotransmitters, such as glutamate and substance B (Riley
2008; Sharma and Maffulli 2008). It is important to state that the above data are
based largely on experimental studies, and despite all the advancements in tendon
cell and molecular biology research, there is still a complete lack of diagnostic
biomarkers for tendon diseases, including age-related tendinopathies.

Future Perspectives

Tendons composition, hierarchical design, and anisotropy make it a unique structure
with exceptional mechanical properties. The aging process results in a failure to
sustain tendon homeostasis, which may result in functional changes and/or disease.
Furthermore, the reduced ability of tendons to self-repair and the limits of the



currently available therapeutics have increased the interest in developing therapeutic
options that promote the tendon’s endogenous reparative ability. In this sense, the
field of tissue engineering and regenerative medicine can bring promising strategies
to promote in situ tissue regeneration or even tissue rejuvenation, and slow or
prevent aging and age-associated diseases. The field typically relies in a combination
of cells, materials, and biochemical and biomechanical stimulation.
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Cell-based strategies, obtained either from tendons or from non-tendon sources,
like bone marrow- or adipose tissue-derived cells, have shown promising results to
enhance tendon regeneration and improve the function of impacted tendons (Costa-
Almeida et al. 2019; Migliorini et al. 2020). Nonetheless, the best cell source,
isolation, expansion, and differentiation methods, characterization of the tenogenic
differentiation pathways, and clarifications of tendon-specific molecular markers
have not been consensual. Moreover, the exact mechanisms underlying the cellular
mode of action are yet to be fully elucidated. Recent studies have proposed that
extracellular vesicles secreted by the cells can exert regenerative effects (Marote
et al. 2016; Riazifar et al. 2017; Witwer et al. 2019; Graça et al. 2022). Thus, it will
be of great interest to investigate whether cell- and nanovesicle-based strategies can
not only support regeneration but also combat aging and associated diseases.

Cell secretome and cellular crosstalk have a critical function in tendon aging
(Gomez-Florit et al. 2022). Thus, the successful identification of specific biomole-
cules will benefit the development of tendon therapeutics and open new perspectives
for translational medicine both in diagnostics and in therapy. In the last decade, a
number of studies for enhancing tendon regeneration have focused on applying
growth factors, singly or in combination (reviewed in Docheva et al. 2015;
Schneider et al. 2018). However, the clinical translation of growth factor-based
therapeutics has numerous limitations due to safety and cost-effectiveness issues.
Aspects such as short half-life, low protein stability, and rapid deactivation of their
specialized properties by enzymes at body temperature represent a major constraint
for their extended use in clinical applications (Wang et al. 2017b; Caballero Aguilar
et al. 2019). An interesting class of biomolecules that hold promising potential are
senomorphics and senolytics, which specifically target senescent cells and help their
clearing in the tissue, thus reducing the detrimental side effects of senescence and at
the same time mitigate the aging process progression (Lagoumtzi and
Chondrogianni 2021).

The use of biomaterials and bioengineering tools to promote tendon regeneration
has also attracted considerable interest among the research community. Different
techniques, including cell sheets (Yan et al. 2018; Vinhas et al. 2021), collagen
structures (Puetzer et al. 2021), fiber-based approaches (Laranjeira et al. 2017;
Almeida et al. 2019), and bioprinting (Merceron et al. 2015), have been proposed.
Among these, fibrous materials fabricated using different techniques, such as
electrospinning, wet spinning, or melt electrowriting (No et al. 2020; Rinoldi et al.
2021), have a high aptitude for mimicking fibrous tissue architecture and anisotropy.

Another trend in tendon regenerative biology is magnetically assisted therapies.
These therapies take advantage of the magnetic field alone or in combination with
magnetically responsive biomaterials. The magnetic stimulation can modulate



tendon cell adhesion, migration, proliferation, and differentiation acting as guides for
promoting tissue regeneration (Pesqueira et al. 2018). However, it has to be consid-
ered that such approaches will most likely be adequate to treat aged-related
tendinosis or subsequent rupture rather than the aging process itself.
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Concluding Remarks

A variety of advanced research studies have revealed that tendon aging results from a
combination of multiple changes occurring at all levels of the tissue—molecular,
cellular, structural, and biomechanical. Central players are endogenous tissue cells,
which accumulate pathological changes such as gene expression shift, reduced self-
renewability, increased senescence, altered differentiation, hampered migratory, and
overall regenerative potential. Thus, the tissues experience disbalance over time that
can further progress in degenerative processes and even tendon rupture. Future
research is still much needed to clarify the exact molecular and cellular mechanisms
and to identify biomarkers and early diagnostic tools. Moreover, the development of
efficient and multifunctional approaches that encounter the needs for tendon regen-
eration in young and elderly patients should also be pursued from the scientific
community.
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Chapter 8
Virus Infections in Older People

Roy L. Soiza, Chiara Scicluna, and Sana Bilal

Abstract Older people are more prone to viral infections, and often have worse
outcomes. This was well demonstrated during the COVID-19 pandemic, where a
disproportionate number of deaths occurred in the oldest and frailest people. The
assessment of the older person with a viral infection is complicated by the high
prevalence of multiple comorbidities and sensory or cognitive impairment. They
often present with common geriatric syndromes such as falls or delirium, rather than
the more typical features of a viral illness in younger people. Comprehensive
geriatric assessment by a specialist multidisciplinary team is the gold standard of
management, as viral illness is unlikely to present in isolation of other healthcare
needs. We discuss the presentation, diagnosis, prevention, and management of
common viral infections—respiratory syncytial virus, coronavirus, norovirus, influ-
enza, hepatitis, herpes, and dengue viruses—with special consideration of infections
in the older patient.

Keywords Ageing · Coronavirus · COVID-19 · Diagnosis · Hepatitis · Infection ·
Influenza · Norovirus · Senescence · Treatment · Virology

Introduction

Viruses are an integral part of the human microbiome, probably numbering in the
tens of trillions in every human body (Liang and Bushman 2021). Of these, over
250 viruses capable of causing clinical infections leading to illness in humans have
been identified (Carroll et al. 2018). However, this number increases steadily each
year with an estimated 1.67 million viruses in the animal kingdom remaining
unidentified and unclassified. The best estimates are that between 631,000 and
827,000 of them will have the potential to infect humans, though luckily few will
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probably cause illness. Nevertheless, the global pandemic of COVID-19 has served
as a reminder of the susceptibility of any species to succumb to new viruses.
Immunosenescence, age-related changes in our immune system, render older people
at higher risk of both viral infections and worse outcomes when infection occurs.
The clinical manifestation of infection is further influenced by comorbidities and
physical and cognitive function, such that viral infections may commonly present
atypically with physical and/or cognitive decline, falls, or delirium. The differential
diagnosis can therefore be wide, and most clinical presentations in older people have
multifactorial aetiology in any case. In this chapter, we present a recommended
holistic approach to the assessment of the older person with suspected viral infection
and an overview of the more common or serious viral infections in old age.
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Comprehensive Geriatric Assessment

The diagnosis and management of the older patient is usually more challenging and
more prone to errors than that of younger patients (Wenger et al. 2003). This may be
due to a multitude of reasons, including a lack of specific geriatric medicine
education in medical school and beyond. Conventional medical wisdom that encour-
ages clinicians to come up with a single unifying diagnosis to explain all symptoms
and clinical findings (sometimes referred to as ‘Ockam’s razor’) is usually unsuc-
cessful in the older patient because the diagnosis is more likely to be multifactorial.
Comprehensive geriatric assessment (CGA) is considered to be the gold standard for
effective management of health problems in old age, and suspected viral infections
are no different. It is usually delivered by a multidisciplinary team that incudes
medical, nursing, and therapist staff. The role of the doctor includes taking a careful
history, conducting a relevant physical examination, and organising a series of
relevant tests to aid diagnoses and management (see later on in the chapter for
specific viral illnesses). Diagnoses would usually include a list of contributory and
causative factors that explain all symptoms, though a full diagnostic list may only be
possible once the whole multidisciplinary team has assessed the patient. A compre-
hensive management plan is then discussed and agreed with the patient and the
whole team.

Functional Status

The presentation of any viral infection is likely to be hugely influenced by the
patient’s functional status, with people who are less resilient more likely to present
atypically with diminished mobility, falls, or other common geriatric syndromes.
Functional status covers basic self-care tasks or basic activities of daily living
(ADLs) such as bathing, dressing, toileting, tasks that are required to live



independently (such as shopping, doing laundry and housework), and in some
instances tasks related to technology (such as internet and cell phone use).
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A number of scales exist to measure functional status at basic and independent
level, including the Vulnerable Elders Scale-13 (VES-13) (Saliba et al. 2001),
Clinical Frailty Scale (Rockwood et al. 2005), and the Katz index for ADLs (Wallace
et al. 2007).

Mobility

Virus infections in older people may present with difficulties with mobility, and a
specialist physiotherapist assessment and management programme is recommended
where there is significant immobility or falls. Gait speed is a useful measure for
predicting functional decline in the elderly. In a systematic review of 49 studies by
Binotto et al. (2018), reduced gait speed was associated with disability, frailty,
muscle atrophy, stress, reduced quality of life, and mortality. Low energy use
associated with reduced gait speed was also associated with increased risk of
cardiovascular disease. The demographic most likely to experience reduced gait
speed were people over 75 years of age, low physical activity levels, history of
stroke, urinary incontinence, and diabetes.

Loss of gait speed is also associated with increased risk of falls. The older adult is
more susceptible to injury from falls due to physiological changes of old age (such as
reduced reflexes) combined with other disease such as osteoporosis. Recovery also
tends to be delayed which in turn results in deconditioning and post-fall anxiety,
which causes further deconditioning (Rubenstein 2006).

Falls are particularly serious in the older adult age group due to an increased
susceptibility to injury. Accidental injury is also the cause of one-fifth of deaths in
the elderly, and two-thirds of these deaths are due to falls. Half of elderly patients
discharged from hospital after a fall do not survive the year and repeated falls are also
a significant reason for nursing home admission.

Cognition

Viral infections of any type can cause cognitive decline, even where the central
nervous system is not directly affected by viral infection. Cognitive decline is
usually acute, leading to delirium, but can also worsen any pre-existing mental
health problem. A viral infection can therefore highlight an undiagnosed case of
dementia, and it is important all clinicians are familiar with this condition, as well as
delirium. For non-specialists, the use of screening tools for delirium and dementia is
recommended early on in the consultation, and a recent guideline highlighted the
4As Test may be particularly suitable due to its ease of use and high sensitivity and



specificity (Soiza and Myint 2019). A positive result should prompt consideration of
a diagnosis of delirium and/or dementia, and a specialist referral if necessary.
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Several screening tools exist for the diagnosis of dementia. A systematic review
by Abd Razak et al. (2019) indicated that the Addenbrooke’s Cognitive
Examination-III (ACE-III) was the overall best screening tool, with 100% sensitivity
and 96% specificity (Hsieh et al. 2013). In primary care, the best tool for detecting
mild cognitive impairment is the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al. 2005) with a sensitivity of 83–97%.

Mood Disorders

An evaluation of mood is an integral part of CGA.When depression is not diagnosed
and treated, it brings with it disability and suffering to both patients and their family
members. Depression is more common in patients who suffer from other
comorbidities, and can occur both as early onset (in patients who have had depres-
sion in their younger years) or as late onset (the first episode occurs over the age of
65) (Alexopoulos et al. 2002). Comorbidities can worsen due to depression, and
overall, older adults with depression have poorer functioning than with other
diseases such as lung disease or diabetes (World Health Organization 2017a).

A useful screening tool for depression in the elderly is the Geriatric Depression
Scale (Yesevage et al. 1982–1983). Originally containing 30 items, shorter versions
have been developed and used. A study on 147 elderly persons in the community
found the GDS to be an accurate tool (Dias et al. 2017).

Polypharmacy

Polypharmacy is defined as a situation where multiple medications are prescribed to
one person, often by different prescribers. The exact number that defines
polypharmacy varies between studies, but is typically five or more. A systematic
review by Davies et al. (2020) found that polypharmacy is associated with frailty,
malnutrition, impaired balance, anxiety, reduced perceived health status, and various
system diseases. Polypharmacy is also associated with hospitalisation and unplanned
admissions.

Medications that may be particularly dangerous in older people include anticho-
linergics (due to delirium, blurry vision, increased falls risk) sedatives, psycholeptics
(due to confusion, falls, and dependency), cardiovascular drugs (due to hypotension
and sedation), sulfonylureas (cause hypoglycaemia), nitrofurantoin (cause liver and
lung toxicity), and NSAIDs (cause renal failure and gastrointestinal bleeding).

Some strategies to reduce polypharmacy include judicious prescribing and
involvement of the patient and/or caregiver before starting any new medications,
with a discussion of the benefits and risks (Caslake et al. 2013). Appropriate



deprescribing is also important. Medications should be revisited at every opportu-
nity, and their effects and safety followed up (Dahal and Bista 2022).
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Social Factors

Social isolation and loneliness are more prevalent in the older adult population due to
a shrinking social network, decline in mobility, and children moving away. A review
done by Yang and Victor (2011) revealed that 20–34% of older people suffered from
loneliness in 25 European countries. A study by Gardiner et al. (2020) indicated that
nursing home residents experienced significant amounts of moderate to severe
loneliness. Homebound status and social isolation are also shown to be linked to
all-cause mortality, especially the former, although this is not specific to the geriatric
population (Sakurai et al. 2019).

The three-item loneliness scale is a tool that can be used to determine if patients
are affected by loneliness (Hughes et al. 2004). The scale has been adapted in other
countries and languages. In English, it focuses on self-reported feelings of isolation,
lack of companionship, and generally feeling ‘left out’.

An advocacy brief issued by the WHO in 2021 acknowledges the complexity of
the issue and that solutions are not straightforward. Activity-based social interaction,
more education, and digital interventions are successful in some cases but not all.
Higher quality evidence and more research in lower socio-economic areas in the
world are required to establish better solutions to tackle loneliness.

Nutritional Status

Malnutrition can be defined as a state of either deficiency or excess of calories and
micronutrients that impacts the individual in a negative way (Stratton et al. 2003).

A 2021 meta-analysis of studies in Europe showed that in the older adult
populations, 28% of those hospitalised, 17.5% of those in residential care, and
8.5% of those in the community were at high malnutrition risk (Leij-Halfwerk
et al. 2019).

Malnutrition causes disease, can worsen existing comorbidities, and compounds
frailty, thereby increasing risk of viral infections and poor outcomes. A study by
Neumann et al. (2005) of 133 older adults in rehabilitation was done and the
outcomes assessed based on starting nutritional status. Subjects who were malnour-
ished had poorer function on admission as well as at 90 days, had longer lengths of
stay, and were more likely to require higher level care.

Screening for malnutrition can be done in several ways. The Nutritional Risk
Index (NRI) and Geriatric Nutritional Risk Index (GNRI) focus on albuminaemia
and current and ideal weight (Wolinsky et al. 1990; Cereda and Pedrolli 2009). The
Malnutrition Universal Screening Tool (MUST) score is used in clinical practice and



considers BMI, degree of unintentional weight loss, acute illness, and/or decreased
intake (Malnutrition Advisory Group 2003). The Nutritional Risk Screen
(NRS-2002) is also for hospital use and considers BMI, severity of weight loss
and reduced intake, and severity of surgery/condition that the patient has been
admitted for; for example, head injuries and ICU admission score at a higher risk
than hip fractures and diabetes (Kondrup et al. 2003).
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Sensory Impairment

Sensory impairment includes hearing loss only, visual impairment only, and dual
sensory impairment. It can make assessment of the older person with viral infection
more challenging, but it is important clinicians have the skill set and facilities to
overcome any difficulties. In the USA, almost 29 million people over the age of
60 suffer from some degree of hearing loss (Goman and Lin 2016).

Sensory impairment has been associated with a reduced quality of life (Tseng
et al. 2018), mental health decline such as increased anxiety and depression
(Simning et al. 2019), decline in ADLs (Bouscaren et al. 2019), increased perceived
discrimination (Shakarchi et al. 2020), and all-cause mortality (Fisher et al. 2014).
Outcomes also tend to be worse with dual sensory impairment as opposed to only
one sensory impairment.

A simple screening test for hearing loss is to ask patients ‘Do you have any
difficulty with your hearing?’ A study conducted in 2020 on 14,877 people over the
age of 55 revealed that 93% required appropriate referrals for further testing (Zazove
et al. 2020).

A Cochrane review ‘Community screening for visual impairment in older people’
in 2018 determined that visual screening in the community was not likely to be
useful in general due to poor uptake of interventions. Therefore any screening
offered should be followed by assessing the desire for intervention by the patient.
Formal visual acuity testing (Snellen chart) was the method with most sensitivity and
specificity, although this does not encompass early detection of macular degenera-
tion or cataract (Clarke et al. 2018; Seematter-Bagnoud and Büla 2018).

Social Factors

Social isolation and loneliness are more prevalent in the older adult population due to
a shrinking social network, decline in mobility, and children moving away. A review
by Yang and Victor (2011) revealed that 20–34% of older people suffered from
loneliness in 25 European countries. A study by Gardiner et al. (2020) indicated that
nursing home residents experienced significant amounts of moderate to severe
loneliness. Homebound status and social isolation are also shown to be linked to



all-cause mortality, especially the former, although this is not specific to the geriatric
population (Sakurai et al. 2019).
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The three-item loneliness scale is a tool that can be used to determine if patients
are affected by loneliness (Hughes et al. 2004). The scale has been adapted in other
countries and languages. In English, it focuses on self-reported feelings of isolation,
lack of companionship, and generally feeling ‘left out’.

An advocacy brief issued by the WHO in 2021 acknowledges the complexity of
the issue and that solutions are not straightforward. Activity-based social interaction,
more education, and digital interventions are successful in some cases but not all.
Higher quality evidence and more research in lower socio-economic areas in the
world are required to establish better solutions to tackle loneliness.

Specific Viral Infections

Having undertaken a holistic and multidisciplinary assessment, the possible diagno-
sis of a viral infection contributing to the presenting illness can then be confirmed by
use of blood or swab tests. It is rarely possible to make a confident diagnosis purely
on clinical grounds, though index of suspicion can be high where there are
recognised outbreaks and known infectious contacts. Non-specific presentations
with lethargy, malaise, and fever may be the only symptoms. Respiratory illness,
with breathlessness and cough, and gastrointestinal illness, with diarrhoea and
vomiting, are especially common, but all these symptoms have a wide differential
in the older patient, including non-infective exacerbations of chronic lung disease
and heart failure, overflow diarrhoea, and adverse reactions to medications. Routine
investigations, such as a full blood count, may show characteristic lymphocytosis or
lymphopenia, rather than the neutrophilia seen in bacterial infections, but will not be
diagnostic. Some of the more common or dangerous global viral infections in older
people are highlighted in the remainder of the chapter.

Respiratory Syncytial Virus (RSV)

Respiratory syncytial virus (RSV) was discovered in 1956 and has since been
recognised as one of the most common causes of childhood illness. However, it
causes annual outbreaks of respiratory illnesses in all age groups including older
people.

It belongs to the recently defined Pneumoviridae family, Orthopneumovirus
genus. It is a negative sense, single-stranded RNA virus that results in epidemics
of respiratory infections that typically peak in the winter in temperate climates and
during the rainy season in tropical climates.
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Transmission

RSV can spread when

• An infected person coughs or sneezes.
• A person can get virus droplets from a cough or sneeze in the eyes, nose, or

mouth.
• Someone touches a surface that has the virus on it, like a doorknob, and then

touching the face before washing hands.
• Someone has direct contact with the virus, like kissing the face of a child

with RSV.

People infected with RSV are usually contagious for 3–8 days. However, some
infants, and people with weakened immune systems, can continue to spread the virus
even after they stop showing symptoms, for as long as 4 weeks. Grandchildren are
often exposed to and infected with RSV outside the home, such as in school or child-
care centres. They can then transmit the virus to other members of the family.

RSV can survive for many hours on hard surfaces such as tables and crib rails. It
typically lives on soft surfaces such as tissues and hands for shorter amounts of time.

People of any age can get RSV infection, but infections in younger adult life are
generally less severe. People at highest risk for severe disease include:

• Premature infants
• Young children with congenital (from birth) heart or chronic lung disease
• Young children with compromised (weakened) immune systems due to a medical

condition or medical treatment
• Adults with compromised immune systems
• Older adults, especially those with underlying heart or lung disease

RSV infections can be dangerous for certain adults. Adults at highest risk for
severe RSV infection include

• Older adults, especially those 65 years and older
• Adults with chronic heart or lung disease
• Adults with weakened immune systems

Symptoms

Adults who get infected with RSV usually have mild or no symptoms. Symptoms are
usually consistent with an upper respiratory tract infection. People infected with
RSV usually show symptoms within 4–6 days of getting infected. Symptoms of
RSV infection usually include:

• Runny nose
• Decrease in appetite
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• Coughing
• Sneezing
• Fever
• Wheezing
• Headache
• Fatigue

These symptoms usually appear in stages and not all at once.

Severe RSV Infection

Most people who get an RSV infection will have mild illness and will recover in a
week or two. Some people, however, are more likely to develop severe RSV
infection and may need to be hospitalised. RSV can also make chronic health
problems worse. For example, people with asthma may experience asthma attacks
as a result of RSV infection, and people with congestive heart failure may experience
more severe symptoms triggered by RSV. The following serious complications can
occur with RSV:

• Pneumonia (infection of the lungs)
• More severe symptoms for people with asthma
• More severe symptoms for people with chronic obstructive pulmonary disease

(COPD)
• Congestive heart failure (when the heart cannot pump blood and oxygen to the

body’s tissues)

Older adults who get very sick from RSV may need to be hospitalised. Some may
even die. Older adults are at greater risk than young adults for serious complications
from RSV because of weaker immune systems and frailty.

RSV Prevention

There are steps one can take to help prevent the spread of RSV, and these apply to
other respiratory viral infections too. Specifically, if someone has cold-like symp-
toms they should:

• Cover their coughs and sneezes with a tissue or upper shirt sleeve, not with hands.
• Wash hands often with soap and water for at least 20 s.
• Avoid close contact, such as kissing, shaking hands, and sharing cups and eating

utensils, with others.
• Clean frequently touched surfaces such as doorknobs and mobile devices.
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Ideally, people with cold-like symptoms should not interact with children at high
risk for severe RSV disease, including premature infants, children younger than
2 years of age with chronic lung or heart conditions, and children with weakened
immune systems. If this is not possible, they should carefully follow the prevention
steps mentioned above and wash their hands before interacting with such children.
They should also refrain from kissing high-risk children whilst they have cold-like
symptoms.

Diagnosis

Because mild RSV symptoms are similar to the common cold, testing often is not
undertaken to diagnose the infection. However, doctors may suspect RSV based on
medical history, time of year, and a physical exam. In this case, they may want to run
laboratory tests to confirm the diagnosis. The most common is a mouth swab or a
blood test to check white blood cell counts and look for viruses using polymerase
chain reaction (PCR) tests.

In severe RSV cases that require hospitalisation, additional testing may be
needed. Imaging tests, such as a chest X-ray or computerised topography
(CT) scan, can check for lung complications.

Treatment

For mild symptoms, prescription treatment is usually not needed. RSV goes away on
its own in 1–2 weeks. Antibiotics are not used to treat viral infections, including
those caused by RSV. Antibiotics may be prescribed, however, if testing shows
bacterial pneumonia or other infection.

In older adults, especially if they have a weakened immune system, they may
need to be hospitalised if the RSV is severe. Whilst in the hospital, they may receive
oxygen or be put on a ventilator to help them breathe or receive IV fluids to help with
dehydration. In an older adult or an adult with a weakened immune system or long-
term heart or lung disease, RSV infection may be more serious if there is superin-
fection, often with bacterial pneumonia.

No vaccine against RSV has yet been approved by any licensing authority, but a
number of promising vaccine candidates are in advanced stages of development and
testing (Vekemans et al. 2019). Pavlivimab is a drug approved to prevent severe
RSV in certain infants and children at high risk for severe disease. The drug does not
cure RSV, is not used to treat children who already have severe RSV, and cannot
prevent RSV infection. It is given as monthly injections during the RSV season. In
older people, its use is not recommended on grounds of cost and because risks may
outweigh benefits.
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COVID-19

Introduction

Coronavirus disease-19 (COVID-19) is a viral disease first discovered in December
2019 in Wuhan, China, initially spreading zoonotically and then from human to
human (Li et al. 2020). The virus is transmitted via aerosol droplets and through
fomites (van Doremalen et al. 2020).

The World Health Organization (WHO) declared a COVID-19 pandemic on the
11th of March 2020 after the rapid spread of the virus to 114 countries. By the
middle of 2022, there had been 529 million reported cases worldwide and six million
deaths attributed to the infection (Anonymous 2022), mostly in older people.

Background

Coronaviridae are a family of viruses that infect animals and humans, and are
characterised by a fringe or ‘corona’ appearance of their envelope. Until the
2002–2004 SARS outbreak, Coronaviridae were thought to only cause mild respi-
ratory illness. The family is subdivided into four genera, of which Betacoronavirus is
the most important in terms of human infection and this genus contains the severe
acute respiratory virus (SARS-CoV-1), Middle Eastern respiratory syndrome coro-
navirus (MERS), and the newly emerged SARS-CoV-2 (Burrell et al. 2017; Hsieh
et al. 2004) that causes COVID-19.

Pathophysiology

SARS-CoV-2 is made up of four structural proteins: the spike (S), membrane (M),
envelop (E), and nucleocapsid (N) (Jiang et al. 2020).

The spike protein is the main component responsible for attaching and entering
host cells. Its subunit S1 binds to the host cell receptor, whereas S2 functions to fuse
the virus to the cell membrane (Bosch et al. 2003). The host cell receptor is ACE-2,
which is commonly found on the pulmonary epithelial cells (Wang et al. 2008;
Shirbhate et al. 2021).

Within the cell the virus replicates to transcribe negative-strand RNA from the
original positive-strand RNA, after which more positive-strand RNA is produced
and is translated into protein (Lai and Cavanagh 1997). At this stage, the virus
spreads within the nasal ciliated cells and individuals are typically asymptomatic,
highly infectious, and likely to test positive on nasal swab testing (Sims et al. 2005).

The virus can then migrate to the upper respiratory tract and produce systemic
symptoms like fever and malaise, where chemokines and interferons are released



from the infected cells (Mason 2020). In 81% of patients, the infection does not
progress beyond this point and self-resolves within 10–14 days (Wu and McGoogan
2020).
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However, some patients develop severe symptoms following the initial infection.
The virus proceeds to invade type 2 alveolar epithelial cells via ACE-2 receptors,
and triggers a release of cytokines causing a cytokine storm. This subsequently
attracts immune cells whose function is to clear the virus, but also has the unfortu-
nate effect of lung inflammation and injury. This is followed by pneumocyte loss and
culminates in acute respiratory distress syndrome [ARDS] (Xu et al. 2020).

Since the start of the pandemic the virus has shown high mutagenic potential and
five major variants of concern have been identified (Cascella et al. 2022) by July
2022:

• Alpha (B.1.1.7): first variant of concern described in the United Kingdom (UK) in
late December 2020

• Beta (B.1.351): first reported in South Africa in December 2020
• Gamma (P.1): first reported in Brazil in early January 2021
• Delta (B.1.617.2): first reported in India in December 2020
• Omicron (B.1.1.529): first reported in South Africa in November 2021

Symptoms

COVID-19 presents with a range of symptoms, the most common being fever,
shortness of breath, cough, diarrhoea, sore throat, and fatigue. Other symptoms
reported are a runny nose, headache, loss of smell or taste, muscle aches, and chills
(Struyf et al. 2020).

Diagnosis and Testing

The gold standard is a PCR test for viral RNA on a nasopharyngeal swab. Inexpen-
sive lateral flow tests have been developed that have high specificity, such that a
positive result is extremely likely to mean infection has occurred. The latter are
particularly helpful to identify asymptomatic cases and take pre-emptive steps to
prevent outbreaks, particularly in places such as care homes where outbreaks can be
deadly.

Imaging tests, such as a chest X-ray, can be helpful as COVID-19 can sometimes
show bilateral infiltrates that are uncommon in other conditions. A CT scan can
check for lung complications and pulmonary embolism is common and may require
a CT pulmonary angiogram if suspected.
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Treatment

A number of therapies are currently used in COVID-19 illness, including antivirals
such as molnupiravir, anti-SARS-CoV-2 neutralising antibody products such as
casirivimab and imdevimab, immunomodulatory agents such as dexamethasone
and tocilizumab, and oxygen therapy through high-flow nasal cannula,
non-invasive positive-pressure ventilation, and in severe cases, intubation (Cascella
et al. 2022).

Vaccination

Numerous novel vaccines against COVID-19 have been developed since the start of
the pandemic. As of the June 2022, 11.9 billion doses of COVID-19 vaccine had
been administered, covering 61% of the world’s population. 25% of whom have also
received at least 1 booster dose (WHO Coronavirus [COVID-19] Dashboard 2022).
Vaccines have a good safety and efficacy profile, and are recommended even in the
very elderly and frail (Soiza et al. 2021).

The vaccines currently available on the market are produced by Bharat Biotech,
Gamaleya Research Institute, Sinovac, Pfizer, Moderna, Janssen, Oxford/
AstraZeneca, Novavax, and Medicago.

Specific Considerations in Older People

Early statistical data in 2019 revealed a higher case fatality rate in the over-60-year-
olds, the highest being in the over-80 s group (Huang et al. 2020). In another study
by Wang et al. (2020), 70% of the elderly patients suffered from severe or critical
pneumonia due to COVID-19, and the case fatality rate was 19%. The onset of
ARDS was noted to be a very poor prognostic factor, whilst an increased lympho-
cyte count was protective. Other poor prognostic factors included coagulation
disorders, myocardial injury, reduced renal function, and bacterial infections.

The COVID pandemic caused societal impacts in addition to its immediate health
effects. Due to the high rate of spread, lockdown measures were implemented in
most countries in an attempt to mitigate the infection rate and avoid overwhelming
the medical services.

Lockdown measures had several effects on the elderly, both those living at home
or those in long-term care facilities. Lockdown caused a drastic decrease in the
ability of the individuals to partake in social activities and physical exercise, causing
boredom, a sedentary lifestyle, and loneliness. This was especially exacerbated for
residents of facilities suffering from dementia who could not understand why they
were confined alone and to their rooms (Bouillon-Minois et al. 2020).
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Influenza

Influenza (‘flu’) is an acute respiratory illness due to infection with the influenza
virus. Uncomplicated influenza is defined as influenza presenting with fever, coryza,
generalised symptoms (headache, malaise, myalgia, arthralgia), and sometimes
gastrointestinal symptoms, but without any features of complicated influenza. Com-
plicated influenza is defined as influenza requiring hospital admission and/or with
symptoms and signs of lower respiratory tract infection (hypoxaemia, dyspnoea,
lung infiltrate), central nervous system involvement, and/or a significant exacerba-
tion of an underlying medical condition.

Influenza in Older People

The risk of flu-related complications and hospitalisation is particularly high in adults
aged 65 years and older.

Immune systems decline as adults age. Older adults are at higher risk of serious
flu and flu-related complications including pneumonia and hospitalisation. There are
also other risks that may not be as obvious; flu increases the risk of heart attack by
3–5 times and stroke by 2–3 times in the first 2 weeks of infection for those 65+. The
risk remains elevated for several months. This all adds up to a six-times higher risk of
dying from flu and related complications if you are aged 65 years or older.

Pathogenesis

There are three serotypes—A, B, and C. Influenza A and B viruses cause most
clinical disease:

• A is the more frequent and the cause of major influenza outbreaks.
• B tends to circulate with type A in yearly outbreaks and causes less severe illness.
• C tends to cause a mild or asymptomatic illness akin to the common cold.

Influenza A serotypes are further categorised by their surface antigens:

• H: haemagglutinin—facilitates entry of the virus into the host respiratory cell.
• N: neuraminidase—facilitates release of virions from the infected host cells.

There are 15 H and 9 N subtypes of the A virus in aquatic birds, which together
with pigs (often termed the ‘mixing vessel’ for scrambling human and avian virus
genetic material) are the natural reservoir of the virus. Many of the newer types of
influenza are thought to have arisen in China because of the often-close co-habitation
there of pigs, fowl, and humans. Swine flu is an influenza A virus most frequently of
subtype H1N1, usually found in pigs but able to be transferred to humans.
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The influenza virus undergoes minor mutations to one or both of its surface
antigens—antigenic drift. This causes seasonal epidemics where people have only
partial immunity from previous infection.

Risk Factors

• Closed environments—such as: residential homes, schools, and prisons
• Advanced age (65 and older)
• Pre-existing cardiac or respiratory illness

Presentation

Transmission is either by:

• Droplet due to coughing/sneezing
• Direct nasal or eye contact with hands carrying the virus

After an incubation period of 1–3 days, the patient commonly presents with rapid
onset of:

• Anorexia
• Malaise
• Headache (retro-orbital)
• Fever
• Myalgia
• Non-productive cough and sore throat

Nasal discharge/obstruction and sneezing can occur but are not usually prominent
features of the illness. Fever may not be seen in older patients. Gastrointestinal
symptoms are not usual but may occur in a minority of patients.

Swine flu is like the usual human seasonal influenza infection, with most cases in
adults and children being mild. Clinicians are encouraged to diagnose swine flu
based on symptoms if there is a pyrexia (≥38 °C), fever, or history of fever and
flu-like illness (two or more of the following symptoms: cough, sore throat,
rhinorrhoea, widespread muscle and joint aches, headache). There may also be any
of the following: fatigue, loss of appetite and sometimes diarrhoea, nausea,
vomiting, otitis media, and (rarely) cerebral irritability ± seizures.

Most symptoms typically last for 3–5 days but cough, tiredness, and malaise may
last for 1–2 weeks. Infectivity continues for 5 days from onset, although children can
remain infectious for 2 weeks, and the severely immunocompromised can shed virus
for weeks.
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Differential Diagnosis

The most important infectious causes are listed below:

• Common cold/upper respiratory tract infection
• Pharyngitis
• Meningitis
• Bacterial or viral lower respiratory tract infection, including pneumonia
• Malaria or dengue fever in returning travellers
• Infectious mononucleosis
• Cytomegalovirus

Investigations

The diagnosis is a clinical one, so investigations are usually reserved for community
surveillance purposes. Available tests include:

• Direct viral culture of nasopharyngeal swabs/aspirates
• Immunofluorescence of nasopharyngeal swabs/aspirates
• Acute and convalescent sera, 10–14 days apart
• Polymerase chain reaction
• Rapid bedside antigen tests. These currently have low positive predictive values

Management

General Measures

In otherwise healthy individuals with uncomplicated illness, self-management is
recommended, including resting at home, increased fluid intake, analgesics, and
antipyretics.

Pharmacological

Antiviral drugs now form one important part of plans to prevent and contain
epidemics of influenza infection, but it should be selective and appropriate.

Routine prescription of antiviral drugs for people with influenza who are other-
wise healthy is not recommended. The patient should be reassured that the worst
symptoms of uncomplicated influenza resolve after about 1 week, although other
symptoms (such as cough, headache, insomnia, weakness, and loss of appetite) may
take longer than 2 weeks to resolve.
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Oseltamivir and zanamivir reduce replication of influenza A and B viruses by
inhibiting viral neuraminidase. They are most effective if started within a few hours
of the onset of symptoms. In otherwise healthy individuals they reduce the duration
of symptoms by about 1–1.5 days.

There is evidence that some strains of influenza A virus have reduced suscepti-
bility to oseltamivir but may retain susceptibility to zanamivir. Resistance to
oseltamivir may be greater in severely immunocompromised patients.

National Institute for Health and Care Excellence (NICE) 2020 guidance for the
treatment of influenza includes the following:

• The guidance does not cover treatment in a pandemic, an impending pandemic, or
a widespread epidemic of a new strain of influenza to which there is little or no
immunity in the community.

• Amantadine is not recommended for treatment of influenza.
• When influenza is circulating in the community, either oseltamivir or zanamivir is

recommended for the treatment of influenza in at-risk patients who can start
treatment within 48 h of the onset of symptoms.

• During local outbreaks of influenza-like illness, when there is a high level of
certainty that influenza is present, either oseltamivir or zanamivir may be used for
treatment in at-risk patients living in long-term residential or nursing homes.

• At-risk patients include those aged over 65 years or those who have one or more
of the following conditions:

– Chronic respiratory disease, including asthma and chronic obstructive pulmo-
nary disease (COPD)

– Chronic heart disease
– Chronic kidney disease
– Chronic liver disease
– Chronic neurological disease
– Immunosuppression
– Diabetes mellitus
– A pregnancy

Complications

Respiratory complications include:

• Acute bronchitis (about 20% of cases, with increased risk in the elderly and those
with chronic disease)

• Secondary bacterial pneumonia (especially Staphylococcus aureus)
• Primary viral pneumonia
• Exacerbations of asthma and COPD
• Empyema
• Pulmonary aspergillosis
• Sinusitis
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Non-respiratory complications include:

• Febrile convulsions
• Otitis media
• Toxic shock syndrome
• Myositis and myoglobinaemia
• Heart failure
• Myocarditis
• Reye’s syndrome
• Guillain-Barré syndrome
• Transverse myelitis
• Encephalitis

Risks of complications with hospitalisation and death are higher amongst:

• Those aged >65 years
• Very young children
• Those with at-risk factors

Residents of nursing homes are particularly at risk of serious complications
because of their age, high rate of chronic disease, and living in a closed community.

Norovirus

Introduction

Norovirus was first identified as an outbreak of gastroenteritis in Norwalk, Ohio, in
1968 and eponymously named Norwalk virus. Norovirus belongs to the family of
Caliciviridae viruses and is a positive-sense, single-stranded RNA virus. Amongst
the virus genogroups, GI, GII, and GIV infect humans, with the norovirus strain
GII.4 being the most widespread overall. GII.4 variants emerge with mutations, with
at least 8 variants identified in the last 22 years (Chhabra et al. 2019).

Norovirus is a significant cause of gastroenteritis in both developing and devel-
oped nations, typically causing nausea, vomiting, and diarrhoea, leading to severe
dehydration if untreated. According to the World Health Organisation (2019), out of
an average of 23 million cases of food poisoning in Europe each year, 15 million are
attributed to norovirus.

Epidemiology

A systematic review of 175 studies conducted by Ahmed et al. (2014) extracted data
from 48 countries. Norovirus was associated with 18% of all cases of acute gastro-
enteritis and overall was found to be the more common cause of mild gastroenteritis



The norovirus was also prevalent in a lower proportion of gastroenteritis cases in
high mortality countries, and was attributed to a larger variety of pathogens poten-
tially causing gastroenteritis, which may be controlled for by better hygiene and
safety standards in lower mortality countries. This would appear to result in a lower
apparent burden of norovirus cases, but this is simply diluted by other pathogens
causing similar illness. Unfortunately, studies specific to norovirus infection in the
elderly were few, and thus, it was not possible to stratify for this age group in this
chapter.
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Norovirus in Older Adults

The elderly are a high-risk group for norovirus infection. Over-85-year-olds recover
at a slower rate than in the younger population, with 50% remaining symptomatic
after 4 days. Diarrhoea can last from 3 to 9 days. Older adults who are hospitalised
due to norovirus infection are more likely to be admitted to intensive care, and older
adults hospitalised for other reasons are more likely to contract nosocomial
norovirus infection. It is unclear whether this is because of longer hospital stays
causing more likelihood for exposure rather than immunosenescence or
comorbidities (Cardemil et al. 2017). Harris et al. (2008) looked at death rates
associated with norovirus in England and Wales. In the over-65-year-olds, the
researchers found an average of 80 deaths a year resulting from norovirus as the
primary cause of death.

Long-Term Care Facilities and Infection Risk

Facilities for long-term care of the elderly are a likely breeding ground for norovirus,
due to the close proximity of residents and high degree of contact with staff. An
analysis conducted in 566 gastroenteritis outbreaks in care homes from 2016 to 2018
in England revealed norovirus to be the sole pathogen in 64% of cases (Inns et al.
2020). A smaller study by Bruggink et al. (2015) focused on norovirus outbreaks of
people living in residential aged-care facilities in Victoria Australia in 2013. Out of
the 206 cases of acute gastroenteritis, 65% were found positive for norovirus on
faecal PCR testing. The average age of the patients was 84.9, with an age range of
61–98 years.

Prevention

Norovirus spreads via the faecal-oral route, either from direct hand contamination or
through food contaminated with faecal matter and is highly infectious due to a



number of reasons. The virus is stable across a broad range of temperatures (0–60 °
C) and persists in the environment for days. Only 18–1000 viral particles are
required to cause infection; infected individuals shed viral particles prior to becom-
ing symptomatic and keep shedding for an extended period following resolution.
Finally, there is lack of cross-protection from exposure to other viruses, and
norovirus mutates to produce new strains periodically.
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Public health advice to prevent spread includes isolating infected individuals for
up to 2 days after symptoms resolve, as well as frequent handwashing with soap and
water (alcohol-based hand rubs have not been found to be suitable to eliminate viral
particles). High-risk workers like healthcare staff and those in contact with food
should also stay home for up to 2 days after symptoms resolve. Chlorine bleach
solutions of 1000–5000 ppm should be used to sanitise surfaces to limit the envi-
ronmental spread (Bányai et al. 2018).

Vaccine

Norovirus is broadly classified into 7 genogroups, which then subdivide into geno-
types. Genogroups I and II are the most relevant in human infection, and they are
subdivided into 9 and 22 genotypes, respectively (Kroneman et al. 2013; Green
2007). GII.4 causes the largest burden of disease in humans (Vega et al. 2013).

Immunity to norovirus is not well understood. A study in 1977 of 12 male persons
in North America demonstrated that half had natural immunity to an ingested
norovirus inoculum when challenged twice 27–42 months apart, but 4 of the
6 who were unwell the first time became unwell again the second time, with
1 becoming ill a third time. This suggested that some degree of natural immunity
exists, as well as short-term immunity following first-time exposure, although this
did not develop in everyone (Parrino et al. 1977).

Norovirus vaccine development faces some challenges. Due to lack of small
animal models or cell culture systems, it is difficult to assess immunity to norovirus
post-vaccination as it is not possible to conduct virus neutralisation assays (Melhem
2016). These are immunoassays which measure antibodies that stop norovirus from
replicating (Payne 2017).

Due to these issues, vaccines that utilise live attenuated or killed virus are
currently not possible (Melhem 2016). Current vaccine research is mainly focused
on developing virus-like particles (VLPs). VLPs are nanostructures without genetic
material which emulate authentic viruses. Their surface is densely coated with
multiple copies of viral surface proteins which are also functional, meaning they
can enter cells (Chroboczek et al. 2014).

Research has also been looking into P particles as vaccines. P particles are
protrusions occurring on the virus shell, first described by Prasad et al. (1999).
When isolated, these dimerise in vitro and can bind to histo-blood group antigen
receptors (HBGAs), which are implicated in immunity to norovirus. P particles are



therefore promising in the development of a norovirus vaccine in the future (Tan
2021).
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Research carried out in paediatric norovirus infection appears to show that natural
immunity is genotype-specific, with only modest cross-protection in the same
genogroup (Parra and Green 2014; Saito et al. 2014). Therefore, vaccines which
protect against multiple genogroups are the sensible approach.

There are 5 vaccines that have reached human trials, three of which are in the
preclinical stage: UMN Pharma Inc., Ology Bioservices, and Medicago, and two in
the clinical phase: Vaxart Inc. and Takeda Vaccines, Inc. (Kim et al. 2018;
Heinimäki et al. 2018; Nooraei et al. 2021; Ball et al. 2017; Atmar et al. 2011).
Takeda is at the most advanced stage, in phase 2b which is shown to result in a 47%
reduction in norovirus-associated gastroenteritis, 35% reduction of severe disease,
and a 26% reduction of norovirus infection following challenge with virus (Atmar
et al. 2011).

Cost-effectiveness is a further challenge for a norovirus vaccine, and depends on
its efficacy and duration of cover relative to the cost of the vaccine itself. For the over
65 s, a vaccine would save money per case with efficacy of at least 50%, covering
24 months, costing around $25, and this is negated if the cost is higher. For all age
groups, the efficacy would need to be at least 75%, protection lasting 48 months and
costing USD$25. According to Bartsch et al. (2012) who conducted this analysis, the
group most benefitting from a vaccine in terms of cost-effectiveness would be the
paediatric group, followed by the over 65 age group.

In low- to middle-income countries, the cost per illness is much lower than in
high-income countries ($45 and $247 per illness, respectively), due to differences in
the cost of healthcare. Therefore, in lower income countries, a cost-saving vaccine
would need to be 70% effective and cost $17 (Svennson 2016).

Norovirus is also poorly understood by the public. In a survey conducted in 2018
asking 806 adults who ate shellfish, 73% claimed to have at least heard of norovirus
(Farkas et al. 2021). Another older study reported a larger percentage of people who
have heard of the ‘cruise ship virus’. 60% knew transmission was possible through
food prepared by an infected person, but not that infection was possible from contact
with surfaces touched by an infected person, infected faeces or vomitus, or even by
close contact with an infected person. Another 76% were not aware that spread can
occur up to 2 weeks even after an infected persons feel better. There was also lack of
awareness of the type of foods associated with transmission, such as leafy vegeta-
bles, and decontamination methods such as undiluted bleach to disinfect surfaces
(Cates et al. 2015).

Hepatitis

Introduction

Hepatitis is a burdensome disease in public health terms. According to the WHO
2017 Global Hepatitis Report, in 2015 there were 1.34 million deaths, a number



comparable to deaths due to tuberculosis and exceeding those solely due to HIV. The
latter two diseases both have declining death rates, whereas deaths due to viral
hepatitis were noted to be increasing. The main causes of death are chronic liver
disease and primary liver cancer, respectively (World Health Organisation 2017b).
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Hepatitis B virus [HBV] belongs to the family Hepadnaviridae, which infects the
liver, is mostly species-specific, causing both acute and chronic infection, and results
in the presence of the virus and antigen in the bloodstream. Hepatitis C virus [HCV]
belongs to Flaviviridae, which are all pathogenic and infect the liver. Both viruses
are enveloped; HBV is a partially double-stranded DNA virus, whilst HCV is an
RNA virus (Glebe and Bremer 2013; Li and Lo 2015).

HBV and HCV are acquired through mucosal or percutaneous exposure to
infected bodily fluids. The bulk of HBV infections are acquired perinatally and are
most likely to progress to chronic infection. The main modes of transmission for
HCV are horizontal, including through sexual contact and sharing of infected
injecting devices, and nosocomial, such as transfusion of infected blood products.
The WHO reported that in 2015, 7.3% of people infected with HIV had concurrent
HBV infection, and 7.3% had concurrent HCV infection. In this group, liver disease
causes significant morbidity and mortality (World Health Organisation 2017b).

Acute infection with HBV or HCV causes symptoms in some but not all people.
A small proportion develop acute hepatitis, but most go unnoticed. Some of these
new infections can self-resolve; other persons develop chronic infection (World
Health Organisation 2017b). Chronic HBV infection is determined through the
presence of the HBsAg marker in blood.

Of the 1% of the world’s population, 3.5% live with chronic HBV and HCV,
respectively. 68% of HBV sufferers are from the African and Western Pacific
regions, whilst HCV is more common in Europe and Eastern Europe (World Health
Organization 2017b). According to the Centre for Disease Control [CDC]
2004–2019 data, the rate of hepatitis B amongst people aged 60 and over in the
USA was in decline until the year 2014, seeing a rise thereafter (CDC 2019).

Differences in Older People

The liver suffers age-related changes such as genomic instability, telomere attrition,
epigenetic alterations, mitochondrial dysfunction, and cellular senescence (Hunt
et al. 2019). These changes impact the rate of progression from acute to chronic
hepatitis and may cause low clearance of HBV (Floreani 2009). A small study in
1993 followed an HBV outbreak in a nursing facility where 59% of the residents
older than 65 years progressed to chronic infection (Kondo et al. 1993). Similarly
higher rates of progression to chronicity were noted in a Northern Ireland study
where 33% of persons aged over 50 years progressed, in comparison to 7% of the
under 50 years. This study also revealed a lower clearance of the virus in the older
age group (64% in comparison to 84% in the younger group) (McKeating et al.
2018).
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Vaccinations

Vaccination of infants is an effective preventer of new chronic HBV. Current
sufferers of HBV were largely born before the widespread availability of the vaccine
and infant vaccination programmes (World Health Organisation 2017a, b). A num-
ber of hepatitis B vaccines are commercially available, including single-antigen
vaccines, combination hepatitis A and B vaccines, and other combinations with
diphtheria, tetanus, pertussis, poliovirus, and haemophilus influenzae type b (Davis
2005).

A hepatitis C vaccine is not currently available as there are difficulties in
development of such a vaccine due to several factors. HCV exhibits a high genetic
diversity and mutation rate, it evades the host’s adaptive immune response, and there
are no small animal or in vitro models. Potential vaccine prospects include recom-
binant subunit vaccines, VLPs (virus-like particles), and virus-vector vaccines
(Duncan et al. 2020).

Management

Acute HBV infection has no significant treatment avenues. Chronic HBV treatment
focuses on reducing viral replication, which is correlated to reduction in chances of
cirrhosis and cancer. Interferon therapy can cause virological cure in up to 30% of
cases; however, it has significant side effects which are less tolerated in the older
population (Kemp et al. 2019). Non-immunological therapy includes nucleoside
analogues such as entecavir and tenofovir. According to the European Association
for the Study of the Liver (2017) guidelines, the latter non-immunological therapies
are likely to be safer in older adults particularly if they have comorbidities related to
osteopenia and declining renal function.

Hepatitis C is managed with direct-acting antivirals, most of which are tolerated
equally by adults and older adults (Jhaveri et al. 2018).

Varicella Zoster

Introduction

Varicella zoster virus is a double-stranded DNA alphaherpes virus that commonly
occurs in childhood leading to the illness known as ‘chicken pox’ with the typical
blistering rash of herpes virus infections (John and Canaday 2017). It is usually self-
limiting, though it can be very dangerous in newborn children who contract it from
their mother. Primary infection in old age is unusual, and a vaccine has been
available for over 25 years. However, herpes zoster is a significant problem in



older age due to reactivation of latent varicella zoster that lies dormant for years in
nerve ganglia after the primary infection. It classically presents as ‘shingles’ when
the characteristic blistering skin lesions recur in the distribution of a single nerve
root, though it can cause several other clinical presentations and has numerous
complications.
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Epidemiology

The incidence of varicella zoster has been increasing for decades (Kawaii et al.
2017). The lifetime incidence amongst people in the USA aged 85 or more is around
50%. So far, the immunisation programme against varicella zoster started in the
mid-1990 s has had little impact on the growing incidence of varicella zoster in old
age (John and Cannaday 2017).

Clinical Presentation

Primary infection is characterised by a widespread itchy blistering rash, commonly
referred to as chicken pox. The blisters are highly contagious but dry over and heal
with a scab that can leave a scar if picked. Infection usually lasts only a few days, but
the virus persists within the nervous system, where it is usually kept in check by the
body’s immune system. Reactivation can occur many years later, usually due to
immunosuppression from medications, diseases such as leukaemia, or the
immunosenescence of old age. However, even immunocompetent individuals can
present with varicella zoster reactivation. The typical presentation is with ‘shingles’,
the recurrence of unilateral blistering lesions along the distribution of a cutaneous
nerve root that classically do not cross the midline. This may occur anywhere in the
body and the lesions may be asymptomatic or itchy or painful. In elderly individuals,
the rash may be atypical and limited to a small patch within the dermatome or have a
maculopapular appearance with no blisters. Of special concern is ophthalmic shin-
gles, also known as herpes zoster ophthalmicus, where involvement of the ophthal-
mic branch of the trigeminal branch can lead to serious eye problems. Involvement
of other cranial nerves can also result in presentations with cranial nerve palsies,
such as the Ramsay Hunt syndrome where unilateral facial nerve palsy is associated
with lesions within the external ear and in the mouth. Rarely, varicella zoster can
present with meningitis, encephalitis, or myelitis. Immunocompromised individuals
can present with widespread disseminated infection. Diagnosis can usually be made
on clinical grounds alone, but viral PCR of skin lesions would confirm the diagnosis.
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Complications

The commonest complication is post-herpetic neuralgia. This is an extremely painful
condition that can persist for many months after the shingles rash disappears. It can
be challenging to treat and highly debilitating in frail older people. Bacterial
superinfection of the vesicular lesions is another common complication. Nerve
palsies and infections of the central nervous system can also occur, whilst ophthal-
mic involvement can result in blindness. Epidemiological studies show the risk of
stroke and heart attacks is elevated for a year after zoster infection.

Treatment

The acute infection can be treated with antiviral agents such as acyclovir, and is
recommended in all older adults (Dworkin et al. 2007). Steroids are sometimes used
in more serious infections such as ophthalmic shingles, though the evidence they
help is weak and their use needs to be weighed against the potential for serious side
effects. Simple analgesics such as paracetamol or nonsteroidal anti-inflammatory
drugs are often required during the acute infection or for post-herpetic neuralgia.
Drugs such as gabapentin specifically targeting neuralgia are often needed for the
latter condition and topically administered anaesthetic agents such as lidocaine
patches are also helpful. Ophthalmic shingles should always be referred to an eye
specialist.

Herpes Simplex

Herpes simplex viruses (HSV) are members of the herpesviridae family and only
infect humans (Whitley and Roizman 2001). Types 1 and 2 are the most serious
human pathogens. Together they are more prevalent than the related zoster virus and
share some features with it, causing blistering skin lesions and remaining latent
within neurons after primary infection. Type 1 is classically associated with
oro-facial lesions commonly referred to as ‘cold sores’. Type 2 classically affects
the genitals and is usually transmitted through sex. Reactivation of virus is common
even in immunocompetent individuals and usually results in lesions recurring at or
near the original site of entry. Despite being so common that most of the population
shows seroconversion to either or both viruses by adulthood, the illness they cause
tends to be relatively mild and not life-threatening. Rarely, HSV-1 can cause
encephalitis in people of any age. It can be especially difficult to diagnose in older
people as it usually presents with delirium, which has many other causes and is
common in old age. The presence on imaging of the brain of oedema of the right
temporal lobe is suggestive of HSV encephalitis. Diagnosis can be confirmed by



PCR testing of cerebrospinal fluid. Treatment involves at least 2 weeks of intrave-
nous acyclovir. Neurological complications and disability are common and the
condition can be fatal.
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Dengue

Dengue fever is the most common mosquito-borne viral infection transmitted by
female mosquitoes mainly of the species Aedes aegypti and to a lesser extent Aedes
albopictus. The incubation period is 3–14 days (average 4–7 days) (Kuluratne 2015).

Pathogenesis

Dengue is a single-stranded RNA virus of Flaviviridae family. It is subdivided into
primary and secondary infections. The primary infection is usually benign; however,
secondary infection can be further classified as either dengue haemorrhagic fever or
dengue shock syndrome, depending on the clinical features.

The virus infects and replicates inside the Langerhans cells which release inter-
ferons. The infected Langerhans cells go to the lymphatic system to activate the host
immune mechanism, and eventually release into the circulation, resulting in viremia.
The activation of immune response causes an increase in the number of lymphocytes
and a decrease in neutrophils and white blood cells resulting in early symptoms of
dengue such as fever, rashes, and joint and musculoskeletal pain.

If the disease is left untreated, the production of pro-inflammatory cytokines and
proliferation of memory T cells could cause vascular endothelial cell dysfunction,
which results in plasma leakage causing dengue shock syndrome and dengue
haemorrhagic fever (Kularatne 2015).

Clinical Features

The clinical features of dengue vary with the age of the patient and can be classified
by clinical presentations (Hadinegor 2012):

Non-specific febrile illness: Mild fever is the common presentation in children
and young adults.

Classic dengue: More common in older children, adolescents, and adults. It is also
known as ‘break bone fever’ and characterised by acute onset of high fever associ-
ated with frontal headache, retro-orbital pain, myalgias, arthralgia, haemorrhagic
manifestations, and rash (macular or maculopapular).

Dengue haemorrhagic fever: It is primarily a disease of children under 15 years of
age in hyperendemic areas. Some patients with dengue fever go on to develop



dengue haemorrhagic fever (DHF) a severe and sometimes fatal form of the disease.
DHF is currently defined by the following four World Health Organization (WHO)
criteria:
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– Fever or recent history of fever lasting 2–7 days
– Any haemorrhagic manifestations
– Thrombocytopenia (platelet count of <100,000/mm3)
– Evidence of increased vascular permeability causing plasma leakage

Dengue shock syndrome (DSS): Dengue shock syndrome is defined as any case
that meets the four criteria for DHF and has evidence of circulatory failure
manifested by (1) rapid, weak pulse and narrow pulse pressure (≤20 mmHg
[2.7 kPa]) or (2) hypotension for age, restlessness, and cold, clammy skin. Patients
with dengue can rapidly progress into DSS, which, if not treated correctly, can lead
to severe complications and death. Warning signs include severe abdominal pain,
persistent vomiting, marked change in temperature (from fever to hypothermia), and
change in mental status (irritability, confusion, or somnolence).

Diagnostic Testing

Nucleic acid amplification tests (NAATs) such as PCR are the preferred method of
laboratory diagnosis. IgM antibody testing can identify additional infections and is
an important diagnostic tool. However, interpreting the results is complicated by
cross-reactivity with other flaviviruses, like Zika, and determining the specific
timing of infection can be difficult. If infection is likely to have occurred in a
place where other potentially cross-reactive flaviviruses circulate, both molecular
and serologic diagnostic testing for dengue and other flaviviruses should be carried
out. People infected with or vaccinated against other flaviviruses may produce cross-
reactive flavivirus antibodies, resulting in false-positive test results (CDC 2022).

Investigations

• Full blood count testing may show high packed cell volume with low platelets.
There may be lymphocytosis with more than 15% of circulating white cells, but
overall picture is of leukopenia.

• Clotting studies can show rise in fibrin degradation products along with prolon-
gation of activated partial thromboplastin time (APTT) and prothrombin
time (PT).

• Electrolyte disturbance is common. Liver function tests might be elevated—
especially AST.

• Acidosis might result in decreased bicarbonate levels.
• Infection may be confirmed by isolation of virus in serum and detection of IgM

and IgG antibodies by ELISA, monoclonal antibody, or haemagglutination.
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• X-rays may be useful to exclude other sources of sepsis/assess complications.
Chest X-ray may show abnormalities, such as pleural effusion, in the first week.

• Blood cultures and repeated malaria films should be checked in the traveller
returning with a high fever (Ray Junhao et al. 2017).

Management

There is no specific treatment for dengue; however, early recognition and symptom-
atic management can reduce the mortality rate. Majority of the patients could recover
without hospital admission, whereas others may quickly become severely unwell
and close monitoring of clinical signs and laboratory measurements is required.
Management principles include:

• Recognising the febrile phase and controlling the fever with paracetamol.
NSAIDs (nonsteroidal anti-inflammatory drugs), such as ibuprofen and aspirin,
should be avoided.

• Intravenous fluid resuscitation with close monitoring, observing for increased
capillary permeability. Monitor CVP and urine output, electrolytes, packed cell
volume, platelets, and LFTs.

• Secondary bacterial infections may occur and require treatment.
• Haemorrhage, shock, and severe organ impairment require early and prompt

management.
• Those with severe dengue are likely to require intensive care.

Prognosis

Dengue is typically a self-limiting flu-like disease. For severe dengue, medical care
by experienced team could decrease the mortality rates to less than 1% in majority of
the countries.

Prevention

In late 2015, the first dengue vaccine, Dengvaxia® (CYD-TDV) by Sanofi Pasteur,
was registered in several countries for use in individuals aged 9–45 years living in
endemic areas. Dengue prevention and control also depends on effective vector
control measures. These include anti-mosquito public health measures, such as
reducing breeding sites, good sewage management, removing artificial man-made
habitats that can hold water, and use of insecticides. Using of personal household
protection measures, such as window screens, are also helpful. These measures must
be observed during the day both inside and outside of the home because the primary



mosquito vectors bite throughout the day. Wearing clothing that minimises skin
exposure to mosquitoes is recommended. Repellents may reduce the risk by reduc-
ing the overall number of bites, especially those containing N, N-diethyl-3-
methylbenzamide (DEET).
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Dengue in Older People

During the time of COVID-19 pandemic, differentiating between the symptoms of
dengue and the common flu and cold that are common in the winters is difficult.
Older people with comorbidities like COVID-19 are more likely to develop severe
symptoms, but otherwise the management is unchanged.
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Chapter 9
Models and Biomarkers for Ovarian Ageing

Tom Kelsey

Abstract The human ovarian reserve is defined by the number of non-growing
follicles (NGFs) in the ovary, with the age-related decline in NGF population
determining age at menopause for healthy women. In this chapter, the concept of
ovarian reserve is explored in detail, with a sequence of models described that in
principle allow any individual to be compared to the general population. As there is
no current technology that can count the NGFs in a living ovary, we move our focus
to biomarkers for the ovarian reserve. Using serum analysis and ultrasound it is
possible to measure anti-Müllerian hormone (AMH), follicle-stimulating hormone
(FSH), and ovarian volume (OV) and to count numbers of antral follicles (AFC).
These are compared, with ovarian volume being the closest to a true biomarker for a
wide range of ages and with AMH and AFC being the most popular for post-pubertal
and pre-menopausal ages. The study of genetic and subcellular biomarkers for the
ovarian reserve has produced less concrete results. Recent advances are described
and compared in terms of limitations and potential. The chapter concludes with an
overview of the future study indicated by our current knowledge and by current
controversy in the field.

Keywords Ovarian reserve · Mathematical model · Reproductive age · Biomarker ·
Fertility · Menopause
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IVF In vitro fertilization
NGF Non-growing follicles
OV Ovarian volume
PACAP Pituitary adenylate cyclase-activating polypeptide
PI3K Phosphatidylinositol 3 kinase
POI Premature ovarian insufficiency

Introduction

The human ovary has a population of non-growing follicles (henceforth NGFs) that
develops in early foetal life, peaks at about 20–22 weeks, and then declines as age
increases. NGFs are important as they are recruited towards maturation to a mature
egg which can then be fertilized, hopefully leading to a live birth. However, most of
the recruited NGFs do not make it this far, dying off though apoptosis and atresia at
varying stages before full maturation. Once the NGF population in an ovary falls
below a few hundred, there are insufficient numbers to support full maturation. No
further eggs are then produced and the woman moves into post-menopausal life,
with menopause being defined as the cessation of ovulation owing to a loss of NGFs
(Gosden 1985).

Not all women go through menopause at the same age. A landmark study
suggested an age of 50–51 years (Treloar et al. 1967), confirmed by a later large-
scale study reporting 50.1 years with a standard deviation of 4.2 years, so that age at
menopause for 68% of healthy women will be between 45.9 and 54.3 years (van
Noord et al. 1997). Many studies have considered factors that modify expected age
at menopause, such as race, parity, contraception, age at menarche, and lifestyle
attributes. Much of the evidence is either of poor quality or contradictory, with only
lower parity and a history of smoking being conclusively associated with slightly
earlier than expected menopause (Gold 2011). Hence the key driver for age at
menopause is the NGF population, and we can introduce the concept of reproductive
age as an adjunct to chronological age: a woman aged 30 years (say) having an NGF
population that will be sufficient for 20 years has a reproductive age of 30 years
(i.e. her age at menopause will coincide with the population average). If, however,
her NGF reserve is insufficient in 15 years’ time, her reproductive age is 35 (i.e. she
has the NGF reserve of the average 35 year old).

It should be noted that ovarian ageing is more complex than a simple decline in
the population of important cells, with an early study concluding that diminished
ability to absorb increasing amounts of fibrous tissue and ovarian vessel wall
thickening and hyalinization were additional factors to diminishing NGF reserve
(Ringrose 1963). However, the increase in fibrous tissue is directly related to atrophy
of both NGFs and more mature follicles, and vessel wall thickness is not considered
an important factor in remaining fertile life. It is therefore reasonable to consider
NGF population to be the primary factor influencing human reproductive age.
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Ultrasound scans routinely identify antral and pre-antral follicles in living ovarian
tissue, but these are larger and more mature follicles, with NGFs being 30–50 μm in
diameter and distributed throughout the ovarian cortex. There is no current technol-
ogy for scanning a live human ovary in order to determine the NGF population. The
modelling of ovarian ageing is therefore based on histological samples of human
ovarian tissue from subjects with known chronological age. Pioneering work both
developed the histological techniques and supplied important data (Baker 1963;
Block 1951, 1952). Later studies applied these techniques to ante- and neonatal
subjects (Bendsen et al. 2006; Forabosco and Sforza 2007) and to post-natal subjects
up to menopausal ages (Richardson et al. 1987; Gougeon and Chainy 1987). The
task of the ovarian reserve modeller is to synthesize these and similar data into
datapoints (age and counted NGFs) that underpin an age-related normative model
that (a) supplies an estimate of the NGFs in a human ovary of known chronological
age and (b) an estimate of the levels of variation at a given age so that we can
produce normal scores (also known as z-scores) and hence compare a given NGF
count to the normal count for that age.

Early NGF modelling attempts were basic and based on two assumptions: There
are one million NGFs in the average ovary at birth and there are 1000 at menopause.
The model is then a simple exponential decay from birth to age 50. More sophisti-
cated approaches were data driven, using combined data from histological exami-
nations to identify a model with good fit to the existing data. Faddy and Gosden
produced the first examples: one a biphasic decay with a sharp decline after age
38 years (Faddy et al. 1992) and the other the solution of a differential equation that
incorporates expected age at menopause (Faddy and Gosden 1996). A power model
was developed using data from 122 subjects at the same centre, predicting—rather
than using—realistic ages at menopause and providing useful prediction limits that
model individual variability (Hansen et al. 2008). Predictive power can be increased
by combining the 122 datapoints with all other available data, and it is possible to
incorporate the growth stage—from conception to 20–22 weeks’ gestation—by
requiring any model to show zero NGF population at conception. This resulted in
a 4-parameter peak model (Wallace and Kelsey 2010) that has been externally
validated by comparing its predictions to new observations with minimal differences
at all ages (Depmann et al. 2015; McLaughlin et al. 2015, 2017).

This would normally be the end of any modelling research, as external validation
is the gold standard for acceptance of any biomedical predictive model. However,
research into how and why specific NGFs are recruited has continued, with our
current understanding remaining incomplete. Part of this research has motivated an
update (Fig. 9.1a) to the currently accepted best model that uses random-walk
techniques applied to the same dataset (Johnson et al. 2022). It is a significant
improvement on previous models as it (1) is in broad agreement with expected
aspects of age-related follicle populations dynamics and hence can also be consid-
ered externally validated (Fig. 9.1c), (2) is forward looking (rather than reporting a
regularized best fit to a static dataset), (3) is more closely related to the stresses and



internal structure of the ovary, and (4) allows further detailed investigation of poorly
understood aspects ovarian physiology and endocrinology (Fig. 9.1b). The
random-walk model allows NGF population at birth to be augmented with drift
variability, allowing the empirical testing of a key—but as yet not formally
validated—assumption in previous models, namely that a large/small starting supply
is linked to a late/early menopause. Initial results indicate that this assumption is not
completely valid but is still a reasonable approximation, and hence we continue with
the paradigm that the NGF population at birth indicates an age at menopause, and so
reproductive age is determined by comparing the current NGF population in a
human female to the average predicted by the random-walk model: low/high initial
peak leads to early/late age at menopause.
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Fig. 9.1 Random-walk modelling of ovarian ageing, reproduced with permission from (Johnson
et al. 2022). The continuous blue line in Panel (a) shows the best known age-related model of the
human ovarian reserve based on data from a previous externally validated model (Wallace and
Kelsey 2010), with dashed lines indicating trajectories for women having low or high NGF
populations at birth. In Panel (b), the crossed blue lines show that the curves in (a) may be too
simplistic and that trajectories can vary to a limited extent across individuals. Panel (c) illustrates
that the model closely predicts age at menopause, despite this information not being used to derive
the model

As noted earlier, we are unable to directly count (or even estimate) the NGF
populations in a living subject. We therefore seek indirect biomarkers for the
remaining ovarian reserve.
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Physiological and Endocrine Biomarkers

Biomarkers are closely related to the technology used to obtain values. For ovaries
this means ultrasound (either transvaginal or transabdominal using the bladder as a
lens in younger subjects) or blood assays that quantify levels of fertility-related
hormones. Before looking at these in detail, it is important to note that most such
biomarker investigation is into ovarian response with a specific focus on assisted
conception. Whilst it is known that ovarian response declines with increasing age, it
is overly simplistic to take the view that good/poor ovarian response is directly
associated with high/low age-related NGF counts, and direct translation of bio-
marker results to women typically aged 25–40 years to other ages is potentially in
gross error.

We first consider physiological features that can be resolved using ultrasound:
antral follicle counts (AFC) and ovarian volume (OV).

The developmental pathway from NGF to ovulation—folliculogenesis—is asso-
ciated with approximately a 500-fold increase in follicular diameter. Antral follicles
are small cystic structures within the ovaries, at an intermediate stage of
folliculogenesis between NGF and mature egg. Some antral follicles are smaller
than 2 mm in diameter and are thus not readily identifiable using ultrasound. It is
therefore common to define antral follicles to be 2–10 mm in diameter, representing
the smallest easily identifiable follicles. Most antral follicles are lost through atresia,
with only 300–400 eggs ovulated during reproductive life. The theoretical basis for
using AFC as a biomarker is that the proportion of NGFs recruited towards matu-
ration that reach the antral follicle stage is roughly constant, and hence a high/low
AFC indicates high/low age-related ovarian reserve. This theory has been exten-
sively tested and validated for ages 25–50 years, with large-scale longitudinal and
cross-sectional studies showing a strong negative correlation (about 70%) between
age and AFC (La Marca et al. 2011; Scheffer et al. 1999). In addition, AFC is related
to age at menopause (Broekmans et al. 2004), there is moderate intercycle and
interobserver variability in AFC values (Hansen et al. 2003), and infertile women
are known to have smaller AFC than fertile women of the same age (Iliodromiti et al.
2016). Taken together, there is strong evidence that AFC reflects the remaining NGF
pool in women aged 25 years or older. There is sparse evidence on AFC for younger
ages, in particular at peri- and pre-pubertal ages. It is known that folliculogenesis
proceeds at all ages for which the NGF pool is large enough, with only 22% of the
original pool remaining at age 25 (Wallace and Kelsey 2010), so the above theory
would suggest AFC decreasing from a maximum at birth to menopause. However,
the limited evidence available suggests that AFC is low (2–5 follicles) at birth rising
slowly to 10–25 follicles at 15 years (Spencer et al. 2013) and then declining towards
zero at menopausal ages. This positive correlation between age and AFC for younger
ages suggests that AFC does not reflect the NGF pool, with other endocrine and
paracrine factors coming into play.

Ovarian volume is easily calculated in either 2D or 3D ultrasound. For 2D, the
ovaries are measured in three planes and ovarian volume is calculated using a prolate



ellipsoid formula; modern 3D ultrasound has software that automatically calculates
volumes. There is good evidence that adult OV decreases with increasing age as the
remaining pool of NGFs becomes exhausted. As part of an ovarian cancer screening
programme, 13,963 women between 25 and 91 years of age underwent annual
transvaginal sonography. From 58,673 observations of ovarian volume, a statisti-
cally significant decrease in OV was shown with each decade of life from the age of
30 to 70 years. Mean OV was 4.9 mL in pre-menopausal women and 2.2 mL in post-
menopausal women (Pavlik et al. 2000). Correlation between measured OV and
modelled NGF populations is very strong (over 95%), allowing a direct and accurate
estimate of the NGFs in an ovary from an OV measurement (Wallace and Kelsey
2004). Again, the theory that a large/small ovary contains a high/low number of
NGFs breaks down for younger ages, with ovaries being undetectable at ages up to
7 years and a mean OV of 5.8 mL at age 17 (Ivarsson et al. 1983). Hence—as with
AFC—it would seem that the use of OV as a direct biomarker to the ovarian reserve
is limited to post-pubertal ages. This is not the case, as careful combination of
age-related NGF and OV models can be used to reliably predict mean NGF density
in healthy females. The hypothesis is that despite the large variation in normal NGF
populations (e.g. at age 25 years 95% of ovaries will have between 8000 and
546,000 NGFs (Wallace and Kelsey 2010)) the average number contained in one
cubic millilitre of the ovarian cortex is similar for most women of the same age. This
hypothesis has been addressed by estimating the proportion of an ovary that forms
the cortex (i.e. the physiological location of the NGFs) and then simply dividing the
predicted NGF number by the predicted OV at that chronological age. This method
produced good results when compared to 13 density counts from a single laboratory,
with 87% correlation between observations and predictions, and was externally
validated by showing 90% correlation when using 15 densities from the published
literature (McLaughlin et al. 2015). The approach continues to be used when
assessing ovarian reserve in the younger than 25 age group, with further model
validation from studies comparing controls to subjects with Turner syndrome
(Mamsen et al. 2019), galactosemia (Mamsen et al. 2018), and exposure to chemo-
therapy (El Issaoui et al. 2016; McLaughlin et al. 2017). OV can therefore be used to
predict NGF populations in healthy females for ages ranging from childhood to post-
menopausal ages, and can hence be used to compare estimated reproductive age to
known chronological age in a variety of settings.
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The key endocrine biomarkers are follicle-stimulating hormone (FSH) and anti-
Müllerian hormone (AMH), both measured by assay from serum samples. It is
known that Inhibin B falls from age 30 to age 44 and is hence correlated with
NGF decline, but its significance as a biomarker is much lower than that for AMH
(p = 0.16 for Inhibin B; p < 0.001 for AMH (Steiner et al. 2017).

FSH can be considered a binary biomarker: low levels indicate pre-menopause
and high levels post-menopause. Serum FSH levels are constant at about 7 IU/L
from ages 30 to 44 (Steiner et al. 2017) and are consistently elevated to 30 IU/L or
higher in menopausal women. A single high level may be followed by a lower one in
a later cycle, normally indicating perimenopause. The reasons behind this are well
understood. The primary purpose of FSH is to cause ovarian follicles to enlarge and



produce estrogen. AST menopause only 500–1000 NGFs remain in an ovary, not
enough to be stimulated, and thus estrogen levels decline as a woman ages. This
decline in estrogen leads to an increase in FSH as there is not enough estrogen being
produced to downregulate the production of FSH by the hypothalamic/pituitary axis.
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AMH is a member of the transforming growth factor superfamily, similar to
inhibins. In the ovary AMH is produced by the granulosa cells of developing
follicles and has been shown in AMH knock-out mice to be able to inhibit the
initiation of NGF maturation and FSH-induced follicle growth (Durlinger et al.
1999). AMH is widely accepted as a biomarker for ovarian response in assisted
conception cycles (Iliodromiti et al. 2014; Broer et al. 2011). As with AFC, serum
AMH levels are associated with numbers of growing follicles and hence both
measures directly reflect ovarian activity, with a more active ovary being more
likely to produce the mature egg(s) needed for a successful IVF outcome. It has
been hypothesized that a more active ovary has more NGFs than a less active one, so
that AMH could be considered a biomarker for the ovarian reserve, at least from its
peak at about age 25 years (Kelsey et al. 2011, 2012). However, if this were true then
repeated AMH measurements would be useful in predicting age at menopause, and
there is conflicting evidence in the literature for this claim with one large study
concluding that knowledge of the rate of AMH decline does not improve menopause
prediction (de Kat et al. 2019), and two studies report the opposite view (Ramezani
Tehrani et al. 2021; Freeman et al. 2012). It may be the case that the conflicts are due
to cohort selection, longitudinal methodology, and/or procedure for measuring
AMH. In the absence of a categorical answer, it remains unclear how useful AMH
is as a biomarker for ovarian ageing for ages above 25 years. In younger females
AMH is still clearly related to ovarian activity but not to the ovarian reserve
(Fig. 9.2). AMH has a small rise after birth (the mini puberty of the neonate
(Lanciotti et al. 2018)) and then falls before rising to pubertal ages. During puberty
AMH can rise and fall as the complex para- and endocrine milieu changes. There is a
rise until age about 25 years, after which the decline in AMH is strongly correlated
with NGF decline (Kelsey et al. 2011). Despite these concerns, AMH is being used
as biomarker for ovarian ageing in many clinical settings (Fauser and Nelson 2020),
such as diagnosis of premature ovarian insufficiency (i.e. very early menopause)
after cytotoxic insults delivered as therapeutic treatments, assessing chances of a
spontaneous pregnancy, personalization of assisted conception treatment options,
and diagnosis of polycystic ovarian syndrome.

Genetic and Subcellular Biomarkers

Much less is known about actual and potential biomarkers that are taken from serum
and/or ultrasound analysis. There are several inherent problems. Genetic studies can
be done with knock-out mice, giving insights into rodent and hence mammalian and
hopefully into human ovarian dynamics. But evidence from rodents need not
translate into the human model at all. Moreover, in the case that rodents and humans



are similar, strong evidence for similarity involves complex and expensive research.
These investigations often focus on a well-defined endpoint rather than a slow
ageing process, with genetic biomarkers being investigated for premature ovarian
insufficiency (i.e. very early depletion of the NGF pool, often defined as less than
40 years of age; henceforth POI) or polycystic ovarian syndrome. As a result, the
results are often binary in the same sense as FSH, and not easily age-related as found
for AFC, AMH, and ovarian volume.
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Fig. 9.2 Anti-Müllerian hormone (AMH) and follicular recruitment profile across the lifespan.
Comparison of serum concentrations of AMH with recruitment rates of nongrowing follicles
(NGF). The red line is the log-unadjusted validated AMH model (Kelsey et al. 2011), showing a
peak at 24.5 years. The blue line denotes the numbers of NGFs recruited per month towards the
maturation population of follicles (Wallace and Kelsey 2010), with peak numbers lost at age
14.2 years on average. Correlation coefficients (r) are given for AMH concentrations against
follicular recruitment for each developmental phase; from birth to puberty (age 9 years), during
puberty (9–15 years), post puberty (15–25 years), and mature adults (>25 years). Reproduced with
permission from (Fleming et al. 2012)

To give an example, Notch signalling is a relatively simple and evolutionarily
conserved pathway associated with the recruitment, growth, migration, and death of
cells. As such, it is an obvious starting point for ovarian ageing, where the recruit-
ment of NGFs towards maturation, the growth and migration of granulosa cells
(which surround ovarian follicles and both proliferate and change shape according to
stage of development), and the subsequent death of most follicles before becoming
eggs are all likely to be influenced by the Notch pathway. Notch receptors (Notch1 to
Notch4) are encoded by different genes, with signalling induced by functional notch



ligands (Nye and Kopan 1995). Stimulation of the Notch1 pathway was associated
with NGF maturation in the mouse model (Liu et al. 2016), with further studies
suggesting that POI is improved by upregulation of Notch1 (Zhao and Dong 2018)
and that the rare heterozygous variant in NOTCH2 may be associated with POI
(Li et al. 2020). Taken together, these results suggest that the notch pathways could
combine to provide a therapeutic target for POI (Guo et al. 2021). However, even if
this were shown to be the case, we would still not have a biomarker for ovarian
ageing at the population level. POI is rare, and its aetiology may generally involve a
very low NGF population at birth but may also involve other factors not seen in the
average healthy woman. A longitudinal study that measured regulation of Notch
pathways in a large cohort of ageing women could provide important insights, but it
would be hard to control for the contribution of other factors. We therefore know that
Notch signalling is important in ovarian cell recruitment and death, but have limited
means to develop this knowledge into a clinically validated and age-related model
that covers the general female population.
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Kisspeptin europeptides and associated KISS1 and KISS1R receptors are an
important component of the hypothalamic–pituitary–gonadal axis, with both
kisspeptin and its receptors expressed in the mammalian ovary and signalling
associated with follicle recruitment and development towards ovulation in humans
(Cejudo Roman et al. 2012). It could be the case that naturally occurring mutations
(or dysfunction) are associated with faster rates of NGF recruitment and therefore
reproductive age. In gene knock-out models, Kiss1-/- or Kiss1R-/- mice have
shown small ovarian size and weight compared to controls, and analysis of pre-
and post-pubertal mice suggests that there is an age-related expression of kisspeptin
in the mouse ovary (Hu et al. 2017). There has only been partial translation to the
human model, with KISS1R being the causative gene for idiopathic
hypogonadotropic hypogonadism (de Roux et al. 2003) and a mutation of KISS1
probably being causative gene for the same condition (Topaloglu et al. 2012). Even
though signalling between kisspeptin and its Gpr54 receptor appears to be essential
for normal fertility with Gpr54-/- mice having no puberty and no cycles (Kirilov
et al. 2013), the precise mechanisms are still obscure, and it remains to be shown that
kisspeptin signalling has a measurable and reliable association with NGF recruit-
ment and loss in healthy humans.

Other potential biomarkers include the WNT/beta-catenin pathway (Hernandez
Gifford 2015; Harwood et al. 2008), pituitary adenylate cyclase-activating polypep-
tide (PACAP) as an NGF survival factor (Lee et al. 1999), the association of female
infertility with the PI3K/PTEN/Akt and TSC/mTOR pathways (Makker et al. 2014),
and phosphatidylinositol 3 kinase (PI3K)/PTEN-PDK1 signalling that controls the
survival, loss, and activation of NGFs (Reddy et al. 2009). In each case, there is good
initial evidence from mouse models that the pathway is important and can potentially
be used in age-related models of the ovarian reserve, but the link to the healthy and
general human model is not yet apparent.
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Conclusions

Recent advances suggest that the use of models to identify and use biomarker
information with respect to ovarian ageing is a solved problem. The key models
for NGF population, ovarian volume, antral follicle count, and anti-Müllerian
hormone have been externally validated by finding close agreement when matching
predictions to new instances. In oncofertility and assisted conception, these bio-
markers are routinely and successfully used in clinical practice for female ages
25 years and more. Antral follicle count and anti-Müllerian hormone are fully
accepted as biomarkers of ovarian activity for these ages, with activity believed to
be closely correlated to remaining ovarian reserve.

However there remains much that is poorly understood. The use of signalling
pathways has so far been as a binary indicator (i.e. downregulation implies prema-
ture ovarian insufficiency) in the human model, instead of an age-related biomarker
such as those described using blood tests and ultrasound.

The standard definition of ovarian ageing is the age-related depletion of the NGF
population towards menopausal ages. However, egg quality is believed to be
age-related and is known to be a strong determinant of reproductive fitness in
humans. Other than preliminary studies involving zebrafish, there is little evidence
for a genetic biomarker for egg quality. Dehydroepiandrosterone (DHEA) can be
measured in blood samples, decreases from age 20 in women, has validated norma-
tive models, and is known to be associated with egg quality (since supplementing
DHEA prior to IVF improves egg quality in general). However, DHEA has not been
used to predict age at menopause, and hence its use as a putative biomarker for
ovarian ageing is an avenue for future research.

Another useful future investigation would be to identify or rule out a step change
in ovarian ageing that occurs in healthy women at the age of 37–38 years. Three
distinct studies using different datasets have reported models that include such a step
change, with strong acceleration of ovarian ageing occurring after the step change
(Faddy et al. 1992; Johnson et al. 2022; Scheffer et al. 1999). These models have
been deprecated for the most part since there is no known event similar to menarche
or menopause that happens at this age. But it may be that these studies are reporting
something real; it could be the case that our standard grouping of reproductive ages
into pre-pubertal, fertile, and post-menopausal is too simplistic and that there are
early- and late-reproductive ages defined by an as yet unknown event.

The mainstream literature and all textbooks posit as fact that the number of NGFs
never increases after the peak at 20–22 weeks gestation. This appears to be true for
the general population, as models that allowed renewal of the initial pool were found
to be an inferior match to the histological data (Wallace and Kelsey 2010). In recent
years, there has been a major controversy regarding ovarian stem cells, with some
studies claiming to have identified and isolated them in humans (Woods and Tilly
2013; Virant-Klun et al. 2008) and other studies claiming that unequivocal evidence
of their existence has yet to be produced (Horan and Williams 2017). The stakes
are high: if it were possible to trigger ovarian stem cells to produce new and viable



NGFs there would be major implications for assisted conception, management of the
menopause, and fertility preservation after treatment for cancer. In simple terms,
ovarian ageing could be halted or even reversed. Much of the controversy is related
to the types of stem cells (found in the ovary or in bone marrow) and the use of flow
cytometry to sort them, with different research groups reporting contradictory out-
comes. This is not unexpected, as the investigations involve isolating fixed and
permeabilized cells after which live stem cells are sorted after staining for specific
cell surface markers. The inherent complexity of choice for initial cell population
and surface marker, together with laboratory-specific procedures and metrics, hin-
ders both reproducibility and interpretation. Analysis of ovarian tissue after a
specific chemotherapy regimen has shown a massive increase in NGFs (McLaughlin
et al. 2017) thereby demonstrating that NGF regeneration can be expected after
certain cytotoxic insults, but two important questions remain open. Firstly, are these
new NGFs viable? Biovular and binucleated NGFs were observed in large pro-
portions, so it may be the case that the renewed NGFs are for the most part unsuitable
for maturation towards ovulation. Secondly, the histological examination is neces-
sarily a snapshot of the population, providing no insights into which stem cells were
activated and how. Much work is needed to further our understanding of the
potential or impossibility for renewed and viable ovarian reserve.
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We see that despite major advances, further work is needed in this important area.
Ovarian ageing starts halfway between conception and birth and continues through-
out life, with major impacts on puberty, fertility, the menopause, and post-
menopausal life for all healthy women, and not just for conditions and illnesses
affecting small percentages of women. The provision and validation of models and
the identification and careful use of biomarkers are vital to the lives and relationships
of all people.
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Chapter 10
Ageing and the Autonomic Nervous System

Michael Takla, Khalil Saadeh, Gary Tse, Christopher L. -H. Huang,
and Kamalan Jeevaratnam

Abstract The vertebrate nervous system is divided into central (CNS) and periph-
eral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and
enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy
and physiology in reducing organismal fitness. In the case of the CNS, there exists
substantial experimental evidence of the effects of age on individual neuronal and
glial function. Although many such changes have yet to be experimentally observed
in the PNS, there is considerable evidence of the role of ageing in the decline of ANS
function over time. As such, this chapter will argue that the ANS constitutes a
paradigm for the physiological consequences of ageing, as well as for their clinical
implications.
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Introduction

Ageing is the set of temporal changes of anatomy and physiology that herald a
persistent decline in organismal fitness. Neurons constitute one of the groups of
human cells in which such changes manifest. The vertebrate nervous system com-
prises central (CNS) and peripheral (PNS) components. In turn, the PNS is divided
into the autonomic (ANS) and enteric (ENS) nervous systems, the latter being often
but not always considered a subset of the former. (For the purposes of this chapter,
however, they will be discussed as two separate, but highly interactive, parts of the
PNS.)

While most experimental evidence of age-related changes in individual neurons
has been accrued at the level of the CNS, it is possible—though in need of
subsequent experimental verification—that such changes are extrapolatable to the
PNS. In any case, at the level of system function, there is considerable evidence of
ageing specific to the ANS. As such, this chapter will consider the ANS as a
paradigm for the physiological effects of ageing, first discussing temporal changes
in the anatomy and biochemistry of individual neurons and then exploring the
physiological consequences and clinical implications of such changes.

Temporal Changes in the Nervous System

Temporal Changes in the Gross Anatomy of the Nervous
System

Ageing is not associated with widespread neuronal loss; rather, selective neuronal
vulnerability to the effects of advancing age results in the restricted loss of certain
populations within the nervous system.

Temporal Changes in the Morphological Arrangement
of the Nervous System

In regions of the nervous system vulnerable to ageing, changes in the morphological
arrangement include synaptic injury, segmental demyelination, and remyelination to
form shorter internodes. Along with concomitant axonal damage, this morphological
rearrangement of the nervous system diminishes action potential conduction velocity
(Sandell and Peters 2001, 2003; Peters and Sethares 2002) and potentially impairs
interneuronal synaptic communication.
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Temporal Changes in the Morphological Structure
of Individual Neurons

The morphological structure of individual neurons is maintained by the cytoskele-
ton, which principally consists of microtubules and microtubule-associated proteins
(MAP), intermediate filaments, and actin-based microfilaments (Al-Chalabi and
Miller 2003; Dehmelt and Halpain 2004). Ageing is associated with the net
depolymerisation of microtubules, and the accumulation of MAPs, such as (the
typically axonal) tau (Blomberg et al. 2001), in neuronal somata (Trojanowski
et al. 2002). Indeed, in model mammalian organisms, mutations in tau predispose
to degenerative disease throughout the nervous system in an age-dependent fashion
(Ishihara et al. 1999).

Temporal Changes in the Chemical Composition of Individual
Neurons

Another time-related change in the nervous system is the intraneuronal accumulation
of damaged molecules. This change in the chemical composition of individual
neurons principally arises from the impairment of pathways involved in proteostasis,
which otherwise removes such molecules to maintain the optimal concentration of
correctly conformed proteins.

One proteostatic pathway implicates the proteasome, a complex of enzymes
catalysing proteolysis, the degradation of unnecessary or incorrectly conformed
proteins (Klein et al. 2018). There is some evidence in rodents that, in some but
not all neuronal populations, proteasome activity declines with age (Keller et al.
2000). Interestingly, pharmacological inhibition of proteasomes in neuronal cell
lines mimics some effects of age on neurons (Sullivan et al. 2004), including a
pro-inflammatory phenotype (Rockwell et al. 2000).

Another pathway contributing to proteostasis is autophagy, an organellular pro-
cess that, also being involved in regulating the dynamics of many neuronal organ-
elles, will be discussed below.

Within the neuronal cytosol, the falling efficacy of removal mechanisms with
time promotes an age-related increase in neurotoxic proteins. For instance, the
proteasome, along with other enzymes including neprilysin, degrades amyloid beta
(Aß) (Keller et al. 2002; Tanzi et al. 2004), such that temporal loss of proteasome
function accounts, in part, for the accumulation of Aß. Likewise, even under
non-pathological conditions, the fibrillar conformation of the microtubule-associated
protein, tau, aggregates over time (Goedert 2005), in part owing to changes in the
balance of tau kinase and phosphatase activities (Stoothoff and Johnson 2005), and
in part due to impaired proteostasis (Stoothoff and Johnson 2005; Montine et al.
1996). Moreover, the elucidation of mutations giving rise to early-onset Parkinson’s
disease (Moore et al. 2005) and the sufficiency of (alpha)-synuclein gene triplication



in causing Parkinson’s disease (Singleton et al. 2003) together imply a causal role for
time-related diminished proteolytic clearance.
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Within the neuronal nucleus, the time-related impairment in DNA damage repair
systems raises the proportion of lesioned genetic material (Lu et al. 2004). In fact,
missense or nonsense mutations in the genes encoding for DNA damage repair
proteins may cause premature ageing (Kyng and Bohr 2005), implying that, rather
than merely being a consequence of ageing, the accumulation of damaged DNAmay
also be one of its causes.

Age-Related Biochemical Changes in Individual Neurons

Age-Related Changes in Intraneuronal Organelle Dynamics

Ageing and Neuronal Autophagy

Autophagy implicates double-membrane vesicles that mature from one, and/or are
assembled from many, pre-existing organellular platform(s), including the plasma
membrane (Ravikumar et al. 2010) and recycling endosomes (Puri et al. 2018).
These vesicles bridge the phagophore membrane elongator, LC3-II, to the LIR
motifs of receptors for importing aberrantly folded, ubiquitin-tagged cytosolic pro-
teins, such that consequent bulk and cargo-selective lysosomal degradation facili-
tates intracellular proteostasis.

Feeding, and nutrient deprivation and consequent low [ATP]i, suppresses and
triggers autophagy via mTORC1- (Kim et al. 2011) and AMPK-dependent (Egan
et al. 2011) pathways, converging on the in- and activation of Ulk1, respectively.

In neurons, autophagy contributes to post-mitotic survival, and to homeostatic
transport along their axons (Hara et al. 2006; Komatsu et al. 2006), as well as
regulating the maturation of myelin in the PNS (Jang et al. 2015).

Ageing tends to suppress autophagic flux (Sarkis et al. 1988; Dice 1998), perhaps,
as in invertebrates, partly by downregulating autophagy inducers (Simonsen et al.
2008; Demontis and Perrimon 2010; Kaushik et al. 2012). Indeed, ageing
upregulates BCL-2 (Guebel and Torres 2016), which inhibits the autophagy inducer,
Beclin 1. Moreover, age, in concert with other independently acting factors, impairs
mitophagy in such a way as to accelerate the pathogenesis of neurodegenerative
disease (Deas et al. 2011; Liu et al. 2019).

Ageing and Neuronal Mitochondrial Function

As the site of oxidative phosphorylation, mitochondria constitute the principal
source of neuronal ATP, thereby necessitating mitochondrially situated DNA
(mtDNA) to rapidly generate the requisite proteins that form the electron transport
chain (ETC). Beyond this crucial metabolic role, mitochondria, and in particular the



formation of a mitochondrial permeability transition pore (MPTP) within their inner
membranes, are also central to the common executioner pathway in neuronal
apoptosis and/or necrosis (Mattson 2000).
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Given their central role in neuronal metabolism, mitochondria respond to changes
in intracellular indicators of nutritional state, such as the [AMP]:[ATP] and [NAD+]:
[NADH] ratios. Mediating this nutritional sensitivity are the peroxisome
proliferator-activated receptor gamma (PPAR-(gamma)) co-activators 1-(alpha)
(PGC-1(alpha)) and -(beta) (PGC-1(beta)), which promote mitogenesis (Jäger
et al. 2007; Jeninga et al. 2010). Mitochondria also respond to changes in tissue
oxygenation, recruiting the transcription factor, hypoxia-inducible factor 1-(alpha)
(HIF-1(alpha)) (Chandel et al. 2000), to upregulate tricarboxylic acid cycle proteins
(Kim et al. 2006), and mitophagy-inducing BCL-2 family members (Zhang et al.
2008) in order to metabolically adapt to, and limit any damage incurred by,
hypoxaemia (Gomes et al. 2013).

With age, there is a loss of function of the mitochondrial ETC (Yao et al. 2010;
Pandya et al. 2015; Pollard et al. 2016), and a greater susceptibility to mitochondrial
toxins (Kim and Chan 2001). In a fashion analogous to nuclear DNA, mtDNA in
post-mitotic neurons accumulates unrepaired oxidative lesions (Chomyn and Attardi
2003; Kraytsberg et al. 2003). In turn, mtDNA mutations may play a causative role
in neuronal ageing (Kujoth et al. 2005; Santos et al. 2013; Aon et al. 2016; Kauppila
et al. 2017). Moreover, ageing increases the risk of mitochondrial fragmentation or
excessive enlargement, as well as depolarisation (Lores-Arnaiz et al. 2016) that
lowers the threshold for mPTP formation (Brown et al. 2004), perhaps predisposing
to neuronal apoptosis and/or necrosis. In non-human primates, age is also associated
with the downregulation of PPARs (Kayo et al. 2001; Ling et al. 2004).

Age-Related Changes in Intraneuronal Metabolism

The age-related impairment of mitochondrial respiratory chain function is part of a
broader change in intraneuronal metabolism. Indeed, age is associated with a
reduction in the [NAD+]:[NADH] ratio (Bai et al. 2011; Pittelli et al. 2011; X.-H.
Zhu et al. 2015), and a rise in the [AMP]:[ATP] ratio, the latter activating
AMP-activated protein kinase (AMPK) to stimulate alternative metabolic pathways
(Burkewitz et al. 2016).

Under physiological conditions, neuronal import of glucose via plasma mem-
brane glucose transporters (GLUTs) constitutes the dominant pathway for both
glycolysis in the cytosol and oxidative phosphorylation in the mitochondria. Ageing
downregulates many neuronal GLUT isoforms, reducing glucose uptake (Yin et al.
2016; Kyrtata et al. 2021). Given the especially high ATP demand for neurotrans-
mission, both at the level of transmitter synthesis and vesicular docking, fusion, and
recycling (Attwell and Laughlin 2001; Rangaraju et al. 2014), age thus increases the
susceptibility of synaptic spines to degeneration (Harris et al. 2012).
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Moreover, the insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) path-
way is integral to neuronal metabolism and survival (Chandrasekaran et al. 2017).
As such, the post-pubertal age-associated exponential decline in pituitary secretion
of growth hormone (GH) (Iranmanesh et al. 1991), which diminishes hepatic IGF-1
secretion (Bando et al. 1991; Frutos et al. 2007) and thus reduces signal transduction
via the IIS, contributes to age-related loss of neuronal function (Breese et al. 1991;
Khan 2002).

In light of age-related impairment of neuronal glucose- and IIS-related metabo-
lism, rising AMPK activity attempts both to compensatorily upregulate these con-
ventional pathways and to stimulate increasing flux through alternative pathways
(Burkewitz et al. 2016; Hardie 2015). For instance, AMPK induces a gain of
function in GLUTs, improves insulin sensitivity, and enhances mitogenesis (Hardie
et al. 2012). In parallel, the age-induced fall in [NAD+]:[NADH] ratio may impair
the function of sirtuins (SIRTs) (Zhao et al. 2020), a family of class III histone
deacetylases (HDACs) crucial not only for neuroprotection but also for the stimu-
lation of AMPK, the IIS, and other metabolic pathways (Kelly 2010; Fröjdö et al.
2011; Xiong et al. 2011).

Age-Related Changes in Intraneuronal Ca2+ Homeostasis

In all neurons, owing to the status of Ca2+ as a determinant of neuronal excitability
(Marty and Zimmerberg 1989) and metabolism (McCormack and Denton 1990), as
well as a second messenger in neurotransmitter exocytosis (Neher and Sakaba 2008),
its cytosolic concentration ([Ca2+]c) is maintained within a narrow range in order to
increase the sensitivity of signal transduction pathways to small fluxes across
cellular compartments.

Within the neuron, Ca2+ flows into the cytosol principally from the extracellular
fluid across the plasma membrane via voltage-gated (Cav) channels (Catterall et al.
1990; Ma et al. 2012) and glutamate (Glu)-gated NMDA receptors (NMDARs)
(MacDermott et al. 1986); and stores in the endoplasmic reticulum, via inositol-
1,4,5-triphosphate (InsP3Rs) and ryanodine (RyRs) receptors (Furuichi et al. 1994),
and in the mitochondria, via the Na+/Ca2+ exchanger (NCX) and mPTP.

From the cytosol, Ca2+ leaves to the extracellular fluid via the high-affinity
low-turnover PMCA (Juhaszova et al. 2000), regulated by the Ca2+-binding protein,
calmodulin (CaM) (Brini and Carafoli 2009), and the low-affinity high-turnover
NCX (Carafoli and Longoni 1987; Blaustein 1988), and stores in the endoplasmic
reticulum, via sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) (Camello et al.
2002), and mitochondria, which act as Ca2+ buffers upon increases in ATP demand
(Contreras et al. 2010) (Fig. 10.1).

Ageing perturbs neuronal [Ca2+]c homeostasis, by reducing PMCA (Michaelis
et al. 1996) and SERCA (Murchison and Griffith 1999), and mitochondrial sink
capacity (Xiong et al. 2002), and augmenting Ca2+ efflux from the ER (Gant 2006)
via InsP3Rs and RyRs (Thibault et al. 2007). The net increase in [Ca2+]c impairs



control of neuronal excitability (Matthews et al. 2009). Furthermore, age may alter
synaptic plasticity regulation by diminishing and increasing Ca2+ influx through
NMDARs (Lehohla et al. 2008) and Cav (Thibault and Landfield 1996), with
functional consequences (Ban et al. 1990).
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Fig. 10.1 Within the neuron, Ca2+ flows into the cytosol from the extracellular fluid across the
plasma membrane via voltage-gated (Cav) channels and glutamate (Glu)-gated NMDA receptors
(NMDARs), while the mitochondria may export Ca2+ via the Na+/Ca2+ exchanger (NCX). In
parallel, the mitochondria also buffer cytosolic Ca2+, and the sarcoplasmic sarco(endo)plasmic
reticulum Ca2+ ATPase (SERCA) imports Ca2+ for storage in the ER. Ageing neurons are
characterised by dysregulated Ca2+ fluxes

The Ca2+ hypothesis of ageing (Khachaturian 2006) posits that such perturbations
in neuronal [Ca2+]c play a causative role.

Dysregulation of [Ca2+]c homeostasis contributes to the selective vulnerability of
neuronal populations to the effects of age. For instance, groups of neurons
experiencing an age-related decline (Iacopino and Christakos 1990; Thorns et al.
2001; Geula et al. 2003) in the expression of the Ca2+ binding protein, calbindin,
tend to be the most susceptible to neurodegeneration (Mattson et al. 1991;
Magloczky and Freund 1993). Meanwhile, age-related degeneration is accelerated
by neuronal populations with high basal NMDAR (Ikonomovic et al. 1999) or Ca2+-
permeable AMPA receptor (AMPAR) expression (Williams et al. 1997).

From these empirical findings arises the following question: how do age-related
disturbances to [Ca2+]c homeostasis damage neurons? The answer primarily centres
on the promotion of, and diminished capacity to cope with, stressors, especially
oxidation.
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Age-Related Changes in Neuronal Oxidative Stress

Under physiological conditions, neurons produce reactive oxygen species (ROS),
including nitric oxide (NO), hydroxyl (HO), superoxide (O2

-), peroxynitrite
(ONOO-), and hydrogen peroxide (H2O2) (Cheung et al. 2005). These ROS are
predominantly generated from mitochondrial respiration, the cytochrome P450
(CYP450) system of monooxygenases catalysing oxidation of fatty acids, steroids,
and xenobiotics, NADPH oxidase, NO synthase (NOS), and xanthine oxidase
(Tanaka et al. 2001; Akhtar et al. 2004). In order to counteract the potentially
disruptive effect of ROS-mediated oxidation of intracellular macromolecules, anti-
oxidants, whether non-enzymatic or enzymatic (such as superoxide dismutase
(SOD), glutathione reductase, or catalase (CAT) (Griendling et al. 2000), scavenge
ROS to maintain them at subtoxic concentrations (Kohen et al. 2000; Kohen and
Nyska 2002).

Hartman’s theory of ageing postulated a causative role for cellular macromole-
cules damaged by a rise in the concentrations of unscavenged ROS (Mattson 2000;
Miller et al. 2000), especially secondary to increasing ROS production in light of
age-related impairment of the mitochondrial ETC (Tatton et al. 2003).

Age does, in fact, tend to elevate intraneuronal ROS, in part through augmented
production, and in part through impaired scavenging. Indeed, ageing reduces the
ratio of glutathione (GSH) to glutathione disulfide (GSSG) throughout the nervous
system (Calabrese et al. 2004; Balu et al. 2005; Donahue et al. 2006; Zhu et al. 2006)
in a variety of animal models. The decline in ROS scavenging may be mediated by
age-related impairment (Duan et al. 2009) of the ROS-mediated upregulation of the
transcription factor, nuclear factor erythroid 2-related factor (Nrf2), which otherwise,
in turn, upregulates intracellular antioxidants.

The relatively high oxidative rate and elevated lipid content of the nervous
system, especially in the neuronal plasma membrane, render it susceptible to
ROS-induced toxicity. In fact, malondialdehyde (MDA) (Cutler et al. 2004) and
4-hydroxynonenal (HNE), products of ROS-induced phospholipid peroxidation,
may be markers of ageing in some mammalian nervous systems, in which the
concentrations of polyunsaturated fatty acids (White and Barone 2001) and
arachidonic acid also decline over time due to oxidation.

Age-related perturbations in neuronal [Ca2+]c homeostasis potentiate those in
mitochondrial ROS production. Indeed, mitochondrial Ca2+ overload, due to NCX
loss-of-function and transfer from the ER (Rizzuto et al. 1999), opens the mPTP and
thus activates neuronal apoptosis and/or necrosis (Csordás et al. 2006). Furthermore,
increases in [Ca2+]m augment the production of ROS (Petrosillo et al. 2004), which
oxidise cardiolipin to enhance the release of cytochrome (Vercesi et al. 1997;
Iverson and Orrenius 2004) that, in turn, accelerates neuronal apoptosis.
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Age-Related Changes in Extraneuronal Neurotrophic
Signalling

The cellular constituents and targets of the nervous system secrete neurotrophic
factors, which not only promote neuronal survival but also stimulate the growth of
neurites and facilitate the plasticity of synapses. Under physiological conditions,
neurotrophic factors play a protective role within neuronal populations that exhibit
selective vulnerability to the effects of age (Gash et al. 1998; Siegel and Chauhan
2000; Counts and Mufson 2005). In fact, falling production of, or sensitivity to,
neurotrophic factors may contribute to these populations’ selective vulnerability to
Ageing.

Indeed, ageing downregulates both brain-derived neurotrophic factor (BDNF)
and its receptor, tropomyosin receptor kinase (TrkB) (Rage et al. 2007), in those
cellular groups in the nervous system (Hattiangady et al. 2005) associated with
age-related functional impairment (Gooney et al. 2004) and even neurodegenerative
disease (Murer et al. 2001). The concomitant upregulation of glial-derived
neurotrophic factor (GDNF) may predispose some neuronal populations (Matsunaga
et al. 2006) to excitotoxic degeneration (Farrand et al. 2015).

With age, the sensitivity of neurotrophic factor synthesis to endogenous and
environmental stimulants may also decline. For instance, in older rodents, exercise
(Adlard et al. 2005) and trauma (Yurek and Fletcher-Turner 2000) fail to upregulate
BDNF to the same extent as in their younger counterparts, and the same is true for
deafferentation-induced expression of IGF-1 (Editorial 1998).

Age-Related Changes in Extraneuronal Inflammation

Ageing tends to induce immunosenescence (Pawelec and Solana 1997; Gruver et al.
2007), with the senescence-associated secretory phenotype (SASP) characterised by
NF-(kappa)B-mediated upregulation of pro-inflammatory cytokines (Franceschi
et al. 2006), including tumour necrosis factor-(alpha) (TNF-(alpha)), and interleu-
kins- (ILs) 1 (IL-1) and -6 (IL-6) (Salminen et al. 2012). However, along with Toll-
like receptors (TLRs), these facets of the innate immune system do not uniformly
inhibit neuronal function, but rather contribute to a complex microenvironment that
can both beneficially modulate synaptic plasticity and exacerbate neurodegenerative
disease (Okun et al. 2011).

Moreover, age, by increasing the concentration of unquenched intraneuronal
ROS, also independently promotes NF-(kappa)B activation (Baldwin 1996;
DiDonato et al. 1997), which upregulates anti-apoptotic genes and proteins, includ-
ing SOD (Patten et al. 2010), which suppress further mitochondrial ROS release. In
any case, because NF-(kappa)B upregulates TNF-(alpha), which, in turn, stimulates
NF(kappa)B, ageing may establish a positive feedback loop that perpetuates a
neuroinflammatory state whose effect on neuronal function depends on concurrent



signalling and other age-related changes (Song et al. 2004, 20; Chen et al. 2009;
Chongthammakun et al. 2009).

210 M. Takla et al.

The Autonomic Nervous System (ANS) as a Paradigm

The Evolutionary Origins of the ANS

Understanding the function of the ANS, and thus the physiological effects of the
age-related changes in the neuronal populations that comprise it, necessitates a
discussion of its evolutionary origin. Consider the vertebrate forerunner, Hydra,
which is analogous to an elongated gastrula with an outer ectoderm and inner
endoderm.

In Hydra, neuronal specialisations of the ectoderm cluster in a cranial ring and
caudal peduncle, in addition to being distributed longitudinally in between these two
sites. Despite containing both clear and dense-core neurotransmitter-filled vesicles,
and expressing receptors for acetylcholine (AChRs) (Chapman et al. 2010), Hydra
neurons predominantly express neuropeptides (Koizumi et al. 1989), which are
released into en passant synapses to evoke prolonged postsynaptic responses (van
den Pol et al. 1996).

In vertebrate embryos, a subset of ectodermal cells acquires neural competence,
folding inwards to form a neural groove, whose two lips fuse together to give rise to
a neural tube, the dorsal surface of which disseminates neural crest cells (NCCs) to
migrate elsewhere (Copp et al. 2003). During development, the neural tube generates
the central nervous system (CNS), while NCCs form almost all of the peripheral
nervous system (PNS), including all ANS and chromaffin cells in the adrenal
medulla. Sharing Hydra’s en passant synaptic structure and co-existence of clear
and dense-core vesicles, the ANS is evolutionarily analogous to the pre-vertebrate
nervous system.

The Gross Anatomy of the ANS

In general, the ANS is characterised by an afferent limb that conveys signals from
the PNS to the CNS, a central integrating system, and an efferent limb that innervates
most end-organs (Bankenahally and Krovvidi 2016) to elicit physiological effects
necessary for homeostasis. In turn, the efferent limb consists of sympathetic and
parasympathetic divisions. Within the sympathetic division, somata in the spinal
cord grey matter at levels T1-L2/3 give rise to a thoraco-lumbar outflow, from which
myelinated preganglionic neurons synapse to unmyelinated postganglionic neurons
in ganglia arranged in paravertebral and prevertebral chains.

The two paravertebral chains can, in turn, be divided into cervical and thoracic
parts, while the prevertebral chains comprise lumbar (giving rise to the coeliac



plexus) and pelvic (giving rise to the sacral plexus) parts (Kreulen 2005). However,
some preganglionic neurons from the thoraco-lumbar outflow synapse to adrenal
medullary chromaffin cells, which, being able to secrete adrenaline and, to a lesser
extent, noradrenaline (Coupland et al. 1976; Carbone et al. 2019), are functionally
analogous to postganglionic fibres, but do not form en passant synapses to
end-organs.
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Within the parasympathetic division, myelinated preganglionic neurons originate
from the motor nuclei of cranial nerves III, VII, IX, and X in the medulla oblongata
and midbrain, and, classically, the ventral rami of the spinal nerves arising from
levels S2-4. In fact, genetic analyses suggest that the preganglionic neurons arising
from S2-4 ventral rami are phenotypically and ontogenetically indistinguishable
from the sympathetic thoracolumbar outflow (Espinosa-Medina et al. 2016). In
any case, preganglionic neurons synapse in ganglia near or within end-organs
thereafter innervated by postganglionic neurons. Although most end-organs are
reciprocally innervated by both parasympathetic and sympathetic neurons, each
division typically innervates distinct cellular populations therein (Jänig 2006). As
such, rather than simply being antagonistic, the sympathetic and parasympathetic
divisions of the ANS exert parallel control over a given end-organ.

In the brainstem and hypothalamus (Dampney 1994; Dampney et al. 2003;
Kenney et al. 2003), a set of diencephalic nuclei are the principal central integrators
of ANS signals. Having monitored both the internal milieu and external environ-
ment, the paraventricular nucleus (Dampney 1994, 199; Dampney et al. 2003;
Kenney et al. 2003; Sun 1996) of the hypothalamus accounts for the predicted
internal deficit state by encoding a response with a hormonal component, effected
by the anterior pituitary gland’s secretion of tropic hormones, and an autonomic
component, effected by the connections between the medulla oblongata and pregan-
glionic ANS neurons. In the medulla oblongata, the nucleus tractus solitarius (NTS)
uses inputs from general visceral afferents (GVAs) to modulate preganglionic
parasympathetic outflow from the caudal medulla. Meanwhile, the rostral ventral
lateral medulla (RVLM) critically regulates discharge patterns in preganglionic
sympathetic efferents (Dampney 1994; Dampney et al. 2003; Kenney et al. 2003;
Sun 1996).

The ANS and the GI Tract

During embryonic development, NCC migration to the GI tract culminates in the
formation of the enteric nervous system (ENS), which includes the submucosal
(‘Meissner’s’) and myenteric (‘Auerbach’s’) plexuses of local polymodal intrinsic
primary afferent neurons (IPANs) (Furness et al. 2004) co-expressing substance P,
somatostatin (Brehmer et al. 2004), and often serotonin receptors (5-HT4R)
(Dickson et al. 2010). Within the myenteric plexus, 40% of local ENS neurons
release NO, with the other 40% releasing Ach (Anlauf et al. 2003; Pimont et al.
2003; Murphy et al. 2007), while interneurons are principally cholinergic.
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The ENS also consists of local efferents modulated by the ANS (Gibbins 2012).
Namely, sympathetic postganglionic fibres, which emanate from the prevertebral
coeliac, inferior mesenteric, and pelvic plexuses, innervate efferents of the myenteric
plexus that control intestinal motility. In parallel, parasympathetic fibres synapse not
only to myenteric plexus efferents but also to vasoactive intestinal peptide (VIP)-
and NOS-expressing (Porter et al. 1997) efferents in the submucosal plexus control-
ling mucosal secretory activity and local vasodilatation (Vanner and Surprenant
1996). As discussed below, age-related changes in the ENS and ANS are thus
implicated in loss of intestinal function.

Age-Related Changes in ANS Anatomy

As with the rest of the nervous system, the ANS experiences age-related changes in
its gross anatomy and morphological arrangement. Compared to other neuronal
populations, those of the medulla oblongata lose neurons at a slower rate with age.

While ageing does not change the number of ANS ganglia, impaired axonal
regeneration and consequent accumulation of neurofilaments, which are increasingly
glycosylated and phosphorylated with age, elicit neuroaxonal dystrophy (Vlassara
et al. 1994; Cotman and Gómez-Pinilla 1991; Gavazzi 1995). Along with exagger-
ated synaptic turnover and axonal sprouting, these changes suppress synaptic neu-
rotransmission and end-organ ANS innervation.

Age-Related Changes in the Biochemistry of Individual ANS
Neurons

In all ANS ganglia, acetylcholine (ACh) is the principal neurotransmitter released by
preganglionic fibres, whereupon postganglionic neurons express both ionotropic
nicotinic AChRs (nAChRs), especially those composed of α3β4 subunits, and
metabotropic muscarinic AChRs (MAChRs). While the opening of nAChRs tends
to permit an initial fast excitatory postsynaptic potential (EPSP), the ligation of
M1AChRs and M2AChRs initiates signal transduction pathways culminating in
secondary slow EPSPs and inhibitory PSPs (IPSPs), respectively.

Within end-organs, which express M1-3AChRs and both (alpha) and (beta)
adrenergic receptors (ARs), parasympathetic and sympathetic postganglionic fibres
principally release ACh and noradrenaline, respectively. However, both across
ganglia and end-organs, pre- and postganglionic neurons also engage in considerable
non-adrenergic non-cholinergic (NANC) and neuropeptidergic neurotransmission.
This co-transmission diversifies neurochemical coding (Elfvin et al. 1993).

With age, although possible increases in postganglionic sympathetic efferent
activity (Ng et al. 1993) with or without concomitant declines in synaptic reuptake
by neuronal uptake 1 transporter (NET-1) (Trendelenburg 1991) raise circulating



noradrenaline concentration (Ziegler et al. 1976; Esler et al. 1990; Folkow and
Svanborg 1993), end-organ (beta)-ARs become desensitised to this noradrenaline
release (Lakatta 1993; Docherty 1990; Brodde and Michel 1999). In parallel,
age-related falls in presynaptic oxidative metabolism and ACh synthesis and release
of ACh impair postganglionic parasympathetic neuronal function (Gibson and
Peterson 1981).
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The Impact of Age-Related Neuronal Changes on ANS
Function

Age and ANS Control of Lens Refractive Index

The parasympathetic and sympathetic divisions of the ANS exert parallel control
over pupillary diameter, in order to adjust the proportion of ambient light transmitted
to the retinal photoreceptors. Within the retina, intrinsically photosensitive retinal
ganglion cells (ipRGCs) (Do and Yau 2010; McDougal and Gamlin 2014) signal,
either directly or indirectly via the primary visual cortex, the total luminance of
ambient light to the midbrain. Thereafter, the Edinger-Westphal nucleus of CN III
projects preganglionic parasympathetic fibres to the ciliary ganglion, wherein post-
ganglionic parasympathetic fibres form en passant synapses to the sphincter pupillae
in the iris, as well as the ciliaris muscle in the uvea (Michael-Titus et al. 2010). In this
way, large increases in ambient luminance tend to increase parasympathetically
mediated pupillary constriction (‘miosis’) and, via slackening of the Zonule of
Zinn, the refractive index of the lens, establishing a negative feedback loop
(Wu et al. 2022).

In parallel, there is adrenergic inhibition of the Edinger-Westphal nucleus at the
level of the midbrain, while postganglionic sympathetic fibres from the cervical part
of the paravertebral ganglionic chain promote contraction of the dilator pupillae in
the iris. Quantification of pupillary diameter under different conditions of gaze,
accommodation, and anaesthetic suppression (Borgdorff 1975; Onorati et al. 2013)
of the ascending arousal pathways suggests that the tone in such sympathetic fibres
reflects the activity of central integrators, rather than negative feedback. As such, in
the absence of light, the degree of arousal establishes, via sympathetic tone, a
maximal pupillary diameter, which is then reduced through a negative feedback
pathway mediated by the parasympathetic division of the ANS (Fig. 10.2).

While age hardens the lens (Peddie 1925), slackens the Zonule of Zinn (Weale
1962), and atrophies ciliaris (Duane 1922), it also likely increases the delay within
the neural circuits controlling reflexive accommodation (Lockhart and Shi 2010). As
such, a combination of age-related changes in steady-state and dynamic
ANS-mediated accommodation can cause up to a 10-fold increase in the nearest
point on which a patient can visually focus and thus presbyopia (Mordi and
Ciuffreda 1998).
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Fig. 10.2 The parasympathetic division of the autonomic nervous system (ANS) reduces the
maximal pupillary diameter established by a basal sympathetic tone. In parallel, the parasympa-
thetic division facilitates both ocular convergence and, through changes in the refractive index of
the lens, accommodation to improve focus of near-field objects detected by the primary visual
cortex (V1)

Age and ANS Control of Ventilation

Parallel parasympathetic and sympathetic control over ventilation and pulmonary
perfusion is necessary to minimise the difference between alveolar (PAO2) and
arterial (PaO2) partial pressures of O2, and to maintain the latter above the threshold
for sufficient saturation of haemoglobin with O2 before blood reaches the tissues.

During inspiration, postganglionic sympathetic fibres innervating the smooth
muscle of the airways promote bronchodilatation via (beta)2-ARs, while postgan-
glionic parasympathetic fibres prevent collapse of the distal airways in which the
intraluminal pressure is more negative than intrapleural pressure (van der Velden and
Hulsmann 1999).

Arterial peripheral chemoreceptors comprise islands of NCC-derived type I
glomus cells depolarised by hypoxaemia (Prabhakar 1994). Located in the carotid
body and, to a lesser extent the aortic body, peripheral chemoreceptors convey
afferent signals via CN IX and X, respectively, to the medulla oblongata, whereupon
sympathetic efferents fire at a higher frequency to synapses in the SAN, myocar-
dium, and vascular tunica media (Marshall 1994), and at a lower frequency to brown
adipose tissue (Madden and Morrison 2005). The concomitant activation of para-
sympathetic efferents limits hypoxaemic-induced coronary and cerebral vasocon-
striction (Marshall 1994). Most importantly, excitation of sympathetic efferents



stimulates a rise in the frequency and magnitude of phrenic nerve discharge, thereby
increasing respiratory rate (Taylor et al. 1999), in a fashion partly limited by the
rising tidal volume (Somers et al. 1989). Ventilatory peripheral chemoreflex output
is an exponential function of PaO2, with gain highest when PaO2< 8 kPa, though the
range of highest reflex sensitivity can be re-set by PaCO2, such that hypercapnia can
potentiate the effect of hypoxaemia on increasing respiratory drive (Somers et al.
1989; Gelfand and Lambertsen 1973) (Fig. 10.3).
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Fig. 10.3 Alveolar ventilation rate (VA) as a function of alveolar partial pressure of O2 (PAO2).
Notably, elevated alveolar partial pressure of CO2 (PACO2) can potentiate the effect of hypoxaemia
to maximise the increase in respiratory drive

Notably, age-related decline in vagal tone alters the physiological impact of the
peripheral chemoreflex such that, although older patients exhibit the same increase in
ventilatory drive, they may experience transient tachycardia to a lesser extent than
their younger counterparts (Paleczny et al. 2014).

Age and ANS Control of ABP

We can define cardiac output (CO) as the product of stroke volume (SV) from the
heart’s left ventricle and the rate (HR) at which the ventricle contracts during systole.
The classic Guyton experiments demonstrated that, although necessary to maintain
CO, the heart is not its principal determinant (Guyton et al. 1957). This is because, in
a closed system, CO from the heart’s left ventricle is equivalent to, and thus
constrained by, venous return (VR) to its right atrium. In turn, by Darcy’s law, VR
is determined by the difference between right atrial pressure (RAP) and the mean
systemic filling pressure (MSFP) that would exist upon asystole and the distribution
of blood in proportion to systemic vessel capacitance. As such, CO (= VR) can be
regarded as the average flow around the entire circulatory system, rather than the
volume ejected by the left ventricle alone (Beard and Feigl 2011) (Fig. 10.4).
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Fig. 10.4 A graphical summary of Guyton’s results. Each intersection between the curves
representing output for cardiac output (CO) from the left ventricle, and venous return (VR) to the
right atrium, constitutes the average flow in the circulatory system. Notably, increasing right atrial
pressure (RAP) such that it begins to exceed intra-alveolar pressure (PA) tends to reduce VR for a
given CO

As blood flows through vessels of the systemic circulation, the pressure exerted
on the walls declines due to the vessel’s resistance (R), which depends on the blood’s
viscosity and the vessel’s radius and length. By Poiseuille’s Law, and given the
constant values of blood viscosity, which typically varies significantly only under
conditions of dehydration or erythrocyte pathology, and of vessel length, determined
by the anatomy of the adult circulatory system, the primary determinant of resistance
to flow is vessel radius. Within a tissue, the artery, arteriole, capillary, venule, and
vein are arranged in series. Between tissues, these vessels are arranged in parallel.
The sum of the series resistances of vessels perfusing a single tissue, aggregated as a
set of parallel resistances across tissues, is the total peripheral resistance (TPR).

As RAP is typically close to 0, by Darcy’s law, one can thus approximate arterial
blood pressure (ABP) = CO x TPR. The Frank-Starling experiments demonstrated
that afterload, and, by extension, TPR, does not greatly influence CO (Frank 1959;
Knowlton and Starling 1912). As such, the parameters CO and TPR are two separate
and independent axes about which ABP can be homeostatically regulated,
establishing a system of constant pressure and variable local flow, whereby perfu-
sion of individual tissues depends on their rate of oxygen consumption (VO2) and
contextual physiological importance.

Understanding how age increases both mean ABP (MAP) (Zito et al. 1991) and
ABP variability, therefore, necessitates an understanding of the effects of age on
ANS control of CO and TPR.
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Age and ANS Control of CO

Given that CO is proportional to the difference between MSFP and RAP, an increase
in CO may be achieved through an increase in MSFP and/or a fall in RAP or
resistance to venous return (Rvr).

VR=
MSFP
RVR

-
RAP
RVR

Negligible at rest, Rvr is typically affected only by the action of the skeletal
muscle pump and is thus not suitable as a principal means of regulating VR. The
predominant strategy for reducing RAP is to create a vacuum for blood flow into the
right atrium by making central venous pressure (CVP) negative. Being thin-walled
vessels, veins remain patent only in the context of a positive transmural pressure
gradient. Although CVP is typically more positive than intrapleural pressure (Ppl),
changes in both CVP and Ppl during the respiratory cycle are such that the vena
cavae would cyclically collapse if CVP became too negative (Kircher et al. 1990;
R. M. Lang et al. 2005; Brennan et al. 2007; Kimura et al. 2011), limiting the extent
to which a fall in RAP can increase VR (Fig. 10.5).

As such, the most effective way to increase CO is to increase MSFP, which would
leave unaffected the critical pressure at which the vena cavae collapse. At rest, the
systemic vasculature can accommodate, without stretching, 80% of the total volume
of blood, such that the remaining 20% constitutes a stressed volume that accounts for
the MSFP. Owing to a compliance much greater than that of arteries, veins,

Fig. 10.5 Increasing right atrial pressure (RAP) such that it begins to exceed intra-alveolar pressure
(PA) reduces venous return (VR) to the right atrium. However, having fallen below PA, further
lowering RAP has only a limited effect on VR



especially in the splanchnic circulation, store the vast majority of this stressed
volume.
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Fig. 10.6 Pressure natriuresis. As corroborated both in vitro and in vivo, a rise in mean arterial
pressure (MAP) tends to reduce active Na+ reabsorption, increasing urinary Na+ (UNa) excretion

Shifts in the MSFP and by extension CO, therefore, necessitate shifts in the
stressed volume accommodated by veins, especially those in the splanchnic circu-
lation. This raises two possibilities for increasing MSFP: either an expansion of total
extracellular fluid volume (ECFV) or a rise in the proportion of ECFV accommo-
dated by veins as stressed volume. Homeostatic regulation of ECFV is subordinate
to that of plasma osmolality, the value of which is controlled much more tightly. In
light of a relatively constant plasma osmolality, changes in isosmotic Na+ excretion
against an unchanged dietary Na+ intake permit desired shifts in ECFV.

One physical means of shifting ECFV is pressure natriuresis. Given the imper-
fection of renal plasma flow (RPF) autoregulation, an increase in ECFV causes a
slight rise in RPF and glomerular capillary hydrostatic pressure, as well as a fall in
glomerular oncotic pressure. By the Starling filtration-reabsorption equation, this
minimally increases GFR, while the larger rise in peritubular capillary hydrostatic
pressure and larger fall in peritubular oncotic pressure reduce active Na+

reabsorption, augmenting Na+ back-leakage (Seeliger et al. 2001) (Fig. 10.6).
Secondly, the ANS can neurally regulate ECFV. A fall in ECFV reduces the

frequency of discharge from cardiopulmonary and arterial baroreceptors to the NTS,
which mediates a rise in the frequency of discharge of renal sympathetic postgan-
glionic fibres. As there is a higher density of (alpha)1-ARs in afferent arteriole
(DiBona and Kopp 1997), sufficient renal sympathetic activity may override RPF
autoregulation to significantly depress GFR. Furthermore, renal sympathetic nor-
adrenaline binds (alpha)1-ARs on the proximal tubule (PT) to promote translocation
of Na+/H+ exchanger-3 (NHE3) to the apical membrane (Sonalker et al. 2008), and
ligates (beta)1-ARs on granular juxtaglomerular cells to increase the secretion of
renin (Gordon et al. 1967; Lopez et al. 1978).
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Fig. 10.7 The renin-angiotensin-aldosterone system (RAAS). The sympathetic division of the
autonomic nervous system (ANS) promotes juxtaglomerular cell release of renin, which converts
angiotensinogen into angiotensin I (AngI), whereupon angiotensin-converting enzyme (ACE)
forms AngII. AngII acts on vascular endothelium to increase vasoconstriction, and on the renal
tubules to promote Na+ reabsorption, prolonging the rise in arterial blood pressure (ABP)

Cleaving the precursor plasma globulin, angiotensinogen, renin forms the
decapeptide, angiotensin I (AngI), which is further cleaved by angiotensin-
converting enzyme (ACE) on the luminal surface of endothelia and vascular
myocytes of pulmonary capillaries into the 10-fold more potent octapeptide AngII
(Santos et al. 2019) (Fig. 10.7). In turn, AngII acts, via the AngII receptor type
1 (AT1R), as a dipsogen (Epstein et al. 1970), modulates central integrator influence
on sympathetic outflow (Tobey et al. 1983), and permits long-term maintenance of
the effects of renal sympathetic activity by increasing NHE3 and Na+/glucose
cotransporter (SGLT-2) translocation to the apical PT, and by preferentially
vasoconstricting the efferent arteriole to increase the filtration fraction (Toke and
Meyer 2001). Despite initially favouring Na+ excretion, the ANS thus produces a
long-term rise in intravascular oncotic pressure, promoting Na+ reabsorption and
increasing ECFV to normalise ABP.

Moreover, afferent fibres in CN X innervate myelinated B-type venoatrial stretch-
activated receptors (Kappagoda et al. 1979). As such, a rise in ECFV stimulates the
Bainbridge reflex, whereby stretching of the atria and ventricles stimulates not only
natriuresis, but also a selective rise in the activity of sympathetic efferents to the
sinoatrial node, reducing RAP. In fact, the influence of the ANS Bainbridge reflex on
ECFV regulation predominates over that of atrial natriuretic peptide (ANP) release
from the stretched atria and ventricles (Wang et al. 1987).

Age not only diminishes the capacity for pressure natriuresis (Y. G. Kim et al.
2022), but also reduces baseline concentrations of (Weidmann et al. 1975; Tzunoda
et al. 1986) and increases vascular (Barrett-O’Keefe et al. 2013; Lang and Krajek
2019), but not intrarenal, sensitivity to ANS-stimulated renin and AngII. However,



although ageing reduces chromaffin cell adrenaline secretion, plasma noradrenaline
rises (Ziegler et al. 1976; Seals and Esler 2000) and renal sympathetic outflow
appears unchanged (Veith et al. 1986; Esler et al. 1995, 2002).
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Age and ANS Control of TPR and Local Vascular Mechanisms

While mechanisms local to the organ in question typically contribute to vascular
resistance and thus blood flow, TPR is established by the basal tone of arteriolar
smooth muscle tissue, which is principally innervated by the sympathetic division of
the ANS. As such, the activity of the central ANS integrator, and, by extension,
overall arousal state, which can be modulated by chemoreflex and metaboreflex
afferents (Dempsey et al. 2002), sets a cap on the maximal sympathetic stimulation
of the vascular tunica media.

The organ-specific distribution of (alpha)-AR and (beta)-AR expression
(Robertson et al. 2012) is such that the effects of postganglionic sympathetic activity
on vascular tone exhibit regional dependence. In general, however, noradrenaline
ligation of (alpha)-ARs tends to promote systemic arteriolar vasoconstriction (Bruno
et al. 2012), elevating TPR.

Yet, in some organs, such as the brain, local autoregulation of vascular resistance
predominates over ANS control to the extent that endothelial NO and neuronal NO,
as well as regional arterial partial pressure of CO2 (PaCO2), are much stronger
influences on arteriolar diameter (Claassen et al. 2021).

Age increases resting TPR (Granath et al. 2009; Strandell 1964; Julius et al. 1967;
Conway et al. 1971), as the sympathetically (Casey et al. 2012) and local endothelin-
mediated (Westby et al. 2011) vasoconstrictory drive, along with vascular hyper-
sensitivity to AngII (Wray et al. 2008), begins to outweigh vascular endothelial
responsivity to, and production of, local vasodilators, such as NO (Minson et al.
2002; Black et al. 2008).

Age and ANS Control of HR

ANS modulation of CO and TPR is such that MAP is tightly regulated about a set
point. But, in order to reduce the variability of ABP about the set MAP, high-
pressure arterial baroreceptors, arterial peripheral chemoreceptors, and low-pressure
venoatrial baroreceptors establish a negative feedback loop capable of appropriately
adjusting short-term determinants of CO and/or TPR.

Vessels experiencing high blood pressure, such as the carotid sinus and aortic
arch, are innervated by Piezo2-expressing mechanosensitive afferent fibres in CNs
IX and X, respectively (Min et al. 2019). As such, increased mural stress triggers a
rise in the frequency of discharge to the NTS, whereupon central integrator inter-
neurons inhibit the rostral ventrolateral medulla oblongata (Boron and Boulpaep
2017). The consequent fall in sympathetic efferent discharge to the SAN, myocar-
dium, and arteriolar tunica media temporarily reduces HR, SV, and thus, at least over



the next few cardiac cycles (Sagawa 1983; Eckberg and Sleight 1992), CO. In fact,
during inspiration, alveolar expansion reduces left atrial pressure and increases the
compliance of the pulmonary vasculature, thereby reducing SV. As such, the
baroreflex then accelerates HR, and triggers the next inspiratory phase of the
respiratory cycle, constituting a cardioventilatory coupling that phase-locks HR to
RR (Larsen et al. 2003; Tzeng et al. 2007).
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In the context of very low ABP, the unresponsive high-pressure arterial barore-
ceptors may cede to arterial peripheral chemoreceptors, which signal hypoxaemia
along parasympathetic afferents in CNs IX and X, potentiating hypercapnic respi-
ratory drive. As discussed above, there are also parts of the systemic circulation
experiencing high blood pressure, such as in the terminal regions of vena cavae and
right atrium, which possess stretch receptors that signal ECFV via parasympathetic
afferents to the NTS.

Age-related loss of elasticity (Learoyd and Taylor 1966; Bader 1967) and
increased rigidity (Abboud and Huston 1961; Gozna et al. 1974) of the arterial
wall (Roach and Burton 1959), along with intimal thickening (Virmani et al. 1991),
reduce vascular compliance. By restricting the range of action potential frequencies
characteristic of the afferent fibres in CNs IX and X, this dampens the gain of the
high-pressure baroreflex (Gribbin et al. 1971). Furthermore, despite leaving sympa-
thetic efferents unaffected (Ebert et al. 1992; Matsukawa et al. 1994, 1998;
O’Mahony et al. 2000), ageing may indeed impair the sympathetic efferents
(Kingwell et al. 1992; Hunt et al. 2001) and parasympathetic ganglia (Bibevski
and Dunlap 1999) and blunt the density (Brodde et al. 1998) and responsivity (Poller
et al. 1997) of M2AChR in patients; for a given fluctuation in ABP, the baroreflex is
characterised by a smaller short-term vagally mediated change in HR (Laitinen et al.
1998; Monahan et al. 2001).

Age and the Interaction Between the ANS and Immunity

The immune system modulates ANS function. Indeed, interleukin-1(beta) (IL-1
(beta) modulates stress-induced sympathetic efferent discharge (Kenney et al.
2001; Shi et al. 2011), while the concentrations of the systemic inflammatory
markers, IL-6 and C-reactive protein (CRP), negatively correlate to baroreflex gain
(Banks and Erickson 2010; Huston and Tracey 2011). Moreover, both tumour
necrosis factor (alpha) (TNF-(alpha)) (Saigusa 1990; Ohashi and Saigusa 1997)
and interferon-(alpha) (Katafuchi et al. 1993a, b) influence the interaction between
the central integrator and preganglionic parasympathetic outflow from the medulla.
Furthermore, chronic AngII-mediated activation of, and oxidative stress (Lob et al.
2010, 2013) within, neurons within the forebrain’s subfornical organ (SFO), in turn,
stimulates PVN microglia to augment the pro-inflammatory cytokines that stimulate
renal sympathetic outflow (Davisson and Zimmerman 2010). Finally, prostaglandin
E2 (PGE2) in the hypothalamic preoptic area (POA) alters sympathoexcitatory
regulation of the core body temperature set point, thereby contributing to brown



adipose tissue thermogenesis and pyrexia (Morrison 2011; Tanaka et al. 2009;
Yoshida et al. 2009; Nakamura 2011; Saper et al. 2012).
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In turn, the ANS modulates immune function. Innate and adaptive immune cells
express a diverse array of adrenergic and cholinergic receptors (Rosati et al. 1986;
van Esch et al. 1989). For instance, (beta)2-ARs inhibit T lymphocyte (Bourne and
Melmon 1971; Estes et al. 1971; Makman 1971; DeRubertis et al. 1974;
Diamantstein and Ulmer 1975; Vischer 1976; Conolly and Greenacre 1977;
Bishopric et al. 1980; Pochet and Delespesse 1983; Brodde et al. 1984; Khan et al.
1986; Ledbetter et al. 1986; Bartik et al. 1994; Sanders et al. 1997), and either
promote or suppress B lymphocyte proliferation (Bellinger et al. 2008), while
stimulating recruitment (Benschop et al. 1993) but suppressing the activity of natural
killer (NK) cells (Shakhar and Ben-Eliyahu 1998; Kanemi et al. 2005), whose
cytotoxicity is augmented by (alpha)1/2-Ars (Xiao et al. 2010). Splenic
sympathoexcitation (Sanders and Straub 2002) upregulates IL-1(beta) and IL-6
(Ganta et al. 2004), and downregulates TNF (Kees et al. 2003), such that acute
potential brain injury may elicit peripheral immune dysfunction (Catania et al.
2009), as in post-stroke immunodepression (Dirnagl et al. 2007). Moreover, para-
sympathetic efferent release of ACh onto macrophages (Tracey 2002) may suppress
the release of pro-inflammatory cytokines (Borovikova et al. 2000), including TNF
(Tracey 2002; Rosas-Ballina et al. 2011), and in animal models facilitates symp-
tomatic remission in arthritis, colitis, and pancreatitis (Bernik et al. 2002; Guarini
et al. 2003).

Age-related loss of sympathetic efferent connections to lymphoid organs
(Bellinger et al. 1992a, b, 2008; Thyagarajan et al. 2013) and alteration of (beta)-
AR expression in immune cells (Schocken and Roth 1977) may alter cellular
trafficking (Redwine et al. 2003) and thus immune responses to infection
(Thyagarajan et al. 2000, 2013; Perez et al. 2012).

The Clinical Implications of Age-Related Changes in the ANS

The Ageing ANS and Autonomic Failure

The diminished ANS responses to physiological stressors characteristic of older
patients (Collins et al. 1980) can be reproduced, at least in part, in younger patients
diagnosed with diabetic neuropathy (Ewing et al. 1978). As such, ageing can be
considered a predisposition to autonomic failure, manifesting as higher risks of
neurocardiogenic syncope, GI dysfunction, erectile dysfunction, and thermoregula-
tory impairment.
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The Ageing ANS and Neurocardiogenic Syncope

The effects of the ageing ANS on the cardiovascular system have significant
implications for patient morbidity and mortality. For instance, the age-related
blunting of the cardiovagal baroreflex not only predisposes to neurocardiogenic
syncope but also increases the risk of post-myocardial infarction (MI) sudden
cardiac death (La Rovere et al. 1988, 1998).

Orthostatic Hypotension

Orthostatic hypotension is a decline of 20 or more mmHg in systolic, or 10 or more
mmHg in diastolic, ABP upon 3 min of standing from a sitting position. Under
normal physiological conditions, adopting a standing position reduces VR and thus
CO, eliciting a baroreflex-mediated temporary increase in heart rate and peripheral
resistance. Owing to the aforementioned age-related reduction in the gain of the
baroreflex-mediated negative feedback loop controlling short-term postural fluctua-
tions in ABP (Zito et al. 1991; Zachariah et al. 1991; Seals et al. 1999; Maurer et al.
2000), as well as the diminished capacity of the renin-angiotensin-aldosterone
system to compensate for intravascular depletion (Shannon et al. 1986), age
increases the incidence of orthostatic hypotension (Harris et al. 1991; Rutan et al.
1992).

If sufficiently severe, the resultant cerebral hypoperfusion typically manifests as
orthostatic intolerance, which is characterised by nausea, light-headedness and
dizziness, speech disturbance, bradyphrenia, delirium (Raj et al. 2018), and even
blackout (Low et al. 1995). As such, orthostatic intolerance predisposes older
patients to falls (Ooi et al. 2000) and thus fragility fractures (Bulpitt et al. 2006),
as well as increasing the risk of a transient ischaemic attack (TIA) (Landi et al. 1983)
and MI (Luukinen et al. 2004). In fact, persistent untreated orthostatic hypotension is
a risk factor for the development of vascular dementia (Román 2004).

Moreover, the unique combination of age-related baroreflex desensitisation,
intravascular redistribution (Wilcox et al. 1984), and the relative rise in basal
adrenergic tone (Biaggioni and Robertson 2002) is such that 50% of elderly patients
diagnosed with orthostatic hypotension experience supine hypertension (J. Shannon
et al. 1997), and for many, drinking water exerts a considerable vasopressor effect.

Carotid Sinus Hypersensitivity

Carotid sinus hypersensitivity is characterised by 5–10 s of a carotid sinus massage
eliciting large vasodepressive, constituting a more than 50 mmHg fall in systolic
ABP, and/or cardioinhibitory, constituting ventricular asystole lasting longer than
3 s, effects (McIntosh et al. 1993). Up to 40% of asymptomatic elderly patients may
exhibit carotid sinus hypersensitivity (Kerr et al. 2006), while, among those



indicated for pacemaker insertion due to suffering from either the cardioinhibitory
subtype or recurrent unprovoked syncopal events (Authors/Task Force Members
et al. 2007), 30% present with unexplained falls, often accompanied by fragility
fracture.

224 M. Takla et al.

Cerebral Autoregulation

The aforementioned secondary role of the ANS in regulating cerebral blood flow
(CBF) is such that age-related ANS dysfunction does not, in itself (Brooks et al.
1989), cause cerebral hypoperfusion (Yam et al. 2005). Consequently, in the context
of ageing-induced orthostatic hypotension and carotid sinus hypersensitivity, there is
a compensatory expansion of the upper and lower bounds of the range within which
the set point of CBF is autoregulated (Safonova et al. 2004). The attendant mainte-
nance of a relatively constant CBF despite considerable fluctuations, postural or
otherwise, in ABP ensures that many patients with orthostatic hypotension never-
theless sustain sufficient CBF to remain asymptomatic (Novak et al. 1998).

As such, only in severe cases of orthostatic intolerance or carotid sinus hyper-
sensitivity do prolonged standing and rapid head turning, respectively, sufficiently
stimulate the cardioinhibitory and vasodepressor centres of the brainstem to elicit a
ventricular asystole long enough and, via the Bezold-Jarisch Reflex (Mark 1983),
hypotension significant enough to reduce CBF so much that the patient experiences a
loss of consciousness.

The Ageing ANS and GI Dysfunction

Salivation is a feed-forward response to the prospect of food entry into the GI tract.
The ANS almost entirely mediates extrinsic control of the salivary glands (Proctor
and Carpenter 2007). Postganglionic fibres of the parasympathetic division of the
ANS release vasoactive intestinal peptide (VIP) and ACh, which contract
myoepithelial cells and open more apical Cl- channels and basolateral K+ channels
in acinar cells, increasing the volume of primary secretion. In fact, the increase in
[Ca2+]i stimulates exocytosis of mucins and kallikrein, with lysyl-bradykinin a
potent vasodilator of arterioles to the salivary gland, and increasing permeability
of capillaries perfusing the acini (Garrett 1987). By contrast, while noradrenaline
binding to (beta)1-ARs increases [cAMP]i and PKA activity, potentiating exocytosis
of amylase from the acinar cells, sympathetic neurons can promote vasoconstriction
via (alpha)1-Ars (Ikawa et al. 1991). As a result, while parasympathetic stimulation
results in a fluid-like saliva to facilitate digestion, sympathetic stimulation instead
modulates its composition to generate a more viscous saliva that facilitates
respiration.

Parasympathetic general visceral efferents (GVEs) synapse with excitatory ENS
efferents, promoting ACh release (Porter et al. 1996, 1997) onto M3AChRs



expressed by interstitial cells of Cajal (ICCs) (Huizinga et al. 1997; Sanders et al.
2006), thereby increasing the amplitude of the slow waves and thus the spike
potential frequency of smooth muscle cells, strengthening contractile force. By
contrast, sympathetic GVEs stimulate inhibitory ENS efferent release of NO and
VIP (Porter et al. 1997; Wattchow et al. 1997), which reduces the amplitude of the
slow waves, eliciting smooth muscle relaxation.
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In 30–40% of patients aged over 65 years, GI dysfunction (Camilleri et al. 2000)
causes constipation and associated faecal impaction and overflow incontinence
(Camilleri et al. 2000; Gallagher and O’Mahony 2009). In rodent models, ageing
is associated with falls in mucosal secretory capacity and in the number of myenteric
postganglionic parasympathetic neurons (Wade 2002; Phillips and Powley 2007),
thereby limiting GI motility. In humans, ageing impairs postganglionic
parasympathetically mediated smooth muscle contraction within the ascending but
not descending colon while leaving total ENS and ANS neuronal populations within
the large intestine unaffected (Broad et al. 2019).

The Ageing ANS and Urinary Incontinence

In the context of urothelial stretching (Mulvey et al. 2000), bladder detrusor is
relaxed by (beta)3-AR bound by NA from inferior mesenteric and hypogastric
sympathetic efferents (Bhide et al. 2012; Khullar et al. 2013), which also binds
(alpha)1-ARs to relax the urethral sphincter, promoting urinary storage (Blok et al.
1995). Intense bladder filling promotes the spinobulbospinal reflex, which, while
inhibiting sympathetic outflow, stimulates postganglionic parasympathetic neurons
to trigger signal transduction through M3AChRs (Daly et al. 2010). Combined with
flux through ATP-bound purine 2X receptors (P2XRs) (Rapp et al. 2005), this
propels urine from the full bladder through the relaxed urethral sphincter, enabling
micturition.

Ageing not only augments urothelial collagen content and sensory afferent
sensitivity (Siroky 2004) but also downregulates M3AChR (Mansfield et al. 2005)
such that ATP-mediated detrusor contraction begins to predominate over that insti-
gated by parasympathetic innervation. This may contribute to the age-related rise in
the incidence of urinary incontinence due to overactive bladder.

The Ageing ANS and Erectile Dysfunction

In males, penile erection is exclusively mediated by ANS-induced haemodynamic
changes. Without genital arousal, sympathetic tone in the hypogastric nerve (arising
from T12-L3) maintains, via (alpha)1-AR, contraction of the smooth muscle in both
the cavernous trabeculae and helicine arteries, as well as that of the mounds near the



tunica albuginea surrounding the corpora cavernosa (Lue et al. 1983). This forms a
low-volume, low-pressure intracavernous space (<Pa) within the flaccid penis.
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Genital arousal coincides with increased parasympathetic tone in the pelvic
splanchnic nerves (S2-4), which release PGI2 and VIP to activate nNOS in the
smooth muscle mounds (Burnett et al. 1992). Along with eNOS activation in
vascular endothelial cells, this stimulates an increase in the production of NO to
reduce basal sympathetically mediated contraction of the vascular and mound
smooth muscles (Ignarro et al. 1990), directing blood into the corpora cavernosa
via arteriovenous shunts (Brindley 1983). The resultant large-volume, high-pressure
intracavernous space reduces venous outflow as the rapidly developing turgor
compresses the sub-albugineal venous plexus, conferring on the penis a state of
tumescence.

Erection, therefore, is characterised by the almost absent blood inflow to (Banya
et al. 1989), and outflow from (Fournier et al. 1987), the penis, which thus achieves
full rigidity, which can be further increased by the bulbospongiosus reflex, whereby
pudendal nerve (S2-4) stimulates rhythmic bulbospongiosus and ischiocavernosus
contraction to compress the proximal part of the corpus cavernosum (Previnaire
2018).

Erectile dysfunction is the organic or psychogenic loss of capacity to acquire and
sustain penile erection to the extent necessary for satisfactory sexual activity (NIH
Consensus Conference. Impotence. NIH Consensus Development Panel on Impo-
tence 1993).

Age is the strongest risk factor for organic erectile dysfunction, the incidence of
which almost quadruples from the ages of 40 to 70 (Johannes et al. 2000). Organic
causes of erectile dysfunction converge on the insufficiency of arterial inflow during
tumescence and on veno-occlusive dysfunction due to loss of corporal smooth
muscle function (Nehra et al. 1996) during erection. Although cavernosal veno-
occlusive dysfunction is the most common cause across all age groups (Donatucci
and Lue 1993), the proportion of cases caused by arterial insufficiency rises with age
(Lue et al. 1989). The oxidative stress associated with ageing not only stimulates
corporal smooth muscle apoptosis (Grünewald and Beal 1999), but also, at least in
part through its aforementioned effects on the ANS, promotes hypertension, a risk
factor for vasculogenic erectile dysfunction (Ning and Yang 2017).

The Ageing ANS and Thermoregulation

As endotherms, human’s core body changes at a rate largely determined by endog-
enous thermogenesis, and by superimposed heat gains and losses from the skin.
Endothermy confers on humans’ core body temperature relative independence from
ambient temperature, as well as facilitating rapid growth rates and greater muscular
outputs. Yet, endothermy imposes a necessarily high metabolic rate for maintaining
core body temperature within the narrow range at which organ function is optimal.
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The preoptic area of the hypothalamus, which contains thermoreceptors respon-
sive to the temperature of blood perfusing it and receives inputs from peripheral
cutaneous thermoreceptive afferents, has a set point of 37 °C around which core
body temperature varies diurnally (Nakamura 2011). As a central integrator of the
ANS, the hypothalamus accordingly modulates tone in the parasympathetic and
sympathetic divisions to compensate for insensitive heat gains or losses from
the skin.

Hyperthermia is an unintentional rise in core body temperature in the absence of
changes to the thermoregulatory set point. At rest, high sympathetic tone
vasoconstricts dermal arterioles, preventing diversion of flow to more distal cutane-
ous capillaries. In the context of a very high ambient temperature causing insensible
heat gains through cutaneous conduction, the hypothalamus compensatorily pro-
motes arteriolar vasodilatation and, via sudomotor sympathetic cholinergic fibres,
eccrine gland secretion of sweat onto the skin, accelerating both conductive and
evaporative heat loss (Hu et al. 2018). However, ageing, in part due to the fall in NO
production relative to sympathetic tone, impairs heat stress-induced redistribution of
splanchnic and renal blood flow to the more superficial cutaneous vessels (Kenney
et al. 1997). The resultant inhibition of conductive heat loss to compensate for high
ambient temperatures is one of the reasons for which the mortality risk associated
with heat stress is particularly high in elderly patients (Kenney et al. 1997).

Hypothermia is, in the absence of any alteration to the thermoregulatory set point,
an unintentional fall in core body temperature to below the threshold (typically 35 °
C) for maintaining a sufficient metabolic rate. In the context of very low ambient
temperatures, in addition to reinforcing basal cutaneous arteriolar vasoconstriction
(Wilson et al. 2007), the hypothalamus stimulates high-frequency involuntary and
intermittent skeletal muscle contraction, promoting shivering thermogenesis, and the
sympathetic division of the ANS, via (beta)3-ARs, to promote brown adipose tissue
lipolysis (Cypess et al. 2015) and thus non-shivering thermogenesis. However, with
age, the volumes of skeletal muscle (Fukagawa et al. 1995) and brown adipose tissue
(Zoico et al. 2019) decline, while allowing the capacity of cutaneous arteriolar
smooth muscle to increase (Collins et al. 1977) and sustain (Richardson et al.
1992) tone above their basal vasoconstriction also diminishes. Moreover, ageing
reduces the sensitivity of peripheral afferents to low temperatures (Collins et al.
1981).

The Ageing ANS and Sepsis

Sepsis is the life-threatening organ dysfunction that arises from a dysregulated
immune response to infection (Rhodes et al. 2017). Some argue that sepsis, during
which the spleen acts as the principal source of TNF (Huston et al. 2006), is a
neuroendocrine disorder (Munford and Tracey 2002), in which multi-organ failure
may arise from the cardiovascular lability conferred by catecholamines (H. Schmidt



et al. 2008), as well as loss of parasympathetically mediated inhibition of
pro-inflammatory signalling.
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Indeed, sepsis is marked by hyperexcitation of postganglionic sympathetic effer-
ents, while the rises in TNF-(alpha) and interleukins synergistically desensitise Ars
(Wu et al. 2003). Despite acting beneficially as a vasopressor to counteract septic
shock, noradrenaline may also inhibit innate and adaptive immune function
(Scanzano and Cosentino 2015), contributing to immunoparalysis (Stolk et al.
2020), and worsen prognosis (Boldt et al. 1995; Ostrowski et al. 2015).

Ageing, which blunts the baroreflex and suppresses parasympathetic inhibition of
macrophage activity (Tracey 2002; Pavlov and Tracey 2005), provides a backdrop
for a higher morbidity (Shen et al. 2004; Shi et al. 2007; Nardocci et al. 2015) in
sepsis, itself a depressor of baroreflex (Schmidt et al. 2009; Rudiger 2010) and
chemoreflex function (Schmidt et al. 2004; Ackland et al. 2013). As such, ANS
dysfunction may be a future therapeutic target in elderly patients with sepsis (Carrara
et al. 2021).

The Ageing ANS and Peri-Operative Care

To elicit unconsciousness, general anaesthetics must suppress the adrenergic, cho-
linergic, and orexinergic ascending arousal pathways via the ANS central integrator,
the hypothalamic ventrolateral posterior nucleus (VLPO), from which they receive
GABAergic projections. In depressing arousal, general anaesthetics tend to espe-
cially inhibit the sympathetic division of the ANS. For instance, potent opioids and
inhalational anaesthetics, such as halothane and xenon (Xe), may reduce HR vari-
ability and augment vagal relative to sympathetic tone.

Ageing reduces the anaesthetic dose necessary to induce unconsciousness
(Mapleson 1996; Schnider et al. 1999). With age, anaesthesia-induced unconscious-
ness requires a smaller magnitude of EEG oscillations and a lower frequency of
frontal (alpha)-waves synchronised between the thalamus and neocortex (Purdon
et al. 2015). This likely reflects not only neocortical thinning and grey matter atrophy
(McGinnis et al. 2011; Fjell et al. 2014), but, owing to the neurochemical genesis of
the frontal (alpha)-wave (Ching et al. 2010), age-related changes in GABA-
dependent thalamocortical circuits. There is also some evidence in rodents that the
age-mediated sensitisation of the CNS and ANS to anaesthesia delays post-
anaesthetic recovery (Chemali et al. 2015).

However, many general anaesthetics also reduce ABP. Along with the risk of
intraoperative blood loss, this raises the risk that a patient undergoing surgery may
become hypotensive. Given that ageing impairs baroreflex function and ANS-
endocrine-mediated ECFV homeostasis, this risk may be particularly high in older
patients. Furthermore, age-related impairment of thermoregulation may predispose
older patients to intraoperative hypothermia. As such, further research is required to
confirm or refute these hypotheses, and to suggest and devise appropriate prophy-
lactic solutions.
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Conclusions

There remains considerable experimental work to be done in order to assess whether
findings on ageing-induced changes in individual CNS neurons are reproducible in
individual PNS neurons.

However, there is a substantial base of experimental data suggesting that age
influences the overall function of the ANS, contributing to both non-pathological
and pathological age-related autonomic dysfunction of mechanisms ranging from
control of CO and respiratory rate to that of ocular reflexes and immunity. The
clinical implications of such age-induced consequences, including orthostatic hypo-
tension and urinary incontinence, create the possibility that patient care may be
tailored not only to age but also specifically to its effects on autonomic function.
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Chapter 11
Astrocytes in Ageing

Alexei Verkhratsky and Alexey Semyanov

Abstract Ageing is associated with a morphological and functional decline of
astrocytes with a prevalence of morphological atrophy and loss of function. In
particular, ageing is manifested by the shrinkage of astrocytic processes: branches
and leaflets, which decreases synaptic coverage. Astrocytic dystrophy affects mul-
tiple functions astrocytes play in the brain active milieu. In particular, and in
combination with an age-dependent decline in the expression of glutamate trans-
porters, astrocytic atrophy translates into deficient glutamate clearance and K+

buffering. Decreased astrocyte presence may contribute to age-dependent
remodelling of brain extracellular space, hence affecting extrasynaptic signalling.
Old astrocytes lose endfeet polarisation of AQP4 water channels, thus limiting the
operation of the glymphatic system. In ageing, astrocytes down-regulate their
antioxidant capacity leading to decreased neuroprotection. All these changes may
contribute to an age-dependent cognitive decline.
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Brain Ageing, Cognitive Reserve and Neuroglia

The human brain sustains ageing substantially better than other organs and systems
(Humphry 1889; Verkhratsky et al. 2021), which reflects the combination of the
unique plastic capacity of the nervous tissue which provides for lifelong learning and
an exceptional degree of neuroprotection and homeostatic support provided by
highly elaborated neuroglia (Oberheim et al. 2009; Verkhratsky et al. 2019;
Verkhratsky and Nedergaard 2016). The brain activity presents exceptional demands
on logistical support, from providing the energy substrates, to removing reactive
oxygen species, controlling extracellular concentration of ions and neuroactive
molecules, removing waste and redundant cellular elements, maintaining brain
connectome, controlling neurogenesis and mounting brain defence against environ-
mental stresses. All these functions are the responsibility of neuroglia (Verkhratsky
and Butt 2013; Verkhratsky and Nedergaard 2018).

The outcome of brain ageing is different between individuals; broadly we can
distinguish between physiological ageing with preserved cognitive capacity and
pathological ageing in which cognitive function is impaired due to progressive
neurodegeneration. Nonetheless, even neurodegenerative processes produce highly
different cognitive outcomes. The spectrum of the neurological and cognitive out-
comes of ageing and age-dependent brain pathologies (as well as other brain
disorders including, for example, traumatic injury or stroke) is defined by the
individual cognitive reserve. The cognitive reserve reflects the lifelong interaction
of genetic factors with environment (also known as the exposome), cumulative
neuronal plasticity, accumulated pathological damage and regenerative capacity of
every given organism. Several components contributing to the cognitive reserve
were proposed in recent decades. These include brain reserve, brain maintenance,
brain resilience and brain compensation. Brain reserve is considered from a purely
anatomical view as a resource determined by the structural properties of every given
brain acquired through lifelong plasticity and learning (Stern 2009; Zorec et al. 2018;
Song et al. 2022). The brain reserve is defined by the functional organisation of the
brain as a result of lifelong learning and adaptation, whereas brain resilience and
compensation are determined by the capability of the nervous tissue and the brain as
an organ to defend itself, to limit damage and to regenerate. Neuroglia contributes to
every aspect of cognitive reserve. As the main homeostatic system of the central
nervous system (CNS) neuroglia define the brain maintenance and hence functional
plasticity. As the main defensive element of the CNS neuroglia defines the brain
resilience and the brain compensation.

The process of ageing impacts all types of neuroglial cells. In particular, physi-
ological ageing is associated with substantial deterioration of the white matter, the
volume of which is reduced by ~10%. In contrast, the grey matter shrinks, in
physiological ageing, by a mere 3% (Haug and Eggers 1991). Decline of the white



matter reflects the decrease in the number of oligodendrocytes and the reduced
capacity of oligodendrocyte precursor cells to proliferate, differentiate and
remyelinate (Rivera et al. 2021; Vanzuli et al. 2015). Human ageing causes a
substantial decrease in the brain defence due to the accumulation of dystrophic
microglial cells, which lose their protective capabilities. Old human microglia are
characterised by shorter and less complex processes, which often demonstrate
fragmentation (Davies et al. 2017; Streit et al. 2004, 2009, 2014). Arguably this
deterioration of microglia lessens the anti-inflammatory capabilities of the old brain,
reduces neuroprotection and facilitates neurodegeneration (Streit et al. 2020). Of
note, such dystrophic microglial ageing is not observed in rodents, which led to a
misleading concept of an inflamed old brain. Astrocytes similarly deteriorate with
age, leading to a reduced homeostatic support and neuroprotection as discussed in
detail in this chapter.
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Astrocytes and the Brain Active Milieu

Astrocytes belong to the extended class of astroglia, which also includes radial glia,
radial stem cells, several types of radial astrocytes such as tanycytes, Bergmann and
Müller glia, pityicites, ependymocytes, choroid plexus cells and retinal pigment
epithelial cells (Verkhratsky and Nedergaard 2018). Astrocytes, being the essential
homeostatic cells of the CNS, perform highly diverse tasks supporting the proper
functional activity of the nervous system. Together with other brain cells and
non-cellular elements, astrocytes form the active milieu of the nervous tissue
(Fig. 11.1), see Semyanov and Verkhratsky (2021, 2022). The main components
of the active milieu are represented by neurones, their axons, dendrites and synapses,
by astrocyte somata and arborisation interposed between synapses, by microglia and
their motile surveilling processes, by the brain vessels, glia limitans and perivascular
space, and by extracellular space hosting extracellular matrix. These elements are
constantly interacting, thus creating a highly plastic multicomponent system under-
lying cognition. Astrocytes, due to their exceptionally developed processes, contact
all elements of the active milieu. Numerous astrocytic transporters (Verkhratsky and
Rose 2020), which concentrate at perisynaptic sites and in the endfeet, provide for
homeostasis of ions, neurotransmitters, neurohormones and supply of energy sub-
strates. In addition, astrocytes secrete factors regulating synaptogenesis, thus con-
tributing to neuroplasticity through the rewiring and remodelling of neuronal
ensembles (Augusto-Oliveira et al. 2020).
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Fig. 11.1 Astrocyte-neurone communication in the active milieu. The active milieu concept
integrates multiple theories that address different aspects of local functional organisation of the
brain: multipartite synapse, neuro(glio)vascular unit, extrasynaptic signalling and volume transmis-
sion. The active milieu is formed through dynamic interactions between neuronal elements (somata,
axons, dendrites and spines), non-neuronal cell elements (astrocytic and microglial processes),
vasculature (capillary), extracellular space (ECS) and extracellular matrix (ECM). In an active
milieu, synapses can contact, signal and be homeostatically controlled by astrocyte branches, by
single or by several leaflets. A single astrocytic branch or leaflet may be contacted by several
synapses. Dynamic changes in the morphology of astrocytic processes affect diffusional barriers,
neurotransmitter clearance and K+ dynamics, the supply of glutamine or energy substrates, thus
regulating neuronal plasticity. Astrocytic processes form loop-like structures through reciprocal gap
junctions. Reproduced from Semyanov and Verkhratsky (2021)

Protoplasmic Astrocytes

Protoplasmic astrocytes of the grey matter are characterised by complex morphol-
ogy. It is generally believed that murine protoplasmic astrocytes occupy
non-overlapping territorial domains, thus parcellating the grey matter into relatively



independent functional units (Bushong et al. 2002; Aten et al. 2022). This might not
be applicable to all brains; in particular pan-electron microscopy of a 1 mm3

fragment of human brain shows a substantial overlap of neighbouring astrocytes
(Shapson-Coe et al. 2021). Morphology of protoplasmic astrocytes is dominated by
highly elaborated arborisation. Several branching primary processes emanate from
the relatively small soma; these branches give rise to fine processes called leaflets
that bestow on astrocytes characteristic spongiform appearance (Fig. 11.2). Leaflets
account for 70–80% of astrocyte surface area while occupying less than 10% of total
cell volume (Chao et al. 2002; Ventura and Harris 1999). According to the current
classification (Semyanov and Verkhratsky 2021; Khakh and Sofroniew 2015;
Gavrilov et al. 2018), the arbor of protoplasmic astrocytes is represented by
(1) branches or main (primary, secondary, etc.) astrocytic processes, which can be
visualised with diffraction-limited optical microscopy, (2) leaflets that are below the
resolution of diffraction-limited optical microscopy, and (3) endfeet which are
specialised extensions of astrocytic branches plastering blood vessels. Branches
and leaflets are distinguished based in surface to volume ratio (SVR) and the
presence of organelles (Fig. 11.2). The rod-like branches have relatively low SVR
and contain endoplasmic reticulum and mitochondria, whereas exceedingly thin
(~100 nm) leaflets have high SVR (>25 μm-1) and are devoid of extracellular
organelles. In addition, leaflets do not contain glial fibrillary acidic protein (GFAP)
filaments.
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Visualising astrocytes is a challenging task. In vivo or in situ diffraction-limited
microscopy using various forms of fluorescent makers either expressed by or
perfused into astrocytes cannot resolve leaflets because of their small size. Super-
resolution techniques have sufficient resolution but often rely on intense laser
illumination which can potentially distort the structure of delicate leaflets in vivo
(Marx 2013). Tissue fixation can sort this issue but itself can affect the structure of
the leaflets (Korogod et al. 2015). Immunocytochemistry is limited because of the
absence of a universal marker, and relatively poor staining of small compartments,
whereas electron microscopy is associated with various fixation artefacts. The most
common astrocytic marker GFAP is expressed by the minority of astrocytes in the
healthy brain, and moreover, antibodies against GFAP label only cytoskeleton
present in branches and does not visualise the leaflets (Verkhratsky and Nedergaard
2018). An additional increase in GFAP expression and hence GFAP immunoreac-
tivity may reflect both pathological (reactive astrogliosis (Escartin et al. 2021)) and
physiological astrocytic states. Expression of GFAP, for example, fluctuates with
circadian rhythms in the supraoptic nucleus (Becquet et al. 2008). Similarly, GFAP
expression is increased by physical exercise and environmental stimulation (Diniz
et al. 2016; Rodriguez et al. 2013; Sampedro-Piquero et al. 2014).
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Fig. 11.2 Morphological classification of astrocytic processes. (a) Three-dimensional reconstruc-
tion of an astrocyte loaded with fluorescent dye Alexa Fluo 594 through a patch-pipette (centre).
The cell consists of soma with optically resolved branches of primary, secondary and higher orders.
These branches are surrounded by fine terminal leaflets that cannot be resolved with diffraction-
limited optical imaging and appear as a spongiform cloud. Astrocytic leaflets occupy most of the
astrocyte territory also known as an anatomic domain. Two insets (left and right) are zooming onto
branches and leaflets reconstructed from serial section transmission electron microscopy (TEM)
image stacks. Green—astrocyte membrane, blue—endoplasmic reticulum (ER), yellow—
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Ageing and Morphological Decline of Astrocytes

Most morphological analyses of old astrocytes utilised GFAP as the only marker.
There is no obvious decrease in the number of astrocytes in the old brain, although
the data are not uniform (Table 11.1). Similarly, morphometry of astrocytes yielded
contradictory results as both increase and decrease in size and complexity of
astrocytes were reported (Table 11.1). Immunostaining of astrocytes in 3, 9,
18 and 24 month old mice with antibodies against GFAP, glutamate synthetase
and protein S100B demonstrated complex and region-dependent changes
(Rodriguez et al. 2014). The size of GFAP-positive profiles was increased in the
CA1 region and in dentate gyrus of old hippocampus but substantially decreased in
the entorhinal cortex. Astrocytes labelled with antibody against glutamate synthetase
were smaller in old hippocampus but somewhat larger in old entorhinal cortex. Old
astrocytes immunopositive for S100B were larger in entorhinal cortex but demon-
strated no age-dependent changes in hippocampus. Neocortical astrocytes, labelled
by EGFP under the control of Adlh1l1 astrocyte-specific promoter, demonstrate
morphological atrophy with age as evidenced by the decrease of their surface area
and complexity (Yang et al. 2022).

In-depth morphological analysis was performed on astrocytes from young, adult
and old mice (3, 9 and 24 months). Astrocytes were filled with the fluorescent probe
Alexa Fluor 594 for confocal imaging and subsequent 3D reconstruction (Popov
et al. 2021). This fluorescent probe diffuses through the cytosol and reveals the full
extent of arborisation. Transition from young to adult animals was accompanied by a
substantial increase in the size and complexity of astrocytes. In contrast, ageing led
to a significant decrease in astrocytic size, volume, territorial domain and complexity
in mice (Fig. 11.3). The very similar decrease in astrocytic morphological profiles
and astrocytic complexity was observed in astrocytes in older humans, using access
tissue obtained during neurosurgery (own unpublished data). To access the state of
leaflets the volume fraction of peripheral processes (defined as the fluorescence ratio
of unresolved processes area to the astrocyte soma (Plata et al. 2018; Minge et al.

⁄�

Fig. 11.2 (continued) mitochondria, grey—dendritic spine, red—postsynaptic density. Astrocytic
branches contain organelles, whereas leaflets are organelle-free. Leaflets are interspaced with
dendritic spines, filling the space between them like paper cushions around pears packed for
shipping. Thus, most of the synapses hosted by dendritic spines interact with organelle-free leaflets,
while individual leaflets may interact with several synapses. Some dendritic spines, however, reside
in the vicinity of astrocytic branches and soma, and those synapses may have a different effect on
astrocytic Ca2+ activity. (b) Analysis of local astrocytic surface-to-volume ratio (SVR) with the
method of spheres in serial section TEM reconstruction. Astrocytic branches and leaflets have
significantly different SVR. High SVR correlates with a low volume of cytoplasm in astrocytic
leaflets, which significantly affects the dynamics of ionic gradients. Ions (e.g. Na+, Ca2+) entering
the leaflet through plasma membrane achieve high concentration faster than those entering branches
with lower SVR. Hence, the amplitude and time course of intracellular Ca2+ and Na+ transients
representing a major form of astrocytic excitability is determined by local SVR. Reproduced from
Semyanov and Verkhratsky (2021)



Table 11.1 Numbers and morphological appearance of aged astrocytes

Specie/Age/brain region
Experimental
techniques Main findings References

(continued)

260 A. Verkhratsky and A. Semyanov

Rhesus macaques/4
groups: juvenile
(5 months–2 years), ado-
lescent (3–5 years), adult
(7–12 years) and geriat-
rics (>20 years)/frontal
lobe

Immunocutochemistry,
morphometry,
neurolucida, Sholl
analysis

Astroglial density does not
change with age; astroglial
complexity increases from
juvenile to adult animals
and decreases in ageing

Robillard
et al.
(2016)

Rat (Sprague-Dawley and
Fisher-344)/ 1–18 months
(SD) 1–30 months
(F-344)/cerebrum and
cerebellum

GFAP immunohisto-
chemistry,
morphometry

Perimeter and surface area
of GFAP-positive astro-
cytes significantly
increased during attaining
adulthood; at advanced
age an increase was much
smaller

Bjorklund
et al.
(1985)

Rat (Fisher-344)/ 3 and
25 months/dentate gyrus
of the hippocampus

Electron microscopy Increase in astroglial pro-
cesses profile (41% in
numbers and 43% in vol-
ume fraction) were
detected in old specimens;
the mean number of astro-
cytes per square area did
not change with age

Geinisman
et al.
(1978)

Rat (Fisher-344)/2–3 and
24–25 months/
hippocampus

Cajal gold chloride stain Hypertrophic astrocytes
were located near the areas
of neurodegeneration and
neuronal loss

Landfield
et al.
(1977)

Rat/3 to 29.6 months/
cerebral cortex

Electron microscopy No age-dependent mor-
phological changes in
astrocytes were observed,
save an increase in
membrane-bound
inclusions

Vaughan
and Peters
(1974)

Mice/2 weeks, 8 weeks,
18 weeks, 40–42 weeks
and 50–59 weeks/hippo-
campus CA1

GFAP
immunohistochemistry

Significant increase in the
number of GFAP-positive
cells was observed in the
CA1 area of old mice

Hayakawa
et al.
(2007)

Rats, male (Wistar)/3 and
22 months/hippocampus

GFAP immunohisto-
chemistry; GFAP West-
ern blot
LPS infusion for
4 weeks
intraventricularly

GFAP protein increased in
aged mice by 108%; in
LPS-treated by 129%. The
density of GFAP-positive
astrocytes was signifi-
cantly decreased in old
rats, they demonstrate
atrophic morphology with
shorter processes; some
processes show signs of
clasmatodendrosis. On the
contrary LPS triggered

Cerbai
et al.
(2012)



Specie/Age/brain region
Experimental
techniques Main findings

(continued)
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Table 11.1 (continued)

References

hypertrophy of GFAP
profiles

Humans (18 females,
13 males)/18–93 years/
neocortex

Stereological cell count The number of astrocytes
was stable throughout the
lifespan

Pelvig et al.
(2008)

Humans (23 females)
65–105 years/neocortex

Stereological cell count The trend for reduction of
astrocyte numbers in the
oldest subjects was noted;
although it did not reach
statistical significance

Fabricius
et al.
(2013)

Mice, females (C57Bl/
6NNIA, B6)/3–4, 13–14,
20–24 months/
hippocampus

GFAP
immunolabelling, ste-
reological cell count

Ageing increased numbers
of GFAP-positive astro-
cytes by 20%

Mouton
et al.
(2002)

Mice/males (C57BL/6J)/
4–5 s, 13–14, 27–-
28 months/hippocampus

Stereological cell count No significant differences
in astrocytes numbers at
different ages were found

Long et al.
(1998)

Rats, males (Sprague-
Dawley) 12, 24 months/
frontal cortex,
hippocampus

GFAP
immunohistochemistry;

Ageing was associated
with an increase in number
of GFAP-positive astro-
cytes and an increase in
size of GFAP-positive
profiles

Amenta
et al.
(1998)

Resus monkey/males
9–10, 14–17; females
22–29 years/cortex, puta-
men, globus pallidus,
hippocampus

GFAP immunohisto-
chemistry; unbiased
stereology

Astrocytes in old animals
do not show
age-dependent changes

Kanaan
et al.
(2010)

Mice, female (albino
Swiss)/6, 20 months/
hippocampus

GFAP immunohisto-
chemistry, behavioural
tests

Number of astrocytes
increased with ageing in
the molecular layer and in
the polymorphic layer, it
remained unchanged in the
granular layer. Astrocytes
in molecular layer show
hypertrophy of GFAP-
positive profiles

Diniz et al.
(2010)

Mice, males, females
(C57BL/6)/3 months,
1, 2 years/olfactory bulb

GFAP
immunohistochemistry

Olfactory bulb astrocytes
increase in complexity
between 3 months and
1 year; while no change in
astroglial morphology or
numbers was detected in
aged animals

Klein et al.
(2020)

Humans/28 weeks of
gestation—88 years/
Subsntatia nigra

Nissl staining, GFAP,
s100B
immunohistochemistry

No significant change in
total number of glial cells
was observed in old age.

Jyothi et al.
(2015)



Specie/Age/brain region Main findings

Similarly, no major
changes in astrocyte mor-
phology were detected

2021; Popov et al. 2021)) was estimated. Volume fraction measurements are based
on the presumption that fluorescence measured from the soma reflects 100% of
astrocyte space occupancy, whereas the fluorescence measured from an optically
unresolved area is proportional to the volume fraction of astrocyte processes in any
given area (Medvedev et al. 2014). The volume fraction of astrocytic leaflets
decreases with age, which translates into decreased astrocytic coverage of synapses
(Popov et al. 2021). At the same time shrinkage of astrocytic processes and decrease
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Table 11.1 (continued)

Experimental
techniques References

Mice (C57BL6)/ 0.6,
6, 19, 24 months/
hippocampus

Golgi staining; caloric
restriction

No significant changes in
astrocytes size in old age
have been detected.
Somata of astrocytes in
calorically restricted ani-
mals were smaller than in
ad libidum fed mice

Castiglioni
Jr. et al.
(1991)

Mice(Swiss)/6,
20 months/hippocampus

GFAP immunohisto-
chemistry, behavioural
tests, 3D astrocytes
morphometry

Both ageing and environ-
mental deprivation
reduced complexity of
astrocytes; environmental
enrichment in contrast
increases astroglial com-
plexity in all ages

Diniz et al.
(2016)

Rats (Wistar)/3, 6–12,
18–25 months/retina

GFAP, S100B immuno-
histochemistry, TUNEL
assay

The number of astrocytes
decreases in old age due to
an age-dependent increase
in astroglial apoptosis

Mansour
et al.
(2008)

Mice, males (SV129/
C57BL6)/3, 9, 18,
24 months/hippocampus,
entorhinal cortex

GFAP, GS, S100B
immunohistochemsitry

GFAP profiles in old mice
showed hypertrophy in
CA1 region and in DG. In
contrast in EC GFAP-
positive profiles show a
substantial decrease in size
and complexity.
GD-positive profiles were
smaller in old hippocam-
pus and were unchanged
in EC. Finally, S100B
profiles were larger in old
EC, displayed moderate
changes in DG and no
changes in CA1

Rodriguez
et al.
(2014)

Mice (Aldh1l1-Cre/ER2),
20 months/neocortex

GFAP, EGFP expressed
in astrocytes

Aged astrocytes have
reduced surface area and
decreases complexity

Yang et al.
(2022)



in their territories affects the neuropil and opens diffusion channels which may
explain an increase in the mean diffusivity of the grey matter in elderly human
demonstrated by diffusion tensor imaging (Salminen et al. 2016). Ageing also affects
astrocytic syncytia by decreasing gap junctional coupling (Peters et al. 2009; Popov
et al. 2021). Connexin-based gap junctions connect astrocytes into functional syn-
cytia with a prominent degree of region-specific anatomical segregation (Giaume
et al. 2021). This gap junction connectivity maintains isopotentiality of astroglial
syncytia (Ma et al. 2016). Disruption of astrocytic syncytia may lead to multiple
effects on astrocytic physiology. In particular, a decrease in intercellular coupling
may lead to a loss of syncytium isopotentiality. Without isopotentiality the astro-
cytes become prone to membrane depolarisation caused by K+ accumulation during
synaptic transmission (Shih et al. 2013) that may further suppress glutamate uptake
(Tyurikova et al. 2022).
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Fig. 11.3 Age-dependent morphological decline of astrocytes. Reconstructions of mouse and
human astrocytes filled with fluorescent die Alexa Fluor 594. Human samples were access tissue
obtained during surgery. All images are authors’ own unpublished data

In conclusion, astrocytic changes in the ageing brain are complex and region-
specific. At the same time, overall decrease in astrocytic complexity and size of their
territorial domains seems to predominate in the old brains. These atrophic changes
may impact various aspects of brain functions, affecting synaptic and volume
transmission, homeostatic support of the nervous tissue and neuroprotection. Astro-
cytic morphological decline translates into functional deficits discussed in the
ensuing chapters.
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Physiology of Old Astrocytes

Astrocytes are non-excitable cells, characterised by a highly hyperpolarised (-80 to
-85 mV) resting membrane potential (reflecting high K+ permeability of their
plasmalemma), by high activity of plasmalemmal transporters providing for various
aspects of homoeostatic support and by intracellular ionic excitability (Verkhratsky
and Nedergaard 2018; Verkhratsky et al. 2020a, b). Physiological stimulation of
astrocytes triggers ion fluxes through plasmalemma and endomembranes, thus
generating ionic signals that provide a substrate for astrocytic excitability
(Verkhratsky and Nedergaard 2018; Verkhratsky et al. 1998). High resting mem-
brane potential and ionic gradients create an electrochemical driving force critical for
the normal function of astrocytic homeostatic transporters. Most of these transporters
are particularly sensitive to transmembrane Na+ and are the targets for astrocytic Na+

signalling (Rose and Verkhratsky 2016; Kirischuk et al. 2012).
There have been only a few studies of physiological properties of aged astrocytes

(Table 11.2). The resting membrane potential of astrocytes is not affected by ageing
(Lalo et al. 2011; Popov et al. 2021). Similarly, membrane input resistance is not
affected by ageing in hippocampal astrocytes (Lalo et al. 2011); however, it
increases in cortical astrocytes (Popov et al. 2021). An increase in the input resis-
tance reflects an age-dependent decrease in the size of astrocytes and decrease in the
gap junctional connectivity and uncoupling through the gap junctions. Astrocytes in
aged brains of humans and rodents express functional receptors to neurotransmitters
and generate spontaneous and induced Ca2+ signals in response to appropriate
stimulation (Lalo et al. 2011; Gomez-Gonzalo et al. 2017; Navarrete et al. 2013;
Popov et al. 2021), indicating preservation of the basic mechanism of astrocytic
excitability. Functional expression of major receptors and glutamate transporters
however does change during the lifespan. In mice, the density of AMPA, NMDA
and P2X receptors as well as the density of plasmalemmal glutamate transporter
membrane currents increases in the first 6 months of life and then sharply decreases
at the more advanced ages (Lalo et al. 2011). There are sporadic reports on
age-dependent changes in astrocytic Ca2+ signalling. For example, there are some
indications of aberrant Ca2+ signalling in aged astroglia. Spontaneous Ca2+ oscilla-
tions in Bergmann glia occur 20 times more frequently in 20 months old mice than in
young 2.5 months old controls (Mathiesen et al. 2013). Similarly, ATP-induced
astrocytic Ca2+ responses seem to decrease with age (Lalo et al. 2019).

Functional Decline of Ageing Astrocytes

Ageing is associated with a progressive decline of main astrocytic functions
(Fig. 11.4) Waning astrocytic support and neuroprotection impacts on brain active
milieu and considerably affects various neuronal functions, synaptic transmission,
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Table 11.2 Physiology of aged astrocytes

Specie/Age/Brain region Experimental techniques Main findings References

Mice/8–14,
48–80 weeks (~2.5,
20 months)
old/cerebellum,
Bergmann glia

In vivo transcranial con-
focal microscopy, Oregon
Green BAPTA-1 [Ca2+]i
recordings

Old Bergmann glial cells
demonstrated much higher
(almost 20 times) sponta-
neous [Ca2+]i activity

Mathiesen
et al.
(2013)

GFAP-EGFP mice/4,
10, 21 months/cortex

In situ recording from
astrocytes in acute corti-
cal slices, whole-cell
voltage-clamp,
two-photon microscopy,
Oregon Green BAPTA-1
[Ca2+]i recordings,
Enriched environment
together with physical
exercise, calorie restric-
tion (15%)

Old astrocytes demon-
strated decreased P2X
receptors-mediated minia-
ture EPSCs and
suppressed purinergic
Ca2+ signalling. Exposure
to enriched environment
or to calorie restrictive diet
rescued purinergic
signalling

Lalo et al.
(2019)

GFAP-EGFP mice/1,
3, 6, 9, 12, 18–-
21 months/Somato-sen-
sory cortex

In situ recording from
astrocytes in acute corti-
cal slices, whole-cell
voltage-clamp, fura-2 /
monochromator-based
[Ca2+]i recordings

The density of P2X,
NMDA and AMPA
ionotropic receptor cur-
rents, as well as the den-
sity of glutamate
transporter currants
showed bell-shaped age
dependence. All densities
peaked at 3–6 months, and
then steeply declined and
stayed unchanged in old
age. Neurotransmitter-
evoked astroglial Ca2+

signalling showed same
age dependence

Lalo et al.
(2011)

Mice (C57BL/6)/05,
5, 12, 20 months/
Somato-sensory cortex,
hippocampus

In situ recording from
astrocytes in acute corti-
cal slices, whole-cell
voltage-clamp, fluo-4 /
monochromator based
[Ca2+]i recordings

No major changes in
astroglial basic electro-
physiological parameters
as well as in astroglial
Ca2+ signalling were
detected

Gomez-
Gonzalo
et al.
(2017)

Humans, males and
females/28–59 years old/
excess tissue for tempo-
ral lobe drug-resistant
epilepsy surgery

In situ recording from
astrocytes in acute corti-
cal slices, whole-cell
voltage-clamp, fluo-4 /
monochromator based
[Ca2+]i recordings

No major differences in
electrophysiological
parameters or Ca2+ signals
were found in aged tissues

Navarrete
et al.
(2013)

Rats (Sprague–Dawley)/
3–6, 24–27 months/
hippocampus

GLAST/GLT-1 immuno-
blotting; d-[3H]aspartate
uptake (measure of gluta-
mate transport)
In situ extracellular

Protein levels of both
astroglial transporters
GLAST and GLT-1
(EAAT1/2) are signifi-
cantly decreased in old
age. This facilitates

Potier
et al.
(2010)



Specie/Age/Brain region Experimental techniques Main findings References

recordings from acute
slices

glutamate spillover, acti-
vation of extrasynaptic
NMDA and mGluR
receptors, which modulate
synaptic plasticity

Rats (fisher F-344)/3,
24 months/hippocampus

qPCR, immunoblotting,
Morris water maze
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Table 11.2 (continued)

mRNA for GLT-1 was
decreased in aged rats
which correlated with
memory impairment;
treatment with Riluzole
significantly increased
GLT-1 expression and
improved memory

Brothers
et al.
(2013)

Mice (C57BL/6)/3,
12, 24 months/
hippocampus

Whole-cell patch clamp,
Ca2+ imaging, confocal
microscopy

In old animals, astrocytic
membrane current associ-
ated with K+ and gluta-
mate uptake were reduced
indicating compromised
glutamate clearance and
K+ buffering

Popov
et al.
(2021)

neuroplasticity, and neuroprotection. Thus, age-dependent functional decline of
astrocytes contributes to cognitive deficits of the senescent brain.

Neurotransmitter Homeostasis

Astrocytes are fundamental for glutamate metabolism in the CNS. The de novo
synthesis of glutamate from glucose is confined to astrocytes; which subsequently
convert newly synthesised glutamate to glutamine, which is shuttled to neurones.
Similarly, astrocytes are the major sink for glutamate released during synaptic
transmission—astrocytes accumulate glutamate by the activity of EAAT1/2 gluta-
mate transporters. In astrocytes, glutamate undergoes conversion to glutamine
(by astrocyte-specific glutamine synthetase), which again is shuttled back to
neurones to replenish synaptic pools of glutamate and gamma-aminobutyric acid
(GABA)—the famous glutamate (GABA)glutamine shuttle (Andersen et al. 2022).

The glutamate-to-glutamine ratio increases with age, thus indicating deficiencies
in the operation of the glutamate (GABA) glutamine shuttle (Duarte et al. 2014;
Harris et al. 2014). Indeed, the expression of glutamate transporters is decreased in
astrocytes from old (24–27 months) rats, which translates into decreased glutamate
uptake (Potier et al. 2010). Similarly, glutamate transporter currents are also
decreased in hippocampal and cortical astrocytes in mice (Popov et al. 2021; Lalo
et al. 2011). In 18–21 month-old mice the density of glutamate transporter current
was only ~10–15% of that in adult animals (Lalo et al. 2011). Physiological ageing



also leads to a slight decrease in the expression of astrocytic glutamine synthetase
(Olabarria et al. 2011). In addition, a decrease in astrocytic territorial domains and
synaptic coverage may further compromise glutamate uptake and promote glutamate
spillover, thus affecting synaptic plasticity (Popov et al. 2021; Verkhratsky et al.
2021).
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Fig. 11.4 Age-dependent functional decline of astrocytes

Astrocytes are the main possessors of monoaminoxidase-B (MAO-B) which is
the central enzyme of catabolism of monoamines (Levitt et al. 1982; Westlund et al.
1988). Ageing is associated with a substantial (two- to threefold—Kumar and
Andersen 2004) increase in the levels of MAO-B, which has several detrimental
consequences for brain function. An increase in MAO-B substantially lowers the
levels of monoamines and in particular noradrenaline. This parallels the
age-dependent decline of locus coeruleus that provides for the bulk of noradrenergic
innervation of the CNS and is particularly vulnerable to age-dependent
neurodegeneration (Zorec et al. 2018). Increased levels of MAO-B promote
GABA synthesis from putrescine, thus making astrocytes a prominent source of
GABA which mediates aberrant tonic inhibition, thus affecting synaptic transmis-
sion (Jo et al. 2014; Garaschuk and Verkhratsky 2019). Finally, the major



by-product of MAO-B activity is hydrogen peroxide which may mediate neuronal
damage (Chun et al. 2020).
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Neuroglio-Vascular Unit and the Blood-Brain Barrier

Astrocytes integrate neurones, synapses, microglial cells and neighbouring
asculature into the neuro-gliovascular (or neurovascular) unit (Iadecola 2017).
Astrocytes in particular provide for dynamic regulation of the blood flow and for
control of the endothelial blood-brain barrier (BBB) by numerous mediators released
from astrocytic endfeet plastering brain vasculature (Pivoriunas and Verkhratsky
2021). Furthermore, endfeet are endowed with baroreceptors, which allow astrocytes
to sense and regulate local blood pressure (Marina et al. 2020). Age-dependent
shrinkage of astrocytes may affect their interactions with brain vessels and limit
their ability to monitor and control local functional hyperaemia. Astrocytes are in
close functional relation with endotheliocytes and pericytes, continuously
supporting the integrity of the BBB (Sweeney et al. 2019; Pivoriunas and
Verkhratsky 2021).

Ageing is associated with the restructuring of blood vessels and a decrease in
blood supply (Amin-Hanjani et al. 2015), which affects energy metabolism of the
nervous tissue. There are some indications that ageing affects the astrocytic secretion
of vasoactive agents arachidonic acid and eicosanoids, which may affect local
neurovascular coupling (Keleshian et al. 2013; Tarantini et al. 2017). Ageing also
leads to a decline in the BBB function (Montagne et al. 2015; Nation et al. 2019).

Interrogating aged BBB at the ultrastructural level demonstrates the increased
thickness of capillary walls and basement membranes; in addition, the area of the
astrocyte endfeet surrounding the capillaries increases with age (Bors et al. 2018).
There are also some indications that astrocytes lose their ability to regulate tight
junction expression in the context of neurodegeneration (Kriauciunaite et al. 2020);
whether a similar loss of function occurs in physiological ageing remains to be
investigated. In conclusion, brain ageing is accompanied by a progressive decline in
the functional performance of the neurogliovascular unit.

Neurogenesis

The neural stem cells responsible for adult neurogenesis are radial stem astrocytes
and tanycytes (Verkhratsky and Nedergaard 2018) localised in several neurogenic
niches. These cells combine features of stem cells and homeostatic astrocytes: they
form perivascular endfeet and, through distal processes and leaflets, provide for
synaptic coverage (Mirzadeh et al. 2008; Moss et al. 2016). Ageing reduces neuro-
genic capacity in all neurogenic zones due to a suppression of asymmetric division
of radial stem astrocytes (Ben Abdallah et al. 2010; Bouab et al. 2011). Of note,



pathological ageing and neurodegenerative processes cause much more prominent
suppression of radial stem astrocytes associated with prominent and rapid fall of
neurogenesis (Rodriguez et al. 2008; Rodriguez and Verkhratsky 2011).
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Age-Dependent Decline of the Glymphatic System

Astrocytes, through their endfeet, glia limitans and endfeet-associated aquaporin
4 (AQP4) water channels make a fundamental component of the pan-CNS waste-
collecting mechanism known as a glymphatic system (Nedergaard 2013). Ageing is
associated with the loss of specific attachment of AQP4 to the endfeet which causes a
40% decline in the operational capacity of the glymphatic system (Kress et al. 2014),
with an obvious impact on brain health. Of note, even more severe decline of the
glymphatic system accompanies neurodegenerative diseases (Peng et al. 2016).

Ageing Impairs Astroglial Metabolic Support

Ageing increases astroglial oxidative metabolism, which may limit their ability to
produce intermediates of glycolysis and to supply neurones with energy substrates
(Jiang and Cadenas 2014). This is further corroborated by evidence indicating
reduced astrocytic lactate production and hence reduced operation of lactate shuttle.
Furthermore, there are indications that ageing reduces the astroglial ability to
produce lactate and hence to operate the lactate shuttle (Harris et al. 2015).

Ageing and Astrocytic Mitochondria

Astrocytes contribute to neuronal well-being and energy metabolism through
transmitophagy, in which astrocytes accumulate and destroy damaged neuronal
mitochondria and possibly supply neurons with healthy organelles (Davis et al.
2014; Hayakawa et al. 2016). Age-dependent astroglial atrophy may conceivably
affect this pathway, thus limiting neuroprotection.

Cholesterol Synthesis

Astrocytes are the main source of cholesterol in the CNS being thus indispensable
for feeding neurons with building blocks for synaptogenesis and morphological
plasticity (Mauch et al. 2001). Cholesterol synthesis declines with ageing reflecting



down-regulation of the main synthesising enzyme HMG-CoA reductase (Boisvert
et al. 2018), which limits neuronal remodelling and plasticity.
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Astrocytic homeostatic support and defensive capabilities are critical elements for
neuroprotection (Pekny et al. 2016). Astrocytes are, for example, the main providers
for CNS defence against reactive oxygen species (ROS). Astrocytes are indispens-
able elements for the synthesis of glutathione and reduction of ascorbic acid, both
being the main ROS scavengers in the nervous tissue (Makar et al. 1994). In ageing,
astrocytic production of glutathione is decreased thus increasing neuronal vulnera-
bility to oxidative stress (Emir et al. 2011; Maher 2005). Ageing is also associated
with a decline in astrocytic reactivity, which together with age-dependent microglial
dystrophy paves the way for neurodegenerative diseases (Verkhratsky et al. 2015).

Conclusions

Ageing is associated with the decline of astrocytes: they become smaller, less
complex and lose their ability to support and protect the nervous tissue.
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Chapter 12
Hearing and Ageing

Mariapia Guerrieri, Roberta Di Mauro, Stefano Di Girolamo,
and Arianna Di Stadio

Abstract Age-related hearing loss (ARHL), or presbycusis, occurs in most mam-
mals, humans included, with a different age of onset and magnitude of loss. It is
associated with two major symptoms: loss of sensitivity to sound, especially for high
pitches, and a reduced ability to understand speech in background noise. This
phenomenon involves both the peripheral structures of the inner ear and the central
acoustic pathways. Several mechanisms have been identified as pro-ageing in the
human cochlea. The main one is the oxidative stress. The inner ear physiological
degeneration can be affected by both intrinsic conditions, such as genetic predispo-
sition, and extrinsic ones, such as noise exposure. The magnitude of neuronal loss
precedes and exceeds that of inner hair cell loss, which is also less important than the
loss of outer hair cells. Patients with HL often develop atrophy of the temporal lobe
(auditory cortex) and brain gliosis can contribute to the development of a central
hearing loss. The presence of white matter hyperintensities (WMHs) on the MRI,
which is radiologic representation of brain gliosis, can justify a central HL due to
demyelination in the superior auditory pathways. Recently, the presence of WMHs
has been correlated with the inability to correctly understand words in elderly with
normal auditory thresholds.
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Introduction

Age-related hearing loss (ARHL), or presbycusis, occurs in most mammals, humans
included, with a different age of onset and magnitude of loss (Keithley 2020). It is
associated with two major symptoms: loss of sensitivity to sound, especially for high
pitches, and a reduced ability to understand speech in background noise (Frisina
2001). It is usually evaluated with pure-tone audiometry (PTA), which shows a
peculiar descending pattern with the major threshold shift on the high frequencies.

This phenomenon involves both the peripheral structures of the inner ear and the
central acoustic pathways, with a wide interplay of different factors that contribute to
various degrees to the onset and evolution of this condition.

Among these factors, long-term noise exposure is certainly one of the most
studied, as evidence shows it causes cell degeneration in the cochlea, namely on
the outer hair cells, but it is not the only element that acts on the inner ear. Genetic
conditions, ototoxic drugs, and systemic pathologies which usually afflict the
elderlies play, in fact, an important role in the ageing ear, even if not yet thoroughly
understood.

On the other hand, hearing ageing is also the result of central nervous system
rearrangements that physiologically occur during the years, such as brain atrophy,
vascular impairment, and neurodegeneration, that eventually affect also the auditory
pathways.

Peripheral Hearing Loss

Every ageing process results from a combination of biological degeneration, extrin-
sic and intrinsic damage. It occurs in many mammals, yet it does not affect
individuals uniformly, nor does it appear to be uniform even within a single person
(Wang and Puel 2020).

ARHL starts in the high-frequency region of the auditory spectrum and proceeds
towards the low-frequency region with age, causing a deterioration in threshold
sensitivity, difficulty in speech discrimination, sound detection and localization,
especially in noisy environments.

Some authors analysed human temporal tones and classified ARHL into three
major forms:

1. Sensory presbycusis: characterized by a rough pure-tone threshold elevation at
high frequencies, associated with the loss of hair cells at the basal end of the
cochlea.

2. Strial presbycusis: it shows a flat or gently descending pattern at the pure-tone
audiogram, correlated with atrophy of the stria vascularis.

3. Neural presbycusis: caused by the loss of cochlear neurons throughout the whole
cochlea (Schuknecht and Gacek 1993).
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ARHL is a progressive, irreversible, symmetrical, and bilateral neuro-sensory
hearing loss resulting from the degeneration of the inner ear structures such as the
stria vascularis, the hair cells, mostly the outer ones, and the spiral ganglion cells.

The magnitude of neuronal loss precedes and exceeds that of inner hair cell loss,
which is also less important than the loss of outer hair cells. OHCs loss, in fact,
affects both the basal and the apical end of the human cochlea, causing a loss of
amplification that is more evident for high frequencies, thus leading to the typical
descending pattern at the pure-tone audiogram (Keithley 2020).

Several mechanisms have been identified as pro-ageing in the human cochlea.
The main one is the oxidative stress. The cochlea is in fact a high energy-demanding
tissue, with a high number of mitochondria, which inevitably produce reactive
oxygen species (ROS). Despite intrinsic protecting mechanisms, ROS-induced
DNA damage involves both nuclear and mitochondrial DNA (mtDNA), which is
responsible for cochlear cell senescence (Benkafadar et al. 2019). The incidence and
frequency of mtDNA point mutations and deletions increase exponentially with age
and the accumulation of these mutations and deletions may promote mitochondrial
dysfunction and mitochondrial redox imbalance leading to cochlear cell ageing.

Other factors have shown to have a role in the physiological functioning of the
cochlea. Insulin-like growth factor 1 (IGF-1), for example, has been proven as
otoprotective, as it has been shown to maintain the cochlear ribbon synapse
ex vivo and it modulates neuroinflammation. IGF-1 age-related downregulation is
a pro-inflammatory condition that contributes to the pathogenesis of ARHL (Celaya
et al. 2021).

The inner ear physiological degeneration can be affected by both intrinsic con-
ditions, such as genetic predisposition, and extrinsic ones, such as noise exposure.

Genetics

Presbycusis has a clear familial association. There are likely plenty of genes and
combinations of genes with subtle variants that make an individual more, or less,
susceptible to ARHL, including genes that relate to susceptibility to acoustic trauma
(Keithley 2020).

The search for specific genes linked to presbycusis is still a work in progress,
complicated by the numerous interactions between genetic variants that lead to
different phenotypes; nevertheless, polymorphisms in some monogenic deafness-
causing genes, neurotransmitter-related genes, and genes involved in detoxification
of oxidative stress and mitochondrial function have been clearly associated with
ARHL (Wang and Puel 2020).

Mendelian genetics does not explain alone the genetic expression, as other
epigenetic mechanisms are involved, such as DNA methylation and histone modi-
fication. Several studies have in fact demonstrated that aberrant DNA
hypermethylation of specific genes, such as the promoter region of GJB2 protein,
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correlated with ARHL (Bouzid et al. 2018; Wu et al. 2014; Zhao et al. 2015).
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Noise Exposure

It has been reported that in a cohort unscreened for noise exposure, ototoxic drug
exposure, and otologic disease history, presbycusis develops earlier and to a greater
extent than in a highly screened cohort (without history of significant noise exposure
or diseases that affect the ear) (Guest et al. 2012).

Acoustic overexposure can cause synaptopathy between the auditory nerve fibres
and the inner hair cells. This slowly leads to the loss of peripheral axons of bipolar
sensory neurons, and subsequently to the degeneration of the cell body in the spiral
ganglion. This partial deafferentation of the hair cells only affects the threshold when
it exceeds the 80% of acoustic fibres involved. The loss of acoustic nerve fibres is
responsible for the common poor speech discrimination that can be seen in ARHL
(Wu et al. 2021). Noise damage is showed as a peculiar “notched” audiogram with
the worst threshold shift ad 4 kHz (McBride 2001).

As the years of exposure pass, the 4 kHz damage spreads towards the higher
frequencies, as the basal end of the cochlea is more vulnerable to mechanical insults.
With ageing, though, the noise-induced hearing loss (NIHL) converges with the
audiometric pattern and cochlear damage of the normal ARHL, suggesting that
noise-induced damage occurs on the same inner ear structures that are vulnerable
to ageing, namely OHCs located at the basal end of the cochlea. Perhaps, much of
“normal” cochlear ageing in humans is the result of a slow accumulation of ear abuse
(Wu et al. 2021).

Central Hearing Loss

Patients with HL often develop atrophy of the temporal lobe (auditory cortex) and
brain gliosis, can contribute to the development of a central hearing loss (Gouw et al.
2008).

Brain atrophy and brain gliosis have common risk factors which include athero-
sclerosis, cardiovascular disease, smoking, and diabetes (Chang et al. 2016;
Livingston et al. 2017; Lourenco et al. 2018; Uchida et al. 2010; Wolters et al.
2018). These conditions are associated, by a variety of mechanisms such as the
reduction of the brain vascular flow at the base of brain, with brain atrophy (Lin et al.
2014; Qian et al. 2017) or the gliosis observed in the elderly (Di Stadio et al. 2020).

Magnetic resonance imaging (MRI) studies have shown that brain atrophy is
focal, located in the temporal lobe in case of HL (Lin et al. 2014; Qian et al. 2017).
The progressive extension of the atrophy from the temporal lobe to other areas of the
brain can affect other areas, as for example the one of the memory (Di Stadio et al.



2020); an alteration in the signal transmission between the neurons in the area of the
memory can result in the loss of the ability to identify words (recalling the word even
without its entire understanding) that interfere with speech perception test results
(Di Stadio et al. 2020).
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Fig. 12.1 Left: The red arrow shows the atrophy of right temporal lobe of the brain, compared with
the normal left side (grey arrow). Right: the red arrow shows several white matter hyperintensities in
the brain of a 60-year-old patient affected by severe ARHL

The presence of white matter hyperintensities (WMHs) on the MRI, which is a
radiologic representation of brain gliosis, can cause a central HL due to demyelin-
ation in the superior auditory pathways (Fusconi et al. 2019). Recently, the presence
of WMHs has been correlated with the inability to correctly understand words in
elderly with normal auditory thresholds (Di Stadio et al. 2020). The authors identi-
fied a negative correlation between the increasing number of WMHs and the
worsening of speech understanding, suggesting that the spread of the lesions could
cause difficulty in correctly identifying words. WMHs, depending on the site in
which they are located, might be associated with both conditions; in the auditory
cortex they can contribute to the speech discrimination difficulties, while in temporal
area, they may contribute to the inability of correctly perceiving the sounds
(Di Stadio et al. 2020; Gouw et al. 2008; Lin et al. 2014).

A possible explanation regarding the correlation between WMHs and hearing
symptoms could be found in the study of Braffman and colleagues. The authors
conducted a post-mortem study on 23 patients over 60 years of age and found a
correlation between WMHs identified by MRI and the anatomopathological findings
of the same patients (Braffman et al. 1988). According to these results, we speculate
that gliosis altering the synaptic transmission (Brun et al. 1995) could be responsible
for the central HL based on the site involved by the gliotic process (Bilello et al.
2015) (Fig. 12.1).

The presence of the apolipoprotein e4 (APOE4) allele (Kurniawan et al. 2012)
has been correlated with a higher susceptibility to develop severe form of
age-related HL.
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The alteration of mitochondrial metabolism caused by Reactive Oxygen Species
(ROS) induces mtDNA mutations or deletions (Yamasoba et al. 2013), reducing the
production of ATP that is necessary for a correct function of the inner ear cells
(Di Stadio et al. 2018a). These two concepts are supported by recent discoveries
(Fetoni et al. 2019) which evidenced an increased level of ROS in patients suffering
from HL; the researchers identified that patients with specific apolipoprotein E
(APOE) genotype were the ones that more commonly had an increased level of
circulating ROS (Guo et al. 2005). The excess of ROS, other than determining
mitochondrial dysmetabolism, stimulates the activation of pro-inflammatory
microglia (M1) in noise-induced HL (Fuentes-Santamaría et al. 2017). M1
microglia, once activated, produce ROS that consequently fuels additional M1
activation, (Di Stadio and Angelini 2019) enabling a perpetual inflammatory cycle.
Moreover, oxidative stress can cause a direct damage to the inner ear destroying the
inner ear cells and the spiral ganglions (Ralli et al. 2017). Recently, Di Stadio et al.
(2018b) showed that microglia cells are active in the relapsing phase of neurode-
generative diseases and could be responsible of the HL observed in the patients
affected by Multiple Sclerosis, maybe attacking the peripheral or the central auditory
pathways (Di Mauro et al. 2019; Di Stadio and Ralli 2018).

Microglia has a relevant role in age-related hearing loss as shown by Tremblay
and colleagues; in fact, with ageing processes these cells present an irregular
distribution, a modified morphology and accumulate phagocytic inclusion and
often displaying ultrastructural features of synaptic elements. Furthermore, these
workers identified a series of myelinations defects, concluding that the age-related
alteration of glial cells in sensory cortical areas can be accelerated by activity-driven
central mechanisms that result from an age-related HL (Tremblay et al. 2012).

Another biomolecular explanation of central HL might be the action of NOD-like
receptor protein 3 (NLRP3) inflammasomes that are responsible of ROS accumula-
tion into the cells. Animal studies have shown that NLRP3 increases in the inner ear
of ageing mice; NLRP3, as a sensor protein of ROS, might contribute to
inflammasome assembly and subsequent inflammation in the cochleae and might
play a role in age-related HL (presbycusis) (Nakanishi et al. 2018). These animal
findings are supported by human evidence. In fact, Nakanishi et al. (2018) analysed a
sample of patients with DFNA 34 HL identified in the missense substitution in the
NLRP3 gene as responsible of progressive HL. The genetic alteration determined
production of a modified protein, which made NLPR3-inflammasome responsible of
the auto-inflammatory cascade, thus destroying the inner ear cells (Jin et al. 2019;
Nakanishi et al. 2018) (Fig. 12.2).
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Fig. 12.2 The vignette summarizes the metabolic alterations of mitochondria and how these
alterations cause both peripheral and central hearing loss. Regarding peripheral hearing loss, both
spiral ganglion loss (pink egg fried images) and hair cell death (green→outer; violet→inner) can
cause ARHL

The Effect of Hearing Rehabilitation on Brain and Cellular
Functions

Functional MRI (fMRI) studies have shown that both congenital deafness
(pre-lingual) (Wolak et al. 2019) and acquired sensorineural hearing loss (SNHL)
(post-lingual) (Ghiselli et al. 2020) can alter the normal brain connectivity indepen-
dently of age. Patients with acquired SNHL showed better connectivity between
different areas of brain (cortex, parietal, and hippocampus) compared to the subjects
with pre-lingual deafness; however, the use of hearing aids (HAs) was extremely
useful to restore the normal brain connectivity (Patel et al. 2007; Pereira-Jorge et al.
2018). In particular, comparing the subjects’ brain area before and after use of a HA,
the researchers noted that cortical thickness increased in multimodal integration
regions, particularly the very caudal end of the superior temporal sulcus, the angular
gyrus, and the inferior parietal gyrus/superior temporal gyrus/insula (Pereira-Jorge
et al. 2018).

HAs can also have a biomolecular effect, as the use of HA stimulates the astrocyte
function and the activation of M2 microglia (Rosskothen-Kuhl et al. 2018).
Researchers studied a sample of animals with deafness comparing the brain of the
ones treated with cochlear implant (CI) with the ones without treatment and evalu-
ated the effect on astrocytes and microglia. The hearing recovery may activate the
anti-inflammatory microglia (M2) in the temporal lobe and, thanks to the capacity of



these cells of repairing gliosis, the brain connection might be restored and functions
recovered (Fuentes-Santamaría et al. 2012).
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Histopathology of the Ageing Ear

According to the classification made by Schuknecht and Gacek (1993), sensory cell
losses are the least important type of loss in the aged ear (Fig. 12.3 right side); neural
losses are constant and predictable expressions of ageing (Fig. 12.4) and atrophy of

Fig. 12.3 Cochlea affected by ageing process. Vascular stria atrophy (left) and loss of the outer
cells in the organ of Corti (right) (normal on the top RHS)

Fig. 12.4 Cochlea affected by ageing process. The spiral ganglions are preserved in middle turn of
the cochlea and lost in the basal portion



the stria vascularis (Fig. 12.3 left side) is the predominant lesion of the ageing ear.
On the contrary, all structures are normally represented in the young ear (Fig. 12.5).
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Fig. 12.5 Normal anatomy of human cochlea

Conclusions

Ageing can cause both peripheral and central hearing loss. The alteration of cellular
metabolisms caused by age progression and some risk factors such as
hypercholesterol, hypertension, and cardiac diseases can cause the death of the
hair cells and spiral ganglions in the inner ear, degeneration of the cochlear nerves,
and demyelination in the superior auditory pathways as temporal lobe and cortex.
The use of hearing aids can invert the process thanks to their effect at a cellular level.
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Chapter 13
Melatonin and Aging

Stephen C. Bondy

Abstract The health problems associated with the aging process are becoming
increasingly widespread due to the increase in mean life expectancy taking place
globally. While decline of many organ functions is an unavoidable concomitant of
senescence, these can be delayed or moderated by a range of factors. Among these
are dietary changes and weight control, taking sufficient exercise, and the utilization
of various micronutrients. The utility of incurring appropriate changes in lifestyle is
generally not confined to a single organ system but has a broadly positive systemic
effect.

Among one of the most potent means of slowing down age-related changes is the
use of melatonin, a widely distributed biological indole. While melatonin is well
known as a treatment for insomnia, it has a wide range of beneficial qualities many of
which are relevant. This overview describes how several of the properties of
melatonin are especially relevant to many of the changes associated with senescence.
Changes in functioning of the immune system are particularly marked in the aged,
combining diminishing effectiveness with increasing ineffective and harmful activ-
ity. Melatonin treatment appears able to moderate and partially reverse this detri-
mental drift toward immune incompetence.

Keywords Melatonin · Cancer · Cardiac disease · Cerebrovascular disease ·
Diabetes · Frailty · Immune competence · Receptor activation · SARS-CoV-2
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Introduction

Melatonin is synthesized from tryptophan and is widely distributed among both
plant, animal and bacterial phyla. This breadth of dispersal suggests an ancient origin
and its current retention in its original form suggests that it must play one or more
important biological roles.

From the earliest times to the present, it seems as though melatonin has acted
continuously in a distinct pattern:

1. Melatonin is a light-sensitive factor. It may have originated as preventing cell
damage due to sunlight (Roopin et al. 2013). However, in mammals it fluxes in a
circadian manner, release being depressed by light and elevated during darkness.
This may have its origins in the earliest role of melatonin in protecting organisms
from the oxidative stress during hours of sunlight, and in consequence, being
degraded at that time (Bonmati-Carrion and Tomas-Loba 2021).

2. In the Vertebrata, a subphylum of Chordata, melatonin is able to act on a large-
range metabolic events in a broadly protective manner. In plants and unicellular
organisms, melatonin has been reported as preventing cell damage caused by a
host of stress factors including drought, excessive salinity, oxidative damage,
extreme heat or cold, overcrowding, predators, and the presence of toxic heavy
metals (Park et al. 2020; Sun et al. 2020; Schwarzenberger et al. 2014).

3. While melatonin may have originated as a direct antioxidant, its low intracellular
concentration and multitude of effects imply an ability to influence gene expres-
sion. This is evidenced by the existence of several receptor species whose activity
is modulated by melatonin. There is good evidence for a role for melatonin in
many signal transduction pathways, despite limited knowledge of the exact
mechanism involved.

Given the major extension of longevity of mankind during the last century, and
the many deleterious consequences of aging, it is critical to find means of reducing
the effects of both harmful exogenous factors to which the aged are exposed for a
longer duration. In addition, it would be useful to sustain the efficiency of intrinsic
metabolic events which are inevitably in decline.

Unsurprisingly, senescence is characterized by increased incidence of most of the
key causes of mortality. Aging is unquestionably the greatest risk factor for incurring
many chronic diseases. In those over 65 years of age, the five leading causes of death
are cancer, Alzheimer’s disease, diabetes, heart disease, and cerebrovascular disease
(stroke) (Diaconu et al. 2020). Most of these are to some degree underlain by slow
developing changes which gradually convert to a visibly pathological state over an
extended period. The effect of melatonin on each of these is discussed. While
melatonin may address specific deficits associated with each disease, some of its
utility may reside in its ability to slow the overall non-pathological aging processes.
This alone would serve to reduce the incidence of these disorders all of which are
increased with age.
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Melatonin and Diseases Where Aging Is a Potential
Comorbidity

Cancer

Age is one of the main risk factors of incurring cancer and many of the changes
associated with aging can account for this. Decline of competent immune function is
likely a major contributor. The connection between cancer and the immune system is
binary. An efficacious immune response can lead to invasion of and destruction of
abnormal cells even prior to completion of their progression toward a transformed
phenotype (Cham and Chase 2012). This preventive mechanism is likely to occur
daily in normal individuals. On the other hand, persistent unresolved inflammatory
activity typifies both the pre-cancerous and cancer condition. Superimposed on this
is the close relation between inflammatory activity and the presence of oxidative
stress. Both of these can create an environment that facilitates the trajectory of
initiation and promotion of carcinogenesis (Murata 2018). The continued presence
of inflammatory cytokines such as TNF-α, IL-6, TGF-β, and IL-10 therefore
advances the progression of cancer (Landskron et al. 2014). However, reactive
macrophages can also have antitumor effects by promotion of apoptosis. They can
exist in either a pro-inflammatory M1 state, enhancing immune responses and
thereby suppressing cancer, or in an immunosuppressive M2 state which protects
cancer cells from immune attack (den Breems and Eftimie 2016). The classical
M2/M1 distinction is overly simplistic as M1-induced inflammation can also pro-
mote tumor metastasis (Cho et al. 2018) and M2 macrophages are also present in
tumors (Na et al. 2018). Despite the ability of melatonin to promote the conversion
of M2 to M1 macrophages and thereby reduce stress-induced inflammation conse-
quent to injury, melatonin has never been reported as carcinogenic (Yi and Kim
2017; Zhang et al. 2019).

We have reported treatment of very old mice (over 20 months of age at the start
of treatment) with 40 ppm dietary melatonin for 3 months, to lead to a 60% reduction
of incidence of tumors (Sharman et al. 2011). In addition, the mean size of any size
of tumors in aged mice treated in this manner was considerably less than in tumors
found in control mice. Finally, the total death rate of mice during the course of the
study was lower in mice receiving melatonin. At the end of the study, when mice
were 26 months old there was 50% reduction of mortality in treated mice from 18%
in untreated, to 9%.

There are several reports of a reduced incidence of tumors and their slower
progression, in animals subjected to carcinogens or tumor cells when receiving
melatonin (Samec et al. 2021). These findings are likely to be relevant to humans,
as age-related changes in expression of specific genes have clear parallels between
humans and mice (Sharman et al. 2004). The addition of melatonin to clinical
therapeutic protocols appears to enhance the effectiveness of chemotherapeutic
agents and radiation procedures and diminishes the severity of undesirable side
effects (González et al. 2021; Sezen et al. 2021). The large number of actions of



melatonin that may potentially function in retardation of tumor initiation and devel-
opment have recently been summarized (Bonmati-Carrion and Tomas-Loba 2021).
These include regulation of clock genes, inhibition of angiogenesis, activation of
apoptotic events, and protection of cell–cell anchoring proteins, thus retarding
metastasis.
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This is superimposed upon the upsurge of inflammation found in the brain with
normal aging. Such exacerbation of neuroinflammation which is found in both
human AD and animal models of this disease (Liu et al. 2015; Hu et al. 2019)
may reflect impaired glial function. The properties of melatonin in enabling the
modulation of immune function imply that it may be useful in the treatment of
AD. Melatonin has also been reported to enhance α-secretase activity (which
facilitates non-pathogenic processing of amyloid precursor protein), APP while
inhibiting the transcription of β- and γ-secretases (which further the conversion of
APP into a more pathogenic form), amyloid-β, capable of forming amyloid plaques
(Li et al. 2020; Bondy and Campbell 2018). Overall, melatonin usage in a clinical
setting increases the likelihood of substantial reductions in cancer incidence at little
cost and with minimal risk of adverse side effects.

The restraining influence of melatonin on cancer progression may be mediated by
increased activity of the microRNA, miR-152-3p (Marques et al. 2018), elevation of
sirtuin-1, SIRT1, or modulation of various signaling pathways (Hardeland 2019). It
has been claimed that “melatonin represents the only molecule existing in nature that
is potentially capable of suppressing the overall phases of cancer development,
progression, invasion, and neoangiogenesis” (Giudice et al. 2018).

Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is broadly prevalent among the elderly and is a major
cause of disability and eventual death. AD is associated with excessive immune
activity within the brain, which seems to be caused by the deviant processing of
amyloid precursor protein. Both the innate and adaptive immune system contribute
to this extended and unproductive neuroinflammation (Lutshumba et al. 2021). This
leads to formation of abnormal amyloid peptides which can coalesce and form the
senile plaques characteristic of AD pathology (Forloni and Balducci 2018). Inter-
estingly, people suffering from systemic inflammation or various autoimmune
disorders are more prone to develop dementia (Atzeni et al. 2017). The levels of
several markers of inflammation are elevated in the brains of Alzheimer patients
(Calsolaro and Edison 2016).

In a genetic mouse model of AD, melatonin both restored functioning of the
mitochondrial electron transport chain while enhancing mitophagy of aberrant
mitochondria (Chen et al. 2021). Nevertheless, in a clinical setting the use of
melatonin or its analogs has not shown really pronounced effects on AD progression.
Positive effects are largely confined to improved sleep patterns resulting in less
delirium which are often disrupted in AD. In some studies, this has resulted in



reduced delirium (Hatta et al. 2014) and mental status (Sumsuzzman et al. 2021), but
these findings remain controversial. Regrettably, a large number of phytochemicals
that have also been found beneficial in cell culture of animal models of many
neurological disorders have never been firmly established as of value in human
disease (Soo et al. 2020).
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Poor sleep quality has long been associated with both pre-clinical and clinical
AD. The intensity of sleeping pattern disruption in AD has been related to the degree
of the amyloid burden, and to the extent of cognitive and memory deficits. The
ability of melatonin to restore a more regular sleeping profile may account for its
positive effects on both insomnia and cardiovascular disease (Zisapel 2018).

Diabetes

The risk for Type-2 diabetes (T2D) is associated with a non-coding single nucleotide
polymorphism (SNP) of the gene MTNR1B, encoding melatonin receptor 2 (MT2)
(Bonnefond and Froguel 2017). However, since loss of function of other MT2
receptor variants is associated with elevated risk for T2D, the role of melatonin
signaling in insulin secretion remains obscure (Karamitri and Jockers 2019). Rec-
onciliation of conflicting results has been suggested to involve the relative timing
between peak melatonin concentrations and a glycemic challenge (Garaulet et al.
2020). The disruption of circadian cycles found with chronic obesity may increase
the risk of developing diabetes (Otamas et al. 2020) and the restoration of normal
circadian cycling may be a means by which melatonin can improve diabetes.

Excessive weight gain is associated with increased mortality in the elderly,
afflicted with several disease states in addition to diabetes (hypertension, coronary
disease, several types of cancer) (Cheng et al. 2015). However, it is discussed in this
section as metabolic syndrome has a strong relation to diabetes. Melatonin supple-
mentation has been found to moderate weight gain in both rodent models and clinical
obesity trials (Genario et al. 2021; de Farias et al. 2019).

Diabetic neuropathy is a common and serious complication of T2D. The utility of
melatonin treatment to ameliorate such retinal changes has been suggested using
several experimental models (Mehrzadi et al. 2018; Tu et al. 2021).

It has also been suggested that reduction in melatonin production in the aged may
contribute to obesity by promotion of insulin resistance and disruption of circadian
metabolic fluxes (Cipolla-Neto et al. 2014). These findings imply that melatonin
complementary therapy can play a vital role in reestablishing better health in
individuals with chronic metabolic diseases.
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Cardiac Disease, Cerebrovascular Disease

The prevalence of hypertension increases with aging. As a result of increasing
stiffness of the arterial wall, a large proportion of the elderly have isolated systolic
hypertension (Rubio-Guerra et al. 2015). The evidence strongly supports that hyper-
tension in the elderly is associated with an increase in stroke risk and cardiovascular
mortality and morbidity. The risk of cerebrovascular disease is higher in patients
with autoimmune diseases including systemic lupus erythematosus and arthritis
(Wiseman et al. 2016). Recruitment of immune active cells to the arterial wall is
characteristic of the atherosclerotic artery (Tellides and Pober 2015) and seems to be
related to plaque deposition. The antigens likely to be involved in the development
of atherosclerosis include oxidized low density lipoprotein (LDL) and apolipopro-
tein H (Tabas and Lichtman 2017). A similar penetration of immune cells into the
vascular wall is found in hypertension. Macrophages are able to activate inflamma-
tory events even in the apparent absence of a stimulating antigen. Genetically
deficient mice lacking macrophages have a reduced hypertensive response to agents
that raise blood pressure (Luft et al. 2012). In a mouse model of atherosclerosis,
melatonin therapy, by activation of the Sirt3/FOXO3a/Parkin signaling pathway,
blocked the activity of the NLRP3 inflammasome and thus inhibited progression of
atherosclerotic plaque formation (Ma et al. 2018). Although no causal relation has
been clearly established, nocturnal melatonin secretion is severely in reduced in
patients with coronary heart disease (Yaprak et al. 2003). Unfortunately, most of the
reports of the utility of melatonin in arterial plaque formation come from experi-
ments using animals modeling atherosclerosis (Ding et al. 2019; Li et al. 2019a, b).
Success with such models has often not translated to success in the clinic. Since the
toxicity of melatonin has repeatedly been found to be very low, more clinical study is
urgently needed. The lack of significant commercial viability of melatonin has
resulted in very few major clinical trials as to its beneficial potential.

Melatonin has been reported to have value in a clinical setting in the treatment of
patients with hypertension (Koziróg et al. 2011; Gubin et al. 2016) but this has
recently not been confirmed (Rahbari-Oskoui et al. 2019). Since patients not
expressing reduced blood pressure at night (“non-dippers”) do not respond to
exogenous melatonin (Rechciński et al. 2010), the circadian features of melatonin
levels must be taken into account. Beneficial effects of melatonin administration
have been reported in several rodent models of hypertension (Simko et al. 2018; Zuo
and Jiang 2020), despite a clear reduction of blood pressure by melatonin in a
spontaneously hypertensive rat strain (Tain et al. 2010). The issues of time of
melatonin administration and type of hypertension (nocturnal “dippers” vs. “non-
dippers”) are probably critical and may account for some apparent discrepancies in
the literature. Some of the conflicting data published concerning blood pressure and
melatonin is also likely to result from great variance in the dose administered. For
example, while a dose of 2 mg nightly had no effect on diastolic or systolic blood
pressure (Kim et al. 2021), the use of 6 or 250 mg melatonin per night reduced both
of these parameters (Bahrami et al. 2020; Bazyar et al. 2021).
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Frailty

General muscle atrophy characterizes senescence and this cannot be completely
attributed to lack of exercise. Melatonin, perhaps by scavenging of free radicals,
may help to maintain mitochondrial effectiveness with aging and has been shown to
be protective against sarcopenia in aged animals (Stacchiotti et al. 2020). Such
protective changes may be mediated by activation of sirtuin-1 (Cristòfol et al.
2012) and modulation of the actions of the NLRP3 inflammasome (Sayed et al.
2021). Among the aged, levels of the microRNA miR-223 are associated with
increased activation of NF-kB based inflammatory pathway. The increased expres-
sion miRNA-483 with aging leads to a decrease in melatonin secretion and this play
a role in the onset of sarcopenia in the elderly (Jin et al. 2021). Age-related increases
of the related miR-21 were especially pronounced among the subgroup of the aged
experiencing frailty (Rusanova et al. 2018). The plasma content of miRNA-21 is
higher in cardiovascular patients with high levels of inflammation than in
age-matched controls, as judged by C-reactive protein level (Olivieri et al. 2012).
The expression of all of these miRNAs can be reduced in aged animals by admin-
istration of exogenous melatonin (Sayed et al. 2021).

SARS-CoV-2

COVID-19 is especially severe among the elderly and the violence of the ensuing
inflammatory response (“cytokine storm”) can be deadly. This may be due to two
key immune failures associated with senescence. These features make the aged more
vulnerable than younger cohorts to any bacterial or viral attack. Firstly, the precision
of immune responses becomes increasingly compromised with age. Such
immunosenescence involves decline of both innate and adaptive components of
the immune system (Nikolich-Žugich 2018). This means that there is less protection
against viral incursion and dissemination throughout the body. Second, the failure to
respond effectively to vaccines is paralleled by an increasing degree of fruitless
systemic inflammatory activity without a distinct goal (Pereira et al. 2020). This can
be very damaging to tissues and accounts for most of the lethality of COVID-19.
Melatonin is known to address both of these age-associated shortcomings of immune
function, so it has been suggested as of use in treatment of COVID-19 (Cardinali
2021), but no clinical studies have been reported to date. However, the cytokine
storm that can result from COVID-19 infection bears a close resemblance to that
associated with sepsis (Root-Bernstein 2021) and there is extensive evidence
concerning the value of melatonin in the treatment of sepsis (Sharman et al. 2014).
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Pathways Contributing to the Multiplicity of Melatonin
Actions

The Centrality of Receptor Activation

Since the intracellular concentration of melatonin is very low and it is thus unable to
play a major direct role as a significant antioxidant, despite reports to the contrary
(Tan et al. 2015). Its effectiveness stems from its binding to a series of receptor sites,
many of which remain uncharacterized. Through activation of specific receptors, the
upregulation of crucial transcription factors can be initiated, resulting into major
changes in gene expression. For example, triggering of Sirt1 results in activation of
the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). This in turn
promotes expression of central antioxidant genes (Ma 2013; Ali et al. 2018). It is
likely that sirtuin-1 mediates the anti-inflammatory effects of melatonin since these
are blocked by inhibitors of sirtuin-1 (Hardeland 2019). In mice, SIRT6
overexpression can extend the length of the health lifespan. Melatonin activates
SIRT6 and this leads to amelioration of symptoms in a rodent model of cardiomy-
opathy (Yu et al. 2021).

The binding of melatonin to the G-protein-coupled membrane-bound melatonin
receptors MT1/MT2 can alter the activity of key transcription factors, either by
means of a GTPase pathway or by phospholipase C (Luo et al. 2017). The epigenetic
regulation of MT1/MT2 receptor expression could be a therapeutic direction for
improvement of age-related events and disorders, where these receptors are reduced
in number (Bahna and Niles 2018). Melatonin also acts on the nuclear orphan
receptor (ROR) (Farez et al. 2015; Xu et al. 2019), but the sequence of events
associated with this is uncertain. Nevertheless, ROR acts in an anti-inflammatory
manner by inhibition of NF-kB (García et al. 2015). Another means of gene
regulation by melatonin may be by its regulation of histone acetyl transferases
which vary with both tissue and maturation (Bonmati-Carrion and Tomas-Loba
2021).

Selectivity of Melatonin Engagement

Melatonin is not an unfocussed antioxidant or anti-inflammatory hormone. Its
actions are very much determined by the nature of the target cell. Thus, melatonin
can promote pro-oxidant events in tumor cells, in contrast to its broadly protective
effect in normal non-transformed cells (Lu et al. 2016; Xu et al. 2019). Melatonin
generally acts in an anti-apoptotic manner and stimulates neurogenesis
(Aranarochana et al. 2019). However, in tumor cells, melatonin can depress Sirt1
levels and foster apoptosis (Bizzarri et al. 2013). Melatonin is able to stimulate the
immune system. It can behave in a pro- or anti-inflammatory manner depending
upon the physiological milieu. Thus, while melatonin can both effect the release of



pro-inflammatory cytokines, but also, in other circumstances, it can inhibit
inflammation-enhancing events (Hardeland 2018). In the spleen, melatonin given
during the day heightens the inflammatory response to a lipopolysaccharide chal-
lenge but an elevated level of melatonin at night has the opposite effect and
diminishes the reaction to an inflammogen (Naidu et al. 2010). NK cells are
components of the innate immune system important in defense against aberrant
tumor cells. Melatonin promotes their action by enhancing their ability to secrete
the inflammatory cytokine IL-2 (Bonmati-Carrion and Tomas-Loba 2021). Gener-
ally, melatonin may act as an immune stimulant in basal or immunosuppressed
states, while it behaves in an anti-inflammatory manner when immune responses are
exaggerated, such as acute inflammation. The remarkable context specificity of
melatonin means that it can enhance immune function under immunosuppressive
conditions (such as aging) but inhibit excessive immune reactions (Ren et al. 2017).
This may be accomplished by regulation of the balance between inflammatory T
helper 17 cells and naive regulatory T (Treg) cells (Ma et al. 2020). These latter cells
can mount a response to novel antigens but decline with age (Shintouo et al. 2021).
Melatonin effects both proliferation and activation of Treg cells (Yoo et al. 2016)
and thus may retard age-related immunosenescence.
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In summary, melatonin is able to regulate a series of aspects of cellular metab-
olism by maintenance of a precise and selective targeting quality in comparison with
broad spectrum antioxidant and anti-inflammatory agents.

Discussion and Conclusion

Normal aging is typified by an elevated basal level of inflammation but this is not
accompanied by increased immune competency. In fact, aging involves a gradual
diminution of ever-decreasing efficiency of immune responses (Molony et al. 2018).
This decline in immunocompetence combined with excess unproductive inflamma-
tion leads to manifestation of several undesirable conditions associated with
age-related disease. Reduced effectiveness of immune function can also explain
the continuously growing onset of cancer incidence with aging (Nolen et al. 2017).
Efficient immune monitoring leads to the identification and destruction of damaged
senescent cells and this allows effective tissue regeneration. As aging progresses, the
precision of this process is attenuated, and senescent cells can then accumulate
(Ogrodnik et al. 2019). Senescent cells can attract immune activity which if unsuc-
cessful in removing abnormal cells may cause to a state of persistent ineffectual
inflammation, leading to tissue fibrosis and serving as a focal point for further
pathological events (Wynn and Ramalingam 2012).

The gene expression profile of the brains of aged mice is different to that of
younger mice. An increasing expression of many genes related to induction of
inflammation typifies the aged brain. Since the central nervous system appears to
remember events challenging the immune system for an extended period (Qin et al.
2007) such an increase may reflect the additive effect of a succession of



inflammatory events taking place over the lifespan. The treatment of aged mice with
dietary melatonin alters their pattern of mRNA expression profile in a direction so
that it to more closely matches that of younger mice (Sharman et al. 2004). This
restoration of a more youthful gene expression profile is likely to contribute to
optimally healthy aging. This broad effect of melatonin may at least in part account
for its widespread reported utility in many apparently chronic disease states
predominating in the elderly. Many types of evidence ranging from the mRNA
expression profile, to the lifespan of experimental animals, suggest that the aging
process can be slowed by melatonin.
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Fig. 13.1 Means by which melatonin may dampen age-related increases in nontargeted
inflammation

Melatonin is not a modern rapid-acting drug with a limited site of action, but
rather an ancient endocrine material that is likely to have several key sites of action
which may collaborate to produce an overall desirable outcome. Thus, it is less likely
to have value in an acute health crisis than in a more drawn-out decline of function.
This tilts its special value more to the preventive aspect of disease. The elderly are
prone to a host of processes leading to deteriorating health, often related to each
other. In addition to the single cause listed on a death certificate, many accompany-
ing disorders are commonly found as contributing factors. These accumulated multi-
morbidities have the underlying commonality of excessive inflammation (Fabbri
et al. 2015). Some of the mechanisms by which these may be attenuated by
melatonin are summarized in Fig. 13.1. Melatonin can retard the advance of a series
of changes that characterize the aging process (Bondy 2018). Routine consumption
of melatonin by the elderly is therefore recommended without consideration of the
presence of any specific age-related disorder. Based largely on animal studies, the
optimal therapeutic dose of melatonin that may be needed by humans to obtain the
optimal results in metabolic and neurodegenerative diseases of aging has been
described as being in the 100 mg per diem range (Stacchiotti et al. 2020; Cardinali



2021). However, few studies with such amounts of melatonin have been conducted.
Melatonin offers an inexpensive and safe means of slowing down the appearance of
some of the undesirable attributes of age. By concurrent physical and nutritional
strategies pursuing the same goal, such a combination will permit entering old age in
a well-prepared manner, extending the useful and gratifying period of life.
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Chapter 14
Protein and Energy Supplements
for the Elderly

Novi Silvia Hardiany, Istiqomah Agusta, Syarifah Dewi,
Febriana Catur Iswanti, and Reni Paramita

Abstract The proportion of elderly individuals is rising globally, and data have
shown that as high as 8% of the elderly community suffer from malnutrition. Protein
energy malnutrition has shown to elevate morbidity and mortality risk in the elderly;
therefore, protein and energy supplement are needed for the elderly populations to
create healthy conditions. This chapter describes about general structure of protein,
protein turnover, amino acid metabolism including metabolism in the elderly,
protein change in aging, supplementation of amino acid as well as vitamin and
mineral for the elderly. The discussion in this section aims to provide a general
description of protein, amino acids, changes in amino acid metabolism in the elderly,
and the benefits of supplementing amino acids as well as vitamins and minerals for
the elderly.
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Introduction

Proteins are one of the essential macromolecules required to create living organisms.
In humans, protein makes up roughly 15% of the body mass, 40% of which is found
within skeletal muscles, more than 25% is found within organs, and the remaining
make up components of the skin and blood. A single living cell may consist of
thousands of protein types, with each type performing a specific function. In general,
the cellular roles of proteins include structural, regulatory, contractile, and protective
functions. Proteins are made up of chains of amino acids that are bound together by
peptide bonds. The amino acids required by the human body can be either synthe-
sized within the body or obtained from dietary sources. Dietary sources of amino
acids are transported by the intestinal epithelium toward the bloodstream. Various
cells use these amino acids to synthesize proteins and other nitrogen-rich compounds
or are oxidized to produce energy. Among geriatric populations, adequate protein
intake is required according to age needs in order to keep the balance of protein
levels in the body and lower the risk of sarcopenia.

General Structure of Proteins

Proteins are polymer that comprises building blocks in the form of amino acids.
Every amino acid composed of a carbon atom at the center (known as α-carbon or
Cα) which form bonds with a carboxyl group, amine group, a hydrogen atom, and a
variable R group (Fig. 14.1). The bonds formed by the α-carbon with the carboxyl
group, amine group, and hydrogen atom are known as the main branch, whereas the
R group is known as the side branch. The R groups consist of variable physico-
chemical structures and behaviors and are used to identify the types of amino acid. R
groups may be in the form of singular atoms, such as the hydrogen atom in Glycine,
or a methyl group such as in Alanine. R groups in amino acids may be categorized
based on behaviors such as acidity, polarity, and charge. The structure of R groups
may be aliphatic, aromatic or consist of a phenol center. The diversity of behaviors
among R groups determines the characteristics of the protein that is formed (Nelson
and Cox 2005). Based on the ability of the living organism to produce them, amino
acids can be grouped as essential and non-essential. Essential amino acids cannot be
produced by the living organism and hence are a need sourced from the food intake.
There are nine essential amino acids required by humans including isoleucine,
leucine, lysine, valine, threonine, tryptophan, tyrosine, methionine, and phenylala-
nine. A single complete protein must consist of all nine essential amino acids.
Complete proteins are usually obtained from animal sources (Wu 2009; Lopez and
Mohiuddin 2022). Non-essential amino acids, such as arginine, alanine, aspartate,
asparagine, cysteine, glycine, glutamate, serine, glutamine, tyrosine, and proline are
synthesized by the body (Nelson and Cox 2005; Lopez and Mohiuddin 2022).
Protein structures consist of multiple levels, including primary, secondary, tertiary,



and quaternary. Every protein will have a primary, secondary, and tertiary structure,
however, not all proteins have a quaternary structure (Lopez and Mohiuddin 2022).
Proteins can be identified based on the differences in every level of structure. The
complexity of protein structures is responsible for the variation in the types and
functions of proteins.
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Fig. 14.1 Amino acid structure

The primary structure of proteins is defined as the linear sequence of amino acids
within a single protein. Amino acids at the primary level are covalently bonded to
each other via peptide bonds, forming polymers known as polypeptides (Sanvictores
and Farci 2022). Peptide bonds are formed between amine groups of amino acid with
the carboxyl group of another amino acid next in the sequence. Each polypeptide
contains a free carboxyl group at one end (C-terminus) and a free amine group at the
other end (N-terminus) (Fig. 14.2). A protein is formed from a minimum one
polypeptide chains.

Secondary structures of proteins involve three-dimensional patterns that are
formed locally due to hydrogen bonds between the atoms of the main branches of
polypeptides. There are two most common forms of secondary structures that are
α-helix and β-sheets (Fig. 14.3). The α-helix structures are formed when oxygen
atoms of carboxyl groups in amino acids form bonds with hydrogen atoms of amine
groups in amino acids three peptides apart within one linear polypeptide chain.
These hydrogen bonds constantly form coiling patterns that coil around a vertical
axis. The polypeptide helix formed from chiral amino acids will display chirality,
which determines either clockwise or counter-clockwise rotation of the polypeptide
(Murray 2009). Formation of α-helix structures requires very little energy and hence



forms spontaneously. The stability of the α-helix structure is directly correlated to
the number of hydrogen bonds formed within the α-helix structure. Furthermore,
atoms that are in the center of the α-helix structure will form Van Der Waals
interactions that further provide stability. The α-helix structure is usually located
on the surfaces of proteins but may also be partially or completely submerged within
the interior part of the protein. Proteins with α-helix structure that exhibit amphi-
pathic behavior are commonly present in venomous compounds, antibiotics, and
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Fig. 14.2 Primary structure of protein

Fig. 14.3 Secondary
structure of protein



glycoproteins of the HIV virus. Secondary structures in the form of β-sheets are
formed via hydrogen bonds between carboxyl and amine groups of amino acids on
different polypeptide chains (interstrand or intermolecular bonds). These chains are
stacked on top of each other, forming the folding structure of the protein. The shape
of β-sheets is considered parallel if the forming polypeptides line up in the same
order (N-terminus of one polypeptide aligns with the N-terminus of another),
whereas antiparallel β-sheets are formed when polypeptides are layered in opposite
directions (N-terminus of one polypeptide aligns with the C-terminus of another).
Antiparallel β-sheets are generally more stable due to more optimal hydrogen bonds
between the polypeptides (Murray 2009).

14 Protein and Energy Supplements for the Elderly 313

Fig. 14.4 Tertiary structure
of proliferating cell nuclear
antigen (PCNA) protein
subunit. From: “Analisis
Bioinformatika Mutasi
S2281 Protein PCNA dan
pengaruhnya pada Struktur
3 Dimensi Protein” by
Syarifah Dewi, 2017,
Indonesian Journal of
Biotechnology and
Biodiversity, 1(1), p. 20–27

Tertiary structures of proteins are three-dimensional structures formed due to the
interactions between the atoms of the R groups (Fig. 14.4). Hydrogen bonds, ionic
bonds, dipole interactions, and hydrophobic and disulfide interactions are some of
the interactions that are involved in the formation of tertiary structures of proteins.
Hydrophobic interactions result in the grouping of hydrophobic amino acids toward
the internal surface of the protein molecule, while hydrophilic amino acids are
located on the exterior of the protein and interact with the surrounding water
molecules. Disulfide bonds are the covalent bonds formed between the sulfur
atoms in the R group of the amino acid, cysteine. These disulfide bonds are the
strongest bonds formed within the tertiary structure of proteins, behaving as “safety



pins” to maintain the attachment between polypeptides (Murray 2009; Sanvictores
and Farci 2022).
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Fig. 14.5 Quaternary
structure of proliferating cell
nuclear antigen (PCNA)
protein. The protein consists
of three subunits (yellow
square). From: “Analisis
Bioinformatika Mutasi
S2281 Protein PCNA dan
pengaruhnya pada Struktur
3 Dimensi Protein” by
Syarifah Dewi, 2017,
Indonesian Journal of
Biotechnology and
Biodiversity, 1(1), p. 20–27

Quaternary structures of proteins are formed in proteins which are made of more
than one polypeptide (Fig. 14.5). Every single polypeptide will conform to its
structure until a stable tertiary structure is formed (henceforth called a subunit or
protomer). Multiple subunits will join together to form the quaternary structures of
proteins (Sanvictores and Farci 2022). Examples of proteins that have a quaternary
structure include hemoglobin. Hemoglobin consists of 4 subunits (2 α and 2 β
subunits). Interactions that have a role in the formation of most of quaternary
structures include non-covalent bonds and are generally weak, such as hydrogen
bonds, electrostatic and hydrophobic interactions (Nelson and Cox 2005; Murray
2009).

Every protein will have a final shape which is unique and specific toward its
surrounding optimal environments, such as temperature and pH. Changes in tem-
perature, pH, and interactions with specific chemicals will result in the loss of a
protein’s three-dimensional structure via a process known as denaturation (Nelson
and Cox 2005). Proteins that are denatured still retain its primary structure,
i.e. sequence of amino acids. However, all functions are lost. Most proteins that
undergo denaturation may return to their original shape, if placed in an optimal
environment. This renaturation process may occur independently or with the aid of
proteins which are known as chaperones.

Protein Turnover

Within the body of an organism, proteins will undergo turnover, which is a process
where a fraction of proteins degrade into amino acids, of which some are used again
to synthesize new proteins. The body’s reservoir of amino acids is maintained via
amino acid absorption from food and degradation of intracellular proteins. All
proteins have a specific half-life, which is the period of time required to degrade



proteins to half the original amount. Some proteins have a very short half-life,
ranging between 5 and 20 min, whereas some proteins have half-lives that last
hours and even days. As a result, proteins must be continuously synthesized and
degraded inside the body. Proteins with sequences rich in proline (P), glutamate (E),
serine (S), and threonine (T) amino acid, also known as PEST sequences, are known
to have short half-lives (Lieberman and Peet 2018; Rodwell et al. 2018). Proteins
that act as regulatory molecules like transcription factors will degrade quickly. High
turnover rate of these proteins is essential for responding external stimuli. These
proteins degrade quickly as a response toward specific signaling to regulate intra-
cellular enzyme activity. Furthermore, damaged or incorrect protein structures can
be easily recognized and degraded rapidly within the cell, resulting in fewer protein
errors.
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Within eukaryotic cells, there are two major protein degradation pathways: the
ubiquitin–proteasome and the lysosomal proteolysis (Cooper 2000). The ubiquitin–
proteasome pathway is the primary pathway for protein degradation that occurs
selectively within eukaryotic cells, through protein targets marked with ubiquitin
molecules for rapid proteolysis. Ubiquitin is a highly conserved protein in eukary-
otes (including yeast, animals, and plants) and consists of 76 amino acids in length.
Proteins that are bound with ubiquitin to its lysine residues will undergo degradation.
Around four or more ubiquitin molecules further bind to the primary ubiquitin
molecule to form multiubiquitin (or polyubiquitin) chains. After undergoing
polyubiquitination, proteins will undergo degradation by the large multisubunit
protease complex which is known as the proteosome. Ubiquitin is released after
the protein is degraded, so that it can be reused for another degradation cycle. Amino
acids that are released by this process enter the intracellular free amino acid pool.

The majority of proteins that consist of PEST sequences will be degraded by the
ubiquitin–proteasome system (Ciechanover and Schwartz 1998; Spencer et al.
2004). Ubiquitination is a multistep process that begins with the activation of
ubiquitin molecules by ubiquitin activating enzymes (E1). Next, the ubiquitin is
transferred to another enzyme, known as ubiquitin conjugating enzyme (E2).
Finally, the enzyme ubiquitin ligase (E3) will catalyze the binding of ubiquitin to
the target protein for the selective identification of target protein. The E2 and E3
family of enzymes consist of different types of enzymes that recognize multiple
protein substrates, and this specificity enables the selective targeting of cellular
protein degradation through the ubiquitin–proteasome pathway.

The attachment of ubiquitin molecule to target protein requires ATP. This
pathway is used to degrade proteins with a short half-life (Ciechanover and Schwartz
1998). Another primary pathway to degrade intracellular protein is the digestion of
protein in lysosomes. Lysosomes are organelles containing the digestive enzymes
including protease. These digestive enzymes have a role in the cell metabolism,
extracellular protein degradation obtained by endocytosis, organelles, and intracel-
lular protein turnover. Protein degradation via lysosomal proteolysis occurs when
cellular proteins are ingested by the lysosomes. A major process of ingesting cellular
proteins is autophagy, where vesicles (autophagosomes) are formed around small
areas of cytoplasm or cytoplasmic organelles enclosed within a membrane formed



by the endoplasmic reticulum and sent to the lysosome (Ciechanover 2005; Eldeeb
et al. 2020). Within the lysosome, the proteins will be degraded by cathepsin family
protease into free amino acids and contribute to amino acid pool in cytosol. The
absorption of proteins into the autophagosome is non-selective, and this pathway of
protein degradation aims to degrade cytoplasmic proteins that have a long half-life.
Multiple studies have shown that cellular hunger is a trigger to induce the autophagy
process. Through autophagy, older proteins are recycled, and the resulting amino
acids are used to synthesize new proteins. This occurs to ensure that the cell remains
in a hunger state. One of the molecules essential for regulating autophagy is the
mTOR kinase (Ciechanover 2005; Eldeeb et al. 2020). The role of mTOR kinase is
to integrate and regulate various stimuli and signals for inducing protein, lipid, and
nucleotide synthesis and inhibiting catabolic processes such as autophagy that
occurs post-transcription and translation (Kim and Guan 2015).
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The rate of protein degradation is influenced by multiple factors, including the
requirement of specific amino acids for protein synthesis and the dietary protein
intake. Amino acid requirement is determined by the differences in amino acid
composition of various proteins that are synthesized, protein turnover rate, and
amino acid recycling rate. Multiple conditions, including fasting or fed state, will
induce the synthesis of some enzymes and degrade them when are no longer
required. Furthermore, conditions that result in protein damage include oxidation
and modifications that limit protein function. Protein degradation generated from
either the ubiquitin–proteasome or the lysosomal pathway will produce free amino
acids that can be utilized to synthesize new proteins or may be oxidized to produce
energy. Every day, around 1–2% of total protein in the body is degraded, especially
muscle protein. High degrees of degradation occur in tissues experiencing significant
structural changes, such as in uterine muscles during pregnancy or structural muscles
during starvation. Meanwhile, 75% of amino acids that are released by protein
degradation will be reused, the remaining are not stored for future use. Amino
acids that are not instantly used to form new proteins will be rapidly metabolized.
Most of the carbon framework will be converted into amphibolic intermediates,
whereas nitrogen released from the amino acids will be converted into urea and
excreted via urine (Lieberman and Peet 2018).

Protein Turnover in Aging

The aging process can be triggered by decreased lysosomal function. The lysosomal
degradation is closely related to autophagy, which destroys unwanted or damaged
molecules that accumulate during aging. Lysosomes contribute to signaling level of
the autophagic process, such as controlling the activity of mTORC1 kinase complex,
an autophagy negative regulator that exerts the activity on lysosomal surfaces.
Transcription factor EB (TFEB), which organizes both autophagy activation and
lysosomal biogenesis, also located on the lysosomal surfaces. The interaction
between lysosome and mTORC1 is facilitated by ATP-sensitive Na+ channel,



which directly participated in nutrient sensing. mTORC1 will be released from the
lysosome under starvation condition, stimulates the activation to control pH stability
and homeostasis of amino acid in response to low ATP levels. mTORC1 will inhibit
nuclear translocation of TFEB and could not bind to its promoter, so some genes
cannot be expressed (Carmona-Gutierrez et al. 2016).
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Proteasome plays a role in clearance of damaged or abnormal proteins as well as
for the degradation of short-lived proteins. Although the exact underlying mecha-
nism is unclear, decreasing of proteasome activity suppress cellular capacity to
remove damaged proteins and contribute to the development of age-related diseases.
Several studies reported that declining of proteasome function was observed in aged
mammalian tissues. Senescent human fibroblasts show reduction levels of
proteasome activities. Replicative lifespan of fibroblasts treated by proteasome
inhibitors is shortened and accompanied by a senescent-like phenotype. A study
using a transgenic mouse with declined proteasomal activity shows a reduced
lifespan and premature age-related phenotypes (Saez and Vilchez 2014).

Amino Acid Metabolism

Regulation of individual amino acid synthesis is a complex process; however, in
general, it is driven by negative feedback signaling. An increase in the concentration
of free amino acids will cause the inhibition of biosynthetic enzymes via allosteric
regulation or gene expression. Levels of amino acids are constantly maintained at a
certain value, to ensure that protein synthesis occurs continuously through the
aminoacyl tRNA synthetase activity. Amino acid degradation pathways are gener-
ally different from biosynthetic pathways, which allows for regulatory separation for
the anabolic and catabolic pathways. Since proteins can be used to generate energy,
almost every amino acid degradation pathway will produce NADH molecules and
transfer its electron in mitochondrial oxidative phosphorylation. Besides that, amino
acids can be used for energy production directly via oxidation, undergoing conver-
sion into an intermediate in the TCA cycle, which is converted into glucose or ketone
bodies that can be oxidized eventually. The fate of amino acids depends on the
individual physiological condition, for example in the fasting state, the liver will
convert the carbon structure of amino acids to glucose, ketone bodies, and CO2.
However, in the fed state, the liver will convert the metabolites of amino acids into
glycogen and triacylglycerol (Lieberman and Peet 2018; Rodwell et al. 2018).

Eleven of the twenty amino acids can be synthesized by the body and the
remaining “essential” amino acids must be obtained through dietary sources. Nine
of the eleven “non-essential” amino acids are produced from glucose and nitrogen
sources (from other amino acids or ammonia). The remaining two non-essential
amino acids require other essential amino acid for their synthesis, such as tyrosine
requires phenylalanine and cysteine requires methionine. The carbon backbone of
serine, glycine, cysteine, and alanine is synthesized using the metabolites of glycol-
ysis, while remaining non-essential amino acids require metabolites of the TCA



cycle. Glutamate, glutamine, proline, and arginine could be synthesized from
α-ketoglutaric acid, whereas aspartate and asparagine could be synthesized from
oxaloacetate (Lieberman and Peet 2018).
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Metabolism of amino acids is dependent on the fate of the two atoms that form the
structure of amino acids, carbon and nitrogen atoms. Nitrogen atoms when released
from carbon structure will be converted into urea in the liver, and carbon atoms will
be oxidized into CO2 and H2O in some tissues. The concentration of plasma amino
acids that are circulating between meals will depend on the equilibrium between the
output of proteins from endogenous sources and its use in several tissues. Muscles
produce more than half of the total free amino acids in the body and the primary site
for removal of nitrogen atoms via the urea cycle is the liver. As a result, muscles and
liver play a primary role in maintaining amino acid levels in the blood (Lieberman
and Peet 2018).

Several enzymes are essential in interconverting amino acids and removing
nitrogen, including transaminases, glutamate dehydrogenase, glutaminase, and
deaminase. The transaminase reaction plays a role in the biosynthesis of almost all
amino acids, except threonine, lysine, proline, and hydroxyproline. This reaction is a
reversible reaction between amino acids and α-keto acids. Alanine transaminase or
glutamate-pyruvate transaminase catalyzes the transfer of amino groups from ala-
nine to α-ketoglutarate forming pyruvate and glutamate. Alpha-amino nitrogen from
all amino acids will undergo transamination and is concentrated in glutamate. The
L-glutamate molecule becomes essential since it is the only amino acid that
undergoes oxidative deamination at a large scale within mammalian tissues via the
activation of the L-glutamate dehydrogenase (GDH) enzyme, a reaction that uses
NAD+ and NADP+ to release nitrogen into the form of ammonia. The conversion of
α-amino nitrogen into ammonia via glutamate aminotransferase and GDH is also
known as “transdeamination” (Lieberman and Peet 2018; Rodwell et al. 2018).

Glutamine formation from glutamate is catalyzed by mitochondrial glutamine
synthetase. Glutamine synthesis occurs due to the attachment of NH3 groups to
glutamate, requiring ATP. Conversely, the hydrolytic cleaving of NH3 groups from
glutamine is catalyzed by glutaminase, producing glutamate. Glutamine synthetase
also functions to provide glutamine as nitrogen carrier between organs, detoxify
ammonia, and maintain acid–base homeostasis. The integrated activity of glutamine
synthetase and glutaminase aids in the interconversion between free ammonium ions
and glutamine (Rodwell et al. 2018).

The end product of nitrogen catabolism in humans is urea. Liver is the primary
organ to convert the nitrogen of amino acids into urea. The urea cycle produces urea
using the substrates NH4+ ions, bicarbonate ions, and nitrogen from aspartate. The
cycle begins with a reaction of NH4

+ ions, bicarbonate ions, and ATP to produce
carbamoyl phosphate, which further reacts with ornithine to produce citrulline.
Citrulline will react with aspartate to produce argininosuccinate, which will later
release fumarate and forming arginine. The final reaction involves the cleaving of
arginine by arginase to release urea and generate ornithine, after which the cycle
repeats itself. The urea cycle is regulated by a feed-forward mechanism, the rate of
urea cycle will increase when amino acid degradation occurs. Other than excreted



via urea, the nitrogen atom is also excreted in other forms, such as uric acid,
creatinine, and ammonia. Uric acid is the degradation product of purine bases,
creatinine is produced from creatinine phosphate, and ammonia (NH3) is produced
from releasing amino group glutamine in the kidneys, which will react with protons
to form ammonium ions (NH4

+) in urine. After nitrogen is removed from amino
acids, the carbon structure undergoes oxidation to produce pyruvic acid or acetyl
coenzyme A (Acetyl-CoA) (Lieberman and Peet 2018; Rodwell et al. 2018).
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In a fasting or hunger state, muscle proteins are broken down into amino acids,
and a portion of which is oxidized to produce energy, the remaining is converted into
alanine, glutamine, and other amino acids that are released into the bloodstream.
Alanine is mostly extracted by the liver, and glutamine is extracted by the intestines
and kidneys. A majority of the glutamine will be converted into alanine. Alanine and
other amino acids enter the liver, the nitrogen atom will form urea, and the carbon
atoms will convert into glucose and ketone bodies. Glucose which is produced via
gluconeogenesis is further oxidized into CO2 and H2O in various tissues in the body.
Ketone bodies could be utilized as an energy source in brain, muscle, and kidneys.
Muscle can store branch chain amino acids as its energy source. These branched-
chain amino acids (valine) could be released by the muscle and used by the brain for
energy (Howarth et al. 2010; Lieberman and Peet 2018; Rodwell et al. 2018;
Anthony et al. 2000).

Amino Acid Metabolism in the Elderly

Basal metabolism of amino acids is not affected by age, however, aging leads to a
reduced ability to respond toward anabolic stimuli such as insulin. Studies have
shown a reduction in muscle protein synthesis in geriatric subjects when compared
to young subjects, due to insulin resistance, which is believed to cause sarcopenia in
geriatric subjects (Wilkes et al. 2009). Prior studies have concluded that changes in
amino acid metabolism due to aging may be controlled by supplementation of
leucine, changes in protein intake, or physical activity, all of which increase muscle
protein synthesis (Anthony et al. 2000).

Imbalances between muscle protein degradation and synthesis in elderly subjects
are caused by insulin resistance that affects muscle protein metabolism. Insulin could
inhibit muscle protein breakdown, which is mediated by nutrients and slows down
proteolysis without the presence of hyper-aminoacidemia, hence increasing muscle
protein equilibrium (Churchward-Venne et al. 2014). Insulin resistance is caused by
a reduction in vasodilation that involves endothelium (Rasmussen et al. 2006).
Previous studies have shown a relationship between endothelial dysfunction and
anabolic resistance of skeletal muscles, showing that impairment of insulin-mediated
vasodilation causes a reduction in capillary recruitment and microvascular perfusion
of skeletal muscle, hence reducing the availability of amino acids. Studies have also
demonstrated a reduction in muscle protein synthesis among the elderly upon
administration of insulin, compared to young subjects. However, when



microvascular perfusion and blood flow are pharmacologically stimulated (via
administration of nitroprusside) to maximum capacity, muscle protein synthesis
can be increased to levels comparable to young subjects after insulin administration
(Timmerman et al. 2010). Hence, insulin can increase muscle protein synthesis;
however, this ability must be accompanied with an enhancement in amino acid
supply and muscle microvascular perfusion. This shows that vasodilation and
adequate nutrition to the muscle are essential regulatory factors of anabolic
responses of a muscle stimulated by insulin (Churchward-Venne et al. 2014).
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Protein Changes in Aging

Aging is a process of accelerated cellular degeneration and tissue homeostasis that
can cause dysfunction, morbidity, and mortality. The life span of proteins is gener-
ally shorter than that of a cell and the organism. As a result, an improvement in
protein activity underlies the improvement of an organism’s quality of life. The
complexity of aging and associated diseases reflects the overall complexity of
healthy organisms. The root cause of the aging process is oxidative damage to
proteins. Cellular aging is caused by missense errors in the structure and functions
of proteins. In the process of protein biosynthesis, errors in protein folding or
misfolding can cause the induction of chaperone molecules to correct them. Proteins
that are not misfolded are generally more stable and functional. However, misfolded
proteins are more easily identified by reactive oxygen species (ROS) that cause
oxidative stress and damage. Damaged proteins due to oxidative stress will undergo
proteolysis or aggregation, leading to dysfunction. Oxidative damage of proteins is a
predictor of cell death (Krisko and Radman 2019). Aging causes multiple changes in
proteins, such as lack of proteostasis, loss of muscle protein (sarcopenia), and
changes in structural proteins such as elastin and collagen.

Loss of Proteostasis

Dyshomeostasis of proteins is one of the symptoms of aging. The proteostasis
network is a multicompartmental system. This system coordinates synthesis, folding,
aggregation, and disaggregation. Besides the common factors required to synthesize
and maintain proteins, the expression of various components of proteostasis is
affected by specific proteomic demands from cells and various tissues. Proteostasis
can be achieved through coordinated action from various proteins that are collec-
tively known as the proteostasis network. A proteostasis network is defined as a
network of proteins that play a direct role in the synthesis, degradation, disaggrega-
tion, or folding of proteins. This definition includes the translation engine, chaperone
molecules and co-chaperones, the ubiquitin–proteosome system, and autophagy
(Labbadia and Morimoto 2015). In addition, the unfolded protein response (UPR)



is also included in that system. Chaperone molecules known as heat-shock proteins
can recognize polypeptides that undergo folding errors and eventually correct their
structure or send them to the ubiquitin–proteosome system for degeneration.
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Autophagy consists of four different systems: macro-autophagy, micro-
autophagy, selective autophagy, and chaperone-mediated autophagy (CMA) with
different target substrates or complete supramolecular protein structures such as
mitochondria or mechanism of function. The ubiquitin–proteosome degradation
system targets polypeptides that are not required by labeling them with ubiquitin,
for breakdown down by proteosomes. UPR is a stress reaction activated by an
overabundance of unfolded proteins in cell organelles particularly in the endoplas-
mic reticulum. An unconstrained activation is related to multiple pathologies,
including neurodegeneration, cancer, metabolic diseases, and inflammation. Recent
studies have shown that in aging a loss of efficacy of the proteostasis system occurs.
A change in the proteostasis capacity during early adulthood is marked by the
reduced capacity of protein folding and formation of protein aggregates (Labbadia
and Morimoto 2015).

Sarcopenia

The primary storage of amino acids in the body is found in skeletal muscles that
contain 50–70% of all proteins in the human body. Skeletal muscles play a role in
body movement and posture, as well as an essential amino acid storage system that
can be used for energy by the immune system and brain during hunger or malnutri-
tion. Aging in humans is marked by muscle mass reduction and function, named
sarcopenia. This degenerative muscle reduction amounts to 3–8% per decade after
the age of 30 and is accelerated by aging.

Loss of muscle mass is generally affected by two factors which are atrophy and
cell death, which can cause loss of muscle strength and mass. Sarcopenia is associ-
ated with a deceleration of metabolism, loss of muscle strength, increased fall risk
and fracture, increased morbidity, and lack of independence (Timmerman and Volpi
2008).

The mechanism of sarcopenia is most likely attributed to the increased rate of
muscle protein degradation rather than muscle synthesis. This disproportion between
synthesis and breakdown can occur slightly in fasting or hunger states, infection, and
injury. However, if not treated, it can lead to significant and steady muscle loss.
Numerous research studies have shown that muscle protein degeneration does not
change with aging; however, reduced protein synthesis is observed with age
(Timmerman and Volpi 2008; Churchward-Venne et al. 2014). At a molecular
level, changes of important factors for synthesis and degradation of protein occur
with age. Sarcopenia is a multifactorial process, including a neurological process
associated with a loss of motor neurons, endocrine change caused by reduced or loss
of hormone expression, loss of motor units of muscles and changes in nutrition and a
lifestyle that is sedentary. Low activity is usually associated with a diet rich in



saturated fats, causing an increase in fat deposits within adipose tissues, liver, and
muscles. Hence, a high-fat diet can affect the composition and structure of skeletal
muscles. There also exist changes in transcription regulation at the level of myocytes
that induce proteolytic activity (Choi 2016; Pascual-Fernandez et al. 2020).
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Changes in Collagen Fibers

Collagen fibers are a primary component of the extracellular matrix of the skin’s
dermis layer. Around 75% of the skin’s dry mass comprises collagen that primarily
functions to maintain tightness and skin elasticity. There are multiple types of
collagen in the skin, including type I, which is composed of 80–90% of total
collagen in the body, type III is around 8–12%, and the remaining type V that is
<5%. Quantitative and structural alteration in collagen fibers are the primary
changes formed in aging. Collagen fibers in the aging skin are fragmented and
distributed randomly. There is an increase in collagen degradation and reduction
in collagen biosynthesis resulting in disruption of collagen homeostasis leading to
collagen deficiency. This condition induces clinical alteration, including wrinkling
and reduction of skin elasticity (Shin et al. 2019).

Changes in Elastin Fibers

In addition to collagen fibers are elastin macromolecule components that are durable
in high-order vertebrates and function to provide elasticity and recoil ability to
various tissues and organs as well as lungs, blood vessels, skin, and many more.
Elastin is made of the monomer tropoelastin, which crosslinks with lysine residues.
In the aging process, elastin fibers are primarily affected by two factors; intrinsic and
extrinsic. Intrinsic factors include enzymatic degradation by serine proteases,
glycation processes, and calcification that leads to calcium deposits in elastic tissues
which is a primary factor in the formation of atherosclerosis. Furthermore, intrinsic
factors that play a role also include oxidative damage that leads to structural and
functional molecular changes and the progressivity of cardiovascular disease, race-
mization of aspartic acid from D-aspartate into L-aspartate, carbamylation of plasma
proteins that increases the risk of type 2 diabetes mellitus, increase in cholesterol
binding by elastin peptides that can cause an increased risk of atherosclerosis as well
as mechanical fatigue of the elastin fibers that can lead to the clinical manifestation
of angina pectoris.

Extrinsic factors that play a role in aging of elastin fibers among others include
ultraviolet light that leads to wrinkling, loss of elasticity, and skin thickening that can
be histologically proven by the presence of elastotic materials. Furthermore,
smoking is also an essential external factor that causes premature skin aging, marked
by skin wrinkling and loss of elasticity. The effect of aging on elastin fibers are



fragmentation and thinning of the elastic structure. This condition can cause dys-
function, loss of tissue elasticity, and even organ function (Heinz 2021).
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Amino Acid Supplementation in the Elderly

Aging is an unavoidable process, and the proportion of elderly individuals is rising
globally. Hence, intervention is required to create healthy conditions for the quality
of life for elderly populations, which includes nutrition (Fukagawa 2013). Currently
available data have shown that as high as 8% of the elderly community suffer from
malnutrition, 35% are at risk of malnutrition, and 66% of the geriatric population in
hospitals are at risk of malnutrition (Geurden et al. 2015). Protein energy malnutri-
tion has shown to elevate morbidity and mortality risk in the elderly (Sullivan et al.
2002). This form of malnutrition can also impair the immune system since immune
cell function relies on the availability of energy and amino acids, hence leading to an
increase in viral infections with increasing age (Alam et al. 2019). Furthermore,
aging is associated with sarcopenia that worsens with a lack of physical activity and
malnutrition commonly found in the elderly population. The high prevalence of
sarcopenia is found in the elderly populations living in nursing homes, geriatric
populations with clinical conditions (including osteoporosis, obesity, and cancer), or
elderly individuals recovering from injury and disease. Inactivity for a brief period
due to hospital stay or injury can cause anabolic resistance and worsen the level of
sarcopenia in the aging population. As a result, optimal energy and protein intake in
the elderly population is essential for the management and prevention of sarcopenia
(Ispoglou et al. 2021). Proteins and associated amino acids are primary components
in food which play a role in maintaining a healthy life, especially when individuals
experience stress due to injury or disease (Fukagawa 2013). Studies have shown that
the supply of amino acids is essential in regulating muscle protein metabolism (Biolo
et al. 1997). Increases in amino acid levels in the blood will stimulate muscle protein
synthesis via the increase of the amino acid transport into muscle cells (Biolo et al.
1997). Studies have proven that essential amino acids are the most efficient nutrients
to empower synthesis of muscular protein in aged subjects and young individuals,
although the cellular mechanism responsible for this is still being studied (Paddon-
Jones et al. 2004). Among essential amino acids, branched-chain amino acids
(BCAA) are the main amino nitrogen transporter between visceral and peripheral
tissues, notably skeletal muscles, and play a role in stimulating protein synthesis
directly (Yoshizawa et al. 1998). Generally, the number of ribosomes present in a
cell and each ribosome’s translational efficiency affect how quickly protein synthesis
can be accelerated. Leucine can activate multiple signaling pathways that are
involved with the initiation of translation, signaling pathway mammalian target of
rapamycin (mTOR), protein ribosomal S6 kinase 70-kDa (S6K1), and eukaryotic
initiation factor 4E binding protein-1 (4E-BP1) (Anthony et al. 2000). The mainte-
nance of skeletal muscle mass is dependent on the equilibrium of muscle proteins,



where the rate of degeneration must be balanced with the rate of muscle protein
synthesis (Murton 2015).
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Studies have shown that protein intake in the weak elderly is lower, and hence
requires supplementation to achieve optimal health (Fujita and Volpi 2006). How-
ever, elderly individuals also suffer from a loss in appetite (Johnson et al. 2020),
difficulty in chewing, dysphagia, and dysgeusia (Landi et al. 2016). Furthermore,
aging is also associated with changes in the gastric emptying process and amino acid
absorption (Ispoglou et al. 2021). The inability of amino acid use in the elderly
population is caused by changes in the muscle fibers including a lack of amino acid
transmembrane transporters, lack of substrates to synthesize proteins due to changes
in protein turnover in the body, and changes in muscle responses toward hormonal
stimuli after feeding (Johnson et al. 2020). As a result, optimal strategies are required
in the form of nutritional intervention for the elderly, to achieve protein energy
equilibrium (Ispoglou et al. 2021). High-quality protein consisting of complete
essential amino acids must be consumed by elderly individuals to maintain the
health of skeletal muscles. Some points that must be considered to optimize protein
intake include: (a) daily consumption of protein, (b) consumption of protein in every
meal, and (c) protein quality assessed by presence of essential amino acids (Ispoglou
et al. 2021). The role of essential amino acids as primary regulators of protein
synthesis has been studied by comparing muscle protein synthesis responses
between low-dose amino acid combinations (3.2 g essential amino acids; 2.4 g
protein), high-dose amino acid combinations (6.4 g essential amino acids; 4.4 g
proteins), and protein supplementations consisting of 17.9 g of whey (Park et al.
2020). Consumption of a combination of whey protein and essential amino acids
stimulated a greater anabolic response compared to consumption of whey protein
only. An increase in serum amino acids occurred rapidly after consumption of high-
dose essential amino acids. This showed that the presence of enough essential amino
acids and leucine in the diet is required to promote a good skeletal muscle anabolic
response in the elderly.

The composition of amino acids in protein sources can greatly affect protein
synthesis postprandial (Traylor et al. 2018). Leucine content in protein sources is
essential in decelerating muscle mass loss when consumed with other essential
amino acids. As a result, elderly populations require higher levels of leucine
compared to other essential amino acids to stimulate synthesis of muscular protein
(Devries et al. 2018). Multiple researches have exhibited that synthesis of muscle
protein in aging mice does not undergo changes or resistance after supplementations
of leucine in physiological concentrations (Dardevet et al. 2000). This resistance
may result from a problem with leucine’s ability to stimulate S6K1 activity. A study
has shown that myofibrillar and sarcoplasmic protein synthesis response and sensi-
tivity is lower in elderly populations after the supplementation with essential amino
acids in divided doses, which is attributed to a decreased mTOR signaling activity
(include S6K1 and mTOR) (Cuthbertson et al. 2005). Despite that, in aging mice,
inadequate induction of synthesis of muscle protein can be reversed by increasing
leucine concentrations (Dardevet et al. 2000). Arnal et al. (1999) show that the
anabolic response from protein turnover is in normal ranges among elderly subjects



if 80% of daily protein requirements are given at once compared to protein intake
divided equally in the food consumed throughout the day, hence an abundance of
amino acids is required by the aged population to achieve an anabolic effect
comparable to young adults. In addition, another study showed that in elderly
subjects who consume limited amounts of essential amino acids (6.7 g) with a
high proportion of leucine (2.8 g), the synthesis of muscle protein can be signifi-
cantly increased. However, supplementing with low doses of amino acids with a
lower proportion of leucine has no discernible benefit (1.7 g) (Katsanos et al. 2005).
This shows that skeletal muscles in elderly populations are insensitive to the
stimulatory effects of amino acids, especially low concentration leucine, however
this can be managed by supplementations of high-dose leucine.
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Houston et al. (2008) reported that healthy elderly who consume higher than the
recommended daily allowance (RDA) of proteins is associated with lower muscle
mass loss throughout a 3-year follow-up. However, elderly individuals that consume
only slightly higher than the RDA of protein (that is up to 1.1 g/kg/per day) still
experience a loss in muscle mass. Research by Mitchell et al. (2017) proved that an
increase in protein consumption roughly twice the RDA (that is 1.6 g/kg/day)
resulted in an increase in lean muscle mass in healthy elderly males. Elderly
individuals require higher protein intakes in every meal due to the reduced sensitiv-
ity toward anabolic stimuli such as proteins, also known as “anabolic resistance”
(Breen and Phillips 2011). The lack of physical activity or muscle use in a specific
time period (immobilization of limbs due to injury and disease) can stimulate
anabolic resistance in the elderly, which is shown by the reduced expression of
amino acid transporters in skeletal muscles, signaling errors of mTORC1 and
decrease the synthesis of protein in response to essential amino acids (Breen et al.
2013). Elderly individuals require a protein dose of 0.4 g/kg body weight (that is
roughly 30 g of protein for a normal elderly man) to stimulate optimum postprandial
protein synthesis, or roughly 67% greater dose compared to healthy adults (Moore
et al. 2015). As a result, a renowned international association, that is the Society for
Clinical Nutrition and Metabolism, recommends an increased protein intake for
elderly individuals (Deutz et al. 2014) which is a recommendation of: 25–50%
more for healthy elderly adults, 50–90% for geriatric population with acute or
chronic illness, and a rise of more than 50% over the RDA for elderly individuals
suffering from severe illness or injury.

Acute impact of essential amino acids supplementation toward muscle protein
turnover has been widely studied and shown to act as a regulator of muscle protein
synthesis (Wilkinson et al. 2018; Park et al. 2020). However, long-term effects of
amino acid supplementation on the modulation of muscle mass, strength, and
function of muscles in the elderly have not yet been studied. The anabolic response
of leucine is only noticed with the existence of amino acids, especially essential
amino acids, since the increase in muscle protein synthesis requires the availability
of all essential amino acids (Moberg et al. 2016). Therefore, essential amino acids
composition must also be considered, since a high relative ratio of leucine is needed
to induce maximum synthesis of muscle protein in the elderly (Katsanos et al. 2005).
Intervention, in the form of essential amino acid supplementation, has shown



numerous beneficial effects on the functions and mass of muscles, in patients with
obesity or sarcopenia (Kim et al. 2012; Zhou et al. 2018), with other studies
performed on male and female elderly subjects with glucose intolerance (Borsheim
et al. 2008). In this study, a majority of essential amino acid supplementation was
given between meals. Supplementation of essential amino acids given twice a day as
much as 4 g (total 8 g) given between meals was shown to increase the life quality,
physical fitness, and dietary habits (Rondanelli et al. 2011). In concordance with
these findings, lean muscle mass throughout the body increased after 1.5 years with
daily consumption of 16 g of essential amino acids (8 g given twice daily in the form
of snacks between meals) to elderly subjects with sarcopenia (Solerte et al. 2008), as
well as an improvement in insulin sensitivity and a significant increase in insulin-like
growth factor 1 (IGF-1). Even though muscle protein synthesis was not analyzed in
this research (Solerte et al. 2008), the IGF-1 levels rising after consumption of
essential amino acids is related with the higher stimulus protein synthesis in muscle.
These results are supported by Dillon et al. (2009), whose findings showed that there
was an increase in muscle protein synthesis among subjects of elderly obese females
who were given essential amino acid supplementation, as well as an increase in lean
body mass and IGF-1 protein expression in the muscle cells. Numerous dietary
sources of proteins that contain 8 g of essential amino acids are seen in Table 14.1
(Aquilani et al. 2014).
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Table 14.1 Dietary source of
protein contains 8 g of essen-
tial amino acid

Food type Amount (g)

Chicken (breast) 74

Canned tuna fish 74

Ham 79

Lean beef meat 97

Codfish 97

Cheese 105

Mortadella 131

Eggs 138

Trout 153

Whole milk 480

Supplementation of 7.5 g of essential amino acids given twice a day (15 g daily)
that consist of 18.6% of L-leucine results in significant enhance lean body mass
(approximately 3.9%) after 90 days consumption (Aquilani et al. 2014), albeit a lack
of increase in muscle power. Studies conducted in women with sarcopenia (Kim and
Guan 2015) showed that a supplementations regimen of 3 g of leucine-rich essential
amino acids given twice a day (6 g) for 90 days did not significantly increase
functional performance or muscle power. However, it improved walking pace,
compared to initial conditions or the control group. In a related study, consumption
of 10 g of essential amino acids in the form of light meals twice a day (total 20 g
daily) for 28 months in addition to strict diet control showed an increase in index of
appendicular skeletal muscle in sarcopenic and obese subjects (Zhou et al. 2018).
Research showed that supplementing 11 g of essential amino acids include



L-arginine (22 g per day) twice a day between meals for 16 weeks period increase
physical and performance function of elderly subjects with hyperglycemia
(Borsheim et al. 2008). Lean body mass in this research raised by roughly 1 kg
around week 12 compared with baseline, but did not rise around week
16 postintervention (Borsheim et al. 2008). Despite the positive effect of essential
amino acid supplementation on muscle weight among patients with sarcopenia,
obesity, or altered health condition, the positive effect in functional performance
and muscle strength is not clear. Variation in methods used (such as consumption
between meals), amount and ratio of amino acids consumed, and lack of adjunctive
workout intervention along with amino acid supplementations are plausible causes
for the different results obtained. Despite that, early evidence shows that essential
amino acid supplementation can contribute to the increase in muscle function and
strength, with a low level of evidence showing an enhanced muscle mass (Ispoglou
et al. 2021).
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Markofski et al. (2018) gave 15 g of essential amino acid to two healthy elderly
adults over 24 weeks, showing no overall increase in lean body mass. In this study,
although the amino acid supplementation was strategically given between meals, it is
not known whether the total daily protein intake reached the recommended daily
allowance since this was not measured. Conversely, when dietary intake of protein in
elderly individuals undergoing complete bed rest for 10 days was raised by 1–4 g/kg/
day (3 × 15 g essential amino acids), muscle activity was preserved. However,
overall muscle mass had decreased even with enhanced dietary protein and muscle
protein synthesis. This occurrence supports the assertion that muscle function is
preserved due to the recruitment of more functional fibers while inactive. A study
showed that among healthy elderly individuals, an increase in functional perfor-
mance and lean muscle mass was observed after 3 months of essential amino acids
supplementation with a dose of around 7.5 g of essential amino acids rich in leucine
(40%) twice a day (total 0.21 g/kg/day or 15 g/day) (Ispoglou et al. 2016).

Anabolic responses from essential amino acid supplementations increased with
exercise, a majority of which occurred through the synergistic effects of mTOR
(Dickinson et al. 2011). Early researchers showed that acute muscle protein synthe-
sis response in elderlies who consume 20 g of essential amino acids 1 h after exercise
in the form of bilateral leg extensions is higher, compared to a young adult
(Drummond et al. 2008). However, the phosphorylation status of the primary
intramyocellular signaling target within the mTORC1 pathway (i.e., mTOR,
4E-BP1, eEF2 and S6K1) was not different between different age ranges. Hence,
it is recommended to optimize both the anabolic stimuli (that is essential amino
acids/proteins and resistance exercise) which can effectively overcome anabolic
resistance in the elderly as well as increase anabolic response and adaptation
(Moro et al. 2018). Combinations of resistance training and essential amino acid
or protein supplementation that are applied to an individual suffering from
sarcopenia and or weakness can be more benefit, compared to healthy elderly adults.
Kim et al. (2012) reported an increase in the strength of knee extension (9.3%)
among elderly Japanese females living in communities with sarcopenia, after con-
sumption of essential amino acid supplementations rich in leucine twice a day (6 g



daily; 42% leucine) along with comprehensive physical training twice a week
(resistance type activity) for 3 months. The leg muscle mass had increased in groups
receiving both supplementation and exercise and those receiving exercise only.
Other studies have proven that resistance training, when combined with essential
amino acid supplementation provides benefits for sarcopenic elderly people healing
from trauma. In a randomized control trial, subjects with pelvic fracture due to
osteoporosis were recruited, and daily essential amino acid supplementation was
provided to the treatment arm for 2 months (total 8 g daily; around 30% leucine)
which was combined with a physical training program including resistance type
training. Results showed that the intervention significantly increased total grip
strength with optimum time and performance (Park et al. 2020). As a result, evidence
shows that the elderly recovering from injury, such as pelvic fractures, may be able
to increase muscle strength and function with the consumption of essential amino
acids in addition to resistance type training activity (Drummond et al. 2008).
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Table 14.2 Composition of
8 g essential amino acid for
chronic heart failure and
chronic obstruction pulmo-
nary disease patient (Aquilani
et al. 2014)

Composition of amino acid Dose (mg)

L-tryptophan 20

L-tyrosine 30

L-methionine 50

L-phenylalanine 100

L-histidine 150

L-cysteine 150

L-threonine 350

L-valine 625

L-isoleucine 625

L-lysine 650

L-leucine 1250

Research has consistently shown that supplementation of essential amino acids
(8 g per day) composed of ingredients listed in Table 14.2, to geriatric subjects with
chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) can
increase their exercise tolerance after 1–3 months of supplementation (8 g per day).
In elderly with chronic heart failure, the exercise capacity increased from 8.7% to
23% (watt; cycle test), and increased from 12% to 22% (meters) in the 6 min’ walk
test. In addition, plasma lactate levels of patients decreased during rest (as much as
25%) and sensitivity of tissue insulin increased by roughly 16%. Geriatric patients
with COPD received similar benefits as elderly subjects experiencing CHF. Physical
activity increased as much as 78.6% of steps per day and plasma lactate concentra-
tion reduced while resting by as much as 23%. It can be concluded from this research
that those essential amino acids can increase the aerobic metabolism of muscles,
function and mass of muscles, and tissue insulin sensitivity (only among geriatric
subjects with chronic heart failure). Physiological activity increased with essential
amino acid supplementation due to the formation of mitochondria and myofibrils of
skeletal and cardiac muscles, including control of blood glucose (Aquilani et al.
2014).
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Supplementation of essential amino acids both directly and indirectly increases
the capacity of muscle cells to process high energy compounds which are essential to
increase the performance and muscle strength in elderly people. This occurs in all
elderly individuals both healthy and those suffering from CHF or COPD (Aquilani
et al. 2014). Essential amino acid supplementation can cause more efficient aerobic
metabolism due to the reduction in insulin resistance (Solerte et al. 2008). Essential
amino acids can directly increase their synthesis of insulin receptors and its
autophosphorylation process (Solerte et al. 2008). The reduction in insulin resistance
reduces the blocking of the cellular pyruvate dehydrogenase enzyme complex by
inflammatory cytokines and insulin resistance that circulate in both COPD and CHF
(Aquilani et al. 2008). Activity of this enzyme complex increases the production of
energy from glucose oxidation. In hearts of mice induced with diabetes, long-term
oral essential amino acid supplementation increases cytochrome C mitochondrial
activity and NADH activity, as well as significantly shifting the heavy chain of
ventricular myosin toward a quicker phenotype (Pellegrino et al. 2008). Both in
healthy and diabetic rats, essential amino acid supplementation modulates skeletal
muscle redox status via the increase in antioxidant defense systems, which is shown
by an increase in superoxide dismutase (SOD) enzyme expression and simulta-
neously reduces heat-shock protein levels (Brocca et al. 2008). Essential amino
acids may decrease resistance of insulin by reducing circulating tumor necrosis
factor alpha (TNF-α) cytokines. It has been shown to occur in geriatric patients
with sarcopenia (Solerte et al. 2008).

Supplementations of leucine-rich branched-chain amino acids increase protein
synthesis in adipose tissues, liver, and skeletal muscles by increasing the action of
protein synthesis engaged in translation of mRNA (Anthony et al. 1999). In geriatric
populations with COPD/CHF, leucine (as well as other essential amino acids) acts as
nutritional signaling molecules that do not depend on insulin (Anthony et al. 1999).
However, insulin signaling is regulated by amino acids through nutritional signaling
mTOR and the availability of amino acids is essential for the anabolic activity of
insulin (Dickinson et al. 2011). Conversely, the lack of amino acids can lower
mTOR activation despite increased insulin signaling (Dickinson et al. 2011). Sup-
plementation with exogenous essential amino acids, even in small doses, can induce
protein metabolism in muscle (Volpi et al. 2003). Another pathway where essential
amino acids induce protein synthesis includes the increase in anabolic hormone
production in the liver, which is the insulin-like growth factor 1 (IGF-1). This
hormone depends on the presence of essential amino acids in the blood and is active
only when the amino acids are in optimum quantity. A study has reported that 7.5 g
of amino acids increases levels of IGF-1 (Dillon et al. 2009). Essential amino acids
can stimulate protein synthesis by decreasing breakdown of muscular protein. In a
study with human subjects, protein utilization efficiency was more dependent on its
low sensitivity toward proteolysis instead of a change in protein synthesis
(Kadowaki and Kanazawa 2003). Leucine is an amino acid that can prevent protein
breakdown in the heart, and its suppression action is facilitated by extracellular
leucine (Chua 1994). Conversely, transamination of branched-chain amino acids in
the heart occurs three times more compared to skeletal muscles. The effect of



essential amino acids toward the myocardium is proven by the presence of left
ventricular dysfunction improvement among healthy elderly adults and a rapid
improvement of postexercise VO2 among geriatric subjects with CHF (Aquilani
et al. 2008).
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Creatine Supplementation in the Elderly

Creatine is a nonprotein compound containing nitrogen which can be obtained
primarily from meat, poultry, and fish. It is also synthesized from glycine, arginine,
and methionine in the kidney and liver. In the kidney, glycine and arginine react to
produce guanidinoacetate. Methylation of guanidinoacetate using S-adenosyl methi-
onine (SAM) occurs in the liver to produce creatine. One produced, creatine is
transported to tissue, in which approximately 95% is located in muscle and the rest is
located in brain and kidney. About 1–2% of creatine in muscle is spontaneously
cyclized to form creatinine which excreted as a waste product in urine (Gropper and
Smith 2013). In order to create normal creatine level, 1000–3000 mg/day of creatine
is needed. This requires that daily about 50% can be obtained from food sources, the
rest contribution derived from endogenous synthesis of creatine (Brosnan and
Brosnan 2016). The important role of creatine in muscle is to provide an energy
reserve due to the ability of creatine to react with inorganic phosphate to produce
phosphocreatine which is catalyzed by creatine kinase. Hydrolysis of phosphocrea-
tine provides free energy (inorganic phosphate) which is used to regenerate Aden-
osine Triphosphate (ATP) (Gropper and Smith 2013).

Creatine supplementation in elderly has the potential benefit to enhance muscle
mass and force, diminish the risk fall as well as reduce mineral bone loss (Candow
et al. 2019). Stout et al. (2007) concluded that supplementation of 20 g/day creatine
for 1 week, continued with 10 g/day for 1 week improve the strength of hand-grip in
aging subjects. Another researcher found that 30 days of creatine supplementation
with two different doses, 10 g/day for the first 10 days and 4 g/day for the remaining
20 days alleviated muscle exhaustion in the lower body of elderly men aged
60–82 years (Rawson et al. 1999). Moreover, Gotshalk et al. (2002) showed that
0.3 g/kg/day of creatine supplementation for 7 days raised muscle power and
function in aging subjects. In ten elderly women, 0.3 g/kg/day of creatine supple-
mentation for 1 week ameliorated physical performance of lower extremity. In
addition, creatine supplementation stimulates expression of regulatory factors for
muscular protein synthesis such as myogenin, Myo-D, IGF-1, Myf5, and MFR-4, as
well as enhance the number of satellite cells (Willoughby and Rosene 2003).
However, a controversial result from Chami and Candow (2019) showed that
0.1–0.3 g/kg of creatine supplementation for 10 days did not improve physical
performance, resistance, and muscle power in aging subjects. In addition, 1 g/day
of creatine supplementation for long-term period (1 year) did not provide advantage
for muscle of post menopause old female (Lobo et al. 2015). Beside the function of
creatine supplementation toward muscle, many researches also clarified the function



of creatine supplementation toward the brain, especially to remedy cognitive func-
tion. However, most of this study was conducted in healthy young subject and
limited in old subjects (Roschel et al. 2001). One study by McMorris and colleagues
proved that 20 g/day of creatine supplementation for 1 week in 15 subjects of elderly
aged 76.4 ± 8.48 years old (8 men and 7 women) could increase cognitive perfor-
mance, using a memory test (Terry et al. 2007). Clearly, more studies are needed to
elaborate the benefit effect of creatine supplementation to brain in elderly.
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Vitamin and Mineral Supplementation in the Elderly

Young and old people have different nutritional demands. Energy requirements
decrease proportionally with age as physical activity level, muscle mass, and basal
metabolic rate decrease (Wurtman et al. 1988; Ahmed and Haboubi 2010). Aging,
on the other hand, can result in a decreased ability to absorb and metabolize certain
nutrients (Amarya et al. 2015). As a result, it is critical for elderly people to consume
more nutritious foods in order to meet their nutritional needs. Most of vitamin serves
as an antioxidant for reducing free radical and preventing oxidative stress. Multivi-
tamin and mineral supplementation in elderly plays a role in enhancing immune
system and maintaining healthy condition (High 1999).

Vitamin Supplementation

The concentration of retinol (pre-vitamin A) in the plasma is reduced in older mice,
whereas liver retinol concentrations increase in aging mice. Liver vitamin concen-
trations in humans also increase proportionally with age (Basu and Doeve 2011).
Early study by Van Der Loo in 2004 showed that the hepatic concentrations of
vitamin A are increased with increasing age (Van Der Loo et al. 2004). Clinical
study regarding supplementation of vitamin A is limited to be conducted. Two
studies showed no clinical effect in elderly who consumed vitamin A supplementa-
tion (Fortes et al. 1998; Murphy et al. 1992). One study was conducted in 118 elderly
subjects given 800 mg of retinol palmitate for 3 months (Fortes et al. 1998) and the
other study was conducted in 53 elderly subjects given 200,000 IU of single dose
vitamin A (Murphy et al. 1992). In fact, the supplementation of 800 mg retinol
palmitate had an unexpected effect shown by a decreasing the number of immune
cells (Fortes et al. 1998).

Vitamin B1 (thiamin) plays an important role in the metabolism of carbohydrates
and food energy (EFSA Panel on Dietetic Products Nutrition and Allergies (NDA)
2010). Vitamin B1 includes the active form of thiamine, thiamine pyrophosphate
(TPP), a cofactor for various enzymes participated in the carbohydrate’s metabolism
and branched-chain amino acids (Depeint et al. 2006; EVM 2002; Tardy et al. 2020).
Vitamin B1 does not change with age, but elderly can have vitamin B1 deficiency



when they consume diuretics because of congestive heart failure (Skully 2014).
Vitamin B2 (riboflavin) is a coenzyme for flavin mononucleotide (FMN) and flavin
adenine dinucleotide (FAD) (Suwannasom et al. 2020). FMN and FAD act as proton
carriers in the redox reactions that are essential for carbohydrate, fat, and protein
metabolism. In the electron transport chain, FADH functions as an electron donor
(Tardy et al. 2020). Daily requirements of vitamin B2 do not diminish with age
although elderly have lower energy expenditure. Meanwhile, there are other studies
that recommended higher intake of vitamin B2 supplements because of biochemical
evidence of vitamin B2 deficiencies in elderly (Skully 2014). Vitamin B3 (niacin)
refers to two different molecules, which are nicotinic acid (NA) and nicotinamide
(NAM) (Denu 2007). Niacin is a precursor of nicotinamide adenine dinucleotide
(NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+). Throughout
glycolysis, NAD+ (which releases NADH) loses an electron from multiple carbon
atoms of glucose. Oxidative phosphorylation in mitochondria begins at complex I of
the electron transport chain, where NADH is oxidized and an electron is released to
start the transport chain (Tardy et al. 2020). A person older than 51 years is
recommended to consume lesser thiamine (vitamin B1), riboflavin (vitamin B2),
niacin (vitamin B3), and iron than a younger adult since these vitamins are involved
with protein and energy metabolism (Russell 2000). Elderly people from Spain
consume Mediterranean diets. Study done by Vaquero et al. (2004) shows that
elderly males displayed higher intakes of thiamin (vitamin B1), riboflavin (vitamin
B2), niacin (vitamin B3), retinol (vitamin A), and iron (Vaquero et al. 2004).
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Vitamin B5 (pantothenic acid) is an important precursor for the coenzyme A
biosynthesis. Acetyl coenzyme A is an intermediate molecule that reacts with acyl
group (Pietrocola et al. 2015; Tardy et al. 2020), to produce acetyl-CoA and
succinyl-CoA, both of which are used in the citric acid cycle. Vitamin B6 (pyridox-
ine) active metabolic form functions as a cofactor for enzymes participated in
metabolism of amino acid, gluconeogenesis and glycogenolysis, lipid metabolism,
heme synthesis, and hormonal action. Pyridoxal phosphate (PLP) acts as a cofactor
for glycogen phosphorylase, which breaking up glucose-1-phosphate from glyco-
gen, to produce glucose (Tardy et al. 2020). Several studies show high prevalence of
vitamin B6 deficiencies in elderly. (Skully 2014) Deficiency of vitamin B6 in the
elderly can cause immune system dysfunction and increase infectious disease
(Russell 2000). Vitamin B8 (biotin) acts as a cofactor in several enzymes required
for fat synthesis, branched-chain amino acid catabolism, gluconeogenesis, and
energy production within the cell. Besides that, biotin is a cofactor of enzyme that
controls the fatty acids availability for mitochondrial oxidation or the amino acids
availability for the Krebs cycle (Tardy et al. 2020).

Elderly people with atrophic gastritis frequently have vitamin B12 malabsorption.
Deficiency in vitamin B12 causes high plasma concentrations of homocysteine,
which results in a greater risk of vascular disease, neurological damage, and dys-
function of the brain (Russell 2000). Vitamin B12 (Cobalamin, Cbl) is not produced
inside the human body and must be obtained from animal sources. Humans require
vitamin B12 to support the function of two enzymes: cytosolic methionine synthase
(MS, EC 2.1.1.13) and mitochondrial methylmalonyl-CoA mutase (MUT, EC



5.4.99.2) (Froese et al. 2019). Cobalamin is a cofactor for the enzyme
methylmalonyl-CoA mutase which catalyzes the conversion of methylmalonyl-
CoA into succinyl-CoA. This transformation occurs throughout the oxidation of
odd chain fatty acids and the ketogenic catabolism of amino acids (Tardy et al.
2020). Elderly women showed higher intake of vitamin B12. Both genders displayed
similar intakes of the other micronutrients. Their consumptions according to bio-
chemical parameters are appropriate (Vaquero et al. 2004). Vitamin C is essential for
the production of energy via beta oxidation (Tardy et al. 2020). Supplementation of
vitamin C (500 mg/day) for 3 months remedy the immune cells function in human
peripheral blood of elderly males and females, which disturbed by increasing age
(De La Fuente et al. 2020).
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Vitamin D is a prohormone that has to undergo a metabolic process to become
active. Vitamin D is initially hydroxylated at the carbon-25 atom in the liver,
converting it into 25OH-D, followed by further hydroxylation of carbon-1 in the
kidney to become the active metabolite, which is 1,25(OH)2-D. The active form of
vitamin D is useful in maintaining calcium and phosphate homeostasis and helps in
bone mineralization (Basu and Doeve 2011). The active metabolite enters the cell
and binds to vitamin D receptors, followed by the transcription and translation to
produce calcium binding protein or osteocalcin. 1,25(OH)2-D binds to the vitamin D
receptor inside enterocytes and synthesizes calcium binding proteins (Lips 2006).
Elderly people have a risk of vitamin D deficiency caused by multiple factors. One of
the factors is the inability of the kidneys of elderly individuals to hydroxylate 25
(OH)-D into the active form 1,25 (OH)2-D, as a result vitamin D receptors in the
intestinal mucosa reduce in number leading to malabsorption of calcium. The
reduced absorption of calcium causes an increase in the parathyroid hormone and
bone remodeling (Russell 2000).

Mineral Supplementation

Trace elements are chemical micronutrients that are needed in small amounts but
play an important role in the human body’s physiological and metabolic processes.
Deficiency of trace elements can cause impairment of health since every trace
element is associated with multiple enzymatic systems, and the intake of these
elements is extremely important to maintain good health (Bhattacharya et al.
2016). Elderly usually have higher risk of osteoporosis which causes high incidence
of fragility fractures. Since nearly 99% of the calcium of the human body is
contained in the skeleton, so elderly should take calcium supplements. USA country
recommends higher calcium supplements intake for women and person aged
70 years old. Many studies shows that taking calcium supplements can increase
bone density thus prevent fractures. (Skully 2014).

Iron is present in the ring structure of porphyrin in hemoglobin and also in the
cytochrome that acts as an electron carrier throughout ATP synthesis in the electron
transport chain. The respiratory chain consists of 40 different proteins, including six



different heme ferritins and six iron-sulfur proteins located in the mitochondrial
inner membrane complexes I, II, and III proteins (Tardy et al. 2020). Females aged
51 and above require lower iron levels due to menopause (Russell 2000). In the
USA, around 11% of men and 10% of women aged above 65 are anemic; mean-
while, in England, around 5.2% men and women aged 65 are anemic. The cause of
anemic in these men and women aged 65 is varied between individuals. Elderly
usually has impaired absorption, reduced food intake, or changes in dietary pattern
which usually have normalized hemoglobin response after given iron therapy.
Otherwise, elderly who had malignancies, renal disease, or higher inflammatory
marker did not respond to iron therapy (Fairweather-Tait et al. 2014).
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Magnesium (Mg) plays a primary role in the production and use of adenosine
triphosphate (ATP). The majority of ATP is in the form of the Mg-ATP complex
within the cell. This complex is a cofactor for various kinases that are active in
glycolysis. Magnesium also influences the activity of citric acid cycle enzymes such
as isocitrate dehydrogenase and oxoglutarate dehydrogenase enzyme complexes.
The Mg-ATP complex aids in the export of mitochondrial ATP into the cytoplasm to
provide energy for intracellular functions (Tardy et al. 2020). Elderly often have Mg
deficiency usually because of insufficient Mg intake, reduced Mg absorption, or
increased Mg secretion related to kidney function (Barbagallo et al. 2021). Li et al.
(2022) replaced iodized salt into non-iodized salt consumption in 61 elderly subjects
for 6 months. This resulted 15.4% subjects had abnormal thyroid function, 7.7%
subjects had first-onset new nodules or enlarged solid nodules and lower urine iodine
concentration than other subjects (Li et al. 2022).

Conclusion

Protein is a macromolecule composed of amino acids and has a pivotal role in the
body. Protein obtained from food serves as a source of amino acids for protein
synthesis in tissues. In the aging process, various changes occur in amino acid
metabolism resulting in an imparity between protein synthesis and degradation
which causes sarcopenia and degenerative diseases. Low protein and energy intake
in the elderly can increase the morbidity and mortality. Therefore, protein and energy
supplementation is needed to create healthy aging. Several studies have shown that
supplementation of amino acids, especially branched-chain amino acids, can
increase muscle mass and function, thereby preventing sarcopenia. Creatine supple-
mentation as a source of energy in muscles is also beneficial in increasing muscle
mass and strength. The process of macromolecular catabolism to produce energy is
highly dependent on the availability of vitamins as coenzymes and mineral as
cofactors in various metabolic reactions. Thus, adequate intake of vitamins is
beneficial in producing adequate energy. In addition, the administration of multivi-
tamins and minerals has been shown to increase the immune system in the elderly.
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Chapter 15
Ageing, Metabolic Dysfunction,
and the Therapeutic Role of Antioxidants

Ana L. Santos and Sanchari Sinha

Abstract The gradual ageing of the world population has been accompanied by a
dramatic increase in the prevalence of obesity and metabolic diseases, especially
type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity
shares many common physiological features, including increased oxidative stress
and inflammation. Understanding the mechanisms responsible for adipose tissue
dysfunction in obesity may help elucidate the processes that contribute to the
metabolic disturbances that occur with ageing. This, in turn, may help identify
therapeutic targets for the treatment of obesity and age-related metabolic disorders.
Because oxidative stress plays a critical role in these pathological processes, anti-
oxidant dietary interventions could be of therapeutic value for the prevention and/or
treatment of age-related diseases and obesity and their complications. In this chapter,
we review the molecular and cellular mechanisms by which obesity predisposes
individuals to accelerated ageing. Additionally, we critically review the potential of
antioxidant dietary interventions to counteract obesity and ageing.

Keywords Ageing · Obesity · Metabolic syndrome · Oxidative stress ·
Inflammation · Nutraceuticals · Dietary interventions

Introduction

From a clinical standpoint, obesity is defined as a body mass index (BMI) between
30 and 39.9 kg/m2 and is characterised by the accumulation of excess body fat
(Kopelman 2000; Ogden et al. 2006). The condition reflects chronic excess energy
due to decreased energy expenditure and increased energy intake (Hill et al. 2012),
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resulting from a complex and not yet well-defined interaction between genetic,
metabolic, and lifestyle factors. In recent decades, the incidence of obesity has
increased dramatically, a trend that is expected to continue in the coming years. In
the USA, 86.3% of adults will likely be overweight or obese by 2030 (Wang et al.
2008), which could significantly burden the health care system.
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Globally, obesity is estimated to be the fifth leading cause of death (Secord and
Gehrig 2012). Over 2.8 million people are estimated to die from obesity and
associated complications yearly (WHO 2021a). Type 2 diabetes (T2D), cardiovas-
cular disease, breast and colon cancer, gallbladder disease, fatty liver disease, sleep
apnoea and other respiratory problems, arthritis, and infertility are the most common
health complications associated with obesity (Pi-Sunyer 2009). The term “metabolic
syndrome” describes the co-occurrence of obesity, dyslipidaemia, hypertension, and
diabetes (Eckel et al. 2005). It is estimated that cardiovascular disease and all-cause
mortality are 2-fold and 1.5-fold higher, respectively, in individuals with metabolic
syndrome (Engin 2017).

Interestingly, the adipose tissue dysfunction associated with obesity shares many
similarities with the adipose tissue dysfunction associated with normal ageing. These
similarities include redox imbalance, altered mitochondrial function, accumulation
of damaged macromolecules, impaired immunity, and systemic inflammation
(Ahima 2009; Minamino et al. 2009; Tchkonia et al. 2010; Santos and Sinha
2021). Based on these similarities, obesity has been proposed to represent an
accelerated form of adipose tissue ageing (Tchkonia et al. 2010).

Therefore, a better understanding of the mechanistic links between ageing and
obesity, particularly at the adipose tissue level, could contribute to the development
of therapeutic and preventive strategies to improve longevity and quality of life in
ageing populations.

Adipose Tissue and the Pathophysiology of Obesity

Adipose tissue in mammals occurs in two distinct forms, brown adipose tissue
(BAT) and white adipose tissue (WAT), which have different morphological and
functional characteristics (Fantuzzi 2005; Saely et al. 2012). BAT is present in
significant amounts in infants and gradually disappears or becomes inactive with
age. In adults, BAT is found in small amounts in the neck, subclavicular area, and
near the heart (Nedergaard et al. 2007). Due to extensive vascularisation and
numerous mitochondria expressing uncoupling protein 1 (UCP1), BAT specialises
in heat production by nonshivering thermogenesis (Saely et al. 2012; Gordon et al.
2019). Nonshivering thermogenesis maintains core body temperature at cold ambi-
ent temperatures. During this process, UCP1 uncouples oxidative phosphorylation
from ATP synthesis in mitochondria, releasing the proton motive force in the form of
heat (Argyropoulos and Harper 2002).

WAT is the primary long-term energy reserve in mammals, synthesising tri-
glycerides by lipogenesis when energy intake exceeds energy output. The human



WAT can mainly be divided into visceral and subcutaneous, depending on the
anatomical location. It is estimated that approximately 80% of WAT is present in
the subcutaneous compartments of the body, while 10–20% is present in the visceral
compartments around the mesentery and omentum. Small amounts of perivascular
adipose tissue are also present around the blood vessels. The liver, muscles, and
joints also contain adipose tissue (Logue et al. 2019). WAT undergoes lipolysis,
which releases free fatty acids that are oxidised and provide energy to the body
during periods of increased energy demand. Following energy intake, lipolysis is
attenuated, primarily due to the potent antilipolytic effect of insulin (Duncan et al.
2007).
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Under certain circumstances, white fat cells, or adipocytes, acquire some of the
properties of brown adipocytes, leading to the production of beige adipocytes with
intermediate properties (Barbatelli et al. 2010). Beige adipocytes can also arise from
unique precursor cells (Wu et al. 2012a). In mice, beige adipocytes are found in the
white inguinal fat depot (Vitali et al. 2012), whereas in adult humans, they are
located in the cervical and supraclavicular fat depots (Virtanen et al. 2009; Cypess
et al. 2013). Under normal conditions, beige and white adipocytes are morpholog-
ically indistinguishable. However, when cold or adrenergic signals stimulate beige
adipocytes, they adopt brown adipocyte-like characteristics, including the accumu-
lation of many small lipid droplets and high mitochondrial content (Sharp et al.
2012; Wu et al. 2012a; Nedergaard and Cannon 2014). Beige adipocytes, like brown
adipocytes, exhibit high expression of UCP1, which increases thermogenesis and
energy expenditure (Ikeda et al. 2018). Activated brown and beige adipocytes can
take up large amounts of lipids and glucose, serving as metabolic sinks, eliminating
excessive amounts of nutrients in the blood and contributing to whole-body fat and
glucose metabolism and insulin sensitivity (Kajimura et al. 2015). White, brown,
and beige adipocytes work together to regulate the body’s energy balance. In
addition to its role in fat storage, adipose tissue has autocrine, paracrine, and
endocrine functions in the brain, muscle, liver, vasculature, kidney, and bone that
are critical to the regulation of energy homeostasis (Mohamed-Ali et al. 1998); its
involvement in immunity is also increasingly recognised (Schäffler and Schölmerich
2010).

During periods of abundant energy intake, adipocytes, the primary cell type of
adipose tissue, synthesise fatty acids through lipogenesis and store them as triglyc-
erides in lipid droplets (Luo and Liu 2016). This prevents lipotoxicity from circu-
lating fatty acids or the accumulation of triglycerides in other organs. Besides
adipocytes and pre-adipocytes, adipose tissue comprises a matrix of connective
tissue, nervous tissue, stromal vascular cells, and immune cells. Together, these
components coordinate various biological functions, including energy metabolism,
neuroendocrine function, and immune response (Frayn et al. 2003; Kershaw and
Flier 2004; Grant and Dixit 2015).

Adipose tissue stromal cells promote pre-adipocyte proliferation and differentia-
tion and secrete adipokines, which are adipose tissue-derived cytokines and hor-
monal factors (Frayn et al. 2003; Guerre-Millo 2004). Adipokines include
pro-inflammatory cytokines, cytokine-related proteins, and several other



biologically active proteins that exhibit hormone-like effects and regulate appetite,
energy expenditure, fat storage, and insulin secretion and sensitivity, among others
(Blüher and Mantzoros 2015; Luo and Liu 2016). Some adipokines, such as
adiponectin, adipsin, and leptin, are almost exclusively produced by adipocytes,
and their concentration correlates with the amount of adipose tissue and BMI
(Wajchenberg 2000; Pan et al. 2014). Other adipokines are produced almost exclu-
sively by the stromal vascular and matrix fractions of the hypertrophic adipose
tissue, primarily by resident macrophages. These include tumour necrosis factor-
alpha (TNF-α), interleukins (ILs), and monocyte chemoattractant protein-1 (MCP-1)
(Weisberg et al. 2003; Fain 2006). The secretion of adipokines depends on the size
and location of the fat depot. While subcutaneous adipose tissue secretes greater
amounts of metabolically beneficial adipokines such as leptin and adiponectin,
visceral adipose tissue produces greater amounts of pro-inflammatory adipokines
(Fain 2006).
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Fig. 15.1 Changes in adipose tissue with obesity. The development of obesity is associated with an
increase in the number and size of adipocytes. Growing adipocytes produce increasing amounts of
pro-inflammatory cytokines that can lead to low-grade chronic inflammation. As adipose tissue
expands, it compresses blood vessels, allowing less oxygen to reach the tissue and causing hypoxia.
Increased levels of inflammatory cytokines and oxygen deprivation contribute to adipocyte death.
Simultaneously, the matrix of adipose tissue becomes increasingly dense and stiff. These and other
pathological changes that occur in adipose tissue during obesity contribute to obesity-related
complications such as T2D and insulin resistance, as well as an increased risk of cancer, particularly
breast cancer, in obese individuals. Image used with permission from Elsevier. Image originally in
Rosen and Spiegelman (2014)

Fat accumulation depends on the balance between lipogenesis and lipolysis
(triglyceride degradation) (Kersten 2001). The expansion of adipose tissue associ-
ated with obesity is caused by an increase in the number (hyperplasia) and mass/size
(hypertrophy) of adipocytes as a result of enhanced lipogenesis and adipogenesis
(Fig. 15.1) (Rosen and Spiegelman 2014; Haczeyni et al. 2018). Additionally,
increased local vascularisation and proliferation of pre-adipocytes in the stromal



vascular fraction of adipose depots promote adipose tissue growth (Gesta et al.
2007).
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Mature obese adipocytes exhibit increased production of pro-inflammatory and
insulin-resistant adipokines such as IL-6 and MCP-1 and a decrease in the produc-
tion of anti-inflammatory and insulin-sensitising adipokines (Weisberg et al. 2003;
Unamuno et al. 2018). As a result of sustained chemotactic stimulation, monocytes
leave the circulation and migrate to the accumulating fat, where they develop into
macrophages (Kanda et al. 2006). Macrophages that settle in adipose tissue secrete
cytokines (e.g. IL-6 and TNF-α) that cause further infiltration of macrophages and
inflammation. These actions result in increased production of pro-inflammatory
adipokines and a reduced response of adipocytes to insulin (Suganami et al. 2005).
Over time, persistent low-grade inflammation caused by obesity can lead to T2D,
hypertension, dyslipidaemia, atherosclerosis, thrombosis, cardiovascular disease,
and even cancer (Wellen and Hotamisligil 2005; Ellulu et al. 2017). In the brain,
obesity can lead to neuroinflammation, impaired blood–brain barrier (BBB) integ-
rity, and alterations in neuronal structure, synaptic plasticity, and cognitive function
(Nguyen et al. 2014).

Ageing and Age-Related Diseases

The average life expectancy of the world population has increased significantly in
recent decades (Christensen et al. 2009). In the USA, the average life expectancy is
estimated to have increased by more than 30 years since the 1900s (Bunker et al.
1994). By 2050, the proportion of people over 60 years of age worldwide will be
22%, and 400 million people will be 80 years of age or older (Harper 2014).
Unfortunately, this increase in life expectancy has not been accompanied by a
corresponding increase in healthspan, defined as the number of years lived without
chronic age-related diseases. Therefore, to extend the human healthspan, it is crucial
to understand the basic mechanisms of ageing and related diseases.

Biological theories of ageing fall into three main categories. Evolutionary ageing
theories postulate that ageing results from decreasing natural selection forces with
increasing chronological age (Medawar 1952; Williams 1966). As organisms age,
especially after the onset of reproduction, there is a decline in reproductive output
that selection can act on to discriminate between more suitable and less suitable
genotypes. Accordingly, selection cannot “see” deleterious mutations whose effects
are confined to late-life stages after they have been passed on to offspring. Devel-
opmental (or programmed) theories of ageing posit that ageing follows a genetically
determined schedule similar to that underlying growth, development, and maturity.
Despite considerable effort, no gene mutation has yet been found to abolish the
ageing process, questioning the notion that ageing is based on a genetic programme
(Kirkwood and Melov 2011). Conversely, according to error theories, ageing results
from the lifetime accumulation of damage to molecules, eventually leading to
physiological decline (Muller et al. 2007). Although convenient, the division of



theories of ageing into different categories is artificial, and ageing is probably the
result of overlapping genetic and non-genetic mechanistic and evolutionary forces
(Wensink and Cohen 2021).
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From a biological perspective, ageing is a lifelong, complex phenomenon
characterised by a continuous decrease in the efficiency of cellular processes
(Harman 2001). As a result, cells become less able to recover from internal and
external damage, leading to tissue dysfunction, increased organism vulnerability to
disease, and, ultimately, death (Niccoli and Partridge 2012). Ageing is the leading
risk factor for many diseases, including cancer, cardiovascular disease, and neuro-
degenerative diseases such as Alzheimer’s and Parkinson’s disease (Kennedy et al.
2014). Accordingly, as the world population ages, the prevalence of age-related
diseases is expected to increase substantially (Mattson and Magnus 2006; Niccoli
and Partridge 2012). For example, in 2021, an estimated 50 million people world-
wide were affected by dementia. This number is estimated to increase to 78 million
by 2030 and 139 million by 2050 (WHO 2021b).

In elderly individuals, Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease and is responsible for more than 75% of cases of dementia. AD is
characterised by severe disturbances in cognitive function and behaviour (Nussbaum
and Ellis 2003). Estimates suggest that approximately 10% of people over 65 have
AD. The prevalence of AD doubles every 5 years after age 65, and by age 85, the
incidence reaches approximately 50% (Alzheimer’s Association 2019).

AD is a complex disease that is neuropathologically characterised by the presence
of senile plaques and intracellular neurofibrillary tangles (NFTs). Senile or amyloid
plaques consist mainly of Aβ-peptides formed by proteolytic cleavage of the
β-amyloid precursor protein (APP) by α-, β-, and γ-secretases (Seubert et al.
1993). Intracellular NFTs consist of hyperphosphorylated tau amyloid fibrils
(Serrano-Pozo et al. 2011). Approximately 5–7% of AD cases are familial (Campion
et al. 1999) and are associated with alterations in genes encoding presenilin 1 (PSEN
1), presenilin 2 (PSEN 2), APP, and apolipoprotein E (APOE) (Nikolac Perkovic
and Pivac 2019).

However, most AD cases (>90–95%) occur sporadically and manifest in people
65 years and older. In addition to the accumulation of Aβ plaques and NFTs,
sporadic AD is associated with various other pathological, metabolic, and neuro-
chemical changes, including altered brain metabolism (Mosconi et al. 2008; Liu and
Zhang 2014), impaired BBB function (Zenaro et al. 2017), activation of microglia
and astrocytes (McGeer and McGeer 1998; Heneka et al. 2010), development of
T2D and metabolic syndrome (Razay et al. 2007), and oxidative stress (Chen and
Zhong 2014).

Aβ accumulation and aggregation trigger several cytotoxic effects, including the
impairment of mitochondrial activity resulting in increased generation of reactive
oxygen species (ROS) and loss of intracellular calcium homeostasis (De Felice et al.
2007; Quintana et al. 2020). Additionally, Aβ accumulation promotes the release of
cytokines (Rubio-Perez and Morillas-Ruiz 2012) and changes in actin cytoskeleton
dynamics (Bamburg and Bloom 2009). Tau hyperphosphorylation and NFT forma-
tion further promote protein misfolding and inhibit the function of protein repair



systems. Together with impaired cell bioenergetics (Blass et al. 2000) and antioxi-
dant defence mechanisms (Tönnies and Trushina 2017), these processes cause
neuronal dysfunction and, eventually, death (Guo et al. 2020).
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Parkinson’s disease (PD) is the second most common neurodegenerative disease
after AD. Clinical manifestations of PD include motor symptoms such as akinesia,
tremors, rigidity, and postural instability (Kalia and Lang 2015) and nonmotor
symptoms such as autonomic and cognitive dysfunction (Schapira et al. 2017).
The median age of diagnosis for PD is 65. At this age, the prevalence of PD is
approximately 1% and increases to nearly 5% by the age of 85 (Tysnes and Storstein
2017).

From a histopathological perspective, PD is characterised by the loss of dopami-
nergic neurons in the substantia nigra. Neuronal degeneration is accompanied by the
build-up of inclusion bodies in the cytoplasm composed of the protein α-synuclein,
called Lewy bodies (Wong and Krainc 2017). Under physiological conditions,
monomeric α-synuclein is widely distributed in the brain and participates in the
regulation of neurotransmitter release, neuronal plasticity, and normal synaptic
function. However, α-synuclein has a propensity to aggregate into higher molecular
weight structures, such as oligomers, protofibrils, and eventually fibrils, which are
the principal components of Lewy bodies (Spillantini et al. 1997). Oxidised and
nitrated α-synuclein are also important components of Lewy bodies associated with
PD and some forms of AD (Giasson et al. 2000). Abnormal accumulation of
α-synuclein in neuritic processes appears to be the driving force in the pathogenesis
of PD, and these deposits occur early in the course of PD (Wong and Krainc 2017).

Mechanistic Similarities Between Ageing and Obesity

There are many similarities between the adipose tissue dysfunction that is charac-
teristic of obesity and that of normal ageing. These include increased oxidative stress
and chronic low-level inflammation accompanied by insulin resistance, elevated
pro-inflammatory, chemotactic, and procoagulant protein levels, and lipotoxicity
(Tchkonia et al. 2010; Pérez et al. 2016; Trim et al. 2018). Interestingly, obesity is
also accompanied by dysfunction at the neuronal level, which has similarities to that
associated with ageing, including neuroinflammation, decreased grey and white
matter volume, decreased hippocampal volume, and decreased neurogenesis, as
well as structural changes in the frontal and temporal lobes and altered neuronal
connectivity and dopamine release in reward circuits (Jagust et al. 2005; Cai 2013).
Obesity and overweight in middle age have been linked to a higher incidence of
dementia in old age (Elias et al. 2003; Whitmer et al. 2007), and several cognitive
and executive functions are impaired in obese individuals (Dahl et al. 2010). The risk
of age-related neurodegenerative diseases such as AD and PD can also be increased
by obesity (Mazon et al. 2017). These commonalities and their underlying mecha-
nisms are examined in more detail in the following sections.
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Oxidative Stress and Inflammation in Ageing and Obesity

According to the “free radical theory of ageing” (Harman 1956), ageing and
age-related dysfunction are caused by oxidative stress resulting from increased
ROS production and decreased antioxidant activity with age. The finding that
mitochondria are not only the main producers of ROS in the cell but also their
primary targets was later summarised in the revised “mitochondrial free radical
theory of ageing” (Harman 1972; de Grey 1997).

Both ROS and reactive nitrogen species (RNS) are produced under physiological
conditions. It is estimated that as much as 2% of the overall electrons passing
through the mitochondrial electron transport chain during aerobic respiration escape,
especially in complexes I and III (Liu et al. 2002). The leaked electrons readily react
with molecular oxygen, forming the superoxide anion (Fig. 15.2). In mitochondria,
superoxide dismutase catalyses the conversion of superoxide into hydrogen peroxide
and molecular oxygen. Unlike superoxide, hydrogen peroxide can readily diffuse to
the cytoplasm and, in the presence of transition metals such as iron and copper, form
highly reactive hydroxyl radicals through the Fenton and Haber-Weiss reactions
(Halliwell and Gutteridge 1990). Additionally, superoxide can react with endoge-
nous nitric oxide to form the RNS peroxynitrite, which then reacts with protein
tyrosine residues to form nitrotyrosine or with other molecules to generate other
RNS, such as nitrogen dioxide and nitrous trioxide (Beckman and Koppenol 1996).

With age, increased electron loss from the electron transport chain and decreased
levels of cellular antioxidants lead to oxidative stress (Balaban et al. 2005). Because
mitochondria lack protective histones and have limited DNA repair mechanisms,
they are particularly susceptible to ROS-induced oxidative damage (Yakes and Van
Houten 1997). The mutation rate in mitochondrial DNA (mtDNA) is up to 10 times
higher than that of genomic DNA (Miquel 1991; Wallace 1992). Oxidative damage
to mtDNA leads to further mitochondrial dysfunction and ROS production, creating
a vicious cycle of electron loss and oxidative stress. Studies using mutator mice
expressing an mtDNA polymerase deficient in proofreading ability have shown that
impaired proofreading capacity accelerates the accumulation of somatic mutations in
mtDNA, subsequently leading to respiratory defects and early ageing onset
(Trifunovic et al. 2004).

In addition to DNA, ROS can attack proteins and lipids, especially polyunsatu-
rated fatty acids. Since lipids are essential components of cell membranes and
various lipoproteins, lipid oxidation can lead to membrane damage, altered lipid
packing, and loss of cell integrity (Cosgrove et al. 1987; Runas and Malmstadt
2015). As a result, lipid peroxidation products and carbonylated proteins accumulate
in aged animals (Ikeda et al. 1985; Brunk and Terman 2002a). This gradual
accumulation of oxidative damage leads to the progressive cellular functional
decline that characterises ageing (Ikeda et al. 1985; Stadtman 2001; Brunk and
Terman 2002a). In some instances, decreased free radical production via antioxidant
supplementation and increased resistance to oxidative stress have been associated
with increased lifespan (Massie et al. 1984; Vanfleteren 1993; Larsen 1993; Brack



et al. 1997; Johnson et al. 2002; Flurkey et al. 2010). However, contradictory results
have also been reported (reviewed by Shields et al. 2021) and, in some cases,
antioxidant supplementation has even been associated with increased mortality
(Bjelakovic et al. 2007). These conflicting results reflect the fact that ROS are not
only harmful by-products of metabolism, but also play a critical role as signalling
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Fig. 15.2 Schematic representation of ROS production in the mitochondria. The mitochondrial
electron transport chain is the main source of ROS in the cell, especially in complexes I and III.
Superoxide (O2

•-) is produced as a by-product of respiration by the reaction of electrons leaked
from the respiratory chain with oxygen. Superoxide can damage mitochondrial DNA, proteins, and
lipids. To protect against oxidative damage, mitochondria contain several enzymatic and
non-enzymatic antioxidants. The enzyme superoxide dismutase (SOD) catalyses the conversion
of superoxide (O2

•-) to oxygen (O2) and hydrogen peroxide (H2O2). The enzyme peroxiredoxin
(Prx) catalyses the conversion of hydrogen peroxide (H2O2) into water (H2O). Thioredoxins
(TrxS2), small redox proteins whose main function is the reduction of oxidised cysteine residues
and the cleavage of disulphide bonds, keep peroxiredoxins in their reduced state. Glutathione
peroxidase (GP) uses glutathione to reduce hydrogen peroxide (H2O2) to water (H2O). The resulting
oxidised glutathione (GSSG) can be returned to its active state by glutathione reductase, which uses
NADPH as a cofactor. In addition to antioxidants, mitochondria also contain uncoupling proteins
(UCP), which protect mitochondria from oxidative stress by dissipating the proton gradient at the
inner mitochondrial membrane, resulting in a decrease in mitochondrial membrane potential and
the production of ROS. Image used with permission from Elsevier. Image originally found in
Balaban et al. (2005)



molecules that contribute to the regulation of cell proliferation, differentiation, and
death (Pizzino et al. 2017; Santos et al. 2018).
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The brain consumes about 20% of the body’s oxygen content, which, combined
with low levels of endogenous antioxidants, high levels of iron and copper, and
abundant polyunsaturated fatty acids, makes the central nervous system particularly
vulnerable to oxidative damage (Cobley et al. 2018). Accordingly, oxidative stress is
associated with the development of age-related neurodegenerative diseases, as
evidenced by higher concentrations of lipid peroxidation products in the brain tissue
of subjects with AD (Montine et al. 2002) and PD (Dexter et al. 1989). Significant
carbonylation and nitration of proteins (Gonos et al. 2018) and increased levels of
DNA oxidation products (Coppedè and Migliore 2015) have also been reported in
different age-related neurodegenerative diseases.

Oxidative stress resulting from mitochondrial dysfunction is important in trigger-
ing age-related chronic inflammation, a process termed “inflammageing”
(Franceschi and Campisi 2014). This process is characterised by increased serum
levels of inflammatory markers, including C-reactive protein (CRP) and serum
amyloid A, and pro-inflammatory cytokines, including the interleukins IL-1 and
IL-6 and TNF-α (Ferrucci and Fabbri 2018). These inflammatory signals, in turn,
stimulate the immune system and further promote ROS formation (Zuo et al. 2019).
In addition to oxidative stress, genetic susceptibility, cell senescence, impaired
autophagy, and changes in microbiota composition may contribute to inflammageing
(Franceschi et al. 2018).

The involvement of oxidative stress and inflammation in the ageing process has
been summarised in the oxidation-inflammation theory of ageing or “oxi-
inflammageing” (De la Fuente and Miquel 2009). According to this theory, chronic
oxidative stress and inflammation lead to protein, lipid, and DNA damage, which
promotes the degeneration of various regulatory systems, such as the immune
system. This, in turn, leads to organism dysfunction and increased morbidity and
mortality in old age. Moreover, functional impairment of the immune system leads
to excessive production of oxidative and pro-inflammatory compounds that further
promote cellular damage and contribute to chronic oxidative stress and inflammation
in ageing organisms. In support of the “oxi-inflammageing” theory, oxidative and
inflammatory stress parameters in immune cells were found to be predictive markers
of lifespan (Martínez de Toda et al. 2019).

Like ageing, obesity is associated with increased oxidative stress and inflamma-
tion. Increased oxidative stress in obesity has been attributed to increased caloric
intake triggering mitochondrial dysfunction in fat cells. Consequently, higher levels
of oxidative stress markers have been associated with a shorter lifespan in obese
mice (Baur et al. 2006; Zhang et al. 2015), and increased oxidative stress biomarkers
have also been found in the blood, skeletal muscle, and erythrocytes of obese
animals and humans (Furukawa et al. 2004; Pihl et al. 2006). Similarly, rapid
oxidation of low-density lipoprotein (LDL), which promotes atherosclerosis, was
observed in obese individuals (Van Gaal et al. 1998), and higher urinary excretion of
isoprostanes, another biomarker of lipid peroxidation, was positively correlated with
BMI (Keaney et al. 2003). Obesity is also characterised by a state of chronic



inflammation, as evidenced by an increase in inflammatory biomarkers (Visser et al.
1999; Schmatz et al. 2017), increased expression of inflammation-related genes (Lee
et al. 2005; Nair et al. 2005; van Dijk et al. 2009), and infiltration and accumulation
of immune cells, including macrophages and T cells, in the visceral adipose tissue of
obese individuals (Weisberg et al. 2003; Kratz et al. 2014). The pro-inflammatory
environment associated with obesity can also affect insulin receptors and cause the
development of peripheral insulin resistance (Evans et al. 2005).
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The redox-sensitive transcription factor nuclear factor kappa B (NF-κB) is an
essential regulator of immune and inflammatory responses activated during normal
ageing, obesity, and other pathological processes (Zhang et al. 2017; Yu et al. 2020).
NF-κB usually exists in an inactive form in the cytoplasm. However, in response to
oxidative stress, NF-κB is activated and migrates to the nucleus, binding to DNA and
activating the expression of various pro-oxidant and pro-inflammatory genes. Most
NF-κB-activated genes, including interleukins, chemokines, TNF-α, and the
enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS),
can, in turn, further activate NF-κB, which stimulates additional ROS and cytokine
production, promoting inflammation (Liu et al. 2017a). Conversely, antioxidants
inhibit NF-κB activation (Pinkus et al. 1996). NF-κB can also be activated by
obesity-associated hypoxia resulting from fat cell hypertrophy, which further con-
tributes to chronic inflammation in the adipose tissue of obese individuals (Griffin
2022). Additionally, NF-κB activation has been implicated in impaired insulin
signalling, T2D, and atherosclerosis (Baker et al. 2011b). The importance of
NF-κB in ageing is supported by the observation that inhibition of NF-κB signalling
increases lifespan in flies, an effect associated, at least to some extent, with increased
adipokinetic hormone signalling (Shaposhnikov et al. 2011; Moskalev and
Shaposhnikov 2011; Kounatidis et al. 2017). Similarly, inactivation of IKKβ/NF-κ
B signalling in the hypothalamus protected against obesity, hypothalamic insulin
resistance, and glucose intolerance in mice fed a high-fat diet (HFD) (Zhang et al.
2008; Benzler et al. 2015), while increased NF-κB signalling led to stress in the
endoplasmic reticulum (ER), which in turn accelerated the onset of obesity (Zhang
et al. 2008).

Increased oxidative stress and chronic inflammation have been linked to obesity-
related comorbidities, such as diabetes, cardiovascular disease, kidney damage, and
cancer, which contribute to the dramatically increased mortality rate of obese
individuals (Fernández-Sánchez et al. 2011). Changes in the composition of the
gut microbiota may also contribute to obesity and insulin resistance (Jiao et al.
2018). For example, an imbalance in the composition and diversity of the gut
microbiota was found to cause the release of lipopolysaccharides from Gram-
negative bacteria through the gut mucosa into the bloodstream (Lee et al. 2020).
Lipopolysaccharides in the blood, in turn, triggered chronic, low-grade inflammation
that activated Toll-like receptor 4 (TLR4) and promoted the development of insulin
resistance associated with obesity (Saad et al. 2016). Obesity-related chronic oxida-
tive stress and inflammation may also alter BBB function and ultimately contribute
to the early onset of neurodegenerative diseases in obese individuals (Roh et al.
2017).
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Hallmarks of Ageing in Obesity

The processes that drive ageing have been summarised in nine hallmarks, divided
into three categories (Fig. 15.3) (López-Otín et al. 2013). DNA damage, telomere
erosion, altered proteostasis, and epigenetic changes are among the events that
trigger the ageing process and are therefore classified as “primary hallmarks” of
ageing. Cell senescence, mitochondrial dysfunction, and altered nutrient sensing are
considered “antagonistic hallmarks” of ageing because they initially protect the
organism from damage, but their role becomes increasingly negative as the effects
of the primary hallmarks progress. “Integrative hallmarks”, such as altered
intercellular communication and stem cell depletion, are responsible for the ageing
phenotype by directly affecting homeostasis once damage accumulation becomes
irreversible (López-Otín et al. 2013). These hallmarks are directly or indirectly
associated with increased oxidative stress and inflammation, the two major causes

Fig. 15.3 The hallmarks of ageing. The hallmarks of ageing refer to the nine major changes that
occur in the body as we age. These changes include increased cell senescence, impaired mitochon-
drial function resulting in enhanced ROS production, altered nutrient sensing, impaired
proteostasis, epigenetic changes, telomere shortening, DNA damage, stem cell exhaustion, and
impaired intracellular communication resulting in, for instance, increased inflammation. Image used
with permission from Elsevier. Image originally in López-Otín et al. (2013)



of ageing and obesity. Accordingly, some, if not all, of these hallmarks have also
been associated with obesity, further supporting the role of obesity in accelerating
ageing, as discussed below.
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Genomic Instability

The term genomic instability describes the accumulation of genetic damage caused
by endogenous (e.g. DNA replication errors) and exogenous (e.g. UV radiation)
factors throughout the lifespan. This genetic damage includes single and double
DNA strand breaks, DNA adducts, and DNA crosslinks. Although somatic cells can
accumulate a large number of DNA lesions daily, most of them are corrected by an
extensive DNA repair system (Niedernhofer et al. 2018). Age-related reduction in
DNA repair capacity leads to the accumulation of somatic mutations that can trigger
carcinogenesis and dysfunction at the cellular, tissue, and organismal levels (Chen
et al. 2007; Hoeijmakers 2009; Niedernhofer et al. 2018).

The importance of genomic instability in ageing is evidenced by accelerated
ageing phenotypes in mice with genetically altered defective DNA repair proteins
(Hasty et al. 2003; Hasty 2005). Similarly, human progeroid syndromes, which are
characterised by a premature ageing phenotype and the early onset of age-related
diseases such as cancer or T2D (Navarro et al. 2006), are caused by defects in genes
involved in maintaining genomic stability (Martin and Oshima 2000).

Consistent with the critical role of genome instability in ageing, overexpression of
DNA repair genes in Drosophila melanogaster prolonged lifespan (Shaposhnikov
et al. 2015; Garschall et al. 2017). Similarly, the expression of DNA repair genes is
increased in long-lived mammals compared with their short-lived counterparts
(MacRae et al. 2015). Likewise, whole-genome sequencing analysis of 16 mamma-
lian species with different lifespans and body masses revealed a correlation between
longer lifespans and lower mutation rates (Cagan et al. 2022). Together, these
observations highlight the importance of genome stability in ageing.

Several studies have also indicated a link between genomic instability and
obesity. In vitro, acute treatment of human primary myoblasts with an environment
similar to obesity (high glucose, insulin, and palmitate) elicited DNA damage
(Dungan et al. 2020). In vivo, obese Zucker rats showed substantially increased
levels of DNA damage in various organs compared with their lean counterparts
(Azzarà et al. 2017). The number of DNA double-strand breaks in peripheral cells
was also higher in obese children than in their normal-weight counterparts (Scarpato
et al. 2011). Likewise, obese and overweight males were found to have altered sperm
DNA integrity, which may explain the reduction in fertility associated with obesity
(Chavarro et al. 2010; Fariello et al. 2012). Similarly, DNA damage was signifi-
cantly greater in obese women than in non-obese women (Zaki et al. 2018a, b;
Włodarczyk et al. 2018). Oxidative stress and chronic inflammation seem to be the
underlying mechanisms responsible for increased DNA damage in obesity
(Włodarczyk and Nowicka 2019), as evidenced by a significant relationship between
DNA damage and serum levels of CRP in obese women (Włodarczyk et al. 2018).



These observations suggest that obesity may trigger cancer by inducing genomic
instability and promoting tumourigenesis (Sieber et al. 2003).
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Telomere Attrition

Somatic cells can undergo only a few replications and therefore have a limited
lifespan. This replicative lifespan, commonly referred to as the Hayflick limit
(Hayflick 1965), is related to the shortening of telomeres at the extremities of
chromosomes with each cell division (Levy et al. 1992). In embryonic and germline
cells, some stem cells, and most cancer cells, the enzyme telomerase is responsible
for maintaining telomere length, whereas in most somatic cells telomerase is not
present (Shay and Wright 2006).

Although telomere shortening is associated with the normal ageing process
(Blasco 2007), pathological dysfunction of telomerase accelerates ageing, as
shown by the premature ageing phenotype of telomerase-deficient mice (Rudolph
et al. 1999). Stress factors such as inflammation and oxidative stress can accelerate
telomere loss (von Zglinicki 2002; Jurk et al. 2014), and older adults with shorter
telomeres have twice the mortality rate of people with longer telomeres (Cawthon
et al. 2003). Additionally, people with shorter telomeres have a significantly higher
risk of developing various age-related diseases, including insulin resistance, osteo-
arthritis, atherosclerosis, coronary heart disease, and atrial fibrillation, than people
with longer telomeres (Demissie et al. 2006; Aviv 2012; Kuszel et al. 2015; Scheller
Madrid et al. 2016; Gavia-García et al. 2021). Telomere length has also been
inversely correlated with the risk of cardiovascular disease and T2D (Willeit et al.
2014; Haycock et al. 2014; D’Mello et al. 2015).

An association between abdominal obesity in humans and decreased telomere
length has also been reported (Nordfjall et al. 2008; Lee et al. 2011). Indeed,
compared with their lean counterparts, the telomeres of obese women were 240 bp
shorter, corresponding to an age difference of approximately 8.8 years (Valdes et al.
2005). Obesity-associated oxidative stress, increased production of
pro-inflammatory cytokines, and insulin resistance are thought to be responsible
for the accelerated telomere attrition in obesity (Gardner et al. 2005; Al-Attas et al.
2010; Tzanetakou et al. 2012). These results suggest that obesity contributes to the
acceleration of ageing by promoting telomere erosion.

Epigenetic Alterations

The term “epigenetics” describes the control of gene expression by mechanisms that
do not involve modifications of the genetic code (Skvortsova et al. 2018). Epigenetic
changes associated with ageing include chromatin remodelling, DNA methylation,
and histone modifications. These and other epigenetic changes contribute to the loss
of heterochromatin in aged cells (Zhang et al. 2020). The predictable nature of the
changes in DNA methylation with age can be used as an “epigenetic clock” to



estimate a person’s age (Horvath 2013; Chen et al. 2016; Levine et al. 2018). ROS
and chronic inflammation can influence age-related epigenetic changes and the
epigenetic clock (Pal and Tyler 2016), and some epigenetic changes, such as histone
modifications and non-coding RNAs, have been shown to affect lifespan (Merkwirth
et al. 2016). Similarly, several age-related diseases, including AD and PD (Berson
et al. 2018), have been associated with the acceleration of “epigenetic ageing”, that
is, the difference between a person’s epigenetic age and chronological age (Horvath
and Raj 2018).

15 Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants 355

Obesity has also been associated with accelerated epigenetic ageing. Indeed, each
10-point increase in BMI can reportedly lead to an acceleration of ageing by up to
2.7 years (Horvath et al. 2014). Several epigenetic changes associated with obesity
have also been reported. For example, obesity was found to increase histone H3
acetylation of the inflammatory mediators TNF-α and Ccl2/MCP-1 (Mikula et al.
2014). The expression of histone deacetylase class III sirtuin 1 (SIRT1) was lower in
the adipose tissue of obese individuals than in lean individuals (Mariani et al. 2018).
SIRT1 is involved in the cellular response to oxidative stress, glucose and lipid
homeostasis, and the regulation of insulin sensitivity. Accordingly, decreased SIRT1
expression has been associated with insulin resistance and increased inflammation
(Alcendor et al. 2007; Yoshizaki et al. 2009; Grabowska et al. 2017; Meng et al.
2020; Yang et al. 2022). Interestingly, in women, there was a positive age-related
correlation between SIRT1 activity and metabolic rate, suggesting that SIRT1 may
be a biomarker of ageing, although this correlation was not seen in men (Lee and
Yang 2017). Maternal HFD has been reported to decrease the level and activity of
histone deacetylase 1 (HDAC1) in the fetal liver, suggesting that HFD-induced
maternal obesity may alter the structure of fetal chromatin by modifying histones
(Aagaard-Tillery et al. 2008).

Obesity-associated inflammation also induces overexpression of the microRNA
miR-155 in adipocytes, which promotes further inflammation, possibly by targeting
peroxisome proliferator-activated receptor gamma (PPARγ) (Karkeni et al. 2016). In
HFD-induced obese mice, knockdown of the microRNA miR-146b was found to
improve insulin resistance and reduce body weight and adiposity by suppressing the
SIRT1/FOXO1 signalling cascade (Ahn et al. 2013). In contrast, the microRNA
miR-148a was found to promote adipogenesis by suppressing Wnt1 signalling (Shi
et al. 2015). Elevated levels of miR-148a are considered to be biomarkers of obesity
(Shi et al. 2015), and single-nucleotide polymorphisms in this microRNA have been
associated with obesity (Aryal et al. 2017). Interestingly, gastric bypass shifted the
methylation pattern of adipose tissue from an obese to a lean methylation pattern
(Benton et al. 2015). This suggests that weight loss interventions can reverse the
epigenetic changes associated with obesity.

Loss of Proteostasis

Proteostasis refers to the maintenance of protein homeostasis in terms of conforma-
tion, concentration, localisation, and turnover. Proteostasis is essential for cell



function, and loss of proteostasis causes the build-up of damaged proteins. The
maintenance of proteostasis is achieved through the coordination of multiple
interconnected networks that tightly regulate the rate of protein synthesis,
chaperone-mediated protein folding, and the degradation of unfolded polypeptides
through proteasome-mediated and autophagy-mediated pathways (Labbadia and
Morimoto 2015).
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One of the best-characterised networks responsible for proteostasis is the
unfolded protein response (UPR) (Schröder and Kaufman 2005). The cytosol, ER,
and mitochondria contain a network of proteins that are differentially regulated
during stress to maintain proteostasis (Walter and Ron 2011). The ER plays a critical
role in the coordinated folding, processing, and transport of at least one-third of the
proteome (Ellgaard and Helenius 2003). Environmental perturbations of ER homeo-
stasis, such as those caused by hypoxia, glucose deficiency or excess, and oxidative
stress, can alter protein folding, leading to an accumulation of misfolded proteins in
ER and ER stress (Xu et al. 2005; Malhotra and Kaufman 2007). Severe or
prolonged ER stress can eventually lead to apoptotic cell death (Szegezdi et al.
2006). To alleviate ER stress, the UPR is activated to degrade misfolded proteins,
promote proper protein folding, and restore ER homeostasis (Walter and Ron 2011).
Conversely, the mitochondrial UPR (UPRmt) is activated when mitochondrial ROS
levels are high, respiratory chain function is impaired, or there is an imbalance
between mitochondrial and nuclear-encoded respiratory chain subunits. The UPRmt
triggers the transcription and translation of chaperones and proteases to refold or
destroy damaged mitochondrial proteins (Haynes and Ron 2010; Jovaisaite et al.
2014).

With ageing, changes in protein synthesis, turnover, and repair increase the
propensity of proteins to become dysfunctional, unfold, and aggregate (Morimoto
2008; Taylor and Dillin 2011). The oxidation of proteins by ROS, the formation of
which also increases during ageing, is one of the major causes of protein misfolding
and aggregation (Morimoto 2008; Tyedmers et al. 2010). Many UPR chaperones
themselves can also be oxidatively damaged during ageing, further impairing their
function (Nuss et al. 2008). The accumulation of oxidised and damaged proteins
with ageing poses a challenge to maintaining proteostasis (Labbadia and Morimoto
2015), and persistent impairment of proteostasis ultimately activates
pro-inflammatory signalling pathways and apoptosis (Szegezdi et al. 2006; Zhang
and Kaufman 2008). Pathological accumulation of protein aggregates due to loss of
proteostasis has been observed in several age-related diseases, such as PD, AD, and
Huntington’s disease (Powers et al. 2009). Conversely, long-lived organisms appear
to have more stable proteomes and active proteostasis networks than short-lived ones
(Pérez et al. 2009; Salmon et al. 2009; Rodriguez et al. 2012; Treaster et al. 2014),
and activation of components of the proteostasis network prolongs both lifespan and
healthspan in certain organisms (Labbadia and Morimoto 2014; Vilchez et al. 2014;
Morimoto and Cuervo 2014), underscoring the importance of proteostasis in ageing
and age-related diseases.

Obesity is also associated with altered proteostasis. Compared to lean, insulin-
sensitive individuals, the adipose tissue of obese, insulin-resistant individuals



exhibits upregulation of proteins and genes associated with ER stress, as well as
increased levels of oxidised and ubiquitinated proteins in their adipose tissue (Boden
et al. 2008). The UPR also appears to be impaired in obese adipose tissue (Yilmaz
2017). Pathological nutrient excess may overwhelm the ER (Gregor and
Hotamisligil 2007), and increased levels of free fatty acids, insulin, and oxidative
stress may alter the proteasome in the liver and adipose tissue of obese individuals,
which together may contribute to insulin resistance (Díaz-Ruiz et al. 2015).
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Cellular Senescence

Cellular senescence is defined as a specific functional state of the cell characterised
by the irreversible arrest of the cell cycle (Campisi and d’Adda di Fagagna 2007).
Senescence can be triggered by shortened telomeres and various physicochemical
signals, such as mitochondrial dysfunction, oxidative stress, DNA replication stress,
and oncogene activation (Kuilman et al. 2010). These “stress signals” activate the
tumour-suppressive signalling pathways p53/p21 and p16INK4a/pRB, eventually
leading to cell growth arrest (Campisi and d’Adda di Fagagna 2007; Kuilman et al.
2010; Muñoz-Espín and Serrano 2014). Specific features of senescent cells include
increased size and protein content, enlarged nuclei, increased activity of senescence-
associated β-galactosidase (SA-β-gal), and increased expression of the cyclin-
dependent kinase inhibitor p16INK4 (Kuilman et al. 2010).

The development of a senescence-associated secretory phenotype (SASP) is
another feature of senescent cells (Coppe et al. 2010), characterised by the enhanced
generation of inflammatory cytokines and chemokines, growth factors, extracellular
matrix components, fibronectin, and ROS. The SASP is activated to eliminate
senescent cells and promote tissue repair and regeneration. However, it also triggers
further infiltration of immune cells, leading to even greater ROS production, inflam-
mation, and cell death. The SASP can also cause senescence in functionally active
neighbouring cells in a paracrine manner (Kuilman and Peeper 2009).

The observation that the number of senescent cells in tissues increases with age
suggests that cell senescence plays an essential role in ageing (Hernandez-Segura
et al. 2018). Accordingly, selective elimination of senescent cells was found to
extend lifespan and healthspan (Baker et al. 2011a; Jeon et al. 2017). In some
cases, the elimination of senescent cells also ameliorated age-related changes in
metabolic function (Xu et al. 2015).

Senescence also plays an important role in obesity. Obese rats and humans have
more senescent cells in their pre-adipocytes and endothelial cells than their lean
counterparts (Minamino et al. 2009; Tchkonia et al. 2010; Xu et al. 2015). The
adipose tissue of obese and diabetic individuals also shows increased levels of p53
and enhanced SA-β-gal activity (Yahagi et al. 2004; Minamino et al. 2009; Tchkonia
et al. 2010). In obese individuals, cell senescence in adipose tissue stimulates
immune cell infiltration, triggering pro-inflammatory effects on pre-adipocytes and
increasing the production of inflammatory cytokines (Suganami et al. 2005;
Tchkonia et al. 2010). Adipokines secreted by senescent cells in obese adipose



tissue may contribute to obesity-related metabolic disorders such as diabetes
(Tchkonia et al. 2010). Accordingly, obese macrophages and adipocytes expressing
high levels of p53 exhibited senescence, enhanced generation of inflammatory
cytokines, and insulin resistance (Minamino et al. 2009).
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Mitochondrial Dysfunction

Cells produce energy in the form of ATP by oxidative phosphorylation in mitochon-
dria. During aerobic respiration, the leakage of electrons from the electron transport
chain inevitably leads to the production of ROS. Mitochondrial ROS are effectively
scavenged by mitochondrial and cytoplasmic antioxidant enzymes and small mole-
cules under normal physiological conditions. However, with age, antioxidant capac-
ity decreases while the production of ROS increases, leading to oxidative stress that
further exacerbates mitochondrial dysfunction (Finkel and Holbrook 2000; Balaban
et al. 2005).

Altered mitochondrial membrane fluidity and permeability and decreased mem-
brane potential are associated with the reduced ATP synthesis and mitochondrial
dysfunction that characterise ageing. The respiratory activity of mitochondrial
enzyme complexes slowly decreases with age (Trounce et al. 1989; Paradies and
Ruggiero 1991; Beal et al. 1993), while the production of ROS increases (Sawada
and Carlson 1987; Sohal and Sohal 1991; Sohal and Dubey 1994; Capel et al. 2005;
Cho et al. 2011; Tower 2015). Ageing impacts mitochondrial gene expression, as
evidenced by a decrease in mitochondrial mRNA transcription levels, resulting from
decreased mRNA transcription and/or increased mRNA instability with age
(Barazzoni et al. 2000; Welle et al. 2000; Short et al. 2005). Additionally, mtDNA
copy number is also reduced with age (Barazzoni et al. 2000; Short et al. 2005;
Lanza and Nair 2010), contributing to the decline in mitochondrial gene transcripts
and proteins. Similarly, mitochondrial mass decreases with age, possibly due to the
dysfunction of key regulators of mitochondrial biogenesis, including adenosine
monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) (Chistiakov et al. 2014;
Regmi et al. 2014; Ji and Kang 2015). Moreover, aged tissues exhibit a higher
proportion of enlarged mitochondria and fewer ovoid mitochondria (El’darov et al.
2015; Leduc-Gaudet et al. 2015), as well as increased mitochondrial disorganisation
resulting from impaired mitochondrial fission (Brunk and Terman 2002b). Together,
the age-related decline in mitochondrial function contributes to the dysregulation of
cellular energy homeostasis, which promotes ageing and age-related diseases (Sun
et al. 2016a).

Brain mitochondrial dysfunction is considered a critical factor in the development
of age-related neurodegenerative diseases, including AD and PD (Lin and Beal
2006). Impaired mitochondrial function is an early characteristic of AD neurons,
as evidenced by reduced mitochondrial respiration, decreased pyruvate dehydroge-
nase concentration and activity, and abnormal mitochondrial dynamics (Blass 2000).
The observation of mitochondrial complex I dysfunction in post-mortem brain tissue



from individuals with PD and in animal models also suggests the involvement of
impaired mitochondrial function in the pathogenesis of PD (Schapira et al. 1990;
Schapira 2008; Exner et al. 2012; Michel et al. 2016).
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Mitochondrial dysfunction is also seen in obesity. Obese fat cells show an altered
mitochondrial profile with changes in the number, structure, and function of mito-
chondria (Kusminski and Scherer 2012; de Mello et al. 2018). Microarray studies
have found that several mitochondrial genes critical for mitochondrial function and
oxidative phosphorylation, including peroxisome proliferator-activated receptor
alpha (PPARα), oestrogen-related receptor alpha (ERRα), and PGC-1α, are
downregulated in insulin-resistant mice fed an HFD and in the T2D db/db mouse
model (Keller and Attie 2010; Devarakonda et al. 2011), reflecting the impairment of
mitochondrial biogenesis in obese insulin-resistant mice. Excess ROS generation in
obesity has been associated with increased muscle activity and mechanical stress
necessary to carry additional weight, leading to rapid respiration and oxygen con-
sumption and increased mitochondrial electron leakage (Manna and Jain 2015).
Excessive nutrient processing by mitochondria may also lead to uncoupling of
oxidative phosphorylation, increased ROS generation, and impaired mitochondrial
function (Fan et al. 2010). Furthermore, abdominal obesity in rodents and humans
has been associated with impaired mitochondrial biogenesis, altered mitochondrial
function, reduced mitochondrial gene expression, and decreased ATP generation
(Wlodek and Gonzales 2003; Wisløff et al. 2005; Choo et al. 2006; Nisoli et al.
2007; Bódis and Roden 2018). Interestingly, Lindinger et al. (2010) found that
mtDNA content in human omental adipose tissue was significantly higher in obese
subjects than in non-obese subjects and that there was a positive correlation between
mtDNA content and several anthropometric parameters, such as BMI, waist circum-
ference, and the amount of body fat.

The connection between mitochondrial dysfunction and obesity has been dem-
onstrated in mice and humans. In mice, age-related dysfunction of mitochondrial
complex IV resulted in decreased fatty-acid oxidation, increased lipid accumulation,
and enlargement of WAT (Soro-Arnaiz et al. 2016). Mutations in mitofusin
2 (MFN2), a mitochondrial protein that plays an important role in mitochondrial
fusion, have been implicated in mitochondrial dysfunction and increased adipocyte
hyperplasia in obese individuals (Rocha et al. 2017). In Zucker rats and obese
humans, MFN2 protein expression in skeletal muscle mitochondrial fractions was
significantly lower than that in lean counterparts (Bach et al. 2003). Mutations in
mitochondrial tRNA genes have also been linked to metabolic disorders and diabetes
(Mezghani et al. 2010; Liu et al. 2015).

Adiponectin is critical for lipid and glucose metabolism and exhibits
antiatherogenic and anti-inflammatory properties as well as insulin-sensitising
effects (Kershaw and Flier 2004). In skeletal muscle, adiponectin stimulates fatty-
acid oxidation by increasing mitochondrial biogenesis and the expression of PPAR-
α-responsive genes (Yamauchi et al. 2003; Civitarese et al. 2006). Proper mitochon-
drial function is crucial for adiponectin production, and mitochondrial dysfunction in
obese adipose tissue has been associated with decreased adiponectin synthesis (Koh
et al. 2007). Mitochondrial dysfunction has also been connected to the inhibition of



the tumour suppressor protein p53, which is already decreased in obesity (Chen et al.
2006), further contributing to the increased risk of certain cancers in obese individ-
uals (Compton et al. 2011). Furthermore, obesity-associated adipokines may con-
tribute to tumourigenesis by promoting mitochondrial dysfunction and the transition
to a glycolytic phenotype (Bournat and Brown 2010).
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Mitochondrial dysfunction has also been implicated in the development of insulin
resistance in peripheral tissues (Szendroedi et al. 2011), possibly due to decreased
mitochondrial biogenesis and functional capacity (Petersen et al. 2004; Højlund et al.
2008; Pinti et al. 2019). Additionally, diabetes and obesity-related insulin resistance
have been associated with impaired mitochondrial function in the brain, which may
contribute to obesity-related cognitive decline (Pipatpiboon et al. 2012; Pintana et al.
2014; Pratchayasakul et al. 2015; Wang et al. 2015; Sun et al. 2016b; Sa-Nguanmoo
et al. 2016).

Deregulated Nutrient Sensing

Nutrient sensing pathways are responsible for the ability of cells to recognise and
adapt to the surrounding nutrient environment. The insulin/insulin-like growth factor
(IGF1) pathway informs cells of the presence of glucose. This pathway begins with
one or more tyrosine kinase-type membrane receptors that vary among species
(Carlberg et al. 2016). Stimulation of these receptors by glucose activates
phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB, also known as Akt)-
mediated pathways that lead to the phosphorylation of one or more members of the
forkhead box (FOX) family of transcription factors, including forkhead box O
(FOXO). FOXO regulates the expression of genes involved in cell death, cell
cycle arrest, and stress resistance. Upon phosphorylation by Akt, FOXO translocates
from the nucleus to the cytosol, disrupting the transcription of FOXO-regulated
genes (Taguchi and White 2008). In lower organisms, including D. melanogaster,
disrupting the IGF1/PI3K/Akt signal transduction pathway leads to an extended
lifespan (Kenyon 2005; Kirkwood 2005). An evolutionarily conserved amino acid
sensing pathway has evolved in parallel with glucose sensing pathways. Amino
acids bind to Rag GTPases on the cell surface, which phosphorylate and activate Rag
proteins and then bind to and activate the mammalian or mechanistic target of
rapamycin (mTOR) (Shaw 2008). mTOR then phosphorylates the protein’s eukary-
otic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase
(S6K), increasing protein synthesis (Wullschleger et al. 2006; Saxton and Sabatini
2017; Liu and Sabatini 2020). The insulin/IGF1 pathway can interact with the
mTOR/S6K pathway via Akt (Manning and Toker 2017). Inhibition of the mTOR/
S6K pathway has been found to prolong the life expectancy of organisms ranging
from yeast to mice (Vellai et al. 2003; Kapahi et al. 2004; Powers et al. 2006;
Harrison et al. 2009; Miller et al. 2011; Wilkinson et al. 2012).

Perhaps the most substantial evidence for the involvement of nutrient sensing in
ageing is the fact that caloric restriction (CR), that is, reducing daily caloric intake by
10–40% without malnutrition and without altering the intake of essential nutrients,



including vitamins and minerals, remains one of the most robust non-genetic
interventions for extending lifespan and healthspan in several model organisms
(Heilbronn and Ravussin 2003). CR influences several age-associated signalling
pathways involved in the modulation of growth, metabolism, damage response and
repair, inflammation, autophagy, and proteostasis (Fig. 15.4) (López-Lluch and
Navas 2016; Most et al. 2017). Under CR, increased AMP levels activate the energy
sensor AMP-activated protein kinase (AMPK), eliciting an increase in the NAD+/
NADH ratio that activates sirtuins (SIRTs). In turn, SIRTs activate AMPK via a
positive feedback loop. Through phosphorylation and deacetylation, AMPK and
SIRTs activate FOXO and PGC-1α, promoting the expression of antioxidant
enzymes and mitophagy-related signalling pathways. PGC-1α also induces the
expression of genes involved in oxidative phosphorylation and mitochondrial bio-
genesis. Additionally, PGC-1α activates peroxisomal proliferator activator receptors
(PPARs), which regulate fatty-acid oxidation. AMPK, SIRTs, FOXO, and PGC-1α
work together to extend lifespan under CR through a positive feedback loop (López-
Lluch and Navas 2016). The upregulation of SIRTs in response to CR also leads to
the deacetylation of several transcription factors, resulting in the suppression of
NF-κB and thus eliciting antioxidant and anti-inflammatory effects (Imai et al. 2000;
Brunet et al. 2004; Cantó and Auwerx 2012). Moreover, CR inhibits mTOR,
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Fig. 15.4 Overview of the main mechanisms by which caloric restriction elicits health benefits.
During caloric restriction, increased NAD+ levels activate sirtuins (SIRTs), whereas increased AMP
levels activate AMPK. Conversely, mTOR and IGF1 activity is decreased in response to reduced
nutrient levels. As a result, the transcriptional regulators PGC-1α, FOXO, PPARs, and Nrf2 are
activated, while NF-κB activity is decreased. The result is increased expression of genes involved in
mitochondrial biogenesis, fatty-acid (FA) β-oxidation, gluconeogenesis, stress resistance, and
damage repair, thereby reducing growth and inflammation and promoting cell survival. Created
with Biorender.com

http://biorender.com


activating autophagy and thereby contributing to its lifespan- and healthspan-
extending effects (Chung and Chung 2019).
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Obesity is associated with an increase in the amount of circulating insulin and
IGF1. Circulating insulin binds cell surface insulin receptors, leading to increased
activity of the PI3K/Akt/mTOR pathway (Laplante and Sabatini 2012). Obesity is
also associated with an abnormal increase in the activity of stress-activated c-Jun
amino-terminal kinase (JNK) (Solinas and Becattini 2017), which promotes cell
growth and proliferation and suppresses autophagy (Raman et al. 2007). Inflamma-
tory cytokines, which are elevated in obese individuals, further activate the mTOR
pathway, possibly by increasing phosphatidic acid levels in the cell, triggering the
production of transcription factors that regulate the synthesis of even more
pro-inflammatory cytokines (Conn and Qian 2011). Chronic hyperactivation of
mTOR by hyperinsulinaemia can contribute to insulin resistance in obesity by
activating S6K, leading to desensitisation of the PI3K/Akt pathway (Um et al.
2004; Khamzina et al. 2005; Tremblay et al. 2007). The mTOR pathway also
promotes adipocyte differentiation and hypertrophy, as well as lipogenesis, contrib-
uting to fat accumulation (Lamming and Sabatini 2013).

Blocking the mTOR pathway with rapamycin or its homologues (“rapalogues”)
prolongs lifespan and promotes health in various model organisms (Ramos et al.
2012; Wilkinson et al. 2012; Flynn et al. 2013; Johnson et al. 2013b; Bitto et al.
2016). Consistent with the mechanistic similarities between ageing and obesity,
rapamycin also counteracts obesity by affecting adipogenesis, lipogenesis, lipolysis,
and thermogenesis (Zoncu et al. 2011; Cai et al. 2016). In vitro, rapamycin inhibits
primary human adipocyte differentiation and protects against nutrient-mediated
insulin resistance in both fat and skeletal muscle cells (Bell et al. 2000; Chang
et al. 2009). In mice on an HFD, blocking mTOR with rapamycin was found to
reduce obesity and prevent weight gain (Chang et al. 2009). The anti-obesity effect
of rapamycin appears to result from decreased food intake, decreased uptake of
lipoproteins into tissues, decreased insulin secretion, and increased energy expendi-
ture through lipolysis (Yeh et al. 1995; Bell et al. 2000; Zhang et al. 2009a;
Chakrabarti et al. 2010). Rapamycin has also been shown to prevent diabetic
complications such as retinopathy, nephropathy, and coronary heart disease
(Keogh et al. 2004; Lloberas et al. 2006; Kolosova et al. 2012).

Stem Cell Exhaustion

Stem cells represent a group of self-renewing cells with multidirectional differenti-
ation potential. Stem cells arise during embryogenesis and are maintained through-
out the lifespan of an organism. To ensure that stem cells survive throughout an
organism’s lifespan, a small percentage of these cells must be kept in a dormant state,
known as quiescence, which ensures their survival by limiting the number of
divisions the cells can undergo (van Velthoven and Rando 2019). This quiescence
is lifted in response to tissue damage so that new cells can be rapidly generated to
replace damaged tissue without overloading the replication limits of individual stem



cells. Loss of quiescence in hematopoietic, muscular, or neural stem cells is associ-
ated with reduced stem cell self-renewal capacity, stem cell pool depletion, and
impaired tissue regeneration (Morrison and Spradling 2008). During ageing, the
combined effect of telomere shortening and genomic instability reduces the self-
renewal capacity of stem cells and their ability to produce differentiated daughter
cells (Ermolaeva et al. 2018). The shrinkage of the stem cell pool with age leads to a
decline in tissue regenerative and/or repair potential and contributes to increased
susceptibility to disease (Ren et al. 2017).
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The stem cell pool is also affected by obesity. For example, stem cell-based
hematopoietic and osteogenic regeneration is impaired in obesity (Ambrosi et al.
2017) due to the proliferation of adipose tissue in the bone marrow leading to
skeletal deterioration, alterations in the bone marrow microenvironment, and
increased ER stress in mesenchymal stem cells (MSCs) (da Silva et al. 2016;
Tencerova et al. 2018; Ulum et al. 2018). In addition, MSCs derived from the
adipose tissue of obese individuals show reduced proliferation and migratory capac-
ity, possibly due to the chronic oxidative and inflammatory environment associated
with obesity (Pérez et al. 2013). Conversely, excessive differentiation of MSCs into
the adipocyte lineage leads to increased numbers of adipocytes (hyperplasia) in
adipose tissue (Hausman et al. 2001). These stem cells may upregulate inflammatory
genes that affect angiogenic and adipogenic differentiation in obese individuals
(Oñate et al. 2012, 2013). In mutant obese rats (WNIN/Ob), adipose tissue- and
bone marrow-derived MSCs also exhibited increased inflammation (Madhira et al.
2011, 2012).

Altered Intercellular Communication

Effective intercellular communication is critical for organ development, stress
response, cell survival, tissue development, differentiation, and cell proliferation.
Well-coordinated mechanisms are required to generate, distribute, and receive
molecular signals. Cells communicate with each other via various chemical signals,
including hormones, neurotransmitters, cytokines, and growth factors. Different
communication mechanisms are used for different processes, allowing for a variety
of communication patterns, including endocrine (mediated by blood-based messen-
gers), paracrine (between individual cells or groups of cells nearby), and neurocrine
(mediated by neurotransmitters released from nerve terminals). Additionally, neu-
ronal communication between neurons occurs via synapses and direct communica-
tion via gap junctions (Cooper 2000).

Ageing alters intercellular communication, including neuroendocrine and immu-
nological communication (Russell and Kahn 2007), microbiota–host interactions
(Li et al. 2016b; Marchesi et al. 2016; Aleman and Valenzano 2019), and neuro-
transmitter regulation and release (Aprikyan and Gekchyan 1988; Fordyce and
Wehner 1993). A recent analysis of the intercellular communication processes
disrupted with age in mice revealed that the most widespread changes that occurred
with age included the upregulation of immune responses and inflammation and the



downregulation of angiogenesis and extracellular matrix organisation, growth, and
development (Lagger et al. 2021).
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Inflammation is one of the most important and well-studied intercellular commu-
nication processes that changes during ageing. As mentioned earlier, during ageing,
the chronic release of SASP factors, the incapacity of the immune system to remove
senescent cells, and the hyperactivation of the pro-inflammatory NF-κB pathway
result in low-grade chronic sterile inflammation termed “inflammageing”
(Franceschi 2007). Obesity is also accompanied by chronic metabolic inflammation,
or meta-inflammation, resulting from the increased release of pro-inflammatory
adipokines such as leptin and adiponectin, as well as TNF-α, IL-6, and IL-1
(Hotamisligil et al. 1995; Trayhurn and Wood 2004). In addition to increased
adipose tissue inflammation, obesity is associated with persistent macrophage infil-
tration and altered lipid metabolism resulting from changes in the methylation profile
of lymphocytes (Jacobsen et al. 2016). Accordingly, time-course microarray ana-
lyses of the BAT of mice fed an HFD for up to 24 weeks compared with mice on a
normal diet revealed alterations in gene networks associated with lipid metabolism,
development, and immunity (McGregor et al. 2013).

Chronic inflammation associated with obesity also leads to increased deposition
and remodelling of the extracellular matrix of the adipose tissue (Williams et al.
2015; Lin et al. 2016). While extracellular matrix remodelling is necessary for
adipose tissue to expand (Hausman and Richardson 2004), the extracellular matrix
of obese stromal cells is denser and stiffer than that of their lean counterparts, which
can contribute to an increased risk of breast cancer in obese individuals (Seo et al.
2015; Druso and Fischbach 2018; Ling et al. 2020).

Overexpression of angiogenic factors has also been associated with obesity.
During weight gain, angiogenesis is essential for adipose tissue expansion. The
direct link between obesity and angiogenesis was demonstrated in experiments in
which the inhibition of angiogenesis prevented obesity and mitigated weight gain in
obese mice (Rupnick et al. 2002). Likewise, increased levels of angiogenesis
markers were found in obese patients compared with control subjects (Piecuch
et al. 2019; Wiewiora et al. 2019). Interestingly, weight loss surgery was found to
alter the proangiogenic profile and reduce angiogenesis biomarkers in obese patients
12 months after surgery (Wiewiora et al. 2020). Chronic inflammation has also been
associated with increased tumour angiogenesis (Gu et al. 2011; Arendt et al. 2013;
Kolb et al. 2016), suggesting that increased angiogenesis may play a role in the
higher incidence of breast cancer in obese individuals (Fukumura et al. 2016; Kolb
et al. 2019).
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Dietary Interventions Against Ageing, Age-Related Diseases,
and Metabolic Syndrome

Given the critical role that ROS and free radicals play in ageing, age-related diseases,
and metabolic disorders, reducing oxidative stress could lead to slowing, preventing,
attenuating, and/or reversing these pathological processes. The prevention of disease
through dietary interventions, either by adopting a specific diet or by taking nutri-
tional supplements, has been proposed as a therapeutic approach to improve human
health. In the following sections, we critically review the epidemiological, preclin-
ical, and clinical evidence for the therapeutic benefits of various dietary interventions
against age-related diseases and metabolic disorders, particularly obesity.

Nutraceuticals

In recent years, nutraceuticals, that is, foods or food components with health
benefits, including antioxidant and anti-inflammatory properties, have received
considerable attention because of their purported therapeutic benefits against various
diseases, including age-related diseases. The mechanisms underlying the benefits of
nutraceuticals are diverse and sometimes not entirely clear. They include reducing
inflammation, lowering cholesterol, strengthening the immune system, improving
brain function, and modulating the gut microbiota. Many nutraceuticals reported to
have beneficial effects on age-related diseases may also counteract obesity by
regulating food intake, reducing lipogenesis and promoting lipolysis, attenuating
inflammatory responses, and suppressing oxidative stress.

Polyphenols are well-known bioactive phytochemicals with antioxidant and anti-
inflammatory effects that may be useful for treating age-related diseases, obesity,
metabolic syndrome, and cancer, among others. The following sections provide an
overview of the existing evidence for the therapeutic benefits of some of the most
commonly studied polyphenols in ageing, age-related diseases, and obesity.

Curcumin

Curcumin (turmeric) is a well-studied polyphenol found in the rhizome of the plant
Curcuma longa. Reported health benefits of curcumin include reducing inflamma-
tion and the risk of heart disease, improving brain function, and lowering cholesterol
and blood sugar levels. Therefore, curcumin is considered to have therapeutic
potential against various diseases, including age-related neurodegenerative diseases
and diabetes (Strimpakos and Sharma 2008; Hatcher et al. 2008; Fuloria et al. 2022).

Curcumin can not only directly scavenge ROS but also upregulate cytoprotective
and antioxidant proteins and is therefore considered a bifunctional antioxidant
(Dinkova-Kostova and Talalay 2008; Calabrese et al. 2008; Cory et al. 2018). The



antioxidant properties of curcumin are attributed to its conjugated structure com-
posed of two methoxylated phenols attached to a β-diketone moiety (Masuda et al.
2001). Curcumin can scavenge various types of ROS and RNS, including hydroxyl
radicals, superoxide anions, singlet oxygen, peroxyl radicals, nitric oxide, and
peroxynitrite (Sreejayan and Rao 1997; Das and Das 2002; Kim et al. 2003;
Barzegar and Moosavi-Movahedi 2011).
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Several in vitro and in vivo studies have demonstrated the antioxidant properties
of curcumin. Curcumin has been shown to prevent lipid peroxidation, protect against
radiation-induced DNA damage, and reduce the formation of protein carbonyls and
nitrotyrosine (Reddy and Lokesh 1994; Sreejayan and Rao 1994; Srinivasan et al.
2006; Dkhar and Sharma 2010, 2013; Abrahams et al. 2019). However, at least
in vitro, some studies have also reported that high concentrations of curcumin
(10–100 μM) induce ROS production and DNA damage (Sreejayan and Rao 1997;
Das and Das 2002; Kim et al. 2003; Cao et al. 2006; Mendonça et al. 2009; Barzegar
and Moosavi-Movahedi 2011).

Curcumin has various molecular targets that may be responsible for its numerous
pharmaceutical properties. An important target of curcumin in the context of ageing
and obesity is the transcription factor NF-κB, a key regulator of oxidative stress and
inflammation (Gupta et al. 2013). In vitro, curcumin was reported to reduce inflam-
mation by inhibiting COX-2 activity and suppressing NF-κB activation, presumably
by preventing phosphorylation of inhibitory factor IκB kinase (IKK) (Surh et al.
2001; Ukil et al. 2003; Goel et al. 2008). In vivo, curcumin has also been shown to
inhibit the metabolism of arachidonic acid in the mouse epidermis, reducing inflam-
mation by downregulating signalling pathways involving COX-2 and lipoxygenase
(Huang et al. 1991).

Curcumin also acts on the Nrf2-Keap1-ARE pathway, which is critical for
preserving redox balance and metabolic homeostasis and regulating inflammation
(Serafini et al. 2019; Shin et al. 2020). Under normal homeostatic conditions, Keap1
binds to Nrf2, targeting it for degradation by the proteasome. This maintains Nrf2 at
a low level in the cytoplasm (Kobayashi et al. 2004; Cullinan et al. 2004; Zhang et al.
2004). Under redox stress, Keap1 is oxidised and releases Nrf2, which then trans-
locates to the nucleus, where it binds small Maf (musculoaponeurotic fibrosarcoma)
proteins (sMAF). Nrf2-sMAF heterodimers bind to antioxidant response elements
(ARE) in the promoters of genes encoding a network of cooperating proteins that
protect against numerous diseases, including neurodegenerative and metabolic dis-
orders (Cuadrado et al. 2018; Yamamoto et al. 2018). Curcumin disrupts the binding
between Keap1 and Nrf2, allowing Nrf2 to enter the nucleus and activate the
transcription of ARE-carrying genes. This leads to the production of antioxidant
enzymes and anti-inflammatory mediators and activates the proteasome and various
transcription factors involved in mitochondrial biogenesis (Calabrese et al. 2008;
Tufekci et al. 2011; Esatbeyoglu et al. 2012).

Brain-derived neurotrophic factor (BDNF), which is under the control of the
transcriptional regulator cAMP-response element binding protein (CREB), plays a
crucial role in neuronal cell survival, neuronal integrity, and synaptic plasticity
(Finkbeiner et al. 1997; Finkbeiner 2000; Huang and Reichardt 2003). Increased



oxidative stress associated with ageing is accompanied by decreased BDNF expres-
sion, leading to cognitive decline (Castelli et al. 2019). Conversely, an increase in
BDNF ameliorates learning and memory deficits (Wu et al. 2004; Erickson et al.
2010). D-galactose-induced learning and memory impairments in aged mice were
attenuated by curcumin due to increased CREB and BDNF levels (Nam et al. 2014).
Likewise, the treatment of rats with chronic unpredictable stress-induced cognitive
deficits with curcumin also restored the levels of BDNF and altered the expression of
proteins of the extracellular signal-regulated kinase (ERK) signalling pathway (Liu
et al. 2014b), which modulates the activities of CREB and NF-κB (Enserink et al.
2002; Emery and Eiden 2012).
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The therapeutic benefits of curcumin have also been associated with its effect on
SIRTs (Xiao et al. 2016). In a surgically induced osteoarthritis animal model,
curcumin reduced oxidative stress and ER stress and inhibited apoptosis by increas-
ing the levels of the deacetylase SIRT1 (Feng et al. 2019). In turn, SIRT1 reduced the
levels of ER stress-responsive proteins, including the phosphorylated protein kinase
R-like ER kinase (PERK), the phosphorylated alpha subunit of eukaryotic transla-
tion initiation factor 2 (eIF2α), and C/EBP homologous protein (CHOP), thereby
attenuating apoptosis and preventing further progression of osteoarthritis (Feng et al.
2019). In an experimental stroke model, curcumin was reported to exert
neuroprotective effects by activating SIRT1, decreasing brain levels of the
pro-inflammatory markers TNF-α and IL-6, and increasing the activity of mitochon-
drial complex I and the levels of mitochondrial cytochrome c (Miao et al. 2016).

The therapeutic benefits of curcumin may also be mediated by its effects on
mTOR signalling (Beevers et al. 2009). For instance, curcumin was shown to
alleviate inflammation, synovial hyperplasia, and other symptoms in a rat model of
rheumatoid arthritis by suppressing Akt/mTOR signalling and decreasing the levels
of pro-inflammatory markers, including IL-1β, TNF-α, and matrix
metalloproteinases 1 and 3 (Dai et al. 2018).

The effects of curcumin on longevity vary by model organism, sex, and genotype.
In Caenorhabditis elegans, curcumin was found to extend lifespan by decreasing
intracellular ROS levels and lipofuscin accumulation during ageing (Liao et al.
2011). In the fruit fly D. melanogaster, curcumin was shown to extend lifespan, an
effect attributed, at least to some extent, to its antioxidant activities and its capacity
to modulate the expression of several genes related to ageing, including genes of the
mTOR and JNK pathways (Lee et al. 2010; Soh et al. 2013). In mammals, the
curcumin metabolite tetrahydrocurcumin extended the average lifespan of male
C57BL/6 mice (Kitani et al. 2007). In contrast, feeding curcumin to 4- or
12-month-old F1 hybrid mice or mice of genetically heterogeneous backgrounds
did not prolong lifespan (Strong et al. 2013; Spindler et al. 2013).

Beyond lifespan, beneficial effects of curcumin on health parameters have also
been reported. In aged rats, curcumin treatment improved muscle mass and function
(Receno et al. 2019). In rodent models of accelerated ageing (Sun et al. 2013; Nam
et al. 2014) and healthy older rodents (Dong et al. 2012; Belviranlı et al. 2013; Yu
et al. 2013), curcumin improved cognitive performance, while in middle-aged rhesus



monkeys, long-term administration of curcumin improved fine motor function
(Moore et al. 2018).
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In vitro and in vivo studies have demonstrated the neuroprotective effects of
curcumin in AD. The underlying neuroprotective mechanisms are multifactorial and
include stimulation of neurogenesis and neuronal differentiation, reduction of Aβ
and tau accumulation and aggregation, modulation of the levels and activity of
β-secretase and acetylcholinesterase, promotion of amyloid clearance, attenuation
of mitochondrial dysfunction, activation of the UPR, and attenuation of
neuroinflammation and oxidative stress (Zhu et al. 2004; Giri et al. 2004; Begum
et al. 2008; Ahmed and Gilani 2009; Ishrat et al. 2009; Shytle et al. 2009;
Hamaguchi et al. 2010; Wang et al. 2013; Eckert et al. 2013; Tiwari et al. 2014;
Hagl et al. 2015; Reddy et al. 2016; Akinyemi et al. 2017; Chen et al. 2018; Sala de
Oyanguren et al. 2020). In vivo, curcumin has been reported to attenuate or reverse
cognitive deficits associated with neurotoxicity of β-amyloid peptides by
suppressing glial activity (Wang et al. 2013) and reducing brain concentrations of
amyloid plaques, oxidised proteins, and isoprostanes (Frautschy et al. 2001; Lim
et al. 2001).

In preclinical studies, curcumin was shown to reduce and restore PD-related
motor impairment (Khajavi and Lupski 2008; Spinelli et al. 2015; Khatri and
Juvekar 2016). Mechanisms underlying the therapeutic effects of curcumin in PD
include promotion of neurogenesis and neuron differentiation, prevention of
α-synuclein aggregation, attenuation of neuroinflammation, enhancement of antiox-
idant defences, reduction of oxidative stress through ROS/RNS scavenging and/or
metal chelation, regulation of autophagy, promotion of amyloidogenic protein
degradation, and modulation of dopamine levels (Sharma and Nehru 2018;
Heebkaew et al. 2019; Tabatabaei Mirakabad et al. 2020; Doytchinova et al. 2020;
Song et al. 2020).

Clinical studies in humans have shown that curcumin is well tolerated and
non-toxic even at high doses, suggesting that it could be used over an extended
period without significant side effects (Zhang et al. 2009a). However, clinical trials
have shown conflicting results regarding the benefits of curcumin on cognitive
function. In healthy middle-aged people, a 4-week intake of a lipidated form of
curcumin (80 mg/day) had several beneficial effects, including a reduction in plasma
β-amyloid protein (DiSilvestro et al. 2012). Likewise, Cox et al. (2015) reported that
a 4-week supplementation (400 mg/day) with a solid lipid formulation of curcumin
(Longvida®) improved working memory and attention. In contrast, other studies
have found that the intake of curcumin (up to 4 g/day) for 3–12 months did not affect
cognitive function compared with the placebo group (Baum et al. 2008; Rainey-
Smith et al. 2016; Santos-Parker et al. 2018). Similarly, a 24-week placebo-con-
trolled study with AD patients found no biochemical evidence for the efficacy of
curcumin at up to 4 g/day (Ringman et al. 2012).

Systematic reviews and meta-analyses of randomised controlled trials have
revealed that curcumin supplementation increased BDNF levels by an average of
21.8% in adults (Sarraf et al. 2019) and that curcumin may improve cognitive



function in some patient populations but not in others (Zhu et al. 2019; Tsai et al.
2021).
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Overall, the currently available evidence in humans does not allow for a gener-
alisation of the results, as only a few studies have been conducted, the sample sizes
are relatively small, and the results vary greatly from study to study. The insolubility
of curcumin in water, its low bioavailability, and the difficulty in crossing the BBB
are some possible reasons for the inability of curcumin to exert therapeutic effects in
humans.

Theracurmin® is a highly bioavailable nanoformulation of curcumin. In the
5XFAD mouse model of AD, it was reported that treatment with Theracurmin®
improved recognition ability and spatial memory compared with vehicle-treated
controls. The authors attributed this effect to the ability of Theracurmin® to increase
synaptic component expression and prevent neuronal cell damage due to oxidative
stress or microglial activation (Kim et al. 2019). In the first double-blind, placebo-
controlled, long-term (18-month) study of Theracurmin® (90 mg curcumin twice
daily) in adults without dementia, Theracurmin® intake was found to significantly
improve memory and attention, which was associated with reductions in amyloid
and tau levels in brain regions that modulate mood and memory, as assessed using
positron emission tomography (Small et al. 2018). The development of improved
delivery systems and the synthesis of curcumin analogues that can mimic its
neuroprotective effects but reach the brain more efficiently are ongoing (Maiti and
Dunbar 2018).

There are also reports of curcumin’s ability to promote weight loss and improve
insulin signalling, suggesting that it may be useful in treating obesity and metabolic
syndrome. Mechanisms responsible for the benefits of curcumin in weight manage-
ment include attenuation of mitochondrial dysfunction, oxidative stress, and inflam-
mation, promotion of mitochondrial biogenesis, reduction of adiposity and lipid
storage, and induction of fatty-acid oxidation. Additionally, curcumin was reported
to reduce atherogenic risk in patients with diabetes by lowering insulin resistance,
triglycerides, and visceral and total body fat (Weisberg et al. 2008; Chuengsamarn
et al. 2014; Prasad et al. 2014).

Several clinical trials have investigated the potential of curcumin to treat obesity.
In one study, obese subjects were treated with curcumin (1 g/day) for 30 days, along
with a bioavailability enhancer (piperine) (Mohammadi et al. 2013). Compared with
controls, weight, BMI, and body fat were not affected by curcumin treatment, but
serum triglyceride levels were significantly reduced, suggesting improved insulin
activity. Conversely, Di Pierro et al. (2015) reported that curcumin (800 mg twice
daily for 1 month) complexed with piperine promoted weight loss and reduced
omental adipose tissue in overweight people with metabolic syndrome. Saraf-Bank
et al. (2019) also found that curcumin (500 mg/day for 10 weeks) was effective in
lowering body weight, BMI, waist circumference, triglycerides, LDL, and total
cholesterol levels in obese and overweight adolescent girls. Positive effects of
curcumin (1 g/day for 4 weeks) on the levels of inflammatory cytokines and
oxidative stress biomarkers in the serum of obese subjects have also been reported
(Ganjali et al. 2014).
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Epigallocatechin Gallate

The most abundant polyphenolic catechin in green tea is epigallocatechin-3-gallate
(EGCG). Health benefits attributed to EGCG include reducing inflammation,
boosting the immune system, lowering cholesterol and blood pressure, and
protecting against heart disease and cancer (Singh et al. 2011).

The beneficial effects of EGCG have been attributed to its antioxidant activity.
EGCG is a potent free radical scavenger because it contains eight free hydroxyl
groups. The phenolic hydroxyl groups on the aromatic rings of EGCG are also
associated with its iron-chelating activity (Rice-Evans et al. 1995; Fujisawa and
Kadoma 2006; Intra and Kuo 2007; Perron and Brumaghim 2009; Hatcher et al.
2009; Azman et al. 2014; Amadi et al. 2019). However, in vitro, EGCG was found to
exhibit pro-oxidant and cytotoxic effects at high concentrations (>50 μM) and in the
presence of Fe(III) (reviewed by Kim et al. 2014b). The health benefits of EGCG
have also been attributed to its ability to induce mitohormesis, an adaptive response
that promotes mitochondrial biogenesis through a steady increase in mitochondrial
ROS production, leading to the upregulation of stress resistance proteins (Zhang
et al. 2009b; Xiong et al. 2018).

Several ageing-related signalling pathways have been implicated in the beneficial
effects of EGCG on lifespan and healthspan. For instance, activation of AMPK and
subsequent effects on glucose metabolism have been linked to the lifespan-
extending properties of EGCG in D. melanogaster (Wagner et al. 2015). However,
Lopez et al. (2014) reported that EGCG-induced lifespan extension negatively
impacted male fertility, as evidenced by a lower number of offspring and increased
mating latency in EGCG-treated flies. In C. elegans, EGCG was found to prolong
life expectancy and improve health by enhancing the nuclear accumulation of the
FOXO orthologue Dauer-independent factor 16 (DAF-16) and increasing the
expression of the DAF-16 target gene sod-3 encoding the antioxidant enzyme
superoxide dismutase (Bartholome et al. 2010). More recently, Tian et al. (2021)
identified a role for complex I inhibition in the life-prolonging effects of EGCG.
However, in other studies, the extension of the C. elegans lifespan by EGCG
occurred only under stress conditions but not under standard culture conditions,
suggesting that the observed lifespan extension was due to the upregulation of
proteins related to stress resistance (Zhang et al. 2009b).

Green tea catechins were found to prolong the life expectancy of male C57BL/6
mice (Kitani et al. 2007) and Wistar rats (Niu et al. 2013) by attenuating inflamma-
tion and oxidative stress, possibly through inhibition of NF-κB signalling via
FOXO3a and SIRT1 (Niu et al. 2013). EGCG was also found to prolong the lifespan
of rats fed an HFD by ameliorating lipid metabolism and attenuating inflammation
and oxidative stress (Yuan et al. 2020).

The therapeutic benefits of EGCG in cognitive dysfunction have also been
reported. EGCG has been shown to attenuate lipid- and fructose-related cognitive
deficits (Mi et al. 2017) and mitigate long-term memory loss in ischaemic rats by
reducing oxidative stress and inflammation (Wu et al. 2012b). In mouse models of



AD, EGCG slowed cognitive degeneration (Rezai-Zadeh et al. 2008; Chang et al.
2015) and improved spatial memory (Haque et al. 2006). In the amyloid-β-protein
precursor/presenilin 1 (APP/PS1) mouse model of AD, EGCG reduced spatial
memory impairment by improving hippocampal insulin signalling (Jia et al. 2013).
EGCG intake and exercise, both individually and in combination, also reduced
cognitive dysfunction in a transgenic mouse model of AD (Walker et al. 2015).
The mechanisms underlying the therapeutic benefits of EGCG in AD include
inhibition of Aβ- and tau-protein aggregation and reduction in the amount of
aggregated proteins, alleviation of oxidative stress, metal chelation, induction of
α-secretase activity, and reduction of acetylcholinesterase activity and
neuroinflammation (Abbas and Wink 2010).
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Beneficial effects of EGCG in PD have also been reported. These benefits are
attributed to EGCG’s ability to mitigate damage to dopaminergic neurons, promote
neurogenesis, inhibit iNOS production, chelate metals, reduce α-synuclein aggrega-
tion, attenuate mitochondrial dysfunction and neuroinflammation, and exert anti-
apoptotic effects (Wang et al. 2012; Zhou et al. 2018). Tea polyphenols restored
locomotor activity in paraquat-treated D. melanogaster models of PD (Jimenez-Del-
Rio et al. 2010). EGCG also attenuated functional and neurochemical deficits in
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice by modulating
the levels of the iron export protein ferroportin in the midbrain and alleviating
oxidative stress (Xu et al. 2017). In the 6-hydroxydopamine (6-OHDA) mouse
model of PD, green tea or EGCG extracts reversed pathological and behavioural
changes and improved cognitive dysfunction through antioxidant and anti-
inflammatory properties (Bitu Pinto et al. 2015). In another study using the same
PD model, EGCG-mediated neuroprotection and attenuation of motor abnormalities
were attributed to decreased α-synuclein expression and reduced mTOR, Akt, and
glycogen synthase kinase-3 beta (GSK3-β) levels (Zhou et al. 2019). In the rotenone-
induced mouse model of PD, EGCG treatment attenuated motor impairments by
decreasing levels of RNS, lipid peroxides, and neuroinflammation, as well as
markers of apoptosis, and increasing the activity of several electron transport chain
enzymes and catecholamine levels in the striatum (Tseng et al. 2020). In monkeys
with PD, oral administration of tea polyphenols reduced motor impairments and
attenuated dopamine depletion and damage to dopaminergic neurons (Chen et al.
2015a).

Epidemiological studies have associated regular consumption of green tea
(at least 2 cups/day) with a reduced risk of cognitive decline and AD (Mandel
et al. 2012; Polito et al. 2018). Green tea consumption has also been linked to a
decrease in all-cause mortality and cardiovascular mortality, but not mortality
associated with cancer (Mandel et al. 2012; Polito et al. 2018). Other epidemiolog-
ical studies have shown a reduced prevalence of T2D in green tea drinkers (Iso et al.
2006). However, despite promising preclinical evidence, human clinical trials have
been unable to demonstrate significant benefits of green tea catechins, particularly
EGCG, on neurodegenerative diseases (Levin et al. 2019). For example, in an elderly
Japanese cohort, a daily intake of 220 mg of catechins for 12 months significantly



lowered the levels of oxidative stress markers but did not improve cognitive function
compared with the placebo group (Ide et al. 2016).
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The effects of EGCG on obesity and metabolic syndrome have also been
reported. For example, in Sprague–Dawley rats, EGCG induced acute weight loss
within days of treatment (Choo 2003). Similarly, EGCG was reported to signifi-
cantly reduce or prevent weight gain in lean and obese Zucker rats (Kao et al. 2000).
In C57BL/6J mice, tea catechin administration was shown to substantially reduce
weight gain and visceral and liver fat, mitigate the development of
hyperinsulinaemia and hyperleptinaemia, and increase liver β-oxidation (Murase
et al. 2002). In the same mouse model, diet-induced increases in body weight and
plasma levels of glucose, triglycerides, and leptin were also prevented by EGCG
supplementation (Wolfram et al. 2005).

In an HFD-induced obesity model, EGCG supplementation significantly reduced
weight gain, visceral fat weight, and fasting blood glucose levels and attenuated
hyperlipidaemia-induced atherosclerosis and systemic organ damage (Bose et al.
2008). In an obese fructose-fed hamster model treated with EGCG, plasma
adiponectin levels were increased, and triacylglycerol levels were decreased
(Li et al. 2006). Additionally, in spontaneously hypertensive rats with insulin
resistance and obesity, EGCG treatment improved metabolism and cardiovascular
function (Potenza et al. 2007). In the db/db diabetes mouse model, EGCG also
attenuated glucose intolerance (Ortsäter et al. 2012; Wein et al. 2013).

The mechanisms that may explain the beneficial effects of EGCG in weight
control include alteration of the gut microbiome, decreased adipocyte differentiation
and proliferation, prevention of fat uptake from the gut, and increased energy
expenditure (Hursel and Westerterp-Plantenga 2010; Meydani and Hasan 2010;
Chen et al. 2019). In particular, EGCG appears to modulate energy expenditure by
activating AMPK, stimulating fatty-acid oxidation, and reducing fat accumulation
(Murase et al. 2009; Li et al. 2018).

Several epidemiological studies and randomised controlled trials have investi-
gated the relationship between tea consumption and metabolic syndrome and dia-
betes with conflicting results. An 8-week randomised controlled clinical trial in
overweight men found that 400 mg of EGCG twice a day did not affect insulin
sensitivity or secretion, or glucose tolerance (Brown et al. 2009). However, in
another study, 12 weeks of daily intake of 625 mg of EGCG-containing catechins
resulted in greater weight loss and lower fasting serum triglyceride levels than in
subjects receiving a placebo (Maki et al. 2009).

Systematic reviews and meta-analyses of randomised controlled trials have found
that green tea consumption can significantly reduce fasting blood sugar levels, body
weight, and BMI (Xu et al. 2020) and improve insulin resistance in patients with
T2D and lipid abnormalities (Liu et al. 2014a).
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Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol commonly present in
grapevine (Vitis vinifera), grape juice, and wine, especially red wine. Resveratrol has
been linked to a lower risk of heart disease, cancer, inflammation, neurodegenerative
disease, and improved blood sugar control. These therapeutic benefits are associated
with its anti-inflammatory, antioxidant, and metal chelating properties (Candelario-
Jalil et al. 2007; Sun et al. 2008; Robb et al. 2008; Gülçin 2010; Lee et al. 2012;
Quincozes-Santos et al. 2014). However, the bioavailability of resveratrol in mam-
mals is relatively low (Das et al. 2008), which limits its role as a direct ROS radical
scavenger in vivo (Leonard et al. 2003). Moreover, some studies have identified
cytotoxic effects of resveratrol which were attributed to resveratrol-induced ROS
generation and subsequent activation of apoptosis (Juan et al. 2008).

Resveratrol also induces the activity of antioxidant enzymes such as superoxide
dismutase, catalase, thioredoxin, and glutathione peroxidase (Floreani et al. 2003;
Liu et al. 2017b; Salehi et al. 2018). Other cytoprotective mechanisms of resveratrol
include stimulation of antioxidant enzyme activity and inhibition of ROS-forming
enzymes, including NADPH oxidase and xanthine oxidase (Doré 2005; Deby-
Dupont et al. 2005; Huang et al. 2008).

The beneficial effects of resveratrol in ageing and age-related diseases are mainly
attributed to its ability to activate SIRTs (Baur 2010) and FOXO (Motta et al. 2004;
van der Horst et al. 2004), leading to increased expression of the antioxidant
enzymes superoxide dismutase and catalase, inhibition of ROS production, and
attenuation of oxidative stress (Cheng et al. 2014; Cosín-Tomàs et al. 2019).
Additionally, resveratrol promotes mitochondrial biogenesis and function by
increasing the activity of PGC-1α (Lagouge et al. 2006; Parihar et al. 2015;
Kumar and Lombard 2015). Activation of FOXO by resveratrol may also upregulate
genes related to autophagy/mitophagy, thereby promoting the clearance of damaged
proteins and mitochondria (Webb and Brunet 2014; Chaanine et al. 2016; Sebori
et al. 2018). Moreover, resveratrol has been found to activate the transcription factor
Nrf2, thereby promoting the synthesis of enzymatic and non-enzymatic antioxidants
(Kode et al. 2008; Ungvari et al. 2010; Kim et al. 2010). Resveratrol also inhibits
NF-κB and NF-κB-dependent genes, which may explain its anti-inflammatory
effects (Tsai et al. 1999; Manna et al. 2000; Holmes-McNary and Baldwin 2000;
Surh et al. 2001; Estrov et al. 2003).

Resveratrol has been reported to prolong the lifespan and/or healthspan of yeast
(Howitz et al. 2003), C. elegans (Wood et al. 2004; Viswanathan et al. 2005; Collins
et al. 2006), D. melanogaster (Bauer et al. 2004), and the turquoise killifish
Nothobranchius furzeri (Valenzano et al. 2006), while no lifespan-extending effects
were observed in resveratrol-fed Daphnia (Kim et al. 2014a). In mice, the effect of
resveratrol on longevity is unclear. Some authors have reported that resveratrol does
not affect life expectancy, while others have found a positive effect of resveratrol
only under certain conditions, for instance, when mice were fed an HFD but not in



mice fed a normal diet (Pearson et al. 2008). Additionally, resveratrol has been
reported to improve mice health by delaying vascular ageing (da Luz et al. 2012).
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Resveratrol also exhibits neuroprotective properties due to its anticholinesterase
activity and ability to eliminate free radicals and reduce oxidative stress, prevent the
formation of pathogenic protein aggregates, modulate hippocampal plasticity, and
attenuate neuroinflammation (Bhullar and Rupasinghe 2013; Kodali et al. 2015;
Gomes et al. 2018). In senescence-accelerated mouse-prone 8 (SAMP8) mice,
maternal resveratrol and vitamin D supplementation were found to attenuate cogni-
tive impairment through effects on neuroinflammation, tau phosphorylation, and
amyloidogenic signalling pathways, among others (Cheng et al. 2017; Izquierdo
et al. 2019). Chronic administration of resveratrol also protected against oxidative
stress and cognitive impairment associated with intrathecal injection of
streptozotocin (Sharma and Gupta 2002).

In the APP/PS1 mouse model of AD, long-term treatment with resveratrol was
found to reduce amyloid load and prevent memory loss by activating SIRT1- and
AMPK-mediated signalling pathways (Porquet et al. 2014). Resveratrol has been
reported to attenuate hippocampal neurodegeneration and cognitive deficits in an
animal model with AD and tau pathology by reducing the acetylation of p53 and
PGC-1α by SIRT1 (Kim et al. 2007). In the Tg2576 mouse model of AD,
resveratrol-rich red wine was also reported to reduce the deterioration of spatial
memory function (Wang et al. 2006).

The therapeutic benefits of resveratrol have also been reported in PD models.
Resveratrol protected mice from MPTP-induced motor dysfunction, neuronal loss,
and excess hydroxyl radicals (Lu et al. 2008) and decreased the expression of COX-2
and TNF-α in the substantia nigra of the 6-OHDA-induced PD rat model (Jin et al.
2008).

Clinical trials have examined the effects of resveratrol on cognitive function with
varying results. In people with mild cognitive impairment, long-term (26 weeks)
resveratrol supplementation (200 mg/day) mitigated cognitive decline and improved
hippocampal functional connectivity (Witte et al. 2014; Köbe et al. 2017). Further-
more, resveratrol was shown to significantly increase the cerebrovascular response to
hypercapnic and cognitive stimuli in postmenopausal women and improve general
cognitive performance (Wightman et al. 2014). Conversely, in individuals with
mild-to-moderate AD, cerebrospinal fluid and plasma Aβ-40 levels decreased
more in the placebo group than in the resveratrol-treated group (Turner et al. 2015).

The therapeutic benefits of resveratrol have also been reported in obesity and
metabolic syndrome and attributed to the ability of resveratrol to activate AMPK,
leading to enhanced glucose uptake and fatty-acid oxidation (Zang et al. 2006).
There are also reports that resveratrol promotes mitochondrial biogenesis and oxi-
dative phosphorylation and reduces lipid accumulation by increasing the activity of
SIRT1 and PGC-1α, reducing lipid synthesis, and increasing lipolysis in adipocytes
(Li et al. 2016c; Majeed et al. 2021). Accordingly, mice on an HFD supplemented
with resveratrol gained less body weight and accumulated less fat, triglycerides, and
liver weight than mice on the same diet that did not receive resveratrol (Ahn et al.
2008).
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Despite promising preclinical evidence, clinical trials have not yet yielded con-
clusive results on the therapeutic benefits of resveratrol in metabolic disorders. In
some studies, chronic or acute resveratrol treatment improved endothelial function
and cardiovascular health in obese adults (Wong et al. 2011, 2013). In non-insulin-
dependent older adults (49–78 years old) with T2D, weekly treatment with synthetic
trans-resveratrol (75, 150, and 300 mg) improved cerebrovascular function (Wong
et al. 2016). In contrast, in another study of obese men, a 4-week treatment with
resveratrol (500 mg trans-resveratrol thrice daily) did not affect endogenous glucose
production, turnover or oxidation rates, insulin sensitivity, or body composition
(Poulsen et al. 2013). In non-obese postmenopausal women, 12-week resveratrol
intake (75 mg/day) also had no effects on body composition, metabolic parameters,
inflammatory markers, or insulin sensitivity. Additionally, no effects were observed
on its putative targets (e.g. AMPK, SIRT1, or PGC-1α) in the skeletal muscle or
adipose tissue of the subjects (Yoshino et al. 2012).

A review of the literature by Shaito et al. (2020) concluded that resveratrol is
generally safe, but that adverse effects may occur in some people at high doses, most
commonly gastrointestinal symptoms such as nausea, vomiting, and diarrhoea, as
well as headaches, dizziness, and fatigue.

Quercetin

The polyphenol flavonoid quercetin (3,5,7,3′,4′-pentahydroxyflavone) can be found
in fruits and vegetables, including capers, red onions, and kale. Potential health
benefits attributed to quercetin include reducing inflammation, allergies, and cancer
risk and improving heart and brain function (Salehi et al. 2020).

Quercetin has ROS scavenging activity due to the presence of several hydroxyl
groups (Formica and Regelson 1995; Mira et al. 2002; Anjaneyulu and Chopra
2004; Okamoto 2005; Kampkötter et al. 2007, 2008; Terao 2009; Nabavi et al.
2012). In addition, quercetin protects against oxidative stress by chelating metals,
mitigating ROS and RNS generation, and preventing lipid peroxidation (Bindoli
et al. 1985; Mira et al. 2002; López-López et al. 2004). In vitro, some studies have
reported that quercetin concentrations greater than 50 μM are cytotoxic, an effect
that has been explored for cancer therapy (Chang et al. 2006; Chen et al. 2013a; Rauf
et al. 2018). Moreover, quercetin, like other polyphenols, may have pro-oxidant
effects under certain experimental conditions (Long et al. 2000). Quercetin was also
reported to be genotoxic and mutagenic in vitro (Schimmer et al. 1988; Suzuki et al.
1991). However, subsequent studies have shown that the protective effects of
quercetin in vivo outweigh its adverse effects and that quercetin is not genotoxic in
mice at doses of up to 2000 mg/kg body weight (Harwood et al. 2007).

As with other polyphenols, the cytoprotective effects of quercetin are attributed to
its ability to promote Nrf2 nuclear translocation and binding to ARE-containing
genes, thereby activating the expression of detoxifying and antioxidant enzymes and
the proteasome (Granado-Serrano et al. 2010; Si et al. 2011; Moreno-Ulloa et al.
2015; Li et al. 2016a). Quercetin may also modulate the activity of the



age-promoting IGF1/insulin and PI3K/Akt signalling pathways (Si et al. 2011;
Pietsch et al. 2012). Additionally, the longevity-promoting effects of quercetin
have been associated with increased stress resistance (Son et al. 2008; Pietsch
et al. 2011), and in some model organisms, suppression of mTOR and IGF1/insulin
signalling pathways by quercetin was reported to increase longevity through activa-
tion of heat shock factor 1 (Seo et al. 2013). Moreover, quercetin-induced inhibition
of mTOR signalling promotes autophagy and suppresses protein synthesis and cell
growth (Son et al. 2008; Pietsch et al. 2011; Johnson et al. 2013a). Quercetin also
reduces inflammation by inhibiting TNF-α, NF-κB, mitogen-activated protein kinase
(MAPK), COX-2, and MCP-1, among others (Comalada et al. 2005; Overman et al.
2011).

376 A. L. Santos and S. Sinha

In the yeast Saccharomyces cerevisiae, quercetin increased lifespan and stress
resistance (Belinha et al. 2007). Dietary supplementation with quercetin has also
been shown to extend the life expectancy of C. elegans by up to 20%. This effect was
at least partly attributed to the modulation of the insulin/IGF1 signalling pathway by
quercetin, since recessive mutations in the age-1 or daf-2 genes abolished quercetin-
induced lifespan extension (Saul et al. 2008; Pietsch et al. 2009). Increased translo-
cation of DAF-16 to the nucleus induced by quercetin in C. elegans has also been
implicated in its ability to extend lifespan (Kampkötter et al. 2008). In
D. melanogaster, short-term quercetin ingestion at young and middle age increased
lifespan in females; however, no such effect was observed in males (Proshkina et al.
2016).

Quercetin has also been reported to exert a rejuvenating effect on senescent
fibroblasts and prolong their lifespan by acting as a proteasome activator
(Chondrogianni et al. 2010). Screening of a library of natural products identified
quercetin as a geroprotectant in a model of premature ageing (human Werner
syndrome mesenchymal stem cells) (Geng et al. 2019). However, in vivo studies
found that dietary supplementation with quercetin either significantly shortened the
lifespan of mice (Jones and Hughes 1982) or had no significant effect (Spindler et al.
2013). Interestingly, the combination of quercetin with the senolytic drug dasatinib
increased the average lifespan of C57BL/6 mice by 6.3% and improved physical
function (Xu et al. 2018).

Several studies have also reported the neuroprotective effects of quercetin,
attributed to its ability to reduce oxidative stress, attenuate neuroinflammation,
activate autophagy, and protect against ischaemia, among others (Costa et al.
2016). In aged mice, quercetin ameliorated cognitive dysfunction caused by dietary
intake of advanced glycation products (Yang et al. 2020). In a transgenic mouse
model of AD, quercetin was reported to reduce β-amyloid and tau accumulation in
the hippocampus and amygdala, improving cognitive function (Sabogal-Guáqueta
et al. 2015). Quercetin-loaded exosomes also improved cognitive performance in
mice with okadaic acid-induced AD (Qi et al. 2020). The combined administration
of quercetin and fish oil was found to have a neuroprotective effect in rats with
3-nitropropionic acid-induced PD (Denny Joseph and Muralidhara 2013, 2015).

In a clinical trial of healthy elderly subjects, 24 weeks of continuous consumption
of quercetin-rich onions (estimated daily intake of 50–100 mg of quercetin) was



found to reduce age-related cognitive decline, which was attributed to improved
emotional state (Nishihira et al. 2021). Conversely, another study did not find
significant effects of supplementation with quercetin (500 mg/day or 1000 mg/
day) for 12 weeks on different cognitive parameters, including memory, reaction
time, and attention (Broman-Fulks et al. 2012).
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Quercetin has been reported to inhibit adipogenesis by activating AMPK and
suppressing adipogenic factors, including PPAR-γ, and reduce hyperglycaemia by
inhibiting the PI3k/Akt pathway (Vinayagam and Xu 2015). Quercetin also reduced
body weight by alleviating inflammation through its effects on Nrf2, haem
oxygenase-1, and NF-κB (Panchal et al. 2012). However, Wistar rats on an HFD
that was also high in sucrose supplemented with quercetin showed a decrease in
basal glucose and insulin levels but no differences in body weight, fat accumulation,
or triacylglycerol levels (Arias et al. 2014). In another study, treatment of Wistar rats
with quercetin or quercetin-iron complexes reduced oxidative stress markers and
increased antioxidant protection due to quercetin’s ability to scavenge ROS and free
radicals (Imessaoudene et al. 2016). In addition, quercetin prevented and reduced
HFD-induced liver damage in rats (Mamun et al. 2019; Kumar et al. 2019).

Quercetin, in doses of 100–500 mg over a period of 4–6 months, has been shown
in several clinical trials to lower blood pressure and improve vascular function in
both healthy and overweight to obese patients (Egert et al. 2009; Dower et al. 2015;
Choi et al. 2015; Shi and Williamson 2016). In contrast, Brüll et al. (2017a) reported
that acute ingestion of quercetin from onion skin extract had no effect on postpran-
dial blood pressure and endothelial function in overweight to obese adults with
hypertension.

The effects of quercetin on metabolic parameters have also been reported in the
scientific literature. For example, Leyva-Soto et al. (2021) found that daily con-
sumption of quercetin-enriched bread for 3 months resulted in improvements in
biochemical parameters associated with metabolic syndrome, including total cho-
lesterol, LDL cholesterol, total triglycerides, and fasting plasma glucose. Similarly,
Khorshidi et al. (2018) found that quercetin intake (1000 mg/day for 12 weeks) led to
improvements in metabolic and hormonal parameters, as well as reduced resistin
plasma concentration and gene expression, in overweight or obese women with
polycystic ovary syndrome. Cialdella-Kam et al. (2016) concluded that supplemen-
tation with a mixture of quercetin-rich flavonoids and fish oil for 10 weeks was
associated with decreased levels of pro-inflammatory cytokines and increased levels
of anti-inflammatory cytokines. Nishimura et al. (2019) reported that daily intake of
quercetin-rich onion powder for 12 weeks resulted in significantly greater reductions
in body weight and body fat mass than in the placebo group. However, Brüll et al.
(2017b) found that quercetin (162 mg/day for 6 weeks) had no effect on serum leptin
and adiponectin concentrations in overweight to obese hypertensive or
prehypertensive patients compared with the placebo group.

A systematic review and meta-analysis of randomised controlled trials conducted
by Tabrizi et al. (2020) concluded that quercetin supplementation might improve
lipid profiles and reduce inflammatory markers in patients with metabolic syndrome



and related disorders. However, more research is needed to confirm quercetin’s
therapeutic benefits in managing obesity and metabolic syndrome in humans.
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Anthocyanins

Another group of flavonoids with health-promoting properties are anthocyanins,
which give fruits their red, purple, or blue colour (Milbury and Kalt 2010). Antho-
cyanins are found in a variety of fruits and vegetables, including plums, eggplant, red
cabbage, and especially berries. Health benefits associated with the consumption of
berry anthocyanins include improved cognitive function, regulation of glucose and
lipid metabolism, and cardiovascular protection (Joseph et al. 1999; Youdim et al.
2000; Lau et al. 2007; Reis et al. 2016; Aboonabi and Aboonabi 2020). In addition,
various anthocyanins have been shown to arrest the cell cycle or induce cell death in
some cancer cell lines, and some in vivo studies have shown that anthocyanins have
the potential to prevent and treat certain cancers; however, this has not yet been
demonstrated in humans (reviewed by Lin et al. 2017).

Anthocyanins have been shown to directly and indirectly promote the activity of
antioxidant enzymes, such as superoxide dismutase, by modulating Nrf2 activity
(Tsuji et al. 2013; Curti et al. 2014). Anthocyanins have also been reported to
attenuate pro-inflammatory signalling pathways by downregulating NF-κB and the
expression of pro-inflammatory genes (Ye et al. 2010; Poulose et al. 2012).

Anthocyanins from various fruits have been reported to extend the lifespan of
C. elegans by modulating the expression of the DAF-16/FOXO pathway (Chen et al.
2013b; Tambara et al. 2018; Wang et al. 2018). In D. melanogaster and zebrafish
(Danio rerio), anthocyanins have also been reported to reduce oxidative stress and
inflammatory markers (Mylnikov et al. 2005; Kim et al. 2012; Wang et al. 2016;
Valenza et al. 2018). Life expectancy was significantly increased in cancer-prone
Trp53-/- mice fed a diet high in anthocyanins (Butelli et al. 2008). In the APCMin
cancer mouse model, an anthocyanin-enriched cherry extract combined with the
non-steroidal anti-inflammatory drug sulindac was more effective than sulindac
alone in preventing colon cancer (Bobe et al. 2006).

Dietary anthocyanins have been reported to exert neuroprotective effects, reduc-
ing age-related cognitive decline, improving cognitive performance, and even mit-
igating stress-related brain damage (Joseph et al. 1999; Casadesus et al. 2004;
Petersen 2004; Rahman et al. 2008; Krikorian et al. 2010a; Albert et al. 2011). In
the hippocampal cell line HT22, anthocyanin treatment attenuated cell death and
normalised mitochondrial membrane potential and calcium levels associated with
Aβ1-42 neurotoxicity (Badshah et al. 2015). In vivo, anthocyanins reversed the
effect of Aβ on mitochondrial apoptotic pathway proteins and key AD markers,
including Aβ peptide, APP protein, phosphorylated tau, and β-secretase 1 (Badshah
et al. 2015). In another study, blueberries promoted microglial clearance of Aβ,
inhibited Aβ1-42 aggregation, and suppressed microglial activation (Zhu et al.
2008). Extracts rich in anthocyanins and proanthocyanidins were also reported to



reverse mitochondrial dysfunction in dopaminergic cells and reduce microglial
activity in cellular models of PD (Strathearn et al. 2014).
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The neuroprotective effects of dietary anthocyanins have been attributed to their
ability to reduce neuroinflammatory mediators such as IL-1 and TNF-α, protect
neurons from oxidative stress, and modulate neuronal signalling, plasticity, and
neurogenesis, at least to some extent through BDNF (Domitrovic 2011; Tsuda
2012; Mecocci et al. 2014; de Pascual-Teresa 2014). Interestingly, liquid
chromatography-mass spectrometry (LC-MS) analyses of the brains of blueberry-
fed rats showed that anthocyanins were localised in the cerebellum, cortex, hippo-
campus, and striatum, and their concentrations correlated with the performance of
rats in the Morris water maze, suggesting a direct effect of anthocyanins on memory
and learning (Andres-Lacueva et al. 2005).

Studies on the neuroprotective abilities of anthocyanins in humans are scarce. In a
small cohort of older adults with early memory impairment, wild blueberry juice
consumption daily for 12 weeks improved pairwise-associated learning and word-
list recall (Krikorian et al. 2010b). In the Nurses’ Health Study, high consumption of
blueberries and strawberries was also associated with a delay in cognitive ageing of
approximately 2.5 years (Devore et al. 2012). More recently, Bøhn et al. (2021)
reported that 12 weeks of consumption of bilberry/red grape juice reduced plasma
biomarkers of inflammation and tissue damage in older men with subjective memory
impairment but had no significant effect on cognitive performance.

Anthocyanins have also been reported to protect against obesity and metabolic
syndrome. For example, DeFuria et al. (2009) showed that mice fed an HFD and
blueberries exhibited reduced adipocyte death and were protected from insulin
resistance and hyperglycaemia. This protective effect was attributed to the impact
of blueberry anthocyanins on stress signalling pathways such as MAPK and NF-κB.
Moreover, blueberry supplementation attenuated the HFD-induced gene expression
shift in the adipose tissue of mice (DeFuria et al. 2009). Conversely, Prior et al.
(2008) reported that C57BL/6J obese mice fed an HFD plus anthocyanins in the
form of whole blueberries had significantly more body weight, body fat, and
epididymal fat mass than the control group. However, when the mice received
purified anthocyanins, they gained less body weight and fat than the HFD control
group (Prior et al. 2008). Moreover, supplementing an HFD with purified anthocy-
anins reversed the HFD-induced increase in serum cholesterol and triglyceride levels
in C57BL/6 mice (Prior et al. 2009), indicating the potential of purified anthocyanins
to prevent diet-induced dyslipidaemia and obesity. In the KKAy mouse model of
leptin resistance, biotransformed blueberry juice protected mice from developing
glucose intolerance and diabetes mellitus, reduced food intake and body weight, and
significantly increased adiponectin levels (Vuong et al. 2009). Carey et al. (2019)
reported that microglial activation and nitric oxide levels decreased and BDNF
levels increased in mice fed an HFD supplemented with 4% freeze-dried blueberry
extract.

Clinical studies in humans have shown some therapeutic benefits of anthocyanins
in obesity and metabolic disorders. Based on three prospective cohort studies
conducted among health professionals in the USA, a higher intake of flavonoids,



particularly anthocyanidins, was associated with better weight maintenance (Bertoia
et al. 2016). Obese subjects with metabolic syndrome who consumed a blueberry
drink containing 50 g of frozen blueberries daily (equivalent to 742 mg of anthocy-
anins) for 8 weeks showed significant reductions in blood pressure and plasma levels
of oxidised LDL, malondialdehyde, and 4-hydroxynonenal compared with control
subjects (Basu et al. 2010). Another study found that twice-daily consumption of
blueberry bioactives (22.5 g) improved insulin sensitivity but had no effect on
obesity or inflammatory biomarkers (Stull et al. 2010). In 30 overweight healthy
subjects who received anthocyanin-rich Moro juice extract (400 mg/day) for
12 weeks, BMI decreased significantly compared with the control group (Cardile
et al. 2015). In overweight and obese women, berry consumption for up to 35 days
was also associated with reduced waist circumference and body weight (Lehtonen
et al. 2011). In contrast, Wright et al. (2013) found that 4 weeks of consumption of
anthocyanin- and phenolic acid-rich dried purple carrot had no significant effects on
body mass, lipids, blood pressure, body composition, or inflammatory markers in
overweight and obese adults.
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A systematic review and meta-analysis of randomised controlled trials conducted
by Park et al. (2021) concluded that supplementation with anthocyanins resulted in
significant reductions in body weight, body mass index, and waist circumference, as
well as triglycerides and LDL cholesterol.

Diets

An alternative to nutraceutical supplements is adopting a diet rich in foods with
various bioactive components and pleiotropic benefits, such as the Mediterranean
Dietary Approaches to Stop Hypertension (DASH) and Mediterranean-DASH Inter-
vention for Neurodegenerative Delay (MIND) diets. These dietary patterns, typically
characterised by a low glycaemic index, promote the consumption of foods rich in
antioxidants and anti-inflammatory phytochemicals that can boost metabolism and
prevent age-related cognitive decline by reducing inflammation and oxidative stress
and improving glycaemic control. Reducing caloric intake through fasting diets also
has well-documented benefits, including weight loss, increased mental clarity and
focus, reduced inflammation, and improved cardiovascular health.

In the following sections, we critically review the health benefits of some of the
best-studied diets in the context of age-related diseases and metabolic disorders.

Mediterranean Diet

The traditional Mediterranean diet consists of a high proportion of olive oil, vege-
tables, nuts, fruits, and grains, a moderate amount of fish, and little red or processed
meat. The Mediterranean diet also recommends daily consumption of fruits
and vegetables (3–8 servings) (Lin and Morrison 2002; Alonso et al. 2004; Crowe



et al. 2011). The Mediterranean diet has been reported to lower blood pressure and
improve cardiovascular health (Kris-Etherton et al. 2001). Other health benefits
include the prevention of diabetes, obesity, some cancers, and age-related cognitive
decline (Guasch-Ferré and Willett 2021). Below, we discuss the health benefits of
individual components of the Mediterranean diet and the Mediterranean diet as a
whole.
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The Mediterranean diet is characterised by a high fibre intake (41–62 g of fibre
per person per day) (Saura-Calixto and Goñi 2009). The consumption of dietary
fibre, especially cereal fibre, has been inversely correlated with cardiovascular
disease risk (Lairon et al. 2005; Threapleton et al. 2013). A high fibre diet can
contribute to a healthier cardiovascular system by promoting better glycaemic
control and weight management and lowering inflammation and lipid levels (Good
et al. 2008; Crowe et al. 2011; Widmer et al. 2015).

Nuts can help lower cholesterol levels and blood pressure and improve blood
sugar control and vascular function. This, in turn, reduces the risk of T2D, cardio-
vascular disease, and other chronic diseases (Good et al. 2008; Crowe et al. 2011;
Kingwell et al. 2014; Jamshed et al. 2015; Widmer et al. 2015). The health benefits
of almonds, for instance, are well documented (reviewed by Kamil and Chen 2012).
Almonds are rich in monounsaturated fatty acids, fibre, protein, and vitamins. A
meta-analysis found that almonds in the diet lowered serum cholesterol levels,
especially LDL cholesterol (Musa-Veloso et al. 2016). In randomised controlled
clinical trials, almonds have also been reported to increase serum HDL cholesterol
and lower triglycerides, LDL, and total cholesterol and the overall atherogenic index
(Good et al. 2008; Crowe et al. 2011; Widmer et al. 2015). A cross-sectional analysis
of data from the Nurses’ Health Study and the Health Professionals Follow-Up
Study found an association between frequent nut consumption and lower levels of
the inflammatory biomarkers CRP, IL-6, and TNF-α (Yu et al. 2016).

The carotenoid lycopene, found in red fruits and vegetables such as tomatoes, is
also an important component of the Mediterranean diet with antioxidant, anti-
inflammatory, and antithrombotic properties (Burton-Freeman and Reimers 2010).
The health benefits of lycopene include a reduced risk of certain cancers, such as
prostate cancer, macular degeneration and cataracts, stroke, and improved immunity
(Mohanty et al. 2002; Gupta et al. 2003; Luo and Wu 2011; Karppi et al. 2012; Chen
et al. 2015b). Low-dose lycopene supplementation has also been suggested as a
preventive measure to reduce the risk of cardiovascular disease (Sesso et al. 2012;
Burton-Freeman and Sesso 2014).

Olive oil (Olea europaea) contains several antioxidants and anti-inflammatory
compounds, including several polyphenols such as oleocanthal, and is a Mediterra-
nean diet staple. Health benefits associated with olive oil include a lower risk of
stroke, heart disease, cancer, AD, and obesity (Huang and Sumpio 2008; Foscolou
et al. 2018). The consumption of nuts and extra virgin olive oil as part of the
Mediterranean diet was found to improve cognitive function in the elderly (Martí-
nez-Lapiscina et al. 2013; Valls-Pedret et al. 2015). Likewise, Mazza et al. (2018)
observed an improvement in cognitive function in elderly individuals who consumed
a Mediterranean diet with extra virgin olive oil instead of other oils for 1 year.
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Magnesium is an essential cofactor for several enzymes involved in carbohydrate
metabolism and the Krebs cycle (Saris et al. 2000). Several health conditions are
caused by magnesium deficiency, including asthma, hypertension, heart disease,
diabetes, migraines, osteoporosis, and anxiety (Ma et al. 1995; Guerrero-Romero
and Rodriguez-Moran 2002). The Mediterranean diet contains several magnesium-
rich components, such as vegetables, legumes, and nuts, and adherence to the
Mediterranean diet is generally associated with high magnesium consumption.
Several epidemiological studies have reported an association between increased
magnesium intake and a lower risk of T2D (Ma et al. 1995; Kao et al. 1999).

Some studies have found that adherence to the Mediterranean diet may reduce the
risk of developing AD and PD (Burton-Freeman and Reimers 2010; Yin et al. 2021;
Ballarini et al. 2021; Wade et al. 2021; Strikwerda et al. 2021), while others have
found no clear association between the Mediterranean diet and age-related
neurodegeneration (Féart et al. 2009; Petersson and Philippou 2016). The Mediter-
ranean diet has also been linked to improved weight control, a lower likelihood of
obesity, and the prevention of T2D and insulin resistance (Ford and Mokdad 2001;
Sargeant et al. 2001; Liese et al. 2003; Esposito et al. 2004; Schröder et al. 2004;
Montonen et al. 2005; Panagiotakos et al. 2006; Schröder 2007).

Dietary Approaches to Stop Hypertension Diet

The DASH diet, developed by the National Heart, Lung, and Blood Institute,
includes foods rich in potassium, calcium, and other minerals, lean protein, and
fibre, which can lower blood pressure. The diet also restricts the consumption of red
meat, dairy products, and sugary snacks and is low in sodium, saturated fat, and
cholesterol (National Heart Lung and Blood Institute 2022). While the Mediterra-
nean diet emphasises the consumption of olive oil and fish, the DASH diet favours
low-fat dairy products, whole grains, and lean meats. As intended, adopting the
DASH diet is associated with reduced blood pressure in hypertensive and
non-hypertensive individuals (Appel et al. 1997).

Adherence to the DASH diet helps reduce oxidative stress and inflammation in
the body and increases insulin sensitivity, reducing the risk of cardiovascular disease
and dementia (Abbatecola et al. 2018). The DASH diet has also been reported to
mitigate age-related cognitive decline, reduce the risk of AD, and improve global
cognitive function in older adults (Tangney et al. 2014; Morris et al. 2015a;
Berendsen et al. 2017). Similarly, long-term compliance with the DASH diet in
older American women slowed cognitive decline (Berendsen et al. 2017). However,
in the Women’s Health Initiative Memory Study (WHIMS), which targeted the same
population, no association was found between adherence to the DASH dietary
pattern and mild cognitive impairment or dementia (Haring et al. 2016). Interest-
ingly, in adults (20–65 years old) without a prior diagnosis of chronic disease, higher
compliance to the DASH diet was linked to longer telomeres in women but not in
men (Leung et al. 2018).
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Although it was designed to reduce cardiometabolic risk, high adherence to the
DASH diet has also been reported to impact body weight. A meta-analysis of
13 randomised clinical trials reported that adherence to the DASH diet reduced
body weight, BMI, and waist circumference, especially in overweight/obese indi-
viduals (Soltani et al. 2016). Another study showed that compliance with the DASH
diet reduced the risk of obesity in Chinese adults (Cheung et al. 2018). In overweight
and obese women with polycystic ovary syndrome, adherence to the DASH diet
significantly reduced body weight and BMI (Herriot et al. 2008). The adoption of the
DASH diet was also reported to increase antioxidant capacity, especially in obese
hypertensive patients (Lopes et al. 2003). Moreover, in individuals with T2D and
obesity, the DASH diet was found to lower levels of the inflammatory marker CRP
(Chiavaroli et al. 2019). There is also evidence that adherence to the DASH diet,
combined with exercise and caloric restriction, may improve psychomotor perfor-
mance in overweight or obese adults with hypertension (Smith et al. 2010).

Mediterranean-DASH Intervention for Neurodegenerative Delay Diet

The MIND diet was developed by researchers at Rush College Medical Center and
the Harvard School of Public Health to prevent age-related cognitive decline. It
combines the Mediterranean diet with the DASH diet. According to the MIND diet,
weekly dietary staples should include fruits and vegetables, especially berries and
green leafy vegetables, nuts, beans, and whole grains, with occasional fish and
chicken consumption and minimal consumption of red meat, fat, high-fat dairy
products, sweets, or fast food (Koch and Jensen 2016).

The MIND diet emphasises the consumption of several food components that
have antioxidant and anti-inflammatory effects, which can help prevent dementia
(Kang et al. 2005; Devore et al. 2012; Morris et al. 2018). Additionally, the MIND
diet may reduce dementia risk by improving cardiovascular health, insulin resis-
tance, and hypercholesterolaemia (Dinu et al. 2018; Chiavaroli et al. 2019). Adher-
ence to the MIND diet has also been reported to reduce the incidence of symptoms of
AD (Morris et al. 2015a) and PD (Agarwal et al. 2018; Metcalfe-Roach et al. 2021)
in old age. Interestingly, Arjmand et al. (2022) reported that adherence to the MIND
diet could improve cognitive performance in healthy obese women and reverse the
adverse effects of obesity on the brain. Conversely, Berendsen et al. (2018) con-
cluded that the MIND diet had only moderately positive effects on verbal memory in
older women, but did not affect age-related cognitive decline.

The MIND diet seems to provide greater neuroprotection than the Mediterranean
diet (Morris et al. 2015a, b; Hosking et al. 2019), while the Mediterranean diet, with
its focus on healthy fats, appears to protect against AD better than the DASH diet
(Morris et al. 2015a). A systematic review by Van den Brink et al. (2019) concluded
that high compliance with the Mediterranean, DASH, or MIND diet was associated
with attenuation of age-related cognitive decline and a lower risk of
AD. Importantly, adherence to the MIND diet was associated with a significantly
reduced risk of all-cause mortality in a longitudinal birth cohort study with 12 years



of follow-up (Corley 2022), denoting its potential as a public health measure to
improve survival.
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Because the MIND diet advocates the consumption of plant-based foods with a
low glycaemic index and high fibre and water content (Buckland et al. 2008), it is
plausible that it could also reduce the risk of obesity and metabolic dysfunction.
However, the results of clinical trials investigating the relationship between adher-
ence to the MIND diet and metabolic diseases are sparse and contradictory. For
instance, Aminianfar et al. (2020) found no association between the adoption of the
MIND diet and obesity in a group of Iranian adults (mean age of 36.8 ± 8.08 years).
However, Mohammadpour et al. (2020) concluded that adherence to the MIND diet
was associated with a lower risk of metabolic syndrome and general and abdominal
obesity also in a group of Iranian adults (mean age of 47.7 ± 10.7 years).

Fasting Regimes

As mentioned earlier, caloric restriction (CR) describes a 10–40% reduction in daily
caloric consumption without malnutrition while maintaining a daily intake of essen-
tial nutrients, including vitamins and minerals. CR is the only intervention known to
slow ageing and extend lifespan in various animal models (Heilbronn and Ravussin
2003; Roth and Polotsky 2012). Several indices of cardiovascular health have been
shown to improve with CR in laboratory animals and humans (Soare et al. 2014;
Golbidi et al. 2017). CR has also been shown to delay or prevent several types of
cancer, diabetes, and autoimmune diseases, delay age-related diseases, and improve
immune function in animal models (Mercken et al. 2012; Flanagan et al. 2020).

The beneficial effects of CR are attributed to its capacity to mitigate oxidative
stress and inflammation in the body by modulating the activity of various signalling
pathways involved in the ageing process, as discussed above. Another important
mechanism by which CR exerts its beneficial effects is by promoting ketosis, in
which fatty acids released from adipose tissue are broken down in the liver to form
ketone bodies, such as β-hydroxybutyrate. β-hydroxybutyrate has beneficial effects
on age-related pathology, including improved glucose metabolism, reduced inflam-
mation, and increased autophagy (Han et al. 2020). Additionally, CR might produce
health benefits through the process of hormesis, a term used to describe the beneficial
effects of low doses of stressors on an organism. This hypothesis is supported by the
observation that low doses of various stressors increase longevity in several organ-
isms, including yeast, worms, and flies, by activating stress response pathways and
inducing autophagy and damage repair (Masoro 2006).

In several animal models, from yeast (Jiang et al. 2000) to C. elegans (Kaeberlein
et al. 2006; Lee et al. 2006), D. melanogaster (Mair et al. 2003), and dogs (Kealy
et al. 2002), CR has been found to increase lifespan and healthspan. In mice and rats,
CR increased lifespan by up to 45% and 27%, respectively (Swindell 2012).
However, there are also examples of animals in which CR does not increase lifespan,
including the Mediterranean fruit fly Ceratitis capitata (Carey et al. 2006) or the
housefly Musca domestica (Cooper et al. 2004), and in rodents, the life-prolonging



effect of CR is age- and genotype-dependent (Forster et al. 2003). Although it is not
yet clear whether CR can prolong human life expectancy, Okinawans, who consume
20% fewer calories than mainland Japanese, are significantly less likely to develop
stroke, cancer, and heart disease than mainlanders (Willcox et al. 2007).
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In vitro, CR has been shown to delay the onset of cellular senescence in different
cell types, including neurons, fibroblasts, and endothelial cells, through its antiox-
idant and anti-inflammatory effects. In middle-aged mice, dietary restriction resulted
in reduced numbers of senescent cells in the liver and intestine, possibly mediated by
CR-induced inhibition of mTOR/S6K1, resulting in improved mitochondrial func-
tion and reduced formation of ROS (Wang et al. 2010). Recently, Sbierski-Kind
et al. (2022) attributed the delayed cell senescence associated with CR to its effects
on the gut microbiome.

CR has also been shown to protect against age-related neurodegeneration. The
neuroprotective effects of CR are attributed to its ability to improve mitochondrial
function, reduce pathogenic protein accumulation, and attenuate neuroinflammation
by inhibiting NF-κB and blocking the synthesis of inflammatory interleukins and
TNF-α (Wang et al. 2005; Patel et al. 2005; Cerqueira et al. 2012; Lanza et al. 2012;
Amigo et al. 2017; Fontana et al. 2021). In addition, CR has been found to increase
levels of neurotrophic factors such as BDNF and GDNF (glial cell line-derived
neurotrophic factor), promoting neurogenesis and synaptic plasticity and boosting
antioxidant defences, leading to alleviation of neurochemical and behavioural def-
icits associated with neurodegenerative diseases (Duan et al. 2003; Maswood et al.
2004; Thrasivoulou et al. 2006).

Because higher caloric intake is associated with an increased risk of neurodegen-
erative disease (Luchsinger et al. 2002), CR may be a viable therapeutic option to
prevent age-related neurodegeneration. CR was found to delay the onset of
age-related neurodegenerative diseases in mice and nonhuman primates by improv-
ing lipid and glucose metabolism and decreasing systemic inflammation, in addition
to its direct neuroprotective effects (Duan et al. 2003; Maswood et al. 2004; Wang
et al. 2005; Qin et al. 2006; Colman et al. 2009, 2014; Anderson et al. 2009). In the
3xTgAD triple-transgenic mouse model of AD, CR reduced hippocampal Aβ and
phosphorylated tau levels and ameliorated age-related behavioural deficits
(Halagappa et al. 2007). CR was also found to reduce Aβ-plaque accumulation
and astrocytic activation in the AD-transgenic mouse models APP (swe/ind) (J20)
and APP (swe) + PS1(M146L) (APP + PS1) (Patel et al. 2005).

The beneficial effects of CR in PD have also been reported. CR attenuated MPTP-
induced neurotoxicity in mice (Duan and Mattson 1999) and nonhuman primates
(Maswood et al. 2004). Similarly, CR was found to protect against the loss of
dopamine neurons in the lactacystin mouse model of PD (Coppens et al. 2017). In
humans, short CR periods have been shown to enhance cognitive performance,
particularly verbal memory, in older individuals (Witte et al. 2009).

CR can also promote weight loss, improve insulin sensitivity, and decrease the
risk of developing T2D and cardiovascular disease (Wing et al. 1994; Janssen et al.
2002; Wing 2010). The mechanism by which CR leads to these benefits is thought to
be a combination of decreased energy intake and increased energy expenditure



mediated by changes in the levels of the hormones leptin (Dubuc et al. 1998) and
ghrelin (Cummings et al. 2002). Interestingly, Spadaro et al. (2022) recently reported
that adipose tissue from healthy individuals exposed to 14% CR for 2 years
underwent transcriptional reprogramming involving pathways that controlled mito-
chondrial bioenergetics, immune responses, and lifespan, revealing an important role
for CR-induced immunometabolic effects in promoting healthspan.
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Reporting on the results of “The Comprehensive Assessment of Long-term
Effects of Reducing Intake of Energy (CALERIE)” trials, Dorling et al. (2021)
found that caloric restriction had several positive health effects, including weight
loss, reduced inflammation, improved insulin sensitivity, reduced blood pressure,
and improved mood.

Intermittent fasting (IF) is a dietary strategy that involves alternating between
periods of fasting and feeding without necessarily reducing the total amount of
calories consumed. The most common IF regimen is to fast for 16 h and eat only
in an 8-h window (“16/8”). Health benefits associated with IF include improved
insulin sensitivity, reduced inflammation, weight loss, and prevention of age-related
neurodegeneration (Patterson and Sears 2017; de Cabo and Mattson 2019; Varady
et al. 2021).

The mechanisms underlying the health benefits of IF are similar to those of
CR. They include the reduction of inflammation and oxidative damage, activation
of autophagy, production of ketone bodies, and hormesis (Mattson et al. 2017). The
neuroprotective effects of IF appear to be due to a reduction in inflammation and
oxidative stress through activation of SIRT3 and Nrf2, a decrease in the levels of the
stress hormone cortisol, an increase in the levels of neurotrophic factor BDNF, and
enhanced neurogenesis and improved mitochondrial function (Dai et al. 2022).

IF may prevent vascular dementia by improving endothelial function and reduc-
ing inflammation and oxidative stress (Yoon and Song 2019). In rats with
AD-induced oestrogen deficiency, IF prevented cognitive decline and improved
energy metabolism and dyslipidaemia but exacerbated bone mineral density loss
and insulin resistance (Shin et al. 2018). In the PDAPP-J20 mouse model of AD,
regular food restriction increased autophagy in microglia and astrocytes, leading to
reduced amyloid pathology and improved cognitive performance (Gregosa et al.
2019). IF has also been shown to have several benefits in experimental models of
PD, including improved insulin sensitivity, increased levels of the ketone body
β-hydroxybutyrate, and improved neuronal resistance to excitotoxicity, which
protected against disease-related motor and cognitive decline (Kashiwaya et al.
2000; Włodarek 2019). In addition, IF was found to reduce α-synuclein load in the
brainstem, leading to an improvement in motor function in mice with PD (Griffioen
et al. 2013).

In a small cohort of healthy adults, Wegman et al. (2015) concluded that IF was
well tolerated and was associated with a slight increase in gene expression of the
sirtuin SIRT3 and a decrease in plasma insulin levels. In aged adults with mild
cognitive impairment, IF improved cognitive function by increasing superoxide
dismutase activity and reducing body weight, insulin, fasting blood glucose,
malondialdehyde levels, and DNA damage (Ooi et al. 2020).
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There is also growing evidence that IF may be an effective strategy to combat
obesity. In vitro and in vivo studies have shown that IF can help reduce body fat
mass, increase energy expenditure, improve insulin sensitivity and endothelial
function, and lower blood triglyceride levels (Wilson et al. 2018; Liu et al.
2019a, b; Deng et al. 2020; Cui et al. 2022). However, at least in mice, incorrect
feeding timing has been found to desynchronise peripheral clocks and induce obesity
and other metabolic disturbances (Yasumoto et al. 2016), denoting the importance of
the feeding window for the beneficial effects of IF.

Several clinical trials have demonstrated the effectiveness of IF in treating obesity
and improving health outcomes, including reducing the risk of diabetes and cardio-
vascular disease. Heilbronn et al. (2005) found that in non-obese subjects, alternate-
day fasting significantly decreased body weight and body fat and increased energy
expenditure. In another study, Klempel et al. (2012) reported that IF combined with
CR was effective in weight loss and cardiovascular protection in obese women, as
evidenced by a reduction in the levels of key coronary heart disease risk indicators.
In a small cohort of obese subjects, a modified alternate-day fasting regimen resulted
in an 8% reduction in body weight and decreased waist circumference and triglyc-
eride levels (Varady et al. 2009). In another study, alternate-day fasting was also
found to reduce body weight, fat mass, triacylglycerols, leptin, and CRP and increase
LDL particle size and plasma adiponectin in normal-weight and overweight indi-
viduals (Varady et al. 2013).

A systematic review of the literature concluded that IF is safe and well tolerated
and may be an effective weight loss strategy (Welton et al. 2020). However, more
long-term research is needed to understand the sustainability of IF in weight loss.

Overall, preclinical and clinical studies provide compelling evidence for the
therapeutic benefits of fasting, either through CR or IF, against ageing and
age-related diseases and syndromes of metabolic dysfunction. However, restricting
calorie intake can lead to nutrient deficiencies, which can cause health problems. CR
can also lead to muscle atrophy and weakness, which is particularly problematic in
elderly individuals, for whom the loss of muscle mass is already a major health
concern. This can be mitigated by combining CR with exercise (Chomentowski et al.
2009). IF is generally well tolerated (Gabel et al. 2019), but side effects such as
gastrointestinal problems, headaches, dizziness, and dry mouth may occur; these
side effects usually disappear over time (Cienfuegos et al. 2020).

The Longevity Diet

Based on a review of a variety of studies ranging from laboratory animals to
epidemiological research in humans, Longo and Anderson (2022) proposed what
they call a “longevity diet”. The proposed diet takes into account not only the type of
food but also the timing of food intake.

According to the authors, the ideal diet should provide approximately 30% of
total energy needs from moderate to high amounts of unrefined carbohydrates, small
but sufficient amounts of protein from plant sources, and adequate amounts of



vegetable fats. The diet should also include plenty of vegetables, legumes, whole
grains, olive oil and nuts, dark chocolate, fish, small quantities of refined grains and
sugars, minimal amounts of white meat, and no red meat. According to the authors,
ideally, all meals should be eaten in an 11- to 12-h time window, allowing for a daily
fasting period. The authors also note that a fasting-like diet or a 5-day fasting cycle
every 3–4 months may help reduce the risk of diabetes, hypertension, and other
diseases to improve overall health (Longo and Anderson 2022). The authors pro-
posed the longevity diet as a valuable complement to standard health care that can be
used as a preventative approach to reduce morbidity and maintain health into
old age.
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Conclusions

Obesity and ageing are characterised by increased oxidative stress and chronic
inflammation. Interventions that target these processes have the potential not only
to mitigate the adipose tissue dysfunction associated with obesity and prevent
associated comorbidities, but also to alleviate the metabolic disturbances that accom-
pany normal ageing.

Despite the extensive preclinical evidence for the therapeutic role of antioxidants
in the treatment of ageing, age-related diseases, and metabolic disorders such as
obesity, convincing evidence for such benefits in humans is still lacking.

A substantial number of epidemiological studies have inversely correlated disease
incidence with the consumption of antioxidant-rich fruits and vegetables. However,
these results cannot be used as evidence for a causal relationship between antioxi-
dant consumption and improved health, and antioxidant supplements cannot offset
the harmful effects of a Western diet and a sedentary lifestyle. Instead, a diet rich in
anti-inflammatory and antioxidant-rich foods and an overall healthy lifestyle should
be the most important strategies for maintaining a normal weight, preventing
obesity-related health complications, and extending lifespan and healthspan.
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Chapter 16
Clinical Ageing

Roxana Surugiu, Daiana Burdusel, Mihai-Andrei Ruscu, Andreea Cercel,
Dirk M. Hermann, Israel Fernandez Cadenas, and Aurel Popa-Wagner

Abstract Ageing is generally characterised by the declining ability to respond to
stress, increasing homeostatic imbalance, and increased risk of ageing-associated
diseases. Mechanistically, the lifelong accumulation of a wide range of molecular
and cellular impairments leads to organismal senescence. The aging population
poses a severe medical concern due to the burden it places on healthcare systems
and the general public as well as the prevalence of diseases and impairments
associated with old age. In this chapter, we discuss organ failure during ageing as
well as ageing of the hypothalamic–pituitary–adrenal axis and drugs that can
regulate it. A much-debated subject is about ageing and regeneration. With age,
there is a gradual decline in the regenerative properties of most tissues. The goal of
regenerative medicine is to restore cells, tissues, and structures that are lost or
damaged after disease, injury, or ageing. The question arises as to whether this is
due to the intrinsic ageing of stem cells or, rather, to the impairment of stem-cell
function in the aged tissue environment. The risk of having a stroke event doubles
each decade after the age of 55. Therefore, it is of great interest to develop
neurorestorative therapies for stroke which occurs mostly in elderly people. Initial
enthusiasm for stimulating restorative processes in the ischaemic brain with cell-
based therapies has meanwhile converted into a more balanced view, recognising
impediments related to survival, migration, differentiation, and integration of
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therapeutic cells in the hostile aged brain environment. Therefore, a current lack of
understanding of the fate of transplanted cells means that the safety of cell therapy in
stroke patients is still unproven. Another issue associated with ischaemic stroke is
that patients at risk for these sequels of stroke are not duly diagnosed and treated due
to the lack of reliable biomarkers. However, recently neurovascular unit-derived
exosomes in response to Stroke and released into serum are new plasma genetic and
proteomic biomarkers associated with ischaemic stroke. The second valid option,
which is also more economical, is to invest in prevention.
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Introduction

Ageing is associated with a decline of locomotor, sensory, and cognitive perfor-
mance in humans and experimental animals, part of which is due to the lifelong
accumulation of damage at the molecular, cellular, and tissular levels. However,
these defects alone cannot account for the systematic deterioration and loss of
function that characterises the senescent phenotype, making it imperative to pursue
a multi-systems, multi-disciplinary, integrative approach to functional senescence.
At the molecular level, age-related changes occur gradually, and most such changes
are within the error range of current investigational tools.

Ageing, a Systems-Biology Approach

Organismal senescence is the ageing of whole organisms. Ageing is generally
characterised by the declining ability to respond to stress, increasing homeostatic
imbalance, and increased risk of ageing-associated diseases. Mechanistically, organ-
ismal senescence is caused by the gradual, lifelong accumulation of a wide variety of
molecular and cellular damage. Various types of errors have been proposed to
accumulate with age, either due to an increased rate of production or because of
decreased repair or clearance of damage with time. However, no theory sufficiently
explains all the changes in the ageing process. Although some changes typically
occur with ageing, they occur at different rates and to different extents. With the
continuing increase in lifespan, new approaches are required to unravel the com-
plexity of the ageing process and its implications for age-associated diseases. The
rapid accumulation of biological data makes it possible to compile detailed schemes
of the metabolic networks within a cell. In order to improve our understanding of
cells and organisms as physiological, biochemical, and genetic systems, we have to
study them as an integrated informational and metabolic system. It is clear that the
next step in implementing these databases is to integrate them under a specific
biological perspective (Buga et al. 2011).

http://en.wikipedia.org/wiki/Homeostasis
http://en.wikipedia.org/w/index.php?title=Ageing-associated_diseases&action=edit&redlink=1
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The Impact of Ageing and Age-Related Comorbidities
on Stroke Outcome in Animal Models and Humans

Obesity and Ageing

In today’s society, ageing has become one of the biggest concerns in regard to
health-associated problems. By 2050, there will be over 2.1 billion people over the
age of 60 (Amaya-Montoya et al. 2020). Age-related diseases (ARDs) are hard to
identify, having a pathogenesis that remains unclear. ARDs are characterised by
ongoing cell death and degradation in the quality or functionality of tissues and
organs, increasing sensitivity and vulnerability to specific diseases (Luo et al. 2020).
Even though multiple factors contribute to ARDs, some of the basic mechanisms
seem to be common, such as oxidative stress, iron build-up, inflammation, cell
damage, and malfunction (Xu et al. 2008; Franceschi et al. 2018).

A prospective study examined the potential link between midlife body mass
index (BMI) and long-term health effects, concluding that midlife obesity is associ-
ated with considerably increased risks of hospitalisation and mortality among people
who lived above the age of 65 compared to normal-weight subjects with comparable
baseline cardiovascular profiles (Yan et al. 2006).

In a cross-sectional analysis of over 73,000 people between 50 and 76 years, BMI
was linked to adverse pathologies in 90% of women and 71% of men (https://doi.
org/10.1016/j.ssmph.2020.100547). Increased BMI is also associated with symp-
toms like chronic pain. One study reported that subjects (mean age 80 years old,
adjusted for age and comorbidities) who were obese were twice as likely to complain
of recurring pain of at least moderate intensity compared to those who were of
normal weight and that subjects who were severely obese were four times more
likely to report chronic pain (McCarthy et al. 2008).

Obesity modifies the way that fatty acids, glucose, and amino acids are
metabolised, which lowers insulin sensitivity and reduces the body's capacity to
respond to changes in energy supply (Johnson et al. 2009). Given that ageing's
metabolic impacts include altered mitochondrial function and impaired nutrient-
signalling pathways, which control the ratio of insulin to glucagon in regulating
blood glucose, there is reason to suspect that obesity directly contributes to the
ageing process (Riera and Dillin 2015). Nutrient-signalling pathways might target
rapamycin (mTOR) responsible for detecting energy levels in the cell and sirtuin
proteins involved in AMPK (5′ adenosine monophosphate-activated protein kinase)
activity (Kathleen Berkowitz et al. 2014; Kanfi et al. 2012; Tomimatsu and Narita
2015).

By comparing young and old people in various microarray studies done on
different animals and also on humans, the discovery of shared functional genes
and biomarkers for ageing and obesity may reveal metabolic links between obesity
and ageing (Edwards et al. 2007; Ida et al. 2003).

Both adipose tissue (AT) and adipocytes can be impacted by hypoxia, which is a
well-known hallmark of pathological conditions including wound healing or

https://doi.org/10.1016/j.ssmph.2020.100547
https://doi.org/10.1016/j.ssmph.2020.100547


ischaemic diseases (Trayhurn et al. 2008). According to studies done on human
adipocytes, hypoxia causes the production of several adipokines that are linked to
inflammation, such as adiponectin, leptin, and interleukin-6. Furthermore, it has
been demonstrated that macrophages alter their inflammatory mediator production in
response to hypoxia (Trayhurn et al. 2008; Lewis et al. 1999). Since ageing itself is
characterised by a reduction in oxygen delivery to tissues, hypoxia, which is
considered to be partially responsible for inflammation in obesity, may also have
an impact on the ageing process (Valli et al. 2015).
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Insulin Resistance and Ageing

Ageing and obesity have numerous links with diabetes. According to a study
conducted in America, the prevalence of diabetes increases with age (Fang 2018).
Furthermore, there will be at least 592 million diabetes patients worldwide by the
year 2035, up from the anticipated 422 million in 2014, and it has been shown that
more than half of all diabetics are with an over the normal BMI (Khan et al. 2019).
Therefore, there is a solid basis for suspicion that diabetes and obesity are closely
related (Khadra et al. 2019). On the other hand, in diabetics, insulin no longer has the
ability to mediate cellular glucose uptake and utilisation, which is clinically known
as insulin resistance and encourages fat deposits. Additionally, the growing fat mass
promotes many cytokines that accelerate the breakdown of muscles. A severe form
of insulin resistance is brought on by the loss of muscle mass, which results in less
insulin-responsive target tissue (Dominguez and Barbagallo 2007; Baek et al. 2014).

In older and obese individuals, insulin production and effectiveness decrease. The
increased synthesis and release of several inflammatory substances, such as TNF-α
and IL-6, which are associated with obesity, modify insulin sensitivity by changing
some crucial stages in the insulin signalling pathway, which leads to the develop-
ment of insulin resistance (Mcternan et al. 2006; Shoelson et al. 2007; Matulewicz
and Karczewska-Kupczewska 2016). Studies have shown that insulin resistance is
necessary for protein anabolism, which directly affects the atrophy of muscle fibres
(Nomura et al. 2007). The rate of muscle catabolism is greater in obese people with
insulin resistance, as shown in research highlighting that the quality and strength of
the leg muscles decline noticeably in older diabetics (Abbatecola et al. 2005).
Therefore, low muscle mass and strength are caused by insulin resistance, which
leads to obesity over time. Furthermore, mitochondrial dysfunction and insulin
resistance are connected to one another (Wang et al. 2020).

Insulin resistance encourages dyslipidaemia, which is characterised by a reduc-
tion in high-density lipoprotein cholesterol (HDL-C) concentration and an increase
in triglyceride levels (TAG) (Robins et al. 2011). On the other hand, excessive TAG
synthesis might lead to cellular and systemic oxidative damage. As a result, these
systemic diseases may impede insulin signalling, which in turn may accelerate
ageing and encourage atherosclerosis (Dzięgielewska-Gęsiak et al. 2020). In addi-
tion, oxidative stress and insulin resistance are both significantly influenced by



ageing (Brewer 2010; da Costaa et al. 2016). One of the key factors in the ageing
process, according to damage theories, is the build-up of ROS (reactive oxygen
species), which causes accumulative damage to DNA, protein, and lipid molecules
(Dzięgielewska-Gęsiak et al. 2020). However, Dzięgielewska-Gęsiak and col-
leagues found no discernible difference in antioxidant defence between older people
with greater body mass who were insulin-resistant and those who were insulin-
sensitive. Furthermore, there was an inverse connection between TBARS
(Thiobarbituric Acid-Reacting Substances) and HDL-C, but only in the elderly
insulin-resistant group. It has been demonstrated that the low molecular weight
antioxidants, of which HDL-C is an agent, are altered in older individuals, which
may increase oxidative stress and hence contribute to the onset of ageing.
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Organ Failure During Ageing

The aged population represents a serious medical concern, not only because of
disabilities and age-related diseases (ARDs), but also because of the burden on
healthcare systems and the general public. ARDs are caused by the progressive
deterioration of tissues and organs through injury of cells, oxidation stress, and iron
accumulation (Zhou et al. 2020).

The mitochondrial theory of ageing suggests that reactive oxygen species pro-
duction causes DNA mutations in mitochondria which leads to decreased function-
ality and eventually cell death. Additionally, ROS production leads to damaged
proteins and lipids in the body, which causes many age-related diseases such as
Parkinson's, Huntington's, Alzheimer's, hereditary spastic paraplegia, and more. It is
believed that tissues with high energy demands such as the eyes, heart, liver,
muscles, and endocrine glands have higher numbers of mitochondria per cell
(Brennan and Kantorow 2009).

The sources of ROS can be exogenous (UV light, visible light, ionising radiation,
chemotherapeutics, and environmental toxins) or endogenous (activity of peroxi-
somes, lipoxygenases, NADH oxidase, cytochrome P450, and, of course, mitochon-
drial respiration) (Brennan et al. 2018).

In the context of Alzheimer's disease (AD), a number of researchers have
demonstrated the possibility that this type of oxidative damage could occur before
or even precipitate the aggregation of Aβ (β amyloid). Through electron-transfer
interactions involving bound redox-active copper and/or iron ions it has, however,
been demonstrated that Aβ can generate H2O2, a crucial ROS, directly from molec-
ular oxygen. Fenton chemistry quickly converts H2O2 into a very aggressive
hydroxyl radical. This highly reactive free radical may be responsible for a lot of
the early oxidative damage in AD (Allsop et al. 2008).

The ferroptosis is due to elevated intracellular iron concentration, which increases
ROS levels and causes lipid peroxidation and cell death. Small molecules that inhibit
glutathione biosynthesis or the glutathione-dependent antioxidant enzyme glutathi-
one peroxidase 4 (GPX4) can initiate ferroptosis, a non-apoptotic iron-dependent
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cell death characterised by the iron-dependent accumulation of reactive oxygen
species and depletion of plasma membrane polyunsaturated fatty acids (PUFAs)
(Lee et al. 2020).
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The primary site of iron utilisation is the mitochondria, the iron transport across
the inner mitochondrial membrane is dependent on the membrane transporter
mitoferrin 1/2 (Mfrn1/2), and an imbalance of it can lead to mitochondrial iron
accumulation and oxidative injury. Numerous neurological conditions linked to
ferroptosis have been found to have Mfrn1/2 damage. During ageing, iron accumu-
lates in a number of organs, like the brain and muscle, causing more oxidative
damage and functional decline. Iron levels in the cerebral cortex and cerebellum are
highest in preclinical AD patients, who also experience gradual cognitive impair-
ment. This suggests that an imbalance in iron homeostasis is a precursor to
neurodegeneration in AD. Abnormal iron accumulation in the substantia nigra,
particularly in the RII region, can be used as a biomarker to determine the severity
of Parkinson's disease and distinguish it from healthy controls. The level of iron is
therefore a biomarker for the potential role of ferroptosis and an important factor for
ARDs, because it contributes to organ and tissue cell death, in the pathogenesis and
progression of amyotrophic lateral sclerosis, Huntington's disease, cardiomyopathy,
and type 1 diabetes.

Numerous small-molecule ferroptosis inducers and inhibitors including erastin,
glutamate, liproxstatin-1 (Lip-1), and ferrostatin-1 (Fer-1) have been discovered
(Zhou et al. 2020).

Recently, there has been an increased interest in the role that ferroptosis plays in
myocardial pathology. Myocardial injury relies heavily on iron homeostasis, and the
accumulation of iron in the myocardium results in iron overload cardiomyopathy. In
addition, myocardial haemorrhage may play a role in the accumulation of iron in
cardiac tissue, leading to excessive production of ROS and the onset of inflammatory
processes (Kremastinos and Farmakis 2011; Kobayashi et al. 2018).

The dysregulation of the cytokine network and its homeostasis, also known as
"inflamm-ageing", is a common finding in ageing and age-related diseases. Cytokine
dysregulation is thought to play a key role in the remodelling of the immune system
as people get older (Rea et al. 2018). The major pro-inflammatory cytokines, such as
IL-6, TNF-α, and IL-1, play a significant role in many age-related diseases and
significantly contribute to the phenomenon of inflammation-ageing in healthy
elderly people. IL-1 gene variations are associated with cardiovascular disease and
Alzheimer's disease with earlier onset or more severe progression, but not with
osteoporosis. Certain IL-1 haplotype carriers produce elevated levels of IL-1. Cen-
tenarians have higher levels of IL-18, which have been linked to patients with heart
failure, ischaemic heart disease, type 1 diabetes, and Alzheimer's disease. IL-6
modulates the acute phase response, the transition from innate to acquired immunity,
metabolic regulation, and the pathogenesis of numerous chronic diseases. By pro-
ducing IL-1 Rα and soluble tumour necrosis factor receptor p55 (sTNF-R55), it
modulates the acute inflammatory response and has both pro- and anti-inflammatory
effects.
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Normally, interleukin-6 is low in the blood, but it increases with age and in people
with signs of frailty and chronic disease, where it correlates with mortality.
Sarcopenia and muscle loss are correlated with IL-6, a cardiovascular disease risk
factor.

The pro-inflammatory cytokine TNF-α, which increases with age and is linked to
age-related disease is another key player in the immune response. When it acts
locally in the tissues, it is a pro-inflammatory mediator that can be beneficial, but
when it is released systemically, it can be extremely harmful.

In studies of intracellular ageing, tumour necrosis factor-α has been found to
increase in elderly people with atherosclerosis, centenarians, and octogenarians, and
to be linked to mortality. TNF-α increased the risk of recurrent cardiac events in
post-MI (myocardial infarction) patients, and TNF receptors predicted cardiovascu-
lar disease in renal patients.

TNF-α mediates metabolic changes, and type 2 diabetes mellitus was associated
with lower muscle mass and strength in older groups when TNF-α levels were
elevated.

Complex cellular and molecular changes that take place in the cells over time are
basically linked to cell senescence, the most important process of ageing. Telomere
erosion, changes in protein processing, lifestyle/epigenetics factors, and changes in
gene expression are all major biological phenomena. Recent research has shown that
miRNAs regulate several pathways that are involved in ageing and cellular senes-
cence. Three miRNAs, miR151a-5p, miR-181a-5p, and miR-1248, were found to be
significantly down-regulated in older individuals in recent studies. In addition, their
levels decreased in the serum samples of elderly rhesus monkeys (Kumar et al.
2017).

Patients with hyperlipidaemia, hypertension, and diabetes were found to have
lower levels of miR-92a, miR-126, miR-130a, miR-222, and miR-370 expression in
serum samples from patients with atherosclerosis and pre-atherosclerosis. However,
when compared to healthy controls, miR-21, miR-122, miR-130a, and miR-211
were significantly elevated while miR-92a, miR-126, and miR-222 were signifi-
cantly decreased (Kumar et al. 2017).

Obesity is also a serious risk factor for many metabolic disorders, particularly
diabetes, and an age-related health problem. The prevalence of obesity has increased
over the past 10 years, particularly in developed countries. Three serum miRNAs—
miR-138, miR-15b, and miR-376a—that were found to have potential as predictive
biomarkers in obesity were found in a study on 13 patients with type 2 diabetes,
20 obese patients, 16 obese patients with type 2 diabetes, and 20 healthy controls
(Pescador et al. 2013).

Recent studies have proposed that miRNA expression is deregulated in obese
patients, and miRNAs are the potent regulator of many diseases related to obesity.
miR-138 and miR-376a can be used as predictive biomarkers to distinguish obese
patients from diabetic patients, obese diabetic patients, and healthy controls. Addi-
tionally, diabetic and obese diabetic patients can be distinguished using the combi-
nation of miR-503 and miR-138 (Kumar et al. 2017).
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Ageing of the HPA Axis and Drugs That Can Regulate It

The primary neuroendocrine response regulating stress adaptation is activation of the
hypothalamic–pituitary–adrenal (HPA) axis, which is accompanied by stimulation
of parvocellular neurons in the hypothalamic paraventricular nucleus to secrete
corticotropin-releasing hormone (CRH) and vasopressin (VP), which in turn
enhances pituitary adrenocorticotropic hormone (ACTH) secretion and glucocorti-
coid secretion from the adrenal cortex. Normal brain function and neuroplasticity
depend on the basal synthesis of glucocorticoids as well as brief spikes during
stressful situations. While the involvement of the HPA axis is necessary for survival
under stress, prolonged exposure to stress hormones can increase the risk of immu-
nological, metabolic, and psychological changes (Aguilera 2011).

In some elderly adults, HPA axis dysfunction may play a role in ageing-related
conditions such as depression, cognitive impairment, and Alzheimer's disease.
Additionally to neuro-cognitive dysfunction, it has been linked to deteriorating
physical performance that could be brought on by sarcopenia (Gupta 2014).

Acute and chronic stress are both experienced by elderly adults in ways that are
similar to earlier stages of life. A specific and typically unpredictable life event, as
well as the supposed mental or physical difficulty that goes along with it, are the
main components of acute stress (for example: giving a speech while being evalu-
ated or criticised) (Dickerson and Kemeny 2004). Due to their physical and mental
decline, older persons frequently experience acute stress, which can later turn into
chronic stress. A person's reaction to a stressor that lasts for a long time (such as
caring) (Miller et al. 2007) or to numerous acute stressors is chronic stress (e.g.,
negative interpersonal experiences) (Rosnick et al. 2007; Uchino et al. 2001).

At many levels, the HPA axis is influenced by significant morphological and
functional changes, in both experimental animals and humans, during the ageing
process. Particularly visible are the impaired neuronal cells and the compensatory
gliosis at the level of the limbic system, the hippocampus, and the hypothalamus.
Due to the suprachiasmatic nucleus function as the essential pacemaker of multiple
circadian rhythms, in particular, neuronal damage of this nucleus (Swaab et al. 1985)
may be blamed for changes in the circadian temporal structure of the ageing
organism. Additionally, the loss of neurons suggests a decrease in glucocorticoid
receptors, which results in a dysfunctional control of adrenocortical secretion,
particularly in the hypothalamus, hippocampus, and limbic region. In fact, it is
well known that the hippocampus plays a role in maintaining the adrenocortical
circadian rhythmicity in both humans and animals. It also plays a role in modulating
the glucocorticoid feedback control of ACTH secretion and the adrenocortical
responses to stressful situations. Therefore, the diminished sensitivity to pain may
be caused by hippocampal degenerative changes that occur with physiological
ageing and even more so with pathological ageing steroid feedback and for a certain
degree of hyperactivity of the HPA axis in elderly subjects (Aguilera 2011).

There have been some subgroups of patients with anxiety and mood disorders
who have hyperactivity of the HPA axis. Additionally, several anti-anxiety



medications, such as benzodiazepines, tricyclic antidepressants (TCAs), and selec-
tive serotonin reuptake inhibitors (SSRIs), have been studied for their impacts on
various HPA axis parts. For instance, TCAs, SSRIs, and benzodiazepines, such as
clonazepam and alprazolam, have been explored as anti-anxiety medications. And
also, it has been shown that benzodiazepines, such as clonazepam and alprazolam,
decrease the activity of corticotrophin-releasing factor (CRF) neurons in the hypo-
thalamus. Effective anti-anxiety medications like TCAs and SSRIs may also work in
part by modifying the HPA axis (Tafet and Nemeroff 2020). Other studies demon-
strated that TCAs and SSRIs may also induce significant changes in the HPA axis,
associated with their therapeutic effects, in addition to their well-known pharmaco-
logical effects, including blockade of neurotransmitter uptake and subsequent reg-
ulation of various pre- and post-synaptic receptors (Nikisch 2009). Some of these, at
least in part, have been linked to the possibility that anti-anxiety medications affect
the transcriptional regulation of various molecules involved in the control of the
HPA axis, such as glucocorticoid receptors (GRs), mineralocorticoid receptors
(MRs), and CRH. In this regard, it has been suggested that an altered GR gene
regulation, which could result in decreased GR concentrations in the hippocampus
or hypothalamus due to the HPA system’s insufficient feedback, could lead to a
variety of adverse effects (Barden 1996).
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Another study shows that when desipramine or amitriptyline was added to cell
cultures originating from the hypothalamus or amygdala, an increase in GR mRNA
expression was first seen (Pepin et al. 1989). Studies showed that long-term TCA
treatment reduces CRH mRNA expression, but short-term treatment showed differ-
ent results (Brady et al. 1991). Long-term imipramine administration led to in vivo
observations of similar effects. In this regard, it has been demonstrated that long-
term administration of this TCA hindered the CRH gene's transcriptional regulation,
which led to a decrease in CRH mRNA expression in the hypothalamus (Michelson
et al. 1997), which in turn led to a marked decrease in the HPA axis' activity
(Heydendael and Jacobson 2008).

In research involving SSRIs, it was shown that long-term fluoxetine treatment
raised the expression of GR mRNA in hippocampus neurons (Lai et al. 2003). More
recently, in vivo experiments showed that fluoxetine long-term administration may
also cause hippocampus GRs to regain their functionality after prolonged stress.
Furthermore, even in the absence of altered glucocorticoid secretion, enhanced
hippocampus GRs activation, including phosphorylation and subsequent nuclear
translocation, was seen after prolonged fluoxetine therapy (Lee et al. 2016). More
subsequent research has also revealed that additional alterations in GRs are not
necessary for the behavioural efficacy of the SSRI, even though these data suggest
that this mechanism should be implicated in the therapeutic impact of fluoxetine
(Simard et al. 2018).

Other neurotransmitters, including aminobutyric acid (GABA), the primary
inhibitory neurotransmitter in the CNS, also control the HPA axis (Roberts 1976).
GABA plays a crucial role in controlling hypothalamic function (Hermann and
Cullinan 1997). It has been demonstrated that the medial parvocellular hypothalamic
prefrontal cortex (PVN) innervates hypophysiotropic CRH neurons by inhibitory



GABAergic input, either directly from peri-PVN sources or indirectly from various
limbic areas. GABAergic projections can travel directly to the PVN from nearby
hypothalamic nuclei and the bed nucleus of the stria terminalis (BNST), or they can
travel indirectly via the ventral subiculum, the amygdala, and the prefrontal cortex
(PFC), especially the anterior cingulate cortex (ACC), prelimbic, and infralimbic
areas, from a variety of cortex and limbic structures, including the hippocampus.
Local GABAergic projections to the PVN may then be activated or repressed by
glutamatergic or GABAergic projections from cortical and limbic areas, which are
crucial for adaptive stress responses and, consequently, for the PVN's ability to
regulate its own internal environment (Cullinan et al. 2008).

446 R. Surugiu et al.

Alprazolam was used to further investigate this regulatory function, and it was
shown that the benzodiazepines (BZD) are capable of blocking the HPA axis. This
was attributed to the BZD's impact on CRH neurons, which may help explain its
therapeutic success (Kalogeras et al. 1990). The vast study of CRH's probable role in
the pathogenesis of anxiety disorders (Nemeroff 1992) calls for more investigation
into how anti-anxiety medications affect CRH neurotransmission. In this context, it
has been demonstrated that alprazolam acute therapy reduced CRH concentrations in
the locus coeruleus (LC). Alprazolam's impact was subsequently investigated
in vivo, where it was discovered that either acute or long-term dosing reduced
CRH concentrations in the LC. The LC plays a crucial role in the pathophysiology
of stress and anxiety disorders because it includes CRH receptors and gets a
significant amount of CRH innervation (Bloom 1979). Alprazolam's actions on
hypothalamic CRH neurons are therefore probably both direct and indirect through
the LC. In vivo investigations with lorazepam and clonazepam more recently
showed that both BZDs were successful at reversing anxiety-like behaviour, includ-
ing social avoidance, and these effects were connected with their inhibitory action on
the HPA axis, which was mediated via the reduction of CRH activity. Additionally,
it has been demonstrated that both BZDs were successful in lowering stress's ability
to stimulate CRH mRNA expression in the hypothalamus (Ramirez et al. 2016).

Ageing, Cerebrovascular Diseases and Regeneration

With age, there is a gradual decline in the regenerative properties of most tissues.
The goal of regenerative medicine is to restore cells, tissues, and structures that are
lost or damaged after disease, injury, or ageing. The question arises as to whether this
is due to the intrinsic ageing of stem cells or, rather, to the impairment of stem-cell
function in the aged tissue environment. Since stem cells are necessary to repair
lasting wear in tissues, their loss of function is an important contributor to degener-
ative ageing. Consequently, inefficient replacement of worn-out cells in adult tissues
due to the declining function of stem cells over time may be a primary cause of
human ageing. Indeed, there is much interest in harnessing the potential of stem cells
in the brain (Gage 1998) and heart (Leite et al. 2015) for therapeutic purposes.
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Globally, cerebrovascular diseases are the second cause of death being surpassed
by ischaemic heart disease by just 1.5%. The consequences of stroke are often
devastating and extend well beyond the patients to impact not only families but
also employers, caregivers, and social networks. Around 60–83% of survivors will
fully recover and achieve independence in self-care by 1 year after a stroke.
However, a significant proportion may require temporary or lifelong assistance.
Thus, between 10% and 15% of survivors require assistance and primary care in a
specialised institution 1 year following the stroke.

In western ageing societies, the incidence of stroke events increases abruptly at
the age of about 73 years. Advances in stroke medicine and the adaptation to stroke
risk factors were successful in decreasing stroke incidence and increasing the
number of stroke survivors in western societies. However, due to the increase in
the number of elderly, the incidence of stroke has increased again paralleled by
obesity and metabolic syndrome.

Ageing is accompanied by both functional and cognitive decline which are
closely related to morphological changes in the brain during ageing. In addition,
the increased susceptibility of the aged brain to cerebral ischaemia is associated with
cognitive decline and incomplete behavioural recovery (Manwani et al. 2011).

Stroke is one of the most frequent causes of death and permanent disabilities
worldwide, for which only limited and unsatisfactory treatments exist. Cell-based
neurorestorative therapy has considerable potential for improving stroke recovery.
However, the efficacy of all these therapies has been so far discouragingly low. The
major causes for the poor efficacy of implanted cells in vivo are directly or indirectly
related to (1) host neuroinflammation, (2) poor cell retention, and (3) poor survival
and integration.

Initial enthusiasm for stimulating restorative processes in the ischaemic brain
with cell-based therapies has meanwhile converted into a more balanced view,
recognising impediments related to survival, migration, differentiation, and integra-
tion of therapeutic cells in the hostile aged brain environment. Therefore, a current
lack of understanding of the fate of transplanted cells means that the safety of cell
therapy in stroke patients is still unproven.

Earlier studies on postmortem human brains provided evidence that there might
be subventricular zone (SVZ) cell proliferation and neuroblast formation after stroke
even in aged patients (Jin et al. 2006; Macas et al. 2006; Minger et al. 2007). The
finding that new neurons are continuously added in the adult human striatum (Ernst
et al. 2014), along with the presence of an increased number of putative neuroblasts
in the human striatum after stroke, lends support to this hypothesis (Macas et al.
2006). However, whether endogenous neurogenesis contributes to spontaneous
recovery after stroke has not yet been established. In addition, age, comorbidities,
the physical condition of the patient, and the severity of the disease could substan-
tially influence these steps and, therefore, the outcome of the healing process.

In humans, functional reorganisation has been reported in well-recovered patients
with subcortical stroke (Zhang et al. 2014). Indeed, studies on postmortem brains
provided evidence for enhanced SVZ cell proliferation and neuroblast formation
after stroke even in adult and even aged humans (Martí-Fàbregas et al. 2010; Ernst



et al. 2014). One study reported an increased number of new cortical neurons
originating from the SVZ in the peri-infarct cortex at 65 days after the insult
(Palma-Tortosa et al. 2017).
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Most clinical studies conducted so far used neural cells derived from human
foetal donors. The techniques to achieve effective survival and growth of neuronal
tissues transplanted into the CNS are meanwhile well established (Dunnett 2013).
Even though effective, neural grafting has, however, not become a standard treat-
ment for several reasons, including the limited supply of foetal tissue of human
origin, and the beneficial effects have been controversial (Morizane et al. 2008). Of
the various options, stem-cell therapy presents us with a viable alternative (Stoll
2014). For the example of neural precursor cells (NPCs), the group comprehensively
analyzed (a) various routes (intravenous, intraarterial, intraperitoneal,
intracerebroventricular, brain parenchymal) and (b) time points of stem/precursor
cell delivery, pointing out advantages of systemic (intravenous or intraarterial) over
local (intraparenchymal) delivery strategies in the stroke brain. Accordingly, future
clinical studies should focus on systemic delivery approaches. Of the small molecule
drugs examined, the GABAA α5 antagonist S44819 entered a multicentric random-
ized phase IIb trial in human stroke patients (RESTORE BRAIN) under the appli-
cant’s guidance, which was conducted in 80 institutions in 13 countries based on
animal studies by his group (Chabriat et al. 2020; Hermann et al. 2022a).

In order to enable the replacement of lost tissue, cell replacement strategies were
used in human stroke patients (Stoll 2014; Strazzullo et al. 2010). However, these
early clinical studies lacked appropriate control groups. The RECOVER-Stroke trial
conducted by Savitz et al. (2019) may well serve as a role model for future early-
stage cell therapy clinical trials in stroke. The study featured an impressive array of
safety endpoints and stratified patients according to NIHSS scores (≤15 vs. ≥16) and
whether the patients suffered from a lacunar versus a cortical stroke. Importantly,
this study also represents the first serious attempt to assess the safety of cell delivery
by the intra-arterial route in stroke patients. In this study, a special subpopulation of
commercially available bone marrow cells that express CD34+ and CD133+ stem
and progenitor cell surface markers and high levels of aldehyde dehydrogenase
(ALDH) was administered.

Clinical Studies

There are several therapeutic options available during the acute phase of stroke.
Thrombolysis using rt-PA and/or mechanical thrombectomy can be used to limit the
consequences of acute occlusions of cerebral blood vessels. Clinical trials on patients
that received r-tPA treatment within 3 h of the onset still reported functional deficits
at 3 and 12 months post-stroke, on a Modified Rankin Scale 2–5 (Langhorne et al.
2009; Jovin et al. 2015). The motor deficit is the most frequent one encountered,
however DALYs (Disability-adjusted life years) include cognitive, linguistic, opti-
cal, and sensorial deficits (Langhorne et al. 2009). Numerous neuroprotectants have



been tested with promising results in animal models. However, there is a difficult
transition to human clinical trials, which may be the cause of slow progress in the
field (Paul and Candelario-Jalil 2021) Some of the recently completed clinical trials
have tested the therapeutic efficacy of human urinary kallidinogenase (Ni et al. 2017;
Dong et al. 2020), 3-methyl-1-phenyl-2-pyrazoline-5-one (Enomoto et al. 2019),
nerinetide (Hill et al. 2020), 3K3A-activated protein C (Lyden et al. 2020) with
results that are still being evaluated.
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The mechanical removal of the clot from the intracranial artery by means of
modern stent retriever devices has been recommended since 2015 for acute ischemic
stroke (AIS) because of occlusion of the proximal large intracranial artery.
According to current guidelines, mechanical thrombectomy (MT) should be
proceeded by intravenous Alteplase administration (IVT) unless contraindications
exist (Broocks et al. 2023). The classic time window for MT is 6 h; however, in
patients fulfilling the criteria of the DAWNtrial (Nogueira et al. 2018) that examined
patients presenting between 6 and 24 h after AIS and criteria of the DEFUSE 3 trial
that examined patients presenting between 6 and 16 h, the time window for MT can
be significantly prolonged (Albers et al. 2018).

It is estimated that up to 10% of AIS patients fulfil the criteria for undergoing MT
(Powers et al. 2019; Bhalla et al. 2021). The Neurorehabilitation Training Toolki
(NNT) to obtain functional independence was between 3.2 and 7.4 when compared
with the best medical treatment (Goyal et al. 2016). Meta-analysis of individual
patient data from the key clinical studies includes the following: MR CLEAN
(Berkhemer et al. 2015), ESCAPE (Goyal et al. 2015), REVASCAT (Saver et al.
2015), and SWIFT PRIME (Menjot de Champfleur et al. 2017). EXTEND IA
(Campbell et al. 2015) indicates that MT caused a significant increase in the chance
for complete recovery (mRS score 0–1; 26.9% vs. 12.9%) or independence (mRS
score 0–2; 46.0% vs. 26.5%) as compared to standardised treatment, including IVT
(Goyal et al. 2016). Despite combined AIS therapy, more than 50% of patients will
remain disabled after MT (Goyal et al. 2016).

Plasma Biomarkers Associated with Ischaemic Stroke

The risk of having a stroke event doubles each decade after the age of 55. Therefore,
it is of great interest to develop neurorestorative therapies for stroke which occurs
mostly in elderly people.

However, to date, patients at risk for these sequels of stroke are not duly
diagnosed and treated due to the lack of reliable biomarkers. Extracellular vesicles
(EVs) are lipid bilayer-delimited particles that are shed by the brain cells and are able
to cross the blood-brain barrier and enter the bloodstream; thus, they may be used to
interrogate molecular and cellular events in the brain-damaged area (Driga et al.
2021).

Despite sustained efforts to develop clinically effective drugs, the complex
mechanism underlying stroke recovery makes complete functional recovery



unlikely. Therefore, research into the prevention and identification of biomarkers
that could potentially improve the response to treatment is currently advisable
(Clarkson et al. 2010). By the Biomarkers Definitions (Working Group in 1998) a
biological marker or biomarker refers to a vast category of indicators defined as “a
characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a thera-
peutic intervention” (Dagonnier et al. 2021). More and more studies aim to identify
useful plasma biomarkers associated with the prognosis of ischaemic stroke.
Harmann and colleagues reported a growth in the number of publications that
evaluate the role of biomarkers associated with the prognosis of stroke between
2007 and 2018 (Dagonnier et al. 2021), while another recent review made a
comprehensive systematic investigation of blood biomarkers associated with phys-
ical post-stroke recovery (Norden et al. 2014).
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It is well known that the adult brain has a limited capacity to regenerate is
aggravated by ageing, and that intensive rehabilitation is able to improve neurolog-
ical outcomes after stroke; however, providing such treatment for all stroke survivors
would place an unbearable organisational and financial burden on European health
care systems. To overcome this situation, biomarkers need to be developed that,
together with the individual risk factors, e.g., age, comorbidities, and gender, are
able to predict long-term outcomes after stroke. Creating such a personalised
medicine tool could identify individual patients at risk for bad outcomes after stroke
and provide them with preventive neurorehabilitation. While improving patients’
lives, such an approach will most likely also reduce healthcare costs significantly.

Neurovascular Unit-Derived Exosomes in Response to Stroke

Recent data strongly suggest that exosomes (EVs) play a critical role in brain
homeostasis and plasticity (Holm et al. 2018) by acting as the bidirectional carrier
between neurons, glia, vascular and perivascular cells, on the one hand, and between
the brain and periphery on the other (Zagrean et al. 2018). Small EVs comprise
70-150 nm sized vesicles released by the late endosomal compartment (Lener et al.
2015). They correspond to the intraluminal vesicles of multivesicular bodies
(MVBs) that upon fusion with the plasma membrane are released into the extracel-
lular space (Hermann et al. 2022b). Exosomes are not only involved in the epigenetic
regulation of communication between neurons and glial cells within the nervous
system but also in brain-body epigenetic interconnection mediated by non-coding
RNA and miRNA cargo (Lai et al. 2012).

Of special interest for diagnosis and prediction of post-stroke recovery, brain-EVs
cross the blood-brain barrier and reach the plasma, allowing assessment of the events
occurring in the post-stroke brain (Rosell and Lo 2008). It has been shown that
intravenously delivered MSC-derived small EVs very similarly promoted post-
ischemic neurological recovery, endogenous neurogenesis and angiogenesis as
intravenously delivered MSCs (Doeppner et al. 2017), suggesting that EVs mediate



restorative MSC responses. Considering their simple handling and the lack of side
effects associated with cell therapies, e.g., malignant transformation, MSC-EVs are
attractive candidates for stroke treatment. However, given the myriad of post-stroke
events, we can only guess what is really happening with regard to cell–cell interac-
tions and how these interactions can be used to improve stroke (Hermann and Chopp
2012); the development of neurorestorative therapies is a true challenge (Hermann
et al. 2015). Indeed, it was demonstrated that brain-derived EVs (Brain-EVs) can
cross the BBB and can be isolated from plasma samples of patients and harness
specific disease-related proteins, such as beta-amyloid and phosphorylated forms of
tau in Alzheimer’s disease patients (Kanninen et al. 2016; Ngolab et al. 2017; Sardar
et al. 2018). Thus, the disease-specific fingerprint profile of Brain-EVs was isolated
from the blood and CSF of stroke patients in order to obtain information about the
pathophysiological status of the brain after a stroke and to predict the outcome of
individual patients. This would enable patients at risk for unfavourable outcomes
after stroke to be directed to intensive neurorehabilitation, which will eventually
improve patient outcomes.
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