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Preface

This document started as a collection of notes prepared for the courses of advanced
calculus for undergraduate and graduate students of economics held at the Scuola
Sant’Anna. It has been a work in progress for more than ten years. There are
multiple purposes of this work. First, the treatment of some topics, most notably
topological and metric spaces, but also measure theory, is developed in a rather
axiomatic way, starting from general definitions and then analysing what these def-
initions imply under different conditions. The axiomatic approach is an excellent
tool for training students in logical deduction, logical consistency, and formalisa-
tion of ideas. Attention is paid here not only to the final results, but also to how
those results are derived and what type of logical relation connects them. For this
purpose, I decided to clearly separate the analysis of topological, normed, and
metric spaces, which are often merged in introductory and middle-level calculus
textbooks. Second, while presenting material which is already part of basic intro-
ductory courses on calculus, such as numerical sequences, series, and differential
calculus, I follow a theorem-proving approach, stressing the boundary of appli-
cation of the different theorems, often attempting to provide thought-provoking
counterexamples. I also include notable results that are often used in applied
mathematics books, but that I have found to be constantly missing in basic- and
mid-level mathematical courses. For many topics, this book provides far more
results than the usual book on calculus, even if not the kind of coverage one could
find in a specialised publication. The idea is to teach the reader the appropriate
language and notions about each topic so that they can understand where and how
to look for more specific discussions should the need arise. The main criterion that
drove the selection of topics is usability in applications, in particular, applications
in economics and social sciences. This is why I have avoided almost entirely any
geometric consideration, which is important in a course for hard scientists and
engineers, and I have insisted on mathematical results mostly useful for optimisa-
tion theory and statistics. The two final appendices, on the initial value problem for
systems of differential equations and on the Brower fixed-point theorem, exemplify
two possible domains of application of the material covered in this book.

I have several people to thank. First, the Allievi of Scuola Sant’Anna, who, at
different levels, have followed my courses. They asked the questions that this doc-
ument was designed to answer and gave me invaluable feedback on the text itself.

vii



viii Preface

Pietro Battiston, Francesco Cordoni, Pietro Dindo, Carolyn Phelan, and Davide
Pirino provided useful comments at different stages and helped me decide what to
include and what to leave out. This is always a very difficult choice when design-
ing a manual. Marta Talevi and Matteo Quagliotto helped me with the typewriting
of part of the material.

Pisa, Italy
February 2023

Giulio Bottazzi
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1Preliminaries

1.1 Sets, Equivalence Relations, and Functions

A set is a collection of objects that are elements or points of the set. A subset of a
set is a collection of elements which all belong to the original set. If B is a subset
of A, I will denote it by writing B ⊆ A. In general, I will use capital letters, such
as A, to denote sets and small capital letters, such as a, to denote elements. The
intersection of set A and set B, denoted A ∩ B, is the set composed of the elements
common to the two original sets. Their union, denoted A∪ B, is the set composed of
all elements that belong to at least one of them. Two sets are disjoint if they do not
have elements in common. In this case, their intersection is the empty set, denoted
with ∅. If B ⊆ A, but B �= A, I will write B ⊂ A.

I will write a ∈ A if the element a belongs to the set A. The expression ∃a ∈ A
means that “there exists an element a belonging to A …”, while the expression
∀a ∈ A means “for any elements a of A …”. So, for example, if N is the set of
integer numbers and we want to express the fact that for any integer, there is another
integer that is exactly the first integer plus one, we can write ∀n ∈ N, ∃m ∈ N, such
that m = n + 1.

The collection of all subsets of A is the power set of A and is indicated by 2A.
The name and notation 2A come from the fact that if A contains a finite number of
elements n, then the number of elements of 2A is 2n . This can be easily proved by
induction.

Theorem 1.1 (Number of subsets) If a finite set has n elements, then it has 2n

subsets.

Proof This serves as an example of a proof by induction. If the set A is empty, then
2A = {∅}. If the set A contains one element, A = {a}, then 2A = {A,∅}. Thus, the
statement is true for n = 1. Suppose the statement is true for a set with n−1 elements
and add one element to obtain a set with n elements. The power set of the new set
contains all the 2n−1 subsets of the previous set, plus all the 2n−1 subsets obtained
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2 1 Preliminaries

by adding the new element to one of the old subsets. Now 2n−1 + 2n−1 = 2n and
we have proved that the statement is valid also for sets with n elements. Thus, the
statement is valid for any n. �

Consider two sets A and B. Let A× B denote the Cartesian product of the two sets,
that is, the set of ordered pairs (a, b) with a ∈ A and b ∈ B. The very general notion
of a relation is introduced in the following.

Definition 1.1 (Relation) A relation R between A and B is a collection of ordered
pairs, R ⊆ A × B. If (a, b) ∈ R, then a is said to be in relation to b.

The sets A and B can be different or they can be the same set. If (a, b) ∈ R, one
can write aRb. The set of all elements of A in relation to some element of B, DR =
{a ∈ A | ∃b ∈ B such that (a, b) ∈ R}, is the domain of R. The set of all elements
of B in relation to some element of A, IR = {b ∈ B | ∃a ∈ A such that (a, b) ∈ R},
is the range or image of R. The image of a subset A′ ⊆ A are all elements of B
in relation to at least one element in A′. The inverse image or preimage of a subset
B ′ ⊆ B are all elements of A in relation to at least one element of B ′. For any relation
R ⊆ A × B, we can define an inverse relation R−1 ⊆ B × A with the stipulation
that (b, a) ∈ R−1 if and only if (a, b) ∈ R.

Although important, the concept of a relation is, in general, toogeneric for practical
use. It becomes more meaningful by imposing some additional requirements. These
generally take the form of the inclusion or exclusion of specific ordered couples in
the set R. Themost commonly used relationwhichwe come across is the equivalence
relation.

Definition 1.2 (Equivalence Relation) A relation R ⊆ A × A is an equivalence
relation on the set A if it is

• reflexive, that is ∀a ∈ A, (a, a) ∈ R ;
• symmetric, that is if (a, b) ∈ R, then (b, a) ∈ R ;
• transitive, that is if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

An equivalence relation is generally denoted with ∼ (or other similar symbols such
as =), so if R is an equivalence relation and (a, b) ∈ R one writes a ∼ b. The
definition of an equivalence relation on a set A naturally groups its elements into
classes.

Definition 1.3 (Equivalence Class) Consider an equivalence relation R ⊆ A × A
defined over a set A. Consider a generic element a ∈ A. The set [a] = {x ∈ A | x ∼
a} is the equivalence class of a. The quotient set A/R is the set of all equivalence
classes.

The equivalence class [a] is the image of the element a in the equivalence relation.
Equivalence classes partition the set A into disjoint subsets.
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Theorem 1.2 The different equivalence classes are disjoint, and their union is the
entire A.

Proof Consider two equivalence classes [a] and [b]. If ∃x ∈ [a] ∩ [b], then x ∼ a
and x ∼ b, and, for the transitive property, a ∼ b. That is, [a] = [b]. For the second
part of the theorem, note that A = ∪a∈A[a]. �

The following example defines an equivalence relation on the set of natural numbers,
including zero, N0 = {0, 1, 2, 3, . . .}, and identifies its equivalence classes.

� Example 1.1 Modulo p equivalence Consider a natural number p > 1. On the
set N0, define the following relation R: two numbers n and m are related if they
are equal or their difference, the greater minus the smaller, is a multiple of p. This
relation is reflexive and symmetric by construction. In addition, if mRn and nRl,
then mRl (you can prove it considering all possible orders of the three numbers).
Thus R is an equivalence relation on N0. The equivalence classes are denoted with
[0], [1], . . ., [p − 1]. The class [k], with k = 0, . . . , p − 1, contains the numbers
{k, k + p, k + 2p, k + 3p, . . .}.

A commonly used type of relation is that of functions.

Definition 1.4 (Function) Consider the relation R ⊆ A × B. If ∀a ∈ DR , ∃!b ∈ B
such that (a, b) ∈ R, then R is a function or map.

A function from A to B is a relation that assigns exactly one element of B to each
element of its domain DR ⊆ A. Functions enjoy a special notation. A function from
A to B is often denoted by f : DR ⊆ A → B and if (a, b) ∈ f one writes f (a) = b.

Definition 1.5 Consider a function f : A → B. The function f is injective or into
if ∀b ∈ I f , ∃!a ∈ D f such that f (a) = b. The function f is surjective or onto if
I f = B. The function f is one-to-one or bijective if it is injective and surjective.

In other terms, a function is injective if any element of the image has a preimage
made of a single element, while it is surjective if it has the largest possible image.
With some abuse of notation, I will denote by f (A′) with A′ ⊆ A, the set of images
of points in A′, f (A′) = {b ∈ B | ∃a ∈ A′, f (a) = b}, and by f −1(B ′) with
B ′ ⊆ B, the set of points in A that are preimages of points in B ′, f −1(B ′) = {a ∈
A | ∃b ∈ B ′, f (a) = b}. In general, the inverse of a function is not a function.
However, if f is injective, then ∀y ∈ I f , the set f −1(y) contains a single element
so that f −1 is a function.
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1.2 Order Relations, Supremum,and Infimum

Another widely used type of relation is the order relation.

Definition 1.6 (Order Relation) A relation R ⊆ A × A is an order relation if it is

• reflexive, that is, ∀a ∈ A, (a, a) ∈ R;
• antisymmetric, that is, if (a, b) ∈ R and (b, a) ∈ R, then a = b;
• transitive, that is, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

The order relation is said to be total if ∀a, b ∈ A is (a, b) ∈ R or (b, a) ∈ R.

An order relation is denoted by≤ or≥ (note the use of the non-strict inequalities). A
reflexive and transitive relation R is a preorder relation. It becomes an order relation
by setting a = b if (a, b) ∈ R and (b, a) ∈ R. In this way, an equivalence relation
is induced in the set by the relation R and R is by construction antisymmetric with
respect to this equivalence relation. Any order relation also has a strict version.

Definition 1.7 (Strict Order Relation) Let R ⊆ A× A be an order relation. A strict
order relation R′ ⊂ R is defined by requiring that if (a, b) ∈ R′ then (a, b) ∈ R and
a �= b.

Order relations allow for the definition of “boundedness”.1 In what follows, the
couple (A,≤) stands for an ordered set, that is, a set and an ordered relation defined
over it.

Definition 1.8 (Upper bound and supremum) A subset C ⊆ A is bounded above
if there is an a ∈ A such that ∀x ∈ C is x ≤ a. Then a is an upper bound of C .
Let U (C) be the set of all upper bounds of C . If ∃a ∈ U (C) such that a ≤ a′,
∀a′ ∈ U (C), then a is the least upper bound or supremum of C , denoted by supC .

An analogous definition is in place for the lower bound.

Definition 1.9 (Lower bound and infimum) A subset C ⊆ A is bounded below if
there is a a ∈ A such that ∀x ∈ C is a ≤ x . Then a is a lower bound of C . Let L(C)

be the set of all lower bounds of C . If there exists an element a ∈ L(C) such that
a′ ≤ a, ∀a′ ∈ L(C), then a is the greatest lower bound or infimum of C , denoted by
inf C .

IfC = ∅, then L(C) = U (C) = A. For any setC ,C ⊆ L(U (C)) andC ⊆ U (L(C)).
If a = supC , then from the definition of supremum it follows that a ∈ L(U (C)).
But since a ∈ U (C), a is greater equal than all elements of L(U (C)), so that

1 A more general definition based on the notion of distance will be introduced in Chap. 3.
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a = inf U (C). Thus, the supremum of a set is the infimum of the set of its upper
bounds. Analogously, the infimum of a set is the supremum of the set of its lower
bounds. Especially useful are those ordered sets in which one is always sure to find
the supremum or infimum of any bounded subset.

Definition 1.10 (Least upper bound property and greatest lower bound property)
An ordered set (A, ≤) has the least upper bound property if every bounded above
subset has a supremum and it has the greatest lower bound property if any bounded
below subset has an infimum.

The following theorem clarifies that the two properties above are actually the same.

Theorem 1.3 An ordered set (A,≤) has the least upper bound property if and only
if it has the greatest lower bound property.

Proof We prove the theorem in one direction only since the symmetric proof is
basically identical. Let us assume that (A,≤) has the least upper bound property.
Consider a bounded below subset C and let L(C) be the set of all its lower bounds.
Since L(C) is bounded above, it has the supremum. Let us call it a. Now a is greater
equal than any lower bound of C , then a = inf C . �

If the supremum of a set exists and belongs to the set, it is the maximal element or
maximum of the set. If the infimum of a set exists and belongs to the set, it is its
minimal element or minimum.

A function whose image belongs to an ordered set is bounded above or bounded
below if its image possesses one of those properties. Generally, a function is said to
be bounded function if it is bounded above and below. For such bounded functions,
we can ask where the function reaches its highest or lowest values.

Definition 1.11 (Maximum and minimum) Consider a function f : X → A from a
set X to an ordered set (A,≤). The element x ∈ X is amaximum of the function f in
X if f (x) = sup f (X) and it is aminimum of the function f in X if f (x) = inf f (X).

Note that for the maximum or minimum to exist, three conditions must be met: the
image set f (X) is bounded above or below, it has the supremum or infimum, and the
supremum or infimum belongs to the set itself, that is, they are the image of some
element of X .

Theorem 1.4 (Max–min inequality)Consider a function f : X×Y → Z that sends
ordered pairs (x, y) ∈ X × Y to an ordered set (Z , ≤) with the least upper bound
property. Then for any AX ⊆ X and Ay ⊆ Y such that f (AX × AY ) is bounded,

inf
x∈AX

sup
y∈AY

f (x, y) ≥ sup
y∈AY

inf
x∈AX

f (x, y).



6 1 Preliminaries

Proof For any x ∈ AX define u(x) = supy∈AY
f (x, y) and for any y ∈ AY define

l(y) = infx∈AX f (x, y). These functions exist because the image of f is bounded and
the order relation has the least upper bound and the greatest lower bound properties
(see Theorem 1.3). Then ∀(x, y) ∈ AX × AY it is u(x) ≥ f (x, y) ≥ l(y). This
implies infx∈AX u(x) ≥ supy∈AY

l(y), which proves the assertion. �

As the name of the above inequality suggests, it can be applied to maximum and
minimum, instead of supremum and infimum, if they exist.

1.3 Countable Sets

Depending on the number of their elements, sets can be finite or infinite. Among the
latter, of particular relevance are the sets that contain a number of elements equal to
the natural numbers.

Definition 1.12 The infinite set A is countable if there exists a one-to-one map f
from A to N (the set of natural numbers).

The function f associates an index n ∈ N with any element of A. Notice that the
one-to-one map of the previous definition actually induces a total order relation in
the countable set: if a1, a2 ∈ A, f (a1) = n1, and f (a2) = n2, one might say that
a1 ≥ a2 if n1 ≥ n2. This observation is related to a useful property of countable sets.

Theorem 1.5 Every infinite subset of a countable set is countable.

Proof Let A be countable, f : A → N a one-to-one map, and B ⊆ A infinite. Order
the elements in B according to the order relation induced by f on A. Assign an index
to the elements of B according to this ordering: bk is the kth largest element in B.
This is a one-to-one map from B to N. �

Notably, the Cartesian product of countable sets is countable.

Theorem 1.6 If A and B are countable, then A × B is countable.

Proof Consider two one-to-one maps f A : A → N and fB : B → N. These maps
exist because the two sets are countable. Order the elements of A and B according
to these functions and arrange them along the row and column headings of a table,
as shown:
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b1 b2 b3 ...
a1 (a1, b1) → (a1, b2) (a1, b3) ...

↙ ↗ ↓
a2 (a2, b1) (a2, b2) (a2, b3) ...

↓ ↗ ↙
a3 (a3, b1) (a3, b2) (a3, b3) ...

↙
... ... ... ... ... ... ...

Now, count the elements of theCartesian product according to the depicted arrows.
This counting covers all A × B and is one-to-one to N. �

We are now ready to prove a fundamental fact of mathematics.

Theorem 1.7 The set of rational numbers Q is countable.

Proof Let p, q ∈ N denote the rows and columns of a matrix like the one defined
in the proof of Theorem 1.6 with the set of natural numbers N as row and column
headings, reporting (p, q) = p/q in each entry. Count the entries in that matrix
as described there, but skip a position if the fraction p/q has already been met. In
this way, a one-to-one relation n(q) is defined between positive rationals q ∈ Q>0
and natural numbers. Consider any q ∈ Q and set n′(q) = 2 ∗ n(q) + 1 if q > 0,
n′(q) = 2 ∗ n(−q) if q < 0 and n′(0) = 1. n′ defines a one-to-one relation between
Q and N. �

Not all infinite sets are countable, as the following example shows.

� Example1.2 Anuncountable set To build an uncountable set, consider the set of all
binary infinite sequences S = {(s1, s2, s3, . . . , sk, . . .)} with sk ∈ {0, 1}. Now, take
any countable subset of S, S̄ ⊆ S. By hypothesis, the elements of S̄ can be counted,
S̄ = (s1, s2, . . . , sn, ). Consider a new sequence s′ ∈ S such that s′

j = 1− s jj , where

sij is the j th element of the i th sequence in S̄. By construction, s′ is different from
any element of S̄ but s′ ∈ S. Then, it cannot be that S̄ = S. The elements in S are
actually in a one-to-one relation with real numbers.

1.4 Operations and Fields

A field is a structure that is commonly encountered in linear algebra. For the sake of
completeness, we provide its definition here. To this end, we need the concept of an
operation on elements of the set.
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Definition 1.13 (Binary operation) A binary operation O on a set A is a function
from A × A to A.

An operation maps an ordered couple of elements of A, say (a, b), to a third element
of A, generically denoted O(a, b), which is the result of the operation. The following
is a list of possible properties of an operation.

Definition 1.14 Let O and O ′ be two operations on A, and a, b, and c, generic
elements of A. Then

• O is associative if O(O(a, b), c) = O(a, O(b, c));
• O is commutative if O(a, b) = O(b, a);
• O ′ is distributive with respect to O if O ′(O(a, b), c) = O(O ′(a, c), O ′(b, c));
• a is the neutral element of O if ∀x ∈ A, O(x, a) = O(a, x) = x ;
• a is the absorbing element of O if ∀x ∈ A, O(x, a) = O(a, x) = a;
• assume the operation O has the neutral element, a. Then if for x ∈ A, ∃y ∈ A
such that O(x, y) = O(y, x) = a, the element y is said to be the inverse x .

A subset B ⊆ A is closed with respect to operation O , if ∀a, b ∈ B, O(a, b) ∈ B.
Using the notion of binary operations, a field can be formally defined.

Definition 1.15 (Field) A field (A,+, ∗) is a set A together with two binary oper-
ations, an addition or sum operation + and a multiplication or product operation ∗
such that

• + is associative, commutative, has a neutral element, denoted by 0, and any element
of a admits an inverse, often called the opposite;

• ∗ is associative, commutative, and has a neutral element, denoted by 1.All elements
apart from 0 have an inverse, often called reciprocal;

• ∗ is distributive with respect to +.

From the very definition of a field, a few properties follow. First, for any a, the
distributive property implies that

a = a ∗ 1 = a ∗ (0 + 1) = (a ∗ 0) + (a ∗ 1) = (a ∗ 0) + a

so that a ∗ 0 = 0. That is, the neutral element of the sum is the absorbing element
of the product. Next, consider the neutral element of the product, 1, and denote its
opposite (its inverse with respect to addition) by −1. Then, for any a,

0 = a ∗ 0 = a ∗ (1 + (−1)) = (a ∗ 1) + (a ∗ (−1)),
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so that a ∗ (−1) = −a. That is, the opposite of a is obtained by multiplying a by the
opposite of 1. From Definition 1.15, it is clear that any field should contain at least
two elements: 0 and 1. The following example shows that this is also enough.

� Example 1.3 (The smallest field) Consider the set A = {0, 1} with the following
binary operations:

+ 0 1
0 0 1
1 1 0

∗ 0 1
0 0 0
1 0 1

The operations are defined using a table: the entry relative to a specific row and
column is the result of the operation between the element associatedwith that row and
that column. The multiplication table is completely defined by the properties seen
above. The addition is defined using the usual rules that we know from arithmetic
with the only exception that now 1+ 1 = 0. Note that if we put 1+ 1 = 1, then the
element 1 would not have an opposite, violating the requirement of Definition 1.15.
You can directly check that these operations define a field on A.

A class of fields with a finite number of elements can be built by considering
integers modulo p.

� Example 1.4 (The field of integers modulo p) Consider the set of the first p natural
numbers Z p = {0, 1, 2, . . . , p − 1}. Define the operations + and ∗ by adding or
multiplying the elements with the usual arithmetic rules as if they were integer
numbers, but dividing the result by p and taking the remainder. You can easily check
that these operations are both associative and distributive. The thornier question is
the existence of the inverse.

First, notice that all elements have an opposite: indeed the opposite of n < p is just
p−n. Now, suppose that there are two positive integersm and n, different from 1 and
p, such that m ∗ n = p. This means, using the remainder rule, that m ∗ n = 0. Now
assume that bothm and n have an inverse, thenm−1∗m∗n∗n−1 = m−1∗0∗n−1 = 0
but also m−1 ∗ m ∗ n ∗ n−1 = 1 ∗ 1 = 1 which implies 1 = 0, contradicting
Definition 1.15. In order to avoid this issue, we have to consider values of p without
integer divisors. In fact, if p is a prime number, (Z p, +, ∗) is a field.

1.5 Real Numbers

The next definition introduces three alternative ways of thinking about the set of real
numbers: as an ordered field, as an extension of rational numbers including ordered
couples of “contiguous” sets, or as a collection of elements defined using the decimal
representation. I will refer to the different definitions when necessary, but I will not
prove that they are equivalent.
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Definition 1.16 (Real Numbers) The set R of real numbers can be defined in three
alternative ways:

1. A field (R, +, ∗) with an ordered relation ≤ compatible with its operations and
with the least upper bound and the greatest lower bound properties (see Defini-
tion 1.10).

2. Consider all couples (A, B) of subsets of Q such that

• if x ∈ A and x ′ < x , then x ′ ∈ A and if y ∈ B and y′ > y, then y′ ∈ B;
• ∀x ∈ A, ∀y ∈ B, x ≤ y;
• ∀ε > 0, ∃x ∈ A, y ∈ B such that |x − y| < ε.

These couples are known asDedekind cuts, and they are in a one-to-one relation-
ship with the real numbers.

3. Consider the decimal representation of numbers:

±finite digits
︸ ︷︷ ︸

. countable sequence of digits
︸ ︷︷ ︸

.

For rational numbers, the part beyond the decimal separator . is finite or periodic,
with a pattern that repeats indefinitely. If that part is neither finite nor periodic,
then the number is irrational, a real number that does not belong to Q.

In what follows, I will denote by R≥0 the subset of nonnegative real numbers and
by R>0 the subset of positive real numbers. A similar notation will be used for
nonnegativeQ≥0 and positiveQ>0 rational numbers. Among the three alternatives in
Definition 1.16, the second is probably the less intuitive. A real number x is described
in terms of two sets of rational numbers: the set of all rational numbers less than x and
the set of all rational numbers greater than x . Despite its abstraction, this is probably
the most practical definition when one wants to prove the various properties of real
numbers. The third alternative inDefinition 1.16 provides an intuitiveway of thinking
about real numbers and clarifies their relationship to rational ones. Rational numbers
do not have a unique decimal representation. For example, 1 and 0.9̄ are the same
number. However, irrational numbers do, as they cannot endwith a constant sequence
of 9s. The first alternative in Definition 1.16 is the most operative. The expression
“compatible with its operations” means that the ordering relation is preserved (or
reversed) under addition and multiplication in exactly the same way as we are used
to in arithmetic: if x < y then x + z < y + z for any z and xy > 0 if x, y > 0
or x, y < 0.2 Given x ∈ R, [x] denotes the integer part of x , that is, the largest
integer, possibly with sign, that is lower than or equal to x . The order relation on
real numbers leads directly to the notion of interval (a, b) as the set of points greater
than a and lower than b. We will use the notation [a, b] = {x ∈ R | a ≤ x ≤ b},

2 An axiomatisation of this point is easy to produce. Since nothing is gained, in terms of under-
standing, from such a tedious exercise, I prefer to omit it.



1.5 Real Numbers 11

[a, b) = {x ∈ R | a ≤ x < b}, and (a, b] = {x ∈ R | a < x ≤ b}. Define the
absolute value |x | of a real number x as |x | = x if x ≥ 0 and |x | = −x if x < 0.

Definition 1.17 (Increasing and decreasing functions; local maximum and mini-
mum) Consider a function f : (a, b) ⊆ R → R and a point x ∈ (a, b) then

• f is increasing in x if ∃δ > 0 such that if |x− y| < δ, then ( f (x)− f (y))(x− y) ≥
0;

• f is decreasing in x if ∃δ > 0 such that if |x−y| < δ, then ( f (x)− f (y))(x−y) ≤
0;

• x is a local maximum of f if ∃δ > 0 such that if |x − y| < δ, then f (y) ≤ f (x);
• x is a local minimum of f if ∃δ > 0 such that if |x − y| < δ, then f (y) ≥ f (x);
• the function f is monotonically increasing or monotonically decreasing in the
interval (a, b) if it is increasing or decreasing in all points of the interval;

• the “strict” version of the definitions above replaces “≥” and “≤” with “>” and
“<”.

A function is monotonic, or has a monotonic behaviour, in an interval if it increases
or decreases monotonically in that interval. The definitions of local maximum and
minimumare consistentwithDefinition 1.11 andwill be generalised inDefinition 2.3.
The least upper bound and greatest lower bound properties can be used to prove an
important result for a sequence of nested intervals.

Theorem 1.8 (Nested intervals) Consider the sequence of intervals (Ik) with k ∈ N

defined as
Ik = [ak, bk] = {x ∈ R | ak ≤ x ≤ bk},

where ak ≤ bk. If Ik+1 ⊆ Ik,∀k, the set ⋂∞
k=1 Ik is not empty.

Proof Because the intervals are nested, ∀h, k, ak ≤ bh . Consider the set A = {ak |
k ∈ N}. Since ∀k, ak ≤ b0, A is bounded above. Then, for the property of real
numbers, there exists x = sup A such that x ≥ ak , ∀k. Furthermore, any bh is an
upper bound of {ak}, so that x ≤ bk , ∀k. Then x ∈ ⋂∞

k=1 Ik . A similar proof can be
derived using the infimum of the set B = {bk | k ∈ N}. �

There are a couple of useful inequalities that it is important to review. The first is
about the absolute value.

Theorem 1.9 (Triangle inequality) For any two real numbers x and y, |x | + |y| ≥
|x + y|.

Proof Just observe that

(x + y)2 = x2 + y2 + 2xy ≤ x2 + y2 + 2|x ||y| = (|x | + |y|)2 ,

and remember that if a2 = b2, then a = ±b. �



12 1 Preliminaries

For the second inequality, note that given two positive real numbers x and y and any
natural number n,

xn − yn = (x − y)
(

xn−1 + y xn−2 + y2 xn−3 + . . . + yn−1) .

The second parentheses contain n terms, so, if x > y, we get the difference of powers
inequality,

n (x − y) yn−1 ≤ xn − yn ≤ n (x − y) xn−1.

Wewill use the summation symbol
∑

to denote a sum of elements that is difficult
to write explicitly. For example, the sum of the first n integer numbers is denoted by
∑n

k=1 k (see Exercise 1.1). There is a useful rule regarding summations.

Lemma 1.1 (Summation by parts) Given two generic sets of numbers {a1, . . . , an}
and {b1, . . . , bn+1},

n
∑

k=1

ak(bk+1 − bk) +
n

∑

k=2

bk(ak − ak−1) = anbn+1 − a1b1.

Proof Open all the parentheses and simplify the resulting expression. �

� Example 1.5 (Geometric progression) We derive a simple expression for the ge-
ometric progression, the sum of a finite number of terms with a fixed ratio. For
a, r ∈ R, define sn(a, r) = a + ar + ar2 + . . . = ∑n

k=0 ar
k . If r = 0, then

sn(a, r) = a. If r = 1, then sn(a, r) = na. If r �= 0, 1, by simple algebra-
ic simplifications, it is easy to see that rsn(a, r) − sn(a, r) = arn+1 − a. Thus,
sn(a, r) = a(1 − rn+1)/(1 − r).

We will use the product symbol
∏

to denote a product of elements. For example,
the factorial of n ∈ N, is defined as n! = ∏n

k=1 k, while 0! = 1.

Theorem 1.10 (Archimedean property) Consider y ∈ R>0. Then ∀x ∈ R, ∃n ∈ N

such that ny > x.

Proof Consider the set E = {ny | n ∈ N}. Assume that E is bounded above and set
z = sup E . Now z − y < z, which implies that there exists an element of E , say my
for some integer m, such that my > z − y, that is, (m + 1)y > z, which is absurd
for the properties of the supremum. Thus, E is unbounded, and the statement is
proved. �

The Archimedean property is used to prove a fundamental fact about rational num-
bers.
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Theorem 1.11 (Density of rational numbers) Given two real numbers x < y, it is
always possible to find a rational number q ∈ Q such that x < q < y.

Proof By definition y − x > 0, and therefore, for Theorem 1.10, ∃n ∈ N such that
n(y − x) > 1, that is nx + 1 < ny. Let m be an integer in the interval (nx, nx + 1],
and thus nx < m ≤ nx + 1 < ny. Dividing the inequalities by n shows that the
rational number q = m/n fulfils the statement. �

Theorem1.11 is summarised by saying thatQ is dense inR. FromDefinition 1.16 (1),
it follows that any strictly increasing function f defined over an interval of rational
numbers (a, b) ⊂ Q can be directly extended to any real number x ∈ (a, b) by
taking

f (x) = sup
q∈Q

{ f (q) | a < q < x} or f (x) = inf
q∈Q

{ f (q) | x < q < b} .

In this way, a strictly increasing function is defined over the interval of real numbers
(a, b). This definition is meaningful because the supremum and infimum are unique
and, according to Definition 1.16 (1), the two extensions are identical. If the function
is strictly decreasing on the rationals, one replaces the supremum with the infimum,
and vice versa, in the above definition, obtaining a strictly decreasing function on the
real. In general, since the majority of functions we encounter are piecewise strictly
monotonic, we can immediately think of them as real functions, even if we are
practically able to compute their value only for rational arguments.

This technique can be applied to obtain a proper definition of the exponential
function on the set of real numbers. We need a preliminary result on the existence of
the nth root of a positive real number.

Theorem 1.12 (nth root of a positive real number) For any positive real number x
and any natural number n, there exists one positive real number y such that yn = x.

Proof Consider the set E = {z ∈ R>0|zn < x}. Clearly x/(1+ x) ∈ E and (x + 1)
is an upper bound of E , thus E is not empty and bounded above. Let y = sup E > 0.
I want to show that yn = x and I will prove this by contradiction. Start by assuming
yn < x . Then there must be a positive number 0 < h < 1 such that (y + h)n < x .
In fact, from the difference of powers inequality,

(y + h)n − yh ≤ nh(y + h)n−1 < nh(y + 1)n−1.

Thus, it is sufficient to choose h such that nh(y + 1)n+1 < x − yn . But this is a
contradiction because there are no numbers greater than y in E . Next, assume that
yn > x . In this case, there must be a positive number h such that (y − h)n > x . In
fact, from the difference of powers inequality,
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yn − (y − h)h ≤ nhyn−1.

In this case, it is sufficient to choose h such that nhyn−1 < yn − x . This is a
contradiction because y − h cannot be an upper bound of E . �

The nth root of x is denoted by n
√
x or x1/n . Obviously, 11/n = 1 and 01/n = 0,

∀n ∈ N. The function f (x) = x1/n is the inverse function of g(x) = xn . Since the
latter is strictly increasing, so is the former. This proves that the y in Theorem 1.12
is unique and that x1/n > 1 if x > 1 and x1/n < 1 if x < 1.

For any x, y > 0 and any couple of integers n andm, xn yn = (xy)n and (xm)n =
(xn)m . Thus, x1/n y1/n = (xy)1/n and (xn)1/m = (x1/m)n . We have extended the
definition of power to any positive rational number q ∈ Q>0, q = n/m. This
definition can be extended to positive real numbers.

Theorem 1.13 (Power with positive real exponent)For any a, b ∈ R>0 the power of
base a with exponent b, denoted as ab, is a positive real number such that ∀c ∈ R>0:

1. 1b = 1 and if b > c then ab > ac if a > 1, ab < ac if a < 1;
2. ab+c = abac;
3. abc = (ab)c.

Proof Westart by considering rational exponents.Any twopositive rationalsq1 > q2
admit a representation as the ratio of naturals, q1 = n1/m and q2 = n2/m,
with a common denominator m and n1 > n2. If a > 1, then a1/m > 1, and
aq1 = (a1/m)n1 > (a1/m)n2 = aq2 so that aq is a strictly increasing function of
the exponent. Analogously, if a < 1 one can prove that aq is strictly decreasing.
Note also that ∀n,m ∈ N, 1n/m = 1. In general, one has aq1+q2 = a(n1+n2)/m =
(a1/m)n1+n2 = an1/man2/m = aq1aq2 and, at the same time, an2q1 = (aq1)n2 . Taking
the mth root of the last expression, one gets aq1q2 = (aq1)q2 . Thus, all the properties
of the statement are true when the exponents are rational numbers. Now consider
the case a > 1. Because the function is strictly increasing, ∀b ∈ R>0 we can define
ab = supq∈Q>0

{aq | q < b}. This function is strictly increasing by construction.
Given two positive real numbers b and c,

abac = sup
q1∈Q>0

{aq1 | q1 < b} sup
q2∈Q>0

{aq2 | q2 < c},

and
ab+c = sup

q∈Q>0

{aq | q < b + c}.

According to Theorem 1.11, for any q1 < b and q2 < c, ∃q such that q1 +q2 < q <

b+c. Thus ab+c ≥ abac. At the same time, for any q < b+c, set δ = b+c−q and
let q1 and q2 be such that b − δ/3 < q1 < b and c − δ/3 < q2 < c. Then q1 < b,
q2 < c, and q < q1 + q2. Using the property of the power with rational exponent,
aq < aq1+q2 < aq1aq2 ≤ abac, that implies ab+c ≤ abac. Taking both inequalities
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together, we conclude that abac = ab+c and property 2 is proved. For property 3,
simply note that for any positive rational r , it is

sup
q∈Q>0

{aq | q < rb} = sup
q/r∈Q>0

{(ar )q/r | q/r < b}

that is, arb = (ar )b. For any positive real c just take the supremum over all rational
r < c to get acb = (ac)b. The analysis for a < 1 is identical, with the only difference
that in this case the function aq is strictly decreasing. Therefore, the infimum should
be used rather than the supremum when defining the power with a positive real
exponent. �

The previous theorem implies that ∀a, b, c ∈ R>0, (ab)c = acbc and that if a > c,
then ab > cb, that is, the power increases with its base. The exponent is extended
to the entire set R by setting a0 = 1 and ax = (1/a)−x if x < 0. This extension
preserves the properties defined above. In conclusion,we have learnt thatwe can raise
any positive real number to any real power. This allows us to define two important
functions on the real numbers.

Definition 1.18 (Power function) For any a ∈ R, the power function from R>0 to
R>0 is defined as f (x) = xa .

The power function increases strictly with x if a > 0, and decreases strictly with x if
a < 0. Moreover, in both cases, the power function has an inverse, f −1(x) = x1/a ,
and its image is R>0. If a = 0, the function is constant and equal to 1.

Definition 1.19 (Exponential function) For any a ∈ R>0, the exponential function
from R to R>0 is defined as f (x) = ax .

The exponential function increases strictlywith x if a > 1, decreases strictly if a < 1,
and is constant and equal to 1 if a = 1.3 This function admits an inverse, which will
be discussed in Example 5.10. We will use the existence of the exponential function
defined on real numbers to derive an important relation between the arithmetic and
geometric means of a set of positive numbers.

The n-fold Cartesian product ofRwith itself will be denoted asRn . A bold symbol
x will generically denote an element of Rn or an n-tuple, with n real components
x = (x1, . . . , xn).Rn≥0 denotes the set of n-tuples with nonnegative components and
R
n
>0 the set of n-tuples with positive components. The special n-tuples 0 and 1 have

all components equal to 0 and 1, respectively. With some abuse of notation, given
two n-tuples x and y, I will write x ≥ y or x � y if xi ≥ yi or xi > yi , respectively,
∀i = 1, . . . , n. Thus, if x ∈ R

n≥0, x ≥ 0 and if x ∈ R
n
>0, x � 0. The expression

x > y means that x ≥ y and x �= y.

3 An alternative definition of the exponential function is presented in Example 5.10.
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Definition 1.20 (Weighted arithmetic mean) Let x = (x1, . . . , xn) ∈ R
n be a n-

tuple of real numbers and w = (w1, . . . , wn) ∈ R
n
>0 a n-tuple of positive weights.

The weighted arithmetic mean of x with weight w is defined as

an(x,w) =
∑n

i=1 wi xi
∑n

i=1 wi
.

Definition 1.21 (Weighted geometric mean) Let x = (x1, . . . , xn) ∈ R
n≥0 be an

n-tuple of nonnegative real numbers and w = (w1, . . . , wn) ∈ R
n
>0 an n-tuple of

positive weights. The weighted geometric mean of x with weight w is defined as

gn(x,w) =
(

n
∏

i=1

xwi
i

)1/
∑n

i=1 wi

.

When all weights are equal, ∀i, j , wi = w j , the previous definitions reduce to
their unweighted regular form. If all components are equal to the same value x , then
an(x,w) = gn(x,w) = x . If all weights aremultiplied by the same positive constant,
the values of an and gn do not change. We can prove that, in general, the arithmetic
mean is not lower than the geometric mean.4

Theorem 1.14 (AM-GM inequality) Let x = (x1, . . . , xn) be an n-tuple of non-
negative real numbers, and w = (w1, . . . , wn) an n-tuple of positive weights, then
an(x,w) ≥ gn(x,w).

Proof If all components of x are equal, the theorem is obviously true. Thus, we will
assume that some components differ. First, we prove the statement when all weights
are equal to 1. For generic positive numbers, using the square of the binomial, it
is immediately apparent that the statement is true when n = 2. From there we
will proceed by induction. Assume that the statement is true for n and consider the
arithmetic average of n + 1 numbers for which one has

nan+1(x, 1) =
n−1
∑

i=1

xi + y ,

with y = xn + xn+1 − an+1. Without loss of generality, we can assume that xn+1 <

an+1 < xn . In fact, there must be at least one number greater than the average and
at least one number lower than the average. Thus, xn+1 < y < xn . Since an+1 can
be seen as an average of n numbers, applying the theorem for n elements, we obtain
that

4 One can easily devise a simpler proof based on the Jensen inequality discussed in Corollary 1.1 and
the concavity of the logarithmic function proved in Example 5.9. However, the proof of the latter
property without the use of the AM-GM inequality requires the notion of the limit of a sequence
that will be covered in Chap. 5.
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ann+1 ≥ y
n−1
∏

i=1

xi .

Multiplying both sides of the previous equation by an+1 and noting that 0 < (xn −
y)(xn − an+1) = an+1y − xnxn+1,

an+1
n+1 ≥ an+1y

n−1
∏

i=1

xi >

n+1
∏

i=1

xi ,

which proves the assertion.
Now consider the case in which the weights (w1, . . . , wn) are integer numbers.

Then the original n elements (x1, . . . , xn) can be replaced with a new set of
∑n

i=1 wi

elements, obtainedby repeating each element xi exactlywi times. The integerweight-
ed averages are just regular unweighted averages on the new set, and the theorem
applies.

If the weights are rational numbers, then for each i , wi = pi/qi with qi , pi ∈ N.
It can immediately be seen that the weighted averages do not change if each weight
wi is replaced with the integer Qwi , where Q = ∏n

i=1 qi . Thus, we are back to the
case of integer weights, and the theorem applies again.

Finally, consider the case of real weights w. Without loss of generality, we can
assume that ∀i = 1, . . . , n, x1 ≤ xi , and

∑n
i=1 wi = 1, setting w1 = 1 − ∑n

i=2 wi .
With this restriction, an and gn become increasing functions of w2, . . . , wn and

an(x,w) = sup
(q2,...,qn)∈Qn−1

>0

{an(x,q) | qi ≤ wi , i = 2, . . . , n}

≥ sup
(q2,...,qn)∈Qn−1

>0

{gn(x,q) | qi ≤ wi , i = 2, . . . , n} = gn(x,w),

where q1 = 1 − ∑n
i=2 qi and we have used the fact that ∀q ∈ Q

n≥0, an(x,q) ≥
gn(x, q). �

From the previous result, a famous inequality follows.

Theorem 1.15 (The Young inequality) For any two positive numbers p and q such
that 1/p + 1/q = 1 and for any two nonnegative numbers a and b,

ab ≤ a p

p
+ bq

q
.

Proof Set x1 = a p, x2 = bq , w1 = 1/p, and w2 = 1/q and use Theorem 1.14. �

� Example 1.6 (Power mean inequality) Let x = (x1, . . . , xn) be an n-tuple of
positive real numbers andw = (w1, . . . , wn) an n-tuple of positive weights. For any
z > 0, define the weighted power mean
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U (z) =
(∑n

i=1 wi x
z
i

∑n
i=1 wi

)1/z

.

We want to prove that if y > z, then U (y) ≥ U (z) with the equality holding only
if all x are equal. By direct substitution in the expression above, it is easy to verify
that ∀ j = 1, . . . , n,

w j x
z
jU (y)−z = w

1−z/y
j

(

w j x
y
j

∑n
i=1 wi

∑n
i=1 wi x

y
i

)z/y

.

Recalling that z/y < 1, apply the inequality in Theorem 1.14 to the right-hand side
to obtain

w j x
z
jU (y)−z ≤

(

1 − z

y

)

w j + z

y

w j x
y
j

∑n
i=1 wi

∑n
i=1 wi x

y
i

.

Summing over j and rearranging terms,

∑n
i=1 w j x

z
j

∑n
j=1 w j

≤ U (y)z,

which proves the assertion. Note that the equality in the previous expression requires
that x yj = (

∑n
i=1 wi x

y
i )/(

∑n
i=1 wi ) for all j , that is, that all x are equal.

1.6 Convexity and Concavity

I will omit any systematic treatment of the topics covered in any standard course
of linear algebra. However, as a reference for the reader, I will briefly review some
results that will be particularly useful in the next chapters.

Definition 1.22 (Convex set) The subset A ⊆ R
n is convex if for any couple of

elements a,b ∈ A and any λ ∈ [0, 1] it is λa + (1 − λ)b ∈ A.

In fact, this definition is not restricted only to pairwise combinations: if A is con-
vex and we consider n elements v1, . . . , vn in A, and n nonnegative real num-
bers λ1, . . . , λn such that λ1 + λ2 + · · · + λn = 1, the linear combination
λ1v1 + λ2v2 + · · · + λnvn is again an element of A. This is easy to prove by
induction. The linear combination above is often referred to as convex combination.
Linear subspaces are an example of convex subsets. On convex subsets, it is possible
to define functions with special, and often useful, behaviour.
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Definition 1.23 (Concave and convex functions) Given a convex subset A ⊆ R
n ,

the real-valued function f : A ⊆ R
n → R is concave if for any couple of elements

x1, x2 ∈ A and any λ ∈ (0, 1),

f ((1 − λ)x1 + λx2) ≥ (1 − λ) f (x1) + λ f (x2).

The function f is strictly concave if ∀λ ∈ (0, 1),

f ((1 − λ)x1 + λx2) > (1 − λ) f (x1) + λ f (x2).

The function is convex and strictly convex if the previous inequalities hold with
≤ instead of ≥ and < instead of >, respectively.

Note that a function f (x) defined in a convex set A is concave if and only if − f (x)
is convex. A linear function is both concave and convex, but neither strictly concave
nor strictly convex.

� Example 1.7 (Convexity and concavity of exponential and power functions) Using
Theorem 1.14, for any positive a, any two distinct numbers x, y, and any λ ∈ (0, 1),
it is aλx+(1−λ)y = (ax )λ(ay)1−λ < λax + (1 − λ)ay . Thus, we can conclude that
the exponential function in Definition 1.19 is strictly convex.

Consider a > 1. Using the power mean inequality in Example 1.6, for any two
distinct positive numbers x, y and any λ ∈ (0, 1), U (a) = (λxa + (1 − λ)ya)1/a >

U (1) = λx + (1 − λ)y, hence λxa + (1 − λ)ya > (λx + (1 − λ)y)a . In this
case, the power function in Definition 1.18 is strictly convex. If 0 < a < 1 the
inequality is reversed, with U (a) < U (1), so that the power function is now strictly
concave. For the case with negative exponent f (x) = x−a = 1/xa with a > 0,
using Theorem 1.14, λ/xa + (1−λ)/ya > 1/(xλy1−λ)a > 1/(λx + (1−λ)y)a and
we can conclude that the power function in this case is strictly convex.

Concave and convex functions are characterised by a precise ordering of their
rates of increase along a straight line.

Theorem 1.16 Consider a real-valued function f defined on a convex subset A ⊆
R
n and let x1, x2, and x3 be three aligned elements in A, with x2 belonging to the

segment with end points x1 and x3. Then if f is concave,

f (x2) − f (x1)
‖x2 − x1‖ ≥ f (x3) − f (x1)

‖x3 − x1‖ ≥ f (x3) − f (x2)
‖x3 − x2‖ .

The inequalities are strict if the function f is strictly concave. Replace ≥ with ≤ if
the function f is convex and with < if it is strictly convex.
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Proof Because x2 belongs to the segment with end points x1 and x3

x2 = ‖x2 − x1‖
‖x3 − x1‖x3+

(

1 − ‖x2 − x1‖
‖x3 − x1‖

)

x1 = ‖x3 − x2‖
‖x3 − x1‖x1+

(

1 − ‖x3 − x2‖
‖x3 − x1‖

)

x3.

To prove the assertion, substitute these equations in the inequalities inDefinition 1.23
and rearrange terms appropriately. �

By the previous theorem, if a concave or convex function f is constant at three aligned
points, f (x1) = f (x2) = f (x3), then it is constant on the segment. The following
result generalises the inequalities in Definition 1.23 to a finite set of elements.

Corollary 1.1 (Jensen’s inequality)Consider a set of points (x1, . . . , xn) in a convex
subset of Rn and a set of positive real number (λ1, . . . , λn) such that

∑n
i=1 λi = 1.

Then, if f is concave, f (
∑n

i=1 λixi ) ≥ ∑n
i=1 λi f (xi ) while if f is convex,

f (
∑n

i=1 λixi ) ≤ ∑n
i=1 λi f (xi ). If the function is strictly concave or strictly con-

vex, the previous inequalities hold with ≥ replaced by > and ≤ replaced by <,
respectively.

Proof This can be easily proved by induction. Because of Definition 1.23, the state-
ment clearly holds for n = 2. Assume that it holds for n − 1. Then considering a
concave function f ,

f

(

(1 − λn)

n−1
∑

i=1

λi

1 − λn
xi + λnxn

)

≥ (1 − λn) f

(

n−1
∑

i=1

λi

1 − λn
xi

)

+ λn f (xn).

But since the statement holds for n − 1,

f

(

n−1
∑

i=1

λi

1 − λn
xi

)

≥
n−1
∑

i=1

λi

1 − λn
f (xi ),

and direct substitution proves the assertion for n. The case of a convex function and
the strict versions are proved along very similar lines. �

The extension of the previous inequality to integrals is presented in Corollary 9.5.
The convex cone is a particular kind of convex set defined as the linear combination

with nonnegative coefficients of a set of elements.

Definition 1.24 (Convex cone) The convex cone or polyhedral cone C generated by
the elements {a1, . . . , ak} belonging to R

n is defined as

C =
{

x =
k

∑

i=1

λiai | λi ≥ 0, i = 1, . . . , k

}

.
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The combination with nonnegative coefficients in the above definition is known as a
conical combination. It is easy to see that the convex cone is closedwith respect to the
convex combination of its elements. Thus, according to Definition 1.22, it is a convex
set. In general, a convex cone is not a subspace. However, if for all i = 1, . . . , k,
−ai ∈ C , then C = span{a1, . . . , ak}, that is, C becomes the linear space generated
by the elements that define the cone.

Definition 1.25 (Relative interior) The relative interior C0 of the convex cone C in
Definition 1.24 is defined as

C0 =
{

x =
k

∑

i=1

λiai | λi > 0, i = 1, . . . , k

}

.

The relative interior is the set obtained by considering only conical combinations
with positive coefficients. A remark is necessary to avoid confusion. In Chap. 2,
we introduce the topological notion of interior of a set as those elements of the
set that lie “inside” it (cf. Definition 2.2). The relative interior C0 is, in general,
not the topological interior of the set C . In fact, consider the cone generated by a
single element {a} ∈ R

n with n > 1. This set has no interior points in the standard
(Euclidean) topology in Rn .

Using the notion of inner product, two special cones related to the convex cone
in Definition 1.24 can be defined.

Definition 1.26 (Dual and polar cone) Consider the convex cone C generated by
the set of elements {a1, . . . , ak}. Its dual cone C+ and polar cone C− are defined as

C+ = {

x ∈ R
n | x · y ≥ 0 ,∀y ∈ C

}

,

and
C− = {

x ∈ R
n | x · y ≤ 0 ,∀y ∈ C

}

.

Clearly C− = −C+. That is, all elements of the polar cone can be obtained by
considering the opposite of the elements of the dual cone, and vice versa.

Exercises

Exercise 1.1 Prove by induction that the sum of the first n natural numbers sn =
∑n

k=1 k is equal to n(n + 1)/2.

Exercise 1.2 Derive the formula for the sum of the first n even and odd natural
numbers.
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Exercise 1.3 (Binomial coefficient) Prove by induction that for any a, b ∈ R and
n ∈ N,

(a + b)n =
n

∑

k=0

(

n

k

)

an−kbk,

(

n

k

)

= n!
k!(n − k)! .

Exercise 1.4 With reference to Example 1.4, build the addition and multiplication
tables of the field of integers modulus 3.

Exercise 1.5 Consider a bounded set of real numbers E ⊆ R and let E− = {x |
−x ∈ E} be the set of its opposites. Prove that inf E = − sup E−.

Exercise 1.6 Prove by induction that for x > −1 and any integer n it is (1 + x)n ≥
1 + nx . This is called the Bernoulli inequality.

Exercise 1.7 The Peter–Paul inequality states that ∀a, b ∈ R and ∀ε > 0, 2ab ≤
a2/ε+εb2. Prove it. The name of the inequality derives from the old saying “Robbing
Peter to Pay Paul”: if a is Peter’s wealth and b is Paul’s wealth, this is what one does
by increasing ε. Hint: Recall the expression of the square of the binomial.

Exercise 1.8 Using Theorem 1.13, prove that ∀a, b, c ∈ R>0, (ab)c = acbc and
that if a > c, then ab > cb.

Exercise 1.9 Using Theorem 1.13, prove that by setting a0 = 1 and ax = 1/a−x if
x < 0, then ∀x, y ∈ R and ∀a ∈ R>0 it is ax+y = axay and (ax )y = axy .

Exercise 1.10 Using theAM-GM inequality of Theorem1.14, prove that for any real
r ∈ (0, 1) and x > −1, (1 + x)r ≤ 1 + r x , which is another form of the Bernoulli
inequality. Hint: Consider taking the average of 1 and 1 + x with appropriate
weights.

Exercise 1.11 Given n positive numbers x = (x1, . . . , xn) and associated non-
negative weights w = (w1, . . . , wn), the weighted harmonic mean is defined as
hn(x, x) = (∑n

i=1 wi
)

/
(∑n

i=1 wi/xi
)

. Prove that gn(x, x) ≥ hn(x, x). Hint: Use
the AM-GM inequality on the inverse of the numbers.

Exercise 1.12 Using the AM-GM inequality of Theorem 1.14, prove that if a func-
tion from R to R is convex and admits an inverse, its inverse is concave, and vice
versa.

Exercise 1.13 Prove thatDefinition1.22 implies that for anyn elements (x1, . . . , xn)
in A and any n nonnegative real numbers (λ1, . . . , λn) such that

∑n
i=1 λi = 1, it is

∑n
i=1 λixn ∈ A. Hint: Prove this by induction.
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Exercise 1.14 Using Theorem 1.16, prove that if the function f is constant at three
aligned points, f (x1) = f (x2) = f (x3), then it is constant on the segment containing
the three points.

Exercise 1.15 Given a subset A ⊆ R
n define its dual cone as

C+(A) = {x ∈ V | x · y ≥ 0 , ∀y ∈ A} .

Prove that C+(A) is a convex set, irrespective of whether A is convex or not.

Exercise 1.16 Consider n elements {x1, . . . , xn} ofRn such that xi ·x j ≥ 0, ∀i, j =
1, . . . , n. LetC be the cone generated by these elements andC+ its polar cone. Prove
that C ⊆ C+.



2Topology

2.1 Definition and Basic Properties

This chapter is devoted to the study of the following object.

Definition 2.1 (Topological space) Consider a set X and its power set 2X . Let T ⊆
2X be such that

1. X, ∅ ∈ T ;
2. the union of a finite or infinite number of elements of T is in T ;
3. the intersection of a finite number of elements of T is in T .

Then T is a topology on X , (X, T ) is a topological space, and the elements of T are
called open sets.

Points 2 and 3 of Definition 2.1 can be summarised by saying that the set T is closed
with respect to finite and infinite unions and with respect to finite intersections.
According to the previous definition, on any set X , it is always possible to build the
trivial topology by taking T = {∅, X} and the discrete topology, or finest topology,
by taking T = 2X .

� Example 2.1 (Toy topology) Consider the set X = {a, b, c} and the topology
T = {∅, X, {a}, {a, b}} ⊂ 2X . It is immediate to check that the set T is closed
under intersection and union, so that the couple (X, T ) forms a topological space. In
contrast, neither the set T1 = {∅, X, {a}, {b}} nor the set T2 = {∅, X, {a, b}, {b, c}}
can be used to define a topology on X .

In some sense, the set T is meant to define the degree of proximity of the different
elements of X . Generally speaking, the higher the number of open sets in which
two elements appear together, the “nearer” they can be considered. In fact, if two
elements a and b appear together in every open, nonempty set, a new set X̃ can be
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26 2 Topology

considered where the two elements are replaced by their union and an equivalent
topology T̃ defined in X̃ , which is in one-to-one correspondence with T .

The notion of a topological space comes with a number of other related notions.
Many of them are collected in the following definition and are likely to be familiar
to the reader.

Definition 2.2 Denote with Ac = {x ∈ X | /∈ A} the complement of A then

1. A is closed if Ac is open;
2. A is a neighbourhood of x if A ∈ T and x ∈ A; a neighbourhood of the element

x is generically denoted with N (x);
3. x is a limit point of A if ∀N (x), ∃y ∈ A such that y ∈ N (x) and y �= x ; the set

of all limit points of A is the derivative set of A and is denoted with DA1 ;
4. x is an interior point of A if ∃N (x) such that N (x) ⊆ A; The set of interior points

of A is denoted by int A or A0;
5. x is an exterior point of A if x ∈ int Ac;
6. x is a boundary point of A if any neighbourhood of x contains an element of A

and an element of Ac; ∂A denotes the boundary of A, that is the set of boundary
points of A; clearly ∂A = ∂Ac;

7. the closure of A is Ā = A ∪ DA;
8. the set B is dense in A if B ⊆ A and B̄ = A.

Based on the definitions above, it is immediately apparent that if A ⊆ B then
DA ⊆ DB, Ā ⊆ B̄, and int A ⊆ int B. A set composed of a single element, called
singlet, cannot have its unique element as a limit point. However, this does not mean
that it has no limit points (Fig. 2.1).

� Example 2.2 (Limit points of a singlet) Consider a set X with at least two elements
and the singlet A = {a} ⊂ X . Then T = {∅, X, A} is a topology on X . In this
topology, the only neighbourhood of any point x ∈ X \ A is X itself. The intersection
of X with A is the same set A, which, by assumption, does not contain x . Thus
∂A = DA = X \ {a} = Ac.

� Example 2.3 (Toy topology) In the topology of Example 2.1, {a} is an open set
because it belongs to T , {b} is a closed set because its complement, {a, b}, belongs
to T , and {b} is neither open nor closed. The limit points of the set A = {a, b} are
b and c. In fact, the intersection with A of all neighbourhoods of these points (X
in the case of c and X and {a, b} in the case of b) contains a, which is different
from b and c. It follows that Ā = X . The points of A are internal points, as A is
a neighbourhood of both. That is, int A = A. The boundary of A is made by the
point c. Its only neighbourhood, X , has nonempty intersections with both A and its
complement. Thus ∂A = {c}. Notice that ∂A = Ā/ int A.

1 In some texts the derivative set of A is denoted with A′. I find this notation confusing and will
never use it in this book.
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Fig. 2.1 The abstract
set-wise relation between the
set A, its interior A0, its
boundary ∂A, and the part of
the derivative set that does
not belong to the set, DA \ A

Given a set A and a point x ∈ X , one has x ∈ int A or x ∈ int Ac or x ∈ ∂A = ∂Ac.
If x ∈ ∂A, any N (x) has a nonempty intersection with A and with Ac. So, if x ∈ ∂A,
but x /∈ A, then x ∈ DA. That is ∂A = Ā \ int A. The following theorem provides
a basic characterisation of open sets.

Theorem 2.1 A is open if and only if A = int A.

Proof If A is open, then it is a neighbourhood of each of its points. Then all its
points are interior points. Conversely, if A = int A then A is the union of the interior
neighbourhood of all its points and, consequently, it is an open set. �

The interior points of any set A form an open set. In fact, int A is a union of open
sets, more precisely, of all open sets interior to A. If A is open, then ∂A ⊆ Ac. If
A is closed, then ∂A ⊆ A, because Ac is open. In general, A ∪ ∂A is closed, as
its complement is int Ac, which is open. Also ∂A is closed, since its complement is
int A ∪ int Ac, which is the union of two open sets. Since ∂A = Ā \ int A, if A is
open, it is ∂A = DA \ A. Closed sets can be characterised by the following result.

Theorem 2.2 A is closed if and only if DA ⊆ A.

Proof Let A be closed and consider an element x ∈ DA. Assume x ∈ Ac. Since
Ac is open, x is an internal point of Ac. Thus, there is a neighbourhood of x with
no points of A, that is, x /∈ DA, which is a contradiction. Thus Ac ∩ DA = ∅ and
DA ⊆ A. Conversely let A be such that DA ⊆ A. Consider a point x ∈ Ac. If
x ∈ ∂Ac, then any neighbourhood of x has a nonempty intersection with A. This
would imply that x ∈ DA, which is not possible because x does not belong to A.
Then Ac does not contain any boundary points. This means that all points of Ac are
interior, that is, Ac is open and, consequently, A is closed. �

Since the empty set is a subset of any set, it follows that if DA = ∅, then A is closed.
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� Example 2.4 (Topology of nested sets) Consider an infinite set X and a strictly
nested sequence of subsets A = {An} such that An ⊂ An+1 ⊂ X . Assume also
that the number of elements of A1 is greater than one. It is immediate to check that
T = {∅, X}∪A is closed under union and intersection, so that (X, T ) is a topological
space. First, we want to prove that ∂An = Ac

n . Since An is open, ∂An ⊆ Ac
n . For

any a ∈ Ac
n , either there exists a k > n such that a ∈ Ak or a ∈ ∩k Ac

k . In the first
case, the neighbourhoods of a are the A j with j ≥ k. In the second case, the only
neighbourhood of a is the space X itself. In both cases, all neighbourhoods of a have
a nonzero intersection with An and Ac

n so that a ∈ ∂An . Thus, Ac
n ⊆ ∂An and the

statement follows. Next, we want to prove that DAn = X . For the previous result
and because An is open, it is Ac

n = ∂An = DAn \ An , which implies Ac
n ⊆ DAn .

Take a ∈ An . Now take a neighbourhood of a, let it be Ah . Then Ah ∪ An is equal
to Ah or to An , depending on which between h or n is the largest, and, in both cases,
it contains more than one element of An , thus An ⊆ DAn .

Definition 2.1 stipulates a specific behaviour of open sets with respect to inter-
section and union. As the following theorem clarifies, this stipulation also implies a
specific behaviour for closed sets. The theorem is based on the set-theoretic property
of the complement of the union of sets: (A ∪ B)c = Ac ∩ Bc.

Theorem 2.3 The intersection of any number of closed sets is closed. The union of
a finite number of closed sets is closed.

Proof Consider a collection of closed sets {Ai }. Thus, {Ac
i } are open. Now, for the

definition of topology, the union of any number of open sets ∪i Ac
i is open. Thus

(∪i Ac
i )

c = ∩i Ai is closed. Analogously, the intersection of a finite number of open
sets ∩i Ac

i is open. Thus, (∩i Ac
i )

c = ∪i Ai is closed. �

The previous theorem suggests that one could define a topology starting from the
definition of its closed sets and then introduce open sets as their complements.

In Definition 1.11, we introduced the notion of global maximum and minimum
of a function whose image is an ordered set. Using the topological structure of the
function domain, we can define the local version of these notions.

Definition 2.3 (Local maxima and minima) Consider the topological space (X, T ),
an ordered set (Y, ≤), and the function f : A ⊆ X → Y . The element a ∈ A is
a local maximum of the function f in A if there exists a neighbourhood N (a) of a
such that ∀x ∈ N (a) ∩ A it is f (x) ≤ f (a). Analogously, the element a ∈ A is
a local minimum of the function f in A if there exists a neighbourhood N (a) of a
such that ∀x ∈ N (a) ∩ A is f (a) ≥ f (x).

A strict local maximum or strict local minimum is defined using N (a) \ {a} insetad
of N (a) and the strict inequalities < and >, respectively. Local maxima and minima
are collectively denoted as extrema, or extremal points, and the values the function
takes at these points are called extremal values.
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� Example 2.5 (Toy topology) With reference to Example 2.1, define the function
f : X → R, with f (a) = 2, f (b) = 3, and f (c) = 4. Then a, b, and c are all local
maxima; b and c are strict local maxima; and a is a strict local minimum.

2.2 Base of a Topology

The set T could contain many elements and one can be interested in finding a parsi-
monious definition of them. The idea is similar to the way things operate in a linear
space: all vectors in the space can be generated as linear combinations of a much
smaller set of vectors.2

Definition 2.4 Consider the topological space (X, T ). The set B ⊆ T is a base of
the topology if any open set is the union of elements of B.

The set B generates the topology through the union of its sets. To denote that the
base B generates the topology T , we write T = ∪B = {∪αBα | Bα ∈ B}.

� Example 2.6 (Base of toy and nested topology) Sometimes, the notion of base is
not particularly useful. In the toy topology of Example 2.1, any base should contain
the sets {a}, {a, b}, and X . Thus, the base is equivalent to the topology. The same
applies for the topology in Example 2.4. If we remove the open set Ah from the
topology T , then there is no way of obtaining it back as the union of other open
sets. Thus, also in this case, the only base that generates the topology is the topology
itself.

How many sets are necessary to build a given topology? The next theorem goes
in the direction of answering this question while providing a more useful definition
of a base.

Theorem 2.4 Consider the topological space (X, T ). The set B ⊆ T is a base of
the topology T if and only if for any A ∈ T and any x ∈ A, there exists a B ∈ B

such that x ∈ B ⊆ A.

Proof IfB is a base of the topology, then any neighbourhood of x , N (x) ⊆ A, which
exists because A is open and x is interior, is generated by the union of elements of
B, so there should be a Bx ∈ B such that x ∈ Bx ⊆ A.

On the contrary, take A ∈ T . By assumption, for any x , there exists a Bx ∈ B

such that x ∈ Bx ⊆ A. Because A = ∪x Bx , A is the union of elements of B. This is
true for any A ∈ T , so B is a base of the topology. �

2 As already said, the reader should be acquainted with the notion of linear space. If this is not the
case, he/she can ignore the sentence before this footnote without any harm.
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The previous theorem allows for a redefinition of the notion of neighbourhood based
on the elements of the base. For any point x ∈ X and any neighbourhood N (x) ∈ T ,
there is another neighbourhood in the base, Bx ∈ B, contained in N (x). Thus, if we
have a base B and are required to take a neighbourhood of a point, we can safely
assume that this neighbourhood belongs to B.

Often the problem is not whether a set is a base for a given topology, that is,
if a given T can be obtained via unions of a smaller number of sets. Rather, one
is interested in knowing if the elements of a set B ⊆ 2X are enough to generate
a topology on X . We can derive a theorem that provides sufficient and necessary
conditions for this to be the case. It is based on the following basic result in set
theory.

Lemma 2.1 If A = ∪ j C j and B = ∪k C ′
k , then A ∩ B = ∪ j,kC j ∩ C ′

k .

Proof For any x ∈ A ∩ B, there exist a C j and a C ′
k such that x ∈ C j and x ∈ C ′

k ,
that is x ∈ C j ∩ C ′

k , then A ∩ B ⊆ ∪ j,kC j ∩ C ′
k .

On the contrary, if there are j and k such that x ∈ C j ∩C ′
k , then x ∈ A∩ B. Thus

∪ j,kC j ∩ C ′
k ⊆ A ∩ B.

The statement follows from the previous two observations. �

Now for the result about the base of a topology.

Theorem 2.5 Consider a set X �= ∅ and B ⊆ 2X . Then B is the base of a topology
on X if and only if

1. the union of elements of B covers X, that is X = ∪αBα , Bα ∈ B, and
2. for any couple of sets B1, B2 ∈ B, if x ∈ B1 ∩ B2 there exists B3 ∈ B such that

x ∈ B3 ⊆ B1 ∩ B2.

Proof First, assume that B generates a topology T on X . Because X ∈ T , X is the
union of elements in B and point 1 is satisfied. Moreover, for the properties of the
topology, because B1 and B2 in the statement are open, B1∩B2 is open as well. Thus,
any x ∈ B1 ∩ B2 has a neighbourhood N (x) contained in the intersection and, for
Theorem 2.4, there exists an element of the base Bx that contains x and is contained
in the neighbourhood, x ∈ Bx ⊆ N (x) ⊆ B1 ∩ B2. This proves point 2.

On the contrary, assume that 1 and 2 are valid and consider T as the set generated
by all the unions of sets in B. Now X ∈ T according to hypothesis 1 and ∅ ∈ T
because it is the union of zero elements ofB.We have to prove that the set T generated
by the unions of the elements of B is closed with respect to the finite or infinite union
and with respect to the finite intersection. Consider a set (finite or infinite) {Aα} of
elements in T . It is clear that since any Aα is the union of sets of B, also ∪αAα is the
union of sets of B and ∪αAα ∈ T . So T is closed under the (finite or infinite) union
of sets. Now take a finite sequence {A j } of sets in T and consider x ∈ ∩J

j=1 A j .
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Since for each j it is A j = ∪α j Bα j ,

∩J
j=1A j = ∩J

j=1 ∪α j Bα j = ∪α1,...,αJ Bα1 ∩ Bα2 ... ∩ BαJ .

Then there exists a set of indexes (α1, α2, ..., αJ ) such that x ∈ Bα1 ∩ Bα2 ... ∩ BαJ .
This implies that there is a Bx ∈ B such that x ∈ Bx ⊆ ∩J

j=1Bα j . We can thus write

∩J
j=1A j = ∪x Bx so that∩J

j=1A j ∈ T and T is closed under intersection. Therefore,
T is a topology on X . �

� Example 2.7 (A topology on N) Let N = {1, 2, 3, . . .} be the set of natural
numbers and O ⊂ N the set of odd numbers. Consider the collection of sets
B = {{n, n + 1} | n ∈ O} ∪ {{n} | n ∈ O} ⊆ 2N. First, the whole space N can be
written as union of elements of B. Second, the intersection of two elements of B is
either the empty set or an element of B. Thus, the requirements of Theorem 2.5 are
satisfied and we can conclude that B is the base of a topology T on N. Exercise 2.7
uses this topology.

In general, the base of a topology is not unique (see Exercise 2.6). Since multiple
bases are possible, it is useful to have a criterion to know if two bases B1 and B2 are
equivalent, that is if they generate the same topology.

Theorem 2.6 Consider a set X �= ∅, and letB1 andB2 be the bases of two topologies
T1 and T2. Then the two topologies are the same if and only if

• ∀B ∈ B1 and ∀x ∈ B, ∃B ′ ∈ B2 such that x ∈ B ′ ⊆ B
• ∀B ′ ∈ B2 and ∀x ∈ B ′, ∃B ∈ B1 such that x ∈ B ⊆ B ′

Proof Assume that the two topologies are the same. Then ∀B ∈ B1 is an union of
elements of B2, because B ∈ T1 = T2. At the same time, ∀B ′ ∈ B2 is an union of
elements of B1, so that the two conditions immediately follow.

Now assume that the two conditions are valid and take A ∈ T1. Then A = ∪αBα

with Bα ∈ B1 and ∀x ∈ A, ∃Bα(x) such that x ∈ Bα(x). By hypothesis, ∃B ′
x ∈ B2

such that x ∈ B ′
x ⊆ Bα(x). As a consequence, it is A = ∪x∈AB ′

x and A ∈ T2. It
follows that T1 ⊆ T2. Analogously, it can be shown that T2 ⊆ T1 and the statement
is proved. �

2.2.1 Countability

Until now, no assumptions have been made about the number of elements in T and
B. If the elements of T are finite, little is gained by introducing a base B, which
will, in turn, have a finite number of elements (see Example 2.6). The possibility of
using a base becomes interesting when the number of elements of T is infinite, in
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particular uncountably infinite. In this case, we can be interested in describing the
topology using a countable subset of open sets.

Definition 2.5 (First-countable topological space) The topological space (X, T ) is
first-countable if ∀x ∈ X there exists a countable set of open sets U(x) = {Un(x)}
such that for any neighbourhood N (x) of x , x ∈ Uj (x) ⊆ N (x) for some Uj (x) ∈
U(x).

This means that the behaviour of the topology near any point x can be described
using only a countable set of neighbourhoods. A stronger version of the same idea
is introduced by the following definition.

Definition 2.6 (Second-countable topological space) The topological space (X, T )

is second-countable if it admits a countable base.

Obviously, a second-countable space is also first-countable. The opposite is not true.
For example, the discrete topology defined over a set X is always first-countable,
as for any element x ∈ X , the singlet {x} constitutes a countable (finite) local base.
However, if the number of elements of X is uncountable, the discrete topology is not
second-countable.

2.2.2 EuclideanTopology

The next definition introduces an important topology on the set of real numbers
naturally induced by its order relation.

Definition 2.7 (Euclidean topology on R) Let B = {I(a,b) | a, b ∈ R, a < b} be the
collection of all open intervals I(a,b) = {x ∈ R | a < x < b}. The set B is the base
of the Euclidean topology on R.

The fact that B is the base of a topology follows directly from Theorem 2.5. In fact,
any real number belongs to at least one element of B and if x ∈ I(a,b) ∩ I(a′,b′) then
x ∈ I(a′′,b′′) where a′′ = max{a, a′} and b′′ = min{b, b′}. This is the topology to
which every reader should be used. The open sets of this topology are the unions of,
possibly infinitely many, open intervals I(a,b). The reason for the name “Euclidean”
will be clarified in Example 3.4. The definition of a topology in the ordered set R

provides a topological characterisation of the supremum and infimum.

Theorem 2.7 (Supremum and infimum are in the boundary) Consider a subset of
real numbers A ⊆ R. If sup A or inf A exist, they belong to ∂A.

Proof Let A be bounded above. Then, for the property of real numbers, there exists
x = sup A. Any neighbourhood (in the base) of x , that is, any open interval (a, b)
such that a < x < b, contains points of A, because otherwise there would be an
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upper bound lower than x , and points of Ac, because otherwise x would not be an
upper bound. This means that x ∈ ∂A. In the same way, if A is bounded below, then
it is inf A ∈ ∂A. �

Alternatively, the Euclidean topology can be defined using the absolute value.

� Example 2.8 (Euclidean topology induced by the absolute value) Consider the set
R and the set of all symmetric intervals B(x, r) = (x − r, x + r) with x, r ∈ R and
r > 0. First of all, notice that all B(x, r) are open sets according to Definition 2.7.
Also, for any open interval I(a,b) and any x ∈ I(a,b), there exists a r such that
(x − r, x + r) ⊆ I(a,b), that is B(x, r) ⊆ I(a,b). Thus, according to Theorem 2.6, the
Euclidean topology can be generated by the set of all symmetric intervals.

Symmetric intervals are directly related to the absolute value |.| onR by the simple
observation that B(x, r) = {y ∈ R | |y − x | < r}. In this way, the absolute value
induces a topology on the set of real numbers and this topology is precisely the
Euclidean topology of Definition 2.7. These symmetric intervals are a special case
of “open balls” of radius r and centre x introduced in Theorem 3.5. They hint to a
more general relation between norms (such as the absolute value) and topology that
will be studied in Chap. 4.

Two important properties of the Euclidean topology are established in the follow-
ing. Both follow from the fact that the set of rational numbers Q is countable (see
Theorem 1.7) and dense in R (see Theorem 1.11).

Theorem 2.8 The Euclidean topology is second-countable.

Proof Consider the set of open intervals with rational boundaries, B
′ = {I(q,r) |

q, r ∈ Q, q < r}. Since Q is dense in R, if two intervals with real boundaries I(a,b)

and I(c,d) overlap, then any point in their intersection x ∈ I(a,b) ∩ I(c,d) is contained
in an open interval with rational boundaries x ∈ I(q,r) ⊆ I(a,b) ∩ I(c,d). The opposite
is also easy to see. Thus, according to Theorem 2.6, B′ and B in Definition 2.7 define
the same topology. However, the elements in B

′ are an infinite subset of Q×Q; thus,
according to Theorem 1.5, they are countable. �

Theorem 2.9 Any open set in the Euclidean topology can bewritten as the countable
union of disjoint intervals.

Proof Let A ⊆ R be open. Take x ∈ A and let Ix be the largest interval such that
x ∈ Ix ⊆ A. Next take y ∈ A \ Ix and let Iy be the largest interval such that
y ∈ Iy ⊆ A \ Ix . Clearly Ix ∩ Iy = ∅. Repeat this procedure finding a covering
A = ∪α Iα . These are all disjoint intervals. In each interval, there is at least one
different rational number; thus, they cannot be more than countable. �
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2.3 Cover and Compactness

Compact sets play an important role in calculus and optimisation theory. This section
discusses their most general definition in terms of a generic topology. The starting
point is the notion of cover.

Definition 2.8 (Cover) A cover of a set A is a collection of open sets {Cα} ⊆ T such
that A ⊆ ∪αCα . Given a cover {Cα}, a subset {C ′

α} ⊆ {Cα} which is still a cover of
A is a subcover of {Cα}.

Then we have the following definition.

Definition 2.9 K ⊆ X is compact if it is possible to extract a finite subcover from
any cover of K .

Obviously, any set admits a finite cover, that is, a cover made of a finite number of
sets. Consider the whole space X : it covers any set. However, a set that is not compact
will have at least one infinite cover that does not admit a finite subcover. The empty
set is compact by definition.

� Example 2.9 (Compact sets in trivial and discrete topologies) In the trivial topol-
ogy (X, T ) with T = {∅, X}, any set is compact. The only cover of any set that
is nonempty is X , and it is finite. In general, in any topology with a finite number
of open sets, any set is compact. In the discrete topology (X, 2X ), any set made of
a finite number of elements is compact, but any set made of an infinite number of
elements is not compact. Indeed the cover made by the union of the singlets of all
the elements of the set does not admit a finite subcover.

The collection of compact sets in a topology is closed with respect to union, as
the following theorem clarifies.

Theorem 2.10 The union of two compact sets is compact.

Proof Let K1, K2 be compact. Consider a cover {Cα} of K1 ∪ K2. Then {Cα} is a
cover of both K1 and K2. Now, let {Cα1} be a finite subcover of K1 and {Cα2} a finite
subcover of K2. Thus {Cα1} ∪ {Cα2} is a finite subcover of K1 ∪ K2. �

In any topological space, the properties of compactness and closure are related to
one another.

Theorem 2.11 A closed subset of a compact set is compact.

Proof Let K be compact and C ⊆ K be closed. Let {Vα} be a cover of C , since C is
closed, {Vα,Cc} is a cover of K . Since K is compact, there exists a finite subcover,
name it {V ′

j ,C
c}. Then {V ′

j } is a finite subcover of C . �
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The previous theorem does not mean that, in general, compact sets are closed. Coun-
terexamples are provided in Example 2.9 and Exercise 2.13. This is, however, true
in a special class of topologies that we will analyse in the next section.

� Example 2.10 (Compact sets in left- and right-order topologies) Two special
topologies are available on the set of real numbers (or any totally ordered set). For
any a ∈ R, define I−

a = {x ∈ R | x < a} and I+
a = {x ∈ R | x > a}. The left-order

topology (R, <) is the topology generated by the base {I−
a | a ∈ R}, while the

right-order topology (R, >) is generated by the base {I+
a | a ∈ R}. For any a > b,

I−
a ∪ I−

b = I−
b and I−

a ∩ I−
b = I−

a . Analogously, I+
a ∪ I+

b = I+
a and I+

a ∩ I+
b = I+

b .
Thus, the left- and right-order topologies are nested topologies; see Example 2.4.
The elements of their bases and the whole space R are the only open sets of these
topologies.

A set A ⊂ R is compact in the left-order topology if and only if it has a maximum.
In fact, if ā = sup A and ā ∈ A, then any cover should contain a set I−

a such that
a > ā and, consequently, I−

a is a finite subcover. Conversely, if ā /∈ A, the cover
∪∞
n=1 I

−
ā−1/n does not admit any finite subcover. Along the same lines, it is easy to

show that a set is compact in the right-order topology if and only if it has a minimum.

2.3.1 Hausdorff Spaces

In this section, we focus on special topological spaces that take their name from Felix
Hausdorff, a German mathematician who was active in the late nineteenth and early
twentieth centuries.

Definition 2.10 (Hausdorff topology) The topological space (X, T ) is ofHausdorff
if ∀x, y ∈ X , x �= y there exist N (x) and N (y) such that N (x) ∩ N (y) = ∅.

The discrete topology is of Hausdorff, whereas the trivial topology is not if there are
at least two elements in the space.

� Example 2.11 (The toy topology is not Hausdorff) Consider the toy topology in
Example 2.1. There are no neighbourhoods of b, or of c, which do not contain a.
Thus, we can conclude that this topology is not of Hausdorff type.

The basic idea of Hausdorff spaces is that you can separate, topologically speak-
ing, any pair of elements. This property is very natural and is connected with the
idea of proximity that we derive from the physical world: irrespective of how close
two distinct points are in space, there is always some space between them. For our
purposes, the practical effect of the Hausdorff property is twofold: on the one hand,
it strengthens the relationship between compactness and closure, and on the other
hand, it enriches the definition of limit point.
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Theorem 2.12 In a Hausdorff space, if K is compact, it is closed.

Proof Consider a point y ∈ Kc. Due to Hausdorff, ∀x ∈ K there exists a neigh-
bourhood N (x) of x and a neighbourhood Nx (y) of y such that N (x) ∩ Nx (y) = ∅.
Now ∪x N (x) is a cover of K . Let {N (xi )}, i = 1, . . . , I be a finite subcover and
consider

A = ∪I
i=1N (xi ) and B = ∩I

i=1Nxi (y).

Note that B is a neighbourhood of y and B ∩ A = ∅ by construction. Since K ⊆ A,
B ∩ K = ∅, and hence y ∈ int Kc. As this is true for any y ∈ Kc, it follows that Kc

is an open set, so that K is closed. �

A direct consequence of the previous theorem is that, in Hausdorff’s space, the
compactness works much more smoothly with the set-wise intersection and the
collection of compact sets is also closed under intersection.

Corollary 2.1 In a Hausdorff space, the intersection of a closed set with a compact
set is compact.

Proof If C is closed and K is compact, C ∩K is closed because it is the intersection
of two closed sets. Thus, according to Theorem 2.11, it is a closed subset of a compact
set. Hence, it is compact. �

Corollary 2.2 In a Hausdorff space, the intersection of compact sets is compact.

Proof Let K1, K2 be compact, then they are closed and thus K1 ∩ K2 is closed.
Since this is a closed subset of a compact set it is compact. �

Another important property derived from Theorem 2.12 concerns the intersection of
non-disjoint compact sets.

Theorem 2.13 Let (Kn) be a sequence of compact sets in a Hausdorff space. If for
any finite subsequence (Kn1 , ..., KnL ), ∩L

j=1Kn j �= ∅, then ∩nKn �= ∅.

Proof We prove this by contradiction. Consider K1. Assume that no point of K1
belongs to all {Kn}, that is K1 ∩ (∩n

2Kn) = ∅. Because of Hausdorff, the sets Kc
n

are open. Consequently, the sequence {Kc
n≥2} is a cover of K1, i.e. K1 ⊆ ∪n≥2Kc

n .
Now let {Kc

n1 , ..., K
c
nL } be the finite subcover of K1. Since K1 ⊆ Kc

n1 ∪ ...Kc
nL ,

K1 ∩ (Kn1 ∩ ...KnL ) = ∅, which contradicts the hypothesis. Thus, any compact set
has a nonempty intersection with the intersection of all other sets and the statement
follows. �

In other terms, a countable sequence of non-disjoint and nonempty compact sets
identifies a nonempty set of points. This result will be exploited in Sect. 5.2 to prove
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the convergence of Cauchy sequences in metric spaces through the following simple
corollary.3

Corollary 2.3 Let (Kn) be a sequence of compact sets in a Hausdorff space, such
that Kn �= ∅ for any n and Kn+1 ⊆ Kn. Then ∩nKn �= ∅.

As mentioned before, the second advantage of working in a Hausdorff space is to
obtain a richer definition of limit points.

Theorem 2.14 In a Hausdorff space, if x ∈ DA, then any neighbourhood of x
contains an infinite number of elements of A.

Proof Assume ∃N (x) such that only a finite number {y1, ..., yL} of elements of A
different from x belongs to it. Let N j (x), with j = 1, ..., L , be a neighbourhood of
x that does not contain y j . Consider ∩L

j=1N j (x) ∩ N (x) = N∗(x). Now N∗(x) is a
neighbourhood of x that does not contain any element of A apart from x , so x cannot
be a limit point of A, which contradicts the hypothesis. �

The previous theorem helps in clarifying the relationship between limit points and
compact sets in any Hausdorff space.

Theorem 2.15 In an Hausdorff space consider a compact set K . Any infinite subset
A ⊆ K has at least one limit point (DA �= ∅) and all the limit points are inside K
(DA ⊆ K).

Proof Assume that DA∩ K = ∅, so that A has no limit points in K . Then ∀x ∈ K ,
∃N (x) neighbourhood of x , which contains a finite number of elements of A. The
union of these neighbourhoods covers the set K , K ⊆ ∪x N (x). Because K is com-
pact, there exists a finite subcover {N (x1), ..., N (xL)} such that K ⊆ ∪L

j=1N (x j ).

But since each N (x j ) contains only a finite number of elements of A, also∪L
j=1N (x j )

contains a finite number of elements of A, which is absurd because A is infinite and
A ⊆ ∪L

j=1N (x j ).

The second part of the theorem is obvious because, in a Hausdorff space, if K is
compact, it is closed and thus contains all its limit points. �

In a generic Hausdorff space, the inverse of Theorem 2.15 is not true. That is, even
if any infinite subset of a set A has at least one limit point, and all limit points are in
A, we cannot conclude that A is compact. To do so, we need the further assumption
of second-countability.

3 This corollary could be seen as a generalisation of Theorem 1.8, if we only knew that the closed
intervals of real numbers were compact. This is actually the case in Euclidean topology; see Theo-
rem 2.18.
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Theorem 2.16 (Bolzano–Weierstrass) Let (X, T ) be aHausdorff, second-countable
topological space. If K ⊆ X is such that, for any infinite subset E ⊆ K, it is DE �= ∅
and DE ⊆ K, then K is compact.

Proof Proving the theorem is equivalent to prove that if K is not compact, then
there exists a set A ⊆ K , with an infinite number of points, such that DA = ∅ or
DA � K .

If K is not compact there exists a cover {Vα}, of which no finite subcover can
be found. However, because the space is second-countable, it is always possible to
find a countable subcover. To see it, let {Bn} be the elements of the countable base
of the space. For each Bn , if there exists a Vαn such that Bn ⊆ Vαn , set Wαn = Vαn ,
otherwise set Wαn = ∅. The set {Wαn } is at most countable and it is a cover of K .
Indeed, take any x ′ ∈ K . Then x ′ belongs to some V ′

α and, for the definition of base,
there is some Bn′ such that x ′ ∈ Bn′ ⊆ V ′

α .
From the hypothesis, it is not possible to extract a finite subcover from ∪nWαn .

Consider xn ∈ K and xn /∈ ∪n
j=1Wn for each value of n. Consider the set E =

{x1, ..., x j , ...}. This set is infinite, because for any finite set of points A ⊆ K , there
is an m such that A ⊆ ∪m

j=1Wj , but this is absurd for E , because xm′ /∈ ∪m
j=1Wj

if m′ ≥ m. Now, if DE = ∅, the theorem is proved. Otherwise, let x∗ ∈ DE and
assume x∗ ∈ K . Then ∃Wn∗ such that x∗ ∈ Wn∗ . Since the space is Hausdorff, this
implies that there exists an infinite number of points of E in Wn∗ . But this is absurd,
because for ∀k > n∗, it is xk /∈ Wn∗ . �

2.3.2 Compactness in EuclideanTopology

Theorem 2.8 already established that the Euclidean topology is second-countable.
The following result is also easy to prove.

Theorem 2.17 The Euclidean topology on R is of Hausdorff.

Proof Take two real numbers x, x ′ ∈ R, x < x ′. Then there is always a third real
number x ′′ such that x < x ′′ < x ′. Consider the open intervals (x − 1, 0.75 x +
0.25 x ′′) and (0.75 x ′ + 0.25 x ′′, x ′ + 1) which are, respectively, a neighbourhood of
the smallest and largest point. The intersection of the two intervals is empty. �

Therefore, Theorem 2.16 applies to the Euclidean topology.

Corollary 2.4 (Bolzano–Weierstrass in R) In the Euclidean topology on R a set K
is compact if and only if any infinite subset of K has at least one limit point and all
its limit points belong to K .

A further straightforward consideration is that, in the Euclidean topology, any com-
pact set is bounded. To see it, note that any set can be covered by elements of the base.
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This cover admits a finite subcover, that is a cover by a finite number of intervals.
Because any interval is bounded, so is the set. In fact, using Theorem 2.16, we can
prove more.

Theorem 2.18 (Heine–Borel theorem on real numbers) In the Euclidean topology
on R, any bounded closed set is compact.

Proof First, notice that any closed and bounded set is contained in a closed interval
[a, b] = {a ≤ x ≤ b|x ∈ R}. If we can show that [a, b] is compact, then we prove
the theorem because the original set is just a closed subset of a compact set.

To prove that the closed interval [a, b] is compact, we will prove that any infinite
set of points in the interval has at least one limit point (see Theorem 2.16). Since
the interval is closed, we already know that all its limit points belong to it. Take any
infinite subset A = {xn} ⊂ [a, b]. Split the closed interval into two by considering
the mid point c = (b − a)/2. Then at least one of the two intervals [a, c] and
[c, b] contains an infinite number of elements of A, otherwise A would be finite,
contradicting the hypothesis. Let I1 be this interval. Repeat the splitting procedure
on I1, and call I2 one of its “halves” that contains an infinite number of points of
A. In this way, a nested sequence of closed intervals {Ik} is built. The length of the
interval Ik is (b−a)/2k . According to Theorem 1.8, there exists a x∗ ∈ ∩k Ik . We can
prove that x∗ ∈ DA. Indeed consider the neighbourhood N (x∗) = (x∗ − δ, x∗ + δ)

for some δ > 0. For sufficiently small δ, it is N (x∗) ⊆ [a, b]. Notice that if k is
sufficiently large, then (b − a)/2k < δ, which implies that Ik ⊆ N (x∗). Thus, an
infinite number of elements of A is in N (x), proving the statement. �

It is important to stress that the previous theorem has been specifically derived for
the Euclidean topology.4 As the next example shows, the fact that a bounded closed
set is a compact set is not generally true for any Hausdorff second-countable space.

� Example 2.12 (Bounded closed sets are not compact in Q) Let B
′ be the set of

open intervals of rational numbers I(a,b) = {x ∈ Q| a < x < b} with a, b ∈ Q. It
is immediate to see that B

′ is a base of a topology defined on Q. This topology is
second-countable (see the proof ofTheorem2.8).Given twodistinct rational numbers
x, x ′ ∈ Q, x �= x ′, there is always a third rational number x ′′ such that x < x ′′ < x ′.
Consequently, it is immediate to show that the topology (Q, ∪B

′) is of Hausdorff
type.

Now in (Q,∪B
′) consider the set of rational numbers E = {x ∈ Q, 2 < x2 < 3}.

Define
√
m|n the n-digit truncation of the square root ofm and

√
m|n = √

m|n+10−n

the n-digit rational number obtained rounding up the n-digit of
√
m. It is

√
3|n <

√
3

and
√
2|n ≥ √

2. Notice that {x ∈ Q|x2 > 3} = ∪∞
n=1{x ∈ Q|x >

√
3|n} and

{x ∈ Q|x2 < 2} = ∪∞
n=1{x ∈ Q|x <

√
2|n} are open. Thus Ec = {x ∈ Q|x2 >

3} ∪ {x ∈ Q|x2 < 2} is open too and then E is closed. To determine whether the

4 In Chap. 4 we will see that it is also valid in R
n when a norm topology is adopted.
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set E is compact or not, consider the sequence S = {√3|n}. S is countable and it is
S ⊂ E . However, S does not have any limit point in E (or in Q). We can conclude
that the set E is not compact. Indeed ∪∞

n=1(
√
2|n, √3|n) is an infinite cover of E ,

but any finite subcover does not cover it.
Since E is closed but not compact, any set that contains E , for instance the interval

[0, 4], cannot be compact (see Theorem 2.11).

2.3.3 The Extended Real Number System

Although the real line, that is, the entire spaceR, is not a compact set in the Euclidean
topology, it is sometimes useful to make it compact. There are several possible
procedures that can be adopted to do it, depending on what one is looking for.

Definition 2.11 (Extended real numbers) Consider the extended set R̄ = R ∪
{+∞, −∞}. The point+∞ is greater than any other real number and belongs to any
set that is unbounded above. The point −∞ is lower than any other real number and
belongs to any set that is unbounded below. We assume that ∀x ∈ R, x +∞ = +∞,
x −∞ = −∞, x/±∞ = 0, and x · (±∞) = ±∞ if x > 0, while x · (±∞) = ∓∞
if x < 0.

The expressions 0 · (±∞) and ∞ − ∞ remain undetermined. The intervals of type
(a,+∞) = {x ∈ R|x > a} are a basis for the neighbourhoods of +∞ and those of
type (−∞, a) = {x ∈ R|x > a} are a basis for the neighbourhoods of −∞. With
this extension, the set R̄ becomes compact: any infinite set which is bounded has a
limit point by Theorem 2.18. If the infinite set is not bounded, then +∞, −∞, or
both are limit points.

The procedure above is often called two-points compactification of the real line.
There is also a one-point compactification of R in which the two points +∞ and
−∞ are identified with the same point. In this way, a one-to-one relationship is built
between the element of R ∪ {∞} and the points of the circle, as shown in Fig. 2.2.

2.4 Connectedness

This section introduces the topological notion of connectedness. The idea is to dis-
tinguish topological spaces that can be considered as made up of a single “piece”,
from spaces that are, conversely, the union of separate “pieces”. We are naturally
acquainted with a notion of separate sets based on the geometric intuition of the
physical world, from which the metric properties of points in space are derived. As
we will see, a purely topological treatment is possible.

Definition 2.12 A topological space (X, T ) is connected if the only open and closed
sets are ∅ and X .
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Fig. 2.2 The one-point compactification of the real line is a one-to-one relation between the real
numbers and the points of a circle. The relation is defined by drawing a straight line from the
uppermost part of the circle to the real line. The unique intersection R(x) of the line with the circle
is the point in relation with x ∈ R

Thediscrete topologyT = 2X is not connected,while the trivial topologyT = {X, ∅}
is connected.

Theorem 2.19 The Euclidean space (R, | · |) is connected.

Proof We will prove that no sets apart R (and ∅) are closed and open at the same
time. Consider an A ⊂ R and, without loss of generality, assume that there exists a
x ∈ Ac such that some element of A is below x . Define B = {z ∈ A|z < x} ⊆ A.
The set B is nonempty and bounded above so we can define z∗ = sup B. Note that
z∗ ∈ ∂A. In fact, ∀ε > 0, there must be some element of A in (z − ε, z), or z − ε

would be an upper bound, and no elements of A in (z, z+ε), or the supremumwould
be higher than z. Now note that if A is open, then z∗ ∈ Ac, because open sets do not
contain their boundary, while if A is closed, then z∗ ∈ A, because its complement
would be open. These two things are mutually exclusive, and we conclude that A
cannot be closed and open at the same time. �

The notion of connectedness can be extended from the entire space to specific sets
using the following definition.

Definition 2.13 Let (X, T ) be a topological space and Y ⊆ X . Define TY = {Y ∩A |
A ∈ T }. Then (Y, TY ) is a topological subspace of (X, T ).

The set TY is closed under countable union andfinite intersection, thus the topological
subspace is a topological space. Using this notion, we can say that a subset Y ⊆ X
of a topological space (X, T ) is connected if the topological subspace (Y, TY ) is a
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connected space. The property of being connected depends on both the set Y and the
topology T .

� Example 2.13 (Nested topology) The topology in Example 2.4 is connected. The
open sets of the topology are nested: An ⊂ An+1 ⊂ X . Thus all nonempty open sets
must contain A1, and any Ac

n does not. Thus, there are no nonempty, open sets, apart
X , whose complement is open.

� Example 2.14 (Rational numbers) The space (Q,∪B
′) in Example 2.12 is a sub-

space of (R, ∪B) in Definition (2.7). In (Q,∪B
′) the set E = {x ∈ Q, 2 < x2 < 3}

is both open and closed. Thus, (Q, ∪B
′) is not connected. The difference from The-

orem 2.19 is that the set of rational numbers does not have the least upper bound
property of Definition 1.10.

The property of topological connectedness is further illustrated by the following
useful result.

Theorem 2.20 The set Y is not connected if and only if ∃A, A′ ∈ T such that

1. Y = (Y ∩ A) ∪ (Y ∩ A′);
2. Y ∩ A′ ∩ A = ∅ (that is, Y ∩ A and Y ∩ A′ are disjoint).

Proof Assume that Y is not connected. Then there is a B ∈ TY such that Y \B ∈ TY .
Let A, A′ ∈ T be such that B = Y ∩ A and B ′ = Y ∩ A′. Then (Y ∩ A)∪ (Y ∩ A′) =
B ∪ (Y \ B) = Y and Y ∩ A′ ∩ A = (Y ∩ A) ∩ (Y ∩ A′) = B ∩ (Y \ B) = ∅.

On the contrary, assume that 1 and 2 are true and set B = Y ∩ A and B ′ = Y ∩ A′.
By definition, it is B, B ′ ∈ TY . Since B ∪ B ′ = Y and B ∩ B ′ = ∅ , it is B ′ = Y \ B
so B is open and closed in TY . �

The previous theorem expresses the idea that the setY ismade up of two disconnected
pieces, Y ∩ A and Y ∩ A′. In the Euclidean topology on R, bounded and unbounded
intervals are the only connected sets.

2.5 Limit of Functions and Continuity

This section will use the notation on images and preimages of sets introduced at
the end of Sect. 1.1. If both the domain and the image of a function are subsets of
topological spaces, then we can describe the local behaviour of the function using
the following definition.

Definition 2.14 (Limit of a function) Let f : X → Y be a function between two
topological spaces (X, TX ) and (Y, TY ). We say that y0 is a limit of f as x → x0 and
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write limx→x0 f (x) = y0 if∀N (y0), there exists a N (x0) such that f (N (x0)\{x0}) ⊆
N (y0).

The neighbourhood of a point, less the point itself, N (x0)\ {x0}, is sometimes called
punctured neighbourhood. The previous definition is based on the idea that the
topology captures the notion of proximity. In this sense, we can say that the limit
of the function f in x0 describes or approximates the value of f around this point.
The images of the points in a neighbourhood of x0, that is, close to it, are mapped
by the function to a neighbourhood of y0. The value of the function in x0 itself is not
relevant. The actual implication of Definition 2.14 depends on where the point x0 is
located. If x0 is an interior point of D f , then there are neighbourhoods N (x0) that
will be fully mapped by the function f within N (y0). In contrast, if x0 belongs to the
boundary of the domain, ∂D f , then only part of the neighbourhood, the part within
the domain, will be mapped by f . If x0 is not a limit point in the function domain f ,
the definition is not particularly informative. In this case, there is a neighbourhood
N (x0) such that f (N (x0) \ {x0}) = ∅. Since the empty set is a subset of any set,
this implies that any y ∈ Y is a limit of the function. Thus, in general, one applies
Definition 2.14 to the case x0 ∈ DD f . In any case, Definition 2.14 does not exclude
that the function might have, in a point x ∈ DD f , more than one limit. However, it
is immediately clear that if the image space (Y, TY ) is Hausdorff, then if the limit of
the function at a point exists, it is unique. The definition of the limit of a function is
related to the notion of continuity.

Definition 2.15 (Continuity in a point) The function f : X → Y is continuous in
x0 if limx→x0 f (x) = f (x0).

For this definition to be meaningful, both x0 ∈ D f and x0 ∈ DD f . It is important
to understand that the property of being continuous at a given point does not depend
exclusively on the function f , but also on the topologies considered in the domain
space X and the image space Y . For instance, continuity stops being an interesting
property when the discrete topology is considered.

� Example 2.15 (Continuity in discrete topology) Let f : X → Y be a function
between two topological spaces and assume that TX and TY are discrete topologies.
Then for any x0 ∈ X , let f0 = f (x0) and A f0 be the set of points that the function
maps to f0 (theremight bemore than one point if the function is not injective). The set
A f0 is a neighbourhood of x0, because any set that contains x0 is a neighbourhood of
x0 in a discrete topology. Then, for any neighbourhood N ( f0) ⊆ Y , f (A f0) = { f0} ∈
N ( f0), andwe can conclude that the function is continuous in x0. In conclusion,when
the discrete topology is considered, all functions are continuous at all points.

In general, when analysing the continuity of a function, the topological space
is the subspace defined by the function’s domain. So in what follows, when we
look at a topological space (X, TX ), in general we are working with (D f , TD f )
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(see Definition 2.13). With this caveat in mind, consider the following important
alternative definition of continuity.

Definition 2.16 (Global Continuity) Let (X, TX ) and (Y, TY ) be two topological
spaces. A function f : X → Y is a continuous function or a continuous map if
∀A ∈ TY , f −1(A) ∈ TX .

The equivalence between Definition 2.16 and Definition 2.15 is the subject of the
following two theorems.

Theorem 2.21 If f : X → Y is continuous according to Definition 2.16, then
∀x0 ∈ X, limx→x0 f (x) = f (x0).

Proof For any x0 ∈ X and any N ( f (x0)), simply consider N (x0) = f −1(N ( f (x0))).
This set is a neighbourhood of x0, it is open by hypothesis and f (N (x0)) ⊆
N ( f (x0)). �

The opposite is also true.

Theorem 2.22 Let f : A ⊆ X → Y be continuous on all the points a ∈ A
according to Definition 2.15, then A is open and f is globally continuous on the
subspace (A, TXA ).

Proof Consider any open subset of the image B ⊆ f (A) and B ∈ TY . We have to
prove that f −1(B) is open.

Take an element x ∈ f −1(B). Then f (x) ∈ B. Since the function is locally
continuous in x , there exists a neighbourhood N (x) such that f (N (x)) ⊆ B. This
implies that N (x) ⊆ f −1(B) and, consequently, that x is an interior point of f −1(B).

Since the above statement is true for any x ∈ f −1(B), we can conclude that all
points of f −1(B) are interior points and, thus, that f −1(B) is open (seeTheorem2.1).
The same is true for A = f −1( f (A)). �

In summary, the local and global continuity conditions are basically the same.

� Example 2.16 (Continuity of the constant function) Let f : A ⊆ X → Y be the
constant function f (x) = c for any x ∈ A. The image I f = {c} being a single
point, it is endowed with the trivial topology T ′ = {∅, {c}}. In this topology {c} is an
open set. At the same time, if one considers the topology restricted to the domain of
the function TXA , then A becomes the whole set and it is open. Thus, according to
Definition 2.16, the preimage of any open set is open and we can conclude that the
constant function f is continuous.

Conversely, consider f : X → Y and a set A ⊂ X . Let f (x) = c1 if x ∈ A and
f (x) = c2 if x ∈ Ac, with c2 �= c1. If, in TY , there exists a neighbourhood of c2
which does not contain c1, then the topology restricted to the image of the function
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contains the singlets {c1} and {c2}. Thus, if the space X is connected, the function is
not continuous, because A = f −1(c1) and Ac = f −1(c2) cannot be both open.

The previous example can be generalised to say that a function defined over a
connected topology which takes a finite number of values in a Hausdorff space is
not continuous. Interestingly, continuity can also be defined using closed sets.

Theorem 2.23 The function f : X → Y is continuous if and only if for every closed
set C ⊆ Y , f −1(C) is closed.

Proof For any set A ⊆ Y , because f is defined onwhole X , f −1(Ac) = ( f −1(A))c,
i.e. the preimageof the complement is the complement of the preimage.The statement
trivially follows. �

The fact that the openness and closure conditions in Definition 2.16 and in Theo-
rem 2.23, respectively, are imposed on the preimage is essential. A function between
topological spaces is an open map if, under this function, the image of an open set is
open, that is, if the function maps open sets to open sets. Analogously, a function is
a closed map if it maps closed sets to closed sets. In general, a continuous function
is neither open nor closed.

� Example 2.17 (Open and closed functions) To see that continuous functions are
not required to be open or closed, consider the two functions f (x) = x2 and g(x) =
2−x . As discussed in Example 1.7, these functions are, respectively, concave and
convex. Thus, according to Theorem2.31 below, they are continuous in the Euclidean
topology. The function f maps the open set (−1, 1) in the set [0, 1), which is neither
closed nor open. Thus, f is not open. However, it is easy to show that it is closed.
Conversely, g maps the closed semi-line [0,+∞) to (0, 1], which is neither closed
nor open. Thus, the function g is not closed.

At the same time, a closed and/or open function is not required to be continuous.
Consider the floor function from R (with the Euclidean topology) to the integers Z

(with the discrete topology), which maps a real number to its integer part. This is a
particular step function and it is both open and closed. However, it is not continuous:
the preimage of the open set (in the Z topology) {2} is the set [2, 3) ⊆ R, which is
not open.

It is straightforward to see that the composition of continuous functions is con-
tinuous.

Theorem 2.24 Consider the topological spaces (X, TX ), (Y, TY ), and (Z , TZ ). If
f : X → Y and g : Y → Z are continuous functions, then g ◦ f is a continuous
function.

Proof Take B ∈ TZ , then g−1(B) ∈ TY and f −1(g−1(B)) = (g ◦ f )−1(B) ∈ TX
so that the composition is continuous. �
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In general, if a continuous function exists between two topological spaces, these
spaces possess similar properties. The first thing they have in common is connect-
edness.

Theorem 2.25 Let f : X → Y be a surjective (onto) continuous function between
two topological spaces (X, TX ) and (Y, TY ). Then if (X, TX ) is connected, (Y, TY )

is connected.

Proof Suppose that (Y, TY ) is not connected. Then there exists a B ⊆ Y that is both
open and closed. Since f is surjective f −1(B) �= ∅ and, according to Definition 2.16
and Theorem 2.23, it is both open and closed, contradicting the hypothesis. �

The hypothesis of surjectivity is essential for the previous theorem, as the following
example shows.

� Example 2.18 (A continuous not surjective function) Consider a set with two
elements Y = {a, b} and the finest topology TY = 2Y . This is clearly not a connected
topology. Now consider a generic connected topology (X, TX ) and the constant
function f : X → Y , f (x) = a. This function is continuous but not surjective: the
preimage of any set in TY is either X or ∅, thus the function is continuous but the
connectedness property is not preserved.

Note that given (X, TX ), we can always take ( f (X), T f (X)) as the image topology.
In this way, the function becomes surjective by construction. With this specification,
we can say that a continuous function maps connected sets to connected sets. Con-
tinuous functions also preserve compactness.

Theorem 2.26 If f : X → Y is continuous and X is compact, then f (X) is compact.

Proof Let {Vα} be an open cover of f (X), then X ⊆ ∪α f −1(Vα). Since X is
compact, there exists a finite subcover { f −1(V1), . . . , f −1(Vn)} such that X ⊆
∪n
i=1 f

−1(Vi ). It follows that f (X) ⊆ ∪n
i=1Vi , that is, {V1, . . . , Vn} is a finite sub-

cover of {Vα}. �

Compactness is also useful if one is interested in defining the inverse of a one-to-
one function.

Theorem 2.27 If f : X → Y is continuous and one-to-one, i.e. it is both surjective
and injective, X is compact, and Y is Hausdorff, then f −1 : Y → X is continuous.

Proof We have to show that if A ⊆ X is open, then f (A) is open. Consider Ac.
Since Ac is closed and is a subset of a compact set Ac ⊆ X , Ac is compact. It follows
that also f (Ac) is compact, and because Y is Hausdorff, it is closed. It follows that
f (Ac)c is open. For the one-to-one condition, the latter set is equal to f (A). �
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The theoremabove states that a continuous one-to-one function between two compact
sets is open. The one-to-one condition in the previous theorem is essential for two
reasons. It guarantees that f (Ac)c = f (A) and that f −1 is a function (for the latter,
however, injectivity would be enough).

Continuous functions with continuous inverse can be used to induce an equiva-
lence relation between topologies. These functions are given a specific name.

Definition 2.17 (Homeomorphism) Let (X, TX ) and (Y, TY ) be two topological
spaces. If f : X → Y is continuous and one-to-one, and at the same time f −1

is continuous, then f is called a homeomorphism.

Two homeomorphic spaces, that is, two spaces linked by a homeomorphism, are
topologically identical: a one-to-one relation between open sets can be established
using the function f . This relation is clearly symmetric and reflexive. Transitivity is
guaranteed by the fact that the composition of continuous functions is continuous.
Thus, homeomorphisms can be used to build equivalence classes across topologies
by saying that two topological spaces are equivalent if a homeomorphism exists
between them.

2.5.1 Continuity in EuclideanTopology

The following result is widely used in the following chapters.

Theorem 2.28 Consider a real-valued function f : R → R. In the Euclidean
topology, if the function is monotonic, and with a connected domain and image, then
it is continuous.

Proof The domain and the image of the function, being connected, are open or
closed, bounded or unbounded, intervals. Assume that the function is increasing
and consider any closed interval [a, b] in the image of f . For any y ∈ [a, b],
∃x ∈ f −1([a, b]) such that f (x) = y. Since the function is increasing, f −1(a) ≤
x ≤ f −1(b). Thus f −1([a, b]) ⊆ [ f −1(a), f −1(b)]. Moreover, the function is de-
fined on any x ∈ [ f −1(a), f −1(b)], and because is increasing, a ≤ f (x) ≤ b.
Thus, [ f −1(a), f −1(b)] ⊆ f −1([a, b]). The two inclusions taken together imply
f −1([a, b]) = [ f −1(a), f −1(b)]. In other terms, the preimage of all closed inter-
vals in the image are closed intervals in the domain. Since closed intervals are a
base of all closed sets, the statement follows from Theorem 2.23. If the function f
is decreasing, just apply the previous analysis to − f . �

Theorem 2.28 guarantees that the power function in Definition 1.18 is continuous.
Since, given a functional relationship between two spaces, one is actually considering
the subspace (D f , TD f ) in Definition 2.16, the functional relationship can be con-
tinuous on some sets and their associated topological subspaces and not continuous
on other sets and their associated topological subspaces.
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Fig. 2.3 The function of Example 2.19

� Example 2.19 (A jumping function) Consider the function

f (x) =
{
x x ≤ 2,

1 + x x > 2.

Now the set (0, 3) has preimage (0, 2]which is not open. Analogously, the preimage
of [3, 5] is (2, 4], which is not close. Thus, the function f is not continuous (Fig. 2.3).

In contrast, the function defined over R\{2}

f (x) =
{
x x < 2,

1 + x x > 2,

is continuous. Note that in this case the domain subtopology is not connected as
A = {x ∈ R | x < 2} is both closed and open.

Extending Example 2.18, notice that a continuous function defined over the Eu-
clidean topology in R cannot map an interval (a, b) to a finite number of points
greater than one. This is because the interval is a connected set, while the image
set is not connected. Thus, a continuous function on an interval is either a constant
function, so that its image is a single real number, or it takes an infinite number of
values.

Theorem 2.29 Consider a continuous function f : A ⊆ R → R defined over a
connected subset A. If f takes the values a and b > a, then it takes all the values
between.
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Proof Assume that the value c ∈ (a, b) is not taken. Then the image of the function is
contained in two disjoint sets (−∞, c) and (c, +∞) and, according to Theorem 2.20,
it is not connected. But this is impossible for Theorem 2.25. �

Theorem 2.26 guarantees that a continuous real function defined over a compact set
in Hausdorff spaces has both maximum and minimum, as clarified in the following
result.

Theorem 2.30 (Weierstrass extreme value theorem) Consider a topological space
(X, T ) and a continuous function f : X → R. If K ⊆ X is a compact set, then the
function f has a maximum and a minimum in K .

Proof According to Theorem 2.26 f (K ) is compact. Thus, according to Theo-
rem 2.18, it is closed and bounded. Consequently, f (K ) has both a supremum and
an infimum. By Theorem 2.7, the supremum and infimum belong to the boundary of
the set. This in turn belongs to the set because it is closed. This means that there are
two points x ′, x ′′ ∈ X such that f (x ′) = sup f (K ) and f (x ′′) = inf f (K ), which
proves the assertion. �

� Example 2.20 (Upper and lower semicontinuity) Consider a real-valued function
f : X → R defined on a generic topological space (X, T ). The function f is upper
semicontinuous if it is continuous when the image space R is equipped with the
left-order topology (see Example 2.10). An upper semicontinuous function has a
maximum in any compact set. In fact, a compact set K ⊆ X is mapped by an upper
semicontinuous function f in a set f (K ) that is compact in the left-order topology,
that is, it has a maximum.

Analogously, the function f is lower semicontinuous if it is continuous when the
image space R is equipped with the right-order topology. Thus, it has a minimum in
any compact set K ⊆ X .

Alternatively, upper and lower semicontinuity can be defined by saying that f is
upper (lower) semicontinuous in x ∈ X , if for any y > f (x) (y < f (x)) there exists
a neighbourhood N (x) such that f (N (x)) ⊆ (−∞, y) ( f (N (x)) ⊆ (y, +∞)).

The next result proves the continuity of many real functions, including the power
and exponential functions defined in Sect. 1.5.

Theorem 2.31 (Continuity of concave and convex functions) If f is a concave or
convex function defined over an open interval (a, b) ∈ R then f is continuous in
(a, b).

Proof Assume f to be concave. If f is constant, we know that it is continu-
ous. So assume that it is not constant. Let x ∈ (a, b) and ∀ε > 0 consider
the symmetric neighbourhood N ( f (x)) = ( f (x) − ε, f (x) + ε). Define M =
max{| f (x) − f (a)|/(x − a), | f (b) − f (x)|/(b − x)}. Since f is not constant,
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M > 0. Set δ = ε/M . If z ∈ (x, x + δ) and z < b, by Theorem 1.16,

M ≥ f (x) − f (a)

x − a
≥ f (z) − f (x)

z − x
≥ f (b) − f (x)

b − x
≥ −M,

that is, | f (z) − f (x)| ≤ (z − x) M < δ M < ε. Analogously, if z ∈ (x − δ, x) and
z > b,

M ≥ f (x) − f (a)

x − a
≥ f (x) − f (z)

x − z
≥ f (b) − f (x)

b − x
≥ −M,

that is, again, | f (z) − f (x)| ≤ (x − z) M < δ M < ε. Thus, for any z ∈ (a, b) ∩
(x − δ, x + δ)/{x}, f (z) ∈ N ( f (x)) that proves the assertion. If f is convex, the
proof is identical. �

Exercises

Exercise 2.1 Let T1 and T2 be two topologies on X . Prove that T1 ∩ T2 ⊆ 2X is a
topology.

Exercise 2.2 Consider a topological space (X, T ), a subset A ⊆ X , and a point
x ∈ X . Prove that x ∈ int A or x ∈ int Ac or x ∈ ∂A = ∂Ac.

Exercise 2.3 Prove that if the singlet {x0} is a closed set and N (x0) is a neighbour-
hood of x0, then the punctured neighbourhood N (x0) \ {x0} is an open set.

Exercise 2.4 (Cofinite topology) Consider a set X with an infinite number of ele-
ments and let T ⊂ 2X be made by the empty set, the whole X , and all sets whose
complement contains a finite number of elements. Prove that (X, T ) is a topological
space. It is known as the cofinite topology.

Exercise 2.5 With reference to Example 2.4, let X = N and define Ak = {1, 2, . . . ,
k+1}. Consider the identity function f : N → N, f (x) = x . Find the local maxima
and minima of f in the nested topology.

Exercise 2.6 In contrast to the bases in linear spaces, topological bases are in general
redundant. Consider the topological base introduced in Definition 2.7. Show that if
a particular interval (a, b) is removed from the set B, the set remains a base for the
same topology.

Exercise 2.7 In the topological space (N, T ) defined in Example 2.7, consider the
set A = {2, 3, 4} and find its interior, its boundary, and its derivative set. Repeat the
analysis for the set A′ = {3, 4, 5}.
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Exercise 2.8 (Euclidean topology onR
2) Consider the set of ordered couples of real

numbersR×R = R
2. Consider two points x, y ∈ R

2, x = (x1, x2) and y = (y1, y2),
such that x1 < y1 and x2 < y2 and define the interval I (x, y) = {yx ∈ R

2 | x1 <

z1 < y1, x2 < z2 < y2}. Prove that the collection of all these intervals B = {I } is
the base of a topology, named Euclidean topology on R

2.

Exercise 2.9 Given three numbers a, b, c ∈ R, formally define

Ta,b,c = {
(x, y) ∈ R

2|x > a, y > b, x + y < c
}
.

Consider B1 = {Ta,b,c | a, b, c ∈ R}, B2 = {Ta,a,c | a, c ∈ R}, B3 = {Ta,b,c |
a, b, c ∈ Z}. For each of these sets, discuss whether it is the base for a topology in
R
2. If the answer is positive, determine whether the generated topology is equivalent

to the topology in Exercise 2.8.

Exercise 2.10 Given two real numbers a and b such that b > a define the interval
J̄a,b = {x ∈ R | a ≤ x ≤ b} = [a, b]. Prove that the set of all these intervals,
B = { J̄a,b}, cannot be the base of a topology on R. Hint: Check the second part of
Theorem 2.5.

Exercise 2.11 (Lower and upper limit topology) Given two real numbers a and b
such that b > a define the interval Ja,b = {x ∈ R | a ≤ x < b} = [a, b).
Prove that the set of all these intervals, B = {Ja,b}, is the base of a topology on R.
This is called lower limit topology, denoted by Tl . Is Tl equivalent to the Euclidean
topology? The upper limit topology Tu is generated by the base B

′ = {Ka,b}, where
Ka,b = {x ∈ R | a < x ≤ b} = (a, b]. Is Tu equivalent to Tl?

Exercise 2.12 Consider two real numbers a and b such that b > a. Prove that
in (R, Tl) of Exercise 2.11 the set {x ∈ R | a < x < b} is open and the set
{x ∈ R | a ≤ x ≤ b} is closed.

Exercise 2.13 Prove that in the cofinite topology of Exercise 2.4 all sets are compact.

Exercise 2.14 With reference to Example 2.10 prove that the left- and right-order
topologies are second-countable, connected but not Hausdorff.

Exercise 2.15 Prove that (R, Tl) of Exercise 2.11 is a Hausdorff space.

Exercise 2.16 Prove that the topology in Exercise 2.8 is Hausdorff and second-
countable.

Exercise 2.17 Consider the statement “given any point x and any compact set C
such that x /∈ C , we can find two open sets A and B such that x ∈ A, C ⊆ B,
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and A ∩ B = ∅”. Is this statement true in any topological space? Is it true in any
Hausdorff space?

Exercise 2.18 Prove that the set TY in Definition 2.13 is closed with respect to
infinite union and finite intersection.

Exercise 2.19 Prove that in the lower limit topology (R, Tl) of Exercise 2.11, the
intervals Ja,b are not connected.

Exercise 2.20 Consider a topological space (X, T ). Let Y ⊆ X be open, Y ∈ T ,
and (Y, TY ) be the topological subspace on Y . Prove that if A ⊆ X is open (close)
in T , then A ∩ Y is open (close) in TY .

Exercise 2.21 Consider a function f : X → Y between two topological spaces
(X, TX ) and (Y, TY ) and let x0 be a limit point of the domain of f . Prove that if TY
is Hausdorff, then if limx→x0 f exists, it is unique.

Exercise 2.22 Considering the usual topology on R, prove that f (x) = x2 is a
closed map and f (x) = 2−x is an open map.

Exercise 2.23 Consider a continuous function f from the topological space (X, TX )

to the topological space (Y, TY ). Let X ′ ⊂ X be dense in X and let (Y, Ty) be
Hausdorff. Prove that if f is constant in X ′, then it is constant in X .

Exercise 2.24 Consider a continuous function f from the topological space (X, TX )

to the topological space (Y, TY ). Let A′ ⊂ Y be open and A = f −1(A′). Prove that
Ā ⊆ f −1( Ā′). In other terms, the closure of the preimage is contained in the preimage
of the closure. Hint: Use Theorem 2.23.

Exercise 2.25 Consider a continuous function f from a topological space (X, T )

to (R, | · |). Let X ′ ⊂ X be dense in X . Prove that if f (x) ≤ 0, ∀x ∈ X ′, then it is
f (x) ≤ 0 for each x ∈ X .

Exercise 2.26 Build a continuous function f from a topological space (X, T ) to
(R, | · |) such that f (x) > 0 for each x ∈ X ′ where X ′ is dense in X , but f (x) ≤ 0
for some x in X . Hint: The choice of the topological space is left to you.

Exercise 2.27 Consider the Euclidean topology in R
2 defined in Exercise 2.8, and

the sets A = {(x, y) | x2 + y2 < 2}, B = {(x, 0) | 2 ≤ x ≤ 3}, and C = {(x, y) |
2 < x < 3, 0 < y < 1, x, y ∈ Q}. Discuss which sets among A, B, C , A ∪ B,
B ∪ C , Ā ∪ C are compact and / or connected.
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Exercise 2.28 Consider the function f : R → R
2 defined as f (t) = (t/(1 +

t2), t2/(1 + t2)) and its image A = f (R). In the Euclidean topology introduced in
Exercise 2.8, prove that A is connected and Ā is compact. Find Ā \ A.



3Metric Spaces

3.1 Definition and Basic Properties

In this chapter, we are mainly concerned with a special class of functions.

Definition 3.1 (metric space) Consider a set X and a real nonnegative function
d : X × X → R≥0 such that ∀x, y, z ∈ X it is:

• d(x, y) = 0 if and only if x = y (positive definiteness);
• d(x, y) = d(y, x) (symmetry);
• d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Then d is a distance function or metric and (X, d) is a metric space.

When considering a subset Y ⊆ X and the restriction of d to Y × Y , the structure
(Y, d) is again a metric space. Together with the idea of distance comes the idea of
the “size” of a set.

Definition 3.2 (Diameter) Consider a metric space (X, d) and a subset A ⊆ X . If
the set {d(x, y) | ∀x, y ∈ A} is bounded above then the set A is bounded and the
diameter of A is diam(A) = sup{d(x, y) | ∀x, y ∈ A}.

A set that is not bounded is said to be unbounded.

Definition 3.3 (Bounded function) Let (X, d) be a metric space and A a generic set.
A function f : A → X is a bounded function if the set {d( f (a), f (b)) | ∀a, b ∈ A}
is bounded, that is if the image f (A) is a bounded subset of X .

Using the distance function, it is also possible to define the distance of a point from
a set.
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Definition 3.4 (Distance of a point from a set) Let x ∈ X and consider a nonempty
subset A ⊆ X , then the distance of x from A is defined as

d(x, A) = inf
y

{d(x, y) | y ∈ A} .

The definition is always meaningful because the set considered is bounded below
by zero. If x ∈ A, then d(x, A) = 0. As a first example, we can build the “usual”
metric space on the set of real numbers using the absolute value.

� Example 3.1 (Euclidean metric on R) Consider the function d : R × R → R≥0
defined as d(x, y) = |x − y|. Using the property of the absolute value and the
triangle inequality Theorem 1.9, it is immediate to show that d fulfils the properties
of a distance function in Definition 3.1. In particular,

d(x, y) + d(y, z) = |x − y| + |y − z| ≥ |x − y + y − z| ≥ |x − z| = d(x, z).

Thus, (R, |.|) is a metric space, usually known as the Euclidean metric space of real
numbers. The distance function is just the Euclidean “length” between two points
on a line. In this space, the metric notion of diameter introduced in Definition 3.2 is
that derived from the order relation. In fact, given any subset A ⊂ R, diam(A) =
sup(A) − inf(A). Consistently with the discussion in Sect. 1.2, a bounded set is just
a set with an upper and lower bound.

Exercise 3.6 provides other examples of distance functions onR. However, metric
spaces can be very different from those that our geometric intuition might suggest.

� Example 3.2 (Hamming distance) Consider a finite set A. This set is an alphabet
and its elements are symbols. Let An be the n times Cartesian product of A with
itself. The elements of An are the n-tuples of symbols σ = (s1, s2, . . . , sn) with
si ∈ A for i = 1, . . . , n. The Kronecker delta function is defined on A × A as
δs,s′ = 1 if s = s′ and δs,s′ = 0 if s 	= s′, with s, s′ ∈ A. Given two n-tuples σ and
σ ′ define

d(σ, σ ′) =
n∑

i=1

(1 − δsi ,s′i ).

Note that d(σ, σ ′) ≥ 0 and d(σ, σ ′) = 0 if and only if σ = σ ′. For any three
n-tuples σ , σ ′ and σ ′′, d(σ, σ ′) + d(σ ′, σ ′′) ≥ d(σ, σ ′′) so that the function d is a
distance on the set A. It is calledHamming distance from the name of the American
mathematician who first introduced it in computer science in 1950.

Next, we have the first example of a functional space, a space whose points are,
in fact, functions.
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� Example 3.3 (Metric space of bounded functions) Consider a set A and let B(A)

be the set of bounded functions f from A to R. An element of B(A) is for instance
the function that maps all the elements of A to a single real number (the constant
function). Consider two functions f and g in B(A) and the function d∞ : B(A) ×
B(A) → R≥0 defined as

d∞( f, g) = sup
a∈A

{| f (a) − g(a)|} for any f, g ∈ B(A).

Since both g and f are bounded, and since the supremum exists for any bounded
set, the previous function is well defined. To each couple of functions, the function
d∞ assigns a nonnegative real number. Using the property of the supremum, it is
easy to show that the function d satisfies all the requirements of Definition 3.1. Thus,
(B(A), d∞) is a metric space. The distance d∞ is known as the Chebyshev distance,
after the Russian mathematician Pafnuty Chebyshev (1821–1894). The reason for its
peculiar “infinity” symbol will be made clear in Example 4.2.2. The use of R as the
image space of the functions aids familiarity but is not required. The same analysis
can be applied to functions with image in a generic metric space, see Exercise 3.10.

3.2 Metric andTopology

Any metric induces a first-countable (see Definition 2.10) and Hausdorff (see Defi-
nition 2.10) topology. To see how, we start by defining the open balls.

Definition 3.5 (Open ball) Given a metric space (X, d), the open ball of radius
r > 0 centred in x is defined as B(x, r) = {y ∈ X | d(x, y) < r}.

The set of open balls is a base of a topology.

Theorem 3.1 (Topology induced by the distance) Given the metric space (X, d),
consider the collection of all open balls B = {B(x, r) | x ∈ X, r ∈ R>0}. Then B is
a base of a Hausdorff first-countable topology on X.

Proof First, note that the union of elements of B covers the entire space, as X ⊆
∪x∈X B(x, 1). Next consider y ∈ B(x, r) ∩ B(x ′, r ′) 	= ∅ and define d(x, y) =
η < r , d(y, x ′) = η′ < r ′. Take r ′′ = min{r − η, r ′ − η′}. Now B(y, r ′′) ⊆
B(x, r) ∩ B(x ′, r ′). Indeed, if d(y, z) < r ′′ then

d(x, z) ≤ d(x, y) + d(y, z) ≤ η + r ′′ ≤ r,

and, at the same time,

d(x ′, z) ≤ d(x ′, y) + d(y, z) ≤ η′ + r ′′ ≤ r ′.
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Thus, for Theorem2.5 the setB generates a topology.Now consider any x, y ∈ X and
define d(x, y) = r . Then B(x, r/3) ∩ B(y, r/3) = ∅ so that the space is Hausdorff.
To see that the topology is first-countable for any point x , consider the collection of
balls B(x, r) with r ∈ Q

+. This is a countable collection that, due to the density of
rationals (see Theorem 1.11), clearly satisfies Definition 2.5. �

In the following, we will implicitly assume that any metric space (X, d) is also a
topological space with the topology induced by the distance function. The distance
function is always continuous with respect to the topology it induces on the set.
In fact, for any x ′ ∈ X , consider the function f : X → R≥0 defined as f (x) =
d(x ′, x). The counter image of any open interval (a, b) under this function is the
set B(x ′, b) \ B̄(x ′, b), where B̄ is the closure of the ball B. This is an open set, so
the function f is continuous. Because the distance-induced topology is Hausdorff,
compact sets are closed (see Theorem 2.12). In addition, we have the following.

Theorem 3.2 In a metric (topological) space, a compact set is bounded.

Proof Let K ⊆ X be compact and consider ∪x∈X B(x, 1) as its cover. There exists
a finite subcover K ⊆ ∪J

j=1 B(x j , 1). Define η j = d(x1, x j ) for h = 1, . . . , J

and set η = ∑J
j=1 η j . Then ∪J

j=1 B(x j , 1) ⊆ B(x1, η + 1). Indeed for any z ∈
∪J

j=1 B(x j , 1), there exists a k such that z ∈ B(xk, 1), thus d(z, x1) ≤ d(z, xk) +
d(xk, x1) < 1 + ηk < 1 + η. Thus diam(K ) ≤ η + 1. �

The topology induced by the distance function has some other useful properties.
First, note that if x ∈ A, then d(x, A) = 0. Generally, we have the following.

Theorem 3.3 Let x ∈ X and consider a subset A ⊆ X. Then d(x, A) = 0 if and
only if x ∈ Ā.

Proof If d(x, A) = 0, then for any open ball of x , B(x, δ) there exists an element
a ∈ A such that d(x, a) < δ, that is a ∈ B(x, δ). One possibility is that a = x , so
that x ∈ A. Otherwise, if x does not belong to A, x is a limit point of A.

Suppose instead that x ∈ Ā. Then for any r > 0 there exists an y ∈ A such that
y ∈ B(x, r) (y can be equal to x or not), that is, d(x, y) < r . This implies that
d(x, A) = 0. �

Second, adding limit points to a set does not increase its diameter.

Theorem 3.4 Let A ⊆ X be a subset of a metric space (X, d), then diam( Ā) =
diam(A).
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Proof First of all, because A ⊆ Ā, we know that diam( Ā) ≥ diam(A). Now ∀ε > 0
and ∀p, q ∈ Ā, ∃p′, q ′ ∈ A such that d(p′, p) < ε/2 and d(q ′, q) < ε/2. Therefore,

d(p, q) ≤ d(p, p′) + d(p′, q ′) + d(q ′, q) < ε + diam(A).

Thus, for any ε > 0, diam(A) ≤ diam( Ā) < diam(A) + ε, which proves the
statement. �

For example, in the Euclidean metric of Example 3.1, the open interval (a, b) has the
same diameter as the interval [a, b], and in the metric space of bounded functions of
Example 3.3, given any bounded function g, the set of all bounded functions f such
that d∞( f, g) < 1 has the same diameter as the set of all bounded functions f such
that d∞( f, g) ≤ 1, that is, 1.

� Example 3.4 (From Euclidean metric to Euclidean topology) The trick performed
in Theorem 3.1 is the generalisation to any metric space of what we did in Exam-
ple 2.2.2 for the real line. This also explains why in Definition 2.7 we called the
topology “Euclidean”. Notice that the Euclidean topology on the real numbers has
more properties than the topology generically induced by a distance function in a
metric space. For instance, in Theorem 2.8, we prove that the topology (R, |.|) is also
second-countable. This allowed us to prove the fundamental Bolzano–Weierstrass
Theorem 2.16 and Heine–Borel Theorem 2.18 for real numbers. So it seems that
the space (R, |.|) is somehow special among the metric spaces. In fact, in Chap. 4
we will see that this is the simplest example of a special class of metric spaces, the
normed spaces, and we will discuss how to generalise to them many of the special
results we obtained for the set of real numbers.

3.3 Uniform Continuity

The topological notion of continuous functions has been generally defined in Sect.
2.5. We met both a local definition based on the notion of limit in Definition 2.15,
and a global definition based on the counter image of open sets in Definition 2.16.
With metric spaces, we can introduce a stricter definition of continuity.

Definition 3.6 (Uniform continuity)Consider twometric spaces (X, dX ) and (Y, dY ).
A map f : X → Y is uniformly continuous on X if ∀ε > 0, ∃δε > 0 such that if
dx (x, x ′) < δε then dy( f (x), f (x ′)) < ε.

The fact that this definition is stricter than the original definition of continuity is
immediately verified. If the function f is uniformly continuous in X , it is also
continuous with respect to the topology induced by the metric. The opposite is
generally not true.
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� Example 3.5 (Continuous but not uniformly continuous) Consider the function
f (x) = 1/x on the interval (0, 1). The image of this open interval is made of all real
numbers greater than 1. For any x2 > x1 > 1, the inverse image of the open interval
(x1, x2) is the open interval (1/x2, 1/x1). Since the open intervals are a base of the
topology, we can conclude that the inverse image of any open set is an open set and,
consequently, the function f is continuous in (0, 1).

Regarding uniform continuity, choose ε ∈ (0, 1). Then for any δ ∈ (0, 1) there
exists x1 and x2 in (0, 1) such that d(x1, x2) < δ but d( f (x1), f (x2)) > ε. To see
it, simply consider the positive points x1 = √

δ − εδ and x2 = √
δ. The smaller

the values of δ, the closer the points considered to zero. However, they always exist.
Thus, f is not uniformly continuous in (0, 1).

If one considers functions defined over compact sets, then continuity and uniform
continuity turn out to be the same thing.

Theorem 3.5 (Heine–Cantor) Let f be a map from a compact metric space X to a
metric space Y . Then, if f is continuous, it is uniformly continuous.

Proof Consider a fixed ε > 0. Since the function is continuous, for any point x ∈ X ,
there exists a δx such that for any x ′ ∈ X , if dX (x, x ′) < δx , then dY ( f (x), f (x ′)) <

ε/2. Clearly, ∪x B(x, δx/2) covers X and because X is compact, from this cover it
is possible to extract a finite subcover ∪N

k=1B(xk, δxk/2).
Let δε = min{δx1 , . . . , δxN }/2 > 0. Consider two points q, q ′ ∈ X such that

dX (q, q ′) < δε . We will show that the distance of their images is less than ε. Among
the different sets that compose the finite cover, there exists one that contains q . That
is, there exists a k such that q ∈ B(xk, δxk/2). The distance of q

′ from xk is less than
δxk . In fact,

dX (q ′, xk) ≤ dX (q ′, q) + dX (q, xk) < δε + δxk

2
≤ δxk .

We have shown that q and q ′ both belongs to B(xk, δxk ). Thus, by construction
dY ( f (q), f (q ′)) ≤ dY ( f (q), f (xk)) + dY ( f (q ′), f (xk)) < ε. �

The distance from a given point is itself a uniformly continuous function from (X, d)

to (R≥0, |.|). To see it, fix a point z ∈ X and consider the function f : X → R,
f (x) = d(x, z) defined on thewhole X . For the triangle inequality, | f (x) − f (y)| =
|d(x, z) − d(y, z)| ≤ d(x, y) so that for any ε, if d(x, y) < ε, | f (x) − f (y)| < ε.

3.4 Lipschitz Continuity

A type of function that is commonly encountered in applications takes its name after
the German mathematician Rudolf Lipschitz (1832–1903).
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Definition 3.7 (Lipschitz continuity) Consider two metric spaces (X, dX ) and
(Y, dY ). A function f : X → Y is Lipschitz continuous on X if ∃k > 0 such
that ∀x, x ′ ∈ X , dY ( f (x), f (x ′)) < kdX (x, x ′).

If k < 1, then the function f a contraction or contraction map. A function is locally
Lipschitz continuous in x ∈ X if it is Lipschitz continuous when restricted to a
neighbourhood of x . If f is Lipschitz continuous, ∀ε > 0, if dx (x, x ′) < ε/k, then
dy( f (x), f (x ′)) < ε, thus we can conclude the following.

Corollary 3.1 If the function f is Lipschitz continuous, then it is uniformly contin-
uous.

In general, the opposite is not true.

� Example 3.6 (Uniformly but not Lipschitz continuous) Consider the function
f (x) = √

x in the Euclidean metric. The function is uniformly continuous in R≥0.
In fact, ∀ε > 0, if |x − x ′| < ε2,

| f (x) − f (x ′)| ≤
√

| f (x) − f (x ′)|(√x + √
x ′) = √|x − x ′| < ε.

However, the function is not Lipschitz continuous in R≥0. To see it, note that |√x −√
x ′|/|x − x ′| = 1/(

√
x + √

x ′) and there is no k > 0 such that 1/(
√
x + √

x ′) < k
for any x, x ′ ∈ R≥0. If restricted to (1, +∞), the function f becomes Lipschitz
continuous with k = 1/2.

From Definition 3.2 it follows that for a Lipschitz continuous function f : E ⊆
X → Y , it is diam( f (E)) ≤ K diam(E), then we have the following.

Corollary 3.2 A Lipschitz continuous function on a bounded set is bounded.

Exercises

Exercise 3.1 (Quadrangular inequality) Let (X, d) be a metric space. Show that for
every x, y, z, w ∈ X it holds that |d(x, y) − d(z, w)| ≤ d(x, z) + d(y, w).

Exercise 3.2 Consider a function f : R≥0 → R≥0 that is strictly increasing and
sub additive, that is, f (x + y) ≤ f (x)+ f (y). Assume further that f (0) = 0. If the
function f satisfies the properties above, is d(x, y) = f (|x − y|) a distance on R?
If so, prove it. If not, provide a counterexample.

Exercise 3.3 Prove that in the Euclidean metric space (R, |.|) of Example 3.1 a set
A ⊂ R is bounded if and only if there exists a positive real number M such that
|a| < M for any a ∈ A.
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Exercise 3.4 Consider two functions f and g from a generic set X to the Euclidean
metric space (R, |.|) of Example 3.1. Prove that if they are bounded, then their sum
f + g and their product f g are bounded. Hint: Use the triangle inequality and the
properties of the absolute value.

Exercise 3.5 Consider the function d1(x, y) = |x1 − y1| + |x2 − y2| defined over
R
2 × R

2 where the indices denote the components of the vectors. Prove that it is a
distance. Draw the circle of radius 1 and centre the origin in themetric space (R2, d1)
(the set of point with distance 1 from the origin). Prove that it is contained in the
closure of the Euclidean ball of radius 1 and centre in the origin.

Exercise 3.6 Determine which functions from R
2 to R in the following list can be

used to define a metric on R:

d1(x, y) = (x − y)2, d2(x, y) = √|x − y|, d3(x, y) = |x2 − y2|,
d4(x, y) = |x − 2y|, d5(x, y) = |x − y|

1 + |x − y| , d6(x, y) = |ex − ey |.

Exercise 3.7 Let X be an infinite set and consider the following function d : X × X
to R, d(a, b) = 1 if a = b and d(a, b) = 0 otherwise. Prove that it is a distance.
In the induced topology, which sets are open? Which ones are closed? Which are
compact?

Exercise 3.8 Prove that the function d∞ in Example 3.3 is a distance.

Exercise 3.9 Consider the set A = {1, 2, 3}. Using the Hamming distance of Ex-
ample 3.2 in A3, find the elements of the open ball of radius one and centre (1, 2, 3)
and those of the open ball of radius 0.5 and centre (3, 2, 1).

Exercise 3.10 Extending Example 3.3, let A be a generic set, (V, d) a metric space,
and B(A) the set of bounded functions f : A → V . Consider the function d∞ :
B(A) × B(A) → R≥0 defined as d∞( f, g) = supa∈A{d( f (a), g(a))}. Prove that
(B(A), d∞) is a metric space. Hint: Use the properties of the supremum.

Exercise 3.11 Prove that if A is bounded, then given any point x0, there exists an
open ball B(x0, r) such that A ⊆ B(x0, r).

Exercise 3.12 Prove that a uniformly continuous function is continuous. Hint: Use
the local definition of continuity in a point.

Exercise 3.13 Explicitly prove that the function y = x2 is uniformly continuous in
[0, 1] (do not use Theorem 3.5). Is it uniformly continuous in (0, 1)? Is it uniformly
continuous in Q ∩ (0, 1)?
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Exercise 3.14 With reference to Example 3.1, take two functions f and g from a
metric space (X, d) to (R, |.|). Prove that if f and g are uniformly continuous, then
their sum f + g is uniformly continuous. Hint: Use the triangle inequality.

Exercise 3.15 With reference to Example 3.1, consider two functions f and g from
a metric space (X, d) to (R, |.|). Prove that if they are bounded and uniformly con-
tinuous, then their product f g is uniformly continuous. Hint: Use the fact that they
are bounded.

Exercise 3.16 With reference to Example 3.1, consider a function f from a metric
space (X, d) to (R, |.|)which is bounded away from zero, that is, infx∈X | f (x)| > 0.
Prove that if f is uniformly continuous, then 1/ f is uniformly continuous.



4NormedSpaces

4.1 Definition and Basic Properties

The Euclidean notion of the length of a linear segment can be generalised to any
linear space by the introduction of a norm.

Definition 4.1 (Normed space) Consider a linear space V on Rn . A norm is a func-
tion ρ : V → R≥0 such that

• ρ(x) = 0 only if x = 0 (separate points);
• ρ(x + y) ≤ ρ(x) + ρ(y) (triangle inequality);
• ρ(ax) = |a|ρ(x) (positive homogeneity).

The pair (V, ρ) is said to be a normed space.

The simplest example of a normed space is the set of real numbers together with the
absolute value (R, |.|). Often, the norm is denoted with a couple of double vertical
lines ‖.‖ and the normed space (V, ‖.‖). In this book, I reserve this symbol for the
Euclidean norm introduced in Sect. 4.2.1 and denote the generic norm by ρ. The
first important thing is to clarify the relationship between normed spaces and metric
spaces.

Lemma 4.1 (Norm and distance) Any normed space (V, ρ) is a metric space with
the distance defined as dρ(x, y) = ρ(x − y), ∀x, y ∈ V .

Proof The function dρ is, by definition, nonnegative and fulfils the first two proper-
ties of Definition 3.1. From the triangle inequality in Definition 4.1

ρ(x − z) = ρ(x − y + y − z) ≤ ρ(x − y) + ρ(y − z)

and the third property of Definition 3.1 follows. �
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From now on, when we refer to (V, ρ) as a metric space, we will implicitly assume
that the definition of distance used is the one implied by the norm. The norm can be
used to introduce the notion of a bounded set in any linear space.

Definition 4.2 A subset of a normed space A ⊆ V is bounded if {ρ(x) | x ∈ A} is
a bounded subset of R.

This definition is analogous toDefinition 3.2 but is sometimesmore practical to use. If
the linear space V has a finite dimension n, one can build a one-to-one linear function
f : V → R

n by selecting a base andmapping any vector x ∈ V into the n-tuple of its
coordinates. Since the function f is linear, it is easy to show that the function ρ ◦ f −1

is a norm onRn . In fact, let x, y ∈ R
n , then ρ( f −1(x+y)) = ρ( f −1(x)+ f −1(y)) ≤

ρ( f −1(x))+ρ( f −1(y)). Thus, any finite-dimensional normed space defined overR
is isomorphic to some normed space (Rn, ρ ◦ f −1). Similarly, any norm ρ′ defined
on Rn induces a norm on a vector space of dimension n, (V, ρ′ ◦ f ).

Because the normed space (V, ρ) is a metric space, we can naturally induce a
topology on it using the distance function implied by the norm (see Lemma 4.1).
The topology on (V, ρ) is generated by the set of open balls B(x, r) = {v ∈ V |
ρ(v − x) < r}, ∀x ∈ V and radius r > 0. This topology is Hausdorff and first-
countable (see Theorem 3.1) and in this topology all compact sets are bounded (see
Theorem 3.2).

� Example 4.1 (Continuity of the norm) Any norm is a continuous function in the
topology it defines. Consider a normed space (V, ρ) together with the topology
induced by the norm. Take the open interval (a, b). The inverse image of this interval
contains all elements x ∈ V such that a < ρ(x) < b. This set is just the intersection
of B(0, b), which is an open set, with the complement of the closure of B(0, a),
which is another open set. Thus, the inverse image of any open interval (a, b) is an
open set. Since the open intervals form a base of the topology in R, we have shown
that the inverse image of any open set is an open set and therefore ρ is continuous.

In a convex subspace of a normed space, convex and concave real-valued functions
have special properties that are often exploited in applications.

Theorem 4.1 (Uniqueness of extrema) Let (V, ρ) be a normed space and A be a
convex subset of V . Consider a concave (convex) function f : A → R. Then, if f
has a strict local maximum (minimum) in A, it is unique.

Proof Let us start with the concave case. Assume that x1 and x2 are strict local
maxima of f in A, and that f (x1) ≥ f (x2). Then for z = (1 − λ)x2 + λx1 with
λ ∈ [0, 1], f (z) ≥ (1− λ) f (x2) + λ f (x1) ≥ f (x2). Since in any neighbourhood of
x2 there is at least one point of this kind, x2 cannot be a strict maximum. A similar
reasoning applies to the convex case. �
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Since globalmaxima (minima) are also localmaxima (minima), the previous analysis
directly extends from the latter to the former. Note that the previous considerations
cannot be extended to extremal points that are not strict. In fact, any constant function
on A is concave (and convex), and all points of A are localmaxima andminima.How-
ever, the result extends to non-strict maxima and minima if the functions considered
are strictly concave or strictly convex, respectively.

4.2 Example of Normed Spaces

In the following, we review three widely used normed spaces: the Euclidean norm on
real vectors and its generalisation, the p-norm, and the operator norm on linear maps
(or matrices). In all cases, the procedure will be the same: we introduce a function
from the linear space in question toR≥0 and show that it satisfies all the requirements
of Definition 4.1.

4.2.1 Euclidean Norm inR
n

The nth power of the real set Rn = R × R . . . × R defines the most natural linear
space. In this space, the vectors are identified with ordered n-tuples of real numbers

x = (x1, . . . , xn). The Euclidean norm of a vector is defined as ‖x‖ =
√∑n

j=1 x
2
j .

We want to prove that this is actually a norm. The following results are useful.

Theorem 4.2 (Cauchy–Schwarz inequality) Let x, y ∈ R
n be two n-tuples of real

numbers, then

‖x‖‖y‖ ≥
∣∣∣∣∣

n∑
i=1

xi yi

∣∣∣∣∣ .

Proof Consider the double summation
∑n

i=1
∑n

j=1(xi y j − x j yi )2 ≥ 0. Using the
binomial expansion of the squares, it reduces to

n∑
i=1

n∑
j=1

x2i y
2
j + x2j y

2
i ≥ 2

n∑
i=1

n∑
j=1

xi x j yi y j .

The left-hand side is equal to 2 ‖x‖2 ‖y‖2 while the right-hand side is 2(∑i=1 xi yi )
2.

Simplifying out the factor 2 and taking the square roots of the two nonnegative
expressions prove the assertion. �

Using the Cauchy–Schwarz inequality, we can prove the triangle inequality required
by Definition 4.1.
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Theorem 4.3 (Triangle Inequality) Let x, y ∈ R
n be two n-tuples of real numbers,

then ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Proof Using the inequality in Theorem 4.2,

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2
n∑

i=1

xi yi ≤ ‖x‖2 + ‖y‖2 + 2|
n∑

i=1

xi yi |

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖ + ‖y‖)2 ,

and the statement is proved. �

The other two properties of separate points and positive homogeneity are immediate.
We can conclude that the Euclidean norm is actually a norm. The space (Rn, ‖.‖)
is the Euclidean normed space of dimension n.1 The topology of this space is the
Euclidean topology (see Example 3.4). Note that the Cauchy–Schwarz inequality
also implies the following inequality.

Corollary 4.1 Let x, y ∈ R
n be two n-tuples of real numbers, then ‖x + y‖ ≥

| ‖x‖ − ‖y‖ |.

Proof Take the squares of the two sides to obtain

n∑
i=1

(xi + yi )
2 ≥

n∑
i=1

x2i +
n∑

i=1

y2i − 2‖x‖ ‖y‖.

After simplifications, it reduces to
∑n

i=1 xi yi ≤ ‖x‖ ‖y‖, which follows from The-
orem 4.2. �

� Example 4.2 (Space of polynomials) Consider the set of polynomials of all orders
n, V = {p(x) = ∑n

i=0 ci x
i }. The sum of two polynomials is a polynomial and the

product of a polynomial for a constant is again a polynomial. Thus, V represents a
linear space on R. The natural basis for this space is the infinite countable sequence
(1, x, x2, x3, . . .). In this space, consider the function ρ : V → R≥0 defined as

ρ

(
n∑

i=0

ci x
i

)
=

√√√√
n∑

i=0

c2i
2i+1 .

1 A similar definition applies to complex normed spaces. In this case, the linear space is defined on
C and the absolute value is replaced by the modulus of the complex number. The complex normed
space of dimension n is denoted by (Cn, ‖.‖).
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It is immediate to see that ρ = 0 only when the function is applied to the zero
polynomial (the polynomial having all coefficients set to zero) and that ρ(a p(x)) =
|a| ρ(p(x)). Consider two polynomials pa(x) and pb(x), then

ρ(pa(x) + pb(x)) =
√√√√

n∑
i=0

(ca,i + cb,i )2/2i+1 ≤
√√√√

n∑
i=0

c2a,i/2
i+1 +

√√√√
n∑

i=0

c2b,i/2
i+1 = ρ(pa(x)) + ρ(pb(x)),

where n is the order of the largest monomial and the c’s for any lackingmonomial are
set to zero. The inequality comes from a direct application of the triangle inequality
in Theorem 4.3 to vectors (ca,i/

√
2i+1) and (cb,i/

√
2i+1). Thus, we can conclude

that (V, ρ) is an infinite-dimensional normed space.

4.2.2 p-Norm inR
n

The p-norm of a vector x ∈ R
n , denoted as ‖x‖p, is defined by

‖x‖p =
(

n∑
i=1

|xi |p
)1/p

, ∀p ≥ 1.

In the case of p = 2, it reduces to the Euclidean norm discussed in Sect. 4.2.1. The
expression above satisfies the criteria for separate points and positive homogeneity
required by Definition 4.1. To prove that it is a norm, one has to show that it also
satisfies the triangle inequality. For this purpose, we need a preliminary result which
can be easily proved using the Young inequality from Theorem 1.15.

Theorem 4.4 (Holder’s inequality for sums) For any two positive numbers p and q
such that 1/p + 1/q = 1 and ∀x, y ∈ R

n,
∑n

i=1 |xi yi | ≤ ‖x‖p ‖y‖q .

Proof Define x′ = x/‖x‖p and y′ = y/‖y‖q . For the Young inequality, Theo-
rem 1.15, applied to each couple x ′

i and y′
i , and summing on all components,

n∑
i=1

|x ′
i y

′
i | ≤ 1

p

n∑
i=1

|x ′
i |p + 1

q

n∑
i=1

|y′
i |q = ‖x′‖p

p

p
+ ‖y′‖qq

q
.

By construction, the norms on the right-hand side are both equal to 1, such
that

∑n
i=1 |x ′

i y
′
i | ≤ 1. Substituting the definitions of x′ and y′, the statement is

proved. �
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Fig. 4.1 Unit radius circle in R
2 for the p-norm expression with different values of p. The case

p = 1/2 is not a norm

Using the previous result, one can prove the triangle inequality for the p-norm, which
takes its name from theLithuanianmathematicianHermannMinkowski (1864–1909)
(Fig. 4.1).

Theorem 4.5 (Minkowski inequality)For any two vectors x, y ∈ R
n and any p ≥ 1,

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Proof For p = 1, the theorem follows directly from the properties of the absolute
value. Consider p > 1. By taking the p power of the p-norm, one has

‖x + y‖p
p =

n∑
i=1

|xi + yi |p ≤
n∑

i=1

(|xi | + |yi |) |xi + yi |p−1.

At the same time, using Holder’s inequality in Theorem 4.4 with exponents p and
p/(p − 1),

n∑
i=1

|xi ||xi + yi |p−1 ≤
(

n∑
i=1

|xi |p
) 1

p
(

n∑
i=1

|xi + yi |(p−1) p
p−1

) p−1
p

(
n∑

i=1

|xi |p
) 1

p
(

n∑
i=1

|xi + yi |p
) 1

p (p−1)

= ‖x‖p ‖x + y‖p−1
p .
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Summing the last inequality and the same inequality with xi and yi exchanged, one
gets ∑

i

(|xi | + |yi |) |xi + yi |p−1 ≤ (‖x‖p + ‖y‖p) ‖x + y‖p−1
p

which, using the first inequality above, proves the assertion. �

� Example 4.3 (Normed space of bounded functions) Consider the set of bounded
functions B(A) defined in Example 3.3. This set is closed under sum of functions
and multiplication by a constant, thus it is a linear space. Now consider the function
‖.‖∞ : B(A) → R≥0 defined as

‖ f ‖∞ = sup
a∈A

{| f (a)|} .

Because f is bounded and because the supremum exists for any bounded set, the
previous function iswell defined. It is easy to show that it satisfies all the requirements
of Definition 4.1. Thus, (B(A), ‖.‖∞) is a normed space. The norm ‖.‖∞ is generally
known as the uniform norm or sup-norm. This norm is what was used in Example 3.3
to define a distance on B(A). If the set A is compact, the supremum in the definition
of the uniform norm can be replaced with the maximum; see Theorem 2.30. The
symbol ∞ in the notation for the uniform norm comes from its relation with the
p-norm; see Exercise 4.8.

4.2.3 Operator Norm

Linear functions connecting two normed spaces are themselves a normed space. To
see how, we start by introducing the notion of a bounded operator. Consider two
normed spaces (V, ρ) and (V ′, ρ′).

Definition 4.3 (Bounded operator) A function or operator f : V → V ′ is bounded
if ∃c > 0 such that ρ′( f (x)) ≤ cρ(x) for all x ∈ V .

The constant c is a sort of upper bound on how much the operator f can increase
the norm of a vector in V . A bounded operator sends any bounded set of V to a
bounded set of V ′. In fact, if A ⊂ V is bounded and a = sup{ρ(x) | x ∈ A}, then
sup{ρ′(x) | x′ ∈ f (A)} ≤ ca. In general, which operators are bounded and which
are not depends on the norms one chooses on the two spaces V and V ′. Now, let
L(V, V ′) be the space of linear bounded operators from V to V ′. This is clearly a
linear space. In this space, consider the following.

Definition 4.4 (Operator norm) Let f ∈ L(V, V ′) and define

‖ f ‖op = sup
{
ρ′( f (x)) | ρ(x) = 1

}
,
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where ρ and ρ′ are the norms for V and V ′, respectively.

In other terms, the norm of a bounded linear operator is the maximal norm of the
images of all vectors with a norm equal to one. Alternative definitions are given
in Exercises 4.14 and 4.15. It is easy to see that the function in Definition 4.4 is a
norm. Clearly ‖ f ‖op = 0 if and only if f is the zero map and ‖a f ‖op = |a| ‖ f ‖op.
The triangle inequality follows directly from the properties of ρ′. Indeed, given
f, g ∈ L(V, V ′), ρ′( f (x) + g(x)) ≤ ρ′( f (x)) + ρ′(g(x)) and for the property of
the supremum

sup
{
ρ′( f (x)) + ρ′(g(x)) | ρ(x) = 1

} ≤
sup

{
ρ′( f (x)) | ρ(x) = 1

} + sup
{
ρ′(g(x)) | ρ(x) = 1

}
,

so that ‖ f + g‖op ≤ ‖ f ‖op + ‖g‖op.
Given the definition of norm operator, it is immediate to see that for all x ∈ V ,

ρ′( f (x)) ≤ ‖ f ‖op ρ(x). In fact, ‖ f ‖op is the lowest among all possible values c that
satisfy Definition 4.3 for a given f . Thus, given f ∈ L(V, V ′) and g ∈ L(V ′, V ′′),
∀x ∈ V , ρ′′(g( f (x))) ≤ ‖g‖opρ′( f (x)) ≤ ‖g‖op‖ f ‖opρ(x). Thus, the operator
norm is submultiplicative with respect to the composition of functions ‖g ◦ f ‖op ≤
‖g‖op‖ f ‖op. In particular, because the operator norm of the identity is 1, if the
function f has the inverse, ‖ f −1‖op ≥ 1/‖ f ‖op.

If the space V ′ has dimension m and the space V has dimension n, then all linear
maps f : V → V ′ are bounded and the space L(V, V ′) is simply the space of
m × n real matrices Mm,n . The matrix A ∈ Mm,n is associated with the mapping
from R

n to R
m , x → A x, where the last expression denotes the multiplication of

rows by columns. Thus, by the definition of the operator norm, for any matrix A
and any vector x �= 0, we have ‖A x‖ ≤ ‖A‖op ‖x‖. The operator norm cannot be
lower than the largest eigenvalue of A. If the matrix A can be diagonalized, they
are equal. The next result clarifies that the space of bounded linear operators is also
the space of continuous linear operators. This implies that any one-to-one bounded
linear function between two normed spaces is a homeomorphism.

Theorem 4.6 Any linear operator between two normed spaces is bounded if and
only if it is continuous.

Proof Let f : V → V ′ be a linear function from the normed space (V, ρ) to
the normed space (V ′, ρ′). If f is the zero map, the theorem directly follows from
Example 2.16. We will assume that for some x ∈ V , f (x) �= 0.

Assume that f is bounded and c > 0 is an upper bound according toDefinition 4.3.
Take any open set A′ ⊆ f (V ). For any y ∈ A′ let ε(y) > 0 be such that B(y, ε(y)) ⊆
A′ and consider a point xy ∈ f −1(y). Note that, by definition, ∀z ∈ V such that
ρ(xy−z) < ε(y)/c, ρ′( f (xy)− f (z)) < ε(y), thus f (B(xy, ε(y)/c)) ⊆ B(y, ε(y)).
It follows that f −1(A′) = ∪y∈A′B(xy, ε(y)/c). Thus, f −1(A′) is open, which proves
that f is continuous.
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Assume, conversely, that f is continuous. Let0 be the zero vector. Since f is linear,
0 ∈ f −1(0) and ∃δ such that f (B(0, δ)) ⊆ B(0, 1) and also B̄(0, δ) ⊆ f −1(B̄(0, 1))
(see Exercise 2.24). In other terms, ρ′( f (x)) ≤ 1 if ρ(x) ≤ δ. Since for any vector
z ∈ V, z �= 0, ρ(zδ/ρ(z)) = δ, we also have ρ′( f (zδ/ρ(z))) ≤ 1. This implies that

ρ′( f (z)) = ρ(z)
δ

ρ′
(
f

(
zδ

ρ(z)

))
≤ ρ(z)

δ
,

and 1/δ is the constant c of Definition 4.3. �

4.3 Finite-Dimensional Normed Spaces

In this section, we review some fundamental results of normed spaces with finite
dimension. They will play an essential role in the study of real functions of one or
many variables.

Theorem 4.7 Any norm topology on Rn is second-countable.

Proof The norm topology is generated from the base of open balls B; see Defini-
tion 3.5. Since Q is dense in R, using Theorem 2.6, it is straightforward to show
that the same topology can be generated by the set B′ of open balls having rational
radius and a centre with rational components. The set B′ is one-to-one with a subset
of Qn+1. Therefore, it is countable. �

We can extend to finite-dimensional normed spaces a useful result that we have
already proved in Theorem 2.9 for the Euclidean topology on R.

Theorem 4.8 Any open set in (Rn, ρ) can be written as the countable union of
disjoint open balls.

Proof Let A ⊆ R
n be open. Take x ∈ A and let B(x, ρx ) be the largest ball such

that B(x, ρx ) ⊆ A. Next take y ∈ A \ B(x, ρx ) and let B(y, ρy) be the largest ball
such that B(y, ρy) ⊆ A \ B(x, ρx ). Clearly B(x, ρx ) ∩ B(y, ρy) = ∅. Repeat this
procedure to find a cover A = ∪αB(xα, ρα). These balls are all disjoint. In each ball
there is a different element of Qn . Because this set is countable, the number of balls
cannot be more than countable. �

Since any finite-dimensional normed space (Rn, ρ) is Hausdorff (Theorem 3.1) and
second-countable (Theorem 4.7) according to Theorem 2.16, we have the following.
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Corollary 4.2 (BolzanoWeierstrass) In the topology induced by the norm on finite-
dimensional real linear spaces (Rn, ρ), a set K is compact if and only if any infinite
subset of K has at least one limit point and all its limit points belong to K .

In a generic Hausdorff space, we cannot conclude that a bounded and closed set
is compact (see Example 2.12). Indeed, for this to be true, one needs an additional
property. To discuss this property, we introduce a special kind of open sets.

Definition 4.5 (n-cell) In Rn an n-cell I is defined by n couples (a j , b j ) with a j <

b j , j = 1, . . . , n, as I = {x ∈ R
n | a j ≤ x j ≤ b j } where x j denotes the j th

component of the element x ∈ R
n .

A 1-cell is a closed interval inR and a 2-cell is a rectangle inR2, including its bound-
aries. Alternatively, we can write the n-cell as a Cartesian product I = ×n

k=1[ak, bk].
The special property that characterises the n-cell is the following.

Lemma 4.2 Consider a nested sequence of n-cells in R
n, that is a sequence (I k)

such that ∀k, I k+1 ⊆ I k . Then ∩k I k is not empty.

Proof The j th components of the n-cells in the set (I k) form a sequence of nested
intervals [akj , bkj ] whose intersection, according to Theorem 1.8, is not empty. Let

x∗
j ∈ ∩k [akj , bkj ]. Repeat the same procedure for any j . Then the vector x∗ with

components (x∗
1 , . . . , x

∗
n ) belongs to ∩k I k . �

The previous result, which generalises Theorem 1.8, is due to the existence of supre-
mum and infimum for real bounded sets. It has an important consequence.

Theorem 4.9 Any n-cell I of the Euclidean normed space (Rn, || · ||) is compact.

Proof We prove the statement by contradiction. Consider an n-cell I and assume
there exists a cover C ⊆ ∪αVα from which no finite subcover can be extracted. Now
divide the cell I into 2n smaller cells, considering the midpoint along any dimension
c′
j = (a j + b j )/2. Among all the cells ×n

1= j ([a′
j , b

′
j ]) with [a′

j , b
′
j ] = [a j , c′

j ] or
[a′

j , b
′
j ] = [c′

j , b j ], at least one is not covered by a finite subcover, or otherwise I

would be. Let this cell be I 2. Repeat the splitting procedure again for I 2 to find an
n-cell I 3 ⊂ I 2 which is not covered by a finite subcover. Iterating this procedure, we
obtain a sequence of nested n-cells (I k) such that I k+1 ⊂ I k . All these sets have the
property that no finite subset of {Vα} is sufficient to cover them. However, according
to Lemma 4.2, ∃x∗ ∈ ∩k I k and a α∗ such that x∗ ∈ Vα∗ . Since Vα∗ is open, ∃ρ∗ > 0
such that B(x∗, ρ∗) ⊆ Vα∗ .

The length of the j th side of I k is (b j − a j )/2k . Define δ = sup j {b j − a j }
so that ∀x, y ∈ I k , ‖x − y‖ ≤ ∑

j |x j − y j | ≤ n δ/2k . If h > log2 δn/ρ∗, then
n δ/2h < ρ∗, so that if x ∈ I h , x ∈ B(x∗, ρ∗). In other terms, I h ⊆ B(x∗, ρ∗). But
this is a contradiction, because then a single element of the cover, Vα∗ , would be
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K is compact
K is closed

norm topology

Hausdorff

Hausdorff

Hausdorff + second countable

K is bounded

any infinite subset of K

has limit points in K

R Euclidean

Fig. 4.2 Relationship between compact, closed, and bounded sets. The direction of the arrow
identifies logical implication. The dotted line relations are valid for real numbers R and real linear
normed spaces (Rn, ρ)

sufficient to cover I h . Thus, there are no covers from which a finite subcover cannot
be extracted, which proves the statement. �

Theorem 4.9 directly leads to the following result.2

Theorem 4.10 (Heine–Borel) In (Rn, || · ||), a set is compact if and only if it is
bounded and closed.

Proof Assume that the set K is bounded and closed. Since it is bounded, there exists
a n-cell I such that K ⊆ I . Then K is a closed subset of a compact set, and by
Corollary 2.1, it is compact.

Suppose instead that K is compact. Then, because the Euclidean topology on
R
n is Hausdorff, by Theorem 2.12 the set K is closed and by Theorem 3.2 it is

bounded. �

Theorems 4.9 and 4.10 were proved only for a specific norm, the Euclidean norm.
In the next section, we will see that these results can be generalised to any norm on
R
n (Fig. 4.2).

� Example 4.4 (Homeomorphism of convex sets inRn) We will prove that any com-
pact convex set inRn with a nonempty interior is homeomorphic (seeDefinition 2.17)
to the closed ball of unit radius B̄n(0, 1). Let A ⊂ R

n be compact and convex and

2 A more general version of the Heine–Borel theorem would require the notion of product topology
and the Tychonoff theorem. The advantage of using the Tychonoff theorem is that the result can
be directly extended to infinite-dimensional normed spaces. The disadvantage is that the basic
treatment of the subject would require several additional definitions. In any case, the derivation
below, which is valid only for finite-dimensional spaces, is sufficient for our purposes.



76 4 Normed Spaces

assume that its interior is not empty. Without loss of generality, we can assume
that 0 ∈ A0. Then ∃r > 0 such that 0 ∈ Bn(0, r) ⊂ A0. For any x ∈ R

n define
η(x) = inf{t > 0 | x/t ∈ A}. Note that η(0) = 0 and η(c x) = c η(x). Because A
is bounded, η(x) is strictly positive ∀x �= 0 and, moreover, η(x) < ‖x‖/r . For any
l > η(x), x/ l ∈ A0 and x/η(x) ∈ ∂A.

Due to the convexity of A, any combinationλ x/η(x)+(1−λ) y/η(y) forλ ∈ [0, 1]
belongs to A. In particular, if one setsλ = η(x)/(η(x)+η(y)), (x+y)/(η(x)+η(y)) ∈
A so that η(x + y) ≤ η(x) + η(y). This implies that the function η is convex and,
hence, according to Theorem 2.31, continuous.

Now consider the function from the set A to the unit closed ball φ : A → B̄n(0, 1)
defined as

φ(x) =
{
x η(x)/‖x‖ if x �= 0 ,

0 if x = 0 .

If x ∈ ∂A, then η(x) = 1 and φ(x) ∈ ∂ B̄n(0, 1). If x ∈ A0, then η(x) < 1
and φ(x) ∈ Bn(0, 1). For x �= 0 the function φ is the composition of continuous
functions. When x → 0, the quantity η(x)/‖x‖ = η(x/‖x‖) remains bounded so
that limx→0 φ(x) = 0. We can conclude that the function φ is continuous.

Now consider the function φ′ : B̄n(0, 1) → A defined as

φ′(x) =
{
x ‖x‖/η(x) if x �= 0 ,

0 if x = 0 .

Again,we have limx→0 φ′(x) = 0, so that the functionφ′ is continuous. Sinceφ′◦φ is
the identity in A, this proves the assertion. The function φ maps A0 to Bn . Therefore,
we have also shown that any open bounded convex set in R

n is homeomorphic to
the open ball with unit radius.

4.3.1 Equivalence of Norms inR
n

Any function that satisfies the properties of Definition 4.1 can be used to define a
norm in a linear space V . The question arises whether different norms might induce
radically different properties on the space itself. For instance, could it be that a set
is bounded according to a given norm and not bounded with respect to another? We
will see that as long as the space V has a finite dimension, this is not the case. To
proceed, we need an operational definition of the equivalence between norms.

Definition 4.6 Consider a linear space V and two norms ρ : V → R and ρ′ : V →
R. The two norms are equivalent if there exist two positive constants c and C such
that ∀x ∈ V , cρ(x) ≤ ρ′(x) ≤ Cρ(x).

Note that if c andC exist, then ρ′(x)/C ≤ ρ(x) ≤ ρ′(x)/c, so the equivalence of the
norms is a symmetric relation. One can easily prove that it is also transitive, so that
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it can be used to define an equivalence relation on the space of all possible norms. It
turns out that, on a finite-dimensional linear space, all norms are equivalent.

Theorem 4.11 (Equivalence of norms) All norms defined on a finite-dimensional
real linear space V are equivalent.

Proof We will prove the theorem by showing that all norms are equivalent to the
Euclidean norm defined over the components with respect to a given basis. Let n be
the dimension of V and (b1, . . . ,bn) a basis. For any v ∈ V , there is a unique n-
tuple of components x = (x1, . . . , xn) such that v = ∑n

i=1 xi bi . Define the function
ρE : V → R≥0 as ρE (v) = ‖x‖. This function is simply the Euclidean norm defined
over the space of components. It is immediate to see that it defines a norm on V .
We will show that any other norm ρ on V is equivalent to ρE . For the triangle and
Cauchy–Schwartz inequalities (see Theorem 4.2),

ρ (v) = ρ

(
n∑

i=1

xi bi

)
≤

n∑
i=1

|xi |ρ (bi ) ≤ ‖x‖ ‖b‖,

where b = (
ρ′ (b1) , . . . , ρ′ (bn)

)
. Thus, setting C = ‖b‖, ρ(v) ≤ C ρE (v) for any

v.
Consider now the set S = {x | ||x|| = 1} ⊆ R

n and define the function f (x) =
ρ

(∑n
i=1 xi bi

)
from S to R≥0. The set S is just the boundary of the Euclidean open

ball with centre 0 and radius 1. Thus, it is a closed set. Since it is also bounded,
Theorem 4.10 implies that it is compact. The function f is the composition of two
functions: the first function maps the n-tuple of real numbers into a vector of V ,
and the second function is just the norm ρ on V . The first function is bounded as
ρ(

∑n
i=1 xi bi ) ≤ ‖b‖‖x‖; hence, being linear, it is continuous by Theorem 4.6. The

second function is continuous by definition (see Example 4.1). Thus, the function f ,
being the composition of two continuous functions, is continuous and it reaches its
minimum in S at a point x′ ∈ S associated to a vector v′ ∈ V , with v′ = ∑n

i=1 x ′
i bi .

Let ρ(v′) = c. Thus, ∀v ∈ V ,

ρ (v) = ρ

(
n∑

i=1

xi bi

)
= ‖x‖ ρ

(
n∑

i=1

xi
||x|| bi

)
≥ c ‖x‖ = c ρe(v),

and the statement is proved. �

The procedure adopted in Theorem 3.1 to generate a topology gives precisely the
same result when using distance functions derived from two equivalent norms (see
Exercise 4.20). This is straightforward to prove using Theorem 2.6. Thus, we can
conclude that all norms induce precisely the same topology on a finite-dimensional
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normed space.3 For example, the Euclidean topology on R
n can be generated us-

ing n-cells (hyperrectangles) as a base; see Exercise 4.13. A direct consequence of
Theorem 4.11 is the generalisation of Theorem 4.10.

Corollary 4.3 (Heine–Borel) In any finite-dimensional normed space (V, ρ), a set
is compact if and only if it is bounded and closed.

This immediately implies the following.

Theorem 4.12 (Nearest point) Let x ∈ R
n and consider a subset A ⊆ R

n such that
x /∈ A. Then if A is closed, ∃y ∈ A such that d(x, y) = d(x, A). y is the nearest
point of the set A to the point x.

Proof Pick an element a ∈ A. If d(x, a) = d(x, A), we are done. Otherwise,
consider the closed ball B̄(x, d(x, a)). Since the closed ball is closed and bounded,
it is compact. Thus, by Corollary 2.1, its intersection with A is compact, so that the
function f (z) = d(z, x) has a minimum y in this intersection (see Theorem 2.30).
Since no points of A can be closer to x than the point y, the statement is proved. �

The statement above cannot be generalised to any metric space. For example, the set
of rational numbers I = {x ∈ Q | 3 < x2 < 5} is closed and its distance from the
origin is

√
3, but any point in the set is more distant from the origin than that. More

generally, Corollary 4.3 has been proven only for finite-dimensional normed spaces.
When infinite-dimensional spaces are considered, one has to check this property on
a case-by-case basis.

Exercises

Exercise 4.1 Prove that in any normed space, Definition 4.2 of bounded sets is
equivalent to Definition 3.2.

Exercise 4.2 In the normed space (Rn, ρ) with a generic norm ρ, prove that the
boundary of the open ball B(x, r) is made of all points y such that ρ(x − y) = r .

Exercise 4.3 Given a normed space (V, ρ), let B̄ be the set of all closed balls
B̄(x, r) = {v ∈ V | ρ(v − x) ≤ r} with r > 0 and their interior (the open balls).
Prove that B is the base of a topology. Is the resulting topological space a Hausdorff
space? Characterise compact sets and connected subspaces in such a topological
space. Hint: The topology generated by B is peculiar but not unheard of.

3 The statement is easily extendable to finite-dimensional normed spaces defined over the field of
complex numbers. In the proof above, the Euclidean norm is replaced with the norm defined using

the complex conjugate ||x|| =
√∑n

h=1 xh x∗
h .
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Exercise 4.4 Prove that Theorem 4.1 is valid for maxima and minima if the function
f is strictly concave or strictly convex.

Exercise 4.5 In (Rn, ||.||), prove that any open ball B(x, r) and its closure B̄(x, r)
are convex sets, while the boundary of the ball is not convex.

Exercise 4.6 Let V be a linear space of dimension n and consider a basis
(b1, . . . , bn). For any v ∈ V with v = ∑N

i=1 xi bi , define the function ρE (v) = ||x||.
Prove that this function is a norm.Hint:Use the linear properties of the representation
of vectors on a basis.

Exercise 4.7 (open n-cell) Prove that in (Rn, ‖.‖), for any ball B(x, ρ) there exists
an open n-cell I = ×n

i=1(ai , bi ) with ai < bi , ∀i , such that x ∈ I ⊂ B(x, ρ).
Analogously, prove that for any open n-cell and any x ∈ I , there exists an open ball
B(x, ρ) such that B(x, ρ) ⊂ I . Discuss how this result implies that open n-cells are
a base of (Rn, ‖.‖).

Exercise 4.8 (Uniform norm) Define the function ‖x‖∞ = max{|x1|, . . . , |xn|},
∀x ∈ R

n . Prove that ‖.‖∞ is a norm.

Exercise 4.9 Prove that ‖ · ‖∞ defined in Example 4.3 is a norm.

Exercise 4.10 Extending Example 4.3 let A be a generic set, (V, ρ) a normed space,
and B(A) the set of bounded functions f : A → V , that is, functions such that
‖ f ‖∞ = supa∈A{ρ( f (x))} < +∞. Prove that (B(A), ‖.‖∞) is a normed space.

Exercise 4.11 Consider the p-norm of Sect. 4.2.2) in R
2 and let Bp(x, ρ) be the

associated ball of centre x and radius ρ > 0. Prove that B2(0, ρ) ⊂ B3(0, ρ).

Exercise 4.12 Given q > p > 1, prove that ‖x‖p ≥ ‖x‖q . Hint: Define y j =
|x j |/‖x‖q and notice that y pj ≥ yqj .

Exercise 4.13 (n-cell) With reference to Exercise 4.8, consider the normed space
(Rn, ‖.‖∞). Prove that in this space the ball B(x, δ) is in fact the open n-cell
×n

i=1(xi − δ, xi + δ).

Exercise 4.14 Starting from Definition 4.4 prove that for all x ∈ V , ρ′( f (x)) ≤
‖ f ‖op ρ( f (x)).

Exercise 4.15 Prove that Definition 4.4 can be replaced with the equivalent defini-
tion ‖ f ‖op = sup

{
ρ′( f (x)) | ρ(x) ≤ 1

}
.

Exercise 4.16 Prove that Definition 4.4 can be replaced with the equivalent defini-
tion ‖ f ‖op = sup

{
ρ′( f (x))/ρ(x)) | x �= 0

}
.
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Exercise 4.17 Compute the operator norm of the matrix

A =
(
1 1
0 1

)

and compare it with the matrix eigenvalues. Hint: Remember that if x2 + y2 = 1,
then you can substitute x = cosφ and y = sin φ with φ ∈ [0, 2π).

Exercise 4.18 (Dual norm) Consider a normed space (Rn, ρ) and the function ρ∗ :
R
n → R≥0, ρ∗(x) = sup{∑n

i=1 xi zi | ρ(z) ≤ 1}. Prove that ρ∗ is a norm. In fact, it
is named the dual norm of ρ.

Exercise 4.19 Prove that the equivalence of norms in Definition 4.6 is transitive.

Exercise 4.20 Prove that two equivalent norms on a linear space V induce on V the
same topology.



5Sequences andSeries

5.1 Sequences in Topological Spaces

A sequence is an ordered collection of elements of a set. Each element is assigned a
progressive natural number that represents the relative position of the element in the
sequence.

Definition 5.1 (Sequence) A sequence (xn) is a map from N to a set X :

f :N → X,

n → xn .

A sequence is generically denoted by (xn) or (x)n . The functional dependence can
be written in parentheses, for example, (2n + 1) or (xn = 2n + 1) represents the
sequence of odd natural numbers (3, 5, 7, . . .). Alternatively, we can write (2n)n>3
for the sequence of even natural numbers greater than 6, (8, 10, 12, . . .). The elements
of the sequence define the subset {xn} ⊆ X . This is the image of the function f in
Definition 5.1. It can be finite or countable. For example, if (xn = (−1)n), then
{xn} = {−1, 1}. In general, we assume that X has a topological structure.

Definition 5.2 (Limit of a sequence) Consider the topological space (X, T ) and let
(xn) ⊆ X be a sequence of elements of X . The element y ∈ X is a limit of the
sequence (xn) if ∀N (y) ∈ T , ∃n ∈ N such that ∀m > n, xm ∈ N (y).

If y is a limit of the sequence, the sequence converges to y. Similarly, a sequence
with a limit is said to be convergent. We denote the limit of a sequence by writing
limn→∞ xn = y or, for short, xn → y. Note that Definition 5.2 does not imply or
assume that the limit exists or is unique.
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� Example 5.1 (Sequence in the toy topology) Consider the topology defined in
Example 2.1. The sequence (xn = a) has two limits, a and b. The point b is also the
limit of the sequence defined as

xn =
{
a if n is odd,

b if n is even.

The sequence (xn = c) has c as its unique limit.

We will say that a given property applies eventually or asymptotically to the terms
of a sequence if there exists an integer n such that it applies to all terms with an index
greater than n.

Definition 5.3 (Constant sequence) A sequence is a constant sequence if it is even-
tually constant, that is, if it takes a constant value xn = x starting from some index
n.

Since we are exclusively interested in the behaviour of the sequence when n is large,
the previous definition is the most appropriate. The range {xn} of a constant sequence
contains a finite number of elements. The notion of limit of a sequence differs from
the notion of limit point of a set introduced in Chap. 2. In a constant sequence, it
may eventually be xn = x , but x can or cannot be a limit point of the set {xn}. If a
sequence is not constant, then xn → x implies that x ∈ D{xn}, that is, the limit of
the sequence is a limit point of the range of the sequence.

5.1.1 Subsequences

Starting from a sequence (xn), we can imagine building a new sequence picking
elements with progressively higher indices. Each element of the new sequence is
assigned a new increasing index. The new sequence can be denoted as (xmn ) to
say that the nth element of the new sequence was the mn th element of the original
sequence. For example, (x2n+1) is the subsequence formed by the elements of the
original sequence (xn) with an odd index. Of course, it must be the case that ∀n,
mn+1 > mn . This procedure is formalised in the following definition.

Definition 5.4 (Subsequence) Given a sequence (xn) consider a strictly increasing
function on the natural numbers

f :N → N,

i → ni ,
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with ni > n j if i > j . The composition of this function with the function that defines
the sequence identifies a new sequence (xni ) that is a subsequence of the original
sequence.

The range of the subsequence is a subset of the range of the original sequence.
Moreover, if the original sequence has a limit, any subsequence will converge to it.

Theorem 5.1 Any subsequence of a converging sequence is converging to the limit
of the sequence.

Proof Let xn → y. Then ∀N (y) ∈ T , ∃n ∈ N such that ∀m > n, xm ∈ N (y). Using
the notation in Definition 5.4, for any subsequence (xni ), ∃i such that ni > n. Then,
∀ j > i , the element xn j belongs to N (y) so that xni → y. �

5.1.2 Sequences and Functions

Let f : X → Y be a function between two topological spaces and x∗ a limit point of
the domain of f , x∗ ∈ DD f . Consider a sequence (xn) ⊆ D f , such that xn → x∗.
One can askwhat happens to the sequence of images ( f (xn)). If limx→x∗ f (x) = y∗,
then f (xn) → y∗. The limit of the sequence of images can be inferred from the limit
of the function. To do the opposite, that is, to infer the limit of the function from
the limit of the sequences of images, we need the existence of a countable base of
neighbourhoods of x∗.

Theorem 5.2 Let f : X → Y be a function between two topological spaces (X, TX )

and (Y, TY ) and consider x∗ ∈ DD f . Assume (X, TX ) is first-countable. Then
limx→x∗ f (x) = y∗ if and only if ∀(xn) ⊆ D f such that xn → x∗, it is f (xn) → y∗.

Proof First, we will prove that the limit of the function is the limit of the sequence
of images. This proof does not require any assumption on the topology. Suppose that
limx→x∗ f (x) = y∗. Therefore, ∀N (y∗), ∃N (x∗) such that f (N (x∗)) ⊆ N (y∗).
Now since xn → x∗,∃n such that∀k > n, xk ∈ N (x∗), then∀k > n, f (xk) ∈ N (y∗).

To prove the statement in the other direction, wewill show that if limx→x∗ f (x) 	=
y∗, then one can build a sequence (xn) such that xn → x∗ but f (xn) 	→ y∗.
By assumption, ∃N (y∗), such that ∀N (x∗), f (N (x∗)) � N (y∗). Now since the
space is first-countable, consider the countable local base {Bk} that generates all
neighbourhoods of x∗, and consider Nk(x∗) = B1 ∩ B2 ∩ ... ∩ Bk . Let xk ∈ Nk(x∗)
and f (xk) /∈ N (y∗). By the definition of local base, for any N (x∗), ∃Bk such that
Bk ⊆ N (x∗), all xh with h ≥ k belong to N (x∗) and xk → x∗. But f (xk) � y∗
because none of the xk belong to N (y∗). �

Using this theorem, we can study the properties of the limit of a function at one point
using the behaviour of the images of the sequences converging to it. In practise, it
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means that any general property we prove about the limit of sequences also applies
to the limit of functions.

Sequences can be defined in a recursive fashion. Given a topological space X ,
consider a function f : X → X and a starting element x0. Then we can consider
the sequence (xn = f (xn−1)). When it is important to stress the initial point, this
sequence can be denoted as ( f nx0) where f n represents the recursive composition
of the function f taken n times. Assume that xn → x∗ and that limx→x∗ f (x) =
f ∗. Because the sequence of images under f is a subsequence ( f (xn) = xn+1),
Theorem 5.2 implies f ∗ = x∗. If the function f is continuous, then the limit x∗
solves f (x∗) = x∗. The point x∗ is a fixed point of the function f . It is important
to remember that even if the equation f (x) = x admits one or more solutions, that
is, even if the function f has one or more fixed points, we cannot conclude that any
sequence ( f nx0) is convergent.

5.1.3 Uniqueness of Limit

The notion of the limit of a sequence acquires a much stronger characterisation when
Hausdorff spaces are considered.

Theorem 5.3 Consider the sequence (xn) in a Hausdorff topological space. Then,
if the sequence has a limit, this limit is unique.

Proof Assume that there are twodistinct limits y and y′. Since the space isHausdorff,
there are two neighbourhoods N (y) and N (y′) such that N (y) ∩ N (y′) = ∅. This
leads to a contradiction, since both neighbourhoods should eventually contain all
elements of the sequence. �

In a Hausdorff space, if xn → y and the sequence is nonconstant, then the derivative
set of its image is the singlet D{xn} = {y}. The opposite is not true, as the following
example shows.

� Example 5.2 (Limit points of a sequence with no limit) Consider the Euclidean
topology on R and the sequence

xn =
{

1
n if n is even,

n if n is odd.

D{xn} = {0}, but the sequence has no limit.
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5.2 Sequences in Metric Spaces

Anymetric space (X, d) is equippedwith a topology inducedby the distance function.
Since the induced topology is Hausdorff, if the limit of a sequence exists, it is unique.
For simplicity, the definition of the limit of a sequence is restated using open balls,
the natural base of the topology, instead of generic neighbourhoods.

Definition 5.5 Consider the metric space (X, d) and let (xn) ⊆ X be a sequence of
elements of X , then xn → x ∈ X if ∀ε > 0, ∃Nε ∈ N such that d(x, xn) < ε if
n > Nε .

This definition does not add anything to Definition 5.2. In fact, if Definition 5.2
applies, then Definition 5.5 does so too, because open balls are just particular neigh-
bourhoods. Analogously, if Definition 5.5 applies, since any neighbourhood of y
contains an open ball that contains y (see the properties of a base in Sect. 2.2), Defi-
nition 5.2 also applies. From Definition 5.5 it immediately follows that a convergent
sequence is bounded.

Theorem 5.4 If xn → x then {xn} is bounded.

Proof Take ε > 0. There exists a N such that ∀n > N , it is d(x, xn) < ε, that is,
xn ∈ B(x, ε). Let M be the maximum among the distances d(xh, x) with h ≤ n and
ε. Clearly ∀n, xn ∈ B(x, M), so that the set {xn} is bounded. �

In a metric space, given a nonconstant sequence (xn), if x ∈ D{xn} then there exists
a subsequence that converges to x . To build it, consider the sequence of open balls
with radius 1/m and centre x . Let xn1 be the first element of the sequence (xn)
belonging to B(x, 1) and xnm be the first element of the sequence (xn) with an index
greater than nm−1 belonging to B(x, 1/m). The sequence xnm is a subsequence of
(xn). Since open balls are a base of the topology, for any neighbourhood N (x) of x ,
there exists a ball B(x, ρ) such that B(x, ρ) ⊆ N (x). By construction, ∀m > 1/ρ,
xnm ∈ B(x, ρ), so that xnm → x .

5.2.1 Cauchy Sequences and Complete Spaces

In a metric space, we can evaluate the distance between any two elements of a
sequence. We can then investigate what happens to this distance asymptotically, that
is, when considering terms as the index increases. Of particular importance are those
sequences whose elements are progressively closer together. They take their name
from the French mathematician Augustin Louis Cauchy (1789–1857).

Definition 5.6 (Cauchy sequence) In ametric space (X, d), the sequence (xn) is said
to be a Cauchy sequence if ∀ε > 0, ∃nε ∈ N such that ∀n,m > nε , d(xn, xm) < ε.
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The Cauchy property implies two things: the set of elements of the sequence is
bounded, and it has at most one limit point.

Theorem 5.5 If (xn) is a Cauchy sequence, then the set {xn} is bounded.

Proof Since the sequence is Cauchy, ∃n such that ∀m, l ≥ n, d(xm, xl) < 1. Set
L = max{1, d(x j , xn) | j = 1, . . . , n − 1}, then, ∀k, xk ∈ B(xn, L) and the
statement follows.

Theorem 5.6 If (xn) is a Cauchy sequence, then the set {xn} cannot have two limit
points.

Proof Assume y and z are two limit points of {xn} and let δ = d(y, z). For any n,
∃l,m > n such that xl ∈ B(y, δ/3) and xm ∈ B(z, δ/3). From the triangle inequality
d(y, xl)+d(xl , xm)+d(xm, z) ≥ δ. Then d(xl , xm) ≥ δ−d(y, xl)−d(xm, z) > δ/3
so that the sequence cannot be Cauchy. �

It turns out that converging sequences are always Cauchy.

Theorem 5.7 In any metric space (X, d), every convergent sequence is Cauchy.

Proof Let xn → y. For any ε > 0, ∃Nε such that ∀n > nε , d(xn, y) < ε/2. Then
∀n,m > nε , using the triangle inequality, d(xn, xm) ≤ d(xn, y)+d(xm, y) < ε and
the assertion follows. �

However, in general, the opposite is not true. That is, Cauchy sequences are not
always converging sequences. A counterexample is provided below.

� Example 5.3 (Fibonacci numbers and induction) Leonardo filius Bonacci or Fi-
bonacci was an Italian mathematician of the thirteenth century. Born in Pisa, Fi-
bonacci visited several Mediterranean cities to study Arab and Indian mathematics.
He became famous in the West and managed to obtain a permanent salary from the
emperor Frederick II just to pursue his study of algebra. In his 1202 book Liber
Abaci, Fibonacci introduced the sequence (an) defined by the recursive relation
an = an−1+an−2 with initial values a1 = a2 = 1. The first elements of the sequence
read (1, 1, 2, 3, 5, 8, 13, 21, . . .). Consider the sequence formed by the quotient of
subsequent “Fibonacci numbers” ( fn = an+1/an). I want to prove that ( fn) is a
Cauchy sequence. To see it notice that a2n − an+1an−1 = ±1. This can be proved by
induction: first, notice that this is true for n = 2, indeed a22−a3a1 = 1−2 = −1; then
if we assume that it is true for n, substituting the definition of Fibonacci numbers,
we have

a2n+1 − an+2an = a2n+1 − an+1an − a2n =
an+1(an+1 − an) − a2n = −(a2n − an+1an−1),
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so that it is also true for n + 1. Furthermore, notice that if n > 5, then an > n. This
can also be proved by induction. The proof is trivial and is left to the reader (see
Exercise 5.4). On the basis of these considerations, one has

| fn+1 − fn| =
∣∣∣∣∣an+2an − a2n+1

anan+1

∣∣∣∣∣ = 1

|anan+1| ≤ 1

n(n + 1)
,

and for the triangle inequality, this implies that

| fn+h − fn| ≤
h∑
j=1

∣∣ fn+ j − fn+ j−1
∣∣ ≤

h∑
j=1

1

(n + j)(n + j − 1)
=

h∑
j=1

1

n + j − 1
− 1

n + j
=1

n
− 1

n + h
≤ 1

n

which, in turn, implies that if h, k > n, | fh − fk | < 1/n, so that the sequence is
Cauchy: for any ε > 0 in Definition 5.6, take nε = [1/ε] + 1, where [x] denotes the
integer part of x . The elements of the sequence are rational numbers but the sequence
( fn) does not have any limit in Q. To see it, notice that by applying the recursive
formula to the Fibonacci numbers one has fn+1 = 1 + 1/ fn , so that if fn → f̃ , it
should be f̃ = 1 + 1/ f̃ . However, no rational number could possibly satisfy this
equation. In fact, if f̃ = p/q , with p and q mutually prime natural numbers, it
should be p2 = q(p + q), which is absurd because if p has k as a factor, q cannot
have k as a factor. In R, the limit of the sequence ( fn) is the positive solution of the
quadratic function f̃ 2 − f̃ − 1, namely f̃ = (1+ √

5)/2 which is also known as the
golden ratio. This is a fixed point of the function g(x) = 1 + 1/x .

If we consider sequences in a compact subset, Theorem 5.7 is valid in both di-
rections. In fact, a Cauchy sequence in a compact subset has two possibilities: it is
constant and then converging, or it has an infinite number of points. In the latter
case, according to Theorem 2.15, it has at least one limit point. Since Theorem 5.6
excludes the possibility that it can have more than one limit point, it follows that the
set has exactly one limit point, which is precisely the limit of the sequence.

Theorem 5.8 A Cauchy sequence on a compact set K ⊆ X in (X, d) is convergent.

Proof Let (xn) ⊆ K be a Cauchy sequence and consider the sets obtained by drop-
ping the first n elements, En = {xn+1, xn+2, ..., xn+k, ...}. The closure of these sets
Ēn are compact sets because they are closed subsets of a compact set. Moreover,
Ēn+1 ⊆ Ēn . Since Ēn 	= ∅ ∀n, according to Theorem 2.13 their intersection is not
empty. Let E∗ = ∩n Ēn 	= ∅. Suppose y, y′ ∈ E∗ and let d(y, y′) = η > 0. This
implies that ∀n, diam(En) ≥ η. But this contradicts the hypothesis, as ∃nη such that
∀n,m > nη, d(xn, xm) < η/2, which implies that diam(Enη ) ≤ η/2 < η. Thus η
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must be zero and E∗ contains only one point. Denote it y∗. Note that ε > 0, ∃nε

such that diam(Ēnε ) < ε. Thus, ∀xn such that n > nε , d(xn, y∗) < ε, which proves
the assertion. �

Theorem 5.8 has the following important consequence.

Corollary 5.1 Any Cauchy sequence in (R, | · |) is convergent.

Proof Let (xn) be a Cauchy sequence in R. Since it is bounded, by Theorem 5.5,
there exists a bounded and closed interval that contains it. This interval is compact
(see Theorem 2.18) and, from Theorem 5.8, this implies that (xn) is convergent. �

The previous corollary is not true inQ, because the bounded closed intervals inQ are
not compact. Indeed, inQwe can build a bounded sequence (an infinite set of points)
that does not have any limit in Q because the limit is an irrational number. This was
the situation that we encountered in Example 5.3. See Corollary 5.5 for an extension
of the same result to (Rn, ‖ · ‖). Those metric spaces in which the Cauchy property
implies convergence are generally more useful. They comply with the natural idea
that considering smaller and smaller nested sets whose diameter progressively goes
to zero, one is actually identifying a single point belonging to the intersection of all
of them. Spaces that do not have this property are perceived as “lacking something”.

Definition 5.7 (Complete space)Ametric space (X, d) is complete if every Cauchy
sequence is convergent.

By Corollary 5.1, the metric space (R, | · |) is complete. According to Theorem 5.8,
if K ⊆ X is compact, then the subspace (K , d) is complete. In other words, compact
subspaces of metric spaces are always complete.

� Example 5.4 (The metric space of bounded functions is complete) In the metric
space (B(A), d∞) defined in Example 3.1, a sequence ( fn) of bounded functions is
Cauchy if ∀ε > 0, ∃nε such that ∀l,m ≥ nε , d∞( fl , fm) < ε, that is,

sup
a∈A

{| fl(a) − fm(a)|} < ε.

This, in turn, implies that ∀l,m ≥ nε , | fl(a) − fm(a)| < ε for any a. Thus, if we
assume that ( fn) is Cauchy, ∀a ∈ A, the sequence ( fn(a)) is a Cauchy sequence of
real numbers. Since R is complete (see Corollary 5.1), this sequence is convergent.
Let g(a) = limn→∞ fn(a). We can prove that the function g is bounded. For the
triangle inequality,

|g(a)| ≤ d∞(g, 0) ≤ d∞(g, fnε ) + d∞( fnε , 0)
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where 0 is the constant zero function and a a generic point. Since fnε is bounded,
∃M > 0 such that d∞( fnε , 0) < M . Moreover, ∀a, | fl(a) − fnε (a)| < ε when
l ≥ nε , so that d∞( fl , fnε ) ≤ ε. Since the distance is a continuous function, it is
d∞(g, fnε ) ≤ ε. Thus, ∀a, |g(a)| ≤ ε + M and g ∈ (B(A), d∞). Finally, note that
∀ε > 0, if n ≥ nε ,

d∞(g, fn) ≤ d∞(g, fnε ) + d( fn, fnε ) ≤ 2ε,

which proves that fn → g (in the metric d∞). Thus (B(A), d∞) is a complete metric
space. The use of R as the image space of the functions is not important. The same
analysis can be applied to functions with images in a generic complete metric space.
For an extension of this result to continuous functions when the image space isR see
Example 5.19.Wewill return on the problem of sequences of functions in Sect. 5.6.1.

However, it is important to stress that completeness is a specific property of the
metric considered and is not associated with the induced topology. In other terms,
two metrics can define the same topology, but one is complete and the other is not.

� Example 5.5 (Completeness and topology) Let X = {1/n | n ∈ N}. The topolo-
gy induced by the Euclidean distance in X is the discrete topology. Indeed notice
that any singlet {x} ⊆ X is an open set, because there always exists a Euclidean
neighbourhood of x whose intersection with X is just x . However, the set X is not
complete with respect to the Euclidean metric, because the sequence (1/n) is a
Cauchy sequence in X , but does not have any limit in X .

On the other hand, consider the function d : X × X → R≥0,

d(x, y) =
{
0 if x = y,

1 otherwise.

It is immediate to see that this function defines a metric on X and it induces on it the
discrete topology. This time, however, the space X is complete. In this metric, any
Cauchy sequence is a sequence that is eventually constant, and thus convergent.

Since the topology induced by the metric is first-countable, see Lemma 4.1, the
equivalence between the limit of a function in a point and the limit of the image of
a sequence converging to that point discussed in Theorem 5.2 is always valid in a
metric space. Moreover, it turns out that, in a complete metric space, contractions, as
defined in Sect. 3.4, have a single fixed point. This result was attributed to the Polish
mathematician Stefan Banach (1892–1945), who first stated it in 1922. The Italian
mathematician Renato Caccioppoli (1904–1959) arrived independently at the same
conclusion a few years later.

Theorem 5.9 (Banach fixed point theorem) Let (X, d) be a complete metric space
and φ a contraction defined over it. Then there exists one and only one fixed point
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x∗ ∈ X such that φ(x∗) = x∗ and any recursive sequence (φnx0) converge to x∗ for
any initial x0 ∈ X.

Proof For any x0 ∈ X , consider the recursively defined sequence{
s0 = x0,

sn+1 = φ(sn).

Because φ is a contraction, ∀m ≥ 1,

d(sm+1, sm) = d(φ(sm), φ(sm−1)) ≤ kd(sm, sm−1) ≤ kmd(s1, s0).

For any two integers m and n such that m > n,

d(sm, sn) ≤ d(sm, sm−1) + d(sm−1, sn) ≤
m−1∑
h=n

d(sh+1, sh).

Then, using the previous result and the expression of the geometric progression in
Example 1.5,

d(sm, sn) ≤
m−1∑
h=n

khd(s1, s0) ≤ kn(1 − km−n)

1 − k
d(s1, s0) <

kn

1 − k
d(s1, s0).

Thus, ∀ε > 0, if l is such that d(s1, s0)kl/(1 − k) < ε, that is, if

l > (log(1 − k) + log ε − log d(φ(x0), x0))/ log(k),

then ∀n,m > l, d(sm, sn) < ε. We have proved that the sequence (sn) is Cauchy.
Since X is complete, ∃x∗ such that limn→∞ sn = x∗. Moreover, since x∗ is the limit
of the sequence, ∀ε > 0 there exists a nε such that if n ≥ nε , d(sn, x∗) < ε/2. Then

d(φ(x∗), x∗) ≤ d(φ(x∗), snε+1) + d(snε+1, x
∗) =

d(φ(x∗), φ(snε )) + d(snε+1, x
∗) < d(x∗, snε ) + d(snε+1, x

∗) < ε.

Since this is true ∀ε > 0, then d(φ(x∗), x∗) = 0, that is, φ(x∗) = x∗. Now as-
sume that there exists an x∗∗ such that x∗∗ = φ(x∗∗). We have d(x∗∗, x∗) =
d(φ(x∗∗), φ(x∗)) ≤ kd(x∗∗, x∗) which is possible only if d(x∗∗, x∗) = 0, that
is x∗∗ = x∗ so that the fixed point is unique. �
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� Example 5.6 (Golden ratio) In the Euclidean metric space (R, |.|), consider the
sequence (xn) defined by recursion as{

x0 = a,

xn+1 = √
1 + xn,

with a > −1. Let us investigate whether f (x) = √
1 + x is a contraction. For any

two real numbers x and y, notice that

| f (x) − f (y)| = |x − y|√
1 + x + √

1 + y

so that if x, y ∈ R≥0, | f (x)− f (y)| ≤ |x − y|/2 and f is a contraction in the metric
space (R≥0, |.|). If a > −1, then xn > 0 for any n > 0, so that the sequence is
eventually in R≥0. Using Theorem 5.9 we can conclude that the sequence converges
and its limit is the unique solution of the equation x = √

1 + x inR≥0. It is immediate
to verify that this limit is the golden ratio defined in Example 5.3.

5.3 Sequences in R

The real numbers are characterised by a field structure, which defines the two op-
erations of addition and multiplication, and an order relation (see Sect. 1.5). The
Euclidean topology of Definition 2.7 is Hausdorff and second-countable, and the
metric space (R, |.|) (see also Example 3.1) is complete (see Corollary 5.1). The
continuity of the distance function (see Sect. 3.2) guarantees that if xn → x , then
|xn| → |x |. The interaction of the limit of sequences with the usual addition and
multiplication operations can be easily addressed.

Theorem 5.10 Let (xn), (yn) ⊆ R be two sequences of real numbers. If xn → x
and yn → y, then xn + yn → x + y and xn yn → xy.

Proof Consider the addition. For any ε > 0 there is an n such that if k > n
then |x − xk | < ε/2 and |y − yk | < ε/2. Therefore, by the triangle inequality,
|x + y − xk − yk | ≤ |x − xk | + |y − yk | ≤ ε and the statement is proved. The proof
for the multiplication develops along similar lines and is left to the reader. �

Concerning the ratios, we have the following unsurprising result.

Theorem 5.11 Let (xn), (yn) ⊆ R, if xn → x and yn → y 	= 0, then xn/yn → x/y.
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Proof To prove this theorem, it suffices to prove that if yn → y 	= 0 then 1/yn →
1/y. If this is the case, the result follows from the direct application of Theorem 5.10
to the sequences (xn) and (1/yn).

To prove the statement, note first that if yn → y, then there exists a n′ such that
if n > n′, then |yn| > |y|/2. For any ε > 0, let nε > n′ be such that if n > nε then
|y − yn| < y2ε/2. Thus for n > nε ,∣∣∣∣1y − 1

yn

∣∣∣∣ = |y − yn|
|y||yn| < 2

|y − yn|
y2

< ε

and the assertion is proved. �

Similarly to what happens with the arithmetic operations, the ordering relation is
preserved by the limit.

Lemma 5.1 Consider the sequences (xn) and (yn) and assume that it is eventually
xn ≥ yn. Then if xn → x and yn → y, it is x ≥ y.

Proof We will proceed by contradiction. Let us assume that x < y and set ε =
(y − x)/2 > 0. Then ∃nε such that ∀n > nε , xn < x + ε = (x + y)/2 and
yn > y − ε = (x + y)/2. Thus, for n > nε , xn < yn , which contradicts the
hypothesis. �

The previous theorem can be used to compare a sequence with a constant sequence.
For example, if the sequence (an) converges and eventually an ≥ 00, then its limit
is nonnegative. In the same way, the nonpositivity of the limit of a sequence follows
from the nonpositivity of its elements, and it is sufficient that they are eventually
nonpositive. Conversely, the strong version of the order relation is generally not
preserved in the limit. If eventually it is an > bn , it could well be limn→∞ an =
limn→∞ bn .

� Example 5.7 (Limits violate strict order) Consider the sequences (an = 1/n) and
(bn = 1/n2). For n > 1 it is an > bn . However, their limits are equal: limn→∞ an =
limn→∞ bn = 0.

The term-by-term comparison of the elements of sequences leads to a simple
criterion to establish their convergence.

Theorem 5.12 (Comparison theorem) Let (an), (bn), and (cn) be three sequences
in R. If it is eventually an ≤ cn ≤ bn, an → l, and bn → l, then cn → l.

Proof For any ε > 0, ∃nε such that if n > nε , l − ε < an and bn < l + ε. Thus, for
n > nε , l − ε < cn < l + ε, and the assertion is proved. �

Useful results are available for sequences with ordered elements.
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Definition 5.8 The sequence (xn) ⊆ R is monotonically increasing if, ∀n, xn+1 ≥
xn , and monotonically decreasing if, ∀n, xn+1 ≤ xn .

The sequence is said to be strictly monotonically increasing or strictly monoton-
ically decreasing if in the inequalities above, ≥ and ≤ are replaced with > and <,
respectively.

A monotonic sequence is a sequence that increases or decreases monotonically.
Bounded monotonic sequences are converging sequences.

Theorem 5.13 (Monotone convergence) Suppose the sequence (xn) is monotonic,
increasing or decreasing, then it converges if it is, respectively, bounded above or
below.

Proof Consider an increasing sequence (xn). Since it is bounded above, let x∗ =
sup{xn}. By the definition of supremum, ∀ε > 0, ∃k such that 0 ≤ x∗ − xk < ε,
but since the sequence is increasing ∀n > k it is 0 ≤ x∗ − xn < ε, whence the
convergence. For a decreasing sequence bounded below the proof is analogous. �

The next example is the first of a series of examples aimed at deriving well-known
functions and discussing their properties using the theory of converging sequences.
Readers are suggested to study these examples as they illustrate several standard
methods used to deal with sequences and their limits.

� Example 5.8 (The natural logarithm as a limit of a sequence) Take any x > 0 and
consider the sequence ( fn(x)) with

fn(x) = n
( n√x − 1

)
.

We will prove that ( fn(x)) converges. First of all, notice that ∀z > 0,

n(zn+1 − 1) − (n + 1)(zn − 1) = (1 − z)2
n∑

h=1

hzh−1.

This can be easily verified by expanding the square on the right hand side and
simplifying the common terms of the resulting summations. The right-hand side is
the sum of nonnegative terms, so the left-hand side is also nonnegative. Thus, we
can conclude that

n(zn+1 − 1) ≥ (n + 1)(zn − 1).

Set z = x1/(n(n+1)) and observe that fn+1(x) ≤ fn(x), that is, the sequence ( fn(x))
is decreasing. Moreover, from the previous inequality, by dividing both sides by zn

and rearranging the terms, we get the following inequality:

n(z − 1) ≥ zn − 1

zn
.
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Substituting z = n√x we realise that fn(x) ≥ (x − 1)/x so that the sequence
( fn(x)) is bounded below. Thus, according to Theorem 5.13, the sequence has a
limit. The natural logarithm of x is defined as log x = limn→∞ fn(x) and satisfies
the logarithm inequality

(x − 1)/x ≤ log x ≤ f1(x) = x − 1, ∀x > 0.

The function log x has several notable properties. First, log 1 = 0, log x > 0 if x > 1
and log x < 0 if x < 1.

Second, note that fn(1/x) = − fn(x)/
n√x . Thus, taking the limit and for the

continuity of the power function, log 1/x = − log x .
Third, given two positive numbers x and y, via a simple rearrangement of terms,

one gets
fn(xy) − fn(x) − fn(y) = n(

n√x − 1)( n√y − 1).

The right-hand side corresponds to fn(x) fn(y)/n so that

lim
n→∞ fn(xy) − fn(x) − fn(y) = lim

n→∞
fn(x) fn(y)

n
= 0.

We can conclude that log xy = log x + log y.
Fourth, ∀δ > 0, log(x + δ) − log x = log(1+ δ/x) > 0, so that the function f is

strictly increasing.
Fifth, using the properties and inequalities above, it is easy to see that for any

ε > 0, if δ < xε/(1 + ε), | log(x ± δ) − log x | < ε. Thus, log x is a continuous
function at any point x > 0.

Sixth, given any couple of natural numbers p, q ∈ N, for the fourth property it is
log x p = p log x , and because fn(x1/q) = fqn(x)/q , log x1/q = 1/q log x . Given
any z > 0 and a sequence of positive rational numbers (pn/qn) such that pn/qn → z,
log x pn/qn = pn/qn log x , which, taking the limit, for the continuity of the involved
functions, gives log xz = z log x .

Seventh, the range of the function is the whole R. The function being continuous,
its range is connected. Thus, it suffices to prove that it is unbounded. To prove it,
we will show that ∀z ∈ R, ∃y > 0 such that log y < z. For the second property,
this implies that log 1/y > −z. Fix an integer m and a real quantity δ > 0 such
that 1 + z/m − δ/m > 0. This is possible for any real number z. Then define
y = (1 + z/m − δ/m)m . Since the sequence ( fn(x)) is decreasing, ∀n > m,

fn(y) ≤ fm(y) = m
(

m√y − 1
) = z − δ.

Taking the limit, limn→∞ fn(y) = log y < z.
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The inequality log x ≤ x − 1 was used by the Hungarian mathematician George
Pólya (1887–1985) to prove the arithmetic mean–geometric mean (AM-GM) in-
equality.1

� Example 5.9 (Concavity of the logarithm and AM–GM inequality) For any x, y ∈
R>0 and λ ∈ [0, 1], using the logarithm inequality and the properties of log x derived
in Example 5.8, one has

λ

(
x

y

)1−λ

+ (1−λ)
( y

x

)λ ≥ λ

(
1 + (1 − λ) log

x

y

)
+ (1−λ)

(
1 + λ log

y

x

)
= 1.

Multiplying both sides by xλy1−λ we obtain the generalised AM-GM inequality

λx + (1 − λ)y ≥ xλy1−λ.

Applying the natural logarithm function to both sides of the inequality and using the
property of the logarithm, one gets

log (λx + (1 − λ)y) ≥ λ log x + (1 − λ) log y,

that is, the natural logarithm is a concave function (see Definition 1.23). This result
can be used to easily prove the AM–GM inequality discussed in Theorem 1.14.

� Example 5.10 (Inverse of exponential and Euler’s e) Given two positive real num-
bers a 	= 1 and y, we are interested in the real number x such that ax = y. This is
the inverse of the exponential function defined in Theorem 1.13. To find the solution,
we apply the logarithm to both sides of the equation to obtain x log a = log y. Thus,
the solution of the problem is the unique positive real number x = log y/ log a. The
function loga x = log x/ log a is known as the logarithm in base a. It is proportional
to the natural logarithm defined in Example 5.8 and has the same properties, with the
only difference that if a < 1, then log a < 0 and loga(x) is a strictly decreasing and
convex function. In particular, if e > 1 is the unique real number such that log e = 1,
then ex is the inverse function of log x . The number e takes its name from the Swiss
mathematician Leonhard Euler 1707–1783. Its first computation was performed by
the Swiss mathematician Jacob Bernoulli in 1683. He obtained it while looking for
the formula of continuous compound interest. Since ax = ex log a , for the continuity
of the composition of continuous functions, the function ax is continuous not only
with respect to x , but also with respect to a.

1We reported another famous proof due to Cauchy, based on forward-backward induction, in The-
orem 1.14.
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The following result summarises the behaviour of the power, exponential, and
logarithm of sequences. It follows directly from Theorem 5.2 and the continuity of
the functions involved.

Theorem 5.14 Let (xn) and (yn) be such that xn → x and yn → y. If x is positive,
then x ynn → x y. If x and y are both positive, then logyn xn → logy x.

Proof If x is positive, then (xn) is eventually positive. Since log x and its inverse ex

are continuous functions, Theorem 5.2 implies that

lim
n→∞ x ynn = lim

n→∞ eyn log xn = elimn→∞ yn log xn = ex log y = x y,

where we have used Theorem 5.10.
Analogously, if x and y are bothpositive, then (xn) and (yn) are eventually positive,

lim
n→∞ logyn xn = lim

n→∞
log xn
log yn

= log x

log y
= logy x,

where we have used Theorem 5.11 for quotients. �

� Example 5.11 (Notable limit: log(n)/n) For any n ≥ 1, log(n)/n > 0. From
the inequality derived in Example 5.8, it follows that log x < x , thus log x =
log(

√
x)2 = 2 log

√
x < 2

√
x . Then log(n)/n ≤ 2/

√
n, and since limn→∞ 2/

√
n =

0, for Theorem 5.12, limn→∞ log(n)/n = 0.

� Example5.12 (Notable limit: Euler’s e) Consider the sequence (an = (1+1/n)n).
Using the binomial expansion,

an =
n∑

h=0

(
n

h

)
1

nh
=

n∑
h=0

1

h!
(
1 − 1

n

)
· · ·

(
1 − h − 1

n

)
.

The same expression for an+1 reads

an+1 =
n+1∑
h=0

1

h!
(
1 − 1

n + 1

) (
1 − 2

n + 1

)
· · ·

(
1 − h − 1

n + 1

)
.

The summation that defines an+1 contains more terms than the summation that
defines an and theirs are larger, as 1/n > 1/(n + 1). Thus we can conclude that
an+1 > an . At the same time, 1 − h/n < 1 and

an <

n∑
h=0

1

h! = 1 + 1 + 1

1 · 2 + 1

1 · 2 · 3 + 1

1 · 2 · 3 · 4 + . . . .
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Notice that if h > 2, h! > 2h−1. The inequality can be simply obtained by replacing
each number greater than 2 in the factorial with 2. Then

n∑
h=0

1

h! < 1 +
n∑

h=1

1

2h−1 = 1 + 1 − (1/2)n

1/2
= 3 − 1

2n−1 < 3,

and one has an < 3, ∀n. Thus, the sequence (an) is strictly increasing and is bounded
above.According toTheorem5.13 it has a limit,which lays between 2 (in facta1 = 2)
and 3. We denote this limit with e. Now consider the sequence (bn = (1 − 1/n)n).
It is immediate to verify that bn = (n − 1)/n1/an−1. Since (n − 1)/n → 1 and
1/an−1 → 1/e, bn → 1/e. It remains to prove that e is the base of the inverse
of the log x function defined in Example 5.10. That is, that log e = 1. This proof
is postponed to Sect. 5.6.1. More general versions of the limits discussed here are
studied in Example 5.14.

� Example 5.13 (Notable limit: n1/n) Using the continuity of the exponential (in-
verse logarithm) function and the result in Example 5.11 one has

lim
n→∞

n√n = elimn→∞ log n√n = elimn→∞ log(n)/n = e0 = 1.

Using Theorem 1.14, one can derive a definition of the exponential function as
the limit of a sequence.

� Example 5.14 (Exponential function as a limit of sequences) For any x ∈ R,
consider the sequences (gn(x) = (1+x/n)n) and (hn(x) = (1−x/n)−n). Whatever
the value of x , for n sufficiently large, 1+x/n and 1−x/n are both positive. Consider
such an n and apply the AM–GM inequality to a set of n+1 points, n equal to 1+x/n
and one equal to 1, to obtain

1 + n(1 + x/n)

n + 1
= 1 + x

n + 1
≥ n+1

√(
1 + x

n

)n
.

Taking the n+1th power of both sides, the previous expression reduces to gn+1(x) ≥
gn(x). Analogously, applying theAM–GM inequality to a set of n+1 points of which
n are equal to 1 − x/n and one is equal to 1 one gets

(
1 − x

n + 1

)n+1

≥
(
1 − x

n

)n
,

which, taking the inverse of both sides, implies hn+1(x) ≤ hn(x). Also, for suffi-
ciently large n, gn(x)/hn(x) = (1 − x2/n2)n < 1.

Summarising, we have found that, after possibly discarding a fixed number of ini-
tial terms, (gn(x)) is an increasing sequence, (hn(x)) is a decreasing sequence, and
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gn(x) ≤ hn(x). Hence both sequences converge. Define exp x = limn→∞ hn(x).
Notice that (hn(x)/gn(x))n is a subsequence of hn(x): the subsequence obtained
by considering only integers that are the square power of other integers. Thus,
(hn(x)/gn(x))n → exp x and, by Theorem 5.14,

lim
n→∞ hn(x)/gn(x) = lim

n→∞ hn(x)
1/n = 1,

so that gn(x) → exp x . Next, we prove a peculiar multiplicative property of exp x .
Note that

gn(x)gn(y)

gn(x + y)
=

(
1 + xy

n(x + y + n)

)n

.

If |x | < 1 the order relation between gn(x) and hn(x), derived above, is valid for
any n so that

1 + x = g1(x) ≤ gn(x) =
(
1 + x

n

)n ≤ hn(x) ≤ h1(x) = 1

1 − x

and we obtain the exponential inequality 1 + x ≤ exp x ≤ 1/(1 − x). When n
is sufficiently large, |xy/(x + y + n)| < 1. Hence, eventually, using the previous
inequality,

1 + xy

x + y + n
≤ gn(x)gn(y)

gn(x + y)
≤

(
1 + xy

x + y + n

)−1

.

But since both the left and right sides tend to one, according to Theorem 5.12,
gn(x)gn(y)/gn(x + y) → 1, that is exp x + y = (exp x)(exp y). This property is
the same of the exponential function defined in Definition 1.19. In fact, the func-
tion defined in this example is precisely the inverse of the log x function defined in
Example 5.8. That is, exp 1 = e. We do not prove it now. Notice that by using the
expression of fn in Example 5.8 one gets fn(gn(x)) = gn( fn(x)) = x . Howev-
er, this is insufficient to conclude that the limits of the sequences define functions
that are the inverse of each other. To prove it, one has to deal with a double limit,
limn→∞ limm→∞ fn(gm(x)), which is in general problematic, see Example 5.27.
The proof is postponed to Sect. 5.6.1, when the notion of uniform convergence will
be available.

A sequence that does not have any limit is generally named divergent. The order
relation on R suggests extending the usual notion of a limit to include special cases
of divergent sequences. For this purpose, the extended real number system R̄ of
Definition 2.11 is adopted.

Definition 5.9 We will write limn→+∞ xn = +∞ if ∀z ∈ R, ∃Nz such that ∀n >

Nz , xn > z. Analogously wewrite limn→+∞ xn = −∞ if ∀z ∈ R, ∃Nz s.t. ∀n > Nz ,
xn < z.
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Sometimes,with a slight abuse of language, a sequence (xn) such that limn→+∞ xn =
±∞ is said to diverge to plus or minus infinity. Saying that limn→∞ xn = +∞ is
different from saying that the set {xn} is unbounded above, as the following example
clarifies.

� Example 5.15 (Divergence of unbounded sequences) Consider the sequence
(xn = n[n]2), where [·]2 is the modulus two introduced in Example 1.4: [n]2 = 1
if n is odd and [n]2 = 0 if n is even. The set {xn} has no (finite) limit points and is
unbounded but (xn) does not have any finite or infinite limit.

5.3.1 Upper and Lower Limits

Given a sequence of real numbers (xn), one can consider the set of points that are the
limit of at least one of its subsequences. If the sequence is convergent, this set contains
a single point (see Theorem 5.1). Alternatively, this set can contain multiple points
or be empty. Based on Definition 5.9 we can consider the “enlarged set” E(xn) ⊆ R̄

of the limits of all subsequences of (xn) in R̄. This set is never empty. If the set {xn}
is not bounded above, then+∞ ∈ E(xn). In fact, one can easily build a subsequence
that has +∞ as a limit by considering progressively larger elements of {xn}. If the
set {xn} is unbounded below, then −∞ ∈ E(xn). In this case, one can easily build
a subsequence having −∞ as a limit by considering smaller and smaller elements
of {xn}. If the set {xn} is bounded, then it is contained in a closed interval. If it is
made by a finite number of isolated points, at least one of these points is the limit
of a constant subsequence. Otherwise, it is an infinite subset of a compact set, and
according to Theorem 2.15 it has at least one limit point. Thus, one can build a
subsequence converging to this point (see the discussion after Theorem 5.4).

In general, D{xn} ⊆ E(xn). The supremum and infimum of the set E(xn) are
used to build two special types of limits for sequences in R.

Definition 5.10 (Upper and lower limits) Consider a sequence of real numbers
(xn) ⊆ R and let E(xn) ⊆ R̄ be the set of limit points of subsequences of (xn).
Then its upper limit, or limit superior, x∗ and its lower limit, or or limit inferior, x∗
are defined as

x∗ = lim sup
n→∞

xn = sup E(xn), x∗ = lim inf
n→∞ xn = inf E(xn).

The upper and lower limits of a sequence can be +∞ or −∞ if the set {xn} is
unbounded above or below, respectively. By definition, x∗ ≤ x∗. Moreover, for any
sequence (xn) and any ε > 0, there must be only a finite number of elements above
x∗ + ε or below x∗ − ε, otherwise there would be subsequences that have a limit
larger than x∗ or lower than x∗, which is absurd. At the same time, if x∗ < x∗, for
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any sufficiently small ε > 0, there must be an infinite number of elements outside
(x∗ + ε, x∗ − ε). This consideration immediately leads to the following conclusion.

Corollary 5.2 Given a sequence (xn), let x∗ and x∗ be its upper and lower limits.
Then xn → l if and only if x∗ = x∗ = l.

An alternative way to define the upper and lower limits is to consider the sequence
obtained by successively dropping the initial elements of the sequence and computing
the supremum and infimum of the set of remaining points. When the number of
dropped points goes to infinity, the supremum and infimum of the set define the
upper and lower limits. The following theorem presents an alternative definition of
these limits.

Theorem 5.15 Given a sequence (xn), consider Mn = sup{xh |h ≥ n} and mn =
inf{xh |h ≥ n}, with Mn,mn ∈ R̄. Then

lim
n→∞ Mn = lim sup

n→∞
xn, lim

n→∞mn = lim inf
n→∞ xn .

Proof Consider the upper limit. If the set {xn} is unbounded from above, then ∀n,
Mn = +∞ = x∗, and the statement is proved. If instead {xn} is bounded above,
then x∗ is finite and for any ε > 0, eventually xn < x∗ + ε, that is, Mn ≤ x∗ + ε.
Moreover, there must be an infinite set of points greater than x∗ − ε, or the upper
limit would be lower than x∗. Thus, ∀n, Mn > x∗ − ε. In summary, eventually
x∗ − ε ≤ Mn ≤ x∗ + ε and the statement follows. The proof of the other case is
identical. �

Lemma 5.1 is still valid for the upper and lower limits, while, in general, they cannot
be added or multiplied as in Lemma 5.10. They interact with arithmetic operations
similarly to the supremum and infimum, so that, for instance, given two sequences
(an) and (bn) (see Exercise 5.30),

lim inf
n→∞ an + lim inf

n→∞ bn ≤ lim inf
n→∞ (an + bn) ≤

≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn .

In some cases, the upper and lower limits of the ratio of two sequences can be
bounded by the respective limits of the ratio of their increments. This is a result due
to the Italian mathematician Ernesto Cesàro (1859–1906) and is similar to L’Hôpital
rule for the limit of functions that we will encounter in Chap. 6.

Theorem 5.16 (Stolz-Cesàro theorem) Consider (an) and (bn) in R and let (bn) be
positive, strictly increasing and unbounded. Then

lim sup
n→∞

an
bn

≤ lim sup
n→∞

an+1 − an
bn+1 − bn

, lim inf
n→∞

an
bn

≥ lim inf
n→∞

an+1 − an
bn+1 − bn

,

and if limn→∞(an+1 − an)/(bn+1 − bn) = l, then limn→∞ an/bn = l.
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Proof Only the first statement needs to be proved, as the second directly follows by
considering the sequence (−an) instead of (an). If lim supn→∞(an+1−an)/(bn+1−
bn) = +∞ the statement is trivial. Assume lim supn→∞(an+1 −an)/(bn+1 −bn) =
L ∈ R. Then ∀ε > 0 eventually ah+1 − ah ≤ (bh+1 − bh)(L + ε). Adding k
subsequent inequalities and simplifying terms one gets ah+k−ah ≤ (bh+k−bh)(L+
ε) which can be rewritten as

ah+k

bh+k
− ah

bh+k
≤ (L + ε)(1 − bh

bh+k
).

Because bh+k is increasing and unbounded, for sufficiently large k, ah/bh+k <

ε so that ah+k/bh+k ≤ L + 2ε. The previous inequality applies eventually, thus
lim supn→∞ an/bn ≤ L + 2ε. Since this is true ∀ε > 0, the assertion follows. �

For an application of this result, see Example 5.18 below. This result can be used to
prove a theorem about the convergence of the averages of the elements of a sequence.

Definition 5.11 (Cesàro mean) Consider the sequence (xn), and let sn = ∑n
k=1 xk

be its ntn partial sum, that is the sum of its first n elements. The Cesàro mean of
(xn) is the sequence (cn) with cn = sn/n.

From Theorem 5.16 we have the following.

Corollary 5.3 If the sequence (xn) converges to l, then its Cesàro mean (cn) con-
verges to l as well.

Proof Apply Theorem 5.16 to the sequences (sn) and (n). �

In other words, if the sequence is convergent, the arithmeticmean of its elements con-
verges to its limit. Note that the Cesàro mean of a divergent sequence can converge;
see Exercise 5.32.

5.3.2 Infinity and Infinitesimals

Consider two sequences with the same limit. If this limit is finite and different from
zero, we know that, according to Theorem 5.11, the ratio of their terms converges to
1.2 If the limit of the two sequences is zero or ±∞, this conclusion is generally not
warranted. In this case, the ratio of the terms of the two sequences can have quite

2 Notice that, depending on how these sequences are defined, it could be that the ratio of their terms
is not defined for a finite number of terms. As already discussed, this issue is totally irrelevant
regarding the limit of the sequence and it does not deserve any treatment. We will always rule out
this possibility by considering an appropriate starting index for the elements of the sequence.
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Fig. 5.1 The relation
between an arc and its sinus

O A B

C

D

X

peculiar behaviours. We want a comparison criterion between sequences that can
capture not only the fact that they have the same limit but also that they tend to this
limit in a similar way.

Definition 5.12 Consider two sequences (an) and (bn) with the same limit, finite or
infinite. The two sequences are asymptotically equivalent if limn→∞ an/bn = 1 and
we write an ∼ bn .

The asymptotic equivalence is an equivalence relation among all sequences that have
the same limit. In particular, if an ∼ bn and bn ∼ cn , then an ∼ cn . This relation
is of some interest only when the sequences are infinite or infinitesimal. In all other
cases, Theorem 5.11 guarantees that there is only one equivalence class.

� Example 5.16 (Notable limit: n sin(1/n))We shall prove that the sequences (an =
1/n) and (bn = sin(1/n)) are asymptotically equivalent. Consider an arc of length
x with 0 < x < π/2 on the unit circle as displayed in Fig. 5.1. The triangle OBC has
an area equal to (sin x)/2 and is contained in the circular sector OCB, whose area
is x/2. In turn, the latter is contained in the triangle OBD whose area is (tan x)/2.
Thus,

0 <
1

2
sin x <

x

2
<

1

2
tan x

which, by Theorem 5.12, implies that limn→∞ sin(1/n) = 0 and, due to the well-
known Pythagorean formula sin2 x + cos2 x = 1, that limn→∞ cos(1/n) = 1. For
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large n, 1/n < π/2 so that, dividing the previous inequalities by sin x , eventually

1 <
1/n

sin(1/n)
<

1

cos(1/n)
.

The sequences on the left and on the right converge to 1. Thus, according to Theo-
rem 5.12, limn→∞ an/bn = 1 and the statement is proved.

Often it is useful to compare the convergence to zero of two infinitesimal se-
quences. The idea is to identify the sequences that converge “faster” to zero, that is,
the sequence whose elements are eventually closer to zero than the elements of the
other sequence.

Definition 5.13 (Order of infinitesimal) Consider two sequences (an) and (bn) that
converge to 0. The first sequence is an infinitesimal of higher order than the second
sequence if limn→∞ an/bn = 0. The two sequences are infinitesimal of the same
order if there exist two constants A, B > 0 such that A ≤ lim infn→∞ |an/bn| and
lim supn→∞ |an/bn| ≤ B.

The sequence (bn) is an infinitesimal of lower order than (an) if the latter is an in-
finitesimal of higher order than the former. Note that if the ratio of the two infinites-
imals absolutely converges to a finite positive number, that is, limn→∞ |an/bn| =
l > 0, then the two infinitesimals are of the same order. In fact, this is a special case
of Definition 5.13, with A = B = l. In particular, two asymptotically equivalent
sequences converging to zero are infinitesimals of the same order. The asymptot-
ic relationship between sequences is sometimes described using Landau symbols,
named after the German mathematician Edmund Landau (1877–1938).

Definition 5.14 (Landau symbols)Given two infinitesimal sequences (an) and (bn),
we will write an = o(bn) (small “o”) if (an) is an infinitesimal of higher order than
(bn). We will write an = O(bn) (big “O”) if there exists a constant k ≥ 0 such that
eventually |an| ≤ k|bn|.

For example, we write 1/n2 = o(1/n) and 1/n2 = O((−1)n/n2). Definition 5.14
introduces an order relation on infinitesimals. In fact, if an = O(bn) and bn = O(cn),
then an = O(cn). This can be easily proved by noticing that the constant k that must
exist for the last relation to be valid is just the product of the constants of the first
two relations. The big “O” is also reflexive and is antisymmetric with respect to
the equivalence classes constituted by infinitesimals of the same order according to
Definitions 5.13. However, this relation is not complete. That is, given two sequences
(an) and (bn), it could be that neither an = O(bn) nor bn = O(an).
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� Example 5.17 (Big O incomplete ordering) Consider the sequence (an = 1/n2)
and the sequence (bn) with

bn =
{
1/n if n is even;
1/n3 if n is odd.

Clearly, neither an = O(bn) nor bn = O(an) is true.

It is straightforward to obtain a relation for infinite sequences similar to the one
defined for infinitesimals. If the sequence (an) diverges to ±∞, then the sequence
(1/an) converges to zero. The opposite is not true, of course, as one can immediately
see when considering the sequence ((−1)n/n), which converges to zero, but whose
inverse has no limit.

Definition 5.15 (Order of infinite) Consider two sequences (an) and (bn) both con-
verging to +∞ or to −∞. The first sequence is said an infinite of higher order of
the second sequence if (1/an) is an infinitesimal of higher order than (1/bn). The
two sequences are infinite of the same order if (1/an) and (1/bn) are infinitesimals
of the same order.

Landau symbols can be used to denote the asymptotic relation between infinite
sequences using sequences of reciprocal terms. Thus, if (an) and (bn) are both con-
verging to +∞, we will write 1/an = o(1/bn) to mean that the first sequence is an
infinite of higher order than the second.

� Example 5.18 (Sum of the power of first integers) It can be easily proved by
induction that the sum of the first n integers is equal to n(n+ 1)/2. This implies that
the sum grows asymptotically proportionally to n2. In other terms, if we denote the
sum of the kth power of the first n integers with sn(k), that is,

sn(k) =
n∑

h=1

hk,

we know that limn→∞ sn(1)/n2 = 1/2. It is possible to generalise this result. Fix a
constant k and consider the sequences (sn(k)) and (nk+1). Then

sn(k) − sn−1(k)

nk+1 − (n − 1)k+1 = nk

nk+1 − (n − 1)k+1 = nk

nk(k + 1) + nk−1(k + 1)k/2 + . . .
,

where we used the binomial expansion of (n − 1)k+1 to rewrite the denominator.
The missing terms contain a power of n lower than k − 1. Dividing numerator and
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denominator by nk and using Theorem 5.16,

lim
n→∞

sn(k)

nk+1 = lim
n→∞

sn(k) − sn−1(k)

nk+1 − (n − 1)k+1 = 1

k + 1
.

Therefore, we conclude that for large n, sn(k) ∼ nk+1/(k + 1).

5.4 Sequences in Normed Spaces

For sequences defined over normed spaces, it is natural to ask how the notion of limit
interacts with the operations on vectors. The following result is a direct consequence
of Theorem 4.11.

Corollary 5.4 (Equivalence of limits) If ρ and ρ′ are two norms on R
n, then for any

sequence (xh), limh→+∞ ρ′(xh) = 0 if and only if limh→+∞ ρ(xh) = 0.

Proof According to Definition 4.6 and due to Theorem 4.11, there are two c,C > 0
such that 0 ≤ ρ′(x) < Cρ(x) and 0 ≤ ρ(x) < cρ′(x). The statement follows imme-
diately from Theorem 5.12 by comparing the two sequences (ρ′(xh)) and (ρ(xh))
in R. �

Thus, the notion of limit in a finite-dimensional normed space does not depend on the
specific definition of the adopted norm.3 The following discussion mainly focuses
on Euclidean spaces (Rn, ‖ · ‖). In this section, the expression x j represents the
j th component of the vector x. An important consequence of Theorem 5.8 is that
finite-dimensional normed spaces on R are complete metric spaces.

Corollary 5.5 Any Cauchy sequence in (Rn, ‖ · ‖) is convergent.

Proof Let (xh) be a Cauchy sequence in R
n . Fix ε > 0 and consider h∗ so that for

h > h∗, ‖xh∗ − xh‖ < ε. Then consider

L = max{‖x1 − xh∗‖, ‖x2 − xh∗‖, . . . , ‖xh∗−1 − xh∗‖, ε}.

Clearly, {xh} ⊂ B(xh∗ , L) so that the sequence is bounded. Therefore, it is a subset
of an n-cell which, according to Theorem 4.9, is compact. For Theorem 5.8 this
implies that the sequence is convergent. �

3 This should not surprise the reader, as the “limit” is a topological notion and equivalent norms
induce the same topology.
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The previous corollary is not true, for example, for linear spaces defined on Q, that
is, for the n-tuple with rational components. This is because the n-cell in Q

n is not
compact. Some intuitive properties can be derived on the basis of the general idea
that the limit of a sequence of vectors is the limit of the sequence of their components.

Theorem 5.17 Consider a sequence (xh) ⊂ R
n. Then limh→+∞ xh = x if and only

if ∀i = 1, . . . , n, limh→+∞ xih = xi .

Proof Let us start by proving the theorem when the norm is the Euclidean one (see
Sect. 4.2.1). First of all notice that for the triangle inequality

0 ≤ ‖xh − x‖ ≤
n∑

i=1

|xih − xi |.

Thus, if ∀i , xih − xi → 0, then ‖xh − x‖ → 0. Conversely, ∀i = 1, . . . , n,

0 ≤ |xih − xi | ≤
√√√√ n∑

j=1

(x j
h − x j )2 = ‖xh − x‖

so that if ‖xh − x‖ → 0, xih − xi → 0. For Corollary 5.4, the result applies to any
norm. �

Limits are preserved by sum of vectors, multiplication by scalars, and inner product.

Theorem 5.18 Consider two sequences (xh), (yh) ⊂ R
n such that limh→+∞ xh =

x and limh→+∞ yh = y, then:

1. (convergence of vector sum and product by scalar) limh→+∞ xh + yh = x + y;
limh→+∞ cxh = cx, with c ∈ R;

2. (convergence of inner product), limh→+∞ xh · yh = x · y.

Proof These properties can be easily proved starting from Definition 5.5 for the
Euclidean norm (see Sect. 4.2.1). For instance consider the last point. If x = 0 or
y = 0, the result is trivial. Assume that both limits are different from the zero vector.
Then, by the triangle inequality,

‖x ·y−xh ·yh‖ = ‖x ·y−x ·yh +x ·yh −xh ·yh‖ ≤ ‖x‖‖y−yh‖+‖yh‖‖x−xh‖.

Consider ∀ε > 0 and let hε be such that ∀h > hε , ‖y − yh‖ < ε/(2‖x‖). Moreover
let M = sup{‖yh‖} and h′

ε be such that ∀h > h′
ε , ‖x − xh‖ < ε/(2M). Then for
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h > max{hε, h′
ε},

‖xy − xhyh‖ < ‖x‖ ε

2‖x‖ + ‖yh‖ ε

2M
< ε.

The other points can be proved similarly. For Corollary 5.4, the results apply to any
norm. �

The next result concerns the convex cones defined in Sect. 1.6. It will be used in
Theorem 7.17.

Theorem 5.19 The convex cone is a topologically closed set.

Proof We prove that the convex cone C ⊆ R
n is closed by showing that all its limit

points belong to C itself. Specifically, we will show that the limit of any converging
sequence of elements of C belongs to C . We will proceed by induction. If n = 1,
then the convex cone is a half-line, which is closed. Assume that any convex cone
is closed when the number of generating vectors is n − 1, and consider the cone C
generated by {a1, . . . , an}. If −ai ∈ C for all i = 1, . . . , n, then C is a subspace
and is closed. Without loss of generality, assume that −an /∈ C and let C̄ ⊆ C be
the cone generated by {a1, . . . , an−1}. Then any element z ∈ C can be written as
z = z̄ + αan with z̄ ∈ C̄ and α ≥ 0.

Consider a sequence (zh) of elements in C , converging to z. We have to prove
that z ∈ C . Let zh = z̄h +αhan , with z̄h ∈ C̄ and αh ≥ 0. Assume that the sequence
(αh) is unbounded above. Then there exists a subsequence (αi ) which converges
to plus infinity. The subscript i is used instead of h to denote the indexes of the
subsequence. Consider the sequence (zi/αi ). Since {zi } is convergent, it is bounded,
thus limi→∞ zi/αi = z̄i/αi + ak = 0, which implies that limi→∞ z̄i/αi = −an .
Because C̄ is closed, thiswould imply that−an ∈ C̄ ,which is ruled out byhypothesis.
Thus, the set {αh} is bounded and, consequently, there exists a subsequence (αi )

convergent to some α0. This implies that (zi − αian) is a convergent sequence. Let
z̄ be its limit. Because by assumption C̄ is closed, z̄ ∈ C̄ , so that z = α0an + z̄ ∈ C .
Since the original sequence (zh) is convergent, and because the limit of a subsequence
of a convergent sequence is equal to the limit of the sequence, we can conclude that
the original sequence converges to the same limit and the statement is proved. �

We conclude this section with an example of infinite-dimensional complete
normed spaces. These spaces have a specific name.

Definition 5.16 (Banach space) A Banach space is a normed space (V, ρ) that is
complete with respect to the metric dρ derived from the norm.

In Example 5.4 we have seen that the space of bounded functions with the image in
R is a complete metric space and thus is a Banach space. We can extend the same
result to the case of continuous functions.
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� Example 5.19 (The metric space of bounded continuous functions is complete)
Let (X, T ) be a topological space, and let C(X) be the set of continuous bounded
functions f : X → R. We will prove that (C(X), d∞) is complete. First of all,
notice that, with reference to Example 3.1 and from the discussion in Example 5.4,
since C(X) ⊆ B(X), we know that for any Cauchy sequence of functions ( fn) in
C(X) and ∀a ∈ X there exists g(a) = limn→∞ fn(a). The function g is bounded
and fn → g. It remains to prove that g is continuous. Fix ε > 0 and let Nn(a) be
the neighbourhood of a such that ∀x ∈ Nn(a), | fn(x) − fn(a)| < ε/3. For any n,
by the triangular inequality,

|g(a) − g(x)| ≤ |g(a) − fn(a)| + | fn(a) − fn(x)| + | fn(x) − g(x)|.

Choose n so that d∞(g, fn) < ε/3, then if x ∈ Nn(a), |g(a) − g(x)| < ε, which
proves the continuity of g. Thus, (C(A), d∞) is a Banach space.

5.5 Series in R

Consider the sequence (an) ∈ R and call sn = ∑n
i=1 ai , the sum of the first n

elements of the sequence, the partial sum of order n. Partial sums define a new
sequence (sn). We are interested in its limit.

Definition 5.17 If the sequence of partial sums (sn) has a limit s, we say that the
series defined by the terms (an) and denoted by

∑∞
n=1 an has a limit or converges,

and we write
∑∞

n=1 an = s.

Sometimes, for brevity, the limit of the series is denoted by
∑

n an , omitting the
summation range. If a series converges, the sequence of its elements is said to be
summable. If the sequence of partial sums is not convergent, we will say that the
series is divergent. It could diverge to ±∞ according to Definition 5.9.

� Example 5.20 (Geometric Series)Consider x ∈ R and define the geometric series
of ratio x as the sum of its successive powers,

∞∑
n=0

xn = 1 + x + x2 + x3 + . . . .

Is this series convergent? If x 	= 0, 1, its partial sum is obtained from the expression
of the geometric progression in Example 1.5,

sn = xn+1 − 1

x − 1
.
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It is immediate to see that it diverges to +∞ if x > 1. The same is true when
x = 1, in which case sn = n. If x = −1 the sequence of partial sums oscillates
between +1 and 0, without converging. If x < −1, the sequence still oscillates, but
this time the range of the oscillations is increasing and lim infn→∞ sn = −∞ while
lim supn→∞ sn = +∞. Finally, for −1 < x < 1 the series converge and

∞∑
n=0

xn = 1

1 − x
.

The next result follows from the completeness of R.

Theorem 5.20
∑∞

n=1 an converges if and only if∀ε > 0, ∃nε ∈ N such that∀n,m >

nε , | ∑m
i=n ai | < ε.

Proof The statement follows by noticing that |∑m
i=n ai | is simply |sn − sm | so that

the Theorem is a re-statement of the fact that a sequence in R converges if and only
if it is a Cauchy sequence. �

The previous theorem implies that if the series
∑∞

n=1 an is convergent, then
limn→∞ |an| = 0. However, the latter is not sufficient to imply the convergence
of the series. Conversely, the convergence of the series of absolute values is a suf-
ficient condition for the convergence of the original series. If the absolute values of
the terms of the series form a converging series, the series is absolute convergent.

Theorem 5.21 (Absolute convergence) If
∑∞

n=1 |an| converges, then ∑∞
n=1 an con-

verges.

Proof The statement follows directly from Theorem 5.20 by noticing that for any n
and m, the triangle inequality, Theorem 4.3, implies that ∀ε > 0, if

∑m
i=n |ai | < ε,

then |∑m
i=n ai | < ε. �

In other words, an absolutely convergent series is convergent. If the terms of the
sequence are positive, an > 0, then the sequence of partial sums increases monoton-
ically.

Theorem 5.22 If eventually an ≥ 0 or an ≤ 0, then
∑∞

n=1 an converges if and only
if the set of partial sums {sn} is bounded.

Proof The statement follows directly from Theorem 5.13. �

There exist several results in the literature that provide sufficient conditions for the
convergence or divergence of series. In common parlance, these conditions are called
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“test” or “criteria”. A general convergence criterion can be obtained by comparing
the series term by term.

Theorem 5.23 (Comparison test) Assume that eventually an ≥ bn ≥ 0. Then, if∑
n an converges, so does

∑
n bn. While if

∑
n bn diverges, so does

∑
n an.

Proof For the first statement, let
∑

n an = a, and note that
∑m

n=1 bn ≤ ∑m
n=1 an ≤

a, so that, from Theorem 5.22, the result follows. The second statement is proved
analogously. �

The fact that the terms of the series are positive is essential to prove the previous
theorem. In practise, this theorem is often used in conjunction with Theorem 5.21 to
prove convergence via absolute convergence.

5.5.1 Series with Decreasing Terms

When the terms of the series decrease in magnitude, there are several results that can
be used to prove its convergence. The next theorem shows that the convergence of
the series with positive decreasing terms can be deduced by analysing the behaviour
of a subset of terms. The idea is to pick appropriately spaced terms and sum them
with appropriate weights. This result is due to the German mathematician Oscar
Schlömilch (1823–1901).

Theorem 5.24 (Schlömilch’s condensation test) Let (an) with an > 0 be mono-
tonically decreasing. Consider a strictly increasing sequence of natural numbers
(un), with u0 = 1. Let 
un = un+1 − un and assume that there exists a constant
∃c > 0 such that ∀n, 
un/
un−1 < c. Then

∑∞
n=1 an converges if and only if∑∞

n=0 
unaun converges.

Proof Since the series (an) has positive decreasing terms, ∀n,


un+1aun+1/c < 
unaun+1 ≤ aun + aun+1 + aun+2 + . . . + aun+1−1 ≤ 
unaun ,

where, in the first inequality, we have used the assumed relation between the succes-
sive increments of the sequence (un). By summing the inequality above over n, the
terms in the middle cover all the elements of the series, so that

1

c

∞∑
n=1


unaun <

∞∑
n=1

an ≤
∞∑
n=0


unaun .

The statement follows from the comparisons test, Theorem 5.23. �

The previous theorem has a famous special case.
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Corollary 5.6 (Cauchy’s condensation test) Let (an) with an > 0 be monotonically
decreasing. Then

∑
n an converges if and only if

∑
k 2

ka2k converges.

Proof Take un = 2n in Theorem 5.24. �

� Example5.21 (Harmonic series)Probably the simplest series that one can imagine
is the harmonic series

∑+∞
n=1 1/n. We can generalise the analysis of the convergence

of this series to the so called p-series or hyperharmonic series

+∞∑
n=1

1

n p
, with p > 0.

To investigate its convergence, apply Corollary 5.6 and consider the “condensed”
series ∞∑

k=0

2k
1

2kp
=

∞∑
k=0

(2k)1−p =
∞∑
k=0

(21−p)k .

This is a geometric series that converges if 21−p < 1, i.e. p > 1. We can conclude
that the p-series converge if and only if the parameter p is greater than one. In
particular, the harmonic series with p = 1 does not converge.

If the terms of a series are the product of the terms of a bounded series and the
elements of amonotonic positive sequence that converges to zero, the convergence of
the first series can be proved by the following test originally derived by the German
mathematician Johann Peter Gustav Lejeune Dirichlet (1805–1859).

Theorem 5.25 (Dirichlet’s test) Let (an) be a positive decreasing sequence that
converges to zero, that is an−1 ≥ an ≥ 0 and an → 0. Let (bn) denotes the term of a
bounded sequence, that is, ∃M > 0 such that ∀n, | ∑n

h=1 bh | < M. Then the series∑+∞
n=1 anbn is convergent.

Proof Define the partial sums Sn = ∑n
h=1 ahbh and Bn = ∑n

h=1 bh . Using sum-
mation by parts, Lemma 1.1,

Sn = an Bn +
n−1∑
h=1

Bh(ah − ah+1).

By hypothesis limn→+∞ an Bn = 0. Therefore, the limit of the composed series∑+∞
n=1 anbn is equal to the limit of

∑+∞
n=1 Bn(an−an+1). Note that |Bn(an−an+1)| <

M(an − an+1), and the series
∑+∞

n=1 M(an − an+1) converges to Ma1. Then, by
Theorem 5.23, the series

∑+∞
n=1 Bn(an −an+1) is absolutely convergent and thus, by

Theorem 5.21, convergent. �
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The previous theorem is often applied to series with terms of decreasing magnitude
and of alternating sign. If (an) is a positive decreasing sequence that converges
to zero, the series

∑+∞
n=1(−1)nan converges. In this case, the role of the bounded

series in Theorem 5.25 is played by the series
∑+∞

n=1(−1)n which takes alternating
values of −1 and 0. This special case is named Leibnitz criterion after the German
mathematician Gottfried Wilhelm (von) Leibniz (1646–1716).

� Example 5.22 (Alternating harmonic series) Consider the alternating harmonic
sequence

∑+∞
n=1(−1)n+1/n p. According to Theorem 5.25, and differently from the

harmonic series, this series converges ∀p > 0. In particular, as we will see in
Example 6.4, when p = 1 its limit is log 2.

If (an) is a positive and decreasing sequence and s = ∑+∞
n=1(−1)nan , then for the

partial sum we have s − sn = ∑
h=n+1(−1)hah so that s − sn ≥ −an+1 if n is even

and s − sn ≤ an+1 if n is odd. Thus, in general, |s − sn| < an+1. This represents
a simple way to measure the approximation to s provided by the truncated series.
Another common test for sequences with decreasing terms requires the notion of
integral and is presented in Theorem 8.8.

5.5.2 Tests Based on the Asymptotic Behaviour of Terms

In this section, two theorems are presented that provide sufficient conditions for the
convergence or divergence of series based on the asymptotic behaviour of their terms,
that is, on the speed with which the term an goes to zero when n increases.

Theorem 5.26 (Root test) Given the series
∑

n an, consider

α = lim sup
n→∞

n
√|an|.

Then if α < 1 the series converges and if α > 1 the series diverges.

Proof Assume that α < 1. Then there exist β ∈ (0, 1) and n0 ∈ N such that
∀n > n0,

n√|an| < β, which implies |an| < βn . Since the series
∑

n βn is convergent
(see Example 5.20), for the comparison test (Theorem 5.23), the original series is
absolutely convergent and, thus, convergent.

Conversely, assume that α > 1. Then there exist β > 1 and an unbounded
sequence of integers (m) such that m√|am | > β. This implies |am | > βm > 1 so that
the sequence (|an|) does not converge to zero. Since this is a necessary condition for
the convergence of the series (see Theorem 5.20), the assertion is proved. �

The root test is powerful, as it allows one to decide the convergence or divergence of∑
n an exclusively based on the upper limit of the sequence (

n√|an|). The only case
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where the test does not provide an answer is when lim supn→∞
n√|an| = 1. A less

general, but sometimes easier to apply, criterion is described below.

Theorem 5.27 (Ratio test) Consider the series
∑

n an. If

lim sup
n→∞

|an+1/an| < 1,

then the series converges. Instead, if

lim inf
n→∞ |an+1/an| > 1,

then the series diverges.

Proof In the first case, there exist β ∈ (0, 1) and n0 ∈ N such that ∀n > n0,
|an+1/an| < β, that is |an+1| < β|an| and, by recursion, |an0+k | < βk |an0 |. The se-
ries

∑
n βn|an0 | is a converging geometric series, so that the original series converges

for the comparison test (Theorem 5.23).
In the second case, ∃n∗ such that ∀n > n∗, |an+1| > |an|. Thus, the sequence of

absolute values (|an|) increases and (an) cannot converge to zero. �

The ratio test is not conclusive in all cases in which the upper limit of the sequence
(|an+1/an|) is greater than 1 and its lower limit is lower than 1.

� Example 5.23 (Failure of the ratio test) The ratio test can fail spectacularly in
providing an answer. Consider the series

∑
n an with

an =
{
1/2n if n is odd;

1/3n if n is even.

This series is clearly convergent, as its terms are bounded above by those of the
geometric series of ratio 1/2 (see Example 5.20). However, an+1/an is 1/3(2/3)n

when n is even and 1/2(3/2)n when n is odd. Thus lim infn→∞
∣∣∣ an+1

an

∣∣∣ = 0 but

lim supn→∞
∣∣∣ an+1

an

∣∣∣ = +∞ and the test is not conclusive. On the contrary, ∀n,
n√|an| < 1/2, and using the root test we can confirm the convergence of the se-
ries.

The fact that the root test is stricter than the ratio test is general. Suppose that
the condition for convergence of the ratio test is satisfied: lim supn→∞ |an+1/an| =
δ < 1. This means that for sufficiently large n and for all j , |an+ j | < δ j |an|, which
implies n+ j

√|an+ j | < δ j/(n+ j)|an|1/(n+ j). The right-hand side converges to δ when
j goes to infinity, so the condition for convergence of the root test is satisfied.
Weconclude this sectionwith a further characterisation of the exponential function

as a limit of a series.
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� Example 5.24 (Exponential function as a series) Let x be a real number and
consider

S(x) =
∞∑
n=0

xn

n! .

Applying the ratio test to an = xn/n!, we see that

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x |
n + 1

= 0.

Therefore, we can conclude that the series is convergent for any x . Consider the
function S(x) that assigns to each point x the value of the associated series. First of
all, notice that S(0) = 1. Using the expression of the power of the binomial,

S(x + y) =
∞∑
n=0

(x + y)n

n! =
∞∑
n=0

n∑
k=0

xk

k!
yn−k

(n − k)! .

By rearranging the terms of the double summation,

S(x + y) =
∞∑
k=0

∞∑
h=0

xk

k!
yh

h! = S(x)S(y).

The relation S(x+y) = S(x)S(y) is the definingproperty of the exponential function.
We can prove that S(x) = ex , where e is Euler’s number e defined in Example 5.12.
Applying the binomial expansion note that

(
1 + 1

n

)n

=
n∑

h=0

(
n

h

)
1

nh
=

n∑
h=0

1

h!
(
1 − 1

n

) (
1 − 2

n

)
. . .

(
1 − h − 1

n

)
<

n∑
h=0

1

h! .

So, taking the limit, e ≤ S(1). At the same time, if m < n

(
1 + 1

n

)n

≥
m∑

h=0

1

h!
(
1 − 1

n

)(
1 − 2

n

)
. . .

(
1 − h − 1

n

)
.

Indeed, the expansion of the power on the left-hand side contains n + 1 terms while
the summation on the right-hand side contains only m + 1 terms. Taking the limit
n → ∞ of both sides, we get

e ≥
m∑

h=0

1

h! .

Since this is valid ∀m, it should be e ≥ S(1), and the assertion is proved.
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There are several methods to sum the elements of a sequence that can be found
in applications. The most common is discussed in the next example.

� Example 5.25 (Cesàro summation)Given a sequence (an), consider the sequence
of partial sums (sn), sn = ∑n

k=1 ak . If

lim
n→∞

1

n

n∑
k=1

sk = l ∈ R,

the sequence (an) is said to be Cesàro summable and l is its Cesàro summation. In
other words, a sequence is Cesàro summable if the Cesàro mean of its partial sums
converges. Using Corollary 5.3, it is immediate to see that a summable sequence is
alsoCesàro summable. The opposite is not true.A sequence can beCesàro summable,
but not summable, see Exercise 5.36.

The next example discusses a useful property characterising converging series.

� Example 5.26 (Kronecker’s lemma) Let
∑

n an be a converging series and con-
sider an increasing unbounded sequence of positive terms 0 < b1 < b2 < . . ..
Then

lim
n→∞

1

bn

n∑
k=1

bkak = 0.

To see it, define the partial sum sn = ∑n
k=1 ak , setting s0 = 0. Then using summation

by parts, Lemma 1.1,

n∑
k=1

bk(sk − sk−1) +
n∑

k=1

sk(bk+1 − bk) = bnsn,

where we used the fact that s0 = 0. Note that
∑n

k=1 bk(sk − sk−1) = ∑n
k=1 bkak .

Thus, reorganising terms and dividing by bn ,

1

bn

n∑
k=1

bkak = sn − 1

bn

n∑
k=1

sk(bk+1 − bk).

Define cn = ∑n
k=1 sk(bk+1 − bk). Note that because the series is convergent,

lim
n→∞

cn − cn−1

bn − bn−1
= lim

n→∞ sn = l.

Therefore, by Theorem 5.16, limn→∞ sn − cn/bn = 0, and the statement is proved.
This result, attributed to the German mathematician Leopold Kronecker (1823–
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1891), is also useful in the study of sequences. In fact, it implies that for any sequence
(an), if the series

∑
n an/bn converges, then limn→∞

∑n
k=1 ak/bn = 0.

5.6 Sequences and Series of Functions

Consider the set of functions F from a set A to a topological space (X, T ) and let
( fn) be a sequence of functions, that is, a map from N to F . For any a ∈ A, we can
consider the sequence ( fn(a)) of elements of X .

Definition 5.18 (Pointwise convergence) If ∀a ∈ A the sequence of images ( fn(a))

is convergent, we say that the sequence of functions ( fn) is pointwise convergent,
and we write f = limn→∞ fn , where the function f : A → X is defined using the
limit of the sequences of images f (a) = limn→∞ fn(a).

For example, the sequence of functions (xn) pointwise converges to the zero func-
tion in [0, 1). When dealing with sequences of functions, an interesting question is
whether some property of the functions composing the sequence is preserved when
taking the limit. The answer is generally negative. Consider a sequence of functions
( fn) that map a topological space X in a topological space Y , and assume that
the sequence is pointwise convergent fn → f . Now, take a converging sequence
(xm) in X , xm → x . Assuming that the limit exists, define y = limm→∞ f (xm)

and, for each n, yn = limm→∞ fn(xm). Can we conclude that yn → y? To
prove this, we should be able to swap the order of the limits, that is, it should
be limn→∞ limm→∞ fn(xm) = limm→∞ limn→∞ fn(xm). The following example
shows that this inversion is not always possible.

� Example 5.27 (Limits cannot be swapped) For any n ∈ N consider the sequence
(n/(n + m)) with m ∈ N. This is a sequence of sequences. Now notice that

lim
n→∞

(
lim

m→∞
n

n + m

)
= 0

while

lim
m→∞

(
lim
n→∞

n

n + m

)
= 1.

The fact that, in general, changing the order of limits changes the final result
implies that even if all functions that form the pointwise converging sequence fn →
f are continuous, the continuity of the limit function f is not guaranteed.
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� Example 5.28 (Continuous functions having a discontinuous limit) Consider the
sequence of real functions ( fn) defined as

fn(x) =

⎧⎪⎨
⎪⎩

−1 if x ≤ − 1
n ,

nx if − 1
n < x < 1

n ,

1 if x ≥ 1
n .

All functions fn are continuous on R, but the limit

f (x) = lim
n→∞ fn(x) =

⎧⎪⎨
⎪⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0,

is not continuous in x = 0.

5.6.1 Uniform Convergence

If the image space of the functions is a metric space, we can impose a stricter
requirement for the convergence of a sequence of functions.

Definition 5.19 (Uniform convergence) The sequence of functions ( fn(x))with im-
ages in a metric space (Y, d) uniformly converges to the function f (x) if, ∀ε > 0,
∃n ∈ N such that if m > n, d( fm(x), f (x)) < ε, ∀x .

A sequence of functions that is uniformly convergent is clearly also pointwise con-
vergent. However, in the case of uniform convergence, we can actually swap the
order of the limits discussed above.

Theorem 5.28 Let ( fn) be a uniformly convergent sequence of functions from a
topological space (X, T ) to a metric space (Y, d). Then if fn is continuous ∀n, the
limit function f = limn→∞ fn is continuous.

Proof Take ε > 0. For the triangle inequality,

d( f (x), f (y)) ≤ d( f (x), fn(x)) + d( fn(x), fn(y)) + d( f (y), fn(y)).

Since the sequence of functions is uniformly convergent, ∀x ∈ X , there exists
and n such that d( f (x), fn(x)) < ε/3 and d( f (y), fn(y)) < ε/3. Furthermore,
since fn is continuous, there is a neighbourhood N (x) of x , such that ∀y ∈ N (x),
d( fn(x), fn(y)) < ε/3. Thus, substituting in the previous inequality, we see that
∀y ∈ N (x), d( f (x), f (y)) < ε, and the theorem is proved. �
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A useful criterion for the uniform convergence of a sequence of real-valued functions
was first discovered by the Italian mathematician Ulisse Dini (1845–1918).

Theorem 5.29 (Dini theorem) Consider a sequence of continuous functions ( fn),
fn : K ⊆ X → R with K compact, pointwise converging to a continuous function
f . Assume that the sequence ( fn(x)) is monotonic, increasing or decreasing, in the
same direction, for all x ∈ K. Then the sequence ( fn) is uniformly convergent.

Proof For definiteness, let us assume that the sequence ( fn(x)) is increasing∀x ∈ K .
Let gn(x) = f (x)− fn(x) ≥ 0. For any ε > 0 define En(ε) = {x ∈ K , gn(x) < ε}.
By hypothesis, ∀x , the sequence (gn(x)) decreases in n. Thus En(ε) ⊆ En+1(ε).
Again, by hypothesis, gn(x) are continuous functions, so En(ε) is an open set (the
preimage of (−∞, ε)). The sequence (gn(x)) is pointwise convergent to 0, therefore,
∀x ∈ K , ∃nx such that x ∈ Enx (ε) and ∪x Enx (ε) is a cover of K . Since K is
compact, there exists a finite subcover and because they are nested, the subcover is
made by a single open set En′(ε). Thus, ∀n ≥ n′ and ∀x , f (x) − fn(x) < ε, and
the statement is proved. If the sequence is decreasing you can repeat the same proof
using gn(x) = fn(x) − f (x). �

� Example 5.29 (The base of the natural logarithm) Using Theorem 5.29, it is im-
mediate to realise that the sequence ( fn) defined in Example 5.8 and the sequences
(gn) in Example 5.14 are uniformly convergent in any closed interval [a, b] of the
real line. Now we want to prove that the exp function in Example 5.14 is the in-
verse of the log function in Example 5.8. That is, we have to prove that ∀x ∈ R,
f (limn→∞ gn(x)) = x . Notice that ∀n ∈ N, fn(gn(x)) = x . Therefore, given the
continuity of f , we have to prove that limn→∞ f (gn(x)))− fn(gn(x)) = 0. Consider
the closed interval [g1(x), exp x]. In Example 5.14 we proved that gn(x) belongs to
this interval for any n. In this interval, the sequence ( fn) is uniformly convergent,
thus given any ε > 0, there is a nε such that if n > nε , fn(y) − f (y) < ε for any y
in the interval. In particular, for y = gn(x). This proves the statement. Using similar
arguments, you can easily prove that log(e) = 1 (see Example 5.12) so that the log
function defined in Example 5.8 is actually the logarithm in base e.

The following theorem offers an alternative definition of uniform convergence.

Theorem 5.30 The sequence of functions ( fn), with fn : X → Y and (Y, d) metric
space, is uniformly convergent to f if and only if

lim
n→∞ sup

x∈X
d( fn(x), f (x)) = 0.

Proof Consider ε > 0. If ( fn) is uniformly convergent, for n sufficiently large,
d( fn(x), f (x)) < ε/2 for any x . This implies supx∈X d( fn(x), f (x)) < ε. At the
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same time, if for n sufficiently large, supx∈X d( fn(x), f (x)) < ε, then it must be
d( fn(x), f (x)) < ε for any x . �

� Example 5.30 (Banach spaces of bounded and continuous functions) Theo-
rem 5.30 connects the notion of uniform converge with the convergence under the
metric d∞ introduced in Examples 3.1. However, the completeness of the space of
bounded functions rests on the completeness of the image space, as discussed in
Examples 5.4. Moreover, Theorem 5.28 guarantees that when the image space is
complete, the space of bounded continuous functions is complete too, see Exam-
ple 5.19.

Similarly to what was done for numerical series, we can investigate the con-
vergence of the series of functions

∑∞
n=1 fn . The series is pointwise or uniformly

convergent if the sequence of partial sums of functions is so. A series of functions
is normally convergent if

∑∞
n=1 supx {| fn(x)|} is convergent. Normal convergence

implies uniform convergence.

Theorem 5.31 (Weiersrass M-test) Consider the series of functions
∑∞

n=1 fn and
assume there exists a sequence (Mn) of positive numbers such that∀x, | fn(x)| ≤ Mn.
Then, if

∑∞
n=1 Mn is convergent, the series of functions is uniformly convergent.

Proof By hypothesis, the series
∑∞

n=1 | fn(x)| is convergent for any x . Thus, by
Theorem 5.21, the original series is pointwise convergent. Let f (x) = ∑∞

n=1 fn(x).
Then notice that

sup
x

∣∣∣∣∣
n∑

i=1

fi (x) − f (x)

∣∣∣∣∣ = sup
x

∣∣∣∣∣
∞∑

i=n+1

fi (x)

∣∣∣∣∣ ≤ sup
x

∞∑
i=n+1

| fi (x)| ≤
∞∑

i=n+1

Mn .

Since the series
∑∞

n=1 Mn is convergent, the latter expression is lower than any ε > 0
for n sufficiently large (see Theorem 5.20) thus, from Theorem 5.30, the statement
follows. �

Exercises

Exercise 5.1 Let N1, N2 ⊂ N be two infinite disjoint subsets such that N1∪N2 = N.
Consider a sequence (xn) in a topological space (X, T ) and the two subsequences
(xn1) and (x)n2 with ni ∈ Ni , i = 1, 2. Prove that if xn1 → l and xn2 → l, then
xn → l.

Exercise 5.2 In the Euclidean topology onR, use the definition of limit to prove that
limn→∞ 1/nk = 0 for any positive integer k and that limn→∞(nh + nk)/nk = 1 for
two positive integers k, h such that k > h. Hint: You can use a base of the topology.
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Exercise 5.3 In the Euclidean topology onR, use the definition of limit to prove that
limn→∞ 1/ k

√
n = 0 for any positive integer k and that limn→∞(

h√n+ k√n)/
k√n = 1

for two positive integers k, h such that k < h. Hint: Remember that k√n = n1/k .

Exercise 5.4 Considering Example 5.3, develop a recursive proof of the fact that
an > n if n > 5.

Exercise 5.5 Consider the metric space L of bounded functions f : [−1, 1] → R

with the sup distance (see Example 3.1). In this space, build a sequence of continu-
ous functions ( fn) and a sequence of non-continuous functions (gn) converging to
f (x) = x2.

Exercise 5.6 Let A be a closed bounded subset ofR and I = [a, +∞) an unbounded
interval. Prove that they are complete subspaces of (R, | · |). Hint: Use the theorems
Luke.

Exercise 5.7 Let F be the set of all binary sequences f : N → {0, 1}. Consider the
metric space (F, d) where d is defined as

d( f, g) = lim
h→∞

h∑
n=1

| f (n) − g(n)|
2n

, f, g ∈ F.

Is the metric space (F, d) complete? If so, prove it. Otherwise, provide a counterex-
ample. Hint: This corresponds to a metric space you should already know

Exercise 5.8 Prove that the following functions are contractions in the indicated
intervals:

f1(x) = √
x, x ∈ [1, +∞); f2(x) = x2, x ∈ [0, 1/3]; f3(x) = x3, x ∈ [0, 1/√6].

Exercise 5.9 Consider the recursively defined sequence a1 = 2, an+1 = 2 + √
an .

Use the Banach fixed point theorem to prove that this sequence converges. Compute
its limit.

Exercise 5.10 Prove that, in any metric space, if f and g are contractions, then their
composition is a contraction.

Exercise 5.11 Consider the recursively defined sequence a1 = √
2, an+1 =√

2 + √
an Use the Banach fixed point theorem to prove that this sequence con-

verges to one root of the equation x4 − 4x2 − x + 4 = 0 laying between
√
3 and

2.



5.6 Sequences and Series of Functions 121

Exercise 5.12 Consider the map f (x) = x + x−1 from [1,∞) to itself. Prove
| f (x) − f (y)| < |x − y| for any couple x, y ∈ [1, ∞). Show that, nevertheless, the
map has no fixed points. Why the Banach fixed point theorem does not apply?

Exercise 5.13 Consider a sequence of real numbers (xn). Prove that if an → a, then
|an| → |a|.

Exercise 5.14 Use the definition of the limit of a sequence in R to prove that

• if −1 < x < 1, then limh→∞ xh = 0;
• if |x | > 1, the sequence (xh) is unbounded;
• if x > 0, then limh→∞ x1/h = 1.

Hint: Remember the property of the log function in Example 5.8

Exercise 5.15 (AM–GM inequality) Using the concavity of the log x function de-
rived in Example 5.9 and the Jensen inequality described in Corollary 1.1, proves
Theorem 1.14. Hint: Use rescaled weights that sum to one.

Exercise 5.16 Consider the arithmetic progression an = an−1 + q with generic a1
and q 	= 0. Proves that the sequence (an+1/an) converges to 1.

Exercise 5.17 Consider the geometric progression an = qan−1 with a generic a1
and discuss its asymptotic behaviour as a function of a1 and q .

Exercise 5.18 (Babilonian algorithm) For any x > 0, and a 	= 0, consider the
recursively defined sequence

{
a1 = a,

an+1 = 1
2

(
an + x

an

)
.

Prove that if a > 0, then an → √
x and if a < 0, then an → −√

x . Hint: Prove that
the sequence is monotonic and bounded.

Exercise 5.19 Using the result in Example 5.12, prove that the sequence (an) with

an =
(
1 + 1

nk

)n

converges to 1 if k > 1 and diverges if k < 1.Hint:Use the inequality in Example 5.8.

Exercise 5.20 Show that limn→∞ p1/n = 1 for any p > 0.
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Exercise 5.21 Let 0 ≤ a < 1. Consider the sequence (xn) defined by

xn+1 = axn + 1

n + 1
and x0 = 1.

Prove limn→∞ xn = 0 and compute limn→∞ xn/an .Hint: For the first part, compare
the nth element of the sequence with the corresponding fixed point of the map. For
the second part, write the expression of the nth element of the sequence.

Exercise 5.22 Compute the following limits:

lim
n→∞

n
√
n − n2

n + 1
, lim
n→∞

4n + 2/n

1/n2 + 5n
, lim
n→∞ n −

√
n + n2, lim

n→∞
(
3n + 4n

) 1
n .

Exercise 5.23 Consider the recursively defined sequence a1 = 2, an+1 = (an +
6)/2. Determine whether (an) converges and, in this case, compute its limit.

Exercise 5.24 Consider the recursively defined sequence a1 = 1, an+1 = 3−1/an .
Establish if (an) converges and, in this case, compute its limit.

Exercise 5.25 Consider the recursively defined sequence a1 = √
2, an+1 =√

2 + an . Prove that the sequence converges and compute its limit.

Exercise 5.26 Establish if
∑∞

n=1 2(
√
n − √

n − 1) − 1/
√
n converges or not. Hint:

Remember that
∑

n 1/n
p converges when p > 1.

Exercise 5.27 Let Pn(x) and Qm(x) be two polynomials in R of order n and
m respectively. Consider the sequence (Pn(h)/Qm(h)) for h ∈ N sufficiently
large such that Qm(h) 	= 0 (does this h exist?). Prove that if m > n, then
limh→∞ Pn(h)/Qm(h) = 0. What happens if m = n? And if m < n? Hint: See
what happens for low degree polynomials and try to generalise.

Exercise 5.28 Discuss for which values of the real parameters a, b, c, d, f the fol-
lowing limit exists:

lim
n→∞

(
an + b

cn + d

) f n

.

Hint: Analyse what happens in a few cases giving simple values to the parameters.
In general use Example 5.14.

Exercise 5.29 Consider a sort of Fibonacci sequence built using recursive convex
combination. The sequence starts with two numbers x1 and x2 in R and, for any
n > 2, xn = λxn−1 + (1− λ)xn−2 with λ ∈ (0, 1). Does the sequence have a limit?
If so, can you compute it?
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Exercise 5.30 Given two sequences (an) and (bn), prove that

lim inf
n→∞ an + lim inf

n→∞ bn ≤ lim inf
n→∞ an+bn ≤

≤ lim sup
n→∞

an + bn ≤ lim sup
n→∞

an + lim sup
n→∞

bn .

Exercise 5.31 Find the upper and lower limits of the sequence defined by the recur-
sion

an =
{
an−1 if n is even,

1/2 + an−1 if n is odd,

and with a1 = 0.

Exercise 5.32 Prove that the Cesàro mean of the sequence (an) with an = 1 if n is
odd and an = 0 if n is even, converges to 1/2.

Exercise 5.33 With reference to Definitions 5.13 and 5.14, prove that if an = O(bn)
and bn = O(an), then the two sequences are infinitesimal of the same order.

Exercise 5.34 If possible, establish the asymptotic order relation between these in-
finitesimal sequences: (1/n), (1/(2+n)), 1−cos(1/n), log(n2)/n2.Hint: Use what
you know about notable limits.

Exercise 5.35 Given k ∈ R and α, β ∈ [ 1
2 , 1

)
, consider a sequence (xn, yn) in R

2

recursively defined by the relation

(xn+1, yn+1) =
{

(yn, (1 − 2α)xn) if n is even,

((1 − 2β)yn, xn) if n is odd,

with (x0, y0) = (k, k). Determine whether (xn, yn) converges and, in that case,
compute its limit.

Exercise 5.36 Prove that the Cesàro summation of the sequence (an = (−1)n) is
1/2. Note that this sequence is not summable.

Exercise 5.37 Considering Examples 5.12 and 5.24, find an upper bound for the
difference e − ∑n

k=0 1/k! as a function of n.

Exercise 5.38 For any a > 1 proves that

1

a
≤

∞∑
n=1

(
n

an + 1

)n

≤ 1

a − 1
.
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Exercise 5.39 Investigate the convergence of the following series:

1.
∑
k

1

k + √
k

6.
∑
k

kk

k! 11.
∑
k

(
3k

k + 3

)k

2.
∑
k

1

k + k2
7.

∑
k

(−1)k−1 k

3k
12.

∑
k

1

k(k + 1)

3.
∑
k

k2

k! 8.
∑
k

(k + 1)!
2kk! 13.

∑
k

(
1

2k + 1
− 1

2k + 3

)

4.
∑
k

(−1)k−1 k
2

k! 9.
∑
k

4k

1 + k2 14.
∑
k

ak

k
, a ∈ (0, 1)

5.
∑
k

k

(k + 1)! 10.
∑
k

2k

k3k
15.

∑
k

1

log k

Exercise 5.40 Using the definition of e in Example 5.12 and the definition of the
log function in Example 5.8, prove that log e = 1.

Exercise 5.41 Let (an) with an > 0 be monotonic decreasing. Use Theorem 5.24
to prove that

∑
n an converges if and only if

∑
k 3

ka3k converges.



6Differential Calculus of Functions of
OneVariable

6.1 Limit of Real Functions

The Euclidean topology on R has been introduced using the order relation in Def-
inition 2.7 and derived in Example 3.1 as the induced topology of the complete
Euclidean metric (see Corollary 5.1). It is Hausdorff (that is, different points have
disjoint neighbourhoods, see Theorem 2.17) and second-countable (open intervals
with rational boundaries are a base of the topology, see Theorem 2.8). Thus, the limit
of a function at a point x ∈ R can be defined using the limit of the images, under the
function, of the sequence converging to x (see Theorem 5.2). Hence, we can easily
derive how the limits of real functions interact with the arithmetic operations and the
order relation.

Theorem 6.1 Let limx→x0 f (x) = y0 and limx→x0 g(x) = y′
0. Then

• limx→x0 α f (x) + βg(x) = αy0 + βy′
0;• limx→x0 f (x)g(x) = y0y′

0;• if y′
0 �= 0, limx→x0 f (x)/g(x) = y0/y′

0;• if f (x) ≥ g(x) in a neighbourhood of x0, then y0 ≥ y′
0 (see Lemma 5.1);• if a function h(x) is such that f (x) ≥ h(x) ≥ g(x) in a neighbourhood of x0, and

y0 = y′
0, then limx→x0 h(x) = y0 (see Theorem 5.12).

Proof Consider the case of a linear combination of the two functions f and g in the
statement. For any sequence (zn) → x0, ( f (zn)) → y0 and (g(zn)) → y′

0. From
the property of the limit of sequences, (α f (zn) + βg(zn)) → αy0 + βy′

0. This is
the sequence of images of (zn) under the function α f (x) + βg(x) and since this is
true for any sequence (zn) → x0, because of Theorem 5.2, we have proved the first
statement. The other statements are proved in similar ways. �
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In the previous chapters, two important results on compact sets in R were derived.
The first result is that a set K ⊆ R is compact if and only if any infinite subset of K has
at least one limit point and all its limit points belong to K . This is usually called the
Bolzano–Weierstrass theorem and was proved in Sect. 2.3 for a Hausdorff, second-
countable topological space. The second result is that a set K ⊆ R is compact if and
only if it is closed and bounded. This is usually called the Heine–Borel theorem and
was specifically proved for R, in Theorem 2.18.

The set of real numbers is often extended by adding the special points ±∞ to
obtain the set R̄; see Definition 2.11. The notion of the limit of a function is extended
to include these points using the appropriate neighbourhoods.

Definition 6.1 (Infinite limits) We write limx→x0 f (x) = +∞ if ∀M > 0, there
exists a neighbourhood of x0, N (x0), such that f (N (x0)) > M . Analogously, we
write limx→x0 f (x) = −∞ if ∀M > 0, there exists a neighbourhood of x0, N (x0),
such that f (N (x0)) < −M .

Definition 6.2 (Limits at infinity) We write limx→+∞ f (x) = y if for any neigh-
bourhood of y, N (y), ∃M > 0 such that f ((M, +∞))⊆N (y) and limx→−∞ f (x) =
y if for any neighbourhood of y, N (y), ∃M > 0 such that f ((−∞, −M)) ⊆ N (y).

In the definition of limit, instead of considering an open neighbourhood of the point,
one can consider left and right neighbourhoods, defined as open intervals of which
the point is the supremum and infimum, respectively.

Definition 6.3 (Left and right limit) Let f be a real function and x0 be an interior
or boundary point of its domain. We will say that y is the left limit of f in x0 and
denote it with limx→x−

0
f (x) = y if ∀N (y), neighbourhood of y, ∃δ > 0 such that

f ((x0 − δ, x0)) ⊆ N (y). Analogously, we will say that y is the right limit of f in x0
and denote it with limx→x+

0
f (x) = y if ∀N (y) neighbourhood of y, ∃δ > 0 such

that f ((x0, x0 + δ)) ⊆ N (y).

Clearly, if limx→x−
0
f (x) = limx→x+

0
f (x) = y, then limx→x0 f (x) = y. The

notion of left and right limits can be extended to R̄ without effort, for example, to
define a left limit equal to +∞. The specific definition of these limits should be
understood at this point.

� Example 6.1 (Left and right infinite limits) Consider the function f (x) = 1/(x −
x0), with x0 ∈ R. For any M > 0, if x ∈ (x0, x0 + 1/M)) then f (x) > M and if
x ∈ (x0 − 1/M, x0) then f (x) < −M . We can conclude that limx→x+

0
f (x) = +∞

and limx→x−
0
f (x) = −∞. For any ε > 0, if x > x0 + 1/ε or x < x0 − 1/ε, then

| f (x)| < ε. We can conclude that limx→±∞ f (x) = 0.
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Theorem 5.13 on the limit of monotonic sequences can be applied to derive an
intuitive characterisation of the limits of functions. For example, if f (x) increases
monotonically in a left neighbourhood (a, x0) of x0, then limx→x+

0
= sup(a,x0) f .

Similarly, if there exists an M > 0 such that f (x) increases monotonically for any
x > M , then limx→+∞ = sup{x>M} f .

� Example 6.2 (Notable limits of functions) In Example 5.3 it was shown that (x −
1)/x ≤ log x ≤ x − 1, that is 1/(x + 1) ≤ log(1 + 1/x) ≤ 1/x . Therefore,
limx→+∞ x log (1 + 1/x) = 1 and limx→+∞(1 + 1/x)x = e.

The argument in Example 5.3 proves that limx→+∞ log(x)/x = 0, so that
limx→+∞ x1/x = 1.

Example 5.13 makes clear that for sufficiently small and positive x , 0 ≤
sin x ≤ x ≤ tan x . By symmetry, this means that ∀x in a neighbourhood of 0,
| sin x | ≤ |x | ≤ | tan x |. Dividing by sin x , for the comparison theorem, this implies
that limx→0 sin(x)/x = 1 and for the properties of sine and cosine,

lim
x→0

cos(x) − 1

x2
= − lim

x→0

sin2 x

x2(cos(x) + 1)
= −1

2
.

6.2 Continuity of Real Functions

The definition of continuity for functions defined over topological spaces is provided
in Sect. 2.5. In essence, a function f is continuous at a point x if its limit in x is
equal to its value in x . It is continuous in a subset A if it is continuous at all points
of A. The property of the limit of functions in Theorem 6.1 guarantees that the
sum, product, and reciprocal (when different from zero) of continuous functions are
continuous functions. The same is true for the composition of continuous functions
(seeTheorem2.24). For continuous functions, the inverse imageof anopen set is open
(see Theorem 2.21), the inverse image of a closed set is closed (see Theorem 2.23),
the image of a connected set is connected (see Theorem 2.25), and the image of a
compact set is compact (see Theorem 2.26). A continuous function in a compact
set has both a maximum and a minimum. This is usually named the Weierstrass
extreme value theorem and was proved in Theorem 2.30. It is a simple consequence
of the fact that a continuous function maps compact sets to compact sets and that,
in R, a compact set is closed and bounded. The boundedness guarantees that the
supremum and infimum of the image exist. Closure guarantees that they are part of
the set, so that they are the image of some point. Then, if we consider a real function
f defined over a closed interval [a, b], f ([a, b]) = [min[a,b] f,max[a,b] f ], where
max[a,b] f andmin[a,b] f are themaximum andminimum of the function f in [a, b].
However, this fact alone is not sufficient to guarantee continuity. The next example
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shows that it is easy to define a function that maps a closed interval to a closed
interval but it is not continuous.

� Example 6.3 (Not continuous closed function) Consider the function

f (x) =
{
sin 1

x x �= 0,

0 x = 0.

Note that f ([−2/π, 2/π ]) = [−1, 1], but the function is clearly not continuous in
0. In fact, in any neighbourhood of 0, it takes all the values in the interval [−1, 1].

However, according to Theorem 2.28, if the function is monotonic, the fact that
it maps an interval into an interval is sufficient to imply continuity. Moreover, in
Theorem 2.31, we prove that concave and convex functions are continuous. Thus,
many functionsweencounter in practice are continuous in a large part of their domain.
Polynomials, rational functions, power, exponential, logarithmic, and trigonometric
functions are piecewisemonotonic and their domains can be partitioned into intervals
in which the behaviour of the function is monotonic and in which the function takes
all values between the extrema.

� Example 6.4 (Brouwer’s fixed point theorem for real functions)Let I = [0, 1] and
consider f : I → I . We can show that there exists at least one fixed point x∗ ∈ I
such that f (x∗) = x∗. Consider g(x) = f (x) − x . If g(0) = 0 or g(1) = 0, then
x = 0 or x = 1 is the point we are looking for, respectively. Otherwise, g(0) > 0
and g(1) < 0 but since g takes all the values in [minI g,maxI g], there is at least
one point x∗ for which g(x∗) = 0, that is, f (x∗) = x∗. A generalised version of this
result is discussed in Appendix B.

Although the continuous behaviour of the functions we are used to consider seems
to be the norm rather than the exception, it is possible that there exist isolated points
in which the continuity condition is violated. For practical purposes, we classify
these points into three groups (Fig. 6.1).

Definition 6.4 Let f : [a, b] → R and let x0 ∈ (a, b) be a point in which f is not
continuous.

• If limx→x0 f (x) exists but is different from f (x0), then x0 is a discontinuity of the
first kind or trivial;

• if limx→x0 f (x) does not exist but limx→x−
0
f (x) and limx→x+

0
f (x) exist with

different values, then x0 is a discontinuity of the second kind or jump;
• if one of the two limits, right and left, does not exist, then x0 is a discontinuity of
the third kind or essential.

Trivial discontinuities can be eliminated so that the function becomes continuous
simply by setting f (x) = limy→x f (y). On the contrary, the second kind of dis-
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Fig.6.1 Examples of trivial (top), jump (centre), and essential (bottom) discontinuities. The black
dot represents the value of the function in 0. In the case of jump or essential discontinuities, the
position of the dot is not relevant in the characterisation of the discontinuity

continuity cannot be eliminated. At this point, the function has a jump, and its
values to the left and to the right of the point are separated by a finite amount.
If limy→x+ f (y) = f (x) the function is said to be right continuous in x , while if
limy→x− f (y) = f (x) the function is said to be left continuous. A nice result exists
about the discontinuity of monotonic functions.

Theorem 6.2 Let f : E ⊆ R → R be monotonic. Then it can only have disconti-
nuities of the second kind, and their number is at most countable.

Proof Take a point x ∈ intE and let E−
x and E+

x be the set of elements of E which
are, respectively, lower and greater than x , formally E−

x = {y ∈ E |y < x} and
E+
x = {y ∈ E |y > x}. Without loss of generality, assume that the function f is

increasing. Then the set f (E−
x ) is bounded above, for instance by f (x ′)with x ′ > x .

In the same way, the set f (E+
x ) is bounded below. Furthermore, since the function

is increasing, limy→x− f (y) = sup f (E−
x ) and limy→x+ f (y) = inf f (E+

x ). Ac-
cording to Definition 1.16, both the left and right limits exist. If they are equal, the
function is continuous in x . Otherwise, the function has a discontinuity of the sec-
ond kind. For a decreasing function, simply exchange the sup and the inf in the last
equation.

Let D ⊆ E be the set of points in which the function f is discontinuous.
For any x ∈ D, define the open interval Ix = ( f −(x), f +(x)) where f ±(x) =
limy→x± f (y). If x1, x2 ∈ D and x2 > x1, then f −(x2) ≥ f +(x1) so that the
intervals do not overlap. Now, for any x ∈ D, let yx be a rational element of Ix ,
yx ∈ Ix ∩ Q. The intervals do not overlap, so that all the yx are different. Since the
set D is in one-to-one relationship with a subset of Q, it is countable. �



130 6 Differential Calculus of Functions of One Variable

With respect to Theorem 2.28, here we have dropped the assumption that the image
of the function is an interval, allowing for the presence of jumps. The third kind of
discontinuity is often encountered when one of the two limits, left or right, is infinite.

Another useful notion when dealing with real functions is uniform continuity. The
definition of uniformly continuous functions is provided in Sect. 3.3. A function is
uniformly continuous if the function values can be made as close as we want by
taking sufficiently closed points of its domain. The Heine–Cantor theorem, proved
in Sect. 3.3 for any metric space, guarantees that continuous functions on a compact
set are uniformly continuous.

6.3 Differential Analysis

The next definition introduces the notion of derivative, which will be extensively
studied in the remainder of this chapter.

Definition 6.5 (Derivative) Let f : (a, b) ⊆ R → R. For x ∈ (a, b), consider the
function �(y) = ( f (y) − f (x))/(y − x) with y ∈ (a, b) \ {x}. If limy→x �(y)
exists we call it the derivative of f in x and denote it by d f (x)/dx (Leibniz nota-
tion), d/dx f (x), or f ′(x) (notation initially proposed by the Italian mathematician
Giuseppe Luigi Lagrange, 1736–1813). If the derivative is defined in x , the function
is differentiable in x . If it is defined ∀x ∈ (a, b), the function is differentiable in
(a, b).

The derivative is defined at an interior point of an open interval that belongs to
the domain of the function. Since any open set is the union of open intervals (see
Theorem 2.9), we can say that the derivative of a function can be defined at any
interior point in its domain. It is immediate to see that the derivative of the constant
function is zero and the derivative of the linear function f (x) = cx is c. Thederivative
function f ′ assigns to each point x , in which the derivative of f is defined, the value
of the derivative.

� Example6.5 (Derivatives of sine, cosine, natural logarithm, and exponential func-
tions) From the trigonometric formula for the sum of two angles,

sin(x + h) − sin x

h
= sin x

cos h − 1

h
+ cos x

sin h

h
.

Then, using the limits in Example 6.2,

sin′ x = lim
h→0

(sin(x + h) − sin x)/h = cos x .
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A similar argument shows that cos′ x = − sin x . From the logarithm inequality
(x − 1)/x ≤ log x ≤ x − 1,

1

x + h
≤ log(x + h) − log x

h
= 1

h
log

(
1 + h

x

)
≤ 1

x
,

so that, by comparison theorem, log′ x = 1/x .
Note that (exp(x+h)−exp x)/h = exp x(exp(h)−1)/h and from the exponential

inequality, h ≤ exp(h)−1 ≤ h(1−h). By the comparison theorem, exp′ x = exp x .

For real functions of one real variable, being differentiable implies being contin-
uous.1

Theorem 6.3 If f : (a, b) → R is differentiable in x0 ∈ (a, b), then f is continuous
in x0.

Proof Since the derivative exists, by hypothesis limx→x0( f (x)− f (x0))/(x−x0) =
f ′(x) < +∞ and obviously limx→x0(x − x0) = 0. Therefore, by Theorem 6.1,

lim
x→x0

( f (x) − f (x0)) = lim
x→x0

f (x) − f (x0)

x − x0
(x − x0) = 0.

�

A definition similar to 6.5 exists for the boundary of an open interval, based on the
notion of left and right limits of Definition 6.3.

Definition 6.6 (Right and left derivatives) Let f : (a, b) → R. The right derivative
in a and the left derivative in b are, respectively,

f ′−(b) = lim
x→b− �(x) and f ′+(a) = lim

x→a+ �(x),

with �(x) as in Definition 6.5.

The function f is said to be left or right differentiable in x if the left or right derivatives
of f at x exist, respectively.

If the right and left derivatives of a function f exist at a point x and are equal,
then the derivative f ′(x) is defined and equal to the left and right derivatives. If the
right and left derivatives at x are different, the derivative of f in x is not defined.
With a little abuse of language, sometimes we say that a function is differentiable in

1 As we will see in Chap. 7, for a function of many variables, the relationship between its continuity
and the existence of its derivatives is more complex.
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a closed interval [a, b] if it is differentiable in (a, b) and, in addition, it is left and
right differentiable in the upper and lower endpoints, respectively.

Theorem 6.4 (Right and left derivatives of concave and convex functions) A concave
or convex function f in an open interval I ∈ R always possesses right and left
derivatives. If f is concave, f ′+ ≤ f ′−, while if f is convex, f ′+ ≥ f ′−.

Proof Let f be a concave function in an open interval I ∈ R. According to Theo-
rem 1.16, given any three points x < y < z in I , f (y) ≥ (z − y)/(z − x) f (x) +
(y − x)/(z − x) f (z). So, ∀x ∈ I and sufficiently small h′ > h > 0,

f (x + h′) − f (x)

h′ ≤ f (x + h) − f (x)

h
≤ f (x) − f (x − h)

h
≤ f (x) − f (x − h′)

h′ .

Therefore, the function g+(h) = ( f (x + h) − f (x))/h is decreasing and bounded
above and the function g−(h) = ( f (x) − f (x − h))/h is increasing and bounded
below. This implies that limh→0+ g±(h) = f ′±(x) exist and are ordered as in the
statement. If the function f is convex, consider the concave function − f . �

The proof of the previous theorem also clarifies that if the function f is concave,
∀y ∈ I , f (y) ≤ f (x) + f ′±(x)(y − x). If the function f is convex, f (y) ≥
f (x) + f ′±(x)(y − x).
The derivative introduced in Definitions 6.5 and 6.6 is based on the notion of limit,

so all theorems valid for the latter apply to the former. In particular, if the derivative
of f and g exists in x0, then ∀α, β constant, the derivative of α f (x) + βg(x) exists
in x0 and is equal to α f ′(x0) + βg′(x0). The product of functions requires a specific
formula.

Theorem 6.5 (Product rule) Consider two functions f and g differentiable in
x0. Then their product h(x) = f (x)g(x) is differentiable in x0 and h′(x0) =
f ′(x0)g(x0) + f (x0)g′(x0).

Proof The derivative of h in x is the limit x → x0 of ( f (x)g(x)− f (x0)g(x0))/(x−
x0). By adding and subtracting the same quantity, this expression can be rewritten as

f (x)
g(x) − g(x0)

x − x0
+ f (x) − f (x0)

x − x0
g(x0).

Because f and g are differentiable, and hence continuous, the limit x → x0 of the
first term is f (x0)g′(x0) and that of the second term is f ′(x0)g(x0). �

If a function f (x) is different from zero, then the quotient f (x)/ f (x) is constant
and its derivative is zero. Based on this simple consideration and Theorem 6.5, it is
immediate to derive the following.
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Corollary 6.1 (Reciprocal and quotient rules) If f is a differentiable function in x0
and f (x0) �= 0, then its reciprocal 1/ f is differentiable in x0 and

d

dx

1

f (x0)
= − f ′(x0)

f (x0)2
.

If f and g are differentiable functions in x0 and g(x0) �= 0, then their quotient f/g
is differentiable in x0 and

d

dx

f (x0)

g(x0)
= f ′(x0)g(x0) − f (x0)g′(x0)

g(x0)2
.

� Example 6.6 (Derivative of tangent and hyperbolic functions) Consider the hy-
perbolic sine and cosine functions

sinh x = ex − e−x

2
and cosh x = ex + e−x

2
.

Using the derivative of ex from Example 6.5, it is immediate to see that sinh′ x =
cosh x and cosh′ x = sinh x . Their behaviour is similar to the trigonometric functions
of the same name, as cosh2 x−sinh2 x = 1.While trigonometric functions represent
points in the unit circle whose coordinates solve the equation x2 + y2 = 1, hyper-
bolic functions represent the points on a unit hyperbola whose coordinates solve the
equation x2 − y2 = 1.

Using Theorem 6.5, the results in Example 6.5, and the quotient rule, and remem-
bering that sin2 x + cos2 x = 1, it is easy to derive the expression of the derivative
of the trigonometric tangent, tan x = sin x/ cos x ,

tan′ x = sin′ x
cos x

− sin x cos′ x
cos2 x

= 1

cos2 x
,

and for the hyperbolic tangent, tanh x = sinh x/ cosh x ,

tanh′ x = sinh′ x
cosh x

− sinh x cosh′ x
cosh2 x

= 1

cosh2 x
.

The following theorem states the so-called chain rule, that is, the way in which
the derivative of composed functions is computed.

Theorem 6.6 (Chain rule) Let f (a, b) → R be continuous in (a, b) and differen-
tiable in x0 ∈ (a, b) and let g : I f → R be differentiable in f (x0). Then the com-
posed function h(x) = g( f (x)) is differentiable in x0 and h′(x0) = g′( f (x0)) f ′(x0).
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Proof From the definition of derivative, multiplying and dividing by the same quan-
tity, one gets the following.

lim
x→x0

g( f (x)) − g( f (x0))

x − x0
= lim

x→x0

g( f (x)) − g( f (x0))

f (x) − f (x0)

f (x) − f (x0)

x − x0
.

For continuity, when x → x0, f (x) → f (x0) so that the limits of the two fractions
exist separately. �

� Example 6.7 (Derivative of power and exponential functions) Consider the func-
tion f (x) = xα . By the property of the natural logarithm, f (x) = eα log x . Using the
chain rule of the derivative, f ′(x) = αeα log x/x = αxα−1. Analogously, consider
f (x) = αx . Then f (x) = ex logα , whence f ′(x) = ex logα logα = αx logα. Note
that if α = e, the result in Example 6.5 is recovered.

After observing that f −1( f (x)) = x , the chain rule can be used to obtain the
derivative of the inverse function.

Corollary 6.2 If the function f is invertible and differentiable in a neighbourhood
of a point x0 and f ′(x0) �= 0, then ( f −1)′( f (x0)) = 1/ f ′(x0).

� Example 6.8 (Derivative of inverse trigonometric and hyperbolic functions) Let
y(x) = arcsin x be the inverse sine function defined from [−1, 1] to [−π/2, π/2].
It exists because, in the interval [−π/2, π/2], the sine function is continuous and
strictly monotonic. Using the results in Example 6.5 x ′(y) = cos y, we have

d arcsin x

dx
= 1

cos y
= 1√

1 − sin2 y
= 1√

1 − x2
.

Analogously, let y(x) = arccos x be the inverse cosine function defined from
[−1, 1] to [0, π ]. In this case,

d arccos x

dx
= − 1

sin y
= − 1√

1 − cos2 y
= − 1√

1 − x2
.

For the inverse tangent function y(x) = arctan x defined from R to [−π/2, π/2],
we have

d arctan x

dx
= cos2 y = 1

1 + tan2 y
= 1

1 + x2
.

The expression of the derivative of the hyperbolic inverse functions, arcsinhx ,
defined from R to R, arccoshx , defined from [1, +∞) to R>0, and arctanhx defined
from (−1, 1) to R is obtained with similar procedures. The reader can convince
himself that arcsinh′x = 1/

√
1 + x2, arccosh′x = 1/

√
x2 − 1, and arctanh′x =

1/(1 − x2).
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� Example 6.9 (Geometric interpretation of the derivative) Although in this book
I do not indulge in geometric interpretations of mathematical results, it is probably
useful to discuss the geometric analogue of the notion of derivative. In the Cartesian
reference system, a straight line has equation y = αx + β, where α is said to be the
angular coefficient or slope andβ is the intercept. The points (x, y) of the line passing
through twopoints (x1, y1) and (x2, y2) solve (x−x1)/(x2−x1) = (y−y1)/(y2−y1).
After rearranging terms, assuming x1 �= x2, the equation becomes

y = y1 + y2 − y1
x2 − x1

(x − x1).

Consider two points that belong to the curve y = f (x), having coordinates
(x1, f (x1)) and (x2, f (x2)). By substitution, the line passing through them is defined
by

y − f (x1) = f (x2) − f (x1)

x2 − x1
(x − x1).

When we take x1 and x2 close to each other (see Fig. 6.2), the straight line approxi-
mates the tangent to the curve at these points. In the limit, the angular coefficient of
the tangent is the derivative of the function f .

� Example 6.10 (Differentiable and Lipschitz continuous functions)Consider a Lip-
schitz continuous real-valued function f in I = (a, b). Then ∃k > 0, such that for
any two points x, x ′ ∈ I , | f (x) − f (x ′)| < k|x − x ′| (see Definition 3.7). This im-
plies that if the function f is differentiable, its derivative belongs to (−k, k). Thus, a
function whose derivative is not bounded cannot be Lipschitz continuous. Consider
the function f (x) = |x |3/2 sin(1/x) if x ∈ (−1, 1)\ {0} and f (0) = 0. The function

Fig.6.2 Successive approximations of the tangent to f (x) in P0. The line passing through P0 and
Pi , i = 1, 2, 3, becomes similar to the tangent of f (x) in P0 as the point Pi moves closer to P0
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is differentiable in (−1, 1). In fact, in x = 0, limh→0 f (h)/h = 0, and for x �= 0,
the function is the product and composition of differentiable functions. However,
its derivative f ′(x) = (3/2)x/|x |1/2 sin(1/x) + 1/|x |1/2 cos(1/x), due to the sec-
ond term, is not bounded in (−1, 1). Thus, f (x) cannot be Lipschitz continuous in
(−1, 1).

6.3.1 Higher-Order Derivatives

The procedure to obtain the derivative of a function can be applied in a recursive
manner. If the derivative function f ′(x) exists in a neighbourhood of x , we can
consider

f ′′(x) = f (2)(x) = lim
y→x

f ′(y) − f ′(x)
y − x

.

This limit, if it exists, is the second(-order) derivative or derivative of order two of
the function f in x . The same procedure can be repeated as long as the function is
defined and the limit exists. Often, the derivative of order n is denoted by f (n)(x).
In this notation, f (0)(x) stands for the original function. Given an open set A ⊆ R,
the set of functions that can be derived n times in A and whose nth derivative is
a continuous function is denoted by Cn(A). In particular, functions belonging to
C1(A) are said to be continuously differentiable in A. Functions that can be derived
any number of times belong to C∞(A).

6.3.2 Derivatives and Function Behaviour

The derivative can provide useful information on the local behaviour of the function.

Theorem 6.7 Let f : (a, b) → R be differentiable in x ∈ (a, b). If f ′(x) > 0, then
f is strictly increasing in x. If f ′(x) < 0, then f is strictly decreasing in x. If x is a
local maximum or minimum, then f ′(x) = 0.

Proof The proof of the first two points is based onDefinition 1.17. If limy→x ( f (x)−
f (y))/(x − y) = f ′(x) > 0, there exists δ > 0 such that if |y − x | < δ and
y �= x , then ( f (y) − f (x))/(y − x) > 0, that is, ( f (y) − f (x))(y − x) > 0.
Analogously, if f ′(x) = l < 0, there exists δ > 0 such that if |y − x | < δ then
( f (y) − f (x))/(y − x) < 0.

Regarding the last point, if a differentiable function is neither strictly increasing
nor strictly decreasing in x , its derivative in x cannot be positive or negative and
must be zero. �

Positive and negative values of the derivative are sufficient to imply local monotonic
behaviour. If in an open interval f ′(x) �= 0, the function f is bijective and can be
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inverted in that interval. If f ′(x) = 0, then the point x is said to be a stationary point
of the function f . Note that the fact that x is a stationary point of f is generally not
sufficient to imply that x is an extremal point of f (see Corollary 6.4). The following
results show how the behaviour of a differentiable function in an interval can be
related to the value of its derivative at some specific points in the interval.

Theorem 6.8 (Rolle) If f is continuous in [a, b] and differentiable in (a, b) and
f (a) = f (b), then there exists x ∈ (a, b) such that f ′(x) = 0.

Proof If ∀x , f (x) = f (a), then the function is constant and f ′(x) = 0 ∀x . Other-
wise, since the function is continuous, it has a global maximum point xM and a global
minimum point xm in [a, b]. One of the two points must be internal, otherwise the
function would be constant. For definiteness, let xm be internal. Then f ′(xm) = 0
by Theorem 6.7. �

Theorem 6.9 (Cauchy) Let f, g be continuous in [a, b] and differentiable in (a, b);
then there is a point x ∈ (a, b) such that

( f (a) − f (b)) g′(x) = (g(a) − g(b)) f ′(x).

Proof Define h(x) = ( f (a) − f (b))g(x) − (g(a) − g(b)) f (x) and apply Theo-
rem 6.8 to h. �

Theorem 6.10 (Mean value or Lagrange) Let f be continuous in [a, b] and differ-
entiable in (a, b). Then, ∃x ∈ (a, b) such that

f (b) − f (a) = f ′(x)(b − a).

Proof Apply Theorem 6.9 setting g(x) = x . �

The previous theorem provides a simple criterion for identifying contractions.

Corollary 6.3 (Derivative and contraction) Let f be differentiable in (a, b) and
assume supx∈(a,b) | f ′(x)| < 1. Then f is a contraction on (a, b).

Proof Let k = supx∈(a,b) | f ′(x)| < 1. According to Theorem 6.10, for any two
points x, y ∈ (a, b) there exists a point z ∈ (a, b) such that | f (x) − f (y)| =
| f ′(z)||x − y| which implies | f (x) − f (y)| ≤ k|x − y|, whence the assertion. �
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Theorem 6.11 Let f be differentiable in (a, b)and consider a sub-interval (x1, x2) ⊂
(a, b). Let λ be such that f ′(x1) < λ < f ′(x2). Then ∃x0 ∈ (x1, x2) such that
f ′(x0) = λ.

Proof Consider the function g(x) = f (x) − λx . Since g is continuous it has a
maximum in [x1, x2]. Moreover g′(x1) = f ′(x1) − λ < 0 and so the function is
decreasing at x1, while g′(x2) = f ′(x2) − λ > 0 and so the function is increasing
at x2. As a consequence, the function reaches its minimum in an interior point
x0 ∈ (x1, x2). Then g′(x0) = f ′(x0) − λ = 0, which proves the assertion. �

The previous theorem states that if f is differentiable in (a, b), then f ′ cannot have
a discontinuity of the second kind (a jump) in (a, b). However, it does not assume
or imply that the derivative is a continuous function (Fig. 6.3).

� Example 6.11 (Discontinuous derivative) Consider the function

f (x) =
{
x2 sin(1/x) x �= 0,

0 x = 0.

Since f is the composition of continuous functions, it is continuous for x �= 0.
Moreover, limx→0 x2 sin(1/x) = 0, so that the function is continuous in 0. Let us
consider its derivative. For x = 0, limh→0( f (h)− f (0))/h = limh→0 h sin(1/h) =
0. Using the chain and product rules at all other points, finally

f ′(x) =
{
2x sin(1/x) − cos(1/x) x �= 0,

0 x = 0,

Fig.6.3 Top: The function x sin(1/x) is continuous on the entire real axis but not differentiable in
0. Bottom: The function x2 sin(1/x) is continuous and differentiable on the entire real axis, but its
derivative is not continuous in 0



6.3 Differential Analysis 139

so that the function is differentiable in R. However, because of the oscillatory be-
haviour of the cosine function, limx→0 f ′(x) does not exist and the derivative is not
continuous in x = 0.

The local monotonic behaviour of the derivative provides information on the local
concavity or convexity of a function.

Theorem 6.12 Let the function f be differentiable in the interval (a, b). Then f is
concave if and only if f ′ is decreasing and convex if and only if f ′ is increasing.

The same statements hold with the addition of the “strict” qualifier to both the
monotonic behaviour of the derivative and the concavity/convexity property of the
function.

Proof We start by proving that an increasing derivative implies convexity. Consider
x1, x3 ∈ (a, b) and set x2 = (1 − λ)x1 + λx3 for any λ ∈ (0, 1). By Theorem 6.10
there exist two points y1 ∈ (x1, x2) and y2 ∈ (x2, x3) such that f (x2) − f (x1) =
f ′(y1)(x2−x1) and f (x3)− f (x2) = f ′(y2)(x3−x2). As f ′ is increasing, f ′(y2) ≥
f ′(y1), that is,

f (x3) − f (x2)

x3 − x2
≥ f (x2) − f (x1)

x2 − x1
.

Substituting the expression for x2 in terms of λ proves the assertion. An analogous
construction can be used to prove the concavity of a function starting from a decreas-
ing derivative. The strict version of the statement is promptly derived along the same
lines. �

If the function admits a second derivative, then the monotonic behaviour of the first
derivative is related to its sign. In this case, the previous theorem can be restated in
terms of the sign of the second derivative. Because a positive derivative implies a
strictly increasing function and a negative derivative a strictly decreasing one, we
have the following.

Corollary 6.4 Assume f ∈ C2((a, b)), that is, the function f has first- and second-
order continuous derivatives in an interval (a, b), and let x ∈ (a, b). Then if f ′(x) =
0 and f ′′(x) > 0, the function has a strict local minimum at x, while if f ′(x) = 0
and f ′′(x) < 0, the function has a strict local maximum at x.

Proof Assume f ′(x) = 0. If f ′′(x) > 0, then the first derivative is a strictly in-
creasing function in a neighbourhood of x , so it is negative for values lower than x
and positive for values higher than x . It follows that, in a neighbourhood of x , the
function f is strictly decreasing for values lower than x and strictly increasing for
values higher than x . Thus, x is a strict local maximum. The other case is proved
analogously. �
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Thus, for a function f ∈ C2, if x is a local maximum, it must be f ′′(x) ≤ 0, and if
x is a local minimum, it must be f ′′(x) ≥ 0.

Definition 6.7 (Flex) If a function f is convex (concave) in a right neighbourhood
of x and concave (convex) in the left neighbourhood of x , then x is a flex or inflection
point.

A flex is a point at which the function changes its convexity (or concavity). If the
function f admits a second derivative at the flex x , it must be f ′′(x) = 0. However,
the opposite is not true. Think of the function f (x) = x2 in x = 0. Corollary 6.4
cannot be applied in a flex. In general, we can obtain more information about the
local behaviour of the function by inspecting higher-order derivatives, if they exist
(see Sect. 6.4). The problem of identifying extremal points will be treated in more
general terms for functions of many variables in Chap. 7.

6.3.3 Derivatives and Limits

The next result can be useful for computing limits involving indeterminate expres-
sions such as 0/0 or ∞/∞. It takes advantage of the possibility, introduced by
Theorem 6.9, of expressing the relative increments of two functions in a given in-
terval with the ratio of their derivatives, computed at a suitable point. The theorem
is stated in general terms for limits in the extended real number system. In fact, its
statement is probably more complicated than its proof. The reader is advised to read
it carefully.

Theorem 6.13 (L’Hopital’s rule) Consider a bounded or unbounded interval I and
let a = inf I , b = sup I , a, b ∈ R̄. Let f and g be real differentiable functions in I ,
with g′(x) �= 0, ∀x ∈ (a, b).

Assume limx→b− | f (x)|= limx→b− |g(x)|∈{0,+∞}. If limx→b− f ′(x)/g′(x) =
l ∈ R̄, then limx→b− f (x)/g(x) = l.

Assume limx→a+ | f (x)|= limx→a+ |g(x)|∈{0,+∞}. If limx→a+ f ′(x)/g′(x) =
l ∈ R̄, then limx→a+ f (x)/g(x) = l.

Proof We prove only the first statement, as the second is proved in the same way.
According to Theorem 6.9, for any two points x1 < x2 ∈ I , ∃y ∈ (x1, x2) such that

f (x1) − f (x2)

g(x1) − g(x2)
= f ′(y)

g′(y)
.

Note that g(x1) − g(x2) �= 0 because otherwise, according to Theorem 6.8, ∃x3 ∈
[x1, x2] such that g′(x3) = 0, which is ruled out by hypothesis.
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Suppose limx→b− | f (x)| = limx→b− |g(x)| = +∞. Divide the numerator and
denominator on the left-hand side by g(x2),

f (x1)
g(x2)

− f (x2)
g(x2)

g(x1)
g(x2)

− 1
= f ′(y)

g′(y)
.

When x2 → b−, both f (x1)/g(x2) and g(x1)/g(x2) converge to zero by hypothesis,
so that

lim
x2→b−

f (x2)

g(x2)
= f ′(y)

g′(y)
,

for some y ∈ (x1, b). The left-hand side does not depend on x1. Taking x1 → b−,
the right-hand side converges to l, proving the assertion.

Suppose instead that limx→b− f (x) = limx→b− g(x) = 0. Taking the limit x2 →
b− in the first equation,

f (x1)

g(x1)
= f ′(y)

g′(y)

for some y ∈ (x1, b). When x1 → b−, the right-hand side converges to l, proving
the assertion. �

In the previous theorem, we can have b = +∞ and/or a = −∞. Thus, the theorem
can be applied to the computation of indeterminate expressions that arise when limits
to ±∞ are considered. Moreover, it can be easily extended to proper limits.

Corollary 6.5 Let f and g be real differentiable functions in the open bounded in-
terval (a, b), with g′(x) �= 0, ∀x ∈ (a, b). If for some x0 ∈ (a, b), limx→x0 | f (x)| =
limx→x0 |g(x)| and they are both 0 or +∞, and limx→x0 f ′(x)/g′(x) = l ∈ R̄, then
limx→x0 f (x)/g(x) = l ∈ R̄.

Proof Apply Theorem 6.13 separately to the intervals (a, x0) and (b, x0). Since the
left and right limits exist and are equal, the limit exists, too. �

� Example 6.12 (Recursive application of L’Hopital’s rule)Sometimes, L’Hopital’s
rule must be applied multiple times. Consider the limit

lim
x→0

e3x − 3ex + 2

x3 + 2x2
.

The limit of the derivatives of the numerator and denominator is still zero, so that

lim
x→0

3e3x − 3ex

3x2 + 4x
∼ 0

0
.
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Taking again the derivative of the numerator and denominator,

lim
x→0

9e3x − 3ex

4
= 3

2
.

By recursion, we can conclude that the original limit is also 3/2. In all the passages
above, one should check that the derivative of the denominator is different from zero
in right and left neighbourhoods of the limit point.

� Example 6.13 (Change of variable with L’Hopital’s rule) To effectively apply
L’Hopital’s rule, sometimes a change of variable is necessary. We want to compute
limx→0 e−1/x2/xn , with n ∈ N. A direct application of L’Hopital’s rule is not useful.
Assume n is even, set n = 2k, and consider the new variable y = 1/x2. It is clear
that when x → 0, then y → +∞ and the above limit becomes

lim
y→+∞

e−y

1/yk
= lim

y→+∞
yk

ey
.

Applying the L’Hopital rule k times, the numerator reduces to the constant k!, while
the denominator remains ey . Thus, the limit is zero. When n is odd, set n = 2k − 1,
then

e−1/x2

x2k−1 = x
e−1/x2

x2k
.

On the basis of the previous result, both factors in the right-hand side go to zero
when x → 0, so the limit of their product is zero.

L’Hopital’s rule in Theorem 6.13 exposes an important property of the derivative
function. Assume that a function f (x) is differentiable in the interval (a, b), apart
possibly from a point x0 ∈ (a, b). Consider the interval (a, x0). Then ∀x ∈ (a, x0)
there exists a y ∈ (x, x0) such that ( f (x) − f (x0))/(x − x0) = f ′(y). Thus,

lim
x→x−

0

f (x) − f (x0)

x − x0
= lim

y→x−
0

f ′(y).

This implies that if the left limit of the derivative function f ′(x) in x0 exists, then it
is equal to the left derivative of the function f in x0. The same applies to the right
derivative. Therefore, if the left and right limits of the derivative function f ′ at a
point x0 are different, the original function f cannot be derived in x0. In other terms,
the derivative function cannot be defined at a point where it has a jump discontinuity.
In fact, this is exactly the conclusion that we reached in Theorem 6.11. For example,
the so-called Heaviside theta function defined as



6.4 Taylor Polynomial and Power Series Expansion 143

θ(x) =
{
0 if x < 0,

1 if x ≥ 0

cannot be the derivative of any function.2

6.4 Taylor Polynomial and Power Series Expansion

The higher-order derivatives of a function at a point x internal to its domain can be
used to build a polynomial that approximates the behaviour of the function in the
neighbourhood of x . The approximation procedure and the estimation of the error
involved are provided by the following theorem, based on the work of the English
mathematician Brook Taylor (1685–1731).

Theorem 6.14 (Taylor polynomial) Suppose f : [a, b] → R and f (n−1) are con-
tinuous in [a, b] and f (n) exist in (a, b). Let x0 ∈ (a, b) and define

Pn−1,x0(x) =
n−1∑
k=0

f (k)(x0)

k! (x − x0)
k .

Then ∀x ∈ (a, b) there exists a λ ∈ (0, 1) such that

f (x) = Pn−1,x0(x) + 1

n! f
(n) (λx0 + (1 − λ)x) (x − x0)

n .

Proof Consider the functions �(x) = f (x) − P f
n−1,x0

(x) and 
(x) = (x − x0)n .
Both functions are differentiable in (a, b) and �(x0) = 
(x0) = 0. Now consider
any x ∈ (x0, b). According to the Cauchy theorem (Theorem 6.9), there exists a
x1 ∈ (x0, x) such that

�(x) − �(x0)


(x) − 
(x0)
= �(x)


(x)
= �′(x1)


′(x1)
,

where we used the fact that �(x0) = 
(x0) = 0. The same theorem implies that
there exists a x2 ∈ (x0, x1) such that

�′(x1) − �′(x0)

′(x1) − 
′(x0)

= �′(x1)

′(x1)

= �′′(x2)

′′(x2)

,

2 Sometimes the Heaviside function is defined by assigning a different value at x = 0, most com-
monly 1/2. Whatever the value of the function in zero, the impossibility of being the derivative of
a function still remains.
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where we used the fact that �′(x0) = 
′(x0) = 0. Thus,

�(x)


(x)
= �′′(x2)


′′(x2)
.

The procedure can be iterated to show that there exists a xn ∈ (x0, x) such that

�(x)


(x)
= �(n)(xn)


(n)(xn)
.

Note that �(n)(x) = f (n)(x) and 
(n)(x) = n! so that direct substitution proves the
assertion by taking λ = (x − xn)/(x − x0). The same proof can be repeated for
x ∈ (a, x0). �

It is important to stress that the value of λ in the previous theorem is not, in general,
a constant but depends on the value of x . When x0 = 0, the Taylor polynomial is
named theMaclaurin polynomial after the Scottish mathematician Colin Maclaurin
(1698–1746). The error of the polynomial approximation

Rx0(x) = 1

n! f
(n) (λx0 + (1 − λ)x) (x − x0)

n

is often called remainder. Specifically, this is the remainder in the Lagrange for-
m.3 From the definition of Rx0 , limx→x0 Rx0(x)/(x − x0)n−1 = 0. In other terms,
the remainder of the Taylor polynomial of order n − 1 is an infinitesimal of order
greater than n − 1, Rx0(x) = o(|x − x0|n−1). If the nth derivative is continuous,
limx→x0 Rx0(x)/(x − x0)n = f (n)(x0)/n!. In this case, Rx0(x) = O(|x − x0|n) and
the remainder is an infinitesimal of order at least n. Sometimes, it is useful to have
a global bound on the error. If M = supx∈(a,b) | f (n)(x)|, then

∣∣ f (x) − Pn−1,x0(x)
∣∣ ≤ M

|x − x0|n
n! .

This Lagrange error bound provides a uniform estimate of the error implied by
approximating the function with the Taylor polynomial. For any fixed x − x0, this
expression becomes smaller as M decreases and as n increases. Therefore, if the
derivatives of increasing order of the function under consideration have a magnitude
that is constant or decreasing in n, such as, for example, in the case of exponential,
sine, or cosine functions, the Taylor polynomial represents an approximation that is
as good as one wishes for a sufficiently high value of n.

3 Other forms of the remainder are known, such as Cauchy or Peano, but for our purposes, the
Lagrange form is enough.
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� Example 6.14 (Taylor approximation of the exponential function) Consider the
exponential function f (x) = ex . It is f (k)(x) = f (x), so f (k)(0) = 1. The Taylor
polynomial around x = 0 of order n reads P(n, 0) = ∑n

k=0 x
k/k!. Consider the

interval (0, δ). In this interval, the maximum of f (n+1)(x) is achieved for x = δ, so
that ∣∣ f (x) − Pn,0(x)

∣∣ ≤ eδ xn+1

(n + 1)! , ∀x ∈ (0, δ).

Analogously, in the interval (−δ, 0), the maximum of f (n+1)(x) is achieved for
x = 0 so that ∣∣ f (x) − Pn,0(x)

∣∣ ≤ xn+1

(n + 1)! , ∀x ∈ (0, δ).

Hence, because eδ > 1,

∣∣ f (x) − Pn,0(x)
∣∣ ≤ eδ xn+1

(n + 1)! , ∀x ∈ (−δ, δ).

Since ∀x , the expression xn/n! goes to zero as n increases (see Example 5.5.2), the
error above goes to zero when an increasing number of terms is considered in the
Taylor polynomial. For example, if we want a Taylor polynomial that approximates
the function in the interval (−1, 1) to a precision of 10−3, we can choose an n that
satisfies the condition (n + 1)! ≥ e103. Setting n = 6 turns out to be enough. The
precision of the polynomial approximation is rapidly increasing; see Fig. 6.4. With
ten terms, n = 10, the error in the interval (−1, 1) is less than one millionth.

In the previous example, we have seen that the Taylor polynomial in x = 0 can be
used to obtain a good, in fact as good as one desires, approximation of the function

Fig. 6.4 The function ex is progressively better approximated by polynomials of higher orders
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ex in any interval, that is, in practice, at any point of its domain. This is not true for
a generic function.

� Example 6.15 (Limited precision of Taylor approximation) The global upper
bound introduced above is not alwaysuseful.Consider the function f (x) = 1/(1−x).
Its kth derivative is f (k)(x) = k!/(1 − x)k+1, so that its Taylor polynomial around
x = 0 of order n can be easily computed to be Pn,0(x) = ∑n

k=0 x
k , that is,

the truncated geometric series. When x ∈ (0, 1), the remainder of order n is
Rn
0 (x) = xn+1/(1 − (1 − λ)x)n+2 for some λ ∈ (0, x). Using the same reason-

ing of Example 6.14, we find that |Rn
0 (x)| < |xn+1/(1 − x)n+2|. This expression

converges to zero when n increases only if |x | < 1/2, despite the fact that the geo-
metric series converges also when 1/2 ≤ |x | < 1. However, for this particular case,
we are able to explicitly compute the remainder of the Taylor polynomial,

1

1 − x
− Pn,0(x) = xn+1

1 − x
.

As expected, the limit for n → ∞ of the right-hand side expression is zero for any
|x | < 1. Note that while Theorem 6.14 applies in any open interval around 0 that
does not contain 1, the Taylor polynomial represents a good approximation of the
function only in the interval (−1, 1); see Fig. 6.5.

� Example 6.16 (Taylor approximation of the logarithmic function) Consider the
function f (x) = log(1 + x). It is easy to prove by recursion that f (k)(x) =
(−1)k+1(k − 1)!/(1 + x)k so that the Taylor polynomial around x = 0 of order

Fig. 6.5 The progressive Taylor approximations to 1/(1 − x) are bad near the point x = 1, where
the function has an essential discontinuity, but also for x < 1
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n ≥ 1 can be easily computed to be

Pn,0(x) =
n∑

k=1

(−1)k+1xk

k
.

In this case, Theorem 6.14 applies in an open interval around 0 only if this interval
does not contain −1. In fact, the function is not defined there.

In general, increasing the number of terms is not enough to ensure the pointwise
convergence of the sequence (Pn,x0) to f (x) in a neighbourhood of the point x0, as
the next example shows.

� Example6.17 (Lackof pointwise convergenceof Taylor approximations)Consider
the function

f (x) =
{
e−1/x2 x �= 0,

0 x = 0

which is continuous and can be derived any number of times on the entire real axisR
and, in particular, in x = 0. By using the result in Example 6.13, it is easy to show that
f (n)(0) = 0 for any n so that if we expand the function around zero, then all terms
in Pn,0(x) = 0 are equal to zero. The seemingly contradiction with the expression
of the error terms is reconciled once one notices that limx→0 e−1/x2/|x |n = 0 for
any n. Thus, for any n, whatever the value of M , there exists a neighbourhood of 0
for which | f (x)| < M |x |n/n!.

The Taylor polynomial approximation can be adapted to obtain a asymptotic
approximation of a function when its argument goes to plus or minus infinity. Instead
of a polynomial expression in x , we are looking for a polynomial expression in 1/x .
In this way, we can obtain an approximate description of the behaviour of a function
at the boundaries of its domain.4

� Example 6.18 (Asymptotic expansion) Let a ∈ R>0 and consider the function
f (x) = log((x + a)/x), defined for x > 0. Note that limx→+∞ f (x) = 0. Let
x = 1/y. The behaviour of f for large values of x is equal to the behaviour of
g(y) = log(1 + ay) for small and positive values of y. From Example 6.16, we
know that

g(y) =
n∑

k=1

(−1)k+1ak yk

k
+ o(yn).

4 The theory of asymptotic approximations or “expansions” of functions is more general than this.
Often, one is interested to obtain expansions not in terms of powers of 1/x , but in terms of more
general sets of functions. The methods may change, but the idea remains essentially the same.
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Thus, by direct substitution, we can say that when x is sufficiently large,

f (x) =
n∑

k=1

(−1)k+1ak

kxk
+ o(1/xn).

In particular, when x → +∞, f (x) is infinitesimal of the same order as 1/x .

In Examples 6.14, 6.15, and 6.16, we were able to obtain a good approximation
of the function under consideration by using a polynomial of sufficiently high order.
What happens if the order of the polynomial is allowed to become infinite? We do
not know how to compute polynomials of infinite order, but we can think of them as
special series.

Definition 6.8 (Power series) A power series centred at a is defined as

f (x) =
∞∑
n=0

cn(x − a)n .

The power series is a function defined on the set of points at which the series on the
right-hand side converges. This set is never empty, as it always contains the point
x = a. When an infinite number of terms are considered, the Taylor approximations
introduced in Example 6.14 and in Example 6.15 lead to two power series centred
at zero. Let us analyse them in some detail. We start with the exponential function
in Example 6.14. Formally write

ex =
∞∑
k=0

xk

k! .

In Example 5.5.2, we prove that the series on the right-hand side is convergent for any
real number x . This was precisely the definition of the exponential function. Thus,
we can say that the exponential function is described by the power series in its entire
domain. In other terms, we have derived a power series expansion of the original
function valid on R. Consider instead the hyperbolic function in Example 6.15. In
this case, the Taylor expansion of infinite order leads to a geometric series,

1

1 − x
=

∞∑
k=0

xk .

The equal sign in the previous expression is valid only if |x | < 1. Indeed, we
know that the series on the right-hand side is convergent only for these points (see
Example 5.5). The next theorem, credited to Cauchy and the French mathematician
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Jacques Hadamard (1865–1963), shows that, in general, a power series centred on a
is defined over an open interval having a as its midpoint.

Theorem 6.15 (Cauchy–Hadamard) Define the radius of convergence5 R of the
power series f (x) = ∑∞

n=0 cn(x − a)n as

1

R
= lim sup

n→∞
|cn|1/n .

Then the series is convergent for x ∈ (a − R, a + R) and divergent outside this
interval, that is, for x > a + R and x < a − R.

Proof Wewill start by proving that the series is convergent in the interval (a−R, a+
R). From the definition of limit superior, limn→∞ supm≥n |cm |1/m . Thus, ∀ε > 0,
for sufficiently large n,

|cn|1/n <

(
1

R
+ ε

)
, i.e. |cn| <

(
1

R
+ ε

)n

, so that

∞∑
n=0

|cn||x − a|n ≤
∞∑
n=0

(
1

R
+ ε

)n

|x − a|n .

The right-hand side is a geometric series that converges if its base has a modulus less
than one. In this case, it converges if |x − a| < 1/(1/R + ε). Since ε can be taken
infinitesimally small, the power series is absolute convergent, and thus convergent,
for |x − a| < R.

Next, we show that the power series is not convergent outside the above interval.
First of all, given any ε > 0, by the definition of limit superior, there are infinite
terms of the series for which

|cn|1/n > (
1

R
− ε), i.e. |cn| >

(
1

R
− ε

)n

.

Then, if |x − a| > 1/(1/R − ε), there are infinite elements of the series for which
|x − a|n|cn| > 1. Thus, the elements of the series do not converge to zero, and
consequently, the series cannot converge. Since ε can be taken infinitesimally small,
we can conclude that the series does not converge for |x − a| > R. �

The previous theorem is silent on what happens at the boundaries of the convergence
interval a ± R. Depending on the series considered, it might converge or not. A

5 The name “radius” of convergence derives from the fact that the theorem is in general presented
for power series of complex numbers. In this case, it proves that the power series converges inside
a disc in the complex plane C of radius equal to the radius of convergence.
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function represented by a power series is said to be analytic in the domain in which
the series converges. The derivative of the function f (x) in Definition 6.8 can be
written as f ′(x) = ∑∞

n=0 cn+1(n + 1)(x − a)n . By Theorem 6.15, the convergence
radius of this power series is the same as the original power series that defines f (x).
Thus, the derivative of an analytic function is itself analytic, and an analytic function
possesses derivatives of any order.

� Example 6.19 (Convergence on the boundary) Consider the power series centred
on the origin and based on the expansion in Example 6.16,

∞∑
k=1

(−1)k+1xk

k
.

The radius of convergence is limn→∞ n√n = 1 so that the series converges for
x ∈ (−1, 1) and in this case its value is log(1 + x). The series diverges for x > 1
and x < −1. What happens in 1 and −1? For x = 1, the series reduces to the
harmonic series with alternating sign introduced in Example 5.5.1, which we know
is convergent. Its limit is log 2. Conversely, when x = −1, the power series becomes
the harmonic series in Example 5.5.1, which we know does not converge.

If lim supn→∞ |cn|1/n = 0 the radius of convergence of the power series is infinite
and the series converges on the entire real axis.On the contrary, if lim supn→∞ |cn|1/n
is +∞, the radius of convergence of the power series is zero, and the sequence
converges only for x = a.

If the sequence (|cn|1/n) converges, one can also compute the radius of conver-
gence as 1/R = limn→∞ |cn+1/cn|. For example, in the case of the exponential
function, cn+1/cn = 1/(n + 1), so that the limit is zero and the radius of conver-
gence of the series is infinite. In the case of the hyperbolic function, cn+1/cn = 1
and the radius of convergence is 1. The same applies to the function in Example 6.16,
for which cn+1/cn = n/(n + 1).

� Example 6.20 (Basic power series expansions) The following list of expansions
around x = 0 summarises previous examples and might be useful to solve the
exercises at the end of the chapter.

1

1 − x
=

∞∑
n=0

xn, ex =
∞∑
n=0

xn

n! , log(1 + x) =
∞∑
n=1

(−1)n+1 x
n

n
,

cos x =
∞∑
n=0

(−1)n
x2n

(2n)! , sin x =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)! .
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Exercises

Exercise 6.1 Consider the p-norm defined in Sect. 4.2.2. Prove that for any x =
(x1, x2) ∈ R

2, lim p→∞ |x|p = max {|x1|, |x2|}.

Exercise 6.2 Let f be a real function defined in the interval (a, b) such that for any
point x ∈ (a, b), limh→0 f (x + h) − f (x − h) = 0. Is the function continuous in
(a, b)?

Exercise 6.3 Let f (x) be defined for all real x and suppose that | f (x) − f (y)| ≤
(x − y)2 for all x and y. Prove that f is constant.

Exercise 6.4 Let f be a continuous real function on R. Suppose that ∀x �= 0, f ′(x)
exists and limx→0 f ′(x) = 3. Does it follow that f ′(0) exists?

Exercise 6.5 Consider the function

f (x) =
{
0 x ≤ 0

e−1/x x > 0.

Prove f ∈ C∞(R).

Exercise 6.6 Compute the following limits:

lim
x→0

cos x − e−x2/2

x4
, lim

x→0

sin x − log cos x

x2
, lim

x→2

ex−2 − x + 1

x2
.

Exercise 6.7 Suppose f is defined in a neighbourhood of x and suppose f (2)(x)
exists. Then show that

lim
h→0

f (x + h) + f (x − h) − 2 f (x)

h2
= f ′′(x).

Are you able to find an example in which the limit exists even if f (2)(x) does not?

Exercise 6.8 Consider the integer part function f (x) = [x] defined on R≥0. Is it
possible to find a function g(x) such that g′(x) = f (x)?

Exercise 6.9 Consider the function

f (x) =
{
x2 sin(1/x2) x �= 0,

0 x = 0.

Show that the function is differentiable in (−1, 1) and its derivative is unbounded.
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Exercise 6.10 Compute the limit for n → ∞ of the sequences
(
e−n(1 + 1/n)n

2
)

and
(
en(1 − 1/n)n

2
)
.

Exercise 6.11 Prove that if a polynomial P(x) is constant in an interval [a, b], then
it is constant everywhere. Hint: Consider its derivatives.

Exercise 6.12 Compute the Taylor polynomial of order 4 of the function f (x) =√
cos x in x = 0.

Exercise 6.13 Compute sin 1 with a precision of 10−3.

Exercise 6.14 Consider the function f (x) = 3
√
1 + x3 − x . Prove that limx→+∞

f (x) = 0. Compute the asymptotic approximation of f (x) in terms of 1/x at
+∞.Hint: Consider y = 1/x and notice that x → +∞ is equivalent to y → 0+.

Exercise 6.15 Use the Taylor polynomial approximation around an appropriate
point to easily compute the following limits:

lim
x→0

sin2 x − x2

x4
, lim

x→1

log2 x − (x − 1)2

(x − 1)3
, lim

x→0

1 − cos sin x

x
.

Exercise 6.16 Compute the Maclaurin polynomial of order n of the function

f (x) = log
1 + x

1 − x
.

Hint: Try to use what you know about the expansion of log(1 + x).

Exercise 6.17 The functions ex and 1/x have an intersection in the interval (0, 1).
Use the Taylor polynomial to find an approximation of the abscissa of the point.
Hint: Reduce the problem to finding the root of a suitable polynomial.

Exercise 6.18 Let k ∈ N, k > 2 and consider the series

∞∑
n=1

k√
nk + 1 − n.

Use the Taylor approximation of k√1 + x to prove that it is convergent. Is the series
convergent for k = 2?

Exercise 6.19 Describe how the radius of convergence of the power series∑+∞
n=0(an + b)xn depends on the value of a and b.
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Exercise 6.20 Let ra and rb be the radius of convergence of the power series∑∞
n=0 anx

n and
∑∞

n=0 bnx
n . Find the radius of convergence of

∑∞
n=0 anbnx

n and∑∞
n=0 an/bnx

n .

Exercise 6.21 Consider the power series
∑∞

n=1 x
n/(2n +1). Prove that the series is

convergent for x = 1 and divergent for x = 2. Compute its radius of convergence.



7Differential Calculus of Functions
of SeveralVariables

7.1 Limits and Continuity in R
n

The space (Rn, ‖.‖) is a complete normed space. The induced topology is Hausdorff
and second-countable. In this space, the Bolzano–Weierstrass theorem applies (see
Sect. 2.3) and the validity of the Heine–Borel theorem was proved in Theorem 4.10.
The elements of the space (points or vectors) are in bold x ∈ R

n . The notion of
limit of a function in x is directly derived from Definition 2.14 using open balls (see
Definition 3.5) as the neighbourhood of the point x and of its image f(x). The name
of the function is in bold as a reminder that the image of the point is a vector with
several components. Theorem 5.2 applies and all properties of the limit of sequences
apply to the limit of vector-valued functions. In particular, a vector-valued function
has limit in x if and only if all its components have limit in x and the components
of the limit are the limits of the components. Thus, the problem of determining
the limit of a vector-valued function can be broken down into separate problems
of determining the limit of its components, which are real-valued functions, also
called scalar functions or scalar fields, defined over a subset of R

n . The limit of a
scalar function, if it exists, is unique, and properties identical to those of the limits
of functions of one variable apply.

Theorem 7.1 Let f, g : R
n → R, and assume that limx→x0 f (x) = y0 and

limx→x0 g(x) = y′
0, then:

• limx→x0 α f (x) + βg(x) = αy0 + βy′
0;• limx→x0 f (x)g(x) = y0y′

0;• if y′
0 �= 0, limx→x0 f (x)/g(x) = y0/y′

0.

Proof The proof is identical to the proof of Theorem 6.1, which, in turn, is based on
the result of Theorem 5.2. �
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Multivariate continuous functions possess a series of important properties: their com-
position is continuous (see Theorem 2.24); the inverse image of an open set is open
(see Theorem 2.21) and of a closed set is closed (see Theorem 2.23); the image of a
connected set is connected (see Theorem2.25) and the image of a compact set is com-
pact (see Theorem 2.26). Moreover, note that if a real function of a real variable g(z)
is continuous in z = z0, then the scalar function f (x1, . . . , xn) = g(x j ) is continuous
in all points x with x j = z0. This property is particularly useful in practical applica-

tions. For example, it implies that any polynomial P(x) = ∑
j c j x

h j,1
1 x

h j,2
2 · · · xh j,n

n ,
which is defined through the sumand product of continuous functions, is a continuous
function in R

n and that f (P(x)) is continuous if f (x) is continuous in P(x).

� Example 7.1 (Polar coordinates)When studying the limit of functions defined in
a subset of R

2 it could be useful to switch to polar coordinates. This is a new system
of coordinates for the points of the real plane R

2 based on the two variables

⎧
⎪⎨

⎪⎩

ρ =
√
x21 + x22 ,

φ = arctan
x2
x1

,

wherewe assume that the function arctan(.) returns values in [0, 2π ]. By Pythagoras’
theorem, {

x1 = ρ cosφ,

x2 = ρ sin φ.

Each point (x1, x2) �= (0, 0) corresponds to a single couple of values (ρ, φ). The
exception to this rule is the origin of the axis. In fact, all couples (0, φ) correspond
to the point (0, 0).

Polar coordinates can be useful in the study of limits and will be used in several
examples. For a scalar function g : R

2 → R, the fact that limx→0 g(x) = l implies
that limρ→0 g(ρ, φ) = l. In fact, for any neighbourhood of the origin, N (0), there
exists a sufficiently small δ > 0 such that, if ρ < δ, (ρ, φ) ∈ N (0). Thus, if
∀x ∈ N (0), |g(x) − l| < ε, then |g(ρ, φ) − l| < ε for ρ < δ. This is a trivial
consequence of the fact that the set of open balls is a base of the Euclidean topology,
see Theorem 2.2.2. Thus, if we prove that limρ→0 g(ρ, φ) does not exist for some φ,
or is different for different values of φ, then we can conclude that limx→0 g(x) does
not exist (but the opposite is not true, as discussed in Example 7.7). For example,
consider the function f : R

2 \ (0, 0) → R
2 defined as

⎧
⎨

⎩

f1(x1, x2) = x1x2
x21 + x22

f2(x1, x2) = x1 + x2.

The second component f2 is the sum of single variable linear functions that are
continuous overR, thus it is continuous over the entire spaceR

2. The first component
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f1 is the sum and product of single variable functions which are continuous over the
entire space, thus it is continuous over the entire space R

2 apart (0, 0), where it is
not defined. Is it possible to make this function continuous in (0, 0)? We can set
f2(0, 0) = 0. Then we need a value c such that if we set f1(0, 0) = c, the function
f1 is continuous in (0, 0). For this to be the case, in polar coordinates it is necessary
(but not sufficient) that limρ→0 f1(ρ, φ) = limρ→0 cosφ sin φ = c. However, this
is impossible as the limit value is not constant and depends on the value of φ. Thus,
the limit of the original function f in (0, 0) does not exist.

7.2 Differential Analysis in R
n

To introduce the notion of differential of multivariate functions, it is helpful to look
at the notion of derivative of real functions from a different perspective. Consider
the derivative of a function f : R → R in a point x ∈ R, defined as

f ′(x) = lim
h→0

f (x + h) − f (x)

h
.

This definition means that the quantity r(h) = f (x + h) − f (x) − h f ′(x), which
depends both on the function f and the point x , is such that limh→0 r(h)/h = 0.
We can interpret this fact by saying that the increment f (x + h) − f (x) of the
function f for a small variation h of its argument is well approximated by the
linear function h f ′(x). It is so well approximated that the approximation error r(h)

decreases faster than the length h over which the approximation is calculated. In this
sense, the value f ′(x) is unique: if we consider any other real number a and define
r̃(h) = f (x + h) − f (x) − ah,

lim
h→0

r̃(h)

h
= f ′(x) − a �= 0.

The error r̃(h) of the local linear approximation obtained using a �= f ′(x) does not
decrease faster than h when h → 0 (Fig. 7.1).

Consider now a real vector-valued function f : R → R
m ,

f(x) =
⎛

⎝
f1(x)
...

fm(x)

⎞

⎠ .

The components f j (x)with j = 1, . . . ,m are real functions of a single real variable.
Assume that the derivatives of these components exist in x . Define the differential
df(x) = ( f ′

1(x), . . . , f ′
m(x))ᵀ and the approximation error r(h) = f(x+h)−f(x)−

hdf such that
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Fig. 7.1 The error r(h) vanishes faster than h when h → 0

f(x + h) =
⎛

⎝
f1(x) + f ′

1(x)h + r1(h)

...

fm(x) + f ′
m(x)h + rm(h)

⎞

⎠ .

The j th component of r(h) is r j (h) = f j (x + h) − f j (x) − h f ′
j (x) and, for the

definition of derivative, limh→0 r j (h)/h = 0. Therefore, limh→0 ‖r(h)‖/h = 0.
Again, the differential df constitutes a local linear approximation of the increment
f(x + h) − f(x) of the vector-valued function f with an error r(h) whose norm
decreases faster than the length h over which the increment is calculated. The vector
df(x) is unique because the derivatives of the components of f are unique. In fact, if
we assume that a vector v exists such that, defining r̃(h) = f(x +h)− f(x)−hv, we
have limh→0 ‖r̃(h)‖/h = 0, then itmust be true that limh→0( f j (x+h)− f j (x))/h =
v j , ∀ j . That is, the components of v must be the derivatives of the components of
the function f with respect to x .

Next, we want to extend the idea of a local linear approximation to functions of
several variables. For a function f : R

n → R
m the linear approximation will take

the form of an element of the space of m × n real matrices Mm.n (see Sect. 4.2.3).

Definition 7.1 Let f : R
n → R

m be defined in an open set E ⊆ R
n and let x ∈ E .

The function f is differentiable in x if there exists a matrix Af (x) ∈ Mm,n such that

lim
h→0

‖f(x + h) − f(x) − Af (x)h‖
‖h‖ = 0.

Thematrix Af (x) is called the differential of f in x. If f is differentiable in any x ∈ E ,
then it is differentiable in E .
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� Example7.2 (Differential of a vector function)Consider the function f : R
2 → R

2

defined as {
f1(x1, x2) = x1x2,

f2(x1, x2) = x1 + x2.

We shall prove that the differential of f in 1 = (1, 1) is

Af (1, 1) =
(
1 1
1 1

)

.

For an increment h = (h1, h2), the components of the approximation error r(h) =
f(1 + h) − f(1) − Af (1, 1)h read

{
r1(x1, x2) = f1(1 + h1, 1 + h2) − f1(1, 1) − h1 − h2 = h1h2,

r2(x1, x2) = f2(1 + h1, 1 + h2) − f2(1, 1) − h1 − h2 = 0.

We have to prove that limh→0 ‖r(h)‖/‖h‖ = 0. Note that

0 ≤ ‖r(h)‖
‖h‖ = |h1h2|

√
h21 + h22

≤ 1

2

√
h21 + h22 = 1

2
‖h‖.

For the comparison theorem, the limit is actually zero and the statement is proved.

If the function f is differentiable in x, for small increments h it is possible to ap-
proximate the increment of the components of the function f with a linear expression.
We can write f(x + h) = f(x) + A(x)h + r(h), where A(x)h represents the usual
matrix multiplication. For sufficiently small increments, the norm of the error r(h)

decreases faster than the norm of the increment h. Specifically, ∀ε > 0, ∃δε > 0
such that if ‖h‖ < δε ,

‖f(x + h) − f(x)‖ = ‖A(x)h + r(h)‖ ≤ ‖A(x)‖op‖h‖ + ε‖h‖,

where we have used the triangle inequality and the operator norm introduced in
Definition 4.4. The previous inequality has two consequences. First, when ‖h‖ → 0,
it is ‖f(x + h) − f(x)‖ → 0, so we have the following.

Corollary 7.1 If f : E ⊆ R
n → R

m is differentiable in x ∈ E, it is continuous in x.

The second consequence is that, for sufficiently small increments, ‖A(x)‖op provides
an upper bound to the incremental ratio of the function, ‖f(x + h) − f(x)‖/‖h‖.

� Example 7.3 (Upper bound to incremental ratio) Consider the function f in Ex-
ample 7.2. The operator norm of the differential Af at (1, 1) is the maximum of
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‖Af (1, 1)z‖ over all z = (z1, z2) such that ‖z‖ = 1. The maximum is reached for
z1 = z2 = 1/

√
2 so that ‖Af (1, 1)‖op = 2. Note that 2 is also the largest eigenvalue

of the matrix Af (1, 1). In conclusion, we know that for sufficiently small increments
h, it is ‖f(1 + h) − f(1)‖ ≤ (2 + ε)‖h‖,∀ε > 0.

Unlike the case of functions of one single variable, the differential inDefinition 7.1
is not defined using the notion of the limit of the increment of the function, thus we
are not automatically guaranteed about its uniqueness. However, we can easily prove
it.

Theorem 7.2 The differential is unique.

Proof Assume that the matrices A and A′ satisfy the definition of differential of a
function f in x. Then, for the triangle inequality,

‖f(x + h) − f(x) − Ah‖ + ‖f(x + h) − f(x) − A′h‖ ≥ ‖(A − A′)h‖.

Dividing both sides by‖h‖ and taking the limit‖h‖ → 0, the left-hand side converges
to zero such that limh→0 ‖(A−A′)h‖/‖h‖ = 0. In particular,∀x ∈ R

n , limt→0 ‖(A−
A′)tx‖/‖tx‖ = 0. Simplifying the parameter t , this implies that∀x, ‖(A−A′)x‖ = 0,
that is, A = A′. �

In addition to uniqueness, another similarity between the derivative of a single vari-
able function and the differential of a function of several variables is the way in
which they combine when the composition of functions is considered.

Theorem 7.3 (Chain rule) Consider f : E f ⊆ R
n → R

m and g : Eg ⊆ R
m → R

l .
Let Af ∈ Mm,n be the differential of f in x ∈ E f and Ag ∈ Ml,m the differential
of g in f(x) ∈ Eg. Then the function φ(x) = g(f(x)) is differentiable in x and its
differential is Aφ = AgAf .

Proof Since f is differentiable, for h ∈ R
n one has

φ(x + h) = g(f(x + h)) = g(f(x) + Af (x)h + r f (h)),

where limh→0 ‖r f (h)‖/‖h‖ = 0. Since g is differentiable, the previous expression
can be expanded as

φ(x + h) = g(f(x)) + Ag(f(x))Af (x)h + Ag(f(x))r f (h) + rg(Af (x)h + r f (h)),

where limh′→0 ‖rg(h′)‖/‖h′‖ = 0 with h′ ∈ R
m . Now notice that from the triangle

inequality
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∥
∥Ag(f(x))r f (h) + rg(Af (x)h + r f (h))

∥
∥

‖h‖ ≤
∥
∥Ag(f(x))r f (h)

∥
∥

‖h‖ +
∥
∥rg(Af (x)h + r f (h))

∥
∥

‖h‖ .

Since ‖Ag(f(x))r f (h)‖ ≤ ‖Ag(f(x))‖op‖r f (h)‖, the first ratio on the right-hand
side goes to zero as h → 0. For the second ratio, multiply and divide by the same
amount to obtain

∥
∥rg(Af (x)h + r f (h))

∥
∥

‖h‖ =
∥
∥rg(Af (x)h + r f (h))

∥
∥

∥
∥Af (x)h + r f (h)

∥
∥

∥
∥Af (x)h + r f (h)

∥
∥

‖h‖ .

The first ratio goes to zerowhen h → 0while the second remain bounded (remember
that ‖Af (x)h‖/‖h‖ ≤ ‖Af (x)‖op). In conclusion,

lim
h→0

∥
∥Ag(f(x))r f (h) + rg(Af (x)h + r f (h))

∥
∥

‖h‖ = 0,

and the assertion is proved. �

The differential of a real-valued (or scalar) function f in x is often denoted by d f (x).
It is a 1 × n matrix, that is, a row vector. The fact that the convergence of the norm
of a vector implies the convergence of all its components (and vice versa), means
that if a function f : R

n → R
m is differentiable, then all its component functions

f j (x) from R
n to R with j = 1, . . . ,m are differentiable. The differential of the j th

component is d f j (x), the j th row of the differential of f . Thus, the problem of proving
the differentiability of a vector function or finding its differential is equivalent to the
problem of proving the differentiability or finding the differential of all its component
functions. It follows that all the results concerning the existence of the differential and
its computation can be derived considering functions from R

n to R. This is indeed
the kind of function that appears in the examples. Limiting the direct investigation
of special cases to functions with an image in R will simplify the analysis. There is
no reason, however, to introduce this simplification in the general statements.

Definition 7.1 introduces the notion of differential as a linear approximation of
the local behaviour of a function but is totally silent about how to compute it. In the
case of a function of a single variable, we know that the differential at a given point is
simply the derivative computed at that point. So, the existence of a differential, that
is, the existence of a local linear approximation, and the existence of the derivative
are the same thing. For a multivariate function, the situation is more complicated.We
will see that, in general, if we know that the function is differentiable in one point,
we can compute the differential using the partial derivatives, quantities obtained
with methods similar to the derivation of a function of one variable. However, the
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existence of partial derivatives does not guarantee the existence of the differential.
Denote by (e1, e2, ..., en) the canonical basis of R

n .

Definition 7.2 (Partial derivative) Let f : E ⊆ R
n → R

m , E open, and x ∈ E .
Consider the vector-valued function of the real variable t , f(x + te j ) defined in a
neighbourhood of t = 0. The partial derivative of the function f in x along the j th

direction is defined as

∂ j f(x) = lim
t→0

f(x + te j ) − f(x)
t

.

Other widely used notations for partial derivatives are ∂f(x)/∂x j , ∂x j f(x) or Dj f(x).
The limit in Definition 7.2 should be intended component by component: the partial
derivative is am-dimensional vector whose components are the partial derivatives of
the component functions. In the case of a real-valued function f : R

n → R, partial
derivatives are real numbers. They are the derivatives in t = 0 of the function f (x+
te j ) defined as the restriction of the original function along the specific direction
in which the derivative is computed. Alternatively, considering the functional form
f (x1, x2, ..., xn), the partial derivative is the derivative with respect to one argument,
keeping the other arguments fixed.

� Example 7.4 (Partial derivatives) Consider the function f in Example 7.2. In
x = (x1, x2), f1(x1 + t, x2)− f1(x1, x2) = t x2 and f2(x1 + t, x2)− f2(x1, x2) = 1,
so that

∂1f = lim
t→0

1

t

(
t x2
t

)

=
(
x2
1

)

.

Analogously, f1(x1, x2 + t)− f1(x1, x2) = t x1 and f2(x1, x2 + t)− f2(x1, x2) = t ,
so that

∂2f = lim
t→0

1

t

(
t x1
t

)

=
(
x1
1

)

.

Note that in x = (1, 1), these vectors correspond to the columns of the differential
in Example 7.2.

The previous definition can be generalised to vectors other than those in the
canonical basis. Identify the directions in R

n with the unit vector u ∈ R
n , such that

‖u‖ = 1. If u = ∑
j c je j , then

∑
j c

2
j = 1.

Definition 7.3 (Directional derivative) Let f : E ⊆ R
n → R

m , E open, and x ∈ E .
The directional derivative of the function f along the direction u (‖u‖ = 1) is defined
as

Duf(x) = lim
t→0

f(x + tu) − f(x)
t

.
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Again, the limit in Definition 7.3 is intended component by component, and the
directional derivative is a vector of dimensions m, whose components are the di-
rectional derivatives of the component functions. When the direction u takes the
value of a vector of the canonical basis, the directional derivative reduces to a partial
derivative.

� Example 7.5 (Directional derivatives)Consider the function f in Example 7.2. At
x = (x1, x2),

( f1(x1 + tu1, x1 + tu2) − f1(x1, x2))/t = u1x2 + u2x1 + tu1u2,

( f2(x1 + tu1, x1 + tu2) − f2(x1, x2))/t = u1 + u2.

Thus, we conclude that

Duf(x1, x2) =
(
u1x2 + u2x1
u1 + u2

)

.

When (u1, u2) = (1, 0)we recover the partial derivative ∂1f(x), andwhen (u1, u2) =
(0, 1) the partial derivative ∂2f(x).

If a function is differentiable at a given point in its domain, then the partial deriva-
tives and the directional derivatives at that point exist and are linked by a strong
relationship.

Theorem 7.4 Let f : E ⊆ R
n → R

m and x ∈ E. If f is differentiable in x, then
there are all partial and directional derivatives. If Af (x) is the differential of the
function f in x, then for j = 1, . . . , n,

∂ j f(x) = Af (x) j ,

where Af (x) j is the j th column of the matrix Af (x), and ∀u,

Duf(x) = Af (x)u.

Proof For the definition of partial derivative and differential,

lim
t→0

f(x + te j ) − f(x)
t

= lim
t→0

t Af (x)e j + r(te j )
t

= Af (x)e j .

For the directional derivative, the proof is analogous.

If a vector function f admits partial derivatives, we define its Jacobian matrix in x
as J f (x)i, j = ∂ j fi (x). Theorem 7.4 states that if the function is differentiable in x,
its differential is equal to the Jacobian. If the function f is real-valued, the vector of



164 7 Differential Calculus of Functions of Several Variables

partial derivatives is denoted with ∇ f and is called the gradient of the function,

∇ f (x) =
(

∂ f (x)
∂x1

,
∂ f (x)
∂x2

, . . . ,
∂ f (x)
∂xn

)

.

This can be represented by writing the infinitesimal increment of the function f as
d f = ∂1 f dx1 + . . . + ∂n f dxn . The Jacobian of a function with values in R

m has,
in its rows, the gradient of the component functions. Note that the implication of
Theorem 7.4 cannot be reversed. The existence of the Jacobian or of the gradient of
the function f in x does not, in general, imply that f is differentiable in x.

� Example 7.6 (Non-differentiable function with partial derivatives) Consider the
function f : R

2 → R defined by

f (x1, x1) =
{
0 if (x1, x1) = (0, 0),

x1x2/(x21 + x22 ) otherwise.

Since f is the composition of continuous functions, it is continuous in every point,
apart, possibly, the origin. In polar coordinates, the function reads f (ρ, φ) =
cosφ sin φ. Thus, limρ→0 f (ρ, φ) does not exist and the function is not continu-
ous in (0, 0). A way of realising it is by noticing that f (ρ, φ) takes any value in
[−1/2, 1/2] whatever the value of ρ, however small.

Concerning the partial derivatives, consider a point (x1, x2) �= (0, 0), then

∂ f

∂x1
= x1

x21 + x22
− 2

x21 x2
(x21 + x22 )

2
,

∂ f

∂x2
= x1

x21 + x22
− 2

x1x22
(x21 + x22 )

2
.

At (0, 0),

lim
h→0

f (h, 0) − f (0, 0)

h
= lim

h→0

f (0, h) − f (0, 0)

h
= 0,

so that the partial derivatives of the function exist on the whole R
2, origin included.

Consider the directional derivative at the origin along the direction (u1, u2),

lim
t→0

f (tu1, tu2) − f (0, 0)

t
= lim

t→0

u1u2
t

,

where we have used the fact that u21 + u22 = 1. When u1 and u2 are both different
from zero, this limit does not exist.

In the previous example, we have seen that the existence of partial derivatives at
one point does not imply the continuity of the function in that point and, consequently,
the existence of the differential. However, the function lacked directional derivatives
in almost all directions. As the following example clarifies, the existence of the latter
is not sufficient to guarantee continuity.
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� Example7.7 (Non-differentiable functionwith partial and directional derivatives)
Consider the function f : R

2 → R defined by

f (x, y) =
{
0 if (x1, x2) = (0, 0),

x1x22/(x
2
1 + x42) otherwise.

Being the composition of continuous and differentiable functions, f is continuous
and differentiable at every point apart, possibly, from the origin. Its partial derivatives
in (0, 0) are both zero:

lim
h→0

f (h, 0) − f (0, 0)

h
= lim

h→0

f (0, h) − f (0, 0)

h
= 0.

The derivative at (0, 0) along the direction (u1, u2), with u21 + u22 = 1, can be
computed as

lim
t→0

f (tu1, tu2) − f (0, 0)

t
= lim

t→0

u1u22
u21 + u42t

2
.

If u1 = 0 the limit is 0 while if u1 �= 0 the limit is u22/u1. Thus, partial derivatives
and all directional derivatives of the function exist in (0, 0). Can we conclude that
the function is continuous in (0, 0)? First of all, notice that the function is bounded.
Indeed, in polar coordinates,

f (ρ, φ) = ρ3 cosφ sin2 φ

ρ2 cos2 φ + ρ4 sin4 φ
= ρ

cosφ sin2 φ

cos2 φ + ρ2 sin4 φ

and the denominator is always different from zero. We can use the polar coordinates
to find the image of the function. The function takes value zero for some φ, regardless
of the value of ρ. Put f (ρ, φ) = α �= 0 and solve the equation with ρ as unknown
to obtain

ρ = cosφ ± | cosφ|√1 − 4α2

2α sin2 φ
.

The previous equation admits real solutions only if the argument of the square root
is real. Then we conclude that the image of the function is [−1/2, 1/2]. By direct
substitution of the values of α = ±1/2 in the previous equation, it is immediate
to see that the function reaches its maximum value when ρ sin2 φ = cosφ and its
minimum value when ρ sin2 φ = − cosφ. Recalling that ρ cannot be negative, we
can solve the previous equations in terms of ρ to find for which values of φ the
function reaches its maximum and minimum values. In both cases, only one root of
the second degree polynomial in cosφ is admissible and after little algebra we obtain
that the extremal values ±1/2, for a given ρ, are achieved respectively in

φ±(ρ) = cos−1

(

±
√
1 + 4ρ2 − 1

2ρ

)
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Fig. 7.2 The function f of Example 7.7 as function of φ ∈ [−π, π ] for several values of ρ

and, for symmetry −φ±(ρ). This implies that, on any circle with centre the origin,
whatever small its radius ρ is, the function takes values 1/2 and−1/2. An illustration
of this phenomenon is shown in Fig. 7.2. Obviously, this implies that the function
does not have any limit for (x1, x2) → (0, 0) and, consequently, the function is not
continuous. However, note that limρ→0 f (ρ, φ) = 0 for any φ.

If a function f : E ⊂ R
n → R

m is differentiable in E , we can assign to each point
x ∈ E the differential Af (x) of the function at that point, defining a new function
from E to Mm,n .

Definition 7.4 (Continuously differentiable) The function f : E ⊂ R
n → R

m is
continuously differentiable in the open set E if Af : E ⊂ R

n → Mm,n exists and is
continuous on E . In this case we write f ∈ C1(E).

Examples 7.7 show that the existence of the partial derivatives and all directional
derivatives in a point does not guarantee the continuity of the function in that point
and, consequently, the existence of the differential. However, if we also require the
partial derivatives to be continuous functions in a neighbourhood of the point, then
the existence of a differential at that point is guaranteed.

Theorem 7.5 Let f : E ⊆ R
n → R

m, E open. Then f ∈ C1(E) if and only if all
partial derivatives exist and are continuous ∀x ∈ E.

Proof If the differential Af (x) exists and is continuous then all partial derivatives
exist and are continuous as they are the components of a continuous function from
R
n to Mm,n .
Assume instead that all the partial derivatives ∂ j fi (x) exist and are continuous

∀x ∈ E . We will show that in this case, the Jacobian J f (x)i, j = ∂ j fi (x) is the
differential of f in x. If this is true, then the differential is continuous because it has
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Continuous partial derivatives

Partial and Directional derivatives

DifferentiableContinuously differentiable

Continuous

Fig.7.3 The existence of continuous partial derivatives implies the existence of the differential and
its continuity. In turn the existence of the differential implies continuity and the existence of partial
derivatives. The direction of the arrows in the picture cannot in general be reversed

continuous components. To prove the assertion it is sufficient to prove that ∀i =
1, . . . ,m,

lim
h→0

fi (x + h) − fi (x) − ∑n
j=1 ∂ j fi (x)h j

‖h‖ = 0,

where
∑n

j=1 ∂ j fi (x)h j is the i th component of J f (x)h. Consider the vectors vk =
∑k

j=1 e j h j with k = 1, . . . , n and v0 = 0. The expression above can be written as

n∑

j=1

fi (x + v j ) − fi (x + v j−1) − ∂ j fi (x)h j

‖h‖ .

Since partial derivatives exist, and are continuous, applying Theorem 6.10 in a neigh-
bourhood of x,

fi (x + v j ) − fi (x + v j−1) = fi (x + v j−1 + e j h j ) − fi (x + v j−1) =
∂ j fi (x + v j−1 + η jv j )h j ,

where η j ∈ (0, h j ). Thus, the j th element of the previous sum can be rewritten as

(
∂ j fi (x + v j−1 + η jv j ) − ∂ j fi (x)

)
h j

‖h‖ .

When ‖h‖ → 0, h j/‖h‖ is a bounded quantity. Thus, because of the continuity of
partial derivatives, the previous expression goes to zero. This means that all elements
of the sum go to zero, and the assertion is proved. �

Figure 7.3 graphically illustrates the relationship between continuity, differentia-
bility, and the existence of partial derivatives. The arrows point along the direction
of logical implication. Note that the existence of the differential does not guarantee
that the partial derivatives are continuous.
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Fig. 7.4 The function of Example 7.9. The origin is a critical point but neither a minimum nor a
maximum point

� Example 7.8 (Differentiable functionwith discontinuous partial derivatives)Con-
sider the function f : R

2 → R defined by

f (x1, x2) =
{
0 if (x1, x2) = (0, 0),

(x2 + x22 ) sin
1

x21+x22
otherwise.

The partial derivatives in (0, 0) can be easily computed

∂1 f (0, 0) = lim
h→0

f (h, 0) − f (0, 0)

h
= lim

h→0

h2

h
sin

1

h2
= 0,

∂2 f (0, 0) = lim
h→0

f (0, h) − f (0, 0)

h
= lim

h→0

h2

h
sin

1

h2
= 0.

The function is differentiable in the origin and d f (0, 0) = ∇ f (0, 0) = (0, 0). In
fact, because the sine is bounded above by 1,

lim
(h1,h2)→(0,0)

∣
∣
∣
∣
∣
∣

f (h1, h2)
√
h21 + h22

∣
∣
∣
∣
∣
∣
≤ lim

(h1,h2)→(0,0)

√
h21 + h22 = 0.

On the other hand, the partial derivatives at (x, y) �= (0, 0) read

∂1 f (x1, x2) = 2x1 sin
1

x21 + x22
− 2x1

x21 + x22
cos

1

x21 + x22
,

∂2 f (x1, x2) = 2x2 sin
1

x21 + x22
− 2x2

x21 + x22
cos

1

x21 + x22
.
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Thus, lim(x1,x2)→(0,0) ∂1 f (x1, x2) and lim(x1,x2)→(0,0) ∂2 f (x1, x2) do not exist.

We conclude this section with some considerations about real-valued functions
that are particularly useful in applications. The local increments of a differentiable
scalar function f : R

n → R in x can be expressed as f (x+h) = f (x)+h·∇ f +r(h),
where the term r(h) is negligible when ‖h‖ is sufficiently small. The function f
increases along the direction h if the scalar product h · ∇ f is positive and decreases
along that direction if the scalar product is negative. Because−‖h‖‖∇ f ‖ ≤ h·∇ f ≤
‖h‖‖∇ f ‖, the direction along which the function increases the most, that is, the
direction along which f (x + h) − f (x) is greater while keeping the length of the
increment ‖h‖ fixed, is precisely along the gradient, that is h = c∇ f with c > 0.
The direction of faster decrease is, conversely, opposite to the gradient, that is when
c < 0. Along a direction h orthogonal to the gradient, the function increases less
than linearly. It is useful to introduce the following.

Definition 7.5 (Critical point) Consider a real function f : E ⊆ R
n → R. A point

x ∈ int E is a critical point or stationary point of f if the function is differentiable
in x and ∇ f (x) = 0.

If ∇ f (x) is different from zero, in any neighbourhood of x there are points in which
the value of the function is greater than f (x) and points in which it is smaller.

Corollary 7.2 Consider a real function f : E ⊆ R
n → R, differentiable in x ∈

int E. If the function has a local maximum or a local minimum in x, then x is a
critical point.

However, a critical point is not always a maximum or a minimum.

� Example 7.9 (A non-extremal critical point) Consider the function f : R
2 → R

defined as f (x1, x2) = exp(x21 − x22 ). Notice that ∂1 f (0, 0) = ∂2 f (0, 0) = 0. But
the point (0, 0) is neither a local maximum nor a local minimum of the function. In
fact, while f (0, 0) = 1, f (z, 0) > 1, and f (0, z) < 1 ∀z ∈ R \ {0}, see Fig. 7.4.

To identify themaximum andminimumpoints of a function, it is common practise
to impose the so-called first-order conditions (FOC), that is, look for its critical points
by solving the system of equations∇ f = 0. In general, if nothing is known about the
function, this procedure is not guaranteed to provide the extrema we are looking for.
The derivation of sufficient conditions for the identification of maxima and minima,
when the function admits higher-order derivatives, is based on the extension of the
Taylor approximation introduced in Theorem 6.14 to functions of several variables.
This extension requires a series of results on the local behaviour of functions of
several variables. They are introduced in the next section.
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7.3 MeanValue Theorems

We can use the existence of the differential of the function at a point to build some
bound on the variation of the function in its neighbourhood. This is a generalisation of
Theorem 6.10, although the results are oftenweaker.Wewill see results of increasing
generality. Let us start with the case of a vector function of a single real variable.

Theorem 7.6 (Mean value theorem) Let f : [a, b] → R
m be differentiable in (a, b).

Then ∃x ∈ (a, b) such that

‖f(b) − f(a)‖ ≤ (b − a)‖f ′(x)‖.

Proof Define the real-valued function of one real variable φ(t) = (f(b)−f(a)) ·f(t)
with t ∈ [a, b]. The function φ is differentiable in (a, b) and, by Theorem 6.10,
∃x ∈ [a, b] such that

φ(b) − φ(a) = (b − a)φ′(x) = (b − a)(f(b) − f(a)) · f ′(x).

For the Cauchy–Schwarz inequality,

(f(b) − f(a)) · f ′(x) ≤ ‖(f(b) − f(a)) · f ′(x)‖ ≤ ‖f(b) − f(a)‖‖f ′(x)‖.

The statement is proved by substituting the last inequality in the previous equation
and noticing that by substituting a and b into the initial definition of φ, we have
φ(b) − φ(a) = ‖f(b) − f(a)‖2. �

For real multivariate functions defined over a convex domain (see Definition 1.22),
we have the following.

Theorem 7.7 (Mean value theorem) Consider a map f : E ⊆ R
n → R with E

convex and let f be differentiable in int E. Then, for any pair of points a, b ∈ E,
∃λ ∈ [0, 1] such that

f (b) − f (a) = d f (λb + (1 − λ)a) · (b − a).

Proof Consider the function γ : [0, 1] → R
n , γ (t) = (1 − t)a + tb. Since E is

convex, γ (t) ⊆ E . Then define the functionφ(t) = f (γ (t)),φ(t) : [0, 1] → R. This
function is continuous and differentiable. According to Theorem 6.10, ∃λ ∈ [0, 1]
such that φ(1)−φ(0) = φ′(λ). From chain rule φ′(λ) = d f (λb+(1−λ)a) ·(b−a).
Since φ(1) = f (b) and φ(0) = f (a), the statement is proved. �

The previous Theorem has a straightforward implication.

Corollary 7.3 If ∀x ∈ E, d f (x) = 0, then the function f is constant in E.
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For vector-valued functions of several variables, we can obtain a similar, albeit weak-
er, result for the increment of the norm.

Theorem 7.8 (Mean value theorem) Consider a map f : E ⊆ R
n → R

m with E
convex and let f be differentiable in int E. Assume that there is a real number M
such that ‖Af (x)‖op ≤ M, ∀x ∈ E. Then, for any two points a,b ∈ E,

‖f(a) − f(b)‖ ≤ M‖b − a‖.

Proof Consider the function γ : [0, 1] → R
n , γ (t) = (1 − t)a + tb. Since E is

convex, γ (t) ⊆ E . Then define the vector function φ(t) = f(γ (t)), φ(t) : [0, 1] →
R
m . By Theorem 7.6, ∃t∗ such that ‖φ(1) − φ(0)‖ ≤ |φ′(t∗)|. From chain rule,

φ′(t∗) = Af (γ (t∗))γ ′(t∗) = Af (γ (t∗))(b − a),

and, for the definition of the operator norm,

‖Af (γ (t))(b − a)‖ ≤ ‖Af (γ (t))‖op‖b − a‖ ≤ M‖b − a‖.

The statement follows by noticing that ‖φ(1) − φ(0)‖ = ‖f(a) − f(b)‖. �

If E is compact and f ∈ C1(E), then M can be the maximum of the continuous
function ‖Af‖op in E .

7.4 Higher-Order Derivatives andTaylor Polynomial

If a function f : E ⊆ R
n → R

m has partial derivatives in all the points of an open
set E , then there is the possibility that the partial derivative functions, that is the
functions that assign the value of the partial derivatived of f to each point of E , have
themselves partial derivatives.

� Example 7.10 (Symmetric second-order derivatives)Consider the two-variable d-
ifferentiable function f (x1, x2) = exp(x21 + x22 ). Its partial derivatives are
∂1 f (x1, x2) = 2x1 exp(x21 + x22 ) and ∂2 f (x, y) = 2x2 exp(x21 + x22 ). These are
differentiable functions of their argument and they can be partially derived. In par-
ticular, notice that ∂1∂2 f (x1, x2) = ∂2∂1 f (x1, x2) = 4x1x2 exp(x21 + x22 ).

Analogously to what happens with the derivative of functions of one single vari-
able, the operation of taking the partial derivative can be iterated if the functional
expression allows it. In the previous example, the order in which the derivatives are
taken does not seem to be relevant. However, this is not a universal property, and, in
general, one should keep track of their order.
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Fig.7.5 The function of Example 7.11. The second-order derivatives ∂1∂2 f and ∂2∂1 f exist in the
origin but are not continuous

� Example 7.11 (Asymmetric second-order derivatives) Consider the function f :
R
2 → R defined as

f (x1, x2) =
⎧
⎨

⎩

0 if (x1, x2) = (0, 0),
x1x2(x21−x22 )

x21+x22
otherwise.

The function f and its partial derivatives

∂1 f = y(3x21 − x22 )

x21 + x22
− 2x21 x2(x

2
1 − x22 )

(x21 + x22 )
2

∂2 f = x(x21 − 3x22 )

x21 + x22
− 2x2x22 (x

2
1 − x22 )

(x21 + x22 )
2

are continuous in R
2 with ∂1 f (0, 0) = ∂2 f (0, 0) = 0. Let’s compute the second-

order partial cross-derivatives in the origin. By direct substitution of the previous
expression, it is immediate to see that

∂2∂1 f (0, 0) = lim
h→0

∂1 f (0, h) − ∂1 f (0, 0)

h
= −1

while

∂1∂2 f (0, 0) = lim
h→0

∂2 f (h, 0) − ∂2 f (0, 0)

h
= 1.

In this case, the order in which the derivatives are taken matters (Fig. 7.5).
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In the previous example, the order in which the derivatives are taken matters
because the second-order derivatives are not continuous. In fact, one can prove that
if the second-order partial derivatives exist and are continuous, then the order in
which they are taken is irrelevant. We start by proving this statement for a real
function of two variables.1

Theorem 7.9 (Schwarz)Assume that the function f : E ⊆ R
2 → R admits second-

order partial derivatives in the open set E and they are continuous. Then ∀x =
(x, y) ∈ E, ∂x∂y f (x) = ∂y∂x f (x).

Proof Consider a point (x0, y0) ∈ E and two sufficiently small positive real numbers
h and k. Define

u(y) = f (x0 + h, y) − f (x0, y)

h
.

This function is differentiable in a neighbourhood of y0. According to themean value
theorem, ∃θy ∈ [0, 1] such that

u(y0 + k) − u(y0) = ku′(y0 + θyk),

that is

u(y0 + k) − u(y0)

k
= ∂y f (x0 + h, y0 + θyk) − ∂y f (x0, y0 + θyk)

h
.

Because partial derivatives are differentiable, by the mean value theorem, ∃θx ∈
[0, 1] such that

∂y f (x0 + h, y0 + θyk) = ∂y f (x0, y0 + θyk) + h∂x∂y f (x0 + θxh, y0 + θyk).

Substituting in the previous equation we obtain u(y0 + k) − u(y0) = k∂x∂y f (x0 +
θxh, y0 + θyk). Let us repeat the same procedure for the function

v(x) = f (x, y0 + k) − f (x, y0)

k
.

By themean value theorem ∃θ ′
x ∈ [0, 1] such that v(x0+h)−v(x0) = hv′(x0+θ ′

xh).
For the definition of v and again by the mean value theorem, ∃θ ′

y ∈ [0, 1] such that
v′(x0 + θ ′

xh) = ∂y∂x f (x0 + θ ′
xh, y0 + θ ′

yk). By direct substitution it is easy to see
that

u(y0 + k) − u(y0)

k
= v(x0 + h) − v(x0)

h
.

1 The hypothesis of the following theorem can be relaxed in several respects but this is outside the
scope of the present treatment.
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Thus, we have proved that for sufficiently small values of h and k, there are four
numbers θx , θy, θ

′
x and θ ′

y , in [0, 1], which generally depend on h and k, such that

∂x∂y f (x0 + θxh, y0 + θyk) = ∂y∂x f (x0 + θ ′
xh, y0 + θ ′

yk).

Taking the limit for h, k → 0 and using the continuity of the second-order derivatives
proves the assertion. �

This theorem is named after the German mathematician Hermann Schwarz (1843–
1921). The extension to the general case of functions of more than two variables
is immediate. In fact, one is studying the restriction of the function to the two-
dimensional space spanned by the two variables considered in the cross-derivatives.
For vector-valued functions, the theorem applies component by component. The
same result is obviously also valid for higher-order derivatives.

Definition 7.6 Consider an open domain E ⊆ R
n . We denote by CK (E) the set of

all functions f : E → R that have continuous partial derivatives of order K .

If f ∈ CK (E), the order in which its partial derivatives are taken is irrelevant, at least
until their order does not exceed K . In this case, the partial derivative of order k ≤ K
of the function f can be denoted by ∂

h1
1 . . . ∂

hn
n f where 0 ≤ hi ≤ k and

∑n
i=1 hi = k.

Another common notation is ∂k

∂x
h1
1 ...∂xhnn

. The meaning of these expressions is that

the function has been derived (partially) hi times with respect to the i th variable. If
hi = 0, that is, if the function has not been derived with respect to the i th variable,
the partial derivative symbol ∂x0i or ∂

0
i is generally omitted from the expression. The

derivatives of order k are many. Specifically, their number is equal to the number
of ways in which k elements can be assigned to n groups, that is, the binomial
coefficient. Define the general multinomial coefficient

( k
h1,...,hn

) = k!/ ∏n
i=1 hi !. We

are now ready to introduce the Taylor approximation of multivariate functions.

Theorem 7.10 Consider a function f : E ⊆ R
n → R with E convex and suppose

that f ∈ CK−1(E) and all the partial derivatives of order K exist in int E. Let x ∈ E
and define the polynomial

P f
K−1,x(z) =

K−1∑

k=0

1

k!
∑

∑
hi=k

(
k

h1 . . . hn

)

(z1 − x1)
h1 . . . (zn − xn)

hn∂
h1
1 . . . ∂hnn f (x),

where the inner summation is on all the n-tuples of nonnegative integers (h1, . . . , hn)
such that

∑n
i=1 hi = k. Then ∃λ ∈ [0, 1] such that

f (z) = P f
K−1,x(z) + R f

K ,x (λx + (1 − λ)z) ,
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where

R f
K ,x(x) = 1

K !
∑

∑
hi=K

(
K

h1, . . . , hn

)

(z1 − x1)
h1 . . . (zn − xn)

hn∂
h1
1 . . . ∂hnn f (x).

Proof The proof is based on the Taylor polynomial of a real function defined in
Theorem 6.14. Consider the function γ : [0, 1] → R

n , γ (t) = (1 − t)x + tz. Since
E is convex, γ (t) ⊆ E . Then define the functionφ(t) : [0, 1] → R, φ(t) = f (γ (t)).
This function is continuous and can be derived K times. By the chain rule,

dk

dtk
φ(t) =

∑

∑
hi=k

(
k

h1 . . . hn

)

(z1−x1)
h1 . . . (zn−xn)

hn∂
h1
1 . . . ∂hnn f ((1−t)x+tz).

The polynomial PK−1,x(z) is then just the Taylor polynomial of order K − 1 of the
function φ(t), Pφ

k−1,0(t), as defined in Theorem 6.14, computed in t = 0. For this
theorem, there is a λ ∈ [0, 1] such that

f (z) = φ(1) = Pφ
k−1,0(0) + 1

K !
dK

dt K
φ(λ).

By the chain rule, the last term on the right-hand side is exactly the remainder
R f
K ,x(λx + (1 − λ)z) and the assertion is proved. �

Note that limz→x R
f
K ,x(z)/‖z − x‖K−1 = 0, so that the remainder is, in general, an

infinitesimal of order higher than K − 1.

7.4.1 Local Maxima andMinima

The previous theorem allows for a simple characterisation of the extremal points of
a scalar function. The result is better stated in terms of the next object.

Definition 7.7 (Hessian matrix) Consider a map f : E ⊆ R
n → R with E convex

and f ∈ C2(E). Then the Hessian matrix at x ∈ int E is the n × n symmetric real
matrix Hi, j (x) = ∂i∂ j f (x), i, j = 1, . . . , n.

This matrix takes its name from the German mathematician Otto Hesse (1811–
1874). The hypothesis of continuity of the second partial derivatives is sufficient,
given Theorem 7.9, to guarantee that the matrix H is, in fact, symmetric. Consider
a function f : E ⊆ R

n → R and suppose that f ∈ C2(E) and that it has all third-
order partial derivatives in a neighbourhood of x ∈ E . According to Theorem 7.10,
in that neighbourhood, the function can be approximated by the second-order Taylor
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polynomial,

f (z) = f (x) + ∇ f (x) · (z − x) + (z − x)ᵀH(z − x) + o(‖z − x‖2).

Assume that x ∈ E is a critical point, so that

f (z) = f (x) + (z − x)ᵀH(z − x) + o(‖z − x‖2).

Because the last terms o(‖z − x‖2) can be made as small as desired in a suitable
neighbourhood of x, if x is a local maximum, then ∀v ∈ R

n , vᵀHv ≤ 0. This
condition is equivalent to saying that the Hessian matrix is negative semi-definite.2

If x is a local minimum, then ∀v ∈ R
n , vᵀHv ≥ 0, that is, the Hessian matrix is

positive semi-definite. If for any nonzero vector v ∈ R
n , vᵀHv < 0, then x is a

strict local maximum and the Hessian matrix negative definite. Analogously, if for
any nonzero vector v ∈ R

n , vᵀHv > 0, then x is a strict local minimum, and the
Hessian matrix positive definite. Finally, if there exist vectors v,w ∈ R

n such that
vᵀHv > 0 and wᵀHw < 0, then x cannot be a maximum or a minimum: In this
case, there are directions along which the function increases and directions along
which it decreases, and the point x is a saddle point of the function. An example is
provided in Fig. 7.4.

A common criterion for discovering whether a matrix is positive or negative defi-
nite, known as Sylvester’s criterion, after the Englishmathematician James Sylvester
(1814–1897), is to look at the leading principal minors (the determinants of the top-
left principal submatrices). If they are all positive, the matrix is positive definite. If
their signs oscillate between negative and positive, the matrix is negative definite.

� Example 7.12 (A saddle point) Consider the function of Example 7.9. We have
∂21 f (0, 0) = 2, ∂22 f (0, 0) = −2, and ∂1∂2 f (0, 0) = 0, so that the Hessian matrix is

H =
(
2 0
0 −2

)

.

The principal minors are 2 and −4. Thus, the Hessian matrix is neither positive nor
negative definite. It is immediate to verify that the origin is a saddle point of the
function.

Our findings are summarised in the following.

2 The definition of positive or negative (semi-) definite symmetric matrices (or quadratic forms) is
part of standard courses in linear algebra. As alreadymentioned, this topic is outside the scope of the
present book. For those who already know these things: a symmetric matrix is positive (negative)
definite if all its eigenvalues are positive (negative) and positive (negative) semi-definite if all its
eigenvalues are nonnegative (nonpositive).
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Corollary 7.4 (Second-order conditions) Consider a function f : E ⊆ R
n → R,

f ∈ C2(E). Suppose that x ∈ int E is a critical point and that f has all partial
derivatives of order 3 in a neighbourhood of x. Let H be the Hessian matrix of f in
x. Then

1. if x is a local minimum, then H is positive semi-definite;
2. if x is a local maximum, then H is negative semi-definite;
3. if H is positive definite, then x is a strict local minimum;
4. if H is negative definite, then x is a strict local maximum;
5. if there exist v,w ∈ R

n such that vᵀHv > 0 and wᵀHw < 0, then x cannot be
a maximum or a minimum.

Some comments are required. The first two items represent necessary conditions that
the extremal points must meet. However, they are not sufficient. Conversely, the fol-
lowing two items are sufficient, but not necessary, conditions for the characterisation
of critical points. Indeed, a function can have a maximum at one point without being
partially derivable there (or elsewhere). Note that even if the Hessian matrix exists,
the theorem can be inconclusive. For example, it could be that all elements of H
are zero. In this case, the previous theorem is totally silent on the behaviour of the
function in a neighbourhood of the point. With respect to the sufficient conditions,
the hypotheses of the theorem can be weakened. It is not necessary that the function
has all third-order partial derivatives. In fact, it is enough that the partial derivatives
of order 2 exist and are continuous. The proof of the weaker form of the theorem is
not difficult, but, for space constraints, I prefer to omit it. Finally, for two variable
functions, there is a simple rule: the Hessian matrix is positive (negative) definite
if its determinant is positive and its trace is positive (negative). In the case where
n = 1, we return to the case of a real function of one real variable, and the Hessian
is just the second-order derivative computed at the point (see Corollary 6.4).

In addition to local extremal points, a common problem is finding the extreme
values of a smooth scalar function on a compact subset E , which we know exist
from the Weierstrass extreme value theorem.3 In particular, we did not discuss how
to identify extremal points on the boundary of E . The general analysis is postponed
to Sect. 7.7. If the boundaries of the subset can be translated into simple restrictions
on the values taken by the variables, the analysis is easier.

� Example 7.13 (Global minimum in a simple domain) Find the minimum of the
function f (x, y) = x2 + y2 +3xy in the set E = {(x, y) | |x | ≤ 1, |y| ≤ 1 } ⊂ R

2.
The gradient of the function reads (2x + 3y, 2y + 3x) and the Hessian matrix

H =
(
2 3
3 2

)

.

3 The expression “smooth” stands for “sufficiently differentiable”.Depending on the context, deriva-
tives of a sufficiently high order are assumed to exist and be continuous.
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It is immediate to see that the only critical point is the origin of the axis. The Hessian
matrix there is neither positive nor negative definite: the determinants of the first and
secondprincipalminors are 2 and−5, respectively. Thismeans that (1, 0)ᵀH(1, 0) =
4 > 0 and (1, −1)ᵀH(1, −1) = −5 < 0. Thus the origin is a saddle point and
because the set E is compact (closed and bounded), the minimum of f must be
reached on its boundary.

The boundary of E is made up of four segments of length 2 and we can study the
behaviour of the function on them separately. The function restricted to the segment
x = 1 and y ∈ [−1, 1] reads f (1, y) = y2 + 3y + 1 and is strictly increasing in y.
Thus, the minimum is in (1, −1). Since the function is symmetric with respect to the
bisectors of the first and third quadrants and of the second and fourth quadrants, we
can conclude that the function reaches its minimum at (−1, 1) and (1, −1), where
its value is −1.

7.5 Inverse Function Theorem

In this section, we show that some assumptions about the differential of a function
in a point are enough to guarantee the existence of the inverse of the function at least
in the neighbourhood of that point. The problem of inverting a scalar function of one
real variable has already been addressed. As stated in Theorem 6.7, if the derivative
of the function exists in a point and is different from zero, the function is strictly
monotonic in that point. So, if the derivative is continuous, the monotonic behaviour
is persistent in a neighbourhood of the point, and the inverse of the function exists.
The behaviour of the inverse can be characterised using Corollary 6.2. In the case of
functions of several variables, the solution is not so easy. Indeed, in this case, we lack
the order relation in the domain of the function, which was essential in the definition
of monotonic behaviour. The function can now be increasing along some directions
and decreasing along others.

Instead of immediately presenting the general result, we start by restating the
problem of the existence of the inverse in the case of a scalar function of one real
variable, but avoiding any reliance on the order relation inR and using only concepts
that can be later extended to functions of several variables. This approach has the
advantage of illustrating the general ideas in a framework in which it is easier to
obtain some geometric intuition and draw some pictures (Fig. 7.6).

Consider a differentiable function f : E ⊆ R → R with continuous derivative
and let f ′(x0) �= 0 with x0 ∈ int E . Since the derivative is continuous, we can find
a closed interval U = [x1, x2], with x0 ∈ U , such that ∀x ∈ U , | f ′(x) − f ′(x0)| <

| f ′(x0)|/2. Now consider an element of the image y ∈ V = f (U ). There exists at
least one element xy ∈ U such that f (xy) = y. We can prove that this element is
unique. Define the function φy(x) : U → R as

φy(x) = x + 1

f ′(x0)
(y − f (x)).
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Fig. 7.6 Left panel: the function f (x) and the point x0 with f ′(x0) > 0. In the interval U =
[x1, x2], | f ′(x) − f ′(x0)| < f ′(x0)/2 so that ∀y ∈ f (U ) the map φy can be used to find the
unique inverse. Notice that inU the function f is monotonic and continuous and takes all the values
between f (x1) and f (x2). Right panel: the function φy . Notice that it has an unique intersection
with the curve y(x) = x . This intersection is the preimage of y

Any preimage xy of y is a fixed point of φy , φy(xy) = xy . Given any interval
[a, b] ⊆ U , for the mean value theorem (see Theorem 6.10) there exists a x ∈ [a, b]
such that φy(a) − φy(b) = φ′

y(x)(a − b). Notice that

φ′
y(x) = 1 − f ′(x)

f ′(x0)
= f ′(x0) − f ′(x)

f ′(x0)
,

which means, by construction, that ∀x ∈ U , |φ′
y(x)| < 1/2. This, in turn, implies

that |φy(a) − φy(b)| = |φ′
y(x)‖a − b| < |a − b|/2, so φy is a contraction in U and,

according to Theorem 5.9, it has a unique fixed point. Thus, we have proved that
for any element of the image y ∈ V , there exists one and only one element xy ∈ U
such that f (xy) = y. The local restriction of the function f : U → V is one-to-
one and the inverse f −1 : V → U is defined. According to Theorem 2.27, f −1 is
continuous. Next, we want to prove that the inverse function f −1 can be derived and
that its derivative in y ∈ V 0 is precisely 1/ f ′(xy), the inverse of the derivative of
the original function computed in the preimage of y. Take k small enough so that
y + k ∈ V . Let x and x + h in U be such that y = f (x) and y + k = f (x + h).
Due to the fact that f and f −1 are continuous, when h → 0, k → 0, and vice versa.
Thus

lim
k→0

f −1(y + k) − f −1(y)

k
= lim

h→0

x + h − x

f (x + h) − f (x)
= 1

f ′(x)
.

The next theorem repeats the same construction in the case of a vector function of
many variables.
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Theorem 7.11 (Inverse function) Let f : E ⊆ R
n → R

n, E open, and assume
f ∈ C1(E). If the differential Af (x0) is invertible for x0 ∈ E, then:

• there exists a closed ball U of centre x0 such that the function f is invertible in U
and the inverse g : V = f(U ) → U is continuous;

• g ∈ C1(V ) and Ag(y) = Af (g(y))−1, ∀y ∈ V .

Proof Let x0 ∈ E and det Af (x0) �= 0, so that Af (x0) is invertible. Since Af is
continuous, there exists a closed ball U centred on x0 such that ∀x ∈ U , ‖Af (x) −
Af (x0)‖op < 1/(2‖Af (x0)−1‖op). Let V = f (U ), take y ∈ V and consider the map
φy(x) = x + Af (x0)−1(y − f(x)). Indicating with I the identity matrix and using
the chain rule to obtain the differential of φy ,

‖Aφy (x)‖op = ‖I − Af (x0)−1Af (x)‖op =
‖Af (x0)−1(Af (x0) − Af (x))‖op ≤ ‖Af (x0)−1‖op‖Af (x0) − Af (x)‖op < 1/2.

Thus, given two points x1 and x2 in the convex set U , by Theorem 7.8, ‖φy(x1) −
φy(x2)‖ < ‖x1−x2‖/2, so that φy is a contraction inU . Since the fixed points of φy

are the preimage of y, we can conclude that ∃!xy such that f(xy) = y and the inverse
function g remains defined. According to Theorem 2.27, g is continuous. The first
part of the statement is proved.

For the second part, assume that x and x + h are both in U . Denote y = f(x) and
y + k = f(x + h). The vector k is a function of the vector h, but to simplify the
notation I drop the explicit dependence. Since f and g are continuous and bijective,
when ‖h‖ → 0, ‖k‖ → 0 and vice versa. Note that

g(y + k) − g(y) − Af (x)−1k = h − Af (x)−1k =
Af (x)−1(Af (x)h − k) =Af (x)−1 (Af (x)h + f(x) − f(x + h))

so that, by the Cauchy–Schwarz inequality,

‖g(y + k) − g(y) − Af (x)−1k‖/‖k‖ ≤
‖Af (x)−1‖op‖Af (x)h + f(x) − f(x + h)‖/‖k‖.

If we prove that the right-hand side converges to zero when ‖k‖ → 0, then the left-
hand side converges to zero and the function is differentiable. Since the differential is
A−1

f (x), its components are continuous so that the second part of the statement is also
proved. Multiplying and dividing by ‖h‖ and rearranging the terms, the right-hand
side becomes

‖Af (x)−1‖op ‖h‖
‖f(x) − f(x + h)‖

‖Af (x)h + f(x) − f(x + h)‖
‖h‖ .
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The denominator of the second factor can be rewritten ‖Af (x)h+r(h)‖. Since Af (x)
is invertible, ∃α > 0 so that if ‖h‖ is sufficiently small, ‖Af (x)‖ > α‖h‖ (any α

lower than the absolute value of all eigenvalues of A would work). Thus, if ‖h‖ is
sufficiently small, the second factor is lower than 1/α. In summary, when ‖h‖ → 0,
the first term is constant, the second term is bounded, and the last term converges to
zero because Af (x) is the differential of f in x. �

� Example 7.14 (Inverse of vector functions) Consider the function y : R
2 → R

2

defined as {
y1(x1, x2) = x1x2,

y2(x1, x2) = x1 + x2.

Clearly, it is y ∈ C∞(R2). The differential reads

Ay(x1, x2) =
(
x2 x1
1 1

)

and the function is invertible in a neighbourhood of x if det Ay(x) �= 0, that is, if
x1 �= x2. The line x1 = x2 is sent by the function y to the curve y22/4 = y1 and the
image y(R2) is made by all points such that y22/4 ≥ y1. To obtain the expression of
the inverse, substitute the first equation in the second, to get y2 = x1 + y1/x1 which
solving for x1 gives

x±
1 (y1, y2) =

y2 ±
√
y22 − 4y1

2

and, respectively,

x∓
2 (y1, y2) = y2 − x±

1 (y1, y2) =
y2 ∓

√
y22 − 4y1

2
.

The solutions (x+
1 , x−

2 ) represent preimages such that x2 < x1 while (x−
1 , x+

2 ) rep-
resent preimages such that x2 > x1.

7.6 Implicit Function Theorem

Sometimes, the relationship between variables can be defined by the fulfilment of
some condition.A typical case is the couples of values (x, y) that satisfy the condition
f (x, y) = 0 for some function f . These couples define a set in R

2 and the question
is whether we can say something about the shape of this set given the properties
of f . For example, x + y = 0 identifies the bisector of the second and fourth
quadrants, y = −x . In general, if f is smooth enough, then the set is a differentiable
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curve described by a functional relation y = g(x). Before providing a general high-
dimensional result, we will study a few low-dimensional cases.

7.6.1 Real Functions of TwoVariables

Consider a real function of two real variables f . We want to characterise the points
(x, y) for which f (x, y) = z0. For this purpose, we can take advantage of the results
of the previous section. Take a point x0 = (x0, y0) such that f (x0) = z0 and assume
that f is continuously differentiable in x0 with ∂y f (x0) �= 0. Then consider the
function F : E ⊆ R

2 → R
2 defined by

F(x, y) =
(

x
f (x, y)

)

,

such thatF(x0, y0) = (x0, z0). This function is clearly continuous and differentiable,
and its differential in x reads

AF(x) =
(

1 0
∂x f ∂y f

)

.

Because det AF(x0) = ∂y f (x0) �= 0, the differential is invertible in x0. Therefore,
according to Theorem 7.11, there exists a closed ball B centred on x0 where the
inverse function F−1 : B ′ → B with B ′ = F(B) is defined, continuous and differ-
entiable. In other words, for any ordered pair (x, z) ∈ B ′ there exists a value of y
such that F(x, y) = (x, z). Let � be the function that associates to any ordered pair
(x, z) the respective y,

F−1(x, z) =
(

x
�(x, z)

)

.

The function � is continuous and differentiable because it is a component of a
continuous and differentiable vector function. The differential ofF−1 can be obtained
as

AF−1 =
(

1 0
∂x� ∂z�

)

.

According to Theorem 7.11, it should be equal to the inverse of AF,

A−1
F =

(
1 0

−∂x f/∂y f 1/∂y f

)

.

Equating the previous matrices, we find ∂x� = −∂x f/∂y f and ∂z� = 1/∂y f . Keep-
ing the value of z0 fixed, the first relation can be used to characterise the derivative of
the so-called implicit function g(x) = �(x, z0) which describes the locus of points
that satisfy the relation f (x, y) = z0 in a neighbourhood of (x0, y0). Our findings
are summarised below.
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Theorem 7.12 Let f : E ⊆ R
2 → R and f ∈ C1(E). Assume a point x0 =

(x0, y0) ∈ int E exists such that f (x0) = z0 and ∂y f (x0) is different from zero.
Then, there exists a neighbourhood V of x0 and a neighbourhood U of y0 such that
∀x ∈ V , there exists a unique y ∈ U for which f (x, y) = z0. Let g : V → U,
y = g(x) be the function that maps x to the corresponding y. The function g is
continuously differentiable in U and its differential satisfies the relation

dg(x)

dx
= −∂x f

∂y f
.

Proof The neighbourhood U and V are just the projection of the closed ball B
identified above on the x-axis and y-axis respectively. The function g is just the
restriction of the function � defined above in the set z = z0. �

In the case in which ∂y f (x0) = 0 but ∂x f (x0) �= 0 one can derive the implicit
function of x as a function of y, dx(y)/dy = −∂y f/∂x f . The only case in which the
previous analysis cannot provide a differential description of the local set of points
for which f (x, y) = z0 is when ∇ f (x0) = 0, that is, when x0 is a critical point of
the function.

� Example 7.15 (Failure of the implicit function theorem) If the point x0 is a critical
point of the function f , Theorem7.12 cannot be applied. The reasons can bemultiple.
For example, consider the function f (x, y) = x2+y2. In this case, the locus of points
(x, y) that satisfy f (x, y) = 0 ismade up of a single point. This is not a differentiable
curve. Consider instead the function f (x, y) = x2 − y2. In this case, the points that
satisfy f (x, y) = 0 are the lines y = ±x . They intersect at the origin. There,
the multiplicity of curves in a neighbourhood voids the theorem. Lastly, consider
f (x, y) = y3 − x2. In this case, the locus of points that satisfy f (x, y) = 0 is the
curve y = |x |2/3. However, this is not differentiable at the origin.

It is useful to derive the previous result using a heuristic argument. If for any small
h it is f (x + h, g(x + h)) = f (x, g(x)), then d/dx f (x, g(x)) = 0. Using the chain
rule,

d

dx
f (x, g(x)) = ∂

∂x
f (x, g(x)) + ∂

∂y
f (x, g(x))g′(x) = 0

which is precisely the equation derived above.

� Example 7.16 (Local approximation of the implicit function) We use Theo-
rem 7.12 to derive a local approximation of the implicit function. Consider the
function f (x, y) = ex − ey + xy. Note that f (0, 0) = 0. The partial derivative of
the function reads ∂x f = ex + y and ∂y f = −ey + x , so∇ f (0, 0) = (1, −1)). Thus
we know that there exists a differentiable function y = g(x), defined in a neigh-
bourhood of x = 0, that solves f (x, g(x)) = 0 with g(0) = 0. From Theorem 7.12,
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g′(x) = (ex + y)/(ey − x), whence g′(0) = 1. The derivative of g′(x) reads

g′′(x) = ex + g′(x)
ey − x

− (ex + y)(eyg′(x) − 1)

(ey − x)2
.

Substituting x = y = 0 and g′(0) = 1weget g′′(0) = 2.Thus g(x) = x+x2+o(x2).
Figure 7.7 reports the function g(x) and its approximation in [−1, 1].

7.6.2 Real Functions of Several Variables

Consider the function f : E ⊆ R
n+1 → R, and assume that f ∈ C1(E), i.e. all

first-order partial derivatives exist and are continuous. In this section, it is convenient
to denote a point of E with (x, y), where x ∈ R

n , to explicitly identify the (n + 1)th

component.
Let (x0, y0)be such that f (x0, y0)=z0 and assume ∂y f (x0, y0)=∂n+1 f (x0, y0) �=

0. Consider the function F : E ⊆ R
n+1 → R

n+1, F(x, y) = (x, f (x, y)). Its
differential reads

AF =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 ... 0 0
0 1 ... 0 0
... ... ... ... ...

0 0 ... 1 0
∂1 f ∂2 f ... ∂n f ∂y f

⎞

⎟
⎟
⎟
⎟
⎠

.

Note that det AF = ∂y f �= 0, so that the differential of F is invertible in (x0, y0).
Then, according to Theorem 7.11, there is a closed ball B centred in (x0, y0) where
the function F is invertible and the inverse is continuous and differentiable. That is,
∀(x, z) ∈ B ′ = f (B), ∃(x, y) such that F(x, y) = (x, z). Let � : B ′ → R be the

Fig. 7.7 The function y = f (x) implicitly defined in Example 7.16 and its second-order Taylor
approximation in a neighbourhood of x = 0
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function that associate the y to the vector (x, z), that is F−1(x, z) = (x, �(x, z)).
The differential of F−1 then reads

AF−1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 ... 0 0
0 1 ... 0 0
... ... ... ... ...

0 0 ... 1 0
∂1� ∂2� ... ∂n� ∂z�

⎞

⎟
⎟
⎟
⎟
⎠

.

At the same time, Theorem 7.11 states that the differential of F−1 should be equal
to the inverse of AF,

A−1
F =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 ... 0 0
0 1 ... 0 0
... ... ... ... ...

0 0 ... 1 0
−∂1 f/∂y f −∂2 f/∂y f ... −∂n f/∂y f 1/∂y f

⎞

⎟
⎟
⎟
⎟
⎠

.

Equating term by term the previous two expressions, one gets ∂ j� = −∂ j f/∂y f ,
with j = 1, . . . , n, and ∂z� = 1/∂y f . All these results can be summarised as
follows.

Theorem 7.13 Let f : E ⊆ R
n+1 → R and f ∈ C1(E). Assume a point (x0, y0) ∈

int E exists such that f (x0, y0) = z0 and ∂y f (x0, y0) are different from zero. Then
there exists a neighbourhood V of x0 and a neighbourhoodU of y0 such that ∀x ∈ V ,
∃!y ∈ U for which f (x, y) = z0. Let g : V → U, y = g(x) the function that maps
x to the corresponding y. The function g is continuously differentiable in U and its
differential satisfies the relation

∂ j g(x) = −∂x j f

∂y f
with j = 1, . . . , n.

Proof The neighbourhood U and V are just the projection of the closed ball B
identified above in the n-dimensional plane containing x and y-axis, respectively.
The function g is just the restriction of the function �(x, x) the set z = z0 defined
above. �

Again, the relation of the differential of gwith the differential of f can be obtained
using a heuristic argument. If for small h ∈ R

n , f (x + h, g(x + h)) = f (x, g(x)),
then ∂ j f (x, g(x)) = 0, ∀ j = 1, . . . , n. Using the chain rule, ∂ j f (x, g(x)) =
∂ j f (x, g(x)) + ∂y f (x, g(x))∂ j g(x) = 0, which is the expression above.

� Example 7.17 (Local approximation of the implicit function) Consider the func-
tion f (x, y, z) = xz+ y+ z3. Note that f (1, 0, 0) = 0. The partial derivatives of the
function read ∂x f = z, ∂y f = 1, and ∂z f = 2z2+x , so that∇ f (1, 0, 0) = (0, 1, 1).
Thus, we know that there exists a differentiable function z = g(x, y), defined
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Fig.7.8 Difference of the function z = g(x, y) implicitly defined in Example 7.17 and its second-
order Taylor approximation in a neighbourhood of (x, y) = (1, 0)

in a neighbourhood of (x, y) = (1, 0), that solves f (x, , y, g(x, y)) = 0, with
g(1, 0) = 0. From Theorem 7.13,

∂x g(x, y) = − z

3z2 + x
and ∂yg(x, y) = − 1

3z2 + x
,

whence ∇g(1, 0) = (0, 1). Using the chain rule, the second-order partial derivative
can be easily computed,

∂2xx g(x, y) = − ∂x g

3z2 + x
+ z

(3z2 + x)2
(6z∂x g + 1) ,

∂2yyg(x, y) = 6z∂yg

(3z2 + x)2
, and ∂2xyg(x, y) = 6z∂yg + 1

(3z2 + x)2
.

Using the coordinates of the point and the value of the partial derivatives at that
point, ∂2xx g(1, 0) = ∂2yyg(1, 0) = 0 and ∂2xyg(1, 0) = 1. The second-order Taylor
approximation of the function around (1, 0) is then g(x, y) = xy − 2y + o(y2 +
(x − 1)2). Figure 7.8 reports the difference of the numerically computed function
g(x, y) and its approximation in a neighbourhood of (1, 0).

7.6.3 Vector Functions of Several Variables

The general statement pertains to the generic function f : E ⊆ R
n+k → R

k . A point
in E will be denoted by (x, y), with x ∈ R

n and y ∈ R
k . Given a fixed z0 ∈ f(E),

the problem is to characterise the locus of points (x, y) such that f (x, y) = z0. Note
that if it exists, the differential of f , Af , is a (n + k) × k matrix. In what follows,
we shall make use separately of its leftmost n × k part and its rightmost k × k part,
respectively, denoted by Af,x and Af,y , so that Af = (

Af,x Af,y
)
, with
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Af,x (x0, y0) =
⎛

⎝
∂x1 f1(x0, y0) . . . ∂xn f1(x0, y0)

. . . . . . . . .

∂x1 fk(x0, y0) . . . ∂xn fk(x0, y0)

⎞

⎠ ,

and

Af,y(x0, y0) =
⎛

⎝
∂y1 f1(x0, y0) . . . ∂yk f1(x0, y0)

. . . . . . . . .

∂y1 fk(x0, y0) . . . ∂yk fk(x0, y0)

⎞

⎠ .

Theorem 7.14 (Implicit function) Let f : E ⊆ R
n+k → R

k and f ∈ C1(E).
Consider a z0 ∈ int f(E) and a point (x0, y0) ∈ E such that f(x0, y0) = z0.
Assume that the k × k bottom-right square submatrix of the differential Af,y(x0, y0)
is invertible. Then there exist neighbourhoods V ⊆ R

n of x0 and U ⊆ R
k of y0 such

that ∀x ∈ V , ∃!y ∈ U for which f(x, y) = z0. Let g : V → U be the function that
maps x to the corresponding y. The function g is continuously differentiable in U
and its differential reads Ag = (

Af,y(x, g(x))
)−1

Af,x (x, g(x)).

Proof The proof develops along the lines of the proofs of the previous sections. Con-
sider the function F : E ⊆ R

n+k → R
n+k , f (x, y) = (x, f(x, y)). The differential

of F reads

AF(x0, y0) =
(

In×n 0n×k

Af,x (x0, y0) Af,y(x0, y0)

)

,

where In×n and 0n×k denote the identity and zero matrix, respectively. Since
det AAF = det Af,y , the differential of F is invertible. Then, according to Theo-
rem 7.11, there is a closed ball B centred on (x0, y0) where the function F is invert-
ible and the inverse is continuous and differentiable. That is, ∀(x, z) ∈ B ′ = F(B),
∃(x, y) such that F(x, y) = (x, z). The neighbourhoods U and V are the projection
of the ball B on the space of x and y, respectively. This proves the first part of the
statement. Next, let � : B ′ → R

k be the function that associates the y to the vector
(x, z) such that F−1(x, z) = (x, �(x, z)). The differential of F−1 can be written as

AF−1 =
(
In×n 0n×k

A�,x A�,z

)

.

According to Theorem 7.11 it must be equal to the inverse of the differential of AF,
which can be easily derived to be

A−1
F (x0, y0) =

(
In×n 0n×k

−A−1
f,y A f,x A−1

f,y

)

.

Equating the last two expressions term by term, we obtain A�,x = −A−1
f,y Af,x and

A�,z = A−1
f,y . Let g be the restriction of the function � to the set z = z0, that is
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g(x) = �(x, z0). The function g is continuous and differentiable, and Ag = A�,x .
By substituting in the previous equations, the statement is proved. �

The assumption that the bottom-right square submatrix of the differential Af is in-
vertible implies that the gradient of the components of f are, in the neighbourhood in
which the implicit function is considered, linearly independent vectors. This assump-
tion has a fundamental interpretation, which will be discussed in the next section.

7.6.4 Dependent and Independent Functions

If a set is composed of points that fulfil certain functional relations, it is important to
understand if the requirement of fulfilling a further relation reduces the set. In fact, if
the new relation is just some combination of the previous relations, that is, it depends
on them, its fulfilment does not change the original set of points. For example, the set
of points x ∈ R

n that satisfy the equations f1(x) = 0 and f2(x) = 0 is not modified
if we also require f1(x) + f2(x) = 0. This consideration leads to the problem of
finding an appropriate way to describe the dependence among functions.

Definition 7.8 (Dependent functions) Consider a function f : E ⊆ R
n → R

k , E
open, with k ≤ n and f ∈ C1(E). The components of f are said to be dependent on
E if there exists a function φ : f(E) ⊆ R

k → R, with φ ∈ C1(f(E)) and ∇φ �= 0,
such that φ(f(x)) = 0 for each x ∈ E .

If the components of f are not dependent, they are said to be independent. The
previous definition might seem a bit cryptic. Its meaning is clarified in the following
result.

Theorem 7.15 If the components of the function f : E ⊆ R
n → R

k are de-
pendent in E, then for any x ∈ E there exists a neighbourhood N (x), an in-
dex j ≤ k and a continuously differentiable function g : R

k−1 → R such that
f j (z) = g( f1(z), . . . , f j−1(z), f j+1(z), . . . , fk(z)), ∀z ∈ N (x).

Proof Fix x ∈ E and consider y = f(x). Without loss of generality, assume that the
functionφ in Definition 7.8 is such that ∂1φ(y) �= 0 and for continuity this is true also
in a neighbourhood N (y) of y. Then, for Theorem 7.13, there exists a continuously
differentiable function g such that the set of points t ∈ N (y) that satisfy φ(t) = 0
can be defined as t1 = g(t2, . . . , tk). Substituting the definition of t proves the
assertion. �

In other words, if the components of the function f are dependent, then in the neigh-
bourhood of each point, there exists at least one component that can be written as a
function φ of the others. If the function φ is linear, the components of f are said to
be linearly dependent. The interesting result is that the seemingly difficult task of
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proving the dependence (or independence) of functions can be reduced to calculating
the rank of a matrix.

Theorem 7.16 If the rank of the differential Af (x) of the function f : E ⊆ R
n → R

k

is equal to k, ∀x ∈ E, then its components are independent.

Proof We prove the opposite. Assume that the components of f are dependent such
that ∃φ, ∇φ �= 0, φ(f(x)) = 0, ∀x ∈ E . As the differential of a constant function
is zero, Af (x)∇φ(f(x)) = 0 identically in E . The nonzero vector ∇φ belongs to the
kernel of Af (x), so its rank must be lower than k. �

� Example 7.18 (Dependent functions) Consider the functions u = x + y + 2z,
v = x − y + 2z and w = x2 + 4z2 + 4xz + y2 from R

3 to R
3. The Jacobian matrix

with their gradients in the rows reads

J =
⎛

⎝
1 1 2
1 −1 2

2x + 4z 2y 4x + 8z

⎞

⎠ .

It is immediate to see that det J = 0 for any point (x, y, z), since the first column
is half the third column. Thus, we can conclude that the functions u, v, and w are
dependent. To find the dependence, note that the upper left 2 × 2 minor is different
from zero, so u and v are independent. Solving

{
u = x + y + 2z,

v = x − y + 2z,

for x and y one gets x = (u + v)/2 − 2z and y = (u − v)/2. Substituting these
equations into the functional expression of w and simplifying, we finally obtain
w = u2/2 + v2/2.

7.7 Constrained Optimisation

In this section, we discuss the problem of finding the maximum (or minimum) value
of a function f : R

n → R, called objective function, in a set E and identifying
the points in the set where these values are reached, the maximum and minimum
points, according to Definition 1.11. This is an example of an optimisation problem.
Since the function we consider is not limited to be linear and the set E can have any
shape, this problem is often referred to as nonlinear programming. The problem of
finding the maximum of f (x) is equivalent to the problem of finding the minimum
of − f (x). Therefore, the general treatment of the two problems is substantially the



190 7 Differential Calculus of Functions of Several Variables

same. We will return to this point in Sect. 7.7.7. However, for definiteness, in the
general exposition we will consider the former.

We assume that the objective function is smooth and, in any case, that f ∈ C1(E).
We also assume that the set E is defined through the fulfilment of certain requirements
or constraints expressed as non-strict inequalities of type g(x) ≤ 0 or equality of
type h(x) = 0, for a suitable set of functions g and h, where g, h : R

n → R and
g, h ∈ C1. The set E is the feasible region or feasible set. If E = ∅, the problem
is said to be unfeasible and has no solution. The problem also lacks a solution if
the function f is unbounded above in E . When they exist, the identification of the
extremal points of the objective function is generally accomplished in two steps. First,
all local extremal points are found according to Definition 2.3. Then, one compares
the value of the function at these points to find the global maximum. In what follows,
the name candidate solutions will be adopted for local extremal points. Candidate
solutions can be further distinguished into boundary candidate solutions, if some of
the non-strict constraint inequalities are satisfiedwith equality and internal candidate
solutions, if all the non-strict constraint inequalities are satisfied as strict inequalities.
Constraint inequalities that are satisfied with equality in a candidate solution are said
to be binding or active.

In analogy to the discussion in Sect. 7.2, the identification of candidate solution-
s proceeds in two steps. Firstly, we exploit a set of necessary conditions that are
essentially the equivalent of Corollary 7.2, modified when constraints have to be
taken into account. These conditions are still called first-order conditions because
of their similarity to the unconstrained problem and because they involve first-order
derivatives. Secondly, we further screen these points to include only the actual in-
teresting points, local maxima, or local minima, depending on the problem. In this
step, we essentially follow considerations similar to those reported in Corollary 7.4.
The following discussion will mainly emphasise the first step, presenting necessary
(and, in general, not sufficient) conditions that candidate solutions must satisfy. This
is the step that is often the most important and complicated. Even if the identification
of extremal points is addressed here more generally than in the previous chapters,
all the results we have derived so far apply. Thus, if E is compact, we know that
a solution, possibly not unique, must exist. In this case, we expect to find at least
one candidate solution. Moreover, if we further assume that the objective function is
strictly concave, then we expect only one candidate solution associated to the maxi-
mum of the function. Before presenting the general results, it is useful to introduce
the basic tools by analysing simpler cases.

7.7.1 One Dimensional Problems

Consider the function f : [a, b] ⊆ R → R with f ∈ C1([a, b]). We want to solve
the following problem:

max
x∈[a,b] f (x). (7.1)
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Fig.7.9 The point x = 0.5 and x = 1.5 are critical points. The first is a candidate solution while the
second corresponds to a minimum. The point x = 2 is also a candidate solution because f ′(2) > 0

That is, we want to find the maximum value of the function f in the interval [a, b].
Refer to Fig. 7.9 for an example. The internal candidate solutions are the local max-
imum point x that belongs to the open interval (a, b). In these points, Corollary 7.2
dictates that f ′(x) = 0. The points x = a and x = b are possible boundary candidate
solutions. These two points are somehow special. In fact, x = a is a local maximum
if there exists a (sufficiently small) h > 0 such that the function does not increase
in the interval [a, a + h]. Analogously, x = b is a local maximum, if there exists
a (sufficiently small) h > 0 such that the function does not decrease in the interval
[b−h, b]. Since f ∈ C1, the two requirements translate, respectively, into f ′(a) ≤ 0
and f ′(b) ≥ 0. Thus, we have the following.

Lemma 7.1 If the point x solves the problem (7.1) then

• either it is an internal solution x ∈ (a, b), in which case f ′(x) = 0;
• or it is a boundary solution x = a, b, in which case f ′(a) ≤ 0 or f ′(b) ≥ 0,
respectively.

The reader must be aware that, in general, simply checking the conditions above is
by no means sufficient for the identification of candidate solutions. As in the case
of unconstrained maximisation, sufficient conditions can be obtained in some cases
by looking at second-order derivatives. We will return to this problem in Sect. 7.7.5.
In this case, checking second-order derivatives might not be necessary for boundary
solutions x = a, b. If the derivative satisfies the strict inequality, then the boundary
point already qualifies as a candidate solution.
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� Example 7.19 (One-dimensional parametric problem) We are interested in the
maximum of the function f (x) = x3 + cx in [−1, 1] as a function of c. The internal
solutions must satisfy the equation f ′(x) = 3x2 + c = 0. This equation has two
solutions at the points x∗± = ±√|c|/3. Note that x∗± ∈ [−1, 1] only if c ∈ [−3, 0].
In these critical points, the value of the function is f (x∗±) = ∓2(|c|/3)3/2 so that we
have only to keep the point x∗−.

Next, consider the boundary point x = 1. It is a local maximum when f ′(1) =
3+ c > 0, that is, if c > −3. The value of the function at this point is f (1) = 1+ c.
Instead, the boundary point x = −1 is a local maximum when f ′(1) = 3 + c < 0,
that is, c < −3. The value of the function at this point is f (−1) = −1 − c.

In conclusion, for c < −3 there is only one candidate solution: the maximum of
the function is reached at x = −1 and is equal to −1− c. For c > 0 there is only one
candidate solution: the maximum of the function is reached in x = 1 and is equal to
1 + c. For c ∈ [−3, 0] there are two candidate solutions: x = x∗− and x = 1. The
maximum of the function is then max{2(|c|/3)3/2, 1 + c}.

An alternative way to identify the points x that satisfy the necessary conditions of
(7.1) is to think of them as part of the solutions (x, λ1, λ2) of the following system
of equations and inequalities:

⎧
⎪⎨

⎪⎩

f ′(x) + λ1 − λ2 = 0,

(x − a)λ1 = 0, a − x ≤ 0, λ1 ≥ 0,

(b − x)λ2 = 0, x − b ≤ 0, λ2 ≥ 0.

(7.2)

To see it, note that there are three possible types of solution. The first type is when
λ1 = λ2 = 0, so that a − x ≤ 0, x − b ≤ 0 and f ′(x) = 0. This corresponds
to a critical point that is internal or at the boundary and that satisfies the necessary
conditions in Lemma 7.1. The second type is when λ1 = 0 and λ2 > 0, implying
x = b and f ′(b) = λ2 > 0. This is a possible boundary solution. Analogously,
if λ2 = 0 and λ1 > 0, then x = a and f ′(a) = −λ1 < 0, which is the other
possible boundary solution. The conditions in the last two rows of the system are
usually called slackness conditions. The reason is that one of the factors on the left-
hand side of the equation can be “slack”, i.e. not equal to zero, but their product
must always be zero. The auxiliary parameters λ1 and λ2 introduced in (7.2) are
the Lagrangian multipliers. The next proposition introduces a more compact, and
commonly adopted, notation for the first-order necessary conditions.

Lemma 7.2 Given the problem in (7.1) consider the Lagrangian function or La-
grangian, for short, L(x, λ1, λ2) = f (x) − λ1(a − x) − λ2(x − b). Then the system
(7.2) can be equivalently expressed as

{
∂x L = 0,

λi∂λi L = 0, λi ≥ 0, ∂λi L ≥ 0, i = 1, 2.
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It would be wrong to think of the system above as the first-order conditions of the
unconstrained maximisation of the Lagrangian function. The Lagrangian function is
clearly unbounded above. Rather, the conditions on λi are the necessary conditions
for a local minimum constrained by the requirement that λi ≥ 0: either λi = 0 and
∂L/∂λi ≥ 0 or λi > 0 and ∂L/∂λi = 0. In this sense, the solutions of the system in
Lemma 7.2 can be thought of as saddle points.

� Example 7.20 (Saddle point interpretation) Consider the Lagrangian in Lem-
ma 7.2 and define the function p(x) = minλ1,λ2≥0 L . If x > b or x < a,
then L is unbounded from below, p(x) = −∞. If instead x ∈ [0, 1], then
p(x) = f (x). Thus, the original maximisation problem maxx∈[a,b] f (x) can be
restated as maxx∈R p(x) = maxx∈Rminλ1,λ2≥0 L .

In many applications, the Lagrangian function and the multipliers’ values are
given a specific meaning, so that the saddle point analogy might become useful.

7.7.2 Two Dimensional Problems

Consider two functions f, g : R
2 → R, and the problem:

max
x∈E f (x), E = {

x = (x1, x2) ∈ R
2 | g(x) ≤ 0

}
. (7.3)

Both f and g are assumed to be continuously differentiable. The boundary of the
region E is defined by those points (x1, x2) for which g(x1, x2) = 0. Assume that if
g(x) = 0, then ‖∇g(x)‖ > 0, that is, the partial derivatives of g cannot both vanish
on the boundary of E . Without loss of generality, we can then assume ∂2g �= 0 so
that, according to Theorem 7.13, the boundary of the region can be locally described
by a continuously differentiable function x2 = h(x1) with h′(x1) = −∂1g/∂2g.
The tangent to the function h in x1, that is, the tangent of the curve g(x1, x2) = 0
in (x1, h(x1)), is along the direction of the vector (1, −∂1g/∂2g). Therefore, the
direction orthogonal to the surface is along the vector ∇g = (∂1g, ∂2g). See the
example in Fig. 7.10. This is a consequence of the fact that the gradient is the
direction of the steepest increase of the function, that is, the direction along which
the directional derivative is maximal (see Sect. 7.2). Since we consider the domain
defined by g(x) ≤ 0, the gradient on the boundary points outwards with respect to
the set E .

Returning to our original problem (7.3), a point x is an internal candidate solution
if g(x) < 0 and it is a local maximum of f , so that ∇ f (x) = 0, or a boundary
candidate solution if g(x) = 0 and there exists a neighbourhood N (x) of x such that
for any y ∈ N (x) ∩ E , f (y) ≤ f (x). The latter condition implies that at the point x,
the direction of increase of the function f must point outward, towards the exterior
of the set E . In other terms, ∇ f (x) should have the same direction as ∇g(x). Both
conditions can be written as the solutions (x, λ) of the following system:
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Fig. 7.10 The vector
(−2,−1) is normal to the
implicitly defined function
g(x, y) =
x2 − 12x − y + 39 = 0 in
the point (5, 4). Indeed,
according to Theorem 7.12,
the tangent of the curve in
the same point has equation
y = 14 − 2x

{
∇ f (x) − λ∇g(x) = 0,

g(x)λ = 0, g(x) ≤ 0, λ ≥ 0.
(7.4)

If λ = 0, then g(x) ≤ 0 and the point is a critical point∇ f (x) = 0. This corresponds
to an internal or boundary candidate solution. In contrast, if λ > 0, then g(x) = 0
and ∇ f (x) = λ∇g(x). This corresponds to a boundary solution. In analogy to the
one-dimensional problem, we can summarise our analysis in the following way.

Lemma 7.3 Given the problem in (7.3) consider the Lagrangian function L(x, λ) =
f (x) − λg(x). Then the system (7.4) can be equivalently expressed as

{
∇xL = 0,

λ∂λL = 0, λ ≥ 0, ∂λL ≥ 0.

The expression ∇x represents partial derivatives with respect to x1 and x2. The same
considerations about the meaning of this system of equations that were made for the
one-dimensional case still apply. In general, more than one constraint can be added
to the Lagrangian, and each constraint has its own multiplier.

� Example 7.21 (Two-dimensional problem) Find the maximum points (x1, x2) of
the function f (x1, x2) = (x1 − x2)2 such that x2 ≤ 4 − x21 and x2 ≥ x21 − 4. First,
note that the set defined by the two inequalities is compact and the objective function
is continuous, so the problem has a solution. The Lagrangian function reads

L(x1, x2, λ1, λ2) = (x1 − x2)
2 − λ1(x

2
1 + x2 − 4) − λ2(x

2
1 − x2 − 4),
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the first-order conditions with respect to x1 and x2,

x1 − x2 = x1(λ1 + λ2), x1 − x2 = (λ2 − λ1)/2,

and the constraints with the slackness conditions,

{
λ1(x

2
1 + x2 − 4) = 0, λ1 ≥ 0, x21 + x2 − 4 ≤ 0,

λ2(x
2
1 − x2 − 4) = 0, λ2 ≥ 0, x21 − x2 − 4 ≤ 0.

Assuming λ1 = λ2 = 0 implies x1 = x2 and the fulfilment of the constraint
inequalities x21 ± x1 −4 ≤ 0 imposes x1 ∈ (1/2−√

17/4,−1/2+√
17/4). In these

points, the value of the function is 0 and they are local minima. So we can conclude
that there are no internal candidate solutions. For the case λ1 = 0 and λ2 > 0, the
solution should satisfy x1 − x2 = x1λ2, x1 − x2 = λ2/2, and x2 = x21 − 4. The only
solution is the point a1 = (1/2,−15/4) with λ2 = 17/2 > 0 and f (a1) = (17/4)2.
The Lagrangian function is symmetric when x1 and x2 are exchanged, if one also
exchanges the multipliers. Thus, a2 = (−1/2, 15/4) is another candidate solution
with λ1 = 17/2, λ2 = 0 and f (a2) = (17/4)2. Assuming λ1, λ2 > 0, we must
have x2 = 4 − x21 = x21 − 4, that is x2 = 0 and x1 = ±2. Substituting into the first
two equations of the system, it is clear that there are no solutions of this kind. In
conclusion, the function is maximised in a1 and a2 and its maximum is (17/4)2.

The next section illustrates a few additional results that are necessary for the
generalisation of the previous analysis to higher-dimensional problems and multiple
constraints.

7.7.3 Theorems of the Alternatives

The theorems in this section offer alternatives, that is, mutually exclusive propo-
sitions. If one proposition is false, then the other is true. We start with a theorem
attributed to the Hungarian mathematician and physicist Gyula Farkas (1847–1930).

Theorem 7.17 (Farkas’ lemma) Consider the convex cone C generated by the k
vectors {a1, . . . , ak} belonging to R

n, as in Definition 1.24, and a vector a ∈ R
n.

Either a ∈ C, or ∃y ∈ R
n such that y · aj ≤ 0 ∀ j = 1, . . . , k, and y · a > 0.

Proof First, note that if a ∈ C , then there exists nonnegative (x1, . . . , xk) such that
a = ∑k

i=1 xiai . Then ∀y such that y · aj ≤ 0, y · a ≤ 0. Thus, the two alternatives
cannot be true at the same time.

Next, we prove that if the second alternative is false, that is, if ∀y ∈ R
n such that

y · aj ≤ 0 ∀ j = 1, . . . , k, it is y · a < 0, then a ∈ C . By Theorem 5.19 we know
that the convex cone C is closed. Thus, according to Theorem 4.12, ∃b ∈ C , which
is closest to a. For t > 0, consider the vector b + ta j with j = 1, . . . , k. Then
‖a − b− ta j‖2 = ‖a − b‖2 − 2ta j · (a − b) + t2‖a j‖2. Since this expression must
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be greater than ‖a − b‖2 for any positive t , it must be a j · (a − b) ≤ 0. For the
hypothesis of the theorem, this implies that a · (a−b) ≤ 0. Consider next the vector
(1− t)b, which for sufficiently small t is in C . The square of the distance between a
and (1− t)b is ‖a−b+ tb‖2 = ‖a−b‖2 +2tb · (a−b)+ t2‖b‖2. By definition this
expression must be greater than ‖a− b‖2 for any positive t , therefore we must have
b · (a− b) ≥ 0. Taking the two inequalities together, we have (a− b) · (a− b) ≤ 0.
This implies ‖a − b‖ = 0, that is, a = b, which proves the assertion. �

The previous theorem does not change if the direction of the inequalities is reversed:
it is just a matter of choosing −y instead of y. Theorem 7.17 is stated differently in
different fields of application.We have the following equivalent statement of Farkas’
lemma.

Corollary 7.5 Given a n × k matrix A and a vector a ∈ R
n, the following two

statements are alternatives.

• ∃x ∈ R
k , x ≥ 0 such that Ax = a;

• ∃y ∈ R
n such that yᵀA ≤ 0 and y · a > 0.

The column vectors of the matrix A in Corollary 7.5 are the vectors {a1, . . . , ak} of
Theorem 7.17. The second theorem is named after the Israeli-American mathemati-
cian Theodore Motzkin (1908–1970).4

Theorem 7.18 (Motzkin’s transposition theorem, reduced form) Given a nonzero
n × k matrix A and a n × h matrix C, the following two statements are alternatives.

• ∃x1 ∈ R
k , x1 > 0 and ∃x2 ∈ R

h such that Ax1 + Cx2 = 0;
• ∃y ∈ R

n such that yᵀA � 0 and yᵀC = 0.

Proof The two statements cannot be true at the same time, otherwise we would have
x1 > 0, yᵀA � 0, and yAx1 = 0. We will prove that if the first statement is false,
then the second is true. Assume that there are no vectors x1 > 0 and x2 such that
Ax1+Cx2 = 0. This implies that there are no three vectors z1 ∈ R

k≥0, z2, z3 ∈ R
h≥0,

such that Az1 + B(z2 − z3) = 0 and 1 · z1 = 1. In fact, if the first system had
a solution with z1 = 0, the second condition would be false. This is equivalent to
saying that there are no solutions with z ∈ R

k+2h
≥0 for the system Bz = b with

B =
(

A C −C
11×k 01×h 01×h

)

, b =
(
0n×1
1

)

,

4 The typical statement of Motzkin’s theorem is slightly more general. For our purposes, the present
reduced form is sufficient.



7.7 Constrained Optimisation 197

where 0 and 1 stand for matrices of zeros and ones, respectively, of the indicated
dimensions. By Corollary 7.5, this implies that there exists a vector of dimension
n + 1, y = (y1, y0), such that yᵀB ≤ 0 and y · b > 0. In terms of the component of
y, this becomes yᵀ

1 A + y01 ≤ 0, yᵀ
1C ≤ 0, yᵀ

1C ≥ 0, and y0 > 0. That is, yᵀ
1C = 0

and yᵀ
1 A ≤ −y01 � 0, which is precisely the second statement. �

For completeness, we review a third result, attributed to the German mathematician
Erich Stiemke (1892–1915), even if we are not using it in what follows.

Theorem 7.19 (Stiemke’s lemma) Given a n× k matrix A, the following two state-
ments are alternatives.

• ∃x ∈ R
k , x � 0 such that Ax = 0;

• ∃y ∈ R
n such that yᵀA < 0.

Proof The two statements cannot be true at the same time, or we would have x � 0,
yᵀA > 0, and yᵀAx = 0. Assume that the second statement is false. This means that
there is no y such that yᵀA ≤ 0 and yᵀA1 < 0. In fact, if the first inequality implies
yᵀA = 0, then the second inequality is violated. Note that the second inequality can
be expressed as y·(−A1) > 0. Thus, by Corollary 7.5, ∃x ≥ 0, such that Ax = −A1,
that is, A(x + 1) = 0. Because x + 1 � 0, the first statement is true. �

7.7.4 First-Order Conditions

We are ready to discuss the general problem with both equality and inequality con-
straints. To avoid unnecessary repetitions, we anticipate here some definitions that
will be commonly used in all statements.We consider an open set D ⊆ R

n and a con-
tinuously differentiable real-valued function f ∈ C1(D). Let Gk = {g1, . . . , gk} be
a set of k continuous differentiable real-valued functions that represent the inequality
constraints gi ∈ C

1(D), ∀i = 1, . . . , k. EG = ∩k
i=1{x | gi (x) ≤ 0} is the set of

points in which these constraints are satisfied. Let Hl = {h1, . . . , hl} be a set of l
continuously differentiable real-valued functions that represent equality constraints
hi ∈ C

1(D), ∀i = 1, . . . , l. EH = ∩l
j=1{x | h j (x) = 0} is set of points in which

these constraints are satisfied. We assume E = D ∩ EH ∩ EG �= ∅.
This section introduces necessary first-order conditions for the candidate solutions

of the problem maxx∈E f (x), expressed as relations between the gradient of the ob-
jective function and the gradient of the binding constraints. They are the constrained
equivalent of Corollary 7.2. Our first result, named after the German mathematician
Fritz John (1910–1994), is extremely general.
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Theorem 7.20 (Fritz John) Let x∗ be a candidate solution of the problem maxx∈E
f (x). Then ∃λ∗ ∈ R

k+1
≥0 , with λ∗

i = 0 if gi (x∗) < 0, ∃μ∗ ∈ R
l , (λ∗,μ∗) �= 0, such

that

λ∗
0∇ f (x∗) =

k∑

i=1

λ∗
i ∇gi (x∗) +

l∑

j=1

μ∗
j∇h j (x∗).

Proof Assume that a point x∗ is a candidate solution and that, without loss of gen-
erality, only the first m constraints are satisfied with equality, that is, gi (x∗) = 0
for i = 1, . . . ,m and gi (x∗) < 0 for i = m + 1, . . . , k. If the equality constraints
Hl are not independent in x∗, then ∃μ∗ �= 0 such that

∑l
j=1 μ∗

j∇h j (x∗) = 0 (see
Theorem 7.16). In this case, the statement is satisfied by setting λ∗ = 0.

Suppose instead that the equality constraints Hl are independent in x∗. Then, by
continuity, there exists an open ball B(x∗, ε) ⊆ D, centred in x∗ and with radius
ε, such that ∀x ∈ B, the constraints Hl are independent. We can choose ε small
enough so that ∀x ∈ B, gi (x) < 0, i = m + 1, . . . , k. Because the functions in Hl

are independent, by Theorem 7.14, l components of any point x ∈ B ∩ EH can be
written as a continuous and differentiable function of the other components. Without
loss of generality, we assume that they are the last l, so that ∀x ∈ B ∩ EH , x =
(z,G(z)), where z belongs to an appropriate open neighbourhood N ′(z∗) ⊆ R

n−l

of z∗, the vector of the first n − l components of x∗, and where G : R
n−l → R

l

is a continuously differentiable function such that G(z∗) are the last l components
of x∗, that is, (z∗,G(z∗)) = x∗. The elements of B ∩ E correspond to the elements
z ∈ N ′(z∗) such that gi (z,G(z)) ≤ 0, i = 1, . . . ,m.

Since x∗ is a local maximum, there are no points z ∈ N ′(z∗) such that � f (z) =
f (z,G(z)) − f (x∗) > 0 and gi (z,G(z)) < 0, i = 1, . . . ,m. Consider u ∈ R

n−l ,
z∗ + ηu so that, by the Taylor approximation,

� f (z∗ + ηu,G(z∗ + ηu)) = η∇ f (x∗) · (u, J (x∗)u) + o(η),

gi (z∗ + ηu,G(z∗ + ηu)) = η∇gi (x∗) · (u, J (x∗)u) + o(η),

where J (x∗) is the Jacobian of the functionG in x∗. This must be true for any η > 0.
Thus, �u ∈ R

n−l such that∇ f (x∗)·(u, J (x∗)u) > 0 and∇gi (x∗)·(u, J (x∗)u) < 0,
i = 1, . . . ,m. By Theorem 7.14, the vectors (u, J (x∗)u) with u ∈ R

n−l correspond
to the vectors y ∈ R

n such that ∇h j (x∗) · y = 0, j = 1, . . . , l. Taking all the
conditions together, we conclude that �y ∈ R

n such that yᵀA � 0 and yᵀC = 0,
where Aᵀ = (−∇ f (x∗) ∇g1(x∗) . . . ∇gm(x∗)) and Cᵀ = (∇h1(x∗) . . . ∇hl(x∗)).
Thus, by Theorem 7.18, there exist λ∗ ∈ R

m+1, λ∗ > 0, and μ∗ ∈ R
l , such that

Aλ∗ + Cμ∗ = 0, which reduces to the statement. �

The vector λ collects the multipliers associated with the inequality constraints, while
μ collects the multipliers associated with the equality constraints. The multiplier-
s of non-binding inequality constraints are set to zero. Note that in the Fritz-John
condition, there is also a multiplier λ0 associated with the gradient of the objective
function. Theorem 7.20 is so general that it may not provide significant information.
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For example, if the constraints in Hl are dependent in a point x, then the implica-
tion of Theorem 7.20 is trivially satisfied in x taking λ = 0 and μ �= 0 such that∑l

j=1 μ j∇h j (x) = 0, irrespective of whether or not x is a candidate solution. If in
x, gi (x) = 0 and ∇gi (x) = 0, the implication of Theorem 7.20 is trivially satisfied
by setting λi = 1 and all other multipliers equal to zero. These examples reveal that
to extract more information from Theorem 7.20, we need to make further assump-
tions about the nature of the constraints. These assumptions are commonly named
constraint qualifications or regularity conditions.5 The simplest case is when there
are no binding inequality constraints and the equality constraints in the candidate
solution are independent.

Theorem 7.21 (Lagrange) If there are no binding inequality constraints and the
equality constraints Hl are independent in a candidate solution x∗, then there exists
a μ∗ ∈ R

l such that

∇ f (x∗) =
l∑

j=1

μ∗
j∇h j (x∗).

Proof Given the hypothesis, since there are no binding inequality constraints,
Theorem 7.20 implies that ∃λ0 ≥ 0 and ∃μ′ ∈ R

l such that λ0∇ f (x∗) =∑l
j=1 μ′

j∇h j (x∗). Note that it must be λ0 > 0, or the equality constraints would
be dependent, which is ruled out by hypothesis. Consider μ∗

j = μ′
j/λ0 to derive the

statement. �

In a candidate solution, the gradient of the objective function belongs to the subspace
generated by the gradients of all the equality constraints. If there are constraints that
are dependent on the entire set D, or in a neighbourhood of the candidate solution,
then they are redundant and can be eliminated. If there are n independent equality
constraints, then E �= ∅ consists of a single point. This is the only candidate solution,
andTheorem7.21 is trivially satisfied. The previous theorem clearly applieswhen the
original problem has no inequality constraints. If inequality constraints are present,
a second simple conclusion can be obtained if all binding inequality constraints and
equality constraints are independent.6

Theorem 7.22 (Karush–Kuhn–Tucker) If the binding inequality constraints
gi (x∗) = 0, i = 1, . . . ,m and the equality constraints Hl are independent in a
candidate solution x∗, then there exist a λ∗ ∈ R

m, λ∗ ≥ 0, and a μ∗ ∈ R
l , such that

5 There are many examples of constraint qualifications encountered in applications. We cannot
review but a few cases. The interested reader is referred to specific textbooks on optimisation
theory.
6 This theorem, credited to the American mathematicians William Karush (1917–1997), Harold
Kuhn (1925–2014), and Albert Tucker (1905–1995), was originally derived without equality con-
straints. Although less historically accurate, it is convenient to present it in a more modern version.
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∇ f (x∗) =
m∑

i=1

λ∗
i ∇gi (x∗) +

l∑

j=1

μ∗
j∇h j (x∗).

Proof The proof is similar to the proof of Theorem 7.21. The coefficient λ∗
0 implied

by Theorem 7.20 cannot be zero. Thus, it can be set to 1 by dividing all coefficients
by its value. �

The multipliers of the non-binding inequality constraints have been set to zero. In
a candidate solution, the gradient of the objective function has a component in the
convex cone generated by the gradients of all binding inequality constraints and a
component in the subspace spanned by the gradients of all equality constraints. The
constraint qualification in Theorem 7.22 is generally known as linear independence
constraint qualification. To avoid dependence, it is generally convenient to express
constraints (equality or inequality) as regular or non-singular curves, that is, using
continuously differentiable functions g (or h) such that if g(x) = 0, ‖∇g(x)‖ > 0.

� Example7.22 (Mangasarian–Fromovitz constraint qualification)Because inThe-
orem7.20 themultipliers of the inequality constraints are restricted to be nonnegative,
a useful result can be derived even if the constraints are dependent. Suppose that in
a candidate solution x∗ the equality constraints Hl are independent and there exists
a vector u ∈ R

n such that ∇gi (x∗) · u < 0 for all binding inequality constraints,
i = 1, . . . ,m, and ∇h j (x∗) · u = 0, for all equality constraints, j = 1, . . . , l. Con-
sider the expression in the statement of Theorem 7.20. Because the constraints Hl

are independent, it must be λ∗ > 0, that is, at least some components of λ∗ must be
nonzero. Multiplying by u,

λ∗
0∇ f (x∗) · u =

k∑

i=1

λ∗
i ∇gi (x∗) · u.

If λ∗
0 = 0, then ∃λ∗

i > 0, which leads to a contradiction as the left-hand side would
be zero and the right-hand side would be strictly negative. Thus, λ∗

0 > 0 and we can
derive the same expression of Theorem 7.22.

Based on the previous results, we can define the Lagrangian function associated
with the optimisation problem.

Lemma 7.4 (Lagrangian function) Define the Lagrangian function

L(x, λ) = f (x) −
k∑

i=1

λi gi (x) −
l∑

j=1

μ j h j (x).
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Under the constraint qualification of Theorem 7.22 (or Example 7.22), if x∗ is a
solution of maxx∈E f (x), there exist a vector λ∗ ∈ R

k≥0 and a vector μ∗ ∈ R
l such

that (x∗,λ∗,μ∗) solves
⎧
⎪⎨

⎪⎩

∇xL = 0,

λi∂λi L = 0, λi ≥ 0, ∂λi L ≥ 0, i = 1, . . . , k,

∂μ j L = 0, j = 1, . . . , l.

The system that appears in the previous statement contains n + k + l equations,
relative to first-order conditions with respect to variables and multipliers, and 2k
inequalities, relative to slackness conditions.

� Example 7.23 (Weak and strong duality) Analogously to what we have done in
Example 7.20, starting from the Lagrangian in Lemma7.4, we can define the function
p : D ⊆ R

n → R̄,
p(x) = min

λ∈Rk≥0,μ∈Rh
L(x,λ,μ).

If x /∈ EG ∩ EH , then the Lagrangian is unbounded from below and p(x) = −∞.
If x ∈ EG ∩ EH , p(x) = f (x). The original maximisation problem, that is, our
primal problem, can be restated as the unconstrained problem maxx∈D p(x). Define
the Lagrangian dual d : R

k≥0 × R
h → R̄,

d(λ,μ) = max
x∈D L(x, λ,μ).

The Lagrangian dual problem is the problem minλ∈Rk≥0,μ∈Rh d(λ,μ). According to

Theorem 1.4,

min
λ∈Rk≥0,μ∈Rh

max
x∈D L(x,λ,μ) ≥ max

x∈D min
λ∈Rk≥0,μ∈Rh

L(x,λ,μ).

Thus, the solution of the dual problem is an upper bound to the solution of the
primal problem. This result is called weak duality. Because both p and d have
values in the extended real number system, the inequality remains meaningful also
when the functions considered are unbounded. With some further hypotheses on the
objective function f and the nature of constraints, it can be proved that the solutions
of the primal and dual problems are actually the same. This is called strong duality.
Strong duality can be useful because sometimes the solution of the dual problem is
more accessible than the solution of the primal problem. For the specific conditions
under which strong duality applies, the reader is referred to textbooks specialised in
optimisation theory.

� Example 7.24 (Intertemporal consumption-saving problem) The vector c ∈ R
T≥0,

c = (c0, . . . , cT−1) represents the consumption plan of an economic agent over



202 7 Differential Calculus of Functions of Several Variables

T − 1 periods. The agent starts with an allocation w0 > 0 and what is not consumed
bears fruits, so that wt+1 = γwt − ct , with γ > 1. The utility the agent obtains
from the consumption plan c isU (c) = ∑T−1

t=0 β t log ct , with β > 0 representing the
intertemporal utility discount factor. We are interested in the consumption plan that
generates the highest utility, under the constraint that the final amount is nonnegative
WT ≥ 0. The Lagrangian of the problem is

L =
T−1∑

t=0

β t log ct +
T−1∑

t=0

λt ct −
T−1∑

t=0

μt (wt+1 − γwt + ct ) + λTwT ,

and the first-order conditions
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β t

ct
= μt ,−λt , t = 0, . . . , T − 1

γμt = μt−1, t = 1, . . . , T − 1

λT = μT−1.

The solution requires ct > 0, so that ∀t = 1, . . . , T − 1, λt = 0, μt > 0, and
ct = β t/μt . In turn, this implies λT > 0, and consequently WT = 0. Iterating the
second equation of the system written in terms of consumption, ct = βγ ct−1, we
get ct = (βγ )t c0. From the intertemporal relation of the amount owned, we also get

w0 = ∑T−1
t=0 ct/γ t+1. Substituting the previous equation and summing the partial

geometric series, we obtain the optimal initial consumption c0 = w0γ (1− β)/(1−
βT ). The optimal consumption at t then reads ct = w0γ (βγ )t (1 − β)/(1 − βT ).
During T − 1 dates, consumption increases or decreases according to the product
βγ . This product represents the joint effect of the returns on savings and their relative
utility.

7.7.5 Second-Order Conditions

In this section we consider a point x∗ ∈ E that satisfies the first-order conditions of
the previous section. We want to investigate whether the point actually represents a
candidate solution. For this purpose, we need a few definitions that are better antici-
pated here, so that the following statements will be simplified. At a point x∗ ∈ E , let
E⊥
H (x∗) be the orthogonal complement of the gradients of all equality constraints,

E⊥
H (x∗) = {

v ∈ R
n | ∇h j (x∗) · v = 0, j = 1, . . . , l

}
,

E⊥
G (x∗) the orthogonal complement of the gradients of all binding inequality con-

straints,
E⊥
G (x∗) = {

v ∈ R
n | ∇g j (x∗) · v = 0, i = 1, . . . ,m

}
,
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E⊥
G+(x∗) the orthogonal complement of the gradients of all binding inequality con-

straints with positive multipliers,

E⊥
G+(x∗) = {

v ∈ R
n | ∇gi (x∗) · v = 0, μi > 0, i = 1, . . . ,m

}
,

and C−
G0(x∗) the polar cone (see Definition 1.26) generated by the gradients of the

inequality constraints with zero multipliers,

C−
G0(x

∗) = {
v ∈ R

n | ∇gi (x∗) · v ≤ 0, μi = 0, i = 1, . . . ,m
}
.

Some of these sets can actually be the entire space R
n if some type of constraints

is missing. In this section, all binding constraints are assumed to be independent.
The objective function and the constraints are continuously twice differentiable. We
denote by H f (x), Hh

j (x), j = 1, . . . , l, and Hg
i (x), i = 1, . . . , k, the Hessian of the

objective function, the equality constraints, and the inequality constraints, respec-
tively. Following considerations similar to those in Corollary 7.4, a set of sufficient
or necessary conditions can be derived for the problem with equality constraints.

Theorem 7.23 (Second-order conditions for equality constraints) Consider x∗ ∈
E = D ∩ EH . Assume that ∃μ∗ ∈ R

l such that ∇ f (x∗) = ∑l
j=1 μ∗

j∇h j (x∗).
Define

HL(x∗) = H f (x∗) −
l∑

j=1

μ∗
j H

h
j (x

∗).

Necessary condition: if x∗ is a constrained local maximum, then ∀v ∈ E⊥
H (x∗),

vᵀHL(x∗)v ≤ 0. Sufficient condition: if ∀v ∈ E⊥
H (x∗), vᵀHL(x∗)v < 0, then x∗ is

a constrained strict local maximum.

Proof Because the functions in Hl are independent at x∗, by Theorem 7.14, there
exists a neighbourhood B of x∗ such that the l components of any point x ∈ EH ∪ B
can be written as a continuous and differentiable function of the other components.
Without loss of generality, we assume that they are the last l, so that ∀x ∈ B ∩ EH ,
x = (z,G(z)), where z belongs to an appropriate open neighbourhood N ′(z∗) ⊆
R
n−l of z∗, the vector of the first n− l components of x∗, and whereG : R

n−l → R
l

is a continuously differentiable function such that G(z∗) are the last l components
of x∗, that is, (z∗,G(z∗)) = x∗.

By Theorem 7.14, ∀ j = 1, . . . , l, ∇zh j + ∇yh j J = 0 identically in B ∩ EH ,
where J is the Jacobian of G, ∇z indicates the vector of partial derivatives with
respect to the first n − l components and ∇y the vector of partial derivatives with
respect to the last l components. By taking a further partial derivative, using the chain
rule and after some algebraic manipulation, we discover that, identically in B ∩ EH ,

(
I J (z)ᵀ

)
Hj (x)

(
I

J (z)

)

+
l∑

k=1

∂n−l+kh j (x)HG
k (x) = 0,
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where I stands for the n − l dimensional identity matrix and HG
k (x) for the

Hessian matrix of the kth component of the function G. Consider the function
F(z) = f (z,G(z)). Using the chain rule to obtain its Hessian,

HF (z) = (
I J (z)ᵀ

)
H f (x)

(
I

J (z)

)

+
l∑

k=1

∂n−l+k f (x)HG
k (x).

By hypotheses, ∂n−l+k f (x∗) = ∑l
j=1 μ∗

j∂n−l+kh j (x∗). Substituting the expression
derived above, we finally obtain

HF (z∗) = (
I J (z∗)ᵀ

)
HL(x∗)

(
I

J (z∗)

)

.

Note that x∗ is a constrained extremal point of f in B ∩ EH if and only if
z∗ is an unconstrained extremal point of F in N ′(z∗). From the definition of E⊥

H ,
∀u ∈ R

n−l , v = (u, uJ ) ∈ E⊥
H and ∀v ∈ E⊥

H , ∃u ∈ R
n−l such that v = (u,uJ ).

Hence, the statements of the theorem come directly from Corollary 7.4 applied to
the unconstrained maximum z∗ of the function F(z). �

According to the necessary condition, if∃v ∈ E⊥
H ,v

ᵀHL(x∗)v > 0, thenx∗ cannot be
a candidate solution. The second statement is a sufficient, but not necessary, condition
for identifying candidate solutions. The symmetric matrix HL(x∗) is required to
be negative definite with respect to all vectors orthogonal to the gradient of all
constraints.

� Example 7.25 (Minimal relative entropy for discrete distributions) Let p ∈ R
n
>0,∑n

i=1 pi = 1 be a discrete probability distributions on n possible outcomes.Wewant
to find the defective probability distribution q ∈ R

n≥0,
∑n

i=1 qi = a, with 0 < a ≤ 1,
that has the minimal relative entropy (or Kullback–Leibler divergence) with respect
to p, defined as D(p,q) = ∑n

i=1 pi log pi/qi . Minimising D(b,q) is equivalent to
maximising −D(b,q). Thus, ignoring an ineffectual constant, we can consider the
maximisation problem Lagrangian:

L(q, λ) =
n∑

i=1

pi log qi − λ(

n∑

i=1

qi − a) +
∑

i

μi qi

and obtain the first-order conditions with respect to the q’s,

pi/qi = λ − μi , i = 1, . . . , n.

It must be qi > 0, μi = 0, and we must set λ > 0. The solution then takes the form
qi = λpi . By imposing the constraint, we find λ = a, so that q = ap. The Hessian
H f (q) is a diagonal matrix with entries (−1/(ap1), . . . ,−1/(apn)) and the Hessian
of the equality constraint is zero, so HL = H f . There are no binding inequality



7.7 Constrained Optimisation 205

constraints. Thus, for any nonzero vector u, it is uH f u = − ∑n
i=1 u

2
i /(2pi ) <

0 and by the second statement of Theorem 7.23 this point is guaranteed to be a
maximum. In conclusion, the probability distribution with the lowest divergence
from p is proportional to it, or equal, if a = 1.

Theorem 7.24 (Second-order conditions) Consider x∗ ∈ E. Assume that only the
first m inequality constraints are binding in x∗, gi (x∗) = 0, i = 1, . . . ,m and
gi (x∗) < 0, i > m. Assume further that there exist λ∗ ∈ R

m≥0 and μ∗ ∈ R
l such that

∇ f (x∗) =
m∑

i=1

λ∗
i ∇gi (x∗) +

l∑

j=1

μ∗
j∇h j (x∗).

Define

HL(x∗) = H f (x∗) −
m∑

i=1

λ∗
i H

g
i (x∗) −

l∑

j=1

μ∗
j H

h
j (x

∗).

Necessary condition: if x∗ is a constrained local maximum, then ∀v ∈ E⊥
H (x∗) ∩

E⊥
G (x∗), vᵀHL(x∗)v ≤ 0. Sufficient condition: if ∀v ∈ E⊥

H (x∗) ∩ E⊥
G+(x∗) ∩

C−
G0(x∗), vᵀHL(x∗)v < 0, then x∗ is a constrained strict local maximum.

Proof For the necessary condition, note that if x∗ is a constrained local minimum,
it must also remain so when all inequality constraints are replaced by equality con-
straints. Therefore, the first statement follows from Theorem 7.23.

Next we will prove that if the point is not a constrained strict local maximum, then
the sufficient condition is violated. If x∗ is not a constrained strict local maximum,
then there exists a sequence of feasible points (xn = x∗ + δnun), with ‖un‖ = 1,
δn > 0, such that δn → 0 and f (xn) ≥ f (x∗). By Taylor approximation, ∀i =
1, . . . ,m and ∀ j = 1, . . . , l,

δn∇gi (x∗) · un + δ2n

2
uᵀHg

i (x∗)un + o(δ2n) ≤ 0,

δn∇h j (x∗) · un + δ2n

2
uᵀHh

j (x
∗)un + o(δ2n) = 0.

Consider the Taylor approximation of � f (x) = f (x) − f (x∗),

� f (x) = δn∇ f (x∗) · u + δ2n

2
uᵀH f (x∗)u + o(δ2n).

Because (δnun) is a bounded sequence, it must have a converging subsequence. So,
without loss of generality we can assume that ∃u, ‖u‖ = 1, such that un → u. Then
∀i = 1, . . . ,m and ∀ j = 1, . . . , l, it must be ∇gi (x∗) · u ≤ 0 and ∇h j (x∗) · u = 0.
By the first-order condition, if λi > 0, and∇ gi (x∗) ·u < 0, then definitely� f < 0.
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Thus, it must be u ∈ E⊥
H ∩ E⊥

G+ ∩ C−
G0 . Using the first-order condition,

� f (x) = δ2n

2
uᵀHL(x∗)u + o(δ2n),

and it must be uᵀHL(x∗)u ≥ 0. �

According to the necessary condition, if ∃v ∈ E⊥
H ∩ E⊥

G , v
ᵀHLv > 0, then x∗

cannot be a candidate solution. Note that the sufficient condition requires the matrixx
HL(x∗) to be positive definite with respect to all vectors in the polar cone of the
binding constraints with zero multipliers that are orthogonal, at the same time, to the
gradient of all other binding constraints.

� Example 7.26 (Zero gradient on the boundary) Consider the problem of finding
the maximum point of the function f (x, y) = −x2/2 − y2 − 3xy/2 such that
g1(x, y) = 2x + y ≤ 0 and g2(x, y) = x + 4y ≤ 0. The feasible set is unbounded,
so, in principle, we do not know if a solution exists. Defining the Lagrangian function
L = f (x, y) − λ1g1(x, y) − λ2g2(x, y), the first-order conditions with respect to
the variables x and y are

{
−x − 3y/2 = 2λ1 + λ2,

−2y − 3x/2 = λ1 + 4λ2.

The gradient of the function is zero only in (0, 0), thus there are no internal candidate
solutions. It is easy to verify that the system has no solution for λ1 > 0, λ2 = 0
or for λ1 = 0, λ2 > 0. Hence, the only possible solution is (x, y) = (0, 0) with
λ1 = λ2 = 0. The Hessian matrix of the function f is constant and reads

H f =
( −1 −3/2

−3/2 −2

)

,

so that the origin is a saddle point. However, considering the vector vα = (1, α),
we have vᵀ

αH f vα = −1 − 2α2 − 3α. This quantity is negative when α < −1 or
α > −1/2. The vectors belonging to the polar cone defined by the gradient of the
constraints in (0, 0), dg1 = (1, 2) and dg2 = (1, 4), are identified by the vectors
vα with α < −2 and α > −1/4, see Fig. 7.11. Thus, the sufficient condition of
Theorem 7.24 applies and the origin is an acceptable candidate solution. Being the
only one, it represents the solution of the problem.

� Example 7.27 (Two-dimensional parametric problem) Let f (x, y) = x2 + ay2

with a ∈ R, g1(x, y) = x2 − y − 1, and g2(x, y) = y − 1. Find the value F(a) =
maxx,y f (x, y), such that g1(x, y) ≤ 0 and g2(x, y) ≤ 0.
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Fig. 7.11 Heat map of the function f (x, y) discussed in Example 7.26. The constraints identify
the bottom-left area, between the dashed lines. In the origin, the function grows in the directions
between the dotted lines

From the Lagrangian function L = f − λ1g1 − λ2g2, the first-order conditions
read ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

2x(1 − λ1) = 0,

2ay = λ2 − λ1,

λ1(x
2 − y − 1) = 0, λ1 ≥ 0, x2 − y − 1 ≥ 0,

λ2(y − 1) = 0, λ2 ≥ 0, y − 1 ≥ 0.

Setting λ1 = λ2 = 0 we find that the origin (0, 0) is the only internal critical point.
The Hessian matrix of the objective function f reads

H f =
(
2 0
0 2a

)

.

The origin is never a maximum as, for any value of a, vᵀH f v > 0 for v = (1, 0),
Looking for candidate solutions at the boundary y = 1, we set λ1 = 0 and λ2 > 0.

This condition identifies the point (0, 1) with λ2 = 2a (point A in Fig. 7.12). The
solution is acceptable only if a > 0. The gradient of the constraint at this point is
dg1 = (0, 1). This is orthogonal to v = (1, 0) and vH f v > 0, so by Theorem 7.24
this cannot be a candidate solution.

Looking for candidate solutions at the boundary x2 = 1 + y, we set λ1 > 0 and
λ2 = 0. There are two cases. If λ1 �= 1, the unique candidate solution becomes
(0,−1) with λ1 = 2a (point C in Fig. 7.12). At this point dg1 = (0, −1) so that the
space of vectors orthogonal to the binding constraints is spanned by v = (1, 0). The
Hessian of the Lagrangian HL = H f − Hg

1 at this point is

HL =
(
2 − 2a 0

0 2a

)

,
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Fig.7.12 The feasible set (left) and the behaviour of themaximumfunction (right) for Example 7.27

so that vᵀHLv = 2 − 4a. Thus, this is a candidate solution if a ∈ (0, 1/2) and
F(a) = a. If, instead, λ1 = 1, we identify the points (x±(a), −1/(2a)), with
x(a)± = ±√

1 − 1/(2a). We must also require −1 < 1/(2a) ≤ 1, that is, a ≥ 1/2
or a < −1/2. In these points, dg1 = (2x±(a), −1). The orthogonal complement of
the gradient is spanned by v = (1, 2x(a)±) and

HL =
(
0 0
0 2a

)

,

so that vᵀHLv = 4(2a−1). In summary, these are candidate solutions if a < −1/2,
with F(a) = 1 − 1/(4a).

Finally, we set λ1 > 0 and λ2 > 0. These conditions identify the points (±√
2, 1)

(points B in Fig. 7.12) in which F(a) = 2+ a. Since in this case λ2 = 1+ 2a, these
are acceptable solutions only if a ≥ −1/2. Note that dg1 and dg2 are independent
and have positive multipliers. There are no nonzero vectors orthogonal to both, so
the sufficient condition of Theorem 7.24 is trivially satisfied.

In summary, if a < −1/2, the maxima are in (x±(a), −1/(2a)) and F(a) =
1 − 1/(4a), while if a ≥ −1/2 the maxima are in (±√

2, 1) and F(a) = 2 + a.

7.7.6 Envelope Theorem

Suppose that the function to be maximised and/or the constraints depend on some
parameter t . Specifically, we consider a real parameter t in an interval I and as-
sume that the objective function f (x, t), the set of inequality constraints Gk(t) =
{g1(x, t), . . . , gk(x, t)}, and of equality constraints Hl(t) = {h1(x, t), . . . , hl(x, t)},
can depend on t . Let EH (t) and EG(t) be the sets of points that satisfy all the equal-
ity and inequality constraints, respectively, for a given value of t . We assume that
∀t ∈ I , E(t) = D∩ EH (t)∩ EG(t) �= ∅ and that the constraint functions are regular
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and independent. The next theorem shows that under mild regularity conditions, the
points that satisfy the first-order condition of Theorem 7.22 belong to a differentiable
curve. In addition, the theorem provides a method to compute the derivative of the
value of the objective function in those points.

Theorem 7.25 (Envelope theorem) Let x0 ∈ E(t0) satisfy the first-order condition
of Theorem 7.22 with constraints Hl(t0) and Gk(t0) and with positive multipliers
for the m binding inequality constraints, λi > 0 and gi (x, t0) = 0, i ≤ m, and
gi (x, t0) < 0 for i > m. Assume that in a neighbourhood of (x, t0) the objective
function and the constraint functions are continuously twice differentiable. Then there
exist a neighbourhood N (t0) ⊆ R and a continuously differentiable function from
N (t0) to R

n+l+m, (x(t), μ(t), λ(t)), such that x(t) satisfies the first-order condition
with constraints Hl(t) and Gk(t), λi (t) > 0 for i ≤ m and gi (x, t) < 0 for i > m.
Moreover, if F(t) = f (x(t), t),

dF(t)

dt
= ∂L(x(t), μ(t), λ(t)))

∂t
=

∂ f (x(t), t)
∂t

−
l∑

i= j

μ j (t)
∂h j (x(t), t)

∂t
−

m∑

i=1

λi (t)
∂gi (x(t), t)

∂t
.

Proof Define the gradient of the Lagrangian

dL(x, t) = d f (x, t) −
l∑

i= j

μ j (t)dh j (x, t) −
m∑

i=1

λi (t)dgi (x(t), t)

and consider the function G : R
n+l+m+1 → R

n+l+m ,

G(x,μ,λ, t) =
⎛

⎝
dL(x, t)

h j (x, t) i = 1, . . . , l
gi (x, t) i = 1, . . . ,m

⎞

⎠ .

The solution in the statement is a point (z0, t0) with z0 = (x, μ, λ) such that
G(z0, t0) = 0,λi > 0 for i ≤ m and gi (x, t0) < 0 for i > m. Note thatG is linear inμ

and λ, therefore, by hypothesis, it is continuously differentiable in a neighbourhood
of (z0, t0). Therefore, by the implicit function theorem, there exists a neighbour-
hood N (t0) and a continuously differentiable function z(t) = (x(t),μ(t), λ(t)) such
that G(z(t), t) = 0, ∀t ∈ N (t0). Due to the continuity of the constraint functions,
one can take the neighbourhood small enough such that λi (t) > 0 for i ≤ m and
gi (x(t), t) < 0 for i > m. This proves the first part of the statement. For the second
part, by the chain rule,

dF(t)

dt
= ∂ f (x(t), t)

∂t
+ df(x(t), t) · dx(t)

dt
.
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Substituting the first-order condition dL(x(t), t) = 0,

dF(t)

dt
= ∂ f (x(t), t)

∂t
+

l∑

i= j

μ j dh j (x(t), t) · dx(t)
dt

+
m∑

i=1

λi dgi (x(t), t) · dx(t)
dt

.

By the implicit function theorem, h j (x, t) = 0 and gi (x, t) = 0 imply dh j (x(t), t) ·
dx(t)/dt = −∂t h j (x(t), t) and dgi (x(t), t) · dx(t)/dt = −∂t gi (x(t), t), re-
spectively. Substituting into the above equation proves the second part of the
statement. �

In other words, the derivative of the function F(t) with respect to the parameter t
is equal to the partial derivative of the Lagrangian function with respect to t , taken
with the maximum point and multipliers fixed. The interpretation of the previous
theorem is different in different situations. If we know that x(t) is the maximum
point of f (x, t) in E(t), then the theorem can be used to calculate the derivative of
the value function F(t) = maxx∈E(t) f (x, t). For example, this is the case when the
problem has a unique extremal point. More generally, Theorem 7.25 can be used
to describe how the value of the objective function computed in different candidate
solutions changes when the parameter t is varied. In principle, it can also be applied
to curves of points that satisfy the first-order condition of Theorem 7.22 but are not
local extrema. Note that the assumption of constraint independence can be replaced
with the constraint qualification of Example 7.22.

� Example 7.28 (Utility maximisation) The utility of the consumption of a bundle
of commodities x ∈ R

n≥0 is given by a function U (x) ∈ C1(Rn≥0) such that for
i = 1, . . . , n, ∂iU > 0 (non-satiating hypothesis) and limxi→0+ U = −∞ (Inada
condition). The prices of the commodities are p ∈ R

n
>0 and the consumption x is

affordable if x · p ≤ w for some positive w (wealth). We want to maximise U while
keeping consumption nonnegative and affordable. The Lagrangian function of the
problem reads

L = U (x) +
n∑

i=1

λi xi − μ

(
n∑

i=1

xi pi − w

)

.

The consumption levels first-order conditions read

∂iU (x) = −λi + μpi , i = 1, . . . , n.

Since the functionU is strictly increasing, we must haveμ > 0. The Inada condition
rules out any solution with zero consumption of any commodity. Thus, we must set
λi = 0, ∀i . The value ofμ is found by imposing the condition that the optimal bundle
is feasible, μ = ∑n

i=1 xi∂iU/w. If U∗ is the utility of the optimal consumption
level that exists by Theorem 2.30, even if we did not solve the problem explicitly,
Theorem 7.25 tells us that dU∗/dw = ∂wL = μ. In this case, the multiplier μ can
be interpreted as the marginal utility of wealth.
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In applying Theorem 7.25 to the problem with inequality constraints discussed
in Theorem 7.22, one has to check that there are no constraints such that λi = 0
and gi (x, t) = 0. If this is the case, when the value of t changes, the constraints
that were not previously binding can become binding or vice versa. In fact, even if
the objective function and the constraints are continuously differentiable functions
in t , the solution of a problem of the type presented in Theorem 7.22 might not be
differentiable.

� Example 7.29 (Non-differentiable maximum function) Consider the function
F(t) = maxx∈[−1,1] t x2. This corresponds to the maximum of the function t x2

with constraints x − 1 ≤ 0 and −x − 1 ≤ 0. The objective function and the con-
straints are defined by continuously twice differentiable functions. It is immediate
to realise that F(t) = 0 if t ≤ 0 and F(t) = t if t > 0. The function F(t)
is not differentiable in t = 0. In fact, for t < 0 the constraints x − 1 ≤ 0 and
−x−1 ≤ 0 are not binding. The value of their multipliers in the Lagrangian problem
is zero. If t > 0, then one of the constraints is always binding and the value of its
multiplier is 2t .

7.7.7 Minimisation Problems

The methods introduced in the previous sections can be adapted with minimal modi-
fications to minimisation problems. The multipliers λ associated with the inequality
constraints in Theorems 7.20 and 7.22 must change sign. Now, they must be lower
than or equal to zero. The requirements for equality constraints remain the same.
In Lemma 7.4 we can keep the same definition of the Lagrangian function L , and
modify the slackness conditions to require λi ≤ 0. Alternatively, we can change
the sign of the multipliers in the definition of the Lagrangian and keep the same
expression for the slackness condition. Both approaches are found in the literature.
Concerning second-order conditions, the polar cone of the gradient of the binding
inequality constraints with multipliers equal to zero must be replaced with the dual
cone, see Definition 1.26. The necessary and sufficient conditions involving the in-
equality constraints in Theorem 7.24 also change sign. The symmetric matrix HL is
now required to be positive semi-definite for the necessary conditions and positive
definite for the sufficient conditions, with respect to the appropriate linear spaces and
cones. Apart from a possible redefinition of the Lagrangian function, Theorem 7.25
remains the same.

Exercises

Exercise 7.1 Consider the function f : R
2 → R defined by

f (x, y) =
{
0 if (x, y) = (0, 0),

xn ym/(x2 + y2) otherwise,
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with n and m nonnegative integers. For which values of n and m is the function
continuous at (0, 0)? For which values is it differentiable? Set n = m = 1 and
compute the supremum of the function on the set of points (x, y) ∈ R

2 that satisfy
the constraint x2 + y2 = 1. Does this supremum correspond to a local maximum of
the function in R

2? Does it correspond to a strict local maximum?

Exercise 7.2 Consider the function f : R
2 → R defined by

f (x, y) =
{

αx2y if y = x2,

βy otherwise,

with α, β ∈ R. For which values of α and β is the function continuous or differen-
tiable inR

2? For which values is it continuous/differentiable at the origin? Let β = 3
and find all values of α and all vectors u, ‖u‖ = 1, such that Du f (1, 1) = 3.

Exercise 7.3 Consider the function f : R
2 → R defined by

f (x, y) =
{
0 if (x, y) = (0, 0),

e−1/(x2+y2) otherwise.

Is the function continuous at (0, 0)? Is it differentiable? Find the maximum and
minimum of the function on the set of points (x1, x2) such that max{|x1|, |x2|} ≤ 1.
Compute the second-order Taylor polynomial of the function around the origin.

Exercise 7.4 Consider the function f : R
n → R≥0, f (x) = log(1 + ‖x‖2). Use

Theorem 7.7 and the Cauchy-Schwarz inequality to derive an upper bound to the
incremental ratio | f (x) − f (y)|/‖x− y‖ in the ball of radius r centred at the origin.

Exercise 7.5 Consider the function f : R
3 → R defined by

f (x, y, z) = sin(x + y) + cos(x − y) + z.

Given a generic point w = (w1, w2, w3) ∈ R
3, consider the set A(w) = [w1 −

1/2, w1 + 1/2] × [w2 − 1/2, w2 + 1/2] × {w3}. Find a Taylor polynomial that
approximates f in A(w) to a precision of 10−1. Use this polynomial around the
origin to approximate f (0.1, 0.1, 0).

Exercise 7.6 Find the tangent to the curve in R
2 implicitly defined by f (x, y) =

x3 + xy2 + y2 = c where it intersects with the axes, as a function of c.

Exercise 7.7 Consider the curve implicitly defined by the equation log(1 + x2 +
y2)+ log(1+x2) = c. Find the points ofR

2 where the tangent to the curve is parallel
to the x axis as a function of c.
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Exercise 7.8 Compute the derivative of the functions y(x) and z(x) implicitly de-
fined by the system of equations

{
f (x, y, z) = ex + e−y + z = 0,

g(x, y, z) = e−x + yz − 1 = 0,

in terms of x , y, and z.

Exercise 7.9 Consider the functions y(x) and z(x) implicitly defined by

{
f (x, y, z) = −xy + 2xz + βz + x2 = 0,

g(x, y, z) = αy2 + 2γ x + βz2 = 0,

with (α, β, γ ) ∈ R
3. For each set S1 = {x = 0, y �= 0, z �= 0}, S2 = {y = 0, x �=

0, z �= 0} and S3 = {z = 0, x �= 0, y �= 0}, determine the possible values of α, β,
and γ such that the derivatives y′(x) and z′(x) exist in the whole set.

Exercise 7.10 Consider the functions u, v, and w from R
2 → R,

u = x + y, v = x − y, w = 2 cos x sin x

cos 2x
+ 2 cos x cos y.

Prove that they are dependent and find their functional relation.

Exercise 7.11 Consider the function f (x, y) = xy(x + y − 1). Find all its strict
local maximum and minimum points. Find its minimum and maximum in the closed
triangle with vertices A = (0, 0), B = (1, 0), and C = (0, 2).

Exercise 7.12 Consider the function f (x, y) = x4 + 2x2y2 + y4 − 2x2. Find all its
local maximum and minimum points. Find its minimum and maximum in the closed
circle with the centre in the origin and radius equal to r > 0, as a function of r .

Exercise 7.13 Consider the function f (x, y) = log(x) + log(a + y) with a ≥ 0.
Solve the problem

max f (x, y) such that x + y ≤ w and x, y ≥ 0,

as a function of w > 0.

Exercise 7.14 Let f (x) be a strictly increasing real-valued function and r a positive
constant. Find the maximum of the function F : R

n → R, F(x) = ∑n
i=1 f (xi ) such

that
∑n

i=1 x
2
i ≤ r2.
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Exercise 7.15 (Dual norm)Based on the definitions in Exercise 4.18 and Sect. 4.2.2,
prove that the dual of the p-norm ‖.‖p is the q-norm ‖.‖q with 1/p + 1/q = 1. In
particular, the dual of the Euclidean norm is the Euclidean norm itself. How does
this relate to the Holder inequality in Theorem 4.4?

Exercise 7.16 (Failure of Karush–Kuhn–Tucker condition) InR
2, find theminimum

point (x, y) of the function f (x, y) = y such that g(x, y) = x2 − y3 ≤ 0. Check
that in the solution there is no λ ≥ 0 such that d f = λdg. Why Theorem 7.22 does
not apply? Hint: Check the nature of the constraint that defines the feasible set.

Exercise 7.17 (Failure ofKarush–Kuhn–Tucker condition) InR
2, find themaximum

point (x, y) of the function f (x, y) = x + y such that g1(x, y) = x2 + y2 ≤ 1 and
g2(x, y) = (x − 2)2 + y2 ≤ 1. Check that in the solution there is no λ1, λ2 ≥ 0
such that d f = λ1dg1 + λ2dg2. Why Theorem 7.22 does not apply? Hint: Check
the nature of the constraints that define the feasible set.

Exercise 7.18 (Strong duality failure)With reference to Example 7.23, consider the
problemofmaximising x2 for x ∈ [0, 1]. Derive the associated Lagrangian and prove
that strong duality does not apply. In other terms, the solution of the dual problem is
greater than the solution of the primal problem.

Exercise 7.19 (Strong duality success) With reference to Example 7.23, consider
the problem of maximising

√
x for x ∈ [0, 1]. Derive the associated Lagrangian and

prove that strong duality applies. In other terms, the solution of the dual problem is
equal to the solution of the primal problem.

Exercise 7.20 (Consumption smoothing) An agent enjoys an utility U (c) = ∑T
t=1

β t cα
t from the consumption stream c = (c1, . . . , cT ) ∈ R

T≥0 over T periods. Assume
that α, β ∈ (0, 1), so that the agent is impatient and prefers to consume sooner rather
than later. The present value of the entire consumption is v(c) = ∑T

t=1 ct . Find the
consumption stream that maximises U (c) so that v(c) ≤ w, for a constant w > 0.

Exercise 7.21 (Production problem) Given a quantity of labour l ≥ 0 and capital
k ≥ 0, a firmproduces an output y = kαlβ withα, β > 0. If the positive constants py ,
pk , and pl represent the price of output good, capital, and labour respectively, find,
if there exists, the production level y that maximises the profit π = py y− pkk− pll
as a function of α, β, and prices. Hint: Check also the second-order conditions.

Exercise 7.22 (Consumption-leisure problem) With reference to Example 7.28, let
the utility of consumption be U = ∏n

i=1 x
αi
i with αi ∈ (0, 1) ∀i . Assume that the

agent has an endowment of H units of time. By working an amount l of time, the
agent receives an income wl, with w > 0, and enjoys a utility from leisure equal to
H − l. Maximise the total utility of the agent U + H − l so that

∑n
i=1 pi xi ≤ wl

and 0 ≤ l ≤ H .
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8.1 Definite Integrals

Consider a bounded function f : D ⊆ R → R and an interval [a, b] ⊆ D. Of
paramount relevance for the following discussion is the notion of a partition of the
interval.

Definition 8.1 (Partition of the interval ) A partition P = {x0 = a, x1, ..., xN−1,

xN = b} of the interval [a, b] is a set of increasing points belonging to the interval,
xi ∈ (a, b) and xi < xi+1, ∀i ∈ 1, ..., N − 2.

The partition P divides the closed interval [a, b] into N closed subintervals [xi xi+1]
with overlapping endpoints.

Definition 8.2 (Upper and lower sum) Consider a bounded function f over the
interval [a, b]. For any finite partition P of [a, b], the upper sum is

U f (P) =
N∑

i=1

(xi − xi−1) sup
[xi−1,xi ]

f,

and the lower sum is

L f (P) =
N∑

i=1

(xi − xi−1) inf[xi−1,xi ]
f,

where sup[x,y] f and inf [x,y] f are, respectively, the supremum and infimum of the
function f in the closed interval [x, y].
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For any bounded function f and any partition P , U f (P) ≥ L f (P). Given two
partitions P and P ′ of [a, b], the partition P ′′ = P ∪ P ′ contains all points of P and
P ′, with duplicate points duly removed. We write P ⊆ P ′ if P ′ is a refinement of
the partition P , that is, P ′ contains all the points of P plus possibly others. Some or
all of the intervals in which P divides [a, b] are further divided when considering
P ′. In this case P ′ = P ∪ P ′.

Theorem 8.1 If P ⊆ P ′, then U f (P) ≥ U f (P ′) and L f (P) ≤ L f (P ′).

Proof Consider a point y ∈ (xi−1, xi ) with xi−1, xi ∈ P and y ∈ P ′ \ P . For the
property of the supremum

sup
[xi−1,xi ]

f ≥ sup
[xi−1,y]

f and sup
[xi−1,xi ]

f ≥ sup
[y,xi ]

f,

so that

(xi − xi−1) sup
[xi−1,xi ]

f ≥ (y − xi−1) sup
[xi−1,y]

f + (xi − y) sup
[y,xi ]

f.

Since

U f (P ∪ {y}) =U f (P)+
(y − xi−1) sup

[xi−1,y]
f + (xi − y) sup

[y,xi ]
f − (xi − xi−1) sup

[xi−1,xi ]
f,

we have U f (P) ≥ U f (P ∪ {y}). At the same time, using a similar argument based
on the properties of the infimum, it is immediate to see that L f (P) ≤ L f (P ∪ {y}).
This shows that each time a new point y is added to the partition, the upper sum may
decrease and the lower sum may increase. By repeating the procedure, adding any
y ∈ P ′/P , the assertion follows. �

Let P([a, b]) be the set of all possible partitions of the interval [a, b]. Note that,
regardless of the partition considered, the upper and lower sums of f over [a, b]
are bounded above by (b − a) sup[a,b] f and below by (b − a) inf [a,b] f . Then,
both the set of the upper sums obtained considering any possible partition U f =
{U f (P) | P ∈ P([a, b])} and that of the lower sums obtained in the same way
L f = {L f (P) | P ∈ P([a, b])}, are bounded. The next result shows that they are
also separated.

Theorem 8.2 For any U ∈ U f and any L ∈ L f , it is U ≥ L.

Proof Let P be such that U = U f (P) and P ′ be such that L = L f (P ′). Consider
P ′′ = P ∪ P ′. Then, since P ′′ is a refinement of both P and P ′, U = U f (P) ≥
U f (P ′′) ≥ L f (P ′′) ≥ L f (P ′) = L , which proves the assertion. �
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We are ready to define when the integral of the function f over the interval [a, b]
exists and what its value is.

Definition 8.3 (Riemann integral) If supL f = inf U f then the function f is Rie-
mann integrable on [a, b]. The integral of the function f on [a, b], indicated by∫ b
a dx f (x), is the unique element that separates the sets of lower and upper sums,
that is, supL f and inf U f . The set of functions that can be integrated on [a, b] is
denoted by R([a, b]).

This integral takes its name from the German mathematician Bernhard Riemann
(1826–1866). The symbol used to denote integration

∫
is a peculiarly shaped “s”

letter, for “sum”. The functional expression on its right is called integrand. The
variable used within the integral, most often x in this book, has no intrinsic meaning.
It is like the index in a summation, i.e.

∫ b
a dx f (x) = ∫ b

a dy f (y).1 The quantity
supL f corresponds to the lower integral and the quantity inf U f to the upper integral
of the function over the interval, so that Definition 8.3 can be restated by saying that
the function is integrable if its upper and lower integrals are equal. The Riemann
integral of a function f over an interval [a, b] is often called definite, because the
integration endpoints a and b are specified.

� Example 8.1 (Integral of the constant function) Consider the constant function
f (x) = c and the interval [a, b].Whatever partition P one takes,U f (P) = L f (P) =
c(b − a). We can conclude that the constant function can be integrated over any
interval, and the value of the integral is just the value of the function multiplied by
the length of the interval.

The previous example is particularly simple. In general, one proves the integra-
bility of a function f on a given interval by showing that for any ε > 0, there exists
a partition P such that U f (P) − L f (P) < ε. In fact, this is possible only if the two
sets L f and U f share a common boundary, that is, if f is integrable on [a, b].

� Example 8.2 (Dirichlet function) Consider a function f (x) whose value is 0 for
the rational and 1 for the irrational numbers,

f (x) =
{
0 if x ∈ Q,

1 if x ∈ R \ Q.

Because rationals are dense inR, in any subinterval [xi−1, xi ]of anypartition P of any
interval [a, b], there are both rational and irrational numbers. Then, sup[xi−1,xi ] f = 1

1 In many textbooks the position of the integrand and the integration variable are reversed, as in∫
f (x)dx . This is just a convention. To remind the readers that dx is nothing more than an index,

it is preferable to position it near the integration symbol.
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and inf [xi−1,xi ] f = 0. Hence, U f (P) = b − a and L f (P) = 0 for any P . We
therefore conclude that the function f cannot be integrated in any interval.

Another possible approach to proving integrability is to identify a sequence of
partitions of a given interval (Pn) and show that, for a function f , limn→∞ U f (Pn) =
limn→∞ L f (Pn) = c for some constant c. This is possible only if the function f is
integrable on the interval considered and the value of the integral is c. However, if for
a specific sequence (Pn), limn→∞ U f (Pn) �= limn→∞ L f (Pn), we cannot conclude
that the integral of the function does not exist. We only know that the sequences
of upper and lower sums computed on the specific sequence of partitions that we
considered do not converge to it.

� Example 8.3 (Integral of the identity function) A regular grid, also called a lattice
or an equispaced partition, over an interval [a, b] is a partition Pn = {xh = a +
h(b − a)/n | h = 0, ...., n}. Consider the identity function f (x) = x . Using the
regular grid, the upper sum reads

Ux (Pn) =
n∑

h=1

(xh − xh−1) sup
[xh−1,xh ]

x =
n∑

h=1

(xh − xh−1)xh

=
n∑

h=1

b − a

n
(a + b − a

n
h) = a(b − a) + (b − a)2

n2
n(n + 1)

2
,

while the lower sum is

Lx (Pn) =
n∑

h=1

(xh − xh−1) inf[xh−1,xh ]
x =

n∑

h=1

(xh − xh−1)xh−1

=
n∑

h=1

b − a

n
(a + b − a

n
(h − 1)) = a(b − a) + (b − a)2

n2
n(n − 1)

2
.

From the previous expressions limn→∞ Ux (Pn) = limn→∞ Lx (Pn) = b2/2−a2/2.

� Example 8.4 (Thomae’s function) Consider the real function f defined on [0, 1]
as follows:

f (x) =
{
0 if x ∈ R\Q,

1/q if x ∈ Q and x = p/q in lowest terms.

Notice that for any equispaced partition Pn , if n is a prime number, then in any
interval [(h − 1)/n, h/n], f (x) ≥ h/n. Therefore, U f (Pn) ≥ sn/n2, with sn =
n(n+ 1)/2. Since L f (Pn) = 0, it seems that using equispaced partitions, we cannot
prove that the function f is integrable. We have to be slightly more smart than that.
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Note that if q > 1, the function takes the value 1/q for at most q − 1 points. For
example, f (x) = 1/10 for x equal to 1/10, 3/10, 7/10 and 9/10. Therefore, fixing
n, there is a finite set of points Qn ⊂ Q for which f (x) > 1/n: the rational points
whose lowest terms representation p/q has q < n. For what said above, the number
of points in Qn is bounded above by sn .

Consider a partition P̃n that has intervals of size 1/s(n)2 around the points in Qn

plus the regular grid of size n. In any interval that does not contain a point of Qn ,
f ≤ 1/n. In the intervals that contain a point of Qn , f ≤ 1. So,

U f (P̃n) ≤
n∑

h=1

1

n

1

n
+ s(n)

1

s(n)2
= 1

n
+ 1

s(n)
,

and limn→∞ U f (P̃n) = 0. As we have L f (P̃n) = 0, the function f is Riemann

integrable in [0, 1] and ∫ 1
0 dx f (x) = 0.

8.1.1 Properties of the Definite Integral

It is useful to review a series of properties that derive directly from the formal
definition of the integral.

Theorem 8.3 Consider an interval [a, b] and c ∈ [a, b]. Then f ∈ R([a, b]) if and
only if f ∈ R([a, c]) and f ∈ R([c, b]). Moreover,

∫ c

a
dx f +

∫ b

c
dx f =

∫ b

a
dx f.

Proof Assume f ∈ R([a, b]). Then ∀ε > 0, take a partition P of [a, b] such that
U f (P)− L f (P) < ε. Now consider the partition P1 = P ∪{c}. This is a refinement
of P , so that U f (P1) − L f (P1) < ε. Now P1 = P2 ∪ P3 where P2 contains all
the points in the interval [a, c] and P3 all the points in the interval [c, b]. Then
U f (P2) − L f (P2) < ε and U f (P3) − L f (P3) < ε, which implies f ∈ R([a, c])
and f ∈ R([b, c]).

Let us prove the opposite implication. For any ε > 0, let P1 be a finite partition
of [a, c] and P2 a finite partition of [c, b] such that U f (P1) − L f (P1) < ε/2 and
U f (P2) − L f (P2) < ε/2. Consider the partition P3 = P1 ∪ P2. By construction,
U f (P3) = U f (P1)+U f (P2), L f (P3) = L f (P1)+L f (P2), andU f (P3)−L f (P3) <

ε. This implies f ∈ R([a, b]). From the definition of integral,

∫ c

a
dx f +

∫ b

c
dx f − ε < L f (P1) + L f (P2) = L f (P3) ≤

∫ b

a
dx f ≤

≤ U f (P3) = U f (P1) +U f (P2) <

∫ c

a
dx f +

∫ b

c
dx f + ε.
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Being true for any ε > 0, this proves the second part of the assertion. �

It is customary to consider integrals with reverse endpoints. If a ≥ b we pose∫ a
b dx f = − ∫ b

a dx f and obviously
∫ a
a dx f = 0. In general, if a set of points

E can be written as the union of intervals overlapping at most on the endpoints
E = ∪n

i=1[ai , bi ], one can write2
∫

E
dx f =

n∑

i=1

∫ bi

ai
dx f,

provided that all the integrals on the right-hand side exist.
Under suitable conditions, we can divide the integral of the sum of functions into

the sum of their integrals.

Theorem 8.4 If f, g ∈ R([a, b]), then f + g ∈ R([a, b]) and
∫ b

a
dx( f + g) =

∫ b

a
dx f +

∫ b

a
dxg.

Proof By hypothesis ∀ε > 0, there exists a partition P such that U f (P) −
L f (P) < ε/2 and Ug(P) − Lg(P) < ε/2. For the property of supremum and
infimum U f +g(P) ≤ U f (P) + Ug(P) and L f +g(P) ≥ L f (P) + Lg(P), so that
U f +g(P) − L f +g(P) < ε, which proves the first part of the assertion. From the
definition of an integral,

∫ b

a
dx f +

∫ b

a
dxg − ε < L f (P) + Lg(P) ≤ L f +g(P) ≤

∫ b

a
dx ( f + g)

≤ U f +g(P) ≤ U f (P) +Ug(P) ≤
∫ b

a
dx f +

∫ b

a
dxg + ε.

Being true for any ε > 0, this proves the second part of the assertion. �

If f is integrable in [a, b], then c f , with c any constant, is integrable on the same
interval. The value of the integral of c f is c times the integral of f , that is,

∫ b
a dxc f =

c
∫ b
a dx f . Together with Theorem 8.4, this implies that the function from R([a, b])

to R that assigns to each integrable function the value of its integral, f → ∫ b
a dx f ,

is a linear map. The integral also interacts in a natural way with the order relation.

2 The extension of the notion of integral to more complicated sets is non-trivial and pertains to the
topic of measure theory, see Chap. 9.
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Theorem 8.5 If f, g ∈ R([a, b]), and f ≥ g in [a, b], then ∫ b
a dx f ≥ ∫ b

a dxg.

Proof This is a trivial consequence of the fact that for any partition P , if f ≥ g,
U f (P) ≥ Ug(P) and L f (P) ≥ Lg(P). �

8.1.2 Riemann Integrable Functions

This section discusses criteria for the identification of integrable functions. The
reader is warned that the question of which functions can be Rieman integrated on a
given interval cannot be definitively resolvedwithout the use of Lebesgue integration
theory (see Sect. 9.3.1). However, some general results can be established.

Theorem 8.6 If f ∈ R([a, b]) and g ∈ C0([inf [a,b] f, sup[a,b] f ]), then g ◦ f ∈
R([a, b]).

Proof If g or f are constant, the proof is trivial. Thus, we assume that they are not
and set m = inf [a,b] f , M = sup[a,b] f , and � = sup[a,b] g ◦ f − inf [a,b] g ◦ f > 0.

Consider any ε > 0. We have to prove that there exists a partition P of [a, b]
such thatUg◦ f (P) − Lg◦ f (P) < ε. Since g is continuous in [m, M], it is uniformly
continuous (see Theorem 3.5). Thus, there exists a δ > 0 such that, for any x, y ∈
[m, M], if |x − y| < δ, |g(x) − g(y)| < ε/(2(b − a)). At the same time, since f is
integrable, there exists a partition P such thatU f (P) − L f (P) < δε/(2�). We can
show that this is actually the partition that we were looking for.

The subintervals in which the partition P divides the interval [a, b], can be divided
into two groups: A and B. Index the intervals by the index of their upper bound. If
sup[xi−1,xi ] f − inf [xi−1,xi ] f < δ, then i ∈ A, otherwise i ∈ B. Now notice that

∑

i∈B
(xi − xi−1)δ ≤

∑

i∈B
(xi − xi−1)

(
sup

[xi−1,xi ]
f − inf[xi−1,xi ]

f

)
≤

U f (P) − L f (P) <
δε

2�
,

so that
∑

i∈B(xi − xi−1) < ε/(2�). In contrast, if i ∈ A, the distance of the
image of the points in [xi , xi−1] is always less than δ, so that by hypothesis δi =
sup[xi−1,xi ] g ◦ f − inf [xi−1,xi ] g ◦ f < ε/(2(b − a)).

We compute the difference of the upper and lower sums of the composed function
in the two sets of indices A and B separately,

DA =
∑

i∈A

(xi − xi−1)δi <
ε

2(b − a)

∑

i∈A

(xi − xi−1) ≤ ε/2,
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and
DB =

∑

i∈B
(xi − xi−1)δi ≤ �

∑

i∈B
(xi − xi−1) < ε/2.

Because Ug◦ f (P) − Lg◦ f (P) = DA + DB < ε the assertion is proved. �

From Theorem 8.6 the following result follows directly.

Corollary 8.1 Consider f, g ∈ R([a, b]). Then f g ∈ R([a, b]), | f | ∈ R([a, b]),
and

∫ b
a dx | f (x)| ≥

∣∣∣
∫ b
a dx f (x)

∣∣∣.

Proof To prove the first statement, notice that f g = 1
2 ( f + g)2 − 1

2 f 2 − 1
2g

2.
This is the sum of continuous transformations of integrable functions, thus it is
integrable. To prove the second statement, just apply Theorem 8.6 with g(x) = |x |.
The third statement follows by noticing that | f (x)| + f (x) and | f (x)| − f (x) are
both integrable functions and, being positive, their integral cannot be negative, so
that

∫ b
a dx | f (x)| ≥ ± ∫ b

a dx f (x). �

If | f (x)| < M in [a, b], then
∣∣∣
∫ b
a dx f (x)

∣∣∣ < M(b − a). The implication in Corol-

lary 8.1 cannot be reversed. That is, if | f | ∈ R([a, b])we cannot, in general, conclude
that f ∈ R([a, b]). Example 8.3 shows that the identity function f (x) = x is in-
tegrable. Thus, from Theorem 8.6, we can derive another result of great practical
importance.

Corollary 8.2 If f ∈ C0([a, b]), then f ∈ R([a, b]).

A second important class of integrable functions is that of monotonic functions.

Theorem 8.7 If f is monotonic in [a, b], then f ∈ R([a, b]).

Proof Assume that f is increasing and define � = f (b) − f (a). Then ∀ε > 0,
choose a partition P such that ∀i , xi − xi−1 < ε/�. So

U f (P) − L f (P) =
N∑

i=1

(xi − xi−1)

(
sup

[xi ,xi−1]
f − inf[xi ,xi−1]

f

)
=

∑

i

(xi − xi−1)( f (xi ) − f (xi−1)) <
ε

�

∑

i

f (xi ) − f (xi−1) = ε.

The proof is similar for a decreasing function. �

Now imagine having a function that is monotonic or continuous in [a, b] apart from
a point y ∈ [a, b]. Let � = sup[a,b] f − inf [a,b] f . Fix a ε > 0. Then there exists a
partition P1 of [a, y − ε/(6�)] such that U f (P1) − L f (P1) < ε/3 and there exists
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a partition P2 of [y + ε/(6�), b] such that U f (P2) − L f (P2) < ε/3. Let P3 be any
partition of [y−ε/(6�), y+ε/(6�)]. It is immediate to see thatU f (P3)−L f (P3) <

ε/3. Thus, P = P1 ∪ P2 ∪ P3 is a partition of [a, b] such that U f (P) − L f (P) < ε

and we have shown that the function f can be integrated on [a, b]. The essential
conclusion brought about by the previous reasoning is that the behaviour of the
bounded function f at an isolated point is not important to decide whether it can be
integrated or not. Since we can always rewrite the integral over [a, b] as the sum of
the integrals over the intervals that compose a partition of [a, b] (see Theorem 8.3),
we can always deal with a finite number of problematic points, as we did above. Our
conclusion is summarised below.

Corollary 8.3 If f is a bounded function on [a, b] with a finite number of discon-
tinuities and/or with a finite number of points in which it is not monotonic, then
f ∈ R([a, b]).

8.1.3 Improper Integrals

Under certain conditions, it is possible to extend the notion of definite integral to
unbounded intervals, such as [a,+∞), (−∞, a], or the whole R.

Definition 8.4 (Improper unbounded integral) If ∀z > 0, f ∈ R([a, a + z]), the
improper integral on [a,+∞) is defined as

∫ +∞

a
dx f (x) = lim

z→+∞

∫ a+z

a
dx f (x),

provided that the limit exists. The set of functions (improperly) integrable on
[a,+∞) is denoted by R([a, +∞)). Analogously, if ∀z > 0, f ∈ R([a − z, a]), the
improper integral on (−∞, a] is defined as

∫ a

−∞
dx f (x) = lim

z→+∞

∫ a

a−z
dx f (x),

provided that the limit exists. The set of functions (improperly) integrable on (−∞, a]
is denoted by R((−∞, a]). Finally, if both improper integrals on the right-hand side
exist, we define

∫ +∞

−∞
dx f (x) =

∫ +∞

0
dx f (x) +

∫ 0

−∞
dx f (x).

The set of functions that can be (improperly) integrated on R is denoted by R(R).
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For the last definition, it is important that both limits exist separately. A simple
condition to determine whether a function can be integrated in an improper sense
constitutes a new convergence criterion for real number series (see Chap. 5).

Theorem 8.8 Consider a function f (x) ≥ 0 decreasing in [N , +∞), with N ∈ N.
The series

∑∞
n=N f (n) converges if and only if f ∈ R([N , +∞)).

Proof Let n ≥ N . For a monotonically decreasing function, f (n) ≥ f (x) ≥ f (n+
1) for x ∈ [n, n + 1], so that

f (n + 1) ≤
∫ n+1

n
dx f (x) ≤ f (n).

Summing element by element,

∞∑

n=N+1

f (n) ≤
∫ +∞

N
dx f (x) ≤

∞∑

n=N

f (n),

proving the assertion. �

Positive functions can be integrated over unbounded intervals if their asymptotic
decrease is sufficiently fast. If a positive function f is integrable in [a,+∞), any
positive function g > 0 that is integrable on any bounded interval [a, b] and is
asymptotically lower than f , is integrable on [a,+∞). Similar reasoning applies to
(−∞, a].

� Example 8.5 (Improper integrals from asymptotic behaviours) Consider a func-
tion f ∈ R([a, a + z]) for any z > 0. We want to show that if for some α > 1,
limx→+∞ f (x)xα = 0, then f ∈ R([a, +∞)). Due to the limit, ∃x0 > a such
that if x > x0, then | f (x)| < 1/xα . Consider an integer n0 > x0. Notice that∑∞

n=n0 | f (n)| ≤ ∑∞
n=n0 1/n

α . The term on the right is a generalised harmonic se-
ries (see Example 5.21), and forα > 1 it is convergent. Hence, the series

∑∞
n=n0 f (n)

is absolutely convergent, and consequently, convergent. Using Theorem 8.8 the as-
sertion follows.

Another possible extension of the definite integral involves considering
unbounded functions. Since the theory developed so far specifically applies to bound-
ed functions, this is a second case of improper integration.

Definition 8.5 (Improper bounded integral) Consider an interval [a, b] and a func-
tion f bounded on [a, b) and such that limx→b− f (x) = ±∞. If f ∈ R([a, z]) for
z ∈ (a, b) we define the improper integral

∫ b

a
dx f (x) = lim

z→b−

∫ z

a
dx f (x),
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provided that the limit exists. The set of functions that can be (improperly) integrated
over [a, b) is denoted R([a, b)). Analogously, if f is bounded on (a, b], such that
limx→a+ f (x) = ±∞ and f ∈ R([z, b]) for all z ∈ (a, b) we define the improper
integral ∫ b

a
dx f (x) = lim

z→a+

∫ b

z
dx f (x),

provided that the limit exists. The set of functions that can be (improperly) integrated
over (a, b] is denoted by R((a, b]).

If f is divergent at a point c ∈ (a, b), it can still be (improperly) integrated over
[a, b] and we set

∫ b

a
dx f (x) = lim

z→c−

∫ z

a
dx f (x) + lim

z→c+

∫ b

z
dx f (x),

provided that the two improper integrals on the right-hand side exist.

Cases that mix the situation in Definitions 8.4 and 8.5, such as an improper integral in
(a,+∞) of a function diverging in a, can be reduced to sums of improper integrals of
the previous kinds by splitting the integration interval into convenient pieces. What
is important to understand is that all integrals in all pieces in which the interval is
split must exist independently for the original integral to exist.

8.1.4 Integral of Vector-Valued Functions

The notion of Riemann integral can be easily extended to real functions with values
in R

n . The essential idea is that the integration is intended as a component-by-
component operation.

Definition 8.6 A vector-valued function f : [a, b] ⊂ R → R
n is integrable in

[a, b], f ∈ R((a, b]), if all its components are integrable functions, fi ∈ R((a, b]),
and

∫ b
a dxf(x) = (

∫ b
a dx f1(x), . . . ,

∫ b
a dx fn(x)).

The image l = f([a, b]) of a vector-valued function identifies a set of points in the
space Rn . If f ∈ C1([a, b]), then l is a differential curve. The function f represents
a possible parametrisation of the curve l. Any continuously differentiable and in-
vertible function φ : R → R can be used to define a new parametrisation of l with
f ◦ φ. The theory of integration helps to derive some important quantities related to
l. From the Taylor expansion f(x + δx)− f(x) = dfδx +o(δx), we discover that the
length of the infinitesimal arc between the points f(x) and f(x + δx) is proportional
to the norm of the differential ‖df(x)‖|δx |. From this observation, the following is
derived.
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Definition 8.7 (Length of a differential curve) Let f : [a, b] ⊂ R → R
n be a

differential curve. Its length is defined as l = ∫ b
a dx‖df(x)‖.

Because we assumed df to be continuous, Corollary 8.2 guarantees that the length
of the curve is well defined.

� Example 8.6 (Length of the hypercube diagonal) Consider the function f :
[0, 1] → R

n with fi (x) = ax . When x varies from 0 to 1, this function describes a
straight line between the origin and the point (a, . . . , a). This is the diagonal of the nth

dimensional hypercubewith side length a. In this case, df = (a, . . . , a) and applying
Definition 8.7 we obtain the length of the diagonal as l(a) = ∫ 1

0 dx
√
na2 = √

na.

A differential curve can also be defined implicitly by a condition likeG(x, f(x)) =
z0, where G : E ⊆ R

n+1 → R
n , G ∈ C1(E), and z0 ∈ R

n . Theorem 7.14 provides
the expression for df that can be used to compute the length of the arc of the implicitly
defined curve applying Definition 8.7. The parametric description obtained through
the implicit function theorem can be only local, so we might be required to use
different parameters in different parts of the curve.

8.2 The Fundamental Theorem of Calculus

In practise, even for relatively simple functions, it is difficult to compute the integral
using its definition and the limit of appropriately defined partitions, as was done in
Examples 8.3 or 8.4. The fundamental result toward amoremanageable computation
of integrals is their connection to the concept of an “inverse derivative” or “anti-
derivative” introduced in the following.

Definition 8.8 (Primitive function) Consider a function f defined over an interval
[a, b]. The function F(x) is a primitive function of f (x) in [a, b] if dF(x)/dx =
f (x), for any x ∈ [a, b].

The previous definition does not clarify which functions actually possess a primitive.
However, it is clear that if F1(x) and F2(x) are primitive functions of f in [a, b],
their difference F1(x)− F2(x), having derivative zero, is constant in this interval. In
other terms, if F(x) is a primitive function of f (x), then F(x) + c, with c any real
constant, is also a primitive function. A second key notion for the present analysis is
the following.

Definition 8.9 (Integral function) Let f ∈ R([a, b]), then for any x ∈ [a, b] the
integral function is defined as F(x) = ∫ x

a dz f (z).

We can immediately derive an important result.
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Corollary 8.4 The integral function is continuous.

Proof For any couple of points x and x + h in [a, b] it is

|F(x + h) − F(x)| =
∣∣∣∣
∫ x+h

x
dz f (z)

∣∣∣∣ ≤ h sup
[x,x+h]

| f (x)|

so that limh→0 |F(x + h) − F(x)| = 0. �

The connection between the primitive function of Definition 8.8 and the integral
function of Definition 8.9 is not immediately obvious. The first is defined starting
from the notion of derivative and the second, being an integral, depends on the relative
positions of the sets of upper and lower sums. The following theorem, which is
considered “fundamental” for its importance in the development of modern calculus,
clarifies their relationship.

Theorem 8.9 (Fundamental theoremof calculus) If f ∈ C0([a, b]), then the integral
function F(x) of f (x) in [a, b] is differentiable and is a primitive function of f (x),
that is, dF(x)/dx = f (x) for any x ∈ [a, b].

Proof We have to show that limh→0(F(x + h) − F(x))/h = f (x). One has

h inf[x,x+h] f ≤ F(x + h) − F(x) =
∫ x+h

x
dz f (z) ≤ h sup

[x,x+h]
f

so that

inf[x,x+h] f ≤ F(x + h) − F(x)

h
≤ sup

[x,x+h]
f.

Since f is continuous in x , ∀ε > 0, ∃δ > 0 such that | f (x ′) − f (x)| < ε if
|x ′ − x | < δ. If h < δ, then f (x) − ε < inf [x,x+h] f and sup[x,x+h] f < f (x) + ε,
from which the assertion follows. �

Due to the previous theorem, the primitive function F(x) is often named the indefinite
integral of f and is denoted with

∫
dx f (x). The difference with respect to the

definite integral is the lack of any endpoint specification on the integral sign. It is
important to note that the integral function is, in general, not differentiable. In fact,
to obtain a differentiable integral function, Theorem 8.9 assumes that the function f
is continuous.

� Example 8.7 (Non-differentiable integral function) Consider the left continuous
step function I : R → R, with I (x) = 0 if x ≤ 0 and I (x) = 1 if x > 0. The
function I is monotonic and therefore integrable in any interval. Its integral function
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is

F(x) =
∫ x

0
dz I (z) =

{
0 x < 0,

x x ≥ 0.

For any interval [a, b], ∫ b
a dz I (z) = F(b) − F(a), but F is not differentiable in

x = 0. The step function is also known as Heaviside function, named after the
English mathematician Oliver Heaviside (1850–1925), and often denoted by the
symbol θ(x). We will revisit the step function in Example 8.14.

An integrable function that is not continuousmight not have a primitive. However,
if the function has a finite number of discontinuities, a primitive can be defined in all
the intervals between the discontinuities. At the same time, the fact that a function
has a primitive in a given interval does not imply that it is Riemann integrable. For
example, the function of Example 6.11 is differentiable in [−1, 1], but its derivative
is unbounded and consequently not Riemann integrable.

� Example 8.8 (Differentiable and Lipschitz continuous functions) We can use the
theory of integration to prove that a continuously differentiable function is Lipschitz
continuous. Consider an interval (a, b) and assume f ∈ C1((a, b)). Then according
to Theorem 8.9,

f (y) = f (x) +
∫ y

x
dz f ′(z), ∀x, y ∈ (a, b).

Define M = supx∈(a,b) | f ′(x)|. This quantity exists because f ′ is continuous. Then
∀x, y ∈ (a, b),

| f (y) − f (x)| =
∣∣∣∣
∫ y

x
dz f ′(z)

∣∣∣∣ ≤
∫ y

x
dz| f ′(z)| ≤ M |y − x |.

We can conclude that the function f is Lipschitz continuous in (a, b).

The practical relevance of Theorem 8.9 is that knowing a primitive function, we
are able to compute the integral on any domain in which the function is defined. If
F(x) is the primitive function of f (x) in [a, b], then for any couple of points x1 ≤ x2
in [a, b], ∫ x2

x1
dz f (z) = F(x2) − F(x1).

At least for the large class of piecewise continuous functions, the problem of com-
puting the integral is reduced to the problem of identifying a primitive.

� Example 8.9 (Basic indefinite integrals) The following list is obtained starting
from the expression of the derivative of well-known functions (see Examples 6.5,
6.6, and 6.8). The primitive functions are defined at the points in which the original
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functions are continuous. Primitive functions are often reported adding a +c, to
remind the reader that they are not unique. Let us consider this point understood and
omit +c.

∫
dxxα = 1

α + 1
xα+1, α �= −1

∫
dx

1

x
= log |x |

∫
dxex = ex

∫
dxax = 1

log a
ax

∫
dx log x = x log x − x

∫
dx sin x = − cos x

∫
dx cos x = sin x

∫
dx tan x = log | sec x |

∫
dx sinh x = cosh x

∫
dx cosh x = sinh x

∫
dx

a

a2 + x2
= arctan

x

a

∫
dx

a

a2 − x2
= 1

2
log

∣∣∣∣
x + a

x − a

∣∣∣∣

∫
dx

1√
a2 − x2

= arcsin
x

a

∫
dx

1√
x2 − a2

= arccosh
x

a
= log(x +

√
x2 − a2)

∫
dx

a

x
√
x2 − a2

= arcsec
x

a

∫
dx

1√
x2 + a2

= arcsinh
x

a
= log(x +

√
x2 + a2).

There are a number of rules that can be applied to the identification of a primitive
function and to the integration of complex expressions, but two are the most widely
used. The first has to do with the chain rule derived in Theorem 6.6.

Theorem 8.10 (Integration by substitution) Let h(x) ∈ C1([a, b]) be strictly in-
creasing. Then if f is continuous in [h(a), h(b)],

∫ h(b)

h(a)

dx f (x) =
∫ b

a
dxh′(x) f (h(x)).

Proof Since f (x) is continuous, it has a primitive function F(x). Then the left-hand
side can be written as F(h(b)) − F(h(a)). From the chain rule, dF(h(x))/dx =
h′(x) f (h(x)). Thus, F(h(x)) is the primitive function of the integrand on the right-
hand side and the statement follows. �

To exploit Theorem 8.10 one tries to change the variable of integration through a
transformation h(x) that makes the expression of the integrand similar to a known
derivative.

� Example 8.10 (Finding a primitive function by substitution) Given two constants,
a and b, wewant to compute the indefinite integral

∫
dx log(ax+b)when x > −b/a.

Consider y = h(x) = ax + b so that x = (y − b)/a. According to Theorem 8.10,
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replace dx with dy/a so that the integral is reduced to 1/a
∫
dy log ywhich, checking

the table in Example 8.9, is just y(log y − 1)/a. Substituting the definition of y, one
recovers the primitive we are interested into

∫
dx log(ax + b) =

(
x + b

a

)
(log(ax + b) − 1) .

� Example8.11 (Line integral of a scalar field) Consider a differential curve l ⊂ R
n ,

parameterised by a function f : [a, b] ⊂ R → R
n , and a scalar field F : Rn → R.

The composition F ◦ f is a real-valued function. In principle, we can integrate
this function over the curve. If F ◦ f ∈ R((a, b]) the line integral of F over l is∫
l F = ∫ b

a dx‖df‖F(f(x)). Note that this definition does not depend on the specific
parameter that is adopted to describe the curve. In fact, if φ : R → R is a con-
tinuously differentiable and invertible function, according to Theorem 8.10,

∫
l F =

∫ φ−1(b)
φ−1(a)

dxφ′(x)‖df‖F(f(φ(x))), and, from the chain rule, φ′(x)‖df‖ = ‖df ◦ φ‖.

The second rule is related to the formula for the derivative of a product of two
functions, presented in Theorem 6.5.

Theorem 8.11 (Integration by part)Consider f, g ∈ R([a, b]) and assume that their
primitive functions F and G exist, then

∫ b

a
dx f (x)G(x) +

∫ b

a
dx F(x)g(x) = F(b)G(b) − F(a)G(a).

Proof The proof follows directly from observing that F(x)G(x) is a primitive func-
tion of f (x)G(x) + F(x)g(x). �

� Example 8.12 (Reduction formulae) Let n be a natural number, we want to com-
pute the integral In(x) = ∫ x

0 dzzne−z . In the table of Example 8.9 we read that zn is
a primitive function of nzn−1 and, with a simple change of variables,−e−z is a prim-
itive function of e−z . Applying Theorem 8.11 with F(z) = zn and G(z) = −e−z ,

In(x) − nIn−1(x) = F(x)G(x) − F(0)G(0) = −xne−x ,

which provides a recursive rule to compute the desired integral for any n, once we
observe that I0(x) = G(x)−G(0) = 1−e−x . This kind of recursive rule is common
in integral calculus. They are known as reduction formulae.

We conclude this section by providing a few results on the limit and derivative
of the integral function that can often be encountered in applications. If a function
is continuous, the limit of the function is the function computed at the limit. This is
also true for the integral if the integrand is continuous.
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Lemma 8.1 Consider a closed interval I ⊂ R and t0 ∈ I . Let f (x, t) ∈ C0([a, b]×
I ). Then limt→t0

∫ b
a dx f (x, t) = ∫ b

a dx f (x, t0).

Proof Since the function f (x, t) is continuous in the compact set [a, b] × I , it is
uniformly continuous. Hence, ∀ε > 0, ∃δ > 0 such that if x1 = (x1, t1) and x2 =
(x2, t2) are points in [a, b]× I such that ‖x1 − x2‖ < δ, | f (x1, t2)− f (x2, t2)| < ε.
In particular, this means that if |t − t0| < δ, then | f (x, t) − f (x, t0)| < ε/(b − a),
∀x . Then, the statement follows by noting that

∣∣∣∣
∫ b

a
dx f (x, t) −

∫ b

a
dt f (x, t0)

∣∣∣∣ ≤
∫ b

a
dx | f (x, t) − f (x, t0)| ≤ ε

b − a

∫ b

a
dx = ε.

In Lemma 8.1, continuity is important because it guarantees that f (x, t) is integrable
in x for any value of t , including t0. Another operation which is often necessary is
the computation of the derivative of a function which is defined through an integral.
The variable with respect to which the derivative is required might be the value of a
parameter in the integrand or in the endpoints of integration (or both). If the involved
functions are sufficiently smooth, one can pass the derivative under the integral and
exploit the functional dependence at the endpoints.

Theorem 8.12 (Leibnitz integral rule) Consider f (x, t) ∈ C1(I × J ) with I and J
closed real intervals and two functions a(x), b(x) ∈ C1(I ) with images in J . Then
if F(x) = ∫ b(x)

a(x) dt f (x, t),

d

dx
F(x) = b′(x) f (x, b(x)) − a′(x) f (x, a(x)) +

∫ b(x)

a(x)
dt∂x f (x, t).

Proof Consider a sufficiently small h > 0. Without loss of generality we can as-
sume a(x) < b(x). By adding and removing f (x + h, t) in the second integral and
rearranging terms,

F(x + h) − F(x)

h
= 1

h

∫ b(x+h)

b(x)
dt f (x + h, t)+

− 1

h

∫ a(x+h)

a(x)
dt f (x + h, t) +

∫ b(x)

a(x)
dt

f (x + h, t) − f (x, t)

h
.

Consider the first integral on the right-hand side. For the mean value theorem there
exists a λx ∈ [0, 1] such that b(x+h)−b(x) = hb′(x+λxh). Assuming b(x+h) >

b(x), consider the interval K = [b(x), b(x + h)] and note that
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b′(x + λxh) inf
t∈K f (x+h, t) ≤

1

h

∫ b(x+h)

b(x)
dt f (x + h, t) ≤ b′(x + λxh) sup

t∈K
f (x + h, t).

If instead b(x + h) < b(x), just exchange the order of the endpoints in the definition
of K . For the continuity of f , when h → 0, the interval K reduces to the single
point b(x). Thus, both the infimum and the supremum converge to f (x, b(x)), and
the integral expression converges to the first term of the sum in the statement. For
the second term, we can apply precisely the same consideration. For the third and
last term, by the mean value theorem, ∃θx ∈ [0, 1] such that

∫ b(x)

a(x)
dt

f (x + h, t) − f (x, t)

h
=

∫ b(x)

a(x)
dt∂x f (x + θxh, t).

For the continuity of the partial derivative, andby applyingLemma8.1, the expression
in the statement is recovered when h → 0. �

The previous result is named after one of the fathers of modern calculus, the German
mathematician Gottfried Leibniz (1646–1716).

8.3 Riemann–Stieltjes Integral

In this section, we study how to extend the notion of integral to include the possibility
of “weighting” the points in the integration interval by a given measure or density
expressed through a nondecreasing real function α. Let us start by introducing a
suitable definition for the lower and upper sums.

Definition 8.10 (Upper and lower sum) Consider a nondecreasing function α in
the interval [a, b]. Given a bounded function f in the same interval, for any finite
partition P of [a, b], the upper sum of the function f with respect to the Stieltjes
measure α is defined as

U f (P, α) =
N∑

i=1

(α(xi ) − α(xi−1)) sup
[xi−1,xi ]

f,

while the lower sum is

L f (P, α) =
N∑

i=1

(α(xi ) − α(xi−1)) inf[xi−1,xi ]
f,
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where sup[x,y] f and inf [x,y] f represent the supremum and infimum of the function
f in the interval [x, y].

Since the function α is nondecreasing, the quantities α(xi ) − α(xi−1) that appear
in the lower and upper sums are nonnegative. While the Riemann definition of the
upper and lower sum depends on the partition P of the interval [a, b], the Stieltjes
definition, named after the Dutch mathematician Thomas Stieltjes (1856–1894),
depends on both the partition and the weighting function α. Changing the latter, in
general, changes the value of the sum. If α(x) = x , then we return to the Riemann
case. Similarly to the Riemann case, the upper sum cannot increase and the lower
sum cannot decrease when the partition is refined.

Theorem 8.13 Let P ′ be a refinement of partition P, P ⊆ P ′, then U f (P, α) ≥
U f (P ′, α) and L f (P, α) ≤ L f (P ′, α).

Proof Consider a point y ∈ (xi−1, xi ) with xi−1, xi ∈ P and y ∈ P ′/P . For any
interval [x, y], define �α(x, y) = α(y) − α(x). In analogy to the Riemann case,

�α(xi−1, xi ) sup
[xi−1,xi ]

f ≥ �α(xi−1, y) sup
[xi−1,y]

f + �α(y, xi ) sup
[y,xi ]

f,

and because

U f (P ∪ {y}, α) = U f (P, α) + �α(y, xi ) sup
[xi−1,y]

f +

+�α(xi−1, y) sup
[y,xi ]

f − �α(xi−1, xi ) sup
[xi−1,xi ]

f,

we have U f (P, α) ≥ U f (P ∪ {y}, α). Using a similar argument based on the prop-
erties of the infimum, it is immediate to see that L f (P, α) ≤ L f (P ∪ {y}, α). Each
time a new y is added to the partition, the upper sum may decrease and the lower
sum may increase. By repeating the procedure, adding any y ∈ P ′/P , the assertion
follows. �

Let �α = α(b)−α(a). For any partition P , the upper and lower sums of f in [a, b]
are bounded above by �α sup[a,b] f and below by �α inf [a,b] f . Hence, U f (α) =
{U f (P, α) | P ∈ P([a, b])} and L f (α) = {L f (P, α) | P ∈ P([a, b])}, are bounded
sets. In analogy to the Riemann case, they are also separated.

Theorem 8.14 For any x ∈ U f (α) and any y ∈ L f (α), x ≥ y.

Proof The proof is identical to the proof of Theorem 8.2. �

Definition 8.11 (Stieltjes integral) If supL f (α) = inf U f (α) then the function f
is Stieltjes integrable on [a, b] with respect to the measure α. The integral of the



234 8 Integral Calculus

function f , with respect to α, on [a, b], indicated by
∫ b
a dα(x) f (x), is the unique

element that separates the sets of lower and upper sums, that is, supL f (α) and
inf U f (α). The set of integrable functions on [a, b] with respect to α is denoted by
Rα([a, b]).

We can avoid the direct specification of the variable x (recall that it is just an index)
and write

∫ b
a dα f . In general, supL f is the lower integral and inf U f is the upper

integral of the function F in the interval [a, b] with respect to α. The previous
definition can be restated as saying that the function is integrable if its upper and
lower integrals are equal.

� Example 8.13 (Stieltjes integral of the constant function) Consider the constant
function f (x) = c. It is immediate to see that f ∈ Rα([a, b]) for any nondecreasing
α and any interval [a, b] and that

∫ b
a dαc = (α(b) − α(a))c. The constant function

can be integrated with respect to any measure in any interval. At the same time,
if the measure is constant α = c,

∫ b
a dα f = 0 for any bounded function f . Any

bounded function can be integrated with respect to the constant Stieltjes measure in
any interval.

8.3.1 Stieltjes Integrable Functions

Analogously to what has been done with the Riemann integral, it is possible to
identify a few classes of functions that can be integrated. We start by exploring the
relationship between continuity and integrability.

Theorem 8.15 If f is bounded in [a, b] and continuous except in a finite number of
points in which α is continuous, then f ∈ Rα([a, b]).

Proof If α or f are constant, the theorem is trivial. We assume that they are increas-
ing and that f has N discontinuities. For any interval [x, y], define � f (x, y) =
sup[x,y] f − inf [x,y] f , �α(x, y) = α(y) − α(x), � f = � f (a, b) > 0, and
�α = �α(a, b) > 0. We have to prove that ∀ε > 0 there exists a partition P
of [a, b] such that U f (P, α) − L f (P, α) < ε.

We can build a partition P such that a single discontinuity of f is atmost contained
in any subinterval. Since in a neighbourhood of any discontinuity of f , α is contin-
uous, we can always reduce the width of the intervals that contain one discontinuity
of f such that �α(xi−1, xi ) < ε/(2� f N ). In these intervals

�α(xi−1, xi )� f (xi−1, xi ) < ε/(2N ).

In all other intervals, the function f is uniformly continuous, so we can always
find a sufficiently fine partition forwhich� f (xi−1, xi ) < ε/(2�α). In these intervals

�α(xi−1, xi )� f (xi−1, xi ) < ε�α(xi−1, xi )/(2�α).



8.3 Riemann–Stieltjes Integral 235

Let A be the set of indexes relative to the N subintervals that contain one dis-
continuity of f and B be the set of indexes relative to the intervals in which f is
continuous. Consider the two quantities

DA =
∑

i∈A

�α(xi−1, xi )� f (xi−1, xi ) <
∑

i∈I

ε

2N
= ε

2
,

and

DB =
∑

i∈B
�α(xi−1, xi )� f (xi−1, xi ) <

N∑

i=1

ε�α(xi−1, xi )

2�α

= ε

2
.

Because U f (P, α) − L f (P, α) = DA + DB < ε, the assertion follows. �

In particular, if f ∈ C0([a, b]), then f is integrable on [a, b] with respect to any
measure α.

� Example 8.14 (Step function as measure) Consider the left continuous step func-
tion of Example 8.7. We want to prove that if f ∈ C0([a, b]) and z ∈ [a, b], then∫ b
a dI (x − z) f (x) = f (z). For any partition P of [a, b], if [xi−1, xi ] is the interval
that contains z, it is

U f (P, I (x − z)) − L f (P, I (x − z)) = sup
[xi−1,xi ]

f − inf[xi−1,xi ]
f.

In all other intervals, the measure is constant, so that their contribution to the lower
and upper sums is zero. Since f is continuous, it is uniformly continuous, so that for
any ε > 0 we can find a partition P with a sufficiently small interval [xi−1, xi ] such
that

sup
[xi−1,xi ]

f − inf[xi−1,xi ]
f = max[xi−1,xi ]

f − min[xi−1,xi ]
f < ε.

In this partition, max[xi−1,xi ] f − f (z) < ε, that is U f (P, I (x − z)) − f (z) < ε.
This proves that the integral exists and its value is precisely f (z).

Analogously to the Riemann case, the composition of a continuous function with
an integrable function is integrable.

Theorem 8.16 If f ∈ Rα([a, b]) and g ∈ C0([inf [a,b] f, sup[a,b] f ]) then g ◦ f ∈
Rα([a, b]).

Proof The following proof is essentially identical to the Riemann case but we repeat
it for completeness. If g, f , or α are constant, the proof is trivial.We assume that they
are not constant. For any interval [x, y], define � f (x, y) = sup[x,y] f − inf [x,y] f ,
�g◦ f (x, y) = sup[x,y] g ◦ f − inf [x,y] g ◦ f , and �α(x, y) = α(y) − α(x). Set
m = inf [a,b] f , M = sup[a,b] f ,�g◦ f = �g◦ f (a, b) > 0, and�α = �α(a, b) > 0.
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Consider any ε > 0. We have to prove that there exists a partition P of [a, b] such
thatUg◦ f (P, α)− Lg◦ f (P, α) < ε. Since g is continuous in [m, M], it is uniformly
continuous. Thus, there exists a δ > 0 such that for any x, y ∈ [m, M], if |x− y| < δ,
|g(x) − g(y)| < ε/(2�α). At the same time, since f is integrable, there exists a
partition P such that U f (P, α) − L f (P, α) < δε/(2�g◦ f ). We can show that this
is actually the desired partition.

The intervals of P can be divided into two groups: A and B. If � f (xi−1, xi ) < δ,
then i ∈ A, otherwise i ∈ B. Note that

∑

i∈B
�α(xi−1, xi )δ ≤

∑

i∈B
�α(xi−1, xi )� f (xi−1, xi ) ≤ δε

2�g◦ f
,

so that
∑

i∈B �α(xi−1, xi ) ≤ ε/(2�g◦ f ). At the same time, if i ∈ A, the distance of
the image of the points in [xi , xi−1] is always less than δ, so that �g◦ f (xi−1, xi ) <

ε/(2�α). Considering separately the summation on the two groups of indexes, define

DA =
∑

i∈A

�α(xi−1, xi )�g◦ f (xi−1, xi ) ≤ ε

2�α

∑

i∈A

�α(xi−1, xi ) ≤ ε

2
,

and

DB =
∑

i∈B
�α(xi−1, xi )�g◦ f (xi−1, xi ) ≤ �g◦ f

∑

i∈B
�α(xi−1, xi ) ≤ ε

2
.

Summing both inequalities, we obtainUg◦ f (P, α) − Lg◦ f (P, α) = DA + DB < ε,
which proves the assertion. �

� Example 8.15 (Integral of a continuous measure with respect to itself) Assume
that themeasureα is continuous.Wewant to compute

∫ b
a dαα. Sinceα is continuous,

it can be integrated with respect to any measure (c.f Theorem 8.15) and, in particular,
with respect to α. To compute the value of the integral notice that for any partition
P it is

Uα(P, α) + Lα(P, α) =
n∑

i=1

(α(xi ) − α(xi−1))(α(xi ) + α(xi−1)) =
n∑

i=1

α(xi )
2 −

n∑

i=1

α(xi−1)
2 = α(b)2 − α(a)2.

For any ε > 0 there exists a partition P such that Uα(P, α) − Lα(P, α) < ε, so

Uα(P, α) + Lα(P, α)

2
− ε

2
≤ Lα(P, α) ≤

∫ b

a
dαα

≤ Uα(P, α) ≤Uα(P, α) + Lα(P, α)

2
+ ε

2
,
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which implies that

∫ b

a
dαα = Uα(P, α) + Lα(P, α)

2
= 1

2
α(b)2 − 1

2
α(a)2.

In general, this result cannot be extended to discontinuous measures. To see it, con-
sider the step function I (x) of Example 8.14. For any partition P of [−1, 1] let xi
be the lowest point greater than 0. Outside the interval [xi−1, xi ] the function I is
constant, thus ∀ j �= i , I (x j ) − I (x j−1) = 0. Hence, we have

UI (P, I ) − L I (P, I ) = (I (xi ) − I (xi−1))
2 = 1,

which shows that, in this case, the set of upper sums and the set of lower sums cannot
be contiguous.

Next, wemove to the study of the relation betweenmonotonicity and integrability,
extending Theorem 8.7. As already seen in Theorem 8.15, the discontinuities in the
measure function are special points that should be treated with particular care.

Theorem 8.17 If f is monotonic in [a, b] and continuous in the points in which α

is discontinuous, then f ∈ Rα([a, b]).

Proof If f or α are constant, the result has already been proved. Assume that
both functions are not constant and f is increasing. For any interval [x, y], define
� f (x, y) = sup[x,y] f − inf [x,y] f , �α(x, y) = α(y)−α(x), � f = � f (a, b) > 0,
and �α = �α(a, b) > 0. Consider ε > 0 and start with a partition P such that, in
any interval [xi−1, xi ], at most one between α and f is discontinuous. If f is contin-
uous in a given interval, the partition can be refined so that� f (xi−1, xi ) < ε/(2�α).
Using the refined partition,

�α(xi−1, xi )� f (xi−1, xi ) < �α(xi−1, xi )ε/(2�α).

If α is continuous in a given interval, the partition can be further refined such that
�α(xi−1, xi ) < ε/(2� f ). Using the refined partition,

�α(xi−1, xi )� f (xi−1, xi ) < � f (xi−1, xi )ε/(2� f ).

Let A be the set of indexes relative to the subintervals in which α is discontinuous
and B the set of indexes relative to the intervals in which α is continuous in the
refined partition P̃ . Consider the difference of the upper and lower sums computed
on these sets separately:

DA =
∑

i∈A

�α(xi−1, xi )� f (xi−1, xi ) ≤
∑

i∈I

ε�α(xi−1, xi )

2�α

<
ε

2
,
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and

DB =
∑

i∈B
�α(xi−1, xi )� f (xi−1, xi ) ≤

∑

i∈B

ε� f (xi−1, xi )

2� f
<

ε

2
.

BecauseU f (P̃, α)− L f (P̃, α) = DA + DB < ε, the assertion is proved. The proof
is similar for a decreasing function f . �

The number of discontinuities of α and f can be infinite, as long as they belong
to a subinterval of [a, b] in which the other function is continuous. This might
seem peculiar compared to Theorem 8.15. However, notice that in Theorem 8.17 the
function f is required to be monotonic. This is a powerful assumption. In fact, notice
that if f is a monotonically increasing function in [a, b], for any partition P

U f (P, α) − L f (P, α) = Uα(P, f ) − Lα(P, f ).

That is, f is integrable with respect to α if and only if α is integrable with respect to
f . But don’t be mistaken: the value of the two integrals is in general not the same.
If the measure function is differentiable and its derivative can be Riemann inte-

grated, the Stieltjes integral reduces to an integral of Riemann type.

Theorem 8.18 Assume α(x) is derivable in [a, b] and its derivable is Riemann
integrable, α′ ∈ R([a, b]). Then ∫ b

a dα f exists if and only if
∫ b
a dxα′(x) f (x) exists

and they are equal.

Proof We will prove that the integrals in the statement share the same upper and
lower integrals. Let M = sup[a,b] | f | and for any partition P , �xi = xi − xi−1,
�αi = α(xi ) − α(xi−1). Because α′ ∈ R([a, b]), ∀ε > 0 there exists a partition P
such that

Uα′(P) − Lα′(P) =
N∑

i=1

�xi

(
sup

[xi−1,xi ]
α′ − inf[xi−1,xi ]

α′
)

<
ε

M
.

Moreover, because α(x) is derivable in [a, b], according to Theorem 6.10, for any
interval [xi−1, xi ], ∃zi ∈ [xi−1, xi ] such that �αi = �xiα′(zi ). Thus, on P , using
the properties of the supremum,

∣∣U f (P, α) −Uα′ f (P)
∣∣ =

∣∣∣∣∣

N∑

i=1

�xi

(
α′(zi ) sup

[xi−1,xi ]
f − sup

[xi−1,xi ]
α′ f

)∣∣∣∣∣

≤
N∑

i=1

�xi

∣∣∣∣∣α
′(zi ) sup

[xi−1,xi ]
f − sup

[xi−1,xi ]
α′ f

∣∣∣∣∣ ≤
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≤
N∑

i=1

�xi sup
[xi−1,xi ]

∣∣(α′(zi ) − α′) f
∣∣ ≤

N∑

i=1

�xi sup
[xi−1,xi ]

∣∣α′(zi ) − α′∣∣ M ≤

≤
N∑

i=1

�xi

(
sup

[xi−1,xi ]
α′ − inf[xi−1,xi ]

α′
)
M < ε.

In the same way it is possible to show that ∀ε > 0, there exists a partition P such
that

∣∣L f (P, α) − Lα′ f (P)
∣∣ < ε. The statement is thus proved. �

The hypotheses of Theorem 8.18 are valid if α(x) ∈ C1([a, b]). The next example
is essentially a restatement of Theorem 8.10.

� Example 8.16 (Integral of a function of the measure) Assume α ∈ C1([a, b]).
We want to compute

∫ b
a dα f (α), where f is a continuous function with a primitive

F . By Theorem 8.18,
∫ b
a dα f (α) = ∫ b

a dxα′(x) f (α(x)). The integrand is a product
of continuous and integrable function, so it is integrable. Note that F(α(x)) is a
primitive of the integrand, so we easily obtain

∫ b
a dα f (α) = F(α(b)) − F(α(a)).

8.3.2 Properties of the Stieltjes Integral

A series of useful properties of the Stieltjes integral are collected below. Their proofs
are trivial or essentially identical to the proofs of the same properties for the Riemann
integral and are left to the reader.

Theorem 8.19 Let f, g ∈ Rα([a, b]) then

1. f + g ∈ Rα([a, b]);
2. f g ∈ Rα([a, b]);
3. c f ∈ Rα([a, b]) with c any real constant;
4. f ∈ Rcα([a, b]) with c any real constant and ∫ b

a d(cα) f = c
∫ b
a dα f ;

5. | f | ∈ Rα([a, b]) and
∣∣∣
∫ b
a dα f

∣∣∣ ≤ ∫ b
a dα| f |;

6. if f (x) ≤ g(x) ∀x ∈ [a, b], then ∫ b
a dα f ≤ ∫ b

a dαg;

7. if c ∈ [a, b] then f ∈ Rα([a, c]) and f ∈ Rα([c, b]) and ∫ c
a dα f + ∫ b

c dα f =∫ b
a dα f ;

8. if f ∈ Rβ([a, b]), then f ∈ Rα+β([a, b])and ∫ b
a d(α+β) f = ∫ b

a dα f +∫ b
a dβ f .

� Example 8.17 (Distribution function) The distribution function F(x) of a (contin-
uous or discrete) random variable (r.v. ) X is defined as F(x) = Prob {X ≤ x}. The
distribution function is nonnegative and nondecreasing. If x0 and x1 are respectively
the smaller and larger value that the r.v. X can take, it is F(x) = 0 for x < x0 and
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F(x) = 1 for x ≥ x1. The set [x0, x1] is called the support of the r.v. Note that,
in general, x0, x1 ∈ R̄ (see Sect. 5.3). The kth moment of the random variable X is
defined as Mk = ∫

dFxk , where the interval of integration covers the r.v. support.
As an example of a discrete random variable, consider a lottery that pays the

amount (x1, . . . , xn) with probabilities (p1, . . . , pn). With reference to Exam-
ple 8.14, it is immediate to see that the distribution function can be written as
F(x) = ∑n

i=1 pi I (x − xi ). Using the last property of Theorem 8.19,

Mk =
n∑

i=1

pi

∫
dI (x − xi )x

k =
n∑

i=1

pi x
k
i .

Analogously to theRiemann integral, we can also introduce the notion of improper
integral for the Stieltjes case. The definition is identical to Definition 8.4, where
the limit of proper Riemann integrals is replaced with the limit of proper Stieltjes
integrals.

� Example 8.18 (Exponential distribution) A random variable X is exponentially
distributed in [0,+∞) if its distribution function is

F(x) =
{
0 x < 0,

1 − e−λx x ≥ 0.

In this case,case, the central moments introduced in Example 8.17 are improper
Stieltjes integral Mk = ∫ ∞

0 dFxk . Let us see how to compute them. According

to the definition of an improper integral, we have to compute Mk(L) = ∫ L
0 dFxk

for a (large) real number L , and then consider the limit when L becomes infinite.
First, notice that the Stieltjes measure F(x) in [0, L) is derivable with continuous
derivative F ′(x) = λe−λx . According to Theorem 8.18 the (proper) Stieltjes integral
above can be reduced to a (proper) Riemann integral

Mk(L) =
∫ L

0
dxxkλe−λx .

Now note that −e−λx is a primitive of λe−λx . Thus, M0(L) = 1− e−λL . For k ≥ 1,
applying Theorem 8.11,

Mk(L) = k
∫ L

0
dxxk−1e−λx − Lke−λL = k

λ
Mk−1(L) − Lke−λL .

Since limL→+∞ Lke−λL = 0 for any k, we finally obtain the recursive formula:

Mk = lim
L→+∞ Mk(L) = k

λ
lim

L→+∞ Mk−1(L) = k

λ
Mk−1,
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with M0 = 1. Thus, by recursion, Mk = k!/λk . In particular, for the first moment,
also known as the mean of the r.v., M1 = 1/λ. The variance of a r.v. is defined as
V = M2 − M2

1 . In this case, V = 1/λ2.

We conclude this Section with a useful generalisation of the Jensen inequality in
Corollary 1.1 from finite summations to integrals.

Corollary 8.5 (Jensen’s inequality, integral form) Consider an interval I = [a, b],
a Stieltjes measure α such that �α = α(b) − α(a) > 0 and two bounded functions
f and g such that g, f ◦ g ∈ Rα(I ). Then if f is concave in I ,

f

(∫

I
dαg/�α

)
≥

∫

I
dα f ◦ g/�α,

while if f is convex in I ,

f

(∫

I
dαg/�α

)
≤

∫

I
dα f ◦ g/�α.

Proof A direct proof is easy to produce. I omit it because a more general result for
Lebesgue integrals will be offered in Corollary 9.5. �

Even if the integrals of the functions g and f ◦ g do not exist, the inequalities above
apply to the upper and lower integrals separately.

Exercises

Exercise 8.1 Use the regular grid in Example 8.3 to compute
∫ b
a dxex and

∫ b
a dxx2

in any closed interval [a, b].

Exercise 8.2 Prove that if | f | ∈ R([a, b]), we cannot in general conclude that
f ∈ R([a, b]). Hint: Find a counterexample.

Exercise 8.3 Consider the function

f (x) =
{
sin 1

x when x �= 0,

0 when x = 0.

Prove the existence of
∫ 1
−1 dx f (x). Note that this function is neither continuous in

x = 0 nor monotonic in any of its neighbourhood. Are you able to compute the
integral?
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Exercise 8.4 Compute
∫ 2
0 dx[x], ∫ 2

0 dx[x]2, and ∫ 2
0 dx[x2], where [x] denotes the

integer part of x . Prove that for any positive integer n it is
∫ n
0 dx[x] = n(n − 1)/2.

Compute the integral
∫ 10
−2 dx[x].

Exercise 8.5 Consider the function f : R2 → R defined as f (x, y) = x2
∫ y
0 dtg(t),

where g(t) ∈ C0(R). Find the domain of definition of f (x, y). Is the function f (x, y)
continuous? Is it differentiable? Prove that (0, 0) is a critical point of f (x, y). What
assumptions on g are necessary for (0, 0) to be a local minimum?

Exercise 8.6 Compute the length of the arc of the curve y = aex/4+ e−x/a in the
interval [0, 1] as a function of a > 0.

Exercise 8.7 With reference to Example 8.11, compute the integral of the scalar
field F(x, y) = x +√

y on the arc of the parabola y = x2 in the interval [0, a], with
a > 0.

Exercise 8.8 Using Example 8.9 and Theorem 8.10, compute the following indef-
inite integrals (Hint: In the second integral, try to use the tangent and hyperbolic
tangent functions):

∫
dx

x

(x2 + a2)n
,

∫
dx

1

(a2 ± x2)3/2
,

∫
dx(ex + e−x )3.

Exercise 8.9 Using Example 8.9 and Theorem 8.10, compute the following indefi-
nite integrals (Hint: In the second integral, try to rewrite the numerator in terms of
the derivative of the denominator):

∫
dx

1

ax2 + bx + c
,

∫
dx

x

ax2 + bx + c
.

Exercise 8.10 Using Example 8.9 and Theorem 8.11, compute the following indef-
inite integrals:

∫
dxxα log x,

∫
dx

√
ax2 + bx + c,

∫
dx arcsin x .

Exercise 8.11 Find the quadratic polynomial P(x) such that P(0) = P(1) = 0 and∫ 1
0 dx P(x) = 1.

Exercise 8.12 Find a reduction formula for the computation of the following inte-
grals: ∫

dx sinn x,
∫

dx cosn x, and
∫

dx cosn x, sinm x .
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Exercise 8.13 Find a measure α such that for any function f continuous in [−2, 2]
it is

∫ 2
−2 dα f = f (−1)/2 + f (1)/2.

Exercise 8.14 If I know that f 2 ∈ R(α, [a, b]) can I conclude that f ∈ R(α, [a, b])?

Exercise 8.15 If I know that f 3 ∈ R(α, [a, b]) can I conclude that f ∈ R(α, [a, b])?

Exercise 8.16 Consider the following measures:

α1(x) =
{
0 x ≤ 0,

1 x > 0,
α2(x) =

{
0 x < 0,

1 x ≥ 0,
α3(x) =

⎧
⎪⎨

⎪⎩

0 x < 0,

1/2 x = 0,

1 x > 0.

Prove that

1. f ∈ R(α1, [−1, 1]) if and only if limt→0+ f (x) = f (0);
2. f ∈ R(α2, [−1, 1]) if and only if limt→0− f (x) = f (0);
3. f ∈ R(α3, [−1, 1]) if and only if f (x) is continuous in x = 0.

Exercise 8.17 Consider the measure

α(x) =
{
x x ≤ 1

x2 x > 1.

Find the quadratic polynomial P(x) such that P(0) = P(2) = 0 and
∫ 2
0 dα(x)P(x)

= 1.

Exercise 8.18 Find the continuous measure α(x) such that

∫ b

a
dα(x) f (x) =

∫ 1

0
dx f (a + (b − a)x)

for any integrable function f .

Exercise 8.19 Consider a random variable X distributed according to F(x) with
finite mean E[X ] = ∫

dF(x)x and variance V[X ] = ∫
dF(x) (x − E[x])2. Define

v2(a) = ∫
dF(x) (x − a)2, with a ∈ R. Find a∗ = argmina v2(a) and v2(a∗).

Exercise 8.20 With F(x) as in the previous exercise and a a real number, define the
function v1(a) = ∫

dF(x) |x − a|. Find the value of a which minimises v1(a).Hint:
Prove that v1(a) can be derived.
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Exercise 8.21 Let 0 < a < b < 1 Find the measure α(x) such that for any function
f ∈ C0([0, 1]),

∫ 1

0
dα(x) f (x) = f (a) + f (b) +

∫ b

a
dx f (x).

Is the measure α(x) unique? Can the property above be extended to all Riemann-
integrable functions in [0, 1]?

Exercise 8.22 Let α ∈ C1([a, b]), positive and increasing. Compute
∫ b
a dαα2,∫ b

a dα2α and
∫ b
a d

√
α
√

α.



9MeasureTheory

9.1 Algebras,Measurable Spaces, andMeasures

Consider a set X and the set of its subsets, its power set, 2X .

Definition 9.1 (Algebra and σ-algebra) A subsetA ⊆ 2X is an algebra if

1. ∅ ∈ A, X ∈ A;
2. ∀A ∈ A, Ac ∈ A;
3. ∀A1, A2, ..., An ∈ A,

⋃n
i=1 An ∈ A.

A is a σ-algebra if, in addition,

(4) for any sequence (An) of elements ofA, ∪∞
i=1Ai ∈ A.

Property (3) together with (2) implies that ∩n
i=1An ∈ A. Property (4) extends prop-

erty (3) from finite to countable unions. This is different from the definition of a
topology, which is required to be closed under the union of any number of open sets
(Definition 2.1). The second difference is represented by property (2). In a topology,
the complement of an open set is in general not open, the only exceptions being the
whole space itself and the parts in which a not connected topology might be split.
Properties (2) and (4) imply that a σ-algebra is closed with respect to countable
intersections, ∩∞

i=1Ai = (∪∞
i=1A

c
i )

c. For any set X , the power set 2X and the small-
est algebra {∅, X} are σ-algebras and are called the discrete and trivial σ-algebra,
respectively.

� Example 9.1 (Toy σ-algebra) Consider the set X = {a, b, c}. Verify that A1 =
{{a}, {b, c}, X, ∅} and A2 = {{b}, {a, c}, X, ∅} are algebras and σ-algebras. Note
thatA1 ∩ A2 = {∅, X} is again a σ-algebra.
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The result of the previous example is general: given twoσ-algebrasA1,A2 ⊆ 2X ,
it is easy to verify thatA1∩A2 is aσ-algebra. This observation leads to the following.

Definition 9.2 (Generated σ-algebra) Given any collection of sets C ⊆ 2X , the σ-
algebra σ(C) generated by C is defined as the intersection of all the σ-algebras that
contains C. Formally

σ(C) = ∩α{Aα | C ⊆ Aα andAα is a σ-algebra}.

The set of all σ-algebras that contain C has at least one element, 2X ; therefore,
Definition 9.2 is always meaningful. If C ⊆ C′, then σ(C) ⊆ σ(C′). The σ-algebra
generated by aσ-algebra is obviously the originalσ-algebra. In particular,σ(σ(C)) =
σ(C). IfC′ ⊆ σ(C), thenσ(C′) ⊆ σ(C). If, in addition,C ⊆ σ(C′), then they generate
the same σ-algebra, σ(C) = σ(C′).

� Example 9.2 (Toy generated σ-algebras) Consider a set X and A ⊂ X �= ∅. Then
σ({A}) = σ({Ac}) = σ({A, Ac}) = {∅, X, A, Ac}. If A ∪ B ⊂ X , A, B �= ∅, and
A ∩ B = ∅, then σ({A, B}) = {∅, X, A, B, Ac, Bc, A ∪ B, Ac ∩ Bc}.

Definition 9.3 (Measurable space) A measurable space (X,A) is a set X together
with a σ-algebra A ⊆ 2X .

The elements of A are measurable sets. On measurable spaces, we can define a
measure.

Definition 9.4 (Measure space) Let (X,A) be a measurable space. A function μ :
A → R̄≥0 is a measure if

1. μ(∅) = 0;
2. given a sequence (An) of elements of A such that ∀i �= j , Ai ∩ A j = ∅,

μ(∪∞
n=1An) = ∑∞

n=1 μ(An).

The triple (X,A, μ) is a measure space.

The measure of a measurable set can be a nonnegative element of the set of extended
real numbers, that is a nonnegative real number or +∞. Property (2) is called count-
able additivity. A measure is countably additive on the union of disjoint measurable
sets. Definition 9.4 conforms to our intuition of how a measure should behave. If
A, B ∈ A, then A \ B = A ∩ Bc ∈ A. Since A ∩ Bc and A ∩ B are disjoint,
μ(A) = μ(A ∩ Bc) + μ(A ∩ B), which implies μ(A \ B) = μ(A) − μ(A ∩ B). In
other terms, if the elements of a measurable set are removed from the elements of an-
other measurable set, the measure of the latter is proportionally reduced, depending
on how much the two sets overlap.
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� Example 9.3 (Counting measure) Consider a measurable space (X,A) and ∀A ∈
A define the function μ#(A) as number of elements in A. This function is a measure
and is called counting measure.

� Example 9.4 (Point mass measure) Consider a measurable space (X,A) and let
x ∈ X . The point mass measure δx is defined ∀A ∈ A as δx (A) = 1 if x ∈ A
and δx (A) = 0 if x /∈ A. Given a collection of points (x1, x2, . . . , xn) ⊂ X , and
a set of positive weights (w1, w2, . . . , wn) ⊂ R>0, one can easily prove that μ =∑n

i=1 wiδxi is a measure. This is a special case of the functions we introduce later
in Definition 9.16.

Two useful properties of the measure follow directly from its definition. First,
subsets cannot have a greater measure than the set that contains them.

Theorem 9.1 Let (X,A,μ) be a measure space. If A, B ∈ A and A ⊆ B, then
μ(A) ≤ μ(B).

Proof Let C = B \ A. As A ∩C = ∅, μ(B) = μ(A ∪C) = μ(A) + μ(C) ≥ μ(A).
�

Second, any measure is countably subadditive on any sequence of sets.

Theorem 9.2 Let (X,A,μ) be a measure space. If A1, A2, . . . ∈ A and A =
∪∞
i=1Ai then μ(A) ≤ ∑∞

i=1 μ(Ai ).

Proof Let A′
1 = A1, A′

2 = A2 \ A1, A′
3 = A3 \ (A1 ∪ A2), . . ., in general,

A′
i = Ai \ ∪i−1

j=1A j . First, notice that ∪∞
i=1Ai = ∪∞

i=1A
′
i but A

′
i ∩ A′

j = ∅. Then
μ(∪∞

i=1Ai ) = μ(∪∞
i=1A

′
i ) = ∑∞

i=1 μ(A′
i ) ≤ ∑∞

i=1 μ(Ai ), the last inequality due to
the fact that, ∀i , A′

i ⊆ Ai and Theorem 9.1 applies. �

The measure presented in Examples 9.3 and 9.4 can be defined in any measurable
space. On the contrary, the next example discusses a measure that is impossible to
build.

� Example 9.5 (Vitali set) In applications, we often want measures that satisfy some
specific properties. When dealing with real numbers, we would like to have a mea-
sure that conforms to our intuitive notion of “length”, so that, for instance, the
interval [a, b] has measure b − a. Intuition also suggests that the measure should
be translation-invariant. For example, the “length” of the set [a + c, b + c] should
be the same as the set [a, b]. Formally, given a real set A and a real number x , the
translated set is defined as Tx (A) = {z | ∃y ∈ A, z = y + x}. One would hope
to find a measure such that μ(Tx (A)) = μ(A) for any x . We will show that such a
measure can never measure all sets.
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Take [0, 1] and partition it according to the equivalence relation x ∼ y if there
exists a z ∈ Q such that x = y + z. Now, build a set E ⊂ [0, 1] by picking a
single number from each equivalence class of the relation. The number of sets we
can build is infinite, but they all share common properties. An element of E will
come from [0], the equivalent class to which 0 belongs, which contains all rational
numbers between 0 and 1, included. All other elements of E are irrational numbers
whose difference is not rational. Sets like E are called Vitali sets from the Italian
mathematician Giuseppe Vitali who first studied them in 1905. Let us try to measure
E . For any y ∈ [0, 1], ∃!z ∈ E such that y − z = w ∈ [−1, 1] ∪ Q. This means
that y ∈ Tw(E). At the same time, it is clear that for any rational w ∈ [−1, 1],
Tw(E) ⊆ [−1, 2]. Thus, [0, 1] ⊆ ∪w∈[−1,1]∩QTw(E) ⊆ [−1, 2] so that

μ([0, 1]) ≤ μ
(∪w∈[−1,1]∩QTw(E)

) ≤ μ([−1, 2]).

According to our intuition, it must be μ([0, 1]) = 1 and μ([−1, 2]) = 3. For any
x �= y, x, y ∈ Q, Tx (E) ∩ Ty(E) = ∅, so that

μ(∪w∈[−1,1]∩QTw(E)) =
∑

w∈[−1,1]∩Q
μ(Tw(E)).

Since we are dealing with translated sets, it must be μ(Tw(E)) = μ(E). But this
is impossible, because the summation in the previous equation is on a countably
infinite set, and to fulfil both inequalities, the measure μ(E) should be both positive
and zero. We can conclude that the set E cannot be measured by any measure that
is, at the same time, invariant by translation and reduces to the intuitive notion of
length when intervals are considered.

A measure can be a bounded or unbounded function on A. In both cases, it is
clear that it reaches its maximum on the whole space X .

Definition 9.5 (Finite and σ-finite measures) A measure μ is finite if μ(X) < +∞.
It is σ-finite if there exists a sequence (An) of elements ofA such that X = ∪∞

i=1Ai

and μ(Ai ) < +∞, ∀i .

If μ is finite, (X,A,μ) is a finite measure space. If μ is σ-finite, then (X,A,μ) is a
σ-finite measure space.

� Example 9.6 (Finite measure space)Consider the set of natural numbersN and let
O and E be the set of odd and even numbers, respectively. DefineA = {∅,N,O,E}.
The counting measure of Example 9.3 is neither finite nor σ-finite on the measurable
space (N,A), as all measurable sets apart ∅ have an infinite measure. Conversely,
on the measurable space (N, 2N), the counting measure is σ-finite as we have N =
∪∞
n=1{n} and μ#({n}) = 1. The point mass measure in Example 9.4 is finite for any

algebra.
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9.1.1 Complete Measure Space

Subsets of sets having measure zero play an important role in measure theory and
have a special name.

Definition 9.6 (Null set) Given the measure space (X,A,μ), a set N ⊆ X is a null
set if there exists an A ∈ A, such that N ⊆ A and μ(A) = 0.

Note that in the above definition, the set N is not required to be inA. We will say that
some property or relation is valid almost everywhere, abbreviated with a.e., when
all elements of X that violate that property or relation belong to a null set. We will
write μ-a.e. when it is important to specify which measure is used for the definition
of null sets. In applications, especially in integration theory, it is important that the
algebra contains all null sets.

Definition 9.7 (Complete measure space) IfA contains all null sets, then (X,A,μ)

is a complete measure space.

The property of being complete depends not only on the σ-algebra but also on the
measure.

� Example 9.7 (Incomplete measure space) Consider the set X = {a, b, c} and
the σ-algebra A = {∅, X, {a}, {b, c}}. Assign the measure μ({a}) = 1 and
μ({b, c}) = 0. Then {b} and {c} are both null sets that do not belong to the al-
gebra. Thus, (X,A,μ) is not complete. One can make the space complete by adding
both singlets to the algebra, defining a new algebra Ā = {∅, X, {a}, {b}, {c}, {b, c}},
and setting μ({b}) = μ({c}) = 0. Now (X, Ā, μ) is a complete space. If we had
posed μ({b, c}) = 1, the original measure space would have been complete.

Example 9.7 serves as an inspiration for amore general consideration. If ameasure
space is not complete, one can consider the σ-algebra generated by the elements of
the original σ-algebra and all null sets and extend the original measure on this new
σ-algebra by imposing that all null sets have measure zero. The next theorem details
the procedure.

Theorem 9.3 (Measure space completion)Consider ameasure space (X,A,μ) and
let N be the collection of all its null sets. Define Ā = {A ∪ N | A ∈ A, N ∈ N}
and, ∀A ∈ A and N ∈ N , define μ̄(A ∪ N ) = μ(A). Then (X, Ā, μ̄) is a complete
measure space.

Proof We start by proving that Ā is a σ-algebra. First, ∅, X ∈ Ā, because ∅ is a null
set. Second, becauseA is closed under countable unions, then alsoN is closed under
countable unions. In fact,∪∞

i=1Ni ⊆ ∪∞
i=1Mi , where Mi ∈ A is the set with measure

zero that contains Ni . Since μ(∪∞
i=1Mi ) ≤ ∑∞

i=1 μ(Mi ) = 0, the countable union
of null sets is a null set. This implies that Ā is closed under countable unions, as
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∪∞
i=1Ai ∪Ni = (∪∞

i=1Ai )∪(∪∞
i=1Ni ) and, in the last expression, the first union of sets

belongs toA and the second toN . Third, note that Nc = (M \N )∪Mc, where M is
the set with measure zero that contains N . Then (A∪N )c = Ac∩((M \N )∪Mc) =
(Ac ∩ Mc) ∪ (A ∩ (M \ N )). The first part of the union is an element ofA. For the
second part, notice that A ∩ (M \ N ) ⊆ M , so it is a null set.

Now consider the function μ̄ : Ā → R≥0, μ̄(A∪N ) = μ(A). It is trivially μ̄(∅) =
0 and we can also show that it is additive on disjoint sets. Consider ∪∞

i=1Ai ∪ Ni

where the sets Ai ∪ Ni are all disjoint. Then

μ̄
(∪∞

i=1Ai ∪ Ni
) = μ̄

(
(∪∞

i=1Ai ) ∪ (∪∞
i=1Ni )

) =

μ(∪∞
i=1Ai ) =

∞∑

i=1

μ(Ai ) =
∞∑

i=1

μ̄(Ai ∪ Ni ).

Ā contains all its null sets by construction. �

The σ-algebra of the completed space in Theorem 9.3 is the algebra generated by the
elements of the original algebra and the null sets, Ā = σ(A∪N). In fact,A∪N ⊆ Ā,
which implies that σ(A ∪ N) ⊆ Ā, but, at the same time, Ā ⊆ σ(A ∪ N). Any
element of σ(A ∪N) can be written as the union of an element ofA and a null set.

9.1.2 Borelσ-Algebra

To make a set X measurable, it suffices to define a σ-algebra on it. There are several
ways inwhich this can be done, but if the set considered is a topological space (X, T ),
then the use of the topology seems natural.

Definition 9.8 (Borel σ-algebra) Consider the topological space (X, T ). The Borel
σ-algebra B is the σ-algebra generated by the collection of open sets T .

These special topologies take their name from the French mathematician Félix Borel
(1871–1956). The elements of the Borel σ-algebra are often called Borel sets. Using
the Borel σ-algebra, any topological space (X, T ) becomes a measurable space
(X,B).

� Example 9.8 (Nested algebra) Consider the nested topology as in Example 2.4
with T = {∅, X, A1, A2} and ∅ ⊂ A1 ⊂ A2 ⊂ X . The associated Borel σ-algebra is
B = {∅, X, A1, A2, Ac

1, A
c
2, A

c
1 ∩ A2, A1 ∪ Ac

2}. We want to define a finite measure
on the measurable space (X,B) such that μ(A1) = 1, μ(A2) = 2, and μ(X) = 3.
From the property of the measure, μ(Ac

1) = μ(X) − μ(A1) = 2 and μ(Ac
2) =

μ(X) − μ(A2) = 1. Because A1 ∪ Ac
2 = ∅, μ(A1 ∪ Ac

2) = μ(A1) + μ(Ac
2) = 2, and

because Ac
1 ∩ A2 = (

A1 ∪ Ac
2

)c, μ(Ac
1 ∩ A2) = μ(X) − μ(A1 ∪ Ac

2) = 1.
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If instead we had required μ(A1) = 2 and μ(A2) = 1, the properties of the
measure would have led to a contradiction. In other terms, it is not possible to define
such a measure on the considered algebra.

We will use the notion of Borel σ-algebra mainly in conjunction with finite-
dimensional real normed spaces. In this case, the Borel σ-algebra can be generated
by the natural base of the topology.

Lemma 9.1 Consider the normed space (Rn, ρ) and let B be the base of open balls.
Then the Borel σ-algebra is the σ-algebra generated by B, B = σ(B).

Proof Because B ⊂ T , σ(B) ⊆ σ(T ) = B. At the same time, as discussed in
Theorem 4.8, any open set is a countable union of disjoint open balls, thus T ⊆ σ(B),
which implies B ⊆ σ(B). �

The previous theorem cannot be extended to any Borel σ-algebra. Its proof uses a
result that has been proved only for finite-dimensional normed spaces. Lemma 9.1
does not specify which norm is used to define the balls. According to Theorem 4.11,
this is not relevant, as all norms generate the same topology (see Exercise 4.20)
and, as such, the same Borel σ-algebra. For example, the open balls in Lemma 9.1
can be “open spheres” B(x, r) = {z ∈ R

n | ‖z − x‖ < r} or open n-cells (see
Exercise 4.13).

In fact, the Borel σ-algebra of the normed space topology can be generated
starting from different collections of sets, not only from a base of the topolo-
gy. Let C1 = {×n

i=1(ai , bi ) | ai < bi ,∀i} be the collection of open n-cells,
C2 = {×n

i=1(ai , bi ] | ai < bi ,∀i} the collection of semi-open (or semi-closed)
n-cells, and C3 = {×n

i=1[ai , bi ] | ai < bi , ∀i} the collection of closed n-cells.
According to Lemma 9.1, σ(C1) = B. Now note that along each dimension i ,
(ai , bi ] = ∩∞

h=1(ai , bi + 1/h) and (ai , bi ) = ∪∞
h=1(ai , bi − (bi − ai )/(2h)]. Hence,

C2 ⊂ σ(C1) and C1 ⊂ σ(C2), which implies σ(C2) = σ(C1) = B. A similar
argument can be used to prove that σ(C3) = B. Despite the fact that C2 generates a
different topology than C1 (see Exercise 2.11) and C3 cannot be a base of a topology
(see Exercise 2.10), the three sets generate the same Borel σ-algebra.

In Example 9.5, we have seen that the idea of a translation-invariant measure that
satisfies our geometric intuition of length, area, or volume cannot be extended to all
sets. We can define it on Borel sets, but this would lead to an incomplete measure
space. A better approach is illustrated in the next section.

9.1.3 LebesgueMeasure

Because theBorelmeasure does not provide a translation-invariant completemeasure
on normed real spaces, we have to look further in search of an appropriate algebra
and an appropriate measure. Our search is organised into two steps. First, we will
define a very reasonable approximation of the measure, called an “outer measure”,
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which conforms to our intuition of what a measure should be. Next, we will prove
that when this approximation is restricted to a suitable algebra of sets, it becomes a
fully fledged complete measure.

Definition 9.9 (Outer Measure) Consider a set X . An outer measure μ∗ : 2X →
R̄≥0 is a function such that

1. μ∗(∅) = 0;
2. if A ⊆ B then μ∗(A) ≤ μ∗(B);
3. if A = ∪∞

i=1Ai then μ∗(A) ≤ ∑∞
i=1 μ∗(Ai ), that is the outer measure is subad-

ditive.

While a measure is defined on a σ-algebra of subsets, an outer measure is defined on
all subsets. However, an outer measure is not required to be additive on disjoint sets.

� Example 9.9 (Toy outer measure) Let us define an outer measure on the set X =
{a, b, c, d}. Specify μ∗(∅) = 0 and for any nonempty A ∈ 2X , μ∗(A) = l1 > 0
if A ⊆ {a, b}, μ∗(A) = l2 > 0 if A ⊆ {c, d}, and μ∗(A) = μ∗(A ∩ {a, b}) +
μ∗(A ∩ {c, d}) otherwise. So that, for example, μ∗({d}) = l2 and μ∗({a, b, c}) =
μ∗({a, b}) + μ∗({c}) = l1 + l2. It is easy to verify that μ∗ satisfies all properties of
Definition 9.9.

The following proposition suggests a general way of building an outer measure:
select a set of “boxes” of given sizes and define the outer measure of any set as the
infimum of the size of all possible combinations of boxes that contain it.

Theorem 9.4 Let C ⊆ 2X be a collection of sets such that

1. ∅ ∈ C;
2. there exists a countable cover of X in C, that is X = ∪∞

i=1Ci with Ci ∈ C.

Define a function l : C → R≥0, with l(∅) = 0. Then the function

μ∗(A) = inf

{
∑

i

l(Ci )

∣
∣
∣
∣ A ⊆ ∪iCi ,Ci ∈ C

}

is an outer measure.

Proof Given A ⊆ X , let C(A) = {∪iCi | A ⊆ ∪iCi } be the collection of countable
covers of the set A with elements of C. Since ∅ ∈ C(∅), μ∗(∅) = 0. If A ⊆ B, then
C(B) ⊆ C(A), thus μ∗(A) ≤ μ∗(B).

Now consider A = ∪∞
j=1A j . Set ε > 0. For any A j , there exist an integer n j

and a collection of sets {C j
1 , . . . ,C j

n j } such that A j ⊆ ∪n j
i=1C

j
i and

∑n j
i=1 l(C

j
i ) ≤
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μ∗(A j ) + ε/2 j . In fact, if this were not the case, then μ∗(A j ) ≥ μ∗(A j ) + ε/2 j ,

which is absurd. Clearly A ⊆ ∪∞
j=1 ∪n j

i=1 C
j
i and

μ∗(A) ≤
∞∑

j=1

n j∑

i=1

l(C j
i ) ≤

∞∑

j=1

(
μ∗(A j ) + ε

2 j

)
=
∑

j

μ∗(A j ) + ε.

Since this is true for any ε > 0, μ∗(A) ≤ ∑∞
j=1 μ∗(A j ). �

We use the procedure illustrated in Theorem 9.4 to define important outer measures
on R and R

n .

Definition 9.10 (Lebesgue outer measure in R) In R, consider the set C = {(a, b] |
a ≤ b ∈ R} of all semi-open intervals, and define l((a, b]) = b − a.

The hypotheses of Theorem 9.4 are verified as R ⊆ ∪∞
h=1(−h, h]. Using sequences

of semi-open intervals, it is easy to show thatwith the outermeasureμ∗ obtained from
Definition 9.10, μ∗([a, b]) = μ∗((a, b)) = μ∗([a, b)) = b − a and μ∗({x}) = 0,
∀x ∈ R.

Definition 9.11 (Lebesgue–Stieltjes outer measure in R) Let α be a nondecreasing
right continuous real-valued function on R. In R, consider the set C = {(a, b] | a ≤
b ∈ R} of all semi-open intervals and let lα((a, b]) = α(b) − α(a).

The outer measure μ∗
α derived fromDefinition 9.11 has properties similar to μ∗ from

Definition 9.10. In particular, μ∗
α([a, b]) = μ∗

α((a, b)) = μ∗
α([a, b)) = α(b) − α(a)

and μ∗
α({x}) = 0, ∀x ∈ R. The requirement for α to be right continuous is essential,

otherwise for some points a < b < c, it can be lα((a, b] ∪ (b, c]) �= lα((a, b]) +
lα((b, c]).

Definition 9.12 (Lebesgue outer measure in R
n) On R

n consider the set C =
{×n

j=1(a j , b j ] | a j ≤ b j , ∀ j} of all semi-open rectangles and let ln
(
×n

j=1(a j , b j ]
)

=
∏n

j=1(b j − a j ).

In this case, Rn ⊆ ∑∞
h=1 ×n

j=1(−h, h]. In the associated outer measure,

μ∗
n(×n

j=1[a j , b j ]) = μ∗
n(×n

j=1(a j , b j )) =
n∏

j=1

(b j − a j ),

and ∀x ∈ R
n , μ∗

n({x}) = 0.
Since in Rn any open set is the countable union of disjoint open intervals, we can

easily compute the outer measure of these sets. The same is true for the union of
closed and open sets and for their intersection. Using the definition above, one can
actually compute the outer measure of all sets belonging to the Borel σ-algebra and
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prove that those outer measures restricted to their respective Borel σ-algebras are
measures. This would be cumbersome, as one should consider countable unions
and intersections of countable unions and intersections, which are uncountable.
Moreover, the resulting spaces will not be complete, significantly reducing their
importance for integration theory (see Sect. 9.3 and, in particular, the analysis of
the Riemann integral in Sect. 9.3.1).1 We follow a different approach. We start by
identifying a specific collection of sets.

Definition 9.13 (Outer measurable set) Let μ∗ be an outer measure on X . The set
A ⊂ X is μ∗-measurable if ∀E ⊆ X , μ∗(E) = μ∗(E ∩ A) + μ∗(E ∩ Ac). The
collection of all μ∗-measurable subsets of X is denoted byA∗.

Note that E ∩ A and E ∩ Ac are disjoint sets, and E = (E ∩ A) ∪ (E ∩ Ac). So,
for any set E , μ∗(E) ≤ μ∗(E ∩ A)+μ∗(E ∩ Ac). Definition 9.13 restricts the weak
inequality to be an equality. Clearly, ∅ belongs to A∗ and, for symmetry, if A is
μ∗-measurable, Ac is μ∗-measurable.

� Example 9.10 (Toy outer measure) Consider the outer measure in Example 9.9.
By construction, {a, b} and {c, d} are μ∗-measurable. Note that μ∗(X) = l1 + l2 and
for any singlet {x} ⊂ X ,μ∗(X) < μ∗(X∩{x})+μ∗(X∩{x}c), so singlets are notμ∗-
measurable. This implies that sets with three elements are also not μ∗-measurable.
Considering {b, c},μ∗({a, b}) = l1 < μ∗({a, b}∩{b, c})+μ∗({a, b}∩{b, c}c) = 2l1.
In summary,A∗ = {∅, X, {a, b}, {c, d}}. Note thatA∗ is a σ-algebra.

Now, we can use outer measurable sets to define a measure space.

Theorem 9.5 (Lebesgue measure space)A∗ is a σ-algebra on X, the restriction of
μ∗ onA∗ is a measure, and (X,A∗,μ∗) is a complete measure space.

Proof First, we prove thatA∗ is an algebra by proving that it is closed with respect
to the union of sets. Let A, B ∈ A∗. Applying the definition of μ∗-measurable set
subsequently for A and B, ∀E ⊆ X ,

μ∗(E) = μ∗(E ∩ A)+μ∗(E ∩ Ac) = μ∗(E ∩ A ∩ B)+
μ∗(E ∩ A ∩ Bc) + μ∗(E ∩ Ac ∩ B) + μ∗(E ∩ Ac ∩ Bc).

Note that (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B) = A ∪ B. So, from the property of the
outer measure,

μ∗(E ∩ A ∩ B) + μ∗(E ∩ A ∩ Bc) + μ∗(E ∩ Ac ∩ B) ≥ μ∗(E ∩ (A ∪ B))

1 I do not provide an explicit example of a null set which is not Borel. Its construction, based on the
so-called Cantor function, requires some substantial work and would not add much to the present
discussion.
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and, substituting in the previous equation, μ∗(E) ≥ μ∗(E ∩ (A ∪ B)) + μ∗(E ∩
(A ∪ B)c). Because μ∗ is an outer measure, this inequality is actually an equality.
This proves the point and also that

μ∗(E ∩ A ∩ B) + μ∗(E ∩ A ∩ Bc) + μ∗(E ∩ Ac ∩ B) = μ∗(E ∩ (A ∪ B)).

Then, if A and B are disjoint elements of A∗, μ∗(E ∩ (A ∪ B)) = μ∗(E ∩ A) +
μ∗(E ∩ B). In particular, by setting E = X , μ∗(A∪ B) = μ∗(A) + μ∗(B). We have
proved that the outer measure μ∗ is additive on disjoint outer measurable sets and,
consequently, it is a measure on the algebraA∗.

To prove thatA∗ is aσ-algebra, consider A = ∪∞
i=1Ai , Ai ∈ A∗. Define Ã1 = A1,

Ã2 = A2 \ A1, Ã3 = A3 \ (A1 ∪ A2), . . . such that Ãi ∩ Ã j = ∅ if i �= j and
A = ∪∞

i=1 Ãi . Let Bn = ∪n
i=1 Ãi . Because A∗ is an algebra, Ãn, Bn ∈ A∗, ∀n. For

any E ⊆ X ,

μ∗(E) = μ∗(E ∩ Bn) + μ∗(E ∩ Bc
n) =

n∑

i=1

μ∗(E ∩ Ãi ) + μ∗(E ∩ Bc
n).

When n → ∞, Bc
n → Ac and

∑∞
i=1 μ∗(E ∩ Ãi ) ≥ μ∗(E ∩ A), so that μ∗(E) ≥

μ∗(E ∩ A) + μ∗(E ∩ Ac). But because μ∗ is an outer measure, this is actually an
equality.

Finally, consider a set A such that μ∗(A) = 0. For the property of the outer
measure, for any E ∈ X , μ∗(E ∩ A) = 0 and μ∗(E) ≤ μ∗(E ∩ A) + μ∗(E ∩ Ac) =
μ∗(E ∩ Ac) ≤ μ∗(E), so that the relation is actually an equality. We have proved
that any set A whose outer measure is equal to zero belongs toA∗. By the definition
of the outer measure, if A has outer measure equal to zero, any subset of A has an
outer measure equal to zero. Therefore, they all belong to A∗, which implies that
A∗ is complete. �

By applying the previous theorem, Definitions 9.10, 9.11, and 9.12 lead respectively
to the Lebesgue space (R,L, l), the Lebesgue–Stieltjes space (R,L, lα), and the
Lebesgue space (Rn,Ln, ln) in more than one dimension. Definitions 9.10 and 9.12
introduce translation-invariant outer measures. The first two spaces share the same
σ-algebra as they are based on the same set of semi-open intervals. The first space
is actually a special case of the other two, with α(x) = x and n = 1. These are the
spaces that we most often encounter in applications. We conclude the analysis of the
Lebesgue measure by investigating the relationship between the Lebesgue and Borel
σ-algebras.

Theorem 9.6 All sets in the Borel σ-algebra of Rn are ln-measurable.

Proof We start by proving the theorem in R. With reference to Definition 9.10,
consider a semi-open interval (a, b] ∈ C and any subset E ⊆ R. According to the
definition of the Lebesgue outer measure, ∀ε > 0 there exists a collection of intervals
{(ai , bi ]} such that E ⊆ ∪i (ai , bi ],∑i l((ai , bi ]) ≤ μ∗(E) + ε. The intersection of
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two semi-open intervals is a semi-open interval, so that

μ∗((ai , bi ] ∩ (a, b]) + μ∗((ai , bi ] ∩ (a, b]c) = l((ai , bi ]).

Hence,

μ∗(E ∩ (a, b])+μ∗(E ∩ (a, b]c) ≤
∑

i

μ∗((ai , bi ] ∩ (a, b])

+
∑

i

μ∗((ai , bi ] ∩ (a, b]c) =
∑

i

l((ai , bi ]) ≤ μ∗(E) + ε.

Since ε can be chosen as small as desired and because of the property of the outer
measure, the inequality above implies μ∗(E ∩ (a, b]) + μ∗(E ∩ (a, b]c) = μ∗(E),
that is (a, b] ∈ L. We have shown that C ⊂ L. But becauseB = σ(C), the statement
follows.

The proof can be replicated similarly for Rn using the semi-open rectangles of
Definition 9.12. The key property is that the intersection of two semi-open rectangles
is a semi-open rectangle. �

LetNn be the collection of null sets in (Rn,Bn)with respect to the Lebesguemeasure
ln . Consider the completion of the Borel σ-algebra, σ(Bn ∪ Nn). Since Bn ⊆ Ln

andNn ⊆ Ln , we have σ(Bn ∪Nn) ⊆ Ln . But does the Lebesgue σ-algebra contain
sets that are not in the completion of the Borel σ-algebra? The answer is no as shown
by the following corollary.

Corollary 9.1 Ln is the completion of the Borel σ-algebra inRn with respect to the
Lebesgue measure, Ln = σ(Bn ∪ Nn).

Proof Since we know that σ(Bn ∪ Nn) ⊆ Ln , we have only to prove that Ln ⊆
σ(Bn ∪ Nn). By Theorem 9.4, ∀A ∈ Ln there should be a sequence of elements
(Ci ) of C such that A ⊆ B = ∪iCi and ln(A) = ln(B). B ∈ Bn because the
elements ofCbelong to theBorelσ-algebra.Because A is outermeasurable, ln(Bc) =
ln(A ∩ Bc) + ln(Ac ∩ Bc). But Ac ∩ Bc = (A ∪ B)c = Bc, so that ln(A ∩ Bc) = 0.
Since A = B ∪ (A ∩ Bc), the set A is the union of a set of the Borel σ-algebra, B,
and a null set, A ∩ Bc. Thus, Ln ⊆ Bn ∪ Nn , and the statement follows. �

9.2 Measurable Functions

Having defined measurable spaces, it is time to see how we can connect them. The
fundamental tool we will use is the notion of a measurable function.

Definition 9.14 (Measurable function)Let (X,AX ) and (Y,AY ) be twomeasurable
spaces. A function f : X → Y is measurable if ∀AY ∈ AY , f −1(AY ) ∈ AX .
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In other words, a function is measurable if the preimage of any measurable set
is measurable. When necessary, we will specify that a function is measurable with
respect to a specific σ-algebra by saying that it isAX -measurable orAY -measurable,
when the emphasis is, respectively, on the domain or image space of the map f . In
Definition 9.14, there is no reference to the actual measure possibly implemented on
the σ-algebras of the two spaces that the function connects. Note that a measurable
function is not required to be bounded (see Example 9.14).

Lemma 9.2 (Composition ofmeasurable functions) The composition of measurable
functions is measurable.

Proof Consider three measurable spaces (X,AX ), (Y,AY ), and (Z ,AZ ) and two
measurable functions f : X → Y and g : Y → Z . Consider a measurable set
AZ ∈ AZ . Because g is measurable, g−1(Az) ∈ AY , and because f is measurable,
f −1(g−1(Az)) ∈ AX . �

Obviously, not all functions are measurable with respect to all σ-algebras, but there
is one notable exception.

� Example 9.11 (Constant function) Let c ∈ Y be a constant. If f (x) = c for all
x ∈ X , then f −1(AY ) is either X (if c ∈ AY ) or the empty set (if c /∈ AY ). Thus, f
is measurable with respect to any algebraA on 2X .

Complete metric spaces possess an important property.

Theorem 9.7 Consider two functions f and g from a complete metric space
(X,AX ) to a metric space (Y,AY ). If f is measurable and g = f a.e., then g
is measurable.

Proof Define N = {x ∈ X | g(x) �= f (x)}. By assumption N is a null set and
since AX is complete, N ∈ AX . For any AY ∈ AY , g−1(AY ) = (

g−1(AY ) ∩ N
) ∪

(
g−1(AY ) ∩ Nc

)
. Note that g−1(AY ) ∩ N is a null set, thus it belongs to AX , and

g−1(AY ) ∩ Nc = f −1(AY ) ∩ Nc is the intersection of two elements ofAX , thus it
belongs toAX as well. �

Note that for the previous result, we did notmake any completeness assumption about
the image space. In the domain space, completeness is essential. Otherwise, the set
of points on which the two functions differ may not be measurable. Theorem 9.7
and the discussion in Example 9.11 make clear that any function defined over a
complete measurable space which is a.e. constant is measurable. In general, any
function defined over a measurable space can be used to define an algebra in the
image space.
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Lemma 9.3 Consider the function f : X → Y and let AX be a σ-algebra on X.
Then the set σ( f ) = {Y ∈ 2Y | f −1(Y ) ∈ AX } is a σ-algebra on Y .

Proof The proof is trivial once one realises that f −1(Ac
Y ) = ( f −1(AY ))c and

f −1(AY ∪ A′
Y ) = f −1(AY ) ∪ f −1(A′

Y ). �

In other words, given any σ-algebra on X , the collection of sets with measurable
preimages forms a σ-algebra on Y . In Example 9.11, for example, the σ-algebra
inducedby the constant is the entire power set, 2Y . From thedefinition of ameasurable
function, it follows that a function f between two measurable spaces (X,AX ) and
(Y,AY ) ismeasurable if and only ifAY ⊆ σ( f ). In particular, a function f : X → Y
defined over a measurable space (X,AX ) is always measurable if the σ-algebra on
Y is σ( f ). A similar mechanism is in place for the measure: any measurable function
defines a measure on the image space based on any given measure on the domain
space.

Lemma 9.4 (Pushforward measure) Let (X,AX ) and (Y,AY ) be two measurable
spaces and f : X → Y be a measurable function between them. Consider the
measure μX on (X,AX ). The function μ f : AY → R≥0 defined by μ f (AY ) =
μX ( f −1(AY )), ∀AY ∈ AY is a measure on (Y,AY ). It is called the pushforward
measure or image measure defined by the function f .

Proof The proof is immediate as clearly f −1(∅) = ∅, and if AY and A′
Y are disjoint

elements ofAY , then also f −1(AY ) and f −1(A′
Y ) are disjoint elements ofAX . �

The pushforward measure is often denoted by μX ◦ f −1. It will be used in Sect. 9.3
to discuss the change of variables in Lebesgue integrals and in Sect. 9.5 to study
random variables.

� Example 9.12 (Measurable functions and σ-algebras) Consider the measure
space of Example 9.7 with μ({a}) = μ({b, c}) = 1 and the real-valued function
f (a) = 1, f (b) = 2, and f (c) = 4. The σ-algebra induced in R consists of all sets
that contain both 2 and 4 or none of the two. This collection of sets is clearly closed
under union and intersection.

If we consider the measure space (R,B) as the arrival space, then the function f
is not measurable. Indeed, the preimage of the measurable set (3, 5) is the set {c},
which is not in the σ-algebra of X .

If we change the definition of the function to f (b) = f (c) = 2, then it becomes
measurable, and the pushforward measure induced on (R,B) is the point mass mea-
sure (see Example 9.4) μX ◦ f −1 = δ1 + δ2.

When the algebra AX in the domain of the function is a Borel σ-algebra, the
function is said to be Borel measurable. In the case X = R

n , if not specified oth-
erwise, this is meant to refer to the measure generated by the Euclidean topology.
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Analogously, the function is said to be Lebesgue measurable if AX = Ln . Since
Bn ⊆ Ln , a Borel measurable function is also Lebesgue measurable, while the
opposite is generally not true.

Assume that the algebra AY in the image space is generated by a collection of
sets C,AY = σ(C). Then if f −1(C) ∈ AX for any C ∈ C, C ⊆ σ( f ). BecauseAY

is the smallest σ-algebra that containsC,AY ⊆ σ( f ), which means that the function
f is measurable.

Corollary 9.2 Consider two topological spaces (X, TX ) and (Y, TY ). Any continu-
ous function f : X → Y is Borel measurable.

Proof By the definition of Borel σ-algebra,BX = σ(TX ) andBY = σ(TY ). Because
the function is continuous, the preimage of any elements of Ty belongs to Tx , and
hence to BX . Thus, Ty ⊆ σ( f ) and the statement follows. �

9.2.1 Measurable Real-Valued Functions

Let us focus on functions f : X → R defined over a generic measurable space
(X,A) and with images in the measurable space (R,B), where B is the Borel σ-
algebra generated by the Euclidean topology. In this specific case, Definition 9.14 is
usually replaced by the following.

Definition 9.15 (Measurable real-valued function) A function f : X → R is mea-
surable on the space (X,A) if ∀a ∈ R, Da( f ) = {x ∈ X | f (x) > a} ∈ A.

The equivalence of the definition above with Definition 9.14 follows from the fact
that the set of open intervals C = {(a,+∞)} generates B.

� Example 9.13 (Alternative definitions) One can easily devise other definitions
equivalent to Definition 9.15 using different collections of sets that generate B, for
instance those discussed in Sect. 9.1.2. The function f : X → R is Borel measurable
if one of the following statements is true:

1. ∀a ∈ R, {x ∈ X | f (x) ≤ a} ∈ A;
2. ∀a ∈ R, {x ∈ X | f (x) ≥ a} ∈ A;
3. ∀a ∈ R, {x ∈ X | f (x) < a} ∈ A.

� Example 9.14 (Unbounded measurable function) Consider the function f : R →
R defined by

f (x) =
{
x if x ≤ 0;
1/x if x > 0.
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Note that Da( f ) = (a, +∞) if a ≤ 0 and Da( f ) = (0, 1/a) if a > 0. Therefore,
the function f is measurable with respect to the Borel σ-algebra.

Because continuous functions are Borel measurable, the property of measurability is
preserved by composition with a continuous function. For this reason, the property
of being measurable interacts quite fairly with the usual operations on real functions.

Theorem 9.8 Let (X,A) be ameasurable space, f and g bemeasurable real-valued
functions, and c a real constant, then f + g, c f , | f |, f g,max{ f, g}, andmin{ f, g}
are measurable.

Proof Note that∀a ∈ R, Da( f +g) = ∪r∈QDr ( f )∩Da−r (g). SinceQ is countable,
and the algebra is closed under countable unions and intersections, Da( f + g) is
measurable. If c > 0, Da(c f ) = Da/c( f ) ∈ A. If c < 0, Da(c f ) = { f <

a/c} = f −1([a/c, +∞)) ∈ A because [a/c,+∞) ∈ B. Since f g = ( f + g)2/2−
f 2/2−g2/2 and | f | = √

f f , the two functions are measurable because they are the
sum of measurable functions and composition with continuous functions. Finally,
Da(max{ f, g}) = Da( f ) ∪ Da(g) while Da(min{ f, g}) = Da( f ) ∩ Da(g). Hence,
both sets belong toA. �

The infimum and supremum of countable sequences of measurable functions are
measurable as well.

Theorem 9.9 Let (X,A) be a measurable space and ( fn) be a sequence of real-
valued measurable functions fn : X → R. Then supn fn, infn fn, lim supn→∞ fn,
and lim infn→∞ fn are measurable.

Proof For any a ∈ R, Da(supn f ) = ∪nDa( fn) and Da(minn f ) = ∩nDa( fn).
Both sets belong toA. Remember that lim supn→∞ fn = limn→∞ supi≥n fi . Since
supi≥n fi is nonincreasing in n, we have that Da(lim supn→∞ fn) = ∩n∪i≥n Da( fi )
and, for the properties of σ-algebras, this set belongs to A, ∀a ∈ R. Analogously,
we have that Da(lim infn→∞ fn) = ∪n ∩i≥n Da( fi ) ∈ A. �

In particular, if a sequence of measurable functions is pointwise convergent fn → f ,
(see Definition 5.18), then the limit function f is a measurable function. This is also
true if the limit function is unbounded on measurable sets. In addition, we have a
more powerful result for complete metric spaces.

Corollary 9.3 (Almost everywhere convergence) Let ( fn) be a sequence of mea-
surable real-valued functions defined over a complete measure space (X,A). If
limn→∞ fn = f a.e., then f is measurable.
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Proof Consider g = limn→∞ fn . For Theorem 9.9, this is a measurable function.
By hypothesis, g differs from f on a null set, so that the statement follows from
Theorem 9.7. �

In some applications, most notably applications that have to do with probability
theory, one usually wants to work with sequences that converge almost everywhere.
In these applications, the completeness of the measure space is usually assumed,
even if the theory we are developing does not forcibly require it.

� Example 9.15 (Infimum and supremum of sequences of Riemann integrable func-
tions) The result of Theorem 9.9 about the superior and inferior limits of sequences
of measurable functions do not hold for sequences of Riemann integrable functions.
Consider the sequence of real functions ( fn) defined in [0, 1] as

fn(x) =
{
1 if x = h/n, for h = 1, . . . , n,

0 otherwise.

The function fn is Riemann integrable for any n,
∫ 1
0 dx fn(x) = 0. However, f (x) =

lim supn→∞ fn(x) takes the value 1 for all rational numbers and 0 for all irrational
numbers in [0, 1]. Therefore, it is not Riemann integrable (see Example 8.2).

9.3 Lebesgue Integral

This section extends the theory of integration to all real-valued measurable functions
defined on a generic measure space (X,A, μ). If not explicitly stated otherwise, we
consider functions taking values in (R,B), whereB is the Borel σ-algebra generated
by the Euclidean topology. We will proceed in steps. First, we define the integral of
a very specific subset of measurable functions. We then extend the definition to all
nonnegative measurable functions, proving several fundamental theorems. Finally,
using these theorems, we extend the definition further to a large class of measurable
functions in an easy and straightforward way.

Definition 9.16 (Indicator function) Consider a set X and a subset A ⊆ X . The
function IA : X → R≥0

IA(x) =
{
1 if x ∈ A

0 otherwise

is said to be the characteristic or indicator function of the set A.

In a measurable space (X,A), the function IA is measurable if and only if A ∈ A.
Starting from the indicator function, we can build a special class of measurable
functions.
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Definition 9.17 (Simple function) In a measurable space (X,A), a simple function
s(x) is built from a finite collection (A1, ..., An) of elements ofA and of nonnegative
constants (a1, ..., an), such that s(x) = ∑n

i=1 ai IAi (x).

The domain of the simple function is the measurable set ∪i Ai . Simple functions
are measurable by construction. By adding an+1 = 0 and An+1 = (∪n

i=1Ai )
c, to

the set (ai ) and (Ai ), any simple function can be considered defined on the whole
space X . It is immediately apparent that if s1(x) and s2(x) are simple functions
defined on the same space, then s1(x) + s2(x) and s1(x) s2(x) are simple functions.
Similarly, c s1(x) is a simple function as long as c ≥ 0. More generally, given
f : R≥0 → R≥0, f (s(x)) is simple if s(x) is simple. The elements (Ai ) can always
be chosen to be mutually disjoint. For any measurable set A ∈ A, if s(x) is a simple
function, s(x)IA(x) is a simple function. Simple functions are the building blocks
of the notion of integration based on measure theory.

Definition 9.18 (Integral of simple functions) The Lebesgue integral of a simple
function s(x) = ∑n

i=1 ai IAi (x) is defined on the measure space (X,A,μ) as∫
dμ s = ∑n

i=1 ai μ(Ai ).

If ∀x , s1(x) ≤ s2(x), then
∫
dμ s1 ≤ ∫

dμ s2. To see it, simply redefine them on a
finer common partition of X . The previous definition can be seen as an integral on
the domain of the simple function. In general, given a measurable set E , we define∫
E dμ s = ∫

dμ s IE = ∑n
i=1 ai μ(Ai ∩ E). For the properties of simple functions,

if E1 ∩ E2 = ∅, then ∫E1∪E2
dμ s = ∫

E1
dμ s + ∫

E2
dμ s.

� Example 9.16 (Integral of Dirichlet’s function) Consider the measure space
(R,B, l). Any countable union of singlets belongs to B and has Lebesgue mea-
sure zero. Consider the set of rational numbers [0, 1] ∩ Q. This is a countable
union of singlets, so that l([0, 1] ∩ Q) = 0. Consequently, l([0, 1] \ Q) =
l([0, 1]) − l([0, 1] ∩ Q) = 1. Dirichlet’s function in Example 8.2 is the simple
function f = I[0,1]\Q. It is Borel and, consequently, Lebesgue measurable. Accord-
ing to Definition 9.18,

∫
dμ f = l([0, 1] \ Q) = 1. In Example 8.2, we have seen

that this function cannot be integrated in the Riemann sense.

Using the simple functions of Definition 9.18, we can extend the notion of integral
to any nonnegative measurable function.

Definition 9.19 (Integral of nonnegative measurable functions) The Lebesgue inte-
gral of a nonnegative measurable function f : X → R on ameasure space (X,A,μ)

is
∫

dμ f = sup

{∫

dμ s | s is simple and s(x) ≤ f (x), ∀x
}

.
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The supremum is computed over all simple functions that are equal to or lower than
the function f at any point. It can be a nonnegative real number or +∞. This is the
central definition of this section. It is worth spending some time on it. First of all,
note that Definition 9.19 is restricted to measurable functions. In principle, one can
define it on bounded functions, but then the resulting integral would lack desirable
properties.

� Example 9.17 (Integral and generic bounded functions) Take the measure space
(R,A,μ) with A = {∅,R}, μ(∅) = 0, and μ(R) = 1. Consider the functions
f = I[0,1] and g = 1 − I[0,1]. Note that, on this measure space, the only simple
function lower than or equal to f and g is the constant s(x) = 0. Conversely, the
greater simple function lower than or equal to f + g is the constant s(x) = 1. Then,
using Definition 9.19, one would get

∫
dμ f = ∫

dμ g = 0 but
∫
dμ ( f + g) = 1.

If f ≤ M , and the measure space is finite, the simple constant function s(x) = M
is greater than all the simple functions considered in Definition 9.19. Thus, the
integral of f is finite,

∫
dμ f ≤ Mμ(X). If the function is unbounded or the measure

space is not finite, then the integral can be infinite. In any case, from the property of
the supremum, it follows that if g(x) ≤ f (x), then

∫
dμ g ≤ ∫

dμ f .
A second consideration has to do with the domain of integration. If f is a mea-

surable function and E is a measurable set, then f IE is a measurable function and
we define

∫
E dμ f = ∫

dμ f IE . Definition 9.19 guarantees the following.

Corollary 9.4 Let f be a nonnegative measurable function and E1, E2 two disjoints
measurable sets, then

∫
E1∪E2

dμ f = ∫
E1

dμ f + ∫
E2

dμ f .

Proof For any measurable set E , define

L f (E) =
{∫

E
dμ s | s is simple and s(x) ≤ f (x), ∀x ∈ E

}

.

Note that
∫
E dμ f = sup L f (E). For the property of simple functions, if l1 ∈ L f (E1)

and l2 ∈ L f (E2), then l1 + l2 ∈ L f (E1 ∪ E2). Thus, sup L f (E1 ∪ E2) ≥
sup L f (E1) + sup L f (E2). At the same time, ∀l ∈ L f (E1 ∪ E2), there exist l1 ∈
L f (E1) and l2 ∈ L f (E2) such that l = l1 + l2. Indeed, if l = ∫

E1∪E2
dμ s, consider

the integrals of s IE1 and s IE2 . Thus, sup L f (E1∪ E2) ≤ sup L f (E1)+ sup L f (E2).
The statement follows from the two inequalities. �

By the definition of integral, if there exists a, b ∈ R such that ∀x ∈ A, a ≤ f (x) ≤ b,
then a μ(A) ≤ ∫

A dμ f (x) ≤ b μ(A).

Theorem 9.10 Consider a nonnegative measurable function f . If
∫
dμ f = 0 then

f = 0 almost everywhere.

Proof Define En = {x | f (x) > 1/n}. Because f is measurable, En ∈ A. Ob-
serve that

∫
dμ f ≥ ∫

En
dμ f ≥ μ(En)/n, which implies μ(En) = 0, and that
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{x | f (x) > 0} = ∪n En ∈ A. From the property of the measure, μ(∪n En) ≤∑
n μ(En) = 0, which proves the statement. �

� Example 9.18 (Almost everywhere zero function) Consider a nonnegative real-
valued function f defined over a measure space and assume that almost everywhere
f (x) = 0. If f is measurable, then N = {x ∈ X | f (x) �= 0} is a measurable set and∫
dμ f = ∫

N dμ f + ∫
Nc dμ f . The first term of the sum is zero because μ(N ) = 0,

the second because f (x) = 0 for x ∈ Nc. However, in general, if we know that the
function f is zero a.e., we cannot conclude that it is measurable. We know for sure
only if the metric space is complete.

Another consequence of Definition 9.19 is that, for the property of the supremum,
given a nonnegative measurable function f , there are sequences of simple functions
(sn), with sn ≤ f , such that their integral converges from below to the integral of f .
As the next example shows, it is also possible to build nondecreasing sequences of
simple functions pointwise converging to f .

� Example 9.19 (Simple function approximation) Consider a nonnegative measur-
able function f . For any integer n, define the sets

En
i =

{

x

∣
∣
∣
∣
i − 1

2n
≤ f (x) <

i

2n

}

, i = 1, 2, ..., n2n,

and Ēn = {x ∈ R | f (x) ≥ n}. Given n, all En
i and Ēn are mutually disjoint and

form a partition of X . Since the function f is measurable, En
i , Ēn ∈ A. We define

the simple function

sn(x) =
n2n∑

i=1

i − 1

2n
IEn

i
(x) + nIĒn (x).

Note that, ∀x , sn(x) ≤ sn+1(x) ≤ f (x) and limn→∞ sn(x) = f (x). In fact, if
n > f (x), then f (x)− sn(x) < 1/2n . If the function f is bounded, the convergence
is uniform. In this case, for n sufficiently large, f (x) − sn(x) < 1/2n for any x .

Monotone converging sequences of functions are the subject of a fundamental
result of Lebesgue integration theory: for nondecreasing sequences of functions, we
can pass the limit inside the integral.

Theorem 9.11 (Monotone convergence) Let ( fn) be a nondecreasing sequence
of nonnegative measurable functions such that ∀x ∈ X, fn(x) ≤ fn+1(x) and
limn→∞ fn(x) = f (x). Then limn→∞

∫
dμ fn(x) = ∫

dμ f (x).
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Proof Define limn→∞
∫
dμ fn(x) = L . Since fn(x) ≤ f (x), L ≤ ∫

dμ f . Con-
sider a simple function s = ∑

i ai IAi such that s(x) ≤ f (x). Take c ∈ (0, 1) and let
En = {x | fn(x) ≥ cs(x)}. By the definition of integral,

∫

dμ fn ≥
∫

E
dμ fn ≥ c

∫

E
dμ s = c

∑

i

aiμ(Ai ∩ En).

As f (x) ≥ c s(x), limn→∞ En = X , so that

lim
n→∞

∑

i

aiμ(Ai ∩ En) =
∑

i

aiμ(Ai ) =
∫

dμ s.

This implies that limn→∞
∫
dμ fn ≥ c

∫
dμ s for any simple function s ≤ f . Thus

L = limn→∞
∫
dμ fn ≥ c

∫
dμ f . Since this is true ∀c ∈ (0, 1) we must have

L ≥ ∫
dμ f . Because L ≤ ∫

dμ f , this proves the assertion. �

The pointwise convergence of a sequence of functions, which proved to be rather
weak in other cases (for instance, it does not preserve continuity, see Example 5.28),
is sufficient, in the Lebesgue theory, to ensure that the integral of the limit is the
limit of the integral. In particular, we now know that the integral of a nondecreasing
sequence of simple functions pointwise converging to a nonnegative measurable
function converges to the integral of that function.

� Example 9.20 (Lebesgue integral of the linear function) Consider the function
f (x) = x defined over (R,B, l). The function is continuous and consequently
measurable. We want to compute its Lebesgue integral in the interval [a, b] ⊆ R≥0.
For n ∈ N, consider the equispaced partition {xi = a + (b − a)i/n | i = 0, . . . , n}
and the simple function sn(x) = ∑n

i=1 xi−1 I[xi−1,xi ]. Notice that f (x) ≥ sn+1(x) ≥
sn(x) and limn→∞ sn(x) = x , ∀x ∈ [a, b]. Using the definition of the integral for
simple functions, by the same computation as Example 8.3,

∫

[0,1]
dl sn =

n∑

i=1

(xi − xi−1)xi−1 = a(b − a) + (b − a)2

n2
n(n + 1)

2
,

and, by the monotone convergence theorem,

∫

[0,1]
dl x = lim

n→∞

∫

[0,1]
dl sn = 1

2
b2 − 1

2
a2.

In this case, the Lebesgue and Riemann integrals yield the same result.

Another important consideration concerns the integral of the limit inferior of se-
quences of functions. Consider a sequence of nonnegative measurable functions
( fn) and define f (x) = infn fn(x). According to Theorem 9.9, this is a mea-
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surable function. For any n, f (x) ≤ fn(x),
∫
dμ f (x) ≤ ∫

dμ fn(x) such that
∫
dμ infn fn(x) ≤ infn

∫
dμ fn(x). This result is not surprising as, in general,

different points of the domain correspond to different functions in the sequence
that take the smallest values. The previous consideration can be extended to the
limit.

Theorem 9.12 (Fatou’s lemma) Consider a sequence of nonnegative and measur-
able functions ( fn), then

∫

dμ lim inf
n→∞ fn(x) ≤ lim inf

n→∞

∫

dμ fn(x).

Proof Define f
n
(x) = inf i≥n fi (x) so that lim infn→∞ fn(x) = limn→∞ f

n
(x) =

f (x). For any i ≥ n,
∫
dμ f

n
(x) ≤ ∫

dμ fi (x), and consequently
∫
dμ f

n
(x) ≤

inf i≥n
∫
dμ fi (x). Note that f n(x) is a nondecreasing sequence. Using the result of

Theorem 9.11 and taking the limit for n → ∞ prove the assertion. �

� Example 9.21 (Limit inferior and Lebesgue integral) The reason for the presence
of the inequality in Theorem 9.12 can be better illustrated with an example. Let In
be the indicator function relative to the interval An = [−1/n, 1/n] and consider the
sequence of simple functions fn(x) = nIn . Using the Lebesgue measure,

∫
dμ fn =

nμ(An) = 2 for any n, so that lim infn→+∞
∫
dμ fn = 2. On the other hand,

lim infn→+∞ fn(x) = 0 if x �= 0, so that
∫
dμ lim infn→+∞ fn(x) = 0, as {0} is a

measure zero set.

To extend the notion of integral to functions that can take negative values, we
need a preliminary definition.

Definition 9.20 (Integrable function) A measurable function f is integrable on the
set A ∈ A if

∫
A dμ | f | < +∞.

A function is integrable if it is integrable on the entire space.

Definition 9.21 (Integral of integrable functions) Consider an integrable function
f and define E±

f (x) = {x | f (x) ≶ 0}. Then its Lebesgue integral is defined as
∫
dμ f = ∫

E+
f
dμ f − ∫

E−
f
dμ (− f ).

Alternatively, we can define the integral of an integrable function f as
∫
dμ f =∫

dμ (| f |+ f )/2−∫
dμ (| f |− f )/2. The functions to be integrated in the two terms

of the sum are measurable and nonnegative. Definition 9.21 is restricted to integrable
functions because if both

∫
E+

f
dμ f and

∫
E−

f
dμ (− f ) are infinite, it reduces to an

indeterminate expression. FromDefinition 9.21, it follows that
∫
dμ | f | ≥ ∣

∣
∫
dμ f

∣
∣.
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� Example 9.22 (Chebyshev inequality)Let f be an integrable function and∀a > 0,
consider the measurable set E(a) = {x ∈ X | | f (x)| ≥ a}. Note that ∀p ≥ 1,
| f (x)|p/a p ≥ 1 if x ∈ E(a). Thus,

1

a p

∫

dμ | f |p ≥
∫

E(a)

dμ
| f |p
a p

≥
∫

E(a)

dμ = μ(E(a)).

This inequality can be used to find an upper bound of the measure of the set E(a) or
a lower bound of the integral of | f |p.

The Lebsegue integral is linear on integrable functions. For any c ∈ R,
∫
dμ c f =

c
∫
dμ f . Concerning the integral of the sum of functions, we have the following.2

Theorem 9.13 If f and g are integrable, then f +g is integrable and
∫
dμ ( f +g) =∫

dμ f + ∫
dμ g.

Proof The proof is carried out in three steps. First, we will prove it for simple
functions, then for nonnegative measurable functions, and finally for all measurable
functions.

Let s1 = ∑
i ai IAi and s2 = ∑

i bi IAi be simple functions that, without loss of
generality, we can assume are defined using the same collection of measurable sets
(Ai ). Then

∫
dμ (s1 + s2) = ∑

i (ai + b j )μ(Ai ) = ∑
i aiμ(Ai ) + ∑

i biμ(Ai ) =∫
dμ s1 + ∫

dμ s2.
Next, let f and g be nonnegative integrable functions. According to Theorem 9.8,

f + g is a nonnegative measurable function. Consider two nondecreasing sequences
of simple functions that converge from below to the two functions, limn→∞ s f,n = f
and limn→∞ sg,n = g (see Example 9.19). Then (s f,n +sg,n) is a sequence of simple
functions converging from below to f + g. By Theorem 9.11,

∫

dμ ( f + g) = lim
n→∞

∫

dμ (s f,n + sg,n) =

lim
n→∞

∫

dμ s f,n + lim
n→∞

∫

dμ sg,n =
∫

dμ f +
∫

dμ g.

For the last step of the proof, note that given two integrable functions f and g, f + g
is integrable. In fact, | f + g| ≤ | f | + |g| and using the previous step of the proof,∫
dμ | f + g| ≤ ∫

dμ (| f | + |g|) = ∫
dμ | f | + ∫

dμ |g|. Consider the following
algebraic equality:

(| f + g| + f + g) + (| f | − f ) + (|g| − g) =
(| f + g| − f − g) + (| f | + f ) + (|g| + g) .

2 The reason why this theorem is not stated for generic measurable functions is because the integral
ofmeasurable functionsmay be infinite and arithmetic operations between infinities are not properly
defined.
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For the previous consideration, all the terms in parentheses are positive integrable
functions, and, when taking the integral, we can apply it separately to each term of
both sides. Rearranging the integrals, we finally get

∫

dμ (| f + g| + f + g) −
∫

dμ (| f + g| − f − g) =
∫

dμ (| f | + f ) −
∫

dμ (| f | − f ) +
∫

dμ (|g| + g) −
∫

dμ (|g| − g) .

The left-hand side is 2
∫
dμ ( f + g) and the right-hand side 2

∫
dμ f + 2

∫
dμ g. �

We conclude this section by reviewing several results that directly come from
the definition of a Lebesgue integral and are often used in applications. We start by
showing that if we can find an integrable function as an upper bound, we can apply
Theorem 9.12 and extend Theorem 9.11 to any pointwise converging sequence of
functions.

Theorem 9.14 (Dominated convergence)Let ( fn) be a converging sequence ofmea-
surable functions, limn→∞ fn(x) = f (x). If there exists an integrable function g(x)
such that ∀n, | fn(x)| ≤ g(x), then limn→∞

∫
dμ fn = ∫

dμ f .

Proof Note that the functions fn are integrable by hypothesis, as
∫
dμ | fn(x)| ≤∫

dμ |g(x)| < +∞. Apply Theorem 9.12 to the sequences of nonnegative functions
(g + fn) and (g − fn) to obtain

lim inf
n→∞

∫

dμ (g + fn) ≥
∫

dμ lim inf
n→∞ (g + fn),

lim inf
n→∞

∫

dμ (g − fn) ≥
∫

dμ lim inf
n→∞ (g − fn).

From the linearity of the integral, remembering that when the elements of a sequence
are multiplied by −1, the inferior limit of the new sequence is the opposite of the
superior limit of the original sequence, and simplifying the finite integral of g,

lim inf
n→∞

∫

dμ fn ≥
∫

dμ lim inf
n→∞ fn =

∫

dμ f =

=
∫

dμ lim sup
n→∞

fn ≥ lim sup
n→∞

∫

dμ fn,

which proves the assertion. �

Theorems 9.11 and 9.14 are powerful results. The following example shows that
they are not generally valid in the case of Riemann integrable functions.
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� Example 9.23 (Failure of monotone and dominated convergence for Riemann
integrals) For any natural number n, consider the real function fn : [0, 1] → R,

fn(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈ R\Q,

1 if x ∈ Q and x = p/q with q ≤ n,
1
q if x ∈ Q and x = p/q with q > n,

where p, q are mutually prime natural numbers. The function fn(x) differs from
Thomae’s function in Example 8.4 only in a finite set of points; thus, we can conclude
that its Riemann integral exists and is equal to zero for any n. Moreover, note that for
any n, fn(x) ≥ fn−1(x) and fn(x) ≤ 1. On the other hand, f (x) = limn→∞ fn(x)
is Dirichlet’s function of Example 8.2, which is not Riemann integrable. In summary,
the sequence ofRiemann integrable functions ( fn) is nondecreasing and bounded, but
its limit is not Riemann integrable.We showed that, in general, neither the theorem of
monotone convergence nor the theorem of dominated convergence apply to Riemann
integrals.

The second application is a useful generalisation of the Jensen inequality discussed
in Corollary 1.1 from finite summations to integrals.

Corollary 9.5 (Jensen’s inequality, integral form) Let g be integrable on a finite
measure set A and let f : R → R be a bounded function such that f ◦ g is also
integrable. Then, if f is concave,

f

(
1

μ(A)

∫

A
dμ g

)

≥ 1

μ(A)

∫

A
dμ f ◦ g,

while if f is convex,

f

(
1

μ(A)

∫

A
dμ g

)

≤ 1

μ(A)

∫

A
dμ f ◦ g.

Proof Assume that f is concave. Then ∀x0 in its domain, there exists a c(xo) such
that f (x) ≤ f (xo) + c(x0)(x − x0) (see the discussion after Theorem 6.4) so that
f (g(x)) ≤ f (x0) + c(x0)(g(x) − x0). Integrating both sides

∫

A
dμ f ◦ g ≤ f (x0) μ(A) + c(x0)

(∫

A
dμ g − μ(A) x0

)

.

Setting x0 = ∫
A dμ g/μ(A) proves the first assertion. If instead f is convex, then

∀x0 in its domain, there exists a c(xo) such that f (x) ≥ f (xo) + c(x0)(x − x0), and
repeating the reasoning above, the second assertion is proved. �



270 9 Measure Theory

Fig. 9.1 Relation between
spaces and functions in
Theorem 9.15

If the measure is finite, then the set A can be the entire space. Corollary 9.5 is often
stated by assuming μ(A) = 1.

Finally, two results are provided that expand on similar results obtained in Chap. 8
for the Riemann integral. The first result is the derivation of the general “change of
variable” procedure for Lebesgue integrals. We have a real-valued function f :
Y → R defined over a space and a map h : X → Y between two spaces. Both f
and g are measurable. We want to compute the integral of the composed function
f ◦ h : X → R with respect to a measure μ on X (see Fig. 9.1).

Theorem 9.15 (SubstitutionTheorem)Let (X,AX )and (Y,AY )be twomeasurable
spaces and h : X → Y be a measurable function between them. Consider the
measure μ on (X,AX ) and a measurable function f : Y → R. The function f ◦ h
is integrable on X with respect to μ if and only if the function f is integrable on Y
with respect to the pushforward measure μ ◦ h−1 and

∫

dμ f ◦ h =
∫

d(μ ◦ h−1) f.

Proof We will directly prove the last equality. Let s = ∑n
i=1 ai IAi be a simple

function on (Y,AY ). Because h is measurable, the function s ◦h = ∑n
i=1 ai Ih−1(Ai )

is a simple function on (X,AX ). From the definition of pushforward measure,

∫

d(μ ◦ h−1) s =
n∑

i=1

aiμ(h−1(Ai )) =
∫

dμ s ◦ h.

Therefore, the statement is true for simple functions. Let f be a nonnegative mea-
surable function on (Y,AY ) and (sn) a nondecreasing sequence of simple functions
that converges to it. Then the sequence (sn ◦ h) is a nondecreasing sequence of
simple functions that converges to f ◦ h, and using Theorem 9.11, the statement is
proved. Finally, for a generic integrable function f , just apply the previous result to
the nonnegative integrable functions f I{ f >0} and − f I{ f <0}. �

If the integral is performed over ameasurable set A ∈ AX ,
∫
A dμ f ◦h = ∫

h(A)
d(μ◦

h−1) f .
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Fig. 9.2 The preimage of an interval (left) and the Stieltjes pushforward measure induced by the
function h (right) of Example 9.24

� Example 9.24 (Simple double integral) Consider a Borel measurable function f :
R → R and the rectangle E = [0, 1]× [0, 1]. We want to compute

∫
E dl2 f (x + y).

The function f (x + y) is the composition of a Borel measurable function on R with
a continuous function from R

2 to R, h(x, y) = x + y, so it is Borel measurable.
Using Theorem 9.15 with h(x, y) = x + y,

∫
E dl2 f (x + y) = ∫

h(E)
d(l2 ◦ h−1) f .

Note that h(E) = [0, 2]. To compute the pushforward measure, define

α(a) = l2 ◦ h−1((0, a] ∩ h(E)) = l2(h
−1((0, a]) ∩ E).

Because h−1((0, a]) = {(x, y) | 0 < x + y ≤ a}, if a < 0 the argument of l2 is an
empty set. If a > 0, it is the intersection of the rectangle E with an isosceles right
angled triangle in the first quadrant with catheti of length a along the axis. A simple
geometric computation (see Fig. 9.2 for an example) delivers the area of this surface,

α(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 a ≤ 0,

a2/2 0 ≤ a ≤ 1,

2a − a2/2 − 1 1 ≤ a ≤ 2,

1 2 ≤ a.

Since for any semi-open interval I = (a, b], l2 ◦ h−1(I ) = α(b) − α(a), we con-
clude that the pushforward measure is the Lebesgue–Stieltjes measure lα, so that∫
E dl2 f (x + y) = ∫

[0,2] dlα f .

� Example 9.25 (Continuous and strictly increasing Stieltjes measure) Consider a
Borel measurable function f : A ⊆ R → R and let α : R → R be a continuous
strictly increasing function. Apply Theorem 9.15 with μ = lα, h = α, and E =
α−1(A) to get

∫
α−1(A)

dlα f ◦α = ∫
A d(lα◦α−1) f .Note that becauseα is continuous

with a continuous inverse, lα◦α−1((a, b]) = lα((α−1(a), α−1(b)]) = (a, b]. Hence,
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lα ◦ α−1 is the Lebesgue measure l and we recover the usual change of variable
formula: ∫

α−1(A)

dlα f ◦ α =
∫

A
dl f.

If α is not continuous with a continuous inverse, then, in general, lα ◦ α−1 �= l.
For example, let α = I{x≥0}. Then lα ◦ α−1((0, 2]) = lα([0, +∞)) = 0.

The second result is about the derivative of the Lebesgue integral with respect to
a parameter of the integrated function.

Corollary 9.6 (Derivative of the Lebesgue integral) Let f (x, t) : R×R → R be a
Lebesgue measurable function in x for all t . Assume that the function can be derived
with respect to t and that there exists an integrable function g such that |∂t f | < g.
Then the function I (t) = ∫

dl(x) f (x, t) can be derived and

d

dt
I (t) =

∫

dl(x) ∂t f (x, t).

Proof By assumption, limn→∞ n ( f (x, t + 1/n) − f (x, t)) = ∂t f . For Theo-
rem 9.9, given the hypothesis, this guarantees that ∂t f is a measurable function.
Note that for sufficiently large n, n| f (x, t + 1/n) − f (x, t)| < g(x). Then, by
dominated convergence (Theorem 9.14),

d

dt
I (t) = lim

n→∞ n (I (t + 1/n) − I (t)) = lim
n→∞

∫

dl(x) n ( f (x, t + 1/n) − f (x, t)) =
∫

dl(x) lim
n→∞ n ( f (x, t + 1/n) − f (x, t)) =

∫

dl(x) ∂t f (x, t),

proving the assertion. �

There is nothing special about the Lebesgue measure in the previous result. You
can replace it with any other measure defined on R, for example, with a Lebesgue–
Stieltjes measure. Note that the requirements of Corollary 9.6 are weaker than those
of Theorem 8.12. In particular, the derivative ∂t f is not required to be continuous.

� Example 9.26 (Mollification) Mollification is the procedure with which a smooth
approximation, in general infinitely derivable, is built to a given continuous function.
We will see how it can be done via convolutionwith appropriately smooth functions.

Let φ be a nonnegative measurable function such that φ(x) = 0 if |x | > 1 and
∫
dl φ = ∫ 1

−1 dl φ = 1. Then ∀η > 0, the function φη(x) = η φ(x/η) is such that
φη(x) = 0 if |x | > η and

∫
dl φη = ∫ η

−η dl φη = 1 (use the change of variable). The
convolution of the function φη with a measurable function f is defined as
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f̃η(x) =
∫

dl(y) f (y)φη(x − y).

If φ ∈ Cm , trivially φη ∈ Cm but also f̃η ∈ Cm . In fact, using Corollary 9.6, ∀ j ≤ m,

d j f̃η
dx j

=
∫

dl(y) f (y) φ( j)
η (x − y).

Finding an integrable function that dominates the integrand to apply Corollary 9.6
is easy and the search is left to the reader. A suitable C∞ function that can serve the
purpose of “smoothing” any function f is (see Exercise 6.5)

φ(x) =
{
0 |x | ≥ 1

c e−1/(1−x2) |x | < 1,

where c > 0 is selected to normalise the integral of φ to 1.
Consider now a continuous function f and let the interval [a, b] be internal to its

domain. Then, f is uniformly continuous in any closed interval [a − δ′, b + δ′] for
a sufficiently small δ′ > 0. This implies that ∀ε > 0 there exists a δ > 0 such that
| f (x)− f (x ′)| < ε if x, x ′ ∈ [a−δ′, b+δ′] and |x − x ′| < 2δ. Take η < min{δ, δ′},
then ∀x ∈ [a, b],

| f̃η(x) − f (x)| =
∣
∣
∣
∣

∫ x+η

x−η
dl(y) f (y)φη(x − y) − f (x)

∣
∣
∣
∣ ≤

∫ x+η

x−η
dl(y) | f (y)− f (x)| φη(x − y) < ε,

where we have used the translation invariance of the Lebesgue measure,

∫ x+η

x−η
dl(y)φη(x − y) =

∫ η

−η
dl(y)φη(y) = 1,∀x .

The same procedure can be applied to a continuous function f : E ⊆ R
n → R.

Consider a compact set K ⊂ int E , and let K ′ ⊃ K be a compact set such that
K ′ ⊆ E and δ′ = inf{‖x− y‖, x ∈ K , y ∈ ∂K ′} > 0. Then, for a sufficiently small
η < δ′, the function

f̃η(x) =
∫

dln(y) f (y) φη(‖x − y‖)

is such that ∀ε > 0, | f̃η − f | < ε on the whole K . To prove it, exploit the fact that f
is uniformly continuous in K ′. Note that the coefficient c in the definition of φ should
be modified to take into account the fact that the integral is now performed over a
n-dimensional ball (see Exercise 9.22). If K is made of a finite union of disjoint
pieces, one can apply the theorem on each piece separately, which means that the
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function f needs not to be everywhere continuous. Due to Theorem 4.11, one can
also use, with little modification, any other norm instead of the Euclidean one.

We have found that any continuous function can be uniformly approximated on
any compact subset of its domain by a smooth function, with infinitesimal precision.
This is an important result in applications because it means that, under many circum-
stances, we can actually assume that the continuous functions we are dealing with
are in fact smooth. Once we assume continuity, we get smoothness almost for free.

The results in this section, most notably monotone convergence (Theorem 9.11)
and dominated convergence (Theorem 9.14), are not modified if the sequence of
functions considered fails to converge on a set of measure zero. If N is that set,
simply replace any function f with the function f INc . This substitution will not
modify the result of any integral. However, in applications, it might be difficult to
prove that the set on which convergence fails is a set of measure zero. It is often
simpler to prove that it is a null set. In this case, complete metric spaces turn out to
be really useful. Now every null set is measurable by construction, and the previous
trick can be adopted without any problems. In particular, as we shall see below, the
completeness of the Lebesgue measure is essential for the proper extension of the
Riemann integration theory.

9.3.1 Lebesgue and Riemann Integral onR

When we need to actually compute an integral, the best way to proceed is often the
Riemann way, possibly exploiting the powerful result of Theorem 8.9. This section
compares the Lebesgue and Riemann integrals on R. Through this comparison, we
will learn how to use theRiemann theory to compute Lebesgue integrals.Wewill also
learn the necessary and sufficient conditions for a function to be Riemann integrable.

Consider the nonnegative bounded function f : [a, b] ⊂ R → R≥0. For any
partition P = {x0 = a, < x1 < ... < xn = b} of [a, b] consider the lower sum L(P)

and the upper sum U (P) of Definition 8.2. Note that

sLP (x) =
n−1∑

i=0

I(xi ,xi+1](x) inf[xi ,xi+1]
f

and

sUP (x) =
n−1∑

i=0

I(xi ,xi+1](x) sup
[xi ,xi+1]

f

are simple functions such that
∫
dl sLP (x) = L(P) and

∫
dl sUP (x) = U (P). In this

way, we have built a correspondence between the partitions of the interval [a, b] and
a collection of special simple functions defined on it. This correspondence will be
useful to prove the next two theorems.
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Theorem 9.16 If f ≥ 0 and f ∈ R([a, b]), then f is continuous l-a.e. in [a, b] and
its Lebesgue integral is equal to its Riemann integral,

∫

[a,b]
dl f =

∫ b

a
dx f (x).

Proof Because f is Riemann integrable in [a, b], according to Definition 8.3, there
exists a sequence of partitions (Pn) with Pn ⊂ Pn+1, such that

lim
n→∞ (U (Pn) − L(Pn)) = lim

n→∞

∫

dl
(
sUPn (x) − sLPn (x)

)
= 0.

The functions sUPn − sLPn are all bounded above by sup[a,b] f − inf [a,b] f . Thus, by
dominated convergence (Theorem 9.14), we can pass the limit inside the integral
and, remembering Theorem 9.10, conclude that l-a.e. limn→∞ sUPn (x)− sLPn (x) = 0.
Let x be a point such that the last limit is zero. We will prove that the function f (x)
is continuous in x . First, we can assume that x does not belong to the partitions
Pn . In fact, if the partition Pn is such that xi < x = xi+1 < xi+2, one can take a
new partition P ′

n by removing the point xi+1 and adding the points x ′
i+1 and x ′′

i+1
such that xi < x ′

i+1 < x < x ′′
i+1 < xi+2. From the definition of supremum and

infimum, it is immediate to verify that sUP ′
n

≤ sUPn and sLP ′
n

≥ sLPn . Thus, the limit

of the sequence is still zero if the new sequence of partitions (P ′
n) is considered.

For any ε > 0, take n sufficiently large such that sUP ′
n
(x) − sLP ′

n
(x) < ε. Then there

exists an interval In = [xin , xin+1], with xin , xin+1 ∈ P ′
n , such that x ∈ In and

supIn f − inf In f ≤ ε. This implies that in any open neighbourhood x ∈ N (x) ⊂ In ,
| f (y) − f (x)| < ε, ∀y ∈ N (x), which proves that the function is continuous in x .
Then let A = {x | limn→∞ sUPn (x) − sLPn (x) = 0} and notice that

∫

[a,b]
dl sLPn (x) =

∫

A
dl sLPn (x)

because l([a, b] ∩ Ac) = 0. For any x ∈ A, limn→∞ sLPn (x) = f (x) and the

simple functions sLPn are nondecreasing in n. Thus, by monotone convergence (The-
orem 9.11),

∫ b

a
dx f (x) = lim

n→∞

∫

[a,b]
dl sLPn = lim

n→∞

∫

A
dl sLPn =

∫

A
dl lim

n→∞ sLPn =
∫

A
dl f =

∫

[a,b]
dl f,

proving the assertion. �
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The previous theorem establishes a necessary condition for a nonnegative bounded
function f to be integrable on an interval [a, b]: the set of its discontinuities must
have Lebesgue measure zero. The following theorem clarifies that this condition is
also sufficient.

Theorem 9.17 If f ≥ 0 is bounded and continuous l-a.e. on [a, b], then theRiemann
integral of f on [a, b] exists and is equal to the Lebesgue integral.

Proof Let A be the set of points in [a, b] where the function f is continuous. Let
Pn be the equispaced partition that divides [a, b] into n equal parts. If x ∈ A,
then limn→∞ sLPn (x) = f (x) = limn→∞ sUPn (x). Thus, by dominated convergence
(Theorem 9.14),

lim
n→∞ L(Pn) = lim

n→∞

∫

A
dl sLPn =

∫

A
dl lim

n→∞ sLPn =
∫

A
dl f (x) = lim

n→∞

∫

A
dl sUPn = lim

n→∞U (Pn).

But since l([a, b] ∪ Ac) = 0,
∫
A dl f = ∫

[a,b] dl f . �

In summary, a nonnegative bounded function is Riemann integrable in an interval
[a, b] if and only if the Lebesgue measure of the set of points in which it is discontin-
uous is zero. In previous theorems, we have made use of the fact that the Lebesgue
measure is complete. In fact, we have assumed that if some property is valid almost
everywhere, the set of points which violate it is measurable. Thus, set-wise, we can
remove those points from a measurable domain and remain with a measurable set. A
similar analysis would not have been possible using an incomplete measure space,
such as the Borel measure.

The extension of the previous results to generic bounded functions is made by
separately considering the set in which the function is positive and that in which it
is negative.

� Example 9.27 (Change of variable in Lebesgue integrals) Let α be a strictly
increasing differentiable functionwith aRiemann integrable derivativeα′. On (R,L)

consider the measure μ(A) = ∫
A dl α

′. For any semi-open interval

μ((a, b]) =
∫ b

a
dl α′ = α(b) − α(a) = lα((a, b]),

wherewe have used the equivalence between the Lebesgue and the Riemann integral.
Thus, we can conclude that μ = lα. From Example 9.25, we know that for any
Lebesgue measurable set E ,

∫

E
dl f =

∫

α−1(E)

dlα f ◦ α,
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and substituting the alternative definition of the Lebesgue–Stieltjes measure with
differentiable and invertible function, we have that

∫

E
dl f =

∫

α−1(E)

dl α′ f ◦ α.

This is the Riemann integral change of variable discussed in Theorem 8.10.

The analysis of the Lebesgue–Stieltjes measure, described in Definition 9.11, is
analogous to the Lebesgue case. The relation between the upper and lower sums and
the Lebesgue integral, computed according to the Lebesgue–Stieltjes measure, of
suitably defined simple functions is still valid. To prove Theorems 9.16 and 9.17, we
have only used this relation and general results frommeasure theory. The requirement
of the integrated function to have a zeromeasure set of discontinuities remains. In this
case, however, consider that the zero measure sets can also be entire intervals, where
the function α is constant. In order to ensure the existence of the Riemann–Stieltjes
integral, the function f must be continuous at the points where α is discontinuous.
Nonetheless, as long as the set of these points has Lebesgue measure zero, the
Lebesgue–Stieltjes integral exists.

� Example 9.28 (Lebesgue integral of a Stieltjes measure) Consider the function
α = Ix≥0. We want to integrate α over A = [−1, 1] using α itself as a measure.
For the Lebesgue–Stieltjes integral, α is a simple function and

∫
A dlα α = lα(A ∩

[0,∞)) = lα([0, 1]) = α(1)−α(0) = 0. Conversely, the Riemann–Stieltjes integral
∫ 1
−1 dα α does not exist.

9.4 Product Measure Space

In this section, we will see how to use the algebras and measures defined on two
σ-finite measure spaces (X,AX ,μX ) and (Y,AY , μY ) to define an algebra and
a measure on their Cartesian product X × Y . We start with generic set-theoretic
definitions. Given any set E ⊆ X × Y , and any point x ∈ X and y ∈ Y , let
Sx (E) = {y | (x, y) ∈ E} ⊆ Y be the set of points of Y that appears in at least one
ordered couple with x , and Sy(E) = {x | (x, y) ∈ E} ⊆ X the set of points of X
that appears in at least one ordered couple with y. These are “slices” of the subset
in the product space, associated with elements of the original spaces; see Fig. 9.3.
Depending on the points x and y and on the set E , Sx (E) and Sy(E) can be a proper
subset, the whole space, or the empty set.
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Fig. 9.3 The set E ⊂ X × Y
sliced along x ∈ X and
y ∈ Y

9.4.1 Productσ-Algebra

Given two generic subsets AX ⊆ X and AY ⊆ Y , define the rectangle AX × AY =
{(x, y) | x ∈ Ax , y ∈ AY }. Then consider the collection of measurable rectangles

RX×Y = {AX × AY | AX ∈ AX , AY ∈ AY } ,

obtained considering all measurable subsets of the original spaces. If E ∈ RX×Y ,
then ∀x ∈ X , Sx (E) ∈ AY , and ∀y ∈ Y , Sy(E) ∈ Ax . This is easy to see, as
Sx (AX × AY ) is AY if x ∈ AX and ∅ otherwise. The same applies to Sy .

Definition 9.22 (Product σ-algebra)The product σ-algebraAX×Y on the set X×Y
is the σ-algebra generated by the measurable rectangles AX×Y = σ(RX×Y ). The
measurable space (X × Y,AX×Y ) is the product measurable space.

� Example 9.29 (Discrete and trivial product σ-algebra) If AX = 2X and AX =
2Y , then according to Definition 9.22, AX×Y = 2X×Y . If AX = {∅, X} and AY =
{∅, Y }, thenAX×Y = {∅, X × Y }, as ∅ × Y = X × ∅ = ∅.

� Example 9.30 (Product measure and Borel measure in R
n) Consider the Borel

measurable spaces (R,B) and (R2,B2), where B is the σ-algebra generated by the
Euclidean topology T in R and B2 is the σ-algebra generated by the Euclidean
topology T2 inR2. Let R be the set of all rectangles (a, b)× (c, d), where (a, b) and
(c, d) are open intervals of R.

Since R generates T2 (see Exercise 4.7), R ⊆ T2 and B × B = σ(R) ⊆ σ(T2) =
B2. Likewise, since the elements of T2 can be written as countable unions of the
elements of R (see Theorem 4.8 and Exercise 4.13), T2 ⊆ σ(R), that isB2 ⊆ B×B.
Thus, we can conclude that B2 = B × B. That is, the Borel σ-algebra on R

2 is the
product of the Borel σ-algebra on R with itself. The same reasoning applies to the
product σ-algebra Bn of any finite-dimensional normed space Rn , Bn = ×n

i=1B =
Bn .
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The next theorem shows that all sets of the product σ-algebra have measurable
slices.

Theorem 9.18 For all (x, y) ∈ X × Y and E ∈ AX×Y , Sx (E) ∈ AY and Sy(E) ∈
AX .

Proof Fix x ∈ X and defineCx = {E ⊆ AX×Y | Sx (E) ∈ AY }. This is the set of all
elements of the product σ-algebra whose x-slices are measurable with respect to the
measure defined on Y . Notice that RX×Y ⊆ Cx . Thus, since AX×Y is the smallest
σ-algebra that contains RX×Y , if we prove that Cx is a σ-algebra, we have proved
that Cx = AX×Y , because, by definition, Cx ⊆ AX×Y .

First, notice that both∅ and X×Y trivially belong toCx . In fact, they are rectangles.
Moreover, ∀E ∈ Cx , Sx (Ec) = {y | (x, y) /∈ E} = {y | y /∈ Sx (E)} = Sx (E)c ∈
Ay . Thus, Ec ∈ Cx and we have proved that Cx contains the complement of all
its sets. Finally, Sx (

⋃∞
i=1 Ei ) = ⋃∞

i=1 Sx (Ei ), so that Cx is closed under countable
union.

The analysis is identical for y-slices. �

The previous result serves to prove that the restrictions of a measurable function on
a product measurable space are measurable in the original spaces.

Theorem 9.19 Let f : X×Y → Z be ameasurable function from the product space
(X ×Y,AX×Y ) to (Z ,AZ ). Then ∀x ∈ X and ∀y ∈ Y , the restrictions fx : Y → Z
with fx (y) = f (x, y) and fy : X → Z with fy(x) = f (x, y) are measurable
functions in the respective domain spaces.

Proof It suffices to observe that f −1
x (AZ ) = Sx ( f −1(AZ )) and f −1

y (AZ ) =
Sy( f −1(AZ )), ∀AZ ∈ AZ . �

Often, measurable functions on the product σ-algebra are built starting frommea-
surable functions on the original σ-algebras.

� Example 9.31 (Real-valued functions on product space) If the real-valued func-
tion f : X → R is measurable in (X,AX ), then the function h(x, y) = f (x) is
measurable in (X×Y,AX×Y ), indeed Da(h) = Da( f )×Y .Moreover, if g : Y → R

is measurable in (Y,AY ), then h(x, y) = f (x)g(y) and h(x, y) = f (x) + g(y) are
measurable in (X × Y,AX×Y ) (see Theorem 9.8).

9.4.2 Product Measure

The next step is to define a measure on the measurable space (X × Y,AX×Y ). We
will start by discussing a handy way of building a σ-algebra starting from an algebra.
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Definition 9.23 (Monotone class) Given a set X , a monotone class M ⊆ 2X on X
is a collection of subsets such that

• given a monotone increasing sequence of elements of M, E1 ⊆ E2 ⊆ . . ., then
∪∞
i=1Ei ∈ M;

• given a monotone decreasing sequence of elements of M, E1 ⊇ E2 ⊇ . . ., then
∩∞
i=1Ei ∈ M.

Essentially,M is a collection of subsets that is closed with respect to the intersection
and union of monotone sequences of sets. Note that a σ-algebra is a monotone class,
but a monotone class is generally not a σ-algebra. For example, a singlet {x} is itself
a monotone class, but not a σ-algebra. It is immediate to see that, as with algebras,
the intersection of monotone classes is a monotone class. Thus, given a collection
of subsets C ⊆ 2X , it is possible to define the monotone class generated by the
collection C as the intersection of all the monotone classes that contain it. When
the starting collection of subsets is an algebra A0, something special happens: the
monotone class generated by it is precisely the σ-algebra generated by it.

Theorem 9.20 Consider a set X, an algebraA0 ⊆ 2X , and the monotone classM
generated byA0. ThenM = σ(A0).

Proof ClearlyA0 ⊆ M ⊆ σ(A0). If we show thatM is a σ-algebra, then we know
thatM = σ(A0), because there are no algebras smaller than σ(A0) that containA0.

We start by proving thatM is closed with respect to the union of sets. Define the
set M1 = {

E ∈ M | E ∪ A ∈ M,∀A ∈ A0
}
and consider an increasing sequence

of elements in M1, E1 ⊆ E2 ⊆ . . .. By definition, E = ∪∞
i=1Ei ∈ M. Take any

A ∈ A0, then E ∪ A = ∪∞
i=1Ei ∪ A, but {Ei ∪ A} is an increasing sequence, and

therefore, E∪ A ∈ M, which implies that E ∈ M1. You can repeat the same analysis
for the intersection of nested sequences, thus proving that M1 is a monotone class.
Since clearlyA0 ⊆ M1 (because it is an algebra),M1 = M.

NowconsiderM2 = {
E ∈ M | E ∪ E ′ ∈ M, ∀E ′ ∈ M}

. For the previous result,
we know that A0 ⊆ M2 and following the same procedure we did before, we can
easily prove that M2 is a monotone class. Thus, M2 = M, which implies, by
definition, thatM is closed with respect to the union.

To prove that M is closed with respect to taking the complement, define M3 =
{E ∈ M | Ec ∈ M}. Given an increasing sequence E1 ⊆ E2 ⊆ . . . of elements in
M3, and setting E = ∪∞

i=1Ei , Ec = ∩∞
i=1E

c
i . Since {Ec

i } is a decreasing sequence
of elements, Ec ∈ M and E ∈ M3. You can repeat the same analysis for the
intersection of nested sequences. This shows thatM3 is a monotone class. SinceA0

is an algebra,A0 ⊆ M3, that is,M3 = M.
We have proved that M is an algebra. However, notice that any countable union

of elements of M can be written as the union of an increasing sequence E1 ∪ E2 ∪
E3 . . . = E1 ∪ (E1 ∪ E2) ∪ (E1 ∪ E2 ∪ E3) . . .. This means that M is also closed
under countable unions, and hence, it is a σ-algebra. �
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Using the previous result, we can prove the existence and clarify the computation of
the product measure. Let us start with the case of finite measure spaces.

Theorem 9.21 (Product measure) Given two finite measure spaces (X,AX , μX )

and (Y,AY ,μY ), for all E ∈ AX×Y , the function hE
X : X → R≥0, hE

X (x) =
μY (Sx (E)) is measurable inAX , the function hE

Y : Y → R≥0, hE
Y (y) = μX (Sy(E))

is measurable inAY , and
∫
dμX hE

X = ∫
dμY hE

Y is the product measure μX×Y (E)

of the set E.

Proof Weneed to prove that the two integrals in the definition of the productmeasure
are actually equal. Consider the collection of elements of the product σ-algebra for
which the relation in the statement is true

C =
{

E ∈ AX×Y
∣
∣
∫

dμX hE
X =

∫

dμY hE
Y

}

.

This set C is not empty, as it obviously contains ∅ and X × Y . We will prove that, in
fact, C = AX×Y .

First, we show that C is a monotone class. Consider a monotone increasing se-
quence of elements of C, E1 ⊆ E2 ⊆ . . ., and let E = ∪n En . The sequences
of measurable functions (hEn

X ) and (hEn
Y ) are such that limn→∞ hEn

X = hE
X and

limn→∞ hEn
Y = hE

Y . These functions are dominated by μX (X) × μX (Y ) and apply-
ing Theorem 9.14,

∫

dμX hE
X = lim

n→∞

∫

dμX hEn
X = lim

n→∞

∫

dμY hEn
Y =

∫

dμY hE
Y ,

so that E ∈ C. Analogously, let E1 ⊇ E2 ⊇ . . . be a monotone nondecreasing
sequence of elements of C and E = ∩n En . Then (hEn

X ) and (hEn
Y ) are sequences of

measurable functions such that limn→∞ hEn
X = hE

X and limn→∞ hEn
Y = hE

Y . Again,
using Theorem 9.14 twice, we can prove that

∫
dμX hE

X = ∫
dμY hE

Y , that is E ∈ C.
Second, we consider the set containing finite unions of all measurable rectangles,

R̄X×Y . The intersection of rectangles is a rectangle, and the complement of a rectangle
can be written as union of rectangles (see Fig. 9.4). Thus, R̄X×Y is an algebra. This
implies that all the elements of R̄X×Y can be written as the finite union of disjoint
rectangles.

Third, we show that R̄X×Y ⊆ C. For any measurable rectangle E = AX × Ay ,
hE
X = IAX μY (Ay) and hE

Y = IAY μX (AX ) are measurable. Consider two disjoint
measurable rectangles E = (AX × Ay) ∪ (BX × By). We have hE

X = IAX μY (Ay) +
IBX μY (By) and hE

Y = IBY μY (AX )+IAY μY (BX ), so that the statement of the theorem
is clearly satisfied. The same reduction to simple functions is obtained also when the
union of more than two disjoint rectangles is considered, thus R̄X×Y ⊆ C.

In conclusion, R̄X×Y is an algebra and C a monotone class that contains it. But
according to Theorem 9.20, the smallest monotone class that contains R̄X×Y is pre-
ciselyAX×Y . Thus,AX×Y ⊆ C and the statement follows. �
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Fig. 9.4 The intersection of (AX × AY ) ∪ (BX × BY ) is the rectangle number 5. The union of
(AX × AY ) ∪ (BX × BY ) can be written as the union of the seven disjoint rectangles identified by
a number from 2 to 8. The complement of (AX × AY ) are the rectangles number 1, 2, 3, 6, and 9

The previous definition satisfies all the properties of a measure. Obviously,
μX×Y (∅) = 0. Given two disjoint measurable sets E1, E2 ∈ AX×Y , ∀x ∈ X , Sx (E1)

and Sx (E2) are disjoint measurable sets inAY and ∀y ∈ Y , Sy(E1) and Sy(E2) are

disjoint measurable sets inAX . Thus, h
E1∪E2
X = hE1

X +hE2
X and hE1∪E2

Y = hE1
Y +hE2

Y .
In Theorem 9.21, the requirement for the measures to be finite is important. If the
original measures are not finite, then the product measure might not be well defined.

� Example 9.32 (Uncertain measure) To have an intuition of the kind of problem
one finds when dealing with infinite measures, consider the product of the counting
measure and of the Lebesguemeasure onR2. Consider the set En = ⋃n

h=1{h}×(h−
δn, h+δn) ⊆ R

2. This is the union of disjoint rectangles and one has μ(En) = 2nδn .
If one sets δn = 1/n, then limn→∞ μ(En) = 2, while if one sets δn = 1/n2,
limn→∞ μ(En) = 0, despite the fact that in both cases limn→∞ En = N × N.

Conveniently, however, the definition can be extended from finite to σ-finite mea-
sures, like the Borel measure space on R.

Theorem 9.22 (Product of σ-finite measures) The result in Theorem 9.21 is valid
also when σ-finite measure spaces are considered.

Proof Let (X,AX ,μX ) and (Y,AY ,μY ) be twoσ-finitemeasure spaces. Thus, there
exist two nested sequences X1 ⊆ X2 ⊂ . . . and Y1 ⊆ Y2 ⊂ . . . of AX -measurable
andAY -measurable sets, respectively, such that ∪∞

i=1Xi = X , ∪∞
i=1Y1 = Y , and ∀i ,

μX (Xi ),μY (Yi ) < +∞.
On (X,AX ), ∀E ∈ AX define the measure μi

X (E) = μX (E ∩ Xi ), and on
(Y,AY ), ∀E ∈ AY define the measure μi

Y (E) = μY (E ∩ Yi ) (see Exercise 9.12).

These measures are finite. Note that ∀E ∈ AX , if i > j , μi
X (E) ≥ μ

j
X (E), and

limi→∞ μi
X (E) = μX (E). Moreover for anyAX -measurable function f , it follows
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that
∫
dμi

X f = ∫
dμX f IXi (see Exercise 9.12). The measures μi

Y have the same
properties on (Y,AY ).

According to Theorem 9.21, ∀E ∈ AX×Y ,
∫
dμi

X hE
Xi

= ∫
dμi

Y hE
Yi
, where

hE
Xi

(x) = μi
Y (Sx (E)) and hE

Yi
(y) = μi

X (Sy(E)). From the previous discussion,
∫
dμi

X hE
i = ∫

dμX hE
Xi
IXi and

∫
dμi

Y hE
i = ∫

dμY hE
Yi
IYi . But (hE

Xi
Ixi ) and

(hE
Yi
IYi ) are nondecreasing sequences of measurable functions such that

limi→∞ hE
Xi

(x) IXi = μY (Sx (E)) and limi→∞ hE
Yi

(y) IYi = μX (Sy(E)) so that,
by monotone convergence (Theorem 9.11), the statement follows. �

� Example 9.33 (Lebesgue measure and product measure) The Lebesgue measure
on R2 has been built on the basis of the outer measure introduced in Definition 9.12.
The measure space (R2,L2, l2) is not the product measure of (R,L, l) with itself.
This can be easily understood by looking at the completeness of the measure. Con-
sider the rectangle I = [0, 1] × {0}. This is a zero measure set in l × l. Now, take
the Vitali set E /∈ L defined in Example 9.5. The rectangle E × {0} ⊂ I is a null
set, but it is not measurable. Thus, l × l is not a complete measure, while we know
from Theorem 9.5 that l2 is complete.

9.4.3 Multiple Integrals

Having defined a measure on the product space X × Y , we can proceed to integrate
real-valuedmeasurable functions on it. The actual computation can be facilitated by a
powerful theorem, which is named Fubini’s (or “reduction”) theorem after the Italian
mathematician Guido Fubini (1879 – 1943). This theorem reduces the computation
of a multivariate integral to a sequence of integrals in a single variable. We will start
by proving a preliminary result.

Lemma 9.5 Let s(x, y) = ∑n
i=1 ai IAi be a real-valued simple function on the

product measure space (X × Y,AX×Y ,μ) and denote with sx and sy its restrictions
on Y and X, respectively, associated with generic points x ∈ X and y ∈ Y . Then

∫

dμ s =
∫

dμX

(∫

dμY sx

)

=
∫

dμY

(∫

dμX sy

)

.

Proof Without loss of generality, we can assume that the sets Ai are mutually dis-
joint. For the properties of the product measure and from Definition 9.18,

∫

dμ s =
n∑

i=1

aiμ(Ai ) =
∫

dμX

n∑

i=1

ai μY (Sx (Ai )).
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At the same time sx = ∑n
i=1 ai ISx (Ai ) and from the linearity property of integrals,

∫

dμY sx =
n∑

i=1

ai

∫

dμY ISx (Ai ) =
n∑

i=1

ai μY (Sx (Ai )),

thus proving the first equality. The second equality is proved similarly. �

This result can be generalised to nonnegative measurable functions and to integrable
functions.

Theorem 9.23 (Fubini) Let f be a nonnegative measurable or integrable function
on the product measure space in Lemma 9.5 and fx and fy its restrictions on Y and
X, respectively, associated with generic points x ∈ X and y ∈ Y . Then

∫

dμ f =
∫

dμX

(∫

dμY fx

)

=
∫

dμY

(∫

dμX fy

)

.

Proof If the function f is nonnegative, there is a nondecreasing sequence of simple
functions (sn) that converges to f . It is immediate to see that the sequences of
their restrictions, (sn,x ) and (sn,y), are nondecreasing and converging to fx and fy ,
respectively. Then, by monotone convergence, using Lemma 9.5,

∫

dμ f = lim
n→∞

∫

dμ sn = lim
n→∞

∫

dμX

(∫

dμY sn,x

)

=
∫

dμX

(∫

dμY lim
n→∞ sn,x

)

=
∫

dμX

(∫

dμY fx

)

.

We have used the fact that (
∫
dμY sn,x ) is a pointwise increasing sequence of func-

tions for each x because (sn,x ) is a pointwise increasing sequence of functions for
each y. The other equality is proved analogously. If the function is integrable, then
the result can be applied separately for f I f >0 and − f I f <0. �

From Example 9.33, we know that the measure induced by the outer measure in
Definition 9.12 is a genuine new measure onR2 and is not l × l. However, it remains
true that (R2,L2) is the completion, with respect to l2, of (R2,B2), which is itself a
product measurable space (see Example 9.30).We haveB2 = B×B ⊂ L×L ⊂ L2,
and the only complete space when considering the measure l2 is the latter (and
largest).When applying Theorem 9.23 to Riemann integrals, one has to proceed with
caution. A sufficient condition is that all the restrictions of the function satisfy the
requirements of Theorem 9.17. In practice, one often integrates piecewise continuous
functions on compact domains, so that no issues arise.
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� Example 9.34 (The order of integration might matter) In (R2,B2, l2) consider the
function

f (x, y) =

⎧
⎪⎨

⎪⎩

1 if x ≥ 0 and x ≤ y < x + 1,

−1 if x ≥ 0 and x + 1 ≤ y < x + 2,

0 otherwise.

The function and its restriction are piecewise continuous; therefore, we should be
able to compute the one-dimensional integral of the restrictions using the Riemann
approach. Let lX and lY denote the Lebesguemeasures on the two component spaces.
Then ∀x , ∫ dlY fx (y) = ∫ x+2

x dy f (x, y) = 0, so that
∫
dlX

∫
dlY fx (y) = 0. At the

same time,

∫

dlX fy(x) =
∫ max{0,y}

max{0,y−2}
dx f (x, y) =

⎧
⎪⎨

⎪⎩

y if 0 ≤ y ≤ 1,

2 − y if 1 ≤ y ≤ 2,

0 otherwise.

Therefore,
∫
dlY

∫
dlX fy(x) = 1. The reason for the discrepancy is that the function

f is neither positive nor integrable. In fact,
∫
f >0 dl f = ∫

f <0 dl (− f ) = +∞.

When performing multiple integrals on Rn using Fubini’s theorem, the Lebesgue
measure dln is typically expressed using individual variables dx1dx2 . . . dxn . The
following examples present the computation of multiple integrals in different situa-
tions. The reader is advised to study them carefully.

� Example 9.35 (Integral of a two-variable function)Consider the function f (x, y)
= x2+xy onR2 and the set A = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}. The function f
is continuous and consequently Riemann integrable. We want to compute

∫
A dl2 f .

Specifically, wewill compute
∫
dlX

∫
Sx (A)

dlY fx (y). If x < 0 or x > 1, Sx (A) = ∅.
If x ∈ [0, 1], Sx (A) = [0, 1 − x]. Then, ∫A dl2 f = ∫ 1

0 dx
(∫ 1−x

0 dy x2 + xy
)
.

The integral in parentheses is performed keeping x constant. Since ∀x the function
is Riemann integrable, the integral can be computed from the primitive function
Fx (y) = x2y + xy2/2,

∫ 1−x

0
dy x2 + xy = Fx (1 − x) − Fx (0) = 1

2
x − 1

2
x3.

This is in turn a Riemann integrable function in x , and using its primitive F(x) =
x2/4 − x4/8,

∫

A
dl f =

∫ 1

0
dx

1

2
x − 1

2
x3 = F(1) − F(0) = 1

8
.

The reader can check that reversing the order of integration, namely computing
∫ 1
0 dy

(∫ 1−y
0 dx x2 + xy

)
, leads to the same result.
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� Example 9.36 (Change of variables in multiple integrals) Consider a measurable
real-valued function f : Rn → R and an open domain E ∈ B so that the integral∫
E dln f exists and is finite. Let H : Rn → E be a differentiable function with a

differentiable inverse. This function expresses any element of the space x ∈ E (the
old coordinates) as a function of an element y ∈ H−1(E) (the new coordinates).
According to Theorem 9.15 (replace h with H−1 and f with f ◦ H),

∫
E dln f =∫

H−1(E)
d(ln ◦ H) f ◦ H.

We want to derive a simple expression for the pushforward measure ln ◦ H.
Let us start with the case n = 2. Consider an infinitesimal rectangle around a
point x = (x1, x2), δR(x) = (x1, x1 + dx1] × (x2, x2 + dx2]. Ignoring higher
order infinitesimals, H(δR(x)) is a parallelogram whose vertices are H(x), H(x1 +
dx1, x2) = H(x) + J1(x)dx1, H(x1, x2 + dx2) = H(x) + J2(x)dx2, and H(x1 +
dx1, x2 + dx2) = H(x) + J1(x)dx1 + J2(x)dx2 where Ji is i th column of the Jaco-
bian matrix. A basic result in linear algebra is that the area of a parallelogram is the
absolute value of the determinant of the matrix built from the vectors defining the
couples of opposite hedges. Thus, l2(H(δR)) = | det J (x)|dx1dx2 + o(dx1 dx2).

Consider now a finite semi-open rectangle R = (x, x + a] × (y, y + b]. Using
two equispaced partitions on the two coordinates, divide it into n2 disjoint small
semi-open rectangles R = ∪n

i=1 ∪n
j=1 Rn

i, j , with opposing sides having length a/n

and b/n. When n is large, l2(H(Rn
i, j )) = | det J (xi, j )|ab/n2 + o(1/n2) where xi, j

is the lower left corner of the sub-rectangle Rn
i, j . Then

l2(H(R)) =
n∑

i=1

n∑

j=1

l2(H(Rn
i, j )) =

ab

n2

n∑

i=1

n∑

j=1

| det J (xi, j )| + n2o(
1

n2
) =

∫

R
dl2 sn + n2o(

1

n2
),

with sn = ∑n
i=1

∑n
j=1 | det J (xi, j )|IRn

i, j
. The sequence of simple functions (sn) is

dominated by the constant function supR | det J | and, because of the continuity of the
elements of the Jacobian, pointwise converges to | det J |. Thus, by Theorem 9.14,
when n → ∞, l2(H(R)) = ∫

R dl2 | det J |. Because any open set is the countable
union of disjoint open rectangles, the previous equality is valid for any open set. The
same procedure is valid for any dimension n, so we can conclude that

∫

E
dln f =

∫

H−1(E)

d(ln ◦ H) f ◦ H =
∫

H−1(E)

dln | det J | f ◦ H.

� Example 9.37 (Polar coordinates) Consider the sector of the unit circle A =
{(x, y) | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1} and the function f (x, y) = x y. We want to
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compute I = ∫
A dl f . Using Fubini’s Theorem 9.23,

I =
∫ 1

0
dx

∫ √
1−x2

0
dy xy =

∫ 1

0
dx

1

2
x(1 − x2) = 1

4
− 1

8
= 1

8
.

Consider the change of variables x = ρ cosφ, y = ρ sin φ described in Exam-
ple 7.1. The associated Jacobian (see Example 9.36) reads

J =
(
cosφ −ρ sin φ
sin φ ρ cosφ

)

so that | det J | = ρ. This change of variables violates the requirement of Exam-
ple 9.36 in (0, 0). This is not an issue. Being a zero measure set, we can remove this
point from the integration domain without affecting the computation of the integral.
With the new variables, the integral is on a rectangle

I =
∫ 1

0
dρ

∫ π/2

0
dφ ρ3 cosφ sin φ = 1

8

∫ π/2

0
dφ sin 2φ = 1

8
.

� Example 9.38 (Gaussian integral) Consider the integral I = ∫ +∞
−∞ dx e−x2 . The

integrated function is continuous and nonnegative; hence, the Lebesgue integral
exists. Note that

I 2 =
(∫ +∞

−∞
dx e−x2

)(∫ +∞

−∞
dy e−y2

)

=
∫

R2
dxdy e−x2−y2 .

Using the polar coordinates in Example 9.37, the integral can be rewritten as I 2 =
∫
R2 dφ dρ ρ e−ρ2 . Applying Fubini’s theorem, first performing the integral in φ and
then expressing the remaining improper Riemann integral as a limit,

I 2 = 2π
∫ +∞

0
dρ ρ e−ρ2 = π lim

L→+∞(1 − e−L2
) = π,

so that I = √
π.

9.5 Probability Measure

There is a special instance of a finitemeasure space that deserves a specific definition.
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Definition 9.24 (Probability measure) A probability space is a measure space
(X,A, μ) such that μ(X) = 1. The measure μ is a probability measure.

When probability spaces are concerned, the notation usually changes to something
like (�,F , P), where � is a generic set of possible outcomes, F ⊆ 2� is the
σ-algebra (or σ-field), whose elements are called realisations or events, and P the
probability measure defined on those events. The joint probability of two events
A1, A2 ∈ F , that is, the probability that they are both realised, is P(A1 ∩ A2). The
probability that at least one of the two events is realised is P(A1 ∪ A2).

Definition 9.25 (Independent events) Let (�,F , P) be a probability space. Two
events A, B ∈ F are called independent if P(A ∩ B) = P(A) P(B).

It is easy to see that if A and B are independent, then Ac and Bc are independent.Given
a sequence of events (An), the probability that at least one event of the sequence is
realised is P(∪∞

n=1An), while the probability that they are all realised is P(∩∞
n=1An).

The next result is named after Félix Borel and the Italian mathematician Francesco
Cantelli (1875–1966).

Theorem 9.24 (First and second Borel–Cantelli lemmas) Consider a sequence of
events (An). If

∑∞
n=1 P(An) < +∞, then the probability that an infinite number of

them are realised is zero. If instead
∑∞

n=1 P(An) = +∞ and the events (An) are
independent, then the probability that an infinite number of them are realised is one.

Proof An infinite number of events are realised if and only if, for any n, there
is an event k ≥ n that is realised. The probability of the latter is the probability
of ∪∞

k=n Ak . Thus, the probability that an infinite number of events are realised is
P(∩∞

n=1 ∪∞
k=n Ak).

To prove the first statement, notice that ( Ãn = ∪∞
k=n Ak) is a monotonically de-

creasing sequence of sets. Thus P(∩∞
n=1∪∞

k=n Ak) = limn→∞ P( Ãn). For the subad-
ditive property of the measure, P( Ãn) ≤ ∑∞

k=n P(Ak). By assumption
∑

n P(An)

converges, thus limn→∞
∑∞

k=n P(Ak) = 0 and the first statement follows.
To prove the second statement, notice that only a finite number of events are re-

alised if and only if there is a n such that no event with k ≥ n is realised. The
probability of the latter is P((∪∞

k=n Ak)
c) = P(∩∞

k=n A
c
k). If we prove that this

probability is zero, then we have proved the second statement. In fact, since the
events are independent, P(∩∞

k=n A
c
k) = ∑∞

k=n P(Ac
k) = ∑∞

k=n(1 − P(Ak)) ≤
exp(−∑∞

k=n P(Ak)) = 0, because
∑∞

k=n P(Ak) diverges by assumption. �

When dealing with probability, we will say that some property or relation is valid
almost surely, abbreviated with a.s., when the property or relation is violated at most
on a null set.
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� Example 9.39 (Coin flip) We want to describe in probabilistic terms the flipping
of one coin. The coin has two faces: head (h) or tail (t), so we set � = {h, t}.
When flipping the coin, one of the two sides will turn up, so the algebra of events
is set to F = σ({{h}, {t}}) = {�,∅, {h}, {t}}. If the coin is fair, we set P({h}) =
P({t}) = 1/2. If the coin is unfair, we assign a different measure (probability) to the
two singlets. Notice that P({h} ∩ {t}) = 0 �= P({h}) P({t}) = 1/4, thus the head
and tail events are not independent.

Different algebras on the same space � represent different possible sets of events
that describe different situations.

� Example 9.40 (Two coin flip) Consider the flipping of two fair coins in sequence.
The outcome of each coin can be a head (h) or a tail (t). Then the probability space
(�,F , P) is build by setting � = {t t, th, ht, hh}, F = 2� and using the counting
measure of Example 9.3, P = μ#/4.

Conversely, if the two coins are flipped at the same time, that is one cannot
distinguish the realisation of one coin from that of the other, the algebra is generated
by the observable events: two heads {hh}, two tails {t t}, and one head and one tail
{ht, th}, that is F = σ({{hh}, {ht, th}, {t t}}). The measure P remains the same.

On probability spaces, we normally consider real-valued functions.

Definition 9.26 (Random variable) A random variable on a probability space
(�,F , P) is a F -measurable function with values in (R,B).

By Lemma 9.2, if X is a random variable and g a Borel measurable function, then
g(X) is a random variable. Different σ-algebras on the same set � allow different
random variables because some function might be measurable with respect to one
algebra but not measurable with respect to the other.

� Example 9.41 (Random variables for two coin flip) Consider the probability
spaces in Example 9.40 and define a function X1 : � → R that counts the number
of obtained tails, that is X1(ht) = X1(th) = 1, X1(t t) = 2, and X1 = 0 otherwise.
The set Da(X1) of Definition 9.15 is ∅ if a ≥ 2, {t t} if 1 ≤ a < 2, � \ {hh} if
0 ≤ a < 1, and finally � if a < 0. Thus, the random variable X1 is measurable on
both probability spaces, the sequential flipping and simultaneous flipping.

Assume instead that we have a function X2 that measures whether a head is the
outcome of the first flip, that is, X2(hh) = X2(ht) = 1 and X2 = 0 otherwise. In this
case D0(X2) = {hh, ht}. This set belongs only to the σ-algebra of the sequential
flipping case. Thus, f is an acceptable random variable only on that probability
space.

Being a measurable function, a random variable X does two things. First, it gen-
erates a σ-algebra on � through the mechanism of Lemma 9.3: the collection of the
preimages of Borel sets, σ(X) = {X−1(B) | B ∈ B} ⊆ F , is a σ-algebra itself.
This is called the σ-algebra of the random variable. It is the smallest σ-algebra on
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which X is measurable. Second, it defines a probability measure μX on the Borel
measure space (R,B) through the pushforward mechanism described in Lemma 9.4.
This leads to the following.

Definition 9.27 (Probability distribution) Consider a random variable X : � →
R. For any B ∈ B let μX (B) = P(X−1(B)). Since X is P-measurable, μX is
a probability measure on B and is said to be the distribution law or probability
distribution of the random variable X .

Equivalently, the behaviour of X can be described as follows.

Definition 9.28 (Distribution function) Consider a random variable X : � → R.
Its distribution function is defined as

FX (x) = P(X−1((−∞, x])) = P({ω ∈ � | X (ω) ≤ x}).

From the definition, FX (x) = ∫ x
−∞ dμX , limx→−∞ FX (x) = 0, and

limx→+∞ FX (x) = 1. This is the same object that we met in Example 8.17.

Theorem 9.25 Let FX be the distribution function of a randomvariable X : � → R.
Then FX is nondecreasing and right continuous.

Proof The first statement follows immediately by noting that if x > x ′, then
X−1((−∞, x ′]) ⊆ X−1((−∞, x]). Concerning the second point, for any sufficiently
small ε > 0, there exists n such that (−∞, x] ⊆ (−∞, x + ε] ⊆ (−∞, x +1/n] and
hence FX (x) ≤ FX (x+ε) ≤ FX (x+1/n). But limn→∞(−∞, x+1/n] = (−∞, x],
and the statement follows from the comparison theorem. �

Note that limh→0+ FX (x − h) = FX (x) − μX ({x}). The jump of the distribution
function in x is equal to the probability measure of the singlet {x}. If μX ({x}) = 0,
then the distribution function is continuous in x . AsμX ((a, b]) = FX (b)−FX (a), the
probability distribution μX can be seen as the Lebesgue–Stieltjes measure associated
with the increasing function FX . The integral with respect to the probability measure
of the random variable X is often denoted by dFX .

� Example 9.42 (The measure of a random variable) Consider the random variable
X1 in Example 9.41. It is X−1

1 (0) = {hh}, X−1
1 (1) = {ht, th}, and X−1

1 (2) = {t t}.
Thus, the probability measure induced by the random variable X1 on R is a point
mass measure (see Example 9.4)

μX1 = 1

4
I{0} + 1

2
I{1} + 1

4
I{2}.
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The associated distribution function FX1(x) has a value 0 if x < 0, 1/4 if 0 ≤ x < 1,
3/4 if 1 ≤ x < 2, and 1 if x ≥ 2.

The probability distribution μX , or the distribution function FX , contains all the
necessary information about the behaviour of the random variable. Any random
variable on any probability space can ultimately be seen as a measure on (R,B).
This is the reason why a large part of the random variable theory deals directly with
the distribution function FX , rather than with the original probability spaces from
which it derives. While the probability space describes the model one has in mind,
it is the distribution function that ultimately enters into any practical computation.

Definition 9.29 (Mean and variance) The mean or expected value of a random
variable X is defined as E[X ] = ∫

dFx x when the integral exists. Its variance is
defined as V[X ] = ∫

dFx (x − E[X ])2 when the integral exists.

The twoquantities above are not guaranteed to exist. Themean of the randomvariable
X exists if the identity function is integrable with respect to the measure μX . In
general, for any Borel measurable function g, the expected value of the random
variable g(X) is

∫
�
dP g ◦ X = ∫

dFX g and is denoted with E[g(X)] or EX [g].

� Example 9.43 (Variance bounds) If the variance exists, it can be used to obtain
an upper bound to the probability of the occurrence of large values. Applying the
Chebyshev inequality in Example 9.22 to X −E[X ], ∀a > 0, P{|X −E[X ]| ≥ a} ≤
V[X ]/a2.

� Example 9.44 (Binomial distribution)Consider n sequential flips of an unfair coin
with probability p of showing head and q = 1 − p of showing tail. The space of
events is the sequence of length n of h and t , � = {c = (c1, . . . , cn) | ci = h, t}.
The σ-algebra is simply 2�, and the measure is P(c) = ∏n

i=1(pI{h}(ci )+q I{t}(ci )).
This is a good probability measure, as one can easily check that

∑
c∈� P(c) = 1.

Consider the random variable that counts the number of heads in a sequence of
length n, X (c) = ∑n

i=1 I{h}(ci ). The possible values (the support) of the random
variable are the integer numbers between 0 and n. Let l be one of these numbers,
then X−1({l}) are all the sequences that contain exactly l heads. Their number is
given by the binomial coefficient and their probability is pl qn−l , so that

μX ({l}) = P(X−1({l})) =
(
n

l

)

plqn−l .

The resulting probability distribution is known as the binomial distribution. It is a
point mass or discrete distribution.

If the distribution function FX is differentiable, then its derivative fX = F ′
X is

called the probability density of the random variable X . Although the probability
measure μX and the distribution function FX can be defined for any random variable
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X , the probability density may not exist. When the probability density exists, we
have E[g(X)] = ∫

dl fX g.

� Example 9.45 (Moments, Central Moments, and Cumulants) Let l be an integer
number. The l th order moment ml(X) of a random variable X is defined as ml(X) =∫
dFX xl = E[Xl ]. This is the same definition we have seen in Example 8.17. In

particular, the first moment of a random variable is its expected value, m1(X) =
E[X ]. If the variable has a mean, its l th order central moment Ml(X) is analogously
defined as Ml = ∫

dFX (x − m1(X))l = E[(X − m1(X))l ]. The central moment
is the moment of the random variable obtained by subtracting from the original
random variable its expected value. Clearly, M1 = 0, while M2 is the variance of X .
A moment or central moment of a given order might not exist or exist and be infinite.

The definition of a cumulant is a bit more complex. The cumulant generating
function KX : R → R of a random variable X is defined as

KX (t) = log
∫

dFX etx .

Then the l th order cumulant Cl(X) of X is

Cl(x) = dl

dtl
KX (t)

∣
∣
∣
∣
t=0

.

In other terms, the cumulants are the coefficients of the Maclaurin expansion of the
cumulant generating function KX (t) = C1 t + C2t2/2 + . . .. Taking the derivative
inside the integral, it is immediate to see that C1 = m1 and C2 = M2. The nice
thing about cumulants is how they behave under the addition of independent random
variables. Let X and Y be two random variables and consider their sum X + Y . If
the random variables are independent,

∫

dP et (X+Y ) =
∫

dFX et X
∫

dFY etY ,

which in turn implies that KX+Y (t) = KX (t)+KY (t). Thus,Cl(X +Y ) = Cl(X)+
Cl(Y ): the cumulant of a given order of the sum of independent random variables is
the sum of their cumulants of the same order. This is a generalisation of the well-
known fact that the expected value or the variance of the sum of independent random
variables is the sum of their expected values, or their variances, respectively.

9.5.1 Multiple RandomVariables

The definition of probability measure and distribution function can be easily gen-
eralised to multiple random variables using the notion of product measure space
introduced in Sect. 9.4. A vector function with n components, X : � → R

n is a
multivariate or vector random variable in the probability space (�,F , P) if it is
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measurable, that is, ∀B ∈ Bn , X−1(B) ∈ F . Since Bn is the n times product σ alge-
bra ofBwith itself (see Example 9.30), we know that the n components X1, . . . , Xn

are measurable functions from � to R (see Example 9.31).

Definition 9.30 (Joint probability distribution and distribution function) Let X :
� → R

n be a vector randomvariable in (�,F , P). The joint probability distribution
μX is defined on any Borel subset B ⊆ R

n as μX(B) = P(X−1(B)).
Analogously, the joint distribution function F : Rn → R≥0 reads

F(x) = P
(
X−1((−∞, x1] × . . . × (−∞, xn])

) =

P

(
N⋂

i=1

X−1
i ((−∞, xi ])

)

= P({ω ∈ � | Xi (ω) ≤ xi , i = 1, . . . n}).

For any Borel measurable function g : Rn → R,
∫
�
dP g◦X = ∫

dμX g. The notion
of independent events, Definition 9.25, is naturally extended to random variables.

Definition 9.31 (Independent random variables) The random variables X1, . . . , Xn

are independent if the elements of their σ-algebras are all independent. That is, if
∀Ai ∈ σ(Xi ), i = 1, . . . n, then P(

⋂n
i=1 Ai ) = ∏n

i=1 P(Ai ).

� Example 9.46 (Dependent and independent random variables)Consider the prob-
ability space of two coin sequential flip inExample 9.40. Let X , X1, and X2 be the ran-
domvariables that count, respectively, the total number of heads, the number of heads
in thefirst flip, and the number of heads in the secondflip.Thefirst variable takes value
in {0, 1, 2} and σ(X) = σ({{hh}, {ht, th}, {t t}}). The other two variables take values
in {0, 1} and σ(X1) = σ({{th, t t}, {hh, ht}}), σ(X2) = σ({{ht, t t}, {hh, th}}).

Note that, for {hh} ∈ σ(X) and {hh, ht} ∈ σ(X1), P({hh} ∩ {hh, ht}) = 1/4
while P({hh}) P({hh, ht}) = 1/8. Thus, X and X1 are not independent.

Conversely, if ω1 ∈ {{th, t t}, {hh, ht}} and ω2 ∈ {{ht, t t}, {hh, th}}, ω1 ∩ ω2 is
a singlet, so that P(ω1 ∩ ω2) = 1/4 = P(ω1)P(ω2). We can conclude that X1 and
X2 are independent.

Theorem 9.26 (Probability distribution of independent random variables) Let X :
� → R

n be a vector randomvariable and X1, . . . , Xn its components. If X1, . . . , Xn

are independent, then their joint probability distribution μX on Bn is the product
measure of the probability distribution of its components: μX = μX1×...×Xn .

Proof Take a rectangle R = B1 × . . . × Bn ⊆ Bn . Then X−1(R) = ∩n
i=1 X

−1
i (Bi ).

If the components are independent,

μX(R) = P(X−1(R)) = ∩n
i=1 P(X−1

i (Bi )) =
n∏

i=1

μXi (Bi ) = μX1×...×Xn (R).
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Thus, the statement is true on the rectangles. For Theorem 9.18, we know that it also
true on the σ-algebra generated by the rectangles, which is precisely Bn . �

A similar factorisation is also in place for the distribution function. If the random
variables considered are independent, ∀x = (x1, . . . , xn) ∈ R

n ,

F(x) = P(

N⋂

i=1

X−1
i ((−∞, xi ))) =

n∏

i=1

P(X−1
i ((−∞, xi ))) =

n∏

i=1

F(xi ).

Theorem 9.27 Let X1, . . . , Xn be independent random variables on the probability
space (�,F , P) and gi : R → R, i = 1, .. . . . , n, Borel measurable functions.
Then the expected value of the function g(x) = ∏n

i=1 gi (xi ) from R
n to R exists if

and only if EXi [gi ] exists for each i = 1, . . . , n and E[g] = ∏n
i=1 EXi [gi ].

Proof First, note that since all gi ’s are Borel measurable in R, then g is Borel
measurable inRn (seeExample 9.31). Because the randomvariables are independent,
applying Fubini’s Theorem 9.23

∫

dμXg(x) =
∫

dμX1

∫

dμX2×...×Xn gx1 =
(∫

dμX1 g1(x1)

)∫

dμX2×...×Xn

n∏

i=2

gi (xi ),

where I used the fact that for the restriction gx1 = g(x1)
∏n

i=2 g(xi ) (see Theo-
rem 9.19). The repeated application of this factorisation procedure proves the asser-
tion. �

� Example 9.47 (Joint moments)When multiple random variables X1, X2, . . . , Xn

are considered, their joint moment is defined as ml1,...,ln = E[∏n
i=1 X

li
i ]. If the

variables are independent, then the joint moments are the product of the individual
moments, ml1,...,ln = ∏n

i=1mli (Xi ). The definition of joint central moments for
multiple random variables is directly derived from the definition of a single variable.
Details are left to the reader.

9.5.2 Banach Space of Square Summable RandomVariables

Consider a probability space (�,F , P). Let X : � → R be a random variable

and define ‖X‖ =
√∫

�
dω X (ω)2. It is immediate to see that ‖X‖ ≥ 0, that for

any constant c, ‖c X‖ = |c| ‖X‖, and that for any two random variables X and
Y , ‖X + Y‖ ≤ ‖X‖ + ‖Y‖. The function just defined is similar to the norm in
Definition 4.1, with the only difference that ‖X‖ = 0 does not imply that X is zero
for all ω ∈ �, but rather that a.s. X = 0. We can define an equivalence relation in the
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set of random variables by saying that two random variables X and Y are equivalent
if they are a.s. equal, that is P{ω | X (ω) = Y (ω)} = 1.

Definition 9.32 (Square-integrable random variables) L2(�,F , P) is the set of all
(equivalence classes of) random variables X : � → R of the space (�,F , P) such
that ‖X‖ < +∞.

From the triangle inequality, the linear combination of elements of L2(�,F , P)

clearly belongs to L2(�,F , P), so the set is a linear space. The function ‖.‖ is a
norm on L2. We can prove that this space is complete.

Theorem 9.28 (L2(�,F , P), ‖.‖) is a Banach space.

Proof Consider a Cauchy sequence of random variables (Xk). We have to prove
that it converges almost surely. From the definition of a Cauchy sequence, there is a
subsequence (Xnk ) such that ‖Xnk − Xnk−1‖ < 1/2k for k ≥ 2. Applying the Jensen
inequality, Corollary 9.5, to each element of the sum,

E

[
k∑

h=2

|Xnh − Xnh−1 |
]

=
k∑

h=2

E
[|Xnh − Xnh−1 |

] ≤
k∑

h=2

‖Xnh − Xnh−1‖ ≤
k∑

h=2

1

2h
.

Taking the limit k → ∞ we see that E[∑∞
h=2 |Xnh − Xnh−1 |] < +∞. This implies

that a.s.
∑∞

h=2 |Xnh (ω)− Xnh−1(ω)| < +∞, or the expected value would be infinite.
Thus, apart from a measure zero set, (Xnh (ω)− Xnh−1(ω)) is absolutely convergent,
that is, convergent. But since Xnk = ∑k

h=2(Xnh − Xnh−1) + Xn1 , this implies that
there exists a random variable X such that a.s. limk→∞ Xnk (ω) = X (ω).

For any element of the original sequence, using Fatou’s Theorem 9.12, the fact
that the limit inferior is equal to the limit when the limit exists, and the continuity of
the norm, one has

‖Xn − X‖2 =
∫

�

dω lim inf
k→∞ |Xn − Xnk |2 ≤ lim inf

k→∞ ‖Xn − Xnk‖2.

For the Cauchy property, the right-hand side can be made as small as desired by
selecting sufficiently large values for n and k. Thus, limn→∞ ‖Xn − X‖2 = 0, which
implies that a.s. limn→∞ Xn = X . �

The previous analysis can be easily extended to the case of vector random variables.
Consider a probability space (�,F , P), a vector random variable X : � → R

n

and define ‖X‖ =
√∑n

i=1

∫
�
dω Xi (ω)2. The space L2(�,F , P) of all vector

random variables X such that ‖X‖ < +∞ is a linear space. With the stipulation
that two vector random variables are considered equal if they differ only on a null
set, the function above is a norm on that space and one can easily prove that the
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vector version of (L2(�,F , P), ‖.‖) is a Banach space by proving the convergence
of Cauchy sequences of vector random variables component by component.

Exercises

Exercise 9.1 Consider the interval [0, 1] ⊂ R. Prove that the set

A = {∅, (0, 1/2], (1/2, 1], [0, 1]}

is aσ-algebra on [0, 1]. Is this also true for the setA′ = {∅, [0, 1/2], [1/2, 1], [0, 1]}?

Exercise 9.2 Let X = {a, b, c}. Compute the σ-algebra generated by C1 = {∅}, by
C2 = {{a}}, and by C3 = {{a}, {b}}.

Exercise 9.3 Let (X,A,μ) be a measure space. Prove that μ(A) + μ(B) = μ(A ∪
B) + μ(A ∩ B) for any A, B ∈ A.

Exercise 9.4 Let (X,A, μ) be a measure space and E ∈ A a measurable subset.
Prove that the function μE (A) = μ(A ∩ E) is a measure on (X,A).

Exercise 9.5 Consider the Euclidean topology onR. Prove that the sets (0, 1), [1, 2],
(3, 4], {5}, and (6, +∞) belong to the Borel σ-algebra.

Exercise 9.6 What is the counting measure of {1, 2, 3} and of [0, 1] in (R,B)?

Exercise 9.7 Consider a function f : X → Y and the smallest σ-algebra on X ,
A = {∅, X}. Assume that f takes two different values at two different points,
f (x1) �= f (x2). Prove that if theσ-algebra on Y is the Borelσ-algebra of aHausdorff
topology, the function f is not measurable.

Exercise 9.8 Consider the outer measure μ∗ defined starting from the sets in Defi-
nition 9.10. Prove that for any closed interval [a, b], μ∗([a, b]) = b − a, while for
any singlet {a}, μ∗({a}) = 0.

Exercise 9.9 In the set of measurable functions on a measure space (X,AX ,μ)

define the relation f ∼ g if a.e. f = g. Prove that ∼ is an equivalence relation.

Exercise 9.10 Given a sequence of nonnegative measurable functions ( fn), prove
that

∫
dμ supn fn(x) ≥ supn

∫
dμ fn(x).
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Exercise 9.11 Consider a sequence of nonnegative measurable functions ( fn) and
assume that there exists an integrable function g such that fn(x) ≤ g(x). Prove that

∫

dμ lim sup
n→∞

fn(x) ≥ lim sup
n→∞

∫

dμ fn(x).

(Hint: Apply Theorem 9.12 to the sequence (g − fn).)

Exercise 9.12 With reference toExercise 9.4, prove that for anymeasurable function
f on (X,A),

∫
dμE f = ∫

E dμ f . (Hint: Start by proving it on simple functions.)

Exercise 9.13 Consider the function μ(A) = ∫
A dl e

−x defined on any Lebesgue
measurable set A. Prove thatμ(A) is a finitemeasure onR≥0 and compute

∫
R≥0

dμ x .

Exercise 9.14 Using the measure in the previous exercise, define the Lebesgue–
Stieltjes measure on R

2 with lα((a, b] × (c, d]) = μ((a, b]) μ((c, d]) (see Defini-
tion 9.11). Let A1 = R≥0 × R≥0 and A2 = [0, 1] × [0, 1]. Prove that they are
measurable with respect to lα. Compute

∫
A1

dlα xy and
∫
A2

dμα xy.

Exercise 9.15 Let μα and μβ be the Lebesgue–Stieltjes measures defined on R

starting from the functions α(x) = exp x and β(y) = y3, respectively. Consider
the completion of the product measure μ = μα × μβ on R

2 and the two subsets
A1 = {|x | + |y| ≤ 1} and A2 = {|x | + |y| = 1}. Compute the integral of the
functions f (x, y) = x2y and f (x, y) = xy2 on A1 and A2 using the measure μ.

Exercise 9.16 Let a ∈ R. Compute the Riemann integral of the function f (x, y) =
x2 + axy + y2 on the set A = {(x, y) | 0 ≤ x + y ≤ 1, 0 ≤ x − y ≤ 1}.

Exercise 9.17 Consider the function f (x1, x2, x3) = exp
∑3

i=1 βi xi with real β’s

and the set A =
{
(x1, x2, x3) | x1, x2, x3 ≥ 0,

∑3
i=1 xi ≤ 1

}
. Compute the integral

∫
A dl f .

Exercise 9.18 Compute the area of the bounded part of the plane defined by the
parabola y = ax2 and the line y = b, with a, b > 0.

Exercise 9.19 Using the theory of integration, find the volume of the pyramid with
height h and square base of length l.

Exercise 9.20 Using the theory of integration, find the volume of the cone with
height h and base radius ρ.

Exercise 9.21 Let Bn ⊂ R
n be the closed n-ball or radius 1. Prove that

∫
∂Bm

dln = 0.
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Exercise 9.22 Let f : R≥0 → R be an integrable function, prove that in Rn for any
a > 0, ∫

‖x‖≤a
dln(x) f (‖x‖) =

∫ a

0
dBn(ρ) f (ρ)

where Bn(ρ) is the volume of the n-dimensional ball of radius ρ.Hint: In Rn for any
partition {a1 = 0, a2, . . . , al = a} of [0, a] the function s(x) = ∑l

i=1 I {ai−1 ≤
‖x‖ < ai } f (ai ) is a simple function s(x) ≤ f (‖x‖).

Exercise 9.23 With reference to Example 9.40, how is the definition of the measure
space modified if the probability to obtain head with each coin is 0.6?

Exercise 9.24 If (�,F , p) is the probability space defined in Example 9.44, prove
that

∫
X dP = ∑

x∈� P(x) = 1.

Exercise 9.25 Let X1 and X2 be two random variables with distribution function
Fi (x) = 1 − e−ai x if x > 0 and zero otherwise, with i = 1, 2 and ai ≥ 0. Compute
the probability that the realisation of X1 is greater than the realisation of X2.

Exercise 9.26 The skewness s and kurtosis k of a random variable X are, respec-
tively, defined as

s =
∫
dP (X − E[x])3

V[x]3/2 and k =
∫
dP (X − E[x])4

V[x]2 .

With reference to Example 9.45, prove that s = C3(X)/C2(X)3/2 and k =
C4(X)/C2(X)2 + 3.

Exercise 9.27 Consider the measure on R defined by μ(dx) = e−x2/2/
√
2πdx .

Using the result in Example 9.38, prove that it is a probability measure. Its name is
Gaussian probability distribution. With reference to Example 9.45, find its cumulant
generating function (Hint: Apply a change of variable).

Exercise 9.28 Let X be a random variable and c a constant.With reference to Exam-
ple 9.45, prove that Kc X (t) = KX (c t). Use this result to show that if X1 . . . Xn are
independent random variables with bounded cumulants, then for Yn = ∑n

i=1 Xi/n,
limn→∞ Cl(Yn) = 0 for any l > 1.

Exercise 9.29 Let X be a random variable and c be a constant. With reference
to Example 9.45, prove that KX+c(t) = KX (t) + ct . Use this, together with the
result in Exercise 9.28, to show that if X1 . . . Xn are independent random variables
with bounded cumulants, then for Yn = (Sn − C1(SN ))/

√
n, with Sn = ∑n

i=1 Xi ,
limn→∞ Cl(Yn) = 0 for l = 1 and l > 2.
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Exercise 9.30 LetX1,X2, andX3 be vector random variables in (R2,B2).X1 takes
with equal probability any value in [0, 1] × [0, 2]. X2 takes with equal probability
any value in [0, 2] × [0, 1]. The first component of X3 = (X, Y ) takes with equal
probability any value in [0, 1] and the second component takes with equal probability
any value in [0, x], where x is the realisation of the first component. Consider the
function U : R2 → R, U (x, y) = xαyβ with α, β > 1 and compute EXi [U ], with
i = 1, 2, 3.



ACauchy InitialValueProblem

In the study of differential equations and dynamical systems, a initial value problem
describes a situation in which a dynamic variable, represented by a function depend-
ing on a scalar parameter, often identified with time, has a specific initial value and
then evolves according to some given rule. The rule is expressed as a relation between
the derivative of the variable, its value, and the value of the scalar parameter. The
specific rule can come from some optimisation argument, or it can simply describe
some sort of “law of motion”. The existence of a solution to the problem is not guar-
anteed and depends on the variable initial condition and the rule that describes its
evolution. The search for a solution can be carried out on a global or local scale. In
the first case, a possible solution is typically sought among a predefined set of func-
tions, like those defined over a desirable domain. In the second case, one is interested
in finding if there exists a suitable domain in which the problem admits a possible
unique solution. The following analysis pertains to the second case. Specifically, we
consider a vector-valued function x : R → R

n , depending on a real parameter t . The
evolution of the variable and its initial value are described by the system{

ẋ(t) = f(x(t), t),

x(t0) = x0,

where we have adopted the convention of indicating with a point, or “dot”, the
derivative of the variable with respect to the scalar parameter, ẋ = dx/dt . The
solution x(t)must be a differentiable, and hence continuous, function. If f : Rn+1 →
R

n is continuous in a neighbourhood of (x0, t0), then, in that neighbourhood, the
right-hand side is a continuous function of t . In this case, we are, in fact, looking
for a continuously differentiable solution. Since both sides are continuous, we can
integrate them with respect to the scalar variable t and, for the fundamental theorem
of calculus, we find an equivalent integral representation of the problem,
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x(t) = x0 +
∫ t

t0
dτ f(x(τ ), τ ).

Note that the previous equation is implicit and somehow formal, as the function
x appears on the left and right sides. Although the continuity of the function f is
sufficient to establish the equivalence between the differential and integral versions
of the problem, it is generally not sufficient to establish the existence and uniqueness
of the solution.

� Example A.1 (A problem with no solution) Consider the problem{
ẋ(t) = x(t),

x(0) = −1.

By dividing both sides by x , the first equation can be rewritten as d log x(t)/dt = 1,
which implies that log x(t) = t + c, for some constant c ∈ R. That is, x(t) =
exp(t + c). The initial value condition requires that ec = −1, which has no (real)
solution.

� Example A.2 (A problem with multiple solutions) Consider the problem{
ẋ(t) = 3|x(t)|2/3,
x(0) = 0.

It is immediate to verify that both x(t) = 0 and x(t) = t3 solve this problem.

In what follows, we want to derive sufficient conditions that guarantee the exis-
tence of a unique local solution to the initial value problem. Our strategy requires
imposing some additional regularity conditions on the function f . Then we build a
suitable function based on the integral representation of the problem, and, finally, by
applying the Banach fixed point theorem, we use this function to prove the existence
and uniqueness of the solution. The additional regularity conditions are based on the
notion introduced in Sect. 3.4.

Definition A.1 (Uniform Lipschitz continuity) The function f(x, t) from R
n+1 to

R
n , with x ∈ R

n and t ∈ R, is uniformly Lipschitz continuous in xwith respect to t if
∃K > 0 such that for any two points x, y ∈ R

n and any t ∈ R, ‖f(x, t) − f(y, t)‖ ≤
K‖x − y‖.

The function is locally uniformly Lipschitz continuous in (x0, t0) if there exist a
neighbourhood N (x0) ⊆ R

N of x0 and a neighbourhood N (t0) ⊆ R of t0 such that
the previous statement is true ∀x, y ∈ N (x0) and ∀t ∈ N (t0).

Next, we define a function, specifically built for the problem at hand, that maps a
continuous function into a continuous function.
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Definition A.2 (Picard map) Consider a continuous function f(x, t) from R
n+1 to

R
n , with x ∈ R

n and t ∈ R, and a point (x0, t0) ∈ R
n+1. The associated Picard map

sends the continuous function z : R → R
n into the continuous function Lz : R →

R
n defined as

Lz(t) = x0 +
∫ t

t0
dτ f(z(τ ), τ ).

Note that Lz(t), being the integral of a continuous function, is, in fact, continuously
differentiable.

Now assume that the function f(x, t) of the initial value problem is continuous
in a neighbourhood of t0 and locally Lipschitz continuous in x with respect to t
in (x0, t0). Then there exist an interval I = (t0 − δt , t0 + δt ), a ball B(x0, dx ) =
{z ∈ R

n | ‖z − x0‖ < dx }, and a constant K > 0 such that ∀x, y ∈ B(x0, dx )

and ∀t ∈ I , ‖f(x, t) − f(y, t)‖ ≤ K‖x − y‖. We take δt such that δt K < 1. The
Lipschitz continuity guarantees that the function is continuous and bounded in these
neighbourhoods. Specifically, the diameter of the imageof f is bounded aboveby K dx

(see Corollary 3.2). Let C(I, B) be the set of continuous bounded functions defined
over I with images in B(x0, dx ). As discussed in Example 5.19, (C(I, B), ‖.‖∞) is
a Banach space.

We now have all the pieces in place and we are able to proceed with the proof of
the existence and uniqueness of the local solution of the initial value problem. We
start with a preliminary result.

Lemma A.1 (Picard) The Picard map sends an element of C(I, B) into an element
of C(I, B).

Proof Wehave to prove that if, for a continuous function z, ∀t ∈ I , ‖z(t)−x0‖ < δx ,
then ∀t ∈ I , ‖Lz(t) − x0‖ < δx . In fact,

‖Lz(t) − x0‖2 =
n∑

i=1

(∫ t

t0
dτ fi (z(τ ), τ )

)2

≤

≤ (t − t0)
∫ t

t0
dτ

n∑
i=1

fi (z(τ ), τ )2 ≤ (t − t0)
2K 2d2

x < δ2x .

The first inequality is the Jensen inequality of Corollary 8.5 applied to the function
g(x) = x2 and the last inequalities follow from ‖f‖2 ≤ K 2δ2x , |t − t0| ≤ δt and our
assumption δt K < 1. �

Once we have proved that the Picard map is a well-defined function in C(I, B), we
can state our main result.

Theorem A.1 (Cauchy–Lipschitz) The Picard map is a contraction in C(I, B).
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Proof Consider x, y ∈ C(I, B). Note that

‖Lx(t) − Ly(t)‖2 =
n∑

i=1

(∫ t

t0
dτ fi (x(τ ), τ ) − fi (y(τ ), τ )

)2

≤

≤ (t − t0)
∫ t

t0
dτ

n∑
i=1

( fi (x(τ ), τ ) − fi (y(τ ), τ ))2 ≤

K (t − t0)
∫ t

t0
dτ

n∑
i=1

(xi (τ ) − yi (τ ))2 = K (t − t0)
∫ t

t0
dτ‖x(τ ) − y(τ )‖2,

where we have used the Jensen inequality of Corollary 8.5 applied to the function
g(x) = x2 and the Lipschitz continuity of f . From the property of the supremum,

(t − t0)
∫ t

t0
dτ‖x(τ ) − y(τ )‖2 ≤ (t − t0)

2 sup
τ∈I

{‖x(τ ) − y(τ )‖2} ,

so that

‖Lx − Ly‖2∞ = sup
τ∈I

{‖Lx(τ ) − Ly(τ )‖2} ≤

δ2t K 2 sup
τ∈I

{‖x(τ ) − y(τ )‖2} = δ2t K 2‖x − y‖2∞,

and, remembering that δt K < 1, the statement follows. �

Finally, using the Banach fixed point theorem, we can state the result we were
looking for.

Corollary A.1 Consider the Cauchy initial value problem{
ẋ(t) = f(x(t), t),

x(t0) = x0,

with f : R
n+1 → R

n, x : R → R
n, and x0 ∈ R

n. If f(x, t) is continuous in
a neighbourhood of t0 and locally Lipschitz continuous in x with respect to t in
(x0, t0), then there exists an interval I = (t0 − δt , t0 + δt ) in which the problem
admits an unique continuously differentiable solution.

Proof Given the hypothesis, one can build the Banach space (C(I, B), ‖.‖∞). In this
space, the Picardmap is a contraction. Thus, according toTheorem5.9, it has a unique
fixed point x that satisfies the equation x = Lx, that is x(t) = x0 + ∫ t

t0
dτ f(x(τ ), τ ).

Since the function f is continuous by hypothesis, this is the unique solution of the
initial value problem. �



BBrouwer FixedPointTheorem

Every continuous function from a convex compact subset K ⊆ R
n to itself has at

least one fixed point. This is the Brouwer fixed point theorem that is referred to in
basically all courses of Microeconomic Theory, but a proof of which is almost never
provided. Indeed, this theorem has a very natural proof in algebraic topology. How-
ever, that proof requires notions that are likely unavailable to students of economics.
On the other hand, the proof I provide below is based on quite elementary notions
introduced in any course of advanced calculus.1

In the discussion below, I will denote by B̄n the closed ball of unit radius, that is,
B̄n = {x ∈ R

n | ‖x‖ ≤ 1} ⊂ R
n . I will denote by Bn its interior and with ∂ Bn its

boundary. The proof of Brouwer’s theorem relies on a couple of lemmas concerning
the properties of the unit ball. The first lemma characterises a retraction, that is, a
function r : B̄n → ∂ Bn such that its restriction to the boundary is the identity: if
x ∈ ∂ Bn , r(x) = x.

Lemma B.1 There are no continuously differentiable retractions.

Proof Assume that there exists a retraction r such that r ∈ C1(B̄n). We will see that
this assumption will lead to a contradiction. For any λ ∈ [0, 1], consider the function

gλ(x) = (1 − λ)x + λr(x) .

The function gλ is a convex combination of continuously differentiable functions,
specifically r and the identity map. Thus, it is continuously differentiable. Since
the ball is a convex set, it is gλ(B̄n) ⊆ B̄n . Also notice that the restriction of g to
the boundary of the ball is the identity map. Now consider the differential of gλ,

1 The proof presented here is loosely based on A less strange version of Milnor’s proof of Brouwer
fixed-point theorem by C.A. Rogers that appeared in The American Mathematical Monthly in 1980.
I replaced the Weistrass polynomial approximation with a mollification kernel approach and I
exploited the Lebesgue integration theory and the operator norm to simplify the argument.
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dgλ = I + λ(dr − I ), where I is that n × n identity matrix and dr is the differential
of r . Its inverse dg−1

λ can be formally written as

dg−1
λ = 1

I + λ(dr − I )
=

∞∑
i=0

λi (dr − I )i .

Let M = maxx∈B̄n
‖dr − I‖op where ‖.‖op stands for the operator norm in Defi-

nition 4.4. Notice that M > 0, because the matrix dr cannot be the identity on the
whole ball. Then if λ < 1/M it is

‖dg−1
λ ‖op ≤

∞∑
h=0

λh ‖dr − I‖h
op ≤

∞∑
h=0

λh Mh = 1/(1 − λM) .

Thus, for λ ∈ [0, 1/M), the differential dgλ has an inverse on the whole ball B̄n ,
which for the inverse function theorem (see Sect. 7.5) implies that gλ is invertible
and that its image is the whole B̄n . The differential of gλ is a continuous function so
that one can define the integral

μ(λ) =
∫

B̄n

dln|dgλ| =
∫

gλ(B̄n)

dln,

where the second equality comes directly from the theory of the change of variable
(Theorem 9.15). We have seen that for λ ∈ [0, 1/M) it is gλ(B̄n) = B̄n , thus
μ(λ) = Vn , where Vn is the volume of the nth dimensional ball of radius 1. At the
same time, |dgλ| is just the sum of products of n linear expressions in λ, thus μ(λ)

is a polynomial of degree n in λ. Being a polynomial, if it is constant on an interval,
it is constant everywhere. This is absurd, because clearly μ(1) = ∫

∂ Bn
dln|dgλ| = 0

as ∂ Bn is a zero measure set. �

The second lemma somehow connects continuous maps with continuously differen-
tiable maps.

Lemma B.2 If there exists a continuous map from the compact ball to itself without
fixed points, then there exists a continuously differentiable map from the compact
ball to itself without fixed points.

Proof Let f : B̄n → B̄n be a continuous map from the compact ball to itself.
Consider the ball with radius 1+ δ1, B̄n(1+ δ1) ⊃ B̄n and the function f1 : B̄n(1+
δ1) → B̄n defined as f1(x) = f (x) if ‖x‖ ≤ 1 and f1(x) = f (x/‖x‖) otherwise.

The function f1 has no fixed points. Because it is continuous, it is uniformly
continuous on B̄n(1 + δ1). Let ε = minx∈B̄n(1+δ1)

‖ f1(x) − x‖ > 0 and δ2 > 0
be such that ‖ f1(x) − f1(y)‖ < ε/2 if ‖x − y‖ ≤ δ2. Define η = min{δ1, δ2} and
consider a continuously differentiable function φ : Rn → R≥0 such that φ(x) = 0
if ‖x‖ ≥ η and

∫
dln(x)φ(x) = 1.
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For any x ∈ B̄n , define f2(x) = ∫
dln(y) f1(y)φ(x − y) (see Example 9.26). The

function f2 is continuously differentiable, d f2(x) = ∫
dln(y) f1(y)dφ(x − y) and

f2(B̄n) ⊆ B̄n as

‖ f2(x)‖ ≤
∫

dln(y)‖ f1(y)‖φ(x − y) ≤ 1 .

Note also that

‖ f2(x) − f1(x)‖ ≤
∫

dln(y)‖ f1(y) − f1(x)‖φ(x − y) ≤ ε/2,

where the last inequality comes from the fact that the function φ is different from
zero only when ‖x − y‖ ≤ η ≤ δ2. Moreover for any x ∈ B̄n it is ‖ f (x) − x‖ ≤
‖ f (x)− f2(x)‖+‖ f2(x)−x‖ that is ‖ f2(x)−x‖ ≥ ‖ f (x)−x‖−‖ f (x)− f2(x)‖.
But in B̄n , f = f1 and using the previous inequalities one gets ‖ f2(x) − x‖ ≥ ε/2.
This implies that f2 is a continuously differentiable map from the compact ball to
itself without fixed points. �

Now we are ready for the final theorem.

Theorem B.1 (Brouwer’s fixed point theorem) Every continuous function from a
convex compact subset K ⊆ R

n to itself has at least one fixed point.

Proof Recall that any convex compact subset K ⊆ R
n is homeomorphic to the

compact ball B̄ of radius 1 and centre 0. That is, there exists a continuous invertible
one-to-one function φ : K → B̄ (see Example 4.4).

Then if there exists a continuous function f : K → K with no fixed points,
the function f1 = φ ◦ f ◦ φ−1 is a continuous function from B̄n to B̄n with no
fixed points. Thus, for Lemma B.2, there exists a continuously differentiable map
g : B̄n → B̄n with no fixed points.

On B̄n consider the function r : B̄n → ∂ Bn defined as r(x) = x+λ(x)(g(x)−x)
where

λ(x) = (g(x) − x) · x
‖g(x) − x‖2 −

√
((g(x) − x) · x)2 − (‖x‖2 − 1)‖g(x) − x‖2

‖g(x) − x‖2 .

Because for any x it is g(x) �= x, the function r is well defined. The value of λ(x)
is chosen such that g(x) ∈ ∂ Bn . Thus r represents a continuously differentiable
retraction. But from Lemma B.1 we know that such a retraction does not exist. Thus,
a function like g cannot exist and, consequently, a function like f cannot exist. �



Index

A
Absolute convergence, 109
Absolute value, 11
Algebra, 245
Almost everywhere, 249
Almost surely, 288
AM–GM inequality, 16, 95
Analytic function, 150
Angular coefficient, 135
Archimedean property, 12
Asymptotic approximation, 147
Asymptotic equivalence, 102

B
Banach fixed point, 90
Banach space, 107
Base, 29
Bernoulli inequality, 22
Bijective function, 3
Binary operation, 8
Binomial coefficient, 22, 174
Binomial distribution, 291
Bolzano–Weierstrass theorem, 37, 74
Borel measurable function, 258, 259
Borel set, 250
Borel σ -algebra, 250
Boundary candidate solution, 190
Boundary point, 26
Bounded
function, 55
norm, 66
set, 55

Bounded above

function, 5
set, 4

Bounded below
function, 5
set, 4

C
Candidate solution, 190
boundary, 190
internal, 190

Cartesian product, 2
Cauchy condensation test, 111
Cauchy–Schwarz inequality, 67
Cauchy sequence, 85
Cauchy theorem, 137
Central moment, 292
Cesàro mean, 101
Cesàro summable, 115
Chain rule, 133, 160
Characteristic function, 261
Chebyshev distance, 57
Chebyshev inequality, 267
Closed, 8, 26
Closed map, 45
Closure, 26
Cofinite topology, 50
Combination
conical, 21
convex, 18

Comparison test
series, 110

Comparison theorem
sequences, 92
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Complement, 26
Complete measure space, 249
Complete metric space, 88
Completion
measure, 249

Concave function, 19, 49, 132
Condensation test
Cauchy, 111
Schlömilch, 110

Conical combination, 21
Connected set, 40
Constraint, 190
active, 190
binding, 190
qualification, 199

Continuous
function, 44
Lipschitz, 61, 228, 302
uniform, 59

Continuously differentiable, 166
Contraction, 61
Converging
sequence, 81
series, 108

Convex combination, 18
Convex cone, 20
Convex function, 19, 49, 132
Convex set, 18
Convolution, 272
Countable additivity, 246
Countable set, 6
Countable topology, 32
Counting measure, 247
Cover, 34
Critical point, 169
Cumulant, 292
Cumulant generating function, 292
Curve
differential, 225
length, 226
non-singular, 200
regular, 200

D
Decreasing function, 11
Dedekind cut, 10
Definite integral, 217
Dense set, 26
Dependent function, 188
Derivative, 130
directional, 162

left, 131
partial, 162
product rule, 132
quotient rule, 133
reciprocal rule, 133
right, 131

Derivative set, 26
Diameter, 55
Differentiable, 130, 131, 158
Differential, 158
multivariate, 158

Differential curve, 225
Dini theorem, 118
Directional derivative, 162
Dirichlet function, 218, 262
Discontinuity
first kind or trivial, 128
second kind or jump, 128
third kind or essential, 128

Discrete σ -algebra, 245
Discrete distribution, 291
Discrete topology, 25
Disjoint set, 1
Distance, 55
Chebyshev, 57
Hamming, 56

Distribution function, 239, 290
Distribution law, 290
Divergent
sequence, 98
series, 108

Domain, 2
Dominated convergence theorem, 268
Dual
Lagrangian, 201
problem, 201

Dual cone, 21
Duality
strong, 201
weak, 201

Dual norm, 80, 214

E
Empty set, 1
Envelope theorem, 209
Equivalence class, 2
Equivalence relation, 2
Equivalent norm, 76
Euclidean metric, 56
Euclidean norm, 67
Euclidean topology, 32, 51
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Expected value, 291
Exponential distribution, 241
Exponential function, 15, 98, 114
Exponential inequality, 98
Exterior point, 26
Extrema, 28
Extremal point, 28
Extremal value, 28
Extreme value theorem, 49

F
Factorial, 12
Farkas lemma, 195
Fatou’s lemma, 266
Feasible region, 190
Feasible set, 190
Fibonacci numbers, 87
Field, 8
opposite, 8
reciprocal, 8
scalar, 230

Finite measure, 248
Finite measure space, 248
First-order condition, 169, 190
Fixed point, 84, 90, 128
Flex, 140
Floor function, 45
Fritz John theorem, 198
Fubini’s theorem, 284
Function, 3
analytic, 150
bijective, 3
bounded, 5, 55
bounded above, 5
bounded below, 5
closed map, 45
concave, 19
convex, 19
convolution, 272
decreasing, 11
dependent, 188
distance, 55
exponential, 15, 98, 114
floor, 45
implicit, 182
increasing, 11
independent, 188
injective, 3
integrable, 266
into, 3
Jacobian matrix, 163

linearly dependent, 188
logarithm, 94, 95
lower semicontinous, 49
mollification, 272
monotonic, 11
one-to-one, 3
onto, 3
open map, 45
power, 15
smooth, 177
step, 45
strictly concave, 19
strictly convex, 19
surjective, 3
upper semicontinuous, 49
value, 210

Functional space, 57, 71

G
Gaussian distribution, 298
Geometric progression, 12
Geometric series, 109
GM-HM inequality, 22
Golden ratio, 87, 91
Gradient, 164
Greatest lower bound property, 5

H
Hamming distance, 56
Harmonic series, 111
Hausdorff topology, 35
Heaviside theta function, 142, 228
Heine–Borel, 39, 75, 78
Heine-Cantor
theorem, 60

Hessian matrix, 175
Holder’s inequality, 69
Homeomorphism, 47
Hyperbolic cosine, 133
Hyperbolic sine, 133
Hyperharmonic series, 111

I
Image, 2
Image measure, 258
Implicit function, 182
Improper integral
bounded, 225
unbounded, 223

Increasing function, 11
Indefinite integral, 227
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Independent events, 288
Independent function, 188
Independent random variable, 293
Indicator function, 261
Inequality
AM–GM, 16, 95
Bernoulli, 22
Cauchy–Schwarz, 67
Chebyshev, 267
difference of powers, 12
exponential, 98
GM-HM, 22
Holder, 69
Jensen, 20, 241, 269
logarithm, 94
max-min, 5
Minkowski, 70
Peter–Paul, 22
power mean, 17
triangle, 11, 68
Young, 17

Infimum, 4
Infinite limit, 126
Infinitesimal, 103
Inflection point, 140
Initial value problem, 301
Injective function, 3
Integer part, 10
Integers modulo p, 9
Integrable function, 266
Integral, 217, 233
definite, 217
improper, 223, 225
indefinite, 227
line, 230

Integral function, 226
Integrand, 217
Integration by part, 230
Integration by substitution, 229
Intercept, 135
Interior point, 26
Internal candidate solution, 190
Inverse image, 2
Inverse relation, 2
Irrational number, 10

J
Jacobian matrix, 163
Jensen’s inequality, 20, 241, 269

K
Karush-Kuhn-Tucker theorem, 199
Kronecker delta, 56
Kronecker’s lemma, 115

L
Lagrange error bound, 144
Lagrange theorem, 199
Lagrangian function, 192, 194, 200
Lagrangian multiplier, 192
Landau symbols, 103
Lattice, 218
Least upper bound property, 5
Lebesgue measurable function, 259
Left continuous, 129
Left derivative, 131
Left differentiable, 131
Left limit, 126
Left-order topology, 35
Leibnitz criterion, 112
Leibnitz integral rule, 231
Length of a curve, 226
L’Hopital’s rule, 140
Limit
at infinity, 126
inferior, 99
infinite, 126
left, 126
right, 126
sequence, 81
superior, 99

Limit of a function, 42
Limit point, 26
Linearly dependent function, 188
Line integral, 230
Lipschitz continuity, 61, 228, 302
Local maximum, 11, 28
strict, 28

Local minimum, 11, 28
strict, 28

Logarithm
function, 94, 95
natural, 94

Logarithm inequality, 94
Lower bound, 4
Lower integral, 217, 234
Lower limit, 99
Lower limit topology, 51
Lower semicontinuity, 49
Lower sum, 215, 232
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M
Maclaurin polynomial, 144
Map, 3
Maximal element, 5
Maximum, 5
Max-min inequality, 5
Mean, 241, 291
weighted arithmetic, 16
weighted geometric, 16
weighted harmonic, 22
weighted power, 17

Mean value theorem, 137, 170, 171
Measurable function, 256, 259
Borel, 258, 259
Lebesgue, 259

Measurable rectangle, 278
Measurable set, 246
Measurable space, 246
Measure, 246
finite, 248
image, 258
product, 281
pushforward, 258

Measure completion, 249
Measure space, 246
Metric function, 55
Metric space, 55
Minimal element, 5
Minimum, 5
Minkowski inequality, 70
Minus infnity limit, 126
Mollification, 272
Moment, 240
Monotone class, 280
Monotone convergence theorem, 93, 264
Monotonically decreasing, 11
Monotonically increasing, 11
Monotonic function, 11
Monotonic sequence, 93
Motzkin theorem, 196
M-test, 119
Multinomial coefficient, 174
Multiplier
Lagrangian, 192

Multivariate, 292

N
N-cell, 74
Nearest point, 78
Negative definite, 176
Negative semi-definite, 176

Neighbourhood, 26
left, 126
right, 126

Nonlinear programming, 189
Non-singular curve, 200
Norm, 65
continuity, 66
dual, 80, 214
equivalent, 76
Euclidean, 67
p-, 69

Normal convergence, 119
Normed space, 65
Null set, 249

O
Objective function, 189
Open ball, 57
Open map, 45
Open set, 25
Operation
absorbing element, 8
associative, 8
close, 8
commutative, 8
distributive, 8
neutral element, 8

Operator, 71
bounded, 71

Operator norm, 72
Optimisation problem, 189
Ordered set, 4
Order relation, 4
Outer measure, 252

P
Partial derivative, 162
Partial sum, 101
Partition, 215
equispaced, 218
refinement, 216

Peter–Paul inequality, 22
Picard map, 303
Plus infnity limit, 126
p-norm, 69
Point
critical, 169
extremal, 28
fixed, 84, 90, 128
inflection, 140
stationary, 137, 169
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Point mass measure, 247
Pointwise convergence, 116
Polar cone, 21
Polar coordinates, 156, 287
Positive definite, 176
Positive homogeneity, 65
Positive semi-definite, 176
Power function, 15
Power mean inequality, 17
Power series expansion, 148
Power set, 1
Preimage, 2
Preorder relation, 4
Primal problem, 201
Primitive function, 226
Probability density, 291
Probability distribution, 290
Probability measure, 288
Probability space, 288
Product measurable space, 278
Product measure, 281, 282
Product σ -algebra, 278
Progression
arithmetic, 121
geometric, 121

Property
Archimedean, 12

p-series, 111
Punctured neighbourhood, 43
Pushforward measure, 258

Q
Quotient set, 2

R
Radius of convergence, 149
Random variable, 239, 289
independent, 293

Range, 2
Ratio test
series, 113

Real numbers, 10
Rectangle, 278
measurable, 278

Recursion, 84
Reduction formula, 230
Regular curve, 200
Regular grid, 218
Regularity condition, 199
Relation, 2
equivalence, 2

inverse, 2
order, 4
preorder, 4
reflexive, 2
strict order, 4
symmetric, 2
transitive, 2

Relative interior, 21
Remainder
Taylor polynomial, 144

Retraction, 305
Right continuous, 129
Right derivative, 131
Right differentiable, 131
Right limit, 126
Right-order topology, 35
Rolle theorem, 137
Root test
series, 112

Rule
chain, 133, 160

S
Saddle point, 176
Lagrangian, 193, 201

Scalar field, 155, 230
Scalar function, 155
Schlömilch condensation test, 110
Second-order condition, 177, 203, 205
Sequence, 81
asymptotically equivalent, 102
Cauchy, 85
Cesàro summable, 115
constant, 82
decreasing, 93
increasing, 93
monotonic, 93
summable, 108

Series, 108
absolute convergence, 109
power, 148

Set
Borel, 250
bounded above, 4
bounded below, 4
connected, 40
countable, 6
dense, 26
derivative, 26
disjoint, 1
empty, 1
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measurable, 246
unbounded, 55

σ -algebra, 245
discrete, 245
generated, 246
trivial, 245

σ -finite measure space, 248
Simple function, 262
Singlet, 26
Slackness conditions, 192
Smooth function, 177
Space
Banach, 107
measurable, 246
measure, 246
metric, 55
normed, 65
topological, 25

Square-integrable, 295
Stationary point, 137, 169
Step function, 227, 235
Stieltjes measure, 232
Stiemke’s lemma, 197
Strictly concave function, 19
Strictly convex function, 19
Strict order relation, 4
Strong duality, 201
Subcover, 34
Subsequence, 83
Subspace
topological, 41

Substitution theorem, 270
Summation by parts, 12
Sup-norm, 71
Support, 240
Supremum, 4
Surjective function, 3
Sylvester’s criterion, 176

T
Taylor polynomial, 143, 175
Theorem
AM–GM inequality, 16, 95
Bolzano–Weierstrass, 74
Borel–Cantelli, 288
Brouwer, 307
Cauchy, 137
Cauchy–Schwarz inequality, 67
Cauchy-Hadamard, 149
Cauchy–Lipschitz, 303
Farkas’ lemma, 195
Fritz John, 198
Heine–Borel, 39
Heine-Cantor, 60

Holder’s inequality, 69
Jensen’s inequality, 20
Karush-Kuhn-Tucker, 199
Lagrange, 137, 199
mean value, 137, 170, 171
Minkowski inequality, 70
Motzkin, 196
Rolle, 137
Stiemke’s lemma, 197
Stolz-Cesàro, 100
Young inequality, 17

Theorems of the alternatives, 195
Thomae’s function, 219
Topological space, 25
Topology, 25
cofinite, 50
countable, 32
Euclidean, 32, 51
left-order, 35
lower limit, 51
right-order, 35
upper limit, 51

Triangle inequality, 11, 55, 65, 68
Trivial σ -algebra, 245
Trivial topology, 25

U
Unbounded set, 55
Uniform continuity, 59
Uniform convergence, 117
Uniform norm, 71
Upper bound, 4
Upper integral, 217, 234
Upper limit, 99
Upper limit topology, 51
Upper semicontinuity, 49
Upper sum, 215, 232
Utility function, 210

V
Value function, 210
Variance, 241, 291

W
Weak duality, 201
Weierstrass theorem, 49
Weighted arithmetic mean, 16
Weighted geometric mean, 16
Weighted harmonic mean, 22
Weighted power mean, 17

Y
Young inequality, 17
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