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Abstract

A numerical investigation is performed for the MHD stagnation point flow with
Cattaneo-Christov heat flux model and homogeneous-heterogeneous reactions. In-
vestigation of heat and mass transfer on a variably thicked surface is executed for
steady, UCM and thermal radiation. An electrically conducting fluid is considered
in the presence of non-uniform applied magnetic field. Using suitable similarity
transformations, the governing PDEs are transformed into a system of coupled
non-linear ODEs. Utilizing the shooting method, the system of ordinary differen-
tial equations is solved with the help of the computational software MATLAB to
compute the numerical results. The numerical solution obtained for the velocity,
temperature and concentration profiles is presented through graphs for different
physical parameters. The numerical values of the skin friction, Nusselt and Sher-

wood numbers have also been presented and analyzed through tables
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Chapter 1

Introduction

Magnetohydrodynamics study consists of magnetic properties of electrically con-
ducting fluids. The Swedish Physicist, Alfen [1] introduced the MHD fluid. MHD
fluid flow through a heated surface has many important applications in so many
engineering scenarios like petroleum industry, MHD power generators and crystal
growth etc. Mbeledogu and Ogulu [2] examined the MHD natural convection flow
of spining fluid past through a porous sheet. They also observed the impact of
heat transfer and radiation as well. Time dependent MHD convective flow through
semi finite vertical porous plate was studied by Kesavaiah et al. [3]. Modather and
chamkha [4] examined the analytical study of MHD heat and mass transfer process
on a porous plate. MHD flow of viscous fluid in the presence of transpiration was
keenly observed by Mabood et al. [5]. Hayat et al. [6] exposed the impact of con-
nvective heat transfer in MHD flow of Jeffrey fluid model over a permeable plate.
Similarly MHD flow of Maxwell fluid with convective heat transfer was observed
by Hayat et al. [7].

It is known that the phenomenon of heat transfer occurs between two bodies or
within the same body due to a difference of temperature. In various industrial
and engineering processes, the characteristics of heat transfer have huge effects
on microelectronics, transportation and fuel cells etc. The heat conduction law

was suggested by Fourier [8], but it has a limitation that for the temperature
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field it generates a parabolic energy equation. To resolve this issue in the clas-
sical Fourier law of heat conduction, Cattaneo [9] added the thermal relaxation
time. After that, Christov [10] changed the Cattaneo law by time derivative in
the Maxwell-Cattaneo model with Oldroyd upper-convected derivative to conserve
material-invariant formulation. Straughan [11] used the Cattaneo-Christov model
just to investigate thermal convection in an incompressible flow. Tibullo and Zam-
pali [12] examined the uniqueness of Cattaneo-Christov heat flux model for flow of
an incompressible fluid. Hayat et al. [13] numerically investigated the Cattaneo-
Christov heat flux model in a visco-elastic flow due to exponentially stretching
sheet. Pavlov [14] discussed the MHD flow of an incompressible viscous fluid
caused by deformation of flat surface.

MHD with stagnation point flow has always been matter of concern for the re-
searchers for many years. Hayat et al. [15] first time brought out the fact about
the stagnation point flow with Cattaneo- Christov heat flux and homogeneous-
heterogeneous reactions. The effect of MHD and thermal radiation on Maxwell
fluid was discussed by Akbar et al. [16]. These scientists pointed out the fact
that elasticity number became the reason of enhancement in heat transfer rate.
Maxwell fluid in a porous medium with its rotation was further explained by
Hayat et al. [17]. Minsta et al. [18] studied the MHD flow of Maxwell fluid and its
chemical reaction as well. Wide range of temperature to test the effect of stagna-
tion point flow concentrates was also undertaken time and again. It was proved
that there was a severe decrease in temperature particularly for concentration of
nano particles. The entropy generation in MHD and slip flow over a rotating pene-
trable disk with variable properties was investigated by Rashidi et al. [19]. Various
characteristics of homogeneous- heterogeneous reactions within Jeffrey fluid were
observed by Hayat et al. [20]. Similarly, Shah et al. [21] further studied the MHD
effects for heat transfer for the UCM and for the Joule heating simultaneously.
Cattaneo-Christov heat flux model was used for this observation. The effects of
Cattaneo-Christov heat flux in the flow with variable thickness were highlighted
by Hayat et.al [22].

In engineering, heat and mass transfer problems with chemical reactions are part
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and parcel. Homogeneous or heterogeneous is an outcome of any chemical reaction
which can further be characterized with certain process including disappearance
of evaporation, shifting of impetus and flow in a dessert cooler. A homogeneous
reaction occurs with sole entity through specified region whereas a heterogeneous
reaction occurs within confined region or space. The reaction rate and the con-
centration are directly proportional, this kind of reaction is regarded as first order
reaction. The diffusion of species with chemical reaction has immense utilities
regarding fibrous insulation, pollution studies, synthesis materials and oxidation.
Das [23] considered the effects in MHD micropolar flow, heat and mass transfer
with thermal radiation and chemical reaction. In MHD, impact of transfer of
chemically reactive entities passing over a permeable material was investigated by
Kandasamy et al. [24]. Afify [25] studied the result when chemically reactive
entities were observed in a flow of non Newtonian fluid absorbed the permeable
for diffusion. Bhattacharyya and Layek [26] studied the behaviour of chemically
reactive solute within MHD process particularly affecting the boundary layer flow
over a porous wedge. The MHD flow and mass transfer of an UCM fluid past
a permeable shrinking sheet with chemical reaction was examined by Hayat et
al. [27]. Mansour et al. [28] considered the thermal stratification and effects of
chemical reaction on MHD through a porous medium over a vertical stretching sur-
face. Bhattacharyya [29] explored solutions for stagnation-point boundary layer
flow with chemical reaction past a shrinking /stretching sheet. Relative studies in

this field may also be found in [30-41].

1.1 Thesis Contributions

The main purpose of the present study is to perform the numerical analysis for the
MHD stagnation point flow with Cattaneo-Christov heat flux and homogeneous-
heterogeneous reactions and to examine the effect of different parameters on the
velocity, temperature and concentration profiles. The flow governing boundary
equations are converted into a set of non-linear ODEs by employing suitable sim-

ilarity transformations. Utilizing the shooting technique along with the fourth
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order Runge-Kutta method, the coupled nonlinear ODEs are solved numerically.

Graphical results are also presented and discussed to illustrate the solution.

1.2 Thesis Outlines

This thesis has been further organized into four chapters.

° Chapter 2 comprises of some basic definitions related to fluid dy-
namics. These concepts are used to describe the flow, heat transfer and the

influence of thermophysical properties.

o Chapter 3 contains a comprehensive review of [15]. A numerical
study of incompressible, two dimensional steady fluid flow with convective
boundary conditions past a stretching sheet has been performed. The consti-
tutive flow model is solved numerically and the impact of physical parameters
concerning the flow model on the dimensionless temperature, velocity and

concentration is discussed through graphs and tables.

. Chapter 4 focuses on the extension of [15]. The obtained system
of ODEs are solved numerically after applying proper similarity transfor-
mations. Graphs and tables describe the impact of physical parameters.
Numerical results of momentum, temperature and concentration have also

been computed and discussed.

° Chapter O summarizes up the study and gives the major results ob-
tained from the entire research and suggests some recommendations for the
future work.

All the references used in this study are listed in Bibliography.



Chapter 2

Some Basic Definitions and

Governing Equations

2.1 Basic Definitions

In this chapter, some fundamental definitions, governing laws and concepts [42]
regarding the fluid mechanics will be described. These concepts will be helpful to

develop an understanding for the rest of the thesis.

Definition 2.1. (Fluid)
“Fluid is a physical substance that changes regularly under the action of shear
stress. It does not depend on how small the shear stress is and repeatedly deforms

its shape as long as the shear stress acts.”

Definition 2.2. (Fluid Mechanics)

“Fluid mechanics is the branch of engineering that contains the discussion of differ-
ent properties of fluids and the effect of different forces on them. Fluid mechanics
is mainly divided into two branches which are fluid statics and fluid dynamics.
Fluid statics describes the properties of the stationary fluids whereas in the fluid

dynamics, the flow of moving fluid is discussed.”
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Definition 2.3. (Pressure)
“The ratio of applied force to the unit area is said to be pressure. It is denoted

by P and mathematically, it can be written as

F
P== 2.1
AJ ( )

where F', A denote the applied force and area of the surface, respectively.”

Definition 2.4. (Density)
“Density of a material is the ratio of mass to the unit volume. Symbolically it is

denoted by p and mathematically, it is expressed as

m
_m 2.2
p=T (2.2)

where V and m are the volume of the material and mass of the material, respec-

tively.”

Definition 2.5. (Stress)
“Stress is the force acting on the surface of the unit area within the distortable

body. Mathematically, it can be written as
F
= 2.3
o= (23)

where F' is the force and A is the area.”

Definition 2.6. (Shear stress)
“Shear stress is the component of stress in which a force acts parallel to the unit

surface area.”

Definition 2.7. (Normal stress)
“Normal stress is the element of stress in which a force acts normal to the unit

surface area.”

Definition 2.8. (Viscosity)
“It is the property of the fluid that resists the fluid flow. In other words, a fluid
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viscosity is that characteristic which measures the amount of resistance to the

shear stress. It is denoted by p and mathematically, it can be written as

. shear stress
viscosity(u) = ——— (2.4)

Definition 2.9. (Kinematic Viscosity)

“The ratio of the dynamic viscosity to the density of fluid is said to be kinematic
viscosity. Symbolically, it can be written as ¥ and mathematically, it is expressed
by

L
V= —, 2.5
; (2.5)

where p and p denote the dynamic viscosity and the density respectively. The

b

dimension of kinematic viscosity is given by [LTQ]

Definition 2.10. (Magnetohydrodynamics)
“The branch of dynamics which deals with the electrically conducting fluids such

as plasma is said to be magnetohydrodynamics.”

2.2 Classification of Fluids

Definition 2.11. (Ideal Fluid)
“A fluid, which has zero viscosity, is said to be an ideal fluid. Naturally, ideal fluid

is incompressible and does not practically exist .”

Definition 2.12. (Real Fluid)
“A fluid is said to a real fluid if it has a non- zero viscosity. Unlike ideal fluids, it

is compressible in nature, e.g. petrol, kerosene, castrol oil.”

Definition 2.13. (Newton’s Law of Viscosity)
“The shear stress which distorts the fluid component is directly and linearly pro-
portional to the velocity gradient is said to be the Newton’s law of viscosity.

Mathematically, it can be written as

Tay X (j—;), (2.6)
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du
Tey = /,Ld—y, (27)

where 7., is the shear stress applied on the fluid, v is the component of the velocity

along x-axis and p is viscosity as the proportionality constant.”

2.2.1 Newtonian and Non-Newtonian Fluids

“The fluids, which fulfill Newton’s law of viscosity are known as Newtonian fluid.

_ M(Z—Z) (23)

where p is called the constant of proportionality. The most common example of

Mathematically,

Newtonian fluids is water. Those fluids, which do not obey the Newton’s law of

viscosity are known as non-Newtonian fluids. Mathematically

d n
Tay = k(ﬁ) : (2.9)

where n # 1 is the flow behavior index. For n = 1 with k£ = u the above equation
reduces to the Newton’s law of viscosity. Paints, blood, biological fluids and poly-

mer melts etc, are good examples of non-Newtonian fluids.”

Definition 2.14. (Laminar Flow)

“A flow in which the particles of the fluid have special path and individual particle
does not intersect each other is known as laminar flow. In such flow, the particles
move along well-defined path. Laminar flow occurs for the fluids having high

viscosity.”

Definition 2.15. (Turbulent Flow)

“A flow which has no specific path and moves randomly in any direction is said
to be a turbulent flow. Turbulent flow occurs when the fluid is flowing with high
speed. If we observe the smoke rising from a cigarette, for the first few centimeters

the flow is certainly laminar but later on, the smoke becomes turbulent.”
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Definition 2.16. (Uniform flow)
“If the velocity of the flow has the same magnitude as well as direction during the
motion of the fluid, the the flow is said to be a uniform flow. Mathematically, it

can be written as

av.

- — 2.1
=0 (2.10)

where V' is the velocity and s is the displacement in any direction.”

Definition 2.17. (Non-uniform Flow)
“In non-uniform flow, the velocity is not the same at every point in the fluid at a

given instant. Mathematically, it is expressed as

av

- #0, (2.11)

where V' is the velocity and s is the displacement.”

Definition 2.18. ( Internal Flow)

“Internal flows are those where fluids flow through confined spaces, e.g. flow in
pipe.”
Definition 2.19. ( External Flow)

“The flow which is not confined by the solid surface, is known as external flow.

The flow of water in the river is an example of the external flow.”

Definition 2.20. (Steady Flow)
“The flow, which is independent of time is said to be a steady flow.

Mathematically, it can be written as

dg
— =0 2.12
dt ) ( )
where ¢ is fluid property.”

Definition 2.21. (Unsteady Flow)

“The flow, which depends on time, is known as unsteady flow.
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Mathematically, it can be written as
dg
> £ 2.13
= 70, (2.13)

where ¢ is a fluid property.”

Definition 2.22. (Compressible Flow)
“The fluid flow in which the density does not remain constant within the fluid is

said to be a compressible flow. Mathematically, it is expressed by
p(x,y,z,t) # ¢, cis constant.” (2.14)

Definition 2.23. (Incompressible Flow)
“The fluid flow in which the density remains constant within the fluid, is called

incompressible flow. Mathematically, it can be written as

p(x,y,z,t) =c¢, cis constant.” (2.15)

2.3 Heat Transfer

Definition 2.24. (Conduction)
“Conduction is the process in which heat is transferred through the material be-
tween the objects that are in physical contact. For example: picking up a hot cup

of tea.”

Definition 2.25. (Convection)
“In this process, the heat transfer occurs due to the bulk fluid motion of molecules

or transfer of molecules. Mathematically, it is expressed as
q=hA(T; — T), (2.16)

where h, A, T, and T, denote the heat transfer coefficient, the area, the temper-
ature of the surface and the temperature away from the surface respectively. It is

subdivided into the following three categories.”
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Definition 2.26. (Forced Convection)
“A method of heat transfer in which the fluid motion is generated by an indepen-

dent source like a pump or fan, is said to be forced convection.”

Definition 2.27. (Natural Convection)

“A method of heat transfer in which the fluid motion is not generated by an
independent source is said to be natural convection. In other words, it happens
due to the temperature difference which affects the density and buoyancy of the
fluid. Natural convection can only occur, when there is a gravitational field and

it is also known as free convection. Example: Daily weather.”

Definition 2.28. (Mixed Convection)

“It is a combination of both forced convection and natural convection. For example
if fluid is moving upward along the moment of the vertical stretching sheet is forced
between while in the same phenomena fluid is freely falling due to the gravity which
is forced convection. When these two phenomena appear in the same model then

such kind of flow is mixed convection.”

Definition 2.29. (Radiation)

“Radiation is the process by which heat is transferred directly by electromagnetic
radiation. The convection and radiation play a major role in transferring heat in
the liquids and gases but in solids convection is totally absent. Thus for solids,
conduction plays a major role in heat transfer.

For example, if we place a material object ( e.g, a piece of steel) under the sun
rays, after a few moments we observe that the material object is heated. Such

phenomenon takes place due to radiation. Mathematically, it can be written as
q= EcA|(AT)Y, (2.17)

where E, o, (AT)?, A, q are the emissivity of the scheme, the constant of Stephan-
Boltzmann (5.670 x 10_8%), the variation of the temperature, the area and the
heat transfer respectively.”

Definition 2.30. (Thermal Conductivity)

“Thermal conductivity is the property of a substance which measures the ability
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to conduct heat. Fourier’s law of conduction which relates the rate of heat transfer

by conduction to the temperature gradient is

dQ T
— = —kA— 2.18
dt dz’ ( )

where A, %, k, % are the area, the rate of heat transfer, the thermal conductivity

and the temperature gradient respectively. Thermal conductivity of most of the

liquids is decreased with an increment in the temperature except water. The SI

unit of thermal conductivity is Kggm and the dimension of thermal conductivity is
[%]'77

Definition 2.31. (Thermal Diffusivity)

“Thermal diffusivity of a substance is defined as the ratio of thermal conductivity
(k) of a substance to the product of specific heat at constant pressure (c,) and
density (p). It measures the ability of a substance to conduct thermal energy
relative to its ability to store thermal energy.

Mathematically, it can be written as
k
a=—/27 (2.19)

Definition 2.32. (Prandtl Number)
“The ratio of kinematic diffusivity to heat diffusivity is said to be the Prandtl

number. It is denoted by Pr and mathematically it can be written as

where v, and a denote the momentum diffusivity or kinematic diffusivity and the
thermal diffusivity respectively. It controls the relative thickness of the momentum
and temperature function. Physical significance of Prandtl number is that it gives
the respective thickness of velocity boundary layer and thermal boundary layer.

For small Pr heat diffuses very quickly as compared to the momentum.”

Definition 2.33. (Grashof Number)

“The ratio of the viscous force and the buoyancy force applied on the fluid is called
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Grashof number. It repeatedly occurs in the free convection case. Symbolically, it

is denoted by Gr and mathematically it can be written as

_ gﬁO(Ts - Too)63
= 5

Gr

: (2.20)

where g, 8,, Ts,, T, 0, v denote the gravitational acceleration, the coefficient of
the volumetric thermal, the surface temperature, the surrounding temperature,

the characteristic length and the kinematic viscosity respectively.”

Definition 2.34. (Schmidt Number)
“It is defined as the ratio of the momentum diffusivity and the mass diffusivity

D,,. It is denoted by Sc and mathematically it can be written as
= — (2.21)

where v is the kinematic viscosity, D,, is the mass diffusion and p is the dynamics

viscosity.”

Definition 2.35. (Reynolds Number)

“Reynold number is specified as the relationship of the inertial force to the viscous
force. Inertial forces act upon all masses in a non-inertial frame of reference while
viscous forces are the internal fluid flow resistance. It is denoted by Re and

mathematically it can be written as

2
inertial force %7~

viscous force &3

Re =

Y

~
<

where v, L and v denote the fluid velocity, the characteristic length and the
kinematic viscosity respectively. For a small Reynold number, the viscous forces
are dominant and the flow in this case is characterized as the laminar flow while
turbulent flow occurs at high Reynold number due to the dominance of the inertial

force.”

Definition 2.36. (Nusselt Number)
“It examines the ratio of the convective to the conductive heat transfer through the

boundary of the surface. It is a dimensionless number which was first introduced
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by the German mathematician Nusselt. Heat transfer due to conduction is denoted
by MTT and the heat transfer due to convection is denoted by hAT. It is denoted

by Nu and mathematically, Nusselt number is expressed by

hRAT  hé

Nu = 277 =
5

where h, §, k denote the coefficient of heat transfer, the characteristic length and

the thermal conductivity respectively.”

Definition 2.37. (Stagnation point)
“It is a point in a flow field where the fluid velocity is zero. It exists at the surface
of objects in the field where fluid is brought to rest by the object. Static pressure

is the example of stagnation point.”

2.4 Basic Equations

2.4.1 Continuity Equation

“Continuity equation is derived from the law of conservation of mass and mathe-

matically, it is expressed by

dp B
5 tV(0V) =0, (2.22)

where t is the time. If the fluid is an incompressible, the continuity equation is

expressed by

V.V =07 (2.23)

2.4.2 Law of Conservation of Momentum

“This law states that the combination of all applied external forces acting on a

body is equal to the time rate of change of linear momentum of the body. In
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vector notation this law can be written as

DV

T = —pl + pS, (2.25)

where S is the tensor and first time it was produced by Rivlin-Erickson.

S = gradV + (gradV)". (2.26)

L denotes the material time derivative or the total deriva-

In the above equations, 5,

tive, p denotes the density, V' the velocity field, 7 the Cauchy stress tensor, b the
body forces, p the pressure and p the dynamic viscosity.

The Cauchy stress tensor is expressed in the matrix form as

Oxe Tyr Tz

T = Tey Oyy Tay y (2.27)

Tez Tyz Ozz

where 0,,, 0,y and o0, are the normal stresses, otherswise the shear stresses. For

two-dimensional flow, we have V' = [u(z,y,0),v(z,y,0),0] and thus

ou Jdu
o oy U
gradV = | 2v g—z 0 |- (2.28)
0 0 O
for x component

ou Ou Ov 1 9p 0%u  0*u

el Y St STV [l Rty 2.29

8t+u8:c+v8y p8x+y<8x2+8y2 (2:29)

Similarly, the above process is repeated for y component as follows:

v v Ov 10p V(é?% 8%) . (2.30)

E“f—u%-i-va—y = _;8_y+ ﬁ—’_a_f
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2.4.3 Energy Equation

“The energy equation for a fluid is

DT
T 2.31
—ovr|, (231)

m

B
pc, (& +VV)T = kV2T + 7L+ pe, | DgVC.VT +

where (¢,)s denotes the specific heat of the basic fluid, (¢,)s the specific heat of
the material, py the density of the basic fluid, L the rate of strain tensor, T" the
temperature of the fluid, Dg the Brownian motion coefficient and D the temper-
ature diffusion coefficient and 7}, the mean temperature. The expression for the

Cauchy stress tensor 7 for viscous incompressible fluid is expressed by

T = —pl + puS, (2.32)

where S is the tensor, p the pressure, i the dynamic viscosity and

% the material time derivative or total derivative,

S = gradV + (gradV)", (2.33)

where 7 the strain tensor and can be written as

Oxe Tyr Tz

T = J (2.34)

Toy Oyy Ty

Tez Tyz Ozz



Chapter 3

The Impact of Cattaneo-Christov
Heat Flux Model On the Flow of
Maxwell Fluid

3.1 Introduction

In this chapter, a detailed review of [15] has been conducted. The governing flow
equations are formulated and then converted into a system of non-linear coupled
ODEs by implementing a proper similarity transformation. These converted ODEs
are solved numerically by using the shooting method. Finally, the numerical
results are discussed at the end of the chapter for various pertinent physical pa-
rameters affecting the flow and heat transfer and found to be in excellent agreement

with those computed by the MATLAB built-in function bvp4c.

3.2 Mathematical Modeling

Consider a steady, two- dimensional laminar flow of an incompressible UCM fluid

over a non-linear stretching surface with variable thickness. The surface is taken

aty = A ( x—l—b)l_Tn. Note that for n < 1, the surface is of the uniform thickness.
17
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T = .Tg_ Cl'r.\f_bj

Momentum boundary layer

L ‘il P B R e gy
-"'--_ -

Thermal boundary layer -

] — —
. PR Ty
ot S,

_,ﬂ"':-"‘
F i

' -
o
:?
4y u = Up=Up (c+b)n
§r

Wariable Stretching Surface

F1GURE 3.1: Geometry of the problem.

Heat flux analysis, in the presence of Cattaneo-Christov heat flux, has been
studied. Mass transfer in the presence of chemical reaction has been considered.

T, and T, are the surface and ambient temperatures respectively. The equations

of continuity, momentum and the energy are as follows.

ou Ov

5oy~

(3.1)
ou ou dU,

2 2 2 2
v——i—u—:Ue—e—l—)\lUQa Ue—l—uﬂ—)\l 2uvau 2 07u
Jy ox dx

¢ Ox? 0y? 0xdy v 0y?
0*u
I u2@> ’ (3.2)
1)8—T—|— ua—T—ir)\ v@g—T—ir u@a—T—l— u@a—T—F v@a—T—l—%v O°T
dy ox dy Oy oz Jy Oxr Ox Jy Ox 0y
o*T o*T k 0*T
2074 2071 RO
T Dy? T 3x2) pcp Oy?’ (33)
da*  Jda* d*a* .1x2
Ua‘r +U8y _DAa_yQ_Klab y (34)
ob* ob* 0%b* 9
= Dp—— + Ka"b*".
u8x+v8y Bay2+ 1a™b
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The associated boundary conditions for the above system of equations are

u=U,=U(z+b)", v=0, T=T,=To+c(xz+D),
* b*

da = K,a*, DBa =—Ks,a*, at y=Ai(x+ b)

0y Oy S (3.6)

u— Ulfx)= Ux(x+b)", T— T = To+d(x+Db),

1—n
2 .

Dy

a* — ag, b*—0; when y — oo.

3.3 Similarity Transformations

To convert the system of governing equations into the dimensionless form,
we use the following transformations, where ¢ be the stream function

satisfying the continuity equation. It is usually written as:

= a—y7
Y (3.7)
v = —%

Now introduce the following similarity transformations:

A 0]

G(n) = o
b*
H(77 :a_O’

10,
n= \/ - 2z +b)nly,
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The detailed procedure for the conversion of equations (3.1)-(3.5) has been de-

scribed in the upcoming discussion.

on 0 \/n—l—on .
* oz 61:( 7@+ y)

i uUO(x+b)"+1F(n)> <\/ ‘QHUO( . )

14

= (Y2t + o) P (" e o)

= Up(z + b)"F'(n).

% = 82 (Uo(:c +b)"F'(n ))

_ 9 (Uol + )" F'(n) + Un(x + b>"a%F )

Ox
/ n o 8
= nU(w + 0)" " F'(n) + Ul + 0)" F" () 57
1

= nUo(x + b)"~"F () + Uo(a + b)"F" () (“— ) m(a + 1)

n—1

= nUy(z + b)" ' F'(n) + ( )Uo(fc +b)""'nF"(n)
— Up(a + by (nF'<n> + (2 (U)F”n) |
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oY
or

_9 <\/ni1uUO (24 D) F(n >>

° v o=

onn—1_, n—1 _,  .0n
dyn+1 () + +1 (m@y)
B n+1 Y n—1_, n—1 _,
= ] ()+n+1nF(n)>
on
dy
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=~ a0 (aF )+ " ). 35)

By the choice of the stream function ¢ in (3.7), the continuity equation is already

satisfied. It can again be verified using (3.8) and (3.9) in (3.1) as follows.

du 0w 1
- IR n— F/

n—1

)

i 177F”(77))

—Up(x+0b)"" <nF’( n) +
= 0.
Hence continuity Equation (3.1)is identically satisfied.

Now we include below the procedure for the conversion of (3.2) in the

dimensionless form.

ou 0
- - nFI
° 9~ <U0(Jc—l—b) (77))
B LOF' On
10,
N CTY AL T

au B n+1 1 Tl—l ’
.Ua_y ——\/ 5 Uopv(z +b) <F(77)+77n F(n))

2 v
- U+ “F() <F(77) o 1 '(?7)>
i (”T“m \F(n)
+ n g 177F/(77)F”(77)> . 59)
° u% = Uo(l“ + b)”F’(n)U()(x i b)n—l (nF’( 77) n n — 177F”(7])>
= Uj(z +b)> ! (n(F'(W))2 L n= 177F’(77)F”(77))' (3.10)
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Using the values of (3.9) and (3.10) ), the left side of (3.2) is as follows.

u@_u + v@
ox dy

n—1
2

= G+ 0 () +

n+1
2

()P ()P n>)

- U+ b (=

) (Fl + ) })F%n))

R by <n<F'< D) () + (

n+1 n—1

- P E) - CERmF F ()

= G+ 02 (- (D0 F()
= (- (DR R )

To convert the right side of (3.2) into the dimensionless form, we proceed as follows.

B0 (o
oy Oy \dy
_8 n I \/7’L+1UO n—1
—ay<%ﬁﬁ%)F(m 5 (z+D)

= g n n_‘_l% n—1 @
—an<Uo(:v+b)F(n)\/ 5 (z+D) >8y

1%

=U<as+b>w+ (b aF"(ﬂ)\/nJrl%(xwLb)”_l

v on

- (4 nt 1) T+ b2 (). (3.11)

P9 (o

0zdy 0z \0y
8 n I n+1U0
a:C<Uo<:c+b>F<>\/ e )

a n !
:a—IUo(l‘+b) F (U)\/

Py

14

7’L+1UO
2

ol en Lr

9 0 [ n+1U
U+ P ) [T gy
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n—i—l@
v

= b+ )y (o)t

0 9 10,
+ Up( @+ b)"—F"( n)—"\/ N0 gy

an ox 2 v
17 n+1U a n—1
+ Up( 2+ 0) "F' ()| —5— "o+ 1)

1 U,
= nU( x+b) " 1F( 77)\/ n;— hall

v

+ Uz +)"F" () ”‘1)<n><x+b>"1\/”“%“1))”—1

2

n—1 n+ 10U n—1_y
+< 2 )\/ AR

1
= nlp( @ +b) " F'( n)\/ ntlt

20z + b)n-1
+ Uo(z + b)"_lF”’n<n—_1> (n)\/n +1 %(z + b1

v
2 2

F (5 ) oot 0 F " D a4y

1
eI

=nUy(z + b)"_lF"(n)\/

-1 -1
+ U (e + b)"lF”'(n)\/n %(aﬁ + )t
+1 10U,
n ! \/n—2|— 70(17 4 b)n_lpm(n)
1 —1
= Up(z + b)”_l\/n ;L %(x + b)n1 (nF”(n) + nTF”(n)
—1
2
1 [n+1U n—1
= Ui+ by Do gy (n+ 25D
1
)
1 -1
= it o L s (2
2 v 2
-1
)

0%u

L S n+1
LA Fny/

n—1
n+1

® UV

vUo(z + b)n—1 (F(m +1 F’(n))
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=—Mﬂw+bf"2”;1F<><F<mF<nx3i;1>
(S E O + a2t
G (o)

= 0o+ (L ()

() aFCF () F ) 4 (4

<F%mf+n%”")(”‘3FWMMF%mP>

+1

2
0%u n+1 3n— 1
—2U b3n 2
0xdy ol x+ 2 ()
(

v (s )<><> ()" (1) + ( )(&g])F<m
(Fof+ (55 )(”QWF )
x+bgn2n+1( n- 1 F'(n)F"(

)F(n%+n(n 5(32 D F )

o 2uv

-+(" 5<mFme

2 ! .
o ) o
92 0 (0Ou
: ——(—)
_ a%( nlo( z+b) "~ F'(n) + 2_1U0< o) 77))
= n U+ By () (e +b) "lagm 05
(77 1)3%( mE () + ( n_l)UO( s %:?F (n)

2
0 an
—F
0

() Ol 5" () F ()
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n—1

—n(n >Uo<:c+b>“F<> + (n5

V(@ + )" (@ + b
ol +( >U0x+b () F”( )
() (2 >U0 (240" (w+b)"
nF )+ (2 1) () U4 0) "+ 8) " () ()

2 2
= n(n=1)U(z+0)"2F + ( )Uo( @+ )" 2 nF"( )
(n—1p

2

n(n-—1)

+ ( n_l)Q(n)Uo(:erb)”‘QF”Jr(

5 )Uo( @ +8)"%()

B!

" n—1 ? — "
0+ (252) e+ n

(2 ),

. UQ% =Us(z+b)*"(F'(n)° (Uo(a: +b)"*(n— 1)( nF’
IR+ (S 7))
e R R ] T R G [T P I
(S ERE 6 ). (3.13)
et (D ety (R () P ()
(“ B )
= e (R + (A RO



The Impact of Cattaneo-Christov Heat Flux Model On the Flow of Maxwell... 27

e R (T R R e N )
FRFCOF ) F () () ) (3.14)

Using (3.12)- (3.14), we get

,0%u  ,0% 0*u

L oun—

o 3x2_F dy 2 T v@my
on—3

=U3(z+b)P"2(n—1)( n(F'(n)*+ () E"(n)(F'(n))?
4

+(nilﬁFU%WUMnY>+(”;1fuﬂx+w“ﬂ(@xmfp%m

(g ) PP )+ 2 ) F () ) (2 1>)

n+1 n+1

&EJF@WWWFTW

U4 bt 1)(

(D EEE )+ (2D (IS F O )

b (A (S5 o)

n+1 2

= Ud(w+ ) ( nln = DEP + (0= )22 ) () () ()

n <( n ; 1) >(F1)2F///( n)<n)2 + (T)ZFW(U)FQ(??)

2 (L) (21 ey

2 n+1
r2a(3y) (M) PO e
~ 4 (P RO P ) F () - n( ") (= DR () E )
3n—1)( F"('n)

(”“)(m)
-0(557)

n
—-US(x%—@S”_2<n
n

(n-1)
I e+ (L) (DY gy

VR () F" ().

( n—kl) %7ﬁ>
5n—3
5 _

n —

(FP+(

F'n)(F)? + (-5

+n@—U(n;1
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)@= DE@E(n)F(n) — (X)) n— D) F () E”

(n—l—l

(L (e 77)) U2+ )P (n( n— 1)(F)’

— (D) (R POy - 30— ) (L) PO F O E ()
() FO n))

R i ey (2 Dy () (S O

2 n+1 2
/ " n+1 2 om
—Bn=DF(F ()F"(n)+ (5= ) F(n)*F"(n) |. (3.15)
. U. = Ux(z +b)"
dU, B 1
o o =nUx( z+0)
dUe _ n n—1
o Ue% =Ux(2+b) "nUsx( x + )
=nU%(z+b)*""
oU. 0 "
. i = gaUxlzth)
=nUs( x+b)""!
. 0*U, _ 9 (09U
Ox? EEANCE:
_ 9 n—1
=n(n—1DUx(x+b)"?
262(]@ 2 2n n—2
o MU; 52 =MU(z2+0)°"n(n—1)Usx(x+D)
=Mn(n—1DUL(z+b)*""
dU. 20°Ue _ 2n—1
[ J USE—F)\er 2 —HUOO(.CC+b)
+ A \n(n — 1)U (z + b)*2 (3.16)
8u2 n+1 Ug 2n—1 g
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Using (3.15) -(3.17) in the right side of (3.2), we get

US4+ \U? gu g, 22l
dx M 0x? +V8y2 8938y+v Oy? Y oa2

1
=nU2 (x4 b)*" "t + A\n(n — 1)U (x +b)*" 2 + (%)Ué(m + )" F" ()

2 2 2 2 2
dU., 0°U, 8u_)\1 (2uv 0%u ZO%u 50 u)

Y <U§<x # 0 (nf = D~ P )
— B = DFmF () + (o) F ) (n) )
n+1

=nU2(z+0)*" '+ M n(n—10)U2(z+b)>"2+(

<F1//< 77) . )\1( UO( CL’—i—b) n—1 (n( n— 1)( F’)3 — ( 77)(

n+1

- B DFOOFF () + (D FPF ()

o on+1 o n1 2n \ UL  /2n(n-1) W U3
= 2 o (w+b) (n—l—l) U02+< n+1 >/\1U0(x—|—b) Us

2n(n—1)
n+1

)Y — ) (L) PO

+ () = MU 2+ 0) " ( 5

~@n - DEF () F(n) + () R n)2>-

Hence the dimensionless form of (3.2)becomes

nUZ( @+ )" (( Pl - (258 PO n>> = (M) 03w+ bye

2n \U? 2n( n—1) U3

_ n—1-0o0 F///

2n(n—1)
n+1

i+ (( YRy () () PO

— (B n—1)F(n) F'(n)F"( ">+(n2+1>F( 77)2))
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- () (Cror - () momon) - (25 %

1 Us
n(n )Aon(x FO)LI 4 F () — \Up(x + )" (

2n(n — 1)
n+1

+ 2 (F/)S

n+1 Us

—%nxn;1WWnXFf—@n—iMKmF%mF%m+(n;5FUﬁ>

2n
n+1

w5

2n
n+1

(F'()? — F"(n)F () = =Dy

BBy (=) (0= o=

A+ 28

- O FUGEY = 60 = DFC)F () £Cn) + (5 FC))

2n 2n 2n(n—1)
F/ 2 A2
n+1( () +n+1 * n+1

=D ()4 ()

pA?

= F"(n)+ F'(n) F(n) -

+B(@n—1ﬁYmF%mF%n%- )

n+ 1

(PP () - (P ) F'() =0

Now we include below the procedure for the conversion of (3.3) into the dimen-

sionless form.

= T = (Tw-Ty)O) +Ta
or 90( n)
* a9, (B
4, 99(n)dn
= (T — Tp) oy Oz

:<”‘ﬁ T, —Tp) n(a+0)70(n). (318
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oT 0
- = — T, — T T
o =2 ((n-m) e+ 1)
) 96(n)dn
, +1 U,
=(Tw—To>@(n>\/"2 — (et (3.19)
9°T 8<8T>
e 2+t _ Y9 (9%
dy>  Oy\dy
_@ . / 7’L+1U0 n—1
. . n_‘_l% n—l@@
= (T, To)\/ 5 V(m—l—b) dndy
1 U,
_\/n; 70<x+b)n_1<Tw_T0> e"(n)
7’L+1 UO n—1
\/ 5 V(x—i—b)
n—|—1U0

= —V(:c—i—b)"*l(Tw—To) ©"(n)

0T o (ot
0x2  Oxr\ ox

- a%(( ”2_1) (T —To) n(z+b)~ 1O/ n))

— nz_l(Tw—To) (a%(ﬁb)ln o'( n)+(fc+b)1% o'(n)
+<x+m%m9%%@%£>

n—1

= —— (T, = T)) ( — (z+b)2n0' () + ((m +0)7'0'(n)

+ (z+ b)*ln@”(n)) %)

n—1

= —— (T, - T) ( — (z4b)7*nO'(n)

- ((x +0)7'0'(n) + (z + b)‘ln@”(n)> nT_ln(fv + b)_1>
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n—1

== g;—%)<—@+b)%9W)

+<n;1(x—|—b)2@’(77) + (2 +0) 550" (n ))22)

n—1 n—1
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n—1,_,
—i—T??@)
—”_1(7’—T)(9[;+b)*2 (—1+”_1)@’ n°e"
== 2 w 0 2 2
n— / 2 "
(( 2 >77@ 2 @>

— <n ; 1>2 (T, — Tp) (x + b)277< e + 77@”) (3.20)

n—1

2
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n—1
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)Q(TM—TO) z+b)

(6@ + &' )y
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. FT o (or
dxzdy Oy \dzx

9
9
9
9
n

y(( n;1>(Tw—TO) n(x+b)~ ' e n))

-1
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oG Uy P () (T T w0 O
— (457) 9(Tu=T) Ul a+0)" P () &) (3:23)
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bt @%>(<mf>
82 n+1 n_1 n—1_, i
. e = () (= +b) (F(n) n+1F("))
W ) (T - T) ()
:(n;1>2Ug(x+b)2"_2(Tw—To) (F( )
+nZ;§WnQ o' () (3:25)
8u8T n o ’
° &Eax U(9$+b) F (nF

+<n2—1>( VF( )( 21) (T, —To)n( z+b)"'0'(n)

U<x+W"2U’—nM ) e ()F'(n)

<nF'( n) + n)F"( )
=U<wa”<T—%m ")
(0 &'+ (252 (OF (e (')

(3.26)
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ou 0T . n+1 n—1 n—1 /
V5 e __\/( 5 Uov(w +0) (F(n)+nn+1F(n)>

1
Ui+ 5Py D e

(") (@~ Touta 40

= Ve + b (1 - 1) ()

Gwmwwxﬂm+nﬁlhﬂmﬁ%m@m0

n+1

8u (9T au 8T 72 on—2 _
* o1 0x +v8y Ox = U@+ 0™ (Tu — 1)

("5 )n(nE e

+ (U5 F e W)

n+1l n-—1

— Ug(x+b)>" (T, — Tp) ( 5 ) (=)

n—1

(F”(n)F(n)@’(n) + nn—LF”(n)F’(n)@’(n)>

—1
= U2(z + )" 2(T,, — Tp) =

(n(n)(F '(n))*©'(n)

n+1

— (= )F”<n)F(n)@’(77)>

= Ug(x +b)*" (T, — To) (n) (n(F'(ﬁ))z@'(ﬁ)

+(n;)(n)F’(n)@’(n)F”(n)— 5 F ()6 () F(n)

— nnT_lF”(n)@/(n)F/(n)>
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Using the values in Eq. (3.3),as follows.

@%7n+f%F<m@%n>+f%v<l%;§ () (O (n) — "2 (F ()

2n
n+1

V(' ())*

o' 77)) + Pr(S+9) (’YF( mF"(n) —

ni—lF/< 77)) =0

(3.28)
Now we include below the procedure for the conversion of (3.4) into dimensionless
for
0 a* 0
*or %( a0G( 77))
A
= G ()"
!/ n —
—aoG' () (=) (x+b) 'y
da* n o/ n—1 ! -1
0w = (Uo( a4+ 0" F(m) (5= )aG ()@ +8)~" 7

= (5 1)( Us( 2 +6) "~ F/(m) ) (m)aoG( ). (3.29)
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Using (3.29) and (3.30), the left side of (3.4) becomes

To convert the right side of (3.4) into dimensionless form,

we proceed as follows.

.82a* _d(oa
Oy? S oy\ 0y

1%
. n—l—l Uo _1 "
- (= >—V(x+b) a0G"( 1) (3.31)
32 a* n+1 UO -1 "
* Da%hg _DA< 5 >7(x+b) aoG"( 1) (3.32)

— K} G(n)H?(n) (3.33)
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Using (3.32) and (3.33) in the right side of (3.4), we get

0% a*

o n—i—l) Uy

5 — (2 4+b)" tagG"( 1)

— KyagG( n)H?(n)

Dy

~ Kb = DA<

Hence the dimensionless form of (3.4) becomes

~( ”2“) U +5) a0 F( )G () = Da( ”2“>ﬂ(x+b)—l
agG"(n) — KiayG( n)H*( n)

= —( ”2“) U 2 +5) " aF( )G (1) = ”2“) DAaO%( z D)

" 2VvK, ag 9
=~ F()C) = A

" 2v Kla% 2

(G (n)— ACES AT —G(n)H (77))

v , o 2 yKlag 9
= = FOG () =600 = (57 i g G )
= G"(n)+——F(n)G'(n)

Dy
_< 2 ) v Kia?
n+1/ Da(n+1) U(x+b)n!
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Now we include below the procedure for the conversion of (3.5) into dimensionless

form

ob* 0
0x %( aoH ( 77))
NG|

= ( Us( z +b) "F'( n))( n;
_ ( ”2_1>( Up(x+b)"F'( )
- ( ”2_ 1)( Us( @ +b) "L F( 77))( n) acH'( )

Using(3.34), the left side of (3.5) becomes

ab* 8b*
(91: 8y

( )( (z+b)"F( n))(n)aoH’( (x4 b) !
( ) (z+b)" aoH'( n)(F( n+ 7 Z:F)

<n 5 1)( Up(z + )" 1F’(n))(n)aoH'(n)

~ (")t by o ) () —

) U

--(%5 (2 +b) " aoH'( n)(F( 7).

n—1
2

)Uo(a + b~ (m)ao H' (1) F'(n)

+l\D




The Impact of Cattaneo-Christov Heat Flux Model On the Flow of Maxwell... 40

To convert the right side of (3.5) into dimensionless form,we proceed as follows

L0 (o
dy> Oy \ Oy
78 y \/n—l—on n—1
— o (w2 )
B y on \/n+1U0 .
—aoH(U)a—y( 5 7($+b) )

— ag"( n>(\/ LBy (\/ ")

- () D)0 by g () (3.35)

v

. DBf—ybj R e L )
o Kla*b*2 =K (CLOG(U)> ((GOH(W)>2

Using (3.35) in the right side of (3.5),we get

0%b*
Oy?

n+1U0

DB + Kla*b*2 = DB —(I’ + b)”_laOH”
v

+ K1aoG (1) (a0)*(H(n))?
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Hence the dimensionless form of (3.5) becomes

1 1
B ( n + TL—2|— )%( +b)_1aoH”(77)

)Vl +b) " anF(m)H'(n) = D “—) =]
+ KyagG( ) H* ()

n+1 Uo

= —( 5 >U0( z+0)"aF(n)H (1) = (ngl)DBao—V( T+
(H"( D+ fl)”;jfi Gl n>H2<n>>>

=~ F@)H()=""
(H”( N+ 5ot n+21;£1<aj+b) —G(n)H*( n))

- D—I;F( 0 H' () = H' () + (nil)DB(H'I)[;O“(iM)n_lG( n) H?(n)

> ')+ 5P ) + (527 G e O )

( o %A) ( Ko flfjlwaé( T+ b)) < 5= %)

Sc 2ScK 9 B
(W)G( nH(n)=0

The final dimensionless form of the proposed model, is:

2n 2n n(n—1)
F/// FF// . 12 A2 2 A3 3 . 1 FF/F//
* nril P T ARG
2n(n-—1) n—1 n+1
-~ U FB — FPF'— —__F2F") =0 3.36
+B( n+ 1 T 2 o (336)

~3 1
0" + PrF O + Prvy (”TFF o — ”; P @”)

2n

)
P FF'— = ~F? -~ _F'| = .
+ Pr(S + @)(7 =1 1 ) 0, (3.37)
25cK
G~ 2T GH? + SeFG =0, (3.38)
n-+1
2ScK Sc
H'+ —— GH?+ —H'F=0. .
+ 5(n+1)G +— 0 (3.39)

Here prime represents differentiation with respect to n and o = A4/ "T“% is the

wall thickness parameter.
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FI(&) =f§= a)=f(n),0( = 0(5— a)= 0n),G'(&) =9 — a)=g(n)

(3.40)
let F(n) = fn— a)=[f(§).0(n) = 0n— a)= 005, Gn) =90 — a) =
g(&). This change of notations converts the above equations (3.39)-(3.42) into the
following form.

n(n

n _1) Y/
A% + 2ﬁn—+1A3 +BBn -1 fff

n+1

f/l/ 4 ffl/ o 2n1f12 +

n— / n—1 12 plt n+1 "
Hi’( %fﬂ(&a)?ﬁf ——f*f )ZO, (3.41)
0" + Prfo + Prvy (” _ntl f29")
2
P //_ 12 / — 42
#rr(s+0) (27— 2apr - 2y ) o (3.02)
s 25cK ;o
— n+1gh + Scfg =0, (3.43)
p 2S¢k , , Sc,,
_ — = 0. 44
h+6<n+1)hg+6hf 0 (3.44)

The new form of the associated boudary conditions, is:

f(o):aiz, FO) =1, 6(0)=1-8, \
7(0) = nj_leg(O), B (0) = —%,/ j_leg(O), (3.45)
() =4, 0 =1, g —1, h(§) —0a &— o0,)

where Sc = I% is the Schmidt number, 6 = g—i the ratio of mass diffusion coeffi-

cient, K = Klao( +0b) the strength of homogeneous parameter, 8 = A\ Up(z+ b)"*

the Deborah number, S = % the thermal stratified parameter, v = AUp(z + b)"~!

the thermal relaxation parameter, a the wall thickness parameter, Ks = D Ty

the strength of heterogeneous reaction parameter, A = %A; the velocity ratio pa-
rameter and Pr = “fTC” the Prandtl number. The diffusion coefficients of chemical

species A and B are assumed to be of a comparable size. The argument leads to
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assume that the diffusion coefficient D4=Dpg, that is, d=1. Thus
DB UOO HfCp )
0=—, A=— Pr=-——
Dy’ Uy’ Tk
d
6 = )\1U0< ZE+b) n—17 Y= /\U()( ZE+b) n—17 S = -,
c
LA S L €}
Assume that the Diffusion coeeficients D4 and Dpg are equal. Thus
9(&) +h(&) = 1.
So equation (3.46) gets the following form and (3.47) can be ignored.
25cK
" — 1— g)>+ Scfg =0. 3.46
1 91— 9 +Scfg (3.46)

The relevant boundary conditions are:

g(0)=4/——Ksg(0), g(coc)— 1 when & — oo,

3.4 Solution Methodology

In order to solve the system of ordinary differential equations (3.46)-(3.50), the

shooting method has been used. Let us use the notations:

f=y1,0 =y1,9 = ys-

Further denote

=11 by yo, " = u2" by y3,6 =y, by y5 and ¢ = ys’ by yr.

The system of equations (3.44)-(3.50), can now be written in the form of following
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first order ODEs:

Y1 = Y2,
Yo = Y3,
1 2n m,
/ 2 9
- - (= 2 2 B08n—1 _
y3 1 _ BnT—Hy% < y1y3 + n+ 1y2 B( n >y1y2y3 n+ 1
2n(n—1) N1, 1)
7 Y2 — —_— —20—=A
Hh— o e~ E )y — 26— ,
yil = Ys,
1 n—3
- (_p _p
- Proytly? ( ThYs — Py Y2ys
2n 2
—Pr(S _ 2
(S + ya) (YY1y3 1V n+1y2))’
yé = Y7,
2K
Yy, = —Sc (yly7 B 1y6(1 - y6)2> .
The initial conditions for the above ODEs
1—n
n(0) =a——, y2(0) =1,
y3(0) = s, ya(0) =1—8,
yﬁ(O) =w

y5(0> t?
(0) =1/ 2 K
= S w.
yr n -+ 1

The above initial value problem will be solved numerically by the RK-4 method.

To get the approximate solution, the domain of the problem has been taken as [0,

Noo] Instead of [0, oo, where 7, is an appropriate finite positive real number. In

the above system of equations, the missing conditions s, ¢t and w are to be chosen

such that

y2<7700787t7w) = A7 y4(7700757t7w> = 17 y6(7700787t7w) =1L

To solve the above system of algebraic equations, we use the Newton’s method

which has the following iterative scheme:
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qw) a0\ (o 4
k1) | — Wl | ow 0w 8 (k)
D =Y Ps ot o Ya
w kD) w( k) 9ys Oys  Oys (k)

D5 ot ow /) (s 400 ) NI ) () 48 4 i)

For further procedure, the following notations have been introduced.

O _ O O
Os 8 Os 95 -evy Os 14,

L N
aw 22, aw 235 s aw 28

As a result of these these new notations, the Newton’s iterative scheme gets the

form:
- (k)
s kD) sk Yo Yie Y23 Yy — A
tCHD L= D) — Ly s Yos yzi M
(k+1) (k) (k)
w v Y13 Y20 W21 (1) 40n iy \Y6 1 (sCR) 0B ap( B))

(3.47)

Now differentiate the above system of seven first order ODEs with respect to

each of the variables s, ¢t and w to have another system of twenty one ODEs.
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Writing all these twenty eight ODEs together, we have the the following IVP:

yi = Y2,
!
y2:y37
1 2n 2n
/ 2 2
= - —B(Bn—1 - A
Y3 1—5(%“)% ( 1 y3+(n+1)yz B(3n )Y1Y2y3 1
2n(n—1) 4 n—1, n(n—1)
e Py — 28— A
B g e — ()Y — 26— ’
y:L:y57
1 ( n—3
/
Ys = m —Pryys — Pry Y1 YoUs
Tl Pry() w 2
2n 2
—Pr(S — 2 _
(S + ya) (YY1 v L n+1yz)),
yé:y'ﬁ
2K
/ — _S o 1 . 2
Yy C<y1y7 n+1ya( ya)),
yé:y%
yézyloa
1 2n
/
Yio = - —Y1Y10 — YsYs + ———=212y9 — B(3n — 1
10 1—5(%1)2%%{ n+1 ( )

(Ys Y2 Y3 + Y1 Yo Y3 + Y1 Y2 Yio)

2n 2n(n — 1) n—1
LU 30200 — 9 2
(~ i DA+ B 3u2Ye (€ +a)f—— (2y2Y9y3 + Y3y10)
B 2Bn(n— 1)A3} |
n—+1
yh = Y2,
1 n—3

Yo = [—PT (1912 + ysys) — Pry (ysy2ys + Y1yoys

1 —Pr 7(”7“)2?111/8
2n
n+1

+ y1yay12) — Pr(S + i) (v (ysys + v1yi0) — Y2Y2Y9 —

y9)] ,

n+1

/
Y13 = Y14,

2K
Y = —Sc [(ylym +ysyr) = o (y13(1 — y6)* + y62(1 — y6>y13)1 :

/ JE—
Y15 = Y16

/
Y16 = Y17,
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/ ! L B(3n — 1)(
p— — —_— —— — n —_—
Y7 1— /B(n;»l) 21 Y15 Y1 Yir — Y15 Y3 nt1 Y2 Yie Y15 Y2 Y3
2n 2n(n —1)
_ AQ SN T 3 2
+y1 Y16 Y3 + Y1 Y2 Yi7) (n+1) + B 1 Y5 Y16
n—1 n(n—1)
- T2 (2 2 ) — 28 ML) 43
€+ a)p 5 ( ?J2y16ys+y2y17) B n 1 ;
Z/lls = Y19,
1 n—3
fy = —p .y
Y19 = T Pr A (52 iy { (1 1o + Y15 Ys) = Proy (—5—) (415 v2 9
2n
+ Y1 Y16 Us + Y1 Y2 Yro) — Pr(S +yis) (v (yisys + yaivir) — - 1’7 22 Y16
. )
n+1y16 )
yéo = Ya1,
, 2K 9
Yoy = — Sc|(y1 Yo1 + Y15 Y7) — " (y20(1 — y6)” + y62(1 — ys) yo0) |
y;Q = Y23,
yég = Y24,
1 2n
L= - - =" 9 —B(Bn—1
You 13 (”;rl)le Vs { Y1 Y2u — Y22 Y3 + ] Yo Yoz — B(3n )
2n 2n(n —1)
_ AQ —3 2
(Y22 Y2 Y3 + Y1 Yo3Ys + Y1 Y2 You) (n+1) + B e A
n—1 n(n —1)
- ) 2 1) — 28~ ) 43
(E+a)B 5 (2y2 Ya3ys + Y5 Yoa) B 1 ;
y§5 = Y26,
1 2n
Lo = - - g — B(3n -1
Yo 11— 5 (n—QH) %1 U Y1 Y24 — Y22 Y3 + n 1 Yo Yoz — B(3n )
2n 2n(n — 1)
o AQ —3 2
(Y22 Y2 Y3 + Y1 Yo3 Y3 + Y1 Y2 You) (n+1) + B 1 Ya Yo3
n—1 n(n—1)
_ T 2 —2f——A3
(E+a)B 5 (292 Yoa3ys + Y5 Yoa) B n 1 ],

I JR—
Yo7 = Y28,

2K
Yo = =S¢ | (Y1 Yos + Yoo Y1) — nrl (y27 (1—w6)” + y62(1 — ye) y27)] .
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The coressponding initial conditions are

n0) =a—", pl0) = 1,
y3(0) = s, ya(0) =1 -8,
ys(0) =, Y6(0) = w,
() = | K, (0 =0,
ys(0) =0, y10(0) = 1,
y1(0) =0, y12(0) = 0,
y13(0) =0, y14(0) = 0,
y15(0) = 0, y16(0) = 0,
y17(0) =0, y15(0) =0,
Y19(0) = 1, Y20(0) =0,
y21(0) =0, y22(0) = 0,
y23(0) =0, y24(0) =0,
y25(0) =0, y26(0) = 0,
yar(0) = 1,, y28(0) ni 1K5-

The fourth order Runge-Kutta method is used to solve the above system of twenty
eight equations with initial guesses s, t, w. These guesses are updated by the New-
ton’s scheme (3.51). The iterative process is repeated until the following criteria

1s met:

maz{|ya (1) — Al [Y4(M00) — 1], [¥6(100 — D[} < €,

where € > 0 is the tolerance. For all the calculations in this chapter, we have set

e =107,
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3.5 Results and Discussion

This section is devoted to the detailed discussions of the numerical solutions of
our problem. To examine the effect of different involved physical parameters on
the skin friction coefficient, local Nusselt number and Sherwood number, Ta-
bles 3.1, 3.2 and 3.3 are prepared. In these tables, a comparison between the
present results obtained by shooting method and the MATLAB built in function
bvpde, with those given by Hayat et al.[15] has been presented. An excellent
agrement is observed between these results, which strengthens the used method-
ology. Table 3.1 is prepared to analyze the effect of A, «, S on skin friction
coefficient. It is observed that, by increasing the velocity ratio parameter A and
wall thickness parameter «, skin friction coefficient increases whereas by increasing
Deborah number 3, the skin coefficient decreases. Table 3.2 is prepared to analyze
the effect of v and Pr. It is observed that, by increasing the thermal relaxation
parameter 7, Nusselt number increases whereas for an increment in Prandtl num-
ber Pr, Nusselt number decreases. Table 3.3 is prepared to analyze the effect
of n, K, Ks and Sc on Nusselt number. It is observed that, by increasing
heterogeneous parameter Ks, power-law index n and homogeneous parameter K,
Sherwood number increases where as for Schmidt number Se¢, Sherwood number

is decreased.

The main objective of this section is to analyze the numerical results displayed in
the form of tables and graphs. The computations are carried out for the impact
of different parameters like, the Schmidt number, the strength of homogeneous
parameter, the Deborah number, the thermal stratified parameter, the thickness
parameter and the Prandtl number. In Table 3.1, 3.2 and 3.3, are prepared to
analyze the effect of different parameters on skin friction and Nusselt number. Fig-
ure 3.2 represents the effect of the velocity ratio parameter on the velocity profile.
The velocity profile is increased by increasing the velocity ratio parameter A. Fig-
ure 3.3 is drawn to inspect the effect of the wall thickness parameter a on the

velocity profile. Graph of this figure shows that by the increasing the velocity ratio
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parameter «, the thickness of the momentum boundary layer and the velocity pro-
file are decreased. Figure 3.4 shows the Deborah number 5 on the velocity profile
f'(€). The axial velocity is decreased with an increase in the Deborah number £.
As the Deborah number is the ratio of the observation time to the relxation time,
a rise in the Deborah number 8 means an increament in the viscous forces due to

which velocity profile decreases.

Figure 3.5 is prepared to analyze the effect of thermal relaxation parameter v on
temperature profile. Asthe value of the thermal relaxation parameter ~ is increased,
both the thermal layer thickness and the temperature profile are decreased. Phys-
ically, the fluid particles require more time to transfer heat due to an increament
in the thermal relaxation parameter 7. Figure 3.6 is plotted to examine the ef-
fect of Prandtl number Pr on the temperature profile. Larger value of prandtl
number Pr causes a reduction in both boundary layer thickness and the temper-
ature distribution. Figure 3.7 represents the effect of the power law index n on

the concentration distribution.

For gradually increasing values of the power-law index n, the concentration profile
is decreased. Behavior of Sc on concentration profile is sketched in Figure 3.8.
The concentration profile is enhanced for larger values of Schmidt number. Here,
the smaller values of Schmidt number correspond to the large diffusivity and so
the concentration distribution is decreased. Figure 3.9 is sketched to analyze the
influence of the heterogeneous reaction parameter Ks. From this graph, it is
clear that the gradually increasing values of K's decline the concentration profile.
Figure 3.10 is prepared to represent the effect of the homogeneous reaction param-
eter on the concentration profile. Larger value of homogeneous reaction parameter

brings about a decrement in the concentration profile.
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09 F a=0.1,Pr=13,n=0.2, .
Sc=1.2, 3=0.1

0.7 4
0.6 7
o5t A = 0.1, 0.07, 0.14, 0.21 -

0.4 N

0.1r

FIGURE 3.2: Effect of A on f/(&).

A=01,Pr=12,n=02, .
Sc=1.2, 3=0.3

0.9
0.8
0.7
0.6

— 05
a=05,1.0,1.5,20

0.2

0.1

FIGURE 3.3: Effect of a on f’(£).
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0.7 F £$=0.0,05,1.0,15 |

031 «=03,Pr=13,n=07, |
A=02, v=0.3, Sc=1.2

3
FIGURE 3.4: Effect of 8 on f/(£).

0.7 v=0.0,05,1.0,15 ]

a=05Pr=13,n=0.2,
03r A=05,Sc=1.2,Ks=1

FIGURE 3.5: Effect of v on 6(¢).
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T T T T T

a=0.1,n=0.2, y=0.2, |
3=0.1,Sc=1.2,K=0.5

0.9

0.8

&2 o5

Pr=0.8,1.2,1.7, 2.2
0.4 r

0.3
0.2

0.1r

FIGURE 3.6: Effect of Pr on 6(¢).

09 Ff a=05Pr=12, v=0.2,
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FI1GURE 3.7: Effect of n on g(§).
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a=0.1,n=0.2, y=0.2,

09 f 8=01,Pr=12,K=05 |

0.8
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< Sc=08,1.2, 17, 2.2
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04 1 1 1 1 1
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3
FIGURE 3.8: Effect of Sc on g(&).
1
oo 4=0.3,y=0.5, Pr=1.2,
' «=0.2,n=02,A=0.1
0.8 |
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= 06 .
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0.4

FIGURE 3.9: Effect of Ks on g(¢&).
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09 r

a=01n=02,A=01
6=0.1Sc=12,Pr=1.2
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9(§)
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0.5 k=0.8,1.2,1.7,2.2
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FIGURE 3.10: Effect of k on g(&).

TABLE 3.1: Numerical results of —f”(0) for v = 0.3, Pr = 1.2, K = 0.5,
Ks=1.0,n=0.2 and Sc=1.2.

Hayat et al. Present study

A a f —f"(0) shooting  bvp4c
0.0 0.5 0.0 1.0500 1.0508  1.0503
0.1 1.0445 1.0446 1.0441
0.2 1.0444 1.0445  1.0440
0.3 1.0440 1.0444  1.0439
1.0 1.0447 1.0449  1.0444

1.5 1.0445 1.0448 1.0442

2.0 1.0443 1.0442 1.0441

0.5 1.0445 1.0447  1.0445

1.0 1.0448 1.0449  1.0447
1.5 1.0449 1.0450  1.0449
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TABLE 3.2: Numerical results of —6'(0) for A = 0.1, 5 =0.1, K = 0.5, Ks =
1.0, a =0.5, n =0.2 and Sc = 1.2.

Hayat et al. Present study

v  Pr —0'(0) shooting ~ bvpdc
0.0 0.8 0.45238 0.45235 0.45232
0.5 0.49606 0.49601 0.49602
1.0 0.49912 0.49909 0.49914
1.5 0.50114 0.50107 0.50106

1.2 0.49114 0.49114 0.49112
1.7 0.49109 0.49107 0.49108
2.2 0.49103 0.49101 0.49103

TABLE 3.3: Numerical results of ¢/(0) for v =0.3, Pr=12, a =0.5, A=0.5
and g = 0.4.

Hayat et al. Present study

Sc Ks K n —g'(0) shooting  bvpdc
0.8 0.8 0.8 0.0 0.28048 0.28046  0.28044
1.2 0.26213 0.26212  0.26211
1.7 0.26199 0.26000  0.26098
2.2 0.25903 0.25001  0.25003
0.9 0.26104 0.26104 0.26106

1.0 0.26107 0.26105 0.26109

1.1 0.26109 0.26116  0.26110

1.2 0.26104 0.26104 0.26106

1.7 0.26114 0.26106  0.26107

2.2 0.26116 0.26108  0.26108

0.5 0.26101 0.26102  0.26101
1.0 0.26104 0.26103  0.26106
1.5 0.26108 0.26104 0.26107




Chapter 4

MHD Stagnation Point Flow
Towards a Non-linear Stretching
Sheet with Homogeneous and

Heterogenous Reactions

4.1 Introduction

In this chapter, a model which is an extension of that discusses in chapter 3 has
been analyzed by considering the effect of MHD stagnation point flow towards a
non-linear stretching sheet in the presence of Cattaneo-Christov heat flux model
and homogeneous -heterogeneous reactions.A steady, incompressible laminar and
two dimensional MHD stagnation point flow has been examined with concentra-
tion over a stretching sheet.Influence of homogeneous and heterogeneous reactions
is also considered.The non-linear partial differential equations of velocity, temper-
ature and concentration are converted into a system of ODEs by employing helpful
similarity transformations. By using the shooting technique, numerical solution
of these governing ordinary differential equations is obtained. The velocity, tem-

perature and concentration profiles are numerically analyzed by using MATLAB

57
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for pertinent variables. The dynamics of various variables of interest are discussed

through graphs.

4.2 Mathematical Formulation

Consider the two dimensional MHD, laminar, steady and incompressible stagna-
tion point flow of Maxwell fluid over a non-linear stretching sheet with variable

thickness. The geometry of the flow model is given below.

!
.}‘ #"ﬂ"-—-—-—-"-—--
- =R
/ # _.---'" _.--—"‘"-_--
- -
# -
/ / # -

‘ r{x) T'=T,=Tsc(x+b)

X
Variable sheet thickness "
y = A x+b)""

=U,(x) = Ugx-+h)"

b W

FIGURE 4.1: Geometry of the problem.

Here Cattanneo-Christove model has been considered. A variable magnetic field
of strength B, is applied along y-axis. The induced magnetic field is supposed
to be negligible. Influence of homogeneous and heterogeneous reactions is consid-
ered. Heat transfer analysis is examined in the presence of thermal radiation. The
flow equations based on the conservation principles and the obtained set of PDEs

is then converted into non-linear coupled ODEs by employing some reasonable
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similarity transformations.

du Ow
D T 4.1

2 2 2 2 2
u%—l—v%: va Z+)\1U2a Ue—)\l(uza u+v2%+2uva u)
Y Z Y

ox dy 0 ¢ 0x? 0 x? Oy? 0x0y
B2
+ Ue%gj O P (4.2)
oy ox Oy Oy ox 0y 0 x Ox oy Ox
02 u o*T 0T k 0°T
2 2 2 =—— 4.3
+ “”axay + v 92 + u 22 ) 0c, oy (4.3)
da*  Oax 0%a* 5
— =Djy—— — Kyja'b* 4.4
u8$+vay Ay 1a*b*, (4.4)
ob* ob* 0%b* 9
— = Dp——= + K1a™b*". 4.
u8x+vf)y B@y2+ 1a (4.5)
The boundary conditions are
w= Uy=U(z+b)", v=0 T=Ty=To+ec(z+b), |
* b* 1-n
DA8a = K,a", Dga =—Kaa*, at y=Ai(z+b) 2.
dy dy (4.6)
u— Ulz)= Ux(z+b)", T—oTyw = To+d(xz+Db),
a* — ag, b —0; when y— oo. )

4.3 Similarity Transformations

To convert the system of governing equations into the dimensionless form, the

following transformations have been introduced, where 1 be the stream function
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satisfying the continuity equation. It is usually written as:

_w W
oy’ N ox

u

(4.7)

Now introduce the following similarity transformations :

¢ = e ), o= S =" g

1 Qo ao

a0, o T -T.
n—\/ 5, @+ o)y, @(n)—Tw_TO- (4.9)

The detailed procedure for the conversion of equations (4.1)-(4.5) has been de-

scribed in the upcoming discussion.

dn 0 \/n—l—on -
* 836_83:( 2 u(x—H)) Y

_ W
Ty
Oy On
~ 9n dy

= (o[ Zvtite + b r ) ) (ot P+ by
(8n\/n+1 2 v

= (Y Epwnte s ore ) e (A L)

= Us(x + b)"F'(n).
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5 = 5 (G + 0

= % (Uol + b)) F'(n) + Un(x + b)"a%F’(n)
= nly(e -+ 0" F () + Unl + )" P () O
= (e + 0" F () + Ul + 5B () (25t 4+ )

n—1

= nUy(z +b)" 1 F'(n) + ( >Uo($ +b)" ' F" (n)

= Up(z + )" ! (nF’(n) + <n ; 1) (n)F"n). (4.10)

oY
ox

_ _% (\/n i Tl + b)n+lF(n))

[} v =

2 1 n+1
=— VUO) n—Qi_ (x+)"% (x+b) " Fln)




MHD Stagnation Point Flow Towards a Non-linear Stretching Sheet... 62

n—+1 n+1

_ _<” ; 1>U0(33 +b)"! ((1 + 1= 1)F’(77) + (n)(n—_l)F"(n)>

= = O by (0 ) + S ) ). (@.11)

Using (4.10) and (4.11) in (4.1),

ou ov B n—1 / n—1 "
2 oy Uo(z + b) (nF () + —5—nF (n))

— Up(x + b)™! (nF "(n) + nT_lnF ”(n))

= 0.

Hence the continuity equation (4.1) is identically satisfied.
Now we constitute below the procedure for conversion of (4.2) in the dimensionless

form .
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au a n /
LOF 0 n
= Ug($+b) ana—y

+ 10U,
=U0($+b)FN(77)\/ n2 70

. Ua—u:—\/n+1Uo v(:c+b)"‘1<F( n+ n_lF’( n))

(z+b)nL

Oy 2 n+ 1
40 () oy o
= G+ 0 R () (F( D+ n))
= Uit ("T“m WE(n)
e LAl n>>. (112
. u% =Up( z+b)"F'(n)Us( z+0b) ”‘1( nF' () + ! nF"( n))
= G+ 02 (P 4 S A (F (). 1y
Using (4.12) and (4.13), the left side of (4.2) is as follows.
Gt + 05 = Ul 0 (P )+ G0 F )
U3+ 0 (P ) (F('rz) ) bF'(m)

(4 by (n(F’(n))2(n) +(

n+1
2

n—1
2

)(n)F”(n)F’(n))

n+1
2
n+1
2n

— ( JE"(n)F(n) — (

(et (n(F’(n))2 ( >F"<n>F<n>)

>F"<n>F<n>).

= nUZ(z + b)*! ((F’(n))2 —
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To convert the right side of (4.2) into the dimensionless form we proceed as follows.

.82u _i ou

0y2  0y\dy
_9 n n+10, o
—8y(Uo($+b)F(n)\/ 1) )
—i n n—i_l% n—1 @
_an<Uo(x+b) F(n)\/ 5 y(x+b) )ay
B n+1U, o _, ,¢n+1£@ o
—U(x—l—b)\/ 5 1/( x+b)n- 877F<77) 5 V(:L'~|—b)
_ n+1 UO 2 n—1
—( . )V< B () (4.14)
_9 (0u

8x8y 0x
0 —_— n+ 10 o
8_< (z+0) F(n)\/ 5, (z+b) )
_9 n n+1 U o
R T N TR

na " n+1U0

+ Uo( z+0b) 5#70ﬂ¢ 5 V($+m

” 0 [ n+1U
—i—Uo(:E—i—b)nF(n)ax\/ 5 70(3;_|_b)n—1

n+1g9

= nUp( z +b) " F' n)\/

0 0 1 U,
+ Upl( @ +b) "= " n)—”\/’” a4 )

on ox 2
n ! n+1U08 n;l
+ Uo( z+b)"F"(n) 5 Vax(.ili—i-b)

n+1g9

= nUp( z +b) " F' n)\/

+ Us( o+ ) "F" () ( n_l)('rz)(x+b)"1\/ e

2 2 v
n—1 n—l—l UO n-1_q
+< 2 )\/ 2 T(Hb)z
1 Uy

= nUp(z +b) " 'F"(n)

()

\/n—i—on b)n—l
14

_+<n;1>U($+m F%UM/nQ U% 4 b) (x4 by !

+ U()(ZL“ + b)n—lF///
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TL—|—1U0

= nU(‘_)( T + b) nleI/( ?7)\/ 7( T + b) n—1
—1 - 17,
+ n2 "rzUo(erb)"lF’"(n)\/n TO(SH??)"‘I
n+1 [ n+10 I
e AL RE
10, -1
= Up( @ +b)"" W* a +b)”1<nF”(n)+n F' ()
2 v 2
n—1 "
+ nF(n))
10, 1
N T R A —“<x+b>n—1(< S E ()
2 v 2
n—1 "
)
_ n+1U 3n—1 _,
=Uo(:v+b)"1\/ 70( +b)"1<( 5 ()
E

= —U(a + 0y Py (F( )
(ngl)(n)F(n)F’”( ) nZ;i(Sngl)F'( JE" (1)
() () )
an_on+1/3n—1 /"
— v+ (B o F
+("T—1)np<n>pf<n>pm<n> 1)3” F () (F'(n))?

+
9 n—1><n 1 F”’
+n<n+1 2
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0% u n+1(3n—1

- 3 3n—2 F "
oquaxay 2 U3z +b) 5 5 FmE () E" (1)

+ (L) (M ) E () F" ()
T G | G T )

n+1 2
A s <>>)
— Uz +bP"2(n < nlp

(

+ (L) (mFCnE

+”<n+1><3n 1>F
| +n ( )( ) ) (4.15)
. 2a_o

-ﬁ(MMx+m%wxm+

mE"(n)

n

ST+ 0 F )

Y
= nan(x—i—b) "LE () + nUo( @+ b) ”18%1?’( )‘g:
D+ (o Sy

( >U0 (z+b)" 'y )%F”( )%;7
n(n—1)U( z+0)"""F'(n)
( ; 1>Uo z+b) "Lz + b) ™"
ar () + (L2 2”3U4x+w“2<>F<m
( )2( >U0(x+b)” Yz 4b)m !
nF(n%+<n21)<n2])Uﬂw+bV“%w+®””(mF”Uﬂ

n(n—1)

)Uo(w +b) "2 nF" (1)
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— Up(z +0)"(n— 1)(nF+2F(77) () (") )
+ () E O ot ()
= Up(z+b)"*(n 1)(nF+(§+ 4_1 ”2_1)(7;)F“(n)
() )
— Ug( 2 +b)"(n— 1)( nF + (5”4_ o Em)
(7 1>F”< 0 )
.UQ%ZUO z+b)?2"(F 2(U0 (z+b)"2(n (nF
PR pE o+ () <n>n))
— U3 (a4 b 1(n P (PE2) (o E ()
(SRR (4.16)
R e U R v )
(% )
n+1

= N e O (PO + O () FOn)

= (e v (@ PE ) + 02 () (PP
FRFCF(F" () ). (417

Using (4.15) - (4.17), we get

282 L 5 0%u +2m}82u
0 x? 0 2 oxy
5n—3

= G+ 02 2= (e + (22 (e ()

+ ( n4_ 1)(F’)QF’”( n)( n)Q) + ( "; 1>2 U( x+b)3"_2<(F( M)2F"( 1)
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b o (A F P 2P E O F () (7))

n+1 n+1
3n—1
2

+ (L) (nEC)E () F" ()
w2 () P+ o (A (S5 P o))

n-+1 n+1

UMb 1>( F( ) (n)F"( 1)

= U3( x +b)° ( n(n=DFP+ (0= 122 () F () ()

(Y o+ (P

s (U (Y

+2n< n;i)( n2+1>2F( n)F' () F" ()

(L) P E ) ) (”jl)m—lwn)F’(n)F’”(n)
—n<”“><nﬂ><gn D

S () (Y 1> )

2 2 n+1
Faln=1)(ZED)FCnF()F (o)

n+1 n+1
_< 2
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° U. =Ux(xz+0b)"
dU@ _ n—1
) o =nUx( x+0)
. Ue@ = Uso( 4+ b)"nUs( z + )" !
dz
=nU2(z+b)>""
oU, 0 "
= nUx(x + )"
. 5T, o (.
Ox? - Oz \ Oz
a n—1
=n(n = 1)Us(z + )"~
QaZUe 2 2n n—2
o MU 2 = MU (z+b)""n(n — 1)Ux(z + b)
— Mnln — DU ( + b2
dU, 02U, _ -
o Ue% + M U? T nUZ (2 +b)*" ' + \in(n — DU (x + b)**2
(4.19)
au2 n+1 Ug n—1
o y@—yz =1 5 )7(95 + )" F" (1).() (4.20)

Using (4.18) -(4.20) in the right side of (4.2), we get

au, 0? U, 0% u 0% 0%u 0 u
U —=<+ \U? = — A (2 2 2
dx T “ 0 x? +V8y2 1( “”axay” 8y2+u8x2>

= nU2 (@ + B 4+ An(n — DU (o + )2 + (2 LU2( + by E ()
Y (Ué”(az 0P (= DEP - D @) ()

— (30— DF@)F ) F'(n) + (- 1)F(?7)2F”’(77))>
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1
= nUgo(l' + b)2n71 + Mn(n — 1)U§’O(3; + b)3n72 + (%)U[?(x + b)2n71 (F"'(U)

N—
w
|
—
33
N~—
Yy
[\
N—
ol
3
3
N—
—~
B
N—
no

-\ <U0(£L' + byt (n(n —1)(F'

— (B0 = DEMFF ) + () F )" ()

2 n+1/ U}

- <”“>U3<x+b>2”1<( L N
(

()~ ae+ by (2= Y ey

— 30— DFWF () F" () + (* 1)F<n>2).

_ @b, <F’(n) - A> ( A= U(f)

Hence the dimensionless form of (4.2) becomes

CHERT <<F'< my? — () P n>> = (M) 03w+ p

2n

3

2n Ugo 2n(n_1> n—ono "
<<n+1>U_§ < n+1 )Aon(gijb) U_03+F(n)

xR - (L) POy

G- DE(F()E () + (L) E 77)2)> -2 () - 4)
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- () (e (o) - (2%

1 Us
n( n )Aon( 24+ b) "I Fp) — \Up( 2+ b) " (

2n(n—1)
n+1

n
2
L— Ug

— ()R = (Bn = DE ) F () F"(n) + (X l)F(n)2>

2
~ a2 () - A)

2n . _ 2n n(n —1)
T () = Fi()F(n) = =5 A+ 26— e A

- p( 2 (A=) (= At + )

=

= OGP O = G0 = DEC)E ()" (n) + (5 HF ()

— M? (F’( n) — A)

= F"(n)+F"(n)F(n)—

2n 2n 2n(n—1)

F/ 2 AQ
n—i—l( (77))+n+1 + n+1
2n(n — 1)

n—1
n+1 2

B A’

+ ((i’m — D)F(n)F'(n)F"(n) — (F'(n)* + (n)( )(F'(n))*F"
n+1

P () - A2(F(n) - 4) o

Now we include below the procedure for the conversion of (4.3) into the dimen-

sionless form

or 00(n)
* 9z (1w —To) Ox
= (T, — To) 0 S;n) %
= (1~ T) ("5 ) ot + 7€)

B (n ; 1) (T — To) n(z +b)~10'(n) (4.21)
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oT 0
= - ((r,-T T

B 20(n) On

=T =T an Ay

10,

= (T, — Tp) @’(n)\/n ki 70@ + b)n! (4.22)

0*T 0 <8T>
o Ut _ O (oL

0y>  Oy\0oy

= 2 (- emy "5 D o)

14

B B n+1U, .00 0n

2 v
n—l—on n—1
\/2 V(x—l—b)
+ 10, _ "
:”2 70(:c+b)”1(Tw—T0)®(77). (4.23)
, T _ofor
o0x? ox \ Ox

5 > (T — To) n(z + b)l@’(n)>

-2 @ -m) <§< FO) O () + (o +0) 5 )
+ (z+ )7 () 898/:7) %)

n—1
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F D)) ?)

n—1
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n—1
2

n—1

n—1
2

n—1
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(Ty —Tp) (x +b)7!

(T —Tp) (x +b)7"
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(z +b)720'(n) +
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(T — To) (z 4+ b)"'0'(n)
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oG =P (5 ) T Tt ) )
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uvaajgy = Up(z +0)"F'(n) — \/(n—2|— 1)U0’/(9’j + )t (F(n)
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Using the values in Eq. (4.3), as follows.
" / n—3 / , n+1 9
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Now we include below the procedure for the conversion of (4.4) into the dimen-

sionless form.

gi §<%G(m>
—oG%m9£
=G (m (") (x4t 0
ou%f :(Mﬂx+bWFKn»<n_1>%G%nﬂx+@_%

(z+0)""F' () (mac (n). (4.30)

— (1) !
= 0@ () ({20 e )
. vga; :_\/ ";1on<$+ b)"1<F( 0+ 0 Z: F)
G (5 R e )
:_< ngl)Uo(erb) "o, G/( n)(F( N+ 1 Z:F) (4.31)

Using (4.30) and (4.31), the left side of (4.4) becomes

8@* 8
3

(n—l

( wax+b %G()< Uﬁ+n2_1ﬁ)
) (T2 +8) " F () (mao( )

1ﬁ%x+b “aoG () — (

) Ul +) " aoG(m)(F( ).

Y
(Uol 2+ ) "F/ () (maoG nz + )"

- (2

+ n—1

)Uo(a + 6"~ (n)aoG' (n) F' ()

(5
(nl

2
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To convert the right side of (4.4) into dimensionless form, we proceed as follows.

.02a* _ﬁ oa*
o2 Ooy\dy

_ ( ”;1>70(a;+b)‘1a06‘”( 1) (4.32)
. DAa;;; — D (" ; 1) %(w + ) aeG" (n)
o Kla*b*2 = K, (aoG(n)) ((GOH(W)>2

= KyagG(n)H*(n)

Using the right side of (4.4), we get

o%a*

D

") ) () — KGO ),

14

— Kbt = DA<

Hence the dimensionless form of (4.4) becomes

~( n;1>U0(x+b) "agF(m)C(n) = Da ";1)%( 24 0)" lag
— Kya3G(n)H?(n)
= —( ”; 1) Ul + )" Lag F ()G’ () = (”gl)DAao%(x+ b
y 21/K1a(2) 9
= —F(n)G’(n)z%
. 2K a} )
(G (n)— Dl )o@+ 0) —G(n)H (n))
v , ” 2 v Ky a?
=~ 5 PG =60~ (5 7) s ot = o)
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> G+ 5FG ()~ () B e G ()

( Up = Up(x+ b)")('.'Sc:TyA) ( K:K&a%(x—l—b))

= G"( n)+ ScF(n)G'(n) - ( -

Now we include below the procedure for the conversion of (4.5) into

dimensionless form

"G = aa(wH()
= ' (n) 5"
= ot (n) () G+ 6 () (1.33)

o 0= (Ut 0 F () (L5 ) a0 )+ b ()

= () (ol + B E @) ) aoH )+ )

= (X5 (ol 4 ) E ) ) (o ) (4.3)

n—1

dy 2
ot () (yf "2 Lo 1y )
(e 0wt (o (FOp+ ). (w3s)
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Using(4.34) and (4.35), the left side of (4.5) becomes

ab* . Ué? b*
9

dy
~( "—1)(% £ +0)"F'(0) (aoH'( n)(w+ b

1>U0 z+b)"LagH'( n)(F(n)+ nn_lF’)

n-+1
<"‘1)
1

_|_

Us( @ +0) " F'(n)) (s H'(n)

n—1

(o
— (55 ) Uil + by aoH' (n) (F () —
(n +1

2

)Uo(a + b~ (m)ao ' (1) F'(n)

)Uo( @+ ) "o H'( )(F( ).

To convert the right side of (4.5) into the dimensionless form, we proceed as

follows
. 0?b* B i ob*
o2 dy\dy

aay (aoH'< n>\/ ) )

Il
S
o
|

=
S
v 4
—
e‘oq

+
=

3

L

N——
—
S
v 1
—_
s

+

=
\H/

oD u g = Du(F5 ) 240 et () (4.36)
o Kia'b? = K1<a0G n )( (agH( 77))2
= KiaG(n)H?*(n). (4.37)

Using (4.36) and (4.37) in the right side of (4.5), we get

82b* %7 %2 n—i—on
82+K1ab :DB B v

+ KiaoG( n)(a0)*(H( n))>.

Dg

(x+b> 0[_]’//
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Hence the dimensionless form of (4.5) becomes

_ ( n;r1> Us(z+ ) "agF( n)H'( n) = DB( n;1>%( ot b ag
+ KiagG( ) H*( n)
B ( n;1> Uo(z + b) " taoF(n)H'(n) = ( ";1) DBQO%( v b
" 2v Ka? ,
<H (m+ Dp(n+1)Uy(x + b)n—lG( n)H*( 77)))
S = F(H ()= =2
Z 2v Ka? )
(H (m+ D g(n+1)U( x+ b)n—lG( n)H( 77))
= - TVBF( nH'(n)=H"(n)+ ( ni 1) B n+1/1)f§0c?;+b) G

2 I/Klag 2
G(nH

< Se = ﬁ) ( K = Kf) (x+ b)) ( 5= %i)

= 1+ S O+ (25 ) et =0

o

The final dimensionless form of the proposed model, is:

2n 2n n(n—1)
F"4+ FF'— —— F? 4+ — A4 98— — A3 3n—1)FF'F"
* e T ey LR e
2n(n_1) /3 n—1 12 1 n+1 2 2 /
SN Y —— FPF"— ——FF" ) - M?*(F'(n) - A
+ B ( —— + 5 (n) :
(4.38)
Q" + PrFe + Pry ("T_?’FF’@’ — "THFQG”>
4 Pr(S+0) (P — 2 2 ) = (4.39)
n+1 n+1 ’ '
25cK
G" — 22N GH? 4 SeFG =0, (4.40)
n+1
25cK Sc
" GH?>+ ~~H'F =0. 4.41
TShrn TS (441)

Here prime represents the differentiation with respect to 7.

Consider F(1n) = f(n— a)= f(§),0(n) = 0(n— a)= 0&), G(n) =
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g( n— «) = g(€). This change of notations converts the above equations (3.39)-
(3.42) into the following form.

2n 2n n(n-—1)
" "o 2 A2 9 A3 -1 1 el
o =g g A 22— A BB - Dfff
271(%—1) 3 n—1 12 ¢l n+1 2 ¢ 2 /
v (-2 et - F)—4) =0,
(4.42)
— 1
0" + Prfo + Pry (” > S — % f2«9”>
Pr(S 1 0) (v - g 2 ) — 0 (4.43)
n+1 n+1 ’ '
25cK
"o 2 [ 4.44
I+ Sefd =0, (4.44)
25cK Sc
'+ ———hg*+ —=HWf=0. 4.4
TS T =0 (4.45)
The new form of the associated boudary conditions, is:
1—n \
0) = '(0)=1, H(0)=1-S
FO) =aT—2 P =1, 0(0)=1-5,
2 1 2
'(0) = Ks g(0), h(0)=—=1/——Ksg(0 (4.46)
9'(0) 15 9(0), W(0) = =54/ Ks9(0),
fllo) =4, 0 =1 g —1, h§ —0a &§— o0,
where Sc = 1% is the Schmidt number, § = g—’j the ratio of mass diffusion coeffi-
cient, K = %Ql(xjtb) the strength of homogeneous parameter, 3 = \;Uy(z+ b)"~!
the Deborah number, S = g the thermal stratified parameter, v = A\Uy(x + )" !
the thermal relaxation parameter, o the wall thickness parameter, Ks = 1’;_: 79(5—;:1’)

the strength of heterogeneous reaction parameter, A = %O the velocity ratio pa-
rameter and Pr = % the Prandtl number. The diffusion coefficients of chemical

species A and B are assumed to be of a comparable size. This argument leads to



MHD Stagnation Point Flow Towards a Non-linear Stretching Sheet... 83

assume that the diffusion coefficient Dy=Dpg, that is, 0=1. Thus

DB UOO HfCp
d=—"7 A=-—2= PpPr==_L71
Dy’ U Tk

d
6 = )\1U0< T + b)n_l, Y= /\U()( T + b)n_l, S = Z,
v ks [v(z+Db)
Sp=—, K,= |22
D4 D4 Uw

V

so equation (4.44) gets the following form and (4.45) can be ignored.

,  25cK
n+1

g(1 —g)* + Scfg = 0. (4.47)

The relevant boundary conditions are:

g'(0) = Ks g(0), g(oo) — 1 when & — oo,

4.4 Solution Methodology

In order to solve the system of ordinary differential equations (4.42)-(4.47), the

shooting method has been used. Let us use the notations:

f=vy1,0 =y1,9 = ys.

Further denote

=y by, f'=y'byys, 60 =uy,byysandg =y by yr.

The system of equations (4.42)-(4.47), can now be written in the form of following
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first order ODEs:

Y1 = Y2,
Yo = Y3
: - B(3n —1) Ny
= — n_ J—
Y3 _ —Y1Yys3 yz Y1Y2Y3 nal
2 n(n — 1) —1 n(n —1)
B 2y — 28 T ) A3 g2y, — A
#o0 (e g - 20" a2 - ).
yzllzyfn
1 n—3
Yy = W(—Prylys—lgm 5 Y1925
2n 2
—Pr(S - 2
(S + ya) (VY193 n—l—lwh n+1y2>>’
?Jé:y%
2K
p =-S5 — 1—ye)? ).
Yq C(y1y7 n+1y6( yﬁ))

The initial conditions for the above ODEs

1—n

yl(()) - al + TL, yQ(O) = 17
y3(0) = s, y4(0) =1—8,
y6(0) = w
2 1K3 wW.

The above initial value problem will be solved numerically by the RK-4 method.
To get the approximate solution, the domain of the problem has been taken as [0,
Noo] instead of [0, oo, where 7, is an appropriate finite positive real number. In
the above system of equations, the missing conditions s, ¢t and w are to be chosen

such that

y2<7700787t7w) = A7 y4(7700757t7w> = 17 y6(7700787t7w) =1L
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To solve the above system of algebraic equations, we use the Newton’s method

which has the following iterative scheme:

-1

st A I v "
k1) | — B | — | va 0w 8 (k)
e = e = e e g i
w kD) w P oys  dys  Dus (k)

9s 0t 0w/ (40 40 ey N6/ (509 49) o)

For further procedure, the following notations have been introduced.

oy 0y 0yy

g = Us, g =Ygy -1y 88 = Y14,

Oy _ Oy _ Or _
Jw Y22, Ow Y23y -y Ow Yasg-

As a result of these these new notations, the Newton’s iterative scheme gets the

form:
- (k)
s( A s(H) Yo  Yie Y23 Yy —A
tRD L =D — Ly s yos yf; M1
(k+1) (k) (k) _
v v Y13 Y20 Y27/ 1) 40 iy \ Y6 1 (sCR) 40 K) ()

(4.48)

Now differentiate the above system of seven first order ODEs with respect to

each of the variables s, ¢t and w to have another system of twenty one ODEs.
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Writing all these twenty eight ODEs together, we have the the following IVP:

yi = Y2,
yé = Y3,
1 2n
/ 2
= + 3n—1 2y
Y3 1—5(%“)?/%( Y1 Yz + ( +1)y — B( )Y1Y2y3 ol
2n(n—1) 4 n—1, n(n—1) 4 5
T~ Py — 28— LA My, — A
+p w1 Y (€ +a)p 5 Yals — 2 1 + My — A) ),
yzll = Y5,
1 n—3
- -P —-P
y5 1_ Pr’y(i) y2 ( T?/ly5 7"'}/ 2 yl y2y5
2n 2
—Pr(S - 2_
(S + ya) (vy1 Y3 L n+1y2)),
yé =Y,
2K
p =-S5 — 1 —y)?
Y C (y1y7 n+1y6( y6) ),
yé = Yo,
yé = Y10,
Yo = ! —Y1Y10 — YsY +2—2yy—ﬂ(3n—1)
10 1_5(7174_1)2y1y8 1910 8Y3 +1 2Y9
(Ys Y2 Y3+ Y1 Yo Y3 + Y1 Y2 Y1o)
2n 2n(n — 1) n—1
_ A2 30210 — 9 2
(n+1) B T e (§+a)f— (292993 + Y3Y10)
n(n —1)
-2 A%+ My
b n+1 + }
?Jil = Y12,
1 n—3
Yio = 1= Pr (%) 2158 [—Pr (y1912 + ysys) — Pry (vsy2ys + y1yoys

2n 2
+ y1y2y12) — Pr(S + yi1) (v (Ysys + y1y10) — Y2Yayg — yg)} :

n-+1 n-+1
yig = Y14,
/ 2K 2
Yy = —Sc | (yiyia + ysyr) — ] (y13(1 — v6)* + y62(1 — y6)y3) | ,
!
Y15 = Y16,

/
Y16 = Y17,
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/ ! L B(3n — 1)(
Y7 = o —Y1 Y17 — Y15 Y3 T ——2Y2 Y16 — n— Y15 Y2 Y3
17 1= B(") 251 s n+1
2n 2n(n —1)
_ AQ SN T 3 2
+y1 Y16 Y3 + Y1 Y2 Yi7) (n+ 1) + B 1 Y2 Yie
n—1 nin—1
—(5+Q)BT (2y2 vi6 y3 +¥5 yir) — 28 n(n—1) A® + MPys6)
n+1
Z/lls = Y19,
1 n—3
1o = —Pr + — Pr
Y19 1_ Pr 7(%“>2 11 [ (?Jl Y19 T Y15 y5) 7 ( 9 ) (y15 Y2 Ys
2n
+ Y1 Y16 Us + Y1 Y2 Yro) — Pr(S +yis) (v (yisys + yaivir) — - 17 2Y2 Y16
—
n+1y16 )
yéo = Ya1,
/ 2K 2
Yoo = —Sc|(yr Y21 + Y15 y7) — " (y20(1 — y6)” + y62(1 — ys) yo0) |
y;Q = Y23,
yég = Y4,
1 2n
!
You = - —Y1 Yoa — Y22 Y3+ ———=2 Y2 y23 — B(3n — 1
2 1-— B (%)le Y22 |: n+1 ( )
2n 2n(n —1)
_ AQ —3 2
(Y22 Y2 Y3 + Y1 Yo3ys + Y1 Y2 You) (n+ 1) + B 1 Yo Y23
n—1 n(n—1
—(€+ @) B——(2y2 yo3ys + Y3 Yoa) — QBQAB + M?ys3
2 n—+1
y§5 = Y26,
1 2n
!
Yog = - —Y1 You — Y22 Y3 + ———2y2 Y23 — B(3n — 1
% 1—5(%1)291?&2 ! n+1 ( )
2n 2n(n — 1)
o AQ —3 2
(Y22 Y2 Y3 + Y1 Yo3 Y3 + Y1 Y2 You) (n+1) + B 1 Y3 Y23
n—1 n(n—1)
- C—0) 2 yog) — 2 B L A3
(E+a)B 5 (292 Yoa3ys + Y5 Yoa) B n 1 ],

I JR—
Yo7 =

/ JR—
Yog =

Y28,

2K
—Sc | (Y1 yos + Y22 Y7) — ntl (927 (1—w6)” + y62(1 — ye) y27)] .
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The coressponding initial conditions are

1—n
y1(0>:a1+n7 y?(o)zlv
y3(0> =S, y4(0) =1- Su
ys(0) = t, y6(0) = w,
yi(0) =\ = Ksw, s(0) = 0,
Y9(0) = 0, y10(0) = 1,

y19(0) = 1, y20(0) = 0,
y21(0) =0, y22(0) =0,
y23(0) =0, Y24(0) = 0,
y25O:077 y260207
2
0)=1 0) =4/ ——
127(0) ) 125(0) nal S

The fourth order Runge-Kutta method is used to solve the above system of twenty
eight equations with initial guesses s, t, w. These guesses are updated by the New-
ton’s scheme (3.51). The iterative process is repeated until the following criteria

1s met:

maz{|ya (1) — Al [44(M00) — 1], Y6 (100 — D[} < €,

where € > 0 is the tolerance. For all the calculations in this chapter, we have set

e =107,
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4.5 Results and Discussion

In order to evaluate the solution of the given system the dimensionless velocity pro-
file, temperature and concentration profile for different parameters are sketched.
Figure 4.2 is sketched to study the behavior of velocities ratio parameter A on
velocity distribution. Velocity profile is increased by increasing velocity parameter
A. Behaviour of wall thickness parameter on velocity profile is shown in Fig-
ure 4.3. The dimensionless velocity profile decreases for the increment in the value
of wall thickness parameter. It is due to fact that on increasing the wall thickness,
stretching velocity profile is decreased which results a reduction in the velocity
profile and its boundary layer thickness. Figure 4.4 reflect the effect of the Deb-
orah number 3 on velocity profile. As Deborah number is the ratio of the fluid
relaxation time to its characteristic time scale. When the shear stress is applied to
a fluid, the time in which it gains its equilibrium position is called the relaxation
time. This time is higher for the fluids having high velocity. So, an increase in
the Deborah number cause an increase in the velocity of fluid due to which profile
decreases. Figure 4.5 represents the effect of power index n on the velocity profile
curves of this graph indicates that velocity profile is decreasing near the surface
and increases away from the surface. Figure 4.6 shows the behaviour of M on
velocity profile it is noticed The effects of magnetic field are to reduce the velocity
profile. Because of the application of transverse magnetic field in an electrically
conducting fluid, a resistive force similar to a drag force is produced, which is
Lorentz force. The presence of Lorentz force retards the force on the velocity field.
To view the effect of velocity ratio parameter on the temperature profile Figure 4.7
is presented. It is noticed that by increasing the value of the velocity ratio param-
eter A temperature profile decreases. Behaviour of the wall thickness parameter
on the temperature profile is shown in Figure 4.8. It is noticed that by increas-
ing the wall thickness. The temperature distribution and thermal boundary layer
thickness is decreased. It is due to fact by increasing the wall thickness parame-

ter less amount of heat i transferred. The temperature distribution increases for
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different values of the Deborah number and illustrated in Figure 4.9 It is stud-
ied that the elastic force enhance the heat transfer in upper convected Maxwell
fluid which result an increase of mass transfer. Thermal relaxation parameter on
temperature profile is shown in Figure 4.10 from the figure, it is clearly observed
that the distribution of temperature is a decreasing function of thermal relaxation
parameter. By increasing the thermal relaxation parameter -y, particles within the
material requires more time to transfer heat to its nearby particle, which causes
reduction in temperature distribution and boundary layer thickness. Figure 4.11
shows the behaviour of power law index n on temperature profile, by increasing
the power law index n the temperature fluid flow increases in the stretching sheet.
Figure 4.12 is prepared to analyze the effect of Prandtl number on temperature
profile, by increasing the Prandtl number reduction of temperature profile is ob-
served. Figure 4.13 is plotted to visualize the effect of Magnetohydrodynamics on
temperature profile. An increase on temperature profiles is shown. Because of the
presence of Lorentz force retards the force on the velocity field and This force has
the tendency to slow down the fluid motion and the resistance offered to the flow.
Therefore, it is possible for the increase in the temperature. It is manifest from the
Figure 4.14 that the temperature profile and related boundary layer thickness is
increased with the increase in the small parameter e associated with temperature.
An increase in thermal conductivity means increase in kinetic energy of the fluid
which cause an increase in temperature.

Figure 4.15 is prepared to observe the effect of the velocity ratio parameter A on
concentration profile 6. It is observed that the concentration profile decreases with
the increase in the velocity ratio parameter. Effect of the wall thickness parameter
on the concentration profile is shown in Figure 4.16, when the wall thickness pa-
rameter « increased, concentration profile increased. The concentration boundary
layer thickness reduces due to the conversion of species that occurs as a result of
chemical reaction and hence the concentration boundary layer thickness decreased.
Figure 4.17, is prepared to represent the effect of homogeneous reaction parameter
on concentration profile that the concentration boundary layer of the reactants is

increased near the surface and away from the surface, the homogeneous reaction
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has no effect on the concentration of the reactants. Figure 4.18 is sketched to
analyze the behaviour of heterogeneous reaction parameter Ks.

From the graph of this figure it is clear that gradually increasing value of Ks
decline the concentration profile. The effect of power law index on concentration
profile is displayed in Figure 4.19. An increment in power law index n causes a
decrement in concentration profile. Figure 4.20 is drawn to illustrates the behav-
ior of Schmidt number on concentration distribution, greater values of Schmidt
number Sc represents the lower mass diffusivity.

Due to this effect a decline in concentration profile is noticed. Figure 4.21 depicts
the effect of MHD on concentration profile which shows that by enhancing M,

concentration profile reduces.

A =0.0,0.06, 0.12, 0.18

0.4 a=0.1,Pr=13,n=0.2, .
Sc=1.2, #=0.1,M=0.2

FIGURE 4.2: Effect of A on f/(§).
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a=05,1.0,15,20

3 |-
A=0.1,Pr=1.2,n=0.2,
27 Sc=1.2, =03, M=0.2
l |-
O 1 1
0 1 2 3 4 5
3
FIGURE 4.3: Effect of a on f/(§).
1 T T T T T
0.9
0.8 |
0.7}
___o06f
sl £=0.1,0.6,1.1,1.6
S
0.4
0.3
b o =0.3,Pr=1.3, A=0.2,
' Sc=1.2, v=0.3, M=0.3
0.1Ff
0 1 1
0 1 2 3 4 5

3

FIGURE 4.4: Effect of 8 on f(&).
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0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n=0.20.7 1217

a=05,Pr=1.2, v=0.2
$=0.2,Sc=1.3, M=0.2

3

FIGURE 4.5: Effect of n on f().

M =0.2,0.4, 0.6, 0.8

a=0.1,Pr=13,n=0.2,
Sc=12, 8=0.1,A=0.2

1 2 3 4 5

3

FIGURE 4.6: Effect of M on f/(&).
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0.9
0.8
0.7

0.6
— A=0.0,0.1,0.2,0.3

0.3

a=0.1,Pr=1.3,n=0.2,
Sc=12, 6=0.1,M=0.2

0.2

FIGURE 4.7: Effect of A on 6(&).

0.9
0.8
0.7

0.6

Host a=05,10,15,20

03

0.2+t A=0.1Pr=1.2,n=0.2,
Sc=1.2, 3=0.3,M=0.2

0 1 2 3 4 5

3

FIGURE 4.8: Effect of o on ().
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1 T T T T T
0.9
0.8
0.7 ~=0.0,05,1.0, 1.5
0.6
X o5t
>
04
0.3
a=05 Pr=1.3,n=0.2,
02 A=05 Sc=12 Ks=1 M=0.2
0.1
0 L ‘
0 1 2 3 4 5
'S
FIGURE 4.9: Effect of  on 6(&).
1
0.9
0.8
0.7
n=0.2,0.7,1.2,1.7
0.6
S os)
>
0.4
0.3
02t a=0.5 Pr=1.2, v=0.2
$=0.2,Sc=13,M=0.2
0.1
0 Il Il Il
0 1 2 3 4 5

3

FIGURE 4.10: Effect of n on 6(§).



MHD Stagnation Point Flow Towards a Non-linear Stretching Sheet...

96

0.9

0.8
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0.3
ozl v=0.2, aa=0.1, 3=0.1, |
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0.1
0
0 1 2 3 4 5
3
FIGURE 4.11: Effect of Pr on 6(¢).
l T T T T T T T
a=0.1,Pr=1.3,n=0.2,
0.8 M=0.2, =0.1,Sc=1.2
0.6
@ 0.4
> S$=0.1,0.2,0.3,04
0.2 -
0 -
02 1 1 1 1 1 1 1
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FIGURE 4.12: Effect of S on ().
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0.9

0.7
0.6 | M =0.2,0.4,0.6,0.8
o5t

0.4 r

a=0.1,Pr=1.3,n=0.2,
ozr Sc=12, 3=0.1,A=0.2
0.1r

FIGURE 4.13: Effect of M on 60(¢).
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a=0.5, M =0.2and Sc=1.2..

A

«

B

n

—/"(0)

shooting

bvp4dc

0.3
0.5
0.7
0.9

0.1

0.2
0.3
0.4

0.2

0.4
0.6
0.8

0.2

0.4
0.6
0.8

0.99546
1.09714
1.19627
1.29293
1.09257
0.99546
0.89939
0.89446
0.84410
0.69607
1.01709
1.04002
1.06179

0.99545
1.09712
1.19627
1.29296
1.09255
0.99544
0.89940
0.89442
0.84411
0.69609
1.01708
1.04001
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TABLE 4.2: Numerical results of —6”(0) for A = 0.1, 8 = 0.1, K

Ks=10,a=05 M =0.2 and Sc=1.2..

A «

p

v

M

n

Pr

—0"(0)

shooting

bvpdc

0.3 0.1

0.5

0.7
0.2
0.5
1.0

0.1 0.1 05 1.0 20

0.2
0.3
0.4

0.3
0.5
1.2

0.2
0.4
0.6

0.9
0.7
0.5

1.5
1.0
0.5

1.135504
1.182832
1.229482
1.077498
0.798767
0.044135
1.077498
1.000720
0.906847
1.221272
1.299390
1.543654
1.135504
1.135404
1.133991
1.135504
1.134404
1.133204
1.135504
1.133991
1.133901

1.135503
1.182833
1.229482
1.077499
0.798768
0.044139
1.077499
1.000719
0.906848
1.221271
1.299391
1.543652
1.135503
1.135403
1.133992
1.135503
1.134403
1.133203
1.135503
1.133992
1.133902

0.5,
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TABLE 4.3: Numerical results of ¢’(0) for v = 0.3, Pr =1.2, « = 0.5, A = 0.5,

M =0.2 and g =04.

—4'(0)
A a K Ks M n Sc shooting bvp4dc
0.3 0.1 01 01 05 1.0 2.0 0.6050838 0.6050837
0.5 0.5912941 0.5912943
0.7 0.5712940 0.5712942
0.2 0.636992  0.636993
0.5 0.745345  0.745348
1.0 1.100055  1.100060
0.2 0.636992  0.636993
0.3 0.670242  0.670241
0.4 0.729453  0.729455
0.3 0.590773  0.590773
0.5 0.600664  0.600664
1.2 0.675825  0.675823
0.2 0.580542  0.580542
0.4 0.596509  0.596509
0.6 0.634370  0.634373
0.9 0.562295  0.562295
0.7 0.481124  0.481124
0.5 0.282923  0.282923
1.5 0.605083  0.605083
1.0 0.608772  0.608772
0.5 0.609172  0.609172




Chapter 5

Conclusion

In the present research work, the MHD Stagnation point flow with Cattaneo-
Christov heat flux and homogeneous-heterogeneous reactions is studied. The gov-
erning nonlinear partial differential equations (PDEs) are converted into ordinary
differential equations (ODEs) by means of the similarity transformation. The nu-
merical solution of these ordinary differential equations (ODEs) is obtained by
using the shooting technique. A numerical correlation has shown for different
physical parameters influencing flow and heat transfer and found to be in excel-
lent agreement with MATLAB built-in function bvp4c. The impact of different
physical parameters such as velocity ratio parameter A, wall thickness parameter
«, the Deborah number 3, the Prandtl number Pr, Schmidt number Sc, the power
law index n, thermal stratified parameter S and thermal relaxation parameter
on velocity, temperature and concentration profiles are presented graphically and

discussed. Some of the main conclusions of this investigation are:
e The velocity and concentration profile is enhanced while the temperature
profile is diminished as the velocity ratio parameter A is increased.

e The velocity and temperature profile are found to reduce while the concen-
tration profile is enhanced for the gradually mounting values of the wall

thickness parameter «.
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e The temperature profile is increased, while the axial velocity is decreased

with an increase in Deborah number .

e On temperature profile, the Prandtl number Pr, the thermal stratified pa-
rameter S and the thermal relaxation parameter v have a decreasing effect
whereas a rise in the power-law index n, and the MHD parameter M causes

an increase in the temperature profile.

e The concentration profile decreases as each of the Schmidt number Se¢, the
MHD M, the Deborah number 3 , the power-law index n is increased whereas
an increment in the heterogeneous reaction parameter ks causes a decrement
in the concentration profile.

Future Recommendations:

There is a possibility of extention by considering the stagnation point flow
towards a nonlinear vertical stretching sheet in the presence of Cattaneo-
Christov heat flux model, and homogeneous - heterogeneous reactions and

second order velocity slip .
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