
Contributions to Finance and Accounting

Umberto Sagliaschi
Roberto Savona

Dynamical 
Corporate 
Finance
An Equilibrium Approach



Contributions to Finance and Accounting



The book series ‘Contributions to Finance and Accounting’ features the latest
research from research areas like financial management, investment, capital markets,
financial institutions, FinTech and financial innovation, accounting methods and
standards, reporting, and corporate governance, among others. Books published in
this series are primarily monographs and edited volumes that present new research
results, both theoretical and empirical, on a clearly defined topic. All books are
published in print and digital formats and disseminated globally.

More information about this series at http://www.springer.com/series/16616

http://www.springer.com/series/16616


Umberto Sagliaschi • Roberto Savona

Dynamical Corporate
Finance
An Equilibrium Approach



Umberto Sagliaschi
Quaestio Capital SGR SpA
Milan, Italy

Roberto Savona
Department of Economics and Management
University of Brescia
Brescia, Italy

ISSN 2730-6038 ISSN 2730-6046 (electronic)
Contributions to Finance and Accounting
ISBN 978-3-030-77852-1 ISBN 978-3-030-77853-8 (eBook)
https://doi.org/10.1007/978-3-030-77853-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-77853-8


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Realm of Corporate Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Equilibrium Approach, Market Structure

and Corporate Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Building on the Neoclassical Synthesis. . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Market Completeness, Pricing Kernel

and the Objective of the Firm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Plan of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Prerequisites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Value of the Firm and Its Securities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Notation and Basic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Budget Constraints and Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Default and Bankruptcy Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The Modigliani and Miller Theorems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Irrelevance of Dividend Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 The Irrelevance of Financing Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Debt Tax Shield and Bankruptcy Costs . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Capital Structure and Corporate Governance . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Investment Decisions and Agency Costs . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Optimal Investments, Capital Budgeting

and Debt Overhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 The Value of Corporate Governance .. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 A General Expression for the Value of the Firm. . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 Abstract Securities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 Restructuring, Renegotiation and Liquidation Procedures. . . . 48
2.4.3 The Value of the Firm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.4 Dividends, Buybacks and Expected Equity Returns . . . . . . . . . . 51

v



vi Contents

2.5 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Borrowing Constraints, Debt Dynamics and Investment
Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Collateral Constraints and Optimal Capital Structure . . . . . . . . . . . . . . . . . 58

3.1.1 Secured Debt and Flotation Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2 Strict Individual Rationality and Absence of Default Risk . . . 60
3.1.3 The Value of the Firm, Optimal Capital Structure

and The Weighted Average Cost of Capital . . . . . . . . . . . . . . . . . . . 64
3.2 Perfect Product Market Competition and Optimal

investment-Financing Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 The Value of the Unlevered Firm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Optimal Investment and Financing Decisions . . . . . . . . . . . . . . . . . 72

3.3 Financial Returns and the Investment CAPM .. . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.1 Fundamentals and Securities Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.2 Capital Budgeting and WACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.3 The Hamada Equation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.4 The Investment CAPM and the Cross-Section

of Equity Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Debt Agency Costs and the Trade-off Theory . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Imperfect Competition, Working Capital and Tobin’s Q. . . . . . . . . . . . . . . . 85
4.1 The Limits of Perfect Product Markets Competition .. . . . . . . . . . . . . . . . . 86
4.2 Monopolistic Competition and Market Power . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Timing of Decisions and Optimal Price Setting .. . . . . . . . . . . . . . 89
4.2.2 Optimal Investment and Financing Decisions . . . . . . . . . . . . . . . . . 92
4.2.3 Constant Price Elasticity of Demand and the Value

of the Firm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Imperfect Competition and the Cross-Section of Stock Returns. . . . . . 96

4.3.1 Tobin’s Q, Expected Stock Returns and Residual Income .. . . 96
4.3.2 Empirical Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Equilibrium Models and Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 A Simple Quantitative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2 Expected Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.3 Stock Market Multiples and Valuation Models. . . . . . . . . . . . . . . . 106

4.5 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Continuous Time Models, Unsecured Debt and Commitment . . . . . . . . . . 113
5.1 General Setting and Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.2 The Value of the Firm and Its Securities. . . . . . . . . . . . . . . . . . . . . . . 116



Contents vii

5.2 The Hamilton–Jacobi–Bellman Approach .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.1 Risk-Neutral Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Commitment, Optimal Default and the Static Trade-off
Theory of Capital Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.1 Option to Default and Expected Default Time . . . . . . . . . . . . . . . . 125
5.3.2 The Optimal Default Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Optimal Static Capital Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.4 Credit Spreads in the Leland Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Endogenous Investment and Agency Costs of Capital Structure . . . . . 133
5.4.1 Debt Overhang .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.2 Risk-Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Dynamic Capital Structure without Commitment . . . . . . . . . . . . . . . . . . . . . . . 143
6.1 Commitment, Time Consistency and Debt Capacity . . . . . . . . . . . . . . . . . . 145
6.2 A Discrete Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.1 The Leverage Ratchet Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.2 The Coase Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 The Continuous Time Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.1 An Irrelevance Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.2 Global Optimality and the Leverage Ratchet Effect . . . . . . . . . . 153
6.3.3 The Value of the Firm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.4 Leverage Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.5 Positive Recovery Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Endogenous Investment and The Cost of Capital . . . . . . . . . . . . . . . . . . . . . 162
6.4.1 Debt Overhang .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.2 Risk Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.3 The Weighted Average Cost of Capital . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1 A Quantitative Corporate Finance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.1 Model Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.1.2 Optimal Production and Pricing Decisions .. . . . . . . . . . . . . . . . . . . 175
7.1.3 Optimal Investment and Financing Decisions . . . . . . . . . . . . . . . . . 177

7.2 Borrowing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.1 The Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.2 The Cross-Section of Stock Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 An Introduction to Numerical Solution Methods
and Structural Econometrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.1 Discrete Dynamic Programming .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.2 The case of Defaultable Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.3.3 The Generalized Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . 189



viii Contents

7.4 Non-Markov Perfect Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.4.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.4.2 Constant Leverage Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.4.3 Time-Consistent Constant Leverage Policies. . . . . . . . . . . . . . . . . . 195
7.4.4 Limits to Tax-Deductibility of Interest Expenses . . . . . . . . . . . . . 196
7.4.5 Final Considerations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



Chapter 1
Introduction

1.1 Introduction

The way in which leverage and its expected dynamics impact on firm valuation
is very different from the assumptions of the traditional static capital structure
framework. The purpose of this book is to re-characterize the firm’s valuation
process within a dynamical capital structure environment, by drawing on a vast body
of recent and more traditional theoretical insights and empirical findings on firm
evaluation, also including asset pricing literature. We offer a new setting in which
practitioners and researchers are provided with new tools to anticipate changes in
capital structure and setting prices for firm’s debt and equity accordingly.

We introduce the reader to selected theoretical models in corporate finance that
can be used to understand investment and financial decisions on the firms’ side,
their interdependence and related impacts on the value of corporate securities,
such as stocks and bonds. The book is then intended mostly for graduate/phd
students, researchers and financial professionals who are interested in modeling
asset prices and corporate strategy decisions. Our approach is sometimes referred
as “supply-side” or “investment-based” asset pricing, and it complements with the
more traditional approach deriving from the application of optimal portfolio theory.
The success of this approach (see Zhang 2017), is the possibility to leverage the
large availability of corporate data and partly overcome aggregation problems, as
opposed to demand side models, such as the Consumption Capital Asset Pricing
Model (e.g., Rubinstein 1976; Lucas 1978; Breeden 1979), which instead requires
to know investors’ preferences. To some extent, dynamic corporate finance is the
crossroads where equilibrium asset pricing meets the scope of firms’ production,
investment and financing decisions. In this regard, the book is also intended to
provide a guidance for an advanced practice of equity valuation. To make an
example, consider the practical problem of valuing the debt tax shield. At which
rate should we discount future tax benefits of debt, and how future financial leverage

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Introduction

decisions should be factored in the same valuation process? This book is conceived
to give theoretical and pragmatical answers to questions such as these.

We have decided to keep the book intentionally synthetic, exploring in more
depth only those parts we believe to be relevant for both academics and practitioners.
While we do not cover the complete literature on dynamical capital structure, we
provide a large number of references for the readers wishing to understand in more
depth the technical details of the topics we deal with. However, some topics of
corporate finance theory have been intentionally excluded for reasons of scope and
space. The major exclusion is the field of security design, for which a huge literature
was developed in the last 20 years of the past century (see Hart 1995). In other
words, in all our models we take as given the contractual features of corporate
securities (e.g. common stocks have certain characteristics, such as shareholders’
limited liability). In this regard, we shall be clear from the beginning that the models
presented in the book can be applied only to non-financial corporations. This is an
intended consequence, motivated by three different reasons related to the nature of
financial corporations. Firstly, banks, insurance companies and asset managers are
delegated investors/financial intermediaries using their leverage in a very different
way relative to non-financial firms. Secondly, financial intermediaries are regulated.
Their capital structure decisions are constrained by tight capital adequacy rules,
that are primary intended to reduce their contribution to systemic risk. Thirdly, the
structure of their balance sheet is significantly different from that of non-financial
corporations, and therefore different accounting conventions must be taken into
account. For the interested reader, a synthetic introduction to the dynamic corporate
finance for banks and insurance companies can be found respectively in Chapters 4
and 5 of Moreno-Bromberg and Rochet (2018).

1.2 The Realm of Corporate Finance

At an abstract level, firms can be described in terms of production, investment
and financing decisions, which are interrelated one each other. To get an idea
of the underlying complexity of the corporate finance decision process, we may
start by observing that production depends on firm’s assets, which in turns are the
outcome of investment decisions. The optimal use of the production capacity is then
depending on the market competition, which affects the marginality of the firm,
and, consequently, financial resources available for new investments. For instance,
if inventories of intermediate inputs must be purchased before production eventually
becomes available for sales, the firm must be able to finance the working capital
required to achieve its production target. Likewise, investment decisions may be
affected by the level of indebtedness of the firm, with shareholders being little
motivated to invest in new projects when default is impending.

The example is enough to clarify why we need a theory of corporate finance,
which must be dynamic given the intertemporal nature of investment decisions.
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Otherwise, a similar complexity could be never resolved by simply looking at data
in a unstructured fashion.

How do we build corporate finance models? First of all, it is necessary to establish
which questions are relevant, and in which order. Shareholders typically control the
firm and they try to maximize the value of their claims. The first task is therefore
that of putting in relation the cash flows that can be distributed to shareholders
with the equity value of the firm, which is a mere exercise of combining basic
accounting with the way in which stocks are priced as a function of their future
stream of dividends. After doing this, we must extend the analysis to the pricing of
any generic type of security that the firm may want to issue consistent with its budget
constraint. This process, in a sense, is equivalent to descriptive statistics in data
science. Given a set of available data, we learn how to present them in a consistent
fashion, which corresponds, in this case, to show how the budget constraint of the
firm affects the total value of the securities. In a nutshell, we will show that given
any (feasible) path for investment and financing decisions, the sum of the market
values of all the securities issued by the firm can be always traced back to the sum
of few components. Next, we can go back to the original problem of determining
which decisions are consistent with the shareholders optimizing behavior, exploring
which managerial conditions are needed to do this. We deal with such an extremely
complicated problem in Sect. 2.3.3, without entering into technical details, for which
the interested reader may refer to Tirole (2005). When presenting and discussing
the model in Chap. 3 through Chap. 7 we always assume that firms are effectively
managed in order to maximize shareholders value.

In sum, we are interested in shareholders optimal financing and investment
decisions, possibly conditional on the industrial organization setting of the firm.
As said, our interest is on the impact on firm value and its securities outstanding,
as well as the associated expected returns. Having clarified the corporate finance
perspective we assume, now we focus on the theoretical tools we need to build
consistent models.

We adopt an equilibrium approach and in the next section we provide the basic
elements for a correct understanding of all the models presented in the following
chapters, without entering too much into technical details in order to keep the
discussion self-contained.

1.3 Equilibrium Approach, Market Structure and Corporate
Governance

The concept of equilibrium is of central importance in our book and needs to
be contextualized within our framework. To do this we rely on Kreps (1990),
Fudenberg and Tirole (1991), Osborne and Rubinstein (1994) and Gatcher (2013).

A theoretical model is an artificial economy where different agents, such as
investors and firms, interact with each other. As such, the role of an artificial
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economy is the same as the laboratories for natural scientists, namely perform-
ing controlled experiments assuming ideal conditions. An artificial, or “model”,
economy is always characterized by an institutional framework, which defines the
aggregate resource constraints and the way in which agents can interact with each
other. A situation is an outcome of the artificial economy. An equilibrium is a
situation in which each agent is doing as best as it can, given the institutional
framework and the behaviors of all other agents.1 The concept of equilibrium is
intended to be a composite principle to determine a plausible outcome for the model
economy, that is, a solution concept. The axiomatic explanation for this approach is
that an equilibrium defines a situation in which no agent has incentive to behave in
a different way given the behavior of other agents. In this regard, it is important to
observe that an equilibrium is always a property of the model, and not of the real
world. Hence, being the general definition of equilibrium a theoretical abstraction,
we may wonder why we should adopt an equilibrium approach in the first place. For
this reason, we adopt a set of more primitive principles, which jointly motivates the
use of equilibrium as solution concept for economic models.

There are two principles which are always assumed valid in economics, aggre-
gate consistency (e.g. Barro 2001) and optimization (e.g. Varian 2011). Aggregate
consistency requires that individual actions must conform with the institutional
constraints. For instance, the quantity purchased of an object cannot be different
from its quantity sold. Likewise, the total amount of securities within a market
must correspond to the total securities held by all investors. In this perspective,
we state that the actions of agents must be compatible with each other and with
the institutional framework. Optimization relates to the absence of unexploited
opportunities. This principle states that every agent select the best choice available
to her, depending on her informational set. This principle captures the basic idea that
we generally act in what we believe to be in our best interests. There is a key caveat
underlying the optimization principle to clarify. Indeed, in many circumstances,
the consequences of a certain decision may be affected by the behavior of other
individuals. As such, individual decisions may be driven by what each agent believes
about the simultaneous and subsequent behavior of others, depending on whether
individual act simultaneously or according to a a priori ordering. As a consequence,
without a principle describing how agents develop their conjectures about the
behaviors of other, we cannot characterize the outcome of the model as a whole.
The most common solution is to introduce the hypothesis of correct beliefs as a
third principle, which states that each agent takes as given the behaviors of others.

Since the assumption of correct beliefs is an important integrand part our models,
it is worth giving a little bit more of context. Essentially, the principle of correct

1The “optimality” concept embedded in the definition of equilibrium is intended from an ex-
ante perspective, i.e. before the uncertain and random events materialize. To put the point into
perspective, consider, for e.g., an investor optimizing her portfolio, who then experiences a
considerable financial loss due to an adverse exogenous shock. Ex-ante, she formulates expectation
on key variables and takes her optimal asset allocation decision, while ex-post, due to a random
event which was not included in her decision process, she suffers a substantial loss.
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beliefs translates into practice depending on what it is intended with the expressions
“doing” and “behaviors of others” in the definition of an equilibrium. Broadly
speaking, we can identify three situations. In simultaneous interactions with perfect
information, the principle of correct beliefs requires that each agent takes as given
the actions simultaneously played by others, which is the usual Nash requirement. A
trivial example is the one-shot prisoner’s dilemma, where the common knowledge
of rationality is enough for each prisoner to deduce that the other will confess
the crime. With imperfect information, this requirement is modified by imposing
that each agent takes as given the state-contingent actions of other agents, which
are commonly referred as strategies. To make an example, consider a sealed-bid
auction, in which the various participants submit their bids for a certain object
without knowing the reservation values of others, which are drawn from a common
probability distribution. In this case, the principle of correct beliefs requires that
each participant takes as given the functions (strategies) mapping the reservation
prices of other players’ into their corresponding bids. While a bit abstract at first,
the epistemic motivation for the assumption of correct beliefs in simultaneous
interactions is that the common knowledge of the optimization principle and the
institutional framework should guide each individual to deduce the simultaneous
behaviors of others (Aumann and Brandenburger 1995; Polak 1999). Likewise, in
sequential interactions, either with perfect or imperfect information, the principle
of correct beliefs requires the player moving first to correctly anticipate how her
decisions will affect those of the second movers.2 The reason for this assumption
is again that the common knowledge of optimizing behavior should allow the first
mover to correctly map its actions into those of second movers, which may be still
permeated by an element of uncertainty depending on the information structure
of the economy.3 In this regard, it is important to note that “sequentiality” needs
not be necessary intended in terms of passing time, but extends to decisions taking
place at a same instant albeit according to a predetermined “virtual” ordering. One
example is the basic model of monopolistic competition, in which the monopolist
maximizes its profits correctly anticipating the aggregate demand schedule deriving
from consumers’ optimizing behavior. This assumption is of extreme importance
for corporate finance models, in which at a certain point in time4 more events can
occur according to a virtual sequentiality (e.g. at time t ∈ N the firm produces a
certain amount of goods, collect revenues and then decide whether to default on its
debt obligations or not).

Taking together the principles of aggregate consistency, optimization and correct
beliefs we get an equilibrium approach in which every agent is doing as best as
it can, given the institutional framework and the behaviors of other agents. In the

2In other words, when an agent is moving before others, she takes as given the function mapping
her decisions into the actions that second movers will play in response to her decision. In game
theory, this is the usual requirement of subgame perfection for Nash equilibria.
3Or, more appropriately, the characteristics of the sequential game.
4A point in time is a point on a subset of the real line (R).
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same way, the solution of any economic model based on aggregate consistency,
optimization ad correct beliefs principles is an equilibrium. While the definition
of equilibrium is potentially more general,5 this is how the equilibrium approach
is generally intended in applied economic theory. In this book, the principles of
aggregate consistency, optimization ad correct beliefs are always assumed valid to
build economic models, and, consequently, we are always considering equilibrium
behaviors. From a technical perspective, notice that, having assumed correct beliefs
for sequential interactions, we always consider subgame perfect equilibria. This
point is particularly relevant for Chap. 6, in which we analyze a dynamic game
between shareholders and bond holders of a given company.

It it important to observe that the equilibrium approach is intended to obtain eco-
nomic relations that, being valid in the model, should be tested empirically before
using by practitioners. For this reason, it is often convenient to focus on a subset of
agents, taking for granted the aggregate consistency of their equilibrium behavior
with the rest of the model economy. In this case, we refer to partial equilibrium
models. This is very common in corporate finance, and it is a characteristic of all
the models that are discussed in the next chapters. This simplification is motivated
by our primary interest to understand the equilibrium dynamics of firm’s decisions
for a given asset pricing kernel, the latter being a concept of utmost importance we
will discuss in Sect. 1.3.2.

1.3.1 Building on the Neoclassical Synthesis

The equilibrium approach is just a very general recipe to build economic models.
Consequently, it is important how economists translate it in practice, depending
on the context and the research questions that should be analyzed with the aid
of a specific model. Despite the vast array of different modeling choices, most of
corporate finance models are built on the neoclassical synthesis, which is based on
the following assumptions:

(1) perfectly rational individuals;
(2) rational expectations (RE).

By perfectly rational individuals, we intend that each agent is always able to
decide whether an action is preferred or not to another, according to a binary
preference relation satisfying the transitive property and the axiom of independence
of irrelevant alternatives. This ensures that the optimization principle can be cast
into a mathematical optimization problem, consisting in the maximization of an
expected utility function subject to the constraints faced by each decision maker in

5An example is the assumption of self-confirming beliefs (Fudenberg and Levine 1993) instead of
correct beliefs, which is typical of the Nash tradition. Both assumptions lead to a situation where
the general definition of equilibrium is valid.
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the model. The reader may refer to Mas-Colell et al. (2011) or Varian (1992) for
the more details. Expectations, in turn, depend on the probabilities that each agent
attributes to random events not yet realized at the time of its decision. In general,
the agents in the model may ignore the probabilistic structure of the exogenous
random variables, and have different priors in a Bayesian sense. In this regard, the
rational expectations (RE) hypothesis requires that individuals have common priors
for exogenous random variables, and that such a prior coincides with their objective
distribution. Additional references on this topic may be found in Ljungqvist and
Sargent (2018). Rational expectations are useful to introduce model discipline.
Indeed, without RE it would be very hard to obtain testable predictions, as we can
almost always find a set of heterogeneous priors to obtain a target outcome as the
equilibrium outcome of a given model. In fact, structural estimation and testing of
equilibrium models is possible only for rational expectations models (Hansen and
Singleton 1982).6

The neoclassical synthesis offers a plenty of potential modeling choices. Due
to the scope of our models, in our book we introduce few additional hypothesis
regarding the structure of financial markets and the informational set (i.e. the
institutional framework):

(1) perfect information;7

(2) Walrasian secondary financial markets;
(3) zero profits for intermediaries, which do not take risky positions on their own

as they do not trade directly in the firm’s securities (i.e. brokers rather than
dealers).

Perfect information is not a strict requirement, and a large body of literature in
corporate finance does not share this hypothesis. However, in our context it takes
the meaning of simplifying the set of equilibria that may be observed, particularly
in terms of how the price of corporate securities are determined on secondary
financial markets. By secondary financial markets we mean the trading venues in
which corporate securities are negotiated right after their issuance. The issuance of
new securities is generally intermediated by specific agents, such as coordinating
brokers, which could demand a fee in exchange of their services. Sometimes these
fees may be not negligible, although in recent years pure intermediation costs have
fallen significantly. The issuance process takes place on what we call primary,
or capital, markets. In all our models, this process takes place immediately and
translate into a corresponding listing of the newly issued securities on secondary
markets. We will come back at the end of this section on the role and potential
frictions of capital markets.

6DeJong and Dave (2011) provides an excellent reference to structural estimation methods,
although pretty much focuses to macroeconomics applications. Strebulaev and Whited (2014) is a
concise and hands-on discussion of structural estimation in dynamic corporate finance models.
7More formally, we say that all information is common knowledge, that is, at each date, the
information set of each agent is the same of any other.
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We assume that secondary markets are organized as Walrasian auctions. In a
Walrasian market, there is a single market price at which the participants can buy
and sell any amount of a certain object, for instance the stocks of a company. In
other words, investors face as only restriction their own budget constraints and do
not need to take into account the behavior of other traders. Aggregate consistency
is ensured by an anonymous auctioneer that sets beforehand a price at which the
resulting trades are mutually compatible (see Kreps 1990). Such a price is called
market-clearing price, and the resulting price and trades constitute a competitive
equilibrium.8 Real financial markets are not exactly consistent with the ideal setting
of the market-clearing model. However, for thick trading posts, a competitive
equilibrium is effectively a convenient approximation. The underlying idea is that,
when the number of investors is large, trading protocols9 should not be the driving
force behind corporate finance decisions.

Once we will add the hypothesis of market completeness (see Sect. 1.3.3),
corporate securities are always “correctly” evaluated, in the sense that we can rule
out the presence of bubbles, whether rational or not. This certainly precludes any
possibility to statistically profit from information frictions. Warusawitharana and
Whited (2015) is probably the only dynamic corporate finance model with equity
“misevaluation” due to imperfect information (e.g. Merton 1987; Grossman and
Stiglitz 1980) or heterogeneous beliefs (see Back 2017).

We now discuss in more details the role of primary, or capital, markets in our
models. As said, the issuance of new securities take place instantaneously on these
markets. However, financial intermediaries just coordinate the issuance of new
securities, without holding any of newly issued securities on their books. Effectively,
this setting is equivalent to the one in which newly issued securities are listed
immediately on the secondary financial market, and the issuer pay the associated
flotation costs, if any, to financial intermediaries as additional expenses that are not
included in the financial conditions of the securities issued. In all our models, we
shall rely implicitly on this equivalence.

8The major drawback of the market-clearing model is that it doesn’t explain how the auctioneer
clears the market. At a theoretical level, the most convincing argument is that the auctioneer
knows the aggregate excess demand schedule and, right before the trades take place, sets a price
vector that ensures aggregate consistency of subsequent trades (Qin and Yang 2019). In this case,
sequential moves are taking place at a certain market instant, with the price being announced
before trades are executed. In a simultaneous moves setting, Arrow and Debreu (1954) shows that
a competitive equilibrium can be obtained if the auctioneer minimizes the net worth of aggregate
excess demand function (see also Villar 2000 and Tian 1992). However, a controversial assumption
is implicit in the Arrow and Debreu model. The auctioneer has “deep pockets”, and aggregate
consistency does not matter, in the sense that, out of equilibrium, the auctioneer can always satisfy
the aggregate excess demand using her own resources (Shapley and Shubik 1977). Despite the
difficulties in developing a convincing mechanism that implements a competitive equilibrium, the
market-clearing model remains a good proxy for real market in several circumstances.
9Market microstructure is a very interesting field, and we invite the reader to explore this field.
Excellent references are Harris (2003) and De Jong and Rindi (2010).
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The next question is therefore when transaction costs can be assumed equal to
zero. The answer is embedded in the assumption of zero profits for capital markets
intermediaries. When intermediation is costless, competition drive flotation costs
(intermediaries’ revenues) to zero. Whenever we believe reasonable to assume the
flotation of new securities as a costless process, we can set flotation costs equal to
zero. Clearly, this argument implicitly assumes absence of information asymmetries,
which is indeed one of our working hypothesis. There are however securities that
requires intermediaries (or sometimes the firm) to bear specific issuance costs.
A notable example is that of secured debt contracts, such as leveraged loans, in
which the firm pledges one or more assets as collateral. There are several legal and
monitoring activities involved in the lien process, which is usually delegated to one
or more intermediaries. As a result, capital markets intermediaries will charge a fee
to the firm in order to cover the related costs, unless the firm pay directly for this
expense. In both cases, we shall assume that the resulting flotation costs are not paid
within the terms of securities, but as direct costs charged to the firm. As a result, the
issuance price of a security will be always equal to its secondary market equilibrium
price. In other words, there will be no difference in our models between primary and
secondary listing prices.

1.3.2 Market Completeness, Pricing Kernel and the Objective
of the Firm

In our book, we assume markets to be complete, in the same spirit of Radner
(1972) model of sequential trading. Roughly speaking, completeness means that
investors can trade any form of state contingent contract. In other terms, the
market includes assets for every possible state of the world. Under the complete
markets assumption, also imposing perfect information and rational expectations,
the competitive equilibrium of secondary financial markets ensures the existence of
a unique strictly positive stochastic process {Mt }t≥0 (M (t) in continuous time),
commonly known as stochastic discount factor (SDF) or asset pricing kernel, such
that the price (pt ) of a generic security must satisfy,
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where {yt}t≥0 (y (t) in continuous time) is the stochastic process characteriz-
ing the cash flows paid by one unity of the security to its holder, while nt+1

(n (t) in continuous time) is the amount in circulation at time t . In Sect. 2.1 we
clarify the reason why we set nt+1 instead of nt , although it is a matter of con-
venience in discrete time dynamic corporate finance applications.10 A competitive
equilibrium is always arbitrage free, in the sense that a) it prevents risk-free trading
opportunities with unbounded profits, and, b) all risk-free assets have the same rate
of return.

We recall that firms do not participate in secondary financial markets directly.
However, firms take as given the SDF. As each firm is the monopolist of its
own securities, it is natural to expect that its capital structure decisions will take
into account the related price impact (if any), just as the monopolist producer of
a certain good takes into account the pricing constraint induced by the demand
schedule for its products (see Sect. 4.2). The point is discussed in Chap. 6, in
which we study the dynamic game between shareholders and debt holders relative
to the optimal issuance of unsecured debt. In general, firms take the process Mt
(M (t) in continuous time) as given, while they might affect the distribution of
the cash flows of their securities through production, investment and financing
decisions. In other words, the firm, or who is in charge for its management, take
as given the way in which market-clearing prices are determined as a function of its
strategy.

We assume that shareholders do not invest in other liabilities issued by their
firm and agree unanimously with the maximization of the market value of the
firm’s equity. This is known as the shareholders value approach (Tirole 2001,
2005). As we discuss in the next chapters, equity value maximization does not
necessary correspond to maximization of the total value of the firm, which is by
definition the sum of the market values of the securities issued by the firm, net
of cash and other risk-free investments held as liquidity reserves. Nevertheless,
there might be situations in which shareholders may fail in their objective of
maximizing the value of equity. As firms are generally run by a group of managers,
equity value maximization requires a preemptive alignment of managerial incentives
with shareholders objectives. This is a type of principal-agent conflict, which may
be anything but easy to solve in practice. However, except for a few illustrative
examples, all the models we discuss from Chaps. 3–7 assume the existence of a
corporate governance mechanism that perfectly aligns the interests of shareholders
with that of managers. For the same reason, we move under the same hypothesis for
which the firm is directly managed by shareholders.

As introduced in this section, there is a fundamental difference between partial
and general equilibrium models. General equilibrium models consider closed-
ended environments, in which primitives such as individuals preferences and
production technologies are mapped into equilibrium prices and asset allocations.

10In macroeconomics models this convention is instead more uncomfortable, and it is generally
used nt to denote the amount of securities outstanding at date t, instead of nt+1 as we do here.



1.3 Equilibrium Approach, Market Structure and Corporate Governance 11

Instead, partial equilibrium models are concerned with the behavior of one or more
individuals, holding everything else constant. Most of corporate finance models are
indeed partial equilibrium models, in which the main interest in deriving the firm’s
equilibrium relative to asset pricing kernel, which is assumed as given for each firm.
The models discussed in the book pertain to this group, as our objective is to fully
understand the effects of shareholders’ optimizing behavior in terms of production,
investment and financing decisions on market value of the firm as well as the value of
its securities, given a certain SDF. Hence, the implications and results proposed with
the models discussed throughout the book assume that each firm is small enough
relative to the market as a whole. This is a common assumption among practitioners
which is easy to verify empirically.

The extension within a general equilibrium models setting is not trivial, as aggre-
gating investors’ preferences could be problematic.11 To do this, the compromise
between partial and general equilibrium approaches is commonly proposed, which
consists in assuming a parametric form for the SDF, then computing find the values
for those parameters ensuring the aggregate consistency of the firms’ decisions.
This approach is nonetheless likely to have more success in empirical applications,
instead of deriving the SDF from a direct specification of investors preferences,
which is the crux of the equity premium and risk-free rate puzzles (Mehra and
Prescott 1985; Weil 1989). The reason is that aggregation problems across firms
tend to be less severe, making investment-based asset pricing a prominent direction
to obtain empirically robust pricing models (Lin and Zhang 2013). We discuss this
point in Chaps. 3 and 4, when introducing the Investment CAPM (Zhang 2017) as a
corollary of investment and financing decisions with risk-free debt.

A word of caution. Without complete markets, or in presence of externalities
or imperfect product market competition, the maximization of the equity value
may not be the best choice for all the shareholders (Grossman and Hart 1979;
Milne 1995; Carceles-Poveda and Coen-Pirani 2009; Hart and Zingales 2017). The
objective of the firm becomes the outcome of a voting problem, since depending on
the preferences of the majority of shareholders. Under some specific conditions,
shareholders may still agree on maximizing the equity market value (Sabarwal
2004). Despite that, asset prices may be sometimes disjoint from their fundamentals,
as there might be rational bubbles as in the case of sunspots equilibria (Maskin and
Tirole 1987).

Furthermore, with incomplete markets, there might be situations in which criteria
other than shareholders value maximization may be adopted, especially if the firm
generates externalities that cannot be hedged. In this regard, many are debating on
whether social and environmental impacts should be included in the objectives of

11This is a consequence of the Sonnenschein-Mantel-Debreu (“anything goes”) theorem (Son-
nenschein 1972; Sonnenschein 1973; Debreu 1974; Mantel 1974; Andreu 1982; Chiappori and
Ekeland 1999).
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the firm (Hart and Zingales 2017). This may complicate the analysis for sure. Also,
growing discussion is focusing on the hypothesis that firms may increase their value
by paying more attention on environmental and social issues, which is a sort of
“doing good by doing better” concept. As is obvious, such assumption derives from
the idea that managers are not maximizing the value of the firm, and, therefore,
shareholders could improve their value by taking corrective measures, although
this implicitly requires that environmental and social performances can be correctly
measured by outsiders.12 If true, the ESG paradigm would resolve in the last letter of
its acronym: governance. To date, there is no clear consensus on this issue, and then
we have stick on the canonical assumption of equity value maximization, which is
a more robust theoretical framework when having conflicting objectives. After all,
maximizing the firm’s value is equivalent to agree to run the firm at an “average”
optimized risk-return profile.

1.4 Roadmap

1.4.1 Plan of the Book

The remainder of the book is organized as follows.
Chapter 2 introduces the reader to the main concepts in corporate finance, and

to all other topics we deal with in the next chapters. We focus, in more depth,
on the value of the firm and its determinants, which is consistent with the book’s
philosophy. The natural starting point are the Modigliani and Miller theorems
(MM), which marked the birth of modern corporate finance in the 50’s. The ideal
conditions of the MM theorems are progressively abandoned in favor of richer
and more sophisticated environments. We briefly overview agency problems such
as debt overhang, the importance of efficient corporate governance mechanisms,
and illustrate how to describe in general terms bankruptcy procedures. A general
expression for the value of the firm is provided, which proves to be particularly
helpful in the following chapters.

Chapter 3 introduces debt dynamics and investment decisions. We assume
the presence of a collateral constraint that ensures that firms will never default.
These models are useful in several circumstances, especially once endogenous
investment decisions are introduced. In this regard, we analyze shareholders’
optimal investment and financing program in the case of perfect product market
competition, also introducing the presence of convex investment adjustment costs.

12The quality of environmental (E) and social (S) performances may be subject to a strong infor-
mation gap between managers and shareholders. As externalities represent a tangible operational
and financial risk to shareholders, managers may be motivated to report E&S performances in the
most convenient way possible. Camodeca et al. (2018) formalizes this idea using different game
theoretical models of strategic information transmissions, with particular emphasis to the case of
partitioning equilibria as in the cheap talk model of Crawford and Sobel (1982).
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The model is used to obtain a large number of useful insights on the firm’s leverage
dynamics and the relation between investment and stock markets returns.

The limits of the model are discussed in Chap. 3 and focus on the industrial
organization setting, since, except for some commodity producers, the majority of
firms have some degree of market power. Hence, in Chap. 4 we introduce the effects
of imperfect competition in the firm’s product market. The model also includes the
role of the working capital, in terms of inventories of intermediate inputs used in the
production process.The model offers a more realistic and insightful relation between
investment and stock returns. For this reason, we present a specific version of the
model in terms of stochastic processes for the exogenous variables, which can be
proficiently used in several applications, from empirical research in asset pricing to
equity valuation.

Until Chap. 4 all models are presented in discrete time. Continuous time methods
are introduced in Chap. 5, which is based on the Leland (1994) model. Differently
from the previous two chapters, the focus is on unsecured, unprotected and pari
passu (equal seniority) debt securities. Despite being a static representation of the
capital structure, this model turns out to be a very useful tool for more advanced
dynamic models. Besides, it helps to frame the economic intuition behind agency
problems such as strategic default, debt overhang and risk-shifting.

In Chap. 6 we extend the Leland model to the study of optimal dynamic capital
structure decisions, following the recent model developed by DeMarzo and He
(2020). The striking result of this framework is that, in a continuous time Markov
Perfect Equilibrium (MPE), the equity market value is the same as in the case that
shareholders commit to not issue additional debt in future. We analyze the impact
of this result to leverage dynamics and the firm’s cost of capital. We also provides
a discrete time version of the model, which helps to understanding the economic
mechanisms at work, and can be also used as a building block for quantitative
models.

Chapter 7 is the last chapter in which we are eventually able to introduce several
extensions that might be of particular relevance in practice. Firstly, we formulate
a model, both in discrete and continuous time, where the firm can issue either
secured risk-free debt or unsecured, unprotected, pari passu debt. The model is
an efficient combination of what is developed in the previous chapters, and can be
used for quantitative analysis. Indeed, it allows to model very heterogenous capital
structures, as a combination of risk-less secured debt and unsecured debt can be
used most of the time to represent also the case of risky secured debt. In any case,
the model has two limitations. First, it is based on Markov perfect strategies. Second,
it needs to be solved numerically. We discuss each of these points, and also provide
a brief introduction to structural econometric methods in finance.
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1.4.2 Prerequisites

In Sect. 1.3 we summarize some very important, synthetic, while incomplete,
prerequisites for the reader. We suggest the readers who are unfamiliar with those
concepts to refer on equilibrium asset pricing literature, such as Cochrane (2009),
Duffie (2010), Ma (2011), Dumas and Luciano (2017) or Back (2017). There are in
any case some other prerequisites that will help the reader to comfortably navigate
through the technical details of the book. First, a good understanding of static
optimization methods (linear and concave programming) in several variables is
more than essential, as well as an intermediate knowledge of stochastic processes,
both in discrete and continuous time. Hamilton (1994), Oksendal (2003) and Bjork
(2009) are very useful references for the theory of stochastic processes, while
De la Fuente (2009) and Simon and Blume (1994) provide a very good overview
of static optimization methods. As is natural, a complete understanding of the
theory of stochastic processes require a sound knowledge of probability theory
and mathematical statistics. Second, a basic knowledge of stochastic dynamic
programming (SDP) is absolutely necessary for a thorough comprehension of
dynamic corporate finance models. Miao (2020) and Stokey and Lucas (2004) are
excellent references for discrete time SDP. Dixit (1993), Dixit and Pindyck (1994),
Bjork (2009) and Stokey (2009) are useful references for continuous time dynamic
programming methods in finance. The basics of corporate finance are, of course,
the starting point to explore more advanced concepts. Berk and DeMarzo (2019) is
an excellent reference to this purpose. Although not essential, a prior knowledge
of more theoretical aspects of corporate finance are helpful. Amaro de Matos
(2001) and Tirole (2005) are strongly suggested readings. Tirole (1988) provides,
instead, a comprehensive overview of the theory of industrial organization, which
may be useful to have in mind the effects of product market competition. After
all, profitability drives investment and financing decisions, so it is quite relevant
to understand where it comes from. Finally, a basic knowledge of accounting is
essential.
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Chapter 2
The Value of the Firm and Its Securities

This chapter has the fundamental role to introduce the reader to the basics of
corporate finance. Broadly speaking, corporate finance is the branch of economic
science which deals with the financing and investment decisions of firms, and how
these decisions affect the value of corporate securities and their financial returns.
A security is a contingent claim liability issued by a company, which attributes
certain control rights to its holders. Control rights include, but are no restricted to,
receiving certain cash flow streams. For instance, common stocks attribute the right
to shareholders to receive dividends, as well as equal voting rights. Firms are not
directly tradable, while their liabilities are. The set of the outstanding securities
characterizes the ensemble of the control rights, and therefore the set of individuals
that are entitled to split the (free) cash flows generated by the firm. Accordingly, the
value of a firm is defined as the market value of its securities, net of cash and other
equivalent risk-free assets. Netting for liquidity allows to identify the going concern
value of the business, which is generally higher than the accounting book value of
invested capital (fixed assets plus trade working capital). Many motivations explain
such a underlying difference, which becomes more evident in the next chapters, in
particular in Chap. 3 and 4. In short, firms may extract valuable rents from their
operations, depending on the competitive landscape and the efficiency level of their
assets. Besides, firms may have valuable growth options, whose value cannot be
preemptively recognized in the balance sheet statement. In the end, what really
matters for the total value of the firm is the total cash flows that all security holders
can split between themselves. The purpose of this chapter is to clarify this point,
namely, how the value of a firm and its securities are related to the free cash flows
generating process.

The chapter is organized as follows. In Sect. 2.1 we introduce the main notations,
the concept of unlevered free cash flows and a very basic model of the firm’s
budget constraint. Section 2.2 presents the Miller and Modigliani (MM) theorems,
which state that, under certain conditions, financing decisions are irrelevant. As a
consequence, the only effect of financial leverage is to increase expected equity
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returns, consistent with the higher risk for shareholders, who are the residual claim
holders (i.e. the most junior) in the firm’s capital structure. The main assumptions
of the MM theorems are: (a) exogenous investment decisions, (b) absence of
transaction costs, (c) no tax benefits from the use of debt financing and (d) absence
of bankruptcy costs. In Sect. 2.2 we introduce tax effects of debt financing and
bankruptcy costs, and provide a general expression for the value of the firm.

Section 2.3 introduces a first analysis on the optimal investment decisions
and agency costs. A notable example is debt overhang, which is presented in
Sect. 2.3.1. We also provide specific examples of agency problems related to
corporate governance frictions, by limiting the discussion of these problems only
in this chapter. In Sect. 2.4 we provide a general formula for the value of the firm.
We introduce the concept of abstract security, and show that regardless the number
and the design of the securities actually issued, the value of the firm can be always
obtained as the sum of few distinct components. Sect. 2.4 concludes with practical
examples, which is a first attempt to estimate the expected stock returns based on
equilibrium corporate finance principles.

To summarize, with this chapter the reader should have a clear picture of which
elements affect the valuation of the firm and its securities, and how financing
and investment decisions can interact with each other. The topics covered in this
chapter are important prerequisites to fully understand more advanced discussions
and models we present throughout the book.

2.1 Notation and Basic Setting

Our analysis of corporate finance begins with a discrete time setting, in which all
agents interact with each other only at a countable set of decision instants, or dates,
t ∈ T ⊆ N. As anticipated in Sect. 1.3, this does not mean that at a generic time
t everything take place simultaneously. Rather, different events or actions may take
place sequentially, according to a predetermined ordering. However, as t is a point
on the real line, everything takes place instantaneously and the ordering has to be
intended as a virtual one. For the same reason, instants are also referred as periods,
although they are specific points in time. In the same way, when we consider a
variable at the end of period t , we intend its value after all the decisions in t took
place, which include all payments executed/received by the firm. Likewise, when we
observe the value of the firm’s securities at the beginning of time t , we must include
any cash flow that might be paid in the same period. Hence, we use the definition
cum cash flows or even, cum dividend market values. Instead, market values at the
end of the period are observed after all payments are made, and therefore they are ex
cash flows or ex dividend. This flexibility is very important to achieve consistency
with accounting data thereby representing the right timing of different decisions
within the model.

The natural starting point of our discussion is the firm’s budget constraint,
which relates the use of resources to the evolution of the firm’s liquidity balance.
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Table 2.1 Overview of recurrent notation

Symbol Description

Mt Stochastic discount factor (SDF)a

Mt,t+j := Mt+j
Mt

The j -periods ahead pricing kernel at time t

rt+1 =
[
Et

(
Mt+j
Mt

)]−1 − 1 The risk-free rate at time t

ICt+1 The book value of the firm’s invested capital at end of
period t

Lt+1 The liquidity of the firm at the end of period t

Ft+1 The nominal amount of debt outstanding at the end of
period t

ebitt Earnings before Interests Expenses and Taxes (EbIT)

T ct Taxation of EbIT

nopatt := ebitt − T ct Net operating earnings after taxes (NoPAT)

xt = NOPaTt − (ICt − ICt−1) Unlevered free cash flows (UFCF)

πt Debt tax shield

Tt = T ct + πt Total taxes paid in t

xt + πt Free cash flows to the firm
aSee Sect. 1.3 for a quick reference

By liquidity, we mean callable deposits, term deposits or other equivalent risk-free
securities in which the firm invests its savings. Put in other terms, we assume that
the firm’s savings (if any), are invested at the risk-free rate, although we can also
include specific transaction costs (e.g. a tax on call deposits). Before presenting
the first model of the firm’s budget constraint, it is important to present a synthetic
overview of the relevant notation; see Table 2.1.

The risk-free rate at time t (rt+1) is equal to the coupon received in t + 1 for a
dollar invested at time t in a risk-free security. Except specific cases (e.g. taxes), the
difference between capital and lowercase letter serves to make distinction between
stock and flow variables, which is important from an accounting perspective.
Invested capital is the sum of firm’s fixed assets and trade working capital, which
is in turn equal to the book value of trade receivables plus that of inventories and
minus that of trade receivables. Unlevered free cash flows are the free cash flows
to the firm before any direct impact of debt financing. This does not means that
the financing policy will not affect them, as investment decisions may be indirectly
affected by capital structure decisions. In other words, for a given investment policy,
unlevered free cash flows corresponds to the dividends paid by an all-equity firm
which does not accumulate cash.

As anticipated in the previous chapter, the value of the firm is defined as the sum
of the market values of all its securities outstanding, net of liquidity (Lt+1). In this
regard, it is important to observe that we can consider cum-dividend or ex-dividend
valuations, although securities will be always traded at their ex-dividend price.
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Needless to say, the two cases are essentially equivalent, in that the former differs
from the latter only by the inclusion of the same period cash flows. Nevertheless,
as investment and financing decisions must be taken before dividends are paid, it
is the cum dividend value of equity that matters for their optimal decisions at each
date t . For this reason, the cum-dividend value of equity is also commonly referred
as shareholders value. These are important considerations that are valid in general.
To simplify the discussion, from here on out when we speak of value of the firm, or
that of a certain class of securities, we always intend ex-dividends values.

As for the probabilistic structure of discrete time models, we limit to say that the
economy is characterized by a probabilistic space

(
�, {Ft }t≥0 ,P

)
spanned by a set

of exogenous source of randomness {zt }t≥0. The bold notation is intended to denote
a vector of real variables. The symbol � is the sample space of zt , while P is an
objective probability measure define over �. The collection {Ft }t≥0 is the natural
filtration generated by zt . All the other stochastic processes involved in our analysis
are assumed to be adapted to Ft , once the correct timing (and notation) conventions
are properly taken into account.

2.1.1 Budget Constraints and Policies

Our analysis of corporate finance decisions starts from a simple setting in which the
company can issue common stocks and a bond with one period maturity (i.e. bonds
issued in t expire in t + 1), and there are no transaction costs on capital markets.
At each date, the bonds issued are all of equal seniority, and pay a predetermined
coupon rate equal to ct+1. The face value of each bond is equal to one unit of the
relevant numeraire, we name as dollar. Consequently, the number of bonds issued
in t is equal to Ft+1. Hence, provided that the firm is solvent1 at date t , its budget
constraint is given by

st (nt+1 − nt )+ ptFt+1
︸ ︷︷ ︸

Inflows from capital markets

+ yt −
⎡

⎢
⎣ dtnt + Ft (1 + ct )︸ ︷︷ ︸

Outflows related to existing liabilities

⎤

⎥
⎦ = Lt+1 − Lt (1 + rt ) ,

(2.1.1)

where nt+1 is the number of shares outstanding at the end of period t , and dt is
the dividend per share paid to incumbent shareholders. Basically, the change in end
of period liquidity is the sum of the following components: (i) the free cash flows
to firm (yt ), (ii) the interest income on existing liquidity (rtLt ) and (iii) the net
proceeds from financial markets st (nt+1 − nt )+ptFt+1−[dtnt + Ft (1 + ct )]. This
consideration holds in general, as we show in Sect. 1.4.1.

1We use the term solvent as a synonym of a active (non-defaulted) firm at a generic time t.
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Notice that in the current example, bonds are unsecured.2 A debt instrument is
secured if, in case of the firm’s default, its holders can seize a specific asset of
the firm. Therefore, the recovery value of secured debt can never fall below the
net proceeds from the sales of the pledged asset. On the other hand, the recovery
value of unsecured debt instruments is tight to the going concern value of the firm
at default. We analyze in detail the difference between the two cases in the next
chapters, as the correlative borrowing mechanisms have different consequences.
From a technical perspective, the issuance of unsecured debt is known as borrowing
against cash flows, while we use the term borrowing against assets or collateral in
case of secured debt.

The value of the firm (Vt ), or enterprise value, is given by the following equation

Vt = V Et + ptFt+1 − Lt+1, (2.1.2)

where ptFt+1 is the market value of debt, while V Et = pEt nt+1 is the market value
of equity. On this regard, nt+1 is the number of shares outstanding at the end of t ,
i.e. after all payments for the same period are settled. Admittedly, the use of t + 1 in
spite of t may be misleading at first. However, as for the case of debt’s face value and
liquidity, this notation is convenient to set up the dynamic programs characterizing
shareholders optimizing behavior in the following chapters. In short, the number
of shares in circulation and the face value of debt at the end of each date are the
control variables for shareholders. On the contrary, the amount of debt and shares
inherited from the previous period are state variables. Rearranging Eq. (2.1.1), the
budget constraint of the firm can then be expressed as,

Vt + xt + πt︸ ︷︷ ︸
Cumdividend value of the firm

= (pt + dt ) nt + Ft (1 + ct )− Lt (1 + rt ) , (2.1.3)

which simply states that the cum-dividend value of the firm is equal to the sum of
cum-dividend value of incumbent security holders, net of the liquidity available at
the beginning of the period (1 + Lt rt ). This relation is of utmost importance, as it
suggests that, after all, the only thing that matters is the total amount of free cash
flows generated by the firm, which depends on production, investment and financing
decisions.

A policy is a state contingent rule which maps the set of measurable events at
each date in a specific decision. For ease of exposure, we often include production
decisions in the firm’s investment policy, although sometimes we need to be more
explicit, as in Chap. 4 and Sect. 7.1 of Chap. 7. For the moment, we assume that
both financing and investment decisions are exogenously given. In this case, we
can model a given investment policy in terms of the associated unlevered free cash
flows process {xt }t≥0. Likewise, a financing policy is intended to be a multivariate

2As a technical aside, notice that in this example there could be no role for debt covenants, as debt
is due at the same date at which new information is released.
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stochastic process {dt+1, nt+1Ft+1, ct+1, Lt+1}t≥0 for the firm’s capital structure.
We define the firm’s synthetic dividend (Dt ) as,

Dt := dtnt + pt (nt+1 − nt ) , (2.1.4)

which is the sum of actual dividends paid plus cash flows related to share buybacks
(minus, if shares are issued). As is clear, for a given investment policy, we can
consider only feasible financing policies, in the sense that Eq. (2.1.1) must be valid
at each date in which the firm is solvent.

While it should be immediate to conclude that the firm can adopt only feasible
financing policies, it is less obvious whether we should consider any restriction on
{xt}t≥0. If we were taking explicitly into account shareholders optimizing behavior,
the answer would be certainly negative, as shareholders have always the option to
shut down the firm if there is no way to make it profitable. However, when the
investment policy is exogenously given, as if it was written in the corporate bylaws
rather than being dynamically optimized in the best interests of shareholders, it is
convenient to restrict our attention only to policies with a positive net present value
(NPV), that is,

Et

∞∑

j=0

Mt+j
Mt

xt+j ≥ 0. (2.1.5)

A policy that satisfies Eq. (2.1.5) is individually rational. To understand the meaning
of this condition, consider the case of an all-equity firm without liquidity, i.e. xt =
Dt . It is easy to show that the left hand side (LHS) of Eq. (2.1.4) is the cum-dividend

equity value of the firm
(
V̂ Et = dtnt + V Et

)
. The proof comes from rearranging

Eq. (1.3.1) and Eq. (2.1.3) (see Sect. 2.2.1), from which we obtain

V Et = stnt+1 = Et

[
Mt+1

Mt

(
VEt+1 + xt+1

)]

. (2.1.6)

Solving forward the previous expression, under the transversality condition

limT→∞ Et

[
MT
Mt
sT nT+1

]
deriving from Eq. (1.3.1), we eventually obtain,

V̂ Et = Et

∞∑

j=0

Mt,t+jxt+j . (2.1.7)

A policy that is not individual rational will be never adopted by the shareholders
of the firm, as it is equivalent to a collection of projects with strictly negative NPV.
Therefore, it is quite natural to rule out this case while we are working under the
hypothesis of an exogenously given investment policy.
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Notice that, in order to obtain the previous result, we made use of the transversal-

ity condition from Eq. (1.3.1), limT→∞ Et

[
MT
Mt
sT nT+1

]
. Similarly, another impor-

tant constraint must be always imposed when financing decisions are exogenously
given, that is,

lim
T→∞Et

(
MT

Mt
LT+1

)

= 0. (2.1.8)

As liquidity reserves are invested in risk-free assets, limT→∞ Et

(
MT
Mt
LT+1

)
> 0

would be equivalent to allow for the existence of a Ponzi scheme in the supply-
side of risk-free assets. In equilibrium, this eventuality is ruled out by the dynamics
of the risk-free rate. Consequently, the value of the firm satisfies the transversality
condition,

lim
T→∞Et

(
MT

Mt
VT

)

= 0. (2.1.9)

Notably, the effect of Eq. (2.1.9) is that of restricting further the set of admissible
financing policies, by requiring that the growth of cash balances is bounded above
by the risk-free rate process {rt+1}t≥0.

2.1.2 Default and Bankruptcy Procedures

The remainder of the section is dedicated to discuss what happens if the firm renege
on its debts. This is a very important part of every corporate finance model, as it
shapes the conflict of interests between share and debt holders. First of all, recall
that equity holders are protected by limited liability, which means that in the worst
case they get nothing out of a bankruptcy procedure. Holding the investment policy
fixed to the one exogenously given, shareholders always opt for default if there exists
no feasible financing policy�t = {Fs+1, Ls+1}s≥t such that V̂ Et (�t ) ≥ 0. However,
the assumption of an exogenous investment policy is just a way to initially separate
investment from financing decisions. When production and investment decisions
are explicitly modeled, it is customary to impose that default always occurs after
production takes place. This hypothesis serves to rule out indirect asset sales before
trading becomes possible at a certain date. This is a very technical point which we
clarify further in the next chapter.

The first type of bankruptcy procedure which we examine is inspired by
the Chapter 11 of the United States Bankruptcy code. Basically, we consider a



26 2 The Value of the Firm and Its Securities

restructuring of the firm’s liabilities through a debt-for-equity swap. Let td be the
default date; then, the process goes as follows:

(1) the firm, on behalf of its shareholders, declares the intention to renege on its
debts;3

(2) investment, financing decisions are temporary suspended, and all the outstand-
ing securities are converted in a new class of ordinary shares;

(3) the incumbent share and debt holders split between themselves, according
to some allocation mechanism, the cum-dividend value of the new shares,
obtaining respectively a non-negative payoff equal to to REtd and RBtd ;

(4) the legal and administrative expenses related to the balance sheet restructuring(
bctd

)
are paid;

(5) investment and financing decision for date td are taken.

Based on the timing of these events, we can formulate the following equation in td ,

REtd + RBtd = xtd − bctd + (
1 + rtd−1,td

)
Ltd + Vtd (2.1.10)

which reflects the fact that sum of the recovery values, net of the available liquidity,
is equal to the cum-dividend value of the firm. As there are no interest payments
at td , compared to the case in which the firm is solvent, dividends are lowered
by direct bankruptcy costs

(
bctd

)
and the loss of tax shield on current interests

expenses
(
πtd = 0

)
. The debt-for-equity swap is essentially a procedure in which

the firm continues to operate, but there is a change in its ownership. The fact that
shareholders may retain a positive recovery value, therefore violating the absolute
priority of debt holders, may depend on the strategic design (see Section 6.3.5), as
in Mella-Barral and Perraudin (1997). Notice that a debt-for-equity swap is feasible
if and only if 0 ≤ bctd ≤ Vtd + xtd + (

1 + rtd−1,td

)
Ltd , as a result of shareholders’

limited liability.
Instead, on the other side we have Chap. 7-like procedures, which entail the

liquidation of the firm. The general schematic description of a liquidation is the
following:

(1) an event of default takes place (e.g. coupon payments are skipped);
(2) the firm’s assets are seized and grouped into different lots;
(3) a contract is written with an agent in charge of maximizing the proceeds from

the assets sale;
(4) depending on their priority, the incumbent security holders obtain a non-

negative recovery value;
(5) the firm ceases to exist and its securities are written off.

The total proceeds from assets sales are equal to the sum of the recovery values of
debt and equity holders, where the latter will typically obtain nothing in this case. It
is convenient to represent the sum of recovery values introducing a random variable

3In the legal jargon, the firm fills for bankruptcy protection.
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bctd defined as,

bctd := Etd

∞∑

j=0

Mtd+j
Mtd

xt+j − REtd + RBtd , (2.1.11)

which can be interpreted as the difference between the NPV of the cash flows that
could be extracted from the firm’s assets and their liquidation value. Typically, we
should expect to see this difference to be positive, which means that liquidation
is costly. Shleifer and Vishny (1992) provides a general equilibrium explanation
for the presence of liquidation costs, which could be useful to understand how
macroeconomic conditions influence the outcome of bankruptcy procedures. With
these notions, we are ready to present the Modigliani and Miller (MM) theorems,
which marked the birth of modern corporate finance theory.

2.2 The Modigliani and Miller Theorems

The MM theorems are valid under specific conditions, which are often labelled as
“ideal” to give a sense of how far they are from reality. And it is indeed for this
reason that the propositions are of fundamental importance, as we can understand
when and why capital structure and dividend policy decisions may affect the value of
firms when relaxing the MM assumptions. We illustrate the theorems by considering
the simple capital structure described above. Nevertheless, a more sophisticated
capital structures is possible, and it is actually a specific result of the general case we
discuss in Sect. 1.4.1. The MM theorems divide in a statement about the irrelevance
of dividend policy, and one about the irrelevance of the financing policy as a whole.
While we could present just the latter result, it is useful to proceed step by step,
as the methodology developed in this section will prove to be a very useful tool in
more general circumstances.

2.2.1 Irrelevance of Dividend Policy

Consider a firm which makes no use of debt and does not hold cash reserves.
By Eq. (2.1.1), unlevered free cash flows are paid out as dividends plus share
buybacks (shares offerings, if negative), and the value of the firm is equal to
Vt = Et

∑∞
s=1Mt,t+sxt+s , consistent with Eq. (2.1.7). Suppose that either taxation

is null or interest income is tax-free (πt = 0). We now allow the firm to hold cash
reserves. Absent debt, the firm dividend policy {dt ≥ 0, nt+1 ≥ 0, Lt+1}t≥0 must be
consistent with the budget constraint,

st (nt+1 − nt )+ xt = dtnt + Lt+1 − Lt (1 + rt ) , (2.2.1)
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as well as with Eq. (2.1.8). As a result, the budget constraint can be written as Vt+1+
xt+1 = nt+1 (pt+1 + dt+1)+ Lt+2 − Lt+1 (1 + rt+1), where Vt = ptnt+1 − Lt+1.
Financial markets equilibrium requires that,

ptnt+1 = Vt + Lt+1 = Et

[
Mt,t+1 (pt+1 + dt+1) nt+1

] =

Et

{
Mt+1

Mt
[Vt+1 + xt+1 + Lt+1 (1 + rt+1)]

}

=

= Et

[
Mt+1

Mt
(Vt+1 + xt+1)

]

+ Lt+1Et

[
Mt+1

Mt
(1 + rt+1)

]

= Et

[
Mt+1

Mt
(Vt+1 + xt+1)

]

+ Lt+1. (2.2.2)

Hence, we can write the value of the firm as,

Vt = Et

[
Mt+1

Mt
(Vt+1 + xt+1)

]

. (2.2.3)

To solve this equation we can then use Eq. (2.1.9), thereby obtaining the following
expression for the value of the firm.

Vt = Et

∞∑

j=1

Mt+j
Mt

xt+j . (2.2.4)

Thus, we have the following result.

Proposition 2.1 Suppose the firm’s capital structure includes only common stocks,
and the investment policy {xt }t≥0 is exogenously given. If there are no transaction
costs, and no taxes on liquidity reserves, then the value of the firm is independent
from its dividend-liquidity policy and shareholders gain nothing regardless the
policy assumed by the firm.

Proof The first part of the proposition has been shown above. To prove that
shareholders value is independent from the dividend-liquidity policy adopted, it is
sufficient to observe that V̂ Et = xt + Lt (1 + rt ) + Et

∑∞
j=1

Mt+j
Mt
xt+j , which is

independent from the continuation policy
{
dj ≥ 0, sj+1 ≥ 0, Lj+1

}

j≥t . Since the
same argument holds for all t ≥ 0, we conclude that shareholders value is unaffected
by dividend-liquidity decisions. �	
As a corollary to the proposition, since Lt is taken as given at time t , the only driver
for the value the shareholders can focus on is the investment policy of the firm.
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2.2.2 The Irrelevance of Financing Policy

The result we obtained in the previous section can be generalized by including
debt financing. If this result was actually true, the theory of capital structure would
probably end up in this section. This is not the case, as several hypothesis, such
as the absence of tax effects of debt financing, are counterfactual. However, the
importance of the irrelevance result contained in Proposition 2.2 is twofold. On
one hand, it shows under which ideal conditions we should not be caring about
financing decisions, which may be a useful approximation in several cases. On the
other, it suggests that investment decisions will be a primary driver of the value for
shareholders, which is a generally accepted result, both in theory and practice.

We give a formal statement for the capital structure described in Sect. 2.1, and
provide a formal proof in the case that an event of default is resolved with a debt-
for-equity swap, in which bond holders have absolute priority. The alternatives
of liquidation and multiple debt securities can be obtained as special cases of the
general analysis presented in Sect. 1.4.1.

Proposition 2.2 Suppose the investment policy {xt }t≥0 is exogenously given, inde-
pendently from the financing policy, and that {πt = bct = 0}t≥0. If the absolute
priority rule is satisfied in case of default, RBt+1 = min {Ft+1 (1 + ct+1) , xt+1
+Lt+1 (1 + rt+1)+ Vt+1 − bct+1}, the value of the firm (Vt = stnt+1 + ptFt+1
−Lt+1) is independent from its financial policy {dt+1, nt+1Ft+1, ct+1, Lt+1}t≥0
and it is equal to Vt = Et

∑∞
j=i Mt,t+jxt+j . Moreover, shareholders value is

independent from financing decisions.

Proof Let δt be an indicator function that is equal to 1 if bankruptcy occurs at date
t , or zero otherwise. At each point in time, the asset pricing equations for bonds and
shares are,

pt = Et

{
Mt+1

Mt

[

(1 + ct+1) · (1 − δt+1)+
RBt+1

bt
δt+1

]}

(2.2.5)

st = Et

{
Mt+1

Mt

[

(st+1 + dt+1) · (1 − δt+1)+
REt+1

nt
δt+1

]}

(2.2.6)

Let Ct+1 ⊆ Ft+1 the set of events for which default does not take place in t + 1. If
we let Pt the conditional probability measure at time t , the value of the firm can be
written as,

Vt = stnt+1 + ptFt+1 − Lt+1 =
∫

ω∈Ct+1

Mt+1

Mt
[(st+1 + dt+1) nt+1 + (1 + ct+1) Ft+1] dPt (ω)+

∫

ω∈C t+1

Mt,t+1

(
REt+1 + RBt+1

)
dPt (ω)− Lt+1.

(2.2.7)
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Furthermore, ∀ω ∈ Ct+1 the firm’s one-period ahead budget constraint is equal to,

(pt+1 + dt+1) nt + (1 + ct+1) bt = Vt+1 + xt+1 + (1 + rt+1)Lt+1 (2.2.8)

while for ∀ω ∈ C t+1, the following expression holds valid,

REt+1 + RBt+1 = Vt+1 + xt+1 + (1 + rt+1) Lt+1. (2.2.9)

Therefore,

Vt =
∫

ω∈Ft+1

Mt+1

Mt

[
Vt+1 + xt+1 + Lt

(
1 + rt,t+1

)]
dPt − Lt+1 =

Et

[
Mt+1

Mt
(xt+1 + Vt+1)

]

.

(2.2.10)

Recall the transversality condition lims→∞ Et

(
Mt+s
Mt
Vt+s

)
= 0. Solving

Eq. (2.2.10) we obtain,

Vt = Et

∞∑

j=1

Mt,t+jxt+j , (2.2.11)

To prove the second part of the proposition we can proceed as in the proof of
Proposition 2.1. Since the absolute priority rule holds, shareholders will default only
if their recovery value is null. In fact, in order to obtain a positive recovery value, we
must have SHt := xt+Lt (1 + rt )+Et

∑∞
j=1

Mt+j
Mt
xt+j−Ft (1 + ct ) > 0, which is

equivalent to having positive shareholders value and conditional upon the decision
to repay debt and coupon. Hence, shareholders value is equal to max {0, SHt }, which
is independent from the continuation policy

{
dj+1, nj+1Fj+1, cj+1, Lj+1

}

j≥t . �	
Proposition 2.2 asserts that, if (i) there are no bankruptcy costs, (ii) the are no
transaction costs associated to issuing new securities, (iii) taxation is unaffected
by financing choices, and (iv) the firm’s investment policy is independent from
financing choices, then both the value of the firm and shareholders value are not
affected by financing choices. The intuition is trivial. We can imagine debt and
equity as different slices of a pie, where the pie is the market value of the firm. By
non-arbitrage, although the firm’s unlevered cash flows are not directly traded, there
exists always a portfolio of securities that replicates its dynamics. Such a portfolio
is indeed composed by the firm’s financial liabilities, that are freely tradable on the
market. Hence, if the financial liabilities mix has no effects on the free cash flows
stream of the firm, the size of the pie remains unchanged, and the total market value
of the firm depends only on {xt }t≥0.

At this point, we may wonder what is the effect of financial leverage, as it is
eventually irrelevant for shareholder value. Suppose that ct+1 is such that pt+1 = 1
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always, that is, debt is issued at par value. Intuitively, higher debt makes future
dividends riskier for shareholders. As such, after time t dividends are paid, we
should expect the ex-dividend equity value to be lower the higher the leverage
ratio Ft+1

V Et
is. Equivalently, the stocks of more levered firm, ceteris paribus, should

be associated to higher expected returns. Similarly, higher liquidity levels should
reduce expected returns, as they dilute the weight of cash flows risk. However,
since the value of the firm is unchanged, we should not expect the weighted
average of stocks and bonds to be affected by the financing mix. This result is
actually a corollary of Proposition 2.2, which comes from Hamada (1972) for the
case of risk-free debt (see Sect. 3.3). Two considerations appears useful from a
practitioner’s perspective, at least assuming that Proposition 2.2 can thought as a
good approximation of what happen in the real market. First, financial leverage can
be used to shift the risk-return profile of a stock. Hence, holding everything else
constant, investing in stocks with higher leverage should generate higher expected
returns on average, but, at the same time, it should also be associated to higher
portfolio volatility. Second, if we wish to neutralize the effect of leverage, but still
get exposure to the firm’s free cash flows, we should invest both in stocks and bonds,
in the same proportion of their relative market capitalizations.

Proposition 2.3 Assume that ct+1 is such that pt = 1 for all t . Let χ := {x}t≥0

the firm’s investment policy, and rχt+1 := V Et
Vt
rEt+1 + Ft+1

Vt
rBt+1 − Lt+1

Vt
rt+1, rEt+1 :=

(dt+1+st+1)(1−δt+1)+REt+1δt+1

st
and rBt+1 = (1 + ct+1) (1 − δt+1) + RBt+1δt+1 the total

returns firm, stocks and bonds at time t + 1, respectively. Then, rχt+1 is independent

from the firm’s financing policy. Furthermore, Et
(
rEt+1

)
is increasing in Ft+1

V Et
and

decreasing in Lt+1

V Et
.

Proof The first part is trivial. Simply, V
E
t

Vt
rEt+1 + ptFt+1

Vt
rBt+1 − Lt+1

Vt
rt+1 = xt+1+Vt+1

Vt

from the application of the firm’s budget constraint. Hence, rχt+1 does not depend
on the firm’s financing policy. The second part, instead, is more complicated. To see
why, consider that the effect of leverage is ambiguous in principle. On one hand,
higher leverage increases the risk for shareholders to see their dividends slashed in
the following period, if they decide to repay debt. On the other, higher leverage
increases the option value of default, that is, the possibility for shareholders to
rationally renege on the firm’s debt.

Formally, our goal is to show that
∂Et

(
rEt+1

)

∂Ft+1
≥ 0. In order to do so, the first

step is to recognize the expression of time t + 1 shareholders value
(
V̂ Et+1

)
the

numerator of rEt+1, so that we can write rEt+1 = V̂ Et+1

V Et
. From Proposition 2.2, we have

V̂ Et = max
{

0, xt + Lt (1 + rt )+ Et

∑∞
j=1

Mt+j
Mt
xt+j − Ft (1 + ct )

}
, which can be
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used to obtain the following expression for equity returns,

1 + rEt+1 = 1

V Et
max {0, xt+1 + Vt+1 + Lt+1 (1 + rt+1)− Ft+1 (1 + ct+1)} ,

(2.2.12)

Consider the scenarios in which the firm is not defaulted, δt+1 = 0. Then, debt

holders are paid back in full, rχt+1 = V Et
Vt
rEt+1 + ptFt+1

V Et
ct+1 − Lt+1

Vt
rt+1 and we can

write Eq. (2.2.12) as,

rEt+1 = max

{

rt+1 +
(

1 − Lt+1

V Et

)
(
r
χ
t+1 − rt+1

)+ Ft+1

V Et

(
r
χ
t+1 − ct+1

)
,−1

}

.

(2.2.13)

Let ut+1 := r
χ
t+1 − Lt+1

V Et

(
r
χ
t+1 − rt+1

) + Ft+1

V Et

(
r
χ
t+1 − ct+1

)
. Since the investment

policy is individually rational, rχt+1 ≥ −1 and, consequently, Prt {ut+1 > 1 + α} >
Prt {ut+1 > 1 − α} for every α > 0. The resulting positive skew implies that
Et

(
rEt+1

) = Et

{
[ut+1,−1]+

}
is increasing in the variance of ut+1. Since the latter

is increasing in Ft+1

V Et
and decreasing in Lt+1

V Et
, we conclude that Et

(
rEt+1

)
is increasing

in Ft+1

V Et
and decreasing in Lt+1

V Et
as we claim. �	

2.2.3 Debt Tax Shield and Bankruptcy Costs

Most of countries adopted fiscal legislations that allows for tax effects of financial
income and expenses. For instance, the interest income earned on liquidity reserves
is often taxed at the same rate applied for operating earnings. Likewise, interests
expenses are often tax deductible, although sometimes with limitations. At a very
general level, we can say that a certain financing policy results in a net tax shield
πt which increases or reduces taxation in period t depending on the interests paid
on debt and those earned on liquidity. To make a specific example, suppose that
the corporate tax rate (τ ) is constant4 and it is applied to the firm’s net income. In
this case, we would have Tt = (ebitt − ctFt + rtLt ) τ , and, consequently, πt =
ctFt − rtLt .

In the remainder of the section our interest is to understand the effects of
introducing taxable financial income and bankruptcy costs in the MM framework. A
debt-for-equity swap procedure remains the working hypothesis in case of default.

4A constant tax rate implies that the firm receives a net transfer from the government when its net
income is negative. It is sometimes a good approximation in situations in which the loss carry-
forwards can be quickly used.
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As a result, in case of default the firm will loose its ability to deduce interests
expenses from taxes in the same period that default takes place, as all bonds are
converted in shares before coupons are paid. Although not essential, it may be con-
venient in this case to represent the debt tax shield as πt = dtst (rtLt , (1 − δt ) ctFt ).
We can then show that the following value of the firm is always valid,

Vt = Et

∞∑

j=1

Mt,t+jxt+j +DT St − BCt (2.2.14)

where DT St := Et

∑∞
j=i Mt,t+jdtst (rtLt , (1 − δt ) ctFt ) is the net present

value of the tax benefits from a given financing policy. The term BCt :=
Et

∑∞
j=i Mt,t+jbct+j δt+j is instead the NPV of all bankruptcy costs that the

firm will experience in case of one or more default episodes.
The proof of Eq. (2.2.14) derives again from the firm’s budget constraint. Starting

from the asset pricing equation for the price of shares and debt, Eq. (2.2.5–2.2.6)
respectively, we can write the value of the firm as,

Vt = stnt+1 + ptFt+1 − Lt+1 =
∫

ω∈Ct+1

Mt+1

Mt
[(st+1 + dt+1) nt+1 + (1 + ct+1) Ft+1]

× (1 − δt+1) dPt (ω)

+
∫

ω∈C t+1

Mt+1

Mt

(
REt+1 + RBt+1

)
δt+1dPt (ω) − Lt+1.

(2.2.15)

Substituting Eq. (2.1.1) and Eq. (2.1.10) into the first and second integral of
Eq. (2.2.15), respectively, the following difference equation is obtained,

Vt = Et

{
Mt,t+1 [xt+1 + Vt+1 + πt+1 − δt+1bct+1]

}
, (2.2.16)

which admits the solution,

Vt = Et

∞∑

j=1

Mt+j
Mt

xt+j + Et

∞∑

j=1

Mt+j
Mt

dtst
(
rt+jLt+j ,

(
1 − δt+j

)
ct+jFt+j

)

− Et

∞∑

j=1

Mt+j
Mt

bct+j δt+j . (2.2.17)

Differently from the MM world, the value of the firm is now affected by the
firm’s financing policy. As a result, shareholders value may depend on capital
structure decisions. The irrelevance of the firm’s financing policy is now broken,
and understanding the effects of dynamical capital structure decisions is of central
importance.
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2.3 Capital Structure and Corporate Governance

We have seen that introducing tax effects of debt financing and bankruptcy costs,
the MM irrelevance results are no longer valid. However, one point we consider as
unsatisfactory is about the investment and financing decisions which are assumed
as exogenously given. In other words, while we could always formulate Eq. (2.2.17)
for a given investment and financing pattern, a more robust theoretical framework is
need to determine which patterns will be chosen. This will be actually the purpose
of all the following chapters, but it is important to introduce from the beginning few
very important concepts in relation to investment decisions and in which interests
we should expect a firm to be managed.

2.3.1 Investment Decisions and Agency Costs

Let Υ be the set of all unlevered free cash flows processes χ = {xt }t≥0, which
depends on the firm’s investment policy. To simplify our discussion, and without
loss of generality, Υ can be assumed as the set of all available investment policies.
Note that we are not imposing the individual rationality condition. Let assume that
there exists an element χ∗ ∈ Υ , χ∗ = {

x∗
t

}

t≥0, such that Et
∑∞
j=0Mt,t+jx∗

t+j ≥
Et

∑∞
j=0Mt,t+jxt+j for every χ ∈ Υ . By definition, χ∗ maximizes shareholders

value for an all-equity firm that does not hold liquidity reserves. This lead us to
following definition. A firm is said unlevered if these conditions hold: (i) the capital
structure includes only common stocks, (ii) no cash reserves exist and (iii) the
investment policy adopted is χ∗. In other words, the unlevered firm is an-all equity
firm whose value, V ut , cannot be improved by any other investment strategy,

V ut = Et

∞∑

j=0

Mt,t+j x∗
t+j . (2.3.1)

The unlevered firm is an important benchmark, which can be used to gauge the
real effects of dynamic capital structure decisions. To put the point into perspective,
assume that, in order to the best interest of the controlling stakeholder, the firm is
running under an investment policy χ ∈ Υ : χ �= χ∗ . The difference between
Et

∑∞
j=1Mt,t+jx∗

t+j and Et

∑∞
j=1Mt,t+jxt+j is called agency costs (ACt),

ACt := Et

∞∑

j=1

Mt,t+jx∗
t+j − Et

∞∑

j=1

Mt,t+jxt+j (2.3.2)

and it is a deadweight loss for the firm. It should be noticed that the notion of
controlling stakeholder denotes the agent effectively in control of the firm’s decision
making process. While in general we conjecture that markets are complete and
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a representative shareholder is in control, there might situations in which this
hypothesis is not appropriate. In Sect. 2.3.3 we briefly overview this important
feature, which motivates the indispensable role of corporate governance. Still, even
when a representative shareholder can be thought to be in control, there might be
reasons for her to deviate from χ∗. Writing Eq. (2.2.17) equivalently as,

Vt = V ut +DT St − (ACt + BCt ) , (2.3.3)

we can guess that, in equilibrium, shareholders are trading-off the tax benefits
of debt financing with the resulting agency and bankruptcy costs. Actually, this
is the common trait of all the models we present in the following chapters, and
well summarizes the kind of topics that are commonly considered part of dynamic
corporate finance theory.

2.3.2 Optimal Investments, Capital Budgeting
and Debt Overhang

Debt overhang is a notable example of agency costs, we briefly discuss in this
section. Chapters 5, 6 and 7 explore in more depth the technical details and come up
with more accurate quantitative predictions. Myers (1977) is the first to formalize
the idea that shareholders may become reluctant to invest when indebtedness
becomes very high relative to the firm’s fundamentals. The model we present in
this section is useful also to introduce the concept of growth options and assets in
place.

Suppose there are neither taxes nor bankruptcy costs. The firm is endowed with
capital stock K0, which is assumed for simplicity not to depreciate over time. The
optimal use of this capital stock allows shareholders to extract in each future time
t > 0 an amount of operating cash flows equal to AtK0, where {At > 0}t≥0 is a
strictly positive exogenous stochastic process. Let assume also that the firm’s capital
stock cannot be increased, but in each period the firm has the option to invest a
dollars amount equal to It ∈ [0, I ] in a new project. Each project becomes available
at a specific time t , and the firm can invest in it only at the same date. In other words,
there is no option to delay the investment in the growth option becoming available at
a given point in time. Likewise, investment in each project is irreversible. A generic

project5 t generates a non-negative cash flows streams
{
y
(t)
t+j It > 0

}

j>0
, where It is

the amount of dollar invested in the project. In addition, investment in each project is
irreversible, meaning that the firm cannot divest from any of its earlier implemented
projects.

5Projects are indexed by the date in which they are available, which corresponds to the time index
of the economy.
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If we let Kt be the firm’s total invested capital,

Kt = K0 +
t∑

j=1

It , (2.3.4)

it easily turns out that unlevered free cash flows can be expressed as,

xt = AtK0 +
t−1∑

j=1

Ity
(j)
t − It . (2.3.5)

The firm is endowed with a certain amount of debt, say F0 ≥ 0, which consists of a
perpetual bond with coupon rate c > 0. The amount of the outstanding debt cannot
be adjusted over time, and the firm does not hold or accumulate cash. A default event
results in the firm liquidation and shareholders are assumed to lose everything. On
this regard, the hypothesis is that the option to invest in future projects is lost in
the bankruptcy process, as only the assets in place of the firm can be liquidated.
Hence, the key question is whether shareholders will adopt the same investment
policy {It }t≥0 independently from F0.

Consider first the case of an all-equity firm, that is, F0 = 0. In all discrete
time models we discuss, investment decisions at time t are always taken before
dividends are paid. Hence, shareholders maximize their cum-dividend equity value,
then obtaining the cum-dividend unlevered firm value V̂ ut = V ut + x∗

t . Thus, the
unlevered firm’s shareholders solve the following dynamic problem,

V̂ ut = max
It∈[0,I ]

⎧
⎨

⎩
AtK0 +

t−1∑

j=1

Ij y
(j)
t − It + Et

(
Mt+1

Mt
V̂ ut

)
⎫
⎬

⎭
, (2.3.6)

as V ut = Et

(
Mt+1
Mt
V̂ ut

)
. The solution of the problem can be obtained by using a

standard dynamic programming approach. However, in this specific case we can use
a more direct approach, after having represented the LHS of Eq. (2.3.6) equivalently
as,

max
It∈[0,I ]

⎧
⎨

⎩
AtK0 +

t∑

s=0

It−sy(t−s)t − It + Et

∞∑

s=1

Mt+s
Mt

⎡

⎣At+sK0 +
t+s−1∑

j=1

Ij y
(t+s)
t − I ∗

t+s

⎤

⎦

⎫
⎬

⎭
,

(2.3.7)

where I∗
t+s is the optimal investment decision in period t ± s, s �= 0. Notice that

past and future investment decisions have no effect on the decision about investing
in the currently available project. As a result, the optimal investment level in each
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period can be obtained as the solution of a static problem, namely,

I∗
t = argmaxIt∈[0,I ]

{[

−1 + Et

∞∑

s=1

Mt+s
Mt

y
(t)
t+s

]

It

}

. (2.3.8)

The expression NPV (t)t := −1 + Et

∑∞
s=1Mt,t+sy

(t)
t+s is the NPV per dollar

invested in the project t at the same date, which is constant and independent from the
amount of dollars invested. As long as NPV (t)t > 0, it is optimal for shareholders
to invest as much as possible in project t . Hence, the equilibrium investment policy
for an all-equity firm is,

I∗
t = II

(

Et

∞∑

s=1

Mt+s
Mt

y
(t)
t+s ≥ 1

)

(2.3.9)

This result is a restatement of the positive NPV rule,6 which is a direct
consequence of shareholders inability to postpone the investment decisions. Hence,
the recursive application of Eq. (2.3.9) generates the maximum NPV for {xt }t≥0.

At this point, we need to understand whether introducing F0 > 0
should motivate shareholders to deviate from the first-best policy I∗

t =
II
(
Et

∑∞
s=1Mt,t+sy

(t)
t+s ≥ 1

)
for the NPV of unlevered free cash flows. To answer

the question, we formulate the problem of the levered firms, which consists in
maximizing shareholders value. However, differently from the unlevered case, we
must take into account the effects of the option to default. Since the option to invest
at time t project is lost in case of default, the levered firm’s shareholders solve,

V̂ Et = max

⎧
⎨

⎩
max
It∈[0,I ]

⎧
⎨

⎩
AtK0 +

t−1∑

j=1

Ij y
(j)
t − It − cF0 + Et

(
Mt+1

Mt
V̂ Et

)
⎫
⎬

⎭
, 0

⎫
⎬

⎭
.

(2.3.10)

First, we observe that for high levels of debt, relative to the current fun-

damentals, the continuation value maxIt∈[0,I ]

{
AtK0 +∑t−1

j=1 Ij y
(j)
t − It − cF0

+Et

(
Mt+1
Mt
V̂ Et

)}
could be negative. As such, shareholders prefer the default instead

of paying coupons and continue to invest in positive NPV projects. Let δt be an
indicator function of this occurrence. Then, it is straightforward to reformulate

6Usually assumed as benchmark rule in optimal capital budgeting.
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shareholders problem as,

V̂ Et = max

⎧
⎨

⎩
max
It∈[0,I ]

⎧
⎨

⎩
AtK0 +

t−1∑

j=1

Ij y
(j)
t − It − cF0+

Et

∞∑

s=1

Mt+s
Mt

⎡

⎣At+sK0 +
t+s−1∑

j=1

Ij y
(t+s)
t − It+s − cF0

⎤

⎦ (1 − δt+s)
⎫
⎬

⎭
, 0

⎫
⎬

⎭
.

(2.3.11)

Suppose at time t maxIt∈[0,I ]

{
AtK0 +∑t−1

j=1 Ij y
(j)
t − It − cF0 + Et

(
Mt+1
Mt
V̂ Et

)}
> 0. Then, δt = 0, and, since current investment decisions are

not depending on the future, the levered firm investment policy is obtained as the
solution of the following static program,

argmaxIt∈[0,I ]

{[

−1 + Et

∞∑

s=1

Mt+s
Mt

y
(t)
t+s (1 − δt+s)

]

It

}

. (2.3.12)

By anticipating future default decisions, the NPV from investing in date t project
is lower than the unlevered case. As a consequence, we may frequently encounter
projects with a positive NPV for the unlevered firm, but with negative NPV for
shareholders in presence of leverage. Notably, the higher is debt relative to xt , the
higher is the chance that default will take place in the future. Hence, the effect of
higher debt levels is that of increasing the threshold for Et

∑∞
s=1

Mt+s
Mt
y
(t)
t+s which

makes convenient for shareholders to invest in project t . Thus, the presence of
debt may depress investments, especially when default is likely to occur in the
near future. This effect is known as debt overhang, and it is frequently observed
in distressed firms. Put differently, we observe a decoupling between the NPV of a

project t cash flows,
[
−1 + Et

∑∞
s=1

Mt+s
Mt
y
(t)
t+s

]
It , and the NPV of the same project

for shareholders,
[
−1 + Et

∑∞
s=1

Mt+s
Mt
y
(t)
t+s (1 − δt+s)

]
It . As long as shareholders

are in control of the firm, it is the latter that drives investment decisions.

2.3.3 The Value of Corporate Governance

In this section we depart from the general assumption that firms maximize share-
holders value. The purpose of the discussion is to shed lights on some important
factors explaining the value-oriented behaviors. Since we are not interested in the
effects of debt financing, we let common stocks be the only class of securities in the
firm’s capital structure. In addition, the firm holds no cash on its balance sheet, and
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there are no transaction costs on financial markets. While the firm’s technology is
the same as in the previous section, we assume now that it is managed by a group of
managers.

Suppose that shareholders can write a contract, that, other than being perfectly
enforceable, it can specify the investment policy that must be followed by managers.
If that was possible, shareholders would simply write their optimal investment
policy in the corporate bylaws to obtain the unlevered firm value. However, real
contracts are typically incomplete, as writing in a legally binding piece of paper
the state-contingent prescriptions of an optimal dynamic program in not possible.
For this reason, shareholders need to set up alternative governance mechanism that,
hopefully, will align their interests with those of the managers in charge to manage
the firm on their behalf, which is an example of principal-agent problem.

When contracts are incomplete, markets are also incomplete. While an equilib-
rium stochastic discount factor continues to exist for the purpose of valuing the
firm and its securities consistently with Eq. (1.3.1), shareholders may no longer
agree upon the objective of maximizing the value of the firm (see Sect. 1.3.2). This
creates a second problem, as the controlling shareholder may be not interested
in maximizing the cum-dividend value of equity. We exemplify the point in
Sect. 2.3.3.2.

In Sect. 2.3.3.1, we consider a firm with a perfectly dispersed ownership. Since
no one is in control and there are no externalities, we assume that each shareholder’s
utility function is monotone increasing in the cum-dividend market value of equity.
As a consequence, shareholders would agree on proposing to the management
a contract which requires them to maximize total shareholders value. However,
because no one is in control, the private cost of monitoring managers will be
generally too high, an argument we extend to shareholders meetings, in which
a poor performing management could be replaced. Generally speaking, managers
may be not acting in the best interest of shareholders. In the model, this possibility
is introduced by assuming that investing in new projects requires managers to
put additional effort in their jobs at the firm. This is not infrequent in the real
world, which may be due to the lack of organizational capital, in the sense that top
managers are typically time-constrained and may need to work several extra hours to
complete a new project. In this regard, we denote by D the dollars equivalent value
of the private detriment in which managers incur if working on a new investment
project. As a result, if managers have a remuneration scheme independent from the
firm’s performance, and there is no threat of replacement, they will be always better-
off by choosing to not invest in new projects. The relevant question is thus whether
a raider, intended as a candidate controlling shareholders, may be successful to take
control of the firm and replace the incumbent management team. Under a perfectly
dispersed ownership, we show that this is not an easy task, despite the welfare loss
caused by leaving on the ground valuable investment opportunities.

Instead, in Sect. 2.3.3.2 we assume the presence of a majority shareholder
who is in the direct control of the firm. However, its objectives collides with the
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maximization of the total firm’s value. In particular, minority shareholders will be
harmed by the conflictual presence of the large shareholder. This applies for both the
institutional and the private controlling shareholders, who can represent an holding
company and an entrepreneur, respectively.

The models we present in this section are intentionally extreme. However,
they provide food for thought. The message is that corporate governance and
ownership structure are of utmost importance. Without a governance code able to
ensure the total shareholders value maximization, firms may be managed in a very
different fashion, and a corporate raid could be just a wishful thinking. Although
in the remainder of the book we assume that firms are managed as to maximize
shareholders value, we should keep in mind that this condition should be not always
taken for granted.

2.3.3.1 Dispersed Ownership, Take-overs and Threat of Replacement

The model we introduce in this section is an adaptation of Grossman and Hart
(1980). Specifically, we impose the following hypotheses:

(1) the firm is managed by its Board of Directors (BoD);
(2) the members of the BoD, or directors, are homogeneous and remunerated by a

constant wage;
(3) all members have the same preferences and are all involved in the investment

selection process for new projects;
(4) investing in a new project results in a private detrimentD > 0 to each director;
(5) the BoD can be changed at the end of each date t with a majority vote at a

shareholders meeting;
(6) the firm’s ownership structure is perfectly dispersed (i.e. each shareholder is

infinitesimal);
(7) replacing the BoD requires the payment of a search cost C > 0;
(8) a raider can bid a price to acquire the shares of the company, however incurring

in legal and transaction costs equal to c ≥ 0.

A perfectly dispersed ownership means that each shareholder holds an infinitesimal
stake in the firm. While this is of course an abstraction, it aims at describing a
situation in which the cost of each individual shareholder to participate actively
in the firm’s governance will exceed the corresponding benefits. To simplify the
discussion, we use the terms tender and takeover interchangeably. Moreover, we
move having in mind the equilibrium property for which the agents taking actions
first are assumed to correctly anticipate the strategies of agents moving second (see
also Sect. 1.3).

At each time t , the first mover is the BoD, as it is up to its member the decision
to invest in the project t . Since the members of the BoD are homogeneous, they can
be seen as a single individual, we simply define the manager. The second movers
are in order the raider, and the incumbent shareholders. The virtual timing of events
at each time t is thus the following.
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(1) First, the manager decides whether to invest or not in project t .
(2) Second, the raider, once dividends are paid, decides whether to bid for the

control of the company. In this regard, the raider will bid a price that ensures a
non-negative NPV from the deal.

(3) Third, incumbent shareholders decide whether to participate to the tender-offer,
or to remain within the firm.

(4) Fourth, if at least 50% of the shares outstanding are tendered to the raider, the
takeover is completed and the raider gets in control of the firm.

(5) Fifth, shareholders convene at their period meeting and decide whether to
replace the management or not. If a controlling shareholder exists within the
ownership structure, she becomes automatically the new manager at no cost.
As a result, there are three possible outcome: (i) the manager remains in charge,
(ii) the manager is replaced by the incumbent shareholders, (iii) the manager is
replaced by a raider that acquires the control of the firm with a tender offer.

We can then obtain the unique equilibrium of such a game with some logical
observations. Suppose the incumbent manager predicts that she will be not replaced,
regardless of her performance, which is the value creation from investing in positive
NPV projects. If the threat of replacement is not credible, the manager will prefer
not to invest in any project, independently from the NPV. In this way, she will
not experience the private detriment related to the additional effort related to each
project execution. Being unsatisfactory for this behavior, shareholders will be very
much in the mood to fire the lazy manager, at the same time introducing a new
remuneration policy to motivate the new management team to invest in projects
with positive NPV.

We claim that there is no equilibrium in which a perfectly dispersed ownership
is successful to remove the incumbent manager. The proof is as follows. In order
to replace the incumbent manager, a coalition of shareholders must bear the search
cost c to find a new management team and draft a bullet-proof contract for the
newly hired. As is obvious, in case drafting a contract that aligns the incentive
of managers to those of shareholders is not possible, there will be no reason for
shareholders to bear the cost c and replace the manager. Consider now the alternative
in which it is possible to align the incentives between the two stakeholders. Suppose
that this is indeed the case. Since each shareholder is infinitesimal in the coalition,
her incentive is that of abandoning the coalition and free ride the ending result.
Since this argument holds for every member of the coalition, it follows that no
coalition can be organized in the first place. It is the tragedy of the commons.
Although replacing the incumbent manager would be collectively valuable, a perfect
ownership dispersion generates such an extreme free-rider problem which prevents
shareholders to coordinate with each other to improve the corporate governance of
the firm.

Unless a change in the firm’s ownership structure is possible, the manager would
be right to conjecture that, regardless her behavior, she will remain in charge. In this
regard, the striking implication of a perfectly dispersed ownership is that a tender-
offer will never actually take place if c > 0. A a result, the incumbent manager will
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stay in power despite her poor performance, and there will be a net welfare loss for
shareholders. To show this result, let VEt be the value of the firm’s equity assuming
a perfectly dispersed ownership. In this case, the BoD never invests in new projects
and, consequently,

V Et = K0Et

∞∑

j=1

Mt,t+jAt+j . (2.3.13)

In other words, with a dispersed ownership the value of growth opportunities is
zero.7 Now consider a raider that engages in a takeover bid. If the raider ’s bid
is accepted, she would get in control of the firm and become the new manager.
Differently from incumbent shareholders, the raider does not incur in the search
cost C, as she will manage the firm directly in her best interest.

Suppose that the investment projects that become available to the firm are not
sources of externalities for the raider.8 Then, the raider’s choice to invest in projects
with a negative NPV is suboptimal. However, since the new projects still require
to put effort in the firm, the raider will directly experience the private detriment D.
While minority shareholders would benefit from positive NPV projects, at the same
time they will not share the costs of raider’s effort in managing the firm. For this
reason, we should expect that the raider will invest only in those projects that are
worth the effort. Let θ be the raider stake in the firm, which we assume to remain
constant in time.9 As the raider keeps for itself only a fraction θ of the increase in
the firm’s value, she will put effort only in projects with an NPV at least equal to
1
θ
D > 0. Hence, if the tender offer will be successful, the value of equity will be

improved with V ′
t > V

E
t ,

V ′
t = K0Et

∞∑

j=1

Mt,t+jAt+j

︸ ︷︷ ︸
Value of Assets in Place

+
[
I
∑∞
j=1Mt,t+jy

(t)
t+jλt + Et

∑∞
i=1Mt,t+i

×
[∑∞

j=1Mt+i,t+i+j y
(t+i)
t+i+j − 1

]
λt+i

]

︸ ︷︷ ︸
Value of Growth Opportunities

,

(2.3.14)

where λt := I

(
θEt

∑∞
s=1Mt,t+sy

(t)
t+s ≥ D

)
is an indicator function that denotes at

which conditions it will be optimal for the rider to invest in new projects. While the
presence of the raider does not entirely resolve the underinvestment problem, still it
can improve total shareholders value, and the incumbent shareholders would benefit
from its presence.

7Although the underlying economic mechanism is different, this result is not infrequent with this
“kind” of investment opportunities. An example is the industry equilibrium is in Leahy (1993).
8An example is an individual investing in a factory right in front of her home. If engaging in a new
project increases pollution, there is a negative externality for her.
9This is a very important assumption which we discuss at the end of Sect. 2.3.3.2.
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To acquire the majority of the target company, the raider bids a price ot at which
the incumbent shareholders can tender their shares. Denoting by nt the number of
outstanding shares, the raider will bid only prices that are individually rational for
her, in the sense that the deal has non-negative NPV,

V ′
t − otnt+1 ≥ c. (2.3.15)

We are finally getting to the conclusion. From Eq. (2.3.15), the maximum

offering price will be equal to V ut −c
nt+1

. Let st be the stock price at the end of date t .
Suppose that the takeover is announced and there is a coalition of shareholders that
adheres to the offer. Given this outcome, the equilibrium stock price aligns to its new
fundamental value, which takes into account the change in corporate governance,

st = V ′
t

nt+1
. (2.3.16)

We can now compare for each shareholder the alternatives of either adhere to the
tender offer or remain invested in the firm. If a shareholder decides to tender her
shares, she gets st − ot per share. As the participation to the tender is voluntary, the
offering price should be equal at least to the stock price, that is,

ot ≥ V ′
t

nt+1
, (2.3.17)

which is an incentive compatibility condition. Otherwise, the alternative of remain-
ing invested in the firm would be preferred. If c > 0, the maximum offering price

is V ′
t−c
nt+1

, which does not induce any incumbent shareholder to adhere to the tender.
Anticipating this outcome, the raider will refrain to bid for the company shares in the
first place. In equilibrium, the manager predicts this, then guessing she will be not
replaced at the end of each period, regardless her behavior. Hence, there will be no
investments at all in the future, and the value of equity is given by Eq. (2.3.13). The
value of the firm is lower than the value in case of a perfect corporate governance,
as the manager foregoes all positive NPV projects.

The only case in which the tender may be successful is c = 0, as the maximum

offering price in this case results equal to V ′
t

nt+1
, although the raider will have no

gain from the tender. In other words, if the raider is viewed as another company, the
synergies of the merger, that are equal to the value of future growth options, will be
completely transferred to the incumbent shareholders. It should be noticed that this
depends on two crucial assumptions. The first is the atomistic dimension of each
investor. The second instead, which is more subtle and common to all the models
we presented, is the presence of perfect information between all the agents. While
both are abstract assumptions, in many circumstances they are good approximation
of what happens in reality. Nevertheless, there are solutions to resolve the free-rider
problem; an example is the dilution mechanisms in favor of a raider that can be
included in corporate bylaws.
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2.3.3.2 Concentrated Ownership, Entrepreneurs and Minorities

Let assume that c = 0 and a large shareholder is in control of the firm. As
commented in the previous section, the presence of a large shareholder does not
fully solve the underinvestment problem. However, the value of the firm is improved
by her presence, as “sufficiently” valuable investment projects will be selected.
Nevertheless, the large shareholder may try to take advantage from the presence
of minorities, as we show in the following two examples.

The first example features a parent company (HoldCo) as controlling shareholder
and manager of the firm (SubCo). Let assume that HoldCo pays a fixed operating
cost c in each period, which is covered by a revenue of equal amount. The
majority stake in the SubCo is the only financial asset for simplicity. If a fraction
αt ∈ [0, ᾱ ≤ 1] of the cost κ can be transferred to the SubCo, then the controlling
shareholder has the interest in shifting as much costs as possible to SubCo. In this
way, part of the HoldCo’s original costs will be shared with SubCo’s minorities.
Unless specific provisions in the corporate bylaws, minority shareholders cannot
oppose to this decision. One example is the case of excess headcount in one of the
HoldCo’s division. Instead of firing the employees in excess, which will be in any
case costly, the HoldCo could renegotiate the contract with some of its employees,
eventually finding an agreement for a new job at the SubCo.

In order to show the previous result in a more formal way, suppose that
in each period the distribution of At is bounded below, and AtK0 ≥ ᾱc.
Let θ > 1

2 the share of the HoldCo in the SubCo’s capital, which is sup-
posed to remain constant for the time being. For a given path {αt }t≥0, the value

of the HoldCo is equal to θ
[
Et

∑∞
j=1

Mt+s
Mt

(
At+sK0 − αt+j−1κ

)+ PVGOt
]

−
Et

∑∞
j=1

Mt+s
Mt

[
y − κ (1 − αt+j−1

)]
, where

PVGOt := I

∞∑

j=1

Mt,t+jy(t)t+jλt +Et

∞∑

i=1

Mt,t+i

⎡

⎣
∞∑

j=1

Mt+i,t+i+j y(t+i)t+i+j − 1

⎤

⎦λt+i

is the value of SubCo’s growth options.10 The controlling shareholder chooses the
governance policy {αt }t≥0 which maximizes the holding’s market value

(
VHt

)
,

V Ht = max{αt+s≤ᾱ}s≥0

⎧
⎨

⎩
V Ct + θ

⎡

⎣Et

∞∑

j=1

Mt+s
Mt

(
At+sK0 − αt+j−1κ

)+ PVGOt
⎤

⎦

−Et

∞∑

j=1

Mt+s
Mt

[
y − κ (1 − αt+j−1

)]

⎫
⎬

⎭

(2.3.18)

10Notice that cost of shifting is agreed beforehand between HoldCo and SubCo, as αt affects
SubCo’s costs for period t + 1.



2.3 Capital Structure and Corporate Governance 45

which is equal to the equity value. Let Wt be the argument of the maximization
problem described by the right hand side of the equation. Since the choice of each
αt is independent from the others αj �=t , we have a sequence of static problems.
Taking derivatives with respect to αt , we obtain ∂Wt

∂αt
= 1−θ

1+rt+1
κ > 0. Therefore, in

each period it is optimal for the HoldCo to transfer as much costs as possible to the
SubCo, that is, αt = ᾱ, as originally claimed. As a result, the value of the SubCo
(i.e. the firm in the original example of Sect. 2.3.3.1) is lowered by the NPV of the
additional costs,

VEt = Et

∞∑

j=1

Mt+s
Mt

(At+sK0 − ᾱκ)+ PVGOt . (2.3.19)

Notice that this is exactly the opposite of an efficiency gain for SubCo.11 Put
differently, the presence of a large shareholder may have a mixed effect on corporate
governance. On the one hand, it resolves the managerial agency problem described
in Sect. 2.3.3.1. On the other, it introduces other types of inefficiency, one of which
could be the presence of intra-group costs shifting.

The message from this example is that minority shareholders may be hurt by the
presence of an holding company controlling the firm’s management. Nonetheless,
this possibility effectively complicates further the possibility of successful tender
offers. To see this point, suppose that t is the date at which HoldCo is bidding for
SubCo’s majority stake. For the success of the tender-offer, in Sect. 2.3.3.1 it was
sufficient for the HoldCo to bid a price ot at least equal to the post-announcement
price conditional upon the occurrence of the tender. However, in doing this we
implicitly assumed that the takeover improved the price per share. If that was not
the case, the offer would be certainly unsuccessful, as the incumbent shareholders
would have no reason to accept an offer which entails a certain loss in value. In
the example above, this case corresponds to PVGOt < Et

∑∞
j=1

Mt+s
Mt
ᾱκ . In short,

the NPV of intra-group cost shifting exceeds the value of replacing the incumbent
manager.

As a second example, consider the case in which the controlling shareholder is
an entrepreneur, who incurs in private expenses equal to κ in each period. Assume
that a fraction αt ∈ [0, ᾱ ≤ 1] of these expenses can be transferred to the firm
(e.g. luxury cars, private jet, hiring other relatives as employees to cover part of
the enterpreneur’s family cost). The fraction of private expenses transferred to the
firm are called perks, and they are not that infrequent to observe in reality. It is
immediate to verify that this setting is equivalent to that of the precedent example,
where the controlling shareholder was instead another company. As such, all the
previous conclusions remain unchanged. Hence, the presence of a large shareholders
does not necessary to improve the governance of the firm.

As a technical aside, there is an important hypothesis in the analysis pre-
sented in this and the previous section which deserves an additional discussion.

11Efficiency gains are often advocated to promote M&A activities.
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So far, we assumed that the large shareholder holds constant its stake in the
firm. Suppose, instead, that as time goes by, its stake progressively declines.
Consequently, the lower will be her stake, the less she will be motivated to put
effort in the firm, as investing in a generic project t is rational for her provided
that θtEt

∑∞
s=1Mt,t+sy

(t)
t+s ≥ D. Let t the date of the tender offer. For a given

ownership path
{
θj < θt

}

j>t
, the tender may be no longer feasible, as the resulting

value of future growth options could be insufficient. This example sheds lights
on the importance of contractual provisions such as lock-up periods, in which
the controlling shareholder is legally bind to hold constant its stake. Without a
similar provision, the large shareholder may not be even able to commit to a static
ownership policy, as DeMarzo and Urosevic (2006) show in a continuous time
setting.

2.4 A General Expression for the Value of the Firm

The purpose of this section is to derive a general expression for the equilibrium value
of the firm which is then valid for any arbitrary designed security and regardless
the specific reasons underlying the corporate finance decisions, as well as the way
through which an episode of default is resolved. At the same time, we wish to
understand the restrictions imposed by the firm’s budget constraint and the pricing
kernel to the total market capitalization of the firm.

Our discussion is in three parts. First, we characterize the set of securities that
are active at the end of each date t . Second, we give a general characterization
of a bankruptcy procedure, in terms of resulting budget constraint which links the
recovery rates associated to each class of security to the total available resources.
Third, we show that Eq. (2.3.3) for the value of the firm is always valid. This result
is of utmost importance, since it provides a very useful tool to think about the
underlying drivers of value creation for the firm as a whole.

2.4.1 Abstract Securities

The concept of abstract securities is quite straightforward. A security is intended
as a contract that entitles the holder to receive cash flows stream, and to benefit
control rights (e.g. corporate governance rights in the case of shares). Cash flows
are generelly called “fruits” for convenience, in the spirit of Lucas (1978). In our
models, securities are all tradable on competitive markets. Notice that, from a legal
perspective, not all tradable certificates, which are representative of a financial
liability, are all considered as securities under different financial regulations.12

12The most important examples are leveraged loans in Europe.
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However, as long as we conjecture that investors of firm’s securities are price-taker,
we can bypass such a complication and describe the firm’s capital structure as a set
of different types of corporate securities. We refer to the index s as a generic class
of securities, or to a generic security in the same class.

At a certain time t , each class belongs to either one of the supergroups Ot+1 and
Mt+1. Each set is defined at the end of each date t , consistently with the outstanding
liabilities after that same period fruits have all been paid to incumbent security
holders. Namely, Ot+1 is the set of securities with maturity date t + 1. If we let
St+1 the set of all class of securities at end of period t , the set Mt+1 is defined as
Mt+1 = St+1 − Ot+1 , that is, Mt+1 is the set of outstanding securities in t with
maturity date after t + 1. Within each class s,13 control rights are proportionally
attributed based on the number of held securities. We denote by ns,t+1 the number
of outstanding securities of class s at the end of time t . Notably, nt+1 is not restricted
to be an integer, and each class s is characterized by a specific time in which the class
has started to exist, and possibly a second time coinciding with its expiry date. As
in the previous sections, securities can be issued and traded at their ex-dividend, or
ex-fruit, price.

As anticipated, control rights divide in cash flows rights and all the actions that
each security holder may take individually, or jointly with other security holders, to
protect its own interests in the firm. As an example is the right of debt holders to
declare the firm bankrupt. For the moment, we need to keep track only of cash flows
rights, which we represent as a stochastic process

{
υs,t

}

t≥0 such that υs,j = 0, ∀j :
s /∈ Sj . While the firm is solvent, we can therefore formulate its budget constraint
as,

Lt+1 − Lt =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑

s∈Mt+1

ps,t
(
ns,t+1 − ns,t

)+
∑

s∈Ot+1

ps,tns,t+1 + Ltrt
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⎤

⎥
⎥
⎥
⎥
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−
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⎤

⎥
⎥
⎥
⎥
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⎦

+ xt + πt −
∑

s∈St∪St+1

�t,s (1 − τt ) ,

(2.4.1)

13The index s is always sufficient to characterize all the relevant information pertaining to a certain
type of securities in circulation. In particular, we do not need to keep track of the date at which a
specific security was issued, as its maturity date, if any, will be equal to that of the other securities
belonging to the same class.
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where �t,s is the amount of transaction costs to be paid relative to capital structure
adjustments, or corporate actions, while τt is the effective corporate tax rate at time
t . As usual, the value of the firm (Vt ) is defined as the ex-fruits (ex-dividend) market
value of all securities outstanding minus the available liquidity, that is,

Vt :=
∑

s∈St
ps,tns,t+1 − Lt+1. (2.4.2)

Without loss of generality, we can write ns,t = 0 for all s /∈ St and pt,s = 0 for all
s /∈ St+1. As a result, Eq. (2.4.1) can then be rearranged as follows,

∑

s∈St

(
ps,t + υs,t

)
ns,t = Lt (1 + rt )+ Vt+1 + xt + πt −�t (1 − τt ) , (2.4.3)

where�t := ∑
s∈St∪St+1

�t,s .

From Eq. (1.3.1), limT→∞ Et

(
MT
Mt

∑
s∈ST

(
ps,T + υs,T

)
ns,T

)
= 0. At the same

time, Eq. (2.1.8) must be valid also in the general case, otherwise the SDF process
would be not consistent with financial markets equilibrium. Consequently, the value
of the firm must be always consistent with the following transversality condition,

lim
T→∞Et

(
MT

Mt
VT

)

= 0, (2.4.4)

that eventually impose restrictions on the admissible investment and financing
policies.

2.4.2 Restructuring, Renegotiation and Liquidation
Procedures

Debt securities entail specific control rights which in case the firm violates certain
contractual conditions could lead the firm to consider bankruptcy as the only
resolutive action. The set of events that can trigger a default is not limited to missing
interest or principal payments, but includes also to the violation of debt covenants
or other provisions (e.g. a strong deterioration of collateral quality). To get general
results, we need to model the outcome of a default event independently from the type
of procedures, namely renegotiation, restructuring and liquidation (see Sect. 2.1.2).
In this regard, we let Rs,t be the recovery value of class s in case any of the previous
events take place at time t .
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Let t be the time when a debt restructuring occurs, and Rt ⊆ St the set of
securities involved in the restructuring process. Following Sect. 2.1.2 we have,

∑

s∈St

(
ps,t + υs,t

)
ns,t = Lt (1 + rt )+ xt +Vt +πt −�t (1 − τt )− bct , (2.4.5)

where ps,t = ns,t+1 = 0 and vs,tns,t = Rs,t for each s ∈ Rt ⊆ St . Basically,
the sum of recovery value and the cum-dividend market value of securities that are
not involved in the restructuring process must be equal to the NPV of current and
future free cash flows to the firm. Notice that, differently from the case in which a
single type of bonds was present, the value of debt tax shield may be positive, as
some debt holders may be not involved in the restructuring process. An example is
the case in which secured debt holders are fully paid back, while unsecured bonds
are swapped for ordinary shares. Besides, the same approach can be used to model
the case of a renegotiation of the original debt contracts. In such a case, we would
have bct = 0 and renegotiation costs, if any, being included in the transaction costs
component �t . Likewise, if t is a liquidation date, then, ps,t = 0 ∀s ∈ St and the
recovery value for each class is equal to Rs,t = υs,tns,t . Hence, we have

∑

s∈St

(
ps,t + υs,t

)
ns,t = Lt (1 + rt )+ xt +Vt +πt −�t (1 − τt )− bct , (2.4.6)

as Vt = 0, and unlevered free cash flows, net of bankruptcy costs, are equal to the
net proceeds from asset sales. In this regard, fire-sales may depress the second-hand
market price of the firm’s assets. Hence, in case of liquidation, bct includes the
excess haircuts experienced in case of fire-sales.

Let δt be an indicator process which is equal to one in case of default or
renegotiation at time t , or zero otherwise. Similarly, let lt be an indicator process
which takes the value of 1 in case the firm is liquidated at time t , or 0 otherwise.
With this premise, the following generalized budget constraint is valid for every
t ∈ N

∑

s∈St

(
ps,t + υs,t

)
ns,t = Lt (1 + rt )+xt+Vt+πt−�t (1 − τt )−bctδt . (2.4.7)

Indeed, Pr
(
δj>i = 0|li = 1

) = Pr
(
lj>i = 0|li = 1

) = 1, as the firm ceases to exist
after its liquidation.

2.4.3 The Value of the Firm

We are now ready to obtain a general expression for the value of the firm. In
equilibrium, Eq. (1.3.1) holds for each class of security s in the capital structure St .
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Therefore,

∑

s∈St

(
ps,t + υs,t

)
ns,t = E

⎧
⎨

⎩

Mt+1

Mt

⎡

⎣
∑

s∈St

(
ps,t+1 + υs,t+1

)
ns,t+1

⎤

⎦

⎫
⎬

⎭
. (2.4.8)

Since Eq. (2.4.7) holds for each future date t + j, j > 0, and 1
1+rt+1

= Et

[
Mt+1
Mt

]
,

we have

∑

s∈St

(
ps,t + υs,t

)
ns,t − Lt+1

= Et

{
Mt+1

Mt
[xt+1 + Vt+1 + πt+1 −�t+1 (1 − τt+1)− bct+1δt+1]

}

,

(2.4.9)

that is,

Vt = Et

{
Mt+1

Mt

[
x∗
t+1 − (

xt+1 − x∗
t+1

)+ πt+1 −�t+1 (1 − τt+1)− bct+1δt+1 + Vt+1
]
}

.

(2.4.10)

where
{
x∗
t

}

t≥0 is the unlevered free cash flows process with maximum NPV, that
is, the one resulting from the investment decisions of the unlevered firm (see
Sect. 2.3.1). Recalling Eq. (2.4.4), we can solve forward Eq. (2.4.10), then obtaining,

Vt = V ut + Et

∞∑

s=1

Mt+s
Mt

πt+s − Et

∞∑

s=1

Mt+s
Mt

�t+s (1 − τt+s)

− Et

∞∑

s=1

Mt+s
Mt

(
xt+s − x∗

t+s
)− Et

∞∑

s=1

Mt+s
Mt

bct+sδt+s, (2.4.11)

where V ut = ∑∞
s=1

Mt+s
Mt
x∗
t+s is the unlevered firm value. We can also write

Eq. (2.4.11) in a more compact way as,

Vt = V ut +DT St − T Ct − ACt − BCt , (2.4.12)

which states that the value of the firm, corresponding to the total market value of
the outstanding securities net of the amount of cash reserves, is always equal to the
sum of following 5 components:

• V ut := ∑∞
s=1

Mt+s
Mt
x∗
t+s , the unlevered firm value;

• DT St := Et

∑∞
s=1

Mt+s
Mt
πt+s , the NPV of tax benefits from capital structure

decisions (tax shield for short);
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• T Ct := Et

∑∞
s=1

Mt+s
Mt
�t+s (1 − τt+s), the NPV of transaction costs (transac-

tion costs for short);
• ACt := Et

∑∞
s=1

Mt+s
Mt

(
xt+s − x∗

t+s
)
, the NPV of agency costs (agency costs for

short);
• BCt := Et

∑∞
s=1

Mt+s
Mt
bct+sδt+s , the NPV of bankruptcy costs (bankruptcy costs

for short).

In equilibrium, the value of the firm is the net present value of the free cash
flows generated by the firm’s investment policy until default, plus the expected
recovery value at the same date. Transaction costs, agency costs and capital structure
effects drive the value of the firm apart from its unlevered benchmark, which is the
maximum NPV of unlevered free cash flows. Once we have the firm’s investment
policy, which, in equilibrium, may be affected by financing decisions and other type
of frictions, we can always obtain the value of the firm by looking at asset side
dynamics only. Eventually, this is equivalent to forecast the total free cash flows
generation process and its covariance with the SDF, which is the common estimation
activity for equity analysts. On this regard, usually it is convenient to represent the
value of the firm without explicit reference to agency costs, that is,

Vt = Et

∞∑

s=1

Mt+s
Mt

xt+s + Et

∞∑

s=1

Mt+s
Mt

πt+s − Et

∞∑

s=1

Mt+s
Mt

�t+s (1 − τt+s)

− Et

∞∑

s=1

Mt+s
Mt

bct+sδt+s . (2.4.13)

2.4.4 Dividends, Buybacks and Expected Equity Returns

We close this chapter with a practical example showing the importance of taking
properly into account the firm’s budget constraint. Consider an all-equity firm, with
Lt = 0 and unlevered free cash flows evolving according to,

xt+1 = (1 + g) xteεt+1− 1
2σ

2
(2.4.14)

where g is a positive constant and εt ∼i.i.d. N
(
0, σ 2

)
is a sequence of identically

and independently distributed (i.i.d.) shocks. The stochastic discount factor evolves
as,

Mt+1 = (1 + r)−1Mte
zt+1− 1

2ψ
2

(2.4.15)

where r is the constant risk-free rate and zt ∼i.i.d. N (
0, ψ2

)
characterizes

random variations in aggregate economic activity. While not strictly necessary, the
correlation (ρ) between εt and zt is assumed negative, consistent with a positive
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covariance between the firm’s cash flows and the aggregate level of the economic
activity. Under these hypotheses, the market value of equity is consistent with the
classic Gordon (1959) model,

V Et = Et

∞∑

j=1

Mt+j
Mt

xt+j =

xtEt

∞∑

j=1

e
∑j
k=1 zk− 1

2ψ
2

(1 + r)j e
∑j
k=1 εk− 1

2σ
2 = xtEt

∞∑

j=1

(1 + g)j e
∑j
k=1 zk+εk− 1

2ψ
2− 1

2σ
2

(1 + r)j

xtEt

∞∑

j=1

(1 + g)j e
∑j
k=1 zk+εk+ρσψ−ρσψ− 1

2ψ
2− 1

2σ
2

(1 + r)j

= xt

∞∑

j=1

(1 + g)j
∏j

k=1 e
−|ρ|σψ

Et

(
ezk+εk−ρσψ− 1

2ψ
2− 1

2σ
2
)

(1 + r)j =

xt

∞∑

j=1

[
1 + g

(1 + r) e|ρ|σψ
]j

= xt (1 + g)
[
(1 + r) e|ρ|σψ − 1

]− g ,

(2.4.16)

as the variance of zt + εt is equal to σ 2 + ψ2 + 2ρσψ . It is easy to check that, as
Et (xt+1) = (1 + g) xt , and t μ := (1 + r) e|ρ|σψ − 1 is the expected stock return,
that is,

Et

(
rEt+1

)
= (1 + r) e|ρ|σψ − 1 (2.4.17)

where rEt+1 := st+1+dt+1
st

is, indeed, the return on stocks.
Suppose we do not know |ρ|σψ and we wish to compute the expected return of

the stock having information on the firm’s fundamentals (xt , g). Then, by observing
the stock market price st , we obtain the expected stocks’ return as,

μ =
1
nt+1

Et (xt+1)

st︸ ︷︷ ︸
Free cash flow yield

+g (2.4.18)

where nt+1 is the number of outstanding shares at the end of the trading date t .
A common mistake in practice is to use expected dividends per share to proxy for

1
nt+1

Et (xt+1). However, if the firm delivers cash to its shareholders through share

buybacks, 1
nt
Et (xt+1), instead of paying dividends, the use of the dividend per share

will lead to substantial estimation errors.
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To make an actual example, assume that the model is (statistically) valid for
a large US industrial corporation with a global reach, and consider the following
data points. The average long-run real growth rate for the GDP of OECD countries,
which is a reasonable calibration for g, is estimated in the range 1.5–1.8%.
Excluding buybacks, the dividend yield is about 2%. However dividends account
for roughly one half of unlevered free cash flows, with the other half being used for
share buybacks. Once we take into account the effects of buybacks, the unlevered
free cash flows yield is equal to 4%, from which we obtain an expected real return
in the range of 5.5–5.8%. Instead, if we wrongly assume 1

nt+1
Et (xt+1) equal to the

expected dividend yield, we would underestimate the expected return by 2%, which
is a quite substantial bias in a low yields environment.

The methodology we use to estimate the expected return of a stock is the implied
cost of capital, which is very popular among practitioners. In general, the process is
a bit more sophisticated. See, for e.g., Easton (2007), Hou et al. (2012), and Penman
et al. (2019).

2.5 Related Literature

Sections 2.1–2.3 are the result of our own synthesis of a vast array of scattered
results. The methodology we follow comes from Sargent (1987), DeMarzo (1988),
Sethi et al. (1991, 1996), Sethi (1995), Amaro de Matos (2001) and Tirole (2005).
To give an historical perspective, Merton Miller and Franco Modigliani originally
examined the role of capital structure and dividends decisions in a deterministic
partial equilibrium setting (Miller & Modigliani 1958, 1961, 1963). Stiglitz (1969)
then extended their results introducing uncertainty in a general equilibrium model,
although in its model debt is risk-free as debt holders could have been always paid
back in full. One of the earliest extensions to the case of risky debt is Merton (1974,
1977), who adapts the Black–Scholes–Merton option pricing framework (Black and
Scholes 1973; Merton 1973) to develop the first structural credit risk model. Hellwig
(1981) introduces the possibility of default for investors that borrow to invest in the
firm’s securities, introducing for the first time financial market frictions. Implicitly,
in our models we have ruled out this case as a byproduct of perfect secondary
financial markets.

During the 1970s and early 1980s, there was a rich academic production in
response to MM propositions. One example is debt overhang, we presented in
Sect. 2.3.2, introduced in Myers (1977). Another related problem is the asset
substitution (Jensen and Meckling 1976), in which shareholders have the incentive
to increase cash flows risk as operating earnings falls and default becomes more
enticing, the so-called “gamble for resurrection”.14 The fil rouge is an attempt

14In this regard, securities other than “plain vanilla” bonds and equity may be used to attenuate the
diverging interests between share and debt holders, although not always with success. For instance,
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to show that shareholders could create value through financing decisions, the
latter being far from irrelevant. Interestingly, note that all of these results were
obtained while dynamic general equilibrium theory was progressively developing,
and its application to asset pricing problems was one of the research frontiers.
This explains the fragmentation of several closely related results. In the 80s, the
literature on equilibrium asset pricing was then sufficient to reduce the proof of MM
propositions to an equilibrium asset pricing application. The incomplete markets
general equilibrium extensions of MM results is in DeMarzo (1988).

Managerial agency conflicts are ubiquitous and have been largely analyzed in the
literature. Hart (1995), Tirole (2001) and Tirole (2005) provide exhaustive reference
to the subject. This raise the importance of corporate governance, and security
design may be useful to align managerial interests with those of shareholders (Hart
1995; Dow and Raposo 2005). Furthermore, Zwiebel (1996) shows that managerial
entrenchment, which is a type of agency conflict, may affect dynamic capital
structure decisions. In particular, managers issue debt to credibly constrain their own
future empire-building, with an impact on shareholders value. Similarly, Morellec
et al. (2010) consider the case in which managers can capture part of the free cash
flows to equity holders as private benefits, and have control over financing decisions.
Using structural estimation, they quantify the size and impact of managerial agency
costs to shareholders value.
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Chapter 3
Borrowing Constraints, Debt Dynamics
and Investment Decisions

This chapter deals with dynamic capital structure models with risk-free debt. This
class of models is based on the presence of a borrowing constraint ensuring debt
holders being always paid back in full. Namely, we consider the case of secured
debt, in which a collateral constraint limits the amount of debt outstanding to the
minimum resale price of the pledged assets, net of total interest expenses. Contrary
to the case of unsecured debt, in which the firm borrows against cash flows, debt
capacity is directly tight to the size of its balance sheet.

The use of collateral constraints is ubiquitous, as they are general enough to make
the use of other types of borrowing constraints almost superfluous, especially from
an empirical perspective. In principle, borrowing constraints that allows for risky
debt are possible, as in Abel (2017). However, in several stock markets analyses,
default losses for debt holders can be considered as a second-order problem, without
substantial biases on empirical results. For this reason, it is customary to work with
borrowing constraints that ensures that debt holders are always paid back in full.
Besides, introducing transaction costs on primary markets, models with risk-free
debt can still accommodate for a total cost of debt above the risk-free rate. On this
point, Huang and Huang (2012) empirically document the existence of a substantial
credit spread component that is unlikely to be related to default risk. This is not to
say that corporate debt can be generally considered as risk-free, but rather that there
might be situations in which this is a convenient working hypothesis. Chapter 5–7
focus on risky corporate debt.

The structure of the chapter is as follows. In Sect. 3.1 we introduce the concept
of collateral constraint, and show that, under quite general hypothesis, it can be
used to ensure that shareholders are never enticed by the alternative of default.
One consequence is that the value of shareholders’ default option is null and the
ex-dividend equity market value is linearly decreasing with the face value of debt
outstanding. Since there are no frictions for what concerns the issuance of new
equity, holding liquidity is always costly to the firm because of the taxation on
related interest income, and therefore free cash flows to equity holders are always
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fully paid out as dividends or share buybacks. With linear taxes, the firm issues either
the maximum amount of secured debt or no debt at all. Namely, the optimal capital
structure trades off the tax benefits of debt, against the additional costs in which
the firm incur because of the pledge. When the collateral constraint is binding, the
book-leverage ratio is inversely related to the cost of debt, which is the sum of the
risk-free interest rate plus the transaction cost per unit of debt issued. In Sect. 3.1
we also introduce the general notion of weighted average cost of capital (WACC),
and we show the practitioners approach holds valid in equilibrium in presence of a
collateral constraint ensuring that debt is risk-free.

Section 3.2 is dedicated to endogenous investment decisions. The model con-
siders a firm operating with a constant returns to scale (CRS) technology in a
perfectly competitive product market, subject to convex investment adjustment
costs, in which shareholders choose the level of capital stock that maximizes the
cum-dividend equity value. Although the equilibrium book-leverage is unaffected
by introducing endogenous investment decisions, the collateral constraint makes
investment and financing decisions mutually dependent, as long as issuing secured
debt remains enticing for shareholders. In Sect. 3.3 we provide a first analysis of
the relation between investment returns and securities returns, obtaining the basic
version of the Investment CAPM (Zhang 2017). In Sect. 3.4 we reconsider the
optimality conditions characterizing the levered firm’s investment policy. When
binding, the collateral constraint motivates shareholders to invest above the level
which maximizes the NPV of unlevered free cash flows, because of the funding
cost advantage of debt. This effect introduces investment agency costs in the model,
which, in equilibrium, are more than offset by the difference between the NPV of
tax benefits and that of transaction costs, consistent with Eq. (2.4.12) of the previous
chapter.

3.1 Collateral Constraints and Optimal Capital Structure

3.1.1 Secured Debt and Flotation Costs

Firms can borrow money from investors essentially in two different ways, borrowing
against cash flows or against assets. The first case links debt capacity directly to the
free cash flows process; debt is unsecured, as lenders have no direct and exclusive
right on any specific asset of the firm. In the second case, debt is protected by a lien
written on one or more specific assets, which debt holders can seize and liquidate
when default occurs. We say that debt is secured by a pledged asset, which serves as
collateral. The activities required to originate and monitor secured debt contract are
costly (e.g. legal expenses for writing the lien). For this reason, the pool of financial
intermediaries, or syndicate, involved in the placement of a new issue will charge
the firm with a flotation cost. Consistent with what frequently happen in practice,
we assume that these transaction costs are proportional to the face value of the new
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issue. The syndicate eventually place the related debt securities1 on the secondary
market, in which originators, i.e. the members of the syndicate, and investors act
both as price taker. Thus, the setting is equivalent to one in which the firm directly
issues debt within a Walrasian secondary market, except that additional issuance
costs must be considered in the firm’s budget constraint.

We assume that secured debt instruments are issued with one period maturity,
and coupon rate set at the risk-free rate (rt+1). In this way, we can avoid price
fluctuations related to change in interest rates. Pledge-able assets are restricted to the
firm’s capital stock, which is composed of Kt units of homogeneous capital goods.
If the liquidation value of capital is strictly positive, there is always a maximum
nominal amount of secured debt that can be issued as risk-free. Let ϕt+1 be the
flotation costs per unit of secured debt issued at time t , which we assume to be paid
in t+1 (i.e. at maturity). The following collateral constraint implements a risk-free
debt contract with face value Ft+1 > 0 due at date t + 1,

Ft+1 ≤ Rt+1 (1 − δ)Kt+1

1 + rt+1 + ϕt+1
, (3.1.1)

where δ ∈ [0, 1] is the depreciation rate of capital, while Rt+1 is the lower bound
for the support of the conditional distribution of the resale price of capital (Rt+1)

in case of default and liquidation of the firm in t + 1. Eq. (3.1.3) ensures that, even
in case of default, debt holders and financial intermediaries are paid in full. For this
reason it is also totally irrelevant assuming that transaction costs are paid at issuance
or at maturity. When Eq. (3.1.3) holds valid, we speak of fully secured debt.

For ease of notation it is also common in corporate finance literature to set the
price of new capital goods equal to one (numeraire). Besides, as long as liquidation
frictions are not explicitly modeled, it is convenient to adopt the following working
hypothesis,

Rt = 1 − α, (3.1.2)

where α ∈ [0, 1] is a constant haircut rate. Notably, this haircut applies only in case
the capital stock is sold by the lenders following an event of default. One of the
possible interpretations is the presence of legal and execution costs. The collateral
constraint resulting from Eq. (3.1.1–3.1.2),

Ft+1 ≤ (1 − α) (1 − δ)Kt+1

1 + rt+1 + ϕt+1
. (3.1.3)

1A security is transferrable by definition, as opposed to a standard banks loan which requires
the prior consent of the borrower. In case the contract is originated as a loan, the contract must
foresee a simple novation mechanism that ensures tradability without prior consent of the borrower
(e.g. Transferable Loans Securities). An alternative mechanism is that of sub-participation, which
is a form of securitization of the original debt contract. In a sub-participation agreement, one
or more participants of the syndicate issue specific certificates that are backed by the original
loan. Abstracting from counter-party risk (i.e. the intermediary may abscond cash from the
vehicle/account dedicated to the sub-participation), both mechanisms are equivalent.
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is assumed valid in the remainder of this chapter as well as in Chap. 4. In other
words, in this and the following chapter the firm is assumed to be financed with
equity and fully secured debt. As is evident, as the coupon rate is equal to rt+1,
secured debt trades always at par value,2 that is,

V Bt = Ft+1, (3.1.4)

where V Bt be the market value of debt outstanding at the end of time t (Ft+1).
A fully secured debt contract is risk-free. However, it is important to distinguish,

at least in principle, the concepts of risk-free and default-free debt. Generally
speaking, a security is risk-free if it entails deterministic payments. A defaultable
debt instrument can be risk-free, provided that in case of default debt holders recover
the NPV of residual coupons and principal payments. Under specific assumptions,
Rampini and Viswanathan (2013) shows that a collateral constraint consistent with
Eq. (3.1.1) ensures that default is never enticing for shareholders. Consequently,
debt is default-free and not just risk-free, and dynamic capital structure models
can be solved without considering explicitly the alternative of default. This is very
convenient shortcut in several applications, and we are going to show under which
mild conditions this approach can be effectively adopted in Sect. 3.1.2. However, if
we allow for the presence of unsecured debt, results would be different, as we show
in Sect. 7.1 of Chap. 7. Notice that the presence of a collateral constraint is a type of
financial friction. However, this friction does not limit the ability of shareholders to
infuse additional equity in the firm. In this regard, during the first decade of 2000s,
several papers focus on this second issue; see, for e.g., Hennessy and Whited (2005)
and Livdan et al. (2009). Here, we do not consider the presence of equity flotation
costs or limits to outside equity, as the use of the model is primary intended for the
case of listed companies that can easily issue additional shares at negligible costs. In
the remainder of this section, as anticipated, we assume that the investment policy
of the firm is exogenously given.

3.1.2 Strict Individual Rationality and Absence of Default Risk

As assumed in the previous chapter, when investment decisions are not explicitly
modeled, we can characterize an investment policy through the resulting unlevered
free cash flows process {xt }t≥0. However, as the hypothesis is that firm’s capital
stock is composed only of a single type of homogenous and perfectly divisible
capital goods, then we can represent an investment policy more explicitly in terms
of the capital stock process {Kt+1}t≥0. Since there is no working capital for the

2The price per unit of debt’s face value is equal to one.
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moment,3 operating cash flows are equal to after taxes operating earnings gross of
depreciation expenses. In this regard, it is assumed that operating cash flows are non-
negative for some capacity utilization level ut ≤ Kt . Hence, the following general
relation between operating cash (yt ) and unlevered free cash flows (xt ) holds,

xt = yt − It = y (Kt ,Kt+1, ut , zt )− It , (3.1.5)

where It = Kt+1 − K̃t is total investment expenditure and zt is the set of all other
relevant state variables. The variable K̃t denotes the residual capital stock after the
production takes place, while Kt+1 is the capital stock available for production at
time t + 1. For convenience, we also assume that the full capital stock available for
production (Kt ) depreciates regardless the firm is operating at maximum capacity
or not. In other words, economic and accounting depreciation are equivalent.

At the beginning of every time t , the physical capital stock cannot be adjusted
before production takes place, which is consistent with the investment dynamics.
For this reason, shareholders can default only after the physical capital stock has
depreciated, as in Hennessy and Whited (2005) and Garin (2015) amongst others.
In other words, default may occur, say, only after production takes place.4 Without
such an assumption, default could be a strategic option to reduce the amount of
capital stock before production occurs, which could contrast with the timing of
investment decisions.

In the remainder of the chapter the tax shield on total interests expenses is
characterized by a time-independent function π of the amount of liquidity and debt
outstanding, πt = π (Lt , Ft , yt , zt ), πF ≥ 0, πL ≤ 0. The sign of its derivatives
with respect to Ft , Lt highlights the fact that a positive interests income, such as
interests on cash reserves, is always taxed, while the cost of debt financing may
be tax deductible. Contextualizing the results discussed in Sect. 1.4 of the previous
chapter in the case of a solvent firm, the budget constraint can be formulated as,

Ft+1 + xt + πt + rtLt = Dt + (rt + ϕt) Ft + (Lt+1 − Lt) , (3.1.6)

where Dt := dtnt + pt (nt+1 − nt ) is the total cash outlays related to equity
financing. Since there are neither equity flotation costs nor limits to outside equity
injections, without loss of generality we can assume a constant number of shares.
As a result, all payments will occur by means of dividends, which can be negative in
case that shareholders need to recapitalize the firm. We then introduce a very useful
concept under the hypothesis of an exogenous unlevered free cash flows process
{xt}t≥0.

3In the next chapter we will add working capital to the model, with specific reference to inventories
of intermediate production goods.
4Production may be null if this is the unique convenient alternative for the firm.
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Definition 3.1 An investment policy {Kt+1}t≥0 is strictly individually rational
(SIR) if

∞∑

s=1

Mt+s
Mt

xt+s (Kt+s,Kt+s+1) ≥ y (Kt , 0, zt )+ (1 − δ)Kt . (3.1.7)

A SIR investment policy has the property that it is never convenient for an all-
equity firm to sell its capital stock and shut-down operations forever. The set of
SIR policy is never empty, as Kt+1 = 0 is SIR as yt ≥ 0. For the same reason, a
SIR investment policy is also individually rational (see Sect. 2.1.1). In this regard,
the firm’s financing policy {Ft+1, Lt+1}t≥0 is individually rational if πt ≥ ϕtFt in
every period t . Otherwise, shareholders would incur a net loss by issuing secured
debt. The following proposition clarifies the importance of these definitions.

Proposition 3.1 Let {K+1} be a SIR investment policy and {Ft+1, Lt+1} an indi-
vidually rational financing policy. If there are no subsidies to investments in capital
stock, that is It = Kt+1 − K̃t , then: (i) Kt+1 = 0 is never strictly preferred
for shareholders, and (ii) shareholders can credibly commit to repay debt in each
period, as default is never strictly enticing.

Proof Suppose the results of the proposition are valid. Using Eq. (2.4.11) we can
write shareholders value as,

V̂ Et = Lt (1 + rt )+
∞∑

j=0

Mt+j
Mt

xt+j − Ft +
∞∑

j=0

(
πt+j − ϕt+jFt

)
. (3.1.8)

Setting Kt+1 = 0, shareholders obtain Lt (1 + rt ) + y (Kt ,Kt+1, ut , zt ) +
(1 − δ)Kt + [πt − (1 + ct ) Ft ], which is never greater than the RHS of Eq. (3.1.8)
by the SIR assumption and the fact that {Ft+1, Lt+1}t≥0 is also assumed individually
rational. Hence,Kt+1 = 0 is never a strictly convenient alternative for shareholders
if {Kt+1}t≥0 is SIR. To prove the second part of the proposition, notice that the
collateral constraint in Eq. (3.1.3) implies that Ft+1 ≤ (1 − δ)Kt+1. Consequently,
if shareholders default and they do not continue to run the firm, they obtain at most
Lt (1 + rt )+ y (Kt ,Kt+1, ut , zt )+ (1 − δ)Kt − (1 + ct ) Ft , as α ≥ 0. As a result,
an event of default followed by the termination of the firm’s operations can be
ruled out. It remains the case in which default takes place and, since the collateral
constraint ensures debt holders are repaid in full, shareholders continue to run the
firm. Holding the investment policy constant, default affects investment expenditure
as a consequence of liquidation costs, that is,

It = Kt+1 −

⎡

⎢
⎢
⎢
⎣
Kt (1 − δ)− Ft 1 + rt + ϕt

1 − α
︸ ︷︷ ︸

K̃t

⎤

⎥
⎥
⎥
⎦
. (3.1.9)
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If α > 0, the alternative of default has the effect of increasing the total investment
expenditure required to implement the same investment policy. Furthermore, if
shareholders switched to a different investment policy

{
K ′
t+1

}

t≥0
, the total invest-

ment expenditure will be never reduced by the exercise of their default option.
Finally, since in case that α = 0 shareholders are indifferent to the alternative of
default, we can conclude that they can credibly commit to never default in the future.

�	
The meaning of Proposition 3.1 is simple. When investment and financing decisions
are exogenously given, mild regularity conditions are sufficient to exclude the
case of default. These conditions however are not necessary once we take into
account shareholders equilibrium behavior, as we show in the proof of the following
proposition.

Proposition 3.2 Let χ = {
χ t+1

}

t≥0 = {εt ∈ {0, 1} , ut ≤Kt , Ft+1 ≥ 0,Kt+1 ≥ 0,
Lt+1 ≥ 0}t≥0 a state-contingent policy for the firm consistent with the budget
constraint of the firm, where εt = 1 corresponds to the choice of default. Suppose
∃ (ut , It ,Kt ) : yt ≥ 0, ∀t ∈ N. Let χ∗ be the solution of shareholders’ dynamic
program characterizing the equilibrium behavior of the firm,

Ṽ E (Ft ,Kt , Lt , zt ) =

max
χt+1

{
yt + πt − It − Ft (1 + ct ) (1 − εt )+ Ft+1 + Et

[
Mt,t+1Ṽ

E (Ft+1,Kt+1, Lt+1, zt+1)
]}

s.t.

χt+1 = {ut ≤ Kt, Ft+1 ≥ 0,Kt+1 ≥ 0, Lt+1 ≥ 0}
It = Kt+1 − (1 − δ) K̃t

K̃t = (1 − α) (1 − δ)Kt+1εt + (1 − δ)Kt+1 (1 − εt )

Ft+1 ≤ (1 − α) (1 − δ)Kt+1

1 + ct+1

yt = f (ut , It , Kt , zt )

Ṽ E (Ft ,Kt , Lt , zt ) ≥ 0,

(3.1.10)

where f is the firm’s technology, which may also include the results of optimal
pricing decisions depending on the competitive landscape. Then, (i) shareholders
can credibly commit to repay debt in future, as default is never enticing for them,
that is, ε∗t = 0 for all dates t ∈ N, and (ii) χ∗ maximizes in each period the total
value of the firm inclusive of the current free cash flows.

Proof Suppose default is never optimal for shareholders. Since ∃ (ut , It ,Kt ) such
that yt ≥ 0, the problem in Eq. (3.1.10) is well posed as we can be sure there exists
at least a policy χ such that shareholders value is non-negative, consistently with
the individual rationality constraint. The value of the firm is equal to Vt = V Et +
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Ft+1 = Ft+1 + Et

[
Mt,t+1Ṽ

E (Ft+1,Kt+1, Lt+1, zt+1)
]
. The term −Ft (1 + ct ) is

independent from the choice of control variables, and therefore can be taken out
of the maximization problem. Since there is no alternative policy that can strictly
improve shareholders value, V̂ E (Ft ,Kt , Lt , zt )+Ft (1 + rt ) is the maximum value
of the firm before any payment is made or received. Hence, as yt + πt − ϕtFt −
It denotes the total free cash flows to the firm (f cft ), shareholders optimization
problem is equivalent to,

max{ut≤Kt ,Ft+1≥0,Kt+1≥0,Lt+1≥0} {f cft + Vt (Ft+1,Kt+1, Lt+1, zt )}

s.t.

It = Kt+1 − (1 − δ)Kt
Ft+1 ≤ (1 − α) (1 − δ)Kt+1

1 + rt+1 + ϕt+1

yt = f (ut , It ,Kt , zt )

f cft = yt + πt − ϕtFt − It ,

(3.1.11)

thereby completing the proof of the second part of the proposition. Thus, we remain
to show that default is never enticing for shareholders. From the definition of K̃t ,
it is immediate to see that the only effects of default is to reduce dividends by
α (1 − δ)Kt ≥ 0. As a result, shareholders never profit from the exercise of their
default option and, consequently, they can credibly commit to repay debt in the
future. �	
Proposition 3.2 holds independently from the specific technology and competitive
landscape we consider. The advantage is that it allows to formulate shareholders
problem without taking into account the alternative of default, which would
complicate further the analysis. Moreover, the same problem can be formulated in
terms of maximization of the cum-dividend value of the firm, which is sometimes a
more convenient way of proceeding.

3.1.3 The Value of the Firm, Optimal Capital Structure and
The Weighted Average Cost of Capital

Differently from interest expenses, transaction costs related to the issuance of
secured debt are not paid to any of the firm’s investors. Thus, they are equivalent
to operating expenses, such as wages or other cost items, as opposed to coupons,
which instead are part of debt holders’ remuneration. However, for accounting
purpose, transaction costs paid on securities issued by the firm are included in
interest expenses. Besides, as we pointed out in Sect. 2.2.3, total interests expenses,
which in this case amounts to (rt + ϕt) Ft , are considered as cost items for tax
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purpose. Consistent with the tax law interpretation of interests expenses, we define
cost of debt (ct ) as the sum of the coupon rate plus the transaction cost per unit of
debt’s notional, that is ct := rt + ϕt . In this regard, it is convenient to separate the
tax shield on interests expenses from the taxation of interests earned on liquidity
reserves, adopting the following representation,

πt = π(F) (Ft , Lt , zt )− π(L) (Ft , Lt , zt ) . (3.1.12)

Hence, applying Eq. (2.4.13) to this specific context, the value of the firm (Vt ) can
be obtained according to the following expression,

Vt =Et

∞∑

s=1

Mt+s
Mt

xt+s + Et

∞∑

s=1

Mt+s
Mt

[
π(F) (Ft+s, zt+s)− π(L) (Lt+s, zt+s)

]

︸ ︷︷ ︸
DT St

−Et

∞∑

s=1

Mt+s
Mt

ϕt+sFt+s
︸ ︷︷ ︸

T Ct

,

(3.1.13)

where DT St is the value of debt tax shield, net of the effect of interest income
related to the presence of liquidity, while TCt is the net present value of debt’s
transaction costs. Accordingly, debt financing improves the value of the firm through
the fiscal deduction of interest charges, although transaction costs paid to financial
intermediaries operate in the opposite direction.

In order to derive more precise quantitative results, we adopt a linear tax
structure,

{
π(F) (Ft , zt ) = τ (rt + ϕt) Ft tax shield on interests expenses,

π(L) (Lt , zt ) = τrtLt taxation of interest income,
(3.1.14)

where τ ≥ 0 is the corporate tax rate. This is a very common working hypothesis
in the literature, which we will use again. With linear taxes, the expression for the
value of the firm becomes even more intuitive,

Vt = Et

∞∑

s=1

Mt+s
Mt

xt+s + Et

∞∑

s=1

Mt+s
Mt

[τ (rt+s + ϕt+s) Ft+s ]
︸ ︷︷ ︸

Tax benefits of Debt

−Et

∞∑

s=1

Mt+s
Mt

[τrt+sLt+s ]
︸ ︷︷ ︸

Cost of Liquidity

−Et

∞∑

s=1

Mt+s
Mt

ϕt+sFt+s
︸ ︷︷ ︸

Transaction Costs

.

(3.1.15)
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In equilibrium, shareholders never hold cash reserves, because of the next loss
from the taxation of interest income, that is, the term Et

∑∞
s=1

Mt+s
Mt

[τrt+sLt+s ] in
Eq. (3.1.15) above. Hence, without loss of generality we can assume that liquidity
reserves are always null, since it is never rational for shareholders to incur the
related cost. Notice that this is correct as long as shareholders are free to inject new
equity in the firm without costs. Let γt+1 := (1−α)(1−δ)

1+ct+1
the maximum book-leverage

consistent with the collateral constraint; with an exogenous investment policy, the
optimal capital structure of the firm is obtained in each period as the solution of the
following static linear program,

max
Ft+1∈[0;γt+1Kt+1]

[τct+1 − ϕt+1]Ft+1, (3.1.16)

as the choice of Ft+1 at time t does not affect that of Fj+1 at each future date
j > t . In this problem, the net marginal benefit of a unit of debt is constant and
equal to τct+1 − ϕt+1. Whenever this quantity is equal to zero, shareholders’s value
is independent from the choice of Ft+1, that is, any Ft+1 ∈ [0, γtKt+1] is equally
optimal. Conversely, when τct+1 > ϕt+1, shareholders are better-off by borrowing
the largest amount of debt possible, that is,

Ft+1 = γt+Kt+1, (3.1.17)

while Ft+1 = 0 is the optimal choice for the case τct+1 < ϕt+1. Notably, when

issuing debt is convenient for the firm, the book-leverage ratio
(
Ft+1
Kt+1

)
is inversely

related to the cost of debt (ct+1),

Ft+1

Kt+1
= (1 − α) (1 − δ)

1 + ct+1
= γt+1, (3.1.18)

which is a very interesting result of the model, we can also test empirically. Besides,
this result remains valid in presence of endogenous investment decisions (we discuss
this point later).

Regardless how investment decisions are taken, the presence of the collateral
constraint provides an equilibrium foundation to the practice of the weighted
average cost of capital (WACC) in security analysis. Generally speaking, the firm’s
WACC is defined as a stochastic process

{
wacct,t+1

}∞
t=0 such that, for each date

t ∈ N, the following equation holds,

Vt = Et (xt+1 + Vt+1)

1 +wacct,t+1
. (3.1.19)

Let rEt+1 := Dt+1+V Et+1

V Et
the stock returns, and assume thatLt+1 = 0 consistently with

the sub-optimality of liquidity reserves. As an application of the budget constraint,
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i.e. Eq. (3.1.6), and Propositions 3.1–3.2, which rule out the possibility of default,
the following equation is valid for each time t ∈ N,

Ft+2 + xt+1 = Dt+1 + Ft+1 [1 + (1 − τ ) τct+1] . (3.1.20)

Adding VEt+1 to both sides of the previous expression, we obtain,

Vt+1 + xt+1 = V Et+1 +Dt+1 + Ft+1 [1 + (1 − τ ) τct+1] . (3.1.21)

Substituting Eqs. (3.1.21) in (3.1.19), the weighted average cost of capital can be
eventually obtained as,

wacct,t+1 = Et

{
V Et+1 +Dt+1

V Et

V Et

Vt
+ Ft+1 [1 + (1 − τ ) τct+1]

Vt

}

− 1,

(3.1.22)

that is,

wacct,t+1 = VEt

Vt
Et

(
rEt+1

)
+ Ft,t+1

Vt
ct+1 (1 − τ ) , (3.1.23)

where ct+1 = rt+1 + ϕt+1 is the cost of debt. Equation (3.1.23) is the standard
WACC formula used by practitioners in security analysis, which can be found
on every introductory corporate finance textbook. The model presented in this
section provides an equilibrium foundation of this practice. In particular, the
practitioners’ approach is consistent with equilibrium pricing only if debt trades
at par on the secondary market, and the “credit spread” charged to the firm can
be entirely attributed to a transaction cost component. This could be a convenient
approximation in several applications, even in absence of an explicit borrowing or
collateral constraint (see Sect. 7.4.3).

3.2 Perfect Product Market Competition and Optimal
investment-Financing Decisions

The structure of the competitive landscape, or industrial organization, affects
shareholders’ production and investment decisions. In this section, we introduce
endogenous investment decisions by considering the case of perfect product market
competition. In other words, it is assumed that the firm is able to sell any amount
of its produced goods at the market price, which is taken as given by all the
competitors in the same industry. Another element that influences investment
decisions is the production technology available to the firm, which we model in a
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quasi-reduced form way. Namely, the following relation between the capacity used
in the production process (ut ≤ Kt) and operating cash flows (yt) is assumed valid,

yt = Atut (1 − τ )+ τδKt , (3.2.1)

whereAt is a strictly positive exogenous stochastic process characterizing the firm’s
profitability, while φ (Kt+1,Kt ) ≥ 0 are investment adjustment costs. The latter
are equal to zero iff Kt+1 = (1 − δ)Kt , that is, if there are neither acquisition or
disposal of new assets. The technical motivation for the presence of φ (Kt+1,Kt )

will be clear later in our discussion. The term τδKt is instead the investment tax
shield, that is the tax savings on accounting depreciations.

Since operating cash flows are monotone increasing in ut , in equilibrium we
necessary have ut = Kt . Thus, we can reformulate Eq. (3.2.1) as,

yt = [AtKt − φ (Kt+1,Kt )] (1 − τ )+ τδKt , (3.2.2)

without loss of generality. Furthermore, Proposition 3.2 allows us to rule out from
the analysis the case of default. Therefore, the evolution of capital stock is always
governed by following difference equation,

Kt+1 = Kt (1 − δ)+ It . (3.2.3)

Besides, from the analysis of the previous section, there is no need to consider
financing policies allowing for a non-zero liquidity balance. Therefore, we can
assume without loss of generality Lt+1 = 0, obtaining a substantial simplification
of the notation required to set up the shareholders optimization problem.

Investment adjustment costs assume different meanings depending on the sign
of It . When new capital stock is added (It > 0), the term φ (Kt+1,Kt ) should be
generally interpreted as additional operating expenses in which the firm incur to
install new equipments. On the other hand, when the firm is selling part of its assets
(It < 0), the term φ (Kt+1,Kt ) could capture irreversibility costs, such as second-
hand market frictions (e.g. haircuts to the resale price of capital goods). In applied
works, adjustment costs are usually modeled in the following way,

φ (Kt+1,Kt ) = θ (It )

2

(
It

Kt

)2

Kt =

⎧
⎪⎨

⎪⎩

θ+
2

(
It
Kt

)2
Kt It ≥ 0

θ−
2

(
It
Kt

)2
Kt It < 0

(3.2.4)

which has the advantage of being differentiable at the separation threshold It = 0.5

5The proof of this claim is straightforward: ∂φt

∂I−
t

|,t=0 = θ− It
Kt

|It=0 = 0 and ∂φt

∂I+
i,t

|It=0 =
θ+ It

Kt
|,t=0 = 0.
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3.2.1 The Value of the Unlevered Firm

Consider the case of an all-equity firm, i.e. for some exogenous reason shareholders
cannot issue securities other than common stocks. Shareholders of the firms act in
their own best interest, and, consequently, their investment decisions are the solution
of the following dynamic program,

V̂ Et (Kt , zt ) =

max
Kt+1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎣

AtKt (1 − τ)+ δτKt − φ (Kt+1, Kt) (1 − τ)− [Kt+1 − (1 − δ)Kt ]
︸ ︷︷ ︸

xt (Kt ,Kt+1)

+Et

[
Mt,t+1V̂

E
t+1 (Kt+1, zt )

]

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Wt

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.2.5)

The solution of the previous optimization problem can be obtained from the
following conditions,

⎧
⎪⎪⎨

⎪⎪⎩

∂Wt
∂Kt+1

= 0 �⇒ 1 + θ (It ) ItKt (1 − τ) = Et

(
Mt+1
Mt

∂V̂ Et+1
∂Kt+1

)

∂V̂ E (Kt , zt )

∂Kt
= At (1 − τ)+ δτ + θ (It )

2

(
It

Kt

)2

(1 − τ)+ (1 − δ)
[

1 + (1 − τ) θ (It )
(
It

Kt

)]

(3.2.6)

which are based on the implicit assumption that the value function V̂ Et (Kt , zt )
is differentiable in Kt . Starting from the top, ∂Wt

∂Kt+1
= 0 is the necessary FOC

for an optimum. Applying the envelope theorem we can show that ∂V̂
E(Kt ,zt )
∂Kt

is

equal to the marginal operating cash flows, At (1 − τ )+ δτ + θ(It )
2

(
It
Kt

)2
(1 − τ )+

(1 − δ)
[
1 + (1 − τ ) θ (It )

(
It
Kt

)]
. Putting together, these conditions can be used to
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obtain the following Euler equation, which must be valid along optimal investment
path,

1 + θ (It ) It
Kt
(1 − τ )

︸ ︷︷ ︸
Marginal Cost of Investment

=

Et

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mt+1

Mt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎣
At (1 − τ )+ δτ + θ(It+1)

2

(
It+1
Kt+1

)2
(1 − τ )

+ (1 − δ)
[
1 + (1 − τ ) θ (It+1)

(
It+1
Kt+1

)]

⎤

⎦

︸ ︷︷ ︸
Marginal Benefit of Investment

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(3.2.7)

Equation (3.2.7) is a restatement of the positive NPV rule in capital budgeting.
Namely, the firm should invest until the marginal net present value of an additional
investment unit is null. In fact, we can multiply both sides of the FOC in Eq. (3.2.8)
times an infinitesimal investment dI ,

Et

(
Mt+1

Mt

∂V̂ Et+1

∂Kt+1
dI

)

−
[

1 + θ (It ) It
Kt
(1 − τ )

]

dI = 0. (3.2.8)

At the margin, the term
[
1 + θ (It ) It

Kt−1
(1 − τ )

]
dI is the total expense for

installing dI units of capital, while Et

(
Mt+1
Mt

∂V̂ Et+1
∂Kt+1

dI

)

is the change in the (ex-

dividend) equity value. At an optimum, shareholders must gain nothing from this
infinitesimal adjustment.

The value of the firm is equal to,

Vt = V ut = Et

∞∑

s=1

Mt,t+sx∗
t+s (3.2.9)

where x∗
t is the unlevered free cash flows process resulting from Eq. (3.2.7) and the

necessary transversality condition for optimality limT→∞ E

{
MT
Mt
∂V̂ EK (KT )KT

}
=

0 (see Miao 2020, Chapter 7). Notice that, by definition V ut =Et

∑∞
s=0Mt,t+sx∗

t+s ≥
Et

∑∞
s=0Mt,t+sxt+s , for any admissible{xt }t≥0. For ease of notation, in the

remainder of this section we will suppress the asterisk (∗) and write V ut =
Et

∑∞
s=1Mt,t+sxt+s , implicitly assuming x∗

t = xt .
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Hence, we are left with the final task of looking for a more eloquent expression
for V ut . To accomplish this, we start with multiplying both sides of Eq. (3.2.7) by
Kt , observing that,

[

θt+1
It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
]

Kt+1 =

θt+1It+1

[

1 − δ + It+1

Kt+1

]

− θt+1

2

(
It+1

Kt+1

)2

= θt+1

(
It+1

Kt+1

)

Kt+2.

(3.2.10)

Then, rearranging the resulting expression in order to have Et

{
Mt,t+1xt+1

}
on the

LHS, we eventually obtain,

Et

{
Mt,t+1xt+1

} =

Et

{

Mt,t+1

[

At+1 (1 − τ)Kt+1 + δτKt+1 − θ (It+1)

2

(
It+1

Kt

)2

Kt+1 (1 − τ)− It+1

]}

=

Kt+1 + (1 − τ) θ (It )
(
It

Kt

)

Kt+1 − E

{

Mt,t+1

[

Kt+2 + (1 − τ) θ (It+1)

(
It+1

Kt+1

)

Kt+2

]}

.

(3.2.11)

Substituting the previous expression recursively in Eq. (3.2.15), it takes just few
simple algebraic steps to conclude that,

Vt = V ut =
[

1 + (1 − τ ) θ (It )
(
It

Kt

)]

Kt+1. (3.2.12)

Finally, the ratio between the market value of the firm (Vt ) and the book-value of its
capital stock (Kt) is defined as Tobin’s Q (Qt ),

Qt := Vt

Kt+1
, (3.2.13)

and it is equal in this case to 1 + (1 − τ ) θ (It )
(
It
Kt

)
. Notice that, Qt is increasing

in the magnitude of investment adjustment costs. We will come back again on this
very important, and, to some extent, controversial, aspect of the model.
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3.2.2 Optimal Investment and Financing Decisions

In this section we allow the firm to issue secured debt, subject to the collateral
constraint provided by Eq. (3.1.3). Shareholders’ problem therefore modifies as
follows,

V̂ Et (Ft ,Kt , zt ) =

max
Ft+1≥0,Kt+1≥0

{
[AtKt − φ (Kt ,Kt+1) − (1 + ct ) Ft ] (1 − τ)+ τδKt − It + Ft+1 + Et

(
Mt,t+1V̂

E
t+1

)}

s.t.

Kt+1 = Kt (1 − δ)+ It
Ft+1 (1 + ct+1) ≤ (1 − α)Kt .

(3.2.14)

Starting with the optimal debt policy, suppose the collateral constraint is never
binding in equilibrium. In such a case, the first order condition for optimal
investment would be the same of the previous section, and being agency costs
absent, shareholders value will be equal to,

[AtKt − φ (Kt ,Kt+1)− (1 + ct ) Ft ] (1 − τ )+ τδKt − It

+
[

1 + (1 − τ ) θ (It )
(
It

Kt

)]

Kt+1

︸ ︷︷ ︸
V ut

+DT St − T Ct
(3.2.15)

where,

{
DT St = τct+1Ft+1

1+rt+1
+ Et

∑∞
s=2

Mt+s
Mt
τct+sFt+s Value of debt tax shield,

T Ct = ϕt+1Ft+1
1+rt+1

+ Et

∑∞
s=2

Mt+s
Mt
ϕt+sFt+s NPV debt transaction costs.

(3.2.16)

If τct+1 > ϕt+1, shareholders could improve their equity value by issuing additional
debt up to the maximum allowed by the collateral constraint. Hence, in this case the
collateral constraint cannot be slack at an optimum. Furthermore, if the collateral
constraint is binding, the marginal value of an additional unit of capital would be
greater than zero if shareholders invest according the unlevered firm’s investment
policy. The reason is because by increasing further the capital stock, shareholders
would be able to issue additional debt and capture the associated net benefit(
τct,t+1 − ϕt,t+1 > 0

)
. Hence, whenever τrt,t+1 > ϕ (1 − τ ), shareholders are
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always better off by issuing as much as debt as possible, and investment decisions
are distorted by the net benefits of debt financing. Equivalently, there is a funding
cost advantage of debt financing, which will be more evident when will consider
the relation between the firm’s WACC and expected investment returns in Sect. 3.4.
Conversely, in case τrt,t+1 = ϕ (1 − τ ) shareholders are indifferent to any level of
debt which is compatible with the collateral constraint, while τrt,t+1 < ϕ (1 − τ )
implies that Ft = 0 is strictly optimal for shareholders.

At this point, we can now reformulate shareholders’ problem in Eq. (3.2.14) as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ E (Ft , Kt , zt ) = max
Kt+1

{[AtKt − δKt − ctFt − φ (Kt ,Kt+1)] (1 − τ)+Kt −Kt+1

+γt+1Kt+1 − Ft + Et

[
Mt+1

Mt
V̂ E (Ft+1 = γt+1Kt+1, Kt+1, zt )

]} τct+1 ≥ ϕt+1

V̂ E (Ft , Kt , zt ) = max
Kt+1

{[AtKt − δKt − ctFt − φ (Kt ,Kt+1)] (1 − τ)+Kt −Kt+1

−Ft + Et

[
Mt+1

Mt
V̂ E (Ft+1 = 0,Kt+1, zt )

]} τct+1 < ϕt+1

(3.2.17)

where γt+1 = (1−α)(1−δ)
1+ct+1

. As a consequence, the following optimality conditions
are necessary to characterize shareholders’ equilibrium behavior,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + θ (It ) It
Kt
(1 − τ )+ γt+1 = Et

[
Mt+1

Mt
xt+1

(

λt+1
∂V̂ Et+1

∂Ft+1
+ ∂V̂ Et+1

∂Kt+1

)]

λt+1 := γt+1I (τct+1 ≥ ϕt+1)

∂V̂ Et+1
∂Ft+1

= − [1 + ct+1 (1 − τ )]
∂V̂ Et+1

∂Kt+1
= At+1 (1 − τ )+ δτ + θ (It+1)

2

(
It+1

Kt+1

)2

(1 − τ )+ (1 − δ)

×
[

1 + (1 − τ ) θ (It+1)

(
It+1

Kt+1

)]

Ft+1 = λt+1Kt+1 .

(3.2.18)

Proceeding from the top to the bottom, Eq. (3.2.18) includes the first order
conditions for Kt+1 and Ft+1, the related envelope conditions and the
collateral constraint. From the first four conditions, we obtain the following
investment Euler equation, which, jointly with the transversality condition
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limT→∞ E

{
MT
Mt

∂V̂ ET
∂KT

KT

}

= 0, characterizes the optimal investment strategy for

the firm,

1 + θ (It ) It
Kt
(1 − τ)

︸ ︷︷ ︸
Marginal Cost of Investment

= Et

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mt+1

Mt
xt+1

⎡

⎢
⎢
⎢
⎣
At+1 (1 − τ)+ δτ + θ (It+1)

2

(
It+1

Kt+1

)2

(1 − τ)
︸ ︷︷ ︸

Marginal Change in Operating Cash Flows

+ (1 − δ)
[

1 + (1 − τ) θ (It+1)

(
It+1

Kt+1

)]

︸ ︷︷ ︸
Marginal Change in Operating Cash Flowse

+ λt+1 (τct+1 − ϕt+1)
︸ ︷︷ ︸

Marginal Net Tax Benefit of Debt Financing

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(3.2.19)

Notice that Eq. (3.2.19) is again representative of the positive NPV rule in capital
budgeting. However, the presence of debt introduces a potential misalignment
between the marginal levered and unlevered NPV of an additional unit of capital
stock, as a consequence of the optimal use of secured debt (Ft+1 = λt+1Kt+1).
This difference relates to the presence of the tax shield on interest expenses, which,
when in excess of flotation costs, improves the total free cash flows to the firm.

Interestingly, we can show that Tobin’s Q is characterized by the same expression
as in the unlevered case, that is,

Qt = 1 + (1 − τ ) θ (It )
(
It

Kt

)

, (3.2.20)

albeit It will be higher compared to the unlevered case when the collateral constraint
is binding, as a consequence of the optimal use of secured debt financing which, in
turns, improves the value of the firm above V ut . To prove this claim, it is sufficient
to note that, as a corollary to Proposition 3.2, we necessary have Vt ≥ V ut . Then,
we can rewrite Eq. (3.2.19) as,

Et

(
Mt+1

Mt
xt+1

)

=

Et

{
Mt+1

Mt

[

At+1 (1 − τ)Kt+1 + δτKt+1 − θ (It+1)

2

(
It+1

Kt+1

)2

Kt+1 (1 − τ)− It+1

]}

=

Kt+1 + (1 − τ) θ (It )
(
It

Kt

)

Kt+1 − E

{
Mt+1

Mt

[

Kt+1 + (1 − τ) θ (It+1)

(
It+1

Kt+1

)

Kt+1

]}

−

Et

{
Mt,t+1λt+1 (τct+1 − ϕt+1)Kt

}
.

(3.2.21)
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and, repeating the same steps as in the previous section, the general expression for
the value of the firm,

Vt = Et

∞∑

s=1

Mt+1s

Mt
[xt+s + γt+sFt+s (τct+s − ϕt+s)] , (3.2.22)

simplifies to,

Vt =
[

1 + (1 − τ ) θ (It )
(
It

Kt

)]

Kt+1. (3.2.23)

Finally, the fact that investment is higher in the levered case follows from comparing
Eq. (3.2.19) for the cases in which γt+1 = 0 and γt+1 = γ > 0, respectively.
The economic intuition is straightforward. Because the net benefit of debt financing
is linear in the capital stock, the firm has incentive to deviate from the unlevered
investment policy until the marginal loss in terms of NPV of unlevered free cash
flows is equal to τct+1 − ϕt+1. This is a form of agency cost, as we clarify in
Sect. 3.4. Instead, next section discusses the relation between investment returns
and securities returns.

3.3 Financial Returns and the Investment CAPM

The model developed in the previous section provides the theoretical framework for
several related topics:

(1) the relation between the firm’s fundamentals and securities returns;
(2) the use of WACC in capital budgeting decisions;
(3) the relation between levered and unlevered expected equity returns (Hamada

1972);
(4) an “efficient markets” explanation of the observed excess returns for portfolios

of stocks with high (expected) profitability and low investment-to-assets ratios
(Liu et al. 2009; Li and Zhang 2010; Zhang 2017; Hou et al. 2021)

3.3.1 Fundamentals and Securities Returns

Starting from the relation between securities returns and fundamentals, as an
application of the firm’s budget constraint, the following equation holds for every
time t ∈ N,

VEt

Vt

(
1 + rEt+1

)
+ Ft+1

Vt
(1 + rt+1) = xt+1 + Vt+1

Vt
. (3.3.1)
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By considering the equilibrium behavior of the firm, the equation is equivalent to

V Et

Vt

(
1 + rEt+1

)
+ Ft+1

Vt
(1 + rt+1) =

Vt+1 + At+1 (1 − τ)Kt+1 + δτKt+1 − θ(It+1)
2

(
It+1
Kt+1

)2
Kt+1 (1 − τ)− It+1 + (τct+1 − ϕt+1) Ft+1

[
1 + (1 − τ) θ (It )

(
It
Kt

)]
Kt+1

.

(3.3.2)

With few algebraic manipulations, we obtain a more compact formulation of
Eq. (3.3.3):

V Et

Vt
rEt+1 + Ft+1

Vt
ct+1 (1 − τ ) =

[

At+1 + (1 − δ) θ(It+1)
2

(
It+1
Kt+1

)2 − δ
]

(1 − τ )
[
1 + (1 − τ ) θ (It )

(
It
Kt

)] .

(3.3.3)

Now, let us re-examine the envelope condition in Eq. (3.2.18),

∂V̂ E
t+1

∂Kt+1
= ∂f cft+1

∂Kt+1
+ Et

(
∂V̂ E
t+1

∂Kt+1

∂Kt+2

∂Kt+1

)

= ∂f cft+1

∂Kt+1
= ∂yt+1

∂Kt+1
− ∂f cft+1

∂Kt+1

[

At+1 + θ (It+1)

2

(
It+1

Kt+1

)2
]

(1 − τ)+ δτ + (1 − δ) (1 − τ) θ (It+1)

(
It+1

Kt+1

)

+ (1 − δ) =
[

At+1 + (1 − δ) θ (It+1)

2

(
It+1

Kt+1

)2

− δ
]

(1 − τ)+ 1 + (1 − τ) θ (It )
(
It

Kt

)

.

(3.3.4)

It is now immediate to notice that the numerator of the fraction at RHS side of
Eq. (3.3.4) is equal to ∂(yt+1−δ(1−τ )Kt+1)

∂Kt+1
. The expression yt+1 − δ (1 − τ )Kt+1

corresponds to the firm’s NOPaT, that is EbIT minus taxes on operating
earnings, which includes investment adjustment costs. At the same time,

1 + (1 − τ ) θ (It )
(
It
Kt

)
is the marginal cost of a unit of capital. Therefore, the

RHS of Eq. (3.3.4) is the ratio between the marginal NOPaT and the marginal
cost of investment, which can be interpreted as the marginal after-tax return of
invested capital. Hence, the weighted average returns of the firm’s securities is
equal to the marginal returns from investments. This result is originally due to
Cochrane (1991), and later became the backbone of investment-based asset pricing
models. In particular, the relation presented here is the one characterizing Zhang’s
Investment CAPM (Zhang 2017). Furthermore, a simple manipulation of Eq. (3.3.4)
reveals that stock returns are equal to the ratio between the marginal net income
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(
∂

∂Kt+1
[yt+1 − δ (1 − τ )Kt+1 − Ft+1ct+1 (1 − τ )]

)
and the marginal cost for

shareholders to invest in additional capital stock
(

1 + θ (It )
(
It
Kt

)
− λt+1

)

rEt+1 =

[

At+1 + (1 − δ) θ (It+1)

2

(
It+1

Kt+1

)2

− δ − ct+1λt+1

]

(1 − τ )
︸ ︷︷ ︸

Marginal Net Income

1 + θ (It )
(
It

Kt

)

− λt+1

︸ ︷︷ ︸
Marginal Change in Equity Book Value

, (3.3.5)

which can be interpreted as the marginal return on equity book value. Indeed,

1 + θ (It )
(
It
Kt

)
− λt+1 carries the interpretation of the marginal change in current

dividends to fund an additional unit of capital stock.

3.3.2 Capital Budgeting and WACC

A common capital budgeting approach used by practitioners is to select and invest
in all projects with an expected return greater than the WACC, which is the so-called
“IRR” rule (Bierman 1993; Graham & Harvey 2001). In the model, this rule turns
out to be consistent with the Euler equation characterizing the firm’s equilibrium
investment policy. Indeed, recalling from Sect. 3.1.3 that,

wacct,t+1 = V Et

Vt
Et

(
rEt+1

)
+ Ft+1

Vt
ct+1 (1 − τ ) , (3.3.6)

if we take expectations on both sides of Eq. (3.3.3), we obtain,

wacct,t+1 =

[

At+1 + (1 − δ) θ(It+1)
2

(
It+1
Kt+1

)2 − δ
]

(1 − τ )
[
1 + (1 − τ ) θ (It )

(
It
Kt

)] . (3.3.7)

Hence, in equilibrium shareholders invest until the expected marginal return of
investments is equal to the weighted average cost of capital, which is indeed the
formal statement of the IRR rule. However, this result is not very robust, and the
optimality of the IRR rule should not be taken for granted in all circumstances.
Nevertheless, it is interesting to note that Eq. (3.3.7) explicitly reveals the funding
cost advantage of debt, as the debt is issued whenever it lowers the weighted average
cost of capital, thereby boosting investments.
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3.3.3 The Hamada Equation

Provided that τct+1 ≤ ϕt+1 for all time t ∈ N, the expected equity returns
are consistent with the Hamada’s equation (Hamada 1972). In such a case the
free cash flows and unlevered free cash flows to the firm are equivalent, and the
investment policy is the same as in the unlevered case. Consequently, by defining

rut+1 := xt+1+V ut+1
V ut+1

, we have:

VEt

Vt
Et

(
rEt+1

)
+ Ft+1

Vt
rt+1 = Et

(
rut+1

)
. (3.3.8)

As a result, we obtain the following relation for levered stock returns,

Et

(
rEt+1

)
= rt+1 +

(

1 + Ft+1

VEt

)
[
Et

(
rut+1

)− rt+1
]

(3.3.9)

which is the classic Hamada’s formula when debt’s financing is irrelevant for
investment decisions (cf. Grinblatt and Titman 2011). It is important to acknowledge
that the same result cannot be extended to the more general case in which τct+1 >

ϕt,t+1. Indeed, as debt becomes value relevant, the firm’s investment policy is no
longer the same as in the unlevered case, due to the presence of the collateral
constraint. Nevertheless, we may use Eq. (3.3.6) to write,

Et

(
rEt+1

)
= rt+1 +

(

1 + Ft+1

V Et

)
[
wacct,t+1 − rt+1

]
. (3.3.10)

which is valid in general, and, in absence of debt, wacct,t+1 = Et

(
rut+1

)
. Notably,

the weighted average cost of capital can be computed directly from the firm’s real
characteristics, consistent with Eq. (3.3.5). In the financial practice, if the model
is empirically sound and robust, this could be a very convenient way to avoid the
estimation of conditional beta coefficients, which is a rather complicated task.

3.3.4 The Investment CAPM and the Cross-Section of Equity
Returns

As the model can be used to relate the firm’s real characteristics with expected stock
returns, it is natural to ask whether it can compete with the standard Fama and
French (1993) regression for the cross-section of stock returns. It turns out that
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it does (Li et al. 2009; Hou et al. 2021), in the sense that it very well explains
the excess returns of portfolios that (systematically) invest in firms with lower
investment-to-assets ratios and higher expected profitability. To understand why the
model empirically explains such a relation, consider for simplicity the unlevered
case, in which Et

(
rEt+1

) = wacct,t+1. From Eq. (3.3.7), firms with higherEt (At+1)

and lower
(
It
Kt

)
either face higher adjustment costs or a higher cost of capital. The

latter case is equivalent to higher conditional expected stock returns. As is obvious,
a similar circumstance can survive in general equilibrium only if the dividends
resulting from the firm’s optimized investment decisions are “riskier” to investors.
Nevertheless, the model suggests that the firm’s characteristics are sufficient
statistics for predicting expected returns, just as conditional beta coefficients and
equity risk premia do in traditional demand-side asset pricing models such as
the consumption CAPM (Rubinstein 1976; Lucas 1978; Breeden 1979, amongst
others). In other words, once controlling for firm’s characteristics, covariances
should have no additional power in explaining the cross-sectional returns. However,
which characteristics should be included depends on the model we choose. As the
consumption CAPM, the investment CAPM holds with reference to the equilibrium
outcome of a specific artificial economy. Although Eq. (3.3.7) is not rejected by the
data (Zhang 2017), the hypothesis of perfect competition entails some quantitative
limitations which we discuss in the next chapter.

3.4 Debt Agency Costs and the Trade-off Theory

Although Tobin’s Q has the same analytical expression in both the levered and
unlevered case,

Qt = 1 + (1 − τ ) θ (It )
(
It

Kt

)

, (3.4.1)

the firm invests more when τct+1 > ϕt+1 as a result of the funding cost advantage
of debt. However, higher investment relative to the unlevered case result in a lower
NPV of unlevered free cash flows. As the value of the firm is higher, this loss
is more than offset by the value of the debt tax shield net of that of transaction
costs. In other words, the tax benefits of debt financing have a distortionary effect
on the firm’s investment policy, which is overall beneficial thanks to the presence
of the tax shield on interest expenses. Let x∗∗

t be the unlevered free cash flows
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process generated by the levered firm’s investment policy. Then, using Eq. (2.4.13),
the following expression characterizes the value of the firm.

Vt = V ut −

⎛

⎜
⎜
⎜
⎜
⎝
Et

∞∑

s=1

Mt+s
Mt

x∗
t+s − Et

∞∑

s=1

Mt+s
Mt

x∗∗
t+s

︸ ︷︷ ︸
ACt

⎞

⎟
⎟
⎟
⎟
⎠

+Et

∞∑

s=1

Mt+s
Mt

λt+s (τct+s − ϕt+s) γt+sKt+1

︸ ︷︷ ︸
DT St−T Ct

(3.4.2)

Notably, the quantity ACt := Et

∑∞
s=1

Mt+s
Mt
x∗
t+s − Et

∑∞
s=1

Mt+s
Mt
xt+s corresponds

to the agency costs of debt, although their presence have no-effect on debt holders
welfare, since the latter are always paid back in full.

Despite its simplicity, the model provides interesting insights for dynamic capital
structure patterns. Firstly, it provides an equilibrium explanation to “pecking-order”
theories (Myers & Majluf 1984; Frank et al. 2020), in the sense that firms prefer
to issue as much debt as possible to fund new investments, in order to capture the
value of debt tax shield. Secondly, holding α to be constant, which carries also
the interpretation of the fraction of assets that can be pledged as collateral, firms

prefer either Ft+1 = 0 or to keep their book-leverage
(
Ft+1
Kt

)
equal to (1−α)(1−δ)

(1+ct+1)
,

depending on the relative convenience of debt’s financing (i.e. τct+1 � ϕt+1). The
former case provides a potential explanation of the zero leverage puzzle (Strebulaev
& Yang 2013), namely, the existence of firms that do not make use of debt even when
interest expenses may be tax deductible. In particular, firms that find credit very
expensive (high values for ϕt+1), will remain unlevered. In the latter case, instead,
we observe the existence of an optimal book-leverage ratio, which is inversely
related to the cost of debt financing. On the one hand, this means that firms should
borrow more when the cost of debt is lower. On the other, in periods when interests
rates are stable, the book-leverage of the firm should fluctuates around a target value.
This prediction is actually consistent with the empirical findings of DeAngelo and
Roll (2015). Furthermore, the market-leverage Ft+1

Vt
,

Ft+1

Vt
= 1

1 + (1 − τ ) θ (It )
(
It
Kt

)
(1 − α)
(1 + ct+1)

, (3.4.3)

may vary across time, but should be often mean-reverting around a target value,
consistently with the findings of Fama and French (2002). Hence, the model shows
a good performance in explaining several patterns observed empirically, although
firms do not issue only secured debt, and in some cases they do not issue secured
debt at all. A potential explanation for this conundrum is because several debt
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contracts are designed to avoid the default of the issuer. However, there might
be other reasons, which can be attributed to the existence of long-run lending
relationships in which share and debt holders coordinate on very specific equilibria
(see Sect. 7.4).

The model also contributes in explaining why default rates tend to be low for
listed companies, as well as the limited use of leverage for firms with mostly
intangibles assets (α ≈ 1), contrary to the case of capital intensive sectors, which
typically feature high book-leverage ratios. Examples are technology and energy
stocks, where the former usually do not make use of debt as opposed to the latter.
However, from this example we also understand that the transaction costs argument
to explain non-zero credit spreads may be fragile, as there have been several
episodes of default in the energy sector. In this regard, the model predicts that the
equity value function is linearly decreasing in the amount of debt outstanding, as
shareholders’ option to default never gets strictly in-the-money. As we document
in the following chapters, with unsecured debt, default might be enticing for
shareholders, then generating a strictly convex relation between the value of equity
and the amount of debt outstanding, as in the structural credit risk model of Merton
(1973). Empirically, Eisdorfer et al. (2019) documents the importance of correctly
assessing the value of the equity default option for distressed firms. According to
their analysis, the market seems to underestimate the value of this option, as it was
erroneously adopting the model developed in this section to value companies with
high default probability. Yet, the model does a pretty good job in its simplicity to
explain several stylized facts and it also provides a very good starting point for
equity valuation models (Belo et al. 2013). On this point, the next chapter deals
with imperfect industry competition, which is a necessary assumption for a more
realistic model, as we discuss in Sect. 4.1.

3.5 Related Literature

Borrowing constraints are pervasive in the corporate finance literature. Notable
examples are Holmstrom and Tirole (1997) and Kiyotaki and Moore (1997).
Tangential to our framework, the main references are Cochrane (1991), Hennessy
and Whited (2005), Liu et al. (2009), Livdan et al. (2009) and Zhang (2017).
One application we have not discussed is the presence of equity flotation costs
and limits to outside equity injections. With financially constrained firms, as in
Livdan et al. (2009), holding liquidity reserves could be strategic as to avoid
costly recapitalization or, in the worst case, an undesired event of default. Whited
(1992) provides indirect empirical evidences supporting the existence of financing
constraints on shareholders side. However, for large sized companies these results
appear a bit blurred. In particular, once we introduce imperfect competition in the
firm’s product market (see Chap. 4), there is no evidence supporting the role of
financial constraints to explain the relationship between investment and profitability
(Cooper & Ejarque 2003). Besides, there are evidence that seasoned equity offerings
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(SEO) discounts and direct transactions costs are mostly affected by the accounting
quality of the issuer (Lee & Masulis 2009), which we ruled out in our framework
having assumed perfect information (see Sect. 1.3.2). In other words, unless we
allow for a tangible information asymmetry between investors and firms, the high
competition between financial intermediaries should result in very limited equity
issuance costs. The model we presented in this section is based on this hypothesis,
which we maintain in the following chapters.

Although the Investment CAPM does a quite good job in explaining the cross-
section of equity returns, one major drawback is the consistency of structural
estimates for the parameters characterizing investment adjustment costs (Liu et al.
2009). Despite investment adjustment costs are relevant (Bai et al. 2019), especially
in terms of investment irreversibility, they cannot fully explain the difference
between expected profitability and stock market returns (Hall 2004). The reason
is because it is quite counterfactual to connect profitability with costly investment
adjustments. Rather, profitability stems from the firm’s ability to charge a mark-
up on its average production cost, a feature that is absent in models which are
characterized by perfect industry competition. For this reason, in the next chapter
we are going to discuss the effects of imperfect competition and market power.

It is interesting to note that the Investment CAPM is nothing but the supply-side
of financial markets competitive equilibrium, and, in general equilibrium, necessary
entails the same prediction of demand side models such as the Consumption CAPM.
However, the latter typically suffer from several empirical limitations (Mehra and
Prescott 1985; Weil 1989), mostly as a consequence of aggregation problems (see
Sect. 1.3.3). The Investment CAPM partly overcome these issues. Besides, it also
comes with a higher degree of realism. In fact, several surveys show that the majority
of listed companies follow a capital budgeting process consistent with the positive
NPV rule and its potential refinements (Bierman, 1993; Graham & Harvey 2001;
Jagannathan et al. 2011; McDonald 2006; Brunzell et al. 2013).

A major limitation of the model is the presence of fully secured debt as the
only alternative to equity financing. In Sect. 7.1.1 we remove this assumption and
introduce risky unsecured debt. As risky secured debt can be well approximated
as a mix of fully secured and risky unsecured debt, the model we present in
Sect. 7.1.1 can be used for quantitative-oriented analysis. Nevertheless, in several
circumstances it is not entirely wrong to assume a simple capital structure as the
one presented in this chapter, which is tantamount to approximate corporate debt as
a risk-free bond (see Sect. 7.4). In this regard, Graham (2000, 2001, 2003, 2005 and
Kemsley and Nissim (2002) are examples of empirical papers estimating the value
relevance of debt tax shield in a way which is similar to the model presented in this
section.
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Chapter 4
Imperfect Competition, Working Capital
and Tobin’s Q

In the previous chapter we studied equilibrium investment and financing decisions in
the case of perfect competition in the firm’s product market. A counterfactual result
of the model is that the wedge between the expected firm’s profitability and the
cost of capital is entirely driven by the size of investment adjustment costs. Namely,
the larger ||θ (It ) ||, the wider is the spread between the return on invested capital
(RoIC), which is the ratio between operating earnings and the total capital stock, and
the firm’s WACC, holding everything else constant. However, it is well known from
industrial organization that profitability is inherently related to the market power of
the firm (Tirole 1988). In other words, although investment adjustment costs may
be important to characterize several features, such as investment irreversibility in
capital intensive industries, they cannot fully explain the cost of capital for highly
profitable industries.

To make an example, consider a luxury car maker (L) and a small car producer
(S), both employing the same technology to manufacture their vehicles. Although
the reference sector is the same, the two firms operate in very different industries.
It is reasonable to expect that L has few competitors, and a certain degree of
market power which comes as a consequence of the brand, design and performance
of its cars. Instead, the small car producer is likely to be almost price-taker,
due to the presence of several competing brands making its product as almost
perfect substitute. Thus, it is natural to expect that L will obtain on average much
higher operating margins than S. In the basic Investment CAPM of Chap. 3, this
is equivalent to Et

(
ALt+1

)
>> Et

(
ASt+1

)
. As θ+ and θ− are unlikely to be

significantly different between the two firms, according to Eq. (3.3.7) in Sect. 3.3,
the luxury car producer should have a cost of capital much higher than the small car
producer, holding everything else constant.

Although not impossible from a theoretical perspective, a similar result would be
equivalent to asserting that the luxury car industry is much riskier than the small car
industry, which is not necessarily the case. Rather, the demand for high-end products
may be more resilient during recessions. Besides, the quantitative prediction of the
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model are definitely a bit of extreme. To see the point, suppose δ = τ = θ+ = θ− =
0 and let rE,Lt+1 be the returns of the luxury car makers’ stocks. If L has an expected

RoIC of 50%, i.e. Et
(
ALt+1

) = 0.5, then Et

(
r
E,L
t+1

)
should be also equal to 50%,

which is a rather implausible number for the cost of capital of an healthy company.
The problem is that, with perfect competition in the firm’s product market, holding
the cost of capital constant, profitability is increasing in the size of adjustment costs.

Unless these are extremely high, the model cannot explain the substantial
difference between profitability and expected stock returns. Section 4.1 clarifies this
in a more formal way. Moreover, in Sect. 4.2 we present a model of imperfect market
competition, in which every firm within the same industry is monopolist of its own
brand of products. Intentionally, investment adjustment costs have been left out from
the analysis, in order to isolate the effect of market power.1 However, to add realism,
we introduce the (potential) presence of working capital, in terms of inventories
of intermediate production goods. Instead, we do not consider trade receivables
and payables, as they can be viewed as a specific form of secured debt financing,
unless we allow for counterparty risk in trade financing. To simplify the discussion,
additional production expenses are left for Sect. 7.1.1. However, it turns out that this
simplification has no impact on our results, once we keep in mind that profitability
should be intended as the after-tax return on invested capital (i.e. NOPaT over the
invested capital). Thus, the results of the model we present in this chapter can be
directly tested empirically. In this regard, the introduction of working capital is
crucial, as inventory days can be an important determinant of free cash flows.

The introduction of market power does not alter equilibrium financing decisions,
in that the collateral constraint remains always binding whenever τct+1 ≥ ϕt+1.
However, even with a CRS technology, there are decreasing returns to scale in
total revenues. Since the optimal investment level remains characterized by the
positive NPV rule, the average return from investment exceeds its marginal level in
equilibrium. In a nutshell, the less a brand can be substituted in the same industry,
the higher will be the expected profitability of the firm owner of the same brand.
In Sect. 4.3, we discuss the relationship between securities returns and the firm’s
fundamental in equilibrium, and we suggest a possible empirical validation test.
Finally, in Sect. 4.4 we discuss a more refined empirical strategy which could be
more suitable for security analysis.

4.1 The Limits of Perfect Product Markets Competition

The Investment CAPM extends to the inclusion of product market settings other
than perfect competition. By product market, we mean the trading arrangement in
which the firm is able to sell its products or services. Despite perfect competition

1As they might be relevant in several cases, we reintroduce investment adjustment costs in Sect. 7.1,
in which we refine the model introduced in this chapter.
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remains a pillar of neoclassical equilibrium models, it is not suitable to describe how
firms are able to generate returns above their cost of capital in equilibrium. Indeed,
in any (interior) equilibrium without adjustment costs, Tobin’s Q is equal to one and
expected profitability is equal to the weighted average cost of capital of the firm.
Hence, with negligible investment adjustment costs, either because the firm is not
investing or ||θ (It ) || ≈ 0, we could obtain wrong predictions, as in the example of
the luxury car producer.

Formally, we can show the previous result setting θ (It ) = 0 in the model
discussed in Chap. 3. The first implication is that, both the unlevered and levered
firm have a Tobin’s Q which is equal to one in equilibrium,

V ut

Kut+1
= Vt

Kt+1
= 1. (4.1.1)

At first, we would tempted to claim that, despite this equivalence, the levered firm
will capitalize more as a consequence of a higher equilibrium capital stock, i.e.
Kt+1 > K

u
t+1. However, this turns out to be a wrong conclusion with no adjustments

costs. Consider the Euler equation characterizing the optimal investment level for
the unlevered case,

1 = Et

{
Mt+1

Mt
[At+1 (1 − τ )+ δτ + (1 − δ)]

}

, (4.1.2)

and the one for the levered case,

1 = Et

{
Mt+1

Mt
[At+1 (1 − τ )+ δτ + (1 − δ)+ λt (τct+1 − ϕt+1)]

}

. (4.1.3)

As is evident, the two conditions cannot hold simultaneously, unless τct+1 = ϕt+1
or α = 1. Firstly, this means that one of the two optimization has not an interior
solution, that is, the optimal capital stock is either zero or unbounded in one of
the two cases. Secondly, both conditions impose a restriction on the dynamics of
the (before-tax) return on invested capital At , which means that investments, and,
consequently, the firm’s capital stock, are undetermined. Without investment adjust-
ment costs, the firm’s objective function is linear in the capital stock. Therefore,
all investment policies should generate the same value for shareholders. Otherwise,
the problem is unbounded, and therefore inconsistent with the demand side of the
economy, or shareholders find it optimal to set capital Kt+1 = 0. Hence, an interior
equilibrium exists only if shareholders are indifferent to any value for Kt+1.

To better understand this result, consider the static model of perfect competition
in which the firm operates with a linear technology. The optimization problem faced
by the firm features a linear objective function (profits), subject to a linear equality
constraint (technology). Suppose that the market price of the produced good, taken
as given by the firm, is greater than or equal to the marginal cost of production,
so that the firm has a weak incentive to operate. Then, we may have two opposite
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cases, of which only one can actually survive in equilibrium. Either the producer
is indifferent to any production plan, as the market price is equal to the marginal
cost of production, or the optimal production level is unbounded, in case the market
price exceeds the marginal cost. As is natural, an equilibrium cannot support an
unbounded production level, as resources are necessary scarce in any “reasonable”
model economy. Therefore, the only possibility we have is that firms make zero
profits in equilibrium.

Going back to our model, which is stochastic and dynamic, investments at time
t generate profits only at time t + 1, subject to a certain degree of randomness. As
such, instead of making zero profits, absent any other frictions, expected profitability
Et [(At+1 − δ) (1 − τ )] must be aligned to an appropriate discount rate, which
stems from the SDF of the economy and its covariance with the stochastic process
{At }t≥0. Indeed, if θ (It ) = 0, Eq. (3.3.7) requires that,

wacct,t+1 = Et [(At+1 − δ) (1 − τ )] , (4.1.4)

where (At+1 − δ) (1 − τ ) is the after-tax return on invested capital.
The previous analysis shows the prominent role of adjustment costs in the basic

Investment CAPM. Without them, there would be little chance to reconcile stock
returns with firms’ fundamentals. This is certainly an issue which cannot be ignored.
On the one hand, despite some evidence of costly investment reversibility (Bai et al.
2019), Hall (2004) argues that investment adjustment costs are too small to play such
an important role in jointly explaining profitability and fluctuations in the market
value of securities. On the other, Cooper and Ejarque (2003) documents empirically
that market power largely explains the relation between investment and profitability,
consistent with the earlier findings of Lindenberg and Ross (1981). The rationale of
this result is essentially the same of the example of car producers, which opens up
to the possibility that in many circumstances investment adjustment costs may be
statistically relevant just as a consequence of abstracting from market power. For
this reason, the remainder of the chapter extends the basic Investment CAPM to the
case of imperfect competition, assuming that each firm within its reference industry
is monopolist of its own branded products. This is a quite nice description of several
industries, and includes perfect competition as a limiting case. We show that, in
order to maximize shareholders value, firms must adjust their output capacity in
response to expected shifts in the demand schedule for their products, which is no
longer flat, contrary to the case of perfect competition. This will enable us to obtain
a more realistic link between profitability and expected equity returns.

4.2 Monopolistic Competition and Market Power

Let assume that each industry corresponds to the market for a certain type of
products, which is available through different brands, or varieties. Within a given
industry, each firm is monopolist of its own brand, which means that, given the
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demand schedule for its variety, a firm can unilaterally fix the price at which
consumers will be able to buy its products. The higher the degree of substitutability
between different brands within the same industry, the more the latter is competitive,
and, in the limit case of perfect substitutability, we get back to the case of perfect
competition. Thus, the model is general enough to include the basic version of the
Investment CAPM.

For simplicity, we will assume that each firm produces a single type of non-
storable and non-durable goods. Both hypotheses serve to abstract from decisions
on the convenience of inventories of finished products, as well as intertemporal
pricing issues, such as the Coase conjecture for durable goods producers (Coase
1972; Gul et al. 1986).2 As anticipated, investment adjustment costs will be left out
of the analysis in the first place, although we will reintroduce later in Sect. 7.1, when
considering a more general version of the model.

As for the firm’s capital structure, the model setting is the same as the one used
in the previous chapter. There are neither limits to equity injections nor equity
flotation costs. Equity and secured debt are the only means of financing, and we
assume the presence of a collateral constraint in the usual form Ft+1 (1 + ct+1) ≤
(1 − α)Kt+1. Debt matures in each period, and the coupon rate is equal to rt+1. The
issuance of new debt securities is subject to flotation costs equal to ϕt+1 per dollar
of debt issued. As a result, ct+1 = rt+1 + ϕt+1 is the cost of debt. Furthermore, as
Proposition 3.2 remains valid, firms will never default in the model. Accordingly,
we can directly exclude the case of default from the analysis. Besides, as holding
cash remains suboptimal due to linear corporate taxes, we can also exclude liquidity
without loss of generality.

4.2.1 Timing of Decisions and Optimal Price Setting

The model is in discrete time and each date t ∈ N is a point on the real line all
having the same temporal distance one each other. However, things occur according
to a virtual sequence at each date which we now turn to describe. Before doing this
it is important to observe that Proposition 3.2 remains valid as there are no fixed
production costs except for depreciation expenses, as its results are independent
from the firm’s technology and the industrial organization setting. Hence, we do
not need to take into account the alternative of default, and the maximization of
shareholders value is equivalent to maximize the NPV of total free cash flows.

Given the capital stock Kt , at time t the firm decides first how much to produce
and the price at which consumers will be able to purchase its goods. The price is set
before consumers can actually come and buy the firm’s products at the same date.

2See also Sects. 6.2 and 6.3. The reader should get acquainted with the literature on the Coase
conjecture. Tirole (1988) is a very good and accessible reference. A basic knowledge of the Coase
conjecture is essential to understand the effects of shareholders inability to commit to a static
capital structure policy in the dynamic capital structure model presented in Chap. 6.
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Furthermore, there is no price discrimination, in that, once the firm has decided a
price pt , the same price is applied irreversibly to all trades taking place at time t . In
this regard, the firm can freely adjust the price of its products in each period.

The capital stock is not the only input of the production process. We assume
that at time t − 1, the firm had to spend κKt dollars for intermediate production
goods to be used at time t , independently from the effective capacity in use at the
same date (ut ≤ AtKt ). This mechanism allows to introduce working capital in
the model, as the firm incurs the payment of expenses before the items purchased
become cost elements in the P&L statement. In this regard, intermediate inputs are
assumed to depreciate completely if the firm does not run at full capacity, in which
case inventories are fully exhausted.

Let ut be the quantity of goods produced at time t , which denotes the actual
capacity in use. The production process described so far then results in the following
expression for the firm’s operating cash flows (yt ),

yt = (pt st − κKt − δKt) (1 − τ )+ δKt
︸ ︷︷ ︸

Net Operating Cash Flows After Taxes

− κ (Kt+1 −Kt)
︸ ︷︷ ︸

Change in Working Capital

(4.2.1)

given the following technology constraint for ut ,

st ≤ ut ≤ AtKt , (4.2.2)

where st is the quantity of goods sold, which can be at most equal to the production
in the same period (ut ),3 while At ∈ zt is now a strictly positive exogenous
stochastic process which reveals the firm’s capital efficiency.

From the perspective of the firm’s balance sheet statement, at time t − 1 the
expense kKt , which corresponds to the end-of-period value of intermediate inputs
inventories, is a current asset. At time t inventories are used to produce the firm’s
final goods, or perish. As such, they become an economic cost, that is, an item of
the Profit and Loss statement, and therefore the original expense κKt−1 eventually
becomes tax deductible. In other words, since revenues are collected only in t , but
inventories are purchased in t − 1, the firm’s has a fixed operating cycle of one
period. As in Chap. 3, the fixed capital stock Kt depreciates at the constant rate δ ∈
[0, 1], and there is no difference between economic and accounting depreciation.

We let q (p = pt , z = zt ) be the demand schedule for the firms’ products,
which is assumed to be strictly decreasing in pt and perfectly known by the firm.
Notice that a perfect knowledge of the demand stems from a perfect knowledge of
consumer tastes, as the outcome of the exogenous random vector zt is revealed at
the “beginning” of each date t . As is common in industrial organization, the demand
schedule is the maximum amount of goods that consumers will buy at the prices set
by the firm right before trades take place at a certain date. In other words, unless the
firm unilaterally decides to rationing one or more consumers, q (p = pt , z = zt ) is

3Recall the assumption of non-storability and non-durability of the goods produced by the firm.
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the quantity sold at price pt . Since the firm can freely adjust the price for its goods
at each date t , and such a decision has no effect on future revenues,4 we can analyze
the optimal capacity and pricing problem in isolation, that is, independently from
optimal investment and financing decisions. Notably, this is actually possible as we
are preserving the hypothesis that economic and accounting depreciation coincides,
so that the fixed capital stock (Kt ) depreciates independently from the capacity in
use.5 Thus, in each period shareholders solve the following subprogram,

max
pt ,st

yt

yt = (pt st − κKt − δKt ) (1 − τ )+ δKt − κ (Kt+1 −Kt)
s.t.

ut ≤ AtKt (Output Capacity)

st ≤ ut (Sales Capacity)

st ≤ q (p = pt , z = zt ) (Demand Schedule) .

(4.2.3)

Before proceeding with the solution of the previous problem, we recall the definition
of price elasticity of demand (ηt ), or elasticity for short,

ηt := −∂q (p = pt , z = zt )
∂p

pt

q (p = pt , z = zt )
. (4.2.4)

We assume ηt ≥ 1, holding with equality only in the limiting case of perfect
competition, which for the moment will be left out of the analysis.

We claim that, in equilibrium, the three constraints in Eq. (4.2.3) must be
binding. Starting from the bottom, it is never convenient for the firm to sell less
than q (p = pt , z = zt ) for a given choice of pt > 0, as ∂yt

∂st
= pt > 0.

Hence, st = q (p = pt , z = zt ) always, and the sales capacity constraint becomes
q (p = pt , z = zt ) ≤ ut . Since ηt > 1, it follows that revenues, that are equal to
ptq (p = pt , z = zt ), are strictly decreasing in pt , or equivalently, strictly increas-
ing in the quantity sold st = q (p = pt , z = zt ). As a consequence, if pt is such that
q (p = pt , z = zt ) < ut , operating cash flows can be improved by lowering pt until
ut = q (p = pt , z = zt ). Hence, it is never convenient for the firm to set a price
resulting in a slack sales capacity constraint, that is st = q (p = pt , z = zt ) = ut

4This is true as long as the firm produces non-durable goods, otherwise the Coase conjecture may
be a serious obstacle (see also Sect. 6.2.2.). The result can be extended to the case of a durable
good producer, provided that the firm is able to commit to sell in each period a different vintage
of its products. For example, a smartphone producer must be able develop a different version of its
devices in each period, and commit not to sell additional units of the current available version in
future.
5Otherwise, investments will be affected by capacity and pricing decisions, as the latter are linked
to the former by q (p = pt , z = zt ) and the technology constraint in Eq. (4.2.2).
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is always valid. In the same way, it is never convenient for the firm to operate
below capacity, i.e. setting pt such that q (p = pt , z = zt ) < AtKt . As before,
operating cash flows can be improved by lowering pt until q (p = pt , z = zt ) <
AtKt . Hence, in equilibrium it must be the case that st = q (p = pt , z = zt ) =
ut = AtKt . As a consequence, the optimal capacity-pricing problem described by
Eq. (4.2.3) is equivalent to choosing a price pt which allows the firm to sell the
maximum amount of goods that can be produced in each period, that is,

pt ∈ R
+ : AtKt = q (p = pt , z = zt ) . (4.2.5)

To this purpose, it is often convenient to define the equilibrium inverse demand
schedule as

pt = q−1
t (AtKt ) , (4.2.6)

where qt (p) = q (p, z = zt ).

4.2.2 Optimal Investment and Financing Decisions

Shareholders maximize the cum-dividend equity value in each period. As current
dividends are strictly increasing in operating cash flows, it is optimal for sharehold-
ers to choose the amount of produced good and its selling price in order to maximize
yt , consistently with the analysis presented in the previous section. In particular,
this requires the firm to operate at its maximum capacity and set a price at which
all goods produced are sold, that is, AtKt = q (p = pt , z = zt ). Consequently,
shareholders’ optimal investment and financing decisions are the solution of the
following intertemporal optimization problem,

Dt =

V̂ Et = max
Ft+1≥0,Kt+1≥0

{

Dt + Et

(
Mt+1

Mt
V̂ Et+1

)}

s.t

[
q−1
t (AtKt )AtKt − ctFt

]
(1 − τ)+ τκKt − κKt+1 + τδKt − It − Ft + Ft+1

It = Kt+1 −Kt (1 − δ) ,

Ft+1 ≤ (1 − α)
(1 + ct+1)

Kt+1,

(4.2.7)
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We can use the same argument followed in Sect. 3.2.2 to show that, if τct+1 ≥ ϕt+1,
then Ft+1 = (1−α)

(1+ct+1)
Kt+1 without loss of generality,6 while Ft+1 = 0 holds in the

opposite case. Thus, we can formulate the Problem (4.2.7) in a more convenient way
as follows,

V̂ Et (At , Ft ,Kt , zt ) = max
Kt+1

{[
q−1
t (AtKt )AtKt − δKt − ctFt

]
(1 − τ)+ τκKt +Kt

− (1 + κ)Kt+1 + λt+1Kt+1 − Ft + Et

[
Mt+1

Mt
V̂ Et (At+1, Ft+1 = λt+1Kt+1,Kt+1, zt )

]}

(4.2.8)

where λt+1 := γt+1I
(
τct,t+1 ≥ ϕt,t+1

)
, γt+1 := (1−α)(1−δ)

1+ct+1
and Ft+1 = λt+1Kt+1.

Assuming that V̂ Et is differentiable, the first order conditions necessary to charac-
terize the optimal investment policy are:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + κ = Et

[
Mt+1

Mt

(

γt
∂Ṽ Et+1

∂Ft+1
I (τ ct+1 ≥ ϕt+1)+

∂Ṽ Et+1

∂Kt+1

)]

First Order Condition,

∂Ṽ Et+1
∂Ft+1

= −1 − rt+1 − ϕt+1 + τct+1 Envelope Condition Ft+1,

∂Ṽ Et+1

∂Kt+1
=
(

1 − 1

ηt+1

)

pt+1At+1 (1 − τ )+ τκ + τδ + (1 − δ) Envelope ConditionKt+1.

(4.2.9)

Putting together, the previous conditions require the optimal investment strategy for
the firm to satisfy the following Euler equation,

1 = Et

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mt+1

Mt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎣

(
pt+1At+1

(
1 − η−1

t+1

)
− δ

)
(1 − τ )+ 1 − δ + κτ

︸ ︷︷ ︸
Marginal Cash Return on Capital Stock

− κ (1 + rt+1)
︸ ︷︷ ︸

Cost of Op. Cycle

+ λt+1 (τct+1 − ϕt+1)
︸ ︷︷ ︸
Debt’s funding advantage

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Investment Returns

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4.2.10)

as well as the transversality condition limT→∞ E

{
MT
Mt

∂V̂ ET
∂KT

KT

}

= 0 (see Miao

2020, Chapter 7). On the LHS of Eq. (4.2.10) we have the price paid for a unit
of capital goods, while on the RHS its expected marginal benefit. In equilibrium,

6When the previous inequality holds as equality, shareholders are indifferent to any Ft+1 ∈[
0, (1−α)
(1+ct+1)

Kt+1

]
.Without loss of generality we can assume Ft+1 = (1−α)

(1+ct+1)
Kt+1, as the

presence of debt will be not affect investment decisions in this case.
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shareholders invest until the NPV of adding an infinitesimal amount of capital dIt
is null, which is again the positive NPV rule in capital budgeting. Nevertheless,
what has changed from Sect. 3.2.2, is that investment returns depend on the demand
elasticity, rather than the size of adjustment costs. Therefore, once an additional
amount of capital dIt is purchased in t , the price of goods sold in t + 1 will be
“depressed” by an amount equal to − 1

ηt

pt
qt
dIt , otherwise the additional quantity

produced At+1dIt would remain unsold. Hence, in equilibrium firms with higher
market power, thanks to a more rigid demand schedule, will face a higher marginal
cost to expand their output capacity. However, a lower elasticity of demand results
also in higher expected profitability.

Furthermore, note that Eq. (4.2.10) can be solved for the optimal fixed capital
stock without knowing Kt±s, s > 1. Hence, it is optimal for shareholders to
solve a sequence of static problems. Put differently, the model predicts an myopic
equilibrium behavior for the firm. In intertemporal decision problems, a behavioral
rule is said to be myopic if it is based on the optimization of short-term objectives.
Since dynamic programs are in general hard to solve, this type of behavior is actually
more consistent with the way in which firms are managed in reality, which certainly
favors the model.

4.2.3 Constant Price Elasticity of Demand and the Value of the
Firm

In corporate finance applications, it is convenient to consider a demand function
characterized by a constant price elasticity, and a single state variable. Thus, in the
rest of the chapter we will adopt the following working hypothesis,

qt (p) = Ytp
−η, η > 1, (4.2.11)

where Yt denotes the industry aggregate demand, which each firm in the same
industry is supposed to take as given.7 As a result, optimal price setting requires
that,

pt =
(
AtKt

Yt

)− 1
η

, (4.2.12)

7This is a very important aspect from a game-theoretic perspective. If we let i be a generic firm,
by aggregate consistency,

∑
i Ai,tKi,t = Yt in general equilibrium.
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and, consequently, Eq. (4.2.10) becomes equivalent to,

1

η
Et

{
Mt+1

Mt
pt+1At+1Kt+1

}

=

1

η − 1

1

1 − τ
{

κ + rt+1 + δ − [τ (κ + δ)+ λt+1 (ϕt+1 − τct+1)]

1 + rt+1

}

Kt+1.

(4.2.13)

The RHS of the equation is equal to the NPV of additional profits compared to
the case of perfect competition (monopoly rents), which is consequential to the
firm’s market power. To see this point, notice that, in the limiting case of perfect
competition, Eq. (4.2.13) is equivalent to,

lim
η→∞Et

{
Mt+1

Mt
pt+1At+1Kt+1

}

= 1

1 − τ
{

κ + rt+1 + δ − [τ (κ + δ)+ λt+1 (ϕt+1 − τct+1)]

1 + rt+1

}

Kt+1.

(4.2.14)

This is a key point in this chapter, as it contains all the economic intuitions required
to understand the relationship between stock returns and profitability.

By following the same logic we used in Sect. 3.3.2, the Euler equation with
respect to unlevered free cash flows (xt ) is,

Et

{
Mt,t+1 [xt+1 + λt+1 (τct+1 − ϕt+1) Ft+1]

} =

Kt+1 (1 + κ)− Et [Mt+1Kt+2 (1 + κ)] + 1

η
Et [Mt+1pt+1At+1Kt+1 (1 − τ )] .

(4.2.15)

From the application of Eq. (2.4.13), the value of the firm is equal to,

Vt = Et

∞∑

s=1

Mt+s
Mt

[xt+s + λt+s (τct+s − ϕt+s) Ft+s ] , (4.2.16)

and, recursively substituting Eq. (4.2.15) into Eq. (4.2.16), we eventually obtain,

Vt = Kt+1 (1 + κ)
︸ ︷︷ ︸
Invested Capital

+ 1 − τ
η

Et

∞∑

s=1

Mt+s
Mt

pt+sAt+sKt+s
︸ ︷︷ ︸

NPV Monopoly Rents

. (4.2.17)
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The RHS of Eq. (4.2.17) carries a simple and intuitive economic interpretation.
By definition, the sum of the accounting book-value of fixed assets (Kt+1) and
working capital (κKt+1) is the firm’s total invested capital (ICt+1), ICt+1 =
Kt+1 + κKt+1. If there was perfect product market competition (i.e. η → ∞),
the value of the firm would be equal to its total after-tax invested capital, that
is, Vt = Kt+1 (1 + κ), which is consistent with what we discussed in Sect. 4.1.
Imperfect competition attributes market power to the firm, and consequently, the
achieved extra-profitability improves its total market value by the NPV of monopoly

rents
(

1−τ
η

Et

∑∞
s=1Mt,t+spt+sAt+sKt+s

)
. Namely, the lower the η, the higher the

firm’s market power and consequently the NPV of monopoly rents (NPVMR).

4.3 Imperfect Competition and the Cross-Section of Stock
Returns

4.3.1 Tobin’s Q, Expected Stock Returns and Residual Income

Tobin’s Q (Qt ) is defined more generally as,

Qt := Vt

ICt+1
(4.3.1)

where ICt+1 = (1 + κ)Kt+1 is the firm invested capital. Notice that Tobin’s
Q is always greater than one with imperfect competition. However, the source
of “extra-value” is the firm’s market power, which is far more reasonable than
investment adjustment costs. Furthermore, since there are decreasing returns to
scale in the firm’s revenues and operating cash flows, average profitability always
exceeds marginal profitability. This observation suggests the following analysis on
the relationship between profitability and security returns, which is based on Balvers
et al. (2017).

Let �t := Vt − Kt+1 = 1−τ
η

Et

∑∞
s=1Mt,t+spt+sAt+sKt+s be the NPV of

monopoly rents (NPVMR), and ρt+1 := �t+1
�t

− 1 be the related growth rate.
Following the same routine developed in Sect. 3.3, we can use the firm’s budget
constraint to write the following equation,

V Et

Vt

(
1 + rEt+1

)
+ Ft+1

Vt
[1 + ct+1 (1 − τ )]

= (pt+1At+1 − κ − δ) (1 − τ )Kt+1 + (1 + κ)Kt+1 +�t+1

Vt
. (4.3.2)
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With the following algebraic steps,

(pt+1At+1 − κ − δ) (1 − τ )Kt+1 + (1 + κ)Kt+1 +�t+1

Vt
=

(pt+1At+1 − κ − δ) (1 − τ )Kt+1 + Vt +�t+1 −�t
Vt

=

1 + (pt+1At+1 − κ − δ) (1 − τ )Kt+1

Vt
+ �tρt+1

Vt
,

the RHS of Eq. (4.3.2) can be simplified as 1 +
1

1+κ (pt+1At+1−κ−δ)(1−τ )
Qt

+
[Vt−Kt+1(1+κ)]ρt+1

Vt
, eventually obtaining the following equilibrium relationship,

V Et

Vt

(
1 + rEt+1

)
+ Ft+1

Vt
[1 + ct+1 (1 − τ)] = 1 + Πt+1 (1 − τ)

Qt
+
(

1 − 1

Qt

)

ρt+1,

(4.3.3)

where Πt+1 := pt+1At+1−κ−δ
1+κ is the before-tax return on invested capital (RoIC).

Notice the presence of the dilution factor 1
1+κ , which is due to the presence of

working capital. Taking expectations on both sides of Eq. (4.3.3), we conclude that

the firm’s WACC, which is equal to V Et
Vt

Et

(
rEt+1

) + Ft+1
Vt
ct+1 (see Sect. 3.1.3), is a

weighted average of the firm’s expected profitability (Πt+1 (1 − τ )) and growth rate
of NPVMR, that is,

wacct,t+1 = 1

Qt
[Et (Πt+1) (1 − τ )] +

(

1 − 1

Qt

)

Et (ρt+1) . (4.3.4)

To better express Et

(
rEt+1

)
, let BVt+1 be the book-value of equity at date t ,

BVt+1 := ICt+1 − Ft+1. Observing that the firm’s net income (NIt+1) is equal
to [Πt+1ICt+1 − ct+1Ft+1] (1 − τ ), Eq. (4.3.4) can be rearranged in order to have
Et

(
rEt+1

)
on the LHS,

V Et

Vt
Et

(
rEt,t+1

)
+ Ft+1

Vt
ct,t+1 (1 − τ ) = 1

Qt
[Et (Πt+1) (1 − τ )] +

(

1 − 1

Qt

)

Et (ρt+1) ,

Et

(
rEt,t+1

)
+ Ft+1

V Et
ct,t+1 (1 − τ ) = ICt+1

V E
t+1

[Et (Πt+1) (1 − τ )] +
(
Vt − ICt+1

V Et

)

Et (ρt+1) ,

Et

(
rEt,t+1

)
= Et (NIt+1)

V Et+1

+
(
V Et + Ft+1 − (Ft+1 + BVt+1)

V Et

)

Et (ρt+1)
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eventually obtaining,

Et

(
rEt+1

)
= BVt+1

V Et

Et [Πt+1 (1 − τ )− ct+1Ft+1]

BVt+1
+
(

1 − BVt+1

V Et

)

Et (ρt+1) .

(4.3.5)

In equilibrium, expected stock returns are equal to the weighted average of

the expected return on equity (RoE), Et [Πt+1(1−τ )−ct+1Ft+1]
BVt+1

, and expected growth

in NPVMR, with weights equal to the book-to-price ratio, BVt+1

V Et
, and 1 − BVt+1

V Et
respectively. In other words, with imperfect competition, stock returns are a
weighted average of expected profitability and growth, with weights depending on
the book-to-price ratio (BB). In this regard, Novy-Marx (2013) finds that RoE and
BP have separate explanatory power in the cross-section of stock returns, while Hou
et al. (2020) shows the predictive power of the sales growth rate, which is a good
proxy for ρt+1.

Holding expected profitability, leverage and Et (ρt+1) all constant, a lower
Tobin’s Q implies higher expected stock returns. The market however is efficient,
in that a lower multiple must be consistent with higher cash flows risk, as it appears
evident from a simple probabilistic manipulation of the expression for NPVMR,

�t = 1 − τ
η

Et

∞∑

s=1

Mt,t+spt+sAt+sKt+s =

1 − τ
η

Et

∞∑

s=1

{

Et

(
Mt+s
Mt

)

Et (pt+sAt+sKt+s)+ COVt

(
Mt+s
Mt

, pt+sAt+sKt+s
)}

.

(4.3.6)

Hence, higher expected stock returns come as a consequence of higher systematic
risk of the firm’s extra-profits, as in the classic conditional CAPM.8 Put differently,
if the expected RoE and Et (ρt+1) are the same across different firms, Tobin’s
Q is a sufficient statistic for stock returns, as in Berk et al. (1999).9 Similarly,
holding Tobin’s Q and Et (ρt+1) constant, higher expected profitability implies
higher expected returns, as in the Investment CAPM of Sect. 3.3.

Finally, the expression for the value of the firm provides a micro-foundation for
residual income valuation models, which suggest to value the firm as the sum of its
accounting book-value plus the NPV of the operating income generated in excess of
wacct,t+1ICt+1

10 (Peasnell 1982; Edwards & Bell 1995; Feltham & Ohlson 1995;

8See Cochrane (2009).
9More precisely, in Berk et al. (1999), holding constant the “weight” and the “size” of growth
options, the book-to-price ratio is a sufficient statistic for expected stocks’ returns.
10This quantity corresponds to the dollar-valued cost of capital of the firm.
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Ohlson 1995). In fact, writing Eq. (4.3.4) with respectQt on the LHS, we obtain,

Qt =
Et

{
Πt+1

[
(1 − τ )− ρt+1

Πt+1

]}

wacct,t+1 − Et (ρt+1)
, (4.3.7)

that is,

Vt = ICt+1 +
{
Et [Πt+1 (1 − τ )] −wacct,t+1

}
ICt+1

wacct,t+1 − Et (ρt+1)
. (4.3.8)

4.3.2 Empirical Considerations

A more convenient way to express Eq. (4.3.5) is perhaps the following,

Et

(
rEt+1

)
= Et [Πt+1 (1 − τ )− ct+1Ft+1]

V Et+1

+
(

1 − BVt+1

VEt

)

Et (ρt+1) ,

(4.3.9)

in which we recognize the firm’s expected earnings yield,11 Et[Πt+1(1−τ )−ct+1Ft+1]
V Et+1

.

It is not infrequent to see practitioners estimating the expected return of a stock, or
an index, by considering its expected earning yield. As suggested by Eq. (4.3.9), this
approach is likely to fail most of the times, unless Et (ρt+1) = 0 or η → ∞. In other
words, expected earnings yields can be used as a proxy for expected stock returns
only when competition is high enough that monopoly rents are actually irrelevant.
Notably, a similar situation is reflected in a Tobin’s Q close to one, so we may say
that for stocks with Qt ≈ 1, the expected earnings yield is indeed a good proxy for
expected returns.

In general, Eq. (4.3.9) can be tested empirically and also giving a way to measure
conditional expected stock returns. Let us assume to have at our disposal a panel
dataset with yearly observations of market, fundamentals and consensus estimates12

data for a given universe of listed companies.
Our first task is to implement Eq. (4.3.9) for each stock in the cross-section given

the available public informational set. Since we observe the equity market value,
expected earnings can be proxied by considering, at each time t , the consensus
estimate for the next 12 months (NTM) earnings.13 As a result, we obtain the

11The expected earnings yield is the inverse of the Price-to-Earnings ratio, computed with respect
to expected net income.
12By consensus estimates we mean the median of sell-side forecasts for future fundamentals.
13Here, by earnings we intend the firm’s net income.
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forward earnings yield, we denotes by EYNTMi,t . Likewise, BVt+1

V Et+1
can be proxied

by considering the forward (NTM) or last reported book-to-price ratio. The choice
depends essentially on the relationship between imminent capital expenditures and
NTM earnings. If the former contributes to the latter, we should always use the
forward book-to-price ratio, which we denotes with BPNTMi,t . This is actually the

most frequent case, and we use BPNTMi,t as an additional empirical hypothesis.
We can proxy Et (ρt+1) by the consensus industry growth rate for the second-

twelve months (STM), gSTMt := Et (Yt+2)−Et (Yt+1)
Et (Yt+1)

. To motivate this approach,

notice that, as pt+1At+1Kt+1 ∝ Yt+1, we can reasonably introduce the stochastic
process �t = �t

Et (Yt+1)
. Consequently, for values of ρt+1 that are not too large, we

can approximate Et (ρt+1) as follows,

Et (ρt+1) ≈ Et (Yt+2)− Et (Yt+1)

Et (Yt+1)
+ Et (�t+1)− Et (�t )

Et (�t )
= gSTMt + εt .

(4.3.10)

where εt := Et (�t+1)−Et (�t )

Et (�t )
can be considered as a disturbance term. Within the

sample, for each stock i, the conditional expected returns are expressed as,

Et

(
rEi,t+1

)
= EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t + εi,t . (4.3.11)

At this point, we need to introduce specific statistical assumptions on the distribution
of the disturbance term εi,t . To this purpose, we assume that Et

(
εi,t

) = 0. This
condition could be motivated observing that εi,t is the expected change of the
multiple �i,t

Et (Yi,t+1)
, and change in stock market multiples are not so easy to predict.

Notice that by introducing these additional hypothesis, our model for expected stock
returns becomes,

⎧
⎨

⎩

Et

(
rEi,t+1

)
= EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t + εi,t

Et

(
εi,t

) = 0 ,
(4.3.12)

which is far more restrictive than the original version in Eq. (4.3.9). For this reason,
Eq. (4.3.12) may be not suitable to fit the data not because Eq. (4.3.9) is not valid
but, rather, because the way in which we model the NPVMR growth is not valid.

If the model in Eq. (4.3.12) is correct, which is our null hypothesis (H0), the
pricing error,

εi,t = rEi,t −
[
EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t

]
− εi,t (4.3.13)
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should be unpredictable using fundamental and market-based variables. Namely, if
H0 is true, for every firm characteristic s, and including the constant h(s)i,t = 1, the
following moment condition must be verified,

E

{[
rEi − EYNTMi −

(
1 − BPNTMi

)
gSTMi

]
h
(s)
i

}
= 0. (4.3.14)

If T is the number of observations, N the number of stocks, and n the number of

characteristics, except the constant
(
h
(s=1)
i,t = 1

)
, we have a total of N × (n+ 1)

different moment conditions. The LHS of each of these conditions can be estimated
as,

Ψi,s (T ) =
T∑

t=1

[
rEi,t − EYNTMi,t −

(
1 − BPNTMi,t

)
gSTMi,t

]
h
(s)
i,t . (4.3.15)

If the model is correctly specified, theN× (K + 1) estimates for Ψi,s (T ) should

not be jointly different from zero. More formally, by letting hi,t :=
(
h
(s)
i,t

)n+1

s=1
,

under appropriate regularity conditions for the distribution of X =
[(

hi,t
)N
i=1

]T

t=1
,

and given a consistent estimator Ŝ for the variance of Ψ = (
Ψi,s (T )

)
, the statistic,

W := T ·
(
Ψ ᵀŜ−1Ψ

)
→p|H0 χ

2
N×(n+1), (4.3.16)

is asymptotically distributed as a Chi-squared withN×(K + 1) degrees of freedoms

under the null hypothesisH0 : E
{[
rEi − EYNTMi − (

1 − BPNTMi

)
gSTMi

]
x
(s)
i

}
=

0, ∀ (s, i).
Hence, we can test for the validity of the model comparing the estimate obtained

for the statistic W with an appropriate quantile of its asymptotic distribution. The
procedure is the well-known Wald test and relies on the central limit theorem,
we assume to be valid for X. The Wald test can be seen as a more primitive
version of the overindentifying restriction test which is used in conjunction with
the Generalized Methods of Moments (GMM) in structural econometrics (cf.
Sect. 7.3.3). The difference with the case of GMM is that W is independent on the
structural parameters of the model. When insteadW depends on a set α of structural
parameters, the GMM estimates the parameters of the model in order to shrink W
as much as possible, consistently with the null hypothesis. As a result, we obtain a
statistic (J ) which is the minimum value ofW (α) for the sample. While J remains
asymptotically distributed as a Chi-squared under appropriate regularity conditions,
the degrees of freedom are reduced by the number of the estimated parameters. In
case the degrees of freedom are equal to zero, J = 0 and there is nothing to test. For
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this reason, models in which the number of (independent) moment conditions are
equal to the number of structural parameters to be estimated are said just identified.
Only models in which we have a number of moment conditions greater than the
number of parameters to be estimated are structurally testable. Models of this type
are said overindentified. An example is the basic version of the Investment CAPM,
where θ = {

θ−, θ+} must be estimated from at least three moments conditions.
When the Wald test can be directly applied, the model being tested is always
overidentified, in that J = W regardless the structural parameters of the model.
This is a very nice property of the model proposed in this section, which requires
no investment adjustment costs. In this regard, if H0 is not rejected, we can also
conclude that investment adjustment costs may be not so important to explain the
cross-section of stock returns.

In this context, a major drawback of structural methods is that, unless the case
of small investible universe, it is usually an hard task obtaining a good estimate
for Ŝ that can be inverted with sufficient precisions. Besides, some firms may exist
only at certain dates, as in the case of IPOs, mergers and acquisitions or delistings,
thereby resulting in an unbalanced panel data. To handle this problem, we can focus
on portfolios of stocks operating in the same reference industry, or in the same
industry and geographic area if we wish, rather than individual firms. By following
a uniform weighting scheme within each portfolio, the procedure can then be easily
implemented. Once finding no statistical evidence to rejectH0, we can next measure
expected returns from the systematic component of Eq. (4.3.11), that is,

E

(
rEi,t+1|Xi,t

)
= EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t , (4.3.17)

whereXi,t is the set of all the public informational set. Notice that, within the model

economy, E
(
rEi,t+1|Xi,t

)
�= Et

(
rEi,t+1

)
, as the agents have perfect knowledge of

Et (ρt+1). However, without additional hypothesis we cannot say anything about
εt , and therefore Eq. (4.3.16) is the best measure of conditional expected returns
we can get in practice. In the next section we see how we can improve the
analysis by introducing some mild hypothesis for the exogenous stochastic process
{At,Mt, Yt }t≥0. The problem with the model actually comes with situations in
which, when using accounting data, we empirically observe BPNTMi,t > 1. Often it
is possible to save the model also in this case, assuming that the consensus estimate
for the equity book-value is misrepresented for some reason, and “prudentially”
setting BPNTMi,t = 1. This approach is a good approximation for firms operating in
highly competitive industries that recently experienced a sharp deterioration in their
assets quality, which is not an infrequent case when BPNTMi,t > 1.14

14Needless to say, it must be the case that such a deterioration is is not yet included in BPNTMi,t ,
otherwise we would incur in a double counting.
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4.4 Equilibrium Models and Security Analysis

4.4.1 A Simple Quantitative Model

The framework we introduced so far is a useful tool for security analysis, and specif-
ically for estimating the firm’s key profitability indicators (KPIs) then obtaining a
target equity value. As we stressed in Sect. 1.3, equilibria are properties for model
economies, not for the real world. Therefore, models should be first tested, through
structural estimation methods, in order to very whether they can be assumed as
approximately valid to describe the real world of corporate finance. If this is the case,
then the model can be used to forecast the firm’s key profitability indicators (KPIs)
and eventually understand whether stock mispricings are statistically significant. In
order to improve the empirical analysis of Sect. 4.3.2, we introduce the following
hypotheses regarding the exogenous stochastic processes involved in the general
version of the model:

(1) At = A;
(2) εt ∼i.i.d N (

0, σ 2
ε

)
;

(3) ϕt = ϕ ≥ 0;

(4) Mt,t+1 = 1
1+r e

μt− 1
2σ

2
μ , μt ∼i.i.d. N

(
0, σ 2

μ

)
;

(5) Yt = Yt−1e
lnGt−1+εt− 1

2σ
2
ε , εt ∼i.i.d. N

(
0, σ 2

ε

)
;

(6) Gt is a strictly positive exogenous stochastic process, independent from any
other random variable in the model;

(7) the joint distribution of (εt , μt ) is strongly stationary.

Some comments before proceeding to the analysis are useful. First, the stochastic
process gt := Gt − 1 is the conditional expected growth in industry demand (Yt ),

gt = Et

(
Yt+1
Yt

)
− 1. Second, the cost of debt is constant and equal to c = r + ϕ,

where r > 0 is the risk-free rate, and, consequently, if τc ≥ ϕ, the book-leverage is
constant and equal to,

Ft+1

Kt+1
= (1 − α) (1 − δ)

1 + c . (4.4.1)

Third, with reference to the notation introduced in the previous section, we have
λt+1 = λ = (1−α)(1−δ)

1+c I (τc ≥ ϕ) and Ft+1 = λKt+1 ≥ 0. As a result, the
equilibrium capital stock (Kt+1) is the solution of the following equation,

(1 + κ) = Et

⎧
⎨

⎩

eμt+1− 1
2σ

2
μ

1 + r

⎡

⎣
η−1
η

(
AKt+1
Yt+1

)− 1
η
(1 − τ )− τκ

+λ (τc − ϕ)+ 1 − δ (1 − τ )

⎤

⎦

⎫
⎬

⎭
. (4.4.2)
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4.4.2 Expected Fundamentals

The first task in security analysis is obtaining consistent forecasts for the firm’s
KPIs. To do so, we may start from the capital stock, and, rearranging Eq. (4.4.2) in
order to have Kt+1 on the LHS, we obtain the following expression,

Kt+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Et

[

eμt+1− 1
2σ

2
μe

1
η

(
εt+1− 1

2σ
2
ε

)]

η
η−1

A
1
η

1−τ {(1 + r) (1 + κ)− 1 + δ (1 − τ )− λ (τc − ϕ)}

⎫
⎪⎪⎬

⎪⎪⎭

η

GtYt .

(4.4.3)

Notice that the effect of financial leverage, which is consistent with the over-
investment problem described in Sect. 3.4 of the previous chapter. Since the
shocks (εt , μt ) are strongly stationary, we can introduce the constant C0 :=
Et

[

eμt+1− 1
2σ

2
μe

1
η

(
εt+1− 1

2σ
2
ε

)]

= E

[

eμt−
1
2σ

2
μe

1
η

(
εt− 1

2σ
2
ε

)]

, which can be computed

thanks to the multivariate lognormal random distribution properties. We can also
define another constant (C1),

C1 :=
⎡

⎢
⎣

C0

η
η−1

A
1
η

1−τ {(1 + r) (1 + κ)− 1 + δ (1 − τ )− λ (τc − ϕ)}

⎤

⎥
⎦

η

, (4.4.4)

which allows us to conclude that Kt+1 is always proportional to the expected
industry demand,

Kt+1 = C1 GtYt︸︷︷︸
Et (Yt+1)

. (4.4.5)

One important effect is that, the expected ratio between revenues and invested
capital (Sales-to-Capital Employed ratio) is constant. To prove this claim, recall

that sales are equal to pt+1AKt+1 =
(
AKt+1
Yt+1

)−η
AKt+1; therefore,

pt+1AKt+1 = e
1
η

(
εt+1− 1

2σ
2
ε

) (
AC1GtYt

GtYt

)−η
AKt+1, (4.4.6)

and the ratio between revenues and invested capital is equal to,

pt+1qt+1

ICt+1
= pt+1A

1 + κ = A1−ηC−η
1

1 + κ e
1
η

(
εt+1− 1

2σ
2
ε

)

. (4.4.7)
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Taking expectations, we obtain,

Et (pt+1qt+1)

ICt+1
= C4, (4.4.8)

where C4 := A1−ηC−η
1 C3

1+κ and C3 := E

[

e
1
η

(
ε− 1

2σ
2
ε

)]

are two positive constants.

Another interesting implication is that the firm operates with a constant expected
operating margin, the latter being defined as the ratio between earnings before
interests and taxes (EbITt) and revenues (pt+sqt+s). At time t + 1, total costs
are equal to κKt+1 + δKt+1, where κKt+1 are representing the intermediate inputs
purchased in t (cf. cost of goods sold in accounting). As a result, it is immediate to
show that,

Et

[
EbITt+1

pt+1qt+1

]

= 1 − κ + δ
C4

, (4.4.9)

as we claimed before. Let Πt+1 := EbITt+1
ICt+1

be the before-tax return on invested
capital. Then, based on previous results, its expected value is also constant,

Et (RoICt+1) =
(

1 − κ+δ
C4

)
Et (pt+1qt+1)

ICt+1
= C4 − (κ + δ) > 0. (4.4.10)

Hence, the model provides an equilibrium foundation on two very common
assumptions in practice, namely, a constant expected RoIC and a constant expected
operating margin.

Denoting by Π the expected value of the before tax return on invested capital,
Π := C4 − (κ + δ), unlevered free cash flows (xt) are given by,

xt+1 =
⎛

⎜
⎝pt+1qt+1 − δKt+1 − κKt+1
︸ ︷︷ ︸
Earnings before Interests and Taxes

⎞

⎟
⎠ (1 − τ )−

⎡

⎢
⎣(1 + κ)Kt+2 − (1 + κ)Kt+1
︸ ︷︷ ︸

Change in Invested Capital

⎤

⎥
⎦ .

(4.4.11)

With the following algebraic steps,

Et (xt+1) = Π (1 − τ ) ICt+1 − (1 + κ)Et (Kt+2 −Kt+1)

Π (1 − τ ) ICt+1 − (1 + κ)C1Et (Yt+2 − Yt+1) =
Π (1 − τ ) ICt+1 − (1 + κ)C1Et

(
Yt+1 (1 + gt+1) e

μt+2− 1
2σ

2
μ − Yt+1

)
=

Π (1 − τ ) ICt+1 − (1 + κ) C1Et (Yt+1)Et (gt+1) ,
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we eventually obtain the following relation,

Et (xt+1) = Et (EbITt+1)

[

(1 − τ )− Et (gt+1)

Π

]

. (4.4.12)

where Et (EbITt+1) = Π · ICt+1.
Equation (4.4.12) is very popular among practitioners in order to predict

unlevered free cash flows. The term
Et (gt+1)
Π

is commonly referred as plowback
ratio, and corresponds to the fraction of EbIT that must be reinvested according to
the expected industry growth rate. By applying the law of iterated expectations, we
can also generalize this result to any future date,

Et (xt+s) = [Π · Et (ICt+s )]
[

(1 − τ )− Et (gt+s)
Π

]

, (4.4.13)

where Et (ICt+s ) obtained from Eq. (4.4.5) and the dynamics of Gt ,

Et (ICt+s) = C1Et (Yt+s) = C1Yt

s−1∏

j=0

[
1 + Et

(
gt+j

)]
. (4.4.14)

4.4.3 Stock Market Multiples and Valuation Models

It would be tempting to obtain the value of the firm by discounting the expected
unlevered free cash flows at a constant weighted average cost of capital. However,
this approach may be inconsistent with equilibrium asset pricing. Let Ct be the
conditional covariance operator. Recalling that,

Vt = Et

∞∑

s=1

Mt+s
Mt

[xt+s + λ (τC − ϕ)Kt+s] , (4.4.15)

we obtain a specific version of the fundamental equilibrium valuation formula,

Vt =
∞∑

s=1

OM
[
(1 − τ )− Et (gt+s )

Π
+ λ(τc−ϕ)

1+κ
]

+ Ct

(
xt+s, e

∑s
j=1 μt+j− 1

2σ
2
μ

)

(1 + r)s ,

(4.4.16)
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as in Christensen and Feltham (2009). However, it is usually more convenient
to exploit the properties of the model, and make use Eq. (4.2.17) to obtain the
equilibrium value of the firm,

Vt = ICt + 1 − τ
η

Et

∞∑

s=1

Mt+s
Mt

pt+sqt+s . (4.4.17)

One can then verify whether the two approaches yield the same result.
We may wonder when assuming a constant WACC is correct, and then using the

classic textbook discounted cash flows model (DCF) to obtain Vt . To answer this
question, we may start recalling that, by definition, the weighted average cost of
capital

{
wacct,t+1

}

t≥0 is a stochastic process that satisfies the following equation
at each time t ∈ N,

Vt = Et (xt+1 + Vt+1)

1 +wacct,t+1
, (4.4.18)

that is,

Vt =
∞∑

s=1

Et (xt+s)
∏s
j=1

[
1 + Et+s−1

(
wacct+j−1,t+j

)] . (4.4.19)

To obtain the classic DCF valuation model, we must show that for each future date
t + j , wacct+j−1,t+j = wacct,t+1 = wacc > 0. This turns out to be possible if

gt = Et (Yt+1)
Yt

= g, that is, if the expected industry growth rate is constant and below
a certain threshold. To prove this claim, recall Eq. (4.3.4) from the previous section,

wacct,t+1 = (1 − τ )Π
Qt

+
(

1 − 1

Qt

)

Et (ρt+1) . (4.4.20)

If

gt = g ∈ (−1, ḡ] �⇒ Et (ρt+1) = ρ ∧ Et (Qt+1) = Q > 1, (4.4.21)

we can conclude that the classic DCF model is consistent with the equilibrium value
of the firm, that is,

Vt =
∞∑

s=1

Et (xt+s)
(1 +wacc)s . (4.4.22)
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For a generic time t, we can expand the expression for NPVMR as follows,

Θt = 1 − τ
η

∞∑

s=1

Mt+s
Mt

pt+sqt+s = 1 − τ
η

Et

∞∑

s=1

e
∑s
j=1 μt+j−

σ2
μ
2

(1 + r)s
(
At+sKt+s
Yt+s

)−η
At+sKt+s =

= 1 − τ
η

A1−ηC−η
1 Et

∞∑

s=1

e
∑s
j=1 μt+j−

σ2
μ
2

(1 + r)s e
1
η

(
εt+1− 1

2 σ
2
ε

)

Kt+s =

1 − τ
η

(AC1)
1−η YtEt

∞∑

s=1

e
∑s
j=1 μt+j−

σ2
μ
2

(1 + r)s e
1
η

(
εt+s− 1

2 σ
2
ε

)

(1 + g)s ,

eventually obtaining,

Θt = 1 − τ
η

(AC1)
1−η YtEt

∞∑

s=1

(
1 + g
1 + ω

)s

. (4.4.23)

where
(

1
1+ω

)s = Et

⎡

⎣ e
∑s
j=1 μt+j− σ

2
μ
2

(1+r)s e
1
η

(
εt+s− 1

2σ
2
ε

)
⎤

⎦ follows from the strong station-

arity and serial independence of {εt , μt }t≥0. Thus, provided that g < ḡ = ω, the
RHS of Eq. (4.4.21) is bounded and the following results hold,

Qt = Q = 1 +
1−τ
η
A1−ηC−η

1 C5

1 + κ
1

ω − g ≥ 1, (4.4.24)

Ft+1

Vt
= (1 − α) (1 − δ)

1 + c
I (τc ≥ ϕ)

Q
≥ 0, (4.4.25)

wacct,t+1 = wacc = Π (1 − τ )
Q

+
(

1 − 1

Q

)

g. (4.4.26)

As a result, the DCF model in Eq. (4.4.22) is valid. However, as gt is constant, it is
immediate to check that Eq. (4.4.20) is a more specific version of the basic model
presented in Sect. 2.4.4, that is,

Vt = Et+1 (xt+1)

wacc− g = OM
[
(1 − τ )− g

Π

]

wacc− g . (4.4.27)

Despite its apparent simplicity, Eq. (4.4.27) makes clear the channel through
which growth creates value for shareholders. Holding g constant, the larger the
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spread Π − wacc, the larger the value creation through the growth is. This spread
is often used as multiple of the value of invested capital (ICt+1), and the resulting
metric is the Residual Income or Economic Value Added (Stewart 1991) used to
assess the value creation of growth strategies. In this regard, the value of the firm
can be obtained as,

Vt = ICt+1 + Et (RIt+1)

wacc− g (4.4.28)

where RIt+1 = [Π (1 − τ )−wacc] ICt+1. We thereby provide an heuristic link
between NPVMR and EVATM.

4.5 Related Literature

The “Q” theory of investment is originally due do Kaldor (1966), Tobin and
Brainard (1976) and Hayashi (1982), later extended by Abel (1981, 1983) and
Abel and Eberly (1996, 1997). Fama and French (1993) show that Tobin’s Q
and the firm’s size add explanatory power to the cross sectional returns. In
this regard, investment-based asset pricing, or “supply-side”, models provide an
empirically consistent equilibrium explanation of Fama and French (1993). Most
of these models adopt a partial equilibrium approach, as we did in this and in the
previous chapter. An example is Berk et al. (1999). However, there are examples of
general equilibrium models as well, such as Gomes et al. (2003) or Zhang (2005),
which analyzes the effects of irreversibility costs in a general equilibrium model
with countercyclical equity risk premia (i.e. investors discounts cash flows more
aggressively in bad times).

The model presented in this chapter is inspired by the discussion of Tobin’s Q
and imperfect competition in Balvers et al. (2017). Schiantarelli and Georgoutsos
(1990), Abel and Eberly (2011), and Crouzet and Eberly (2020) are other examples
of models consistent with our approach. Nevertheless, our model distinguishes from
others in the literature because of the presence of a lag between the purchase of
intermediate goods and the collection of revenues resulting from the production
process. This mechanism, which comes from Cooley and Quadrini (2006) and
Quadrini (2011), allows to introduce the working capital consistently with the
operating cycle concept in corporate finance. From an accrual perspective, the
model includes quasi-fixed costs, in that the use of inventories purchased in the
previous period is a cost item of the current period’s Profit and Loss account. In
this regard, Carlson et al. (2004) is an example of monopolistic competition model
with quasi-fixed production costs. However, in our model the timing is different, as
the cost of intermediate inputs must be paid in advance. For this reason, contrary
to Carlson et al. (2004), there is no operating leverage effect in terms of free cash
flows to the firm, which is the only relevant asset pricing metric.
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Our model can be also extended by including intangible assets, following the
Q+ framework of Crouzet and Eberly (2020). In this regard, one may question the
ultimate source of market power in our model. For instance, a brand could be viewed
itself as an intangible asset. This is actually an old problem in accounting, and the
answer depends on whether the expenses to preserve the brand’s strengthens should
be considered as a capital expenditure or production costs.
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Chapter 5
Continuous Time Models, Unsecured
Debt and Commitment

This chapter is dedicated to continuous time methods in corporate finance, focusing
on capital structure models in which the firm is assumed to be financed by equity
and unsecured debt. The major difference with the discrete time setting is that
investment and financing decisions take place at each t ∈ R, with free cash flows
and payments on outstanding securities accruing continuously. Admittedly, while
continuous time models are based on this purely theoretical abstraction, they are
notwithstanding useful to characterize the occurrence of default episodes. We use
the standard Ito’s processes to model the sources of randomness affecting free cash
flows dynamics. Ito’s processes can be extended to include jumps, that is, a set
of countable discontinuities occurring at deterministic or random Poisson times.
In order to keep the discussion self-contained, jumps are excluded from both the
exogenous processes driving the firm’s free cash flows, as well as discrete or lump
sum payments to the firm claimholders, with the only possible exceptions of (i) the
date at which the firm is established, say t = 0, and (ii) the date in which a default
episode takes place.

The rest of the chapter is organized as follows. In Sect. 5.1 we derive a general
valuation formula for the firm in continuous time setting. In doing this we consider a
very simple capital structure, composed by equity and pari-passu unsecured bonds.

In Sect. 5.2 we deal with the Hamilton–Jacobi–Belmann (HJB) approach, which
consists in translating asset pricing problems in partial differential equations. As
the name suggests, there is an intrinsic connection with dynamic programming
in continuous time, which we will largely exploit to derive shareholders’ optimal
decisions. Specifically, we explore the way in which investors’ risk-aversion, which
is factored in the stochastic discount factor (SDF), should be handled.

The tools we develop are then used to inspect corporate finance models in which
the firm commits at a certain point in time to a static debt’s policy. The workhorse of
this approach is the Leland (1994) model, which is thoroughly presented in Sect. 5.3.
The Leland model assumes that shareholders commit to not issue additional debt
after a first and last tranche of bonds is issued. Despite the time inconsistency of
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this assumption, as we shall see in Sect. 6.1, the importance of this model is at
least twofold. Firstly, the model played a key role in the last 25 years of research in
corporate finance. Secondly, its algebraic derivation suggests a general methodology
to tackle more complicated problems. In particular, part of the model’s results
remains valid in the more general circumstances of Chap. 6, where we restore the
firm’s flexibility to adjust its net financial position.

The original version of the Leland model is based on the assumption of an
exogenous process for the value of the firm. Since then, it has been customary
to replace this assumption with that of an exogenous unlevered free cash flows
process. As we did in the previous chapter, we extend the analysis to the inclusion of
endogenous investment decisions, through which shareholders affect the dynamics
of unlevered free cash flows. We do this in Sect. 5.4, where we scrutinize the
problems of debt overhang and risk shifting. We will use very schematic models
that help to understand the economics behind both phenomena.

5.1 General Setting and Valuation

5.1.1 The Setting

For a generic stochastic process y in continuous time (CT), we write y (t), as
opposed to yt in the discrete time (DT) case. In this way we avoid confusion when
using the compact notation fx = ∂f

∂x
for partial derivatives.

To handle the complexity of CT models, we assume that at each trading date t ,
the holders of a generic security i have equal claims over the differential dHi (t) =
Hi (t + dt)−H (t) = ni (t) dYi (t), where H (t) is the cumulative cash flows paid
by the class of securities i from the conventional date t = 0, and given the number
of outstanding securities of the same class at time t , ni (t). In CT model, ni (t) is
the number of securities at the “end” of date t . Contrary to the DT case, we can no
longer make use of the more handy notation ni (t + 1), as the number of oustanding
securities could change during the next dt interval.

To get a sense of the CT approach, consider the case in which H (t) follows a
smooth process, in the sense that dYi (t) = yi (t) dt , where yi (t) is an Ito diffusion
process. It is evident that securities trade in each period at a price which includes the
cash flows accruing smoothly between two converging dates, say t and t + dt . This
is in contrast with DT models, and it is exactly this difference that may preclude
a direct interpretation of a CT model as the limit of an assimilable DT model. For
this reason, models that differ only from their CT or DT formulation should not be
literally considered one as the limiting case of the other, although in several cases
it might be a good qualitative approximation. Another consequence, which is valid
as long as dY (t) = y (t) dt holds for all securities, is that there is no difference
between ex and cum cash flows prices. In fact, at each instant there is always a cash
flow that is potentially paid out over the next dt interval. As a result, contrary to
the DT case, there is no difference between shareholders value and equity market
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value (see Sect. 2.1). However, allowing for occasional lump-sum equity payments
(e.g. discrete dividends or share buybacks), the difference between cum-dividend
and ex-dividend equity market value is reinstated.

The idea underlying the approach is inspired by the integral representation of the
firm’s budget constraint. Let assume that between two instants t and t +�, � > 0,
the firm is solvent. Let x (s) be the unlevered cash flows that would be available
to the firm at date s + 1 if x (j) = x (s) for all j ∈ [s, s + 1]. Adopting the
same interpretation for what concerns the tax benefits of capital structure π (s)
decisions and primary markets transaction costs �(s), the total change in liquidity
L (t) between t and t +� is equal to,

L (t +�)−L (t) =
∫ �

0
L (t + s) r (t + s) ds
︸ ︷︷ ︸

Interest income

+
∫ �

0
[x (t + s) + π (t + s) −�(t + s)] ds

︸ ︷︷ ︸
Free Cash Flows

−

∑

i∈St

∫ �

0
ni (t) dYi (t)− pi (t) dni (t)

︸ ︷︷ ︸

Payments to security holders plus proceeds from capital structure adjustments

,

(5.1.1)

where pi (t) is the price of a security i ∈ St at time t and ni (t) is related amount
oustanding. Two observations are important. First, pi (t) comprehensive of the cash
flows dYi (t) is received immediately after t . Second, ni (t) is comprehensive only
of discrete adjustments taking place at the same date. In other words, ni (t) does not
include the effect of its smooth change over the next dt interval.

The following working hypotheses will be maintained in the rest of the chapter.
First, the firm is financed with equity and unsecured debt instruments with equal
seniority (pari passu). We shall refer to these securities as bonds without loss of
generality. Namely, each bond is an exponential maturing perpetuity of unit face
value, with coupon rate c ≥ 0 and contractual retirement rate ξ ≥ 0 such that
c · ξ > 0. This means that in each period (t, t + dt], the holder of a bond is entitled
to receive a fraction ξ of the residual principal at time t , and a coupon payment equal
to c times the same amount. This is a very common assumption in the literature to
introduce the effects of debt maturity, while preserving the independence on time of
the price functions. Second, issuing equity and bonds is costless for the firm. As in
Chaps. 3–4, without loss of generality we will assume that any injection of outside
equity will occur through negative dividends (see Eq. (3.1.7) in Sect. 3.2.1).

Third, unlevered free cash flows follow an Ito’s diffusion process, as well as
dividends and the process underlying the issuance of new bonds. As a result,
dYi (t) = yi (t) dt, ∀t ∈ (0, td) for the cash flows paid by both stocks and bonds,
and there are no discrete adjustments in the number of outstanding securities, with
the exception of t ∈ {0, td}. As a consequence, there is no need to make distinction
between ex and cum-dividend market value of equity for all t ∈ (0, td ). Finally,
the stochastic discount factor process M (t) is supposed to follow an Ito diffusion
process.
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5.1.2 The Value of the Firm and Its Securities

Having clarified the interpretation we make of the CT models, and specified the
main hypotheses we refer to in our analysis, we can now proceed to derive a general
formula for the value of the firm. As long as x (t) is supposed to be exogenously
given, we assume that the underlying investment policy is individually rational (cf.
Sect. 2.1.1),

Et

∫ ∞

0

M (t + s)
M (t)

x (t + s) ds ≥ 0. (5.1.2)

The value of the unlevered firm (V u) is defined as the maximum value of the
LHS of Eq. (5.1.2) (cf. Sect. 1.4). Since we have already analyzed time the different
bankruptcy resolution mechanisms in Chap. 1, we will simply assume that in case of
default the total recovery value is a fraction 1 − θ (td ) of the firm’s unlevered value,
plus any amount of liquidity L (td) left as available. Notice that the value of future
tax benefits is lost in the bankruptcy process.

Let F (t) be the amount of debt oustanding at time t . Contrary to the DT case,
we do not allow for discrete debt adjustments. Rather, debt is always adjusted
“smoothly”, that is, according to the following dynamics,

dF (t) = [G(t)− ξF (t)] dt. (5.1.3)

In this regard, G(t) is a stochastic process which denotes the firm’s debt’s policy.
Hence, during any generic time interval [t, t +Δ] in which the firm is solvent, the
budget constraint in Eq. (5.1.1) is equivalent to,

L (t +�)− L (t) =
∫ t+�

t

[x (s)+ π (s)+ L (s) r (s)] ds

+
∫ t+�

t

p (s)G (s) ds −
∫ t+�

t

dD (s)−
∫ t+�

t

(c + ξ) F (s) ds,
(5.1.4)

whereD (s) are cumulative dividends paid to shareholders between t = 0 and t = s.
In each period, the holder of a dollar of debt is entitled to receive (c + ξ) dt

during the next infinitesimal interval (dt). As a result, the price per dollar of debt’s
notional (p) must be equal to,

p (t) = Et

∫ td

t

M (s)

M (t)
e−ξ(s−t ) (c + ξ) ds + Et

[
M (td)

M (t)

RB (td)

F (td )

]

, (5.1.5)

where RB (td) is debt holders’ recovery value. Accordingly, the total market value
of the outstanding bonds

(
V B

)
is obtained as p (t) F (t). It is important to stress

the difference relative to DT setting. Being absent discrete adjustments, there is no
need to make distinction between the amount of debt outstanding at the beginning
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or at the end of time t ∈ (0, td). As a result, there is no need to make distinction
between cum and ex-dividend market value of the firm. Namely, the value of the
firm is defined as V (t) = V E (t)+V B (t)−L (t), where V E (t) is the market value
of equity,

V E (t) = Et

∫ td

t

M (s)

M (t)
D (s) ds + Et

[
M (td)

M (t)
RE (td )

]

. (5.1.6)

Since Eq. (5.1.4) holds for any arbitrary small value of�, we can apply Leibniz’s
rule to derive both its side with respect to �. As a result, we find that the following
differential equation must be verified ∀t ∈ (0, td),

D (t) = x (t)+ π (t)+ p (t) G (t)− dL (t)

dt
− (c + ξ) F (t) . (5.1.7)

The previous relation is the differential form of the firm’s budget constraint. Putting
together, Eq. (5.1.6–5.1.7) allow us to obtain the value of the firm as,

V (t) = V E (t)+ p (t) F (t)− L (t) =

Et

∫ td

t

M (s)

M (t)
[x (s)+ π (s)] ds+

p (t) F (t)+ Et

∫ td

t

M (s)

M (t)
{p (s)G (s)− (c + ξ) F (s)} ds

︸ ︷︷ ︸
Ξ(t)

+

Et

{
M (td)

M (t)

[
RE (td)− L (td)

]}

.

(5.1.8)

The next, purely algebraic, step consists in simplifying the expression definingΞ (t)
in Eq. (5.1.8). Solving Eq. (5.1.3) for j ∈ [t, s < tt ] we get,

F (s) = e−ξ(s−t )F (t)+
∫ s

t

G (j) e−ξ(j−t )dj, (5.1.9)

and, by induction,

Ξ (t) = Et

{
M (td)

M (t)
p (td)

[

e−ξ(td−t )F (t)+
∫ td

t

G (s) e−ξ(s−t )dtd
]}

=

Et

[
M (td)

M (t)
p (td ) F (td)

]

.

(5.1.10)
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At default, the value of debt p (td) F (td) is equal to the recovery value of
debtholders, RB (td). Consequently, Eq. (5.1.8) simplifies to,

V (t) = Et

∫ td

t

M (s)

M (t)
[x (s)+ π (s)] ds + Et

{
M (td)

M (t)

[
RE (td)+ RB (td)− L (td)

]}

.

(5.1.11)

For a firm that makes no use of debt, the previous equation is equivalent to V (t) =
Et

∫∞
0

M(s)
M(t)

x (s) ds. As anticipated, we let V u (t) be the unlevered firm value, that
is, the value of the firm that adopts the investment policy generating the process
x (t) = x∗ (t) with the highest NPV among all the alternatives available to the firm
and its shareholders. By assumption, the expression RE (td) + RB (td ) − L (td) is
equal to [1 − θ (td)]V u (td ), and, in analogy with Chap. 1, we can define BC (t) :=
Et

[
M(td)
M(t)

θ (td ) V
u (td )

]
and DT S (t) := Et

∫ td
0
M(s)
M(t)

π (s) ds. Thus, the expression

for the value of the firm can be written as,

V (t) = V u (t)+DT S (t)− AC (t)− BC (t) , (5.1.12)

where AC (t) is the value of the agency costs related to pursuing an investment
policy different from the one maximizing the NPV of unlevered free cash flows,
that is,

ACt = Et

∫ td

0

M (s)

M (t)

[
x∗ (s)− x (s)] ds. (5.1.13)

As in the DT case (cf. Sects. 2.2.3 and 2.4), the value of the firm is equal to the
NPV of the total free cash flows generated through production, investment and
financing decisions, and it can be represented by considering the algebraic sum of
few “standard” components. In the remainder of the analysis we will assume that,
being transaction costs absent, the firm will never make use of liquidity reserves.
The argument is the same as in the previous chapters. Since holding liquidity is
costly to the firm, due to the taxation of interest income, it is never convenient for
shareholders to set L (t) > 0, being transaction costs and limits to outside equity
injections both absent.

5.2 The Hamilton–Jacobi–Bellman Approach

The Hamilton–Jacobi–Bellman approach (HJB) is a very convenient tool that allows
to translate asset pricing problems, which are formulated as stochastic integrals, in
systems of partial derivative equations (PDE). Suppose that the value of equity and
the price of debt are only function of the firm’s fundamentals, that is, x (t) and F (t).
A sufficient condition for this to be true is that of a Markov Perfect Equilibrium
(MPE), which will be discussed in Chap. 6.
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The SDF is a drift-diffusion process with drift coefficient equal to −r (t)M (t).1

To get a first intuition of the HJB approach, let us consider the case in which
investors are risk-neutral and the risk-free rate is constant, that is, M(t)

M(0) = e−rt , r >
0. If we let tn be a random future date, the value of equity and the price of debt can
be represented according to their integral form as, respectively,

VE (t) = Et

∫ tn

0
e−r(s−t )D (s) ds + Et

[
e−rtnV Etn

]
, (5.2.1)

and,

p (t) = Et

∫ tn

0
e−(r+ξ)(s−t ) (c + ξ) ds + Et

[
e−rtnptn

]
. (5.2.2)

Notice that the previous relation holds also for tn = td , as it is enough to apply the

boundary conditions V Etd = REtd and pBtd = RBtd
Ftd

which both stem from the absence

of arbitrage opportunities in equilibrium. If wet let tn approach to t , we obtain the
following differential equations,

VE (t)

[
1 − e−rdt

]
= D (t) dt + Et

[
dV E (t)

]
, (5.2.3)

p (t)

[
1 − e−(r+ξ)dt

]
= (c + ξ) dt + Et [dp (t)] . (5.2.4)

Suppose that G = G(x, F ) is a twice continuously differentiable function, so
that we can apply Ito’s lemma in order to obtain closed form expressions for
Et

[
dV E (t)

]
and Et [dp (t)] respectively, thereby obtaining the following PDE for

the value of equity and the price of debt, respectively,

rV E (x, F ) = x + π + pG− (c + ξ) F + μ (x, F ) V Ex (x, F )

+ 1

2
σ (x, F )2 VExx (x, F )+ (G− ξF ) V Ex (x, F ) , (5.2.5)

rp = c + ξ (1 − p)+ μ (x, F) px (x, F) + 1

2
σ (x, F)2 pxx (x, F)+ (G− ξF) px (x, F) .

(5.2.6)

With risk-neutral investors, the expected return of any security must be equal
to the risk-free rate. Eq. (5.2.5) is just a formal restatement of this basic
result. If we multiply both sides of Eq. (5.2.3) by dt

V E(x,F )
, we notice that

1See Chapter 1 in Cochrane (2009)’.
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RHS of the resulting expression is the sum of the current dividend yield
(
x+dts+pG−(c+ξ)F

V E(x,F )
dt
)

plus the expected capital gain

(
Et

[
dVE(t)

]

V E(t)

)

, which is equal

to
[
μV Ex + 1

2σ
2V Exx + (G− ξF ) V Ex

]
dt from the application of Ito’s lemma. An

identical interpretation holds for Eq. (5.2.6). The term [c + ξ (1 − p)] dt is the

instantaneous payoff of a dollar of debt, while
[
μpx + 1

2σ
2pxx + (G− ξF ) px

]
dt

is the expected price appreciation (depreciation, if negative).
Equations (5.2.5–5.2.6) are examples of Hamilton–Jacobi–Bellman equations

(HJB). In general, HJB equations provide the expected-returns formulation of
equilibrium asset pricing problems. In fact, if we follow the same procedure for
a generic SDF process,

dM (t) = −rM (t) dt + υ (M (t)) dW(M) (t) , (5.2.7)

we obtain the following system of differential equations,

⎧
⎪⎪⎨

⎪⎪⎩

M (t) V E (t) = MtD (t) dt + Et

[
M (t + dt) V E (t + dt)] Equity Value,

M (t) p (t) = M (t) (c + ξ) dt + Et [M (t + dt) p (t + dt)] Price of debt per

unit of face value.

(5.2.8)

The assumption of a constant risk-free rate is not crucial for the validity of what
comes next, but it helps in this case to simplify the solution. Besides, in order to
obtain closed-form results, which is the actual reason why we discuss CT models,
it is usually necessary to make such an assumption. Recalling that, Et [dM (t)] =
−rM (t) dt , we obtain,

rdt − Et

[
dM (t)

M (t)

dV E (t)

V E (t)

]

= D (t)

V E (t)
dt + Et

[
dV E (t + dt)
V E (t)

]

(5.2.9)

and,

[r + ξ ] dt − Et

[
dM (t)

M (t)

dp (t)

p (t)

]

= (c + ξ) dt + Et

[
dp (t + dt)
p (t)

]

(5.2.10)

for the value equity and the price of debt, respectively.
Let ρ be the correlation between dW(M) (t) and dW (t), which is supposed

to be constant, to simplify the discussion. The application of Ito’s lemma leads
to the following relation for the expected value of cross-products in the RHS of
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Eq. (5.2.10),

Et

[
dM (t)

M (t)

dV E (t)

V E (t)

]

= ρσ (x (t) , F (t)) V Ex υ (M (t)) dt, (5.2.11)

Consequently, the following PDE characterizes the value of equity as a function of
the fundamentals (x, F ),

[
r − σ (x, F )V Ex υ (M) ρ

]
VE = x+π+pG−(c + ξ) F +AP ◦VE (5.2.12)

where r − σ (x, F ) υ (M)ρ (x, F ) is the equilibrium expected return for the firm’s
stocks, while A is the characteristic operator under the objective probability measure
(P), that is, (A ◦ f ) dt := Et [df (t)]. Likewise, the price per unit of debt is the
solution of,

[r − σ (x, F ) pxυ (M) ρ]p (x, F ) = c + ξ (1 − p (x, F ))+ AP ◦ p (x, F ) ,
(5.2.13)

where r − σ (x, F )pxυ (M)ρ is the equilibrium expected return for a dollar of
the firm’s debt. See also Brennan and Schwartz (1984) for additional insights on
the structure of equilibrium expected returns in continuous time corporate finance
models.

5.2.1 Risk-Neutral Valuation

The risk-neutral probability measure (Q) is obtained by setting the Radon–Nikodym
derivative with respect to P equal to the normalized SDF, that is,

dQt

dPt
= M (t + dt)

Et [M (t + dt)] = er(t)dt
M (t + dt)
M (t)

. (5.2.14)

Under the newly defined probability measure Q, which is equivalent to P,2

Eq. (5.2.8) becomes,

⎧
⎪⎪⎨

⎪⎪⎩

V E (t) = D (t) dt + e−r(t)dtEQ

t

[
V E (t + dt)] Equity Value,

p (t) = (c + ξ) dt + e−[r(t)+ξ ]dt
E
Q

t [p (t + dt)] Price of debt per unit

of face value.

(5.2.15)

2Here, the word equivalent should be intended as in probability theory. Q is equivalent to P iff
P (A) = 0 ⇐⇒ Q (A) = 0 for every measurable event A.
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Solving forward both equations, we obtain,

V (xt , Ft ) = E
Q

t

∫ td

0
e−

∫ s
0 r(j)dj x (s) ds + E

Q

t

∫ td

0
e−

∫ s
0 r(j)djπ (s) ds

+ E
Q

t

[
e−rtd (1 − θd) V utd

]
, (5.2.16)

V E (xt , Ft ) = E
Q

t

∫ td

0
e−

∫ s
0 r(j)djD (s) ds + E

Q

t

[
e−rtdRE (td)

]
, (5.2.17)

and,

p (xt ) = E
Q

t

∫ tn

0
e−(r+ξ)s (c + ξ) ds + E

Q

t

[
e−rtnF

]
. (5.2.18)

This result is commonly known as Feyman–Kac lemma. Starting from Eq. (5.2.17)
for the value of equity, the application of Ito’s lemma to E

Q

t

[
VE (t + dt)] allows

us to write,

r (s) V E (s) = x (s)+π (s)+p (s)G (s)− (c + ξ) F (s)+AQ ◦VE, (5.2.19)

where AQ is the characteristic operator under the newly defined probability measure
Q. Next, we multiply both sides times e−r(s−t )ds, obtaining,

−
[
r (s) e−r(s)(s−t )V E (s)+ e−r(s−t )AQ ◦ V E

]
ds

= e−r(s−t ) [x (s)+ π (s)+ p (s)G (s)− (c + ξ) F (s)] ds. (5.2.20)

The LHS of the previous equation is equal to −E
Q

t

[
d
(
V E (s) e−r(s)(s−t )

)]
. Inte-

grating both sides of Eq. (5.2.21) between t and the stochastic default time td , after
imposing the boundary condition VEtd = REtd , we eventually conclude that,

V E (xt ) = E
Q

t

∫ td

0
e−

∫ s
0 r(j)dj [x (s)+ π (s)+ p (s)G (s)− (c + ξ) F (s)] ds

+ E
Q

t

[
e−rtdREtd

]
. (5.2.21)

An identical argument can be then used to prove Eq. (5.2.18).
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The proof of Eq. (5.2.16) deserves some additional considerations. Because the
amount of debt is changing over time, characteristic operator for the value of the
firm must take into account the effects of the presence of G(t). Starting from the
definition of characteristic operator, AQ ◦ Vt := E

Q

t

[
dV E + d (pF)], we get,

AQ ◦ V = E
Q

t

[
dV E + Fdp + pdF

]
=

AQ ◦ V E + FAQ ◦ p + p (G− ξF ) .
(5.2.22)

Thus, if we multiply both sides of Eq. (5.2.18) times F (t), and add each side of the
resulting equation to the respective sides of Eq. (5.2.19), we obtain the following
PDE for the value of the firm,

r (s) V (s) = x (s)+ π (s)+ AQ ◦ V. (5.2.23)

Finally, by repeating the same steps used to show the validity of Eq. (5.2.17), we
obtain Eq. (5.2.16) from the application of the boundary condition,

V (td ) = VE (td)+ V B (td) = RE (td )+ RB (td ) = [1 − θ (td )]V u (td) .
(5.2.24)

Notice that, for a firm financed by equity only, the value of the firm is again
the NPV of unlevered free cash flows. In CT models it is often convenient to work
under a risk-neutral probability measure. Once the probability measure is switched
from P to Q, we can proceed as if all decision makers in the model were risk-
neutral. Admittedly, all of this may sound a bit abstract at first. The next sections
are intended to clarify the advantage of this theoretical framework.

5.3 Commitment, Optimal Default and the Static Trade-off
Theory of Capital Structure

This section focuses on a milestone of modern corporate finance, the Leland
model of optimal static capital structure (Leland 1994). The model is based on the
assumption that shareholders are for some reason able to commit to a static capital
structure policy. This hypothesis is not necessary verified, neither in theory nor in
practice, but it remains an important starting point for more advanced and (perhaps)
more accurate analysis.

In particular, the Leland model assumes that, after an initial amount of debt is
issued at t = 0, shareholders neither issue nor buyback additional debt in future,
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that is, G(t) = 0. Moreover, the Leland model is based on the following working
hypotheses (HPs):

(1) a constant risk-free rate, r (t) = r > 0;
(2) the firm operates with the same investment policy of the unlevered firm,

and unlevered free cash flows evolves according to dx (t) = μx (t) dt +
σx (t) dWQ (t) under the risk neutral probability measure;3

(3) θtd = θ is constant and equal to θ ≥ 0;
(4) π (t) = τcF (t); 4

(5) shareholders have no bargaining power in case of default, and the absolute
priority rule holds.

Some comments are needed to be more clear in the discussion. First, HP2 implies
that V u (t) = x(t)

r−μ , where μ is the drift of x (t) under the risk-neutral probability
measure Q. To see this, it is sufficient to solve Eq. (5.3.1) forward,

V u (t) = Et

∫ ∞

0

M (t + s)
M (t)

x (s) ds, (5.3.1)

and apply he change of probability measure from P to Q, that is, Et
∫∞

0
M(t+s)
M(t)

x (s)

ds = E
Q

t

∫∞
0 e−rsx (s) ds. Second, a result of HP5, we have,

RE (td ) = max

{

0, (1 − θ) V u (td)− c + ξ
r + ξ F

}

, (5.3.2)

where RB (td ) = min
{
(1 − θ) V u (td ) ; c+ξr+ξ

}
is bond holders’ recovery value.

The roadmap of this section is the following. First, we assume that shareholders
commits to default at a given threshold xb for xt . In other words, once this threshold
is hit for the first time, the firm enters irreversibly in the bankruptcy procedure that
we discussed in Sect. 5.1.1. Secondly, we take the amount of debt outstanding at
each instant t as given, thereby obtaining an optimal default threshold consistent
with the shareholders goal to maximize the equity market value, which for each
date t > 0 coincides with shareholders value, by the lack of discrete cash flows.
Finally, at time t = 0 we analyze the optimal static capital structure of the firm,
assuming that at t = 0− shareholders are able to issue a discrete amount of debt
F ≥ 0.

3Notice that we have dropped the asterisk (∗) for ease of notation.
4Notice that, with this hypothesis, in case operating earnings are insufficient to cover coupon
payments, the firm obtains a net positive cash transfer from the government.
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5.3.1 Option to Default and Expected Default Time

The first step is to solve the differential equation for VE as a parametric function of
the default threshold xb,

rV E (x, F |xb) = x + τcF − (c + ξ) F + μxVEx (x, F )

+ 1

2
σ 2x2V Exx (x, F )− ξFVF (x, F ) . (5.3.3)

Notice that we have suppressed the time dependency, as we have transformed the
dynamic asset pricing problem in a PDE with x and F as only state variables. Now,
we shall use the letter y to denote the scaled unlevered free cash flows, that is,

y (t) := x (t)

F (t)
. (5.3.4)

We guess, and verify later, that the general solution of Eq. (5.3.3) is homogenous of
degree one in (x, F ), that is,

V E (x, F |xb) = FV E (y, 1|yb) = FvE
(
y|yb := xb

F

)
, (5.3.5)

obtaining the following ordinary differential equation (ODE) for the scaled equity
value vE (y),

rvE (y|yb) = y + τc − (c + ξ)+ μyvEy (y)+
1

2
σ 2y2vEyy (y|yb)

− ξ
(
vE (y|yb)− yvEy (y|yb)

)
. (5.3.6)

The advantage of this approach is hat solving an ODE is usually simpler than a
PDE. In other words, once we find a solution for Eq. (5.3.6) we can multiply by F
and verify that it is indeed a solution for Eq. (5.3.3).

We start from the boundary conditions of the problem, and then turn to analyze
the general solution of Eq. (5.3.6). If y

yb
→ ∞, the firm never default and,

consequently,

vE (y|yb) → y

r − μ +
∫ ∞

0
e−(r+ξ)s [c (1 − τ )+ ξ ] ds = y

r − μ + c (1 − τ )+ ξ
r + ξ .

(5.3.7)
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Likewise, if y
yb

= 1 , vE (y = yb|yb) = max
{

0, (1 − θ) yb
r−μ − c+ξ

r+ξ
}

. The general

solution of Eq. (5.3.6) has the following structure,

f (y) = y

r − μ − c (1 − τ )+ ξ
r + ξ + Ay−γ + Byβ, A,B ∈ R. (5.3.8)

To prove this assertion, it is sufficient to establish the existence of γ, β such that
Eq. (5.3.6) is verified for every A,B ∈ R once we replace vE (y) with f (y). The
derivative of f with respect to y is provided by,

fy (y) = 1

r − μ − γAy−γ−1 + βByβ−1. (5.3.9)

Observing that vE − yvEy = c(1−τ )+ξ
r+ξ , and substituting Eq. (5.3.8–5.3.9) in

Eq. (5.3.6) we obtain the following polynomial,

(r + ξ) (Ay−γ + Byβ) = − (
μ̂+ ξ) (γAy−γ − βByβ)

+ 1

2
σ 2 [(γ + 1) γAy−γ + (β − 1) βByβ

]
(5.3.10)

as fyy (y) = (γ + 1) γAy−γ−2 + (β − 1) βByβ−2. Since the constants A,B are
arbitrary by definition,5 it must be the case that the tuple (γ, β) solves the following
system of equations,

⎧
⎨

⎩

1
2σ

2γ 2 − γ
(
μ− 1

2σ
2
)

− (r + ξ) = 0

1
2σ

2β2 + β
(
μ− 1

2σ
2
)

− (r + ξ) = 0
, (5.3.11)

Let z1,2 be the solution of the quadratic equation 1
2σ

2z2 +z
(
μ+ 1

2σ
2
)
−(r + ξ) =

0, that is,

⎧
⎪⎪⎨

⎪⎪⎩

z1 = −
(
μ+ξ− 1

2σ
2
)
−
√
(
μ+ξ− 1

2σ
2
)2+2σ 2(r+ξ)

σ 2 < 0

z2 = −
(
μ+ξ− 1

2σ
2
)
+
√
(
μ+ξ− 1

2σ
2
)2+2σ 2(r+ξ)

σ 2 > 0

(5.3.12)

It is then immediate to conclude that, for γ = |z1| and β = z2, Eq. (5.3.8) is a
general solution of Eq. (5.3.6).

5Recall that we are looking at the structure of the general solution of a second order ODE. The
constants A,B must be allowed to be chosen arbitrary consistently with the number of boundary
conditions (two) characterizing a specific solution.
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Thus, in order to obtain vE (y) we are left with the task of determining which
specific values forA andB in Eq. (5.3.8) are consistent with the boundary conditions
for y

yb
→ ∞ and y

yb
= 1. Starting from the latter, we immediately conclude that

B must be equal to zero and Ay−γ → 0, otherwise Eq. (5.3.7) would be violated.
Since default entails the loss of future tax shield, and debtholders have absolute
priority in the bankruptcy process, it is never convenient for shareholders to fill for
bankruptcy protection when their recovery value is positive. As a consequence, we
have to consider only the case in which vE (y = yb|yb) = 0. Consequently, the
value of A consistent with the rational behavior of shareholders’ is the solution of
the following equation,

0 = yb

r − μ − c (1 − τ )+ ξ
r + ξ + Ay−γ

b (5.3.13)

that is,

A =
(
c (1 − τ )+ ξ

r + ξ − yb (1 − τ )
r − μ̂

)

y
γ
b . (5.3.14)

Setting B = 0, and substituting the RHS of the previous equation in y(1−τ )
r−μ +

c(1−τ )+ξ
r+ξ + Ay−γ , we eventually obtain,

vE (y|yb) = y

r − μ − c (1 − τ) + ξ
r + ξ +

(
c (1 − τ)+ ξ

r + ξ F − yb (1 − τ)
r − μ

)(
y

yb

)−γ
.

(5.3.15)

Multiplying both sides of Eq. (5.3.15) by F we obtain the candidate solution to the
original PDE for V E (x, F |xb),

FvE (y) = x

r − μ − c (1 − τ) + ξ
r + ξ F +

(
c (1 − τ) + ξ

r + ξ F − xb (1 − τ)
r − μ

)(
x

xb

)−γ
.

(5.3.16)

Taking first and second order partial derivatives it is immediate to verify that the
previous equation is a solution of Eq. (5.3.3), thus confirming our initial guess.
Therefore, for every choice of xb such that VE (x, F |xb) = 0,

VE (x, F |xb) = x

r − μ − c (1 − τ)+ ξ
r + ξ F +

(
c (1 − τ)+ ξ

r + ξ F − xb (1 − τ)
r − μ

)(
x

xb

)−γ
.

(5.3.17)

The expression x
r−μ − c(1−τ )+ξ

r+ξ is the value of equity if shareholders never
took advantage of their option to default (xb → ∞). Consequently, the term
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(
c(1−τ )+ξ
r+ξ F − xb

r−μ
) (

x
xb

)−γ
is the value of shareholders’ option to default, which

comes as a consequence of their limited liability. Furthermore, we can show that,

E
Q

t

[
e−rd

]
= E

Q

t

[
e−rd(y)

]
=
(
y

yb

)−γ
=
(
x

xb

)−γ
, (5.3.18)

where d := td − t is the time to default, while td := infs≥0 {y (t + s) = yb} is the
(stochastic) default date. To see this, we may start from the integral representation
of VE (x, F ),

VE (x (t) , F (t)) = F (t)

{

E
Q

t

∫ td

0
e−r(s−t )y (s) (1 − τ ) ds

−E
Q

t

∫ td

0
e−(r+δ)(s−t ) [(1 − τ ) c + ξ ] ds

}

,

(5.3.19)

and observe that it can be formulated as,

VE (x (t) , F (t)) = F

{
x (t)

r − μ̂ − E
Q

t

[

e−r(td−t )EQ

td

∫ +∞
td

e−r(s−td)y (s) (1 − τ) ds
]

−
}

c (1 − τ)+ ξ
r + ξ + E

Q

t

{

e−r(td−t )EQ

td

∫ td

0
e−(r+δ)(s−td ) [(1 − τ) c + ξ ]

}

ds,

that is,

VE (x (t) , F (t)) = F

{
y (t)

r − μ − E
Q

t

[
e−rd

] yb

r − μ − c (1 − τ )+ ξ
r + ξ

+E
Q

t

(
e−rd

) c (1 − τ )+ ξ
r + ξ

}

. (5.3.20)

Rearranging Eq. (5.3.17) as VE (x, F ) = F

[
y
r−μ −

(
y
yb

)−γ
yb
r−μ − c(1−τ )+ξ

r+ξ y

+ c(1−τ )+ξ
r+ξ

(
y
yb

)−γ ]
, it is immediate to conclude that Eq. (5.3.18) must be always

valid. Furthermore, we can exploit this result to obtain p (x, F ). Recall that, in
equilibrium, the market price of a dollar of debt’s face value is given by the
following equation,

p (x (t) , F (t)) = E
Q

t

∫ td

0
e−(r+ξ)(s−t ) (c + ξ) ds + E

Q

t

[

e−(r+ξ)d
RBtd

F

]

.

(5.3.21)
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Since shareholders obtain nothing at yb, it follows that
RBtd
F

= (1 − θ) 1
r−μyb.

At the same time, we have just shown that E
Q

t

∫ td
0 e−(r+ξ)s (c + ξ) ds =

c+ξ
r+ξ

[
1 − E

Q

t

(
e−rd

)]
and E

Q

t

[
e−rd

] =
(
y
yb

)−γ
. Therefore, given xb, the

equilibrium price of debt is equal to,

p (x, F ) = p (y) = c + ξ
r + ξ

[

1 −
(
y

yb

)−γ]
+ (1 − θ) yb

r − μ
(
y

yb

)−γ
(5.3.22)

which is the NPV of the coupon and principal payments until default,
E
Q

t

∫ td
0 e−(r+ξ)(s−t ) (c + ξ), plus the expected recovery value per unit of outstanding

debt, (1 − θ) yb
r−μ

(
y
yb

)−γ
.

5.3.2 The Optimal Default Boundary

Shareholders choose xb as a function of (x, F ) in order to maximize the value of
their claims, that is,

rV E (x, F ) = max
xb

{

x + τcF − (c + ξ) F + μ̂xV Ex (x, F )

+1

2
σ 2x2V Exx (x, F )− ξFVF (x, F )

}

. (5.3.23)

Since we have a closed form expression for VE (x, F |xb),6 we can obtain the
optimal default threshold through the solution of the equivalent static problem,

max
xb

{
VE (x, F |xb)

}
= F max

yb

{
vE (y|yb)

}
, (5.3.24)

that is,

max
yb

{
y

r − μ − c (1 − τ )+ ξ
r + ξ +

(
c (1 − τ )+ ξ

r + ξ F − yb (1 − τ )
r − μ

)(
y

yb

)−γ}
.

(5.3.25)

6When a closed-form expression for V E (x, F |xb) is not available we can use the value matching
and smooth pasting conditions (see Dixit 1993).
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As vE (y|yb) is strictly concave in yb, vEyb (y|yb) = 0 is sufficient to characterize the
optimal default threshold,

γ
c (1 − τ )+ ξ

r + ξ (yb)
γ−1 − (1 + γ ) (yb)γ 1

r − μ = 0 (5.3.26)

that is,

x∗
b = γ

1 + γ
c (1 − τ )+ ξ

r + ξ (r − μ)F. (5.3.27)

For notational simplicity, we avoid the use of asterisks when the value of equity
is no longer intended as a function of a generic default threshold. Putting together,
the previous results provide the following equation for the value of the firm,

V (x, F ) =
[
vE

(
y|yb = xb

F

)
+ p

(
y|yb = xb

F

)]
F =

V u (x)+ τcF

r + ξ
(
x

xb

)−γ
− θ xb

r − μ
(
x

xb

)−γ
,

(5.3.28)

where V u (Y ) = x
r−μ is the unlevered firm value, xb = γ

1+γ
c(1−τ )+ξ
r+ξ (r − μ)F ,

while τcF
r+ξ

(
x
xb

)−γ
and θ x

r−μ
(
x
xb

)−γ
are respectively the value of debt tax shield

and expected bankruptcy costs. Notice that shareholders’ equilibrium behavior
prevents the maximization of the total firm value. Indeed, the RHS of Eq. (5.3.28)
could be always improved by setting the default threshold a bit higher. In other
words, the value of the firm is maximized if shareholders never exercise their
option to default. However, contrary to Chaps. 3 and 4, shareholders may find
the alternative of default attractive. As a result, the equivalence between the
maximization of shareholders value and total firm’s value breaks up in the Leland
model. It is also worth observing that the optimal default threshold is independent
on the severity of bankruptcy costs. This is an immediate consequence of the fact
that shareholders recover nothing at default, and, consequently, bankruptcy costs are
entirely absorbed by bond holders.

5.3.3 Optimal Static Capital Structure

At time t = 0 the firm inherits a given amount of debt F0, which is optimally set
beforehand by shareholders subject to their commitment to G(t) = 0. Thus, the
cum-dividend market value at time t = 0 differs from the ex-dividend value by the
proceeds related to the issuance of F0. Consequently, at t = 0, shareholders solve
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the following optimization problem,

V̂ (x0) = max
F0

{pF0 + V (x0, F0)− pF0} = max
F0
V (x0, F0) . (5.3.29)

where x0 := x (0). Thus, the optimal initial debt level F ∗ is the one that maximizes
the total value of the firm,

F∗ = argmaxF0≥0

{

V u (x0)+ τcF0

r + ξ

[

1 −
(

x

xb (F0)

)−γ ]
− θ xb (F0)

r − μ
(

x

xb (F0)

)−γ}
,

(5.3.30)

subject to the optimal choice of the bankruptcy threshold, that is, xb (F0) =
γ

1+γ
c(1−τ )+ξ
r+ξ (r − μ)F0. Due to the concavity of the objective function in F0, the

following first order condition is necessary and sufficient to obtain the optimal static
capital structure of the firm,

VF (x, F ) = τc

r + ξ + τc

r + ξ
(xb

x

)γ+ τcF

r + ξ
γ

xb

(xb

x

)γ dxb

dF
−(γ + 1)

θ

r − μ̂
(xb

x

)γ dxb

dF
= 0.

(5.3.31)

Since dxb
dF

= γ
1+γ

c(1−τ )+ξ
r+ξ (r − μ) = xb

F
, the previous equation simplifies to,

τc
(xb

x

)−γ + (1 + γ ) τc − θγ c (1 − τ )+ ξ = 0 (5.3.32)

that is,

F ∗ = x

(r − μ)
1 + γ
γ

r + ξ
c (1 − τ )+ ξ

[

(1 + γ )− θγ (1 − τ )+ ξ
τ

]− 1
γ

(5.3.33)

With Markov perfect strategies, the static model of optimal capital structure
is time-inconsistent (cf. Chap. 6). In other words, absent specific frictions that
prevents shareholders to adjust debt in the future, G(t) �=a.s. 0. Postponing the
more technical discussion in the next chapter, for the moment we only claim that
if debtholders believe that the firm will not issue additional debt in future, then
shareholders may have the incentive to deviate from their commitment toG(t) = 0.

5.3.4 Credit Spreads in the Leland Model

The Leland model is largely used to derive equilibrium credit spreads. The credit
spread (ς) is defined as the difference between the internal rate of return of a dollar
invested in corporate bonds and the risk-free rate, where the former is obtained by
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assuming that the firm will never renege on its debts. Applying the general definition
to the case of the Leland model, we have the following equation for ς ,

ς (y) = c + ξ (1 − p (y))
p (y)

− r. (5.3.34)

Credit spreads are inversely related to scaled y, as py > 0 from Eq. (5.3.22). In
this regard, y−1 can be interpreted as a leverage ratio, l (Y, F ) := F

Y
= y−1, or,

being the coupon rate constant, as a proxy of the interest coverage
(
cF
Y

= cy−1
)
.

Higher interest coverage or low leverage ratios reduce credit spreads, and the other
way around. From a qualitative perspective, the model seems to work well, as it is
natural to expect that firms with lower indebtedness ratios have also a lower default
risk. However, the model is quantitatively fragile. Indeed, quantitative predictions
lead to credit spreads which are low compared to those observed on the market.
This is perhaps one of the major shortcomings of the Leland model, which is
likely to have its roots in the hypothesis of shareholders commitment to G(t) = 0
(cf. Chap. 6). Rather than going through additional algebra, we provide a concrete
example.

A major producer of soft drinks has a capital structure composed by ordinary
shares and about 80 different senior unsecured bonds. None of them is protected by
covenants, so we can calibrate the Leland model as follows. First, since we have a
large number of issues, we can calibrate ξ to the inverse of the weighted average
life of the debt capital structure, which is equal to 10.5 years.7 Likewise, we set c
equal to 2.7%, which is the average coupon rate. Second, the company has almost no
cash on its balance sheet, and both the Debt-to-NOPaT and Debt-to-unlevered free
cash flows ratio are close to 4.2×. This suggests to calibrate y to 23.8%. All debt
is issued in US Dollars and the real risk-free rate for the same maturity is roughly
1%. Finally, we need to calibrate also the risk-neutral drift and volatility of x (t).
To this purpose, it is reasonable to assume that, being the soft drinks industry quite
competitive, μ and σ should be similar across industry peers. Hence, we can look
for an unlevered peer and obtain μ, σ from V E = x

μ−σ and observing that σ is also
the volatility of stock returns. Considering the last 5 years of market data, we can
calibrate μ to −3.5% and σ to 20.4%. As a result we obtain γ = 4.90, xb

F
= 0.034.

Consider now the worst case scenario in which the recovery value is null, that
is, θ = 1. It is evident that, as ∂p

∂θ
< 0, the credit spread is increasing in θ . Even

with such an extreme assumption, the credit spread predicted by the Leland model
is approximately zero. However, the company that we have analyzed is paying an
average credit spread slightly above 40 bps. A sensitivity analysis of the calibration
assumption reveals that the result obtained is quite robust, unless we consider the
case of a distressed issuer. To sum up, for a safe company, the Leland model suggests
that default can be considered as negligible and credit spread should be close to zero.
This is perfectly logical in the model, as debt is never going to increase further. The

7See Leland (1998) or DeMarzo and He (2021).
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problem is that firms issue additional debt over time, and shareholders may try to
take advantage of incumbent debt holders in so doing. This will be actually the
topic of the next chapter, and we will show that, by considering the same data of
this example, we obtain an equilibrium credit spread close to the one observed in
the market.

5.4 Endogenous Investment and Agency Costs of Capital
Structure

In this section we introduce endogenous investment decisions. The key idea is to
study the impact of agency costs of debt within the perimeter of commitment to
a static debt policy, in particular one in which shareholders commit to G(t) = 0
forever. We will show that agency costs will add on top of bankruptcy costs in
trading-off the tax benefits of debt financing. Section 5.4.1 deals with debt overhang
while Sect. 5.4.2 with risk-shifting. Both models are intentionally very simple,
with the action space of shareholders being quite limited. Yet, they provide an
extremely clear explanation of both phenomena which remains valid even for more
sophisticated models.

5.4.1 Debt Overhang

LetK (t) be the firm’s capital stock, which is composed by homogeneous goods that
do not depreciate over time. In case of default, the total recovery value is a fraction
θ ∈ [0, 1] of the unlevered firm value, and the absolute priority rule is applied.
The firm’s production function is Y (t) = Z (t)K (t), where Y (t) measures the
firm’s EbIT (operating earnings),8 while Z (t) is an exogenous GBM process that
characterizes the before-tax return on invested capital,

dZ (t) = μ∗Z (t) dt + σZ (t) dWQ (t) . (5.4.1)

Investment in each period is restricted with the action space I (t) ∈ {0,−kK (t)},
and,

dK (t) = I (t) , (5.4.2)

In other words, shareholders can either keep the capital stock as constant or reduce
it by selling a fraction k > 0 per unit of time. A unit of capital generates a stream of

8We hope that the different use of the letter Y in this section will not create confusion to the reader.
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after-tax cash flows with NPV equal to Z(t)(1−τ )
r−μ∗ = νZ (t), where ν := 1−τ

r−μ∗ , and
the resale price of a unit of capital is supposed to be proportional to vZ (t) through
the constant ψ < 1. Consequently, unlevered free cash flows are equal to operating
earnings plus the proceeds from divestitures, that is,

x (t) = Y (t) (1 − τ )− ψνZ (t) I (t) . (5.4.3)

If we let ϑ (t) := − I (t)
K(t)

∈ {0, k}, we can reformulate Eq. (5.4.3) in the following
way,

x (t) = Y (t) (1 − τ )+ ψνY (t) ϑ (t) , (5.4.4)

and, as an application of Ito’s lemma, the dynamics of operating earnings is the
following,

dY (t) = d [Z (t)K (t)] = −Z (t) K (t) ϑdt +K (t) dZ (t) =
= [
μ∗ − ϑ (t)] Y (t) dt + σY (t) dWQ (t) .

(5.4.5)

Thus, the effect of assets disposal is equivalent to choose a lower drift for the
firm’s operating earnings. As a result, we can characterize investment decisions by
considering the choice of a drift rate μ (t) ∈ {

μ′, μ∗}, where μ′ := μ∗ − k, and
writing Eq. (5.4.5) equivalently as,

dY (t) = μ (t) Y (t) dt + σY (t) dWQ (t) . (5.4.6)

The unlevered firm never sell assets, that is, μ (t) = μ∗. To see this, it is sufficient
to formulate the HJB equation for the shareholders of the unlevered firm,

rV u (Y ) = max
μ∈{μ′,μ∗}

{

Y (1 − τ) + ψν (μ∗ − μ) Y + μYV uY (Y )+
1

2
σ 2Y 2V uYY (Y )

}

(5.4.7)

where ϑψνY = ψν (μ∗ − μ) are the proceeds from assets sales. If we derive the
RHS of the previous equation with respect to μ, we obtain,

∂
(
Y (1 − τ) + ψν (μ∗ − μ) Y + μYV uY (Y )+ 1

2σ
2Y 2V uYY (Y )

)

∂μ
= [
V uY (Y )− ψν

]
Y.

(5.4.8)

Consider the strategy μ (t) = μ∗. Then, it is immediate to verify that the value
of the unlevered firm would be equal to νY = 1−τ

r−μ∗ . By Eq. (5.4.8), deviating to
μ = μ′ < μ∗ results in an immediate loss equal to kνY per unit of time. Hence,
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μ (t) = μ∗ is optimal for the unlevered firm’s shareholders and,

V u (K,Z) = 1 − τ
r − μ∗K = νK. (5.4.9)

The economic interpretation of this result is straightforward. Sinceψ < 1, the resale
price of capital is always below its marginal value. As a result, the proceeds obtained
from assets sales are not sufficient to offset the negative capital gain deriving form
the expected reduction of future dividends.

Let assume now that the firm has an amount of debt equal to F (t), and
shareholders are for some reason able to commit to G(t) = 0. The shareholders’
optimization problem becomes,

rV E (Y, F ) = max
μ∈{μ′,μ∗},Yb

{

Y (1 − τ)+ τcF − (c + ξ) F + ψν (μ∗ − μ) Y

−ξFVEF (y, F )+ μYV EY (Y, F ) + 1

2
σ 2Y 2V EYY (Y, F )

}

,

(5.4.10)

where Yb denotes the choice of the bankruptcy threshold. We guess, and verify
later, that V E (Y, F ) = FV E

(
y = Y

F
, 1
) = FvE (y) , so that Eq. (5.4.10) can be

reformulated as a two-steps problem,

⎧
⎪⎪⎨

⎪⎪⎩

(r + ξ) vE (y|yb) = maxμ∈{μ′,μ∗}
{
y (1 − τ )+ τc − (c + ξ)+ ψν (μ∗ − μ) y

+μyvE (y)+ 1
2σ

2y2vEyy (y|yb)
}

vE (y) = F maxyb v
E (y|yb) .

(5.4.11)

Applying the same logic adopted in the unlevered case, the solution of the previous
problem can be obtained from the following set of first order conditions,

{
vEy (y) ≥ ψν μ = μ∗

vEy (y) < ψν μ = μ′.
(5.4.12)

Basically, if the levered marginal value of capital stock is below the resale price of
capital, shareholders prefer to get rid of assets and increase the current dividends
flow. Namely, as the firm’s profitability decreases, shareholders have the incentive
to sell part of their assets at the expense of debt holders, who will obtain a lower
recovery value in bankruptcy. Since vE (y) is strictly increasing in y, Eq. (5.4.12)
is equivalent to determine a threshold y∗

k > yb below which shareholders prefer
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μ′ to μ∗, that is,

μ = μ∗∗ =
{
μ∗ y > y∗

k

μ′ y ≤ y∗
k .

(5.4.13)

In order to show that vE (y) is strictly increasing in y, it is sufficient to consider the
integral form of V E (Y, F ), that is,

V E (Y,F ) = max
μ,Yb

{

E
Q

t

∫ td

0
e−rs

[
Y (1 − τ )− (c+ ξ) F (s, α)+ ψν (μ∗ − μ∗∗ (s)

)
Y
]
ds

}

,

(5.4.14)

and apply the envelope theorem to Y and F .
Hence, we can formulate shareholder’s problem as,

(r + ξ) vE (y) = max
yb,yk≥yb

{
1

2
y (1 − τ )+ τc − (c + ξ)+ I (y ≤ yk) ψνky

+μ (y) yvE (y)+ 1

2
σ 2y2vEyy (y)

}

(5.4.15)

Since debtholders cannot prevent assets sales, shareholders have the incentive to
capture as much as possible of debt holders recovery value. Consequently, yk ≥ yb
always and we can break the optimization problem in Eq. (5.4.15) again in three
components,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

rvE
(
y|yk,, yb

) = y (1 − τ )+ τc− (c + ξ)+ I (y ≤ yk) ψνky
+μ∗yvE (y)+ 1

2σ
2y2vEyy (y) y > yk

rvE
(
y|yk,, yb

) = y (1 − τ )+ τc− (c + ξ)+ ψνky
+μ′yvE (y)+ 1

2σ
2y2vEyy (y) y ∈ [yb, yk]

vE (y) = maxyb,yk v
E (y|yb, yk)

(5.4.16)

The solution of the two ODEs can be obtained adapting the strategy of the Leland
model. Starting from the case y ∈ [yb, yk], we have,

vE (y|yb ≤ y ≤ yk) = (1 − τ )+ ψνk
r + k − μ∗ y − c (1 − τ )+ ξ

r + ξ

+
[
c (1 − τ )+ ξ

r + ξ − (1 − τ )+ ψνk
r + k − μ∗ yb

](
y

yb

)−γNI
,

(5.4.17)
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where γNI :=
(
μ∗−k+ξ− 1

2σ
2
)
+
√
(
μ∗−k+ξ− 1

2σ
2
)2+2σ 2(r+ξ)

σ 2 . Likewise, in the region
y ∈ (yk,+∞), the firm is always solvent but has the option to divest as soon as y
hits the threshold yk. Hence,

vE (y|y > yk) = (1 − τ )
r − μ∗ y − c (1 − τ )+ ξ

r + ξ

[

1 −
(
y

yk

)−γI]

+
[

vE (y = yk|yb ≤ y ≤ yk)− (1 − τ )
r − μ∗ yk

](
y

yk

)−γI
,

(5.4.18)

where γI :=
(
μ∗+ξ− 1

2σ
2
)
+
√
(
μ∗+ξ− 1

2σ
2
)2+2σ 2(r+ξ)

σ 2 .
Hence, shareohlders’ optimization problem eventually becomes,

vE (y) = max
yb,yk

{
[1 − I (y ≤ yk)] vE (y|y > yk)+ I (y ≤ yk) vE (y|yb ≤ y ≤ yk)

}

.

(5.4.19)

Since the objective function is concave in (yb, yk), the optimal solution thresh-
olds

(
y∗
b , y

∗
k

)
are obtained by setting ∂w(y,yk,yb)

∂yb
= ∂w(y,yk,yb)

∂yk
= 0, where

w (y, yk, yb) := [1 − I (y ≤ yk)] vE (y|y > yk) + I (y ≤ yk) vE (y|yb ≤ y ≤ yk).
Once obtained

(
y∗
b , y

∗
k

)
, it is immediate to show that there exists an optimal static

capital structure based on a trade-off between DT S and AC + BC. Notably,
agency costs stem from the presence of assets sales for y ≤ y∗

k , that are in turn
consistent with shareholders value maximization, but prevent at the same time the
maximization of total claim holders value.

5.4.2 Risk-Shifting

Debt overhang is one of the possible investment distortions related to the presence
of debt in the firm’s capital structure. Another distortion is risk-shifting, we analyze
using a setting to the one we adopted in the previous section. The only differences
are the following. First, the capital stock is fixed, and, without loss of generality,
we set K (t) = 1. Second, the drift of Z (t) is equal to zero under the objective
probability measure (P), and debt is never retired, that is, ξ = 0. Third, shareholders
have now the possibility to choose the “business risk” of the firm, by changing the
diffusion coefficient of Z (t). Namely, shareholders can choose σ ∈ {σL, σH }, 0 <
σL < σH , as a function of (Z, F ). Consequently, under the objective probability
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measure, operating earnings evolve according to,

dY (t) = σ (Y (t)) dWP

t . (5.4.20)

It is important to notice that the stochastic model must be formulated in this case
with respect to the objective probability measure (P). In fact, changes in σ affect
the “shape” of Q. For the same reason, it is important to specify the evolution of the
stochastic discount factor, which is set equal to,

dM (t) = −rM (t) dt + ηM (t)
[
ρdWP (t)+ (1 − ρ) dwP (t)

]
, (5.4.21)

where wP (t) is a Wiener process orthogonal to WP (t), and ρ ∈ [−1, 0] is the
correlation coefficient between dwP (t) and dWP (t).9

As in Sect. 5.4.1, our analysis starts from the unlevered case, in which sharehold-
ers solve,

rV u (Y ) = max
σ

{

Y (1 − τ )+ A (σ ) ◦ V u + Et

[
dM (M)

M

dV u (Y )

V u (Y )

]

V u (Y )

}

.

(5.4.22)

Applying Ito’s product rule, we can easily show the validity of the following
expression,

Et

[
dM

M

dV u

V u

]

= V uy (y)

V u (y)
ρσ (y) yη. (5.4.23)

Thus, the HJB equation for the unlevered firm value is,

rV u (Y ) = max
σ∈{σL,σH }

{

Y (1 − τ )− σ |ρ|ηV uy (Y )+
1

2
σ 2 (Y ) Y

2
V uYY (Y )

}

.

(5.4.24)

We claim that σ = σH is never optimal for the unlevered firm’s shareholders.
To prove this, we guess that V u (Y ) is proportional to Y . As a result, the
objective function of shareholders’ maximization problem is equal to Y (1 − τ ) −
σ |ρ|ηV uy (Y ), which is strictly decreasing in σ , and it is optimal for the unlevered
firm’s shareholders to set σ = σL for every possible value of Y ∈ R

+. This implies,

9With complete markets, the stochastic discount factor is proportional to the ratio between the
marginal utility of future consumption to that of current consumption (cf. Sect. 1.3.2). Assuming a
negative correlation coefficient is equivalent to say that earnings are positively correlated with the
aggregate economic activity.
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in turn, the following equation for the unlevered firm value,

V u (Y ) = Y (1 − τ )
r + |ρ|ησL . (5.4.25)

Observing that the LHS of the Eq. (5.4.25) is proportional to Y , as originally
guessed, concludes the proof of our assertion. Hence, the optimal investment policy
for the unlevered firm is equivalent to minimizing its business risk. The economic
intuition is straightforward. Since changing the level of risk does not affect the
available growth opportunities, the lower the volatility of earnings, the lower the cost
of capital. Indeed, it is immediate to show that (r + |ρ|ησL) dt is the instantaneous
expected return for the unlevered firm’s stocks. Another way to read such a result is
that a lower business risk, reflects positively on the risk-neutral growth rate, which
is equal to − 1

2σL|ρ|η.
We now consider the case in which the firm has an amount of debt equal to F ,

which is constant over time as G(t) = ξ = 0 by assumption. As in Sect. 5.4.1 we
guess, and later verify, that V (Y, F ) = FvE

(
y = Y

F

)
. Hence, the levered firm’s

shareholders solve the following optimization problem,

rvE (y) = max
σ∈{σL,σH },yb

{

y (1 − τ)− (1 − τ) c − σ |ρ|ηyvEy (y)+
1

2
σ 2 (y) y2vEyy (y)

}

.

(5.4.26)

We claim that σ = σL is no longer an optimal policy. To see this, recall that such
a policy is optimal if the value function is homogenous degree one in y. However,
since shareholders have now the option to default, given σ (Y ) = σL, the scaled
equity value would be equal to,

max
yb

{
1 − τ

r + 1
2σL|ρ|ηy − 1 − τ

r
c +

[
1 − τ
r
c − 1 − τ

r + 1
2σL|ρ|ηyb

](
y

yb

)−γL}

(5.4.27)

which is strictly convex in y, as we can use the same logic of Sect. 5.3.1 to show

that γL = − 1
2σ

2
L+

√
1
2σ

4
L+2σ 2

Lr

σ 2
L

> 0. Hence, the policy σ (Y ) = σL is necessary

inconsistent with shareholders equilibrium behavior.
Since v (y) is strictly increasing in y (cf. Sect. 5.4.1), following the same steps as

in the previous section, we can show that shareholders’ optimal risk strategy consists
in switching from σL to σH as soon as y hits a boundary y∗

s ,

{
σ = σL y > y∗

s

σ = σH y∗
b < y ≤ y∗

s .
(5.4.28)
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and solve for
(
y∗
b , y

∗
s

)
. The economic message from this result, which is generally

known as “risk-shifting”, is quite simple. As the ratio between profitability and debt
(y) worsens, holding σ = σL it becomes less and less likely for shareholders to
obtain a positive dividends stream. Consequently, shareholders may benefit from an
increase in cash flows volatility, because of the positive skewness resulting from
their limited liability in case of default. As a result, there are agency costs in the
model, which depend in this case on higher level of business risk compared to the
unlevered case when the firm is already in financial distress or close to.

5.5 Related Literature

Additional references to the use of CT methods in corporate finance can be found in
Dixit (1993), Dixit and Pindyck (1994), Duffie (2010), Dumas and Luciano (2017),
Stokey (2009) and Back (2017).

Merton (1973) is the first example of continuous time corporate finance model.
Contrary to the Leland (1994) model, in the Merton model default can take place
only at a pre-determined date, which coincides with the maturity of a single zero
coupon bond issued by the firm. Besides, the default threshold is exogenously given,
and corresponds to the level of x at which the value of the firm is equal to the face
value of debt, as neither taxes nor bankruptcy costs were included in the analysis.
Longstaff and Schwartz (1995) extended the Merton model including the presence
of tax benefits of debt financing as well as bankruptcy costs and the possibility
of floating rate debt. Nevertheless, they assumed default to occur as soon as the
NPV of x (t) hit financial distress or close to F (t), as in the case of a positive
net worth covenant. The contribution of Leland (1994) is that a similar threshold is
inconsistent with shareholders’ optimizing behavior, as we argued in Sect. 5.3.1.

The original Leland model features the presence of a single perpetual bond and
exogenous investment decisions. Leland and Toft (1996) provides an extension to
the case of finite maturity debt, while Leland (1998) incorporates agency costs
of debt, focusing on the problem of risk-shifting. Hennessy (2004) considers
the relation between Tobin’s Q and debt overhang, within an investment model
closely related to the one presented in Sect. 3.2, while Hackbarth and Mauer (2011)
introduces the effect of multiple class of bonds. Instead, He (2011) analyzes the
optimal contracting problem between shareholders and managers in the Leland
model, and study the effects to equilibrium leverage decisions. This is an example of
one analysis that does not assume, contrary to our case, the presence of governance
mechanisms protecting shareholders interests.The Leland model can also be adapted
to limits to outside equity injections, equity flotation costs, and the study of optimal
cash hoardings. The interested reader may refer to chapters 2 and 3 in Moreno-
Bromberg and Rochet (2018).
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Leland (1994) based models are also known as static trade-off models or theories
of the firm’s capital structure. For the empirical testing of trade-off models the reader
may refer to Titman and Wessels (1988), Shyam-Sunder and Myers (1999), Fama
and French (2002) and Strebulaev (2007).
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Chapter 6
Dynamic Capital Structure without
Commitment

The static trade-off theory of capital structure is based on the unsatisfactory premise
that firms do not adjust debt over time. While alternative forms of commitment could
be considered, of which the target interest coverage ratio is an example, there is a
clear problem of time-consistency that must be taken into account. To clarify this
point, consider again the case of the Leland model, in which shareholders commit
to never issue additional debt in the future. Absent legal constraints preventing
shareholders to adjust debt in the future, will they maintain their commitment? As
we shall see in Sect. 6.2, shareholders may have the incentive to issue additional debt
as soon as they could. In general, commitment to policies that are not dynamically
consistent cannot be supported in equilibrium; either bond holders would fail to
incorporate shareholders incentives in their expectations, or shareholders would not
take advantage of profitable opportunities. One stark implication is that commitment
may be valuable for shareholders, as their future debt flexibility could result in
equilibria in which they obtain a lower payoff. Albeit counterintuitive, this is an
old time problem in game theory which is related to subgame perfection. As the
set of achievable payoffs for each player depends on the behavior of other players,
restricting ex-ante part of their (future) action space could lead to more efficient
equilibria.

The problem of (lack of) commitment is not always evident, although it is
pervasive in many real-life situations. To make an example, consider the case of
an husband (H) and his wife (W) who are spending their last day of vacation on a
very windy island. Both love windsurfing, butH prefers to read comics and sleep in
the evening, whileW is very active and enjoy dancing, although she does so only if
H comes with her. Unfortunately, due to his limited skills with gusty winds, H has
broken his board and there is no place for rent another one. The breeze is perfect
and H proposes W to lend him her board, in exchange of going with her dancing
in the evening. Will W accept H ’s bid? Sadly, W anticipates that after sailing H
will have the option to say he will be tired and not feeling in the mood of going
on a dance-floor. As a result, H will stay on the beach watching his wife enjoying
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the stiff breeze, and W will spend her last vacation evening watching his husband
reading comics. Notice that a similar outcome is in fact an equilibrium of the game,
as both players are dynamically best responding one to the strategy of the other.
However, if H could restrict his evening’s actions space, both his wife and himself
could improve their payoffs.

Going back to the case of shareholders and debt holders, suppose the former
announce they will not issue additional debt in the future. Suppose that, if debt
holders believe this announcement, shareholders would then find it optimal to issue
more debt in the future. As this cannot be an equilibrium, debt holders will be
willing to buy bonds only at a credit spread that protects them from the potential
capital losses related to future issuances of debt. Consequently, as they are paying
a larger credit spreads because of their financing flexibility, shareholders will not
refrain from issuing additional debt in the future whenever it results convenient
for them. Based on our previous considerations, it is reasonable to advance the
hypothesis that incorporating leverage dynamics without commitment (DeMarzo &
He 2020) could be a promising direction to explain the credit risk puzzle (cf. Jones
et al. 1984; Chen et al. 2008). Indeed, as we discussed in Sect. 5.3.4, Leland-type
models predict low credit spreads compared to those observed on corporate bonds
markets. Although, this may be related to the shape of the reference yield curve, the
presence of tax asymmetries or embedded optionalities in debt contracts, even more
sophisticated “commitment-based” models fail to predict sufficiently large spreads
(Huang & Huang 2012).

The windsurfing example suggests an important insight that will be useful here
and in the following chapter. Consider H and W will go once again on vacation
together. W could say to H that, if he failed to keep his promise to bring her
out in the evening, she won’t trust him again. Provided that H does not dislike
dancing so much, he will prefer to go windsurfing and then stick to his commitment,
even if tired and still tempted to read comics. This is also an equilibrium of the
game, but completely different from the one described before. Indeed, the strategies
played by H and W are not Markov perfect, as their equilibrium behaviors depend
on an outcome (H staying in bed, W never trusting her husband again) that will
be not observed in equilibrium. In general, we should expect players, unless we
assume they know very well each other and can establish long-run relationships,
to coordinate on much simpler conjectures and strategies. For this reason, in this
chapter we shall focus on Markov Perfect Equilibria, in which shareholders and
debt holders strategies depend only on payoff-relevant variables, which correspond
to the firm’s fundamentals. Later, in Sect. 7.4, we will show how the Markov Perfect
Equilibrium (MPE) obtained in this chapter could be used to support other equilibria
in which commitment is dynamically consistent.

The remainder of this chapter is based on DeMarzo and He (2020) (DH
henceforth). For tractability, we work with the usual hypothesis of exponentially
maturing pari-passu bonds, with equal coupon and retirement rate. As we focus
on Markov Perfect Equilbria, all the results obtained must be considered necessary
valid only within this class of equilibria. In other words, leverage policies that are
not dynamically consistent with Markov perfect strategies may be instead supported
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by grim trigger strategies, consistent with Folk theorems in game theory. In Sect. 6.1,
we discuss some preliminaries of the analysis, in particular the extreme agency
conflict that manifests between shareholders and bond holders at the bankruptcy
threshold. In Sect. 6.2 we present a discrete time version of DH, which clarifies the
time-inconsistency problem in the Leland model and provides a first overview of
the leverage ratchet effect (Admati et al. 2017). In Sect. 6.3 we present the original
CT version of the DH model, starting from the case in which the recovery value
for the firm is null. One evident consequence of the model is the presence of the
leverage ratchet effect. In the unique Markov Perfect Equilibrium of the dynamic
game between shareholders and debt holders, the former cannot credibly commit to
retire debt in the future, and they keep issuing additional debt until the tax shield on
interest expenses is fully exhausted. As it will be clear when discussing Sect. 6.1,
the extension to positive recovery values is not immediate, as a consequence of an
extreme form of agency conflict that arises at the bankruptcy threshold. In Sect. 6.3.5
we present a potential way to resolve this conflict. Up to Sect. 6.3, the unlevered
free cash flows for the firm is considered as exogenously given. In Sect. 6.4 we
introduce endogenous investment decisions, revisiting the stylized models of debt
overhang and risk-shifting presented in Sects. 5.4.1 and 5.4.2, respectively. Finally,
in Sect. 6.4.3 we show the effect of no-commitment on the weighted average cost of
capital to the firm.

A word of caution. The theoretical results that emerge from the DH model can
be seen as a bit of extreme. We should not worry too much about that though. As we
argued in Chap. 5, it is in our opinion that CT models should be mostly adopted to
obtain useful economic intuitions, rather than for precise quantitative calibrations.
Of course, this is possible in several cases, but it is generally easier to do so with
DT models.

6.1 Commitment, Time Consistency and Debt Capacity

We assume the same setting as in Chap. 5, except that shareholders can now adjust
the amount of debt over time (cf. Sect. 5.1–5.2). In equilibrium, debt holders take
as given the firm’s debt issuance policy. Since higher future debt levels will make
the existing bonds riskier, then the debt price eventually depends on shareholders’
financing policy. Thus, shareholders must take into account the relationship between
their financing decisions and p (t). This is essentially a dynamic game, in which
shareholders correctly predict the effect of leverage decisions to the proceeds
(outlays, if negative) from current debt issuances (buybacks, if negative), i.e.
p (t) �F (t). In this chapter we will restrict the analysis to the case of Markov
Perfect Equilibria (MPE), in which the optimizing decisions of all agents in the
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model are function of the firm’s fundamentals.1 Although MPE are only a subset of
the possible equilibria of a dynamic game, they have the heuristic property of being
“simple”, in the sense that equilibrium actions are based only on payoff-relevant
variables.

The simplest version of the model features an exogenous unlevered free cash
flows stream x (t), a debt tax shield equal to π (x, F ) in each period and no recovery
value in case of default, i.e. θ = 1. With Markov Perfect strategies (MP), the value
of equity and the price of debt can be represented as VE (t) = V E (x (t) , F (t))

and p (t) = p (x (t) , F (t)), respectively. Recall that, with Walrasian secondary
financial markets, investors take as given the bond prices, while firms take as given
the way in which market-clearing prices are determined (cf. Sect. 1.3.3).

As anticipated, shareholders must take into account the effect of their debt’s
policy F (t) into the function p (x (t) , F (t)). This is a very important aspect of the
model, which has been absent in Chap. 3 and 4 as considered the debt as risk-free
and its price always equal to one. In fact, with unsecured debt and no borrowing
constraints, shareholders’ may be enticed by the alternative of default, and, as a
result, we should expect an inverse relation between p (t) and F (t), i.e. pF < 0.
Intuitively, higher debt levels increases the optimal default threshold (cf. Sect. 5.3.2)
and accelerate bond holders’ loss given default. As the recovery of value is null,
debt holders will loose earlier, in expectations, the NPV of their residual coupon
and principal payments.

In the basic version of the model, the role of the zero recovery value is twofold.
First, debt’s seniority becomes irrelevant, as, in case of default, each bond holder
obtain nothing regardless her specific priority in the firm’s capital structure (cf.
Sect. 7.3.2). Second, with positive recovery values, the firm’s capacity to borrow
against its cash flows could be seriously compromised, as we show below.

Consider the case in which, at a future date t , shareholders issue an amount �
of debt and right after, i.e. at t + dt , they decide to put the firm in default. Suppose
that, contrary to the case in which θ = 0, RB > 0 is the total recovery value of
debt holders. Then, despite the firm was going to be bankrupt in the blink of an eye,
the issuance price of the extra-amount of debt� > 0 would be strictly positive and

equal to RB

F+� . Absent specific constraints on the payment of dividends for highly
levered firms, shareholders could pay themselves an extraordinary dividend equal

to RB

F+� right before default, thereby expropriating the incumbent bond holders of a

fraction �
F+� of their recovery value. The larger �, the larger the value created for

shareholders at the expense of incumbent bond holders is. As a result, in the limit
for � → ∞, shareholders expropriate incumbent bond holders of their recovery
value, obtaining the best outcome for themselves. By anticipating this behavior,
investors will be not willing to lend their money unless the presence of some
protection mechanism at the default threshold. In other words, cash flows are no

1For a formal definition of Markov Perfection and Markov Perfect Equilirium see Chapter 13 in
Fudenberg and Tirole (1991).
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longer pledgeable, that is, the firm cannot borrow against its cash flows. This in an
extreme form of agency problem between shareholders and bond holders, which
could be mitigated by the presence of specific contractual provisions, such as debt
covenants (Gamba & Mao 2020).

6.2 A Discrete Time Model

6.2.1 The Leverage Ratchet Effect

The DH model is formulated in CT. However, it is convenient to start with a DT
model, which shows that not issuing debt in the future is dynamically inconsistent
with the maximization of shareholders value. The result of this analysis highlights
the economic determinants of the so-called leverage ratchet effect (Admati et al.
2017).

The unlevered free cash flows process {xt }t≥0 is exogenously given. As share-
holders can freely inject additional equity in the firm without transaction costs,
we can assume without loss of generality that Lt = 0 for all dates t ∈ N.
Bonds rank pari passu in the firm’s capital structure, and they are all senior to
ordinary shares. Each bond is issued with infinite maturity and a face value of
one dollar. The principal is exponentially amortized at the rate ξ ≥ 0, and the
coupon rate is equal to c ≥ 0. We will come back at the end of this section to
the case of finite maturities, and, specifically, bonds issued with maturity equal to
one period (i.e. the principal of a bond issued in t due at t + 1). At each date, the
tax benefits of debt are equal to π (xt, Ft ), where the function π (·, ·) satisfies the
following hypothesis, π (x, F ) , πx (x, F ) , πF (x, F ) ≥ 0, while sign [πxF (x, F )]
may depend on (x, F ).2 As anticipated, we focus on MPE, in which the value of
equity and the price of debt depend on (x, F ). Markets are complete and the firm is
managed in the best interests of shareholders. Equivalently, shareholders maximize
their cum-dividend equity value, that is,

V̂ E (xt , Ft ) = max

{

max
Ft+1

{xt + π (xt , Ft )+ p (xt , Ft+1) [Ft+1 − Ft (1 − ξ)] ,

− (ξ + c) Ft + Et

[
Mt,t+1V̂

E (xt+1, Ft+1)
]}
, 0
}

(6.2.1)

where 0 corresponds to the payoff obtained in case default. Notice that p (xt , Ft+1)

is the price per dollar of debt’s face value. It is also the price at which new bonds
are issued, since each one comes with an initial face value equal to one dollar.

2In this way, we can include the presence of a maximum cap to the tax deductibility of interest
expenses.
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Accordingly, [Ft+1 − Ft (1 − ξ)] is the change in the face value of debt, as well
as the number of new bonds issued, which contribute to a new vintage in the firm’s
debt capital structure (DCS).

The SDF {Mt }t≥0 is determined according to Eq. (6.2.2) below,

Mt+1 = M (zt , zt+1) , (6.2.2)

where M (·, ·) : R × R → R
+ is a positive real valued function, while zt is a

vector valued stochastic process that satisfies the Markov property. Consequently,
the problem in Eq. (6.2.1) can be formulated as,

⎧
⎪⎪⎨

⎪⎪⎩

V̂ E (x, F ) = max
{
maxF

{
W
(
x, F, F ′)} , 0

}

W
(
x, F, F ′) = x + π (x, F )+ p (x, F ′) [F ′ − F (1 − ξ)]− (ξ + c) F

+Et

[
M
(
z, z′) V̂ E

(
x ′, F ′)

]
.

(6.2.3)

In the continuation region C =
{
x, F : V̂ E (x, F ) > 0

}
we guess that V̂ E is

differentiable, and obtain the necessary optimality conditions through the usual
approach we followed in Chaps. 3 and 4,

⎧
⎨

⎩

∂W
∂F

= p (x, F )+ pF (x, F )+ Et

[
M
(
z, z′) Ṽ EF

(
x′, F ′)

]
= 0 FOC

∂
∂F
V̂ E (x, F ) = [

πF (x, F ) − (1 − ξ) p (x, F ′)− (c + ξ)]χ (x, F, z) Envelope Condition,

(6.2.4)

where χ (x, F ) is equal to one if (x, F ) ∈ C, or zero. Since in case of default,
debt holders recover nothing, in any MPE the price of debt satisfies the following
equation,

p (x, F ) = Et

{
M
(
z, z′) [(ξ + c)+ p (x ′, F ′) (1 − ξ)]χ (x ′, F ′)} , (6.2.5)

where p
(
x ′, F ′) (1 − ξ) is the market value of the remaining portion of debt

conditional on
(
x ′, F ′) ∈ C.

If we let �t := Ft+1 − Ft (1 − ξ) the amount of debt issued (bought back, if
negative) in each period, we obtain the following Euler equation characterizing the
unique MPE of the dynamic game between share and debt holders,

pF (xt , Ft +�t)�t = −Et

{
Mt+1

Mt
πF (xt+1, Ft +�t) χ (xt+1, Ft +�t)

}

.

(6.2.6)

Since the stochastic discount factor is necessarily a strictly positive stochastic
process (cf. Sect. 1.3), and πF ≥ 0, the sign of �t eventually depends on that of
pF (xt , Ft +�t). A larger value of debt today increases the chance that tomorrow’s
cash flows will be insufficient to cover interests payments. As shareholders may
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not consider as convenient additional equity injection, it is reasonable to conjecture
that, in equilibrium, the probability of default increases with the amount of debt
outstanding and pF < 0. As a result, as long as the expected marginal tax shield is
positive, the firm has the incentive to issue additional debt in each period. As a result,
shareholders commitment to issue no additional debt in the future is not credible in
any MPE. Furthermore, the amount of debt will decrease only if�t < ξFt . Thus, in
any MPE, the presence of tax deductibility of interests payments will induce firms
to accumulate debt over time until the tax benefits of debt are not fully exhausted.
This outcome is known as leverage ratchet effect (Admati et al. 2017). Shareholders
never buyback debt in equilibrium, as this would entail a positive wealth transfer to
bond holders,3 and they keep issuing additional bonds until the marginal tax shield
becomes null.

Notice that, as shareholders have the option to set �t = 0, the equilibrium value
of equity cannot be lower than that in the case of �t = 0 commitment. However,
the same is not necessary true for the value of the firm as a whole. To see this, notice
that the price of debt must be lower compared with the case of�t = 0 commitment,
as the probability of default is higher for each future period. Therefore, holding
Ft constant, the total effect on the cum-dividend market value of the firm is, in
principle, uncertain.

In the next section, we will show that, in a CT model in which shareholders
adjust debt smoothly over time, all gains from trade are dissipated and the total
value of the firm is strictly lower compared to the case of commitment. This result
is reminiscent of the Coase conjecture for the monopolist producer of durable goods,
operating with a linear technology. In our case, the firm is the monopolist of its own
debt (Ft+1), and faces a strictly decreasing inverse demand curve pt = p (xt , Ft+1)

from the secondary market. Anticipating future debt issuances, investors demand for
a higher credit spread today. At that point, it becomes convenient for shareholders to
issue additional debt, otherwise they would be paying for some unexploited financial
flexibility. Debt holders’ original conjecture is therefore verified, and the unique
MPE of the game is dynamically inefficient. Namely, the more frequent the firm
will be able to issue additional debt, the larger will be the credit spread. The price
of debt will be lower and shareholders will dissipate part of their gains from trade.

Finally, an important remark is necessary for the case of finite maturity. In
general, with finite maturities, each vintage of debt must be analyzed in separation.
In other words, a first order condition for the optimal adjustment of each vintage’s
must be obtained. In this regard, suppose that the firm issues only one-period bonds.
In this case, it is immediate to verify that Eq. (6.2.6) becomes,

pF (xt , Ft+1) Ft+1 = −Et

{
Mt+1

Mt
πF (xt+1, Ft+1) χ (xt+1, Ft+1)

}

. (6.2.7)

3Debt becomes safer and shareholders’ option to default is worth less.
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As a result, the optimal leverage policy is static. In other words, with maturity equal
to the trading frequency of the firm, the problem of no-commitment is actually
irrelevant, as current debt holders are not impacted by future debt issuances. This is
a fundamental difference with the continuous time model, in which maturity does
not alleviate the no-commitment issue. In other words, the typical feature of DT
models whereby the company can only issue debt at a countable set of dates can
be viewed as a form of commitment compared to CT models in which shareholders
can adjust debt at every t ∈ R.

6.2.2 The Coase Conjecture

Let us pause for a moment on the issue of dynamic capital structure models and
consider the case of the monopolist producer of a durable good that does not
depreciate over time. Assume that goods are produced with a linear technology, i.e.
the marginal cost of production is constant (c), and there are no fixed costs. Each
consumer is infinitesimal, in that she buys a quantity dF of goods. The demand
schedule for the good corresponds to the highest reservation price of the pool of
consumers that are willing to buy a certain quantity F . Each consumer has also a
different degree of impatience, in the sense that she prefers to buy the good today
rather than tomorrow.

Suppose the firm can commit to trade only at a certain date t . Then, profits

maximization requirespt =
[
1 + pF Fp

]−1
c, as we showed in Sect. 4.2.1. However,

commitment is not credible. As pt > c, the firm will be tempted to trade with those
consumers that foundpt above their reservation price at date t . The reason is simple.
As pt > c, at date t +� the firm can set a price pt − δt+� > c and make additional
profits by capturing the residual demand for its products. However, by anticipating
this outcome, the more patient consumers will be no longer willing to buy the firm’s
good at t = 0, as they prefer to wait until t +�t benefit from the discount δt+�. In
other words, at date t only those consumers with an impatience rate high enough to
consider the future discount insufficient will be willing to accept the original price
pt .

Now, suppose that a third round of trade can occur at t+ 2�, and then a fourth at
t+3� and so on. The larger the number of trading rounds, the more consumers will
be able to postpone their trade, if the price at each round is above the marginal cost
of production and the firm has in fact the incentive to keep trading. Gul et al. (1986)
shows that, as �t → 0 and the number of trading round diverges, the monopolist
completely dissipates its market power. As a result, the same outcome of perfect
competition is obtained, in which the firm makes zero profits. See also Stokey (1981)
and Chapter 1 in Tirole (1988).
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6.3 The Continuous Time Case

In this section we present the original version of the DH model, considering the
case of an exogenous Ito diffusion process for the firm’s unlevered free cash flows
x (t). DH provides also the extension to the case of Poisson jumps. Nevertheless,
in presence of jumps it may be more convenient to adopt a DT approach directly,
especially for quantitative applications. As we are going to see, the CT model
entails quite extreme implications. We should view these results on a par with
the MM propositions in Sect. 2.2. In other words, the models should be used to
obtain useful economic intuitions and for qualitative reasoning, rather than to predict
quantitatively the impact of the leverage ratchet effect on equilibrium assets prices.

6.3.1 An Irrelevance Result

We begin our analysis by considering a given exogenously process for x (t),

dX (t) = μ (X (t)) dt + σ (X (t)) dWQ

t , (6.3.1)

where μ (·) and σ (·) are twice continuously differentiable functions of x (t). In
principle, debt could be issued with a mix of a continuous processG(t) and discrete
issuances at a countable set of dates.4 However, we fill focus on smooth issuance
equilibria, in which debt optimally evolves as,

dF (t) = [G(t)− ξF (t)] dt (6.3.2)

for some adapted process G(t). Notice that, in equilibrium, shareholders must find
optimal to adjust debt smoothly, which means that, along the equilibrium path, it
must be never profitable for them to discretely adjust debt. All other features of
the model are the same as those of the DT case, namely, a zero recovery value
in case of default, and a capital structure composed by ordinary shares and pari
passu unsecured bonds with infinite maturity, contractual retirement rate ξ ≥ 0 and
coupon rate c. In term of timing convention,F (t) is the amount of debt outstanding
before the net adjustment G(t) − ξF (t) dt taking place “smoothly” during the
infinitesimal interval (t, t + dt]. Since all cash flows are continuous, there is no need
to make distinction between cum and ex-dividend value of securities (cf. Sect. 5.1).

4Clearly, the firm cannot issue a discrete amount of debt at each point in time, otherwise debt will
be infinite.



152 6 Dynamic Capital Structure without Commitment

As anticipated, we consider only equilibria that are Markov perfect. Assuming a
Markovian process for the SDF M (t), and a constant risk-free rate r > 0, we can
formulate shareholders problem under the risk-neutral probability measure Q as,

rV E (x, F ) = max
G,xb

{
x + π (x, F )− (c + ξ) F + p (x, F )G+ (G− ξF ) V EF

+μ (x)V Ex (x, F )+
σ (x)2

2
VExx (x;F)

}
, (6.3.3)

where xb is the choice of the default boundary as a function of (x, F ). The problem
is linear in the choice of G, which is unrestricted, i.e. G ∈ R. Notice that, in order
to ensure the existence of a smooth issuance equilibrium, the optimal issuance rate
must be bounded (|G| < ∞). Consequently, in any smooth issuance equilibrium,
shareholders must be indifferent to any choice of G, that is, for each possible value
of (x, F ) in the continuation region C := {

(x, F ) ∈ R
+ × R

+ : x > xb (F )
}
, the

following first order condition (FOC) must hold,

∂

∂G

[
pG+ (G− ξF ) V EF

]
= p (x, F )+ V EF (x, F ) = 0. (6.3.4)

This is actually a restatement of the fundamental theorem of linear programming.
Let V E0 (x, F ) the value of equity if shareholders were able to commit G(t) =

0, or “in case of commitment” for short. Substituting the optimality (indifference)
condition p (x, F ) = −VE (x, F ) in the PDE for the value of equity, we obtain the
same problem that shareholders face in the case of commitment to G(t) = 0, that
is,

rV E (x, F ) = max
xb

{

x + π (x, F )− (c + ξ) F − ξFVEF + μ (x) V Ex (x, F )+
σ (x)2

2
V Exx (x, F )

}

(6.3.5)

As a result, the optimal default threshold is the same that in the case of commitment,
VE0 (x, F ) and so does the value of equity, that is, V E (x, F ) = V E0 (x, F ),
provided that we can show the global optimality of the smooth issuance policy. This
amounts to show that Eq. (6.3.4) rules out the incentive for discrete debt issuances,
and as we show in Sect. 6.3.2, it is eventually equivalent to verify that pF < 0 in
equilibrium. For the moment, we focus on the intuition behind the irrelevance result
that we have just obtained.

In equilibrium, shareholders do not gain anything from adjusting debt, and they
are indifferent to any smooth issuance path. Thus, the future leverage policy is
irrelevant for what concerns shareholders value. In fact, we showed that the value of
equity is thus the same as if the firm committed not to issue additional debt in the
future. In other words, all gains from trades are dissipated regardless the dynamics
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ofG(t). Algebraically, the argument is exactly the same as in Sect. 4.1 for the static
problem of profits maximization in the case of perfect competition and a linear
production technology.5 From an economic perspective, this observation suggests an
analogy with the Coase (1972) conjecture for the monopolist producer of a durable
goods. Indeed, the concept is essentially the same, as the firm is monopolist of its
own debt, and can trade continuously. As the price of debt must be decreasing in
F in equilibrium (see Sect. 6.3.2), with Markov perfect strategies (see Sect. 7.4)
shareholders are tempted to issue additional debt to take profit from the dilution of
existing bond holders if they mistakenly conjectured G(t) = 0. A similar situation
is not an equilibrium for the game, and therefore debt holders anticipate future debt
issuances and demand a larger compensation (i.e. a larger credit spread) in exchange
of future dilutions (i.e. capital losses). In the limit of continuous time trading,
shareholders dissipates their “rents” and the price of debt is equal to the marginal
cost, which is marginal reduction in the value of their future claims

(−VEF
)
.

In short, all gains from trade are dissipated and shareholders get nothing out of
their continuous adjustment in F (t). This is an irrelevance result that should be read
on a par with the MM irrelevance propositions. In reality, firms cannot adjust debt
continuously and, as we move on a DT setting, we observe a strict preference for
positive debt issuance rates, which means that issuing additional debt in the future
is strictly enticing for shareholders, contrary to what instead is observed in the CT
model presented in this section.

6.3.2 Global Optimality and the Leverage Ratchet Effect

We remain to show that, along the equilibrium path, which is characterized by the
first order condition (FOC),

p (x, F ) = −VEF (x, F ) , (6.3.6)

shareholders are always worse off by considering a discrete debt adjustment, since
they are indifferent to any smooth issuance process G(t) when Eq. (6.3.6) is valid.
In this regard, we conjecture, and verify later, that pF (X,F ) < 0. We can then

5The only equilibrium was the one in which the firm made zero profits.
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compute explicitly the gain (loss, if negative), in terms of shareholders value
creation (dissipation, if negative), from a discrete debt adjustment� �= 0 as,

V E (x, F +�)+ p (x, F +�)�− VE (x, F ) =
∫ �

0
V E (x, F + δ) dδ + p (x, F +�)� <

∫ �

0

⎡

⎢
⎣V

E (x, F + δ)+ p (x, F + δ)
︸ ︷︷ ︸

=0, by FOC (4.3.6)

⎤

⎥
⎦ dδ = 0

(6.3.7)

The equation allows us to conclude that, along any optimal smooth issuance path,
shareholders are never better off by adjusting debt discretely. Hence, provided that
pF < 0, we have shown the global optimality of the smooth issuance path resulting
in any MPE. In addition to that, Eq. (4.3.7) establishes that VE (x, F ) is convex and
VEF < 0.

The model admits a unique smooth-issuance MPE, in which the firm never
actively reduced debt, that is, G(t) ≥ 0. To prove this claim, it is sufficient to show
that there exists one and only one stochastic processG(t) ≥ 0 that is consistent with
Eq. (6.3.6) and the HJB equations characterizing the equilibrium value of equity and
price of debt. Given Eq. (6.3.6), p (x, F ) and VE (x, F ) must satisfy respectively
the following PDE (cf. Sect. 5.2),

(r + ξ) p = c+ ξ+ [G(x, F )− ξF ]pF (x, F )+μ (x) px (x, F )+ σ (x)2

2
pxx (x, F ) ,

(6.3.8)

and

rV E (x, F ) = x+π (x, F )−(c + ξ) F−ξFVEF +μ (x) V Ex (x, F )+
σ (x)2

2
V Exx (x, F ) .

(6.3.9)

Thus, Eq. (6.3.6) and Eq. (6.3.8–6.3.9) consist of a system of 3 PDE that jointly
determine VE (x, F ), p (x, F ) and G(x, F ), subject to the boundary conditions
(cf. Sect. 5.3),

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V E (xb, F ) = 0 RE = 0

p (xb, F ) = 0 RB = 0

limx→∞ V E (x,F ) = 1
M(t)

Et

∫∞
t M (s) x (s) ds − c(1−τ)+ξ

r+ξ F Perpetual debt service

limx→∞ p (x,F ) = c(1−τ)+ξ
r+ξ Vanishing default risk,

(6.3.10)
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where xb is the optimal default threshold, which is the same as in case in the case
of shareholders’ commitment to G(t) = 0. Differentiating both sides of Eq. (6.3.9)
with respect to F , we obtain,

−(r + ξ) p = πF (x, F )−(c + ξ)−ξFpF +μ (x)px (x, F )+ σ (x)
2

2
pxx (x, F ) ,

(6.3.11)

where we made use of Eq. (6.3.6) to substitute the partial derivatives of V E with
that of p. Adding each side of Eq. (6.3.11) to the respective sides of Eq. (6.3.8) we
eventually obtain,

G(x, F ) = −πF (x, F )
pF (x, F )

. (6.3.12)

Recall that, in order to ensure the global optimality of Eq. (6.3.6), we must show that
pF < 0. If we can show this, from Eq. (6.3.12) we have a unique smooth issuance
MPE with leverage ratchet effect, that is, G(t) > 0. Actually, DH shows that the
smooth issuance MPE is the only MPE of the game. The proof of this result is rather
technical and relies on the convexity of the equity value function (see DeMarzo &
He 2020).

6.3.3 The Value of the Firm

Suppose that pF < 0, so that we can prove the existence of a unique smooth
issuance MPE in which shareholders have no gain from the continuous adjustment
of debt outstanding. It is easy to see that the value of the firm, V (x, F ) =
VE (x, F ) + p (x, F ) F , is always lower than in the case of commitment. Indeed,
while the value of equity is the same, the price of debt will be lower due to the
presence of the term −πF (x, F ) in Eq. (6.3.11), which corresponds to the additional
compensation that bond holders require anticipating future debt issuances. Thus,

V (x, F ) = V E (x, F )+ p (x, F ) F < V E0 (x, F )+ p0 (x, F ) , (6.3.13)

where V 0 (x, F ), and p0 (x, F ) are the value of the firm and the price of debt,
respectively, if shareholders were able to commit to G(t) = 0.
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Moreover, by applying Eq. (5.1.13), the value of the firm can be obtained as,

V (t) = V (x (t) , F (t)) = 1

M (t)
Et

∫ ∞

t

M (s) x (s) ds

︸ ︷︷ ︸
NPV (x)(x)

+

1

M (t)
Et

∫ td

t

π (x (s) , F (s)) ds

︸ ︷︷ ︸
DT S(x,F )

−Et

[
1

M (t)

∫ ∞

td

M (s) x (s) ds

]

︸ ︷︷ ︸
BC(x,F )

,

(6.3.14)

where td = inf
{
s > t : x (s) = x∗

b (F )
}
. Writing the value of the equity as,

V E (x, F ) = NPV (x) (x)+DT S (x, F )− BC (x, F )− p (x, F ) F, (6.3.15)

we get the following alternative representation of Eq. (6.3.6),

DT SF (x, F )− BCF (x, F ) = −pF (x, F ) F. (6.3.16)

Recall that the optimal default threshold is the same as in the case of commitment,
that is, the same as in the Leland model. From Sect. 5.3.2 we know that xb is
an increasing function of F . Thus, holding constant x, we can partially integrate
Eq. (6.3.16) with respect to the face value of debt outstanding over the closed
interval [0, F ],

∫ F

0
[DT SF (x, f )− BCF (x, f )] df =

∫ F

0
pf (x, f ) f df. (6.3.17)

For F = 0, the value of the firm is equal to the value of its equity. Since the value
of the equity is the same as in the case of commitment to G(t) = 0, it follows that,

V (x, F = 0) = V E (x, F = 0) = V E0 (x, F = 0) = NPV (x) (x) , (6.3.18)

where NPV (x) (x) is the net present value of the exogenous unlevered free
cash flows process. Therefore, in equilibrium we have DT S (x, F = 0) =
BC (x, F = 0), and, consequently,

DT S (x, F )− BC (x, F ) =
∫ F

0
pf (x, f ) f df < 0. (6.3.19)

As the price of debt must be decreasing in F in any smooth issuance MPE, the
value of expected bankruptcy costs (BC) more than offsets the NPV of the tax
benefits of debt (DT S). In other words, the dynamic game between shareholders
and debt holders results in such an aggressive leverage policy that results in the full
dissipation of the debt tax shield at the firm level. Notice that, if a firm is initially
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unlevered (i.e. F (0) = 0), commitment to G(t) = 0 is credible as shareholders
have no gain from a smooth issuance debt program. Hence, for firms that have no
oustanding debt, there is always an additional MPE is which the firm remains an
all-equity firm forever. This is a potential explanation for the zero leverage puzzle
(Strebulaev & Yang 2013), that is, the existence of firms that do not make use of
debt despite the potential tax benefits.

6.3.4 Leverage Dynamics

Another remarkable property of the model is the path dependency of leverage ratios,
in the sense that the amount of debt oustanding is a function of past operating
earnings. To prove this, we consider a specific case for the dynamics of x (t), that
will be useful in the next discussions (cf. Sect. 6.4).

The corporate tax rate applied to the firm’s EbIT (Y ) is equal to τ > 0, and
the total taxes paid in each period is the sum of taxes on operating earnings (τY ),
plus a linear tax shield applied to coupon payments, π (x, F ) = τcF . The firm’s
production function is Y (t) = Z (t), where Z (t) is an exogenous GBM,

dZ (t) = μZ (t) dt + σZ (t) dWQ (t) , (6.3.20)

which measures the profitability of the firm’s capital stock. The latter is assumed
to be fixed and equal to one. Consequently, depreciation expenses are equal to
investment expenditure, and x (t) = Y (t) (1 − τ ).

We conjecture, and verify later, that pF < 0. With this conjecture, we can obtain
the value of equity and the price of debt by using the Leland model presented in
Sect. 3.3, as the value of equity is the same as in the case of commitment. Indeed,
we have Yb = γ

1+γ
c(1−τ )+ξ
r+ξ

r−μ
1−τ F , and letting y (t) =: Y (t)

F (t)
, we get,

V E (Y, F ) = FvE (y) = 1 − τ
r − μY − (1 − τ) c + ξ

r + ξ F +
[
(1 − τ) c + ξ

r + ξ − 1 − τ
r − μY

∗
b

](
y

yb

)−γ
,

(6.3.21)

where γ =
(
μ+ξ− 1

2σ
2
)
+
√
(
μ+ξ− 1

2σ
2
)2+2σ 2(r+ξ)

σ 2 and yb = γ
1+γ

c(1−τ )+ξ
r+ξ

r−μ
1−τ . The

price of debt is obtained from Eq. (6.3.6), and it is equal to,

p (Y,F ) = p (y) = c + ξ
r + ξ

[

1 −
(
y

yb

)−γ]

︸ ︷︷ ︸
p0(Y,F ):price of debt if G(t)=0

− τc

r + ξ

[

1 −
(
y

yb

)−γ]

︸ ︷︷ ︸
DT S0(Y,F ):NPV tax shield on interests if G(t)=0

.

(6.3.22)

From Eq. (6.3.22) we can then conclude that pF < 0, thereby confirming the
conjecture (we have found a Markov Perfect Equilibrium of the game).
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Notice that, contrary to the case of commitment, even firms with a low leverage
ratio, l (t) := F(t)

Y (t)
= 1

y(t)
, are paying significant credit spreads. The model thus

provides an equilibrium explanation for the credit risk puzzle observed in the
market. Putting together, Eq. (6.3.21–6.3.22) allows to obtain the value of the firm,

V (Y, F ) = 1 − τ
r − μY − 1 − τ

r − μY
(
Y

Y ∗
b

)−γ
, (6.3.23)

With GBM cash flows, the value of the firm is equal to NPV of the unlevered free
cash flows, 1−τ

r−μY , minus the expected bankruptcy costs in the case of commitment
to G(t) = 0. The equilibrium rate of debt’s issuance is obtained using Eq. (6.3.12),

G (Y, F) = − τc

pF (Y, F)
= τc

c(1−τ)+ξ
r+ξ

∂
∂F

(
Y ∗
b

Y

)γ = τc

γ
c(1−τ)+ξ
r+ξ

F

(
y

y∗
b

)γ

= Fg (y) ,

(6.3.24)

with g (y) := τc

γ
c(1−τ )+ξ
r+ξ

(
y
yb

)−γ
.

We define target leverage the positive real number l̂ < 1
yb

that solves the
following equation,

ξ = g

(
1

l̂

)

, (6.3.25)

that is,

l̂ =
[

τc

ξγ
c(1−τ )+ξ
r+ξ

] 1
γ ( 1

yb

)

. (6.3.26)

The interpretation of l̂ is straightforward. If l (t) = l̂, the amount of new debt
issued during the next infinitesimal time interval, G(t) dt , is equal to the amount
retired, ξF (t) dt . Holding Y constant, the firm leverage ratio will thus remain
unchanged. Likewise, we should expect l (t) to fall when y (t) is above l̂−1 and
the other way around. To prove this, we can show that F (t) is a function of past
operating earnings, as claimed at the beginning of this section. We first obtain the
instantaneous equilibrium rate of change in debt’s face value,

dF (t)

F (t)
= τc

γ
c(1−τ )+ξ
r+ξ

(
y (t)

y∗
b

)γ

− ξ =

ξ
[
l̂y (t)

]γ − ξ = 1

γ

γ ξ
[
l̂Y (t)

]γ − γ ξF (t)γ
F (t)γ

.

(6.3.27)
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Then, we can formulate the differential,

F (t + dt)γ − F (t)γ = γ ξ
[
l̂Y (t)

]γ
dt − γ ξF (t)γ , (6.3.28)

from which we eventually obtain,

F (t) =
[

F (0) e−γ ξ t + l̂γ
∫ t

0
e−γ ξ(t−s)Y (s)γ ds

] 1
γ

. (6.3.29)

Thus, at each point in time the amount of debt outstanding is a sort of weighted
moving average of past operating earnings. From Eq. (6.3.29) we can establish the
convergence in mean γ of l (t) to l̂ for the non-degenerate case l̂ < 1

yb
,

lim
t→∞Et

{[
F (t)

Y (t)

]γ}

= l̂γ lim
t→∞Et

{∫ t

0
e−γ ξ(t−s)

[
Y (s)

Y (t)

]γ

ds

}

= l̂γ ,

(6.3.30)

which is equivalent to say that l (t) tends to fall when y (t) is above l̂ and the other
way around. Put differently, although firms never actively reduce debt, when the
leverage ratio is very high,G(t) < ξF (t) and leverage slowly revert to target ratio
l̂. Hence, we have an equilibrium foundation of the partial leverage adjustment
models, which are used in many empirical studies (cf. Jalilvand & Harris 1984;
Leary & Roberts 2005; Fama and French 2002).

6.3.5 Positive Recovery Values

So far we have assumed that the value of the firm jumps down to zero when
default occurs. Here, we follow DH and discuss a potential mechanism to introduce
positive recovery values while resolving the extreme agency conflict we discussed
in Sect. 6.1.

With pari passu bonds and positive recovery values, in Sect. 6.1 we argued
that shareholders find optimal to issue a large (unbounded) amount of debt right
before x (t) hits the optimal default threshold xb. In this way they can expropriate
incumbent bond holders of their recovery value. In a more realistic setting, debt
holders, by anticipating this possibility, will try to take preemptive legal actions to
avoid this unpleasant outcome. Shareholders, by anticipating bond holders behavior,
will try to sell some of the firm’s assets or take other actions in order to obtain a
positive payoff even in case of default. This conflict is detrimental for both parties,
and could be solved through a restructuring procedure in which the liquidation of the
firm is avoided, and both stockholders and debt holders obtain a positive recovery
value. A precise micro-foundation of this process should require an extensive
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discussion. Following DH, we adopt a quasi-reduced form approach, we present
using the same example as the one discussed in the previous section.

At Yb shareholders can choose between different restructuring regimes j ∈ J ,
where J is an exogenous set of all the take-it-or-leave it offers that debt holders are
willing to accept.6 Each restructuring regime j consists in a debt-for-equity swap,
in which the company continues to exist as an all-equity firm for the time being.
Namely, all assets, including intangibles and growth options, even if not modelled
explicitly, are put in a newly constituted company (NewCo). However, if we let
td the restructuring date, only a fraction βj ∈ (0, 1) of the NPV of x (td + s)
is recovered, as a consequence of direct restructuring costs and other potential
inefficiencies. Let Yb the (optimal) restructuring threshold. Given the (optimal)
choice of Yb, shareholders will propose to debt holders the restructuring regime
maximizing their recovery value,

maxj∈J αj
(
1 − βj

)
νYb, (6.3.31)

where ν := 1−τ
r−μ is the Enterprise Value-to-EbIT multiple in absence of debt while

αj is the recovery rate of shareholders for a given restructuring regime j . Since
the set of regimes is independent from Yb, the previous problem is to choose j to
maximize αj

(
1 − βj

)
.

The extension of the model is straightforward. Shareholders’ problem is
unchanged,

rV E (x, F ) = max
Yb,G

{
x + τcF − (c + ξ) F + p (Y, F )G+ [G− ξF ]VEF

+μxVEx (x, F )+
σ 2x2

2
VExx (x, F )

}
(6.3.32)

except for the boundary condition at the restructuring threshold Yb . The first order
condition characterizing the smooth issuance equilibrium is again p (Y, F ) =
−VEF (Y, F ), and, consequently, the value of equity is the same as if the firm
committed to G(t) = 0, provided that pF < 0 in equilibrium. Nevertheless,
shareholders obtain a higher equity valuation relative to the one computed in
Sect. 6.3.4, thanks to the positive recovery value obtained in the restructuring
process. The HJB equation for rational debt pricing is the same as before,

(r + ξ) p (Y, F ) = c (1 − τ − τc)+ξ−ξFpF (Y, F )+μYpY (Y, F )+σ
2x2

2
pFF (Y, F )

(6.3.33)

6In order to reach an agreement with debt holders, shareholders’ offer must be incentive
compatible. In other words, restructuring should be at least profitable as the alternative of default
for bond holders.
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and, consequently, the equilibrium rate of debt’s issuance is again equal to,

G(Y, F ) = − τc

pF (Y, F )
. (6.3.34)

Using the solution technique developed for the Leland model in Chap. 5, the value
of equity and the price for debt are equal to,

V E (Y, F ) = V E0 (Y, F ) = 1 − τ
r − μY − (1 − τ ) c + ξ

r + ξ F

︸ ︷︷ ︸
NPV of dividends if the firm never defaults

+

[
(1 − τ ) c + ξ

r + ξ − 1 − τ
r − μYb

(
1 − αj

) (
1 − βj

)
](

Y

Yb

)−γ

︸ ︷︷ ︸
Value of the restructuring option

(6.3.35)

and,

p (Y, F ) = c + ξ
r + ξ

[

1 −
(
Y

Y ∗
b

)−γ]

︸ ︷︷ ︸
p0(Y,F ):price of debt ifG=0

− τc

r + ξ

[

1 −
(
Y

Y ∗
b

)−γ]

︸ ︷︷ ︸
DTS0(Y,F ):NPV tax shield on interests if G=0

+ 1 − τ
r − μY

∗
b

(
1 − αj∗

)
βj∗

(
Y

Y ∗
b

)−γ

︸ ︷︷ ︸
Expected Recovery Value

(6.3.36)

from which we eventually verify that pF < 0. Consequently, all the conclusions in
Sect. 6.3.4 regarding the evolution of leverage remain valid. Furthermore, the total
value of the firm continues to be lower than in the case of commitment, and strictly
lower than the NPV of the firm’s unlevered free cash flows,

V (Y, F ) = V E (Y, F ) + p (Y, F ) F =
1 − τ
r − μY − 1 − τ

r − μ
(
1 − αj

)
Y

(
Y

Yb

)−γ
.

(6.3.37)

To summarize, when shareholders have the opportunity to adjust their leverage
continuously, the following results hold for what concerns the unique MPE of the
model:

(1) shareholders are indifferent to any future debt issuance policy;
(2) the value of equity is the same as if the firm committed to G(t) = 0;
(3) as long as πF > 0, the firm issues additional debt;
(4) the price of debt is lower compared to the case of commitment to G(t) = 0;
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(5) credit spreads may be large also for firms having low leverage ratio;
(6) the total value of the firm is strictly lower than in the case of commitment to

G(t) = 0;
(7) leverage is a function of past earnings and, absent default, we should observe a

reversion towards a “target” ratio.

6.4 Endogenous Investment and The Cost of Capital

In this section we extend the CT model to include endogenous investment decisions.
In Sect. 6.4.1 we focus on debt overhang, while Sect. 6.4.2 inspects the case of risk-
shifting. In other words, we repeat the analysis of Sect. 5.4.1–5.4.2 in absence of the
firm’s commitment to G(t) = 0. Most of the required algebraic steps were already
covered, so we can now focus on the issue of no-commitment. Finally, in Sect. 6.4.3
we illustrate the effects of no-commitment on the firm cost of capital.

6.4.1 Debt Overhang

The framework is the same as in Sect. 5.4.1, except that shareholders can now adjust
debt according to Eq. (6.3.2). The firm’s operating earnings (EbIT) are equal to
Y (t) = Z (t)K (t), where Z (t) is an exogenous GBM process,

dZ (t) = μ∗Z (t) dt + σZ (t) dWQ (t) . (6.4.1)

The capital stocks does not depreciate over time, dK (t) = I (t), and investments
are either null or negative, i.e. I (t) ∈ {0,−kK (t)} , k > 0. The resale price of the
capital stock is equal to ψνZ (t), with ν = 1−τ

r−μ∗ and ψ < 1. The application of
Ito’s lemma allows to reformulate the problem in terms of risk-neutral drift μ (t) ∈{
μ′ = μ∗ − k, μ∗}, as

dYt = μ (t) Y (t) dt + σY (t) dWQ (t) . (6.4.2)

On the one hand, the unlevered firm never choose to reduce its capital stock, and
V u (Y ) = νY . On the other, subject to shareholders commitment to G(t) = 0,

rV E (Y, F ) = max
μ∈{μ′,μ∗},Yb

{
Y (1 − τ )+ τcF − (c + ξ) F + ψν (μ∗ − μ)Y

−ξFV EF (y, F )+ μYV EY (Y, F ) + 1

2
σ 2Y 2VEYY (Y, F )

}

,

(6.4.3)
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there exists an optimal boundary Yk > Yb such that for Y ∈ (Yb, Yk] shareholders
prefer μ′ = μ∗ − k to μ∗. The growth rate μ∗ is instead optimal for Y ∈ (Yk,+∞).

We now introduce the possibility that shareholders adjust debt smoothly over
time. Considering again a smooth issuance MPE, we can formulate the shareholders
problem as,

rV E (Y, F) = max
μ∈{μ′,μ∗},G,Yb

{
Y (1 − τ )+ τcF − (c + ξ) F + p (Y, F)G+ ψν (μ∗ − μ) Y

+ [G − ξF ]V EF (y, F )+ μYV EY (Y, F )+
1

2
σ 2Y 2VEYY (Y, F )

}

,

(6.4.4)

which implies the same first order condition p (Y, F ) = −VE (Y, F ) for G. As a
result, shareholders are indifferent to the choice of G. Substituting Eq. (6.3.6) in
Eq. (6.4.4), we obtain the same problem as in the case of commitment,

rV E (Y, F ) = max
μ∈{μ′,μ∗},Yb

{
Y (1 − τ )+ τcF − (c + ξ) F + ψν (μ∗ − μ)Y

−ξFV EF (y, F )+ μYV EY (Y, F ) + 1

2
σ 2Y 2VEYY (Y, F )

}

,

(6.4.5)

and consequently the optimal threshold for Yk at which shareholders cut investments
is the same as in the case of commitment. Proceeding as in Sect. 6.3.1–6.3.2, we can
then check the global optimality of a smooth issuance policy, given the conjecture
pF < 0, and then verify that the equilibrium price of debt is effectively decreasing
in F . Thus, regardless the presence of the leverage ratchet effect, we obtain the
same investment policy and equity market value as in the case of commitment. In
other words, the Leland model remains a convenient tool to solve models without
commitment.

6.4.2 Risk Shifting

Extending the risk-shifting model presented in Sect. 5.4.2 is also straightforward.
We briefly recall the salient features of the model. The capital stock is fixed, and
equal to one without loss of generality. Rather than choosing the investment rate,
shareholders engage in assets substitution; operating earnings evolves according to,

dY (t) = σ (Y (t)) dWP

t , (6.4.6)

where σ (Y ) ∈ {σL, σH } , 0 < σL < σH denotes the level of business risk decided
by the firm’s stockholders. The restructuring process in case of default is the same
as in the previous section. The asset pricing equation for the value of equity is
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formulated with respect to the objective probability measure P. The SDF of the
model economy evolves as,

dM (t) = −rM (t) dt + ηM (t)
[
ρdWP (t)+ (1 − ρ) dwP (t)

]
, (6.4.7)

where wP (t) is a Wiener process orthogonal to WP
t , and ρ < 0.

As shown in Sect. 5.4.2, the unlevered firm solves the problem,

rV u (Y ) = max
σ∈{σL,σH }

{

Y (1 − τ )− σ |ρ|ηYV uy (Y )+
1

2
σ 2Y

2
V uYY (Y )

}

,

(6.4.8)

which always results in the choice of the lowest level of volatility, i.e. σ = σL, in
order to minimize the cost of capital. Therefore, V u (Y ) = Y (1−τ )

r+|ρ|ησL . On the other
hand, given the commitment G(t) = 0, in the presence of debt, shareholders find
optimal to increase risk when the scaled operating earnings

(
y = Y

F

)
fall below a

certain threshold ys > yb,

{
σ = σL y > ys

σ = σH yb < y ≤ ys,
(6.4.9)

where yb is the scaled restructuring threshold.
We now extend the model to take into account the effects of continuous leverage

adjustments, focusing on smooth-issuance MPE. Since the evolution of debt is
locally deterministic, dF (t) = [G(t)− ξF (t)] dt , the characteristic operator for
the expected change in the levered firm’s equity value is equal to,

A ◦ V E (Y, F ) = [G− ξF ]V EF (Y, F )− σ |ρ|ηYVEY (Y, F )+
1

2
σ 2 (Y ) Y

2
V EYY (Y, F ) .

(6.4.10)

Therefore, in the no-commitment case, shareholders problem can be formulated as,

rV E (Y, F ) = max
G,σ∈{σL,σH } {Y (1 − τ )− (1 − τ ) cF + pG− ξF+

[G− ξF ]V EF (Y, F ) − σ |ρ|ηYV EY (Y, F ) + 1

2
σ 2 (Y ) Y

2
VEYY (Y, F )

}

.

(6.4.11)

The equilibrium condition for G is the same of Eq. (6.3.6), that is, p (Y, F ) =
−VEF (Y, F ). Thus, proceeding as in Sect. 6.4.1, we eventually conclude that
the value of equity is the same as in the case of commitment, provided that
the conjecture pF < 0 is verified. Combining the methodologies developed in
Sect. 5.4.1–5.4.2, and 6.3.3, it is immediate to obtain the price of debt and show
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that, in equilibrium, pF < 0. Furthermore, the value of the firm is equal to that in
case of commitment, net of the debt tax shield component, namely,

V (Y, F ) = Y (1 − τ )
r + |ρ|ησL︸ ︷︷ ︸

Unlevered firm value

−

[
(1 − τ )
r + |ρ|ησL − (1 − τ )

r + |ρ|ησH
]

Ys

(
Y

Ys

)−γ1

︸ ︷︷ ︸
Agency costs in the case of commitment to G=0

−

− (1 − τ )
r + |ρ|ησH

(
1 − αj

)
Yb

(
Y

Yk

)−γI (Yk
Yb

)−γNI

︸ ︷︷ ︸
Bankruptcy costs in the case of commitment to G=0

(6.4.12)

where γ1 =
(
μ+ξ− 1

2σ
2
L

)
+
√
(
μ+ξ− 1

2σ
2
L

)2+2σ 2
L(r+ξ)

σ 2
L

and

γ2 =
(
μ+ξ− 1

2σ
2
H

)
+
√
(
μ+ξ− 1

2σ
2
H

)2+2σ 2
H (r+ξ)

σ 2
H

respectively. As in the previous section,

we observe the same investment policy as in the case of commitment.

6.4.3 The Weighted Average Cost of Capital

Recall the example of Sect. 5.3.4, in which we showed the inability of the Leland
model to predict a credit spread greater than zero for a financially healthy company
active in the soft drink industry. If we repeat the analysis with the same data, the
application of Eq. (6.3.22) provides a credit spread close to 0.5%, regardless the
specific value for the recovery rate θ . The model’s prediction is consistent with
what we observe for the specific company that we analyzed in this example, which
pays an average credit spread, relative to the treasury curve, equal to 0.40%. Thus,
it is reasonable to expect that shareholders’ lack of commitment ultimately results
in a higher cost of capital for the firm. In other words, differently from the case
of Chaps. 3 and 4, the presence of debt does not reduce the weighted average cost
of capital (WACC). Intuitively, we can prove this result by using the same setting
described in the previous section.
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Under the objective probability measure P, shareholders solve the following
dynamic program,

rV E (Y, F) = max
σ∈{σL,σH },G,Yb

{
Y (1 − τ )− (1 − τ ) cF + pG+ (G− ξF)

[
V EF (Y, F)− 1

]

−σ |ρ|ηV EY (Y, F )+
1

2
σ 2 (Y ) Y

2
V EYY (Y, F )

}

.

(6.4.13)

The optimality condition for G is p = −VEF , which makes irrelevant the choice
of G in equilibrium for shareholders. Given the choice of the optimal default and
risk-shifting thresholds, the following PDE can be formulated,

kuV E = Y (1 − τ)−c (1 − τ)−ξF−ξFV EF +[μ+ (σL − σ) |ρ|η] YV uY +σ
2Y 2

2
V uYY ,

(6.4.14)

where ku := r + σL|ρ|η is the expected return of the unlevered firm. As we showed
in the previous section, the value of the firm is strictly lower than the unlevered firm
value,

V (Y, F ) < V u (Y ) , (6.4.15)

due to the presence of agency and bankruptcy costs. The levered firm’s value
satisfies the HJB equation,

r + σ |ρ|ηVY (Y, F ) = 1

V (Y, F )

[
Y (1 − τ )− ξFVF (Y, F )

+μYVY (Y, F )+ 1

2
σ 2 (Y ) Y

2
VYY (Y, F )

]
, (6.4.16)

which is equivalent to say that the value of the firm is the same that would be
obtained if: (i) there was no tax shield on interests expenses, and (ii) shareholders
committed to G(t) = 0. Notably, the term rV (Y, F ) + σ |ρ|ηVY (Y, F ) is the
expected return for the levered firm. Since in CT the WACC of the firm is defined
as a stochastic process wacc (t) which solves, in analogy with the DT case (see
Sect. 3.1.3),

wacc (Y (t) , F (t)) V (Y (t) , F (t)) dt = Y (1 − τ) dt
︸ ︷︷ ︸

Unlevered Free Cash Flows

+Et [dV (Y (t) , F (t))]
︸ ︷︷ ︸

Expected Capital Gain

.

(6.4.17)

In the unique MPE of the model, the funding cost advantage of debt is completely
dissipated, namely, holding the operating earnings (Y ) constant, the levered firms
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“pays” a higher WACC compared to its unlevered benchmark. To prove this, we
start expressing Eq. (6.4.15) as,

Y (1 − τ )
V u (Y )

<
Y (1 − τ )
V (Y, F )

, (6.4.18)

obtaining eventually,

wacc (Y,F > 0)− ku > 1

V (Y, F )

⎡

⎢
⎢
⎢
⎣

−ξFVF (Y,F )+ μYVY (Y, F )+ σ ∗ (Y,F )2 Y 2

2
VYY (Y, F )

︸ ︷︷ ︸
Expected Capital Gain: Levered Firm

⎤

⎥
⎥
⎥
⎦

− 1

V u (Y, F )

⎡

⎢
⎢
⎢
⎣
μYV uY (Y )+

σ 2
LY

2
V uYY (Y )

︸ ︷︷ ︸
Expected Capital Gain: Unlevered Firm

⎤

⎥
⎥
⎥
⎦
,

(6.4.19)

as wacc (Y, F = 0) = ku. In fact, at F = 0 we have V = V u.
From Eq. (6.4.12) it is easy to check that,

μYVY (Y, F ) + σ ∗ (Y, F )2 Y
2

VYY (Y, F ) ≥ μYV uY (Y )+
σ 2
LY

2
V uYY (Y ) .

(6.4.20)
The economic intuition is that a small increase in operating earnings has a larger
impact to the levered firm’s value, since it reduces the deadweight cost of future
debt service. FurthermoreVF (Y, F ) < 0, and we can conclude that,

wacc (Y, F > 0)− ku > − ξF

V (Y, F )
VF (Y, F ) > 0, (6.4.21)

that is,

wacc (Y, F > 0) > ku. (6.4.22)

This result is actually a restatement of the tax shield’s dissipation in the MPE
of the game only. As the presence of debt reduces the total firm value below its
unlevered benchmark, unlevered free cash flows must be discounted at a higher rate
to guarantee consistency with equilibrium prices.
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6.5 Related Literature

Earlier models of dynamic capital structure decisions are Fischer et al. (1989),
Leland (1998), Goldstein et al. (2001) and Titman and Tsyplakov (2007). These
models share the common feature of exogenous frictions, such as debt covenants or
transaction costs, that mitigate the no-commitment problem that arises in DeMarzo
and He (2020). For instance, in Goldstein et al. (2001), the firm must retire all
the existing debt at par value before issuing additional bonds. Dangl and Zechner
(2004) is an application of this type of models on structural credit risk analysis.
Another example of dynamic capital structure models with exogenous frictions is
Abel (2017), where the presence of an exogenous borrowing constraint generates a
regime switching between states in which the trade-off theory holds, and states in
which the firm is credit constrained. Differently from the models of Chaps. 3 and 4,
the borrowing constraint is applied to the issuance of unsecured debt and does not
protect debt holder from losses in case of default.

The dynamic capital structure model presented in Chap. 3 is time-consistent, but,
as a consequence of the presence of collateral, the price of debt is not sensitive
to future leverage decisions, even for the case of longer maturities (cf. Sect. 7.1).
DeMarzo (2019) shows that collateral is a commitment device, as it restricts the
set of leverage policies that shareholders can pursue over time. The literature on
dynamic capital structure without commitment is indeed evolving and is stimulating
a vivid academic debate. Examples are Benzoni et al. (2019), which incorporates the
presence of transaction costs, or Malenko and Tsoy (2020), in which non-Markov
Perfect Equilibria are considered (cf. Sect. 7.4). Both papers argue that DH’s results
are too restrictive, in that small frictions or other types of equilibria can largely
mitigate the leverage ratchet effect of the frictionless MPE framework. Gamba
and Saretto (2018) considers the application of quantitative discrete time model to
analyze the agency component of credit spread, while Xiang (2019) analyzes the
time-consistency of financial debt covenants (cf. Sect. 7.2). In this regard, Gamba
and Mao (2020) consider a MPE in which shareholders and incumbent debt holders
can continuously renegotiate the structure of covenants. Johnson et al. (2018) extend
the basic DH model in a general equilibrium framework, and analyze the value of
commitment in terms of social welfare.

We have focused on smooth-issuance equilibrium strategies, without discussing
the possibility of non-smooth equilibria in which debt is adjusted rarely. DeMarzo
and He (2020) shows that non-smooth MPE can be ruled out as a consequence of the
convexity of the equity value function. The proof is rather technical and articulated,
and the interested reader may refer to Appendix C of their paper. In other words, the
unique smooth issuance MPE is also the unique MPE of the continuous time model
presented is Sect. 5.3.

The DH model provides an appealing explanation of the credit spread puzzle
(Jones et al. 1984; Chen et al. 2008), as the anticipation of future debt issuances
increases the cost of debt of high grade borrowers (cf. Gamba & Saretto 2018).
The theory presented in this chapter provides also an equilibrium foundation of
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the partial adjustment models often adopted in empirical studies, of which notable
examples are Jalilvand and Harris (1984), Leary and Roberts (2005). The model
very well explains also the zero leverage puzzle (Strebulaev & Yang 2013). A direct
empirical application of the DH model is in Chaderina et al. (2020), in which the
authors analyze the effects of no-commitment on the term structure of levered equity
risk premia.
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Chapter 7
Extensions

In this chapter we extend in several ways the models developed in the previous
chapters. Section 7.1 presents a more general version of the model of imperfect
competition we discussed in Chap. 4. In particular, we introduce the presence
of investment adjustment costs, production costs other than the consumption of
inventories as well as the possibility for the firm to issue unsecured debt. The
model does not admit a closed-form solution, but we will show that, within the
class of Markov Perfect Equilibria, the capital structure of the firm is a combination
of the results we obtained in the previous chapters. On the one hand, the firm
issues as much as secured debt possible, provided the related tax benefits exceeds
transaction costs, whereas a leverage ratchet effect manifests in relation to the
gradual issuance of unsecured debt. On the other, the investment Euler equation
is affected by investment adjustment costs and probability of default, which add on
top of decreasing returns to scale in the firm’s capital stock.

In presence of investment adjustment costs or unsecured debt, or both, the
model in Sect. 7.1 must be solved numerically. In this regard, unsecured debt is
a major complication to implement numerical solution methods. As shareholders
decisions may depend on the price of unsecured debt, one should solve for the
value of equity given an estimate of the debt price, and then repeat the procedure
until the shareholders decisions lead the actual debt price to converge towards the
estimated price. For this reason, in Sect. 7.2 we re-examine the case in which the
firm is financially constrained, namely it cannot issue unsecured debt. The model
is essentially a combination of those presented in Sect. 3.2 and 4.2, and proves to
be extremely useful in empirical studies. In particular, in Sect. 7.2.2 we show that
the implications for the cross-section of stock returns are essentially the same as in
Sect. 4.3.1.

One drawback of the empirical strategy presented in Sect. 7.2.2, is that, when
statistically robust, the model cannot help us to conclude whether investment
adjustment costs are relevant or not. In general, the validity of the relationship
between expected stock returns and fundamentals is not depending on specific
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assumptions about production and capital dynamics. For this reason, in Sect. 7.3 we
introduce the Generalized method of Moments (GMM) through which we estimate
the model’s parameters and test for the validity of the investment Euler equation.

In Sect. 7.3 we also discuss numerical methods, focusing in particular on the
borrowing constraints case (cf. Sect. 7.3.1). In this regard, Appendix of this chapter
provides a coding example in Python of the numerical solution method presented
in Sect. 7.3.1. Instead, in Sect. 7.3.2 we provide a sketch of the algorithm when
considering the unsecured debt. A synthetic guide to numerical methods for SDP
can be found in Chapter 12 of Miao (2020).

With fully secured debt only, default is always suboptimal for shareholders
(cf. Proposition 3.2 in Sect. 3.1). As a result, there is no dynamic game between
shareholders and debt holders, in that the price of debt is unaffected by investment
and financing decisions. However, in the case of unsecured debt, we consider the
Markov Perfect Equilibria only. In Sect. 7.4 we re-examine the DH model (cf.
Sect. 6.3), by focusing on a specific class of equilibria in which the DH equilibrium
is played as a punishment in case the firm deviates from a constant leverage
policy. With GBM cash flows, we show that shareholders never default and the
firm maintains a leverage ratio which minimizes the tax burden, as in Tserlukevich
(2008).

7.1 A Quantitative Corporate Finance Model

In this section, we present an extension of the model of imperfect competition
discussed in Sect. 4.2. The model does not admit a closed form solution, and then
we rely on numerical methods to obtain quantitative predictions. An overview on
numerical dynamic programming methods is in Sect. 7.3. Compared to Chap. 4,
the model includes investment adjustment costs, unsecured debt and production
expenses that must be paid in the same period in which the revenues are collected.
In Sect. 7.1.1 we describe the model set-up, while optimal production and pricing
decision are discussed in Sect. 7.1.2. In Sect. 7.1.3 we derive the first order
conditions characterizing optimal investment and financing decisions when the firm
is solvent, and discuss some qualitative results which are consistent with Chap. 3–6.
Zhang (2005), Livdan et al. (2009), Gomes and Schmid (2010), Li et al. (2009), Li
et al. (2016), DeMarzo (2019) and Gomes and Schmid (2021) are the key papers for
this section.

7.1.1 Model Set-Up

The firm produces homogeneous goods that are non-storable and non-durable.
Therefore, in each period the quantity sold cannot exceed the maximum quantity
that can be produced, and it is always suboptimal to produce more goods than those



7.1 A Quantitative Corporate Finance Model 173

actually sold to consumers. The assumptions on the working capital dynamics are
the same discussed in Sect. 4.2. The firm purchases inventories of raw materials that
will be used in the following period’s production process, and based on the end-of-
period capital stock (Kt+1). Namely, working capital at the end of each period t
is equal to κKt+1, κ ≥ 0. Inventories are always fully exhausted. Either they are
fully consumed within the production process, or, in case the firm is operating under
its maximum capacity, any residual quantity perishes. To add more realism to the
model, we also introduce production expenses in the same period when production
takes place. Namely, given the firm’s invested capital at a date t , which is equal to
Kt + κKt , if we let Jt be the amount of goods sold at the same date, the firm’s
technology constraint is the following,

Jt ≤ AtK
σ
t L

1−σ
t︸ ︷︷ ︸

Maximum Capacity

, σ ∈ (0, 1) , (7.1.1)

where Lt is a composite production input (e.g. labor hours). Contrary to interme-
diate production goods, which must be purchased in advance, Lt is decided at the
same time the production takes place. The cost per unit of Lt is wt > 0, which is
exogenously given and paid simultaneously to the collection of date t revenues. The
demand schedule for the firm’s products is YtP

−η
t , where Pt is the price set by the

firm in each period for a unit of produced goods. The price of capital goods is set
equal to one (numeraire), and the evolution of the capital stock (Kt ) is governed by,

Kt+1 = Kt (1 − δ)+ It , (7.1.2)

provided that the firm is solvent at date t . As in Sect. 3.3, investment is subject to

(possibly) asymmetric quadratic adjustment costs φ (Kt ,Kt+1) = θt
2

(
It
Kt

)2
Kt > 0

where θt satisfies,

θt = θ (It ) =
{
θ+ ≥ 0 It ≥ 0

θ− ≥ 0 It < 0.
(7.1.3)

The firm is financed by equity, fully secured bonds and unsecured bonds.
Shareholders can exercise their option to default only after production takes place.
As a result, the invested capital available at default is equal to (1 − δ)Kt . An event
of default is resolved with the immediate liquidation of the firm, in which secured
bond holders are served first. Namely, the holders of secured bonds are paid with the
proceeds obtained from the liquidation of the firm’s fixed assets, that are equal to
(1 − α)Kt (1 − δ), where α ∈ [0, 1] is a constant haircut rate. Secured bonds have
infinite maturity and a time-varying coupon rate equal to the risk-free rate rt+1. Let
St+1 be the amount of secured debt outstanding at the end of time t ; we impose the
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following collateral constraint (CC),

St+1 ≤ Kt+1 (1 − δ) (1 − α)
1 + ct+1

, (7.1.4)

where ct+1 = rt+1+ϕ is the total cost of secured debt, which includes a fixed charge
ϕ per dollar of secured debt outstanding related to monitoring costs. The latter is
paid out directly by the firm to one or more financial intermediaries, and does not
contribute to the cash-flows obtained by the holders of secured bonds. Eq. (7.1.4)
ensures that secured debt holders are always paid back in full. Furthermore, the
price of secured debt is always equal to one as in each period secured bond holders
obtain the risk-free rate with certainty. In case of default, unsecured bond holders
have absolute priority on any proceeds from the liquidation of fixed assets in excess
of St+1 (1 + ct+1). Unsecured bonds are exponentially decaying perpetuities with
floating coupon rate equal to rt+1 and contractual retirement rate equal to ξ ≥ 0. Let
Ut+1 be the amount of unsecured debt outstanding at the end of date t . We guess, and
verify later, that in each period the firm obtains positive cash flows from production
decisions (cf. Sect. 7.1.2). For simplicity, we assume that, in case of default, the
resulting operating cash flows are lost (a form of bankruptcy costs). Thus, at the
(stochastic) default date td , the recovery value for unsecured debt holders is equal
to,

RUtd = min
{
Kt+1 (1 − δ) (1 − α)− St+1 (1 + ct+1) , Utd

}
, (7.1.5)

and, consequently, the recovery value for shareholders is,

REtd = min
{
Kt+1 (1 − δ) (1 − α)− St+1 (1 + ct+1)− Utd , 0

}
. (7.1.6)

Implicitly, we have assume that shareholders cannot issue additional debt at td . This
is an important difference relative to CT models (see Sects. 6.1 and 6.3).

As in the previous chapters, we assume that shareholders can freely inject
additional equity in the firm, without any transaction cost. The tax system is
linear and the corporate tax rate is equal to τ ≥ 0. As a consequence, holding
liquidity is always detrimental for shareholders value, because of the interest income
taxation. Therefore, we can set liquidity equal to zero in each period without loss
of generality, and assume that any equity injection will occur through negative
dividends (cf. Chap. 3). Let pt be the price per dollar of unsecured debt, �Ut+1 :=
Ut+1 − (1 − ξ) Ut and �St+1 := St+1 − St . Furthermore, let Jt be the amount
of goods sold at time t , and recall that the firm’s goods are non storable and
non-durable, which implies that Jt ≤ AtK

σ
t L

1−σ
t . Then, shareholders solve the
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following maximization problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ E (Kt , St , Ut ) = max
{
maxJt ,Pt ,Ut+1,St+1,Kt+1 {Dt

+Et

[
Mt+1
Mt
V̂ E (Kt+1, St+1, Ut+1)

]}
, REt

}

s.t .

Dt = NIt + pt�Ut+1 +�St+1 − (1 + κ) (Kt+1 −Kt)− ξUt Dividends

NIt = [PtJt − wtLt − ctSt − rtUt − (κ + δ)Kt − φ (Kt ,Kt+1)] (1 − τ) Net Income

St+1 ≤ (1−α)(1−δ)Kt+1
1+ct+1

CC

Jt ≤ AtKσt L1−σ
t Capacity

Jt ≤ YtP−η
t Demand

REtd = min
{
Kt+1 (1 − δ) (1 − α)− St+1 (1 + ct+1)− Utd , 0

}
Recovey Value.

(7.1.7)

where pt is the price per dollar of unsecured debt outstanding at the end of time t .
A few comments may help to better understand the underlying logic we follow

in formalizing the problem. First, invested capital (ICt+1 = κKt+1 +Kt+1) at the
end of time t is defined as the sum of fixed assets (Kt+1) and working capital
(κKt+1) accounting book-values, that is, ICt+1 = κKt+1 + Kt+1 (cf. Sect. 4.2).
Second, dividends are equal to net income plus proceeds from new debt issuances(
pt�

U
t+1 +�St+1

)
and minus change in invested capital (ICt+1 − ICt ). Third, we

are implicitly focusing on Markov Perfect Equilibria (MPE), in which shareholders
value and the price of unsecured debt are both function of the payoff of key variables
only. Fourth, for reasons of space, we do not explicit here the dependence of V̂ E

on the exogenous stochastic processes (e.g. wt ). In this regard, in Sect. 7.1.2 we
are going to show how to include all sources of random variation within a single
stochastic process (zt ) affecting shareholders investment and financing decisions.

7.1.2 Optimal Production and Pricing Decisions

The choice of Jt and Pt has no effect on V̂ E (Kt+1, St+1, Ut+1). Therefore, we can
proceed as in Sect. 4.2 and solve, first, the auxiliary problem for optimal pricing and
production decisions, that is,

max
Pt ,Jt ,Lt

PtJt − wtLt

Jt ≤ AtKσt L1−σ
t

Jt ≤ YtP−η
t .

(7.1.8)
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Following the same argument as in Sect. 4.2.1, both constraints must be binding,
that is,

{
YtP

−η
t = AtK

σ
t L

1−σ
t

Jt = AtK
σ
t L

1−σ
t .

(7.1.9)

for a given value of Jt . Hence, the problem in Eq. (7.18) simplifies to,

max
Jt

(
Jt

Yt

)− 1
η

Jt −wt
(

Jt

AtK
σ
t

) 1
1−σ

(7.1.10)

from which we obtain that the optimal sales level J ∗
t must be equal to,

J ∗
t = Y

1−σ
ησ+1−σ
t

(
η − 1

η

1 − σ
wt

) η(1−σ)
ησ+1−σ (

AtK
σ
t

) η
ησ+1−σ . (7.1.11)

Now, with few algebraic steps, it is immediate to show that, in equilibrium,

PtJ
∗
t − wtLt = ztK

υ
t , (7.1.12)

where, υ := σ(η−1)
(η−1)σ+1 < 1 and,

zt := YtA
η−1

(η−1)σ+1
t

⎧
⎪⎨

⎪⎩

⎡

⎣Y
1−σ

ησ+1−σ
t

(
η − 1

η

1 − σ
wt

) η(1−σ)
ησ+1−σ

⎤

⎦

η−1
η

−wt
⎡

⎣Y
1−σ

ησ+1−σ
t

(
η − 1

η

1 − σ
wt

) η(1−σ)
ησ+1−σ

⎤

⎦

1
1−σ

⎫
⎪⎬

⎪⎭
≥ 0. (7.1.13)

Since,

⎡

⎣Y
1−σ

ησ+1−σ
t

(
η − 1

η

1 − σ
wt

) η(1−σ)
ησ+1−σ

⎤

⎦

η−1
η

≥ wt
⎡

⎣Y
1−σ

ησ+1−σ
t

(
η − 1

η

1 − σ
wt

) η(1−σ)
ησ+1−σ

⎤

⎦

1
1−σ

,

(7.1.14)

zt ≥ 0 and it is always convenient for shareholders to operate at maximum capacity
in each period. Besides, υ < 1 implies that equilibrium revenues are strictly
increasing but concave in Kt , which is a form of decreasing returns to scale (DRS).

To simplify the notation, we suppress the asterisks to denote optimal investment
decisions. Thus, given the expression for zt in Eq. (7.1.13), shareholders’ problem
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can be formulated as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ E (Kt , St , Ut ) = max
{

maxUt+1,St+1,Kt+1 {Dt
+Et

[
Mt+1
Mt
V̂ E (Kt+1, St+1, Ut+1)

]}
, REt

}

s.t .

Dt = NIt + pt�Ut+1 +�St+1 − (1 + κ) (Kt+1 −Kt)− ξUt Dividends

NIt = [
ztK

υ
t − ct St − rtUt − (κ + δ)Kt − φ (Kt ,Kt+1)

]
(1 − τ) Net Income

St+1 ≤ (1−α)(1−δ)Kt+1
1+ct+1

CC

REtd = min
{
Kt+1 (1 − δ) (1 − α)− St+1 (1 + ct+1)−Utd , 0

}
Recovey Value.

(7.1.15)

7.1.3 Optimal Investment and Financing Decisions

We assume that zt follows a Markov process and Mt+1
Mt

= 1
1+r f (zt+1, εt+1), where

{εt }t≥0 is a sequence of i.i.d. random variables and f : R×R → R
+. Furthermore,

we focus on the case in which τr > ϕ > 0, and it is then immediate to check that
the CC is always binding, provided that the firm is solvent. Indeed, the marginal
contribution to shareholders value of a unit of secured debt is equal to τr − ϕ > 0,
and thus it is optimal for shareholders to issue as much as secured debt as possible
(cf. Sects. 3.1.2 and 3.2.2). Consequently, RE = RU = 0, and Eq. (7.1.15) can be
formulated as,

V̂ E (Kt , Ut , zt )

= max
{

max
Ut+1,Kt+1

{

Dt + 1

1 + rE
[
f (zt+1, εt+1) V̂

E (Kt+1, Ut+1, zt+1) |zt
]}

, 0
}

(7.1.16)

where Dt = NIt + pt�
U
t+1 + [γ − (1 + κ)] (Kt+1 −Kt) − ξUt , γ : (1−α)(1−δ)

1+c ,
c := r + ϕ, pt = p (Kt+1, Ut+1, zt ) and,

NIt = [
ztK

υ
t − rUt − (κ + δ + cγ )Kt − φ (Kt ,Kt+1)

]
(1 − τ ) . (7.1.17)

LetWt := Dt+ 1
1+rEt

[
f (zt+1, εt+1) V̂

E (Kt+1, Ut+1, zt+1) |zt
]
. As is evident,Wt

is a function of Kt+1, Ut+1, that is, W : R+ × R
+ → R. Let W∗

t be the maximum
value that Wt can take over the positive orthant R+ × R

+, which is the domain set
for the choice of Kt+1 and Ut+1. If W∗

t ≤ 0, then it is convenient for shareholders
to exercise their option to default. Thus, we can introduce the dummy variable ψt
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characterizing shareholders willingness to keep the firm solvent at a generic date t ,

ψt :=
{

1 W∗
t > 0

0 W∗
t ≤ 0.

(7.1.18)

Notice that, when ψt = 1, we have V̂ E (Kt , Ut , zt ) = W∗
t . Hence, by assuming the

equity value as a differentiable function, we can characterize the firm’s equilibrium
investment policy and capital structure in the continuation region.

Starting from the optimal capital stock process, we have the following first order
condition,

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ )− γ − pK (Kt+1, Ut+1, zt )�Ut+1

= 1

1 + r Et
[
f (zt+1, εt+1) V̂

E
K (Kt+1, Ut+1, zt+1)

]
, (7.1.19)

which is again representative of the positive NPV rule in capital budgeting.

The term (1 + κ) + θ (It )
(
It
Kt

)
− γ − pK (Kt+1, Ut+1, zt )�Ut+1 is the

marginal cost for shareholders of an additional unit of capital stock, while
1

1+rE
[
f (zt+1, εt+1) V̂

E
K (Kt+1, Ut+1, zt+1) |z

]
is the associated marginal benefit.

The latter can be obtained from the envelope condition forKt ,

V̂ EK (Kt ,Ut , zt )

=
{[

υztK
υ−1
t + θt It

Kt
(1 − δ)+ θt

2

(
It

Kt

)2

− cγ
]

(1 − τ )+ τ (k + δ)+ 1 − δ − γ
}

ψt .

(7.1.20)

Putting together, Eq. (7.1.19–7.1.20) lead to the following investment Euler equa-
tion,

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ)

= γ + pK
(
Kt+1, Ut+1, zt

)
�Ut+1 + 1

1 + r Et

×
{

f
(
zt+1, εt+1

)
[(

υzt+1K
υ−1
t+1 + θt+1

It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
− cγ

)

(1 − τ)+ τ (k + δ)+ 1 − δ − γ ]ψt+1
}
, (7.1.21)

which combines all results obtained and discussed in the previous chapters. Here, we
focus on the effect of debt on the investment decisions, while in Sect. 7.2 we discuss
in more depth the joint effect of DRS and investment adjustment costs. On one
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hand, the presence of secured debt motivates shareholders to invest more compared
to the unlevered case in which {St = 0, Ut = 0}t≥0. However, the marginal benefit
of investment is lost in case the firm will be insolvent at a later point in time.
Hence, compared with the case in which there is no unsecured debt, we observe
a debt overhang effect which reduces shareholders propensity to invest. In fact,
without unsecured bonds (Ut = 0), shareholders would never default, as we showed
in Sect. 3.1.2 (cf. Proposition 3.2). To know which effect will dominate, the model
must be solved numerically. However, we can expect that, as the firm gets closer
to its default threshold zb = zb (Kt , Ut ) : W∗

t = 0, the debt overhang effect will
dominate. Likewise, for values of z far from zb it is reasonable to expect that the
overinvestment effect prompted by the funding cost advantage of secured debt will
dominate. Nevertheless, investment will be always lower compared to case in which
Ut = 0.

The optimality conditions for Ut+1 are equivalent to those obtained in Sect. 4.2,

⎧
⎪⎪⎨

⎪⎪⎩

pt + pU (Kt+1, Ut+1, zt )�Ut+1

+ 1
1+rE

[
f (zt+1, εt+1) V̂

E
U (Kt+1, Ut+1, zt+1) |zt

]
= 0 First Order Condition

V̂ EU (Kt ,Ut , zt ) = [−c − ξ − pt (1 − ξ)+ τ c]ψt .
(7.1.22)

In equilibrium, the price per dollar of unsecured debt is given by,

pt = 1

1 + rE {f (zt+1, εt+1) [c + ξ + pt+1 (1 − ξ)]ψt+1|zt } , (7.1.23)

and, given the conjecture pU < 0, shareholders find optimal to issue additional
unsecured debt in each period,

Ut+1 − Ut (1 − ξ) = �Ut+1 = −
1

1+r [1 − ϑ (zt ,Kt+1, Ut+1)]

pU (Kt+1, Ut+1, zt )
τc, (7.1.24)

where,

ϑ (zt ,Kt+1, Ut+1) := E {f (zt+1, εt+1) ψt+1|zt } =
E
Q

{
f (zt+1, εt+1) I

(
zt+1 > z

b (Kt+1, Ut+1)

)
|zt
}

=
Q

Pr
{
zt+1 > z

b (Kt+1, Ut+1) |zt
}
,

(7.1.25)

is the risk-neutral probability of default for the next period. Provided that p is
decreasing in the amount of unsecure debt outstanding, i.e. pU < 0, we then
have the following result for the firm’s equilibrium capital structure. In any MPE,
the firm always issues the maximum amount of secured debt as possible, while
unsecured debt is issued gradually over time as long as shareholders do not find
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more convenient to exercise their option to default, as in DeMarzo (2019). In other
words, the leverage ratchet effect continues to operates, but it is limited to the
unsecured part of the firm’s capital structure. As said, the effect of debt financing on
investment is uncertain. On one hand, the tax benefits of debt lowers the marginal
cost of investment. On the other, the possibility of default acts in the opposite
direction. This result combines the entire dynamic capital structure theory developed
up to know, and can be extended to more generic conditions.

7.2 Borrowing Constraints

We consider a specific case of the model presented in the previous section, in which
the firm is not allowed to issue unsecured debt (cf. Sect. 7.2.1). In this perspective,
the meaning we attribute to borrowing constraints is that the firm’s capital structure
is constrained by {Ut = 0}t≥0 and Eq. (7.1.4). The discussion of this specific case is
preliminary to numerical solution and structural econometrics methods, we discuss
in Sect. 7.3. In this regard, although we could easily allow for a time-varying risk-
free rate and cost of debt, the state space would increase in its dimension and the
collateral constraint St+1 ≤ γt+1Kt+1 could be occasionally binding, and therefore
numerical solution methods could be harder to implement. The latter are essential
in presence of investment adjustment costs, as the model does not admit a (fully)
closed form solution despite the firm is always solvent.

In Sect. 7.2.2 we show that the model has substantial implications for the cross-
section of stock returns that are very close to those of Sect. 4.3.1. Namely, expected
stock returns are function of market multiples and expected fundamentals. One
interesting consequence is that, as long as we are just interested in the relation
between stock returns and firm’s characteristics, there is no need to solve the
model numerically. Nevertheless, we might be interested to estimate the “impact”
of investment adjustment costs. On this point, Sect. 7.3.3 deals with structural
econometric methods, in which we discuss the Generalized Methods of Moments
(GMM).

7.2.1 The Model

In the general model of Sect. 7.1, the subprogram for optimal pricing and production
decisions is not depending on unsecured debt. By imposing the additional borrowing
constraint {Ut = 0}t≥0, which prevents the firm to unsecured debt financing, and
recalling that ztKνt ≥ 0, we can use Proposition 3.2 to rule out the case of default.
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Therefore, shareholders’ problem becomes,

V̂ E (Kt , zt ) = max
Ut+1,Kt+1

{

Dt + 1

1 + r E
[
f (zt+1, εt+1) V̂

E (Kt+1, zt+1) |zt
]}

,

(7.2.1)

where,

{
Dt = NIt + [γ − (1 + κ)] (Kt+1 −Kt)
NIt = [

ztK
υ
t − (κ + δ + cγ )Kt − φ (Kt ,Kt+1)

]
(1 − τ ) , (7.2.2)

and it is immediate to show that the Euler equation characterizing the optimal
investment becomes,

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ ) = 1

1 + rEt {f (zt+1, εt+1)

[(

υzt+1K
υ−1
t+1 + θt+1

It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
)

(1 − τ )+ τ (k + δ)+ 1 − δ + γ (τc − ϕ)
]}

.

(7.2.3)

Define operating profits as revenues minus production and depreciations expenses
(EbIT). Absent investment adjustment costs, by the envelope theorem the firm sets
Kt+1 to the level maximizing the expected discounted value of the next period’s
operating profits, net of the opportunity cost of invested capital (1 + κ) (1 + r).
Investment adjustment costs can be seen as a friction which limits shareholders
flexibility to adjust the future capital stock to its first-best level in terms of operating
cash flows. For this reason, we should expect that the firm’s monopolistic power
will be partly dissipated by second-best capital adjustments, that is, the firm will
respond less aggressively to fluctuations in aggregate demand (Yt ), productivity
(At ) and factors’ prices (wt ), the three stochastic components of zt the firm takes
as given. To understand the underlying economic reasoning, consider the following
example. Imagine that Yt+1 to be unusually high only for date t+1 with probability
close to one, and then will certainly revert to much lower values. Absent investment
adjustment costs, the firm will benefit from a one-off increase in its output capacity
and then from a subsequent reduction. With investment adjustment costs, any
change in output capacity is a net cost for the firm. For very large values of

(
θ+, θ−),

shareholders will probably find more convenient to keep the capital stock as constant
and to do not respond to fluctuations in aggregate demand.
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The previous considerations suggest that the value of the firm include elements
from both the results in Sects. 3.2.2 and 4.3.1. From Sect. 3.2.1 we recall that,

[

θt+1
It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
]

Kt+1 =

θt+1It+1

[

1 − δ + It+1

Kt+1

]

− θt+1

2

(
It+1

Kt+1

)2

Kt+1 = θt+1

(
It+1

Kt+1

)

Kt+2.

(7.2.4)

We can then multiply both sides of Eq. (7.2.3) by Kt+1, thereby obtaining,

Et

{
Mt+1

Mt
yt+1

}

=
[

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ )
]

Kt+1−

Et

{
Mt+1

Mt

[

(1 + κ)+ θ (It+1)

(
It+1

Kt+1

)]

Kt+2

}

+ (1 − υ) (1 − τ )Et
{
Mt+1

Mt
zt+1K

υ
t+1

}

(7.2.5)

where yt denotes the free cash flows to the firm, that is,

yt =
[

ztK
υ
t − θt

2

(
It

Kt

)2

Kt

]

(1 − τ )− (1 + κ) (Kt+1 −Kt)+ τ (δ + κ)Kt
︸ ︷︷ ︸

xt : unlevered free cash flows

+γ (τc− ϕ) .

(7.2.6)

As an application of the general result from Sect. 2.4, the equilibrium value of the
firm (Vt ) must be equal to,

Vt = VEt + Ft+1 =
∞∑

j=1

Mt+j
Mt

[
xt+j + (γ τc − ϕ)Kt+j

] =
∞∑

j=1

Mt+j
Mt

yt+j ,

(7.2.7)
that is,

Vt =
[

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ)
]

Kt+1 + (1 − υ) (1 − τ)Et
∞∑

j=1

Mt+j
Mt

zt+jKνt+j .

(7.2.8)

The term
[
(1 + κ)+ θ (It )

(
It
Kt

)
(1 − τ )

]
Kt+1 is the NPV of free cash flows

to the firm if there was perfect competition in the firm’s product market, and,

consequently, the term (1 − υ) (1 − τ )∑∞
j=1

Mt+j
Mt
zt+jKνt+j is instead the NPV of

the additional cash earnings coming from the firm’s market power. The lower η,
the higher the firm’s market power and the NPV of monopoly rents (NPVMR),
�t := (1 − υ) (1 − τ )Et∑∞

j=1
Mt+j
Mt
zt+jKνt+j (cf. Sect. 4.3.1). Notice that for
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θ (It ) = 0, we are going back to the model presented in Sect. 4.2, while for η → ∞
the DRS coefficient υ converges to one and we obtain the model presented in
Sect. 3.2.

Contrary to the case without adjustment costs (cf. Chap. 4), shareholders’ prob-
lem is no longer static. As it clear from Eq. (7.2.3), today’s investment decisions (It )
are function of tomorrow’s investment decisions (It+1). By induction, investments
at each date t (It ) are function of the distribution of all future shocks {zs}s>t . For
this reason, the model must be solved through numerical methods. This is another
difference with the case without adjustment costs, in which the use of numerical
methods could be avoided as long as Et [f (zt+1, εt+1) zt+1] admits a closed-form
expression.

It is important to observe that, holding everything else constant, the value
of the firm is strictly decreasing in the investment adjustment costs. In other
words, we should not be fooled by the structure of Eq. (7.2.8), in which the term[
(1 + κ)+ θ (It )

(
It
Kt

)
(1 − τ )

]
Kt+1 adds on top of NPVMR. The latter will be

indeed lower compared to the frictionless cases, based on what already observed
before for what concerns optimal investment decisions. The larger the investment
adjustment costs are, the less the firm will exploit its ability to adjust the capital
stock in response to the conditional distribution of all future shocks {zs}s>t .
Another way to see this is to observe that investment adjustment costs can be seen
as an additional constraint to investment decisions. Indeed, holding zt constant,
shareholders can obtain dividends as in absence of investment adjustment costs if
and only if Kt+1 = (1 − δ)Kt . Since investment adjustments reduce the total free
cash flows to the firm, shareholders value and the value of the firm will be necessary
lower compared to the case in which investment adjustment costs are absent.

7.2.2 The Cross-Section of Stock Returns

We re-examine the relationship between stock returns and firm’s characteristics,
such as expected profitability indicators and valuation multiples, basically adjusting
the routine developed in Sect. 4.3.1 to the more general case in which investment

adjustment costs are present. Let rEt+1 = Dt+1+V E
t+1

V Et
be the stock return; then, by

combining the firm’s budget constraint with Eq. (7.2.8), we obtain the following
equation,

V Et

Vt

(
1 + rEt+1

)
+ St+1 [1 + c (1 − τ )]

=

[

zt+1K
υ
t+1 − θt+1

2

(
It+1
Kt+1

)2
Kt+1 − (κ + δ)Kt+1

]

(1 − τ )+%t+1

Vt
,

(7.2.9)
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where %t is the NPV of the total extra-profits compared with the case of perfect
product market competition and no-adjustment costs, that is,

%t := θt

(
It

Kt

)

(1 − τ )Kt+1 +�t. (7.2.10)

Notice that in Sect. 4.3.2 there was no need to stress the absence of investment
adjustment costs, for the simple reason that they were absent regardless η was finite
or diverging.

If we let &t+1 := %t+1
%t

− 1, and take conditional expectations of both sides
of Eq. (7.2.9), we find that, in general, expected stock returns are related to value,
quality and growth factors according to,

Et

(
rEt+1

)
= BPt+1 · Et (RoEt+1)+ (1 − BPt+1) · Et (&t+1) , (7.2.11)

where RoEt+1 := NIt+1
Vt−St+1

and BPt+1 = (1+κ)Kt+1−St+1

V Et+1
are the return on

equity (RoE) and the book-to-price-ratio (BP), respectively. As in Sect. 4.3.1–4.3.2,
expected stock returns are a weighted average of the firm’s expected RoE and growth
in extra-profits. Firms with high expected RoE are considered quality stocks, while
firms with high book-to-price ratio are typically intended as value stocks. Firms
with high expected sales or earnings growth rates, which are both proxies of &t+1,
are instead considered as value growth stocks. Holding the cost of equity constant,
growth stocks have lower book-to-price ratio and the other way around, consistent
with the classic interpretation of high and low book-to-price stocks (Fama and
French 1993). Nevertheless, the same holds for high quality stocks, so we should
avoid to link the returns of low book-to-price stocks to growth. Put differently, we
should expect growth (&t+1), quality (RoEt+1) and value (BPt+1) factors to have
separate explicative power in the cross-section of stock returns. See Sect. 4.3.1 for
references on several empirical studies confirming the model prediction.

Finally, in presence of unsecured debt and leverage ratios that implies small
default probabilities, it is possible to show that Eq. (7.2.11) is a good approximation
of the actual relationship that arises in the general model. In short, anomalies such
as quality, growth and value can be perfectly consistent with the efficient market
hypothesis.

7.3 An Introduction to Numerical Solution Methods and
Structural Econometrics

7.3.1 Discrete Dynamic Programming

The models studied in the previous two sections need both to be solved numerically.
In this and the following sections we show a general procedure that can be



7.3 An Introduction to Numerical Solution Methods and Structural Econometrics 185

implemented through any standard coding language, starting here from the case in
which borrowing constraints are present (cf. Sect. 7.2). The extension on unsecured
and defaultable debt is not so straightforward, and we will only layout some general
consideration.

Numerical methods require intermediated computer programming skills at least
in one fast and flexible language (e.g. C++, Python). Interpreted languages (e.g.
Python) tend to be a bit slower compared to compiled languages (e.g. C++).
However, the former are usually easier to implement and platform-independent.
For computational intensive applications, especially those in which the same model
must be solved plenty of times for different configuration of its free parameters (e.g.
Simulated Methods of Moments), compiled languages should be preferred. Oth-
erwise, interpreted languages could be considered as a more hands-on alternative.
Sometimes, a good compromise is the choice of an interpreted language that can be
also executed as a compiled program. Python is one possibility, and an example is
provided in Appendix at the end of this chapter.

There are different ways to solve numerically stochastic dynamic programming
(SDP) problems. Here, we consider the method of value function iteration (VFI),
which is very common in the literature. The VFI is the easiest solution method, but
it is also quite slow in general. Nevertheless, its speed can be improved with refined
algorithms such as the policy iteration, multi-grid VFI or approximate dynamic
programming (e.g. projection methods).

Consider again the model in Sect. 7.2. Let assume also that {zt }t≥0 follows a finite

Markov chain of size M , that is, zt ∈ {
zj
}M
j=1 for each date t ∈ N. In this way, the

state space of the model is restricted to two dimensions, i.e. (Kt , zt ), one of which
can take only a set of countable values (z). On this point, several continuous Markov
processes can be approximated as finite Markov chain. For instance, a stationary
first-order autoregressive process (AR1), such as,

zt = ρzt−1 + εt , |ρ| < 1, (7.3.1)

where εt ∼i.i.d. N
(
0, σ 2

)
, can be discretized using Tauchen (1986) or Tauchen and

Hussey (1991) method. We denote by P = [
pi,j

]
the transition matrix of zt ,

pi,j = Pr
{
zt+1 = zj |zt = zi

}
. (7.3.2)

which we restrict to be irreducible and aperiodic. Irreducible means that
∀ (i, j) , ∃n ∈ N such that Pr

{
zt+n = zj |zt = zi

}
> 0, that is, each state has

a positive probability to occur in the future given the current state. Aperiodic means
that in each period every state zi ∈ {

zj
}M
j=1 can materialize. A Markov chain

that is irreducible and aperiodic converges to a long-run distribution. The long-
run probability of each state zi ∈ {

zj
}M
j=1 converge to the related unconditional

probabilities, we can obtain from the normalized eigenvector associated to the unit
eigenvalue of Pᵀ. In this way, we can define a deterministic version of the model in
which zt is always equal to its expected value, and compute the related steady-state.
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It turns out that discretizing the original dynamic programming problem is very
useful, then,

V̂ E (K, zi) = max
K ′≥0

⎧
⎨

⎩

[
zKυ − (κ + δ + cγ )K − φ (K,K ′)]

(1 − τ)+ [γ − (1 + κ)] (K ′ −K)+
M∑

j=1

πi,j

1 + r V̂
E
(
K ′, zj

)

⎫
⎬

⎭

(7.3.3)

where πi,j := f (zi) pi,j is the risk-neutral probability to observe zt+1 = zj
conditional upon zt = zi .

The first step to obtain a discrete approximation of the problem in Eq. (7.3.3)
is to introduce a grid K = {

K1,K2, ....,KGK
}

of GK ∈ N admissible values for
K . The grid should be large enough to include the deterministic steady-state of the
model. The latter is defined as the steady-state of the solution for the deterministic
version of the problem in Eq. (7.3.3), in which zt is always equal to its unconditional
expected value z̄. Adapting the investment Euler equation (cf. Eq. 7.2.3) to the
deterministic case,

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ ) = 1

1 + r

{

τ (k + δ)+ 1 − δ + γ (τc − ϕ)
[

υzt+1K
υ−1
t+1 + θt+1

It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
]

(1 − τ )
}

,

(7.3.4)

we can obtain the deterministic steady-state value
(
K̄
)

forKt as,

K̄ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 + r) [(1 + κ)+ θδ (1 − τ )]
− [(

θδ + θ
2 δ

2
)
(1 − τ )+ τ (k + δ + γ c)+ 1 − δ − γ ϕ]

νz̄ (1 − τ )

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1
υ−1

.

(7.3.5)

We then obtain KGK as a sufficiently large multiple of K̄ , while K1 is set close to

zero. Let G = K×Z be the grid of the problem, where Z := {
zj
}M
j=1 is the support
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of zt , and focus on the solution of the discrete approximation of Eq. (7.3.3),

V̂ E (K, zi) = max
K ′∈K

⎧
⎨

⎩

[
zKυ − (κ + δ + cγ )K − φ (K,K ′)] (1 − τ )+ [γ − (1 + κ)]

(
K ′ −K)+

M∑

j=1

πi,j

1 + r V̂
E
(
K ′, zj

)

⎫
⎬

⎭
, (7.3.6)

following Algorithm 1.

Algorithm 1 Value function iteration
(1) Set equal to n ∈ N the maximum number of iterations. Denote each iteration by s.
(2) Choose a guess H(0) for V̂ E and set s = 0.
(3) For each g = (

Kg1 , zg2

) ∈ G obtain,

H(s+1) (Kg1 , zg2

) = max
K ′∈K

{[
zKυ − (κ + δ + cγ )K − φ (K,K ′)] (1 − τ)+

[γ − (1 + κ)] (K ′ −K)+
M∑

j=1

πi=g2,j

1 + r H
(s)
(
K ′, zj

)

⎫
⎬

⎭
.

(4) Interpolate the values
{
H(s+1) (K, z)

}

(K,z)∈G obtained before to get a new guess H(j+1) for

V̂ E .
(5) Evaluate the “distance” between H(j+1) and H(j) as ||H(j+1) −H(j)||.
(6) If ||H(j+1) −H(j)|| < vtol, where vtol > 0 is a tolerance parameter stop. Else, if j ≤ n− 1

set j ← j + 1 and repeat steps 3-to-5.

If ||H(j+1)−H(j)|| < vtol after s ≤ n iterations the algorithm has (numerically)
converged to a discrete approximation of the cum-dividend equity value function
of the original optimization problem. Sometimes, it is convenient to start with a
coarse grid K and the repeat Algorithm 1 for a finer grid, using as initial guess
for V̂ E the results obtained with the coarse grid. This is the multi-grid algorithms
case. Chow and Tsitsiklis (1991) shows that a similar approach could be faster in
several circumstances. Appendix at the end of the chapter provides an example on
how to implement Algorithm 1 using Python, which can be adapted to the multi-
grid case by considering multiple calls of the function solve_model(Gk,n,Ve0) for
increasingly larger values Gk for Gk .
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7.3.2 The case of Defaultable Debt

This section introduces an algorithm to solve the general version of the model in
which the firm is allowed to issue unsecured debt. Compared to more standard SDP
problems, here we have the additional complication that the price of unsecured debt
is endogenous to shareholders’ decisions. Heuristically, we can imagine a two-steps
procedure in which we make a first guess for the price of unsecured debt and we
apply the VFI algorithm to obtain a candidate solution for the equity value function.
Then, based on the latter, we obtain the optimal default threshold and compute the
resulting price of debt from Eq. (7.1.23). If the latter results sufficiently close to the
original guess, then we have a good numerical solution, otherwise we repeat the
procedure until the price of debt converges.

More specifically, we let i = 1, 2, ..., N the index identifying algorithm
iterations, each one consisting in several “instructions”, we define as sub-program.

We choose an appropriate discretization G =
{{
Kg1

}G1
g1=1 ,

{
Ug2

}G2
g2=1 ,

{
zg3

}G3
g3=1

}

of the state-space for (Kt , Ut , zt ), where G1 · G2 · G3 provides the number of
gridpoints g = (g1, g2, g3) ∈ G involved in the numerical solution process. Then,
we guess a candidate functionp(0) for the price of debt, and then repeat Algorithm 2
until ||p(i) − p(i−1)|| < ptol, where ptol > 0 is a tolerance parameter, or
the maximum number of iterations (i = N) is reached. In this way, we obtain a
numerical approximation of V̂ E, p and the firm’s equilibrium policies which is valid
for the subspace bounded by the extreme points of the grid G.

Algorithm 2 Subprogram for the i-th iteration (i ≤ N)
Step 1: set equal to n ∈ N the maximum number of iterations for the subprogram.
Step 2: choose a guess H(j) for V̂ E and set j = 0.
Step 3: for each g ∈ G solve for (Ut+1,Kt+1) using Eq. (7.1.21), Eq. (7.1.24), the guess H(j)

for V̂ E and p(i−1).
Step 4: use the values obtained before for U,K at each g ∈ G to obtainH(j+1) from Eq. (7.1.16)

and a suitable interpolation algorithm.
Step 5: obtain ||H(j+1) −H(j)||.
Step 6: if ||H(j+1) − H(j)|| < vtol, where vtol > 0 is a tolerance parameter, let’s stop.

Otherwise, if j ≤ n− 1 set j ← j + 1 and repeat steps 3-to-5.
Step 7: if the algorithm converged, use U,K,H(j) and Eq. (7.1.23) to obtain the price of debt

at each grid point. Then, interpolate the results to obtain the function p(i).

Since in general it is hard to obtain precise theoretical results, here we limit
our discussion on the way to follow to setting up the solution algorithm. The
reader may refer also to Gamba and Mao (2020), Gomes and Schmid (2010, 2021),
Gamba and Saretto (2020) or Xiang (2019), which provide examples of this solution
methodology.
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7.3.3 The Generalized Method of Moments

In this section we provide a brief overview of structural estimation methods, by
considering the case in which the firm cannot issue unsecured debt (cf. Sect. 7.2). In
Sect. 4.3.2 we showed a direct way to test the validity of,

Et

(
rEt+1

)
= BPt+1 · Et (RoEt+1)+ (1 − BPt+1) · Et (ρt+1) , (7.3.7)

which required however to impose the additional assumption,

Et (ρt+1) ≈ gSTMt + εt (7.3.8)

in order to proxy the expected value for ρt+1 = �t+1
�t

−1. Here, we could follow the
same approach for Eq. (7.2.11) and the expected growth in%t , and test again for the
joint validity of,

⎧
⎨

⎩

Et

(
rEi,t+1

)
= EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t + εi,t

Et

(
εi,t

) = 0 ,
(7.3.9)

where EYNTMt,t and gSTMt are the earnings yield of the stock, respectively, both
computed by considering the consensus estimates for NTM earnings, and the
consensus estimate for STM industry sales growth (cf. Sect. 4.3.2). If the Wald test
for,

⎧
⎨

⎩

H0 : E
{
rEi,t+1 −

[
EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t

]}
= 0

H1 : E
{
rEi,t+1 −

[
EYNTMi,t +

(
1 − BPNTMi,t

)
gSTMi,t

]}
�= 0,

(7.3.10)

does not provide sufficient evidence to reject H0 in favor of H1, we could not
conclude whether Eq. (7.2.9) is more “realistic” than Eq. (7.2.10). The only thing
we could say is that few characteristics are sufficient to explain expected stock
returns, consistent with a certain class of equilibrium models. In other words, the
econometric model in Eq. (7.3.9) is valid if investment adjustment costs are present
or not. While for estimating conditional expected stock returns Eq. (7.3.9) i is
enough, we may wonder whether investment adjustment costs are relevant or not.
Structural estimation allows us to address this question.

Since we do not need to solve the model numerically, we allow for time-
varying cost of debt (c → ct+1) and tax rate (τ → τt ), and we let λt+1 =
(1−α)(1−δ)

1+ct+1
I (τct+1 ≥ ϕt+1) as in Chap. 4. It is then immediate to show that the
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following investment Euler equation must be verified in equilibrium (cf. Sects. 3.2,
4.2, and 7.1),

(1 + κ)+ θ (It )
(
It

Kt

)

(1 − τ )

= 1

1 + rt+1
Et

{

f (zt+1, εt+1)

[(

υzt+1K
υ−1
t+1 + θt+1

It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
)

× (1 − τ )+ τ (k + δ)+ 1 − δ + λt+1 (τ ct+1 − ϕt+1)]} .
(7.3.11)

Now, the goal is to use the Generalized Methods of Moments (GMM) to
estimate the vector of parameters ω = (

α, ν, θ−, θ+, κ, δ
)
, or a subset (e.g. κ

is known), and test whether Eq. (7.3.11) is consistent with observed data. To do
this, we have to specify f (zt+1, εt+1), as the risk-free interest rate rt+1 can be
proxied by considering interbank rates or Treasury rates. Suppose we have a dataset

X =
[((
fi,t , Ki,t , Ii,t , τi,t , ci,t+1

)
,hi,t

)N
i=1

]T

t=1
of T observations for N different

stock or portfolios of stocks indexed by i = 1, 2, .., N . Then, following the same
approach as in Sect. 4.3.2, we have the following system of hypothesis to test,

{
H0 : E [ε (ω, f,Kt , It , τt , ct+1) ht ] = 0 Eq. (7.3.11) is valid

H0 : E [ε (ω, f,Kt , It , τt , ct+1) ht ] �= 0 Eq. (7.3.11) is rejected,
(7.3.12)

where ht ∈ R
n+1 is a vector of n+1 > dim (ω) distinct instrument variables, which

includes a constant
(
h
(1)
t = 1

)
, and,

ε (ω, f,Kt , It , τt , ct+1)

:= (1 + κ)+ θ (It )
(
It

Kt

)

(1 − τt )

−
{

1

1 + rt+1
f (zt+1, εt+1)

[(

υzt+1K
υ−1
t+1 + θt+1

It+1

Kt+1
(1 − δ)+ θt+1

2

(
It+1

Kt+1

)2
)

(1 − τt )+ τ (k + δ)+ 1 − δ + λt+1 (τt ct+1 − ϕt+1)

]}

,

(7.3.13)

is equivalent to the pricing error in Sect. 4.3.2. Under some regularity conditions
for the data generating process underlying X (cf. Chapter 13 in Miao 2020), the
GMM estimator ω̂GMM for the vector of parameters ω is obtained according to the
following Algorithm 2, which also describes how to test for the validity of the model
and for the parameters’ significance. In short, the GMM works as follows. We obtain
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a first estimate of the model parameters by minimizing the sum of squared pricing
errors. Then, we obtain a consistent estimate of the variance-covariance matrix of
pricing errors and improve our initial estimate for ω. Under appropriate regularity
conditions, we have asymptotic results which allows us to perform hypothesis
testing by using standard distributions.

Algorithm 3 The generalized method of moments

(1) For each moment condition E

[
ε
(
ω, f,Ki,t , Ii,t , τi,t , ci,t+1

)
h
(s)
i,t

]
= 0, i = 1, 2, .., N, s =

1, 2, .., n + 1, define Ψi,s (w) := ∑T
t=1 ε

(
w, f,Ki,t , Ii,t , τi,t , ci,t+1

)
h
(s)
i,t .

(2) Define ψ (w) := (
Ψi,s (w)

)

(i,s)∈{1,2,..,N}×{1,2,..,n+1} as the vector collecting all theN×(n+ 1)
moment conditions (we have N stocks and n+ 1 distinct moment conditions).

(3) Obtain the estimator w0 as w0 = argminwψ (w)ᵀ · ψ (w), and a consistent estimator Ŝ
(
ŵ0
)

for the variance-covaraince matrix of ψ (w0).
(4) The GMM estimator for ω is obtained as ω̂GMM = argminwψ (w)ᵀ Ŝ−1 · ψ (w) , where Ŝ−1

is the inverse matrix of Ŝ
(
ŵ0
)
.

(5) Estimate the statistic J = T ·
(
Ψ

ᵀ
GMMŜ

−1ΨGMM

)
, where ΨGMM = ψ

(
ω̂GMM

)
, which is

asymptotically distributed as a χ2 with N × (n+ 1)− dim (ω) degree of freedoms.
(6) Let ∇ψ be the gradient of ψ (w) evaluated at w = ω̂GMM . A consistent estimator for the

variance-covariance matrix of ω̂GMM isΣGMM = 1
T

(
∇ψ · Ŝ−1 · ∇ψᵀ

)−1
.

(7) Under the null hypothesis that ω(l) = 0, ω(l) ∈ ω, ω(l) is asymptotically normally distributed
with expected value equal to zero and variance equal to the l− th element of the main diagonal
of ΣGMM .

Whited (1998) shows that Investment Euler equations are very often rejected by
real data, although the relationship between investment and stock returns is well
known. To explain this we should keep in mind that testing Eq. (7.3.11) requires
to impose specific assumptions relative to the structure of investment adjustment
costs, the SDF and the production technology of the firm. Instead, the relationship
between stock and investment returns as in Eq. (7.3.10) is independent from the
SDF, and then its validity holds for more general technology and adjustment
costs specifications. For this reason investment Euler equation typically fails to
be consistent with empirical observations, while their implications for the cross
section of stocks returns remain valid, being only partially affected by the specific
hypothesis on the firm’s technology and the SDF of the economy.

7.4 Non-Markov Perfect Equilibria

In this section, we provide a concise overview of non-Markov perfect equilibria. The
model we present is a simplified version of Malenko and Tsoy (2020), which in turns
relates to Tserlukevich (2008) as well as DH (DeMarzo & He 2016). The basic idea
is the following. Consider the CT setting described in Sect. 6.3, and assume θ = 1
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for simplicity (i.e. zero recovery value). The MPE in DH yields the lowest possible
payoff for shareholders. Indeed, as shareholders have the option to issue additional
debt in the future, in the unique MPE of the model the value of this option is fully
dissipated. Consequently, we may consider grim trigger strategies those strategies
that off the equilibrium path are resulting in the unique MPE of the game.

Consider a dynamic game between two players, say Alice (A) and Bob (B). In
a nutshell, a grim trigger for Alice has the property that, if Bob deviates from his
commitment, then Alice will punish him forever. Of course, Alice’s punishment
strategy is credible if and only if it will be optimal for her given Bob’s optimal
response. In other words, a grim trigger strategy is credible if and only if its
punishment component is part of a dynamic equilibrium. In our context, players are
not Alice and Bob, as in the windsurfing example of Chap. 6, but bond holders and
shareholders, respectively. The latter announces they will follow a certain policy,
and the former, in case the latter will violate their commitment, will play as in the
DH’s MPE forever.

The difference with Markov perfect equilibria is clear. With grim trigger
strategies, shareholders and debt holders behavior no longer depend exclusively
on the payoff-relevant variables, but also on outcomes that will be never observed
in equilibrium. Recalling the windsurfing example in Chap. 6, non-Markov perfect
equilibria should be considered when agents can establish long-run relationships.
From a game theoretic perspective, we are going to make use implicitly of a Folk
theorem. Folk theorems is a common name in dynamic games for “anything goes”
results. Namely, in several situations, almost all efficient outcomes of a game can
be supported by appropriate grim trigger strategies. An example is tacit collusions
in dynamic oligopolies; see Fudenberg and Tirole (1991), Osborne and Rubinstein
(1994), for a detailed exposition of the Folk theorem and Tirole (1988) for its
applications in industrial organization.

7.4.1 The Setting

The basic setting of the model is the same as in Sect. 6.3.4, excluding the tax
deductibility of interests expenses when cF (t) > Y (t). For reasons that will be
clear later, we set c = r without loss of generality. Furthermore, we restrict the
analysis to the case in which the risk-neutral drift of operating earnings (EbIT)
is positive, 0 < μ < r , and ξ = 0. Suppose that shareholders commit to a
leverage policy that consists in holding constant the Debt-to-EbIT ratio, or leverage,
l (t) := F(t)

Y (t)
= l0. If such a policy was credible, the price of debt will be equal to

one as we would never observe an event of default. To simplify the discussion, we
will refer to t = 0 as the inception date, while to l0 as target leverage ratio.

With Markov perfect strategies, we showed that commitment to l (t) = l0 is
time-inconsistent. Indeed, in the only MPE of the game, l (t) is a function of
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past earnings (cf. Sect. 6.3.4). However, once we allow shareholders and bond
holders to take into account off-equilibrium paths, shareholders’ commitment to
l (t) = l0 has a chance to become dynamically consistent. The idea is the following.
Suppose that committing to l (t) = l0 yields always an higher equity market
value, compared to the case of the unique MPE of the game. With Markov perfect
strategies, shareholders would have the incentive to deviate from their commitment
in order to profit from the capital loss inflicted to bond holders. However, if the
latter “punished” shareholders “behaving1” as in the unique MPE of the game,
shareholders may refrain to deviate from their commitment.

Let VE (t|l (t) = l0) be the value of the equity given shareholders commitment
to l (t) = l0, while V E (t|MPE) that in case of a MPE; as long as the proceeds from
issuing an amount� > 0 in excess of the adjustment to keep l (t) = l0 are less than
VE (t|MPE)−V E (t|l (t) = l0), the grim trigger strategy described before ensures
that l (t) = l0 is time-consistent for shareholders. In the next section we show that
the set of time-consistent constant leverage policies is characterized by l0 ≤ r−1.
Therefore, any time-consistent constant leverage policy translate into default-free
unsecured debt, with price being always equal to one.

Furthermore, absent other restrictions on the tax deductibility of interest pay-
ments, we are going to show that l0 = 1 is the optimal time consistent leverage
policy, in the sense that shareholders prefer to commit to l (t) = r−1 compared to
any other level l0 < 1. As a result, for each t > 0, that is, after an initial discrete
amount of debt is issued to set l (0) = l0, the equity market value is equal to the
NPV of the tax shield on coupon payments. In other words, operating earnings
are entirely pledged to obtain unsecured debt financing, and shareholders retain the
corresponding tax benefits.

7.4.2 Constant Leverage Policies

A usual, a policy is a (possibly) state-contingent rule of behavior. A leverage policy
is an Ft−adapted stochastic process l (t) = F(t)

Y (t)
, where Ft is the natural filtration

of the EbIT process Y (t). A constant leverage policy is such that l (t) = l0, where
l0 ≥ 0 is set at inception. Unlevered free cash flows are equal to Y (t) (1 − τ ), as
the firm’s invested capital is assumed to be constant over time. Equivalently, the
dynamics of Y (t),

dY (t) = μY (t) dt + σY (t) dWQ

t , (7.4.1)

1Conditional upon shareholders deviating from their commitment, debt investors will conjecture
that the firm will issue debt as in the only MPE of the game. As a result, shareholders will confirm
this conjecture, eventually dissipating the value of the option to adjust the debt in the future.
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is supported by an exogenous GBM process for the before-tax RoIC. A constant
leverage policy implies the following debt dynamics,

dF (t) = μl0Y (t) dt
︸ ︷︷ ︸

Smooth Debt Adjustment

+ σ l0Y (t) dW
Q

t︸ ︷︷ ︸
Lump-sum adjustment at t+dt

. (7.4.2)

As long as the price of debt is equal to one, the term σ l0
r
Y (t) dW

Q

t is an infinitesimal
lump-sum cash inflow (outlay, if negative) that the firm obtains (pays, if negative)
from the adjustment of debt in response to the realization of the profitability shock
dWt . Notably, this sum is paid or earned by shareholders as an extraordinary
dividend right before the new free cash flow Y (t) dt starts to accrue. The presence of
this term reintroduce a difference between the cum-dividend and ex-dividend market
value of equity. For t �= 0, this difference is in fact infinitesimal and can be omitted.
However, at t = 0, the firm issues a discrete amount of debt to obtain the target
leverage ratio l0 based on the value of operating earnings Y (0) = Y0. Therefore, at
inception we have a difference between shareholders value and ex-dividend equity
market value. To simplify the notation, we use VE to denote the market value of
equity for every t �= 0, for which we do not need to distinguish between cum and
ex dividend value (cf. Sect. 5.1), except for the term σ l0

r
Y (t) dW

Q

t which can be
ignored, being infinitesimal with probability one.

Recall that the expected value of W (t + h) − W (t) is null for every h > 0.
Le assume to observe the value of equity right after the same instant’s lump-sum
adjustment σ l0Y (t − dt) dWQ

t−dt has occurred. Then, it is immediate to show that
(cf. Sect. 5.2) the value of equity is equal to,

rV E (Y |l = l0) = Y (1 − rl0) (1 − τ )+ μl0Y + μYV EY (Y |l = l0)+ 1

2
σ 2Y 2V EYY (Y |l = l0) ,

(7.4.3)

where r > μ is the risk-free rate. Under commitment to l (t) = l0, the equity value
function depends from Y (t) only, and,

V E (Y |l = l0) = Y (1 − rl0) (1 − τ )+ μl0Y
r − μ . (7.4.4)

Commitment to l (t) = l0 implicitly assumes that shareholders never default
in the future. Thus, a necessary condition for l (t) = l0 to be time-consistent is
that default is never enticing for shareholders. Let assume that l0 ≤ r−1. Then,
commitment to never default in the future is credible, as for any default boundary
Yb < ∞ shareholders would loose their continuation value Yb(1−rl0)(1−τ )+μl0Yb

r−μ ,

which is strictly positive. In this regard, notice that the cash flow σ l0
r
Y (t) dW

Q

t is
infinitesimal, and therefore it does not alter the conclusion in terms of cum-dividend
equity market value, which is the only relevant metric for shareholders. On the other
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hand, if l0 > r−1, it is never rational for shareholders to adopt a constant leverage
policy, as Y (1 − rl0) (1 − τ )+ μl0 = [Y + (μ− r) l0] (1 − τ ) < Y (1 − τ ).

7.4.3 Time-Consistent Constant Leverage Policies

A constant leverage policy l0, is time-consistent if and only if shareholders do
not have the strict incentive to deviate from it. As we showed before, a necessary
condition is that l0 ≤ r−1. Subject to this condition, shareholders never default
along the commitment path. Recall that, following any deviation to l (t) > l0, debt
holders punish shareholders forcing the outcome of the unique MPE of the game.
First of all, notice that buying back debt is always neutral for shareholders, as the
price of debt is equal to one. Therefore, we can assume without loss of generality
that discrete buybacks never occur in equilibrium. Hence, we must determine under
which conditions it is optimal for shareholders to refrain from increasing debt by an
amount� > 0 and deviate from the constant leverage policy l (t) = l0. To this end,
let p (Y, F +�) be the price of debt in the only MPE of the game, that is,

p (Y, F +�) =
[

1 −
(
y

yb

)−γ]
− τr

r + ξ

[

1 −
(
y

yb

)−γ]
< 1, (7.4.5)

where, y := Y
F+� , γ =

(
μ− 1

2σ
2
)
+
√
(
μ− 1

2σ
2
)2+2rσ 2

σ 2 and yb = γ
1+γ

c(1−τ )+ξ
r+ξ (r − μ)

(cf. Sect. 6.3.4). Since in the case of commitment σ l0Y (t − dt) dWQ

t−dt is infinites-
imal, we can formulate the time-consistency requirement as,

Y (1 − l0) (1 − τ )+ μl0r Y
r − μ

︸ ︷︷ ︸
Shareholders Value | Commitment to l0

≥ V E,MPE (Y, F +�)+ p (Y, F +�)�
︸ ︷︷ ︸

Shareholders Value | Deviation �>0

,

(7.4.6)

The RHS of this inequality is equal to the value of the firm in the unique MPE of the
game minusp (Y, F +�)F . Hence, from Eq. (6.3.23), we can formulate Eq. (7.4.6)
as,

[1 − p (Y, F +�)]F ≥ − 1 − τ
r − μY

(
y

yb

)−γ
, (7.4.7)

which is always true as p (Y, F +�) < 1. Therefore, every constant leverage policy
such that l (t) = l0 ≤ r−1 is time consistent.
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In other words, when the unique MPE of the game is used to punish shareholders’
defection, the commitment to any policy l (t) = l0 ∈ [

0, r−1
]

is time-consistent.
Therefore, the optimal time-consistent constant leverage policy is the one that
maximizes shareholders value at t = 0 subject to the incentive compatibility
constraint l0 ∈ [

0, r−1
]
,

max
l0∈[0,r−1]

⎧
⎪⎪⎨

⎪⎪⎩

V E (Y0, l0)︸ ︷︷ ︸
Ex-dividend equity value

+ l0
Y0

r︸︷︷︸
Proceeds from initial debt’s issuance

⎫
⎪⎪⎬

⎪⎪⎭

, (7.4.8)

that is,

max
l0∈[0,r−1]

{
Y0 (1 − τ )+ τ l0Y0

r − μ
}

. (7.4.9)

Since the objective function is linear and increasing in l0, the optimal constant
leverage policy is l0 = r−1. Such a policy maximizes the NPV of debt tax shield,
in that the firm never pays taxes. Indeed, shareholders value is Y0

r−μ at inception. As
a matter of fact, for every date t > 0 the free cash flows to the firm are equal to its
operating earnings. Consequently, the value of the firm is equal to V (t) = Y (t)

r−μ , and

the market-leverage ratio F(t)
V (t)

is constant and equal to (r − μ) l0.

7.4.4 Limits to Tax-Deductibility of Interest Expenses

The model presented is extreme in many respects. First, despite debt is unsecured,
there is no default risk due to the possibility of continuously adjust leverage in
response to infinitesimal shocks. Second, the interest coverage ratio rF

Y
is always

equal to one. Companies with an interest coverage close to one are generally rated
as junk or close to, with high credit spreads that must compensate bond holder for
the risk of incurring a certain loss in case the firm defaults. Third, taxation becomes
irrelevant to the value of the firm and its securities, and government obtains zero
corporate tax revenues.

In several jurisdictions, the tax deductibility of interest expenses is limited
up to a certain fraction of operating earnings. For instance, companies that are
headquartered in Italy for tax purposes faces a 30% limit. Recently, the same limit
has been introduced also for US tax resident firms, although with a slight difference
in terms of the relevant definition of operating earnings, which can be ignored at this
level of analysis. Let r l̄ < 1 be the maximum interest expenses that can be deducted
from corporate taxes as a fraction of the same period’s operating earnings. Then,
every l0 ∈ [

l̄, r−1
]

is equivalent to l̄, since it does not generates any additional free
cash flow to the firm. Therefore, without loss of generality, we can limit the search
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of the optimal time-consistent constant leverage policy to the domain
[
0, l̄

]
,

max
l0∈

[
0,l̄
]

{
Y0 (1 − τ )+ τ l0Y0

r − μ
}

. (7.4.10)

Again, the objective is linear and increasing in l0. Thus, the optimal time-consistent
constant leverage policy is l̄, as it is the one minimizing the future tax burden. The
value of the firm is equal to,

V (t) = Y (t) (1 − τ )+ τ l̄Y (t)
r − μ (7.4.11)

and the market-leverage ratio is constant and equal to F(t)
V (t)

= l̄(r−μ)
1+(l̄−1)τ

. The trade-

off theory is back, although a constant leverage ratio is no longer the consequence
of an explicit trade-off between the tax benefits of debt and bankruptcy, agency or
transaction costs. Instead, the trade-off arises between the alternatives of reducing
debt in response to a negative shock, and defecting and being punished with the
occurrence of most hurting equilibrium of the game.

As in the discrete time case (cf. Sect. 3.1.3), the weighted average cost of capital
(WACC) is equal to,

wacc (t) = V E (t)

V (t)
Et

[
rE (t)

]
+ F (t)

V (t)
r (1 − τ ) , (7.4.12)

as debt is risk-free and trades at par value. The proof is straightforward and the
reader may refer to DeMarzo (2005) for more technical details. In this specific case,
we obtain,

wacc (t) = (1 − λ)Et
[
rE (t)

]
+ λr (1 − τ ) , (7.4.13)

which is the standard practitioners formula except that the cost of debt is equal to
the risk-free rate, as there are no transaction costs.

7.4.5 Final Considerations

Malenko and Tsoy (2020) introduces jumps in the unlevered free cash flows process
(cf. Eq. 7.4.1), and consider the class of s−S restructuring policies. An s−S policy
in their paper consists in maintaining the interest coverage ratio

(
rF
Y

)
between a

lower (s) and an upper (S) threshold. Provided that jumps are not so extreme to lead
shareholders to prefer default, the DH equilibrium could be used as a punishment
device to support an equilibrium of this type. Hence, once we depart from Markov
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Perfect strategies, we can use the DH equilibrium to support a vast array of subgame
perfect equilibria, in which the firm may adjust its leverage according to very
different rules. Despite this construction may be used to rationalize several observed
patterns, its flexibility could be detrimental to stable predictions. After all, if we can
rationalize several different leverage patterns, we can no longer predict which one
will occur in a specific situation.

Appendix

In this appendix we provide a Python code to implement Algorithm 1 in Sect. 7.3.1.
For simplicity, we considered he case in which investment adjustment costs are
symmetric, that is, θ+ = θ− = θ . To run the program is sufficient to:

(1) copy-paste the code below within a text file, and save it with the .py extension
(e.g. algo1.py);

(2) open a Python console (e.g. ipython) and import the module created before (e.g.
import sys; sys.path.append(“//Users//myname//Documents//”); import algo1
if algo.py is saved in the folder /Users/myname/Documents/ )

(3) the user should run the function solve_model(Gk,n,Ve0) (e.g. out=algo1.solve_
model(50,100,None)) to obtain the numerical solution of the model.

See the documentation of the function solve_model for the usage of its arguments
and the values returned from its call.

1 # ! / u s r / b i n / env py thon
2 # −∗− cod ing : UTF−8 −∗−
3 # cod ing : u t f −8
4 # a u t h o r ( s ) : @umberto . s a g l i a s c h i , @rober to . savona
5
6 import numpy as np , pandas a s pd , s c i p y as s c i
7 from s c i p y . i n t e r p o l a t e import i n t e r p 2 d
8 from s c i p y import o p t i m i z e
9 from numpy import l i n a l g

10
11
12 # P ar ame ter s
13 r = 0 . 0 2 # R ea l r i s k − f r e e r a t e
14 d e l t a = 0 . 2 0 # D e p r e c i a t i o n r a t e
15 a l p h a = 0 . 3 # L i q u i d a t i o n c o s t s , as a f r a c t i o n o f K \ c d o t (1 − \ d e l t a )
16 t a u = 0 . 2 5 # Tax r a t e
17 t h e t a = 0 . 0 5 # a d j u s t m e n t c o s t par ame te r
18 u p s i l o n = 0 . 5 # DRS c o e f f i e i c e n t
19 kappa = 0 . 3 # Working c a p i t a l t o f i x e d a s s e t s r a t i o
20 n = 100 # Max i n n e r loop i t e r a t i o n
21 p t o l = 10e−5 # T o l e r a n c e : p r i c e per d o l l a r o f uns ecur ed d e b t
22 v t o l = 10e−5 # T o l e r a n c e : e q u i t y v a l u e u n c t i o n g i v e n p r i c e o f uns ecur ed

d e b t
23
24 # Compos i t e p a r a m e t e r s
25 v a r p h i =0 . 005
26 c = r + v a r p h i # \ v a r p h i =0
27 gamma = (1. − a l p h a ) ∗(1. − d e l t a ) / ( 1 + c ) #Same o f lambda s i n c e \ v a r p h i =0.
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28
29 # z _ g r i d i s t h e s u p p o r t o f z . Tmat i s a t r a n s i t i o n m a t r i x f o r t h e s hock

under t h e r i s k −n e u t r a l p r o b a b i l i t y measure .
30 z _ g r i d = [ 0 . 5 , 1 . , 1 . 5 ]
31 Gz = l e n ( z _ g r i d )
32 TMAT = [ [ 0 . 3 , 0 . 2 , 0 . 5 ] ,
33 [ 0 . 4 , 0 . 2 , 0 . 4 ] ,
34 [ 0 . 5 , 0 . 2 , 0 . 3 ] ]
35 TMAT = np . a r r a y (TMAT)
36
37
38 def K _ s t e a d y _ s t a t e ( ) :
39 ’ ’ ’
40 S o l v e f o r t h e d e t e r m i n i s t i c s t e a d y− s t a t e o f t h e model
41 ’ ’ ’
42 # Get u n c o n d i t i o n a l p r o b a b i l i t i e s
43 e i g e n v a l , e i g e n v e c s = np . l i n a l g . e i g (TMAT. T )
44 probs _unc = e i g e n v e c s [ ( np . abs ( e i g e n v a l − 1 . ) ) . a rgmin ( ) ]
45 probs _unc = probs _unc / p robs _unc . sum ( )
46
47 #Compute t h e u n c o n d i t i o n a l e x p e c t e d v a l u e o f z
48 z _ b a r = np . d o t ( p robs _unc , z _ g r i d )
49
50 #Compute t h e d e t e r m i n i s t i c s t e a d y s t a t e o f t h e model
51 A1= ( 1 . + r ) ∗ ( (1+ kappa ) + t h e t a ∗ d e l t a ∗(1− t a u ) )
52 A2 = ( t h e t a ∗ d e l t a +0.5∗ t h e t a ∗ ( d e l t a ∗∗2 . ) ) ∗(1. − t a u ) + t a u ∗ ( kappa+ d e l t a +

gamma∗c ) +1− d e l t a −gamma∗ v a r p h i
53 K_hat = ( ( A1−A2) / ( u p s i l o n ∗ z _ b a r ∗(1. − t a u ) ) ) ∗ ∗ ( 1 . / ( u p s i l o n −1) )
54
55
56 re turn K_hat
57
58 def s o lve_mode l (Gk=50 , n=n , Ve0=None ) :
59 ’ ’ ’
60 A l g o r i t h m 1 i s run by c a l l i n g t h i s f u n c t i o n , which r e t u r n s \ h a t {V } ^ { E}

and t h e e q u i l b r i u m p o l i c y K’=K ’ (K , z ) .
61 S o l v e t h e model f o r a g i v e n s i z e o f t h e g r i d f o r t h e c a p i t a l s t o c k ( Gk

) .
62 The par ame ter n c o n t r o l s t h e maximum number o f i t e r a t i o n s . Ve0 i s a

g u e s s f o r t h e v a l u e f u n c t i o n .
63 The a l g o r i t h m can be i t e r a t e d f o r f i n e r g r i d s ( i . e . i n c r e a s i n g v a l u e s

o f Gk) t a k i i n g as g i v e n t h e e q u i t y v a l u e f u n c t i o n o b t a i n e d a t t h e
p r e c e d e n t s t e p . In t h i s way we can mimick t h e Chow and

T s i t s i k l i s ( 1 9 9 1 ) approach .
64 ’ ’ ’
65 a s s e r t ( t a u ∗c>= v a r p h i )
66 # Grid
67 K_grid = np . l i n s p a c e ( 0 . 0 1 , K _ s t e a d y _ s t a t e ( ) ∗ 2 ∗ max ( z _ g r i d ) / min (

z _ g r i d ) , Gk)
68 K_step = np . mean ( np . d i f f ( K_grid ) )
69
70 # Guees
71 i f Ve0 i s None : Ve0 = lambda K, z : D(K=K, K_end =0 , z=z )
72 Ve0 = np . v e c t o r i z e ( Ve0 ) (∗ np . mes hgr id ( K_grid , z _ g r i d ) )
73 Ve0 = i n t e r p 2 d ( K_grid , z _ g r i d , Ve0 , b o u n d s _ e r r o r =True , f i l l _ v a l u e =None

)
74
75 re turn VIT ( K_grid , Ve_guess=Ve0 , n=n , v t o l = v t o l ) , K_grid
76
77 def VIT ( K_grid , Ve_guess=None , n=n , v t o l = v t o l ) :
78 " " "
79 Per form S t e p s 1 t o 7 .
80 " " "
81 j =1
82 Ve=Ve_guess
83 eps = np . i n f
84 whi le ( eps > v t o l ) and ( j <=n ) :
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85 p r i n t ( "%i i t e r a t i o n s , eps=%f " % ( i n t ( j ) , eps ) , end=" \ r " )
86 Ve_new = T ( Ve=Ve , K_grid =K_grid ) # Bel lman o p e r a t o r
87 NEW=Ve_new ( K_grid , z _ g r i d )
88 OLD= Ve ( K_grid , z _ g r i d )
89 d i f f _ s q u a r e d = l i s t (map ( lambda x : x ∗∗ 2 . , NEW−OLD) )
90 eps = np . sum ( d i f f _ s q u a r e d )
91 Ve = Ve_new
92 j += 1 # upda te c o u n t e r
93
94 K_next = T ( Ve , what= ’K’ , K_grid =K_grid )
95
96 re turn Ve , K_next
97
98 def T ( Ve , K_grid , what= ’Ve ’ ) :
99 " " "

100 Perform S t e p 3 . f o r a l l g r i d p o i n t s g \ i n \ ma thca l {G}
101 " " "
102 T _ l o c a l = lambda K, z : s o l v e _ l o c a l ( Ve=Ve , K=K, z=z , K_grid =K_grid , what =

what )
103 o u t _ g r i d = np . v e c t o r i z e ( T _ l o c a l ) (∗ np . mes hgr id ( K_grid , z _ g r i d ) ) #

E v a l u a t e v ’=Tv over t h e g r i d
104 # I n t e r p o l a t e v_g t o o b t a i n Ve_new
105 o u t = i n t e r p 2 d ( K_grid , z _ g r i d , o u t _ g r i d , b o u n d s _ e r r o r =True , f i l l _ v a l u e

=None ) # R e g u l a r G r i d I n t e r p o l a t o r ( p o i n t s =( K_gr id , U_grid , z _ g r i d ) ,
v a l u e s=Ve_gr id , b o u n d s _ e r r o r=False , f i l l _ v a l u e =0)

106 re turn o u t
107
108 def s o l v e _ l o c a l ( Ve , K, z , K_grid , what= ’Ve ’ ) :
109 " " "
110 Perform t h e i n s t r u c t i o n s a t S t e p 3 . f o r a g i v e n g r i d p o i n t g \ i n \ ma thca l

{G}
111 " " "
112 # C o n d i t i o n a l p r o b a b i l i t i e s g i v e n c u r r e n t r e a l i z a t i o n f o r z_ { t }
113 cond_probs = TMAT[ z _ g r i d . i n d e x ( z ) ]
114
115 def f ( K_end ) :
116 EXP = np . sum ( [ Ve ( K_end , z _ g r i d [ i ] ) ∗ cond_probs [ i ] f o r i in range ( 0 ,

Gz , 1 ) ] )
117
118 re turn −(D(K=K, K_end=K_end , z=z ) + ( 1 . / ( 1 . + r ) ) ∗EXP)
119
120 # Find o p t i m a l c o n t r o l s c o n d i t i o n a l upon t h e f i r m b e i n g s o l v e n t
121 o p t = o p t i m i z e . fminbound ( f , min ( K_grid ) ,max ( K_grid ) )
122 K_end = min ( K_grid , key=lambda x : abs ( x−o p t ) )
123 EXP = np . sum ( [ Ve ( K_end , z _ g r i d [ i ] ) ∗ cond_probs [ i ] f o r i in range ( 0 , Gz ,

1 ) ] )
124
125 # Obta in t h e cum−d i v i d e n d e q u i t y v a l u e
126 Ve = max (D(K=K, K_end=K_end , z=z ) + ( 1 . / ( 1 . + r ) ) ∗EXP , 0 . )
127
128 i f what == ’Ve ’ :
129 re turn Ve
130 e l s e :
131 re turn K_end
132
133 def D(K, K_end , z ) :
134 " " "
135 T h i s f u n c t i o n compute d i v i d e n d s a f u n c t i o n o f :
136 − K, t h e c a p i t a l s t o c k a t t h e b e g i n n i n g o f t h e d a t e c o n s i d e r e d ;
137 − K_end , t h e c a p i t a l s t o c k a t t h e end o f t h e d a t e c o n s i d e r e d ;
138 − z , t h e c u r r e n t r e a l i z a t i o n f o r z_ { t } ;
139 " " "
140 I = K_end − (1. − d e l t a ) ∗K # I n v e s t m e n t s
141 p h i = 0 . 5∗ t h e t a ∗ ( I ∗∗2 . ) /K # I n v e s t m e n t a d j u s t m e n t c o s t s
142 NI = ( z ∗ (K∗∗ u p s i l o n ) −(kappa+ d e l t a +c∗gamma) ∗K−p h i ) ∗(1. − t a u ) # Net Income
143 De l t a_ IC = ( 1 . + kappa ) ∗ ( K_end−K) #Change i n I n v e s t e d C a p i t a l
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144 Delta_PFN = gamma∗ ( K_end−K) # P roceeds from d e b t c a p i t a l s t r u c t u r e
a d j u s t m e n t s

145 DIVIDENDS = NI + Delta_PFN − Del ta_ IC
146
147 re turn DIVIDENDS
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