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 ABSTRACT 

Synchronization is a fundamental nonlinear phenomena observed in diverse natural 

systems. This dissertation contributes to the problem of synchronization of nonlinear 

master-slave systems under the restraints of time-delays and parametric uncertainties. 

We investigate the synchronization phenomena in both non-identical and identical 

nonlinear master-slave systems by application of a control system. To investigate the 

problem of synchronization for non-identical nonlinear master-slave systems, firstly, a 

novel mutually Lipschitz condition is proposed. Secondly, an algebraic Riccati 

inequality based control methodology is formulated and, further, a less conservative 

LMI-based robust control strategy by virtue of proposed mutually Lipschitz condition 

and Lyapunov stability theory is established for synchronization of two dissimilar 

nonlinear master-slave systems. Additionally, a novel robust adaptive control scheme 

for synchronization of nonlinear master-slave systems is developed that ensures a low 

gain controller through adaptive cancellation of the unknown mismatch in 

nonlinearities.  

Novel frameworks comprising of delay-dependent and delay-range-dependent 

synchronization schemes are established. The input nonlinearity is transformed into 

linear time-varying parameters belonging to a known range. Using the linear 

parameter varying (LPV) approach, applying the information of delay range, 

exploiting the triple-integral-based Lyapunov-Krasovskii (LK) functional and 

utilizing the bounds on nonlinear dynamics, nonlinear matrix inequalities for 

designing a simple delay-range-dependent state feedback control for synchronization 

of the master and the slave systems is derived. In contrast to the conventional adaptive 

approaches, the proposed approach is simple in design and implementation and is 

capable to synchronize nonlinear oscillators under input delays in addition to the 

slope-restricted nonlinearity. Further, time-delays are treated using an advanced 

delay-range-dependent approach, which is adequate to synchronize nonlinear systems 

with either large or small delays. Furthermore, the resultant approach is applicable to 

the input nonlinearity, without using any adaptation law, owing to the utilization of 

LPV approach. In the end, numerical simulation results are adorned for the testimony 

of the proposed synchronization schemes of nonlinear master-slave systems. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

All physical systems are nonlinear by nature. In order to attain the better 

understanding about the dynamical behavior of the different nonlinear systems, an 

interesting and important phenomenon is to investigate the synchronization between 

these dynamical systems. Synchronization, observed as naturally occurring process, 

has significant impact in diverse areas of engineering, sciences and even in the social 

life. Synchronization of two or more nonlinear systems is a process of adjustment of 

the given motion properties, either naturally through strong coupling effects or forced 

through application of an appropriate control law. Figure 1.1, illustrates the basic 

model for synchronization of two coupled systems, two pendulum clocks are coupled 

through a beam or wall, which offer mutual synchronization of two pendulum clocks.  

Ø1 Ø2

 

Figure 1.1: Synchronization of two coupled pendulum clocks 

Synchronization of nonlinear systems is an attractive area among the researchers of 

different disciplines due to its numerous applications in the fields of engineering and 

technology. Noteworthy efforts by researchers have been devoted to investigate the 

problem of synchronization of nonlinear systems. To address the problem of 

synchronization of nonlinear systems demands the investigation of different 

dynamical parameters associated with nonlinear systems such as input delays, output 

delays, state delays, dead zone, input saturation, unknown dynamics, slope-restricted 
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input nonlinearity, time-varying delay and external disturbances, which have strong 

influence on synchronization. These dynamical properties of nonlinear systems urge 

to be investigated along with nonlinear systems, because their impact on the 

performance of nonlinear systems cannot be ignored. In different nonlinear systems, 

different parameters can be source of instability and degrade the closed-loop 

performance of nonlinear systems. Figure 1.2, demonstrates the basic model for 

synchronization of nonlinear master-slave systems through an appropriate controller. 

Convergence of error is assured by selection of a suitable control signal ( )u t . 

Master System Controller Slave System
+

__

m
x ( )e t ( )u t s

x

 

Figure 1.2: Elementary block diagram for synchronization through controller 

Various control techniques [1-15], have been established for synchronization of 

nonlinear systems, some popular techniques are, adaptive control strategy [1], robust 

approach [2-3], robust adaptive [4-5], adaptive sliding mode [6], feedback 

linearization method [7-8], observer based synchronization methodology [9-11], fuzzy 

logic control technique [12-14] and H  
synchronization scheme [15].  A suitable 

synchronization technique can be applied to attain coherency among nonlinear 

systems, depending upon the nature and applications of nonlinear systems. For 

example, adaptive control technique is preferred to address the synchronization of 

nonlinear systems for slowly varying unknown parameters, whereas, the exponential 

synchronization technique can be opted for the fast varying parametric uncertainties.  

The results of the synchronization of nonlinear systems have diverse applications in 

applied sciences, engineering and technology [16-40]. The common application of 

synchronization of nonlinear systems are such as wireless sensor networks [16-18], 

energy management systems [19-22], gyros systems [23-25], biomedical entities [26-

29], unmanned air vehicles [30-32], secure communication networks [33-34], 

synchronization of multiple robots [35-37], automotive systems [38] and mechanical 

systems [39-40]. The recent work on the synchronization of nonlinear systems is 
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focused on synchronization of micro-grid system for energy resources management, 

synchronization approach for formation control of multiple mobile robots, complete 

synchronization of gyro systems for navigations system, chaotic synchronization of 

communication networks for secure communication and synchronization of 

biomedical entities. The problem of synchronization of nonlinear systems appears as 

an attractive area due to it such a diverse application.   

1.2 Motivation 

Motivation of the thesis is to address the problem of synchronization of nonlinear 

master-slave systems in the presence of parametric uncertainties and evolve some 

novel control strategies to synchronize the systems that offer the desired performance 

of the closed-loop nonlinear systems. Research work is intended to design control 

methodologies that will be simple in design compared to the existing techniques, 

straight-forwardly implementable, robust in approach and adaptive for varying 

parametric uncertainties.  

Synchronization of nonlinear systems contains diverse area of application in almost 

every field of life. It is quite difficult to discuss all the application areas in this short 

section, however some active research areas and applied examples of the 

synchronization are described. 

 Synchronization of Energy Systems 

Electricity can be produced from different energy resources such as hydro power 

plants, nuclear power plants, thermal units, wind power and solar systems. A 

major challenge for the power system is to integrate and synchronize itself with 

centralized computing, communication and control mechanism, up to an 

appropriate level for correct system operation. The energy resource systems are a 

class of complex nonlinear systems. With the continuous development of 

economy, the issue of energy supply and demand has been paid more and more 

attention to in recent years. The problem of control and synchronization for the 

energy resource system has attracted increasing attention because of its potential 

importance in actual applications and these days, research is mainly focused on 

the synchronization of micro-grids [19-22], [41-46]. Figure 1.3, shows the block 

diagram of a microgrid configuration. Microgrids are smaller systems, usually of 
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medium or small voltage, that include distributed generators (e.g., small hydro 

turbines, diesel generators, solar panels) and storage devices (e.g., energy 

capacitors, batteries, flywheels). Synchronization between multiple energy 

resources connected at single grid is necessary for correct operation. 

 

Figure 1.3: Block diagram of synchronization of micro-grid [47] 

Some recent research work in this field is described as follows. In [41], the 

authors describe the frequency synchronization of multiple isolated microgrids 

through the synchronization scheme of multi-agent systems and proposed a 

decentralized controller on the basis of consensus algorithm. Synchronization for 

smart grid for wind-solar hybrid systems by applying phase lock loop (PLL) 

method has been described in [43] and proposed the synchronization scheme for 

conventional grid and renewable energy grid for working as a single system. The 

work is focused on synchronization of phase and frequency of both grids. The 

problem of synchronization of renewable energy grid in the normal operation and 

as well under the fault condition like highly distorted voltages and unbalanced 

grid faults has been investigated by [44]. A novel PLL-based fast and accurate 

robust synchronization scheme [45] has been accomplished that improve the 

power quality of the renewable energy systems. In [46], the problem of chaos 

synchronization of the energy resource demand-supply system has been 

investigated and an adaptive control law for asymptotic convergence of 

synchronization error has been proposed.  

 Secure Communication 
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In modern era, communication has great utility in our daily routine life such as 

online banking, internet, online shopping, messaging, audio and video chat etc. To 

maintain the privacy, accuracy and security in communication systems is a 

challenging task. To attain the secure communication, different cryptography 

techniques have been developed. Since the dynamic behavior of chaotic system is 

highly sensitive to the initial conditions, a considerable attention has been paid to 

the application of chaotic system to secure communication [33-34], [48-52]. A 

block diagram of chaotic synchronization based secure communication network is 

shown in Figure 1.4. Input message signal is modulated with a chaotic carrier 

signal generated by chaotic oscillator at transmitter and similarly output signal is 

recovered by chaotic demodulation process at the receiver.  

Modulation 

Technique

Chaotic 

Oscillator

Chaotic 

Reciever

Demodulat

or

Modulated 

Chaotic Signal

Transmitter 

Input 
Signal

Channel

Reciever 

Output 
Signal

 

     Figure 1.4: Block diagram of secure communication network 

In [48], the problem of synchronization for secure communication has been 

investigated and a feedback control mechanism for synchronization has been 

developed. Message encryption by N-shift cipher and public key before 

transmission technique was introduced to improve the secure communication. In 

[49-51], role of synchronization in digital communication systems and chaos in 

secure digital communication have been described. In [52], the synchronization 

problem for hyper chaotic Chen systems have been investigated through feedback 

linearization and adaptive control techniques. The proposed synchronization 

scheme applied to obtain the secure communication.   

 Synchronization of Gyro Systems 

Gyro systems are usually employed to sense the angular motion of different 

moving objects. Gyro systems are complex and attractive dynamical nonlinear 

systems. Recently, the synchronization problem of two chaotic gyros has been 

widely investigated due to their great utility in aeronautical systems, navigational 
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purpose, areas of secure communications, attitude control of long duration 

spacecraft, and signal processing in optical gyros. Plate-form stabilization can also 

employed by gyro systems. Different control methodologies have been applied for 

synchronization of gyro systems over the past few years [23-25], [53-55]. The 

article [53] described the master-slave synchronization scheme for gyro systems 

through adaptive fuzzy sliding mode controller for robust synchronization subject 

to uncertainties and disturbances in the gyro systems. The work in [54], proposes 

the feedback control based synchronization scheme for two nonlinear chaotic gyro 

systems with and without noise. In [55], the sliding mode control based 

synchronization and anti-synchronization of dissipative gyros system with input 

nonlinearity has been investigated.  

The study of identical and non-identical nonlinear systems and different parameters 

associated with the dynamics of the nonlinear systems is one of the most attractive 

subject. The parameters like external disturbances, input nonlinearity and time-

varying delays are of great importance due to their effects on the performance of 

closed-loop nonlinear systems. Delay is an important parameter that cannot be 

avoided in many physical systems. To control diverse effects of time-delays on the 

linear and nonlinear systems, several authors carried out the research [56-60] and 

develop some control strategies like delay-independent, delay-dependent and delay-

range-dependent for stability analysis and synchronization of time-delay systems. 

Incorporation of slope-restricted nonlinearities is important in studying 

synchronization controller synthesis for nonlinear systems under uncertain inputs [61-

66]. Sliding mode control strategies for nonlinear gyroscopes and unified second 

order complex oscillatory systems with input nonlinearities are explored in [61]. In 

[62-63], adaptive control and H∞ control strategies for achieving coherent behavior of 

two uncertain systems under unknown dynamics and perturbations are formulated. 

Some advanced studies concerning robust, sliding mode and adaptive controller 

design for synchronization of general forms of two different nonlinear or chaotic 

systems under uncertainties and perturbations have been taken into account in the 

articles [64-66]. To the best of our cognizance, delay-range-dependent 

synchronization of the nonlinear master-slave systems under slope-restricted input 

nonlinearities and time-varying input time-delay has not been reported in the previous 

studies. So, it can be opted for research work and addressed using linear parameter 
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varying (LPV) method, which is less conservative approach for design, analysis and 

synthesis of feedback controllers for nonlinear systems. In the past few years, LPV 

approach has received more attention as it has been successfully applied to the gain 

scheduling, H  controller design [67-68], system identification, and state feedback 

control [69-70].  

Numerous control methodologies such as adaptive, evolutionary, intelligent, optimal 

and robust, based on neural networks, state-feedback and fuzzy logic, for 

synchronization of the identical nonlinear systems have been investigated in the 

literature to attain asymptotic (or exponential) stability, finite-time stability, 

robustness, disturbance rejection, desired steady state performance, improved 

transient response, and noise handling (see, for example, [71-75]). Control strategies 

have been applied to cope with different circumstances, like input saturation, slope 

bounds, time-delays and unknown dynamics, and to deal with different dynamics, like 

Lure oscillators, Rössler systems, Chua’s circuits, FitzHugh-Nagumo networks and 

Lipschitz structures [4], [76-79].  

The problem of synchronization of non-identical nonlinear systems is lacking in the 

literature, whereas it has a great potential in diverse application. A few of the 

exceptional research works on synchronization of unlike dynamical systems are 

mentioned at this juncture [80-86]. In [80-82], adaptive control schemes are 

developed to cope with synchronization of two different chaotic oscillators by 

formulating adaptation laws for unknown parameters. Sliding mode control strategies 

for synchronizing the distinct chaotic systems under disturbances, slope-restricted 

input nonlinearity and different types of uncertainties have been addressed [83-84]. 

Recently, a control methodology has been developed for chaos synchronization of 

non-identical fractional-order systems with different number of states [85]. Adaptive 

synchronization approach of a unified chaotic oscillator and a cellular network, to 

develop an asymmetric image cryptosystem, is provided in the recent work [86] by 

utilizing Lyapunov stability theory.  

The existing control strategies are complex enough to implement for synchronization 

of the different nonlinear systems. Moreover, further research is needed to classify 

various types of different nonlinear systems depending upon their dynamical 

characteristics and to design a simple synchronization controllers derived from these 
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dynamical properties. Also not many control schemes for synchronization of the 

different nonlinear identities have been developed; therefore, this problem requires 

substantial research attention of the scientific community.  

1.3 Problem Statement 

The purpose of the study is to develop appropriate synchronization schemes for two 

nonlinear systems working according to master-slave principal. That address  

 Synchronization of non-identical nonlinear master-slave systems subject to 

external disturbances and state delay. 

 Synchronization of nonlinear master-slave systems under input delay and slope 

restricted input nonlinearity.  

1.4 Contributions 

The main contributions of the dissertation are described as follows. 

1. A novel mutually Lipschitz condition is provided. The provided mutually 

Lipschitz condition is more general than the traditional Lipschitz condition [87-

89] and also it is useful to derive the sufficient conditions for synchronization of 

nonlinear systems. The proposed mutually Lipschitz condition is advantageous for 

synchronization of non-identical nonlinear systems in contrast to the conventional 

Lipschitz condition, which is often used for synchronization of similar nonlinear 

systems [66], [90-91] and is inapplicable for distinctive systems. 

2. State-feedback control law is designed by virtue of proposed mutually Lipschitz 

condition to attain the robust synchronization of Lipschitz non-identical nonlinear 

(chaotic) systems via LMIs. The proposed control law is simple in design and 

implementation, and straightforward for the optimal results, compared to the 

traditional control strategies for the synchronization different nonlinear systems 

[80-86]. Further, a novel adaptive control strategy for synchronization of non-

identical nonlinear systems is proposed.  

3. A novel LPV based treatment for the slope-restricted input nonlinearity is 

provided that in contrast to the previous adaptive approaches, can be applied to 

formulate a simple constrained synchronization controller for nonlinear systems. 

To the best of our knowledge, delay-range-dependent feedback synchronization 
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approach under input time-delay and slope-restricted input nonlinearity has been 

devised for the first time.  

1.5 Organization of the Dissertation 

This dissertation contains eight main Chapters as follows. Chapter 2 provides a short 

account of essential notions and concept to the reader and also makes the report self-

sufficient. Different control laws, methods, tools and techniques are revisited, which 

will be frequently recalled in the rest of the dissertation, such as Schur complement, 

change of variable method, congruence transformation and Lipschitz nonlinearities. It 

begins with the historical background of synchronization followed by the 

comprehensive literature review on the existing techniques for synchronization of 

nonlinear systems. In Section 3, classification of the synchronization for nonlinear 

systems is described and a short note on the chaotic system is outlined. Next section 

contains the detailed literature review on time-delay nonlinear systems. Different 

methodologies developed to investigate the problem of synchronization of nonlinear 

systems under the parametric constraints are revisited to gain the better understanding 

of the opted problem. In the end, a numerical simulation example of synchronization 

is illustrated.  

In Chapter 3, to derive the sufficient conditions for synchronization of different 

nonlinear systems, firstly, a novel mutually Lipschitz condition is proposed and 

proofs of its properties are also outlined. The accomplished mutually Lipschitz 

condition is more general than the traditional Lipschitz condition and also favorable to 

design a simple controller for synchronization of different nonlinear systems. State-

feedback control law is proposed for synchronization of different dynamical master-

slave systems, which led to derive an algebraic Riccati inequality based approach. To 

address the bottle-necks of algebraic Riccati inequality based synchronization 

approach, an advance linear matrix inequality (LMI) based synchronization scheme 

for non-identical nonlinear master-slave systems is entrenched. In the end, numerical 

simulations are illustrated to justify the proposed synchronization criterion. 

Chapter 4 is focused on the robust and robust adaptive control strategies for 

synchronization of nonlinear master-slave systems. Compared to the Chapter 3, at this 

juncture two different nonlinear systems subject to external disturbances are 
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considered and uncomplicated and implementable state feedback control law is 

proposed to attain the coherent behavior of master-slave systems. It is pointed-out that 

robust synchronization results into a high gain controller, which is never, be a smart 

choice for physical systems. Therefore, to design feasible control law, robust adaptive 

synchronization scheme is administered. Furthermore, the robust adaptive 

synchronization methodology is extended for time-delay system and novel delay-

independent synchronization strategy is provided. In the end, the performance of the 

both robust and robust adaptive synchronization schemes is justified by couples of 

numerical simulation examples.  

Chapter 5 extends to the detail of delay-dependent synchronization scheme for 

nonlinear master-slave systems under the constraints of time-varying input delay and 

slope-restricted input nonlinearity. To design a computationally uncomplicated 

controller in the presence of input nonlinearity, LPV approach is inferred. An LMI-

based delay-dependent synchronization criterion is derived in Theorem 5.1, which is 

employed the analysis of proposed simple state-feedback control law. However, it 

founds that the scheme has limitation to determine the controller gain matrix.  So, an 

advanced synchronization condition is derived in Theorem 5.2, which is less 

conservative and advantageous of computing the controller gain matrix. The 

numerical simulation results of two chaotic gyro systems are illustrated at the end of 

the chapter to witness the proposed synchronization scheme. 

Chapter 6 presents a novel prospective of delay-range-dependent synchronization of 

nonlinear time-delay systems. Delay is an important parameter of nonlinear systems 

and unavoidable in various circumstances. In the literature it seems that conventional 

techniques for synchronization of nonlinear time-delay systems were implied through 

adaptive control, but determining the controller gain is computationally complex 

under the constraints of time-varying delay. So a simple state-feedback control law is 

proposed to provide the delay-range-dependent synchronization of nonlinear master-

slave systems subject to time-varying input delay and slope-restricted input 

nonlinearity. Convex optimization is preferred to deal with complex nonlinearities. In 

the end, a numerical simulation is illustrated to justify the proposed synchronization 

strategy.  
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Chapter 7 demonstrates a frame work for synchronization of nonlinear master-slave 

systems under multiple delays in overlapping condition. Most commonly occurring 

delay in physical systems are state delays and input delays, both are incorporated in 

the dynamics of the master-slave systems. By utilizing the zero order hold technique, 

a simple state feedback control law is proposed that extends to derive an LMI-based 

synchronization scheme for nonlinear time-delay systems subject to multiple delays in 

overlapping scenario.  

Finally, Chapter 8 completes the thesis with an overall summary of the carried-out 

research work and contributions highlights. Furthermore, some remarks and 

suggestions are provided for future work in this research extent.  
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Chapter 2 

THEORETICAL BACKGROUND 

2.1 Overview 

In the previous chapter, a brief introduction on synchronization of nonlinear systems 

related to the selected research topic was detailed, to expose the scope of the problem. 

Research rationale and contribution of the dissertation was also explained briefly. In 

this chapter, theoretical background is described to make the dissertation self-

sufficient and for the clarity of the readers. Some basic definitions, control laws, tools, 

techniques followed by the detailed literature review are outlined, these contents will 

be helpful to carry-out the research work on the topic of synchronization control for 

master-slave systems subject to nonlinearities and time-delay. Described identities 

will be frequently recalled in the rest of the dissertation.  

Different existing tools and techniques for stability analysis of linear and nonlinear 

systems are revisited that can be implied to retrieve the desired results of 

synchronization. Chaos and nonlinear chaotic systems are also described, as 

synchronization of nonlinear (chaotic) systems, observed in naturally occurred 

processes, has a significant impact on biological, chemical, physical, engineering and 

biomedical systems [4], [70-72]. An appropriate control law is enforced to resolve the 

chaos synchronization dilemma for diverse applications such as secure 

communication, aerospace engineering, information processing, image processing, 

optics and medical therapies [4], [72], [92-94]. 

The study of time-delay nonlinear systems attracts a great number of researchers due 

to its disparate influence on the performance of nonlinear systems. Time-delay 

systems are classified into two categories on the basis of stability analysis criterion, 

delay-independent approach and delay-dependent approach. A considerable work of 

the dissertation is committed to time-delay nonlinear systems, so existing research 

work on time-delay systems and its classifications are described in the later part of 

this Chapter.  
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Other important control tools like Lyapunov stability theory, role of LMIs for stability 

analysis and synchronization of nonlinear systems, Jensen’s Inequality, congruence 

transformation, change of variable methods, Schur complement and Lipschitz 

nonlinearities are also presented. In the end, a numerical simulation example of hyper 

chaotic master-slave systems is illustrated. 

2.2 Synchronization (Historical Aspects) 

Dutch researcher Christiaan Huygens was probably the first scientist who observed 

and described the synchronization phenomena in seventeenth century. In 1658, 

Christiaan Huygens investigated the synchronization between two weekly coupled 

pendulum clocks [95]. Despite the study of the first synchronization phenomena, the 

actual work on synchronization of nonlinear systems was started late in 1920, when 

W. H. Reck, and J. H. Vincent investigated the synchronization properties for 

electrical circuits and applied it for coherency of triode generator. After few years in 

1927, Balthasar Vander Pol extended the efforts of W. H. Reck and J. H. Vincent by 

obtaining the theoretical and practical results for synchronization of triode generators 

by an external input signal of slightly different frequency [95]. This study got 

meaningful attention due to its physical importance and practical significance for 

radio communication networks. Remember, those days, triode generator was the basic 

element of the radio communication systems.  

Modern nonlinear dynamics revived in 1990s, when different new dynamical 

properties of nonlinear systems were explored and innovative work of numerical 

methods were recognized for controllability and stability analysis of the dynamical 

nonlinear systems. Peccora and Carrol [96] gives the idea of synchronization of 

nonlinear (chaotic) systems, by investigating the properties of two nonlinear systems 

and described that two nonlinear systems can be synchronized by linking them with a 

common signal. After the inspirational work of Peccora and Carrol, on 

synchronization of dynamical systems, this problem attracted a great number of 

researchers from different fields of engineering and sciences. Considerable research 

work has been carried out to investigate the synchronization phenomena in different 

nonlinear systems and different control strategies have been developed.  
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Research work on synchronization of nonlinear systems is briefly revisited as follows. 

Since after the pioneer work on synchronization of two identical nonlinear systems, 

namely, response and drive systems [96], the problem of synchronization of nonlinear 

systems has been extensively studied in both theoretical and practical systems. The 

study of synchronization is evolved with the dynamical parameters of nonlinear 

systems such as time-delay, external disturbances, input saturation, unknown 

parameters and dead zone etc. To address the synchronization of time-delay nonlinear 

systems delay-independent, delay-dependent, delay-range-dependent and delay-

derivative-dependent techniques have been developed [56-60]. Effect of disturbance 

on the controllability and stability of nonlinear systems has been investigated to attain 

the robust synchronization in [2-5]. A brief literature is revisited to explore the 

existing studies on the synchronization.  

2.2.1 Control Strategies Based Study on Synchronization 

The modern techniques for synchronization of nonlinear systems are based on the 

different control law design strategies. Various control techniques for synchronization 

of nonlinear systems like feedback control, sliding mode control, active control, 

observer-based control, adaptive technique, back stepping method and H∞  method 

have been extensively reported in the literature [1-15], [97-103]. In [97], modern 

control technique of input-output feedback linearization has been implied to obtain 

the synchronization of identical nonlinear systems namely multi-agent systems by 

application of distributed control system.   

Synchronization problem for nonlinear chaotic systems, known as sensitive to the 

initial conditions has been addressed by the observer-based technique for discrete-

time and continuous-time nonlinear systems [98]. A novel delay-dependent 

synchronization criterion has been proposed for the master and slave systems subject 

to the unknown channel time-delay, to attain the synchronization based on adaptive 

control technique. The proposed techniques are useful for real-time implementation 

and delay estimation [59], [99]. In [100], the problem of synchronization with 

external disturbance using fault-tolerant dissipative method has been investigated and 

an innovative technique, namely, mixed fuzzy delayed feedback dissipativity-based 

synchronization technique, for nonlinear chaotic systems has been proposed. A delay-

dependent H∞ synchronization of the master and slave systems subject to time-delay 
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and nonlinear uncertainties has been addressed using sliding mode control technique 

in [24], [101]. The article [102] provides a self-tuning approach for synchronization of 

two FIR filters called the master and the slave systems, by determining the coefficient 

of these filters. The problem of synchronization of chaotic systems subject to multiple 

time-delays has been addressed by a simple adaptive feedback control technique and 

also characteristics like the uncertainty and disturbance along with time-delay are 

considered for the robust lag synchronization [103]. 

2.2.2  Application Based Study on Synchronization 

Synchronization is important phenomena for many biological, physical and chemical 

systems. A great deal of research on the synchronization of nonlinear systems is 

focused for different applied areas and results are specific to the applications. Some 

considerable applications have been reported in the literature such as, synchronization 

of energy systems for efficient utilization of energy resources, synchronization of 

communication networks for secure communication, synchronization of gyros 

systems for aeronautical operation, synchronization of actuators and sensors for stable 

functioning of robots, biomedicine for human health care and also synchronization 

has been observed in chemical and automobile industries [16-40], [99], [104-106]. 

Synchronization in energy sector has a key role, especially in the present scenario, 

when developing countries are suffering with shortage of electric supply and looking 

for efficient energy management system to overcome the losses and to improve the 

performance by managing the limited resources. At a grid, multiple energy sources 

are connected and need to be operated in a synchronized manner. Synchronization of 

frequency, phase and voltage of multiple sources is required. The work of [19] is 

focused to maintain the same frequency of all energy sources with communication 

infrastructure using consensus based approach. In article [104], the author addresses 

the problem of synchronization of energy systems having mismatch in parameters and 

proposed a linear feedback control technique. 

The article [105] shows the application of synchronization in chemical and 

mechanical systems, where two coupled pipes conveying pulsating fluid are 

synchronized using motion equations. In [106], synchronization of communication 

networks subject to time-delay has been investigated. Lyapunov stability theory along 

with linear matrix inequalities methods has been implied to design a control law for 
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maximum sampling rate through optimization technique. Modern vehicles are 

complex nonlinear systems, having mechanical and electrical components. To provide 

smooth transmission, all its peripherals are needed to be work in synchronized 

manner. The synchronization analysis of the automobile vehicles has been addressed 

using experimental data analysis in [99]. 

2.2.3 Parametric Based Study on Synchronization 

In the literature, as different techniques and application based studies have been 

reported, similarly, different parameters of nonlinear systems are important and 

discussed in the literature quite often. In the dynamical model of nonlinear systems, 

some parameters can be known and some others can be unknown. The unknown 

parameters can be estimated through identification and estimation techniques. In the 

same aspect, some parameters of the nonlinear systems are of constant and others are 

varying that compose the complexities in the system model. The problem of 

synchronization of nonlinear systems can be categorized as identical and non-identical 

nonlinear systems. The other distribution can be defined on the basis of two or more 

systems, namely synchronization of master-slave systems (response-drive systems) 

and synchronization of networks. 

Synchronization schemes developed for nonlinear systems considering the different 

dynamical parameters such as disturbances, uncertainties time-delays, nonlinear 

dynamics, input/output nonlinearities, unknown parameters, input saturation, and 

slope restriction have been reported in the literature [4], [6-7], [19], [59], [61-66], 

[71], [84], [97-111]. Disturbances occurring in the nonlinear systems have been 

extensively studied by the researchers, to observe their effect on the performance of 

nonlinear systems and proposed various approaches to minimize the effect of 

disturbances on nonlinear systems [84]. Delay is another important parameter of 

nonlinear systems, which is unavoidable in many physical systems. Since last few 

years, time-delay systems have been reported quite extensively [56-60], [59], [103], 

[106], [109-111]. Both types of delays, constant and varying delay, appearing in 

physical systems have been addressed using advance control techniques for 

synchronization of nonlinear systems. Nonlinearities and saturation observed at the 

input or at the output of the nonlinear systems, different control techniques have been 

developed to minimize their effect on performance [60], [84]. The problem of 
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synchronization of nonlinear systems subject to unknown parameters has also been 

investigated by different control strategies in [79-84]. LMI-based robust adaptive 

technique, to estimate the values of unknown parameters and to ensure the stability of 

nonlinear system, which leads to obtain the synchronization of such nonlinear 

systems, has been addressed in [4].  The role of different dynamical parameters of 

nonlinear systems on synchronization such as input nonlinearity, nonlinear 

perturbation, input and output saturation, dead zone, slope-restricted input 

nonlinearity and modeling uncertainties are quite versatile. These issues have been 

widely investigated and reported in the literature [61-67], [70], [72-74], [77-79].  

In this modern era, as science and technology is growing faster, more challenging 

problems are faced. The complexity level of nonlinear systems is increasing day by 

day, which makes problem of synchronization of nonlinear systems, a more 

challenging task. Many unknown parameters of nonlinear systems are available to 

investigate and to provide the solutions to improve the performance of closed-loop 

nonlinear systems. So, still plenty of room is available for the researcher of control 

community to address the problem of synchronization of nonlinear systems. These 

days, the problem of synchronization of time-delay nonlinear systems is a hot topic 

due to its significance in physical systems. The problem of synchronization of similar 

nonlinear systems has been widely reported in the literature, whereas synchronization 

of different nonlinear systems is lacking in the literature.  

2.3 Classification of Synchronization 

Synchronization is defined as ―adjustment of rhythms of oscillating objects due to 

their weak interaction‖ [95]. To achieve the synchronization between the master and 

the slave systems, different techniques and methodologies like sliding mode, fuzzy 

logic, state-feedback and neural networks are proposed with advantage over each 

other. Synchronization phenomena can be classified into different categories as 

follows.  

 Complete Synchronization: The error trajectory of two systems, if converge 

exactly to the origin, then synchronization between these two systems are called 

as complete synchronization. Complete synchronization is usually practicable in 
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coupled systems having identical nonlinear parameters [112]. Mathematically 

complete synchronization can be expressed as 

)( ()X t Y t .             (Eq 2.1) 

Eq. 2.1 shows that two similar systems will follow the exact trajectory of each 

other. Complete synchronization can be attained without any control input or 

with unity controller gain. This type of synchronization mentions to the identical 

evolution of the interacting systems [96]. 

 Generalized Synchronization: Synchronization between the states of two 

systems by a functional relation is defined as generalized synchronization. 

Complete synchronization can be achieved from generalized synchronization by 

selecting the static parameter as unity. 

(( )) ( )Y F X tt  ,                                   (Eq 2.2) 

where F  is some constant  parameter, a suitable value of F , synchronize the 

slave system to the master system, by converging error trajectory to the origin. 

Generalized synchronization has been observed between different types of 

coupled systems, which follow the above relation of Eq. 2.2 [112]. 

 Lag Synchronization: The phenomenon of synchronization, where the states of 

the slave system lag the states of the master system with a time delay 0    is 

known as lag synchronization [113]  , Mathematically represented as follows 

(( )) ( )XY tt   .                                                 (Eq 2.3) 

 Anticipatory synchronization [113]: Anticipatory synchronization is defined as 

the states of the drive system anticipate the states of the master system with a time 

delay 0  .  

 Phase synchronization: Phase of the response system converges to the phase of 

drive system, irrespective of their amplitude that may remain uncorrelated systems 

will be known as under phase synchronization [113]. 

2.4 Chaos and Nonlinear Chaotic Systems 

Chaos is the science of surprises. Chaos theory is the study of dynamical systems that 

are highly sensitive to the initial conditions. Very small difference in initial conditions 
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of two systems results different reaction from each other. Chaos can be seen in many 

physical systems such as electrical circuits, oscillating chemical reactions, fluid 

dynamics, and planetary bodies orbiting each other. Chaos is naturally occurring 

phenomenon and the system that exhibit the chaos is known as chaotic system. 

Chaotic systems are complex nonlinear systems. Response of the chaotic systems is 

usually unpredictable; however it could be in a bounded region. A sound research 

work has been focused on the synchronization of chaotic nonlinear system due to its 

numerous applications in the fields of engineering, sciences and even in social life. 

Various real-time systems show the chaotic behavior, some popular examples 

includes double compound pendulum, human heart beat, human brain, stock market, 

global weather etc. [95]. 

Stability analysis and attaining synchronization of chaotic systems are challenging 

tasks for research due to the complex nonlinear and unpredictable behavior of these 

systems. Typical configuration to achieve the goal of chaos synchronization is by 

implementation of an appropriate control law to synchronize the slave system with the 

master system. Results of chaos synchronization are utilized in biological, social, 

chemical, physical, energy and many other systems, some common applications 

include gyro systems, secure communication network, cryptography, image 

processing, and harmonic oscillators [22-24], [33-34], [50], [114-116].  

2.5 Time-Delay Nonlinear Systems 

Delay is important parameter of linear and a nonlinear system, which is an 

undesirable phenomenon occurring in many physical systems. It can be a source of 

instability and degradation of the performance of closed-loop performance of the 

systems. Different kinds of delays are encounters in many engineering and industrial 

systems like deterministic and stochastic, constant and varying, known and unknown 

delays etc. To control the diverse effects of time-delays on the linear and nonlinear 

systems, several researchers have investigated the problem of stability analysis and 

synchronization of time-delay systems by considering the different delays such as 

exponential delays, communication delays, random delays, time-varying delays, 

stochastic and multiple delays, and proposed various feedback control strategies [7], 

[11], [16-17], [30-32], [38], [48], [56-60], [91], [103], [110-111], [117-118]. 
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Time-delay systems can be classified into two categories on the basis of the stability 

analysis criteria, as follows.  

 Delay-independent approach: It is tends to be more conservative especially for 

small interval of delay, as this approach is independent of delay range. Delay 

independent system has advantage that such systems are stable over the entire 

range of delay.  

 Delay-dependent approach: The other well-known approach for stability 

analysis of time-delay system is delay-dependent approach, which is less 

conservative compared to the delay-independent approach. Delay-dependent 

stability technique is further classified as delay-dependent and delay-range-

dependent approach. Stability of delay-dependent time-delay systems can be 

addressed using two approaches, a frequency domain approach and time domain 

approach. Lyapunov functional is powerful tool to deal with time domain 

approach. The research work is focused on time domain approach to deal with the 

time-delay nonlinear systems to get the advantage of Lyapunov stability theory. 

Delay-dependent stability of time-delay systems is a hot topic in research. In [111], 

improved delay dependent stability criteria for the time-varying delay is specific 

interval is obtained, by implying the Lyapunov functional and LMI-based approach. 

In this paper, Shao considered the system with time varying delay as 

1( ) ( ) ( ( ))x t Ax t A x t d t   ,                                                (Eq 2.4) 

2( ) ( ),     [ ,0]x t t t h   , 

where ( )d t  is a continuous time-varying delay that satisfies the condition as 

1 20 ( ) ,h d t h    lower and upper bounds of the delay interval are represented by 
1h  

 

and
 2h ,

 
respectively. In this thesis, the work of Shao on delay dependent stability 

analysis [111], [117], has been extended for synchronization of nonlinear systems. 

2.6 Role of LMIs in Control 

Linear matrix inequalities (LMIs) are matrix inequalities, which contains linear set of 

matrix variables. LMI was first reported in seventies; however development of 

sophisticated numerical algorithms, such as semi-definite programming [119-120], 

during the past 15-20 years, offers efficient utilization of LMI for solving control 
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problems. There are several features of LMI that attract the control researchers to 

transform their problem into LMI format. Some important features of LMI method are 

as follows: 

 LMI methods solve the problems which involve several matrix variables. 

 LMI methods are flexible that allow to transform various problem as LMI 

problem. 

 In several cases, LMI methods are helpful to minimize the restrictions associated 

with traditional control methods and offer more general scenario. 

 LMI methods can be applied, where other traditional control methods fail or 

struggle to find the solution. 

LMI based control approaches are computationally fast, reliable and also used for the 

optimization of control problems. Flexibility of LMI provides much wider scope for 

controller design. It allows the efficient consideration of 2H  and H  constraints for 

performance, robustness and robust performance in a single controller. It also has 

advantage of flexibility to impose the different rules and methods to transform the 

complexities into simple and solvable format. Moreover, multiple LMIs can also be 

transformed into a single LMI. Some other inequalities like algebraic Riccati 

inequalities, Lyapunov functional and bilinear matrix inequalities (BMIs) can be 

transformed into LMIs to get the solution of complex problems [119-120].  

An LMI has the form  

1

( ) 0
m

O i i

i

F x F x F


   ,                                                                      (Eq 2.5) 

where mx R  and 
m n

iF R  . The inequality means that matrix ( )F x   is considered a 

positive-definite ( ) 0F x  . Usually the variable x  is composed of one or more 

matrices, whose column has been stacked as vectors, such as 

1 2 3( ) ( , , ,...... )nF x F X X X X .                                                           (Eq 2.6) 

Eq. 2.5 is known as a strict LMI and the other case ( ) 0F x   positive semi-definite 

known as non-strict LMI. The LMI methods have great potential in the field of 

control engineering. It can be implied for optimization of control problem, stability 

analysis, gain scheduling and synthesis of controller for robustness of the system.   



 

                                                                                                                              22 

                                                                                                                                      

 

 

Although there are various control problems that can be cast as LMI problem, 

however a considerable number of problems need to be transformed into the LMIs 

format. There are number of identities and rules available to transform such problems 

into LMI problems, known as LMI tricks. Some of the useful rules that will be 

frequently recalled in this report to are described here. 

 Change of variable method: Many control problems contain the different 

nonlinearities that cannot be transformed as LMI problems. To transform such 

nonlinearities in LMI format are renamed by some other variables. To 

demonstrate the method, let us consider a state-feedback controller synthesis 

problem that holds following inequality.  

0T T TA P PA F B P PBF    .                                                           (Eq 2.7) 

Eq. 2.7 is not in the bilinear matrix inequality (BMI) form, as F  and P  are 

nonlinear terms in the product form. Multiplying the either side by 1Q P , it 

gives 

0T T TQA AQ QF B BFQ    .                                                        (Eq 2.8) 

Now defining a second new variable L FQ , we obtain the LMI form as below. 

0T T TQA AQ L B BL    .                                                           (Eq 2.9) 

  Congruence transformation: Congruence transformation is a useful way to 

convert bilinear terms in the linear form. Congruence transformation is applied by 

pre and post multiplication of a full rank real matrix.  

 Schur complement: Schur complement is a handy method to transform convex 

nonlinear inequalities that are quadratic in nature and appears regularly in control 

problems into an LMI [121]. Schur complement states that following 

mathematical statement are equivalent for any given matrix 

 
11 12

12 22

T

 
   

 

 

 
,                                                                                     (Eq 2.10)      

 

 if 
11 11

T   and 22 22

T   , the following conditions 

  0 ,  
22 0   and 

1

11 12 22 12 0T    
 
are equivalent. 
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2.7 Lipschitz Nonlinearities 

Lot of work has already been established by the researchers to address the 

controllability and stability analysis of nonlinear time-delay systems. Conventional 

strategies to deal with the nonlinearities are to transform these nonlinearities into any 

of the approximate linear models and apply existing classical control techniques of 

linear system.  

To define the traditional Lipschitz condition, let us have a nonlinear function ( )f x , 

which satisfies a Lipschitz condition on the interval [ , ]a b , if there exists a constant 

 , such that  

( ) ( )m s m sf x f x x x   ,          (Eq 2.11)       

where   is called the Lipschitz constant, dependent on both f and the interval 

[ , ]a b .  Lipschitz condition is classified as locally Lipschitz and globally Lipschitz 

conditions. 

2.8 Simulation Example 

To describe the concept of synchronization of master-slave systems, a numerical 

simulation example is illustrated. Two dynamical nonlinear hyper chaotic systems 

described in [72], namely master and slave systems are considered.  

Dynamics model of the master system is described as 

1 1 2 1 1( ) ( ( ) ( ) ( ( )))m m m mx t z x t x t g x t   ,       (Eq 2.12a)       

2 1 2 3( ) ( ) ( ) ( )m m m mx t x t x t x t   ,                  (Eq 2.12b)       

3 2 2 4( ) ( ( ) ( ))m m mx t z x t x t   ,                             (Eq 2.12c)       

4 3 3 5( ) ( ( ) ( ))m m mx t z x t x t   ,                              (Eq 2.12d)       

5 5 4 4 5( ) ( ( ) ( ))m m mx t z x t z x t   .                  (Eq 2.12e)       

Similarly dynamical model of the slave system is described as 

1 1 2 1 1 1( ) ( ( ) ( ) ( ( ))) ( )s s s sx t z x t x t g x t u t    ,      (Eq 2.13a)       

2 1 2 3( ) ( ) ( ) ( )s s s sx t x t x t x t   ,                  (Eq 2.13b)       
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3 2 2 4( ) ( ( ) ( ))s s sx t z x t x t   ,                              (Eq 2.13c)       

4 3 3 5( ) ( ( ) ( ))s s sx t z x t x t   ,                               (Eq 2.13d)       

5 5 4 4 5( ) ( ( ) ( ))s s sx t z x t z x t   ,                             (Eq 2.13e)       

where ( )mx t  and ( )sx t
 

represents the states of the master and slave systems 

respectively. Difference between the states of master and slave system is defined as an 

synchronization error, such as 
1 1 1( ) ( ) ( )m se t x t x t 

 
represent the synchronization 

error between first state of master and slave system. ( )u t  is the control input applied 

to the slave system to synchronize it with the master system. The results obtained 

using proportional controller, are shown as follows.  

 

(a) 

 

(b) 

Fig 2.1: Phase portrait of the hyper chaotic systems, (a) master systems, (b) slave system 
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Figure 2.1(a), shows the phase portrait of the master system (hyper chaotic system), 

without controller. Similarly, Figure 2.1(b) shows the phase portrait of the slave 

system without controller. Different initial conditions for the master and slave systems 

are selected randomly, as follows 

0 [ 0.01  0.12  0.10  0.1  0.1 ]mx  , 

0 [ -0.11  -0.1  -0.1  -0.1  -0.1 ]sx  . 

 

 (a) 

 

(b) 

Fig. 2.2: Error between 1mx and 1sx , (a) without controller and (b) with controller 

Figure 2.2 shows the response of error between first state of master and slave systems 

1 1 1( ) ( ) ( )m se t x t x t 
 
without and with control input. Figure 2.2(a) represents the 
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error, the response shows that error trajectory is not converging to the origin in the 

absence of control law, whereas error is converging to the zero in Figure 2.2(b), when 

control signal is activated. 

 

(a) 

 

 (b) 

Fig. 2.3: Error between 2mx and 2sx , (a) without controller and (b) with controller 

Figure 2.3 shows the response of error between second state of master and slave 

systems 
2 2 2( ) ( ) ( )m se t x t x t 

 
without and with control input. Figure 2.3(a) represents 

the error, the response shows that error trajectory is not converging to the origin in the 

absence of control law, whereas error is converging to the zero in Figure 2.3(b), when 

control signal is activated. 
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Similarly, Figure 2.4 shows the response of error between fifth state of master and 

slave systems 
5 5 5( ) ( ) ( )m se t x t x t 

 
without and with control input. Figure 2.4(a) 

shows that error trajectory is not converging to the origin in the absence of control 

law, whereas error is converging to the origin in Figure 2.4(b), when control signal is 

activated. 

Simulation results demonstrate that synchronization between master and slave 

systems can be established through an appropriate control law.  

 

(a) 

 

 (b) 

Fig. 2.4: Error between 5mx and 5sx , (a) without controller and (b) with controller 
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2.9 Summary 

This chapter provides the foundation of the dissertation. Different laws, tools, 

techniques and methods imperative to carry-out the research work are recalled. A 

brief literature review on the historical aspects of synchronization is provided. 

Existing control techniques for synchronization of nonlinear systems are revisited to 

explore the previous research work on this topic. Classification of synchronization is 

also mentioned in this Chapter. An overview of nonlinear systems and nonlinear 

chaotic systems is provided. Chaotic systems are complex nonlinear systems known 

as sensitive to the initial conditions. Nonlinear systems are complex systems and 

synchronization of such systems have a great importance in different fields of 

engineering, information sciences, optical systems, communication network and 

physical systems. To attain the master-slave synchronization of nonlinear systems, 

various existing techniques and methods can be implied. The identities like Schur 

complement, Lyapunov functional, Jensen’s inequality, time-delay systems, 

traditional Lipschitz condition and LMI-tools are described, which will be recalled 

frequently in the rest of the dissertation.  
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Chapter 3 

SYNCHRONIZATION OF MUTUALLY 

LIPSCHITZ NONLINEAR SYSTEMS 

3.1 Overview 

Problem of synchronization of nonlinear systems is of great importance, due to its 

diverse applications in biological systems, chemical processes, energy systems and 

communication networks [16-40]. In the literature, a vigorous research has been 

established on synchronization of identical nonlinear systems [2-10]. There are 

different control methodologies like optimal, robust and adaptive for synchronization 

of identical nonlinear systems, considering the parameters like time-delay, 

disturbance, saturation and unknown dynamics have been extensively reported in the 

literature [61-64], [66-67], [72-73].  

However, the problem of synchronization of non-identical nonlinear systems is 

lacking in the literature and these days, it is attaining a significant importance from 

the researchers. A few of the exceptional research works on synchronization of unlike 

dynamical systems are mentioned at this juncture [80-86]. In [80-82], adaptive control 

schemes are developed to cope with synchronization of two different chaotic 

oscillators by formulating adaptation laws for unknown parameters. Sliding mode 

control strategies for synchronizing the distinct chaotic systems under disturbances, 

slope-restricted input nonlinearity and different types of uncertainties have been 

addressed [83-84]. 

In this Chapter, problem of synchronization of non-identical nonlinear master-slave 

systems is considered. Key idea of synchronization is illustrated in Figure 3.1, It 

shows that difference between the states of the master and slave systems called error, 

is fed to the controller block, and controller generate an appropriate signal that fed to 

the slave system, that synchronize the slave system to the master system by 

converging the error to the origin.  
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Master System Controller

Slave System

+

-

e(t)

u(t)

( ) ( , )m m mx t Ax f x t 

( ) ( , )s s sx t Ax g x t Bu  

( )u Ke t

 

Figure 3.1: Block diagram for synchronization of nonlinear master-slave systems  

The problem is formulated for a class of nonlinear systems. To simplify the design, 

nonlinearities in nonlinear systems are considered to be Lipschitz and for such 

Lipschitz systems, a novel mutually Lipschitz condition is proposed. Proposed 

mutually Lipschitz condition is more general than the traditional Lipschitz condition 

and powerful tool for designing a control law for synchronization of distinctive 

nonlinear systems. Traditional Lipschitz condition can be used for synchronization of 

similar nonlinear systems, whereas, it is inapplicable for synchronization of non-

identical nonlinear systems. 

Proof of proposed novel mutually Lipschitz condition along with it properties and 

their proofs is given, properties can be useful for investigating the nonlinear 

parameters. A simple quadratic Lyapunov function along with a mutually Lipschitz 

condition is used to design a simple state feedback control law for synchronization. 

After some mathematical treatment, an algebraic Riccati equation based control 

methodology is derived, which is demonstrated in Theorem 3.1. Congruence 

transformation, change of variable method and Schur compliment are applied on 

algebraic Riccati equation to formulate a linear matrix inequality (LMI) based 

approach for synchronization. LMI-based approach is more powerful tool and less 

conservative. The proposed scheme of synchronization using mutually Lipschitz 

condition is novel and provides a state-feedback controller deign, which is simple in 

design and implementation compared to the existing techniques for synchronization of 

non-identical nonlinear systems [80-86]. 

This Chapter is organized as follows. Next section contains the problem formulation. 

In Section 3, novel mutually Lipschitz condition is provided along with its properties 

followed by the proof of the properties of the mutually Lipschitz condition. Controller 
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structure for synchronization is provided in section 5. An algebraic Riccati inequality 

based approach for synchronization is established in section 6. In section 7, an 

advance LMI-based synchronization approach is derived. In the end, a numerical 

simulation example to witness the proposed synchronization scheme is provided 

followed by the concluding remarks.  

3.2 Systems Description 

To formulate the problem for synchronization of non-identical nonlinear systems, two 

different nonlinear systems are considered, named as master system and slave system. 

Nonlinearities considered in the master and slave systems are different from each 

other. Dynamical model for nonlinear master system is described by  

( ) ( , ),m m mx t Ax f x t   
0(0) ,m mx x  (Eq 3.1) 

where n

mx R  denotes the state of the master system. n nA R   is a linear known 

matrix with constant entries. Vector ( , ) n

mf x t R  represents the nonlinearities in 

master system. 
0(0)m mx x  is the initial condition for the master system. 

Similarly dynamical model for the nonlinear slave system is described by: 

( ) ( , ) ,s s sx t Ax g x t Bu   0(0) ,s sx x  (Eq 3.2) 

where 
n

sx R  denotes the state of the slave system. Vector ( , ) n

sg x t R  represents 

the nonlinearities in slave system, which shows that the nonlinearities in the slave 

system are different compared to master system. 
0(0)s sx x  represents the initial 

condition of nonlinear slave systems. 
n nA R   is linear known matrix and is similar 

to a master system, it can be different for master and slave system, however for 

simplicity similar matrix is considered. n mB R   is a linear matrix with known 

constant entries and mu R  is the control input applied to the slave system to 

synchronize it with a master system. 

Master and slave systems are considered to be Lipschitz. By virtue of Lipschitz 

condition, complex nonlinearities can be transformed into an equivalent upper bound 

of linear function. There are several techniques available to handle the linear 

functions which can be utilized for synchronization of such nonlinear functions. 

Traditional Lipschitz condition is useful for synchronization of identical nonlinear 
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systems. However, it is inapplicable for synchronization of non-identical nonlinear 

systems. To address the problem of synchronization of different nonlinear systems a 

novel mutually Lipschitz condition is proposed herein. 

3.3 Mutually Lipschitz Condition 

Nonlinearities in master and slave systems are considered to be Lipschitz. Further 

these Lipschitz nonlinearities are assumed to be mutually Lipschitz. Mutually 

Lipschitz condition is more general than the conventional Lipschitz condition. 

Proposed mutually Lipschitz condition is an advance and novel condition that 

provides the advantage of controller synthesis for non-identical nonlinear systems, 

over the traditional Lipschitz condition.    

Two different nonlinear functions ( , )mf x t  and ( , )sg x t
 

are said to be mutually 

Lipschitz, if satisfy the following mathematical inequality 

2 22

max max( , ) ( , )m s m sf x t g x t l x x     , (Eq 3.3) 

where 
maxl  is a scalar quantity called the mutually Lipschitz constant. Similarly, 

max  

is a scalar quantity. Dimensions of ( )x t  and ( , )f x t  are considered to be the similar

( )n p , however for general case, different dimensions of ( )x t  and ( , )f x t  can be 

considered. The condition provided in Eq. 3.3 is called mutually Lipschitz condition.  

3.3.1 Globally Mutually Lipschitz Nonlinearities 

The nonlinear vector functions ( , )mf x t  and ( , )sg x t  for all states of 
mx  and 

sx
 
are 

said to be globally mutually Lipschitz, if following mathematical relationship holds 

among them, 

2 22

max max( , ) ( , )m s m sf x t g x t l x x     , , p

m mx x R  (Eq 3.4) 

3.3.2 Locally Mutually Lipschitz Nonlinearities 

The nonlinear vector functions ( , )mf x t  and ( , )sg x t  are said to be locally mutually 

Lipschitz, if the mutually Lipschitz condition provided in Eq. 3.3 is satisfied for 

specific region, such that all , p

m sx x R   with scalars 
max 0l   and 

max 0  .  
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Now, as mutually Lipschitz condition is defined, there are two questions needs to be 

answered. First the identification of nonlinear system that can be treated by mutually 

Lipschitz nonlinearities and secondly, computation of unknown parameters defined in 

mutually Lipschitz condition provided in Eq. 3.3. These concerned are addressed in 

the next section by providing the properties of mutually Lipschitz conditions along 

with their detailed proofs.   

3.4 Properties of Mutually Lipschitz Condition 

Properties for the mutually Lipschitz condition are provided herein, which can be 

useful for identification of nonlinear systems, that can be treated with mutually 

Lipschitz condition. Unknown dynamical parameters can also be computed by virtue 

of these properties. Different properties of the mutually Lipschitz condition are 

described as follows.  

1. If nonlinear vector functions ( , ) n

mf x t R  and ( , ) n

sg x t R  for all , p

m sx x R  

belong to Lipschitz nonlinearities with Lipschitz constants fl  and gl , respectively, 

then following inequalities are satisfied:  

   
2 22 1

1( , ) ( , ) 1 1m s f m sf x t g x t l x x        , (Eq 3.5) 

   
2

2 22 1( , ) ( , ) 1 1m s g m sf x t g x t l x x        , (Eq 3.6) 

where 

 any positive scalar   ,

 
2

1 ( , ) ( , )s sf x t g x t   , 

2

2 ( , ) ( , )m mf x t g x t   . 

2. If two nonlinear functions ( , ) n

mf x t R  and ( , ) n

sg x t R  for all , p

m sx x R   

belonging to Lipschitz nonlinearities are mutually Lipschitz. 

3. Proposed mutually Lipschitz condition of Eq. 3.3 is more general than the 

traditional Lipschitz condition. It can be easily verified using the following 

condition that if two different nonlinearities are supposed to be similar, 

mathematically ( , ) ( , )f x t g x t  and by choosing 
max 0  , than the mutually 
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Lipschitz condition of Eq. 3.3 reduces to the conventional Lipschitz condition as 

below. 

     

2 22

max( , ) ( , )m s m sf x t f x t l x x   ,             (Eq 3.7) 

    where  
max 0l   is a Lipschitz constant. 

3.4.1 Proof of Inequalities in Property 1 

There are two inequalities provided in first property of mutually Lipschitz condition. 

Inequality of Eq. 3.5 can be derived as follows. Taking the left hand side of Eq. 3.5, 

and by adding-subtracting the nonlinear function ( , )sf x t , it reveals 

2
( , ) ( , ) ( , ) ( , )m s s sf x t g x t f x t f x t   .    (Eq 3.8) 

Rearranging it, we obtain 

2
{ ( , ) ( , )} { ( , ) ( , )}m s s sf x t f x t f x t g x t   .

 
(Eq 3.9) 

It can be expand as square of two functions as below, 

2 2

2

{ ( , ) ( , )} { ( , ) ( , )} ( , ) ( , )

( , ) ( , )

2( ( , ) ( , ))

( ( , ) ( , )).

m s s s m s

s s

m s

s s

f x t f x t f x t g x t f x t f x t

f x t g x t

f x t f x t

f x t g x t

    

 

 

 

 (Eq 3.10) 

Now, introducing mathematical identity 2 22ab a b  , and extending this inequality 

by introducing a scalar function k . It can also be rewritten as 

2 1 22 ( ) ( )ab a b    ,  (Eq 3.11) 

where introduction of the scalar function k
 
does not affect the health of the equation, 

but become useful to derive the desired inequality. Using this mathematical identity 

into Eq. 3.10, we have 

2 2

2

2

21

{ ( , ) ( , )} { ( , ) ( , )} ( , ) ( , )

( , ) ( , )

( , ) ( , )

+ ( , ) ( , ) .

m s s s m s

s s

m s

s s

f x t f x t f x t g x t f x t f x t

f x t g x t

f x t f x t

f x t g x t



 

    

 

 



 (Eq 3.12) 
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Now for the further simplification, traditional Lipschitz condition of Eq. 3.7, is 

employed and Eq. 3.12, transformed as 

2 2 22 2

21

2

{ ( , ) ( , )} { ( , ) ( , )} +

+ ( , ) ( , )

( , ) ( , ) .

m s s s f m s f m s

s s

s s

f x t f x t f x t g x t l x x l x x

f x t g x t

f x t g x t



 

     



   

(Eq 3.13)

 

Rearranging it, we get 

2 22

21

{ ( , ) ( , )} { ( , ) ( , )} (1+ )

(1 ) ( , ) ( , ) .

m s s s f m s

s s

f x t f x t f x t g x t l x x

f x t g x t



 

    

  
 
(Eq 3.14) 

For further simplification, introducing 
2

1 ( , ) ( , ) ,s sf x t g x t  
 
it gives 

2 22

1

1

{ ( , ) ( , )} { ( , ) ( , )} (1+ )

(1 ) .

m s s s f m sf x t f x t f x t g x t l x x 

 

    

 
 

(Eq 3.15)
 

It completes the proof of proposed inequality. 

Using the same approach, proof of inequality of Eq. 3.6 can be provided as below.  

Taking the left hand side of Eq. 3.6 and by adding-subtracting the nonlinear function

( , )mg x t , it reveals 

2
( , ) ( , ) ( , ) ( , )m s m mf x t g x t g x t g x t   .

                                                         
(Eq 3.16) 

Rearranging it, we have 

2
{ ( , ) ( , )} { ( , ) ( , )}m s m mg x t g x t f x t g x t   .

 
(Eq 3.17) 

It can be expanded as square of two functions as under 

2 2

2

{ ( , ) ( , )} { ( , ) ( , )} ( , ) ( , )

( , ) ( , )

2( ( , ) ( , ))

( ( , ) ( , )).

m s m m m s

m m

m s

m m

g x t g x t f x t g x t g x t g x t

f x t g x t

g x t g x t

f x t g x t

    

 

 

 

 (Eq 3.18) 

Using identity defined in Eq. 3.12 for 2( ( , ) ( , ))( ( , ) ( , ))m s m mg x t g x t f x t g x t 
 
into 

Eq. 3.18, it yields 
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2 2

2

2

21

{ ( , ) ( , )} { ( , ) ( , )} ( , ) ( , )

( , ) ( , )

( , ) ( , )

+ ( , ) ( , ) .

m s m m m s

m m

m s

m m

g x t g x t f x t g x t g x t g x t

f x t g x t

g x t g x t

f x t g x t



 

    

 

 



  (Eq 3.19) 

Now for the further simplification, traditional Lipschitz condition of Eq. 3.7 is 

employed and Eq. 3.19 is transformed as follows  

2 2 22 2

21

2

{ ( , ) ( , )} { ( , ) ( , )} +

+ ( , ) ( , )

( , ) ( , ) .

m s m m g m s g m s

m m

m m

g x t g x t f x t g x t l x x l x x

f x t g x t

f x t g x t



 

     



 

  (Eq 3.20) 

Rearranging it, we get 

2 22 1

2

{ ( , ) ( , )} { ( , ) ( , )} (1+ ) (1 )

( , ) ( , ) .

m s m m g m s

m m

g x t g x t f x t g x t l x x

f x t g x t

        

 
 
(Eq 3.21) 

For simplicity introducing 
2

2 ( , ) ( , ) ,m mf x t g x t  
 
it gives 

  

2 22

1

2

{ ( , ) ( , )} { ( , ) ( , )} (1+ )

(1 ) .

m s m m g m sg x t g x t f x t g x t l x x 

 

    

 
 

(Eq 3.22)
 

It completes the proof of the proposed inequality. 

3.4.2 Proof of Property 2 

Two nonlinear functions ( , ) n

mf x t R  and ( , ) n

sg x t R  for all , p

m sx x R  belongs 

to Lipschitz nonlinearities are mutually Lipschitz. It can be proven mathematically by 

comparing mutually Lipschitz conditions provided in Eq. 3.3 and inequality defined 

in Eq. 3.5, rewritten as 

2 22

max max( , ) ( , )m s m sf x t g x t l x x     ,
 

(Eq 3.23) 

   
2 22 1

1( , ) ( , ) 1 1m s f m sf x t g x t l x x        .
 

(Eq 3.24) 

Left hand side of the both inequalities is the similar, so by comparing right hand side 

of these equations, we obtain 
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   
2 22 2 1

max max 11 1m s f m sl x x l x x          .
 

(Eq 3.25) 

It can be separated into two parts as under 

 
2 22 2

max 1m s f m sl x x l x x    ,
 

(Eq 3.26) 

and 

 1

max 11 max    .
 

(Eq 3.27)
 

First part of the equation can be solved by simple mathematics 

 2 2

max 1 fl l  .
  

(Eq 3.28) 

It can be further simplified as  

  2

max 1 fl l  ,
  

(Eq 3.29)
 

maxl
 
represents the Lipschitz constant of the nonlinear function. 

Similarly by comparing mutually Lipschitz condition of Eq. 3.3 with Eq. 3.6, we get 

2 22

max max( , ) ( , )m s m sf x t g x t l x x     .
 

(Eq 3.30)
 

   
2

2 22 1( , ) ( , ) 1 1m s g m sf x t g x t l x x        .
 

(Eq 3.31)
 

By comparing right hand side of both equations, 

   
2 22 2 1

max max 21 1m s g m sl x x l x x          .
 

(Eq 3.32)
 

 2 2

max 1 gl l  .
  

(Eq 3.33) 

It can be further simplified as  

  2

max 1 gl l  .
  

(Eq 3.34) 

 1

max 21 max( )    . (Eq 3.35) 

3.5 Controller Design 

Different controls strategies have been developed for the synchronization of non-

identical nonlinear systems such as adaptive and sliding mode. Existing techniques 

are computational complex. So, by virtue of proposed mutually Lipschitz condition, a 
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simple static feedback control law is proposed for synchronization of two mutually 

Lipschitz nonlinear systems. The proposed controller is uncomplicated in design, easy 

to implement and provides the optimal results. Structure of the proposed static state 

feedback controller is selected as 

( )u Ke t ,   (Eq 3.36) 

where mu R  represents the controller input, m nK R   is the controller gain and ( )e t

denotes the error between the states of master and slave systems. Using proposed 

controller of Eq. 3.36 dynamics of the slave system of Eq. 3.2 can be rewritten as 

 ( ) ( , ) ( ).s s sx t Ax g x t BKe t  
 

(Eq 3.37)
 

Difference between the states of the master system and slave system is defined as an 

error
 

( ) ( ) ( )m se t x t x t  , and taking its time derivative. It yields 

( ) ( ) ( )m se t x t x t  .
 

(Eq 3.38) 

Incorporating the dynamics of master system of Eq. 3.1 and slave system with control 

input of Eq 3.37, along with the error definition, it implies 

( ) ( ) ( , ) ( , ) ( )m se t Ae t f x t g x t BKe t    .
 

(Eq 3.39)
 

It can be further simplified as below 

 ( ) ( ) ( , ) ( , )m se t A BK e t f x t g x t    . (Eq 3.40) 

To attain the synchronization between master and slave systems, algebraic Riccati 

based approach is provided.  

3.6 Theorem 3.1-(Algebraic Riccati Based Approach) 

Consider a nonlinear master and slave systems of Eq. 3.1 and Eq. 3.2, respectively, 

that satisfy the mutually Lipschitz condition provided in Eq. 3.3 and suppose there 

exist a positive scalar 
 
along with positive-definite symmetric matrix P , such that 

following inequality holds  

2 2

max 0T T TA P PA K B P PBK P l I I       . (Eq 3.41)
 
 



 

                                                                                                                              39 

                                                                                                                                      

 

 

Then proposed controller of Eq. 3.36 guarantee the uniformly ultimately 

synchronization of nonlinear master-slave systems by converging the error in 

following region: 

 
2

maxe   .  (Eq 3.42)
  
 

Selection of appropriate 
 
provides efficient error convergence.  

3.6.1 Proof of Theorem 3.1 

Now to ensure the synchronization between master and slave systems, error trajectory 

should converge to the origin. To show the error convergence, Lyapunov stability 

theory is utilized and a quadratic Lyapunov function is constructed for convergence. 

To ensure the error convergence, quadratic Lyapunov function should be positive-

definite or its derivate should be negative definite. To provide the proof of Theorem 

3.1, a simple quadratic Lyapunov function is constructed as  

( , ) ( ) ( )TV t e e t Pe t . (Eq 3.43) 

Taking time derivative of energy function, it reveals 

( , ) ( ) ( ) ( ) ( )T TV t e e t Pe t e t Pe t  . (Eq 3.44) 

Now by incorporating the values of error derivative ( )e t  from Eq. 3.40 into Eq. 3.44, 

it implies 

 

 

( , ) [ ( ) ( , ) ( , )] ( )

( ) ( ) ( , ) ( , ).

T

m s

T

m s

V t e A BK e t f x t g x t Pe t

e t P A BK e t f x t g x t

   

   
 

(Eq 3.45)

 

Rearranging it, we obtain 

( , ) ( ) ( ) ( ) ( ) ( , ) ( , )) ( )

( ) ( ) ( ) ( ) ( ) ( ( , ) ( , )).

T T T T T T

m s

T T T

m s

V t e e t A Pe t e t K B Pe t f x t g x t Pe t

e t PAe t e t PBKe t e t P f x t g x t

   

     

(Eq 3.46)

 

It can be written as 

( , ) [ ] ( ( , ) ( , ))

( ( , ) ( , )).

T T T T T

m s

T

m s

V t e e A P K B P PA PBK e f x t g x t Pe

e P f x t g x t

     

   

(Eq 3.47) 

Introducing the mathematical identity 2 T T TA B A A B B  , and using for 

( ( , ) ( , ))T

m sf x t g x t Pe  and ( ( , ) ( , ))T

m se P f x t g x t , it can be expand as 
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     2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

                                       .

T T

m s m s m s

T

f x t g x t Pe f x t g x t f x t g x t

e PPe

   

  

(Eq 3.48) 

Using Eq. 3.48 into Eq. 3.47, it implies 

2( , ) [ ]

( ( , ) ( , )) ( ( , ) ( , )).

T T T T T

T

m s m s

V t e e A P K B P PA PBK e e P e

f x t g x t f x t g x t

    

    

(Eq 3.49)

 

Rearranging it, we obtain 

2( , ) [ ]

( ( , ) ( , )) ( ( , ) ( , )).

T T T T

T

m s m s

V t e e A P K B P PA PBK P e

f x t g x t f x t g x t

    

    

(Eq 3.50) 

Now, as nonlinear functions ( , )mf x t
 

and ( , )sg x t
 

are assumed to be mutually 

Lipschitz. Then by application of proposed mutually Lipschitz condition of Eq. 3.3, 

relationship between the nonlinear functions can be describe as follows 

2 2

max

max

( ( , ) ( , )) ( ( , ) ( , )) ( ( )( ) )

.

T T

m s m s m s m sf x t g x t f x t g x t l x x x x    


 

(Eq 3.51) 

Using the identity provided in Eq. 3.51 into Eq. 3.50, it implies 

2 2

max max[ ] .T T T T TV e A P K B P PA PBK P e e l e      
 

(Eq 3.52)
 

It can be further simplified as below 

2 2

max max[ ]T T T TV e A P K B P PA PBK P l e       .
 

(Eq 3.53) 

Now introducing the positive scalar function  , and also it is assumed that inequality 

2 2

max

T T TA P PA K B P PBK P l I I       , reveals. This completes the proof of 

algebraic Riccati based inequality of Theorem 3.1. 

The algebraic Riccati inequality based approach for synchronization by asymptotic 

error convergence provided in Theorem 3.1 is quite simple and useful, however the 

proposed methodology has some issues regarding selection of unknown parameters. 

The challenges of algebraic Riccati based approach are outlined. 

1.  There is no procedure available for computation of unknown parameters, e.g., P  

and K . So selection of matrices P  and K is a difficult task. 
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2. To minimize the error ( )e t , high value of the scalar parameter   is required, so 

the proposed approach may not offer optimization of the parameter   to achieve 

the maximum rejection of unwanted disturbances. 

The concerns raised on algebraic Riccati based approach of Theorem 3.1 for 

synchronization are of great significance, to address these issues, an advance linear 

matrix inequality (LMI) based approach is provided in Theorem 3.2. 

3.7 Theorem 3.2-(LMI Based Approach) 

Let the master and slave systems of Eq. 3.1 and Eq. 3.2, respectively, that satisfy the 

mutually Lipschitz condition provided in Eq. 3.3. Suppose their exist a positive scalar 


 
along with positive-definite symmetric matrix n nQ R  and matrix m nM R  . 

Than by solving the optimization min    

0Q  ,  0o   , (Eq 3.54)  

such that following LMI holds 

max

* 0 0

* *

T T TQA AQ M B BM I Ql Q

I

I

    
 

  
  

.

 

(Eq 3.55) 

Using this LMI, parameter K  of control law can be obtained by solving 1K MQ . 

Further, the proposed control law ( )u Ke t  ensures uniformly ultimately bounded 

synchronization of nonlinear non-identical master-slave systems in the region 

 
2

maxe   . 

   

(Eq 3.56) 

3.7.1 Proof of Theorem 3.2 

To provide the proof of Theorem 3.2, some LMI tricks are applied on algebraic 

Riccati based inequality of Eq. 3.41 to transform it into linear mathematical inequality   

form of Eq. 3.55. Incorporating the congruence transformation by pre and post 

multiplication of  1P
 to the algebraic Riccati inequality of Eq. 3.41, we obtain 

1 1 1 1 1 1 1 1

1 1 1 2 1 1 1

max 0.

T T TP A PP P PAP P K B PP P PBKP

P PPP P l IP P IP

       

     

  

   
 

(Eq 3.57)
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Hence, 1P P I  , it can be simplified as 

1 1 1 1 1

1 2 1 1 1

max 0.

T T TP A AP P K B P PBKP I

P l IP P IP

    

   

   

    

(Eq 3.58) 

Now applying change of variable method on Eq. 3.58, by 1P Q   and 1   , it 

yields 

2 1

max 0T T TQA AQ QK B BKQ I Ql IQ Q IQ       .                                     

 

(Eq 

3.59) 

Substituting M KQ  for reducing two unknown parameters into single identity, it 

reveals 

2 2 1 2

max 0T T TQA AQ M B BM I l Q Q       .
 

(Eq 3.60) 

Now applying Schur complement to above inequality, an LMI of form Eq. 3.55 can 

be obtained. This completes the proof of Theorem 3.2. 

It is seems that by the application of the proposed mutually Lipschitz condition, a 

simple state-feedback control law is provided for the synchronization of two different 

nonlinear master-slave systems. Mutually Lipschitz condition provides a significant 

feature, that a simple control law can be designed, even if nonlinear functions of 

master-salve systems are unknown. This can be made using the knowledge of maxl , as 

this information is sufficient to propose a control law for synchronization of different 

nonlinear systems.  

3.8 Simulation Results 

Couple of numerical examples are illustrated, to witness the proposed mutually 

Lipschitz condition and its effectiveness for the synchronization of non-identical 

nonlinear systems observing different Lipschitz nonlinearities. 

3.8.1 Synchronization of Two Different Chua’s Systems 

Consider the following uncertain and different chaotic Chua’s systems described in 

[66]. Parameters of Chua system used as master system and slave system are different 

from each other, to make them non-identical systems. 
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Equation of motion of Chua’s system used as master system is presented by following 

set of equations 

 
1 11 1 12 2 1 2 3( )m m mx a x a x x x        ,

 

(Eq 3.61a)

 
2 21 1 22 2 23 3mx a x a x a x   , (Eq 3.61b) 

3 32 2mx a x .  (Eq 3.61c) 

Equation of motion of Chua’s system used as slave system is presented by following 

set of equations 

1 11 1 12 2 1 2 3( )s m mx a x a x x x        ,

 

(Eq 3.62a)

 
2 21 1 22 2 23 3sx a x a x a x   , (Eq 3.62b) 

3 32 2sx a x .  (Eq 3.62c) 

Nonlinear functions in master and slave systems can be written in the form of 

matrices as under 

 1 2 3

( , ) 0

0

m m

m

x x

f x t

     
 

  
 
  

,   (Eq 3.63) 

 1 2 3

( , ) 0

0

s s

s

x x

g x t

     
 

  
 
  

. (Eq 3.64) 

Clearly, the functions ( , )mf x t  and ( , )sg x t  are different from each other and, further, 

their parameters 
i  and 

i , for 1,2,3i  , are assumed to be unknown and bounded 

such that  1 1, 0 2    and  2 3 2 3, , , 0 1.2     . Using bounded constraints 

parametric values of Chua’s system considered as master system are 
1 1.9286  , 

2 1   and 
3 1.1  . Similarly parametric values of Chua’s system considered as 

slave system are 
1 1.8482  , 2 1.1  and 3 1  . Let a linear matrix with known 

entries selected as 

2.548 9.1 0

1 1 1

0 14.2 0

A

 
 

 
 
  

. (Eq 3.65)
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To determine the controller gain matrix, first LMI feasibility is ensured using robust 

control toolbox of MATLAB and then using 1K MQ , by selecting 0.01o   and 

max (3,0,0)L diag , feedback gain matrix is computed as 

52.02 0.17 7.95

12.90 42.23 2.67

10.59 15.87 42.23

K

 
 


 
  

.                                                                        (Eq 3.66)  

The proposed controller is applied to attain the synchronization between master 

system and slave system, which are Chua’s systems with different parameters 

Figure 3.2, shows the phase portraits of different Chua’s systems without controller. 

Phase portraits are different from each other due to low mismatch of parameters 

between both systems. Figure 3.2(a), shows the 3-D phase portrait of master system 

without controller and Figure 3.2(b), shows the 3-D phase portrait of slave system 

without controller. 

(a) (b) 

Fig. 3.2: 3-D Phase portrait of Chua system with low mismatch of parameter without Controller, 

 (a) master system, (b) slave system  

When control signal is activated, response of master and slave systems is shown in 

Figure 3.3. Figure 3.3(a) shows the phase portrait of Chua system used as master 

system with low mismatch of parameter with state feedback controller and Figure 

3.3(b) shows the phase portrait of Chua’s system used as slave system with low 

mismatch of parameter with state feedback controller. Response of the slave system is 

following the trajectory of the master system. 
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(a) (b) 

Fig. 3.3: Phase portrait of Chua system with low mismatch of parameter with state feedback controller  

(a) master system, (b) slave system  

Error responses between different states of the master system and the slave system 

without controller and with static state feedback controller are shown in Figure 3.4, 

Figure 3.5 and Figure 3.6. Figure 3.4(a) shows the error response  

1 1 1( ) ( ) ( )m se t x t x t 
 
between first state of the master and the slave systems without 

controller, which shows the oscillatory response. Whereas, Figure 3.4(b) show the 

error 
1 1 1( ) ( ) ( )m se t x t x t   between first state of the master and the slave systems in 

the presence of control input. The error plot validates convergence of the 

synchronization errors to a small region near origin.  

(a) 

 

(b) 

Fig. 3.4: Phase portrait of Chua system with low mismatch of parameter with state feedback controller  

(a) master system, (b) slave system  
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Similarly Figures 3.5 shows the error response between second state of master system 

and slave system 
2 2 2( ) ( ) ( )m se t x t x t   with and without controller. Which shows that 

without controller, error response is oscillatory and not converging to the reference, 

on the other hand error converges to the origin as controller is activated.  

 

(a) 

 

(b) 

Figure 3.5: Synchronization error plot for 2 ( )e t , (a) without controller, (b) with controller 

Similarly Figures 3.6(a) and 3.6(b) shows the error response between the third state of 

the master system and the slave system 
3 3 3( ) ( ) ( )m se t x t x t   in the absence and 

presence of state feedback controller, respectively, which shows that without 

controller, error response is oscillatory and not converging to the reference, on the 

other hand error converges to the origin as controller is activated.  

 (a)  (b) 

Figure 3.6: Synchronization error plot for 3( )e t , (a) without controller, (b) with controller 
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3.8.2 Synchronization of Modified Chua’s and Rossler Systems 

In the first example, two nonlinear systems with low mismatch were synchronized. 

Now to witness the worth of proposed controller two non-identical systems are 

considered. Modified Chua’s system is considered as the master system and a Rössler 

system is considered as the slave system [122]. The dynamics of the master and slave 

systems are described in matrices form as follows 

2.548 9.1 0

1 1 1

0 14.2 0

A

 
 

 
 
  

,  (Eq 3.67) 

3

1 1
2

1 2 3

2

2
10

7

( , )

100

7

m m
m

m m m m

m

x x
x

f x t x x x

x

  
  

  
   
 
 


 
 

,  (Eq 3.68) 

 

2 3

1 2

3 1

( , ) 0.2

0.2 5.7

s s

s s s

s s

x x

g x t x x

x x

  
 

  
   

, (Eq 3.69) 

The Lipschitz constant fl  is calculated numerically by determining supremum of the 

maximum eigen values of    ( , ) ( , )
T

f x t x f x t x     for  2 2x  . To determine 

the value of mutually Lipschitz constant, parameter 0.1   is selected, and the 

resultant Lipschitz constant is 
max 23.72l  . Now feedback controller gain matrix is 

determined by solving the linear matrix inequality and then by solving 1K MQ . 

44.45 0 0

0 44.45 0

0 0 44.45

K

 
 


 
  

.

 

(Eq 3.70) 

Figures 3.7(a) and 3.7(b) shows the phase portraits of Chua’s system and the phase 

portrait of Rossler system, selected as master system and slave system, respectively, 

when no control input is applied. Response of master system and slave system show 
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the typical phase portrait of Chua’s systems and Rossler system, and it reflects 

unsynchronized behavior.  

Figures 3.8(a) and 3.8(b) show the chaotic behaviors of the master and the slave 

systems, respectively, in the presence of controller. Responses show that when control 

input is applied to the slave system (Rossler system), its response is changed and 

follow the trajectory of master system (Chua circuit).  
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Fig. 3.7: Phase portraits of the modified Chua systems used as master system and Rössler system used 

as slave system, respectively, without controller 
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Figures 3.9(a), 3.9(b) and 3.9(c) show the synchronization error plots for different 

states of master and slave systems. Figure 3.9 (a) shows the error 

1 1 1( ) ( ) ( )m se t x t x t   for the first state of master and slave systems. Plot demonstrates 

the error response without control signal and in the presence of control input. When 

200sect  , slave system is running without control input, response of the error is 

oscillatory, which is not converging to the origin. It reflects that there is no 

synchronization between master and slave systems. After time 200sect  , controller 

is incorporated, it shows that dynamics of errors converges to the origin. 
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Fig. 3.8: Phase portraits of the modified Chua systems used as master system and Rössler system used 

as slave system, respectively, with proposed controller 
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(c) 

Fig. 3.9: Synchronization error plot using proposed static state feedback controller,  

(a) 1 1 1( ) ( ) ( )m se t x t x t  , (b) 2 2 2( ) ( ) ( )m se t x t x t  ,
  

(c) 3 3 3( ) ( ) ( )m se t x t x t 
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3.9 Summary 

In this chapter, problem of synchronization of two nonlinear systems having different 

nonlinearities is addressed. Nonlinear functions are considered to be Lipschitz and 

these Lipschitz nonlinear systems are considered mutually Lipschitz. For the analysis 

of nonlinear system having different nonlinearities, a novel mutually Lipschitz 

condition is provided. Proposed mutually Lipschitz condition is more general than 

traditional Lipschitz condition. Mutually Lipschitz condition is effective for the 

analysis of the properties of the nonlinear systems having non-identical nonlinearities. 

Moreover this condition provides the advantage of uncomplicated state feedback 

controller design for the synchronization of nonlinear master-slave systems.  

To analyze the proposed controller for synchronization two distinct nonlinear 

systems, by virtue of mutually Lipschitz condition, a quadratic Lyapunov function is 

selected. By applying control stability theory an algebraic Riccati equation is 

obtained, which is useful for design and implementation of different control strategies 

for synchronization of nonlinear systems. This algebraic Riccati inequality based 

approach is further extended to derive an advanced linear matrix inequality (LMI) 

based control technique for synthesis of controller. LMI based technique is useful for 

simple and implementable controller design. It provides the optimization of control 

parameters. It also provides the advantage of maximum mismatch rejection of 

nonlinearities between master-slave systems. In the end, two different simulation 

examples are illustrated to guarantee the effectiveness of proposed control law. 

Results of numerical simulation are obtained for two Chua’s systems with low 

mismatch of parameters and in second example two different nonlinear circuits, 

modified Chua and Rossler systems are synchronized. 
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Chapter 4 

ROBUST AND ROBUST ADAPTIVE 

SYNCHRONIZATION  

4.1 Overview 

In Chapter 3, the problem of synchronization of non-identical nonlinear master-slave 

systems was discussed and a novel mutually Lipschitz condition was derived, which 

is useful identity to derive the sufficient conditions for synchronization of non-

identical nonlinear systems. A simple state-feedback control law was provided to 

obtain the synchronize behavior for dissimilar nonlinear master-slave systems. 

In this Chapter, the problem of synchronization of non-identical nonlinear systems 

under the constraints of disturbances for low mismatch of nonlinearities and large 

mismatch of nonlinearities is investigated. To obtain the robust synchronization for 

low mismatch of nonlinearities, a simple state feedback controller based robust 

technique is proposed. Then for cancellation of nonlinearities and for optimal 

controller gain, robust adaptive technique is proposed, which is further extended for 

time-delay nonlinear systems. Nonlinear systems are considered to be mutually 

Lipschitz, to get the advantage of proposed mutually Lipschitz condition for 

synchronization of non-identical nonlinear systems.  

The parameters like time-delay, uncertainties and saturation have a great significance 

for stability analysis of nonlinear systems. Delay is unavoidable in many physical 

systems and becomes source of instability in nonlinear systems. Disturbances are 

another source that degrades the performance of nonlinear systems. Keeping in view 

the importance of time-delays and uncertainties, the problem is formulated by 

considering state delays and disturbances in the dynamics of the nonlinear systems 

that makes the problem more challenging and attractive. Objective is to design an 

efficient, simple and computationally uncomplicated controller that enforces the error 

to converge in a sphere to attain the synchronization of time-delay nonlinear systems. 
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A simple state-feedback control law is derived for robust synchronization by 

incorporating a Lyapunov stability theory along with bounded disturbances and 

mutually Lipschitz condition. Initially, Lyapunov stability theory is implied to derive 

an algebraic Riccati based inequality, which can be utilized for the controller 

synthesis. However the approach is computationally complex, so algebraic Riccati 

inequality based approach is transformed into to an advance and less conservative 

LMI-based robust synchronization approach by implying the change of variable 

methods, congruence transformation and by virtue of Schur complement. LMI-based 

approach for robust synchronization is advantageous that offer a simple controller and 

also effective against external disturbances. Compared to the existing techniques of 

non-identical nonlinear systems [80-86], proposed synchronization scheme is straight 

forward and uncomplicated in design and implementation. 

Furthermore, a novel adaptive control technique is established, which provides the 

advantage of designing a controller of suitable gain by cancellation of mismatch 

between nonlinearities in master and slave systems. It should be emphasized that the 

proposed novel robust adaptive synchronization scheme works efficiently for 

nonlinear systems with entirely different dynamics and against uncertainties. The 

value of unknown parameters can be computed by utilizing the mutually Lipschitz 

condition. Proposed robust adaptive control technique is extended for time-delay 

nonlinear systems and a novel delay-independent synchronization methodology for 

nonlinear master-slave systems subject to external disturbances and state-delays is 

developed. In the end, couples of numerical simulation examples for low mismatch 

and large mismatch of nonlinearities are illustrated to witness the proposed 

synchronization schemes. 

Synchronization of dissimilar nonlinear systems with external disturbances and time-

delays is of great significance, due to its applications in aerospace engineering, secure 

communication and medical systems. Different techniques have been developed for 

synchronization of identical nonlinear systems, e.g., adaptive control strategy, sliding 

mode control and observer based technique [1-15].  Control strategies have been 

applied to address the synchronization of nonlinear systems with other constraints like 

time-delay, uncertainties, saturation and input nonlinearities [56-64]. However, robust 

synchronization of dissimilar nonlinear (chaotic) systems is lacking in the literature. 
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There are few exceptional examples of synchronization of dissimilar nonlinear 

systems [80-86]. In [81], the problem of different chaotic systems with unknown 

parameter using adaptive control technique has been addressed. The work of [83], 

provides a control strategy for synchronization of different chaotic fractional order 

systems. However, these schemes are computationally complex to determine the 

controller gain and also difficult for real time implementation. 

Chapter 4 is organized as follows, in the next section dynamical model of different 

nonlinear systems along with couples of assumptions is described. State-feedback 

controller based robust control synchronization scheme is derived in section 3, 

whereas, section 4 gives a novel adaptive control law based robust adaptive 

synchronization scheme for large mismatch of nonlinearities among master and slave 

systems. Proposed robust adaptive synchronization scheme is extended to the time-

delay nonlinear system in section 5. Couples of numerical simulation examples are 

illustrated in section 6 to show the effectiveness of proposed synchronization 

strategies and in the end, entire chapter is summarized.    

4.2 Systems Description and Preliminaries 

Synchronization of non-identical nonlinear master-slave systems subject to external 

disturbances is considered. Dynamics of the master and slave systems are described as 

follows 

( ) ( , )m m m mx t Ax f x t d   ,
 
 

0(0) ,m mx x  (Eq 4.1) 

( ) ( , )s s s sx t Ax g x t d Bu    ,
 0(0) ,s sx x  (Eq 4.2) 

where n

mx R
 
and  

n

sx R  represent the states of the master and slave systems, 

respectively. n nA R   is a linear known matrix with constant entries. Vector 

( , ) n

mf x t R  and
 

( , ) n

sg x t R
 

represents the nonlinearities in master and slave 

systems, respectively. Vector functions ( , )mf x t  and ( , )sg x t  reflect that 

nonlinearities in master system and slave system are different from each other. 

Disturbances in master and slave systems are denoted by n

md R
 

and 
n

sd R , 

respectively.
 0(0)m mx x  and 

0(0)s sx x  are the initial conditions of nonlinear 

master and slave systems, respectively. n mB R   is a linear matrix with known 
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constant entries and mu R  is the control input applied to the slave system to 

synchronize it with a master system. 

Disturbances are important dynamical parameter of the nonlinear systems, which 

cannot be ignored, source of instability and degradation of performance of nonlinear 

systems. So, disturbances are incorporated in the dynamical model of nonlinear 

master and slave systems for robust synchronization.  

4.2.1 Assumptions 

To obtain the main results, following assumptions are adopted. 

1. Disturbances modeled in the master system ( )md  and in slave system ( )sd
 
are 

bounded such that:  

 

2

maxm sd d d  .                                                                                          (Eq 4.3) 

The stated condition can be verified if both disturbances 
md

 
and

 sd
 
are bounded 

in Euclidean norm sense 

2. The nonlinear master-salve systems having Lipschitz nonlinearities and these 

Lipschitz nonlinearities are considered to be mutually Lipschitz. 

 

2 22

max max( , ) ( , )m s m sf x t g x t l x x     . (Eq 4.4)
 
 

Mutually Lipschitz condition is more general that traditional Lipschitz condition 

and useful to design a control law for synchronization of non-identical nonlinear 

master-slave systems. 

4.3 Robust Control Methodology 

Synchronization of different nonlinear systems is considered through robust control 

methodology. Dynamics of the nonlinear systems are considered to be Lipschitz. 

Mutually Lipschitz condition along with Lyapunov stability theory can be implied to 

attain the robust synchronization of Lipschitz nonlinear systems.  

Figure 4.1 shows the basic structure of the proposed robust synchronization scheme. 

Difference between states of the master and slave systems (error) is fed to the state-

feedback controller, which provides an appropriate controller gain to synchronize the 

slave system with the master system. 
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Master System Controller

Slave System

+

-

e(t)

( )u Ke t( ) ( , )m m m mx t Ax f x t d  

( ) ( , )s s s sx t Ax g x t d Bu   

 

Figure 4.1: Block diagram for robust synchronization of master-slave systems 

Structure of the proposed static state-feedback controller is selected as 

( )u Ke t ,  (Eq 4.5) 

where u  represents the controller input, m nK R   is the controller gain matrix and 

( )e t  
represents the error between master and slave systems. Now by incorporating the 

proposed controller of Eq. 4.5, dynamics of the slave system of Eq. 4.2 can be 

rewritten as 

( ) ( , ) ( ).s s s sx t Ax g x t d BKe t   
 

(Eq 4.6)
 

Difference between the master and the slave systems is defined as an error

( ) ( ) ( )m se t x t x t  and taking its time derivative  

( ) ( ) ( )m se t x t x t  .
 

(Eq 4.7) 

Subtracting Eq. 4.6 from Eq. 4.1 and incorporating the error definition, we get 

( ) ( , ) ( , ) ( )m s m se t Ae f x t g x t d d BKe      .
 

(Eq 4. 8)
 

It can be further simplified as 

 ( ) ( , ) ( , ) ( )m s m se t A BK e f x t g x t d d      . (Eq 4.9) 

Now to analyze the performance of controller for synchronization between master and 

slave systems, matrix inequality based approach is provided for the mutually 

Lipschitz nonlinear master-slave systems. 
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4.3.1 Theorem 4.1 

Consider the nonlinear master system of Eq. 4.1 and the slave system of Eq. 4.2 that 

satisfies the mutually Lipschitz condition of Eq. 4.4 and assumption stated in Eq. 4.3. 

Suppose there exist a positive-definite symmetric matrix n nQ R  , a matrix 

m nM R   and a positive scalar  . By solving the optimization min   

0Q  ,  0o   . (Eq 4.10)  

Following linear matrix inequality (LMI) holds 

max

* 0 0

* *

T T TQA AQ M B BM I Ql Q

I

I

    
 

  
  

.

 

(Eq 4.11) 

Then by solving the linear matrix inequality of  Eq. 4.11, value of controller K  can 

be obtained by solving 1K MQ . Furthermore, the proposed state-feedback control 

law of Eq. 4.5, ensures uniformly ultimately bounded synchronization of nonlinear 

non-identical master-slave systems through convergence of error ( ) ( ) ( )m se t x t x t 
 

in the following region 

 
2

max maxe d   . (Eq 4.12)
  
 

 Error convergence depends on the appropriate selection of parameter  .  

4.3.2 Proof of Theorem 4.1 

To provide the proof of Theorem 4.1, a simple quadratic Lyapunov function is 

selected as 

( , ) ( ) ( )TV t e e t Pe t . (Eq 4.13)
  
 

Taking the time derivative of constructed Lyapunov function and also incorporating 

the dynamics of error derived in Eq. 4.9, it depicts 

 

 

( , ) [ ( , ) ( , ) ( )]

[ ( , ) ( , ) ( )].

T

m s m s

T

m s m s

V t e A BK e f x t g x t d d Pe

e P A BK e f x t g x t d d

     

     
 

(Eq 4.14)

 

Rearranging it, we get 
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( , )

( ( , ) ( , )) ( )

( ( , ) ( , )) ( ).

T T T T T T T

T T

m s m s

T T

m s m s

V t e e A Pe e K B Pe e PAe e PBKe

f x t g x t Pe d d Pe

e P f x t g x t e P d d

   

   

     

(Eq 4.15)

 

It can be further simplified as 

( , ) [ ] ( ( , ) ( , ))

( ) ( ( , ) ( , )) ( ).

T T T T T

m s

T T T

m s m s m s

V t e e A P K B P PA PBK e f x t g x t Pe

d d Pe e P f x t g x t e P d d

     

     
 

 

(Eq 4.16) 

Introducing the mathematical identity 

2 T T TA B A A B B  .  

 

(Eq 4.17) 

Using mathematical identity defined in Eq. 4.17 for  ( , ) ( , )
T

m sf x t g x t Pe  and 

( )T

m sd d Pe , it gives 

   

 

1
( , ) ( , ) ( , ) ( , )

2

( , ) ( , )  

T T

m s m s

T

m s

f x t g x t Pe f x t g x t

f x t g x t e PPe

  

   

(Eq 4.18)

 

and similarly 

1
( ) ( ) ( )

2

T T T

m s m s m sd d Pe d d d d e PPe     .

 

(Eq 4.19) 

Using results of Eq. 4.18 and Eq. 4.19 into Eq 4.16, it implies 

2( , ) [ 2 ]

( ( , ) ( , )) ( ( , ) ( , ))

( ) ( ).

T T T T

T

m s m s

T

m s m s

V t e e A P K B P PA PBK P e

f x t g x t f x t g x t

d d d d

    

  

    

(Eq 4.20) 

Now, as nonlinear functions ( , )mf x t
 

and ( , )sg x t
 

are assumed to be mutually 

Lipschitz, then by the application of proposed mutually Lipschitz condition provided 

in Eq. 4.4, the relationship between these nonlinear functions can also be describe as 

under 

2 2

max max

( ( , ) ( , )) ( ( , ) ( , ))

                ( ( )( ) ) .

T

m s m s

T

m s m s

f x t g x t f x t g x t

l x x x x

  

  
 

(Eq 4.21) 



 

                                                                                                                              59 

                                                                                                                                      

 

 

Incorporating the assumption 1 about bounded disturbances of Eq. 4.3 and using 

relationship between nonlinear functions established in Eq. 4.21 into Eq. 4.20, it 

yields 

2 2

max

max max

( , ) [ 2 ]

.

T T T TV t e e A P K B P PA PBK P l I e

d

     

   
(Eq 4.22)

 

Introducing a positive scalar function   and assuming, we have 

2 2

max2 0T T TA P PA K B P PBK P l I I       . 
 

(Eq 4.23) 

The Eq. 4.23 is known as algebraic Riccati Inequality. It is used for computation of 

controller gain, but at the same time computation of unknown matrices K  and P  by 

this inequality is quite difficult task. Therefore, an advance linear matrix inequality 

(LMI) based approach is provided for controller synthesis for synchronization of 

nonlinear systems. Algebraic Riccati inequality of Eq. 4.23 can be transformed into an 

LMI by applying congruence transformation, change of variable method and Schur 

complement.   

Pre- and post- multiplication of 1P ,  Eq. 4.23 implies 

1 1 1 1 1 1 1 1

1 1 1 2 1 1 1

max2 0.

T T TP A PP P PAP P K B PP P PBKP

P PPP P l IP P IP

       

     

  

   
 

(Eq 4.24)

 

Hence, 1P P I  , results 

1 1 1 1 1

1 2 1 1 1

max

2

0.

T T TP A AP P K B P PBKP I

P l IP P IP

    

   

   

  
 

(Eq 4.25) 

Now applying change of variable methods by using 1P Q  , 1   ,  and M KQ

, to transform the bilinear matrix inequality into LMI, it yields 

2 2 1 2

max2 0T T TQA AQ M B BM I l Q Q       .
 

(Eq 4.26) 

LMI of Eq. 4.11 can be obtained by applying Schur complement [120] on Eq. 4.26. It 

completes the proof of Theorem 4.1.  

It shows that by virtue of mutually Lipschitz condition, a simple state feedback 

control law is proposed in Theorem 4.1. Proposed control law is useful for the 

synchronization of two non-identical nonlinear systems. Furthermore, robustness of 
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the resultant control methodology against disturbances can be obtained by selection of 

appropriate value of the min   . Another significant feature of the proposed 

synchronization scheme is that a controller gain can be easily computed, even if 

information of nonlinearities in master system and slave system are unknown. It can 

be obtained by the knowledge of Lipschitz constant 
maxl .  

The control methodologies developed for the synchronization of non-identical 

nonlinear systems are [80-86], to considerable extent, computationally intricate in 

their implementation. On the other hand proposed state-feedback control law is 

straightforward, uncomplicated and produce implementable optimal results via linear 

matrix inequality.  

The proposed robust synchronization scheme is effective in design and 

implementation for low mismatch of nonlinearities. However synchronization of 

nonlinear systems having large nonlinearities ( , )mf x t
 
and

 
( , )sg x t , higher value of 

max  is desired, that offer a high value controller gain. Such a high gain controller 

can be problematic for many practical systems. For example a system containing 

actuators, it may reach to saturation when a high gain controller is implied, similarly 

if noise is present in the measurement system. To address the problem of 

synchronization to address the large mismatch of nonlinearities, a robust adaptive 

control technique is developed and provided in the next section.     

4.4 Robust Adaptive Control Methodology 

State-feedback controller scheme for synchronization of non-identical nonlinear 

master-slave systems is simple, straightforward and effective for small differences of 

nonlinearities. It has limitation of controller gain to deal with large mismatch of 

nonlinearities. To deal with this issue, an adaptive synchronization strategy is 

developed. Adaptive technique is based on adaptive cancellation of unknown term, 

which is handy to accommodate large mismatch of nonlinearities and achieve 

synchronization of different nonlinear master-slave systems. Figure 4.2, shows the 

basic structure of the robust adaptive synchronization methodology. 
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Master System Controller

Slave System

+

-

e(t)
( ) ( , )m m m mx t Ax f x t d  

( ) ( , )s s s sx t Ax g x t d Bu   

( )u Ke t 

 

Figure 4.2: Block diagram of robust adaptive synchronization 

The structure of the proposed adaptive controller is as follows 

( )u Ke t  ,                                                                                            (Eq 4.27) 

 
where ( )t  

is an adaptive parameter, which is additional to the state-feedback 

controller of Theorem 4.1. This additional term is used for compensation of large 

mismatch of nonlinearities between two nonlinear systems and also useful to deal 

with the disturbances occurring in master system and slave system. 

Incorporating the proposed adaptation law of Eq. 4.27 into the error dynamics of Eq. 

4.9, it yields 

 ( ) ( , ) ( , ) ( )m s m se t A BK e f x t g x t B d d       .                                
 
(Eq 4.28) 

4.4.1 Theorem 4.2 

Consider a mutually Lipschitz non-identical nonlinear master-slave systems described 

in Eq. 4.1 and Eq. 4.2 satisfying assumptions provided in Eq. 4.3, Eq. 4.4 and suppose 

that there exist a scalar function   along with a matrix m nM R   and a symmetric 

matrix n nQ R  , such that the LMIs  

0Q  , 0  .
                                                                                                   

(Eq 4.29) 

and the LMI of Eq. 4.11 are satisfied. Then proposed adaptive control law of Eq. 4.27 

exists with following adaptation law 

 max max

2

T
d

B Pe




 
  

 
,
                                                                            

(Eq 4.30) 
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where scalar function   is introduced to avoid the singularity and its value can be 

infinitesimally small, such that the synchronization error converges to the origin. The 

controller gain matrix K  of the adaptive control law of Eq. 4.27 can be computed by 

solving 1K MQ . 

4.4.2 Proof of Theorem 4.2 

Synchronization scheme using the adaption law can be established by introducing 

following Lyapunov function. 

( , ) T TV t e e Pe   , 
                                                                                           

(Eq 4.31) 

where   represents the adaptive parameter. Taking the time derivative of constructed 

Lyapunov function, it depicts 

( , ) T T T TV t e e Pe e Pe     .
 

(Eq 4.32)  

Incorporating error dynamics of Eq. 4.28, it gives 

 

 

( , ) [ ( , ) ( , ) ( )]

[ ( , ) ( , ) ( )]

.

T

m s m s

T

m s m s

T T

V t e A BK e f x t g x t B d d Pe

e P A BK e f x t g x t B d d

       

       

  

 
(Eq 4.33) 

 

 

It can be further simplified as under 

   

 

   

( , ) ( , ) ( , )

( , ) ( , )

.

TT T T T

m s

T T T T

m s

T T T T

m s m s

V t e e A P PA K B P PBK e f t x g t x

Pe e P f t x g t x e PB B Pe

d d Pe e P d d

     

     

      

 
(Eq 4.34) 

 

 

Incorporating the mathematical identities derived in Eq. 4.18 and Eq. 4.19, we obtain 

 

   

   

2( , ) 2

( , ) ( , ) ( , ) ( , )

.

T T T T T T

T

m s m s

TT T T

m s m s

V t e e A P PA K B P PBK P e

f t x g t x f t x g t x

e PB B Pe d d d d

        

  

     

 
(Eq 4.35) 

  

 

Applying assumptions of Eq. 4.3 and Eq. 4.4, it implies 

 2 2

max

max max

( , ) 2

.

T T T T

T T T T T

V t e e A P PA K B P PBK P l I e

d e PB B Pe

     

      
 

(Eq 4.36) 
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By exploring the proposed adaptive control law, it reveals 

 
 

2 2

max

max max

max max 2

( , ) 2

.

T T T T

T

V t e e A P PA K B P PBK P l I e

d
d






     

  
  

 

 
(Eq 4.37) 

  

 

The scalar parameter   is assumed to be positive and infinitesimally small, it depicts 

 2 2

max( , ) 2T T T TV t e e A P PA K B P PBK P l I e      .
 

(Eq 4.38) 

  

 

To achieve the objective of error convergence, it is required that an algebraic Riccati 

inequality of Eq. 4.23 must hold, which further reveals after some mathematical 

treatment in the form of LMI of Eq. 4.11 must be satisfied. It completes the proof of 

Theorem 4.2.      □ 

An appropriate small positive value of the scalar parameter 
 
can be selected for 

practical implementation rather than infinitesimally small number. In that case, results 

obtained in Eq. 4.38 entails 

 
 

2 2

max

max max

2

( , ) 2

.

T T T TV t e e A P PA K B P PBK P l I e

d 



     




   

 
(Eq 4.39) 

  

 

It can be further simplified by incorporating the algebraic Riccati inequality of Eq. 

4.23, it implies 

 2 max max

2
( , )

d
V t e e

 





  

 
.
 

(Eq 4.40) 

  

 

Hence the synchronization error can be derived from Eq. 4.38, which remains 

uniformly ultimately bounded as 

 

 
2 max max

2

d
e

 

 




 
.

 

 
(Eq 4.41) 

  

 

The result derived for synchronization error is rearranged as  

    2

max max max maxd d        .
 

(Eq 4.42) 
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This shows that the region of sphere for convergence of synchronization error is 

comparably smaller than robust control strategy provided in Theorem 4.1. Adaptive 

control law provides the advantage of suitable controller gain. Proposed robust 

adaptive control scheme in Theorem 4.2 for synchronization of different nonlinear 

master-salve systems is also advantageous because it can handle large mismatch of 

nonlinearities by adaptive cancellation of unknown terms and disturbances by 

utilizing their bounds. It is worth noting that the adaptive parameter   introduced in 

control law for cancellation of unknown terms, does not enhance complexity for 

computation of controller gain. Compared to the existing conventional adaptive 

techniques like [80-81], the requirement of invertible input matrix B  is not 

necessary. So it can be concluded that the developed robust adaptive technique is 

more effective and less conservative compared to the existing techniques. 

4.5 Robust Adaptive Control Methodology Extended for 

Time-Delay Systems 

Delay is an important parameter for theoretical analysis and for the same time for 

practical systems. In practical systems, the necessary part actuators, sensors and 

propagation of signals are also source of delay. Study of time-delay nonlinear systems 

attracts the researcher of different fields especially to the control community. Delay 

can be modeled in different ways, which depends on its existence in nonlinear 

systems like input delay, state delay and output delay etc. 

State delay is a substantial part of real-time nonlinear systems. Any real-time system 

consists of multiple stages, and there are number of sources of delays like actuators, 

sensors, transportation delay and input and output delay. A considerable amount of 

delay is incorporated by state delay. Disturbances are another fundamental parameter, 

which degrade the performance of nonlinear systems. The identities that affect the 

performance of nonlinear systems are also source of instability for synchronized 

nonlinear systems. The problem is designed by incorporating the different 

nonlinearities, state delays and disturbances to design a robust synchronization 

technique.  

Dynamics of the master-slave system under the constraints of external disturbances 

and state-delays are described as follows: 
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1( ) ( ) ( ) ( ( )) ( ( )) ,m m m m m mx t Ax t A x t f x t g x t d              (Eq 4.43) 

1( ) ( ) ( ) ( ( )) ( ( )) ,s s s s s sx t Ax t A x t f x t g x t d Bu                  (Eq 4.44) 

where
 

( ) n

mx t R 
 
and ( ) n

sx t R 
 
represent the delayed state with time-delay 

 

of the master and slave systems, respectively. The vector functions ( ) n

mf x R
 
and 

( ( )) n

mg x t R  , represent time-varying nonlinearities in the master system without 

delay and with delay, respectively. The vector functions ( ) n

sf x R  and 

( ( )) n

sg x t R  , represents a time-varying nonlinearities in the slave system 

without delay and with delay, respectively.  

Assumption about mutually Lipschitz nonlinearities provided in Eq. 4.4 can be 

extended for delayed nonlinear function as follows. The nonlinear functions in the 

master system and in the slave system subject to time-delay ( ( ))mg x t   and  

( ( ))sg x t   are also said to be mutually Lipschitz, if    

2 22

max( )

max( )

( ( )) ( ( )) ( ) ( )

 ,

m s g m s

g

g x t g x t l x t x t         


 (Eq 4.45)      

where 
max( )gl   and 

max( )g
 
are positive scalar functions. 

Now, by subtracting Eq. 4.44 from Eq. 4.43, the synchronization error dynamics can 

be written as 

1( ) ( ) ( ) ( ( ( )) ( ( )))

      ( ( ( )) ( ( ))) ( ) .

m s

m s m s

e t Ae t A e t f x t f x t

g x t g x t d d Bu



 

    

      
 (Eq 4.46) 

4.5.1 Controller Design 

The dynamics of the proposed adaptive controller is selected as 

( ) ( )u Ke t t  ,                           (Eq 4.47) 

where m nK R   is a controller gain matrix, ( )e t  represents the error and ( ) mt R   

represents the adaptive parameter, which is useful to compensate mismatch between 

nonlinearities and disturbances. Hence by incorporating the dynamics of the proposed 

control law and error definition into Eq. 4.46, it depicts 
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1( ) ( ) ( ) ( ) ( ( ( )) ( ( )))

( ( ( )) ( ( ))) ( ) ( ).

m s

m s m s

e t A BK e t A e t f x t f x t

g x t g x t d d B t



 

     

       
                          (Eq 4.48) 

This section is intended towards the synthesis of a robust adaptive controller to attain 

the synchronization between the nonlinear, non-identical master-slave systems subject 

to states delays.  

4.5.2 Theorem 4.3 

Let the master system and the slave system with dynamics in Eq. 4.43 and Eq. 4.44, 

respectively, along with assumptions of Eq. 4.4 and Eq. 4.45 are supposed to be 

synchronized, if there exist positive-definite matrices n nX R  , n nZ R   and 

m nG R  , such that following linear matrix inequality (LMI) holds  

 

1 max( )

max( )

0

*
0

* * 0

* * * 0

f

g

A X Xl

Z I Xl

I

 
 

 
  
 
 
 

 ,              (Eq 4.49)      

 

where *  represents the symmetric terms of the LMI and  
 

3T T TXA AX G B BG I Z       . 
 

There exists a controller provided in Eq. 4.46 with following adaptation law 

 max( ) max( ) max

2
2

f gT
d

B Pe


   
  

 
 ,        (Eq 4.50)      

 

where   is a scalar function, which is introduced to escape from singularity and  

assumed to be infinitesimally small.  

4.5.3 Proof of Theorem 4.3 

Theorem 4.3 is baptized as robust adaptive approach for synchronization of complex 

nonlinear systems having state delays. To provide the proof of Theorem 4.3, 

Lyapunov stability theory along with some arithmetic treatment is inferred. The 

Lyapunov function is selected as under 

( , ) ( ) ( ) ( ) e( )
t

T T T

t
V t e e t Pe t e t Z t dt


     . (Eq 4.51)      
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Taking the time-derivative of constructed Lyapunov function 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

T T T T

T T

V t e e t Pe t e t Pe t

e t Ze t e t Ze t 

     

   
            (Eq 4.52)      

Incorporating the value of ( )e t

 

from Eq. 4.48 into Eq. 5.52 and rearranging it  

 

 

 

1

1

( , ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ( ))

( ) ( ( )) ( ( )) ( ) ( )

( ( )) ( ( ))

T T T T T

T T T T

TT T T T

m s s

T T

m s

T

m s

V t e e t A P K B P PA PBK Z e t e t PA

e t e t A P e t e t Ze t e t

PB B Pe t f x t f x t

Pe t g x t g x t Pe t e t P

f x t f x t e

   

 

     

       

        

     

    

   

( ) ( ( )) ( ( ))

( ) ( ).

m s

TT

m s m s

t P g x t g x t

e t P d d d d Pe t

   

   

 (Eq 4.53)      

Using the mathematical identity defined in Eq. 4.17, following inequality holds  

   

 

1
( ( )) ( ( )) ( ( )) ( ( ))

2

( ( )) ( ( ))

( ) ( ) .

T T

m s m s

m s

T

g x t g x t Pe g x t g x t

g x t g x t

e t PPe t

   

 

      

   



         (Eq 4.54)      

Now, by incorporating the inequalities of Eq. 4.18, Eq. 4.19 and Eq. 4.54 into Eq. 

4.53, it yields  

 

 

   

 

2

1

1

( , ) ( 3 ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( ))

T T T T T

T T T T

TT T T T

m s

T

m s m s

m s m

V t e e A P K B P PA PBK Z P e e t PA

e t e t A P e t e t Ze t e t PB

B Pe t f x t f x t

f x t f x t g x t g x t

g x t g x t d d

   

 

 

      

        

      

     

          .
T

s m sd d

          (Eq 4.55)     

Applying assumptions provided in Eq. 4.3, Eq. 4.4 and Eq. 4.45 into Eq. 4.55, it 

reveals 

 

2 2

max( )

1 1

2

max( )

max( ) max( ) max

( , ) (t)( 3 ) (t)

( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

 .

T T T T

f

T T T T

T T T T T

g

T T

f g

V t e e A P K B P PA PBK Z P l I e

e t PA e t e t A P e t e t Ze t

e t l I e t e t PB B Pe t

d

   

 

      

      

     

      

     (Eq 4.56)      

Incorporating the proposed adaptive control law of Eq. 4.46 into Eq. 4.56, it depicts 
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 

 

2 2

max( )

1 1 max( )

2

max( ) max( ) max

2

max( ) max( ) max

2

( , ) (t)( 3 ) (t)

( ) ( ) ( )( ) ( )

( )( ) ( )

2
 ,

2

T T T T

f

T T T

f

T

g g

f g

V t e e A P K B P PA PBK Z P l I e

e t PA e t e t A P e t

e t Z l I e t d

d

 

 



      

    

     

   


 

     (Eq 4.57)      

where parameter 
 
is defined as a positive scalar and its value is assumed to be 

infinitesimally small,  inferring its value, gives 

1 1

2

max( )

2 2

max( )

( , ) ( )( ) ( ) ( )( ) ( )+ ( )

( ) ( ) (t)(

3 ) (t) .

T T T T

T T T T

g

f

V t e e t PA e t e t A P e t e t

l I Z e t e A P K B P PA

PBK Z P l I e

  



    

     

   

     (Eq 4.58)      

It can be rearranged in LMI format as follows 

 
1

2

max( )

0
* g

PA

l I Z

 
 

 
,                              (Eq 4.59)                     

where 

2 2

max( )3T T T

fA P PA K B P PBK P Z l I        . 

The result derived in Eq. 4.59 is not exactly the LMI. In fact it is a bilinear matrix 

inequality. To transform this BMI into LMI, congruence transformation, change of 

variable method and Schur complement are applied.  

Pre and post multiplication of  1P

 
and incorporating the 1 1P P PP I   , and for 

further simplification, change of variable method is implied for 1X P  and  

G KX . It results into the following LMI  

1

2

max( )

ˆ
0

* g

A X

Xl IX XZX

 
 

  

 ,                       (Eq 4.60)      

where 

2

max( )
ˆ 3  .T T T

fXA AX G B BG I XZX Xl IX         

Applying Schur complement [120] on Eq. 4.60, the LMI of Eq. 4.49 can be obtained. 

This completes the proof of Theorem 4.3.      □ 
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LMI-based an advanced approach is established for synchronization of non-identical 

nonlinear systems.  An adaptive control law is proposed to deal with different types of 

nonlinearities, state delays and disturbances in nonlinear systems. Adaptive parameter 

defined in proposed adaptive control law is exploited for cancellation of mismatch in 

nonlinearities. Also it is advantageous to compensate the disturbances.  

4.6 Simulation Results 

There are two numerical examples illustrated to witness the proposed scheme for the 

synchronization of different nonlinear systems. In the first example synchronization 

of nonlinear systems with low mismatch of nonlinearities is considered. Whereas in 

the second example, to show the worth of proposed synchronization criteria, two 

different nonlinear master-slave systems are selected to achieve the synchronization 

between them.  

4.6.1 Simulation of Two Different Chua’s Systems 

Chua’s circuits [66] are considered as nonlinear master and slave systems for low 

mismatch of nonlinearities, parameters of master and slave systems are selected 

slightly different to each other. Nonlinear function of the master system (Eq. 4.1) and 

the slave system (Eq. 4.2), can be represented in the dynamical form of Chua’s system 

as follows 

 

 1 2 3

( , ) 0

0

m m

m

x x

f x t

     
 

  
 
  

,
 

(Eq 4.61) 

  

 

 1 2 3

( , ) 0

0

s s

s

x x

g x t

     
 

  
 
  

.
 

(Eq 4.62) 

  

 

Obviously, the nonlinear functions ( , )mf x t  and ( , )sg x t  are dissimilar, also values 

assigned to the parameters   and   are different to each other, which are 

1 1.9286  ,   
2 1.0   and 3 1.1  . Similarly 1 1.8482  , 2 1.1  and 

3 1  . The 

scalar parameter 0.01o   and Lipschitz constant matrix 
max (3,0,0)L diag . 

Disturbances in master and slave systems are selected as 
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0.8sin 70

0.15sin 90

1.2sin130

m

t

d t

t

 
 


 
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, 

0.7sin 75

0.12sin100

1.1sin138

s

t

d t

t

 
 

 
 
  

.   
                                                         

(Eq 4.63)
 

  

 

The linear known matrix A

 

is selected as 

2.548 9.1 0

1 1 1

0 14.2 0

A

 
 

 
 
  

.  
 

(Eq 4.64) 

  

 

The feedback controller gain matrix is computed by solving the LMI derived in 

Theorem 4.1, which provides 

53.04 8.3 10.35

2.07 43 2.38

13.78 15.58 44

K

 
 


 
  

.
  

(Eq 4.65) 

  

 

The proposed robust controller of Eq. 4.5 is applied for synchronization of different 

Chua’s circuits. Figure 4.3(a) shows the error between first state of master system and 

slave system 
1 1 1( ) ( ) ( )m se t x t x t  , which shows that error converges to very small 

region around the origin. Similarly, Figures 4.3(b) and 4.3(c) show the 

synchronization error 
2 2 2( ) ( ) ( )m se t x t x t 

 
and 

3 3 3( ) ( ) ( )m se t x t x t  , respectively. 

Responses reflect that states errors are also converging to the zero. Hence, the 

proposed strategy for synchronization of non-identical nonlinear systems developed in 

Theorem 4.1 is applicable for low mismatch of nonlinearities.  
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Fig. 4.3:  Synchronization error plots for the two different Chua’s circuits in Example 1 
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To show the effectiveness of proposed robust and robust adaptive synchronization 

scheme of Theorem 4.1 and Theorem 4.2, respectively, for two different nonlinear 

systems, example 2 is provided.  

4.6.2 Simulation of Modified Chua’s System and Rossler System 

To guarantee the proposed state feedback control law, dynamics for of the master 

system described in Eq. 4.1 is implied by a modified Chua’s system and dynamics of 

the slave system of Eq. 4.2 is implied by a Rössler system [122], given by 

3

1 1
2

1 2 3

2

2
10

7

( , )

100

7

m m
m

m m m m

m

x x
x

f x t x x x

x

  
  

  
   
 
 


 
 

, 
 

(Eq 4.66)
 

  

 

 

2 3

1 2

3 1

( , ) 0.2

0.2 5.7

s s

s s s

s s

x x

g x t x x

x x

  
 

  
   

.
 

(Eq 4.67)
 

  

 

The Lipschitz constant parameter fl  is computed mathematically by determining 

supremum of the maximum eigen values of    ( , ) ( , )
T

f t x x f t x x     for 

 2 2x  . Scalar parameter 0.1   is selected and using it mutually Lipschitz 

constant is determined to be 
max 23.72l  . Controller gain matrix K  is computed by 

solving the linear matrix inequality of Theorem 4.1 as 

77.61 0 0

0 77.61 0

0 0 77.61

K

 
 


 
  

.
 

(Eq 4.68) 

   

 

Initially when no control signal is applied to the slave system for synchronization, the 

phase portraits of Chua’s circuit and Rossler system implied as master system and 

slave system, respectively are shown in Figures 4.4(a) and 4.4(b), respectively.  Phase 

portraits show unsynchronized behavior. Now when controller is activated, responses 

of the master and slave system are shown in Figures 4.5(a) and 4.5(b), respectively. 

Clearly it can be seen that in the presence of control input trajectory of Rossler system 

(slave system), follows the trajectory of Chua’s system (master system).  
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Fig. 4.4: Phase portraits of the chaotic master-slave systems without controller: (a) phase portrait of 

the modified Chua’s circuit; (b) phase portrait of the Rössler system. 
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Fig. 4.5: Phase portraits of the chaotic master-slave systems with proposed controller: (a) phase 

portrait of the modified Chua’s circuit; (b) phase portrait of the Rössler system. 

 

Figure 4.6 shows the time series plots of the synchronization errors. Figures 4.6(a), 

4.6(b) and 4.6(c) demonstrate the response of 
1( )e t , 2 ( )e t

 
and 

3( )e t , respectively. 

Initially for time 200sect  , control signal is not activated to the slave system and 

response of the synchronization error is oscillatory, which is not converging  to the 

origin. After time 200sect  , controller is incorporated and it can be observed that 

the synchronization errors converge to zero and synchronization is obtained between 

master and slave system.  
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Fig. 4.6. Synchronization error plots for the Chua’s circuit and the Rössler system using the proposed 

static state feedback controller. 
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Fig. 4.7. Synchronization error plots for the Chua’s circuit and the Rössler system in Example 2 using 

the proposed adaptive control strategy. 
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Now to show the effectiveness of proposed adaptive control technique,  
m a x 2l   is 

determined. The controller gain is computed through adaptive control scheme 

provided in Theorem 4.2. The controller gain is acquired as 

 

18.96 0 0

0 18.96 0

0 0 18.96

K

 
 


 
  

. 
 

(Eq 4.69) 

  

 

The value of the controller gain matrix of Eq. 4.69 computed by robust adaptive 

technique is about four-times lower than the controller gain of Eq. 4.68 computed by 

robust control technique, which is effective and implementable low gain controller for 

physical systems.  The results of the proposed adaptive control strategy for 0.05   

are plotted in Figure 4.7. The controller is activated at time 200sect   as in earlier 

case, to provide the comparison between two different approaches of synchronization. 

It is of notable mention that the synchronization errors 
1 1 1( ) ( ) ( )m se t x t x t  , 

2 2 2( ) ( ) ( )m se t x t x t 
 
and 

3 3 3( ) ( ) ( )m se t x t x t   shown in Figures 4.7 are converging 

in a bounded region with a similar performance as for the case of state-feedback 

controller approach with advantage of low controller gain. 

4.7 Summary 

In this Chapter, problem of synchronization of nonlinear master-slave systems with 

disturbance is addressed through robust and robust adaptive methodologies. Dynamics 

of the nonlinear systems are supposed to satisfy the mutually Lipschitz condition, 

which provides the advantage to derive the sufficient conditions for synchronization 

of different nonlinear systems. Uncertainties are always there in nonlinear systems, so 

disturbance is incorporated in the dynamics of the master and slave systems. A simple 

state-feedback control law is proposed for robust synchronization of master-slave 

systems. To analyze the performance of the proposed controller for robust 

synchronization, using Lyapunov stability theory, an algebraic Riccati inequality 

based strategy is developed, which is further enhanced to derive an advanced LMI-

based approach for synchronization.  

LMI-based controller design and synthesis technique is efficient to achieve optimal 

results for the synchronization against low mismatch of nonlinearities and disturbance 
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in nonlinear systems. However, the proposed state-feedback controller is not efficient 

for large mismatch of nonlinearities and its performance is poor against different 

complex nonlinear systems. To address the two different nonlinear master-slave 

systems, a novel adaptive control technique is established, which provides the 

advantage of cancellation of mismatch of nonlinearities among nonlinear systems and 

ensures the robust adaptive synchronization. Adaptive control scheme of 

synchronization is a powerful technique for synchronization of non-identical 

nonlinear systems, it is also useful to find the unknown and uncertain parameters of 

such nonlinear systems. 

Robust adaptive synchronization scheme is extended for time-delay nonlinear 

systems. The problem is reformulated by considering the state delays in the dynamics 

of nonlinear master-slave systems. A new adaptation law is introduced for 

synchronization of time-delay nonlinear systems. To compensate the external 

disturbances and state-delays, adaptive treatment is useful technique. The proposed 

synchronization scheme is novel and less conservative than the existing techniques.  

In the end, two examples of numerical simulations are illustrated to show the 

effectiveness of proposed synchronization techniques. Highly complex nonlinear 

systems (chaotic) are selected for synchronization. In the first example, static 

feedback control law is applied to show synchronization against low mismatch and 

disturbance in the master and the slave systems. In the second numerical example, 

modified Chua’s system and Rossler systems are selected as master system and slave 

system, respectively. Slave system is derived to master system using state-feedback 

controller and then using adaptive based control technique. The controller gain 

computed through robust adaptive scheme is one fourth of the controller gain 

computed by the robust synchronization scheme. It shows that controller gain is 

appropriate for real-time implementation using adaptive control strategy of 

synchronization for different nonlinear systems.     
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Chapter 5 

DELAY-DEPENDENT SYNCHRONIZATION 

5.1 Overview 

In last couples of chapters, the problem of synchronization for non-identical nonlinear 

master-slave systems was addressed. In chapter 3, feedback control law based strategy 

was developed for class of nonlinear systems by implying the mutually Lipschitz 

condition. Whereas, robust and robust adaptive synchronization schemes for different 

nonlinear master and slave systems were described in chapter 4. Furthermore, robust 

adaptive synchronization scheme was extended for time-delay nonlinear systems by 

considering the state-delays in the dynamics of master and slave systems and delay-

independent synchronization methodology was developed.   

In this chapter, the problem synchronization of nonlinear master-slave systems under 

input time-delay and slope-restricted input nonlinearity is considered and delay-

dependent synchronization criterion for synchronization of time-delay nonlinear 

master-slave systems is proposed. Problem is formulated by considering the input 

delay and slope-restricted input nonlinearity. Linear parameter varying (LPV) 

approach [68-70] is employed to transform the input nonlinearity into linear time-

varying parameters of known range. LPV-approach is a valuable technique for 

synthesis of controller, where the input nonlinearity is embedded in some varying 

parameters that depend on the systems states.  

A triple integral based Lyapunov-Krasovskii (LK) functional [118] is inferred, and 

control stability theory is applied to derive the linear matrix inequalities (LMIs), 

which leads to design a simple state-feedback control law for delay-dependent 

synchronization of nonlinear systems. Proposed state-feedback control law is simple 

in design and implementation, compared to the existing adaptive control techniques 

[23], [55], [63]-[66].  Proposed simple state-feedback controller based delay-

dependent synchronization technique is novel. In the end, a numerical example of 

nonlinear gyro systems is illustrated to witness the proposed scheme of 



 

                                                                                                                              79 

                                                                                                                                      

 

 

synchronization. The basic structure of the proposed delay-dependent synchronization 

scheme for master-slave systems is demonstrated in Figure 5.1 below. 

 

Master System Controller

Slave System

+

-

( ) ( , )m m mx t Ax f x t 

( ) ( ( ), )

( ( ( ))

)

)

(s s sAx t f x t t

B u t t

x t

 

 

 

( )u Ke t

Input Delay

( )t

( )e t

 

Figure 5.1: Block diagram of delay-dependent synchronization 

 

Time-delays are frequently encountered in many physical systems including chemical 

process, electrical systems, pneumatic control, hydraulic networks and medical 

systems etc. Especially, existence of delay in electrical systems exhibits manifold, 

such as, delay generated between input and output of the electronics circuits, delay in 

communication networks between transmitter and receiver, delay appears during the 

propagation of electrical signals and similarly, energy systems also encountered the 

transmission delay.  

In some cases the delay can be ignored because it does not affect the performance of 

the system or process. However, in many physical systems, presence of small or 

considerable amount of delay cannot be ignored depending upon the nature of the 

application of systems, such systems are considered sensitive to the delay. To 

compensate the effect of delay in these systems, delayed systems model is 

incorporated. Delayed system model provides the facility of designing an appropriate 

control law to compensate the delay effects and improves the performance of the 

system. 

Recently, a sound research trend is observed on the stability analysis and 

synchronization of nonlinear time-delay systems [7], [11], [56-60], [103], [110] which 

shows the importance of delay dynamics of nonlinear systems. The research is 
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focused to analyze the effect of different kinds of delays on the stability of the 

nonlinear systems and to provide the solution for the compensation of such delays. 

Nonlinear time-delay systems can be classified into two categories for stability 

analysis, which are delay-independent and delay-dependent stability criteria. Different 

stability criteria have been described in the literature for stability analysis and 

synchronization of nonlinear time-delay systems.  

This chapter is organized as follows. In the next section, problem of synchronization 

of master-slave systems under the delay constraints is formulated and preliminaries 

like delay-dependent approach and LPV-method are recalled. Sections 3, provide the 

controller design. Section 4 and 5 are devoted for attaining main results in the form of 

LMIs by implying the proposed control law. The numerical simulation results to 

witness the proposed synchronization scheme are illustrated in section 6. In the end 

some concluding remarks about this chapter are furbished. 

5.2 Systems Description and Preliminaries 

The problem of synchronization problem of two nonlinear systems with input delay 

and slope-restricted input nonlinearity is considered. Nonlinear systems are 

characterized as master and slave systems. Dynamics of the nonlinear master system 

is describe as follows 

( ) ( ( ), )( ) mm mAx t f xx t tt   , (Eq 5.1) 

where n

mx R
 
denotes the state of the master system and n nA R   is a linear known 

matrix with constant entries. Time-varying nonlinear vector function of master system 

is represented by ( ( ), ) n

mf x t t R . Similarly, dynamics of the nonlinear slave system 

is describe as  

( ) ( ( ), ) ( ( ( ))) )(s s sAx t f x t t B u t tx t      , (Eq 5.2) 

where
 

n

sx R
 
denotes the state of the slave system. n nA R   is a linear matrix 

similar to the master system. Time-varying nonlinear vector function of slave system 

is represented by
 

( , ) n

sf x t R . Control input provided to the slave systems is 

denoted by pu R  and n pB R   represents the input linear matrix with known 
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entries. ( ) pu R 
 
represents the continuous-time slope-restricted input nonlinearity. 

( )t  
denotes the time-varying input delay.  

An appropriate control law is needed to obtain the synchronization between the 

master and the slave systems, which ensures the convergence of the synchronization 

error to the origin. Defining the difference between the states of the master system 

and the slave system as an error ( ) ( ) ( )m se t x t x t   and now taking its time 

derivative as 

( ) ( ) ( )m se t x t x t  . (Eq 5.3) 

Now subtracting Eq. 5.2 from Eq. 5.1 and using the error definition, error dynamics 

can be given as 

( ) ( ) ( ( ( )) ( ), ( ),) ( ) ( )m se t Ae t B u t t f x t t tf x t      . (Eq 5.4) 

To simplify the error dynamics of Eq. 5.4, nonlinearities are defined as

, ( ), (( ) ( ) ),( )m s m st tx x f x tf tx   . Error system of Eq. 5.4 reveals 

( ) ( ) ( ( ( ))) ( , )m se t Ae t B u t t x x     . (Eq 5.5) 

5.2.1 Delay-Dependent Approach 

Problem of synchronization of nonlinear time-delay system has a considerable 

significance in both theoretical and practical systems. When the amount of delay is 

considered for the stability analysis, the approach is called delay-dependent. Delay-

dependent approach is less conservative compared to the delay-independent approach 

in which delay is considered without information about size of the delay.  

In this chapter, delay-dependent criterion is derived for synchronization of nonlinear 

master and slave systems. In the dynamics of slave system, ( )t  represents the input 

delay, which is differentiate-able function with respect to time and it is assumed to 

satisfy the following mathematical conditions, 

*0 ( )t     (Eq 5.6) 

and also delay derivative bound as 

( )t  .   (Eq 5.7) 
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Delay bound can be assigned from zero to some constant numerical values of the 

delay. Now couples of assumptions and Lemmas are provided, which will be useful to 

obtain the main results for synchronization of nonlinear time-delay master and slave 

systems. 

5.2.2 Assumptions  

To simplify the problem and for obtaining sufficient conditions for synchronization of 

nonlinear systems, following assumptions about input nonlinearity and nonlinear 

function are described herein. 

1. It is assumed that input nonlinearity ( ( ))u t  is a continuous function, which 

satisfies the following mathematical condition 

( ) ( ) ( )m Ml u t u l u t  ,  (Eq 5.8) 

      where 
,1 ,2 ,( , , , ) 0M M M M pl diag l l l   and 

,1 ,2 ,( , , , ) 0m m m m pl diag l l l  . 

2.  Nonlinearities in master and slave systems are assumed to be Lipschitz and these 

nonlinearities ( ( ), )f x t t
 
are assumed to be of continuous nature, validating the 

Lipschitz condition as follows  

     ( ( ), ) ( ( ), ) ( ) ( )m s m sf x t t f x t t x t x t   , (Eq 5.9) 

where 0  is the Lipschitz constant, for all ,m s

nx x R , and   represents the 

Euclidian norm. 

5.2.3 Lemmas 

Following two Lemmas are provided herein, useful to derive the main results. 

1. For a constant matrix 0TY Y   and scalars * 0  , the following inequality 

holds [123]: 

 

* * *

* ( ) ( ) ( ) ( )
t t t

T T

t t t
e Ye d e d Y e d

  
       

  
     , (Eq 5.10) 

where *  represents the upper limit of delay bound whereas lower bound is 

assumed to be zero, given that the concerned integral terms are well-defined 

([117-118]). In a similar fashion, we can write the integral inequality for 

*20.5   
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*

* *

0

0 0

( ) ( )

                ( ) ( ) .

t
T

t

t t
T

t t

e Ye d d

e d d Y e d d

 

   

    

     

 

   

 



 

     
(Eq 5.11) 

2. For a given matrix 

 
11 12

12 22

T


 

 

 
  
 

, (Eq 5.12)

 

if 11 11

T   and 22 22

T  , the following conditions are equivalent (see, for 

instance, [109] and [124]):  

 (a) 0   ,  

 (b) 
22 0  ,

 
and  1

11 12 22 12 0T     . 

 The condition is well known as Schur complement [120]. 

The provided Lemmas of Jensen’s inequality and Schur complement will be useful to 

derive the sufficient condition for synchronization.  

5.2.4 LPV-Approach 

Linear parameter varying (LPV) technique is useful to deal with the nonlinear 

function. Using this approach, nonlinearities are transformed into linear parameters in 

terms of exogenous values and also it provides the advantage of designing a 

computationally uncomplicated controller.  

The delayed input nonlinear function ( ( ( )))u t t  , using the Assumption 1 of Eq. 

5.8, can be transformed as linear parameter varying (LPV) function as under 

( ( ( ))) ( ) ( ( ))u t t t u t t     , (Eq 5.13) 

where ( ) pRt   represents a time-varying diagonal matrix. It verifies the following 

mathematical equation, 

( )m Ml t l  .  (Eq 5.14) 

Now defining 
1 ( 1) 1 ( )( ) 0 1 0

T

p i p iq i    
    , the relation ( )m Ml t l   can be 

expressed as 



 

                                                                                                                              84 

                                                                                                                                      

 

 

1 1

( )( ( )) ( )
p p

T

ij p p

i j

t q i qt j
 

  , (Eq 5.15) 

for each ( )ij t  applicable  

, ,( )m iiii Mtl l , 1,2,...,i p , (Eq 5.16) 

( ) 0ij t  , 1,2,...,i p , 1,2,...,j p , i j  , (Eq 5.17) 

where  ( )t  represents the time-varying diagonal matrix function and it belongs to 

the following set 

  , ,: 0, , ,p p

ij ii m ii MR i lj l       . (Eq 5.18) 

Now by incorporating LPV realization, the dynamics of error system of Eq. 5.5 is 

rewritten as 

( ) ( ) ,( ) ( )m se t Ae t B u t x x     , . (Eq 5.19) 

This LPV-based method is very suitable for robust controller design in the presence of 

input delay, which makes it superior than the orthodox adaptive controller design 

technique [61-64], as it allows simple controller design by reducing the adaptive 

terms.   

5.3 Controller Design 

An argument vector is defined as 



*

* *

( )

( )

( ) ( ), ( ( )), ( ), ( ),

         ( ) , ( ) , ( , ) .
t t t

m s
t t t

t col e t e t t e t e t

e d e d x x


 

  

   


 

   

 
 

(Eq 5.20) 

Let ( 1,2,3,...,7)i i   represents a matrix by replacing ith entry of  7n n  zero 

matrix with an identity matrix, for example fourth entry of the argument matrix can be 

represented as  4 0 0 0 0 0 0T I  . There are seven elements in this 

argument matrix ( ( ))t . For instance, 
*

3 ( ) ( )t e t    , which is third entry of the 

argument matrix ( )t .  

Now, a simple state-feedback control law for synchronization is proposed. Structure 

of the proposed control law is as follows 
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( ) ( )u t Ke t ,  (Eq 5.21) 

where m nK R   represents the state-feedback controller gain matrix.  

By incorporating controller design of Eq. 5.21 into Eq. 5.19, we get 

( ) ,( ) ( ) ( )m se t Ae t B Ke t x x     ,  . (Eq 5.22) 

Following Theorems are derived by application of proposed state-feedback control 

law ( ) ( )u t Ke t  
to ensure the convergence of synchronization error ( )e t  to the 

origin. 

5.4 Theorem 5.1 

Let the master system described in Eq. 5.1 and the slave system in Eq. 5.2 satisfy the 

assumptions provided in Eq. 5.8, Eq. 5.9, input delay bounds of Eq. 5.6 and delay 

derivative bound provided in Eq. 5.7 along with * 0  . Suppose there exist 

symmetric matrices 0P  , 0Q  , 0S  , 0iH 
 

and 0jZ 
 

of appropriate 

dimensions, for 1,2,3,i   and 1,2j  , such that the following LMIs, for a given 

matrix m nK R  , are satisfied 

11 3

* * *

*

3

33

3

66

3

*

3

1

55

1

22 1

1

1

2

0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

*

* * 0

* * * 0

* *

0 0 0

* * * * * * * 0 0

* * * * * * * * 0

* * * *

* *

* * * * * 0

* * *

* * *

*

*

* *

*

T T TH Z S

S

Z

S

EZ Z

Z S

P P A A A

EH

Q

H

S

S

I H

K

E

H

B S



   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 







 







  





  

 <0,  ,  (Eq  5.23) 
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 
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  

 







 

















 

<0,  ,  (Eq  5.24) 

where  

*2 *2

11 1 2 2

T TP H H Z SPA A          , 

22 1 23 (1 )Z H    , 

33 1 12Z H   , 

55 2Z S   , 

66 22Z S   , 

33 1 1
ˆ Z H   , 

55 22ˆ Z S   , 

66 2
ˆ Z S   ,

 

T T TK B  
 

and * is representing the symmetric terms in LMIs.  

Than provided state-feedback controller of Eq. 5.21, ensures the asymptotic 

synchronization of the master and slave systems under input delay and slope-

restricted input nonlinearity. 

5.4.1 Proof of Theorem 5.1 

Lyapunov stability theory is used as standard tool for stability analysis of nonlinear 

time-delay systems. There are two popular methods exists for stability analysis of 

time-delay systems, the Krasovskii method for Lyapunov functional and Razumikhin 
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method for Lyapunov functional. A positive-definite Lyapunov- Krasovskii functional 

is constructed to provide the proof of Theorem 5.1, given by 
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(Eq 5.25) 

Evaluating the time-derivative of LK functional, it gives 
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 (Eq 5.26)
 

To simplify, let us define 

*2

3 1

2M H Z S    . (Eq 5.27) 

Using the relationship of Eq. 5.27 and incorporating the delay derivative bound ( )t  

defined in Eq. 5.7 into Eq. 5.26, it reveals
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(Eq 5.28) 

Incorporating the Jensen’s inequality provided in Lemma 1, integral terms can be 

solved as follows 
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   (Eq 5.29)
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Similarly 
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 (Eq 5.30) 

Incorporating the inequalities * *( ( ))d t      and * ( ( ))d t  , furthermore 

assigning *( ( )) /d t  ,  leads to 
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 (Eq 5.31) 

and similarly  
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 (Eq 5.32) 

Hence Eq. 5.29 to Eq. 5.32 holds, it is implicit to obtain
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(Eq 5.33)

 Incorporating the error dynamics ( )e t  from Eq. 5.22 into Eq. 5.33, it yields 
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(Eq 5.34) 
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Applying Lipschitz condition provided in Eq. 5.9, it depicts 
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(Eq 5.35) 

where 
cA  is defined as  

0 0 0 0cA A IB K     . 
 

It can be rearranged by applying some algebra rules, as under 
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 (Eq 5.37) 

and 
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  (Eq 5.38) 

Rearranging it 

*2 *2

1 1 2 2 1

* *

1 2 1 7 1 5 1 6 2 1

2 2 1 2 2 1 3 3 1 2 3 1 1 3

*

3 4 4 3 4 3 4 5 1 5 2 5 5 6

( )[( ) ( )

( ) ( )

(1 ) ( 3 ) 2 2 (2 )

( )

T T T T

c c

T T T T T T

T T T T

T T T T T T

t A MA A P PA H H Z S

PB K P S S B K P

H Z Z Z Z H

Q Q H S Z S S

  

 







       

             

             

             

 *

6 1 6 5 6 2 6 7 1(2 ) ] ( )T T T TS S Z S P t          

 (Eq 5.39) 
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  (Eq 5.40) 

Eq. 5.39 and Eq. 5.40 can be rearranged in the LMI format as below 
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(Eq 5.41)
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(Eq 5.42) 

 

To ensure the asymptotic stability, following condition is essential to be true 

( ) 0tV e  , or  ˆ(1 ) 0     , 0 1  ,  

0   and ˆ 0  .  

Applying the Schur complement provided in the Lemma 2, on Eq. 5.41 and Eq. 5.42, 

the LMIs of Eq. 5.23 and Eq. 5.24 can be obtained. This completes the proof of 

Theorem 5.1.        □ 
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Synchronization of nonlinear time-delay master and slave systems described in Eq. 

5.1 and Eq. 5.2, respectively, can be accomplished using Theorem 5.1. To attain the 

desired results by implying Theorem 5.1, information of the controller gain may be 

known prior or selected arbitrarily. However, this is not the case for all the time that 

controller information is readily available. Theorem 5.2 provided herein has 

advantage of computing the value of unknown controller gain to achieve the 

synchronization of nonlinear time-delay systems.      

5.5 Theorem 5.2 

Let the master system described in Eq. 5.1 and the slave system in Eq. 5.2 satisfy the 

assumptions provided in Eq. 5.8, Eq. 5.9, input delay bounds of Eq. 5.6, and delay 

derivative bound provided in Eq. 5.7 along with * 0  .  Suppose there exist 

symmetric matrices 0X  , 0S  , 0Q  , 0iH  , 0jZ 
 
and a matrix G  of 

appropriate dimensions, for 1,2,3,i   and 1,2j  , such that the sets of linear matrix 

inequalities are satisfied 
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(Eq  5.43) 
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(Eq  5.44) 
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*

*

12

*

0

0

0 00

0 0 0

0 0 0

0 0

0

0

0 0

0

T T T T

T T T T T T T T T

X

G

X X

I

A A A X

G B

I

B G B

I

 

 

 

 
 
 
 
 

   
 
 
 
 
 



    

,  

322

1 1 1

1( , ),,H Zdiag XX X X IXS     ,
 
and 

11

3

* *

11

12

1

2

2

2

1

ˆ

*

* * 0

* * * 0

* * * *

* * * *

0 0

0 0 0 0

* 0

0 0

0 0

2 0

* * * * * *

Z

I

Z H Q

H

Z S

Z S

I

B G S S

S

  
 
 
 
 

   
 
 
 
 
 

 

 



 

 









, 

where  

*2 *2

11 1 2 2

T H H Z SAX XA        , 

22 1 23 (1 )Z H    . 

Then there exists a reliable state-feedback controller of Eq. 5.21 that guarantees 

asymptotic synchronization of the master and the slave systems under input delay and 

slope-restricted input nonlinearity. The controller gain matrix can be computed by 

solving 1K GX  . 

5.5.1  Proof of Theorem 5.2 

To provide the proof of Theorem 5.2, explicit mathematical treatment is integrated on 

the inequalities established in Theorem 5.1. Pre-and post-multiplication of

1 2 3( , , )diag    , to the inequalities obtained in Eq. 5.23 and Eq. 5.24, where  

1 1 1 1 1 1

1 ( , , , , , )diag P P P P P P       ,
 

2 ( )diag I  , 
 

1 1 1

3 3 1( , , )diag H Z S    ,
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and also applying the mathematical identity 1 1P P PP I   , we obtain following 

set of  LMIs, 

1211

22*

 
   

 






,

 

 ,

 

(Eq  5.45) 

11 21

22

ˆ
ˆ

*

 
   

 








,

 

 ,

 

(Eq  5.46) 

where 

1 * 1 1 * 1 1

1 1

1 1

11

33

1 1
11

1 1

3

66

1

55

22 2*

* * 0

* * * 0

* * * *

* * * * * 0

0

* * *

0

0 0 0 0

0 0

0

*

0

0

* *

Z

B KP P SP P SP

P P

P P

P P

P

I

Q

H

S

I

P

     

 

 

 

 

 
 
 
 
 

   
 
 
 
 
 

 





 









, 

1 * 1 1

1 * 1 1

12

*

0 0

0 0 0

0

0

0 0

0 0 0

T T T

E

I

P P P

P P P EE

I

A A A

I

 

 

 

  

  

 
 
 
 
 

   
 
 
 
 
 

 

,

 

 

1 1 1 1 1 1

2 32

1 1 1

1( , , )diag P P PP P P PH Z SP P P PP       ,
 
and 

1 * 1 1 * 1 1

1 1

1 1

1

1 1

1

33

311

1 1

66

1

5

22

5

ˆ

*

* * 0

* * * 0

* *

0 0

0 0 0 0

ˆ 0 0

0 0

ˆ* *

* * * * * 0

* * * * * *

0

ˆ

Z

B KP P SP P SP

P P

P P

P P

P

I

Q

H

I

PS

     

 

 

 

 

 
 
 
 
 
  
 
 
 
 
 
 

 





 









. 

Elements of the matrices are as 
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1 1 *2 1 1 1 1

11 2 1

1 1 *2 1 1 1 1

2     ,

T

T

Z H

H S

AP P A P P P P

P P P P P P





     

     

  

    

 
 

1 1 1 1

22 1 23 (1 )Z HP P P P       , 

1 1 1 1

33 1 12 Z HP P P P      , 

1 1 1 1

55 2Z SP P P P      , 

1 1 1 1

66 22 Z SP P P P      , 

1 1 1 1

33 1 1
ˆ Z HP P P P      , 

1 1 1 1

55 22ˆ Z SP P P P      , 

1 1 1 1

66 2
ˆ Z SP P P P      .

 

Now applying the change of variable transformations to simplify the matrix inequality 

terms given by 1P X  , 1 1Q P QP  , 1 1

i iH P H P  , 1 1

j jZ P Z P  , and 

1 1S P SP  , it reveals 

11 12

22*

 
   

 

 


,  ,

 

(Eq  5.47) 

11 12

22

ˆ
*

ˆ 
   

  

 


,  ,

 

(Eq  5.48) 

where 

1

* *

11

1

3

22 1

1 1

2

2

2*

* * 0

* * * 0

0 0

0 0 0 0

2 0 0

0 0

0* * * *

* * * * * 0

* * *

2

* * *

Z

I

Z H Q

H

Z S

B KX S S

S

Z S

I

  
 
 
 
 

   
 
 
 
 
 

 

 



  

 







, 
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*

*

12

*

0 0

0 0 0

0 0 0

0 0 0

0

T T T

T T T T T T T T T

X

X

I

X X

K B K B XK B

I

A A A

X

I

 

 

 

 
 
 
 
 

   
 
 
 
 
 

    

, 

1 1 1

3 122 ( , , )H Xdi Z Xag X SX XX     , and 

1

* *

11

1

3

22 1

1 1

2

2

ˆ

*

* * 0

* * * 0

*

0 0

0 0 0 0

0 0

0 0

2 0* * *

* * * * * 0

* * * * * *

Z

I

Z

B KX S S

H Q

H

Z S

Z S

S

I

  
 
 
 
 

   
 
 
 
 
 

 

 



 

 









, 

for  

*2 *2

11 1 2 2

T TH H Z S X XAX XA           . 

Now incorporating G KX  and applying schur complement provided in Lemma on 

Eq. 5.47 and Eq. 5.48, the LMIs of Eq. 5.43 and Eq. 5.44 can be obtained, it 

completes the proof of Theorem 5.2. 

It is seen that Theorem 5.1 provides the delay-dependent synchronization scheme for 

nonlinear time-delay systems, if the information of the controller is known. Now the 

controller gain matrix can be computed by solving the set of LMIs derived in 

Theorem 5.2 and then by solving 1K GX  . The synchronization scheme 

accomplished in Theorem 5.2 is more effective and pragmatic compared to the 

synchronization criterion provided in Theorem 5.1. Using the controller gain 

computed through Theorem 5.2 synchronization of the master and the slave systems 

subject to the unknown slope-restricted input nonlinearity can be achieved quite 

comfortably.  

Delay-dependent synchronization scheme under slope-restricted input nonlinearity 

owing to the input delay is innovative and effective then existing synchronization 
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techniques [23], [55], [63]-[66]. The LPV-approach is employed to transform the 

complex input nonlinearities into LPV-realization, which provides the advantage of 

uncomplicated and straightforward controller design compared to the existing 

complex controller design techniques like adaptive controller design strategies [59], 

[61], [71], [73], [80]. The delay-dependent synchronization methodology developed 

herein allows the design of simple state-feedback control law, by relaxing the 

adaptive terms in the presence of additional constraints like input nonlinearity and 

input delay.  

5.6 Simulation Results 

To demonstrate the effectiveness of the proposed synchronization criteria, a numerical 

example for synchronization of gyros systems is provided. Gyro systems are selected 

due to their applications in the field of aerospace engineering. In literature, 

synchronization of gyro systems is discussed using different control techniques, such 

as adaptive terminal sliding mode, PID control approach, adaptive fuzzy control 

scheme  [23-25], [53-55]. But synchronization of chaotic gyro systems subject to 

time-delay and slope-restricted input nonlinearity is lacking in the literature. 

Gyro system is represented by its motion equation (see [53-54]) as under  

2
3 2

1 2 3

(1 cos )
sin sin sin

sin
C C f t


       




      ,  (Eq 5.49) 

where sin sinf t   represents the parametric excitation,
 1C  and 

3

2C   are the 

linear and nonlinear terms, respectively. Nonlinear part of the gyro system is 

represented by 
2

2

3

(1 cos )
sin

sin


  




 . To derive the normalized state equations, let 

us incorporate 
1x   and 1y  , the dynamical equation of gyro transformed as  

1 1x y ,                         (Eq 5.50) 

2
3 2 1

1 1 1 2 1 1 13

1

(1 cos )
sin sin sin

sin

x
y C y C y x f t x

x
  


      . (Eq 5.51) 

By selecting the values of different parameter 
1 0.5C  , 

2 0.05C  , 10  , 
max 0l 

35.5f    and 2  , the gyro system can be represented for Eq. 5.1 and Eq. 5.2 with
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 2

1

3

1

0

( ) (1 cos )
0.05 100 (1 35.5sin 2 )

sin

f x x
t

x

 
 

     
  

,                   (Eq 5.52) 

 

where ( )f x  represents the nonlinear part. Nonlinearities in master and slave systems 

are considered to be similar, so ( )f x   is representing the ( ( ))mf x t  and ( ( ))sf x t . 

Robust control toolbox of MATLAB is used to solve the linear matrix inequalities 

(LMIs) derived in Theorems 5.1 and 5.2. To ensure the feasibility of designed LMIs, 

known linear matrices for the master and slave systems A

 

and

 

B  are selected as 

below 

 

0 2

0 0.8
A

 
  

 
,                  (Eq 5.53) 

 
0

1.1
B

 
  
 

.                (Eq 5.54) 

Other parameters like information of time-delay, Lipschitz constant and LPV 

constraints are selected as follows 

Time-delay ( * ) = 0.35, 

Time-delay ( ) = 0.04, 

Lipschitz constant ( ) = 0.3, 

Derivative of time-delay ( ) = 0.15, 

Lower bound of LPV parameter (
mL ) = 0.9, 

Upper bound of LPV parameter (
ML ) = 1.1. 

In this numerical example, input nonlinearities with time-delay 

0.1 0.01sin(0.01 )t t   is incorporated and by applying the conditions derived in 

Theorem 5.2, controller gain matrix K  and matrix P
 
are computed as below:  

 0.985 1.264K  ,
 
 (Eq 5.55) 

0.2867 0.2021

0.2021 0.4443
P

 
  
 

. (Eq 5.56) 
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To observe the behavior of chaotic master and slave gyro systems, MATLAB solver 

ddex23 is used for simulating of time-delay differential equations with time-varying 

initial conditions as: 

(0)= 0.4 0.4sin(0.1 ), 

(1)= 2 0.02sin(0.1 ), 

(0) 0.4 0.04sin(0.1 ),

(1) 2 0.02sin(0.1 ).

x t

x t

y t

y t



 

  

 

                    (Eq 5.57) 

Figure 5.2 shows phase portrait of the master-slave gyro systems without controller.  

 

(a) 

 

(b) 

Figure 5.2:  Phase portrait of the gyro systems without controller, (a) master system, (b) slave system. 
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Figure 5.3 shows the synchronization error response between two states of master and 

slave gyro systems without controller, where 
1 1 1( ) ( ) ( )m se t x t x t 

 
in solid line is the 

error between first state of the master and slave system and 
2 2 2( ) ( ) ( )m se t x t x t   in 

dotted line is the error between second state of the master and slave systems, 

respectively. When no control signal is applied, plots show there is no 

synchronization between master and slave systems. In the Figure 5.3, oscillation and 

irregularities appear in both error states reflecting unsynchronized behavior by 

showing that error dynamics are not converging to the origin. 

 

Figure 5.3: Synchronization errors 
1e  and 

2e
 
without controller 

Figure 5.4 shows the phase portrait of the master and slave gyro systems, when 

control signal is applied for the synchronization. Phase portrait of the slave system in 

Figure 5.4(b) is following the trajectory of the master system of Figure 5.4(a), that 

shows the synchronized behavior among master and slave systems in the presence of 

proposed state-feedback control law. Figure 5.5 shows synchronization error plots 

between two states of master and slave systems, where 
1( )e t

 
in solid line and 

2 ( )e t  in 

dotted line. It shows that error converges to zero and in small amount of time 

synchronization between master and slave systems is established. 
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(a) 

 

(b) 

Figure 5.4:  Phase portrait of the gyro systems with controller, (a) master system, (b) slave system. 
 

 
Figure 5.5: Synchronization errors 

1( )e t  and 
2 ( )e t

 
with controller. 
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5.7 Summary 

In this chapter, synchronization problem for response and drive systems subject to 

time-varying input delay and slope-restricted input nonlinearity is investigated. To 

attain the delay-dependent synchronization between the master and the slave systems, 

Lyapunov stability theory for time-delay systems is exploited. An advance LPV 

approach is inferred to transform complex input nonlinearity into simple LPV 

realization, which is helpful to derive sufficient conditions for synchronization of such 

nonlinearities. Different tools and techniques are implied like Schur complement, 

delay-dependent stability criteria, Jensen’s inequality, delay derivative bounds and 

linear parameter varying approach. A triple integral based Lyapunov-Krasovskii 

functional is constructed for nonlinear time-delay systems and an advance LMI-based 

synchronization methodology is developed.  

LMI-based approach for synchronization under the constraints like time-delay and 

slope-restricted input nonlinearity is provided by designing a simple state-feedback 

control law that ensures the asymptotic convergence of synchronization error to the 

origin. Proposed control law is uncomplicated in design and straight forward for 

implementation compared to existing techniques like adaptive control and sliding 

mode techniques. The proposed technique is also capable of handling dynamics with 

time-varying input delay. Moreover proposed scheme is useful for both small and 

large interval of input delay. Time-varying input delay is treated using LPV approach 

and advanced delay-dependent technique is provided. 

Proposed technique for synchronization of nonlinear master and slave systems is 

simple, reliable and less conservative. In future, it can be extended for state delay, 

output delay and to handle the saturation in nonlinear systems. In the end, a numerical 

example of gyro systems is illustrated to show the effectiveness of proposed 

synchronization technique.  
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Chapter 6 

DELAY-RANGE-DEPENDENT 

SYNCHRONIZATION 

6.1 Overview 

In Chapter 5, a delay-dependent synchronization criterion was proposed for nonlinear 

time-delay systems considering the slope-restricted input nonlinearities and input 

time-delay. A simple state-feedback control law was design for convergence of the 

error to the origin and attains the asymptotic synchronization of time-delay nonlinear 

systems.  

In this chapter, a less conservative delay-range-dependent synchronization scheme for 

small and large input delay intervals is derived. A triple integral based Lyapunov-

Krasovskii (LK) functional is constructed to derive the sufficient conditions for 

synchronization of nonlinear time-delay systems. Input time-delay nonlinearity is 

transformed into an equivalent LPV-realization that leads to design a simple state 

feedback control law. Then Jensen’s inequality and rigorous algebraic manipulation 

are incorporated to derive a set of LMIs to compute a controller gain for 

synchronization. Couples of Theorems are derived to provide the synchronization 

conditions by assuming the value of controller gain matrix in first Theorem, whereas 

second Theorem provides the advantage of computing the controller gain matrix 

according to the varying time-delay. To deal with complex nonlinear terms, cone 

complementary linearization is provided that can simplify these nonlinear identities 

and provides simple solution. In the end, a numerical simulation is illustrated to show 

the effectiveness of proposed synchronization scheme. 

A simple state-feedback controller based delay-range-dependent synchronization of 

nonlinear master and slave systems, is proposed by utilizing the LPV approach. 

Conventional techniques for synchronization of nonlinear systems implied adaptive 

control, but demonstrating of controller gain is computationally complex, under the 

constraints of time-varying delay. Here LPV approach is adopted to handle the input 
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nonlinearity and input varying time-delay by transforming these nonlinearities into a 

LPV realization. LPV approach provides the advantage of dealing with input 

nonlinearities and provides a simple controller design by relaxing the adaptive terms, 

compared to the existing works on synchronization of nonlinear time-delay systems 

under input slope-restricted nonlinearity. 

These days, investigation of the problem of synchronization of nonlinear time-delay 

systems is popular among the research communities of different disciplines due to its 

numerous applications in the field of engineering and sciences. The common 

applications include synchronization of micro-grid systems, biomedical systems, 

chemical processes and synchronization of multiple robots [16-40]. A meaningful 

research is devoted to address the synchronization of nonlinear systems under 

different constraints like disturbance, time-delay, uncertainties, saturation and dead 

zone etc. [5-7], [9], [11], [15], [21], [23], [25], [56-66], [77]. These parameters are 

source of instability and degradation of performance of nonlinear systems. Therefore, 

different strategies such as PID control [24], sliding mode control [6], [12], adaptive 

control [1], [4], [5], observer-based methodology [9]-[11] and linear feedback 

controller [7], [8], [22], [57] are developed to address the problem of synchronization 

subject to different parameters. However, still challenging tasks are available for 

researcher to investigate and propose the solutions to improve the performance of the 

nonlinear systems. 

Synchronization of time-delay nonlinear systems is considered by different authors 

[56-60], by inferring the various control strategies such as delay-dependent, delay-

independent and delay-range-dependent. Incorporation of slope-restricted 

nonlinearities is important in studying synchronization controller synthesis for 

nonlinear systems under uncertain inputs [23], [55], [62]-[66]. Sliding mode control 

strategies for nonlinear gyroscopes and unified second order complex oscillatory 

systems with input nonlinearities are explored in [23] and [55]. In [62]-[63], adaptive 

control and H∞ control strategies for achieving coherent behavior of two uncertain 

systems under unknown dynamics and perturbations are formulated. Some advanced 

studies concerning robust, sliding mode and adaptive controller design for 

synchronization of general forms of two different nonlinear or chaotic systems under 

uncertainties and perturbations have been taken into account in [64]-[66]. However to 
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the best of our knowledge, feedback based controller design strategy of delay-range-

dependent synchronization of nonlinear master and slave systems under the 

constraints of input time-delay and slope-restricted input nonlinearities has not been 

reported so far in the literature.  

This Chapter is organized as follows; the next Section is comprised of dynamics of 

the nonlinear master and slave systems along with necessary assumptions and 

Lemmas. Section 3 is about the controller design. Theorem 6.1 having set of LMIs is 

derived in Section 4 and Theorem 6.2 along with its proof is provided in Section 5. 

Cone complementary linearization is discussed in Section 6 and in the end a 

numerical example of gyro systems is provided.  

6.2 Systems Description and Preliminaries 

Delay-range-dependent synchronization of nonlinear master and slave systems with 

input delay and slope-restricted input nonlinearity is considered in this Chapter. 

Dynamics of the master and slave systems are similar as considered in previous 

Chapter, whereas a less conservative delay-range-dependent technique is provided 

rather than delay-dependent technique. Master and slave systems are described as: 

( ) ( ( ), )( ) mm mAx t f xx t tt   , (Eq 6.1) 

( ) ( ( ), ) ( ( ( ))) )(s s sAx t f x t t B u t tx t      , (Eq 6.2) 

where n

mx R  and
 

n

sx R
 
represents the states of the master and slave systems, 

respectively. n nA R   and n pB R   represents the linear matrix with known constant 

entries and similar in both master and slave systems. Vectors ( ( ), ) n

mf x t t R  and 

( ( ), ) n

sf x t t R
 
represent time-varying continuous nonlinearities in master system 

and slave system, respectively. pu R  denotes the control input and ( ) pu R 
 

represents the continuous time slope-restricted input nonlinearity. ( )t  
denotes the 

time-varying input delay, which is differentiate-able function with respect to time. It 

is assumed that time-varying delay satisfy the following inequality 

1 20 ( )t       (Eq 6.3) 

and condition posed on delay derivative as 
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( )t  .   (Eq 6.4) 

The condition provided in Eq. 6.3 reflects the delay is varying in specific range and 

condition of Eq. 6.4 described the delay derivative bound. 

Objectives of the study are to design an appropriate control law that provides 

synchronized behavior among the states of the master and slave systems by 

converging the synchronization error to a sphere. To resolve the synchronization 

dilemma, let us define the difference between the master system and slave system as 

an error  ( ) ( ) ( )m se t x t x t   and taking its time-derivative, it reveals 

( ) ( ) ( )m se t x t x t  . (Eq 6.5) 

Now incorporating the values of ( )mx t
 
and

 
( )sx t

 
in Eq. 6.5, error dynamics is depicts  

( ) ( ) ( ( ), ( ),) ( ( ( ))) ( ) ( )m s m se t Ax t Ax t B u t t tt tf x x tf       . (Eq 6.6) 

Incorporating the error definition ( ) ( ) ( )m se t x t x t  , it yields 

( ) ( ) ( ( ( )) ( ), ( ),) ( ) ( )m se t Ae t B u t t f x t t tf x t      . (Eq 6.7) 

To further simplify the error dynamics of Eq. 6.7, difference of nonlinearities of 

master and slave systems can be written as , ( ), (( ) ( ) ),( )m s m st tx x f x tf tx   . It 

gives 

( ) ( ) ( ( ( ))) ( , )m se t Ae t B u t t x x     . (Eq 6.8) 

Input time-delay and slope-restricted input nonlinearity is considered in dynamical 

systems described in Eq. 6.1 and Eq. 6.2.  There are few research works and control 

techniques developed for synchronization of nonlinear systems under slope-restricted 

input nonlinearity [5]-[6], [63-66], however input time-delay is not considered in 

traditional research. Input time-delays are unavoidable in most of the physical 

systems. For example an actuator in real-time system may be placed far away from 

the system which causes to produce the input time-delay in the systems dynamics. So, 

ignoring the input time-delay in dynamics of such nonlinear systems may lead to non-

coherent behavior as well as cause the performance degradation of overall closed-loop 

system.  
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6.2.1 Assumptions 

To attain the sufficient conditions for synchronization of nonlinear time-delay systems 

and simplifying the problem, following assumptions for input nonlinearity and 

nonlinear function are described. 

3. It is assumed that input nonlinearity ( )u  is a continuous function, which satisfies 

the following mathematical condition 

( ) ( ) ( )m Ml u t u l u t  ,  (Eq 6.9) 

      where 
,1 ,2 ,( , , , ) 0M M M M pl diag l l l   and 

,1 ,2 ,( , , , ) 0m m m m pl diag l l l  . 

4. Nonlinearities ( ( ), )f x t t  in master and slave systems are assumed to be Lipschitz 

and of continuous  nature, validating the following mathematical inequality called 

Lipschitz condition 

     ( ( ), ) ( ( ), ) ( ) ( )m s m sf x t t f x t t x t x t   , (Eq 6.10) 

where 0  is the Lipschitz constant, for all ,m s

nx x R , and   represents the 

Euclidian norm.  

Detailed derivation of assumption provided in Eq. 6.9 can be seen from [68-69]. The 

assumptions can be used to provide a road map for controller design for 

synchronization of nonlinear system subject to input nonlinearity. 

6.2.2 Lemmas 

Following two Lemmas are provided, helpful to derive the main Theorems. 

1. For a constant matrix 0TZ Z   and scalars 
2 1 0   , the following 

inequality holds: 

1 1 1

2 2 2
12 ( ) ( ) ( ) ( )

t t t
T T

t t t
e Ze d e d Z e d

  

  
       

  

  
     , (Eq 6.11) 

where  
12 2 1    , given that the concerned integral terms are well-defined ([117]-

[118]). In a similar fashion, we can write the integral inequality for 2 2

2 10.5( )   
 

as 
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1 1 1

2 2 2

( ) ( ) ( ) ( ) .
t t t

T T

t t t
e Ze d d e d d Z e d d

  

     
          

  

     
         (Eq 6.12) 

3. For a given matrix 

 
11 12

12 22

T


 

 

 
  
 

, (Eq 6.13)

 

if 11 11

T   and 11 11

T  , the following conditions are equivalent (see, for 

instance, [121]):  

 (a) 0   ,  

 (b) 
22 0  ,

 
and 1

11 12 22 12 0T     . 

The key idea is to develop a novel synchronization scheme for given master system of 

Eq. 6.1 and slave system of Eq. 6.2, subject to slope-restricted input nonlinearity and 

under the constraints of input time-delay. Coherent behavior between master and 

slave systems can be accomplished by choosing a suitable controller ( )u t  that ensures 

the convergence of error dynamics as  lim ( ) 0
t

e t


 .  

6.3 Controller Design 

The function ( ( ( )))u t t   can be represented as an LPV function. LPV approach is 

discussed in detail earlier Chapter under sub section 6.2. By applying the same LPV 

realization, input nonlinearity ( ( ( )))u t t   is obtained as below  

( ( ( ))) ( ) ( ( ))u t t t u t t     ,      ( )m Ml t l  . (Eq 6.14) 

The time-varying diagonal matrix function ( )t  belongs to the set 

  , ,: 0, , ,p p

ij ii m ii MR i lj l       . (Eq 6.15) 

The input nonlinearity ( ( ( )))u t t 
 
has been transformed into an equivalent LPV 

realization. By virtue of LPV technique the error dynamics of Eq. 6.8 can be rewritten 

into an equivalent LPV representation as 

( ) ( ) ,( ( )) ( )m se t Ae t B u t t x x     ,  . (Eq 6.16) 



 

                                                                                                                              108 

                                                                                                                                      

 

 

LPV approach [69-70], is useful to handle the input nonlinearity ( ( ( )))u t t  ,  and 

also it provides the advantage of simple controller design by relaxing the adaptive 

terms in the presence of additional constraints like input time-delay and slope-

restricted input nonlinearity. 

Defining an argument vector as  



1

1 2

1 2 1 2

( )

( )

( ) ( ), ( ( )), ( ), ( ), ( ), ( ),

          ( ) , ( ) , ( ) , ( , ) .
t t t t

m s
t t t t

t col e t e t t e t e t e t e t

e d e d e d x x
 

  

    

     
 

  

     

  
 (Eq 6.17) 

Let ( 1,2,3,...,10)i i   characterizes a matrix by swapping its ith term of 10n n  

zero matrix along with an identity matrix, for example, to represent the fifth entry in 

argument matrix form,
  5 0 0 0 0 0 0 0 0 0T I  . Argument matrix 

( )t  contains ten elements and to represent the different entries of argument matrix, 

( 1,2,3,...,10)i i   can be used. For example fifth entry of this argument matrix is 

15 (( )) ( )e t tt   . A simple state feedback control law is proposed to attain the 

synchronization of nonlinear systems. Dynamics of the proposed state feedback 

control law is given by 

( ) ( )u t Ke t ,  (Eq 6.18) 

where p nK R   represents a feedback controller gain matrix with constant entries, 

which can be computed by LMI based technique. Now by incorporating the control 

law into Eq 6.16, it gives 

( ) ( ) ( ( )) ( ),m se t Ae t B Ke t t x x     ,  . (Eq 6.19) 

Following theorems are derived by virtue of proposed state feedback control law,
 

( ) ( )u t Ke t , that guarantee the convergence of synchronization error ( )e t  to the 

origin. 

6.4 Theorem 6.1 

Let the master system and the slave system, described in Eq. 6.1 and Eq. 6.2, 

respectively, satisfy the assumptions provided in Eq. 6.9, Eq. 6.10, input delay range 

bounds provided in Eq. 6.3 and delay derivative bound of Eq. 6.4. Suppose there exist 

symmetric matrices 0P  , 0iS  , 0iQ  , 0jH 
 

and 0kZ 
 

of appropriate 
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dimensions, for 1,2,i   1,2,3,4,5j  , and 1,2,3,4k  , such that the following sets 

of LMIs holds 

11 12

22

0
*

 
   

 


, , (Eq 6.20) 

11 12

22

ˆ 0
*

ˆ 
   

  


, , (Eq 6.21) 

for a given matrix p nK R  ,  

where 

11

33

44

88

9

1

9

1

2

5

1 1 1 12

5

2 12 2

22 2

1

2

5

7

2

7

,

* 2

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

* * * * * * 0 0

* * * * * *

0 0 0

0 0 0 0 0 0

0 0

0 0

0 0 0

0

0

0*

* * * * 0

* * * * * * * * *

* * * *

Z

B K Z S S S

Z

Q

Q

H

S

P P

I

   
 
 
 
 
 
 

   
 
 
 
 
 
 
 











 















 

2

1
4 1 1 12 2 1 2

2

1

12

4 1 1 12 2 1 2

2

1
4 1 1 12 2 1 2

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T T T T TH A Z A Z A S A S

H Z Z S S

Z Z S S

A

H







  

  

  

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  

       

, 

22 4 1 2 1 2( , , , , )diag H Z Z S S   , and 
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11

33

44

55

11

77

88

99

1 1 1 12 2 12 2

22 2

1

2

2

5

2

ˆ ,

0 0 0

2 0 0 0 0 0 0

ˆ 0 0

ˆ 0 0

0

*

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

* * * * *

0 0

0

0

ˆ 0

ˆ 0

* *

* 0 0

* * * * * * *

* *

* * * *

* * *

*

*

*

*

*

*

B K Z S S S

Z

Q

Q

H

I

S

P P

Z

  



 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
  





 

















 

1 2

44

2 2 2 2

11 1 1 3 12 4 1 1 1 12 2

22 2 3

33 1 2 3

2 2

4 5

1 3

88 4 2

99 4 2

55

77

,

3 (1 ) ,

,

2 ,

,

,

,

2 ,

,

T T

T T T

H Z Z Z S S A P PA

Z H

H H H

Z H

H H

S Z

Z S

Z S

K B

Z Z

   



          

    

   

 

 

 

   

  

  



  

 

 

 

  

33 1 2 3

2 2

88 4

1 2

99 4

4

2

4

2

2 ,

2

ˆ

ˆ

,

ˆ ,

ˆ

Z H H H

Z H

Z S

Z S

Z   

 

   

 

  









 

and * is used for the symmetric terms of matrix inequalities. Then, provided state 

feedback controller of Eq. 6.18 ensures the asymptotic synchronization of the master 

and the slave systems under input delay and slope-restricted input nonlinearity. 

6.4.1 Proof of Theorem 6.1 

A triple integral based positive-definite Lyapunov-Krasovskii functional is 

constructed, to provide the proof of Theorem 6.1, given by 
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1 1

1 2

1

1 2

1

1 1 1 2 2 2

1 2 3
( )

4 5

0

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

T T T

t

t t t
T T T

t t t t

t t
T T

t t

t
T

t

V e e t Pe t e t Q e t e t Q e t

e H e d e H e d e H

e d e H e d e H e d

e Z e d d

 

  



 

 

   

      

       

     

 

  



 

 

      

  

  

 

  

 

 
1

2

1 2

1

1

2

1

12 2

0

1 3 12 4

2
0 0

1
1

0

2

( ) ( )

( ) ( ) ( )

( )

( ) ( )

( )

( )
2

.
t

T

t

t
T

t

t t
T T

t t

t
T

t

e Z e d d

e Z e d d e Z e d d

S e d d de

e S e d d d



 



   

  



  

   



   

         



 



 



 



   





 



 



 

 

   

  



             
(Eq6.22) 

Taking the time derivative of Eq.6.22, we obtain 

1 1 1 1 1

1 2 2 2 2 2 2

1 1 1 1 1 2 1 2

2 2 1 3 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (1 )

T T T T

t

T T T

T T T

T

V e e t Pe t e t Pe t e t Q e t e t Q

e t e t Q e t e t Q e t e t

H e t e t H e t e t H e t e t

H e t e t H e t

  

    

    

   

      

        

        

      

1

1

2

3

4 1 4 1 1 5 1

2

2 5 2 1 1 1 1

2 2

12 2 12 2 1 3

1

( ( )) ( ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

T T T

t
T T T

t

t
T T T

t

e t t H e t t

e t H e t e t H e t e t H e t

e t H e t e t Z e t e Z e d

e t Z e t e Z e d e t Z e t







 

   

      
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







 

      

    
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





1

1
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1

2

1

2

3 12 4

2

12 4
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1
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1
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T T T
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t
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t
T T

t

e Z e d e t Z e t e Z e d

e t S e t e S e d d

e t S e t e S e d d



 

 

 



       

 
   

   



 

 

 

 

 

 
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 

 

 (Eq 6.23) 

To simplify, let us define 

4
2 2 1

4 1 1 12 2 1 2

2ˆ
4

M H Z Z S S


      . (Eq 6.24) 

Now incorporating the Eq. 6.24 and also using time-delay derivative bound ( )t  , 

Eq. 6.23 reveals
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 (Eq 6.25)

 

Now by applying the Jensen’s inequality defined in Lemma 1, following inequalities 

can be obtained. 
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For further simplification, we have 
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 (Eq 6.30)

 

By defining the inequalities 
12 2( ( ))d t      and 

12 1( ( ) )d t   
 
and further, 

assigning 
1 12( ( ) ) /d t     give 
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 (Eq 6.31) 
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Now incorporating the inequalities provided in Eq 6.26 to Eq. 6.32 into Eq. 6.25 and 

further simplification give
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 (Eq 6.33)

 Let us introduce the error dynamics ( ) ( ) ( ( )) ( ),m se t Ae t B Ke t t x x     , it 

yields
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 (Eq 6.34)

 

For further simplification, we define 

ˆ 0 0 0 0 0 0 0cA IKA B     . (Eq 6.35)

 

Using the definition of Eq. 6.35 and applying the Lipschitz condition described in 

Assumption 2, we have 
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 Eq. 6.36 can be rearranged as below 
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  (Eq 6.37) 

Eq. 6.37 can be rewritten in simple form as  
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To ensure the asymptotic stability, following mathematical condition is required to be 

true 

 ( ) 0tV e  ,  or  ˆ(1 ) 0     , for 0 1  ,  

0  ,  and ˆ 0  .  

By implementation of Schur complement provided in Lemma 2 to Eq. 6.38, the set of 

LMIs of Eq. 6.21 and Eq. 6.22 can be obtained. 

 
Theorem 6.1 is applicable for the synchronization of the master and slave systems 

defined in Eq. 6.1 and Eq. 6.2, if the controller values are known prior or through 

selection of suitable controller gain matrix according to the other parameters. 

Selection of controller gain matrix also depends on the upper and lower limit of input 

time-delay, which makes it difficult to select the appropriate values for controller. 

However, a good approach is to compute the value of controller gain matrix, by 

solving the set of LMIs according to the rest of the variables of the system. To make 

the synchronization scheme more general controller gain matrix is determined in 

Theorem 6.2 to obtain the synchronize behavior between master and slave systems.  

6.5 Theorem 6.2 

Let the master system and the slave system, described in Eq. 6.1 and Eq. 6.2, 

respectively, satisfy the assumptions provided in Eq. 6.9, Eq. 6.10, and also satisfy the 

input delay bound provided in Eq. 6.3 along with delay derivative bound of Eq. 6.4. 

Suppose there exist symmetric matrices 0X  , 0iQ  , 0jH  , 0kZ  , 0iS 
 
and 

a matrix G  of suitable dimensions, for 1,2,i   1,2,3,4,5j  , and 1,2,3,4k  , such 

that the sets of following matrix inequalities holds: 
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* * * * * * 0 0

* * * * * * *

* * * *

0 0 0

0 0 0 0 0 0

0 0

0 0

0 0 0

0

0

0

0

* * * * * *

* * *

* * *

*

B G Z S S S

Z Z

Q

Q

H

I

I

S

   
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 



























, 

2

1
1 12

2

1
1 1

12

2

51 2 3 4

2

2

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

T T T T T TXA XA XA XA

I I I I

XA X

I





  

  

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  



    

, 

1 1 1 1 1

4 1 22 12 1 2( , , ,, , )XH X XZ X XZ X XS X XSdiag X I       , and 
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11

33

44

55

77

8

1

8

1

99

1 1 1 12 2 12 2

22 2 2

1

2

5

2

ˆ

0 0 0

0 0 0 0 0 0

ˆ 0 0

ˆ 0 0

0 0

* 2

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

* * *

0

0

0

ˆ 0

ˆ 0

*

* * * 0 0

* *

*

* * * * *

* * * * *

* * * *

* *

* *

*

*

B G Z S S S

Z Z

Q

Q

H

S

I

I

  



 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 















 





,

 

2 2 2 2

11 1 1 1 3 12 4 1 1 12 2 ,TH Z Z Z S S XA AX           

 

22 3 2(1 ) 3 ,H Z      

33 1 2 3 1 2 ,H H H Z Z       

2 244 2 ,H Z    

455 5 ,H H    

377 1,Z S    

88 4 2 ,Z S     

99 4 22 ,Z S   

 

1 ,T T TG B  

  2 1 ,T T TG B    

3 12 ,T T TG B   

2

1
4

2
,T T TBG


    

5 ,T T TG B  

 33 1 2 3 1 2
ˆ 2 ,H H H Z Z     

 
2 244

ˆ ,H Z   

88 4 2
ˆ 2 ,Z S     and 

99 4 2
ˆ .Z S   
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If set of LMIs hold, then synchronization of the master and the slave systems under 

input delay and slope-restricted input nonlinearity can be ensure by application of 

proposed state feedback control law. Theorem 6.2 provides the advantage to compute 

the controller gain matrix by solving 1K GX  . 

6.5.1 Proof of Theorem 6.2 

Pre and post multiplication of the matrix 
1 2 3( , , )diag     to the inequalities obtained: 

in Eq. 6.20 and Eq. 6.21, where  

1 1 1 1 1 1 1 1 1

1 ( , , , , , , , , )diag P P P P P P P P P          ,
 

2 ( )diag I  ,
 

1 1 1 1 1

3 4 1 2 1 2( , , , , )diag H Z Z S S      ,
 

and also using 1 1P P PP I   , following set of LMIs are obtained, 

11 12

22

0
*

 
   

 


, , (Eq 6.41) 

11 12

22

ˆ 0
*

ˆ 
   

  

 


, , (Eq 6.42) 

for a given matrix p nK R  , are satisfied, where 

1

11

33

1

4

8

99

1

4

8

46

55

66

12 13 17 18 19

22 23 24

35

89

77

,

0 0 0

0 0 0 0 0 0

0 0

0 0

0 0 0

0

0

*

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

* * * * * * 0 0

* * * * * * *

* * * * * * *

0

0

* * * * * *

*

* * * I

P 
 
 
 
 
 
 
  
 
 
 
 
 
 
  





     

  

 









 


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2
1 1 1 1 11

1 12

2
1 1 1 1 11

1 12

2

1
1 12

12

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T T T T TP A P A P A P A P

P P P P P

I I I

A

I I







  

  

  

    

    

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
  

       

, 

1 1 1 1 1 1 1 1 1 1

22 4 1 2 1 2( , , , , )diag P H P P Z P P Z P P S P P S P            , and 

1

11

33

99

1

4

8

1

4

8

46

55

6

12 13 17 18 19

22 23 2

6

7

4

35

9

7

8

ˆ ,

0 0 0

0 0 0 0 0 0

0 0

0 0

0 0

*

ˆ* * 0 0 0 0

ˆ* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

* * * * * * 0 0

ˆ* * * * * * *

ˆ* * * * * * *

0

0

0

0

0

* * * * *

*

* * * *

P

I

 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 





     

  

 









 



 

for the entries  

1 1 2 1 1 2 1 1 1 1 2 1 1

11 1 1 3 12 4 1 1 1

2 1 1 1 1 1 1

12 2 ,T T

P H P P Z P P Z P P Z P P S P

P S P A P P A P P

  



         

     

     

     

 

1

12 ,B KP    

1 1

13 1 ,P Z P    

1 1

17 1 1 ,P S P     

1 1

18 12 2 ,P S P     

1 1

19 12 2 ,P S P     

1 1 1 1

22 2 33 (1 ) ,P Z P P H P         
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1

23 2

1,ZP P    

1 1

24 22 ,P Z P    

1 1 1 1 1 1 1 1 1 1

33 11 2 32 ,P P P P P H P P H P P H PZ Z               

1 1

35 1 ,P Q P    

1 1

44

1 1

2 22 ,P Z P P H P      

1

6

1

24( ,)f x P Q P    

1 1 1 1

45 55 ,P H P P H P      

1

566

1,P H P     

1 1 1 1

17 37 ,P S P P Z P      

1 1 1 1

88 4 2 ,P Z P P S P        

1 1

89 2 ,P S P   

 

1 1 1 1

99 4 22 ,P Z P P S P      

  

1 1 1 1 1 1 1 1 1 1

33 1 2 3

1 1 1 1

2 2

1 1 1 1

88 4 2

1 1 1 1

9

4

9

2

4

4 2

1
ˆ ,

ˆ ,

ˆ 2 ,

ˆ .

2P P P P P H P P H P P H P

P Z P P H P

P Z P P S P

P Z

Z

P P S P

Z         

   

   

   

  



   

  

   

   

 

Now applying the change of variable method, bilinear matrix inequalities (BMIs) are 

transformed into LMIs. The set of LMIs is obtained by interchanging 1P X  , 

1 1

i iH P H P  ,
 

1 1

i iQ P Q P  ,  1 1

i iZ P Z P  , and 1 1

i iS P S P  . 

11 12

22*

 
   

 

 


, , (Eq 6.43) 

11 12

22

ˆ
*

ˆ 
   

  

 


, , (Eq 6.44) 

where 
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1

2 2

33

44

55

77

88

99

11

1 1 1 12 2 12 2

22

1

2

5

2

*

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

* * * * * * 0 0

* * * *

0 0 0

2 0 0 0 0 0 0

0 0

0 0

0 0 0

0

* * *

* * * * * *

0

0

0

* * * * * * *

* *

* *

X Z S S S

Q

Q

H

S

B K I

Z Z

I

   
 
 
 
 
 
 
  
 
 
 
 
 
 

 





  



















, 

2

1
1 12

2

1
1 1

12

2

2

1
1 12

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T T T T TXA XA XA XA

X X X X

I I I I

XA

X

I







  

  

  

 
 
 
 
 
 
 
 
 
  


  


 
 
 
 
 
 
 
  

    

, 

22 1

1 1 1 1 1

4 1 2 1 2( , , , , )XH Xdia XZ X XZ X XS Xg X XS       , and 

1

2 2

33

44

55

77

88

9

11

9

1 1 1 12 2 12 2

22

1

2

5

2

ˆ

*

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0 0 0

0 0 0

2 0 0 0 0 0 0

ˆ 0 0

ˆ 0 0

0 0 0

0

0

ˆ 0

ˆ 0

* * * * *

* * * * * * 0 0

* * * * * * *

* * * * * * *

* * *

*

*

XB K I

Z Z

Z S S S

Q

Q

S

I

H

  



 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 

  



















, 
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1 11

TX X      .
 

Now by incorporating the Schur complement defined in Lemma 2 and G KX , Eq. 

6.43 and Eq. 6.44 can be transformed into set of LMIs given in Eq. 6.39 and Eq. 6.40, 

which completes the proof of Theorem 6.2.        □  

Theorem 6.1 offers a synchronization strategy by selection of an appropriate 

controller gain matrix. Value of the controller gain is difficult to determine as it also 

depends on the range of input time-delay. So in case of variation in upper and lower 

bound of input time-delay, it also requires the change in controller gain matrix 

accordingly. Theorem 6.2 is more effective as compared to the Theorem 6.1, as it 

allows the computation of the controller gain matrix rather than its selection. The 

controller gain computed by Theorem 6.2 provides the effective delay-range-

dependent synchronization scheme for nonlinear master and slave systems under 

constraints like input time-delay and unknown slope-restricted input nonlinearity. 

The traditional delay-range-dependent synchronization schemes were design for 

varying delays within specific range [7], [106], [109]. However, provided scheme of 

synchronization is less conservative, it is more practical and adaptable approach. It is 

applicable for the case if lower bound of the delay is considered to be zero.   

There are some nonlinear terms like 
1

1 1 1 1 1

4 1 2 1 2( , , , , )XH X XZ X XZ X XS X XSdiag X      

in the inequalities of Theorem 6.2. To determine the controller gain matrix in the 

presence of such nonlinear terms is quite challenging. These nonlinear constraints can 

be solved by applying the cone complementary linearization technique provided in the 

next section.  

6.6 Cone Complementary Linearization 

It is desired to compute the controller gain matrix from set of LMIs provided in 

Theorem 6.2, but computation of controller gain matrix is quite difficult in presence 

of nonlinear terms such as 
22 1

1 1 1 1 1

4 1 2 1 2( , , , , )XH Xdia XZ X XZ X XS Xg X XS       . 

To handle these diagonal nonlinear terms of 
22 ,

 
cone complementary linearization 

technique is implied, which is very useful to simplify these complex nonlinear terms, 

hence nonlinear terms can be transformed as  
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1 2 1 2( , , , , )diag N T T V V     ,  

where  

1

4N XH X ,  

1

11 1XZT X ,  

22

1XZT X ,  

11

1XSV X  and  

22

1XSV X .  

Now by utilizing this transformation, nonlinear terms from the set of LMIs of Eq. 

6.39 and Eq. 6.40 can be easily simplified and solvable by minimizing 

 4 4 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2Trace XX H H NN Z Z Z Z TT T T S S S S VV V V         

 subject to 

 
0

*

X I

X

 
 

 
,

 

4

4

0
*

H I

H

 
 

 
,

 

( )f x 0
*

N I

N

 
 

 
,      (Eq 6.45)

 

0
*

i

i

Z I

Z

 
 

 
, 0

*

i

i

T I

T

 
 

 
, (Eq 6.46) 

0
*

i

i

S

S

I 
 

 
, 0

*

i

i

V I

V

 
 

 
, (Eq 6.47)

 

and the inequalities of Theorem 6.2, where terms iZ , 4H , N , iT , iS , iV  and X  are 

used to represent the inverse of matrices 
iZ , 

4H , N , 
iT , 

iS , 
iV  and X , 

respectively, for 1,2i  . As 1

4N XH X , 
1

ii XZT X  and 
1 i iXS XV  . Therefore, 

supplementary constraints can be given as 

1

0
* i

iXZ X I

T

 
 

  
, 

1
4 0
*

XH X I

N

 
 

 
, 

1

0
* i

iXS X I

V

 
 

  
. (Eq 6.48)

 

Now applying the congruence transformation by using ( , )diag X I  and involving 

1

4 4H H  , 
1

i iZ Z  , and 1

i iS S , 1, 2i  , the inequalities of Eq. 6.48 are given as 

below
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0
*

i

i

Z X

T

 
 

  
, 4 0

*

H X

N

 
 

 
,  0

*

i

i

S

V

X 
 

  
, ( )f x 1, 2i  . (Eq 6.49) 

Hence, by applying the cone complementary linearization the nonlinear constraints of 

Theorem 6.2 can be easily solved using LMIs (see [125]):  





4 4 4 1 1 2 2

1 1 2 2 2 2 1 1

2 2 1 1 1 1 2 2 2

min Trace 0.5 0.5

               0.5 0.5 0.5 0.5

               0.5 0.5 0.5 0.5 ,

XX H H NN XH XN Z Z Z Z

TT XZ XT T T XZ XT S S

S S VV XS XV V V XS XV

    

    

    

 (Eq 6.50) 

subject to Eq. 6.45, Eq. 6.46, Eq. 6.47 and Eq. 6.49 and inequalities of Theorem 6.2. 

The set of LMIs of Theorem 6.2 contains the nonlinear constraints; however, these 

nonlinear constraints are transformed into nonlinear objective function of Eq. 6.50 as 

an optimization problem, which can be solved using LMIs by the virtue of the cone 

complementary linearization algorithm (see details in [125]-[126] and references 

therein).
 

6.7 Simulation Results 

To witness the proposed delay-range-dependent synchronization strategy for 

nonlinear master and slave systems, a numerical example of gyros systems is 

illustrated. Dynamics of Gyro systems are considered due to their applications in the 

field of aerospace engineering. 

The motion equation of the chaotic gyro system ([62] and [127]-[128]) is described as  

2
3 2

1 2 3

(1 cos )
sin sin sin

sin
C C f t


       




      ,  (Eq 6.51) 

where sin sinf t   represents the parametric excitation,
 1C  and 

3

2C   are the linear 

and nonlinear terms, respectively. Nonlinear part of the gyro system is represented by 

2
2

3

(1 cos )
sin

sin


  




 . To derive the normalized state equations, incorporating 

1x   and 1y  , the dynamical equation of gyro system is transformed as  

1 1x y ,   (Eq 6.52) 

2
3 2 1

1 1 1 2 1 1 13

1

(1 cos )
sin sin sin

sin

x
y C y C y x f t x

x
  


      . (Eq 6.53) 
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By selecting, 
1 0.5C  , 

2 0.05C  , 10  , 35.5f  ,  and 2   the gyro system 

can be represented by Eq. 6.1  with
 

 2

1

3

1

0

( ) (1 cos )
0.05 100 (1 35.5sin 2 )

sin

f x x
t

x

 
 

     
  

,          

(Eq 6.54) 

 

where ( )f x  
represents the nonlinear function of master system and slave system.  

Robust control toolbox of MATLAB is utilized to solve the LMIs derived in Theorem 

6.1 and Theorem 6.2. Lower bound for input time-delay 
1,

 
upper bound for input 

time-delay 
12 ,

 
and time-delay   are taken to be 0.15, 0.35 and 0.05, respectively; 

whereas Lipschitz constant 0.3  and delay derivative bound 0.3   are selected. 

The lower and upper bounds for slope-restricted input nonlinearity are selected as 

0.9ml   and 1.1Ml  , respectively. The input time-delay of 0.25 0.09sin0.1t  is 

incorporated in this numerical example. By applying the condition derived in 

Theorem 6.2, controller gain matrix is computed as  1.312 1.874K  . To observe 

the behavior of chaotic master and slave gyro systems, MATLAB solver ddex23 is 

used for implementation of time-delay differential equations with time-varying initial 

conditions for the master and slave systems as below 

1

2

( ) 0.5 0.05sin 0.1 ,  

( ) 1 0.01sin 0.1

m

m

x t t

x t t

 

  
              (Eq 6.55) 

1

2

( ) 0.5 0.05sin 0.1 ,

( ) 1 0.01sin 0.1 .

s

s

x t t

x t t

  

 
                     (Eq 6.56) 

Figure 6.1 shows the behavior of the master and slave systems (Gyro system) in the 

absence of controller input. Figure 6.2 shows the synchronization error plot between 

two states of master and slave systems, where 
1 1 1( ) ( ) ( )m se t x t x t 

 
in solid line is the 

error between first state of the master and slave systems and 
2 2 2( ) ( ) ( )m se t x t x t   in 

dotted line is the error between second state of the master and slave systems. Plots 

show unsynchronized behavior among master and slave systems, as there are 

oscillation and irregularities for both error states with controller.  
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(a) 

 

(b) 

Figure 6.1:  Behavior of the slave gyro system without control law, (a) master system, (b) slave system. 

 

Figure 6.2:  Synchronization error between master and slave systems without controller 
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Figures 6.3(a) and 6.3(b) shows the phase portraits of the master gyro system and 

slave gyro system when controller is activated for synchronization, respectively. 

 

(a) 

 
(b) 

Figure 6.3:  Behavior of the master-slave gyro systems with control law. 

Figures 6.4(a) and 6.4(b) shows the time series of synchronization error plot between 

first and second state of the master-slave gyro systems, respectively, in the presence 

of control input. Time series plots show that states of the slave systems (dotted line) 

following the trajectory of master systems (solid line).  

Figure 6.5 shows the synchronization error plots 
1 1 1( ) ( ) ( )m se t x t x t 

 
in solid line 

and 
2 2 2( ) ( ) ( )m se t x t x t   in dotted line in the presence of state feedback controller. 

Response of the error trajectories shows that both errors are converging to the origin 

as controller is activated and synchronization between master and slave systems is 

achieved. 
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(a) 

 

(b) 

Figure 6.4: Time series plot for the first and second of the master and slave gyro systems. 

 

 
Figure 6.5: Synchronization errors 

1e
 
and 

2e  of the master and the slave gyro system with controller. 
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6.8 Summary 

In this Chapter delay-range-dependent synchronization of nonlinear master and slave 

systems is considered under the constraints of time-varying input delay and slope 

restricted input nonlinearity. Different mathematical tools and strategies such as LPV 

approach, delay derivative bound conditions, delay range expressions, Jensen’s 

inequality, triple integral based Lyapunov-Krasovskii functional, and LMI theory and 

convex handling technique are implied to obtain the sufficient conditions for 

synchronization of time-delay nonlinear master and slave systems. The provided 

design conditions guarantee the asymptotic convergence of the synchronization error 

to the origin. Compared to the traditional adaptive control and sliding mode 

synchronization schemes, the proposed state feedback control law based 

synchronization criteria is uncomplicated in designing and easy for implementation in 

the presence of time-varying input time-delay.  

Furthermore, the proposed scheme is capable to deal with the short time-delay 

interval and large time-delay interval for synchronization of the nonlinear master and 

slave systems because the input delay has been treated using an innovative delay-

range-dependent methodology. Hence, the resultant synchronization schemes are 

reliable, implementable and less conservative in contrast to the available techniques. 

In future, the proposed synchronization scheme can be extended for other complex 

problem like output delays, state delays, input saturation, adaptation of unknown 

parameters, robustness against perturbations, fast convergence rate and handling of 

parametric uncertainties. In the end, to witness the proposed synchronization criterion 

a numerical simulation example of chaotic gyro systems was illustrated. 
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Chapter 7 

SYNCHRONIZATION OF NONLINEAR SYSTEMS 

UNDER MUTIPLE DELAYS 

7.1 Overview 

In the last two Chapters, the problem of synchronization of complex nonlinear time-

delay master-slave systems was investigated. Delay-dependent and delay-range-

dependent synchronization approaches are provided to deal with the time-varying 

input delay in the dynamics of the nonlinear master-slave systems. 

In this Chapter, the problem of synchronization of nonlinear systems subject to 

multiple overlapping delays is considered. The problem is formulated by considering 

the state-delays in master and slave systems. Furthermore, time-varying input delay is 

incorporated in the dynamics of slave system for broader scope of the problem. Zero 

order hold technique is implied to design a feedback controller. To describe the 

multiple and overlapping delays, binary logic based four possible cases of overlapping 

are considered. Lyapunov Krasovskii functional is constructed by incorporating the 

four different cases of overlapping delay and after rigorous algebra efforts, an LMI 

based approach is developed to provide the necessary conditions for synthesis of 

proposed controller for synchronization of complex nonlinear mater-slave systems 

subject to overlapping delays. Basic structure of the proposed synchronization 

strategy is shown in Figure 7.1 as below.  

Master 
System

Controller

+

-

( )mx t

( ) ( ( ))xu t Kf e S

( )e t
Delay

( )
sd

t

( )m sdx t 

Delay
( )id t

Slave 
System

( )sx tDelay

( )s sdx t 

 

Figure 7.1: Block diagram of synchronization of nonlinear systems with multiple delays 
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The multiple time-varying delays frequently appear in many physical systems such as, 

communication networks, neural networks, power transmission lines, chemical 

processes and mechanical systems, etc. Delay is an important parameter of nonlinear 

systems, because ignoring the effects of time-delays results instability and 

degradation of the performance of nonlinear systems. The problem of stability 

analysis and synchronization of nonlinear systems with multiple time-delays received 

considerable attention over the years from researcher of control community [129-

138]. In [136], the problem of exponential synchronization under the constraints of 

multiple time-varying delays has been investigated. The problem of output tracking 

control for class of switched nonlinear systems considering the multiple delay and 

LMI based synchronization approach for complex nonlinear systems by free 

weighting matrix technique have been addressed in [133], [138].   

During the last few years, the problem of stability analysis of dynamical nonlinear 

systems subject to multiple delays such as input delays, output delays and states 

delays are frequently reported in the literature. However, the problem of 

synchronization of nonlinear master-slave systems subject to multiple and 

overlapping delays is lacking in the literature. The proposed technique is novel, as it 

ensures the synchronization of nonlinear master-slave systems subject to external 

disturbances, state delays and state delayed nonlinearities. The approach provides the 

advances multiple delays handling using overlapping concept. Proposed delay-range-

dependent synchronization scheme is less conservative compared to the existing 

weighted matrix techniques. 

This Chapter is organized as follows. Next section is about the problem formulation 

and preliminaries needed to derive the main results. In section 3, structure of the 

controller is described followed by the main results of proposed synchronization 

criteria. In the end, a numerical simulation example of two gyro systems considered 

as master and slave systems has been provided to witness the proposed 

synchronization scheme.  

7.2 Systems Description and Preliminaries 

Synchronization of nonlinear time-delay systems under the constraints of multiple 

overlapping delays and disturbances is considered.  
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Dynamics of the master system is described as follows 

   

  
1

1

( )( ) ( ) ( ,

,

)

( ) ,

m m m sd

s

m

m d

x t A x t A x t g x t t

g x t

t

t t

 



   

 
 (Eq 7.1) 

where ( ) n

mx t R  and ( ( ))sd

n

mx t Rt   represents the state vectors of the master 

system, without and with state delay, respectively. Linear components in the 

dynamics of the master system of constant and known entries are represented by

n nA R


 
and

 1

n nA R  . Nonlinear functions in the master system are represented by 

 ( ), n

mg x t t R   and 1( ( ( )), )sd

n

mg x t t t R  . ( )sd t  represents the time-varying 

state delay. Similarly dynamics of the nonlinear time-delay slave system is described 

as 

   1

1

( ) ( ) ( ),

( ( ) , )

(

( ,

)

) ( )

s s s sd

sds

sx t A x t A x t g x t t

g x t t t Bu t

t 



   

  
 (Eq 7.2) 

where ( )s

nx t R  and ( ( ))s sd

nx tt R   represents the state vectors of the slave 

system, without and with state delay, respectively. Linear components in the 

dynamics of the slave system of constant and known entries are represented by

n nA R

 ,
 1

n nA R 
 

and n nB R  . Nonlinear functions in the slave system are 

represented by  ( ),s

ng x t t R   and 
1( ( ( )), )s sd

ng x t t t R  . pu R  is the control 

input applied to the slave system to synchronize it with a master system.  

7.2.1 Assumptions  

1. It is assumed that nonlinearities in master and slave systems, satisfies the 

following inequalities known as Lipschitz conditions.  

     
     1( ), ( ), ( ) ( )m s m sg x t t g x t t x t x t     ,  (Eq 7.3) 

     
     1 1 2( ), ( ), ( ) ( )m ssd sd sd sm dsg x t t g x t t x t x t          , (Eq 7.4) 

where 1 0   and 2 0   are constant valued functions called Lipschitz 

constants.   

2. Time-varying state delay in the master and slave systems is restricted in the 

interval, that satisfy following condition 
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 11 12 ,0 ( )sd t      (Eq 7.5) 

where delay bounds 12  and 11  represents the upper and lower limit of the 

interval for state delay, respectively.  

Difference between the states of the master system and slave system is defined as 

synchronization error )( )) ( (m ste t x x t  , and taking it time derivative, we get 

( )( )) (m ste t x x t 
 
 (Eq 7.6) 

Subtracting Eq. 7.2 from Eq. 7.1, error system reveals 

     

     
11

1 1

( ) ( ) ( ) ( ), ( ),

( ) , ( ) , .

s

sd

m

s dm s

e t A e t Ae t t g x t t g x t t

g x t t t g x t t t Bu

  

 

    

    
 (Eq 7.7) 

The key idea is to synchronize the slave system to the master system by convergence 

of the error system to the origin, mathematically  

0
lim ( ) 0
t

e t


 .   (Eq 7.8) 

Clearly it shows that slave system of Eq. 7.2 synchronize to the master systems of Eq. 

7.1, if error system of Eq. 7.7 is globally asymptotically stable. 

7.3 Controller Design 

Synchronization of nonlinear time-delay systems is under consideration. Zero order 

hold scheme is utilized to design a simple state feedback control law in the presence 

of clock driven sampler and an event driven quantizer. The proposed state-feedback 

control law is given by 

( ) ( ( ))xu t Kf e S ,  (Eq 7.9) 

where m nK R   represents the state feedback controller gain matrix. xS  represents 

the sampling instant of the sampler with 1,2,3...x   . (.)f  is called the logarithmic 

quantizer and its sets can be described as below [139]. 

0 0{ : 0,  1,  2,  ....} {0},  0,i

j iu i           (Eq 7.10)
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where (0,1)   
and furthermore for the logarithmic quantizer, the associated 

quantizer are described as below 

0 0 0

1 1
,          if ,

1 1

( ) 0,                if y=0,

( )      if y<0,

i i iy

f y

f y

     
 


   


 
 



 (Eq 7.11)
 

where
  

1

1










.  

Now utilizing the logarithmic quantizer and zero order hold technique [139], state 

feedback control is transformed as  

( ) ( ( ))idu t Kf e t   , (Eq 7.12) 

where id   is the time varying input delay and its bounds can be described by 

21 220 .id      

Using the state feedback control law of Eq. 7.12 into the error systems of Eq. 7.7, we 

obtain 

     

     
1

1 1

( ) ( ) ( ) ( ), ( ),

( ) , ( ) , ( ( ( )).

m

m s i

sd s

dsd sd

e t A e t Ae t t g x t t g x t t

g x t t t g x t t t B Kf e t

  

  

    

     
 (Eq 7.13) 

Rearranging it, we get  

   

       
1

1 1

( ) ( ) ( ) ( ( )) ( ),

( ),  ( ) , ( ) , .

sd

s sd s

id m

m s d

e t A e t Ae t t BKf e t g x t t

g x t t g x t t t g x t t t

 



 

 

     

    
 (Eq 7.14) 

To simplify the complex error dynamics, let define the nonlinear functions as 

     , ( ), ( ),,m s m st x x g x t t g x t t     and (Eq 7.15) 

       1 1, , ( ) , ( ) , ., sd s sd s sdm mt x x g x t t g x tt tt         (Eq 7.16) 

Incorporating the Eq. 7.15 and Eq. 7.16 into Eq. 7.14, it implies 
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   

 

1( ) ( ) ( ) ( ( )) ,

, ,

,

, ,

id m s

m

sd

sd s

e t A e t Ae t t BKf e t t x x

t x x

  



     


 (Eq 7.17) 

The simplified form of the synchronization error system of Eq. 7.17 is suitable to 

derive the sufficient conditions for synthesis of the proposed controller. To attain the 

required conditions, an LMI-based approach is established for analysis of the 

controller for the synchronization of nonlinear systems subject to multiple 

overlapping delays. 

7.4 Theorem 7.1 

Let the master system of Eq. 7.1 and the slave system of Eq. 7.2, satisfies the 

assumptions provided in Eq. 7.3, Eq. 7.4 and the delay bound of Eq. 7.5, than slave 

system will be synchronized to the master system, if there exist symmetric matrices

0P  , 0ijH 
 
and 0ikZ 

 
of appropriate dimensions, for 1,2i  , 1,2j  , and 

1,2,3,4k  , such that following LMI holds 

11 12

22

0
*

  
   

 
, (Eq 7.18) 
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The entries of the LMI, are 

1 12 11̂   , 

2 21 12̂   , 

3 22 21̂   , 
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ˆ 1  , 

ˆ 1   , 

ˆ T TK K B
 

11 12 13 21 22 211 11

11 21 21 1 1

32

ˆˆ T

Z Z Z Z Z ZPA H

H H H

 

  

       

   
, 

14 11 21
ˆH H   ,  

22 1 13 1 14 1 14 2 2
ˆ(1 ) (1 ) (1 ) TZ Z Z           , 

33 14 11 12 12)( ZZ H H      

44 12 22 14 11 12 24 21 22( )ˆ ( )Z Z H HH Z H H          ,  

46 12 22
ˆH H    

55 2 23 2 24 2 24
ˆ(1 ) (1 ) (1 )Z Z Z           ,

  

66 11 12 22 24 21 22
ˆ ˆ( )Z H H Z H H         , 

77 21 22
ˆZ H    

and * is used for the symmetric terms of LMI. There exists a reliable controller of the 

form Eq. 7.12 that guarantees asymptotic synchronization of the master and the slave 

systems subject to multiple and overlapping delays. 

7.4.1 Proof of Theorem 7.1 

To provide the proof of the Theorem 7.1, let we define four different cases of 

overlapping delay, using the binary logic:  

Case I: 1   and 1  , 

Case II: 1  and 0  , 

Case III: 0  and 1  , 

Case IV: 0  and 0  . 

Using the definition of these four cases of delay parameters, let construct a Lyapunov-

Krasovskii (LK) functional [140-141] that satisfy the statement of Theorem 7.1, LK 

functional is given by 

1 2 3 4 5( , ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( )V e t V t V t V t V t V t          ,                           (Eq 7.19) 

where 
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Taking the time-derivative of constructed LK functional and rearranging it, reveals 
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Incorporating the ( )e t  of Eq. 7.17 into the Eq. 7.21, it yields 
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             (Eq 7.22e) 

It is assumed delay derivatives bounded by following inequalities 

1( )sd t  ,             (Eq 7.23) 

2( )id t  .             (Eq 7.24) 

Defining an argument matrix as 





11 12

21 22

( ), ( ), ( ), ( ), ( )

( ), ( ), , ,

( )

( , ), ( , ) .,

T T T T T

sd id

T T

sd s

T

T T

m s m

t

t x

e t e t e t e t e t

e t e t x t x x

   

  





 

  


       (Eq 7.25) 

Let ( 1,2,3,...,9)i i   represents a matrix by replacing ith entry of  9n n  zero matrix 

with an identity matrix, for example second entry of the argument matrix can be 
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represented as  2 0 0 0 0 0 0T I  . There are none elements in in this 

argument matrix ( )t . For instance, 5 ( ) ( )T

idt e t    , which is fifth entry of the 

argument matrix ( )t .  Using the argument matrix to simplify the main results and 

applying the delay derivative bounds of Eq. 7.23 and Eq. 7.24 along with the 

assumptions of Eq.  7.3, Eq. 7.4 and Eq. 7.5, it implies 

1 2 3 4 5( , ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( ) 0V e t V t V t V t V t V t           . 

  

          (Eq 7.26) 

It can be written in simplified form as below 

( , ) ( )( ) ( )T T

c cV e t t A A t   ,    

  

       (Eq 7.27)
 

where  
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Schur complement is applied to Eq. 7.27, it reveals  

( , ) ( ) ( )TV e t t t  ,    

  

               (Eq 7.28) 

where 

11 12

22*
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Rewriting in the following form  

1 2 3 3 2 <0T T     ,    

  

                           (Eq 7.29) 
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and 

3 0 0 0 ( ) 0(0 00 0 0 0 0 0 0 0 0 0)t   , 

The inequality of Eq. 7.29 is satisfied if  
1

1 2 2 3 3<0T TY Y      and 0Y   holds. 

Using schur complement, LMI of Eq. 7.18 can be derived. It completes the proof of 

Theorem 7.1.  

7.5 Simulation Results 

To witness the proposed delay-range-dependent synchronization criteria for nonlinear 

master-slave systems subject to time-varying input delay and state delay in 

overlapping contrast, a numerical example of gyros systems is illustrated. Dynamical 

gyro systems are extensively used in many engineering applications especially in 

aerospace engineering for aeronautical operation. The normalized motion of equation 

for dynamical gyro system is described by [54]  

3

1 2 ( ) sin sin sinC C h f t             ,  (Eq 7.30) 

where 
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2
2

3

(1 cos )
( )

sin
h


 




  

and sin sinf t   represents the parametric excitation,
 1C  and 3

2C   are the linear 

and nonlinear terms, respectively. The variable   is rotational angle. Nonlinear part 

of the gyro system is represented by 
2

2

3

(1 cos )
sin

sin


  




 . Normalized state 

equations can be derived by selecting  

1x   and 2

d
x

dt


 , the dynamical equation of gyro transformed as  

1 2x x ,                         (Eq  7.31) 

2
3 2 1

2 1 1 2 1 1 13

1

(1 cos )
sin sin sin

sin

x
x C y C y x f t x

x
  


      . (Eq  7.32) 

System parameters are selected as follows, 1 0.5C  , 2 0.05C  , 10  , 1.0  , 

2   and 35.5f  . Lower bound ( 21 ) and upper bounds ( 22 ) for input time-delay 

( id ) are selected 0.93 and 2.02, respectively. Similarly Lower bound ( 11 ) and upper 

bounds ( 12 ) for input time-delay ( sd ) are selected 0.10 and 0.30, respectively. 

Whereas Lipschitz constants 1 0.3  , 2 0.4   and delay derivative bounds 

1 0.3   and 2 0.42 
 
are selected. By applying the condition derived in Theorem 

7.1, controller gain matrix is computed as  1.504 2.015K  . Initial conditions for 

the master systems and slave systems are as follows 

1

2

( ) 0.6 0.06sin 0.2 ,  

( ) 0.8 0.02sin 0.1 ,

m

m

x t t

x t t

 

  
              (Eq 7.33) 

1

2

( ) 0.05 0.01sin 0.09 ,

( ) 1.1 0.013sin 0.15 .

s

s

x t t

x t t

  

 
                    (Eq 7.34) 

Figures 7.2(a) and 7.2(b), shows the phase portrait of master gyro system and slave 

gyro system in the absence of controller. It can be seen that response is not similar to 

each other of the master and slave systems under slightly different initially condition. 

When control signal is not applied to the slave systems, synchronization errors 



 

                                                                                                                              145 

                                                                                                                                      

 

 

1 1 1( ) ( ) ( )m se t x t x t   and 2 2 2( ) ( ) ( )me t x t x t 
 
are shown in Figure 7.3, which shows 

that both error states are not converging to the origin and oscillating around it, results 

unsynchronized behavior among master and slave systems.   

 

Figure 7.2(a): Phase portrait of master gyro 

system with multiple delays without controller 

 

Figure 7.2(b): Phase portrait of slave gyro 

system with multiple delays without controller 

 

Figure 7.3: Synchronization errors 
1( )e t  and 

2 ( )e t  without controller 

Figures 7.4(a) and 7.4(b), shows the phase portrait of master gyro system and slave 

gyro system in the presence of state-feedback controller. It can be seen that trajectory 

of the slave systems is following the trajectory of master systems under different 

initially condition. Figure 7.5, shows the errors 1( )e t  and 2 ( )e t , when controller is 

activated. Both error states are converging to the origin and synchronization between 

master and slave systems is established. 
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Figure 7.4(a): Phase portrait of master gyro 

system with multiple delays with controller 

 

Figure 7.4(b): Phase portrait of slave gyro system 

with multiple delays with controller 

 

Figure 7.5: Synchronization errors 
1( )e t  and 

2 ( )e t  with controller 

 

7.6 Summary 

The problem of synchronization of multiple delays includes time-varying input delay 

and state delays with overlapping constraints has been investigated in this chapter and 

delay-range-dependent synchronization criterion is provided. Time varying input 

delay and state delays are considered in the intervals and partitions in the non-uniform 
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subintervals. Problem has been designed by considering the four possible cases of 

overlapping delays on the basis of binary logic. 

Zero order hold technique is implied to derive a simple state feedback control law. 

Furthermore, an advanced LMI conditions are established via improved Lyapunov-

Krasovskii functional for multiple and overlapping delays. In the end, to ensure the 

feasibility and effectiveness of the proposed synchronization methodology has been 

demonstrated by a numerical simulation example of two dynamical nonlinear gyro 

systems.   

  

  



 

                                                                                                                              148 

                                                                                                                                      

 

 

Chapter 8 

CONCLUSIONS AND FUTURE WORK 

A brief conclusion of thesis is outlined in this Chapter. Moreover, some future 

research proposals are suggested for the researchers interested to work in the area of 

synchronization of nonlinear systems.  

8.1 Conclusions 

In this thesis, the problem of synchronization of nonlinear master-slave systems under 

the restraints of time-delays and parametric uncertainties was investigated for both 

distinctive and identical nonlinear systems by designing appropriate control laws.  

Firstly, this thesis addressed uncomplicated static state feedback and adaptive 

dynamic controller synthesis methodologies for synchronization of the different 

chaotic oscillators containing mutually Lipschitz nonlinearities. An algebraic Riccati 

inequality based and an LMI-based formulations were provided to compute the 

proposed controller gain matrix for synchronization of the mutually Lipschitz 

nonlinear systems. The proposed design conditions, developed using a quadratic 

Lyapunov function, the mutually Lipschitz condition and the uniformly ultimately 

bounded stability theory, offer robustness against disturbances and dynamical 

perturbations. An adaptive schema was investigated for synchronization of the chaotic 

systems in order to cancel the nonlinearities arising from mismatch between dynamics 

of the systems. The proposed control schemes, uncomplicated to design as well as to 

implement, can be applied for synchronization of different chaotic oscillators with 

unknown dynamics. 

Secondly, the problem of synchronization of the drive-response systems is 

investigated subject to slope-restricted input nonlinearity as well as time-varying input 

delay. To obtain the synchronization conditions for the master-slave systems, different 

tools and techniques like Jensen’s inequality, delay range expression, delay-

derivative-bounds, triple-integral-based LK functional, LMI-tools, LPV method, and 

cone complementary linearization were employed. The proposed design conditions 
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ensure asymptotic convergence of the synchronization error to the origin. In contrast 

to the conventional sliding mode and adaptive control techniques, the proposed 

technique is simple in design, straightforward in implementation, and capable of 

handling input time-delay. Moreover, the resultant scheme is capable to incorporate 

both small and large time-delay in an interval for synchronization of the nonlinear 

systems because the input delay was treated using an advanced delay-range-dependent 

approach. Hence, the proposed chaos synchronization schemes are practical, reliable 

and less conservative compared to the existing methods. In future, the proposed 

synchronization techniques can be extended for other complexities like output delays, 

state delays, input saturation, adaptation of unknown parameters, robustness against 

perturbations, fast convergence rate, and handling of parametric uncertainties. In the 

end, a numerical simulation examples of were illustrated to witness the effectiveness 

of the proposed synchronization control schemes. 

8.2 Future Work 

Future research proposals on the basis of the carried-out research works are suggested 

for the researchers interested to work in the area of synchronization of nonlinear 

systems as follows. 

 The problem of synchronization of nonlinear systems can be extended for 

frequency, phase and amplitude synchronization of tied grid elements. 

 In this thesis, the research work was focused on robust and robust adaptive 

synchronization of non-identical nonlinear systems, which can be excelled for 

time-delay systems by considering the input and output delays. 

 Delay-dependent and delay-range-dependent synchronization criteria for non-

identical nonlinear systems can be carried out in future. 

 The problem of synchronization of nonlinear master-slave systems under the 

constraints of time-varying input delay and slope restricted input nonlinearity can 

be extended for other complexities like output delays, state delays, input 

saturation, adaptation of unknown parameters, robustness against perturbations, 

fast convergence rate, and handling of parametric uncertainties. 

 The problem of synchronization of time-delay nonlinear systems under the effects 

of multiple and overlapping delay can also be worked out for the robust and the 
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robust adaptive synchronization methodologies to deals with the parametric 

uncertainties, external disturbances, saturation, and unknown parameters etc. 

 Synchronization of two systems was considered in this thesis. This work can be 

extended for multiple systems, called multi-agents, to attain a consensus or 

formation. Further communication constraints and coupling terms can also be 

studied for synchronization analysis.  
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