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ABSTRACT

The sub-Riemannian problem on group of motions of pseudo Euclidean plane is consid-
ered. From engineering perspective, this is the optimal control problem of a unicycle moving
on a hyperbolic plane (plane with constant negative curvature). The dynamical system
comprises real analytic left invariant vector field with 2-dimensional linear control vector -
the control variables being the translational and the angular velocity of the unicycle. The
sub-Riemannian optimal control problem seeks to determine optimal control input and the
corresponding optimal trajectory between the given initial and terminal states such that the
sub-Riemannian length on this trajectory is minimized.

At the onset we prove the controllability of the control distribution. We define the left
invariant Hamiltonian for the system under consideration and apply the Pontryagin’s Maxi-
mum Principle (PMP). We prove that the extremal trajectories in the abnormal case are not
strictly abnormal and the corresponding control vector is a constant i.e., identically zero. We
then consider the normal Hamiltonian system. Through suitable coordinate transformation,
we prove that the vertical subsystem is a double covering of a mathematical pendulum. This
fact allows us to introduce Jacobi elliptic functions for integration of the nonlinear state equa-
tions that would otherwise be analytically intractable. Using specific elliptic coordinates, we
calculate the extremal trajectories parametrized by Jacobi elliptic functions corresponding
to various energy levels of the pendulum describing the vertical subsystem. We gain further
insight into the nature of extremal trajectories through simulation and qualitative analysis.

As PMP gives only first order necessary optimality conditions, the extremal trajectories
resulting from the integration of normal Hamiltonian system are candidate optimal only.
Hence, second order optimality conditions are applied to eliminate the trajectories that
cease to be optimal at certain point. It is known that a normal extremal trajectory ceases
to be optimal either because it meets another candidate optimal trajectory at a point called
Maxwell point where both have equal sub-Riemannian length, or because there exists a point
called a conjugate point where a family of extremal trajectories has an envelope. We find
surfaces in the state space M containing all Maxwell points and obtain a description of the
Maxwell points in terms of roots of function forming these surfaces. Once the Maxwell sets
are calculated, an upper bound on the cut time (the time at which an extremal trajectory
loses global optimality) is obtained.

As argued, an extremal trajectory can lose optimality due to the existence of conjugate
points. Conjugate points are the critical points of the exponential mapping and are found
as roots of the Jacobian of the exponential mapping. The time at which the first conjugate
point exists is called the first conjugate time. We conclude that the first conjugate point
occurs later than the first Maxwell point and therefore the upper bound on cut time is given
by the first Maxwell time. In the end, we present 3-dimensional plots of some important
objects in sub-Riemannian problem on Lie group SH(2).
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Chapter 1

Introduction

I feel engulfed in the infinite immensity of spaces whereof I know nothing, and
which know nothing of me, I am terrified. The eternal silence of these infinite
spaces alarms me.

Look somewhere else for someone who can follow you in your researches about
numbers. For my part, I confess that they are far beyond me, and I am competent
only to admire them.

(Blaise Pascal)

Having spent couple of years working on Geometric Control Theory and Sub-Riemannian
geometry, the quotes above from Blaise Pascal express my feelings in the most appropriate
manner. I must confess that I have stumbled to grasp and understand the subject as best
as I could, yet, it was way more deeper and richer than could be covered in the given
time. The sub-Riemannian problem on the Lie group SH(2) is an optimal control problem
of hypothetical unicycle on a hyperbolic plane i.e., a plane with constant negative curvature.
Like a standard optimal control problem it comprises two essential parts i.e., computation of
optimal control function and finding the path on the configuration manifold that minimizes
some cost functional. We employ tools from the geometric control theory and calculus of
variations to compute the open loop optimal control. A detailed optimality analysis based
on Maxwell points and conjugate points is carried out to eliminate the non-optimal extremal
trajectories. Based on the optimality analysis, we are able to state an exact bound on the
cut time i.e., the time when an extremal trajectory loses global optimality.

Being primarily an electronics engineer and with humble background in mathematics,
much of the hardship I faced during this work is attributed to the lack of appropriate skill set
to understand and admire the work of others and contribute something that could push the
boundaries of the existing knowledge on this subject. It turned out that more than myself
pushing knowledge boundaries outward, I was rather pushed inwards on most occasions.
At the time of writing this thesis, I face yet another dilemma i.e., whether to give the

1
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thesis a mathematician’s perspective or an engineer’s perspective. For someone initiated in
mathematics, document could be written with little to no background buildup stating the
theoretical results without giving much attention to intuitive or physical explanations. On
the contrary lot of background knowledge with intuitive explanations of theoretical results,
detailed explanation of terminologies, connection between various notions of optimal control
etc. is needed to make it more accessible to the engineers. The work actually pertains to
mathematical control theory and has a much less applied flavor, yet I fell in favor of the
engineer’s perspective. There are two compelling reasons for it i.e., first all along I tried to
develop intuitive reasoning of various notions myself and I hope there would be others who
would like it; and second I expect the understanding I developed over these couple of years
to fade with time and only a detailed document could preserve that. Consequently, I have
tried to gather essential definitions of various terminologies and various notions related to
optimal control theory and sub-Riemannian geometry. Hence, a mathematician may find it
laborious and overstretched and perhaps an engineer would find it appropriate. This however
does not change the very persona of the research work. I do try to give intuitive explanations
of various results yet the results are primarily theoretical in character and must be treated
as such. Hence, one must not expect usual results that are found in a research work that
pertains to control of physical systems i.e., there would be no closed loop simulation plots,
there would be no experimental results to compare with, but, there would be numerous
equations, propositions, mathematical proofs and discussions on optimality analysis.

1.1 Brief Problem Statement

This research problem pertains to the motions of the pseudo Euclidean plane - a plane with
constant negative curvature. Such a plane is also called hyerbolic plane because the polar rep-
resentation of a point a(a1, a2) on a pseudo Euclidean plane is given as a1 = r coshϕ, a2 =

r sinhϕ, where r is the length and ϕ is the orientation angle of the position vector of a.
Physically such a plane looks like a saddle as given in the figure below:

The motions that we investigate are linear maps of points of the pseudo Euclidean plane
that preserve distance and orientation of the points being transformed. Intuitively the mo-
tions may be visualized in terms of a unicycle moving on a pseudo Euclidean plane. The
unicycle has two degrees of freedom i.e., translation along a line in the plane and rotation
about a vertical axis passing through its center of mass. Configuration and state manifoldM
of the system is 3-dimensional with every point q = (x, y, z) ∈M where x, y are two position
variables z is the angular orientation variable of the unicycle on the hyperbolic plane. The
configuration manifold M alongwith the motions of the pseudo Euclidean plane form a Lie
group called special hyperbolic group SH(2).

It is well known that a unicycle is a nonholonomic system which is constrained to have a
translational velocity along a line and an angular velocity about its vertical axis. Mathemat-
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Figure 1.1: Pseudo Euclidean Plane

ically, a unicycle moving on a hyperbolic plane is represented by a driftless control system
as:  ẋ

ẏ

ż

 =

 u1 cosh z

u1 sinh z

u2

 .

where u1 is the translational velocity and u2 is the angular velocity. Optimal control of
a nonholonomic system is mathematically called a sub-Riemannian problem. Hence, the
research problem under consideration is the optimal control and optimal trajectory design
of a hypothetical unicycle moving on a hyperbolic plane. Given the initial and final states,
the objective is to calculate a horizontal curve γ ⊂ SH(2) between the q0 and q1 such that
an appropriate cost function l =

´ t1
0

√
u2

1 + u2
2 dt → min, called the sub-Riemannian length

functional is minimized.
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Figure 1.2: Configuration Manifold of a Unicycle

1.2 Motivation

Optimality seems to lie at the heart of all the physical phenomenon in the universe. Amongst
trivial examples include catenary, the famous brachistochrone problem, light passing through
a medium, image inpainting, the interaction between particles and force fields on quantum
scale etc. Human race seems to have developed enormous respect for this principle as every
man made process seems to optimize certain cost. Processes that are not optimal in nature
evolve and mature to more optimal ones or get weeded out if the optimality is violated.
When it comes to optimality in control theory, PMP stands as single most outstanding
achievement of mathematics. Discovered purely for an engineering application, PMP is a
complete mathematical theory in itself with host of applications that are increasing everyday.
It is therefore important and academically rewarding to consider the optimal control of
a physical system like unicycle on hyperbolic plane using PMP. There are several other
important reasons to consider this research problem i.e.,

� In the field of robotics, motion is always considered on a Euclidean plane. However,
it turns out that the real world space is seldom Euclidean. The space in which a
real world object moves always has some curvature, either positive or negative. It is
therefore more interesting and relevant to consider the optimal control of such physical
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systems on hyperbolic or spherical planes.

� The technique employed to solve the research problem is geometric control theory.
Geometric control is one of the latest advances in control theory whose character is
essentially geometric. It is an extension of classical calculus of variations and em-
ploys tools of differential geometry, Lie theory etc. to solve the system of differential
equations representing the system. This research will utilize, extend and improve the
existing techniques available to solve the sub-Riemannian problem via geometric con-
trol methods.

� As will be highlighted later in the thesis, several physical systems such as steering of a
car, parking of a car, planar robots and even UAVs can be modeled via equations of a
unicycle. Hence, the theoretical results on computation of optimal control and analysis
of optimal trajectories is applicable to all such systems.

� In [2], the authors provided a classification of all sub-Riemannian structures on three di-
mensional Lie groups in terms of the basic differential invariants. Hence, sub-Riemannian
problem on group SH(2) is very important in the entire study of three dimensional Lie
groups.

1.3 Research Objectives

The goal of this work is to study the sub-Riemannian problem and address following research
problems:

1. Controllability, integrability and existence of optimal trajectories of the dynamical
system, [3], [4].

2. Obtain a complete parametrization of extremal trajectories [3].

3. Description of symmetries and the corresponding Maxwell sets [3] [5].

4. Characterize conjugate loci, sub-Riemannian spheres [5].

5. Description of cut loci and global optimality analysis.

6. Description of the global structure of the exponential mapping and the optimal syn-
thesis.

It is pertinent to note that results on research problems 1–4 have been presented in this thesis.
The research problems 5 and 6 fall outside the scope of this thesis and have been suggested as
future work. As such this is a novel research problem as sub-Riemannian problem on group of
motions of pseudo Euclidean plane has not been considered earlier. Optimal control has been
computed and local and global optimality analysis has been carried out. A novel orthogonal
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transformation has been presented which transforms the sub-Riemannian problem on Lie
group SH(2) to an equivalent problem on SOLV− .

1.4 Thesis Structure

The thesis comprises ten chapters and four appendices including the introduction. Chapter
2, 3 and 4 are our spade work. The whole idea behind these chapters is to provide a short
account of essential notions and concepts to the reader and to make the document self suffi-
cient. Hence, brevity has been compromised in favor of completeness. In chapter 2 we collect
definitions that are encountered frequently in the thesis and are essential for understanding
this work. Definitions are supported by short intuitive explanations and figures wherever
possible. Geometric control is an interdisciplinary subject that lies at crossroads of opti-
mal control theory, mechanics, Lie theory etc. In chapter 3 we try to develop the essential
connection between these subjects and clarify how geometry, mechanics and control come
together. In chapter 4 we briefly explain the concept of sub-Riemannian manifold and then
present a detailed literature review. Literature review is multifaceted. It covers equivalent
sub-Riemannian problems on various Lie groups, some practical applications of geometric
control theory and the numerical integration techniques specially developed for integrating
dynamical systems evolving on a Lie group.

Chapter 5 – 9 contain the main results and contributions of this research work. In Chapter
5 we present the detailed problem statement. We also state and explain the objectives of
this research. In Chapter 6 we tackle the issues like controllability, computation of open loop
control, local representation of the system in terms of canonical coordinates and integrability.
We also present an orthogonal transformation that transforms the Lie group SH(2) into the
Lie group SOLV−. In Chapter 7 we compute the Hamiltonian flow and parametrize the
extremal trajectories in terms of Jacobi elliptic functions. This parametrization is extremely
important for second order optimality analysis that is the subject of Chapters 8 and 9. The
second order optimality analysis is basically an elimination process in which we eliminate
the trajectories that contain either the Maxwell points or the conjugate points. In Chapter
8 we provide complete description of Maxwell strata based on the symmetries of the vertical
subsystem. We obtain the first Maxwell time corresponding to trajectories of the vertical
subsystem. The first Maxwell time gives the upper bound on the cut time i.e., time of loss of
global optimality. In Chapter 9 we compute the conjugate loci of the extremal trajectories.
We compute the Jacobian of the exponential mapping and calculate the first roots of the
Jacobian which gives the first conjugate time. We also obtain upper and lower bounds on
n-th conjugate times that are important in the description of the sub-Riemannian wavefront.

We conclude the text in Chapter 10 where we describe the objectives achieved in the
research work and outline the possibility of future research work in the sub-Riemannian
problem on the Lie group SH(2). The Appendix 1 is a detailed description and derivation



CHAPTER 1. INTRODUCTION 7

of the Jacobi elliptic functions. Appendices 2–4 contain the Mathematica code that was
used to compute the Maxwell points, conjugate points and 3-dimensional plots of the sub-
Riemannian wavefront and sub-Riemannian sphere.

I feel that in entirety, the subject is extremely beautiful with great potential for further
research . Hence, in this thesis I share not my knowledge or my work, but the enthusiasm
and the passion that I developed along the way.



Chapter 2

Preliminaries

This research is based on geometric control theory that borrows its concepts from various
disciplines of mathematics such as differential geometry, Lie theory etc. Consequently, the
research thesis discusses a wide range of topics and concepts that are usually forte of a
mathematician and not an engineer. Hence, it is prudent to develop the necessary background
and briefly discuss the key concepts that are used later in this work. This chapter is devoted
to the definitions and explanations of important terms and concepts discussed later in the
text. As such this chapter acts as a ready reference and crystallizes the terminology used in
the thesis.

2.1 Configuration Space

The configuration of a dynamical system is its state or position at any given time. The
configuration is not related to any motions that the system is executing. So as to say,
configuration of a dynamical system is like a snapshot at any time instant which changes
when the system moves. Hence the motion of a system is actually series of snapshots taken
at infinitesimal time intervals and being seen continuously just like a video that practically
comprises of still images called frames. When the frames are changed at certain speed,
there is an illusion of moving picture created out of still images. In practice configuration
is specified by variables representing the position coordinates of suitably chosen parts of the
system, [6].

Definition 2.1.1. The configuration space of the system is therefore an abstract space,
whose coordinate points correspond to all physically possible configurations of the system.
The configuration space is a manifold whose dimensions are equal to the degrees of freedom
of the system [7].

Consider for example a robotic manipulator in Figure 2.1. Its configuration is given by
angular position of its revolute and displacement of its prismatic joints. Hence the configu-
ration space is 3 dimensional with θ1, θ2 ∈ R/2π and d3 ∈ {0, l}.

8
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Figure 2.1: Robotic manipulator with 2 revolute and one prismatic joints

2.2 Phase Space

Phase space has been called one of the most powerful inventions of modern
science. But its historical origins are clouded in a tangle of independent discovery
and misattributions that persist today.

David D. Nolte

Hamiltonian Mechanics is geometry in phase space.

Vladimir I. Arnold (1978)

Definition 2.2.1. Phase space is a hypothetical space whose coordinate axis represent the
position and velocity states of the system and each point in space corresponds to a particular
value of states [8].

Configuration of a mechanical system is an instantaneous description of its geometry. It
does not take into account its dynamic response. In contrast, the state of the system is a
set of variables that, along with its dynamics and input, completely determines evolution
of the system in future. The phase or state space is the set of all possible states. To
every n-dimensional configuration manifold there is associated a 2n-dimensional phase space.
First n-dimensions represent the position variables and the other n-dimensions represent the
momentum/velocity variables [7]. For example the phase space of the robotic arm presented
in Figure 2.1 consists of 3 state variables to represent the position and 3 state variables to
represent the velocity of the three links. The velocity variables are the time derivatives of
position variables.

For the interested reader, the term phase space evolved over period of more than 5
decades starting from Liouville in 1838. Major role was played by Carl Gustav Jacobi who
related Liouville’s work on integral equations to dynamical systems and Boltzmann who was
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studying the gas phases. Other people who made their mark in development of concept of
phase space include Henri Poincare. Finally the term phase space was used by Boltzmann’s
student Paul Ehrenfest who was reviewing his work in 1911 [8].

2.3 Manifold

Definition 2.3.1. A manifold is a topological space that locally looks like a Euclidean space
or that can be locally approximated as Euclidean space but on larger scale it might be much
different.

Manifold comes from a Germanic word “Mannigfaltigkeit” that simply means "many
folds." It was coined by Bernhard Riemann. Literally it means many folds, forms, or features.
The wide usage of the word in many disparate fields such as mathematics or exhaust manifolds
of vehicles stems from the literal meaning. On cars the exhaust manifolds are structures that
have multiple inlets/outlets (hence, many features). Similarly, in topology, manifolds are, in
general, surfaces with many features [7],[9],[10].

Manifold Dimensions

The minimum number of independent variables needed to define every point on a manifold
is called its dimension. In that respect, the usual geometric objects with n+1 dimensions in
Euclidean geometry appear to be n-dimensional manifolds. For example, a circle in Euclidean
space is two dimensional figure. From topological point of view every point on the perimeter
of a circle is represented by a single variable i.e., the angle θ between horizontal and the radial
line at any point. Hence a circle is called 1-manifold. Consequently, there are two ways to
visualize a manifold i.e., extrinsic and intrinsic. Extrinsic view is generated when observing
the manifold from outside of it as embedded in Euclidean space. Thus n-dimensional manifold
embedded in Rn+1 is called a ‘codimension 1 space’. The main advantage of extrinsic view
is the ability to use well developed tools from Euclidean geometry. The intrinsic view of
an n-dimensional manifold M on the other hand is an abstract way of considering it as a
topological space by itself, without the need to attach notion of Euclidean space with it in
order to study its properties. As such this view is generated when the observer dwells on the
manifold [7].

Properties

Manifolds may or may not be connected (all in ‘one piece’), closed or finite. For example, a
pair of separate circles is also a topological manifold (not connected), a line segment without
its ends is a manifold (not closed) and a parabola is a topological manifold (not finite) [7].
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Types of Manifolds

� Differentiable or, smooth manifolds, are the ones on which one can do calculus.

� Riemannian manifolds are manifolds endowed with an intrinsic metric that gives natural
measure of distances and by which angles can be defined. In mechanics they serve as
the configuration spaces for dynamical systems.

� Symplectic manifolds endowed with a non degenerate bilinear form and which serve as
the phase spaces in mechanics and physics;

� Pseudo–Riemannian manifolds which model space–time in general relativity.

2.4 Vector Field

Definition 2.4.1. In vector calculus , vector field refers to attaching a vector to every point
in the space.

In differential geometry this has more deeper meaning that shall be explained shortly
in context of tangent space. Nonetheless, both concepts coincide. Consider for example a
pendulum described by differential equations:

ẋ = y,

ẏ = − sin(x). (2.4.1)

The phase portrait of the system can be generated by using the well known vector field
method. What we essentially do is that at every point in q plane we calculate the value of
ẋ and ẏ and keeping q as the base point we attach an arrow to it with coordinates ẋ and ẏ.
When we repeat the procedure for the entire phase plane, we get a bunch of arrows attached
to every point in the plane or essentially a field of vectors. The vector field for (2.4.1) is
shown in Figure 2.2.

2.5 Flow

The concept of flow is the same as its literal meaning. Consider for example a fluid moving
through a volume in space. The motion is called flow. Every particle in the fluid has a
velocity with magnitude and direction. If we place a small particle in the fluid it will follow
the path and move along the flow. Essentially the particle moves tangentially to a curve in
the flow. The tangent to curve is the vector field and hence gives the differential equation of
the system. The solution curve is the integral curve as it is obtained by integration of the
differential equation or the vector field. The general pattern of arrows in Figure 2.2 gives
the path along which a particle will move if placed in it and is called the flow.
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Figure 2.2: Vector Field

2.6 Integral Curve

Definition 2.6.1. A continuous curve x(t) in a manifold M , defined on an interval [0, T ], is
called an integral curve of family of vector fields F if there exist a partition 0 = t0 < t1 <

. . . < tm = T and vector fields X1, . . . , Xm ∈ F such that the restriction of x(t) to each open
interval (ti−1, ti) is differentiable, and dx(t)

dt
= Xi(x(t)) for i = 1, . . . ,m [11].

The complex mathematical definition amounts to saying only that x(t) is the solution
curve of the differential equation given by time-varying vector field F (x, u(t)). It is assumed
that u(t) is piecewise-constant control taking constant value Ui in each interval [ti−1, ti]. Due
to piecewise constant nature of u(t), x(t) comprises of broken continuous curve each piece
corresponding to different choices of control values. Note that piecewise constant nature of
control input u(t) allows us to apply different control inputs over different intervals and yet
being able to control a system that is continuous in nature. Restricting control to being
continuous or smooth would render almost every dynamical system uncontrollable in real
time. The red curve in Figure 2.2 is the solution curve starting from some point on the curve
and is hence called the integral curve.
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Figure 2.3: The tangent space TxM and a tangent vector v ∈ TxM , along a curve γ(t)
traveling through x ∈M

Figure 2.4: The tangent bundle TM - Vertical lines are tangent to 1-sphere at every point
and non intersecting

2.7 Tangent Bundle

Definition 2.7.1. Tangent space TxM to a point x on manifold M is the space containing
all curves that pass tangentially from point x ∈M [10],[12].

Definition 2.7.2. The disjoint union of all the tangent spaces TxM ∀x ∈ M is called the
tangent bundle TM .

Thus,
TM =

⊔
x∈M

TxM. (2.7.1)

Tangent space is called fibre of the tangent bundle [10],[12].

Definition 2.7.3. A vector field f(x) is a mapping from manifold M to the tangent bundle
TM i.e., f : M → TM [10].

Definition 2.7.4. The inverse mapping from tangent bundle TM to the manifold M is
called projection map ξ : TM →M [10].
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Figure 2.5: The vector field f and projection mapping

The tangent space TxM at a point x ∈ M is given as TxM = ξ−1(x). Note that the
RHS of the ODEs that model differential equations are vector fields and the solutions to
the ODEs obtained after integration is called projection mapping or exponential mapping.
The Lagrangian is a natural energy function on the tangent bundle and tangent bundle is
the natural framework for Lagrangian mechanics [7]. Tangent space and tangent bundle are
depicted in Figure 2.3 and Figure 2.4 respectively whereas Figure 2.5 represents the idea of
vector field and canonical projection.

2.8 Cotangent Bundle

Definition 2.8.1. A covector or 1-form is a linear map from vector space to its field of
scalars. For example, the covectors to the column vectors are row vectors [10],[12].

Definition 2.8.2. Cotangent space denoted as T ∗xM is the dual space to tangent space. It
is the space of covectors to the tangent vectors [10],[12].

Definition 2.8.3. The union of all disjoint cotangent spaces T ∗xM ∀x ∈M is called cotan-
gent bundle T ∗M .

T ∗M =
⊔
x∈M

T ∗xM. (2.8.1)

If the manifold M is n-dimensional the cotangent bundle is 2n-dimensional i.e., there are 2n

coordinate axis. First n-coordinates are the position coordinates and other n-coordinates are
the momentum coordinates that are the state variables in Hamiltonian mechanics. Hamil-
tonian is the total energy of the system and is natural energy function on cotangent bundle.
Cotangent bundle provides natural phase space for Hamiltonian mechanics. The projection
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map of tangent bundle has a dual called conatural projection ξ∗ on the cotangent bundle.
The cotangent space is the fibre of cotangent bundle [7].

2.9 Group

“What is a group? Algebraists teach that this is supposedly a set with two
operations that satisfy a load of easily-forgettable axioms. This definition provokes
a natural protest: why would any sensible person need such pairs of operations?
Oh, curse this maths" concludes the student (who, possibly, becomes the Minister
for Science in the future). We get a totally different situation if we start not with
the group but with the concept of a transformation (a one-to-one mapping of a set
onto itself) as was done historically. A collection of transformations of a set is
called a group if along with any two transformations it contains the result of their
consecutive application, and along with any transformation its inverse. This is
the entire definition. The so-called axioms are in fact just (obvious) properties of
groups of transformations [13]”.

V. I. Arnold - On Teaching Mathematics

Definition 2.9.1. An arbitrary set (called carrier set or underlying set) is called algebraic
structure if it has one or more finitary operations defined on it [14].

Common examples of algebraic structures include groups, rings, fields, and lattices.

Definition 2.9.2. A group G is an algebraic structure which is closed under a binary op-
eration ? such that for any g1, g2 ∈ G, g1 ? g2 → g3 ∈ G [7],[15]. It satisfies following
properties:

� Identity - There exists an element e ∈ G such that ∀g ∈ G, g ? e = e ? g = g.

� Inversion - For every g ∈ G, there exists an inverse h ∈ G | g ? h = h ? g = e .

� Closure - For all g1, g2 ∈ G, g1 ? g2 is also in G.

� Associativity - For all g1, g2, g3 ∈ G, g1 ? (g2 ? g3) = (g1 ? g2) ? g3.

2.10 Lie Group

Definition 2.10.1. A group G is called Lie group if it is also a smooth manifold and if the
linear operation and its inversion operation are smooth as maps of manifolds [15],[7].
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The most widely cited example is that of general linear group GLn(R) which is a group
of invertible matrices with matrix product as the group operation. The groups of matrices
are also called matrix Lie groups. Lie groups are ubiquitous in mechanics and control and
serve as the state manifold of numerous practical systems e.g.,

� Special Orthogonal Group SO(3) – The group of all rotational motions of a rigid body.
Represented by 3x3 orthogonal matrix with determinant 1.

� Special Euclidean Group on 3D Euclidean space SE(3) = SO(3)× R3 – The group of 6
DOF rotational and translational motions of a rigid body moving in space. Represented
by 4× 4 homogenous matrices.

� Special Euclidean Group on 2D Euclidean plane SE(2) = SO(2)× R2 – The group
of 3 DOF rotational and translational motions of a rigid body moving on a plane.
Represented by 3× 3 homogeneous matrices.

2.11 Lie Algebra

Algebra is commonly known in the context of branch of mathematics that deals with doing
symbolic mathematical computations. However, it has several meanings including the one
presented below.

Definition 2.11.1. Field K is an algebraic structure closed under two binary operations of
addition and multiplication. Example is that of field R of real numbers [14].

Definition 2.11.2. Algebra/algebras over a fieldK is a vector space endowed with a bilinear
product [., .] : K × K → K. For example algebras over R is a vector space endowed with
bilinear scalar product or the so called dot product [14].

Definition 2.11.3. Lie Algebra L is an Algebra of Lie Group whose bilinear product [., .] is
also:

1. skew symmetric i.e., [u, v] = −[v, u] =⇒ [u, u] = 0

2. satisfies Jacobi Identity: [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 ∀u, v, w ∈ L (Order of
operation is important)

The product operation is called the Lie bracket. Other properties of Lie algebra are:

� The tangent space to a Lie group G at the identity element is called the Lie algebra L
of the Lie group L = TIdG.

� Lie algebra completely captures the local structure of Lie group
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One of the remarkable achievements of Sophus Lie was that he proved that Lie algebra locally
represented the Lie group. This fact makes the well developed tools of linear algebra available
to Lie theory. In fact the entire concept of manifolds rests on local representation through
Euclidean space and existence of smooth transition maps between these local representations
called charts [7],[12].

2.12 Commutator

Commutator is known to electrical engineers as a device that is used to convert alternating
current into direct current by switching the contacts when the direction of current is getting
reversed. The mathematics perspective is remarkably closer. In group theory commutator of
a group measures the extent to which the elements of a group commute i.e., change the order
or arrangement. Let’s clarify the notion with the mathematical definition. The commutator
of g, h ∈ G is given as:

[g, h] = g−1h−1gh (2.12.1)

What this essentially means is that we perform a group action h, then act on it by g and
then do the inverse operations h−1 and g−1. If the result is the group identity then the group
actions are commutative i.e., going along one first and then second and then coming back
in reverse, one reaches the starting point. If a non-identity element of G is produced by the
commutator, then the group is not commutative [16].

2.13 Lie Bracket

Lie bracket (the product operation of Lie algebra) is the commutator of vector fields. It is
measure of the degree to which vector fields commute. Mathematically it is given as [15]:

[f, g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x), (2.13.1)

where f and g are vector fields.

Lie Bracket - Commutator of Vector Fields

The concept and mathematical proof related to Lie bracket as commutator of vector fields
needs further elaboration for inquisitive reader and for sake of completeness. Besides being
a measure of degree of commutativity of vector fields, concept of Lie bracket is central
to defining the nonholonomic systems and establishing controllability of a control system
[15],[16],[17]. In this regard we will consider the standard procedure of Taylor expansion of
flow of vector fields outlined in [16],[17]. Consider the following control system:

ẋ = f(x)u1 + g(x)u2, (2.13.2)
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where f and g are vector fields and u1, u2 are control variables. We apply the following
piecewise constant control input to the system over the interval [0, 4T ]:

u(t) =



(1, 0) for t ∈ [0, T ),

(0, 1) for t ∈ [T, 2T ),

(−1, 0) for t ∈ [2T, 3T ),

(0,−1) for t ∈ [3T, 4T ].

(2.13.3)

Hence the system moves along f(x) for t ∈ [0, T ), along g(x) for t ∈ [T, 2T ), along −f(x) for
t ∈ [2T, 3T ) and along −g(x) for t ∈ [3T, 4T ]. The situation is presented in Figure 2.6. The
flow of the system for t ∈ [0, 4T ] is given as:

x(t) = exp(−Tg) exp(−Tf) exp(Tg) exp(Tf)x0. (2.13.4)

We need to establish the conditions under which the flows commute i.e., starting at x(0)

and moving in the manner described above, when does one reach x(0) again. Consider
now the Taylor expansion on each time segment T approaching zero so that we can neglect
cubic and higher powers of T . For a system ẋ = f(x) we use the fact that by chain rule
ẍ = ḟ(x) = ∂f

∂x
dx
dt

= ∂f
∂x
f(x) . For t ∈ [0, T ), we have,

x(T ) = x(0) + T ẋ(0) +
1

2
T 2ẍ(0) + · · · ,

= x(0) + Tf(x(0)) +
1

2
T 2∂f

∂x
|x(0)f(x(0)), (2.13.5)

Consider also the Taylor expansion of g(x(T )) which is given as:

g(x(T )) = g(x(0)) + T ġ(x(0)) +
1

2
T 2g̈(x(0)),

= g(x(0)) + T
∂g

∂x
|x(0)ẋ(0) +

1

2
T 2g̈(x(0)),

= g(x(0)) + T
∂g

∂x
|x(0)f(x(0)) +

1

2
T 2g̈(x(0)). (2.13.6)

For t ∈ [T, 2T ), we have,

x(2T ) = x(T ) + T ẋ(T ) +
1

2
T 2ẍ(T ) + · · · ,

= x(T ) + Tg(x(T )) +
1

2
T 2∇g(x(T )).g(x(T )). (2.13.7)

Substitute (2.13.5) and (2.13.6) in (2.13.7) and drop evaluation at x(0) from every occurrence
of f, g and their derivatives to conserve space.

x(2T ) = x(0) + Tf +
1

2
T 2 ∂g

∂x
f + T

(
g + T

∂g

∂x
f +

1

2
T 2g̈

)
+

1

2
T 2 ∂g

∂x
g,

= x(0) + T (f + g) + T 2

(
1

2

∂f

∂x
f +

∂g

∂x
f +

1

2

∂g

∂x
g

)
. (2.13.8)
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Figure 2.6: Lie Bracket Concept

We repeat the same procedure to obtain x(3T ) and x(4T ) which is:

x(3T ) = x(0) + Tg + T 2

(
∂g

∂x
f − ∂f

∂x
g +

1

2

∂g

∂x
g

)
,

x(4T ) = x(0) + T 2

(
∂g

∂x
f − ∂f

∂x
g

)
. (2.13.9)

From (2.13.9) we see that the state trajectory at x(4T ) reaches the initial state or the state
identity iff

(
∂g
∂x
f − ∂f

∂x
g
)

= 0 which is by definition the Lie bracket of vector fields f and g. If
the Lie bracket [f, g] 6= 0, then after the commutator motion shown in Figure 2.6, resulting
motion is in the direction which is orthogonal to f and g given as T 2

(
∂g
∂x
f − ∂f

∂x
g
)
. For a

distribution to be nonholonomic the Lie commutator has to be nonzero i.e., it has to produce
velocities not allowed by the system distribution. If on the other hand [f, g] = 0 the vector
fields are commutative i.e., if we are trapped on a surface, then it is impossible to leave the
surface by using commutator motions. Hence if Lie bracket is not zero, we have a vector
field pointing in a direction of motion not given by the original vector fields as it is linearly
independent from other set of vector fields. Thus we have an alternative direction of motion
available. This notion is extremely important in determining the controllability of systems.
Nonholonomic systems can hence alternatively be defined as the ones that have some extra
vector fields or directions of motion given by Lie bracket of original vector fields [18].

2.14 Left Invariant Vector Field

Definition 2.14.1. Consider a Lie group G and the corresponding Lie algebra L. Vector
fields of the form V (X) = XA, X ∈ G, A ∈ L, are called left-invariant vector fields
on the linear Lie group G. The Lie bracket of two left-invariant vector fields V (X) =

XA, W (X) = XB X ∈ G is given as [15]:

[V,W ](X) = [XA,XB] = X[A,B] = X(AB −BA), X∈G. (2.14.1)
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Figure 2.7: Reachable Set

2.15 Left Invariant Control System

Definition 2.15.1. A control system Γ of the form

Ẋ = XA, A ∈ L, X ∈ G (2.15.1)

is called left invariant control system [15].

The key property of left invariant control system is that its tangent space TXG at any
point X ∈ G is the left translated version of the tangent space at the identity obtained by
left action of the group on the tangent space i.e., TXG = XTIdG. By virtue of this property
the initial conditions for the Cauchy’s problem on left invariant control system can be taken
as identically zero as any initial conditions X(0) can be left translated to the group identity
[15].

2.16 Reachable / Attainable Set

Definition 2.16.1. Consider a left invariant system Γ on Lie group G. Reachable (or
attainable) set AΓ of Γ through a point q ∈ G consists of all those points in G that can be
reached from q in positive time i.e., t ∈ R+[15].

2.17 Orbit

Definition 2.17.1. Consider a left invariant system Γ on Lie group G. Orbit OΓ of Γ

through a point q ∈ G consists of all those points in G that can be reached from q in time t
such that t ∈ R [15].

Hence AΓ ⊂ OΓ see Figure 2.7. Note that in Figure 2.7 the reachable set is towards
one side of the identity of the group G pointing to motion in forward time only, whereas,
orbit is towards all sides depicting possibility in negative time. The orbit of family of vector
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fields plays an important role in geometric control theory. Geometric control theory takes
diversion from rest of the control theory due to Nagano-Sussman orbit theorem [11]. This
fact shall be highlighted further in succeeding chapters.

2.18 Geodesic

Definition 2.18.1. A geodesic is a locally length-minimizing curve [19].
In mathematics, particularly differential geometry, a geodesic is a generalization of the

notion of a "straight line" to "curved spaces". The term "geodesic" comes from geodesy,
the science of measuring the size and shape of Earth. In the original sense, a geodesic was
the shortest route between two points on the Earth’s surface. In Riemannian geometry, it
signifies a curve which is of shortest length at least locally. A curve with shortest length
globally is called minimizing geodesic [19].

2.19 Poisson Bracket

Poisson brackets are the Lie bracket analog in the Hamiltonian Classical Mechanics. The
Hamiltonian mechanics is defined on the cotangent bundle and the Poisson bracket gives a
commutator of the covector fields just like the Lie bracket gives the commutator of vector
fields on tangent bundle. Poisson bracket also links the classical and quantum mechanics.
Consider system with n particles each with one degree of freedom. The phase space of the
system consists of 2n coordinates including the n generalized position coordinates q1; q2; ::: qn

and n conjugate momenta p1; p2; ::: pn. The Poisson bracket is an operation which takes two
functions of phase space and time, call them F (qi; pi; t) and G(qi; pi; t) and produces a new
function [20]. It is defined:

{F,G} =
n∑
i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
. (2.19.1)

For n = 1 this simplifies to:

{F,G} =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
. (2.19.2)

One of the reasons for Poisson bracket being a powerful tool is its ability to generate time
derivative of a function F (q, p, t) on the cotangent bundle as:

dF

dt
= {F,H}+

∂F

∂t
, (2.19.3)

where H is the Hamiltonian function. Intuitively H is the total energy of the system. The
time derivatives of the coordinates q, p on cotangent bundle can be simply be obtained by
q̇ = {q,H} = ∂H

∂p
and ṗ = {p,H} = −∂H

∂q
which are the equations of motion in Hamiltonian

mechanics. Note that Poisson bracket follows the same multiplication rule as the Lie bracket
and also satisfies the Jacobi identity. It is also linear in both of its arguments.
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2.20 Chapter Summary

This chapter was devoted to building the background that would be necessary in under-
standing the problem definition and subsequent solution. The concepts related to manifold,
differential equation, tangent and cotangent bundle have been covered. However, the mate-
rial is of preliminary nature and interested reader should look at the references for in depth
explanation of the concepts. The next chapters build upon the terminology set forth in this
chapter.



Chapter 3

A Primer on Geometric Control Theory

“Mathematics is the language in which God wrote the universe”.

Galileo Galilei

It became clear to the mathematicians very early that unlike other disciplines of science,
mathematics was universal and was equally valid in any world as in the one we dwell. For
example the mathematical constants π or e stay the same whatever universe we may traverse.
On the other hand, the universal gas constant R is not as universal as its name sounds. As
Stephen Hawking would put it, “indeed if we want to ‘read’ God’s mind, we must first under-
stand God’s language”. The early mathematician therefore launched the quest to recognize
the characters of this universal language. The attempt led to the invention of numbers as
a measure of the physical quantities and the discovery of the geometric shapes to describe
the physical appearance of the objects. Numbers and geometric shapes have played a fun-
damental role in the development of human mind and his understanding of the grandeur
and beauty of this universe. Numbers gave the meaning to how distant was Marathon from
Athens and geometry allowed the geometers to draw straight and parallel lines.

Despite intuitive connection between geometry and numbers, the two mathematical no-
tions and creations of human mind remained disparate and were developed individually.
Pythagoras for example studied the rational numbers and were mystified by the structure
attached to them [21]. In almost the same era, Euclid was formalizing and laying foundations
for Euclidean geometry that would reign the mathematical world for nearly 22 centuries [22].
In 17th century A.D. French philosopher Rene Descartes introduced the Cartesian coordinate
system that allowed a point in Euclidean space to be represented as a set of numbers along
the coordinate axis. This laid the foundations of Analytical Geometry by which the problems
of geometry could be expressed as algebraic expressions and solved easily.

Another unification of knowledge is attributed to Newton who invented and applied cal-
culus to describe the physical phenomenon of motion. Newton not only invented calculus, he
also discovered the laws of motion and gravitation [23]. In 19th century, Maxwell formulated

23
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the laws of electromagnetism adding a level of sophistication to mathematics. Einstein’s
theory of special and general relativity became possible only because the geometry and cor-
responding mathematics existed to support and explain the theory. The relativity theory as
well as electromagnetism were formulated as field theories with underlying four-dimensional
space–time, and this fusion of geometry and classical physics provided a strong stimulus to
mathematicians in the field of differential geometry.

The famous visions of Rene Descartes in 1619, that led to the invention of algebraic
geometry and elucidated the unification of all knowledge through deductive reasoning and
mathematics remains the motivation for scientists and mathematicians to-date. Tools from
remote branches of mathematics and geometry suddenly become relevant and even essential
to the development of new knowledge in other disciplines of science. Nonlinear control theory
apparently having much less connection with geometry has witnessed similar transformation.
Differential geometry developed in its own right as a subject and not apparently relevant to
mechanics and control has become the main tool for the control theorists in recent times.
The merger has led to an entire new discipline in control theory known as geometric control
theory that allows a more geometric view to the problems of dynamics and control thereby
allowing insight that wasn’t possible earlier. This work is application of geometric control
theory to a novel problem namely the optimal control problem on group of motions of pseudo
Euclidean plane. It is therefore imperative to crystallize the connection between geometry,
mechanics, control and certain other areas. Needless to emphasize that without clarifying
such association, this thesis cannot possibly deliver its outlined objectives.

3.1 Geometry Meets Mechanics

For nearly 22 centuries Euclid’s work dominated the mathematical world following its in-
troduction in 3rd century BC. Euclid’s axioms symbolize one of the most captivating and
emblematic discoveries that laid the foundations of rational science [22]. Euclid’s axioms
and theorems based on them were intuitively so appealing that it was nearly impossible to
visualize and develop a consistent geometry other than Euclidean geometry. Nevertheless,
disparate and unsuccessful efforts were made by many geometers to prove the parallel postu-
late wrong until 19th century. Being the only available notion of space in times of Newton,
the state space of a dynamical system being expressed as set of differential equations was
naturally the Euclidean space. Thus the notion of state space set out on a wrong track from
the onset, though, apparently Euclidean space could successfully explain the physical world
and provided a natural setting for the mechanics of 17th century.

In 1788, Joseph Louis Lagrange provided a reformulation of Newtonian mechanics that
had its roots in principle of least action and calculus of variation. Lagrange introduced a
scalar quantity called Lagrangian that allowed modeling the dynamical equations in gener-
alized coordinates. The Lagrange equations of motion were still the same second order New-
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ton’s equations, but were far easier to obtain and allowed insight into many new problems.
Another reformulation was introduced by William Rowan Hamilton in 1833. Like Lagrangian
mechanics, Hamiltonian mechanics also introduced a scalar quantity called Hamiltonian, but
the resulting equations were of first order that could be further differentiated to obtain the
second order Newton’s equations. On the face of it, such reformulation did no better than the
earlier formulations. However, it allowed better understanding of the underlying principles.
Another bigger advantage was that once the experiments reached on atomic scale, Newto-
nian and Lagrangian mechanics failed to explain the quantum mechanics. On the contrary,
Hamiltonian mechanics could be generalized and extended to quantum mechanics through
the introduction of Poisson bracket.

Mechanics was undergoing reformulation apparently unaware of the parallel developments
in mathematics and geometry. Efforts to discover non-Euclidean geometries matured when
Russian mathematician and geometer, Nikolai Ivanovich Lobachevsky discovered the Hy-
perbolic geometry [24] and German mathematician, George Friedrich Bernhard Riemann
discovered Elliptic geometry [25]. Later in 20th century, Riemann introduced the idea of
manifold, a topological space that locally looked like Euclidean space. Impact of discovery
of non-Euclidean geometries was profound on physics. It led to the formulation of theory of
relativity for which hyperbolic geometry provided the most natural setting. For mechanics,
the concept of manifold offered a generic shape of the state space. It was realized that the
phase space for Lagrangian mechanics was tangent bundle and the phase space for Hamil-
tonian mechanics was cotangent bundle [7] that is naturally endowed with non-degenerate
symplectic form. What possible difference a non-Euclidean state space can make to our
analysis and control design is depicted with example 3.1.1.

Example 3.1.1. Consider a car traveling on the surface of the earth see Figure 3.1. The
goal is to reach point P1 starting from P0. The configuration manifold for this car is an
ellipsoid. Taking usual approach and defining the configuration space as Euclidean space,
we fix a coordinate frame at the center of the earth. The position vectors for P0 and P1 are
−→v 0 and −→v 1 respectively. Vector algebra tells us that in order to reach P1, the car needs
to follow a vector −→v 1 − −→v 0 traveling a distance of ‖−→v 1 − −→v 0‖2. Practically, we know that
covering the distance of ‖−→v 1−−→v 0‖2, the curvature of the earth allows the car to reach only
P2. The error ‖−→v 1 − −→v 0‖2 → 0 as P0 → P1. What it suggests is that locally any manifold
may be approximated as a Euclidean space, however, on macro scale, errors induced by such
approximation will blow up. As can be construed, in case of dynamical systems such as
aircraft, a ship, a paper rolling mill etc. the ensuing results may be catastrophic. Concept of
a non-flat state space revolutionized classical mechanics. With this realization and further
development in differential geometry a new term was coined i.e., “Geometric Mechanics”
which employs differential geometry to describe and study mechanical systems. This exciting
new blend of two disciplines is popular and promising area of research with growing number
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Figure 3.1: Euclidean Framework for Control Theory

of publications every year.

3.2 Geometrization of Control Theory

“For since the fabric of the universe is most perfect and the work of a most
wise Creator, nothing at all takes place in the universe in which some rule of
maximum or minimum does not appear”.

Leonhard Euler

Control theory is relatively young in the entire spectrum of mathematics and optimal control
theory is perhaps one of the oldest and most developed parts of it. Optimal control the-
ory sinks directly to the sources of calculus of variations and mechanics and is a subject of
interdisciplinary character residing at crossroads for optimal control, differential geometry,
and mechanics [26]. Beginning perhaps with the famous brachistochrone problem in 1696
posed by Johann Bernoulli in Acta Eruditorum [27],[28], optimal control theory attained
widespread acceptance and attracted plethora of applications following the discovery of Pon-
tryagin’s maximum principle (PMP) [26]. Pontryagin and his collaborators were engaged
by Soviet air force to design such a trajectory for aircraft that enabled it to get out of a
chasing missile’s reachable set in minimum time [29]. The calculus of variations was unable
to provide answers Pontryagin was looking for. Consequently, Pontryagin formulated his
maximum principle laying down conditions for the general time-optimal problem. Discovery
of the Maximum Principle was driven by the needs of an optimal control problem and forms
classic example where a theory framed to tackle purely engineering problem intractable by
existing tools and knowledge, eventually matured into a scientific theory of major signifi-
cance.
PMP draws its strength from geometry. Like all optimization techniques, PMP provides
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conditions for optimality that minimize certain cost. However, there are two discriminating
aspects to it. First, the integral cost criterion is minimized along the trajectories of a dy-
namical system modeled via differential equations. Second, the optimality conditions utilize
a fundamental topological fact i.e., the solution to the optimal control problem lies on the
boundary of an extended reachable set which is formed by the competing optimal trajectories
and their integral costs [20].

Thus PMP provided for the gap that existed between geometry and control [11],[28]. PMP
gave birth to an entire new discipline known as geometric control theory that has been subject
of extensive research following discovery of PMP. The active research in geometric control
provided for the theory that led to extension of the PMP to optimal control problems on
arbitrary differentiable manifolds. The theoretical foundation provided by geometric control
theory carries important results concerning the differential and topological properties of
reachable sets and is an essential component of modern optimal control theory.

3.3 Relevance to Lie Theory

PMP, Nagano-Sussman orbit theorem and a famous theorem from W. L. Chow 1939, set the
framework but geometric control started to take shape as an independent discipline of control
theory in 1970’s following pioneering work from Roger Brockett [26]. Brockett geometrized
the nonlinear affine-input control problems by incorporating tools from Lie-theory into his
analysis and design. He considered the control system whose state space is a sphere and
showed that Lie theory played an important role in analysis of such systems. Following
Brockett, there was a bombardment of ideas and mathematics that matured into geometric
control theory in 1990s [26].
Imperative here is to understand the connection that Lie theory bears to the control system
and what does it offer to a control system designer? Sophus Lie a Norwegian mathematician
(1842 - 1899) worked on continuous transformation groups and integration for ODEs via a
unified method. His intriguing discovery was to have a far reaching impact on control theory.
He established that various integration techniques for ODEs were in fact special cases of a
more generalized integration method. This observation was based on the fact that various
ODEs were invariant under group action by continuous group of symmetries. Thus solutions
of an ODE could be transformed into solution of another ODE once their symmetry group
was identified [7]. These groups were later called Lie Groups. As Felix Klein would put it
[30]:

“Geometry is the study of those properties of a set W that remain invariant
when its elements are subjected to the transformations of some transformation
group Γ”.
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Figure 3.2: Integral Curve and Vector Field

Geometry is thus a double G(W,Γ). Transformation groups being at the heart of modern
geometry and Lie groups being continuous transformation groups make the connection be-
tween them readily apparent. Let us elaborate this concept a bit further using an example.
Consider again the equations of pendulum in (2.4.1). The general solution of this set of
ODEs is parametrized by constants corresponding to initial states of the pendulum. The
family of solution curves along with the tangential vector field are given in Figure 3.2.
The solution curves of differential equations (integral curves) and the corresponding vector
fields are essentially geometric objects (they have shape, size and length). The geometric
object associated with the differential equations is thus its corresponding field of directions
in the plane (the vector field). The field of directions is always tangent to the solution curve
corresponding to a particular value of initial conditions. Thus, geometrically, the problem of
integration of a differential equation is to find all such curves that are tangent to the given
field of directions in the plane. This can be easily seen in Figure 3.2. The solution curves
(red) are everywhere tangent to the vector field (arrows).
Symmetry is an important concept of geometry as discussed earlier. Symmetry implies invari-
ance under certain mathematical operation. A differential equation, viewed as a geometric
object i.e., field of directions in the plane, may possess some symmetry such as translation
etc. The phase portrait of pendulum shows that it has translation and reflection symmetry
i.e., the solution curve or phase portrait remains the same even if translated by 2π or reflected
about x, y axes or origin. Lie theory tells us that if we know the one parameter symmetry
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Figure 3.3: Controllability of a Car Steering Model

group of the differential equations we may transform it into a convenient form and solve it.
There can be two distinct ways in which Lie theory can help find the solutions of differential
equations i.e.,

� Given a differential equation find its one parameter symmetry group. Alternatively,

� Given a one parameter symmetry group, find the differential equations that are pre-
served by this group.

Practically, the first question is more important but also more difficult. Usually answering
the second question is more fruitful and easier to find closed form solution of the ODEs.
Hence geometry and differential equations are intertwined and closely related. Understand-
ing this linkage is conceptually rewarding and very important in the entire study of geometric
control.
Linkage between ODEs and control theory warrants no emphasis. Thus it is not surpris-
ing to realize that Lie theory and control are also intimately related. One of Lie theory’s
major contributions to control theory is the Lie bracket or the commutator of vector fields.
Lie bracket generalizes the notion of controllability grammian and thus allows to calculate
controllability of control distribution for linear as well as nonlinear systems. In fact the con-
trollability grammian (or Kalman controllability condition) for linear systems or linearized
systems sometimes gives erroneous results. Example 3.3.1 is widely reported in literature see
e.g. [31] and is given here to explain the claim given above.

Example 3.3.1. The drift free model of steering of car is given as Figure 3.3:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

where v is the longitudinal velocity measured at center of real axle (x, y), L is the Lie
between the two axles, ω is the steering angular velocity and φ is the steering angle. In this



CHAPTER 3. A PRIMER ON GEOMETRIC CONTROL THEORY 30

case v and ω are the two control inputs. Let us define the state variables as x1 = x, x2 = y,
and input variables as u1 = v, u2 = ω. The system in state space is written as:

ẋ1 = u1cosθ,

ẋ2 = u1sinθ,

θ̇ = u2.

If we linearize the system around a point (x0, y0, θ0), we get:

ẋ = Ax+Bu

= 0x+

 cos θ0 0

sin θ0 0

0 1

[ u1

u2

]
.

Clearly the controllability matrixMc = [B,AB] = B of the linearized system is rank deficient
and therefore the system is not controllable. This contradicts our intuitive understanding
that suggests that steering of a car is a controllable problem. Let us apply the notion of Lie
bracket. In vector form:

x =

 x1

x2

θ

 x ∈M = R2 × S1, g1(x) =

 cos θ

sin θ

0

 , g2(x) =

 0

0

1

 ,
where x represents the state vector, manifoldM is the configuration space which consists of position
x, y ∈ R2and the orientation θ ∈ [0, 2π]. The interval [0, 2π] is also known as circle or 1-sphere
(sphere of dimension 1) topologically. Note that g1(x), g2(x) are the input vector fields and form
the control distribution. The overall system is:

ẋ = u1g1(x) + u2g2(x).

Certainly g1(x) and g2(x) do not span R2 × S1. According to Lie theory, the system is completely
controllable iff we can find enough good Lie brackets such that the sum of number of linearly
independent input vector fields and linearly independent Lie brackets is equal to the dimension of
the state space. In the example above we have 2 linearly independent vector fields whereas the state
space is 3-dimensional. Hence, with two linearly independent vector fields we can span 2-dimensional
space only and we need one more vector field that is linearly independent of the other two to span
the entire state space. The additional velocity vector field or the direction of motion is given by the
Lie bracket to span the entire state space R2 × S1. The Lie bracket is given as:

[g1, g2](x) = −

 0 0 − sin θ

0 0 cos θ

0 0 0


 0

0

1

 =

 sin θ

− cos θ

0

 .
which is linearly independent of the other two basis vectors of the control distribution. Hence g1(x),
g2(x) and [g1, g2] span R2 × S1 and hence the system is controllable.
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Example 3.3.1 depicts how geometric control theory aided with Lie theory can offer alter-
native view and deeper insight into the existing problems. Consequently geometric control
theory has inspired mathematicians and control practitioners around the globe. Besides the
problems it has addressed and the results it has achieved so far, it has taken shape of a
theory with strong and definite personality that is already proffering valuable returns to its
ancestors.

3.4 The Orbit Theorem

The famous Nagano-Sussman theorem gives geometric control theory its very character that
is distinct from rest of the control theory. In simple terms it says that the orbit of a family
of vector fields is a connected submanifold of the manifold M . This ensures two things i.e.,
we are on the same configuration manifold and second the orbit is not a Euclidean space it
is the same kind of manifold as M . This means we parted our ways with traditional theory
of dynamical systems in which state space is Euclidean.
It is trivial to see that any system is controllable if its orbit is the complete manifold i.e.,
if we can reach all points on the manifold, the system is controllable which is inline with
the definition of controllability taught in elementary linear system theory. And finally by
Chow’s theorem we say that the orbit is a complete manifold M if the Lie algebra of the
family of vector fields spans the entire tangent space. Lie theory gives us the tool i.e., Lie
bracket to check whether the family of vector fields spans the entire tangent space. Hence
these three facts set all the framework needed to study the dynamical system using tools
from differential geometry.

3.5 Geometric Control - An Engineer’s Stake

Geometric control theory establishes the link between control theory and geometric mechan-
ics i.e., the link between control theory with a geometric view of classical mechanics in both
its Lagrangian and Hamiltonian formulations. Mechanics has traditionally described the
behavior of free and interacting particles and bodies, the interaction being described by po-
tential forces. Control theory on the other hand provides tools and techniques for prescribing
desired motion and providing control over the system dynamics to achieve the desired mo-
tion. Hence, mechanics is about describing and control is about prescribing. Modern control
theory began largely as linear theory, having its roots in electrical engineering using linear
algebra, complex variable theory, and functional analysis as its principal tools. Tradition-
ally, control of nonlinear systems has relied on linear techniques such as linearization about
equilibrium points, feedback linearization where we cancel out the nonlinearities via state
feedback, sliding mode control techniques where we force the actual system to attain the
dynamics of our choice etc. Since almost all real world systems are practically nonlinear in
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nature, therefore the performance of linear techniques for nonlinear system control is rather
limited. On the other hand the design technique such as feedback linearization is unable to
cater for the model variation arising out of simplifications introduced during the modeling
process. Similarly, sliding mode control despite being robust to model variations has its own
limitations such as chattering. Hence, there is a vast margin of performance improvement
in nonlinear control if some technique which is inherently nonlinear in character is available.
Starting in 1970’s with the pioneering work of Roger Brockett, geometric control theory can
offer such dividends, primarily because it is inherently developed in the language of nonlin-
ear systems. It relies on differential geometry which introduces the notion of non-Euclidean
spaces called manifolds and works through the problems in coordinate free language. Hence,
from the perspective of analysis and design, geometric control theory is a complete recipe for
the optimal control of nonlinear systems. Sub-Riemannian problem on the other hand is par-
ticularly suited to optimal control of nonholonomic systems whose cost under consideration is
the sub-Riemannian length. With this realization, vast array of tools from sub-Riemannian
geometry become available to foray analysis and control design of nonholonomic systems. In
that respect, geometric control theory has much to offer to control engineers and may be in
few years time it will become essential part of control theory curriculum.

3.6 The Big Picture

In order to gain insight and better comprehension of optimal control in general and PMP in
particular, it is perhaps prudent to briefly look at the entire spectrum of optimal control and
various notions encountered therein. Despite the acclaimed and acknowledged prominence of
optimal control in engineering and science, the mathematical jargon is less comprehensively
understood without reading couple of texts on each topic. The drawback of such approach
is that the bigger picture and the corresponding position of various tools of optimal control
theory remains vague at best. We therefore present a brief overview of notion of optimality
and optimal control techniques other than PMP for the interested reader. This exposition is
by no means exhaustive or an alternate for a complete volume on each of these topics.
There are two fundamental ideas upon which optimal control theory is established i.e., PMP
and Dynamic Programming (DP) with allied optimality principle [32]. While Pontryagin
and his compatriots were strengthening foundations of PMP, Richard Bellman from USA
was independently developing a parallel approach to optimal control that he later termed as
dynamic programming. While PMP is a variational approach, DP is based on principle of
optimality (to be discussed later) [32]. Looking at the canvas of optimal control one finds
following categorization of optimal control techniques:

1. PMP

a) Applies to deterministic systems only
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b) Special case - Linear quadratic control

c) Optimal estimation is closely related to optimal control. Most widely used optimal
estimator is Kalman filter.

d) Optimal estimation and linear quadratic control are dual problems

2. Dynamic programming

a) Applies to deterministic, continuous as well as discrete time and combinatorial
systems (systems with quantized states and controls).

b) Discrete case is DP whereas continuous case leads to Hamilton Jacobi Bellman
(HJB) equation.

c) Generalizes to stochastic systems (systems in which the certain input u when
applied to system at some state qp always yields the same next state qn are de-
terministic while those whose next state qn is only probabilistically related to the
previous state qp and control input u are stochastic).

Discussion on PMP and its allied mathematics shall be dealt in detail in chapter 5, Theorem
6.4.1. Other notions of optimal control are given in succeeding paragraphs for interested
readers.

Linear Quadratic Control

From 1960-1961, Rudolf E. Kalman and his collaborators, working in USA, published three
seminal papers. In one of these papers Kalman presented the design equations for linear
quadratic (LQ) control. Although discovered independently, LQ control can be derived as a
special case of PMP when cost functional is quadratic and the dynamical equations of the
system are linear [33]. Consider for example a system in state space form:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, x ∈ Rn, u ∈ Rm,

where A is the system matrix and B is the input matrix. The performance index for LQ
control problem is given as:

J =
1

2
xT (t1)Sx(t1) +

1

2

ˆ t1

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt,

where t0, t1 are initial and final time respectively, S and Q are positive semidefinite matrices
and R is a positive definite matrix. In case of infinite horizon problem i.e., (t1 → ∞), the
matrix S = 0. Assume that there exists a stabilizing feedback controller K of the form
u = −Kx that minimizes the cost functional J . Such a feedback controller exists if the
solution P to Algebraic Riccati equation:

ATP + PA+Q− PBR−1BTP = 0,



CHAPTER 3. A PRIMER ON GEOMETRIC CONTROL THEORY 34

is positive definite. The controller K in this case is given as:

K = R−1BTP.

Such a stabilizing controller is called linear quadratic regulator (LQR).

Optimal Estimation and Kalman Filter

In third of his papers mentioned in the preceding paragraphs, Kalman discussed the concept
of optimal filtering and estimation theory and proposed the mathematics and design pro-
cedure for the discrete Kalman filter. The continuous counterpart of the discrete Kalman
filter was proposed by Kalman and Bucy later in 1961 [34]. Also termed as linear quadratic
estimator (LQE), Kalman filter is a recursive algorithm that takes the series of state values
as input measured from sensors and possibly smeared in noise, and produces an estimate of
the current states. The notion affords major implications in control problems particularly
state feedback design procedures where it may not be either possible or feasible to measure
all states. It is also referred to as Stratonovich–Kalman–Bucy filter as it turns out to be a
special case of a more general, non-linear filter proposed earlier by the Soviet mathematician
Ruslan L. Stratonovich.

Kalman filter’s strength stems from the fact that it can predict past, present and even
future states. The whole algorithm is based on cyclic process with two sub-processes i.e.,
time update or predict and measurement update or correct. Intuitively, the filter generates
an estimate of the state ahead of time in the predict sub-process based on previous estimate
and without the knowledge of measurement from sensors. Such an estimate is called a
priori estimate. In the measurement update sub-process, the filter incorporates the available
measurements into the a priori estimate to form a better and corrected estimate of the
state known as a posteriori estimate. The measurement update therefore acts more like the
feedback in the filter. The equations describing the filter are briefly discussed below for the
sake of completeness [34].

Consider a linear time-invariant discrete time control system:

xk = Axk−1 +Buk−1 + wk−1, xk ∈ Rn,

yk = xk + vk yk ∈ Rm,

where wk and vk represent process and measurement noise respectively assumed to be white
and Gaussian. Let x̄k be a priori and x̂k be a posteriori state estimates respectively. The
state estimate is given as:

x̂k = x̄k +K(yk − Cx̄k).

Intuitively, it means that we make a priori estimate x̄k and then make a posteriori estimate
by imparting correction to x̄k based on difference (yk − Cx̄k) between the measurement at
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instant k and the prediction Cx̄k. The n×m matrix K is the filter gain. In order to calculate
K consider the a priori and a posteriori errors respectively as:

ēk = xk − x̄k,

êk = xk − x̂k.

Corresponding error covariance matrices are given as:

P̄k = E
[
ēkē

T
k

]
,

P̂k = E
[
êkê

T
k

]
.

The filter gain K is such that it minimizes the a posteriori covariance P̂k. It is obtained from
another Riccati equation which is not noted here being out of scope of this document. One
form of K that minimizes the covariance is given as [34]:

Kk = P̄kC
T
(
CP̄kC

T +R
)−1

,

=
P̄kC

T

CP̄kCT +R
,

where R is the measurement noise covariance matrix. Similar result holds for continuous
time systems and is call Kalman Bucy filter. Kalman filter is extremely powerful estimator
but it is applicable to linear systems only. Much of Kalman filter’s success is attributed to
non-linear applications though. In order to achieve that, system is linearized locally about
the current state with current mean and covariance. In this case the filter is referred to as
Extended Kalman Filter (EKF).

Duality Between Optimal Estimation and Kalman Filter

Together LQR and Kalman filter solve the linear quadratic Gaussian (LQG) problem. How-
ever, as described by Kalman, LQR and Kalman filter are dual problems of each other i.e.,
one can be translated into other [32]. This can be established by looking at the Riccati equa-
tions for regulator and controller available in standard text. The equations are not given
here as considered beyond the scope of this document.

Dynamic Programming

Dynamic programming was introduced as an alternate optimal control technique by Richard
Bellman in 1957 [32],[35]. The word programming originally did not bear any relationship
to software programming though it represents an important class of optimization algorithms
in software engineering now. Essentially, dynamic describes the evolving nature of systems
with time and programming means planning. Thus dynamic programming truly means
planning optimal actions over time varying states of the system. Dynamic programming is
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Figure 3.4: Dynamic Programming - Shortest Path

an optimization method for discrete time systems based on Bellman’s principle of optimality
which in simple terms states that any segment of the optimal trajectory is itself optimal.
It highlights the fact that natural direction for solving optimization problems is reverse i.e.,
starting from the terminal state and working the way backwards through the previous states
such that the cost to go in reverse is minimized. As the algorithm reaches the initial state the
optimal path with allied cost and optimal control is identified. The cornerstone of dynamic
programming is the optimal value function v(x) which is the minimal total cost for achieving
the final state xf starting from the given initial state x0. We present a simple example
motivated from [36] to explain the algorithm.

Example 3.6.1. Consider you wish to travel from a city A to city K representing states x0

and x10 respectively as shown in Figure 3.4. All other towns ordered alphabetically represent
states xi, i = 1, . . . , 9.

The roads connecting A to K pass through various towns. The length of the road in km
from town to town is shown in Figure 3.4. The dynamic programming problem is to choose
an action u (an appropriate road) at every node xi that minimizes the total distance traveled
(cost) in going from A to K.

1. DP starts at node K and looks for all roads leading directly from other towns to K. In
this case these are H, I, J.

2. The algorithm calculates the cost in going from each of these towns to K and attaches
this to the nodes as their value v(x) or the optimal cost to go from i-th town to K. In
this example v(x7) = 5, v(x8) = 3 and v(x9) = 7.

3. Working backwards, we now move on to the previous stage of towns i.e., E, F and
G. Considering town E (x4) first, we calculate its value v(x4) which is the sum of the
shortest running cost in going from x4 to adjoining town xi, i = 7, 8, 9 in the next
stage and the value function of the town xi. The path that leads to the shortest value
is chosen as value of town E (v(x4) = 8 in this case). The situation is explained in
Figure 3.5.
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Figure 3.5: Shortest Path from E to K

4. Continuing in this fashion we work backwards ultimately reaching city A (x0).

5. Suppose that at any state xi, the value function to go from state xi+1 to xf is v(xi+1, u)

and the cost to reach state from xi to xi+1 is C(xi, u). The optimal control function
and corresponding value function are given as:

U = arg min
u∈U(x)

(C(x, u) + v(x, u)) , (3.6.1)

v(x) = min
u∈U(x)

(C(x, u) + v(x, u)) . (3.6.2)

Equations (3.6.1)–(3.6.2) are called Bellman equations.

Hamilton Jacobi Bellman Equations

The principle of optimality applied to continuous time system leads to some very complex
partial differential equations known as Hamliton-Jacobi-Bellman equations as they are based
on the work done by W. R. Hamilton and Carl Jakob Jacobi. Consider a system whose
dynamics and the cost to go are given as:

ẋ = f(t, x, u),

J =

ˆ tf

t

L(t, x, u)dt+K(x(tf )),

where t is the initial time and tf is the terminal time x(tf ), L is the running cost in reaching
x(tf ) and K is the possible terminal cost associated with the terminal state xf . The value
function is given as:

V (t, x) = inf
u∈[t,tf ]

J(t, x, u(.)).

Note that value function for initial state v(t, x0) is the optimal cost in going from x0 to xf
and is essentially equal to K(x(tf )). Note also the time dependence of value function. The
optimal cost functional J∗ is given as:

J∗ = min
u∈[t,tf ]

{ˆ tf

t

L(t, x, u)dt+K(x(tf ))

}
. (3.6.3)
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Using additive property of integrals we may write equation (3.6.3) as:

J∗ = min
u∈[t,t+∆t]

{ˆ t+∆t

t

L(t, x, u)dt+ J∗ (t+ ∆t, x(t+ ∆t))

}
. (3.6.4)

Thus using equation (3.6.4) we have reduced the problem of finding the optimal control over
entire interval [t, tf ] to interval [t, t + ∆t]. Note the similarity with the discrete case where
we worked out the optimal decision from state to state instead of doing it over entire path
from A to K. Equation (3.6.4) may be approximated as:

J∗(t, x) = min
u
{L(t, x)∆t+ J∗ (t+ ∆t, x(t+ ∆t))} . (3.6.5)

Since ∆x = x(t + ∆t) − x(t) =⇒ x(t + ∆t) = x(t) + ∆x, the Taylor expansion of
J∗ (t+ ∆t, x(t+ ∆t)) ignoring second and higher order terms may be written as:

J∗ (t+ ∆t, x(t+ ∆t)) = J∗(t, x) +

(
∂

∂t
J∗
)T

∆t+
∂

∂x
J∗∆x,

= J∗(t, x) +
∂

∂t
J∗∆t+

(
∂

∂x
J∗
)T

∆x

∆t
∆t. (3.6.6)

Substituting equation (3.6.6) into equation (3.6.5) we get:

J∗(t, x) = min
u

{
L(t, x)∆t+ J∗(t, x) +

∂

∂t
J∗∆t+

(
∂

∂x
J∗
)T

∆x
∆t

∆t

}
,

0 = min
u

{(
L(t, x) +

∂

∂t
J∗ +

(
∂

∂x
J∗
)T

∆x

∆t

)
∆t

}
. (3.6.7)

In (3.6.7) dividing both sides by ∆t and then taking lim ∆t→ 0, we get:

0 =
∂

∂t
J∗ + min

u

{
L(t, x) + 〈 ∂

∂x
J∗, f(t, x, u)〉

}
. (3.6.8)

Equation (3.6.8) is the famous Hamilton Jacobi Bellman equation that gives sufficient condi-
tion for optimality. Note that it is PDE in time t and state x. The solution to HJB equation
gives the optimal control u∗. Note that since value function is the optimal cost J∗, same
equation may be written in terms of value function.

3.7 Comparison between PMP and HJB Equations

1. PMP

a) Gives first order necessary optimality conditions.

b) The resulting equations are first order ODEs that are relatively simpler to solve.

c) Candidate optimal trajectories are found.
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d) The approach is closely knitted to geometry leading to better insight into the
system dynamics.

e) Analytical solution to PMP equations is generally possible.

f) Results in open loop control.

2. HJB Equations

a) Gives sufficient conditions for optimality.

b) Resulting equations are PDEs in time t and state x.

c) The value function has to be known at the start of the procedure which is quite
unusual.

d) Results in feedback control.

e) Suffers from curse of dimensionality i.e., the algorithm complexity increases tremen-
dously with increase in the system states n

f) Usually HJB equation has non-smooth solution, and several theories were con-
structed for generalized solutions to HJB equation (e.g. viscosity solution).

Due to these reasons, applying PMP is usually much easier than applying HJB. Certainly, if
one succeeds to solve HJB, this would give a complete solution to an optimal control problem.
But this can be done in very rare cases.

3.8 Final Pieces of Big Picture

Model Predictive Control (MPC)

MPC has been around in the process industry since 1980s and has recently experienced a
resurgence of interest and new applications. It is also an optimal control technique based on
iterative finite horizon optimization of plant model. Number of plant models (usually linear
obtained through system identification) are obtained in the entire envelope of operation of
the system. At any time t, the state x(t) of the system is sampled and an appropriate model
is chosen from a set of available models based on the current state x(t). During the interval
[t, t+ T ], an optimal control is computed by solving Euler-Lagrange equations online that is
valid until t+ T . Once T has elapsed, the system state is sampled again and the procedure
is repeated. If there is no model available matching the current state of the system, then,
an appropriate interpolation technique is used to provide a suitable model to be used for
calculation of optimal control.
As can be seen, the technique is not entirely optimal and it is optimal over finite horizon
only. Hence the optimality over infinite horizon is not guaranteed. One could argue that it is



CHAPTER 3. A PRIMER ON GEOMETRIC CONTROL THEORY 40

a control scheme that is motivated from engineering applications rather than mathematical
theory. Interestingly, finite horizon version of PMP can be applied in MPC settings [32].

Markov Decision Processes

An optimal control problem with discrete states and actions and probabilistic state transi-
tions is called a Markov decision process (MDP). MDPs are extensively studied in reinforce-
ment learning which is a sub-field of machine learning focusing on optimal control problems
with discrete state. Dynamic programming easily generalizes to MDPs because of close re-
semblance in optimality principle and the Markov property of processes i.e., future state is
conditionally independent of the past given the present state. The Bellman equations ob-
tained stay the same except that state transitions and value function are now probabilistic
rather than deterministic [32].

3.9 Chapter Summary

Geometry, control theory and Lie theory make a recipe that carries potential to bring about a
revolution in how we deal with nonlinear systems. Differential equations viewed as geometric
objects give a totally different meaning to dynamical systems not possible in the classical
theory of integration of differential equations. Alongside geometrization of mechanics and
control theory, optimal control theory reached its zenith with the discovery of PMP. The
blend of these concepts gave rise to entire new discipline called geometric control theory.
PMP and HJB equations are two parallel approaches to optimal control with peculiarities
related to each one of them. It turns out that PMP with its geometric view not only solves
the optimal control problem, it gives far greater insight into the qualitative behavior of the
system.

The notion of optimal control has been firmly established and competing directions have
been explored. With motivation for geometric control and PMP constituted, we are now in
a position to present the Sub-Riemannian problem which is the main goal of this research.



Chapter 4

Literature Review - Sub-Riemannian
Geometry and Geometric Control

In the previous chapter we looked at the chronological development and essential ingredients
of the geometric control techniques. We also presented the motivation behind development
of the subject and through an example we presented its advantages in establishing controlla-
bility of the control distribution. We also presented various optimal control techniques and
established why PMP and optimality analysis via geometric control theory is more interest-
ing and rewarding. With the essential mathematical structure in perspective, we now define
the sub-Riemannian manifold that forms the configuration manifold of our research problem.
We also present a review of the existing literature on the analysis techniques and results on
sub-Riemannian problem on various Lie groups.

Definition 4.0.1. Metric Tensor

A metric tensor gp is a non-degenerate, symmetric, smooth, bilinear map which maps a
pair of tangent vectors at each tangent space TpM of the manifold to a real number [19]:

gp : TpM × TpM → R. (4.0.1)

4.1 Riemannian Manifold

Carl Friedrich Gauss sometimes referred to as "greatest mathematician since antiquity"
proved his Theorema Egregium in 1821, identifying an intrinsic property of curvature of
surfaces. Roughly speaking he established that the curvature of a surface completely deter-
mined the distances along paths on that surface and is not dependent upon how the surface
is embedded in 3-dimensional space. Few decades later, Riemann working on non-flat higher
dimensional spaces extended Gauss’s idea. He defined a metric tensor that allowed measuring
distances and angles on the manifold. The Riemannian tensor defined the notion of curvature
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as intrinsic property to the manifold that did not depend upon embedding of n-dimensional
manifold in higher-dimensional spaces. The manifolds endowed with Riemannian tensor are
called Riemannian manifolds [19].

Mathematically, a Riemannian manifold (M, g) is a real smooth manifold M endowed
with an intrinsic metric gp ∀p ∈M [37],[38], that can be used to define the notions of length
of curves, distance between points and angles on Riemannian manifolds. The metric is non-
degenerate and positive definite and is called Riemannian metric or Riemannian tensor [39].
As such Riemannian tensor is a generalization of the concept of inner product on Euclidean
space.

4.2 Sub-Riemannian Manifold

Definition 4.2.1. Distribution
A distribution ∆ of a manifold M is a sub-bundle of its tangent bundle TM i.e., ∆ ⊂

TM . It is a family of linear subspaces ∆q of tangent spaces TqM depending smoothly
upon the point q ∈ M i.e.,{∆q ⊂ TqM ∀q ∈M} [38]. The dimension or rank m of the
distribution is equal to the number of independent basis vector fields in the distribution.
Sub-Riemannian manifold is a generalization of Riemannian manifold. A sub-Riemannian

Figure 4.1: Generic Concept of Distribution - The tangent space TqM at q is 3-dimensional
but ∆q is a plane i.e., it is 2-dimensional

manifold is a triple (M, g,∆) i.e., n-dimensional Riemannian manifold M endowed with a
smooth vector distribution ∆ of constant rank m | m < n and positive definite Riemannian
metric g. The Riemannian metric g is used to define the notion of sub-Riemannian distance
d which is a parametrization independent measure of distance between two points q1 and q2

on the sub-Riemannian manifold. On a Riemannian manifold the curves have locally finite
length but in sub-Riemannian manifold, the curves have infinite length if they do not comply
to the constraint on direction of motion. Thus in order to measure distance one is allowed
to move along the curves tangent to the so called horizontal subspaces. Figure 4.2 shows a
sub-Riemannian manifold M with the distribution ∆. The manifold is three dimensional and
therefore its tangent bundle TM comprises non-overlapping three dimensional vector spaces
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Figure 4.2: Sub-Riemannian Distribution

TqM at every q ∈M . The distribution ∆ ⊂ TM is on the other hand two dimensional which
essentially suggests that in order to traverse the manifoldM , one is allowed to take velocities
in distribution only i.e., q̇(t) ∈ ∆. The distance in going from q(0) to q(t1) is given by the
smoothly varying positive definite quadratic form g.

Sub-Riemannian Distance

The notion of sub-Riemannian distance is central to the optimal control problems on sub-
Riemannian manifolds and needs explanation. Consider a sub-Riemannian manifold (M,∆, g)

and a Lipschitzian horizontal curve γ : I ⊂ R → M ; γ̇(t) ∈ ∆γ(t) for almost all t ∈ I. The
metric g being an inner product in the distribution ∆γ(t) ⊂ TM , the length of curve γ on
the manifold M is given as [38]:

length(γ) =

ˆ

I

√
gγ(t)(γ̇(t), γ̇(t))dt.

Put simply, γ is a curve that maps an interval I to the manifold M such that the γ̇(t) is
everywhere tangent to the manifold and lies in the distribution ∆ ⊂ TM . If we combine the
infinitesimal versions of γ̇(t) ∀t ∈ I, we essentially have the whole curve γ. If we calculate
the inner product of each individual tangent vector γ̇(t) with itself such that t→ 0, we have
a quantity which is the equivalent to Euclidean norm of vector representing its length. When
we integrate lengths of all infinitesimal tangent vectors over the whole interval I, we have
the length of the curve γ. The sub-Riemannian distance d between two points p, q ∈ M is
length of the shortest curve joining p to q:

d(p; q) = inf
{
length(γ) : γ is horizontal curve that joins p to q

}
.

In elementary Physics we refer to this infinum as the displacement. The curve over which
this infinum is achieved is called a geodesic. It is trivially understood that such a distance
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gives a natural cost function for the optimal control problems that exhibit structure of sub-
Riemannian manifold. Moreover, in optimal control problems we are interested in finding
the geodesics and the control input that materializes the geodesic.

Sub-Riemannian Geometry and Classical Mechanics

Sub-Riemannian geometry is the study of Sub-Riemannian manifolds that describe diverse
physical systems but one particular example comes from classical mechanics where it is easiest
to clarify the concepts associated with sub-Riemannian geometry. Classical mechanics bears
innumerable examples of the systems whose velocities are constrained along subspaces of
the tangent spaces thus conceding an obvious relationship with the distribution of a sub-
Riemannian manifold.

The states of classical mechanical systems comprise of the generalized position and gener-
alized velocity coordinates. Thus the phase space consists of the manifoldM and the tangent
bundle TM i.e., ‘positions times speeds’. The derivatives of the position coordinates form
the velocity coordinates thus imposing a natural constraint on the system dynamics. Hence
the system trajectories are a subspace of the phase space and not all trajectories are allowed.
Intuitively, one cannot vary speed without varying position and similarly, it is not possible
to change position at zero velocity [40].

Historically Sub-Riemannian geometry was developed independently in Russia and France.
In Russia, it is known as nonholonomic Riemannian geometry and in France it is known as
Carnot geometry. Hence each source developed its own set of terminologies to describe
various notions of the system. For example the sub-Riemannian distance is also known as
Carnot-Caratheodory distance. For the interested reader, the term ‘holonomic’ was coined
by German physicist Heinrich Rudolf Hertz. It literally means ‘universal’, ‘integral’, ‘inte-
grable’, ’entire’. Nonholonomic therefore means ‘non integrable’ or ’not entire’ suggesting
that not entire tangent space is available for motion or the velocity constraints are integrated
to position constraints [41].

Examples of Sub-Riemannian Manifolds in Physics

Sub-Riemannian geometry and the theory of nonholonomic systems have been the subject of
active research since 1980s with its ramifications in control theory, classical mechanics, sym-
plectic and contact geometry etc. Some of the most prominent geometers of the 20th century
have produced remarkable research papers on the subject and the number is increasing every
passing day [41]. The underlying reason for such interest is due to the fact that optimal con-
trol of nonholonomic systems reduces to finding geodesics on the sub-Riemannian manifold.
As such, sub-Riemannian manifold forms the phase space of a nonholonomic system. Phase
space of any controllable dynamical system with number of vector fields smaller than the
dimension of the phase space is a sub-Riemannian manifold. The state space of model of
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steering of a car in example 3.3.1 is in fact a sub-Riemannian manifold and mathematically
the car steering problem is a sub-Riemannian problem on group of motions of Euclidean
plane. Sub-Riemannian problems arise in classical mechanics, economics, robotics, quantum
mechanics, vision geometry and surprisingly in falling of cat [40]. Some of these problems
are discussed to induce appreciation for sub-Riemannian geometry in control engineering.

Classical Mechanics - Robotics

Robotic systems are nonholonomic systems as we all know. Consider for example a two
link planar robotic arm shown in figure 4.3 along with its configuration space. The links
are of lengths l1and l2 respectively making angle θ1 and θ2 with the horizontal. The links
can take angular velocities in the plane only and translational motion is not allowed. In
that perspective the configuration space of the manipulator should be 1-sphere i.e., the
circumference of the circle with radius l1+l2. However, we understand that two link pendulum
can practically traverse a space bounded by two concentric circles with radii equal to l1+l2 and
l1 − l2 respectively. Hence the velocity constraints do not integrate to position coordinates
and therefore the system is nonholonomic i.e., non integrable and are studied under sub-
Riemannian geometry.

Figure 4.3: Two link planar robotic manipulator

Neuro Geometry of Vision

At the turn of the century important results were obtained in the neurophysiology of vision
that clarified the functional mechanisms of the primary layer (V1) of the visual cortex of
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human brain. The primary visual cortex contains different types of cells, including the so-
called simple cells that perform the primary perception of visual information by the human
brain. It was established that structure of the cortex is a sub-Riemannian manifold M ≡
R2 × S1 [42].

This discovery proved to be vital in solving an important problem of restoring damaged
or latent images called image inpainting. Researchers claim that if some portion of an image
is missing or covered by another opaque object, then the brain attempts to complete the
missing portion by minimizing some sub-Riemannian distance over the space of visual cells.
In other words the brain computes a sub-Riemannian geodesic between the endpoints of the
missing data. The problem has been posed as left-invariant sub-Riemannian problem on the
group of motions of a Euclidean plane SE(2). A software program that computes the optimal
curves was developed [43] and the results are promising. The researchers were able to restore
gray scale images with missing visual data.

Quantum Mechanics

Quantum mechanics is the branch of Physics that deals with the motion of particles (atoms,
molecules or system of particles with spin) on microscopic scale. The mechanics of such
system is described by wave function ψ : R → S. The function ψ(t) is a vector containing
statistical information about the quantum system. It is also called the quantum state or
eigenstate equivalent to the concept of state in classical mechanics. The famous Schrödinger
equation describes the time evolution of quantum mechanical system as:

ih
∂

∂t
ψ(t) = H0ψ(t),

where i is imaginary unit, h is the Plank’s constant and H0 is the free Hamiltonian which
is equivalent to the total energy of any given quantum mechanical system at any instant. It
is possible to effect controls on a quantum system by applying external electric or magnetic
fields. The control problem is to transfer the system form one eigenstate ψi to another eigen-
state ψj by applying external stimuli uk, k = 1, . . . , n, minimizing either the energy or time
of transfer. This control problem is described on Heisenberg group which has a natural sub-
Riemannian structure. Roughly speaking, the Riemannian metric is the energy transferred
by the controls and the number of control vector fields is smaller than the dimension of the
control system thereby taking structure of a distribution.
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4.3 Sub-Riemannian Problem in General

Consider a driftless dynamical system on Riemannian manifoldM of dimension n with metric
g:

q̇ =
m∑
i=1

ui(t)fi(q), (u1, · · · , um) ∈ Rm.

If ∆q := span{fi(q)} ⊂ TqM | m < n, then the problem of finding horizontal curves γ and
the corresponding control u from some state q0 to another arbitrary state q1 such that sub-
Riemannian length l(q0; q1) is minimized is called a sub-Riemannian problem [38],[44]. It is
easily seen that (M,∆, g) form the sub-Riemannian manifold. The curve γ is called geodesic
and the control u is called optimal control. Intuitively there exists a set of vector fields
fi whose values ∀q ∈ M form a local orthonormal frame of the sub-Riemannian structure
(∆; g). The horizontal curves γ(t) : I ⊂ R → M for t ∈ I = [0, t1] are the solutions of the
following optimal control problem in M :

q̇ =
m∑
i=1

ui(t)fi(q)), q ∈M, (u1, · · · , um) ∈ Rm,

q(0) = q0, q(t1) = q1,

l(γ) =

ˆ t1

0

√
g (γ̇(t), γ̇(t))dt→ min, (4.3.1)

where l(γ) is the length of curve γ : [0, t1]→M and suggests that we are looking for such a
trajectory from q0 to q1 that minimizes this length.

Sub-Riemannian Length vs Energy Cost Functional

The sub-Riemannian length is seldom used as optimal cost functional in the sub-Riemannian
problems. Instead, energy functional is minimized in sub-Riemannian problems. The energy
of a parametrized curve γ : [0, t1]→M is given as:

J(γ) =
1

2

ˆ t1

0

g (γ̇(t), γ̇(t)) dt. (4.3.2)

By Cauchy Schwarz inequality:

(ˆ b

a

f (t) g (t) dt

)2

≤
ˆ b

a

(f (t))2 dt

ˆ b

a

(g (t))2 dt.

Thus equation (4.3.1) may be written as:
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(l(γ))2 =

(ˆ t1

0

√
g (γ̇(t), γ̇(t))dt

)2

,

=

(ˆ t1

0

(1)
√
g (γ̇(t), γ̇(t))dt

)2

,

≤
(ˆ t1

0

(1)2dt

)
.

(ˆ t1

0

(√
g (γ̇(t), γ̇(t))

)2

dt

)
,

= t1

ˆ t1

0

g (γ̇(t), γ̇(t)) dt. (4.3.3)

From equations (4.3.2) and (4.3.3) we have:

(l(γ))2 ≤ 2t1J(γ). (4.3.4)

Equation 4.3.4 essentially suggests that length minimization is equivalent to energy mini-
mization problem. The functional J is more convenient than l since J is smooth and its
extremals are automatically curves with constant velocity [15].

4.4 Sub-Riemannian Problem and Lie Groups

With sub-Riemannian geometry and its significance in perspective, it is now natural to
inquire and establish the connection between sub-Riemannian problems and Lie groups. The
craving for seeking such relationship ensues from the fact that this research is aimed at sub-
Riemannian problem on Lie group SH(2). We have already established that Lie groups and
geometry are important to the control theory. We have also established that sub-Riemannian
problem is an optimal control problem with underlying manifold being sub-Riemannian. It
only remains to establish, how sub-Riemannian problems are described on Lie groups which
is dealt in the ensuing paragraphs motivated from [15].

As discussed earlier, a Lie group G is a smooth manifold that also has group structure.
Associated to every Lie group is its Lie algebra L that locally determines the Lie group
almost completely. Intuitively, Lie algebra is the tangent space at the identity of the Lie
group i.e., L ≡ TIdG. For left invariant control systems Ẋ = XA, X ∈ G, A ∈ L, the
tangent space at every X ∈ G is the Lie algebra L transported to left by the group action
on the Lie algebra basis A. Let us assume that vector field XA defines a distribution ∆X

and L is endowed with an invariant inner product g = 〈 . , . 〉, then ∆X ⊂ TXG and g define
a sub-Riemannian structure on Lie group G. For any Lipschitzian curve:

X : [0, t1]→M,

its Riemannian length is defined as integral of velocity:



CHAPTER 4. LITERATURE REVIEW - SUB-RIEMANNIAN GEOMETRY AND
GEOMETRIC CONTROL 49

l =

ˆ t1

0

√
〈Ẋ, Ẋ〉dt.

The sub-Riemannian problem is that given two arbitrary points X0, X1 ∈ G, find the curve in
G that connects X0 and X1 such that the length l is minimized. The corresponding optimal
control problem is as follows:

Ẋ = Xu, X ∈ G, u ∈ L,

X(0) = X0, X(t1) = X1, X0, X1 ∈ G fixed,

l(u) =

ˆ t1

0

√
〈u(t), u(t)〉dt→min.

Hence left invariant control problem on a Lie groupG is essentially a sub-Riemannian problem
on G which in turn is an optimal control problem. To summarize:

� An optimal control problem is to find a curve γ on the manifold G such that some cost
function is minimized.

� If the manifold G is a sub-Riemannian manifold then the sub-Riemannian length gives
a natural cost function and the optimal control problem has sub-Riemannian structure.

� Additionally, if G has group structure and its Lie algebra is endowed with an invariant
inner product, then the problem becomes sub-Riemannian problem on Lie group G.

4.5 Known Results - Sub-Riemannian Problem on Lie

Groups

Past two decades have been a period of substantial activity in sub-Riemannian geometry
from mathematics as well as control theory perspective. On theoretical front, it has been
studied as basic model of metric spaces in the modern theory of analysis whereas, on applied
side many problems have been modeled as sub-Riemannian problems in diverse areas such
as control theory, economics, robotics, neurophysiology and image inpainting [37],[40].
Study of sub-Riemannian problems on various Lie groups via geometric control methods is a
relatively new area of control theory. On macro scale sub-Riemannian problem is concerned
with finding the optimal trajectories between states on manifold, but, on micro scale it deals
with issues such as controllability, Liouville’s integrability, existence, parametrization and
qualitative analysis of extremal trajectories etc. Since PMP provides only necessary condi-
tions for optimality, thus only candidate optimal trajectories known as extremal trajectories
are obtained from it. Thereafter further analysis based on Maxwell points is performed to
single out the extremal trajectories that are actually not optimal. The calculation of cut
and conjugate loci becomes all the more important in this overall scheme of elimination
procedure.
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The scheme of analysis outlined above has been applied to various Lie groups. One of
the most important Lie groups is Heisenberg group named after German theoretical physi-
cist Werner Heisenberg renowned for his work in quantum mechanics. Three dimensional
Heisenberg group arises in the description of one-dimensional quantum mechanical systems.
Optimal control problem was considered on Heisenberg group in [45]. The motivation for
this work were two physics problems i.e., Heisenberg flywheel with n point masses and the
behavior of n non-interacting, non-relativistic charged masses under influence of a magnetic
field. The authors applied PMP on the problem and calculated extremal trajectories that
are solutions to the Hamiltonian system associated with the problem. Abnormal extremals
(which do not depend on the cost functional) yield solutions that are geometrically irrelevant.

In a series of papers [46],[47] author considered the generalized Dido problem. The
problem was posed as an optimal control problem in a 5-dimensional space. The control
vector was 2-dimensional control with quadratic optimal cost functional. In the first paper,
extremal trajectories of Dido’s problem were obtained and parametrized by Jacobian elliptic
functions. The second paper [47] was devoted to describing the reflection symmetries in
the vertical subsystem of the Hamiltonian system. The Maxwell strata corresponding to
reflection symmetries were calculated and upper bound on cut time was obtained in [46].

The rigorous scheme of analysis was then extended to group of motions of Euclidean plane
that form the Lie group SE(2) [1]. More than hundred and fifty pages of analysis developed in
[46],[47] were condensed to mere twenty three addressing all aspects handled in [46],[47]. The
motions of Euclidean plane roughly represent a Reeds Shepp car [1] or a planar robot that
is allowed to move forward and backward and turn only. Thus system has three dimensional
vector field and two dimensional linear control input. Using Cauchy Schwarz inequality the
author considers an optimal cost equivalent to the energy functional. Intuitively, such a
system is controllable and the same is proved mathematically. The extremal trajectories are
again parametrized by Jacobi elliptic functions. The strength of this scheme is that it has
almost become an algorithm that has been applied to number of problems on various Lie
groups. It is mathematically complex but leads to rigorous analysis and sound results.

In [48] the author addresses the question of cut and conjugate loci on Lie group SE(2).
Author characterized the local and global optimality of extremal trajectories and calculated
lower and upper bounds on the first conjugate time. It was proved that the cut time is equal
to the first Maxwell time corresponding to the group of discrete symmetries of the exponential
mapping. Another paper on SE(2) problem was dedicated to optimal synthesis[49].

The invariant Carnot Caratheodory metrics on Lie groups S3, SL(2), SU(2), SO(3) and
Lens spaces was studied in [50]. The authors calculated the geodesics and conjugate loci
for all Lie groups. The cut loci were characterized globally and the expression for Carnot-
Caratheodory distance was obtained. This was one of the most important work as it provided
first explicit computation of the whole cut locus in sub-Riemannian geometry, which, at that
time was known only for the trivial case of the Heisenberg group.
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The problem of controllability of affine right-invariant systems on solvable Lie groups was
addressed in [51]. After a span of fifteen years, the parametrization of extremal trajectories
on SOLV − was obtained in [52]. The extremal trajectories were yet again parametrized by
Jacobi elliptic functions but the definition of elliptic coordinates was different than in [1]. The
sub-Riemannian problem on SOLV −is similar to and simpler than the sub-Riemannian prob-
lem on SH(2) which is the problem addressed in this research. However, the parametrization
of sub-Riemannian geodesics obtained in [52] is far from complete.

Sub-Riemannian problem on Engel group was studied in [53]. It is essentially an optimal
control problem described by 4-dimensional vector field and 2-dimensional linear control. It
represents a nilpotent approximation to nonholonomic systems with 2-dimensional control in
a 4-dimensional space. Intuitively, navigation of a mobile robot with trailer represents such
a problem. Extremal trajectories are obtained and upper bound on cut time is calculated.

Interestingly, the problem of image inpainting (problem of recovering an image, some
fragments of which are corrupted or hidden from observation) was taken up in [43]. The
technique is based on completing damaged isophotes by sub-Riemannian length minimizers
for the left-invariant sub-Riemannian problem on Lie group SE(2). An algorithm was pro-
posed and a software OptimalInpainting was developed to restore the images. The results
achieved from the software are promising and suggest the efficiency of technique. However,
the mathematics and algorithm to restore colored images via sub-Riemannian length mini-
mizers is yet to be realized.

Geometric control techniques have also been applied to physical systems. For example
geometric tracking of a quadrotor was attempted in [54]. In this work authors expressed the
dynamics of the quadrotor on special Euclidean group SE(3) as is customary in robotics. The
authors achieved almost global asymptotic tracking of the attitude, position of the center
of mass and the velocity of the center of mass of the quadrotor UAV. It was proved that
system avoided singularities and could execute complex acrobatic maneuvers. The control
was physically implemented and the quadrotor successfully performed a back flip.

In order to take advantage of computational power offered by computers, numerical so-
lution techniques are a necessary part of the research. On that account, a new discipline has
risen over past few years known as geometric computational mechanics [55] that provides
numerical integration techniques for geometric control methods. In essence, these numerical
integration methods preserve geometric properties of a dynamical system. This is impor-
tant because the qualitative behavior of a dynamical system are determined by its geometric
structure. In general the conventional integrators like Runge-Kutta, Euler method etc fail
to provide reasonable computational results and the error keeps accumulating ultimately
blowing up the result. With geometric integrators however, the results are consistent with
the continuous time results and do not deteriorate over time. Among class of geometric
integrators are included Lie group variational integrators developed in [56] for mechanical
systems evolving on a Lie group. Their main advantage is that they preserve the geometric
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structure and they exhibit good energy behavior over a long time period.
The number and variety of publications on geometric control theory and its applications

are rising at ever increasing pace and therefore it is not possible to cover even a small number
of such publications in this literature review. Hence, the literature review is by no means
exhaustive or elaborate by design. Only important and most relevant results from past two
decades have been included to highlight the activity that has engaged geometric control
experts lately. Yet, we believe that the background of geometric control theory developed
in this text is sufficient to explain the main concepts and motivate interested researchers
towards a promising new direction of research.

4.6 Chapter Summary

Sub-Riemannian manifolds represent dynamical systems whose motion is restricted along
horizontal spaces or which are subjected to nonholonomic constraints. Many mechanical
systems are nonholonomic in nature and hence a geometric view of the problem can be
certainly rewarding and insightful. Sub-Riemannian manifold is naturally endowed with a
metric that represents distance between points and hence can be used as cost for optimal
control problems. Hence PMP can be applied on the optimal control problem with cost being
equivalent to the energy of the system.

In the succeeding chapter we formally define the Lie group SH(2) and state our research
problem.



Chapter 5

Sub-Riemannian Problem on Group of
Motions of Pseudo Euclidean Plane

In previous chapters the terminology and the concepts related to sub-Riemannian geometry
were presented that completed the essential framework needed to define and explain the
research problem. In this chapter we describe the problem statement in detail. We describe
the notion of group of motions of pseudo Euclidean plane and describe the optimal control
problem. Detailed description of the research objectives is also presented.

5.1 Motions

Definition 5.1.1. A transformation is a bijective mapping from a set A onto another set B
[57].

Definition 5.1.2. A distance d(x, y) preserving transformation f : A → B | d(x, y) =

d(f(x), f(y)) for any points (x, y) ∈ A, (f(x), f(y)) ∈ B is called an isometry. Distance d
is any consistent notion of distance between elements of a set [57].

Definition 5.1.3. Motion is defined as isometry of a set onto itself [57].

We may think of motion as a transformation f : A→ A such that distance between points
d(x, y) = d(f(x), f(y)) is preserved. Motions represent the transformations of a rigid body
where the intermediate distance between points on the body before and after transformation
remains constant. Consider for example an aircraft under roll motion. The distance between
wing tips before and after roll remains constant. Hence roll motion is an isometry (see Figure
5.1).

Properties of Motions

� The set of all motions is a group
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Figure 5.1: Aircraft under roll motion - Distance between wing tips is preserved

� Motions preserve the collinearity and noncollinearity of points, with the result that the
image of a line is always a line

� Motions send a geometric object to a congruent geometric object

Types of Motion

1. Translation

2. Rotation

3. Reflection

4. Glide Reflection - Translation and reflection (see Figure 5.2).

Definition 5.1.4. Taken collectively, translations and rotations are called displacements, or
rigid motions [57]. A motion f : (x, y)→ (x′, y′) on Euclidean plane with translation a and
b along x and y-axis respectively and rotation by angle θ is given as:

x′ = x cos θ − y sin θ + a,

y′ = x sin θ + y cos θ + b.

Displacements are the only motions which preserve the sense of every angle and are hence
called direct transformations. Displacements form the Lie group called affine group Aff(n).

5.2 Pseudo Euclidean Plane

Pseudo Euclidean space is a generalization of the Euclidean space. The generalization per-
tains to the possibility of having negative distances between points and a curved space.
Mathematically, (n + m) dimensional pseudo Euclidean space is denoted as F n+m

m where F
is a field over R and m is called the index. The space is endowed with a non-degenerate sign
indefinite quadratic form q(x) ∀x ∈ Rn+m [58]:
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Figure 5.2: (a) Translation (b) Rotation (c) Reflection (d) Glide Reflection

q(x) = xTQx, (5.2.1)

whereQ is some real symmetric matrix. In terms of rectangular coordinates (x1, . . . , xn, xn+1,. . . , xn+m)

quadratic form equation (5.2.1) is given as:

q(x) = (x2
1 + · · ·+ x2

n)−
(
x2
n+1 + · · ·+ x2

n+m

)
.

Hence for pseudo Euclidean plane:

Q =

(
In 0

0 −Im

)
.

The pseudo Euclidean space also contains the notion of a polar form defined as:

〈x, y〉 = xTQy,

= x1y1 + x2y2 + . . .+ xnyn − (xn+1yn+1 + . . .+ xn+myn+m) . (5.2.2)

Note that n-dimensional Euclidean space is a pseudo Euclidean space with index m = 0.
Thus for Euclidean space Q = In the quadratic form q and polar form 〈x, y〉 are given as:

q(x) = xT Inx,

= x2
1 + · · ·+ x2

n.
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and,

〈x, y〉 = xTPy,

= x1y1 + x2y2 + . . .+ xnyn. (5.2.3)

Looked this way, pseudo Euclidean space generalizes Euclidean space with q(x) being equiva-
lent to vector norm squared and polar form being the inner product of vectors. The distance
r of a point from origin

√
q(x) is Hermitian.

Pseudo Euclidean plane is principally two dimensional subspace F 1+1
1 with q(x) = x2−y2

where x and y represent the coordinate axes [58]. Rest of the discussion is now devoted to
pseudo Euclidean plane except where mentioned explicitly. Distance r between two points
a(a1, a2) and b(b1, b2) on F 1+1

1 is given by the inner product equation (5.2.2):

r2 ≡ 〈a− b, a− b〉 = (a1 − b1)2 − (a2 − b2)2.

Unlike the Euclidean plane, the distance r in pseudo Euclidean plane is Hermitian and can
also be zero between two distinct points a(a1, a2) and b(b1, b2) provided a1− b1 = ±(a2− b2).
Geometrically, unit hyperbola x2 − y2 = 1 shown in Figure 5.3 represents pseudo Euclidean
plane F 1+1

1 which is segregated into four distinct sectors by the asymptotic lines x = y and
x = −y. The sectors of the plane are conventionally known as Right (RS), Up (US), Left
(LS) and Down (DS) sectors. The motions of pseudo Euclidean plane considered in this
research problem are sector preserving maps on RS where −x < y < x and distance between
points r > 0.
The hyperbolic functions, gyrovectors and split complex numbers are pseudo Euclidean
analogs of trigonometric functions, vectors and complex numbers in the Euclidean plane.
Hence the points on RS of the pseudo Euclidean plane are transformed into polar coordi-
nates by hyperbolic functions as follows [59],[60]:

a1 = r coshϕ,

a2 = r sinhϕ,

where r ∈ R+ is the length and ϕ ∈ R is the hyperbolic angle of rotation of the gyrovector.
The split complex numbers also called hyperbolic/hypercomplex/perplex numbers represent
the points on pseudo Euclidean plane in similar way as the complex number define points on
the Euclidean plane. The number system was invented by Sophus Lie. It is defined as:

a = a1 + ia2, (5.2.4)

where i2 = +1. The conjugate of split complex number is defined as ā = a1− ia2. Hence the
quadratic form q(.) on pseudo Euclidean plane is alternatively defined as:
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Figure 5.3: Pseudo Euclidean plane represented by unit hyperbola

q = aā,

= (a1 + ia2)(a1 − ia2),

= a2
1 − i2a2

2,

= a2
1 − a2

2. (5.2.5)

The scalar product and the properties of hypercomplex numbers allow to state suitable
axioms and to give the pseudo-Euclidean plane the structure of a vector space.

5.3 Group SH(2) of Motions of Pseudo Euclidean Plane

We now describe the motions of the pseudo Euclidean plane that comprise of translations
and hyperbolic rotations. Subsequent exposition is based on relevant discussion in [60].
Specifically we consider displacements (see definition 5.1.4) of points in the pseudo Euclidean
plane i.e., non homogeneous, linear maps of points of pseudo Euclidean plane that preserve
distance, orientation and sector of points being transformed. Transformation of a point
a(a1, a2) into another point b(b1, b2) by translating it a distance x and y along x and y-axis
in RS (see figure 5.3) and rotated by angle z is given as:

b1 = a1 cosh z + a2 sinh z + x,

b2 = a1 sinh z + a2 cosh z + y,

where x, y, z ∈ R. The transformation m : a → b is called the motion m of the pseudo
Euclidean plane. We see that the motion m of pseudo Euclidean plane is completely
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parametrized by x, y, z ∈ R. Composition of two motions m1(x1, y1, z1) and m2(x2, y2, z2) is
another motion m3(x3, y3, z3) given as:

m3(x3, y3, z3) = m1(x1, y1, z1).m2(x2, y2, z2),

where,

x3 = x2 cosh z1 + y2 sinh z1 + x1,

y3 = x2 sinh z1 + y2 cosh z1 + y1,

z3 = z1 + z2.

The identity motion mId is given by x = y = z = 0, and inverse of a motion m(x, y, z) is
given by m−1(x1, y1, z1) where,

x1 = −x cosh z + y sinh z,

y1 = x sinh z − y cosh z,

z1 = −z.

The composition of motion m with m−1 is given as m−1m = mId. Note that motions of
pseudo Euclidean plane have a group structure with composition as the group operation.

5.4 Homogeneous Coordinates and Matrix

Representation of Group of Motions of Pseudo

Euclidean Plane

Groups and group operations can be represented by matrices. In order to represent the
motions of pseudo Euclidean plane we need to choose a plane to use for which apparently
z = 0 is the most suitable choice. However, it turns out that z = 1 is a better choice which
means that the plane is situated at height of z = 1 in the 3-dimensional space. Thus every
point in the plane has so called homogeneous coordinate of the form [60]: x

y

1

 .

The motions of the plane can be represented by 3× 3 matrices of the form: a b c

d e f

0 0 1

 (5.4.1)
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The motion of a point now becomes the matrix multiplication with the column vector rep-
resenting the point.

5.5 Lie Group and Lie Algebra Representation

Specifically, for pseudo Euclidean plane the transformation matrix is given as [60]:

M = SH(2) =


 cosh z sinh z x

sinh z cosh z y

0 0 1

 | x, y, z ∈ R

 , (5.5.1)

where SH(2) stands for special hyperbolic group of dimension 2. The group SH(2) also has
a smooth manifold structure. Note that it represents a configuration space with 3 degrees of
freedom i.e., two translational degrees of freedom and one rotation degree of freedom. Hence,
the configuration manifold is three dimensional or we need three independent coordinates
to define configuration of a rigid body on the manifold. Being a smooth manifold and a
group, SH(2) obviously is a Lie group with matrix multiplication as the group operation. In
keeping with the motivation behind Lie groups, they represent continuous transformations
of the points on pseudo Euclidean plane.

The Lie group SH(2) comprises three basis one-parameter subgroups given as:

w1(t) =

 cosh t sinh t 0

sinh t cosh t 0

0 0 1

 , w2(t) =

 1 0 t

0 1 0

0 0 1

 , w3(t) =

 1 0 0

0 1 t

0 0 1

 .

The basis subgroups w1, w2, w3 represent rotation by angle t and translation by distance
t along x and y-axis respectively. When applied individually to a point, they result in a
corresponding motion only i.e., rotation or translation along either axis of the plane. The
corresponding basis for Lie algebra are the tangent matrices Ai = dwi(t)

dt
|t=0 to the subgroups

of Lie group SH(2). Ai are given as:

A1 =

 0 1 0

1 0 0

0 0 0

 , A2 =

 0 0 1

0 0 0

0 0 0

 , A3 =

 0 0 0

0 0 1

0 0 0

 . (5.5.2)

The Lie algebra is thus:

L = TIdM = sh(2) = span {A1, A2, A3} .

The multiplication rule for L is [A,B] = AB − BA. Therefore, the Lie bracket for sh(2) is
given as [A1, A2] = A3, [A1, A3] = A2 and [A2, A3] = 0 [2].
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5.6 Sub-Riemannian Problem on SH(2)

Consider the following driftless control system on SH(2):

q̇ = f1(q)u1 + f2(q)u2, q ∈M = SH(2), (u1, u2) ∈ R2, (5.6.1)

q(0) = Id, q(t1) = q1, (5.6.2)

l =

ˆ t1

0

√
u2

1 + u2
2 dt→ min, (5.6.3)

f1(q) = qA2, f2(q) = qA1. (5.6.4)

Here equation (5.6.1) represents the dynamical system with control inputs ui and control
distribution ∆ = span{f1, f2}. The states q(0) and q(t1) represent the initial state at t = 0

and final state to be reached at time t1. In equation (5.6.3) l is the sub-Riemannian length
functional to be minimized. Canonical frame on M in terms of [2] is given as:

f1(q), f2(q), f0(q) = qA3,

[f1, f0] = 0, [f2, f0] = f1, [f2, f1] = f0. (5.6.5)

By [2], the sub-Riemannian structure:

(M,∆, g), ∆ = span{f1, f2}, g(fi, fj) = δij,

is unique upto rescaling, left invariant contact sub-Riemannian structure on SH(2). Here δij
is the Kronecker delta.

The system may be visualized in terms of a planar robot or a Reeds-Shepp car moving on
a pseudo Euclidean plane. The car has three degrees of freedom on 2 dimensional plane i.e.,
translation along x and y axis and rotation about a vertical axis passing through its center
of mass. The car’s center of mass lies at coordinates (x, y) and the angle z is its orientation
in the plane. Given the initial and final states, the objective is to calculate a horizontal
curve γ ⊂ SH(2) between the q0 and q1 such that the sub-Riemannian length functional
given in equation (5.6.3) is minimized. The admissible trajectories are assumed Lipschitz
and admissible control inputs ui are assumed bounded.

5.7 Motivation

The principle of relativity corresponds to the hypothesis that the kinematic
space is a space of constant negative curvature, the space of Lobachevsky and
Bolyai. The value of the radius of curvature is the speed of light.

Borel 1913



CHAPTER 5. SUB-RIEMANNIAN PROBLEM ON GROUP OF MOTIONS OF
PSEUDO EUCLIDEAN PLANE 61

Pseudo Euclidean plane is more commonly known as hyperbolic plane. However, we
intentionally deferred calling it so until now where we present the reasons why pseudo Eu-
clidean plane is called hyperbolic plane. As argued earlier, Euclidean geometry reined the
mathematical world and classical mechanics until 19th century. Although accepted almost
as the only geometry describing the universe, the parallel postulate of Euclidean geometry
was viewed with suspicion and remained subject of research by geometers following Euclid.
In an attempt to disprove the parallel postulate, Nikolai Lobachevsky in 1829 and Janos
Bolyai in 1832 independently discovered Non-Euclidean geometry also known as hyperbolic
geometry [61]. Until E. Beltarami, Hyperbolic Geometry remained cutoff from the rest of the
mathematics who in 1868 proved that two dimensional non-Euclidean geometry was study
of surfaces with constant negative curvature.

Discovery of hyperbolic geometry paved the way for the formulation of Special Theory of
relativity by Einstein in 1905 [62]. The central concept of Einstein’s seminal paper of 1905 was
velocity addition law that satisfies hyperbolic parallelogram addition of velocities and which
is modeled on Bolyai-Lobachevsky’s hyperbolic geometry. In 1907, Hermann Minkowski
reformulated his former student Albert Einstein’s special theory of relativity. Minkowski
introduced the concept of four dimensional space, known as "Minkowski space-time", with
3 ordinary dimensions of space and another intermingled dimension of time. Minkowskian
space-time thus presented a mathematical setting in which Einstein’s theory of relativity and
Lorentz geometry could be formulated.

The Minkowskian space-time geometry is naturally linked to four dimensional pseudo
Euclidean space with index m = 3 and traditionally different authors have used the phrase
hyperbolic plane to refer both to (Bolyai-Lobachevskian) hyperbolic geometry and Minkowski
geometry but these are two different geometries. Space-time is described by Minkowski space,
but the velocity space is described by hyperbolic geometry. Hence, it is out of this misnomer
and because the hyperbolic numbers represent points on pseudo Euclidean plane, it is referred
to as hyperbolic plane. We will follow the convention and use the hyperbolic plane and pseudo
Euclidean plane interchangeably to refer to the same plane i.e., plane of hyperbolic numbers.

A pseudo Euclidean plane represents Mikowskian space-time of two dimensions with
one spatial variable and one temporal variable. Thus the isotropic cone formed by lines
x = y and x = −y consists of so called light-like vectors. When q(x) < 0, the vectors
are called space like vectors and when q(x) > 0, the vectors are called time like vectors.
Introduction of hyperbolic geometry and gyrovectors had a profound impact on Einstein’s
theory of relativity and hence our understanding of the laws of universe. It allowed vector
algebra to be introduced in relativistic mechanics and hence made further development in
relativistic mechanics possible. Hence its study can possibly give insight into how nature
works. From perspective of relativistic mechanics, defining and solving sub-Riemannian
problem on group SH(2) can possibly lead to better understanding of the theory of relativity
and enhancement of our understanding of the universe.
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Sub-Riemmnian problems are viewed as the optimal control problems of nonholonomic
systems with the optimal cost being the sub-Riemannian length. Sub-Riemannian problem
on Lie group SH(2) represents the optimal control of a unicycle moving on a hyperbolic plane.
The mathematical model of a unicycle theoretically is the basis for modelling a large class of
nonholonomic systems in robotics e.g., a differential drive robot, UAVs etc [63]. Traditionally
the robots are considered to be moving the Euclidean space ignoring the fact that practically
all physical spaces are combinations of hyperbolic and spherical surfaces i.e., there are no flat
surfaces in the real environment. Consequently, the control and motion planning algorithms
solved for Euclidean space are less effective in the physical world and the use of robots is
restricted to controlled or laboratory environment. Since this work considers the motion of
such robots on hyperbolic surfaces, the setting and therefore the results are more realistic.
Therefore, we expect the results of this research to have potential impact in the field of
robotics.

This research involves the tools of geometric control theory which amongst the various
notions of control is a realtively newer and less developed. It is inherently a nonlinear optimal
control design technique based on PMP. The other competing notion of optimal control for
nonlinear systems is the HJB equations. However, as noted earlier, the limitations of HJB
equations and dynamic programming make it far more complicated for control of practical
systems. In words of Pontryagin himself, “It is interesting to note that the Bellman approach
does not actually constitute a mathematical solution, but rather a "good heuristic" (in
Pontryagin’s words). The maximum principle on the other hand is an actual mathematical
solution”. Hence, the analysis techniques developed and results obtained in this research
can potentially have far reaching implications in the design of actual robots moving in real
environments.

In [2] provided a classification of all sub-Riemannian structures on three dimensional Lie
groups in terms of the basic differential invariants. Hence, sub-Riemannian problem on group
SH(2) is very important in the entire study of three dimensional Lie groups.

Research Objectives

The overall research objectives of any sub-Riemannian problem are following:

1. Controllability, integrability and existence of optimal trajectories of the dynamical
system, [4],[3].

2. Obtain complete parametrization of extremal trajectories [3].

3. Description of symmetries of the system and the corresponding Maxwell sets [3], [5].

4. Characterize conjugate loci [5].
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5. Geometric view of extremal trajectories and Maxwell Strata through 3D plots sub-
Riemannian spheres [5].

6. Description of cut loci and global optimality analysis [49], [64].

7. Description of the global structure of the exponential mapping and the optimal syn-
thesis.

8. Geometric analysis of the cut locus and conjugate locus through 3D plot of sub-
Riemannian caustic

The idea is to apply techniques of geometric control theory [20, 15, 1, 48, 49]. Note that
objectives 1–4 have been addressed in this research thesis whereas objectives 5–8 were stated
as part of future work and are beyond the scope of this work.

5.8 Explanation of Research Objectives

Controllability and Integrability of the Dynamical System

The objective is to prove ODEs given by (5.6.1) describing dynamical system defined in
equations (5.6.1–5.6.4) are explicitly integrable in terms of some mathematical functions
and that the system is globally controllable. Proof of controllability ensures that any two
points on the manifold can be joined by a real analytic curve. Proof of integrability is also
extremely important before attempting to parametrize the extremal trajectories which is the
natural next objective of research on SH(2). Existence of optimal trajectory guarantees that
a sub-Riemannian length minimizing geodesic exists between any two points on the manifold
M .

Parametrization of Extremal Trajectories

Pontryagin’s Maximum Principle yields necessary but not sufficient conditions for optimal
trajectory. The trajectories that satisfy the Maximum Principle are called extremal tra-
jectories, and are candidate optimal only. The Maximum Principle provides a compact
geometrical description of the extremal trajectories, and thus gives us a tool for enumerating
and exploring optimal trajectories. Parametrization pertains to obtaining parametric equa-
tions of extremal trajectories in minimum number of parameters such that at any value of
these parameters the equations of extremal trajectories give a point in configuration space.
It can also be termed as the integration of nonlinnear differential equations to obtai para-
metric equations of the configuration variables of the system. In order to apply second order
optimality conditions it is necessary to obtain a suitable parametrization. Parametrization
provides a convenient mathematical description of candidate optimal trajectories and eases
or makes further optimality analysis tractable.
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Figure 5.4: Non-optimality of the geodesic qs after the Maxwell point qt1

Description of Maxwell Strata

The locus of the intersection points of extremal trajectories with equal sub-Riemannian
lengths is called Maxwell Set [46]. The Maxwell set is closely related to optimality of ex-
tremal trajectories. It was proved by S. Jacquet that an extremal trajectory cannot be
optimal after a Maxwell point [65]. Let qs and q̃s be two distinct extremal trajectories i.e.,
qs 6= q̃s, s ∈ [0, t1] (see Figure5.4). If qt1 = q̃t1 , then for any t2 > t1 the extremal trajectories
qs and q̃s, s ∈ [0, t2] are not optimal.
A system with symmetries has obvious Maxwell points for extremal trajectories that are re-
flections or rotations symmetries of each other and cross one another at some point. Such tra-
jectories being symmetry of each other obviously have equal sub-Riemannian length. Hence
the idea is to shrink the extremal trajectories set by eliminating the ones that happen to be
symmetries of each other and form Maxwell points [46].

Characterize Conjugate Loci and sub-Riemannian Spheres

Definition 5.8.1. Conjugate Locus

The set of points where extremal trajectories lose local optimality (i.e., optimality with
respect to sufficiently close extremal trajectories) [48].

Definition 5.8.2. Sub-Riemannian Sphere

Sub-Riemannian Sphere with center q0 of radius R is the set of points q1 located at the
sub-Riemannian distance R from the point q0 [48].
Thus the objective of this research problem is to characterize and analyze sub-Riemannian
geodesics, the cut and conjugate loci and sub-Riemannian sphere on the group SH(2). De-
tailed discussion about conjugate loci is given in chapter 9.
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Description of Cut Loci

Definition 5.8.3. Cut Locus

The set of points where extremal trajectories lose global optimality (i.e., optimality with
respect to all other extremal trajectories) [48].

This analysis pertains to further eliminating the extremal trajectories that seize to be
optimal for some reason. In this part of the analysis the cut time i.e., the time of loss
of global optimality is proved analytically. The cut time is shown to be equal to the first
Maxwell time corresponding to the group of discrete symmetries of the exponential mapping.

Global Structure of the Exponential Mapping and the Optimal

Synthesis

An exponential map is a mapping from Lie Algebra to the corresponding Lie Group. In
terms of linear systems it is the ordinary exp function that is obtained by integrating the
differential equations (Lie Algebra) and results in the reachable set of the system that lies
in the Lie Group. The exponential map for generalized manifolds and nonlinear systems is
not the trivial exp function. The objective of this research problem is therefore to describe
the exponential mapping γ : sh(2) −→ SH(2), where sh(2) is the Lie Algebra of the group
SH(2). The solution will also give a generalized framework through which the optimal control
problem will be synthesized and solved on SH(2).

5.9 Chapter Summary

The Lie group SH(2) is group of motions of hyperbolic plane that is extremely important
in theory of relativity and sub-Riemannian problem on SH(2) is certainly an important
problem. It is equivalent to considering a planar robot moving on a surface with constant
negative curvature. Since the real world surfaces are seldom flat, hence this is an important
nonholonomic problem.

In the next chapter we consider the controllability and integrability analysis of the re-
search problem (5.6.1)–(5.6.4).



Chapter 6

Controllability and Integrability of the
Dynamical System

We now consider three most important problems in relation to the sub-Riemannian problem
on Lie group SH(2) i.e., the problem of controllability, the existence of optimal controls
and possibility to integrate the dynamical system and obtain a close form solution in terms
of elementary mathematical functions. To prove integrability of the dynamical system, we
convert the matrix representation of the Lie group SH(2) into vector form using Wei-Norman
representation. Controllability and integrability analysis paves the way for parametrization
of extremal trajectories.

6.1 Left Invariance

Claim 6.1.1. The sub-Riemannian problem defined in equations (5.6.1)–(5.6.4) is a left in-
variant problem on Lie Group SH(2).

Proof. A left invariant problem is of the form:

q̇ = qAu | A ∈ L, q ∈ G, u ∈ U ⊂ R. (6.1.1)

Defintion of a left invariant vector field is given in (2.15.1). A left invariant control system
is an aribtrary set of vector fields [15]. It can be readily seen that the vector field qA is
left invariant. Intuitively, a left invariant vector field means that multiplying the Lie algebra
L = TIdG with the group element on the left transports the tangent space at the identity
of the Lie group G to point q ∈ G. Hence the tangent space on the entire group G is the
transported version of L. Note that A is a matrix representation of L. We now prove that
the control system (5.6.1) is also left invariant. Consider (5.5.1):

q =

 cosh z sinh z x

sinh z cosh z y

0 0 1

 ∈ SH(2). (6.1.2)

66
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Taking time derivative of q:

q̇ =

 sinh z ż cosh z ż ẋ

cosh z ż sinh z ż ẏ

0 0 0



=

 u2 sinh z u2 cosh z u1 cosh z

u2 cosh z u2 sinh z u1 sinh z

0 0 0



=

 0 0 cosh z

0 0 sinh z

0 0 0

u1 +

 sinh z cosh z 0

cosh z sinh z 0

0 0 0

u2

= qA2u1 + qA1u2. (6.1.3)

Hence the sub-Riemannian problem (5.6.1)–(5.6.4) is a left invariant problem on the Lie
Group SH(2).

Left invariance (or alternatively right invariance) has important implications. Essentially,
the tangent space spanned by the vector fields is the same as that at the identity of the Lie
group. Hence the parametrization of trajectories can be obtained at the group identity i.e.,
x(0) = y(0) = z(0) = 0 and be transported to any point q ∈ G by the group action. Hence
for integration of dynamical system initial conditions x(0) = y(0) = z(0) = 0 suffice.

6.2 Controllability

Theorem 6.2.1. The dynamical system (5.6.1) is completely controllable. Moreover, the
optimal control problem (5.6.1)–(5.6.4) has solutions.

Rashevskii Chow’s Theorem
Before we give the proof of this theorem we state the famous theorem proved independently
by Petr Konstanovich Rashevskii in 1938 [66] and W. L. Chow (China) in 1939 [67]. It states
that:
Let ∆ be a differential system or distribution totally nonholonomic at each point of a smooth
manifold M , then each two points X, Y ∈ M may be connected by an admissible piecewise
smooth curve of finite length.

OR

If Lie algebra of the control distribution Lq∆ = TqM ∀ q ∈ M and if M is connected,
then each orbit is equal to the whole manifold M .

OR



CHAPTER 6. CONTROLLABILITY AND INTEGRABILITY OF THE DYNAMICAL
SYSTEM 68

For a connected manifold and corresponding bracket generating control distribution, the
system is completely controllable.
Intuitively, it means to say that if the configuration manifold for a dynamical system is
connected (i.e., there are no voids in the state space) and the number of independent vector
fields in the control distribution is smaller than the dimension of the Lie algebra, but, we can
find sufficient number of independent Lie brackets, then essentially we can traverse the entire
tangent space and hence reach every point of the configuration manifold. Rashevskii–Chow
theorem is one of the corner stones of Geometric control theory.

Proof. The control distribution ∆ = span {f1(q) , f2(q)} is full rank because from (5.6.5)
[f1(q) , f2(q)]= − [f2(q), f1(q)] = −f0(q). It satisfies Hörmander condition or the bracket
generating condition. Hence the Lie algebra of the distribution Lq∆ is given as:

Lq∆ = span {f1(q), f2(q),−f0(q)} = TqSH(2) ∀q ∈M.

The manifold SH(2) is connected and the system is bracket generating. Hence the system
satisfies Rashevskii-Chow’s Theorem and is therefore completely controllable.
Existence of optimal trajectories for problem given by equations (5.6.1-5.6.4) follows from
Filippov’s theorem [20].

6.3 Local Representation of a Control System

Having dealt with the issue of controllability, we turn towards another important question
i.e., how to construct specific trajectories? In other words this pertains to finding integrating
the nonlinear differential equations of the control system (5.6.1) defined on the matrix Lie
group. The properties like controllability of a control system can be established directly from
the algebraic and geometric properties of its global description:

q̇ = q
m∑
i=1

Ai(t)ui(t), q ∈ G, Ai ∈ L,
⋃

ui ∈ Rm, (6.3.1)

where G is an n-dimensional Lie group, Ai are the basis of Lie algebra L and ui are the open
loop control variables. Global representation however is not the most convenient represen-
tation for other purposes such as computing the control laws for which we need to resort to
local representations of (6.3.1) when we compute the actual control laws.

There are two different ways to construct trajectories, using two types of local represen-
tations:

� Magnus representation - Canonical coordinates of the first kind [68]

� Wei-Norman representation - Canonical coordinates of the second kind [69]
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Such local representation expresses the control system in terms of coordinates xi, i =

1, . . . , n:

ẋ = f1(x)u1 + f2(x)u2 + . . .+ fm(x)um, x ∈ Rn, (u1, u2) ∈ Rm, (6.3.2)

where fi are the vector fields. The local representation (6.3.2) is only valid in a neighborhood
N of Id ∈ G.

As is evident, a control engineer is more accustomed to dealing with control system of the
form (6.3.2) which involves vectors instead of matrices. Note that (6.3.2) is representation
of a drift free system but systems with drift are also represented in a similar way.

Wei-Norman Representation

We state the following theorem without proof by J. Wei and E. Norman (1964) that expresses
the dynamical system (6.3.1) in canonical coordinates of second kind.

Theorem 6.3.1. (Wei and Norman [69]) Consider the driftless control system (6.3.1) and
its solution q(t), t ≥ 0. Then in a neighborhood of t = 0 the solution may be expressed in
the form:

q = ex1A1ex2A2 . . . exnAn . (6.3.3)

The coordinate functions xi(t) evolve according to:
ẋ1(t)
...

ẋn(t)

 = F (x1, . . . , xn)


u1(t)
...

un(t)

 , (6.3.4)

where F is analytic in coordinates xi and depends only on the structure of the Lie algebra
L. Moreover, if the Lie algebra is solvable, then there exists a basis and an ordering of this
basis for which the representation (6.3.4) is global and the coordinates xi can be computed by
quadratures.

For obvious reasons, this is also called product of exponential representation. This rep-
resentation also has following properties for the control system (5.6.1) [70]:

� coordinates have a large, well defined region of validity;

� representation is in terms of explicit functions;

� representation reflects structural properties of (6.3.1);

� representation has good numerical properties with respect to integration;

� coordinates have physical interpretation.
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Let us now construct the Wei-Norman representation for the left invariant control system on
the Lie group SH(2) (5.6.1). Recall that our control system is given as (6.1.3):

q̇ = qA2u1 + qA1u2, (6.3.5)

where,

q =

 cosh z sinh z x

sinh z cosh z y

0 0 1

 .

Recall also that basis A1, A2, A3 of Lie algebra sh(2) are given as:

A1 =

 0 1 0

1 0 0

0 0 0

 , A2 =

 0 0 1

0 0 0

0 0 0

 , A3 =

 0 0 0

0 0 1

0 0 0

 . (6.3.6)

According to Wei-Norman formula (6.3.3) the local solution to the control system (6.3.5)
may be written as:

q = ex1A1ex2A2ex3A3 ,

q̇ = ex1A1ẋ1A1e
x2A2ex3A3 + ex1A1ex2A2ẋ2A2e

x3A3 + ex1A1ex2A2ex3A3ẋ3A3

= ex1A1ex2A2ex3A3e−x3A3e−x2A2ẋ1A1e
x2A2ex3A3 + ex1A1ex2A2ex3A3e−x3A3ẋ2A2e

x3A3

+ex1A1ex2A2ex3A3ẋ3A3

= q(ẋ1e
−x3A3e−x2A2A1e

x2A2ex3A3 + ẋ2e
−x3A3A2e

x3A3 + ẋ3A3).

Using Baker-Capmbell-Hausdorf formula eABe−A = eadAB where adA = [A,B], last equation
may be written as:

q̇ = q
(
ẋ1e

ad−x3A3ead−x2A2A1 + ẋ2e
ad−x3A3A2 + ẋ3A3

)
, (6.3.7)

Now using the Lie bracket of section 5.5 ead−x3A3A2 = A2−x3[A3, A2] = A2 and ead−x2A2A1 =

A1 − x2[A2, A1] = A1 + x2A3. Similarly,

ead−x3A3ead−x2A2A1 = ead−x3A3

(
ead−x2A2A1

)
,

= ead−x3A3 (A1 + x2A3)

= ead−x3A3A1 + x2e
ad−x3A3A3

= A1 − x3[A3, A1] + x2 (A3 − x3[A3, A3])

= A1 + x3A2 + x2A3.

Substituting formulas of ead− in (6.3.7) we have:

q̇ = q (ẋ1(A1 + x3A2 + x2A3) + ẋ2A2 + ẋ3A3)

= q (ẋ1(A1 + x3A2 + x2A3) + ẋ2A2 + ẋ3A3)

= qẋ1A1 + q(ẋ1x3 + ẋ2)A2 + q(ẋ1x2 + ẋ3)A3. (6.3.8)
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Comparing now coefficients of A1, A2, A3 in (6.3.5) and (6.3.8) we have: u2

u1

0

 =

 ẋ1

ẋ1x3 + ẋ2

ẋ1x2 + ẋ3

 =⇒

 ẋ1

ẋ2

ẋ3

 =

 u2

u1 − u2x3

−u2x2

 . (6.3.9)

Let x1 = z =⇒ ẋ1 = ż = u2. Introduce now following transformation in (6.3.9):(
x2

x3

)
=

(
coshx1 − sinhx1

− sinhx1 coshx1

)(
x

y

)
,(

x

y

)
=

(
coshx1 sinhx1

sinhx1 coshx1

)(
x2

x3

)
.

Now we have,

x = x2 coshx1 + x3 sinhx1,

ẋ = ẋ2 coshx1 + x2ẋ1 sinhx1 + ẋ3 sinhx1 + x3ẋ1 coshx1,

= (u1 − u2x3) coshx1 + u2x2 sinhx1 − u2x2 sinhx1 + u2x3 coshx1

= u1 coshx1

= u1 cosh z.

Similarly,

y = x2 sinhx1 + x3 coshx1,

ẏ = ẋ2 sinhx1 + x2ẋ1 coshx1 + ẋ3 coshx1 + x3ẋ1 sinhx1,

= (u1 − u2x3) sinhx1 + u2x2 coshx1 − u2x2 coshx1 + u2x3 sinhx1

= u1 sinhx1

= u1 sinh z.

Hence,  ẋ

ẏ

ż

 =

 u1 cosh z

u1 sinh z

u2

 . (6.3.10)

The local coordinates we calculated in (6.3.10) have nice physical interpretation. Our coor-
dinates (x(t), y(t)) represent the coordinates of a hypothetical robot (unicycle) on the hyper-
bolic plane and z(t) its orientation. Together we call it the configuration q(x, y, z) ∈ SH(2)

of the dynamical system. Throughout the rest of the text we use M or SH(2) to denote
the same configuration manifold of the dynamical system which is our Lie group as well. In
that respect, the kinematic system on hyperbolic plane (6.3.5) and (6.3.10) has two velocities
i.e., translational velocity and rotational velocity that we denote as u1 and u2. Clearly the
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translational velocity along x and y direction on the hyperbolic plane are given as u1 cosh z

and u1 sinh z respectively and rotational velocity is ż = u2. Comparing it with (5.6.1) we
have the following definition of the vector fields:

f1(q) =

 cosh z

sinh z

0

 , f2(q) =

 0

0

1

 . (6.3.11)

Note that f1(q) = qA2, f2(q) = qA1 is the matrix representation of the same vector fields
given in (6.3.11). Thus in coordinates q(x, y, z) the basis vector fields are given as:

f1(q) =
(

cosh z sinh z 0
)

∂
∂x
∂
∂y
∂
∂z

 ,

= cosh z
∂

∂x
+ sinh z

∂

∂y
,

and

f2(q) =
(

0 0 1
)

∂
∂x
∂
∂y
∂
∂z

 ,

=
∂

∂z
.

6.4 Pontryagin’s Maximum Principle for

Sub-Riemannian Problem on the Lie Group SH(2)

Consider dynamical system (5.6.1-5.6.4). By Cauchy Schwarz inequality proved in equa-
tion (4.3.4) we have:

(l(u))2 =

 t1ˆ

0

√
u2

1 + u2
2dt

2

≤ t1

t1ˆ

0

(u2
1 + u2

2)dt.

Thus sub-Riemannian length functional minimization problem (5.6.3) is equivalent to the
problem of minimizing the following energy functional with fixed t1[15]:

J =
1

2

t1ˆ

0

(u2
1 + u2

2)dt→ min . (6.4.1)

First step in optimal control problems is to obtain PMP form for (5.6.1),(5.6.2),(6.4.1) using
coordinate free approach described in [20]. Consider control dependent Hamiltonian hνu given
as:

hνu(λ) = 〈λ, fu(q)〉+
ν

2
(u2

1 + u2
2), q = π(λ), λ ∈ T ∗M. (6.4.2)
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where π is the canonical projection from cotangent bundle to the configuration manifold
M . Now suppose Hamiltonians hi(λ) = 〈λ, fi(q)〉 correspond to basis vector fields fi. Then
(6.4.2) is given as:

hνu(λ) = u1h1(λ) + u2h2(λ) +
ν

2
(u2

1 + u2
2), u ∈ R2. (6.4.3)

Note that ν is a constant, λ(t) ∈ T ∗SH(2) is the vector of costate variables and its dimension
is same as that of the state vector. The costate variables play the role of a time varying
Lagrange multiplier on the system dynamics acting as constraints on the optimal control
system. We now state PMP for optimal control problem by using Theorem 12.3 [20] as:

Theorem 6.4.1. Let ũ(t) be optimal control and q̃(t) be optimal trajectory for t ∈ [0, t1] and
hνu(λ) given by (6.4.3) be the Hamiltonian function for (5.6.1),(5.6.2),(6.4.1). Then, there
exists a nontrivial pair:

(ν, λt) 6= 0, ν ∈ R, λt ∈ T ∗q̃(t)M, π(λt) = q̃(t),

where λt is a Lipschitzian curve and ν ∈ {−1, 0} is a number, for which following conditions
hold for almost all time t ∈ [0, t1]:

λ̇t =
−→
h ν
ũ(t)(λt), (6.4.4)

hνũ(t)(λt) = max
u∈R2

hνu(t)(λt), (6.4.5)

where
−→
h ν
ũ(t)(λt) is the Hamiltonian vector field corresponding to the maximized Hamiltonian

function hνũ(t).

Abnormal Trajectories

The way we write Hamiltonian and obtain the necessary optimality conditions from PMP,
there appear two kinds of trajectories i.e., abnormal and normal. Abnormal trajectories
correspond to the case ν = 0, meaning thereby that the trajectories are time optimal but do
not minimize the sub-Riemannian length or the energy of the system. Abnormal trajectories
that are not projections of normal ones are called strictly abnormal. Strictly abnormal
trajectories point out to an important fact that there may be points on the manifold that
cannot be joined by minimizing energy. The Hamiltonian (6.4.3) in this case can be written
as:

h0
u(λ) = u1h1(λ) + u2h2(λ). (6.4.6)

Theorem 6.4.2. All abnormal extremal trajectories for problem (5.6.1),(5.6.2),(6.4.1) are
constant.
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Proof. Let λt be the abnormal extremal. Applying the PMP maximization condition on
equation (6.4.6):

∇h0
u(λ) =

(
h1(λ)

h2(λ)

)
= 0, (6.4.7)

=⇒ h1(λt) = h2(λt) ≡ 0. (6.4.8)

Differentiating equation (6.4.8) w.r.t. Hamiltonian vector field :

ḣ1 =
{
h0
u, h1

}
= {u1h1 + u2h2, h1} = u1 {h1, h1}+ u2 {h2, h1} = u2h0,

ḣ2 =
{
h0
u, h2

}
= {u1h1 + u2h2, h2} = u1 {h1, h2}+ u2 {h2, h2} = −u1h0.

Note that Poisson bracket and Lie bracket of sh(2) follow the same multiplication rule. Since
h1 = h2 = 0 =⇒ ḣ1 = ḣ2 = 0, therefore,

u2(t)h0(λt) = u1(t)h0(λt) ≡ 0,

=⇒ u2
1(t)h2

0 + u2
2(t)h2

0 = 0.

If h0(λt) = 0 for some λt, then h1(λt) = h2(λt) = h0(λt) ≡ 0 which means λt = 0. Since we
are considering the case for ν = 0, this is impossible. Therefore u2

1(t) + u2
2(t) = 0 =⇒ u1 =

u2 = 0 and hence the abnormal extremal trajectories are constant.

Normal Trajectories

When ν = −1 (6.4.3) the trajectories given by PMP are called normal extremal trajectories.
The Hamiltonian in this case is given as:

H = h−1
u (λ) = u1h1(λ) + u2h2(λ)− 1

2

(
u2

1 + u2
2

)
, u ∈ R2. (6.4.9)

Applying the first order optimality conditions w.r.t the controls:

∂H

∂u
=

(
h1 − u1

h2 − u2

)
= 0, (6.4.10)

=⇒ u1 = h1, u2 = h2. (6.4.11)

For ui = 0, the normal extremal trajectories are constant which in turn concludes that the
abnormal trajectories are not strictly abnormal. The maximized Hamiltonian corresponding
to Hamiltonian system λ̇ =

−→
H (λ), λ ∈ T ∗M for normal case is H = 1

2
(h2

1 + h2
2) ≥ 0. As

can be seen, H > 0 in case of non-constant normal extremals. The maximized Hamiltonian
function has another interesting property in normal case i.e., it is homogeneous w.r.t. h1, h2

and therefore we can consider its trajectories for the level surface H = 1
2
. In this case, the

initial covector λ is contained in the phase cylinder C and is given as:

C = T ∗q0M ∩
{
H(λ) =

1

2

}
=
{

(h1, h2, h0) ∈ R3 | h2
1 + h2

2 = 1
}
. (6.4.12)
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Differentiating (6.4.11) w.r.t. Hamiltonian vector field we get:

ḣ1 = {H, h1} =

{
1

2

(
h2

1 + h2
2

)
, h1

}
= h2 {h2, h1} = h2h0,

ḣ2 = {H, h2} =

{
1

2

(
h2

1 + h2
2

)
, h2

}
= h1 {h1, h2} = −h1h0,

ḣ0 = {H, h0} =

{
1

2

(
h2

1 + h2
2

)
, h0

}
= h1 {h1, h0}+ h2 {h2, h0} = h1h2.

Hence, complete Hamiltonian system in normal case is given as:

ḣ1

ḣ2

ḣ0

ẋ

ẏ

ż


=



h2h0

−h1h0

h1h2

h1 cosh z

h1 sinh z

h2


. (6.4.13)

6.5 Vertical Subsystem

The entire machinery of PMP rests on cotangent lift of the problem. The differential equa-
tions are lifted to the cotangent bundle and the resulting system is called the vertical sub-
system. The vertical subsystem is solved and through appropriate exponential mapping the
original system of ODEs called the horizontal subsystem is solved on configuration manifold.
Here we state and prove an important theorem regarding the vertical subsystem. The vertical
subsystem in appropriate coordinates represents a mathematical pendulum.

Theorem 6.5.1. Vertical subsystem of the Hamiltonian system (6.4.13) in normal case is a
mathematical pendulum.

Proof. Introduce following coordinates transformation:

h1 = cosα, h2 = sinα. (6.5.1)

Thus,

ḣ1 = − sinαα̇ = sinα.h0,

α̇ = −h0. (6.5.2)

Similarly,

ḣ0 = cosα sinα =
1

2
sin 2α. (6.5.3)

Let us introduce another change of coordinates:

γ = 2α ∈ 2S1 = R/4πZ, c = −2h0 ∈ R, (6.5.4)
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=⇒ γ̇ = 2α̇ = −2h0 = c,

and
ċ = −2ḣ0 = −2h1h2 = −2 cosα sinα = − sin 2α = − sin γ.

Thus, (
γ̇

ċ

)
=

(
c

− sin γ

)
. (6.5.5)

It can be easily seen that (6.5.5) represents a mathematical pendulum.

Note that vertical subsystem being a pendulum affords integration of vertical subsystem
and hence that of the complete Hamiltonian system in terms of Jacobi elliptic functions
defined in Appendix 1. In fact, standard texts on elliptic functions such as [71] introduce
Jacobi elliptic functions via the example of a pendulum.

6.6 Integrability

Theorem 6.6.1. The normal Hamiltonian system (6.4.13) is completely integrable.

Proof. From the theory of integrable systems we know that a 2n-dimensional Hamiltonian
system is called completely integrable if there are n Poisson-commuting smooth integrals
f1, . . . , fn such that:

{fi, fj} = 0, i, j = 1, . . . , n, (6.6.1)

whose differentials are independent in an open dense subset U of phase space T ∗M i.e.,
U ⊆ T ∗M . In order to prove that (6.4.13) is integrable, we follow the approach given in [72].
The Lie Algebra L = sh(2) = span {A1, A2, A3}. The left invariant vector fields Xi = fi read
as:

X1 =

 cosh z

sinh z

0

 ≡
 0 0 cosh z

0 0 sinh z

0 0 0

 = q.A2, (6.6.2)

X2 =

 0

0

1

 ≡
 sinh z cosh z 0

cosh z sinh z 0

0 0 0

 = q.A1, (6.6.3)

X3 =

 sinh z

cosh z

0

 ≡
 0 0 sinh z

0 0 cosh z

0 0 0

 = q.A3. (6.6.4)
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The right invariant vector fields Yi read as [72]:

Y1 = A2q =

 0 0 1

0 0 0

0 0 0

 , (6.6.5)

Y2 = A1q =

 sinh z cosh z y

cosh z sinh z x

0 0 0

 , (6.6.6)

Y3 = A3q =

 0 0 0

0 0 1

0 0 0

 . (6.6.7)

In coordinates x,y,z the left invariant vector fields read as:

X1 = ∂x cosh z + ∂y sinh z, (6.6.8)

X2 = ∂z, (6.6.9)

X3 = ∂x sinh z + ∂y cosh z. (6.6.10)

Now using (6.6.8)–(6.6.10)we have:

∂x = X1 cosh z −X3 sinh z =

 0 0 1

0 0 0

0 0 0

 , (6.6.11)

∂y = −X1 sinh z +X3 cosh z =

 0 0 0

0 0 1

0 0 0

 , (6.6.12)

∂z = X2 =

 sinh z cosh z 0

cosh z sinh z 0

0 0 0

 . (6.6.13)

The left invariant Hamiltonians hi(λ) = 〈λ,Xi〉 in canonical coordinates (x, y, z, ψx, ψy, ψz)

are given as:

h1 = ψx cosh z + ψy sinh z, (6.6.14)

h2 = ψz, (6.6.15)

h0 = ψx sinh z + ψy cosh z. (6.6.16)

Similarly the right invariant Hamiltonians gi(λ) = 〈λ, Yi〉 are written as:

g1 = ψx, (6.6.17)

g2 = ψxy + ψyx+ ψz, (6.6.18)

g3 = ψy. (6.6.19)
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It can be verified that left invariant Hamiltonian H = 1
2

(h2
1 + h2

2) Poisson commutes with
the right-invariant Hamiltonians. Thus Hamiltonian system (6.4.13) has algebra of integrals:

I = spang = (H, g1, g2, g3) . (6.6.20)

The non-zero Poisson bracket in the basis elements of I are:

{g1, g2} = −g2 {g2, g3} = g1. (6.6.21)

The integrals H, g1, g3 Poisson commute and hence are in involution. It only remains to show
that the integrals H, g1, g3 are functionally independent on some dense subset U of the phase
space T ∗M i.e., U ⊆ T ∗M . Consider the Jacobian J of the integrals of motion:

J =

 ∇H∇g1

∇g3

 ,

J =

 0 0 l m n ψz

0 0 0 1 0 0

0 0 0 0 1 0

 , (6.6.22)

where l = sinh z cosh z
(
ψ2
x + ψ2

y

)
+ψxψy

(
cosh2 z + sinh2 z

)
, m = ψx cosh2 z+ψy cosh z sinh z,

n = ψy sinh2 z + ψx cosh z sinh z. In terms of left invariant Hamiltonians hi (6.6.22) reads as
follows:

J =

 0 0 h1h0 h1 cosh z h1 sinh z ψz

0 0 0 1 0 0

0 0 0 0 1 0

 . (6.6.23)

It can be easily seen that in J (6.6.23) is full rank i.e., H, g1, g3 are functionally independent
on subset U = T ∗M/S where S = {λ ∈ T ∗M | h2 = h0 = 0}. Restriction of Hamiltonian
system (6.4.13) to invariant manifold S becomes:

ḣ1 = ḣ2 = ḣ3 = 0, ẋ = h1 cosh z, ẏ = h1 sinh z.

Hence for 6-dimensional Hamiltonian system (6.4.13) the system is completely integrable on
T ∗M . Note that J also loses rank on S = {λ ∈ T ∗M | h1 = h2 = 0} but in that case (6.4.13)
becomes identically zero and we do not consider that trivial case. Hence the research objective
1 of the sub-Riemannian problem on Lie group SH(2) is achieved.

6.7 Transformation of Lie Group SH(2) to SOLV−

Claim 6.7.1. Sub-Riemannian problem was investigated by A. D. Mazhitova in [52] on Lie
group SOLV−. We prove that sub-Riemannian problem on SH(2) can be transformed into
equivalent problem on SOLV−.
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Proof. The matrix representation for Lie Group SOLV− is given as:

SOLV− =


 e−z 0 x

0 ez y

0 0 1

 | x, y, z ∈ R

 . (6.7.1)

The corresponding representation for SH(2) is given as:

M = SH(2) =


 cosh z sinh z x

sinh z cosh z y

0 0 1

 | x, y, z ∈ R

 . (6.7.2)

Consider a following orthogonal transformation T :

T =
1√
2

 1 −1 0

1 1 0

0 0
√

2

 . (6.7.3)

Applying transformation to equation (6.7.2):

TMT T =
1√
2

 1 −1 0

1 1 0

0 0
√

2


 cosh z sinh z x

sinh z cosh z y

0 0 1

 1√
2

 1 −1 0

1 1 0

0 0
√

2


T

,

=

 e−z 0 1
2
(x− y)

0 ez 1
2
(x+ y)

0 0 1

 . (6.7.4)

Now let 1
2
(x−y) = w and 1

2
(x+y) = v in equation (6.7.4) and the resulting matrix becomes:

TMT T =

 e−z 0 w

0 ez v

0 0 1

 . (6.7.5)

Note that 6.7.5 is same as the matrix representation for SOLV−. Same orthogonal transfor-
mation applies to Lie algebra solv− → sh(2). Hence proved.

6.8 Chapter Summary

We were able to establish that the sub-Riemannian problem on SH(2) is completely control-
lable. The notion of integrability is important as it ensures that system can be integrated
analytically and some closed form solution will appear. The closed form solutions allow fur-
ther optimality analysis which is otherwise intractable. Once integrability is established, we
can attempt the analytical integration of the Hamiltonian system which shall complete the
parametrization of extremal trajectories.



Chapter 7

Parametrization of the Extremal
Trajectories

This chapter pertains to one of the main results of the sub-Riemannian problem on group
of motions of hyperbolic plane. In previous chapter we proved that the vertical subsystem
of the Hamiltonian system is a mathematical pendulum. Based on this fact we define suit-
able elliptic coordinates in which we integrate the Hamiltonian system and parametrize the
extremal trajectories. The extremal trajectories are parametrized in terms of Jacobi elliptic
functions. Qualitative analysis reveals that extremal trajectories have inflection points and
cusps.

7.1 Decomposition of the Initial Phase Cylinder

Hamiltonian system for normal trajectories was given in (6.4.13). Under the transformations
introduced in (6.5.1),(6.5.4), the horizontal subsystem can be written as: ẋ

ẏ

ż

 =

 h1 cosh z

h1 sinh z

h2

 =

 cos γ
2

cosh z

cos γ
2

sinh z

sin γ
2

 . (7.1.1)

Vertical subsystem being a pendulum, the initial phase cylinder C of vertical subsystem can
be decomposed on the basis of the energy of the pendulum that in turn corresponds to its
various trajectories. The decomposition hence leads to fairly standard subsets of C [1]. The
decomposition procedure and corresponding subsets are as follows.
The total energy integral of the pendulum obtained in (6.5.5) is given as:

E =
c2

2
− cos γ = 2h2

0 − h2
1 + h2

2, E ∈ [−1,+∞). (7.1.2)

80
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Figure 7.1: Decomposition of the Phase Cylinder and the Connected Subsets [1]

The initial phase cylinder (6.4.12) may be decomposed into following subsets based upon the
pendulum energy that correspond to various pendulum trajectories:

C =
5⋃
i=1

Ci,

where

C1 = {λ ∈ C|E ∈ (−1, 1)}, (7.1.3)

C2 = {λ ∈ C|E ∈ (1,∞)}, (7.1.4)

C3 = {λ ∈ C|E = 1, c 6= 0}, (7.1.5)

C4 = {λ ∈ C|E = −1} = {(γ, c) ∈ C|γ = 2πn, c = 0}, n ∈ N, (7.1.6)

C5 = {λ ∈ C|E = 1} = {(γ, c) ∈ C|γ = 2πn+ π, c = 0}, n ∈ N. (7.1.7)

Continuing the approach taken in [1] the subsets Ci may be further decomposed as:

C1 = ∪1
i=0C

i
1, Ci

1 = {(γ, c) ∈ C1|sgn(cos(γ/2)) = (−1)i},

C2 = C+
2 ∪ C−2 , C±2 = {(γ, c) ∈ C2|sgn c = ±1},

C3 = ∪1
i=0(Ci+

3 ∪ Ci−
3 ), Ci±

3 = {(γ, c) ∈ C3|sgn(cos(γ/2)) = (−1)i, sgn c = ±1},

C4 = ∪1
i=0C

i
4, Ci

4 = {(γ, c) ∈ C|γ = 2πi, c = 0},

C5 = ∪1
i=0C

i
5, Ci

5 = {(γ, c) ∈ C|γ = 2πi+ π, c = 0}.

In all of the above i = 0, 1. The phase portrait of the pendulum and corresponding decompo-
sition of initial phase cylinder C is depicted in Figure 7.1. Note that such decomposition is
important for parametrization of extremal trajectories in terms of Jacobi elliptic functions.

7.2 Rectification

We introduce here a subsidiary concept of rectification related to dynamical systems that
shall prove vital in the integration of the Hamiltonian system equation (6.4.13). Intuitively,
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Figure 7.2: Rectification of Flow of Dynamical System

rectification means that away from singular points the flow lines of a dynamical system
become parallel or dynamics of a point m ∈ M in its small neighborhood is a straight line.
Depending upon the dynamics of the system the small patches can glued together to form
a bigger patch. Occasionally it is possible to glue enough small patches to cover the entire
phase space M meaning thereby that the dynamical system is integrable. The concept is
based on the rectification theorem which states that:
Let m ∈M be a regular point of a Cr flow f t|r ≥ 0 on a 2D manifold M then there exists a
neighborhood U of m and a Cr diffeomorphism U → R2 carrying the arcs in U of trajectories
into trajectories of the dynamical system ẋ = 1, ẏ = 0 on R2 with the preservation of
direction with time.

7.3 Elliptic Coordinates

We reparametrize the time and energy of the pendulum in terms of of elliptic coordinates
(ϕ, k) respectively on the domain ∪3

i=1Ci ⊂ C as given in [1], [53]. This allows us to introduce
Jacobi elliptic functions sn(ϕ, k), cn(ϕ, k), dn(ϕ, k), am(ϕ, k), and E(ϕ, k) =

´ ϕ
0
dn2(t, k)dt

while integrating the extremals and extremal trajectories corresponding to vertical and hori-
zontal subsystem respectively. Jacobi elliptic functions are described in Appendix 1. Detailed
description may be found in [71].
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Case 1 : λ = (ϕ, k) ∈ C1

k =

√
E + 1

2
=

√
sin2 γ

2
+
c2

4
∈ (0, 1), (7.3.1)

sin
γ

2
= s1k sn(ϕ, k), s1 = sgn

(
cos

γ

2

)
, (7.3.2)

cos
γ

2
= s1dn(ϕ, k), (7.3.3)

c

2
= k cn(ϕ, k), ϕ ∈ [0, 4K(k)]. (7.3.4)

Proposition 7.3.1. The elliptic coordinates cause the flow of vertical subsystem to be recti-
fied i.e., the flow lines become parallel to each other.

Proof. Using (7.3.1),

k2 = sin2 γ

2
+
c2

4
. (7.3.5)

Taking the time derivative of (7.3.5),

2kk̇ = 2 sin
γ

2
cos

γ

2

γ̇

2
+
cċ

2
. (7.3.6)

Using (6.5.5),

2kk̇ =
γ̇

2
sin γ − γ̇

2
sin γ = 0.

In previous equation, either k = 0 or k̇ = 0. Since k ∈ (0, 1), therefore k = 0 is impossible
and therefore:

k̇ = 0. (7.3.7)

Using (7.3.4) and the derivatives of elliptic functions defined in [71],
d

dt

( c
2

)
=

d

dt
kcn(ϕ, k),

ċ

2
= k

d

dϕ
cn(ϕ, k).

dϕ

dt
+ k

d

dk
cn(ϕ, k).

dk

dt
+ cn(ϕ, k).

dk

dt
,

− sin γ = −2ksn(ϕ, k)dn(ϕ, k)ϕ̇.

because dk
dt

= 0. Now,

ϕ̇ =
sin γ

2k sn(ϕ, k).dn(ϕ, k)
. (7.3.8)

Now using (7.3.2),(7.3.3):

sin
γ

2
cos

γ

2
= s1k sn(ϕ, k).s1dn(ϕ, k),

2 sin
γ

2
cos

γ

2
= 2s2

1k sn(ϕ, k).dn(ϕ, k),

sin γ = 2k sn(ϕ, k).dn(ϕ, k).

Thus (7.3.8) becomes:
ϕ̇ = 1. (7.3.9)
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Case 2 : λ = (ϕ, k) ∈ C2

k =

√
2

E + 1
=

√
1

sin2 γ
2

+ c2

4

∈ (0, 1), (7.3.10)

sin
γ

2
= s2sn

(ϕ
k
, k
)
, s2 = sgn(c), (7.3.11)

cos
γ

2
= cn

(ϕ
k
, k
)
, (7.3.12)

c

2
=
s2

k
dn
(ϕ
k
, k
)
, ϕ ∈ [0, 4kK(k)] . (7.3.13)

Case 3 : λ = (ϕ, k) ∈ C3

k = 1, (7.3.14)

sin
γ

2
= s1s2 tanhϕ, s1 = sgn

(
cos

γ

2

)
, s2 = sgn(c), (7.3.15)

cos
γ

2
= s1/ coshϕ, (7.3.16)

c

2
= s2/ coshϕ, ϕ ∈ (−∞,∞). (7.3.17)

Rectification of flow for cases 2 and 3 can be proved using the same procedure as for case 1.
Note that rectification has tremendously simplified the integration of the vertical subsystem.
Since there is a diffeomorphism between the vertical subsystem in original coordinates and
the elliptic coordinates, hence the elliptic coordinates represent the same system in a simpler
way.

7.4 Integration of Vertical Subsystem

Due to rectification of flow of vertical subsystem in elliptic coordinates, the integration of
vertical subsystem becomes trivial i.e., ϕt = t + ϕ and k = constant. Here ϕ is the initial
value of ϕt at t = 0. Note that in the definition of Jacobi elliptic functions, the variable ϕt
will be used as ϕ is merely a constant of integration from here onward. Subscript t is used
to explicitly signify the time dependent variables.

7.5 Integration of Horizontal Subsystem

We now consider integration of the horizontal subsystem (7.1.1) for cases 1-3 noted above.
Assuming zero initial state i.e., x(0) = y(0) = z(0) = 0.
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Case 1 : λ = (ϕ, k) ∈ C1

Theorem 7.5.1. In case 1 extremal trajectories are parametrized as follows: xt

yt

zt

 =


s1
2

[(
w + 1

w(1−k2)

)
[E(ϕt)− E(ϕ)] +

(
k

w(1−k2)
− kw

)
[snϕt − snϕ]

]
1
2

[(
w − 1

w(1−k2)

)
[E(ϕt)− E(ϕ)]−

(
k

w(1−k2)
+ kw

)
[snϕt − snϕ]

]
s1 ln [(dnϕt − kcnϕt).w]

 ,

(7.5.1)
where w = 1

dnϕ−kcnϕ
.

Proof. From (7.1.1) consider ż = sin γ
2

= s1k sn(ϕ, k). The solution to this ODE can be
written as:

dz

dt
=

dz

dϕt
.
dϕt
dt

=
dz

dϕt
.ϕ̇ =

dz

dϕt
= s1k sn(ϕt, k), (7.5.2)

ztˆ

0

dz =

ϕtˆ

ϕ

s1k snϕt dϕt,

where u is the variable of integration. Using [73], equation (7.5.2) becomes:

zt = s1 ln(dnϕt − kcnϕt)− s1 ln(dnϕ− kcnϕ). (7.5.3)

Let lnw = − ln(dnϕ− kcnϕ), w = 1
dnϕ−kcnϕ

. Then (7.5.3) becomes,

zt = s1 ln[(dnϕt − kcnϕt).w]. (7.5.4)

From (7.1.1) now consider,

ẋ = cos
γ

2
cosh z = s1dnϕt cosh (s1 ln [(dnϕt − kcnϕt).w]) , (7.5.5)

ẋ =
s1

2
dnϕt

(
eln[(dnϕt−kcnϕt)s1 .w] + e− ln[(dnϕt−kcnϕt)s1 .w]

)
,

ẋ =
s1

2
dnϕt

(
(dnϕt − kcnϕt)

s1 .w + [(dnϕt − kcnϕt)
s1 .w] −1

)
,

ẋ =
s1

2
dnϕt

(
(dnϕt − kcnϕt)

s1 .w +
1

[(dnϕt − kcnϕt)s1 .w]

)
. (7.5.6)

Thus (7.5.6) becomes,

dx =
s1

2

(
w.dn2ϕt − kw.dnϕtcnϕt +

dnϕt
(dnϕt − kcnϕt).w

)
dϕt. (7.5.7)

Now using the following identities of Elliptic functions:

sn′ϕ = cnϕ dnϕ, (7.5.8)

ϕˆ

0

dn2u du = E(ϕ), (7.5.9)
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where E(ϕ) is the elliptic integral of second type.

sn2ϕ+ cn2ϕ = 1, (7.5.10)

and
dn2ϕ+ k2sn2ϕ = 1, (7.5.11)

we can write

dn2ϕ− k2cn2ϕ = dn2ϕ− k2(1− sn2ϕ) = dn2ϕ− k2 + k2sn2ϕ = 1− k2. (7.5.12)

Thus (7.5.7) can be integrated as:

xt =
s1

2

w ϕtˆ

ϕ

dn2ϕtdϕt − kw
ϕˆ

ϕ0

dnϕtcnϕtdϕt +
1

w

ϕˆ

ϕ0

dn2ϕt + kcnϕtdnϕt
dn2ϕt − k2cn2ϕt

dϕt

 . (7.5.13)

Now using the standard identities of elliptic functions result of integration of (7.5.13) can be
written as:

xt =
s1

2

[(
w +

1

w (1− k2)

)
[E(ϕt)− E(ϕ)] +

(
k

w (1− k2)
− kw

)
[snϕt − snϕ]

]
. (7.5.14)

From (7.1.1) now consider,

ẏ = cos
γ

2
sinh zt = s1dnϕ sinh (s1 ln [(dnϕ− kcnϕ).w]) ,

ẏ = s2
1dnϕ sinh (s1 ln [(dnϕ− kcnϕ).w]) ,

ẏ = dnϕ sinh (s1 ln [(dnϕ− kcnϕ).w]) . (7.5.15)

The integration follows the same pattern as described above and hence final result of inte-
gration of (7.5.15) can be written as:

yt =
1

2

[(
w − 1

w (1− k2)

)
[E(ϕt)− E(ϕ)]−

(
k

w (1− k2)
+ kw

)
[snϕt − snϕ]

]
. (7.5.16)

Case 2 : λ = (ϕ, k) ∈ C2

Theorem 7.5.2. Consider horizontal system (7.1.1) for case 2 (7.3.10)–(7.3.13) and
substitute ψ = ϕ

k
and ψ = ϕ

k
= ψ + t

k
, the integration results can be summarized as:

xt =
1

2

(
1

w(1− k2)
− w

)[
E(ψt)− E(ψ)− k′2 (ψt − ψ)

]
+

1

2

(
kw +

k

w(1− k2)

)
[snψt − snψ] ,

yt = −s2

2

(
1

w(1− k2)
+ w

)[
E(ψt)− E(ψ)− k′2(ψt − ψ)

]
+

s2

2

(
kw − k

w(1− k2)

)
[snψt − snψ] ,

zt = s2 ln [(dnψt − kcnψt) .w] , (7.5.17)

where w = 1
dnψ−kcnψ

.
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Proof. Proof follows from the procedure outlined in case 1.

Case 3 : λ = (ϕ, k) ∈ C3

Theorem 7.5.3. In this case, k = 1. Integration results are summarized as: xt

yt

zt

 =


s1
2

[
1
w

(ϕt − ϕ) + w (tanhϕt − tanhϕ)
]

s2
2

[
1
w

(ϕt − ϕ)− w (tanhϕt − tanhϕ)
]

−s1s2 ln[w sechϕt]

 , (7.5.18)

and w = coshϕ.

Proof. Consider horizontal system (7.1.1) for case 3 (7.3.14)–(7.3.17):

ż = sin
γ

2
= s1s2 tanhϕt,

zt = −s1s2[ln(sechϕt)− ln(sechϕ)].

Let − ln(sechϕ) = lnw, w = coshϕ, then:

zt = −s1s2 ln[w sechϕt]. (7.5.19)

From (7.1.1) now consider,

ẋ = cos
γ

2
cosh zt = s1sechϕt cosh (−s1s2 ln[w sechϕt]) ,

ẋ =
s1sechϕt

2

[
eln[w sechϕt] + e− ln[w sechϕt]

]
,

dx =
s1sechϕt

2

[
1 + w2sech2ϕt
w sechϕt

]
dϕt,

xt =
s1

2

[
1

w
(ϕt − ϕ) + w (tanhϕt − tanhϕ)

]
. (7.5.20)

From (7.1.1) now consider,

ẏ = cos
γ

2
sinh zt = s1sechϕt sinh (−s1s2 ln[w sechϕt]) ,

ẏ =
−s2 sechϕt

2
[eln[w sechϕt] − e− ln[w sechϕt]],

dy =
−s2 sechϕt

2

[
w sechϕt − [w sechϕt]−1

]
dϕt,

yt =
s2

2

[
1

w
(ϕt − ϕ)− w(tanhϕt − tanhϕ)

]
. (7.5.21)

Integration of Horizontal Subsystem - Degenerate Cases

In the following we present the integration of horizontal subsystem in degenerate cases i.e.,
λ ∈ C4 and λ ∈ C5.
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Case 4 : λ ∈ C4

Theorem 7.5.4. Integration results in case 4 are summarized as follows: xt

yt

zt

 =

 sgn
(
cos γ

2

)
t

0

0

 . (7.5.22)

Proof.

ż = sin
γ

2
= sin

(
2nπ

2

)
= 0.

Since z(0) = 0,
zt = 0. (7.5.23)

Therefore,

ẋ = cos
γ

2
cosh z = cos

(
2nπ

2

)
,

ẋ = sgn
(

cos
γ

2

)
,

xt = sgn
(

cos
γ

2

)
t+Wx,

xt = sgn
(

cos
γ

2

)
t, (7.5.24)

where Wx = 0 because x(0) = 0. Now,

ẏ = cos
γ

2
sinh z = cos

(
2nπ

2

)
sinh(0) = 0,

yt = Wy

yt = 0, (7.5.25)

where Wy = 0 because y(0) = 0.

Case 5 : λ ∈ C5

Theorem 7.5.5. Integration results is case 5 are summarized as follows: xt

yt

zt

 =

 0

0

sgn
(
sin γ

2

)
t

 . (7.5.26)

Proof.

ż = sin
γ

2
= sin

(
π + 2nπ

2

)
= sgn

(
sin

γ

2

)
.

Thus,

zt = sgn
(

sin
γ

2

)
t+Wz,

zt = sgn
(

sin
γ

2

)
t, (7.5.27)
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where Wz=0 because z(0) = 0. Now,

ẋ = cos
γ

2
cosh z = cos

(
π + 2nπ

2

)
cosh z = 0,

x = 0, (7.5.28)

because x(0) = 0. Now,

ẏ = cos
γ

2
sinh z = cos

(
π + 2nπ

2

)
sinh z = 0,

yt = 0, (7.5.29)

because y(0) = 0.

7.6 Qualitative Analysis of Projections of Extremal

Trajectories on xy-Plane

The standard formula for the curvature of a plane curve (x(t), y(t)) is given as [74]:

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3
2

. (7.6.1)

Using (6.4.13),(7.6.1) curvature of projections (x(t), y(t)) of extremal trajectories of the
Hamiltonian system (6.4.13) is given as:

κ =
sin γ

2

cos γ
2
(cosh 2zt)

3
2

. (7.6.2)

The inflection points of curves exist when sin γ
2

= 0 and cusps exist when cos γ
2

= 0 or
c = 0. Qualitative analysis reveals that all curves (x(t), y(t)) have inflection points for
λ ∈ ∪3

i=1Ci but only for λ ∈ C2 the curves have cusps. The plots of trajectories (x(t), y(t))

are shown in Figures 7.3, 7.4, 7.5. In degenerate cases situation is different. The extremal
trajectories qt for λ ∈ C4, are sub-Riemannian geodesics in the plane {z = 0}. The curve
(x(t), y(t)) is a straight line on the x-axis. On the other hand, in case 5 i.e., λ ∈ C5, the curve
(x(t), y(t)) is just the initial point (0, 0) for {x = y = 0}. In this case, when initial conditions
x(0) = Wx, y(0) = Wy, the translations along coordinate axes are zero and the motions of
pseudo Euclidean plane comprise of hyperbolic rotations only. The resulting trajectory is a
quarter circle in the RS and as t→∞ the circle approaches the upper and lower arms of the
hyperbola in RS of Figure 5.3.

7.7 Chapter Summary

The parametrization of extremal trajectories in the Jacobi elliptic functions is complete. We
also established that there are no nontrivial abnormal extremal trajectories. This concluded
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Figure 7.3: Cuspless Trajectories λ ∈ C1

Figure 7.4: Trajectories with Cusps λ ∈ C2

the research work under consideration on the Lie group SH(2). However, the solution is yet
not complete without the optimality analysis. The next chapter deals with the optimality
analysis based on Maxwell strata where we will use the symmetries of the vertical subsystem
to find the points where extremal trajectories lose optimality.
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Figure 7.5: Critical Trajectories λ ∈ C3



Chapter 8

Maxwell Strata

We spared great deal of effort in proving integrability of the normal Hamiltonian system and
obtaining a parametrization of normal extremal trajectories in terms of convenient variables
and some elementary analytical functions, yet, the rationale behind solving the nonlinear
differential equations of the Hamiltonian system might not be apparent to a control engineer.
Beginning our description of Maxwell strata in this chapter, relevance and significance of the
vertical subsystem being a pendulum and the parametrization of extremal trajectories in
terms of Jacobi elliptic functions will become clearer.

Ordinarily numerical solution of the differential equations of a dynamical system is suffi-
cient for almost all objectives facing a control engineer viz. simulation and implementation.
However, in contrast to other techniques in control theory, optimal control is concerned not
only with obtaining the control function t 7→ u(t), but also with computation of trajectory-
control pair (q(.), u(.)) [28]. In fact the original brachistochrone problem by Johann Bernoulli
(that laid the foundations of calculus of variations and optimal control theory) was concerned
with obtaining the curve along which time taken by a bead moving from a higher point to a
lower point influenced only by its weight is minimized [28]. Pontryagin’s maximum principle
that forms the framework of this research does not give a unique optimal trajectory q(t)

joining q0 to q1 but a set of extremal trajectories that are candidate optimal only. Standard
texts written from perspective of control engineering such as [75] do not highlight the need
and procedure to obtain the unique optimal trajectory, because, for most applications it is
sufficient to obtain open loop control t 7→ u(t) which guarantees that the trajectory followed
by the dynamical system will be at least candidate optimal. Mathematical control theory is
on the other hand more advanced and seeks a rigorous optimality analysis that is based on
principle of elimination i.e., instead of computing the trajectories that are optimal, the ones
that cease to be optimal for certain reason are eliminated from the set of extremal trajec-
tories. It is known that a normal extremal trajectory ceases to be optimal for two reasons
i.e., either because it meets another candidate optimal trajectory at a point called Maxwell
point where both have equal sub-Riemannian distance, or because there exists a point called
a conjugate point where a family of extremal trajectories has an envelope. Geometric inter-
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pretation and computation of Maxwell point shall be the topic of discussion in this chapter,
whereas, conjugate points will be discussed in the next chapter.

8.1 Geometric Interpretation of PMP

Undoubtedly, PMP is a triumph of great significance in Mathematical control theory, yet,
it states only necessary optimality conditions. Mathematically this is equivalent to the
first derivative test in elementary calculus or the Euler-Lagrange equations in calculus of
variations. It is well known that a critical point or a candidate optimal point in elementary
calculus is indeed optimal if it satisfies the sufficient conditions of second derivative test.
The geometric interpretation of a critical point is simple in elementary calculus i.e., it is the
point where the slope of the graph of the function becomes zero or the tangent line to the
function becomes parallel to horizontal axis at the critical point. For optimality analysis of
the geodesics obtained via PMP it suffices to remark that PMP gives the necessary optimality
conditions, yet, for an inquisitive reader a geometric explanation of PMP and why does it fail
to establish sufficient optimality conditions for geodesics will prove intellectually rewarding
and aid further analysis.

Consider a general analytic optimal control problem on an analytic manifold M :

q̇ = f(q, u), q ∈M, u ∈ U ⊂ Rm, (8.1.1)

q(0) = q0, q(t1) = q1, t1 is fixed, (8.1.2)

J =

t1ˆ

0

Φ(q(t), u(t))dt→ min, (8.1.3)

where f(q, u) is a family of vector fields, Φ(q, u) : M×U → R is some function onM analytic
in system state q ∈ M and control parameter u ∈ U and the definite integral J is the cost
functional. The objective is to find the trajectory-control pair (qu(t), u(t)) that minimizes J .

Consider the reachable (or attainable) set Aq0(t) of the system (8.1.1)–(8.1.3) for time
t ≥ 0 from q0 which is given as:

Aq0(t) = {qu(t) | u ∈ U} .

Geometrically, reachable set of q0 is the set Aq0(t) of all those points that can be reached in
time t starting from q0. Hence any point q(t1) must lie on the boundary of the reachable set
Aq0(t1) of point q0 in time t1 and therefore optimal control problems on a manifold M turn
out to be the study of attainable set of some auxiliary control system on an extended state
space [20], [76] M̂ given as:

M̂ = R×M = {q̂ = (y, q) | y ∈ R, q ∈M} ,
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corresponding to an extended system:

˙̂q = f̂(q̂, u), q̂ ∈ M̂, u ∈ U,

f̂u(q̂) =

[
Φ(q;u)

fu(q)

]
, q̂(0) =

[
y(0)

q(0)

]
=

[
0

q(0)

]
.

Notice that Φ(q;u) is the integrand of the cost functional J and its initial value is zero because
at time t = 0 there is no cost as system is at rest. Hence, trajectories of the extended system
are given as:

q̂u(t) =

[
Jt(u)

qu(t)

]
,

and the corresponding attainable set of the extended system

Â(0,q0)(t) = {(Jt(u), qu(t)) | u ∈ U} .

As argued earlier, the endpoint q̂(t1) must belong to the boundary of the attainable set
Â(0;q0)(t1) and in order to find the optimal trajectories, the first step is to find the trajectories
coming to the boundary of Â(0;q0)(t1), then the second step is to choose optimal among them
[20], [76]. The first step is essentially solving the Hamiltonian system given by PMP and the
second step is to eliminate the extremal trajectories that fail to be optimal at some point.
Geometrically, extremal trajectories given by PMP lose optimality because the corresponding
extended trajectory q̂(t), t ∈ [0, t1] comes to the boundary of the extended attainable set
Â(0;q0)(t1), but not essentially to the "lower part" of the boundary i.e., Aq0(t1) ⊂M .

As pointed out in [20], [76], the first step which is solving the Hamiltonian system is much
more important than second one. Once we have a convenient parametrization and analytical
solution to Hamiltonian system, the optimality analysis essentially reduces to the study of
dynamics of boundary of attainable sets and that is exactly what we do in the sequel.

It is generally difficult to find the first Maxwell point. Since the vertical subsystem of
the Hamiltonian system (6.5.5) is a pendulum, its phase portrait admits discrete symmetries
(rotations and reflections) forming a symmetry group preserving time on the geodesics. We
find the Maxwell point corresponding to these symmetries in terms of three hypersurfaces
in the state space M containing all such Maxwell points. Using computer-aided symbolic
computations we obtain the time of first Maxwell point corresponding to various energy levels
of the pendulum. The upper bound on first Maxwell time allows us to define an upper bound
on the cut time (time at which a geodesic loses optimality globally).

8.2 Discrete Symmetries of the Vertical and the

Horizontal Subsystem of the Hamiltonian System

We now analyze symmetries in the vertical subsystem of the normal Hamiltonian system
(6.4.13) to obtain a characterization of the Maxwell points. The analysis and organization
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of this section is based on the description of the Maxwell strata given in [46], [47], [1], [77],
[53], [78] with corresponding results for the problem under consideration.

Symmetries of the Vertical Subsystem

Reflection Symmetries in the Vertical Subsystem

Since the vertical subsystem of the Hamiltonian system is a mathematical pendulum (6.5.5),
we exploit the reflection symmetries in the phase cylinder of the pendulum to compute the
discrete symmetries of the exponential mapping. The reflection symmetries in the phase
portrait of a standard pendulum are given as:

ε1 : (γ, c)→ (γ,−c),

ε2 : (γ, c)→ (−γ, c),

ε3 : (γ, c)→ (−γ,−c),

ε4 : (γ, c)→ (γ + 2π, c),

ε5 : (γ, c)→ (γ + 2π,−c),

ε6 : (γ, c)→ (−γ + 2π, c),

ε7 : (γ, c)→ (−γ + 2π,−c).

(8.2.1)

Symmetries (8.2.1) form a symmetry group G of parallelepiped with composition as group
operation and εi being the elements of the group. The symmetries ε3, ε4, ε7 preserve the
direction of time, however, symmetries ε1, ε2, ε5, ε6 reverse the direction of time [1]. As it is
evident, symmetries where reflection about both axes of phase portrait occurs preserve the
direction of time and others reverse the direction of time.

Reflections of Trajectories of the Pendulum

Proposition 4.1 from [1] gives the transformations that result in reflection of the phase portrait
of pendulum and is reproduced here for sake of completeness.

Proposition 8.2.1. Reflections (8.2.1) in the phase portrait of pendulum (6.5.5) are con-
tinued to the mappings εi that transform trajectories δs = (γs, cs) of the pendulum into the
trajectories δis = (γis, c

i
s) as follows:

εi : δ = {(γs, cs)|s ∈ [0, t]} 7−→ δi = {(γis, cis)|s ∈ [0, t]}, i = 1, . . . , 7, (8.2.2)
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Figure 8.1: Reflections εi : δ → δiof trajectories of a pendulum

where,
δ1 : (γ1

s , c
1
s) = (γt−s,−ct−s),

δ2 : (γ2
s , c

2
s) = (−γt−s, ct−s),

δ3 : (γ3
s , c

3
s) = (−γs,−cs),

δ4 : (γ4
s , c

4
s) = (γs + 2π, cs),

δ5 : (γ5
s , c

5
s) = (γt−s + 2π,−ct−s),

δ6 : (γ6
s , c

6
s) = (−γt−s + 2π, ct−s),

δ7 : (γ7
s , c

7
s) = (−γs + 2π,−cs).

(8.2.3)

For the instant of time s = t/2, the reflections of extremal trajectories {(γs, cs)} 7→
{(γis, cis)} given by (8.2.3) reduce to the reflections of points {(γ, c)} 7→ {(γi, ci)} given by
(8.2.1). In this sense we write in Proposition 8.2.1 that the reflections are continued to the
mappings εi.

Proof. The proof of the proposition given by [1], [47] is repeated here for sake of completeness.
We deal with only Case 1.

γ̇1
s =

d

ds
γ1
s =

d

ds
γt−s = −γ̇t−s = −ct−s = c1

s, (8.2.4)

ċ1
s =

d

ds
c1
s =

d

ds
(−ct−s) = ċt−s = − sin(γt−s). (8.2.5)

Proof for all other cases is similar.

Mappings (8.2.2) are shown in Figure 8.1.

Relationship between the Trajectories of the Original System and the System
Transformed via Reflections

Proposition 8.2.1 bears nice intuitive interpretation. As is evident from (8.2.3) that despite
action of ε1 on the trajectories, the system equations still represent a pendulum. The phase
portrait of the system obtained by reflection is same as that of pendulum, however its trajec-
tories are different from the original system in a particular way. The term γ1

s = γt−s implies
that the integral curve of the transformed system is obtained by flipping the integral curve
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Figure 8.2: Trajectories of the System (6.5.5) under Transformation ε1

of original system in time. The initial time s = 0 becomes final time s = t for the reflected
system and vice versa. Correspondingly the trajectory γ1

s is the time reversed version of γs.
The trajectory c1

s = −ct−s is reversed in time as well as in magnitude. In Figure 8.2 the
trajectories of the transformed system have been plotted by direct calculation (γ1

s , c
1
s) as well

as by flipping the original trajectories about respective axis (γt−s,−ct−s). The two plots turn
out to be the same.

Symmetries of the Horizontal Subsystem

Reflections of Normal Extremals

We now compute reflections of the normal extremals qs via the exponential mapping of the
vertical subsystem. The canonical projection π projects covectors from the cotangent bundle
T ∗M to the manifold M , i.e., π : λ ∈ T ∗M 7→ q ∈ M . The corresponding exponential map
Exp : N →M of the arc-length parametrized normal extremal trajectories for N = C × R+

is given as:

Exp(ν) = Exp(λ, s) = π ◦ es
−→
H (λ) = π(λs) = qs,

where ν = (λ, s) ∈ N and λs = (γs, cs, qs) is the solution to the Hamiltonian system (6.4.13).
We analyze the reflections of the normal extremal trajectories of the horizontal subsystem
corresponding to the reflection symmetries of the vertical subsystem. Action of the group G
on the normal extremals is defined as:

εi : {λs | s ∈ [0, t]} 7→ {λis | s ∈ [0, t]}, i = 1, . . . , 7. (8.2.6)

The action εi of the group G on the vertical subsystem results in the reflection of trajectories
of pendulum (8.2.3). The action of G on the horizontal subsystem, i.e., the trajectories qis is
described as follows:
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Proposition 8.2.2. The image qis = (xis, y
i
s, z

i
s) of the normal extremal trajectory qs =

(xs, ys, zs), s ∈ [0, t] under the action of reflections εi (8.2.6) is given as:

(1) z1
s = zt − zt−s,

x1
s = cosh zt[xt − xt−s]− sinh zt[yt − yt−s],

y1
s = sinh zt[xt − xt−s]− cosh zt[yt − yt−s].

(2) z2
s = −[zt − zt−s],

x2
s = cosh zt[xt − xt−s]− sinh zt[yt − yt−s],

y2
s = − sinh zt[xt − xt−s] + cosh zt[yt − yt−s].

(3) z3
s = −zs,

x3
s = xs,

y3
s = −ys.

(4) z4
s = −zs,

x4
s = −xs,

y4
s = ys.

(5) z5
s = −[zt − zt−s],

x5
s = − cosh zt[xt − xt−s] + sinh zt[yt − yt−s],

y5
s = sinh zt[xt − xt−s]− cosh zt[yt − yt−s].

(6) z6
s = zt − zt−s,

x6
s = − cosh zt[xt − xt−s] + sinh zt[yt − yt−s],

y6
s = − sinh zt[xt − xt−s] + cosh zt[yt − yt−s].

(7) z7
s = zs,

x7
s = −xs,

y7
s = −ys.

Proof. : Case 1 - Action of ε1 : (γs, cs, qs) 7→ (γ1
s , c

1
s, q

1
s) = (γt−s,−ct−s, q1

s)

ż1
s = sin

γ1
s

2
,

z1
s =

sˆ

0

sin
γ1
r

2
dr,

z1
s =

sˆ

0

sin
γt−r

2
dr. (8.2.7)
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Let t − r = p =⇒ −dr = dp. The limits of integral are changed as r = 0 =⇒ p = t and
r = s =⇒ p = t− s. Thus (8.2.7) becomes:

z1
s = −

 t−sˆ

t

sin
γp
2
dp

 ,
z1
s = zt − zt−s. (8.2.8)

Similarly,

ẋ1
s = cos

γ1
s

2
cosh z1

s ,

x1
s =

sˆ

0

cos
γ1
r

2
cosh z1

rdr

=

sˆ

0

cos
γt−r

2
cosh(zt − zt−r)dr

= −
t−sˆ

t

cos
γp
2

(cosh zt cosh zp − sinh zt sinh zp)dp

= cosh zt[xt − xt−s]− sinh zt[yt − yt−s], (8.2.9)

and

ẏ1
s = cos

γ1
s

2
sinh z1

s ,

y1
s =

sˆ

0

cos
γ1
r

2
sinh z1

rdr

=

sˆ

0

cos
γt−r

2
sinh(zt − zt−r)dr

= −
t−sˆ

t

cos
γp
2

(sinh zt cosh zp − cosh zt sinh zp)dp

= sinh zt[xt − xt−s]− cosh zt[yt − yt−s]. (8.2.10)

Proof of all other cases is similar.

Reflections of Endpoints of Extremal Trajectories

Let us now consider the transformation of endpoints of extremal trajectories resulting from
action of the reflections εi in the state space M :

εi : qt → qit.
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It can be readily seen from Proposition 8.2.2 that the point qit depends only on the endpoint
qt and not on the whole trajectory {qs|s ∈ [0, t]}. This is required to calculate the boundary
conditions in the description of Maxwell strata corresponding to the reflection of extremal
trajectories.

Proposition 8.2.3. The action of reflections on endpoints of extremal trajectories can be
defined as εi : q 7→ qi, where q = (x, y, z) ∈M, qi = (xi, yi, zi) ∈M and,

(x1, y1, z1) = (x cosh z − y sinh z, x sinh z − y cosh z, z),

(x2, y2, z2) = (x cosh z − y sinh z, −x sinh z + y cosh z, −z),

(x3, y3, z3) = (x, −y, −z),

(x4, y4, z4) = (−x, y, −z), (8.2.11)

(x5, y5, z5) = (−x cosh z + y sinh z, x sinh z − y cosh z, −z),

(x6, y6, z6) = (−x cosh z + y sinh z, −x sinh z + y cosh z, z),

(x7, y7, z7) = (−x, −y, z).

Proof. : Substitute s = t and (x0, y0, z0) = (0, 0, 0) in Proposition 8.2.2.

Notice that Proposition 8.2.3 defines the action of reflections in the image of the expo-
nential mapping.

Reflections as Symmetries of the Exponential Mapping

Here we calculate explicit formulas for initial values of trajectories of the pendulum corre-
sponding to the reflections. These will be useful in characterizing the fixed points of the
reflections in the preimage of the exponential map. The action of reflection in the preimage
of exponential mapping is defined as:

εi : N → N, εi : ν = (λ, t) = (γ, c, t) 7→ νi = (λi, t) = (γi, ci, t),

where (γ, c) are the trajectories of the pendulum with initial conditions (γ0, c0) and (γi, ci)

are the reflections of the trajectories with initial conditions (γi0, c
i
0). The following proposition

(a reproduction of Proposition 4.4 [1]) gives explicit formulas for (γi, ci).

Proposition 8.2.4. Let ν = (λ, t) = (γ, c, t) ∈ N, νi = (λi, t) = (γi, ci, t) ∈ N . Then,

(γ1, c1) = (γt,−ct),

(γ2, c2) = (−γt, ct),

(γ3, c3) = (−γ,−c),

(γ4, c4) = (γ + 2π, c),

(γ5, c5) = (γt + 2π,−ct),

(γ6, c6) = (−γt + 2π, ct),

(γ7, c7) = (−γ + 2π,−c).

(8.2.12)
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Proof. Substitute s = 0 in Proposition 8.2.1.

Equations (8.2.11) give the explicit formulas for reflection of endpoints of the extremal
trajectories in the image of exponential map, whereas, equations (8.2.12) give explicit for-
mulas for the action of reflections εi on the initial points of the extremals in the preimage
of the exponential mapping. The actions in M and N are both induced by reflections εi on
extremals. Therefore it follows that the reflections εi for i = 1, . . . , 7, are symmetries of the
exponential map.

Proposition 8.2.5. For any ν ∈ N and i = 1, . . . , 7, we have εi ◦ Exp(ν) = Exp ◦ εi(ν)

or in other words reflection εi is a symmetry of the exponential mapping and the following
diagram commutes:

N

εi

��

Exp //M

εi

��
N

Exp //M

δ

εi

��

Exp // q

εi

��
δi

Exp // qi

8.3 Maxwell Strata Corresponding to the Reflections

Maxwell Points and Maxwell Sets

As discussed earlier an extremal trajectory can lose optimality at a Maxwell point. The term
Maxwell set originates “in connection with the Maxwell rule of the van der Waals theory,
according to which phase transition takes place at a value of the parameter for which two
maxima of a certain smooth function are equal to each other” [79]. In optimal control theory
they signify the points where the competing extremal curves with same cost functional cross
each other. We now give a formal definition of Maxwell points and Maxwell strata.

Definition 8.3.1. Maxwell Point - A point qt of a sub-Riemannian geodesic is called a
Maxwell point if there exists another extremal trajectory q̃s 6= qs such that q̃t = qt for the
instant of time t > 0 [1].

Definition 8.3.2. Maxwell Set/Strata - Set of all Maxwell points is called Maxwell Set
and the union of all disjoint Maxwell sets is called Maxwell strata [1].

Maxwell set MAXi, i = 1, . . . , 7 corresponding to the reflections εi in the preimage of
the exponential mapping N = T ∗qM are defined as follows:

MAXi =
{
ν = (λ, t)∈N = C × R+ | λ 6= λi, Exp(λ, t) = Exp(λi, t)

}
. (8.3.1)

Intuitively this definition states that Maxwell sets contain those points of M that are in-
tersecting points of the trajectories Exp(λ, t) corresponding to covectors λ ∈ T ∗M | λ 6=
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Figure 8.3: Concept of Maxwell Point - Non-optimality of the geodesic qs after the Maxwell
point qt1

λi ∀s ∈ [0, t] in T ∗M i.e., the covectors are unique ∀s ∈ [0, t]. The corresponding Maxwell
strata in the image of the exponential mapping are defined as:

Maxi = Exp(MAXi) ⊂M. (8.3.2)

S. Jacquet [65] proved that for an analytic problem, a trajectory cannot be optimal after a
Maxwell point. We state and prove the following proposition due to S. Jacquet [65] for the
sake of completeness of the exposition.

Proposition 8.3.3. Let qs and q̃s be two distinct geodesics: qs 6≡ q̃s : s ∈ [0, t1]. If
qt1 = q̃t1, then for any t2 > t1 the geodesic qs, s ∈ [0, t2], is not optimal.

In other words, for any t2 > t1 there exists a geodesic q̂s, s ∈ [0, t2], of a smaller sub-
Riemannian length than that of qs, s ∈ [0, t2], connecting q0 and qt2 (see Fig 8.3). Therefore
any geodesic qs = Exp(λ, s) is non-optimal after the Maxwell time t1, (λ, t1) ∈ MAX.

Proof. The proof is by contradiction. Suppose that for somet2 > t1 the geodesic qs, s ∈ [0, t2],
is optimal. Then the broken geodesic,

q′s =

q̃s, s ∈ [0, t1] ,

qs, s ∈ [t1, t2] ,
(8.3.3)

is also optimal and analytic because all the geodesics in the sub-Riemannian problem on
SH(2) are analytic curves. Thus we have q′s ≡ qs, ∀s ∈ [t1, t2] and by the uniqueness
theorem for analytic functions, these curves must coincide everywhere i.e., q′s ≡ qs, s ∈
[0, t2]. This suggests that essentially we have q̃s ≡ qs, s ∈ [0, t1] and q̃s is not unique which
contradicts the definition of Maxwell point qt.

Fixed Points of Reflections in the Image of Exponential Map

Since there are discrete symmetries of the exponential mapping, the idea is to exploit these
symmetries and find the points where the trajectories arising out of symmetries meet the
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normal extremal trajectory q = (x, y, z). These points form the Maxwell set corresponding
to the reflection symmetries. Consider the following functions:

R1 = y cosh
z

2
− x sinh

z

2
, R2 = x cosh

z

2
− y sinh

z

2
. (8.3.4)

Consider x, y in hyperbolic coordinates:

x = ρ coshχ, y = ρ sinhχ.

Thus R1 and R2 read as:

R1 = ρ sinhχ cosh
z

2
− ρ coshχ sinh

z

2
= ρ sinh(χ− z

2
),

R2 = ρ coshχ cosh
z

2
− ρ sinhχ sinh

z

2
= ρ cosh(χ− z

2
).

Proposition 8.3.4. Fixed points of the reflections εi : q 7→ qi are given by the following
conditions:

(1) q1 = q ⇐⇒R1(q) = 0,

(2) q2 = q ⇐⇒z = 0,

(3) q3 = q ⇐⇒y = 0, z = 0,

(4) q4 = q ⇐⇒x = 0, z = 0,

(5) q5 = q ⇐⇒x = y = z = 0,

(6) q6 = q ⇐⇒R2(q) = 0,

(7) q7 = q ⇐⇒x = 0, y = 0.

Proof. We prove only Case (1): q1 = q. The proof for all other cases is similar. From (8.2.11),
x1 = x is equivalent to:

x cosh z − y sinh z = x,

which is equivalent to,

R1 sinh
z

2
= 0. (8.3.5)

Similarly, y1 = y is equivalent to:

R1 cosh
z

2
= 0. (8.3.6)

Eqs (8.3.5), (8.3.6) imply that R1 = 0. Hence case (1) of Proposition 8.3.4 is proved.

It can be observed readily that Maxi for i = 3, 4, 5, 7 form 0 or 1 dimensional manifolds
contained in 2-dimensional manifolds formed by Maxi for i = 1, 2, 6. Thus we consider only
the 2-dimensional Maxwell sets.
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Fixed Points of the Reflections in the Preimage of the Exponential

Map

In the previous section we considered the fixed points of reflections in M directly charac-
terizing the Maxwell sets containing points where q = qi. We now consider the fixed points
in the preimage of the exponential map, i.e., the solutions to the equations λ = λi for the
proper characterization of the Maxwell points. We use the following coordinates in the phase
cylinder of the pendulum for further analysis:

τ =
1

2
(ϕt + ϕ) , p =

t

2
when ν = (λ, t) ∈ N1 ∪N3, (8.3.7)

τ =
1

2k
(ϕt + ϕ) , p =

t

2k
when ν = (λ, t) ∈ N2. (8.3.8)

Proposition 8.3.5. Fixed points of the reflections εi, i = 1, 2, 6, in the preimage of the
exponential map are given as:

(1) λ1 = λ⇔ cnτ = 0, λ ∈ C1,

(2) λ2 = λ⇔

{
snτ = 0, λ ∈ C1 ∪ C2

τ = 0, λ ∈ C3

}
,

(3) λ6 = λ⇔ cnτ = 0, λ ∈ C2.

Proof. Case 1 - λ1 = λ. It follows from Proposition 8.2.4 that if λ ∈ C1, then λi ∈ C1.
Using Proposition 8.2.4,

λ1 = λ⇐⇒ γt = γ, −ct = c. (8.3.9)

Using elliptic coordinates (7.3.1)–(7.3.4) we have:

sin
γ

2
= s1k snϕ =⇒ sin

γt
2

= s1k snϕt =⇒ sin
γ

2
= s1k snϕt =⇒ snϕt = snϕ. (8.3.10)

cos
γ

2
= s1dnϕ =⇒ cos

γt
2

= s1dnϕt =⇒ cos
γ

2
= s1dnϕt =⇒ dnϕt = dnϕ. (8.3.11)

c

2
= k cnϕ =⇒ ct

2
= k cnϕt =⇒ −c

2
= k cnϕt =⇒ cnϕt = −cnϕ. (8.3.12)

Now from [73],

cnτ = cn
ϕt + ϕ

2
= ±

√
cn(ϕt + ϕ) + dn(ϕt + ϕ)

1 + dn(ϕt + ϕ)
,

Consider cn(ϕt + ϕ) + dn(ϕt + ϕ),

cn(ϕt + ϕ) + dn(ϕt + ϕ) =
cnϕtcnϕ− snϕtsnϕdnϕtdnϕ

1− k2sn2ϕtsn2ϕ
+

dnϕtdnϕ+ k2snϕtsnϕcnϕtcnϕ

1− k2sn2ϕtsn2ϕ
,



CHAPTER 8. MAXWELL STRATA 105

Using (8.3.10)–(8.3.12):

cn(ϕt + ϕ) + dn(ϕt + ϕ) =
−cn2ϕ− sn2ϕdn2ϕ+ dn2ϕ+ k2sn2ϕcn2ϕ

1− k2sn2ϕtsn2ϕ
,

=
−cn2ϕ+ dn2ϕ (1− sn2ϕ) +

(
1− dn2ϕ

)
cn2ϕ

1− k2sn2ϕtsn2ϕ
,

=
−
(
1− dn2ϕ

)
cn2ϕ+

(
1− dn2ϕ

)
cn2ϕ

1− k2sn2ϕtsn2ϕ
,

=⇒ cnτ = 0. (8.3.13)

For λ ∈ C±2 , we have λ1 ∈ C∓2 because c inverses sign. Thus λ = λ1 is impossible. Similarly
if λ ∈ Ci±

3 , we have λ1 ∈ Ci∓
3 , i = 0, 1 because c and γ are both inverted in sign. Hence

λ = λ1 is impossible. The proof for all other cases is similar.

General Description of Maxwell Strata Generated by Reflections

Propositions 8.3.4 and 8.3.5 give the multiple points in the image and fixed points in the
preimage of the exponential map respectively. We now collate the results from these propo-
sitions to give general conditions under which points q ∈M form part of the Maxwell sets.

Proposition 8.3.6. For ν = (λ, t) ∈ ∪3
i=1Ni and q = (x, y, z) = Exp (ν),

(1) ν ∈ MAX1 ⇔

{
R1(q) = 0, cnτ 6= 0 forλ ∈ C1,

R1(q) = 0, forλ ∈ C2 ∪ C3.

}

(2) ν ∈ MAX2 ⇔

{
z = 0, snτ 6= 0 for λ ∈ C1 ∪ C2,

z = 0, τ 6= 0 for λ ∈ C3.

}

(3) ν ∈ MAX3 ⇔

{
R2(q) = 0, cnτ 6= 0 for λ ∈ C2,

R2(q) = 0, for λ ∈ C1 ∪ C3.

}

Proof. Apply Propositions 8.3.4 and 8.3.5.

8.4 Complete Description of the Maxwell Strata

Roots of Equations Ri(qt) = 0 and zt = 0

We now study roots of the equations Ri(qt) = 0 and zt = 0 to describe the Maxwell strata in
the sub-Riemannian problem on SH(2). The idea is to obtain parametrization of the roots
in terms of τ and p defined in (8.3.7)–(8.3.8). Using the addition formulas for Jacobi elliptic
functions we get the following representation of the functions along extremal trajectories:
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Case 1 - λ ∈ C1:

ϕt = τ + p, ϕ = τ − p, (8.4.1)

sinh zt = s1
2k snp snτ

∆
, (8.4.2)

sinh
zt
2

= s1
k snp snτ√

∆
, (8.4.3)

cosh
zt
2

=
1√
∆
, (8.4.4)

R1(qt) =
2k

1− k2
cnτ f1(p), (8.4.5)

R2(qt) =
2s1

1− k2
dnτ f2(p), (8.4.6)

where ∆ = 1− k2sn2p sn2τ , f1(p) = cnpE(p)− snp dnp and f2(p) = dnpE(p)− k2snp cnp.
Case 2 - λ ∈ C2:

ϕt
k

= τ + p,
ϕ

k
= τ − p, (8.4.7)

sinh zt = s2
2k snp snτ

∆
, (8.4.8)

sinh
zt
2

= s2
k snp snτ√

∆
, (8.4.9)

cosh
zt
2

=
1√
∆
, (8.4.10)

R1(qt) =
2s2

1− k2
dnτ f3(p), (8.4.11)

R2(qt) =
2k

1− k2
cnτ f4(p), (8.4.12)

where f3(p) = −dnpE(p)+p dnp(1−k2)+k2snp cnp and f4(p) = −cnpE(p)+p cnp(1−k2)+

snp dnp.
Case 3 - λ ∈ C3:

ϕt = τ + p, ϕ = τ − p, (8.4.13)

sinh z = 2s1s2
sinh(τ) sinh(p) cosh(τ) cosh(p)

∆
, (8.4.14)

sinh
zt
2

= s1s2
sinh(τ) sinh(p)√

∆
, (8.4.15)

cosh
zt
2

=
cosh(τ) cosh(p)√

∆
, (8.4.16)

R1(qt) = s2
2p− sinh 2p

2
√

∆
, (8.4.17)

R2(qt) = s1
2p+ sinh 2p

2
√

∆
, (8.4.18)

where ∆ = cosh2 τ + sinh2 p.
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Proposition 8.4.1. Let t > 0.

(1) If λ ∈ C1 then zt = 0 ⇐⇒ p = 2Kn, snτ = 0.

(2) If λ ∈ C2 then zt = 0 ⇐⇒ p = 2Kn, snτ = 0.

(3) If λ ∈ C3 then zt = 0 ⇐⇒ p = 0, τ = 0.

Proof. Item (1) follows from (8.4.2), item (2) from (8.4.8) and item (3) from (8.4.14).

Proposition 8.4.2. The function f1(p) has an infinite number of roots for any k ∈ [0, 1)

given as:

p = pn1 (k), n ∈ Z, (8.4.19)

p0
1 = 0, (8.4.20)

p−n1 (k) = −pn1 (k). (8.4.21)

Moreover, the positive roots admit the bound:

pn1 (k) ∈ (2nK , (2n+ 1)K) , n ∈ N, k ∈ (0, 1). (8.4.22)

Proof. Equalities (8.4.20)–(8.4.21) follow directly from the fact that f1(p) is odd.
To prove (8.4.22) consider the function g1(p) = f1(p)/cnp, which has the same roots as

f1(p) and also:

lim
p→(2n−1)K+

g1(p)→ +∞,

lim
p→(2n+1)K−

g1(p)→ −∞,

g′1(p) = −(1− k2)sn2p

cn2p
≤ 0.

Hence g1(p) is decreasing on the interval ((2n − 1)K , (2n + 1)K) approaching ±∞ on the
boundaries of the interval. It follows that g1(p) and therefore f1(p) admit a unique root
p = pn1 (k) in each interval ((2n− 1)K , (2n+ 1)K). Since g1(2nK) > 0, for n ∈ N, therefore
pn1 (k) ∈ (2nK, (2n + 1)K). Plots of the functions f1(p) and g1(p) for k = 0.9 are given in
Figure 8.4.

Lemma 8.4.3. The function f2(p) is positive for any p > 0 and k ∈ (0, 1).

Proof. Consider the function g2(p) = f2(p)/dnp where,

g′2(p) =
1− k2

dn2p
> 0.

Since g2(0) = 0 therefore g2(p) > 0 and f2(p) > 0 for p > 0.
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Figure 8.4: Roots of the functions f1(p) and g1(p)

Lemma 8.4.4. The function f3(p) is negative for any p > 0 and k ∈ (0, 1).

Proof. Consider the function g3(p) = f3(p)/dnp which has the same roots as f3(p) such that,

g′3(p) = −(1− k2)k2sn2p

dn2p
≤ 0.

Since g3(0) = 0 therefore g3(p) < 0 and f2(p) < 0 for p > 0.

Proposition 8.4.5. The function f4(p) has an infinite number of roots for any k ∈ [0, 1)

given as:

p = pn2 (k), n ∈ Z, (8.4.23)

p0
2 = 0, (8.4.24)

p−n2 (k) = −pn2 (k). (8.4.25)

Moreover, the positive roots admit the bound:

pn2 (k) ∈ (2nK , (2n+ 1)K) , n ∈ N, k ∈ (0, 1). (8.4.26)

Proof. Equalities (8.4.24)–(8.4.25) follow directly from the fact that f4(p) is odd.
To prove (8.4.26) consider the function g4(p) = f4(p)/cnp which has the same roots as

f4(p) and also:

lim
p→(2n−1)K+

g4(p)→ −∞,

lim
p→(2n+1)K−

g4(p)→ +∞,

g′4(p) =
1− k2

cn2p
> 0.
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Figure 8.5: Roots of the functions f4(p) and g4(p)

Hence g4(p) is increasing on the interval ((2n − 1)K , (2n + 1)K) approaching ∓∞ on the
boundary of the interval. It follows that g4(p) and therefore f4(p) admits a unique root
pn2 (k) on each such interval. Following an argument similar to the one in Proposition 8.4.2,
it follows that pn2 (k) ∈ (2nK , (2n+ 1)K). Plots of the functions f4(p) and g4(p) for k = 0.9

are given in Figure 8.5.

Proposition 8.4.6. Let t > 0.

(1) If λ ∈ C1 then R1(qt) = 0 ⇐⇒ p = pn1 (k) or cnτ = 0. (8.4.27)

(2) If λ ∈ C2 then R1(qt) = 0 is impossible. (8.4.28)

(3) If λ ∈ C3 then R1(qt) = 0 is impossible. (8.4.29)

Proof. Item (1) follows from (8.4.5) and Proposition 8.4.2. Item (2) is given from (8.4.11)
and Lemma 8.4.4. Item (3) follows from (8.4.17) where 2p − sinh 2p = 0 for p = 0 and
(2p− sinh 2p)′ = 2−2 cosh 2p < 0 for p > 0. Hence R1(qt) does not admit any roots for t > 0

in this case.

Proposition 8.4.7. Let t > 0.

(1) If λ ∈ C1 then R2(qt) = 0 is impossible. (8.4.30)

(2) If λ ∈ C2 then R2(qt) = 0, ⇐⇒ p = pn2 (k) or cnτ = 0. (8.4.31)

(3) If λ ∈ C3 then R2(qt) = 0 is impossible. (8.4.32)

Proof. Item (1) is given from (8.4.6) and Lemma 8.4.3. Item (2) is given from (8.4.12) and
Proposition 8.4.5. Item (3) follows from (8.4.18) where 2p + sinh 2p = 0 for p = 0 and
(2p+ sinh 2p)′ = 2 + 2 cosh 2p > 0 for p ≥ 0. Hence R2(qt) does not admit any root for t > 0

in this case.

Let us now summarize the results obtained on the characterization of Maxwell strata.
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Theorem 8.4.8. The Maxwell strata MAXi ∩N j are given as:
(1) MAX1 ∩N1 = {ν ∈ N1 | p = pn1 (k), n ∈ N, cnτ 6= 0},
(2) MAX1 ∩N2 = MAX1 ∩N3 = ∅,
(3) MAX2∩N1 = MAX2∩N2 = {ν ∈ N1 ∪N2 | p = 2nK(k), n ∈ N, snτ 6= 0} ,
(4) MAX2 ∩N3 = ∅,
(5) MAX6 ∩N1 = MAX6 ∩N3 = ∅,
(6) MAX6 ∩N2 = {ν ∈ N2 | p = pn2 (k), n ∈ N, cnτ 6= 0}.

Proof. This follows from the general description of the Maxwell strata and the Propositions
8.4.1, 8.4.6 and 8.4.7.

Limit Points of the Maxwell Set

It remains to consider the points at the boundary of the Maxwell strata like the points in
N1 with p = pn1 (k), cnτ = 0. Since the action of reflections in the preimage of exponential
map is the same for SH(2) and SE(2), it can be readily seen using Proposition 5.8 [1] that
when ν ∈ N1, p = p1

1(k), cnτ = 0 and when ν ∈ N2, p = p1
2(k), cnτ = 0 then qt = Exp(ν)

is a conjugate point. The same reasoning applies to the case when ν ∈ N1, snτ = 0 and
ν ∈ N2, snτ = 0. Thus we get the following statement.

Proposition 8.4.9. A point qt = Exp(ν) is conjugate to the initial point q0 if the following
conditions hold:

(1) ν ∈ N1, p = pn1 (k), n ∈ N, cnτ = 0.
(2) ν ∈ N1 ∪N2, p = 2nK(k), n ∈ N, snτ = 0.

(3) ν ∈ N2, p = pn2 (k), n ∈ N, cnτ = 0.

Upper Bound on Cut Time

It is well known that a normal extremal trajectory cannot be optimal after the first Maxwell
time. We now calculate the first Maxwell time tMAX

1 : C → (0,+∞].

Proposition 8.4.10. The first Maxwell time tMAX
1 corresponding to the reflections ε1, ε2, ε6

is given as:

λ ∈ C1 =⇒ tMAX
1 (λ) = 4K(k),

λ ∈ C2 =⇒ tMAX
1 (λ) = 4kK(k),

λ ∈ C3 ∪ C4 ∪ C5 =⇒ tMAX
1 (λ) = +∞.

Proof. For λ ∈ C1, C2, C3 apply Theorem 8.4.8 and Proposition 8.4.9. For λ ∈ C4 and
λ ∈ C5, apply Theorems 7.5.4, 7.5.5 and Proposition 8.2.3.

Using Proposition 8.4.10 we get the following global upper bound on the cut time tcut(λ)

for extremal trajectories.
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Corollary 8.4.11. For any λ ∈ C,

tcut(λ) ≤ tMAX
1 (λ). (8.4.33)

We believe that inequality (8.4.33) is in fact an equality and plan to prove this conjecture in
a forthcoming work.

8.5 Symbolic Computations

It is evident that computations involved in the computations of roots of functions fi are quite
complex that are manually intractable. Hence roots of the functions fi were calculated using
Mathematica 9.0.1. The code for these computations is given in appendix B for interested
reader and for sake of completeness.

8.6 Chapter Summary

Pontryagin’s maximum principle gives the first order optimality conditions. The trajec-
tories resulting from the solution of the Hamiltonian system are candidate optimal only
and second order optimality conditions are checked to verify optimality. Sufficient optimal-
ity conditions are stated in terms of Maxwell points at which two trajectories with same
sub-Riemannian length cross each other. In preceding paragraphs we presented complete
description of Maxwell strata corresponding to the discrete symmetries of the vertical sub-
system of the Hamiltonian system. We defined 2-dimensional manifolds given by functions
Ri(q) and zt and proved that the these hypersurfaces contain the Maxwell points. We also
stated an effective upper bound on the cut time. In next chapter we show that the cut time
is indeed bounded by the first Maxwell time.



Chapter 9

Conjugate Loci

In this chapter we study local optimality of sub-Riemannian geodesics and compute the
first conjugate time (i.e., the time of loss of local optimality) along extremal trajectories.
Let us recall certain important facts related to conjugate points for that will also outline
the scheme of further analysis. A point qt = Exp(λ, t) is called a conjugate point for q0 if
ν = (λ, t) = (γ, c, t) is a critical point of the exponential mapping, qt being its critical value.
In other words, this definition is given as:

dνExp : TνN→TqtM is degenerate,

where dνExp amounts to the Jacobian J of the exponential mapping i.e.,

J =
∂(xt, yt, zt)

∂(γ, c, t)
=

∣∣∣∣∣∣∣
∂xt
∂γ

∂xt
∂c

∂xt
∂t

∂yt
∂γ

∂yt
∂c

∂yt
∂t

∂zt
∂γ

∂zt
∂c

∂zt
∂t

∣∣∣∣∣∣∣ .
According to the definition, roots of the equation J = 0 give the conjugate points and
the time corresponding to these roots is called the conjugate time. Carl Gustav Jacob
Jacobi (1804–1851) gave a geometric interpretation of conjugate points according to which
a conjugate point qt of a point q0 is the point where the extremal meets the envelope of
the set of extremal trajectories through q0 [80]. This is depicted in Figure 9.1. In the local
optimality analysis the first conjugate time is an important notion as this is the time at

Figure 9.1: Concept of conjugate point

112
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which an extremal trajectory loses local optimality. The first conjugate time is defined as:

tconj
1 = inf {t > 0 | t is a conjugate time along Exp(λ, s), s ≥ 0} .

Some general facts about the conjugate points are as follows [81]:

1. An instant t > 0 is a conjugate point if the exponential mapping for time t is degenerate
i.e., the Jacobian of the exponential mapping is zero at some instant t > 0.

2. Morse index of the second variation of the endpoint mapping along an extremal is equal
to the number of conjugate points with account of their multiplicity.

3. Morse index is equal to Maslov index of the curve in a Lagrange Grassmanian ob-
tained by linearization of the flow of the Hamiltonian system of Pontryagin Maximum
Principle.

4. Maslov index is invariant under homotopies of extremals provided that their endpoints
are not conjugate.

We apply this theory for description of conjugate points in the problem (5.6.1)–(5.6.5).

9.1 Conjugate Points and Homotopy

Let us suppose tconj
min represents the lower bound of the first conjugate time tconj

1 . This essen-
tially means that there is no conjugate point ∀t ∈ (0, tconj

min ). Hence the essential first step
in estimating the bounds of first conjugate time is to prove the absence of conjugate points
∀t ∈ (0, tconj

min ). This was achieved in Euler Elastic problem [81], SE(2) [48] and Engel group
[82] via homotopy considering the fact that Maslov index (number of conjugate points along
an extremal trajectory) is invariant under homotopy [83]. In order to qualify for proof of
absence of conjugate points below the lower bound of first conjugate time via homotopy, the
optimal control problem must satisfy a set of hypotheses (H1)–(H4) [81] outlined below.

Consider a general analytic optimal control problem on an analytic manifold M :

q̇ = f(q, u), q ∈M, u ∈ U ⊂ Rm, (9.1.1)

q(0) = q0, q(t1) = q1, t1 is fixed, (9.1.2)

J =

t1ˆ

0

Φ(q(t), u(t))dt→ min, (9.1.3)

where f(q, u) is a family of vector fields and Φ(q, u) is some function on M analytic in
system state q ∈ M and control parameter u ∈ U . Note that the sub-Riemannian problem
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on M = SH(2) (5.6.1)–(5.6.4) and (6.4.1) is of this form. Let the control dependent normal
Hamiltonian of PMP for (9.1.1)-(9.1.3) be given as:

hu(λ) = 〈λ, f(q, u)〉 − Φ(q, u). (9.1.4)

Let a triple (ũ(t), λt, q(t)) represent respectively the extremal control, extremal and extremal
trajectory corresponding to the normal Hamiltonian hu(λ). Let the following hypotheses be
satisfied for (9.1.1)–(9.1.3) :

(H1) For all λ ∈ T ∗M and u ∈ U , the quadratic form ∂2hu
∂u2

(λ) is negative definite. This
is the strong Legendre condition along the extremal pair (ũ(t), λ(t)).

(H2) For any λ ∈ T ∗M , the function u 7→ hu(λ), u ∈ U , has a maximum point
ū(λ) ∈ U :

hū(λ)(λ) = max
u∈U

hu(λ), λ ∈ T ∗M.

(H3) The extremal control ũ(.) is a corank one critical point of the endpoint mapping.
(H4) All trajectories of the Hamiltonian vector field

−→
H (λ), λ ∈ T ∗M , are continued

for t ∈ [0,+∞).
Under the hypotheses (H1)–(H4), the following is true for the optimal control problem

of the form (9.1.1)–(9.1.3):

1. Normal extremal trajectories lose their local optimality (both strong and weak) at the
first conjugate point, see [20].

2. Along each normal extremal trajectory, conjugate times are isolated one from another,
see [81],[48].

We will apply the following statement for the proof of absence of conjugate points via ho-
motopy.

Proposition 9.1.1. (Corollaries 2.2 and 2.3 [81]). Let (us(t), λst), t ∈ [0,+∞), s ∈ [0, 1], be
continuous in parameter s family of normal extremal pairs in the optimal control problem
(9.1.1)–(9.1.3) satisfying hypotheses (H1)-(H4). Let s 7→ ts1 be a continuous function, s ∈
[0, 1], ts1 ∈ (0,+∞). Assume that for any s ∈ [0, 1] the instant t = ts1 is not a conjugate time
along the extremal λst . If the extremal trajectory q0(t) = π(λ0

t ), t ∈ (0, t01], does not contain
conjugate points, then the extremal trajectory q1(t) = π(λ1

t ), t ∈ (0, t11], also does not contain
conjugate points.

9.2 Hypothesis (H1)–(H4) for sub-Riemannian Problem

on Lie Group SH(2)

Let us now check the hypothesis (H1)–(H4) for the sub-Riemannian problem on SH(2)

(5.6.1)–(5.6.5).
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Hypothesis (H1)–(H2)

From (6.4.9) normal Hamiltonian is given as:

H = h−1
u (λ) = u1h1(λ) + u2h2(λ)− 1

2

(
u2

1 + u2
2

)
, u ∈ R2.

The Hessian of the normal Hamiltonian w.r.t to control variables is given as:

∂H

∂u
=

(
h1 − u1

h2 − u2

)
,

The optimal control is given as:

ũ(t) =

(
u1

u2

)
=

(
h1

h2

)
.

For the optimal control ũ(t)

∂2H

∂u2
=

(
−1 0

0 −1

)
< 0. (9.2.1)

Clearly, ∂2H
∂u2

is negative definite and therefore hypothesis (H1) is satisfied. This in turn
implies that (H2) also holds.

Hypothesis (H3)

Condition (H3) means that there exists a unique, up to a nonzero factor, extremal λt corre-
sponding to the extremal control ũ(t). As outlined in [81], one easily checks that hypothesis
(H3) is satisfied for sub-Riemannian problem on Lie group SH(2).

Hypothesis (H4)

Finally, hypothesis (H4) is also satisfied since the Hamiltonian vector field
−→
H is complete

(its trajectories are parametrized by Jacobi’s functions determined for all t ∈ R).
It can be easily checked that the sub-Riemannian problem (5.6.1)–(5.6.5) satisfies the

hypotheses (H1)–(H4) and therefore Proposition 9.1.1 can be used to prove bounds of the
first conjugate time tconj

1 .



CHAPTER 9. CONJUGATE LOCI 116

Figure 9.2: J1(p, τ, k) and f1(p) for k = 0.5

Figure 9.3: J1(p, τ, k) and f1(p) for k = 0.9

9.3 Bounds of tconj
1 for λ ∈ C1

Using the elliptic coordinates (ϕ, k) defined in Section 5.3.1 [3] and parametrization of ex-
tremal trajectories (7.5.1), the Jacobian of the exponential mapping is given as:

J =
∂(xt, yt, zt)

∂(ϕ, k, t)
=

J1(p, τ, k)

(1− k2)2(1− ksnp snτ)2
, (9.3.1)

J1(p, τ, k) = −4k(α1 + α2 + α3), (9.3.2)

α1(p, τ, k) = snp cnp dnp
(
2E(p)− p+ k2p

)
,

α2(p, τ, k) = −dn2p sn2p− k2sn2p cn2τ,

α3(p, τ, k) = E(p)
(
sn2p− sn2τ

) (
E(p)− p+ k2p

)
,

where p and τ for λ ∈ C1 were defined in (8.3.7). Plots of J1(p, τ, k) are shown in Figures
9.2, 9.3.

Lemma 9.3.1. There exists k̂ ∈ (0, 1) such that for all k ∈ (0, k̂) and p ∈ (0, π), the function
J1 is positive.
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Proof. The Taylor expansions of J1 are given as:

J1 = 4k sin p(−p cos p+ sin p), k → 0, (9.3.3)

J1 =
4

3
kp4 + o(k2 + p2)4, k2 + p2 → 0. (9.3.4)

From (9.3.3) it can be readily seen that in limit passage of k → 0+, J1 > 0 for p ∈ (0, π).
Note that 2K(0) = π. Similarly from (9.3.4) it follows that J1 > 0 when k2 + p2 → 0+.

Lemma 9.3.2. If k ∈ (0, 1) and p = 2nK(k) for n ∈ Z, then J1 ≥ 0.

Proof. Direct substitution of p = 2nK(k) to (9.3.2) gives:

J1 = 16n2kE(k)
(
E(k)− (1− k2)K(k)

)
sn2τ. (9.3.5)

Since f(k) = E(k)− (1− k2)K(k) > 0 because f(0) = 0 and f ′(k) = kK(k) > 0, therefore,
J1 ≥ 0.

Lemma 9.3.3. The system of equations

f1(p, k) = 0, J = 0, (9.3.6)

is incompatible for k ∈ (0, 1), p > 0.

Proof. We denote

E(u, k) =

uˆ

0

√
1− k2 sin2 ϕdϕ, F (u, k) =

uˆ

0

dϕ√
1− k2 sin2 ϕ

,

The system of equations (9.3.6), after the change p = am(u, k), turns into:E(u, k) cosu =
√

1− k2 sin2 u sinu,

F (u, k)
√

1− k2 sin2 u cosu = sinu.
(9.3.7)

We prove that system (9.3.7) is incompatible for k ∈ (0, 1), u > 0.
(1) Let 0 < u < π/2. System (9.3.7) implies the equation:

E(u, k)√
1− k2 sin2 u

= F (u, k)
√

1− k2 sin2 u,

which is equivalent to the following equations:
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uˆ

0

√
1− k2 sin2 ϕ√
1− k2 sin2 u

dϕ =

uˆ

0

√
1− k2 sin2 u√
1− k2 sin2 ϕ

dϕ,

uˆ

0

(√
1− k2 sin2 ϕ√
1− k2 sin2 u

−
√

1− k2 sin2 u√
1− k2 sin2 ϕ

)
dϕ = 0,

uˆ

0

1− k2 sin2 ϕ− (1− k2 sin2 u)√
1− k2 sin2 u

√
1− k2 sin2 ϕ

dϕ = 0,

uˆ

0

sin2 u− sin2 ϕ

1− k2 sin2 ϕ
dϕ = 0.

The last equality is impossible since the function under the integral is positive for 0 < π < u

(when 0 < u < π/2).
(2) Equations of system (9.3.7) are violated when cosu = 0 or sinu = 0, i.e., at the

points u = πk
2
, k ∈ N. This is checked immediately.

(3) For π
2
< u < π system (9.3.7) is incompatible since the function cos is negative,

while the functions sin, E, F are positive.
(4) It remains to consider the case u > π for sinu cosu 6= 0. In this case we multiply the

equations of the system, divide the first equation by the second one, and get the following
system: cos2 uE(u, k)F (u, k) = sin2 u

E(u,k)

F (u,k)
√

1−k2 sin2 u
=
√

1− k2 sin2 u
⇔

{
E(u, k)F (u, k) = tan2 u

E(u, k) = F (u, k)(1− k2 sin2 u)

The equality 1 + tan2 u = cos−2 u and the equation E(u, k)F (u, k) = tan2 u imply:

cos2 u =
1

1 + E(u, k)F (u, k)
.

Since 1− k2 sin2 u = 1− k2 + k2 cos2 u = 1− k2 + k2

1+E(u,k)F (u,k)
, then the equation E(u, k) =

F (u, k)(1− k2 sin2 u) is rewritten as

E(u, k) = F (u, k)(1− k2) +
k2F (u, k)

1 + E(u, k)F (u, k)
. (9.3.8)

We have

E(u, k)− (1− k2)F (u, k) =

uˆ

0

(√
1− k2 sin2 ϕ− 1− k2√

1− k2 sin2 ϕ

)
dϕ,

=

uˆ

0

1− k2 sin2 ϕ− (1− k2)√
1− k2 sin2 ϕ

dϕ =

uˆ

0

k2 − k2 sin2 ϕ√
1− k2 sin2 ϕ

dϕ,

= k2

uˆ

0

cos2 ϕ√
1− k2 sin2 ϕ

dϕ.
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Consequently, equation (9.3.8) takes the form

k2

uˆ

0

cos2 ϕ√
1− k2 sin2 ϕ

dϕ =
k2F (u, k)

1 + E(u, k)F (u, k)
,

and after dividing both sides by k2 we get:

uˆ

0

cos2 ϕ√
1− k2 sin2 ϕ

dϕ =
F (u, k)

1 + E(u, k)F (u, k)
.

Since 1√
1−k2 sin2 ϕ

> 1, u > π then there holds the inequality

cos2 ϕ√
1− k2 sin2 ϕ

>

uˆ

0

cos2 ϕdϕ >

πˆ

0

cos2 ϕdϕ =
π

2

Consequently,
F (u, k)

1 + E(u, k)F (u, k)
=

uˆ

0

cos2 ϕ√
1− k2 sin2 ϕ

dϕ >
π

2
. (9.3.9)

On the other hand, for u ≥ π/2 we have E(u, k) ≥ E(k) > 1. Consequently,

F (u, k)

1 + E(u, k)F (u, k)
<

F (u, k)

1 + F (u, k)
< 1. (9.3.10)

Inequalities (9.3.9) and (9.3.10) contradict one to another. This completes the proof of this
lemma.

Theorem 9.3.4. The first conjugate time for λ ∈ C1 is bounded as 4K(k) ≤ tconj
1 (λ) ≤

2p1
1(k). Moreover,

lim
k→0+

tconj
1 (λ) = 2π,

lim
k→1−0

tconj
1 (λ) = +∞.

Proof. We first prove the lower bound of tconj
1 (λ). We employ the approach adopted in the

proof of Theorems 2.1, 2.2 [48] and prove that for λ ∈ C1 the interval (0, 2K(k)) does not
contain conjugate points for the extremal trajectory q(t) = Exp(λ, t).

Given any λ̂ ∈ C1, denote the corresponding elliptic coordinates (ϕ̂, k̂) and for t̂ = 4K(k̂)

denote the corresponding parameters (8.3.7) as p̂ = t̂/2 and τ̂ = ϕ̂+ p̂. From the discussion
on conjugate points it is clear that for p ∈ (0, p̂), the extremal trajectory q̂(t) = Exp(λ̂, t)

does not have conjugate points if J1 6= 0.
We choose the following family of curves in the plane (k, p) continuous in the parameter

s:
{(ks, ps) | s ∈ [0, 1]} , ks = sk̂, ps = 2K(ks). (9.3.11)
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Clearly the endpoints of the curve (ks, ps) are (k0, p0) = (0, π) and (k1, p1) = (k̂, 2K(k̂)).
The corresponding family of extremal trajectories is given as:

qs(t) = Exp(ϕs, ks, t), t ∈ [0, ts], s ∈ [0, 1], (9.3.12)

ts = 2ps, ϕs = τ̂ − ps. (9.3.13)

From Lemma 9.3.1 it is clear that for sufficiently small s > 0, the Jacobian J > 0 and
hence the extremal trajectory qs(t) does not contain conjugate points for p ∈ (0, 2K(ks)),
i.e., for t ∈ (0, 4K(ks)). Then from Proposition 9.1.1 it follows that the extremal trajectory
qs(t) does not contain conjugate points for any s ∈ [0, 1]. Hence the extremal trajectory
q(t) = Exp(λ, t), λ ∈ C1, does not contain conjugate points in the interval (0, 4K(k)) and
therefore tconj

1 (λ) ≥ 4K(k).
For proof of upper bound apply Lemma 9.3.3. Hence it is proved that the first conjugate

time is bounded as:

4K(k) ≤ tconj
1 ≤ 2p1

1(k). (9.3.14)

From Lemma 9.3.1 and (9.3.3), the first root of J occurs at p = π and limk→0+ 2K(k) = π.
Therefore,

lim
k→0+

tconj
1 (λ) = 4K(0) = 2π.

It can be readily seen that:
lim

k→1−0
tconj
1 (λ) = +∞.

Remark 9.3.5. For λ ∈ C1, the instant t = 4K(k) is conjugate iff snτ = 0. For proof
substitute n = 1 in (9.3.5) Lemma 9.3.2 or alternatively substitute snτ = 0 in (9.3.2).

9.4 Bounds for tconj1 (λ) in the Domain C2

Using the elliptic coordinates (ψ, k) defined in Section 5.3.1 [3] and the parametrization of
extremal trajectories (7.5.17), the Jacobian of the exponential mapping is given as:

J =
∂(xt, yt, zt)

∂(ψ, k, t)
=

−kJ1(p, τ, k)

(1− k2)2(1− ksnp snτ)2
, (9.4.1)

where p and τ for λ ∈ C2 were defined in (8.3.8) and J1 is given by (9.3.2).

Remark 9.4.1. Notice that the Jacobian for λ ∈ C2 (9.4.1) is just −k times the expression
of Jacobian for λ ∈ C1 (9.3.1). Such a symmetry is unexpected and was not observed in
equivalent problems [81],[48],[82].
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Theorem 9.4.2. The first conjugate time for λ ∈ C2 is bounded as 4kK(k) ≤ tconj
1 (λ) ≤

2k p1
1(k). Moreover,

lim
k→0

tconj
1 (λ) = 2πk,

lim
k→1−0

tconj
1 (λ) = +∞.

Proof. Since J = −kJ1 for λ ∈ C2, therefore all arguments presented in the proof of Theorem
9.3.4 apply.

Remark 9.4.3. For λ ∈ C2, the instant t = 4kK(k) is conjugate iff snτ = 0. For proof
substitute n = 1 in (9.3.5) Lemma 9.3.2.

9.5 Conjugate Points for the Cases of Critical Energy of

Pendulum

Theorem 9.5.1. (1) If λ ∈ C4, then tconj
1 (λ) = 2π.

(2) If λ ∈ C3 ∪ C5, then tconj
1 (λ) = +∞.

Proof. (1) Let λ ∈ C4. Take any continuous curve λs ∈ C, s ∈ [0, 1], such that λ0 = λ and
λs ∈ C1 for s ∈ (0, 1]. We have lims→0+ λ

s = λ and lims→0+ k
s = 0, thus lims→0+ t

conj
1 (λs) =

2π by Theorem 9.3.4. By continuity of the Jacobian J(λ, t) = ∂q
∂(λ,t)

, we get J(λ, 2π) =

lims→0+ J
(
λs, tconj

1 (λs)
)

= 0, thus 2π is a conjugate time along the geodesic Exp(λ, t). On
the other hand, by Proposition 9.1.1, any interval (0, τ ] ⊂ (0, 2π) does not contain conjugate
times. Consequently, tconj

1 (λ) = 2π.
(2) If λ ∈ C3∪C5, we argue similarly. By choosing continuous curve λs ∈ C, s ∈ [0, 1],

such that λ0 = λ and λs ∈ C1 for s ∈ (0, 1]. Then lims→0+ λ
s = λ and lims→0+ k

s = 1, thus
lims→0+ t

conj
1 (λs) = +∞ by Theorem 9.6.1. Then we get tconj

1 (λ) = +∞ by Proposition
9.1.1.

Theorem 9.5.2. The two sided bounds on tconj
1 (λ) for λ ∈ C1 given by Theorem 9.3.4 are

exact in the following sense:

(1) If snτ = 0 then tconj
1 (λ) = 4K(k), (9.5.1)

(2) If cnτ = 0 then tconj
1 = p1

1(k). (9.5.2)

Proof. Substitute snτ = 0 for item (1) and cnτ = 0 for item (2) in (9.3.2) respectively.

Theorem 9.5.3. The two sided bounds on tconj
1 (λ) for λ ∈ C2 given by Theorem 9.4.2 are

exact in the following sense:
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(1) If snτ = 0 then tconj
1 (λ) = 4kK(k), (9.5.3)

(2) If cnτ = 0 then tconj
1 (λ) = 2kp1

1(k). (9.5.4)

Proof. Substitute snτ = 0 for item (1) and cnτ = 0 for item (2) in (9.3.2) respectively.

9.6 n-th Conjugate Time

Computation of the first conjugate time is important in the study of local optimality of
the extremal trajectories. It turns out that in the study of sub-Riemannian wavefront, it is
essential to bound not only the first conjugate time, but all other conjugate times as well.
Hence in the following, we obtain the bounds for the n-th conjugate time for λ ∈ C1 ∪ C2.

Theorem 9.6.1. The n-th conjugate time tconj
n for λ ∈ C1 is bounded as 4nK(k) ≤ tconj

2n−1 ≤
2pn1 (k) and 2pn1 (k) ≤ tconj

2n ≤ 4(n+ 1)K(k), ∀n ∈ N.

Proof. From lemma 9.3.2 it is readily seen that ∀p = 2nK(k), the expression of the Jacobian
J1 ≥ 0. It is trivial to see from Proposition 8.4.2 and Figure 8.4 that behavior of f1(p) =

cnpE(p)− snp dnp is uniform for all intervals (2nK , (2n+ 1)K). Therefore at the nth root
pn1 (k) of the function f1(p), the Jacobian J1 ≤ 0. Hence the Jacobian takes values of opposite
sign (or zero) at the points p = 2nK(k) and p = pn1 (k). Therefore, the nth conjugate time
tconj
n is bounded as 4nK(k) ≤ tconj

2n−1 ≤ 2pn1 (k) and 2pn1 (k) ≤ tconj
2n ≤ 4(n+1)K(k) ∀n ∈ N.

Corollary 9.6.2. From Theorem 9.4.2 and Theorem 9.6.1 we see that the n-th conjugate
time tconj

n for λ ∈ C2 is bounded as 4nkK(k) ≤ tconj
2n−1 ≤ 2kpn1 (k) and 2kpn1 (k) ≤ tconj

2n ≤
4(n+ 1)kK(k).

Theorem 9.6.3. The n-th conjugate times are bounded as:

λ ∈ C1 =⇒ 4nK(k) ≤ tconj
2n−1(λ) ≤ 2pn1 (k), 2pn1 (k) ≤ tconj

2n (λ) ≤ 4(n+ 1)K(k),

λ ∈ C2 =⇒ 4nkK(k) ≤ tconj
2n−1(λ) ≤ 2kpn1 (k), 2kpn1 (k) ≤ tconj

2n (λ) ≤ 4(n+ 1)kK(k),

λ ∈ C4 =⇒ 2nπ ≤ tconj
2n−1(λ) ≤ 2pn1 (0), 2pn1 (0) ≤ tconj

2n (λ) ≤ 2(n+ 1)π.

Proof. The bounds follow from Theorem 9.6.1 and Corollary 9.6.2 for λ ∈ C1 ∪ C2. For
λ ∈ C4, apply limk→0+ to bounds for tconj

n (λ), λ ∈ C1.

9.7 Numerical Calculation of Roots of Jacobian

Having found analytical results on the bound of first conjugate times for k ∈ (0, 1), we now
turn towards numerical calculation of roots of Jacobian and confirmation of the bounds. For
this purpose we compute the roots of Jacobian (9.3.2) for various k ∈ [0.01, 0.99] with an
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Figure 9.4: Numerical Calculation of tconj
1

Figure 9.5: Numerical Calculation of n-th Root of Jacobian for n = 1, 3, 5

increment of 0.05. We also compute value of the upper and lower bound functions at these
k and plot them together see Figure 9.4. Similarly, we calculate n-th root of Jacobian and
plot it along with the upper and lower bound. This is presented in Figure 9.5. Mathematica
code for these plots and other analytical calculations is given in appendix C.

9.8 Sub-Riemannian Sphere and Wavefront

Having explicit parametrization of the exponential mapping Exp(λ, t), λ ∈ C, t > 0 and the
global bound on the cut time, we perform a graphic study of some essential objects in the
sub-Riemannian problem on SH(2) in the rectifying coordinates (R1, R2, z). In particular
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we plot the sub-Riemannian sphere SR and the sub-Riemannian wavefront WR. Recall that
the sub-Riemannian wavefront WR(q0;R) at q0 is the set of end-points of geodesics with
sub-Riemannian length R starting from q0 and the sub-Riemannian sphere SR(q0;R) at q0 is
the set of end-points of minimizing geodesics of sub-Riemannian length R and starting from
q0:

WR = {q = Exp(λ,R) ∈M | λ ∈ C} ,

SR = {q = Exp(λ,R) ∈M | λ ∈ C, tcut(λ) ≥ R} = {q ∈M | d(q0, q) = R} ,

where R is the radius of sub-Riemannian sphere or wavefront and d (q0, q1) = inf{l(q(.))}
is the sub-Riemannian distance corresponding to sub-Riemannian length functional l(q(.))
(4.3.1). Note the essential difference between sub-Riemannian wavefront and sub-Riemannian
sphere. The geodesics in sub-Riemannian wavefront are only locally minimizing and drawn
for time greater than the cut time as well. On the contrary, the geodesics in sub-Riemannian
sphere are globally minimizing and therefore drawn for time not greater than the upper
bound of cut time and therefore, SR ⊂ WR, but SR 6= WR for R > 0 and SR is the exterior
component of WR in the following sense:

SR = ∂(M \WR). (9.8.1)

The graphic analysis based on sub-Riemannian spheres and wavefronts has tremendous im-
portance in the solution of sub-Riemannian problems as it confirms the analytical results on
Maxwell points and conjugate points. The graphic object related to the conjugate points is
the sub-Riemannian caustic that is beyond the scope of this thesis. However, the plots of
sub-Riemannian shpere and wavefront are based on the computation of Maxwell points and
is presented below.

A plot of sub-Riemannian sphere is presented in Figure 9.6 and plots of cutout of sub-
Riemannian wavefront are presented in Figures 9.7–9.8. From Figure 9.8 it is clear that the
wavefront has self intersections in the planes Ri(qt) = 0 and zt = 0 as expected from the
general and complete description of Maxwell strata. The self intersections indicate that the
extremal trajectories intersect each other with same sub-Riemannian length functional. From
our discussion on Maxwell points it is clear that at Maxwell points the extremal trajectories
with same sub-Riemannian length intersect each other. Hence, the self intersections in sub-
Riemannian wavefront signify the Maxwell points. The graphic analysis is important in
the sense that it confirms our results on Maxwell points. We see that the self intersections
do occur in the surfaces Ri(qt) = 0 and zt = 0. Figure 9.9 shows the Matryoshka of the
sub-Riemannian wavefront where self intersections in wavefronts of different radii are clearly
visible. The graphics again confirm the results on sub-Riemannian problems reported in
literature on the nature of extremal trajectories. The extremal trajectories have infinite
number of Maxwell points in the surfaces Ri(qt) = 0 and zt = 0. These Maxwell points
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Figure 9.6: Sub-Riemannian sphere of radius 2

Figure 9.7: Cutout of the sub-Riemannian wavefront for R = 2

appear as a result of the periodic nature of the Jacobi elliptic functions that form the surfaces
Ri(qt) = 0 and zt = 0. In Figure 9.10 we present the Matryoshka of the sub-Riemannian
spheres SR for different R > 0. Plots are presented from two different viewpoints for better
visualization. Note that as expected, exterior view of the sub-Riemannian sphere is same as
that of wavefront. This is because the sub-Riemannian sphere is the exterior component of
sub-Riemannian wavefront in the sense (9.8.1). Mathematica code for these plots is given in
Appendix D.

9.9 Chapter Summary

The extremal trajectories lose optimality either at Maxwell points or at the conjugate points
i.e., points where the extremal trajectories have envelope. Optimality analysis presented in
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Figure 9.8: Sub-Riemannian wavefront with self intersections in the planes Ri(qt) = 0 and
zt = 0 for R = 2

Figure 9.9: Matryoshka of sub-Riemannian wavefronts WR for R = 1, 2, 3

Figure 9.10: Matryoshka of sub-Riemannian spheres SR for R = 1, 2, 3
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this chapter has established that the time of existence of conjugate points is bounded from
below by the first Maxwell time. Hence it is conjunctured that the cut time i.e., the time of
loss of global optimality is the first Maxwell time. Proof of cut time equal to first Maxwell
time is part of an upcoming work which is not part of this thesis.



Chapter 10

Conclusion

10.1 Main Contributions of Research Work

Pseudo Euclidean space as generalization of Euclidean space and in its own right is an
important mathematical structure as well as a significant notion in relativistic mechanics.
Considering a sub-Riemannian problem on pseudo Euclidean plane has important physical as
well as mathematical implications as highlighted earlier. In nutshell, the main contributions
of this research can be summarized as:

� Defining a sub-Riemannian problem on group SH(2).

� Proving the controllability of the control distribution.

� Considering abnormal and normal trajectories of the Hamiltonian system and proving
that abnormal trajectories are not strictly abnormal.

� Proving the integrability of the dynamical system thus arguing that the ODEs are
analytically solvable.

� Obtaining the transformation of sub-Riemannian problem on SH(2) to an equivalent
problem on group SOLV− thereby proving that same results can be transformed to
solve equivalent problem on Lie group SOLV−.

� Vertical subsystem depicts the dynamics of a mathematical pendulum which in turn
allows integrating the system in elliptic coordinates

� Defining elliptic coordinates such that flow of the pendulum rectifies.

� Obtaining parametrization of extremal trajectories in elliptic coordinates and Jacobi
elliptic functions.

� General and complete description of Maxwell strata.

128
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� Characterization of conjugate loci.

� Global optimality analysis based on description of open dense subdomains in the preim-
age and the image of exponential mapping. This leads to the proof of the fact that the
cut time is equal to the first Maxwell time.

As a last step the work on complete description of cut loci is in progress which is in infancy and
therefore not included here. Complete characterization of cut loci will mark the completion
of research on the problem under consideration.

10.2 Novelty

The work presented is novel from several perspective i.e.,

� Sub-Riemannian problem has not been considered on Lie group SH(2) prior to this
work.

� In depth analysis of extremal trajectories on SH(2) was not considered earlier.

� To our knowledge, transformation between SH(2) and SOLV− has not been obtained.

� Integrability of dynamical system is generally a difficult task and has been considered
sparingly on other problems. From that viewpoint, integrability of Hamiltonian system
on Lie group SH(2) is a novel contribution.

� Complete description of Maxwell strata and conjugate loci on SH(2) was never consid-
ered earlier.

� Computation of cut time for this problem is a new contribution which strengthens the
techniques being developed to attack such problems.

10.3 Future Work

Important future work lays ahead from this point onwards. We have obtained such parametriza-
tion of extremal trajectories that affords good further analysis. Most natural direction of
this work is to obtain the complete description of Maxwell strata thereby calculating global
bound on cut time based on discrete symmetries of the vertical subsystem. To this end the
methods developed in [1], [46], [47], [48] have been employed and results shall be reported in
an upcoming research paper. Description of cut and conjugate loci to investigate the global
and local optimality of extremal trajectories is another exciting and challenging work which
is currently being targeted. The ultimate goal to be achieved in this research on Lie group
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SH(2) shall be the description of global structure of exponential map and optimal synthe-
sis. It must be emphasized though, that the future work pointed out is quite complex and
challenging, suitable as the PhD thesis topic for another scholar.

10.4 Conclusion

Sub-Riemannian problems are optimal control problems with configuration manifold having
a structure of a Lie group. In this work we considered the sub-Riemannian problem on
Lie group SH(2). As remarked earlier, sub-Riemannian problem on SH(2) is significant
both in Physics and Mathematics. Arguably, due to the natural linkage between Minkowski
space-time geometry and the pseudo Euclidean plane, sub-Riemannian problem on SH(2)
could potentially lead to better understanding of the relativistic mechanics. Specifically, the
subgroup of hyperbolic rotations is equivalent to the Lorentz transformations.

This research led to several nontrivial achievements highlighted in the text earlier. Issues
such as controllability, abnormal trajectories, integrability of Hamiltonian system and most
importantly the parametrization of extremal trajectories were considered and solved. An in-
depth qualitative analysis on the extremal trajectories gave further insight into the nature of
sub-Riemannian geodesics. Nevertheless, important future work remains that will potentially
establish the entire analysis on stronger foundations.

The applied aspect of the research is equally important. As argued, the control system
physically represents a unicycle moving on a hyerbolic plane. Hence, the research results,
analysis and methodology can be expected to have far reaching implications in the field of
robotics where a large class of systems can be mathematically transformed into a unicycle.
Since, all real world surfaces have certain curvature positive or negative, this research on
motion of a unicycle on surface with constant negative curvature has obvious relevance to
the motion of robot on real world surfaces. One of the important future research directions
is to design a unicycle type robot that moves on a hyperbolic plane. Such application will
help verify the analysis results of this research and pave the way for application of geometric
control theory to real world systems.

My feelings while concluding the work on my research problem are no different than
Alexander’s following quote.

Alexander wept when he heard from Anaxarchus that there was an infinite number of worlds;
and his friends asked him if any accident had befallen him. He returned this answer:
"Do you not think it a matter worthy of lamentation that when there is such a
vast multitude of them, we have not yet conquered one?"



Appendix A

Jacobi Elliptic Functions

A.1 Simply Periodic Function

Definition A.1.1. A function f(z) that repeats itself after a fixed interval ω is called periodic
function or simply periodic function.

f(z + ω) = f(z) (A.1.1)

where ω is called the period of the function f(z). If f(z) is not periodic for a submultiple of
ω, then it is called fundamental period. Real world examples include current from an AC or
DC generator, the motion of a pendulum or mass attached to a spring etc.

A.2 Doubly Periodic Functions

Definition A.2.1. A function f(z) is called doubly periodic if there exist two constants ω1

and ω2such that:

f(z + ω1) = f(z) = f(z + ω2) (A.2.1)

for all values of complex number z [73].

The numbers ω1and ω2 are complex and the function f(z) repeats itself in two dimensions
of the complex plane as against the simply periodic functions which repeat in one dimension.
Jacobi in 1835 proved that the ratio of the periods ω1

ω2
cannot be real [84],[71].

A.3 Meromorphic Function

Definition A.3.1. A complex-valued function of one or more complex variables is called
holomorphic function if it is complex differentiable in a neighborhood U of every point z in
its domain D.
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Definition A.3.2. A complex valued function is called meromorphic on an open set D ⊂ C
that is holomorphic on all D except a set of isolated points, which are the poles for function.

Complex differentiability of holomorphic function implies that it is infinitely differentiable
and equal to its own Taylor series. More often the term analytic function is synonymously
used instead of holomorphic function. Analytic function is not only infinitely differentiable,
it can be expressed as a convergent power series in a neighborhood U of every point x0 in its
domain D where x0 can be real, complex or hypercomplex.

A.4 Elliptic Functions

History

Discovery of Elliptic functions is attributed to Norwegian mathematician Niels Henrik Abel
(1802-1829) who produced mathematics of outstanding caliber in his short life. In 1825
Abel delivered a lecture at Paris explaining the double periodicity of the elliptic functions.
Elliptic functions were discovered as inverse of the elliptic integrals that were encountered
long before Abel. The study of elliptical integrals began in 1655 with the study of arc length
of an ellipse by English mathematician John Wallis (1616-1703). In 1694 Jacob Bernoulli
already familiar with elliptic integrals out of his attempt to calculate the arc length of a
spiral came across another elliptic integral examining the shape of an elastic rod compressed
at the ends. Such a curve is called Lemniscate figure-eight or ∞ shaped curves (comes from
Latin word "lēmniscātus" meaning "decorated with ribbons", in connection with the shape
a ribbon takes when tied). He showed that the arc length s of Lemniscate from 0 to x as
function of a parameter t was given by the integral:

s =

ˆ x

0

1√
1− t4

dt (A.4.1)

The integral equation (A.4.1) is called Elliptic integral. The adjective elliptic is due to the
fact that simplest of these integrals are encountered in measurement of the perimeter (length
of arc) of an ellipse. Thus in relation to its connection with the arc length of the ellipse,
these are called elliptic integrals. This can be compared to the history of development of
transcendental functions which appeared as inverse functions to the solution of the integral
of the kind:

arcsin(x) =

ˆ x

0

1√
1− t2

dt. (A.4.2)

Simple explicit solutions to the integrals of algebraic expressions such as the one in equa-
tion (A.4.2) were not possible. It was established that inverse functions of the trigonometric
functions that were invented from ratios of sides of right triangle were the solutions of these
integrals and vice versa. The trigonometric functions were then also recognized as coordi-
nates on the perimeter of a unit circle. These functions enlarge the class of integrals that
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can be computed explicitly, albeit in the form of inverses to transcendental functions. The
effort to find closed form solutions for elliptic integrals equation (A.4.1) proved futile. Yet
again to address the needs of integral calculus, mathematicians ingeniously defined primitive
functions for such integrals as inverse of elliptic functions (to be defined shortly) to obtain
closed form solutions.

Definition A.4.1. More formally, integrals of the form
´
R(x,

√
P (x)dx where R is a ra-

tional function of its arguments and P (x) is a polynomial of degree 3 or 4 are called elliptic
integrals.

Liouville in 1833 proved that these integrals cannot be evaluated in terms of the elemen-
tary algebraic expressions or transcendental functions. Euler discovered the fundamental
addition theorems for elliptic integrals extending the theory further. A. M. Legendre (1752-
1833) devoted much of his career to the development of elliptic integrals. He discovered that
through rational transformations elliptic integrals may be brought into three canonical types
formally known as elliptic integrals of first, second and third kind given as:

F (ϕ, k) =

ˆ ϕ

0

dϕ√
1− k2 sin2 ϕ

(A.4.3)

E(ϕ, k) =

ˆ ϕ

0

√
1− k2 sin2 ϕdϕ (A.4.4)

Π(ϕ, n, k) =

ˆ ϕ

0

dϕ(
1 + n sin2 ϕ

)√
1− k2 sin2 ϕ

(A.4.5)

Note that these integrals contain transcendental functions of degree two and are integrable
in variable ϕ. Once we have calculated these integrals, ϕ which was the original variable
of interest can be obtained by inverting the functions F, E, or Π. This inverse of the
elliptic integral is the elliptic function. Elliptic integrals though developed were yet to be
recognized as inverse functions of some transcendental like functions and it still remained
to consider them on complex domain. The predicament in defining them as such stemmed
from belated recognition of existence and geometric structure of complex numbers and the
fact that transcendental functions were not developed as inverse of integrals equation (A.4.2)
and hence the mathematicians did not recognize their utility early on. This was overcome by
Abel and Jacobi independently and almost simultaneously. Both transitioned them from real
to complex domain and discovered their double periodic nature and hence defined the elliptic
functions as inverse of elliptic integrals. Jacobi wondered whether there exists a meromorphic
function with two fundamental real periods. He established that such a function could be
constant only. However, if the condition on ratio of periods is relaxed to being complex, one
would get what is called elliptic functions. The development of elliptic functions remained
aloof from the applications such as pendulum which became a classic example of explaining
the elliptic integrals and functions lately. Now that the elliptic functions are in correct
perspective, we introduce their formal definition.
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Definition A.4.2. A doubly periodic meromorphic function f(z) is called elliptic function.
Elliptic functions are analytic everywhere in the complex plane except at their poles.

One might wonder why such long historical background is necessary to introduce an
ordinary definition. In our humble opinion, the historical perspective is equally important.
Once background is established, it is easier and worthwhile to grasp the concept.
Jacobi based his theory on inverse function ϕ = amu instead of Legendre’s integrals where:

u =

ˆ ϕ

0

dϕ√
1− k2 sin2 ϕ

(A.4.6)

The new function am_ is called the amplitude of u for reasons that will become apparent
shortly. The Jacobi elliptic functions are then single valued functions:

sinϕ = sin amu, cosϕ = cos amu, ∆ϕ = ∆amu =

√
1− k2 sin2 ϕ (A.4.7)

Simpler notation for these function encountered nowadays is snu, cnu and dnu. Jacobi’s
elliptic functions were introduced in his famous work of 1829 titled Fundamenta nova theoriae
functionum ellipticarum (New foundations of the theory of the elliptic functions). After
Jacobi and Abel, Weierstrass did most important development replacing three Jacobi elliptic
function by one from which all others can be obtained. This ends the interesting tale of
development of elliptic functions.

Derivation

The pendulum is a classic example to introduce elliptic functions and it gives a physical
explanation that why these functions are periodic in two dimensions on the complex plane.
We give the derivation of the elliptic integral of first kind equation (A.4.6) and leave the
derivation of other functions to the interested reader. The derivation is motivated from [84].
Consider the pendulum made of massless rod of length l and a bob of mass m making an
angle θ with the vertical. The coordinate axis are pointing right and up with origin at the
point where the rod is attached to the support. The equations of motion and total energy
of the pendulum are given as:

θ̈ = −g
l

sin θ (A.4.8)

E =
1

2
ml2θ̇2 +mgl(1− cos θ) (A.4.9)

θ̇2 = 2
E
ml2
− 4

g

l
sin2 θ

2
(A.4.10)

It is well known that for small angle approximation pendulum is performing simple harmonic
motion and equation (A.4.8) has solution. However, beyond small angle, the motion is not
simple harmonic and the equation of simple pendulum has no longer simple solution. The
total energy E is a constant according to law of conservation of energy. The maximum energy
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Figure A.1: Pendulum

needed to lift the pendulum from θ = 0 to θ = π is E = 2mgl. Hence the energy of pendulum
can be given as:

E = k22mgl (A.4.11)

for k ≥ 0. Note that k = 0 implies that pendulum is at rest and k = 1 implies it has energy to
reach the unstable equilibrium point θ = π though that may be reached at t =∞. Consider
now oscillatory motion i.e., 0 < k < 1 with initial velocity v = v0 and θ = 0 at t = 0. The
energy of the pendulum at this point is given as:

E =
1

2
mv2

0 (A.4.12)

Subtracting equation (A.4.9) from equation (A.4.12) we have:

v2 = v2
0 − 2gl(1− cos θ)

v2 = v2
0 − 4gl sin2 θ

2

l2θ̇2 = v2
0 − 4gl sin2 θ

2

θ̇2 =
v2

0

l2
− 4

g

l
sin2 θ

2
(A.4.13)

θ̇2 =
4g

l

(
v2

0

4gl
− sin2 θ

2

)
(dθ)2 =

4g(dt)2

l

(
v2

0

4gl
− sin2 θ

2

)
(A.4.14)

Comparing equation (A.4.10),(A.4.11),(A.4.13) we have k2 = v2
0/4gl. Let u =

√
g/lt which

is the reparametrized time of motion of pendulum. Hence, (du)2 = g
l
(dt)2 that we substitute

in equation (A.4.14): (
dθ

du

)2

= 4

(
k2 − sin2 θ

2

)
. (A.4.15)
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Let us now introduce the transformation in equation (A.4.15) to obtain the elliptic integral
of first kind i.e., k sinϕ = sin θ

2
.

k2 cos2 ϕ

(
dϕ

du

)2

=
1

4
cos2 θ

2

(
dθ

du

)2

,

k2(1− sin2 ϕ)

(
dϕ

du

)2

=
1

4
cos2 θ

2
.4

(
k2 − sin2 θ

2

)
,

k2(1− sin2 ϕ)

(
dϕ

du

)2

= k2
(
1− sin2 ϕ

) (
1− k2 sin2 ϕ

)
,(

dϕ

du

)2

=
(
1− k2 sin2 ϕ

)
,

u = F (ϕ, k) =

ˆ ϕ

0

dϕ(
1− k2 sin2 ϕ

) . (A.4.16)

Note that we have obtained equation (A.4.6) which is the definition of elliptic integral of
first kind. In doing so we have actually expressed reparametrized time u as a function of
reparametrized pendulum position or amplitude ϕ. Note also that −π < θ < π is oscillatory
motion, but, due to the very definition of ϕ its limits are −π

2
< ϕ < π

2
. The constant k is

called the modulus and k′ =
√

1− k2 is called complementary modulus. Derivation of other
elliptic functions can be seen in [84],[71]. If we introduce ϕ = π

2
as the limit of integration in

equation (A.4.16) we get what is called the complete elliptic integral of the first kind:

K(k) = F (
π

2
, k) =

ˆ π
2

0

dϕ(
1− k2 sin2 ϕ

) , (A.4.17)

K ′(k) = K(k′) = F (
π

2
, k′) =

ˆ π
2

0

dϕ(
1− k′2 sin2 ϕ

) . (A.4.18)

Note that we dropped ϕ as it is constant now. The integral is called complete because it
corresponds to quarter period i.e. the time pendulum takes to go from ϕ = 0 at x = 0 to
ϕ = π

2
which is the swing of pendulum for −π

2
< ϕ < π

2
is the quarter of the total time

period.

A.5 Double Periodicity

� Elliptic functions are doubly periodic. Specifically, sn(z+ 4K, k) = sn(z, k) and sn(z+

2iK ′; k) = sn(z; k)

� The imaginary period corresponds to the fact that if we replace gravity g by −g we
essentially have a pendulum moving upside down and imaginary period is the period
of this pendulum.
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Whittaker [71] proved an important theorem for dynamical system that is subjected to
constraints. It states that if the constraints on the dynamical system are independent of the
time of motion and also independent of forces and they are dependent only upon the position
of the particles, then for such a system the integrals of the equations of motion are still real
if time t and initial conditions q10, . . . qn0 are replaced respectively by it and iq1, . . . , iqn. The
resulting equations represent the motion which the same system would have if, with the same
initial conditions, it were acted on by the same forces reversed in direction.

A.6 Identities

The identities used in this work have been stated where used.



Appendix B

Mathematica Code for Roots of Function
R1(qt) = 0 for λ ∈ C1

As is evident, mathematical computations in this work are complex and intractable manually.
Thanks to symbolic computation software like Mathematica, it was possible to carry out our
analysis and obtain analytical results [85], [86]. It however turns out that in order to obtain
desired results, software has to be pushed beyond its documented capabilities. Another
important step in this process is the manual analysis at each step and introduce manual
simplifications wherever possible. Patience, keen observation, trial and error are essential
ingredients for getting desired output for problems of this scale as the process may span over
weeks to months depending upon expertise in mathematics and Mathematica. Consequently,
the code is suitably commented for someone new to symbolic computations in Mathematica.
Mathematica code that was written to find roots of R1(qt) = 0 for λ ∈ C1 is given in the
succeeding paragraphs. The code was written and tested in Mathematica 9.0.1 on Windows
8.1.

As already stated, purpose of this code is to find the roots of the function R1(qt) =

yt cosh zt/2− xt sinh zt/2 given in (8.3.4). Note that the extremal trajectories qt = (xt, yt, zt)

(7.5.1) and therefore original function R1(qt) is parametrized in terms of ϕ and k (7.3.1)–
(7.3.4). On the contrary we need to find the roots in terms of time which will give the
first Maxwell time tMAX

1 . Recall that ϕ is the reparametrized time of motion and ϕt =

ϕ+ t and therefore it is possible to reparametrize the extremal trajectories in terms of time.
This reparametrization was done in (8.3.7) by virtue of which the extremal trajectories and
function R1(qt) are parametrized in terms of τ and p = t/2. After the reparametrization, it
is necessary to simplify the resulting expressions and find the roots of R1(p, τ) = 0 in terms
of p.

The code is divided into five sections. In Section B.1 we give the setup code including the
definition of addition formulas for elliptic functions. We also give formulas for the functions
(xt, yt) and R1(qt) = yt cosh zt/2 − xt sinh zt/2. Note that reparametrization of cosh zt

2
and
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sinh zt
2
was obtained in (8.4.3)–(8.4.4) which is used in defining the function R1(qt). In section

2 we reduce the function R1(qt) to an equivalent but simpler form i.e., R1(qt) = 2k
1−k2 cnτ f1(p)

where f1(p) is given in (8.4.5). In section 3 we validate the simplification process by sub-
tracting the original expression from the simplified one. In section 4 we plot the simplified
function, obtain its roots numerically to confirm its bounds and also analyze the function
g1(p, k) = f1(p)

cnp
. In section 5 we append elliptic functions interconversion rules list which is

used in simplification of our results. The pseduo code for this corresponding Mathematica
code is given as:

1. Initialize notebook directory

2. Define the addition / subtraction formulas for Jacobi elliptic functions

3. Define transformation rules / identities for Jacobi elliptic functions

4. Define parametric equations of extremal trajectories and the function R1(q)

5. Simplify the function using builtin Mathematica functions and transformation rules

6. Obtain the roots of functions R1(q) from simplified expression

7. Plot the original and simplified function for comparison

B.1 Setup

SetDirectory[NotebookDirectory[]];
color := {RGBColor[1, 0, 0], RGBColor[0, 0, 1], RGBColor[0, 1, 0], RGBColor[1, 1, 0],
RGBColor[0, 1, 1]}; (*Set PlotStyle and Parametric PlotStyle to color*)
SetOptions[Plot, PlotStyle -> color];
SetOptions[ParametricPlot, PlotStyle -> color];
(*Elliptic Functions*)
amm[phi_, k_] := JacobiAmplitude[phi, k^2]
EE[phi_, k_] := EllipticE[amm[phi, k], k^2]
K[k_] := EllipticK[k^2]
EEE[k_] := EllipticE[k^2]
sn[p_, k_] := JacobiSN[p, k^2]
cn[p_, k_] := JacobiCN[p, k^2]
dn[p_, k_] := JacobiDN[p, k^2]
(*Addition formulas*) (*We first unprotect a function to modify its definition. In the end \
we again protect*)
Unprotect[JacobiDN]
(*dn(p+tau)*)
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JacobiDN[p + tau, k^2] := (JacobiDN[p, k^2]*JacobiDN[tau, k^2] - k^2*JacobiSN[p, k^2]*JacobiCN[p,
k^2]*JacobiSN[tau, k^2]* JacobiCN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*dn(-p+tau)*)
JacobiDN[-p + tau, k^2] := (JacobiDN[p, k^2]*JacobiDN[tau, k^2] + k^2*JacobiSN[p,
k^2]*JacobiCN[p, k^2]*JacobiSN[tau, k^2]* JacobiCN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiDN]

Unprotect[EllipticE]
(*E(p+tau)*)
EllipticE[JacobiAmplitude[p + tau, k^2], k^2] := EllipticE[JacobiAmplitude[p, k^2], k^2] +
EllipticE[JacobiAmplitude[tau, k^2], k^2] - k^2*JacobiSN[p, k^2]*JacobiSN[tau, k^2]*JacobiSN[p
+ tau, k^2]
(*E(-p+tau)*)
EllipticE[JacobiAmplitude[-p + tau, k^2], k^2] := -EllipticE[JacobiAmplitude[p, k^2], k^2]
+ EllipticE[JacobiAmplitude[tau, k^2], k^2] + k^2*JacobiSN[p, k^2]*JacobiSN[tau, k^2]*JacobiSN[-
p + tau, k^2]
Protect[EllipticE]

Unprotect[JacobiSN]
(*sn(p+tau)*)
JacobiSN[p + tau, k^2] := (JacobiSN[p, k^2]*JacobiCN[tau, k^2]*JacobiDN[tau, k^2] + Ja-
cobiCN[p, k^2]*JacobiDN[p, k^2]*JacobiSN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*sn(-p+tau)*)
JacobiSN[-p + tau, k^2] := (-JacobiSN[p, k^2]*JacobiCN[tau, k^2]*JacobiDN[tau, k^2] +
JacobiCN[p, k^2]*JacobiDN[p, k^2]*JacobiSN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiSN]

Unprotect[JacobiCN]
(*cn(p+tau)*)
JacobiCN[p + tau, k^2] := (JacobiCN[p, k^2]*JacobiCN[tau, k^2] - JacobiSN[p, k^2]*JacobiDN[p,
k^2]*JacobiSN[tau, k^2]* JacobiDN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*cn(-p+tau)*)
JacobiCN[-p + tau, k^2] := (JacobiCN[p, k^2]*JacobiCN[tau, k^2] + JacobiSN[p, k^2]*JacobiDN[p,
k^2]*JacobiSN[tau, k^2]* JacobiDN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiCN]
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<‌< "rules.txt" (* Rules for expansion of trigonometric identities. This file is given at
the end of this code *)
delta[p_, t_, k_] := 1 - k^2*sn[t, k]^2*sn[p, k]^2;
phit[p_, t_] := t + p;
phi0[p_, t_] := t - p;
w[p_, t_, k_] := 1/{dn[phi0[p, t], k] - k*cn[phi0[p, t], k]}; k0 = 0.1;
x11[p_, t_, k_] := w[p, t, k] + 1/{{1 - k^2}*w[p, t, k]};
x12[p_, t_, k_] := k*{-w[p, t, k] + 1/{{1 - k^2}*w[p, t, k]}};
y11[p_, t_, k_] := w[p, t, k] - 1/{{1 - k^2}*w[p, t, k]};
y12[p_, t_, k_] := k*{w[p, t, k] + 1/{{1 - k^2}*w[p, t, k]}};
xya[p_, t_, k_] := EE[phit[p, t], k] - EE[phi0[p, t], k];
xyb[p_, t_, k_] := sn[phit[p, t], k] - sn[phi0[p, t], k]; (* x=s1/2*{x_{11}*xya+x_{12}*xyb}
y=1/2*{y_{11}*xya-y_{12}*xyb} *)
x[p_, t_, k_] := 1/2*{x11[p, t, k]*xya[p, t, k] + x12[p, t, k]*xyb[p, t, k]};
y[p_, t_, k_] := 1/2*{y11[p, t, k]*xya[p, t, k] - y12[p, t, k]*xyb[p, t, k]};

B.2 Derivation of the Factorization R1(qt) =
2k

1−k2cnτ f1(p)

R1 = y[p, tau, k] - x[p, tau, k] k sn[p, k] sn[tau, k]; (*This expression results from
substituting values of cosh zt

2
and sinh zt

2
in R1(qt)*)

% /. tocsdErule1; (*Apply elliptic functions rules defined in rules.txt on previous ex-
pression.*)
Together[%];
Numerator[%] ;
x1 = Denominator[%%]; (* Separate denominator and call it x1 *)
FullSimplify[%%]; (* Simplify the numerator using FullSimplify *)
Expand[%] /. ctosrules1 /. dtosrules1; (* Expand the simplified expression and replace
the cn and dn functions by sn functions for further simplification *)
FullSimplify[%];
(*This is the output of previous FullSimplify. We note a common factor and remove it for
simplification.
{{{{-2 k (-1 + k^2 s^2 ts^2) (s ((1 - k^2 s^2) tc td + c d k (-1 + ts^2)) + E1 (-c d tc td
+ k (-1 + s^2) (-1 + ts^2)))}}}}*)
Factor[%/(2 k (1 - k^2 s^2 ts^2))];
Expand[%] /. dtosrules1 /. stocrules1;
FullSimplify[%]
{{{{tc (-(-1 + k^2) s td - c d (k s tc + E1 td) + c^2 k (E1 tc + k s td))}}}}
Factor[% /tc];
Expand[%] /. dtosrules1 /. ctosrules1;
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FullSimplify[%];
(*This is the final simplified expression.
{{{{-E1 (k (-1 + s^2) tc + c d td) + s (td - k (c d tc + k s^2 td))}}}}*)
(k c tc - d td) (c E1 - s d) - %; (*Manual simplification results in a further simpler form
which is first part of this expression. We subtract previous expression from it to verify.*)
Expand[%] /. dtosrules1 /. ctosrules1;
FullSimplify[%];
(*Final result is 0 which means our manual simplification was correct.
{{{{0}}}}*)

B.3 Validation

(* verification of the factorization R1f = 2 k/(1-k^2) tc (c E1 - s d) *)
R1 = y[p, tau, k] - x[p, tau, k] k sn[p, k] sn[tau, k];
% /. tocsdErule1;
x2 = 2 k/(1 - k^2) tc (c E1 - s d);
Together[%% - %]; (*Subtract original and simplified expression and simplify. Result
should be 0*)
Expand[%] /. ctosrules1 /. dtosrules1;
FullSimplify[%]
{{{{0}}}}

B.4 Plot and Numerical Calculation of Roots

(* Proof of the identity g′1(p) = − (1−k2)sn2p
cn2p

*)
(c E1 - s d) /. fromcsdErule1;
c /. fromcsdErule1;
D[%%/%, p] %^2 // FullSimplify; (*Take derivative, then consider numerator only*)
% /. tocsdErule1 /. ctosrules /. dtosrules;
FullSimplify[%] ;
%% + (1 - k^2) s^2 // Expand; (*Now validate whether difference of simplified expres-
sion our derivative value we calculated is 0*)
% /. dtosrules /. ctosrules;
FullSimplify[%];

(*Numerical calculation of root of simplified expression of R1*)
pR1[k_] := p /. FindRoot[ cn[p, k] EE[p, k] - sn[p, k] dn[p, k] == 0, {p, K[k], 3 K[k]}]

(*Plot the function f1(p) and g1(p)*)
<‌< PlotLegends‘ (*Include PlotLegends package*)
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k0 := 0.9;
tic = {{{K[k0], K[k]}, {2 K[k0], 2 K[k]}, {3 K[k0], 3 K[k]}, {4 K[k0], 4 K[k]}, {5 K[k0], 5
K[k]}, {6 K[k0], 6 K[k]}}, {-10, -5, 5, 10}};
(c E1 - s d)/c /. fromcsdErule1;
plot1 = Plot[(% /. {k -> k0}), {p, 0, 6 K[k0]}, PlotStyle -> {Red, Dashed, Thick}, Ticks
-> tic, PlotLegends -> {Subscript[g, 1][p]}];
plot2 = Plot[(%% /. {k -> k0}), {p, 0, 6 K[k0]}, PlotStyle -> {Thick}, Ticks -> tic,
PlotLegends -> {Subscript[f, 1][p]}];
plot3 = Show[plot1, plot2, AxesLabel -> {p, Subscript[f, 1][p] Subscript[g, 1][p]}, TicksStyle
-> Directive[12], LabelStyle -> Directive[Bold, 14], ImageSize -> Large]
Export["f1g1.png", plot3]

B.5 rules.txt

Note that in this file ’s’ represents sn(p, k) and ’ts’ represents sn(τ, k). Same convetion applies
to functions cn, dn etc.

ctosrules := {c^2 -> 1 - s^2, c^3 -> c (1 - s^2), c^4 -> (1 - s^2)^2, c^5 -> c (1 - s^2)^2,
c^6 -> (1 - s^2)^3, c^7 -> c (1 - s^2)^3, c^8 -> (1 - s^2)^4, c^9 -> c (1 - s^2)^4, c^10 ->
(1 - s^2)^5, c^11 -> c (1 - s^2)^5, c^12 -> (1 - s^2)^6, c^13 -> c (1 - s^2)^6, c^14 -> (1
- s^2)^7, c^15 -> c (1 - s^2)^7, c^16 -> (1 - s^2)^8, c^17 -> c (1 - s^2)^8, c^18 -> (1 -
s^2)^9, c^19 -> c (1 - s^2)^9, c^20 -> (1 - s^2)^10, c^21 -> c (1 - s^2)^10, c^22 -> (1 -
s^2)^11, c^23 -> c (1 - s^2)^11, c^24 -> (1 - s^2)^12, c^25 -> c (1 - s^2)^12, c^26 -> (1 -
s^2)^13, c^27 -> c (1 - s^2)^13, c^28 -> (1 - s^2)^14, c^29 -> c (1 - s^2)^14, c^30 -> (1
- s^2)^15}

stocrules := {s^2 -> 1 - c^2, s^3 -> s (1 - c^2), s^4 -> (1 - c^2)^2, s^5 -> s (1 - c^2)^2,
s^6 -> (1 - c^2)^3, s^7 -> s (1 - c^2)^3, s^8 -> (1 - c^2)^4, s^9 -> s (1 - c^2)^4, s^10 ->
(1 - c^2)^5, s^11 -> s (1 - c^2)^5, s^12 -> (1 - c^2)^6, s^13 -> s (1 - c^2)^6, s^14 -> (1
- c^2)^7, s^15 -> s (1 - c^2)^7, s^16 -> (1 - c^2)^8, s^17 -> s (1 - c^2)^8, s^18 -> (1 -
c^2)^9, s^19 -> s (1 - c^2)^9, s^20 -> (1 - c^2)^10, s^21 -> s (1 - c^2)^10, s^22 -> (1 -
c^2)^11, s^23 -> s (1 - c^2)^11, s^24 -> (1 - c^2)^12, s^25 -> s (1 - c^2)^12, s^26 -> (1 -
c^2)^13, s^27 -> s (1 - c^2)^13, s^28 -> (1 - c^2)^14, s^29 -> s (1 - c^2)^14, s^30 -> (1 -
c^2)^15}

stodrules := {s^2 -> (1 - d^2)/k^2, s^3 -> s (1 - d^2)/k^2, s^4 -> ((1 - d^2)/k^2)^2,
s^5 -> s ((1 - d^2)/k^2)^2, s^6 -> ((1 - d^2)/k^2)^3, s^7 -> s ((1 - d^2)/k^2)^3, s^8
-> ((1 - d^2)/k^2)^4, s^9 -> s ((1 - d^2)/k^2)^4, s^10 -> ((1 - d^2)/k^2)^5, s^11 -> s
((1 - d^2)/k^2)^5, s^12 -> ((1 - d^2)/k^2)^6, s^13 -> s ((1 - d^2)/k^2)^6, s^14 -> ((1
- d^2)/k^2)^7, s^15 -> s ((1 - d^2)/k^2)^7, s^16 -> ((1 - d^2)/k^2)^8, s^17 -> s ((1
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- d^2)/k^2)^8, s^18 -> ((1 - d^2)/k^2)^9, s^19 -> s ((1 - d^2)/k^2)^9, s^20 -> ((1 -
d^2)/k^2)^10, s^21 -> s ((1 - d^2)/k^2)^10, s^22 -> ((1 - d^2)/k^2)^11, s^23 -> s ((1
- d^2)/k^2)^11, s^24 -> ((1 - d^2)/k^2)^12, s^25 -> s ((1 - d^2)/k^2)^12, s^26 -> ((1 -
d^2)/k^2)^13, s^27 -> s ((1 - d^2)/k^2)^13, s^28 -> ((1 - d^2)/k^2)^14, s^29 -> s ((1 -
d^2)/k^2)^14, s^30 -> ((1 - d^2)/k^2)^15, 1-k^2 s^4-> (c^2+d^2 s^2)}

dtosrules := {d^2 -> 1 - k^2 s^2, d^3 -> d (1 - k^2 s^2), d^4 -> (1 - k^2 s^2)^2, d^5 -> d
(1 - k^2 s^2)^2, d^6 -> (1 - k^2 s^2)^3, d^7 -> d (1 - k^2 s^2)^3, d^8 -> (1 - k^2 s^2)^4,
d^9 -> d (1 - k^2 s^2)^4, d^10 -> (1 - k^2 s^2)^5, d^11 -> d (1 - k^2 s^2)^5, d^12 ->
(1 - k^2 s^2)^6, d^13 -> d (1 - k^2 s^2)^6, d^14 -> (1 - k^2 s^2)^7, d^15 -> d (1 - k^2
s^2)^7, d^16 -> (1 - k^2 s^2)^8, d^17 -> d (1 - k^2 s^2)^8, d^18 -> (1 - k^2 s^2)^9, d^19
-> d (1 - k^2 s^2)^9, d^20 -> (1 - k^2 s^2)^10, d^21 -> d (1 - k^2 s^2)^10, d^22 -> (1
- k^2 s^2)^11, d^23 -> d (1 - k^2 s^2)^11, d^24 -> (1 - k^2 s^2)^12, d^25 -> d (1 - k^2
s^2)^12, d^26 -> (1 - k^2 s^2)^13, d^27 -> d (1 - k^2 s^2)^13, d^28 -> (1 - k^2 s^2)^14,
d^29 -> d (1 - k^2 s^2)^14, d^30 -> (1 - k^2 s^2)^15}

ctosrules1 := {c^2 -> 1 - s^2, c^3 -> c (1 - s^2), c^4 -> (1 - s^2)^2, c^5 -> c (1 - s^2)^2,
c^6 -> (1 - s^2)^3, c^7 -> c (1 - s^2)^3, c^8 -> (1 - s^2)^4, c^9 -> c (1 - s^2)^4, c^10 ->
(1 - s^2)^5, c^11 -> c (1 - s^2)^5, c^12 -> (1 - s^2)^6, c^13 -> c (1 - s^2)^6, c^14 -> (1
- s^2)^7, c^15 -> c (1 - s^2)^7, c^16 -> (1 - s^2)^8, c^17 -> c (1 - s^2)^8, c^18 -> (1 -
s^2)^9, c^19 -> c (1 - s^2)^9, c^20 -> (1 - s^2)^10, c^21 -> c (1 - s^2)^10, c^22 -> (1 -
s^2)^11, c^23 -> c (1 - s^2)^11, c^24 -> (1 - s^2)^12, c^25 -> c (1 - s^2)^12, c^26 -> (1
- s^2)^13, c^27 -> c (1 - s^2)^13, c^28 -> (1 - s^2)^14, c^29 -> c (1 - s^2)^14, c^30 ->
(1 - s^2)^15, tc^2 -> 1 - ts^2, tc^3 -> tc (1 - ts^2), tc^4 -> (1 - ts^2)^2, tc^5 -> tc (1 -
ts^2)^2, tc^6 -> (1 - ts^2)^3, tc^7 -> tc (1 - ts^2)^3, tc^8 -> (1 - ts^2)^4, tc^9 -> tc (1 -
ts^2)^4, tc^10 -> (1 - ts^2)^5, tc^11 -> tc (1 - ts^2)^5, tc^12 -> (1 - ts^2)^6, tc^13 -> tc
(1 - ts^2)^6, tc^14 -> (1 - ts^2)^7, tc^15 -> tc (1 - ts^2)^7, tc^16 -> (1 - ts^2)^8, tc^17
-> tc (1 - ts^2)^8, tc^18 -> (1 - ts^2)^9, tc^19 -> tc (1 - ts^2)^9, tc^20 -> (1 - ts^2)^10,
tc^21 -> tc (1 - ts^2)^10, tc^22 -> (1 - ts^2)^11, tc^23 -> tc (1 - ts^2)^11, tc^24 -> (1
- ts^2)^12, tc^25 -> tc (1 - ts^2)^12, tc^26 -> (1 - ts^2)^13, tc^27 -> tc (1 - ts^2)^13,
tc^28 -> (1 - ts^2)^14, tc^29 -> tc (1 - ts^2)^14, tc^30 -> (1 - ts^2)^15}

stocrules1 := {s^2 -> 1 - c^2, s^3 -> s (1 - c^2), s^4 -> (1 - c^2)^2, s^5 -> s (1 - c^2)^2,
s^6 -> (1 - c^2)^3, s^7 -> s (1 - c^2)^3, s^8 -> (1 - c^2)^4, s^9 -> s (1 - c^2)^4, s^10 ->
(1 - c^2)^5, s^11 -> s (1 - c^2)^5, s^12 -> (1 - c^2)^6, s^13 -> s (1 - c^2)^6, s^14 -> (1
- c^2)^7, s^15 -> s (1 - c^2)^7, s^16 -> (1 - c^2)^8, s^17 -> s (1 - c^2)^8, s^18 -> (1 -
c^2)^9, s^19 -> s (1 - c^2)^9, s^20 -> (1 - c^2)^10, s^21 -> s (1 - c^2)^10, s^22 -> (1 -
c^2)^11, s^23 -> s (1 - c^2)^11, s^24 -> (1 - c^2)^12, s^25 -> s (1 - c^2)^12, s^26 -> (1
- c^2)^13, s^27 -> s (1 - c^2)^13, s^28 -> (1 - c^2)^14, s^29 -> s (1 - c^2)^14, s^30 ->
(1 - c^2)^15, ts^2 -> 1 - tc^2, ts^3 -> ts (1 - tc^2), ts^4 -> (1 - tc^2)^2, ts^5 -> ts (1 -
tc^2)^2, ts^6 -> (1 - tc^2)^3, ts^7 -> ts (1 - tc^2)^3, ts^8 -> (1 - tc^2)^4, ts^9 -> ts (1 -
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tc^2)^4, ts^10 -> (1 - tc^2)^5, ts^11 -> ts (1 - tc^2)^5, ts^12 -> (1 - tc^2)^6, ts^13 -> ts
(1 - tc^2)^6, ts^14 -> (1 - tc^2)^7, ts^15 -> ts (1 - tc^2)^7, ts^16 -> (1 - tc^2)^8, ts^17
-> ts (1 - tc^2)^8, ts^18 -> (1 - tc^2)^9, ts^19 -> ts (1 - tc^2)^9, ts^20 -> (1 - tc^2)^10,
ts^21 -> ts (1 - tc^2)^10, ts^22 -> (1 - tc^2)^11, ts^23 -> ts (1 - tc^2)^11, ts^24 -> (1
- tc^2)^12, ts^25 -> ts (1 - tc^2)^12, ts^26 -> (1 - tc^2)^13, ts^27 -> ts (1 - tc^2)^13,
ts^28 -> (1 - tc^2)^14, ts^29 -> ts (1 - tc^2)^14, ts^30 -> (1 - tc^2)^15}

stodrules1 := {s^2 -> (1 - d^2)/k^2, s^3 -> s (1 - d^2)/k^2, s^4 -> ((1 - d^2)/k^2)^2,
s^5 -> s ((1 - d^2)/k^2)^2, s^6 -> ((1 - d^2)/k^2)^3, s^7 -> s ((1 - d^2)/k^2)^3, s^8
-> ((1 - d^2)/k^2)^4, s^9 -> s ((1 - d^2)/k^2)^4, s^10 -> ((1 - d^2)/k^2)^5, s^11 ->
s ((1 - d^2)/k^2)^5, s^12 -> ((1 - d^2)/k^2)^6, s^13 -> s ((1 - d^2)/k^2)^6, s^14 ->
((1 - d^2)/k^2)^7, s^15 -> s ((1 - d^2)/k^2)^7, s^16 -> ((1 - d^2)/k^2)^8, s^17 -> s
((1 - d^2)/k^2)^8, s^18 -> ((1 - d^2)/k^2)^9, s^19 -> s ((1 - d^2)/k^2)^9, s^20 -> ((1
- d^2)/k^2)^10, s^21 -> s ((1 - d^2)/k^2)^10, s^22 -> ((1 - d^2)/k^2)^11, s^23 -> s
((1 - d^2)/k^2)^11, s^24 -> ((1 - d^2)/k^2)^12, s^25 -> s ((1 - d^2)/k^2)^12, s^26 ->
((1 - d^2)/k^2)^13, s^27 -> s ((1 - d^2)/k^2)^13, s^28 -> ((1 - d^2)/k^2)^14, s^29 ->
s ((1 - d^2)/k^2)^14, s^30 -> ((1 - d^2)/k^2)^15, ts^2 -> (1 - td^2)/k^2, ts^3 -> ts
(1 - td^2)/k^2, ts^4 -> ((1 - td^2)/k^2)^2, ts^5 -> ts ((1 - td^2)/k^2)^2, ts^6 -> ((1 -
td^2)/k^2)^3, ts^7 -> ts ((1 - td^2)/k^2)^3, ts^8 -> ((1 - td^2)/k^2)^4, ts^9 -> ts ((1 -
td^2)/k^2)^4, ts^10 -> ((1 - td^2)/k^2)^5, ts^11 -> ts ((1 - td^2)/k^2)^5, ts^12 -> ((1 -
td^2)/k^2)^6, ts^13 -> ts ((1 - td^2)/k^2)^6, ts^14 -> ((1 - td^2)/k^2)^7, ts^15 -> ts ((1
- td^2)/k^2)^7, ts^16 -> ((1 - td^2)/k^2)^8, ts^17 -> ts ((1 - td^2)/k^2)^8, ts^18 -> ((1 -
td^2)/k^2)^9, ts^19 -> ts ((1 - td^2)/k^2)^9, ts^20 -> ((1 - td^2)/k^2)^10, ts^21 -> ts ((1
- td^2)/k^2)^10, ts^22 -> ((1 - td^2)/k^2)^11, ts^23 -> ts ((1 - td^2)/k^2)^11, ts^24 ->
((1 - td^2)/k^2)^12, ts^25 -> ts ((1 - td^2)/k^2)^12, ts^26 -> ((1 - td^2)/k^2)^13, ts^27
-> ts ((1 - td^2)/k^2)^13, ts^28 -> ((1 - td^2)/k^2)^14, ts^29 -> ts ((1 - td^2)/k^2)^14,
ts^30 -> ((1 - td^2)/k^2)^15}

dtosrules1 := {d^2 -> 1 - k^2 s^2, d^3 -> d (1 - k^2 s^2), d^4 -> (1 - k^2 s^2)^2, d^5
-> d (1 - k^2 s^2)^2, d^6 -> (1 - k^2 s^2)^3, d^7 -> d (1 - k^2 s^2)^3, d^8 -> (1 - k^2
s^2)^4, d^9 -> d (1 - k^2 s^2)^4, d^10 -> (1 - k^2 s^2)^5, d^11 -> d (1 - k^2 s^2)^5,
d^12 -> (1 - k^2 s^2)^6, d^13 -> d (1 - k^2 s^2)^6, d^14 -> (1 - k^2 s^2)^7, d^15 -> d
(1 - k^2 s^2)^7, d^16 -> (1 - k^2 s^2)^8, d^17 -> d (1 - k^2 s^2)^8, d^18 -> (1 - k^2
s^2)^9, d^19 -> d (1 - k^2 s^2)^9, d^20 -> (1 - k^2 s^2)^10, d^21 -> d (1 - k^2 s^2)^10,
d^22 -> (1 - k^2 s^2)^11, d^23 -> d (1 - k^2 s^2)^11, d^24 -> (1 - k^2 s^2)^12, d^25
-> d (1 - k^2 s^2)^12, d^26 -> (1 - k^2 s^2)^13, d^27 -> d (1 - k^2 s^2)^13, d^28 ->
(1 - k^2 s^2)^14, d^29 -> d (1 - k^2 s^2)^14, d^30 -> (1 - k^2 s^2)^15, td^2 -> 1 - k^2
ts^2, td^3 -> td (1 - k^2 ts^2), td^4 -> (1 - k^2 ts^2)^2, td^5 -> td (1 - k^2 ts^2)^2,
td^6 -> (1 - k^2 ts^2)^3, td^7 -> td (1 - k^2 ts^2)^3, td^8 -> (1 - k^2 ts^2)^4, td^9 ->
td (1 - k^2 ts^2)^4, td^10 -> (1 - k^2 ts^2)^5, td^11 -> td (1 - k^2 ts^2)^5, td^12 -> (1
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- k^2 ts^2)^6, td^13 -> td (1 - k^2 ts^2)^6, td^14 -> (1 - k^2 ts^2)^7, td^15 -> td (1 -
k^2 ts^2)^7, td^16 -> (1 - k^2 ts^2)^8, td^17 -> td (1 - k^2 ts^2)^8, td^18 -> (1 - k^2
ts^2)^9, td^19 -> td (1 - k^2 ts^2)^9, td^20 -> (1 - k^2 ts^2)^10, td^21 -> td (1 - k^2
ts^2)^10, td^22 -> (1 - k^2 ts^2)^11, td^23 -> td (1 - k^2 ts^2)^11, td^24 -> (1 - k^2
ts^2)^12, td^25 -> td (1 - k^2 ts^2)^12, td^26 -> (1 - k^2 ts^2)^13, td^27 -> td (1 - k^2
ts^2)^13, td^28 -> (1 - k^2 ts^2)^14, td^29 -> td (1 - k^2 ts^2)^14, td^30 -> (1 - k^2
ts^2)^15}

tocsdErule1 := {cn[p, k] -> c, sn[p, k] -> s, dn[p, k] -> d, EE[p, k] -> E1, K[k] -> K, cn[tau,
k] -> tc, sn[tau, k] -> ts, dn[tau, k] -> td, EE[tau, k] -> tE1} fromcsdErule1 := {c -> cn[p,
k], s -> sn[p, k], d -> dn[p, k], K -> K[k], E1 -> EE[p, k], E2 -> EEE[k], tc -> cn[tau, k],
ts -> sn[tau, k], td -> dn[tau, k], tE1 -> EE[tau, k]}



Appendix C

Mathematica Code for Calculation with
the Jacobian of Exponential Mapping
λ ∈ C1

From our discussion of the conjugate loci in chapter 8 it is clear that the conjugate loci
exist at the roots of Jacobian J of the exponential mapping. Following Mathematica code
calculates and simplifies the expression of Jacobian in terms of variables p and τ . General
discussion and scheme of simplification is same as discussed in Appendix B. Here again we
are interesting in finding the first root of Jacobian J in terms of time which will give the first
Maxwell time tMAX

1 .
The code is divided into five sections. In Section C.1 we give the setup code including the

definition of addition formulas for elliptic functions. We also give formulas for the extremal
trajectories (xt, yt, zt). In section 2 we calculate and simplify the expression of Jacobian.
In section 3 we validate the results of simplification by three methods. First we plot the
original expression of Jacobian for some value of k, τ and p and compare the results. Then
we take the difference of original expression of Jacobian and final simplified expression. After
applying same set of transformations, the result is 0 as expected. Finally we also plot the
error between original and simplified expression of Jacobian. It turns out that the expressions
agree upto the numerical error. In section 4 we give code for obtaining Taylor expansion
of the Jacobian. In section 5 we calculate the roots of Jacobian numerically and plot them
along side the upper and lower bounds of the first conjugate time. The plots show that the
first conjugate time for k ∈ (0, 1) lie within the bounds that were proved analytically in
chapter 8. We have also included the output of validation process for the interested reader.
The pseduo code for this corresponding Mathematica code is given as:

1. Initialize notebook directory

2. Define the addition / subtraction formulas for Jacobi elliptic functions

147
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3. Define transformation rules / identities for Jacobi elliptic functions

4. Define parametric equations of extremal trajectories

5. Compute the expression for Jacobian J

6. Simplify the Jacobian expression using builtin Mathematica functions and transforma-
tion rules

7. Obtain the roots of J = 0 from simplified expression

8. Plot the original and simplified function for comparison

C.1 Setup

(*Elliptic Functions*)
amm[phi_, k_] := JacobiAmplitude[phi, k^2]
EE[phi_, k_] := EllipticE[amm[phi, k], k^2]
K[k_] := EllipticK[k^2]
EEE[k_] := EllipticE[k^2]
sn[p_, k_] := JacobiSN[p, k^2]
cn[p_, k_] := JacobiCN[p, k^2]
dn[p_, k_] := JacobiDN[p, k^2]
(*Addition formulas*) (*We first unprotect a function to modify its definition. In the end \
we again protect*)
Unprotect[JacobiDN]
(*dn(p+tau)*)
JacobiDN[p + tau, k^2] := (JacobiDN[p, k^2]*JacobiDN[tau, k^2] - k^2*JacobiSN[p, k^2]*JacobiCN[p,
k^2]*JacobiSN[tau, k^2]* JacobiCN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*dn(-p+tau)*)
JacobiDN[-p + tau, k^2] := (JacobiDN[p, k^2]*JacobiDN[tau, k^2] + k^2*JacobiSN[p,
k^2]*JacobiCN[p, k^2]*JacobiSN[tau, k^2]* JacobiCN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiDN]

Unprotect[EllipticE]
(*E(p+tau)*)
EllipticE[JacobiAmplitude[p + tau, k^2], k^2] := EllipticE[JacobiAmplitude[p, k^2], k^2] +
EllipticE[JacobiAmplitude[tau, k^2], k^2] - k^2*JacobiSN[p, k^2]*JacobiSN[tau, k^2]*JacobiSN[p
+ tau, k^2]
(*E(-p+tau)*)
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EllipticE[JacobiAmplitude[-p + tau, k^2], k^2] := -EllipticE[JacobiAmplitude[p, k^2], k^2]
+ EllipticE[JacobiAmplitude[tau, k^2], k^2] + k^2*JacobiSN[p, k^2]*JacobiSN[tau, k^2]*JacobiSN[-
p + tau, k^2]
Protect[EllipticE]

Unprotect[JacobiSN]
(*sn(p+tau)*)
JacobiSN[p + tau, k^2] := (JacobiSN[p, k^2]*JacobiCN[tau, k^2]*JacobiDN[tau, k^2] + Ja-
cobiCN[p, k^2]*JacobiDN[p, k^2]*JacobiSN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*sn(-p+tau)*)
JacobiSN[-p + tau, k^2] := (-JacobiSN[p, k^2]*JacobiCN[tau, k^2]*JacobiDN[tau, k^2] +
JacobiCN[p, k^2]*JacobiDN[p, k^2]*JacobiSN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiSN]

Unprotect[JacobiCN]
(*cn(p+tau)*)
JacobiCN[p + tau, k^2] := (JacobiCN[p, k^2]*JacobiCN[tau, k^2] - JacobiSN[p, k^2]*JacobiDN[p,
k^2]*JacobiSN[tau, k^2]* JacobiDN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*cn(-p+tau)*)
JacobiCN[-p + tau, k^2] := (JacobiCN[p, k^2]*JacobiCN[tau, k^2] + JacobiSN[p, k^2]*JacobiDN[p,
k^2]*JacobiSN[tau, k^2]* JacobiDN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiCN]

(*Definitions of (x, y, z) coordinates of Extremal Trajectories Function*)
phit[phhi0_, t_] := t + phhi0;
w[phhi0_, k_] := 1/(dn[phhi0, k] - k cn[phhi0, k]);
x11[phhi0_, k_] := w[phhi0, k] + 1/(w[phhi0, k] (1 - k^2));
x12[phhi0_, k_] := k/(w[phhi0, k] (1 - k^2)) - k w[phhi0, k];
y11[phhi0_, k_] := w[phhi0, k] - 1/(w[phhi0, k] (1 - k^2));
y12[phhi0_, k_] := k w[phhi0, k] + k/(w[phhi0, k] (1 - k^2));
x[t_, phhi0_, k_] := 1/2 (x11[phhi0, k] (EE[phit[phhi0, t], k] - EE[phhi0, k]) + x12[phhi0,
k] (sn[phit[phhi0, t], k] - sn[phhi0, k]));
y[t_, phhi0_, k_] := 1/2 (y11[phhi0, k] (EE[phit[phhi0, t], k] - EE[phhi0, k]) - y12[phhi0,
k] (sn[phit[phhi0, t], k] - sn[phhi0, k]));
z[t_, phhi0_, k_] := Log[w[phhi0, k] (dn[phit[phhi0, t], k] - k cn[phit[phhi0, t], k])];
ze[t_, phhi0_, k_] := Exp[z[t, phhi0, k]];
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C.2 Jacobian and Simplification

(* We calculate the Jacobian using exp(z) instead of z b/c z is an \ expression involving
natural log and since we are looking for roots \ of the Jacobian and not the Jacobian itself
we should be doing fine. *)
det = Det[ D[{x[t, phhi0, k], y[t, phhi0, k], ze[t, phhi0, k]}, {{t, phhi0, k}}]]; (*Calcu-
lation of Jacobian*)

% /. {JacobiSC[phhi0, k^2] -> JacobiSN[phhi0, k^2]/JacobiCN[phhi0, k^2]} /. {JacobiSC[
phhi0 + t, k^2] -> JacobiSN[phhi0 + t, k^2]/JacobiCN[phhi0 + t, k^2]} /. {JacobiCD[
phhi0, k^2] -> JacobiCN[phhi0, k^2]/JacobiDN[phhi0, k^2]} /. {JacobiCD[ phhi0 + t, k^2]
-> JacobiCN[phhi0 + t, k^2]/JacobiDN[phhi0 + t, k^2]};
% /. {phhi0 -> tau - p} /. {t -> 2 p}; (*Introduce change of coordinates*)
% /. {EllipticF[JacobiAmplitude[p - tau, k^2], k^2] -> p - tau} /. {EllipticF[JacobiAmplitude[p
+ tau, k^2], k^2] -> p + tau};
% /. tocsdErule1;
Together[%];
d1 = Denominator[%];
x1 = Numerator[%%];
Factor[x1];
Together[%] /. dtosrules1 /. ctosrules1;
x2 = Simplify[%]; (*First stage of simplification*)

(*Following expression appears numerous times. It is simplified manually and replaced in
the expression of Jacobian. The manual simplification is appended after the code.*)
x3 = x2 /. {Sqrt[ 1 - (k^2*(s*tc*td - c*d*ts)^2)/(-1 + k^2*s^2*ts^2)^2] -> -(d td + c k^2 s
tc ts)/(-1 + k^2 s^2 ts^2)} /. {Sqrt[ 1 - (k^2*(s*tc*td + c*d*ts)^2)/(-1 + k^2*s^2*ts^2)^2]
-> -(d td - c k^2 s tc ts)/(-1 + k^2 s^2 ts^2)};
Together[x3] /. dtosrules1 /. ctosrules1;
x4 = FullSimplify[%];
(* Following expression is obtained by manual simplification which is documented separately.
The actual expression is x4=(-4 k (-1+k^2 s^2 ts^2)^5 )(2 d E1 k s tc-d k p s tc+d k^3 p
s \ tc-c k s^2 tc+c E1^2 k s^2 tc-c k^3 s^2 tc-c E1 k p s^2 tc+c E1 k^3 p \ s^2 tc-2 d E1
k s^3 tc+d k p s^3 tc-d k^3 p s^3 tc+c k^3 s^4 tc-2 c \ E1 s td+c p s td-c k^2 p s td+d
s^2 td-d E1^2 s^2 td+d k^2 s^2 td+d \ E1 p s^2 td-d E1 k^2 p s^2 td+2 c E1 k^2 s^3
td-c k^2 p s^3 td+c k^4 \ p s^3 td-d k^2 s^4 td-c E1^2 k tc ts^2+c E1 k p tc ts^2-c E1
k^3 p tc \ ts^2+c k^3 s^2 tc ts^2+d E1^2 td ts^2-d E1 p td ts^2+d E1 k^2 p td \ ts^2-d
k^2 s^2 td ts^2) *)

x5 = (c k tc - d td)*(s c d*(2 E1 - p + k^2 p) - d^2 s^2 - k^2 s^2 tc ^2 + E1*(s^2 -
ts^2)*(E1 - p + k^2 p))*(-4 k (-1 + k^2 s^2 ts^2)^5 ); (*Final simplified expression of
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Figure C.1: Original Jacobian for k = 0.9, τ = 0 and 0 ≤ p ≤ 2K[k]

Figure C.2: Original Jacobian for k = 0.9, τ = K[k] and 0 ≤ p ≤ 2K[k]

Jacobian*)

C.3 Validation of Simplified Expression of Jacobian

Jnew1 = (x2/d1) /. fromcsdErule1 // Simplify; (*Plot of original expression of the Jaco-
bian*)
k0 := 0.9;
(Jnew1 /. {k -> k0, tau -> 0});
plot11new = Plot[{%}, {p, 0, 2 K[k0]}]
(Jnew1 /. {k -> k0, tau -> K[k0]});
plot12new = Plot[{%}, {p, 0, 2 K[k0]}]

Jnew5 = (x5/d1) /. fromcsdErule1 // Simplify; (*Plot of simplified expression of the Jaco-
bian*)
k0 := 0.9;
(Jnew5 /. {k -> k0, tau -> 0});
plot51new = Plot[{%}, {p, 0, 2 K[k0]}]
(Jnew5 /. {k -> k0, tau -> K[k0]});
plot52new = Plot[{%}, {p, 0, 2 K[k0]}]
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Figure C.3: Simplified Jacobian for k = 0.9, τ = 0 and 0 ≤ p ≤ 2K[k]

Figure C.4: Simplified Jacobian for k = 0.9, τ = K[k] and 0 ≤ p ≤ 2K[k]

(* Validation of simplification by taking difference of original expression of Jacobian and
simplified expression of Jacobian
Jnew5-Det[D[{x[t, phhi0, k], y[t, phhi0, k], ze[t, phhi0, k]}, {{t, phhi0, k}}]]*)
Jnew5 - det;
% /. {JacobiSC[phhi0, k^2] -> JacobiSN[phhi0, k^2]/JacobiCN[phhi0, k^2]} /. {JacobiSC[
phhi0 + t, k^2] -> JacobiSN[phhi0 + t, k^2]/JacobiCN[phhi0 + t, k^2]} /. {JacobiCD[
phhi0, k^2] -> JacobiCN[phhi0, k^2]/JacobiDN[phhi0, k^2]} /. {JacobiCD[ phhi0 + t, k^2]
-> JacobiCN[phhi0 + t, k^2]/JacobiDN[phhi0 + t, k^2]};
% /. {phhi0 -> tau - p} /. {t -> 2 p};
% /. {EllipticF[JacobiAmplitude[p - tau, k^2], k^2] -> p - tau} /. {EllipticF[JacobiAmplitude[p
+ tau, k^2], k^2] -> p + tau};
% /. tocsdErule1;
Together[%];
d1s = Denominator[%];
x1s = Numerator[%%];
Factor[x1s];
Together[%] /. dtosrules1 /. ctosrules1;
x2s = Simplify[%];
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Figure C.5: Difference between Original and Simplified Jacobian for k = 0.9, τ = 0 and
0 ≤ p ≤ 2K[k]

Figure C.6: Difference between Original and Simplified Jacobian for k = 0.9, τ = K(k) and
0 ≤ p ≤ 2K(k)

x3s = x2s /. {Sqrt[ 1 - (k^2*(s*tc*td - c*d*ts)^2)/(-1 + k^2*s^2*ts^2)^2] -> -(d td + c k^2 s
tc ts)/(-1 + k^2 s^2 ts^2)} /. {Sqrt[ 1 - (k^2*(s*tc*td + c*d*ts)^2)/(-1 + k^2*s^2*ts^2)^2]
-> -(d td - c k^2 s tc ts)/(-1 + k^2 s^2 ts^2)};
Together[x3s] /. dtosrules1 /. ctosrules1;
x4s = FullSimplify[%] (*The result of last command is 0*)

(*Validation by error analysis*)
Jnew6 = ((x5 - x1)/d1) /. fromcsdErule1 // Simplify;
k0 := 0.9;
(Jnew6 /. {k -> k0, tau -> 0});
plot61new = Plot[{%}, {p, 0, 2 K[k0]}, PlotRange -> All]
(Jnew6 /. {k -> k0, tau -> K[k0]});
plot62new = Plot[{%}, {p, 0, 2 K[k0]}, PlotRange -> All]
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C.4 Taylor Expansion of Jacobian for SH(2)

(*(k^2+p^2)->0*)
x5 = (c k tc - d td)*(s c d*(2 E1 - p + k^2 p) - d^2 s^2 - k^2 s^2 tc ^2 + E1*(s^2 -
ts^2)*(E1 - p + k^2 p))*(-4 k (-1 + k^2 s^2 ts^2)^5 );
d1 = (-1 + k^2)^2 (c k tc - d td) (-1 + k s ts)^7 (1 + k s ts)^5;
v3 = (x5/(d1)) /. fromcsdErule1 // Simplify;
Series[v3, {p, 0, 4}] // FullSimplify
Series[v3, {k, 0, 1}] // FullSimplify
Series[v3, {k, 0, 1}, {p, 0, 4}] // Normal

(*k->0*)
Series[v3, {k, 0, 1}];
% /. tocsdErule1;
Normal[%];
FullSimplify[%]

C.5 Numerical Calculation of Roots of Jacobian

ki = Range[0.01, 0.99, 0.05];
pi = 0*ki;
ub = 0*ki;
f1[p_, k_] := EE[p, k]*cn[p, k] - sn[p, k]*dn[p, k];
nm1 = Numerator[v3];
For[i = 1, i <= Length[ki], i++, k0 = ki[[i]];
nm2 = nm1 /. tau -> K[k0] /. k -> k0;
fi = f1[p, k] /. k -> k0;
pi[[i]] = p /. FindRoot[nm2 == 0, {p, 4 K[k0]}];
ub[[i]] = p /. FindRoot[fi == 0, {p, 4.5 K[k0]}]; ]
Partition[Riffle[ki, pi], 2]
plot1 = ListPlot[%, PlotRange -> {0, 10}];
Partition[Riffle[ki, ub], 2]
plot11 = ListPlot[%, PlotRange -> {0, 10}, PlotStyle -> RGBColor[1, 0, 0]];
lb = 4 K[ki]; Partition[Riffle[ki, lb], 2]
plot111 = ListPlot[%, PlotRange -> {0, 10}, PlotStyle -> RGBColor[0, 1, 0]];
Show[plot1, plot11, plot111, PlotRange -> {0, 10}, BaselinePosition -> Bottom]



Appendix D

Mathematica Code for Plotting
3-Dimensional Sub-Riemannian Objects

In chapter 8 we presented the plots of sub-Riemannian sphere, sub-Riemannian wavefront
and Matryoshka of sub-Riemannian wavefront. In the following we present the Mathematica
code along with the transformation that was used to produce the plots.

From our discussion of the conjugate loci in chapter 8 it is clear that the conjugate loci
exist at the roots of Jacobian J of the exponential mapping. Following Mathematica code
calculates and simplifies the expression of Jacobian in terms of variables p and τ . General
discussion and scheme of simplification is same as discussed in Appendix B. Here again we
are interesting in finding the first root of Jacobian J in terms of time which will give the first
Maxwell time tMAX

1 .
The code is divided into five sections. In Section D.1 we give the setup code including the

definition of addition formulas for elliptic functions. We also give formulas for the extremal
trajectories (xt, yt, zt). In section 2 we calculate and simplify the expression of Jacobian.
In section 3 we validate the results of simplification by three methods. First we plot the
original expression of Jacobian for some value of k, τ and p and compare the results. Then
we take the difference of original expression of Jacobian and final simplified expression. After
applying same set of transformations, the result is 0 as expected. Finally we also plot the
error between original and simplified expression of Jacobian. It turns out that the expressions
agree upto the numerical error. In section 4 we give code for obtaining Taylor expansion
of the Jacobian. In section 5 we calculate the roots of Jacobian numerically and plot them
along side the upper and lower bounds of the first conjugate time. The plots show that the
first conjugate time for k ∈ (0, 1) lie within the bounds that were proved analytically in
chapter 8. We have also included the output of validation process for the interested reader.
The pseduo code for this corresponding Mathematica code is given as:

1. Initialize notebook directory

2. Define the addition / subtraction formulas for Jacobi elliptic functions

155
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3. Define transformation rules / identities for Jacobi elliptic functions

4. Define parametric equations of extremal trajectories and the function (R1(q), R2(q), z)

5. Transform the equations in terms of trigonometric functions for speedy potting

6. Obtain 3D parametric plots of the functions in terms of rectifying coordinates

D.1 Plot of Part of the Wavefront for Time t = R

Corresponding to λ ∈ C1

Setup

(*Elliptic Functions*)
amm[phi_, k_] := JacobiAmplitude[phi, k^2]
EE[phi_, k_] := EllipticE[amm[phi, k], k^2]
K[k_] := EllipticK[k^2]
EEE[k_] := EllipticE[k^2]
sn[p_, k_] := JacobiSN[p, k^2]
cn[p_, k_] := JacobiCN[p, k^2]
dn[p_, k_] := JacobiDN[p, k^2]
(*Addition formulas*) (*We first unprotect a function to modify its definition. In the end \
we again protect*)
Unprotect[JacobiDN]
(*dn(p+tau)*)
JacobiDN[p + tau, k^2] := (JacobiDN[p, k^2]*JacobiDN[tau, k^2] - k^2*JacobiSN[p, k^2]*JacobiCN[p,
k^2]*JacobiSN[tau, k^2]* JacobiCN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*dn(-p+tau)*)
JacobiDN[-p + tau, k^2] := (JacobiDN[p, k^2]*JacobiDN[tau, k^2] + k^2*JacobiSN[p,
k^2]*JacobiCN[p, k^2]*JacobiSN[tau, k^2]* JacobiCN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiDN]

Unprotect[EllipticE]
(*E(p+tau)*)
EllipticE[JacobiAmplitude[p + tau, k^2], k^2] := EllipticE[JacobiAmplitude[p, k^2], k^2] +
EllipticE[JacobiAmplitude[tau, k^2], k^2] - k^2*JacobiSN[p, k^2]*JacobiSN[tau, k^2]*JacobiSN[p
+ tau, k^2]
(*E(-p+tau)*)
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EllipticE[JacobiAmplitude[-p + tau, k^2], k^2] := -EllipticE[JacobiAmplitude[p, k^2], k^2]
+ EllipticE[JacobiAmplitude[tau, k^2], k^2] + k^2*JacobiSN[p, k^2]*JacobiSN[tau, k^2]*JacobiSN[-
p + tau, k^2]
Protect[EllipticE]

Unprotect[JacobiSN]
(*sn(p+tau)*)
JacobiSN[p + tau, k^2] := (JacobiSN[p, k^2]*JacobiCN[tau, k^2]*JacobiDN[tau, k^2] + Ja-
cobiCN[p, k^2]*JacobiDN[p, k^2]*JacobiSN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*sn(-p+tau)*)
JacobiSN[-p + tau, k^2] := (-JacobiSN[p, k^2]*JacobiCN[tau, k^2]*JacobiDN[tau, k^2] +
JacobiCN[p, k^2]*JacobiDN[p, k^2]*JacobiSN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiSN]

Unprotect[JacobiCN]
(*cn(p+tau)*)
JacobiCN[p + tau, k^2] := (JacobiCN[p, k^2]*JacobiCN[tau, k^2] - JacobiSN[p, k^2]*JacobiDN[p,
k^2]*JacobiSN[tau, k^2]* JacobiDN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
(*cn(-p+tau)*)
JacobiCN[-p + tau, k^2] := (JacobiCN[p, k^2]*JacobiCN[tau, k^2] + JacobiSN[p, k^2]*JacobiDN[p,
k^2]*JacobiSN[tau, k^2]* JacobiDN[tau, k^2])/(1 - k^2*JacobiSN[p, k^2]^2*JacobiSN[tau,
k^2]^2)
Protect[JacobiCN]

(*Definitions of (x, y, z) coordinates of Extremal Trajectories Function*)
phit[phhi0_, t_] := t + phhi0;
w[phhi0_, k_] := 1/(dn[phhi0, k] - k cn[phhi0, k]);
x11[phhi0_, k_] := w[phhi0, k] + 1/(w[phhi0, k] (1 - k^2));
x12[phhi0_, k_] := k/(w[phhi0, k] (1 - k^2)) - k w[phhi0, k];
y11[phhi0_, k_] := w[phhi0, k] - 1/(w[phhi0, k] (1 - k^2));
y12[phhi0_, k_] := k w[phhi0, k] + k/(w[phhi0, k] (1 - k^2));
x[phhi0_, k_, t_] := 1/2 (x11[phhi0, k] (EE[phit[phhi0, t], k] - EE[phhi0, k]) + x12[phhi0,
k] (sn[phit[phhi0, t], k] - sn[phhi0, k]));
y[phhi0_, k_, t_] := 1/2 (y11[phhi0, k] (EE[phit[phhi0, t], k] - EE[phhi0, k]) - y12[phhi0,
k] (sn[phit[phhi0, t], k] - sn[phhi0, k]));
z[phhi0_, k_, t_] := Log[w[phhi0, k] (dn[phit[phhi0, t], k] - k cn[phit[phhi0, t], k])];

(* Computing x, y, z in coordinates u1, u2, k *)
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u1rules := {JacobiAmplitude[p, k^2] -> u1, JacobiSN[p, k^2] -> Sin[u1], JacobiCN[p, k^2]
-> Cos[u1], JacobiDN[p, k^2] -> Sqrt[1 - k^2 Sin[u1]^2]};
u2rules := {JacobiAmplitude[tau, k^2] -> u2, JacobiSN[tau, k^2] -> Sin[u2], JacobiCN[tau,
k^2] -> Cos[u2], JacobiDN[tau, k^2] -> Sqrt[1 - k^2 Sin[u2]^2]};

x[phhi0, k, t] /. {phhi0 + t -> tau + p} /. {phhi0 -> tau - p} /. u1rules /. u2rules;
Simplify[%];
(*Take the result of simplification and define a new function \ xu=result of last statement*)

y[phhi0, k, t] /. {phhi0 + t -> tau + p} /. {phhi0 -> tau - p} /. u1rules /. u2rules;
Simplify[%];
(*Take the result of simplification and define a new function \ yu=result of last statement*)

z[phhi0, k, t] /. {phhi0 + t -> tau + p} /. {phhi0 -> tau - p} /. u1rules /. u2rules;
Simplify[%];
(*Take the result of simplification and define a new function \ zu=result of last statement*)

(* Defining x, y, z in coordinates u1, u2, k from the expressions \ computed above *)

zu[u1_, u2_, k_] := Log[(1 + k Sin[u1] Sin[u2])/(1 - k Sin[u1] Sin[u2])]

yu[u1_, u2_, k_] := (k (-(-8 + 2 k^2 - 2 k^2 Cos[2 u1] + k^2 Cos[2 (u1 - u2)] - 2 k^2
Cos[2 u2] + k^2 Cos[2 (u1 + u2)]) EllipticE[u1, k^2] (k^3 - 2 Cos[u1] Sqrt[2 - k^2 + k^2
Cos[2 u1]] Cos[u2] Sqrt[ 2 - k^2 + k^2 Cos[2 u2]] + k Cos[u1]^2 (2 - k^2 + k^2 Cos[2
u2]) - 2 k Sin[u1]^2 + k^3 Sin[u1]^2 - k Cos[u2]^2 (-2 + k^2 + k^2 Sin[u1]^2) - 4 Sin[u1]
Sin[u2] + 4 k^2 Sin[u1] Sin[u2] - 2 k Sin[u2]^2 + k^3 Sin[u2]^2 + k^3 Sin[u1]^2 Sin[u2]^2)
+ 2 Sqrt[2] Sin[u1] (2 + 2 k Sin[u1] Sin[u2]) (-k^2 Cos[u1]^2 Cos[u2] Sqrt[ 2 - k^2 + k^2
Cos[2 u2]] (-2 + 3 k Sin[u1] Sin[u2]) + Cos[u2] Sqrt[ 2 - k^2 + k^2 Cos[2 u2]] (4 - 2 k^2
- 2 k^2 Sin[u1]^2 - k^3 Sin[u1] Sin[u2] + k^3 Sin[u1]^3 Sin[u2]) + k Cos[u1] Sqrt[ 2 - k^2
+ k^2 Cos[2 u1]] (1/ 2 k (8 - 7 k^2 + k^2 Cos[2 u2]) Sin[u1] Sin[u2] + Cos[u2]^2 (-4 + 3
k^3 Sin[u1] Sin[u2])))))/(16 (-1 + k^2) (-1 + k Sin[u1] Sin[u2]) (1 + k Sin[u1] Sin[u2])^2 (k
Cos[u1] Cos[u2] - Sqrt[1 - k^2 Sin[u1]^2] Sqrt[1 - k^2 Sin[u2]^2]))

xu[u1_, u2_, k_] := ((8 - 2 k^2 + 2 k^2 Cos[2 u1] - k^2 Cos[2 (u1 - u2)] + 2 k^2 Cos[2
u2] - k^2 Cos[2 (u1 + u2)]) EllipticE[u1, k^2] (-4 + 3 k^2 - 3 k^2 Cos[u1]^2 Cos[u2]^2 +
2 k Cos[u1] Sqrt[2 - k^2 + k^2 Cos[2 u1]] Cos[u2] Sqrt[ 2 - k^2 + k^2 Cos[2 u2]] + k^2
Cos[u2]^2 Sin[u1]^2 + 4 k (-1 + k^2) Sin[u1] Sin[u2] + k^2 Sin[u2]^2) + 2 Sqrt[2] k^2 Sin[
u1] (2 + 2 k Sin[u1] Sin[u2]) (1/2 Cos[u1] Sqrt[ 2 - k^2 + k^2 Cos[2 u1]] (8 - 4 k^2 - k
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Cos[u1 - 3 u2] - k Cos[u1 - u2] + 4 k^2 Cos[2 u2] + k Cos[u1 + u2] + k Cos[u1 + 3 u2])
+ k Cos[u1]^2 Cos[u2] Sqrt[ 2 - k^2 + k^2 Cos[2 u2]] (-2 + 3 k Sin[u1] Sin[u2]) - Cos[u2]
Sqrt[ 2 - k^2 + k^2 Cos[2 u2]] (2 k - 2 k Sin[u1]^2 + (-4 + 3 k^2) Sin[u1] Sin[u2] + k^2
Sin[u1]^3 Sin[u2])))/(16 (-1 + k^2) (-1 + k Sin[u1] Sin[u2]) (1 + k Sin[u1] Sin[u2])^2 (k
Cos[u1] Cos[u2] - Sqrt[1 - k^2 Sin[u1]^2] Sqrt[1 - k^2 Sin[u2]^2]))

(* Computing R1, R1 in coordinates u1, u2, k *)
R1u[u1_, u2_, k_] := yu[u1, u2, k] Cosh[zu[u1, u2, k]/2] - xu[u1, u2, k] Sinh[zu[u1, u2,
k]/2];

R2u[u1_, u2_, k_] := yu[u1, u2, k] Sinh[zu[u1, u2, k]/2] + xu[u1, u2, k] Cosh[zu[u1, u2,
k]/2];

u1pk[p_, k_] := JacobiAmplitude[p, k^2];

Plots for various R

R := 1;
(* s1 = 1 *)
plotr1s10 = ParametricPlot3D[{R1u[u1pk[R/2, k], u2, k], R2u[u1pk[R/2, k], u2, k], zu[u1pk[R/2,
k], u2, k]}, {k, 0, 1}, {u2, 0, 2 Pi}, Mesh -> 5, PlotRange -> Automatic, AxesLabel -> {R1,
R2, z}];
(* s1 = - 1 *)
plotr1s11 = ParametricPlot3D[{R1u[u1pk[R/2, k], u2, k], - R2u[u1pk[R/2, k], u2, k], -
zu[u1pk[R/2, k], u2, k]}, {k, 0, 1}, {u2, 0, 2 Pi}, Mesh -> 5, PlotRange -> Automatic,
AxesLabel -> {R1, R2, z}];

R := 2;
(* s1 = 1 *)
plotr2s10 = ParametricPlot3D[{R1u[u1pk[R/2, k], u2, k], R2u[u1pk[R/2, k], u2, k], zu[u1pk[R/2,
k], u2, k]}, {k, 0, 1}, {u2, 0, 2 Pi}, PlotRange -> Automatic, AxesLabel -> {R1, R2, z}];
(* s1 = - 1 *)
plotr2s11 = ParametricPlot3D[{R1u[u1pk[R/2, k], u2, k], - R2u[u1pk[R/2, k], u2, k], -
zu[u1pk[R/2, k], u2, k]}, {k, 0, 1}, {u2, 0, 2 Pi}, PlotRange -> Automatic, AxesLabel
-> {R1, R2, z}];

R := 3;
(* s1 = 1 *)
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plotr3s10 = ParametricPlot3D[{R1u[u1pk[R/2, k], u2, k], R2u[u1pk[R/2, k], u2, k], zu[u1pk[R/2,
k], u2, k]}, {k, 0, 1}, {u2, 0, 2 Pi}, PlotRange -> Automatic, AxesLabel -> {R1, R2, z}];
(* s1 = - 1 *)
plotr3s11 = ParametricPlot3D[{R1u[u1pk[R/2, k], u2, k], - R2u[u1pk[R/2, k], u2, k], -
zu[u1pk[R/2, k], u2, k]}, {k, 0, 1}, {u2, 0, 2 Pi}, PlotRange -> Automatic, AxesLabel
-> {R1, R2, z}];

D.2 Plot of Part of the Wavefront for Time t = R

Corresponding to λ ∈ C2

Setup

Clear[x, y, z, zu, yu, zu, R1u, R2u]
w[phhi0_, k_] := 1/(dn[phhi0, k] - k cn[phhi0, k]);
x11[phhi0_, k_] := -w[phhi0, k] + 1/(w[phhi0, k] (1 - k^2));
x12[phhi0_, k_] := k/(w[phhi0, k] (1 - k^2)) + k w[phhi0, k];
y11[phhi0_, k_] := w[phhi0, k] + 1/(w[phhi0, k] (1 - k^2));
y12[phhi0_, k_] := k w[phhi0, k] - k/(w[phhi0, k] (1 - k^2));
x[phhi0_, k_, t_] := 1/2 (x11[phhi0/k, k] (EE[phit[phhi0/k, t/k], k] - EE[phhi0/k, k] - (1 -
k^2) (phit[phhi0/k, t/k] - phhi0/k)) + x12[phhi0/k, k] (sn[phit[phhi0/k, t/k], k] - sn[phhi0/k,
k]));
y[phhi0_, k_, t_] := 1/2 (-y11[phhi0/k, k] (EE[phit[phhi0/k, t/k], k] - EE[phhi0/k, k] - (1 -
k^2) (phit[phhi0/k, t/k] - phhi0/k)) + y12[phhi0/k, k] (sn[phit[phhi0/k, t/k], k] - sn[phhi0/k,
k]));
z[phhi0_, k_, t_] := Log[w[phhi0/k, k] (dn[phit[phhi0/k, t/k], k] - k cn[phit[phhi0/k, t/k],
k])];

x[phhi0, k, t] /. {phhi0/k + t/k -> tau + p} /. {phhi0/k -> tau - p} /. u1rules /. u2rules;
Simplify[%];
y[phhi0, k, t] /. {phhi0/k + t /k -> tau + p} /. {phhi0 /k -> tau - p} /. u1rules /. u2rules;
Simplify[%];
z[phhi0, k, t] /. {phhi0 /k + t/k -> tau + p} /. {phhi0/k -> tau - p} /. u1rules /. u2rules;
Simplify[%];

zu[u1_, u2_, k_, t_] := Log[(1 + k Sin[u1] Sin[u2])/(1 - k Sin[u1] Sin[u2])]

yu[u1_, u2_, k_, t_] := ((-2 + k^2 - k^2 Cos[u1]^2 Cos[u2]^2 + k^2 Cos[u2]^2 Sin[u1]^2 +
2 k (-1 + k^2) Sin[u1] Sin[u2] + k^2 Sin[u2]^2 + 2 k Cos[u1] Cos[u2] Sqrt[1 - k^2 Sin[u1]^2]
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Sqrt[ 1 - k^2 Sin[u2]^2]) (t - k^2 t + k^2 (-1 + k^2) t Sin[u1]^2 Sin[u2]^2 + k^3 Sqrt[1 -
k^2 Sin[u1]^2] Sin[2 u1] Sin[u2]^2 + 2 k EllipticE[u1, k^2] (-1 + k^2 Sin[u1]^2 Sin[u2]^2))
- 2 k^3 Cos[u2] Sin[u1] Sqrt[ 1 - k^2 Sin[u2]^2] (-k (1 + Cos[u1]^2) Cos[u2]^2 + 2 Cos[u1]
Cos[u2] Sqrt[1 - k^2 Sin[u1]^2] Sqrt[ 1 - k^2 Sin[u2]^2] + Sin[u1] (-2 (-1 + k^2) Sin[u2] +
Sin[u1] (k + (k - 2 k^3) Sin[u2]^2))))/(2 k (-1 + k^2) (-1 + k Sin[u1] Sin[u2]) (1 + k Sin[u1]
Sin[u2])^2 (k Cos[u1] Cos[u2] - Sqrt[1 - k^2 Sin[u1]^2] Sqrt[1 - k^2 Sin[u2]^2]))

xu[u1_, u2_, k_, t_] := (2 k Cos[u2] Sin[u1] Sqrt[ 1 - k^2 Sin[u2]^2] (-2 + k^2 - k^2
Cos[u1]^2 Cos[u2]^2 + k^2 Cos[u2]^2 Sin[u1]^2 + 2 k (-1 + k^2) Sin[u1] Sin[u2] + k^2
Sin[u2]^2 + 2 k Cos[u1] Cos[u2] Sqrt[1 - k^2 Sin[u1]^2] Sqrt[ 1 - k^2 Sin[u2]^2]) + (t - k^2
t + k^2 (-1 + k^2) t Sin[u1]^2 Sin[u2]^2 + k^3 Sqrt[1 - k^2 Sin[u1]^2] Sin[2 u1] Sin[u2]^2
+ 2 k EllipticE[u1, k^2] (-1 + k^2 Sin[u1]^2 Sin[u2]^2)) (k (1 + Cos[u1]^2) Cos[ u2]^2 -
2 Cos[u1] Cos[u2] Sqrt[1 - k^2 Sin[u1]^2] Sqrt[ 1 - k^2 Sin[u2]^2] + Sin[u1] (2 (-1 + k^2)
Sin[u2] + k Sin[u1] (-1 + (-1 + 2 k^2) Sin[u2]^2))))/(2 (-1 + k^2) (-1 + k Sin[u1] Sin[u2]) (1
+ k Sin[u1] Sin[u2])^2 (k Cos[u1] Cos[u2] - Sqrt[1 - k^2 Sin[u1]^2] Sqrt[1 - k^2 Sin[u2]^2]))

(* Computing R1, R2 in coordinates u1, u2, k *)
R1u[u1_, u2_, k_, t_] := yu[u1, u2, k, t] Cosh[zu[u1, u2, k, t]/2] - xu[u1, u2, k, t] Sinh[zu[u1,
u2, k, t]/2];
R2u[u1_, u2_, k_, t_] := yu[u1, u2, k, t] Sinh[zu[u1, u2, k, t]/2] + xu[u1, u2, k, t]
Cosh[zu[u1, u2, k, t]/2];
u1pk[p_, k_] := JacobiAmplitude[p, k^2];

Plots

R := 1;
(* s2 = 1 *)
plotr1s20 = ParametricPlot3D[{R1u[u1pk[R/(2*k), k], u2, k, R], R2u[u1pk[R/(2*k), k], u2,
k, R], zu[u1pk[R/(2*k), k], u2, k, R]}, {k, 0, 1}, {u2, 0, 2 Pi}, AxesLabel -> {R1, R2, z}];
(* s2 = - 1 *)
plotr1s21 = ParametricPlot3D[{- R1u[u1pk[R/(2*k), k], u2, k, R], R2u[u1pk[R/(2*k), k], u2,
k, R], - zu[u1pk[R/(2*k), k], u2, k, R]}, {k, 0, 1}, {u2, 0, 2 Pi}, AxesLabel -> {R1, R2, z}];
R := 2;
(* s2 = 1 *)
plotr2s20 = ParametricPlot3D[{R1u[u1pk[R/(2*k), k], u2, k, R], R2u[u1pk[R/(2*k), k], u2,
k, R], zu[u1pk[R/(2*k), k], u2, k, R]}, {k, 0, 1}, {u2, 0, 2 Pi}, Mesh -> 5, AxesLabel ->
{R1, R2, z}];
(* s2 = - 1 *)
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plotr2s21 = ParametricPlot3D[{- R1u[u1pk[R/(2*k), k], u2, k, R], R2u[u1pk[R/(2*k), k], u2,
k, R], - zu[u1pk[R/(2*k), k], u2, k, R]}, {k, 0, 1}, {u2, 0, 2 Pi}, AxesLabel -> {R1, R2, z}];
R := 3;
(* s2 = 1 *)
plotr3s20 = ParametricPlot3D[{R1u[u1pk[R/(2*k), k], u2, k, R], R2u[u1pk[R/(2*k), k], u2,
k, R], zu[u1pk[R/(2*k), k], u2, k, R]}, {k, 0, 1}, {u2, 0, 2 Pi}, AxesLabel -> {R1, R2, z}];
(* s2 = - 1 *)
plotr3s21 = ParametricPlot3D[{- R1u[u1pk[R/(2*k), k], u2, k, R], R2u[u1pk[R/(2*k), k], u2,
k, R], - zu[u1pk[R/(2*k), k], u2, k, R]}, {k, 0, 1}, {u2, 0, 2 Pi}, AxesLabel -> {R1, R2, z}];

(*Plots of planes R1 = 0, R2 = 0 and z = 0 for Cutouts*)
plotz = ParametricPlot3D[{x,y,0},{x,-10,10},{y,-10,10},AxesLabel->{x,y,z}];
plotr1 = ParametricPlot3D[{0,y,x},{x,-10,10},{y,-10,10},Mesh->5,AxesLabel->{x,y,z}];
plotr2 = ParametricPlot3D[{x,0,y},{x,-10,10},{y,-10,10},Mesh->5,AxesLabel->{x,y,z}];

D.3 Complete Plot

(*Sub-Riemannian Wavefront*)
Show[plotr2s10, plotr2s11, plotr2s20, plotr2s21, PlotRange -> All, AspectRatio -> 1, Plot-
Label -> Text["Wavefront for R=2"]]
(*Cutout of sub-Riemannian Wavefront*)
(*This produces Figure 9.8*)
Show[plotr2s10,plotr2s11,plotr2s20,plotr2s21, plotz, plotr1,PlotRange->{All,{-0.5,5},All}, AspectRatio-
>2,PlotLabel->Text["Wavefront Cutout for R=2"]]
Show[plotr2s10,plotr2s11,plotr2s20,plotr2s21, plotz, plotr1,PlotRange->{All,{-0.5,0.5},All},
AspectRatio->2,PlotLabel->Text["Wavefront Cutout for R=2"]]
(*Matryoshka of sub-Riemannian Wavefront*)
Show[plotr1s10, plotr1s11, plotr1s20, plotr1s21, plotr2s10, \ plotr2s11, plotr2s20, plotr2s21,
plotr3s10, plotr3s11, plotr3s20, \ plotr3s21, PlotRange -> {All, {-0.5, All}, All}, AspectRatio
-> 0.6]
(*Matryoshka of sub-Riemannian Sphere*)
Show[plotr1s10, plotr1s11, plotr1s20, plotr1s21, plotr2s10, \ plotr2s11, plotr2s20, plotr2s21,
plotr3s10, plotr3s11, plotr3s20, \ plotr3s21, PlotRange -> {All, {1, 20}, All}, AspectRatio
-> ]
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