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PREFACE

We biologists study life, and the processes of life are endlessly 
fascinating. Cannonball trajectories and masses on springs are fine, 
but they cannot hold a candle to cell division.

This may be why we see so many physicists turning their sights on 
biology, trying to get to the bottom of its wonderful phenomenology, 
and making good headway too—some of the deepest biology papers 
of the past decades have been written by physicists-turned biologists.

One of the secrets of their success is mathematics, approaches and 
tools borrowed from celestial mechanics, chemical kinetic theory, 
and control theory. You can have a terrific, satisfying career in biology 
without ever making use of the quadratic formula, let alone bifurcation 
theory, but for those willing to give it a go, the rewards can be great. 
It gives you the chance to go beyond just describing fascinating 
phenomena to really understanding how and why they happen.

This book is an attempt to introduce biologists to some powerful 
mathematical approaches from the theory of dynamical systems. The 
biological focus is on cell signaling, the interplay between a cell and the 
outside world that allows it to “know” things, respond to them, adjust 
to them, and remember them. Cell signaling is a big, complicated field, 
but it turns out that evolution has come up with the same handful of 
tricks over and over again to build reliable signaling systems. There 
are commonalities to seemingly disparate cell signaling phenomena 
that become apparent once you decide to take the plunge and apply 
a little math.

This book arose out of a course I teach on systems biology and 
mathematical modeling. It is a 30-h course for Ph.D. students, and I 
devote 10 h to lectures and 20 h to hands-on modeling. Occasionally 
a student in the course will come in with some knowledge of biology 
plus a good background in matrix algebra or dynamical systems 
theory, but for most of the students the math is completely new, or 
the biology is completely new, or both. The 17 chapters that make up 
this book include too much material for my course—maybe they will 
be just right for your course, or you could do what I do and pick and 
choose among the offerings.

There are written problem sets to accompany Chapters 2–16. They 
make use of Mathematica®, and so the problem sets attempt to both 
solidify the concepts introduced in the book chapters and gently 
introduce the students to writing simple Mathematica® code. I have 
also tried doing the course in MATLAB®, but I have had better luck with 
Mathematica®, especially for students who have no previous exposure 
to either. The problem sets, with answers, are available to instructors. 
Please go to the book’s product page (https://www.routledge.
com/Systems-Biolo-gy-of-Cell-Signaling-Recurring-Themes- 
and-Quantitative/Ferrell/p/book/9780815346036), and then register 
for the “Instructor Hub” by clicking on the relevant link. Some of 

https://www.routledge.com
https://www.routledge.com
https://www.routledge.com
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the problem sets are based on famous systems biology papers. This 
shows that a diligent student can (usually) run published models for 
themselves, and, in the space of an hour or two, get a much better 
idea of what the modeling shows and means than could be obtained 
by just reading a paper.

This book does not attempt to give a comprehensive overview of cell 
signaling—there are just too many genes, proteins, and pathways for 
that. Instead it repeatedly calls upon a group of interesting, important, 
and reasonably well-understood signaling archetypes, including 
two-component signaling in bacteria, G-protein-coupled receptors, 
receptor tyrosine kinase signaling, and oscillators from the embryonic 
cell cycle and neurobiology. My strong impression has been that both 
the physicists and biologists in my course benefit from this restricted 
biological focus.

James E. Ferrell, Jr.

Palo Alto
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SIGNAL TRANSDUCTION 
COMPONENTS AND SYSTEMS
All living cells continually detect and respond to external signals. This 
is true for prokaryotes, whether they are living alone or in biofilms, 
and it is even more manifestly true in multicellular eukaryotes, where 
communication between cells and coordination of the cells’ behavior 
enables the organism to function as a unified whole. In large mul-
ticellular organisms like us humans, cells receive signals from their 
immediate neighbors through short-range signals like neurotrans-
mitters and cell-surface molecules. They receive signals from more 
distant neighbors via longer range diffusible molecules such as mor-
phogens and from still-more distant neighbors by means of hormones 
that flow through the circulatory system. They receive signals from the 
outside world via sense organs. Cells also monitor their own internal 
status, and there is a great deal of overlap between the cellular com-
ponents involved in cell–cell communication and internal monitoring. 
Ultimately a cell processes input signals through a process termed 
signal transduction, shown schematically in Figure 1.1.

Signal transduction allows us to see, hear, taste, smell, and feel. It 
allows us to think, remember, and move. Signaling determines if and 
when a cell grows and divides and often determines if and when it 
dies. Signaling drives differentiation, enables the formation of all of 
our tissues and organs during development, and maintains them after 
they have formed. It allows our blood to clot and our immune system 
to fight infection. Signaling allows us to heal our wounds and to adapt 
to the unpredictable world around us. Signaling proteins are the tar-
gets of six of the ten most widely prescribed drugs in the United States 
(TABLE 1.1) and are the targets of probably all recreational drugs.

Thus, signal transduction is of special importance to neurobiologists, 
cell biologists, developmental biologists, hematologists, immunolo-
gists, and pharmacologists. Increasingly, it has been attracting the 

TABLE 1.1  Most Widely Prescribed Drugs in the United States

U.S. Prescriptions (millions)

Drug Indications Mechanism of Action 2014 2015 2016 2017 2018

1 Atorvastatin High cholesterol Inhibits cholesterol synthesis 74 94 97 105 112

2 Levothyroxine Hypothyroidism Activates thyroid hormone 
receptors

100 113 114 102 105

3 Lisinopril Hypertension Inhibits the last step in the 
production of the hormone 
angiotensin II

114 110 109 104 97

4 Metformin Type II diabetes mellitus Inhibits mitochondrial 
respiratory-chain complex 1

85 83 80 78 84

5 Amlodipine Hypertension, angina pectoris Inhibits voltage-gated calcium 
channels

63 71 75 73 76

6 Metoprolol Hypertension, angina pectoris, 
and myocardial infarction

Inhibits β1-adrenergic receptors 71 69 73 67 71

7 Albuterol Asthma and chronic 
obstructive pulmonary disease

Activates β2-adrenergic receptors 48 50 47 50 61

8 Omeprazole Gastroesophageal reflux 
disease and gastric ulcers

Inhibits H+/K+ ATPase 71 71 70 58 58

9 Losartan Hypertension Inhibits angiotensin II receptors 37 47 49 52 51

10 Simvastatin High cholesterol Inhibits cholesterol synthesis 97 89 80 73 66

Six of the ten drugs on this list work by activating or inhibiting signaling proteins, or by inhibiting the production of a hormone. These are highlighted 
in italic. Source: Agency for Healthcare Research and Quality. Total purchases in by prescribed drug, United States, 1996–2018. Medical Expenditure 
Panel Survey. Generated interactively: Wed Jan 20 2021.

Input

Output

Signal
transduction

system

Figure 1.1  A schematic view of a 
generic signal transduction process.
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attention of physicists, control theorists, and electrical engineers—
scientists who want to use the tools of their fields to deepen our 
understanding of this fascinating but highly complicated aspect of life.

SIGNAL TRANSDUCTION IS 
CARRIED OUT BY SYSTEMS OF 
VARYING COMPLEXITY
1.1 � SIGNAL TRANSDUCERS ARE CELLULAR 

COMPONENTS THAT ACT MAINLY 
BY REGULATING OTHER CELLULAR 
COMPONENTS

Deciding which components of a cell count as signal transducers, 
and which do not, is not a trivial task. Often signal transducers are 
proteins or protein complexes, but they can also be RNAs, small mol-
ecules, or ions. Perhaps a few examples will help us sharpen our ideas 
of what is and what is not a signal transducer.

Receptors, protein kinases, and small G-proteins are signaling proteins, 
but glycolytic enzymes and motor proteins are not. MicroRNAs are 
signal transducers—they regulate mRNA stability and translation—but 
mRNAs, tRNAs, and rRNAs are not. Calcium ions are signal transducers—
they regulate protein kinases, phosphoprotein phosphatases, motor 
proteins, and many other proteins—but magnesium ions are not. The 
membrane lipids PIP3 and diacylglycerol are signal transducers—they 
both regulate particular protein kinases—but phosphatidylcholine is 
not; it (mainly) acts as a structural component of membranes. And 
the nucleotide cAMP is a signal transducer, allosterically regulating a 
subunit of protein kinase A, but its relative ADP is not; it is a metabolic 
intermediate. In general, signal transducers are cell components that 
vary dynamically in abundance or activity and affect a cell’s function by 
regulating something else; they are more like managers than workers.

Some consider transcription factors—DNA-binding proteins that 
regulate the transcription of specific genes—to be terminal effectors 
of signal transduction systems rather than being signal transducers 
themselves. Here the main distinction is time scales; transcription is 
often slower than signal transduction processes like ion fluxes or pro-
tein phosphorylation. In other respects, though, transcription factors 
are just like other signal transduction proteins, relaying signals from 
upstream inputs (often protein kinases) to downstream targets (the 
genes whose transcription they regulate).

1.2 � THE SIGNAL TRANSDUCTION PARTS LIST 
IS LONG

We now have a close-to-comprehensive parts list for the signaling 
proteins and other signaling molecules from all of the widely stud-
ied model organisms (e.g., humans, mice, Drosophila melanogaster, 
Caenorhabditis elegans, Saccharomyces cerevisiae, and Escherichia coli). 
The simplest of these model organisms in terms of the length of the 
parts list is, by a wide margin, the prokaryote E. coli. Many of its signal-
ing pathways make use of one of 29 histidine-specific protein kinases, 
and these kinases phosphorylate about an equal number of down-
stream substrate proteins. Compared to the numbers of protein kinases 
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and kinase substrates involved in mammalian signaling, these num-
bers are small, but still, these are the two largest families of paralogous 
genes in E. coli. In any case, with this limited cast of components, it is 
possible for a diligent student of cell signaling to acquire a reasonably 
comprehensive understanding of E. coli signal transduction.

The situation is much more complicated in human cells; the proteins 
involved in cell signaling are more numerous and more varied in their 
structures and functions than the bacterial proteins are. There are more 
than a dozen families of receptors in human cells, including G-protein-
coupled receptors or GPCRs (more than 800 in humans), receptor 
tyrosine kinases or RTKs (49 in humans), tyrosine kinase-associated 
cytokine receptors, integrins, receptor serine/threonine kinases, 
receptor phosphatases, receptor guanylyl cyclases, the Hedgehog 
receptor Patched, the Wnt co-receptor LRP, cadherins, Toll-like recep-
tors, ligand-gated ion channels, and steroid/retinoid receptors. These 
receptors act through at least as many classes of downstream signal-
ing proteins: adaptor proteins, GTP-binding G-proteins, non-receptor 
protein kinases and phosphatases, methylases and demethylases, 
acetylases and deacetylases, second messengers (small molecules 
and ions), translational regulators, degradation regulators, and many 
classes of transcription factors and chromatin regulators, to name 
only a few. In total there are thousands of genes for signaling proteins 
in the human genome. The large number attests to the importance of 
cell signaling in complex organisms. However, it also presents a for-
midable challenge to students of cell signaling; there is a lot to learn.

1.3 � SIGNAL TRANSDUCTION IN BACTERIA IS 
ACCOMPLISHED BY SHORT, (MOSTLY) 
LINEAR, (MOSTLY) NON-INTERCONNECTED 
PATHWAYS

Once an organism’s signaling parts list is completed, the next step 
toward understanding how a signal transduction process works is to 
figure out how the relevant parts are wired together into pathways, 
circuits, and networks. All of these not-quite-synonymous terms can 
be used to describe systems of signaling proteins, with the particular 
term used depending on the size and topology of the system: the term 
“networks” tends to be used for big systems with all sorts of compli-
cations, “pathways” are generally smaller systems with little or no 
feedback, and “circuits” are often intermediate in size and complexity. 
Obtaining a reliable systems map or circuit diagram is much more 
difficult than obtaining a list of components. Nevertheless, we have a 
good understanding of a handful of signaling pathways in a variety of 
model organisms, from E. coli through humans.

As mentioned above, in E. coli, signal transduction is often mediated 
by the so-called two-component systems, with the two components 
of the two-component system being a histidine-specific protein 
kinase and a kinase substrate called a response regulator. There 
are other important types of signaling system in E. coli as well; for 
example, the bacterium responds to changes in the availability of lac-
tose and glucose through the binding of lactose to a transcriptional 
repressor and the binding of cAMP, a surrogate for low glucose levels, 
to a transcriptional activator, without the intermediacy of a kinase or 
response regulator. But two-component systems account for a good 
share of signal transduction in E. coli and other prokaryotes.

Three specific examples of two-component systems are shown 
in Figure 1.2. The simplest of these is the quorum-sensing (Qse) 



5CHAPTER 1     Introduction

pathway. The pathway is activated by one of several hormone-like 
small molecules, which include (1) a boron-containing compound 
called autoinducer-2 (AI-2), which is released by neighboring bacte-
ria and used for both intraspecies and interspecies communication; 
(2) an as-yet unidentified bacterial factor termed autoinducer-3 (AI-
3); and (3) the catecholamines epinephrine and norepinephrine, small 
molecules used as hormones and neurotransmitters by animals that 
can also mediate inter-kingdom communication between a host ani-
mal and the bacteria living within its gut. These stimulus molecules 
act by binding to a transmembrane receptor protein, QseC. QseC pos-
sesses a modular histidine kinase domain, and this domain is similar 
in sequence to the kinase domains of all of the 28 other E. coli histi-
dine kinases (but not to the eukaryotic serine/threonine or tyrosine 
kinases). The activated receptor autophosphorylates at a specific 
conserved histidine residue and then transfers this phosphate to an 
aspartate residue on a response regulator, the DNA-binding protein 
QseB. When phosphorylated, QseB activates the transcription of spe-
cific flagellar genes. The protein phosphorylation is probably reversed 
by the kinase itself, in the case of the histidine autophosphorylation, 
and non-enzymatically, in the case of the aspartate phosphorylation 
of the response regulator. Thus, an input (the concentration of the 
small molecule receptor-binding ligand) gets converted into an output 
(changes in gene expression) via a simple linear signal transduction 
pathway with only two components (QseC and QseB).

The two other E. coli signaling systems shown in Figure 1.2 are slightly 
more complicated. The phosphate-sensing system includes a trans-
membrane histidine kinase (PhoR), which regulates a single response 
regulator (PhoB), but in this case, the receptor is a complex of pro-
teins (the PstA/B/C/S complex, which transports phosphate across 
the plasma membrane, plus the PhoU protein) that interact with 
PhoR, rather than PhoR itself. And the best-studied two-component 
signaling system, the chemotaxis system, includes not only separate 
receptor subunits (such as the serine-sensing receptor Tsr and the 
aspartate-sensing receptor Tar) but also two downstream targets 
rather than one: the response regulator CheY, which regulates fla-
gellar motor activity, and the response regulator CheB, which feeds 
back on the receptor to regulate its sensitivity. But even with these 

Figure 1.2  Three signal transduction pathways in E. coli. (a) The quorum-sensing pathway. (b) The phosphate-sensing 
pathway. (c) The chemotaxis pathway. The receptor protein shown here, Tsr, responds positively to serine and negatively to leucine, 
indole, and weak acids. Other receptors (Tsr, Trg, Tap, and Aer) that respond to other ligands couple into the same pathway. 
Note that all of these signaling pathways make use of a histidine-specific protein kinase and a response regulator—a so-called 
two-component regulatory system—highlighted in green.
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elaborations, the basics of all of the E. coli histidine kinase signaling 
systems are the same: the pathways are short, linear or nearly linear, 
and mostly non-interconnected.

Two-component signaling is widespread (though not universal) in 
bacteria and also occurs in fungi, plants, and some basal eukaryotes. 
However, it appears to be absent from metazoans.

1.4 � THE EGFR SYSTEM IS DEEP, 
INTERCONNECTED, AND COMPLICATED

Some pathways in eukaryotic signaling are probably almost as simple 
as those in bacteria, but many, including some of the best-understood 
pathways, are much more complicated. One good example is the mam-
malian EGF (epidermal growth factor) receptor (EGFR) system. EGF 
and its receptor have a storied place in the history of signal transduc-
tion. EGF was the second peptide growth factor to be discovered (after 
nerve growth factor, NGF), and the EGF receptor (alternatively called 
EGFR, ErbB-1 or, in humans, HER1) was one of the first growth factor 
receptors to be characterized and to be identified as a protein tyrosine 
kinase. The EGFR system is also implicated in human health and dis-
ease. The receptor is a proto-oncogene, meaning that it has given rise 
to a gene (v-erbB) that allows a tumor virus (the avian erythroblastosis 
virus from which the name v-erbB is derived) to cause cancer, and the 
receptor has been implicated in the pathogenesis of several types of 
human cancer, especially carcinomas and glioblastomas. Antibodies 
and small molecule inhibitors of the EGF receptor are used clinically as 
cancer chemotherapeutics. The signaling system downstream of the 
EGF receptor is riddled with proto-oncogenes (Ras, Raf, Akt, Myc, Fos, 
and Jun) as well. In addition to its role in regulating cell growth and 
replication, the EGF receptor plays critical roles in cell fate induction 
during development. These developmental roles were initially worked 
out through studies in Drosophila and C. elegans, but the system is 
involved in developmental decisions in mammals as well. All of these 
factors help explain why the EGF receptor and the signaling system 
downstream of it have been studied extensively for decades, and why 
the amount of information amassed on this system is so large.

The diagram in Figure 1.3 starts with the mammalian EGFR and then 
depicts the direct downstream targets of the receptor, and the tar-
gets of those targets, and so on, until the first transcription factors 
are reached. The diagram omits the regulators of the downstream 
targets that are not themselves regulated by the EGFR; it is a lit-
tle like a family tree that shows only the direct descendants of one 
ancestor. Some of the ramifying branches of the network have been 
lopped off in the interest of space, terminating in targets designated 
“others” before transcription factors have been reached (Figure 1.3). 
Thus the network has been simplified substantially. Simplification not-
withstanding, it is clear that one cannot completely understand EGFR 
signaling by focusing on one or two proteins. Dozens of proteins con-
tribute to EGFR signal transduction.

Like the bacterial signaling systems, EGF signaling makes use of 
reversible protein phosphorylation and brings about changes in 
transcription, motor protein activity, and other cellular processes. 
However, the kinases involved are not histidine-specific protein 
kinases. The EGF receptor is a tyrosine kinase, and it phosphoryl-
ates itself and other proteins at tyrosine residues. Several additional 
kinases function downstream of EGFR, and most of these (e.g. Raf 
and Akt) are serine and threonine specific. The protein tyrosine and 



7CHAPTER 1     Introduction

In
pu

t

EG
FR

pr
o-

TG
Fα

A
D

A
M

17

Sh
c/

G
rb

2
Sh

p-
2

TG
Fα

G
A

P

So
s

Ra
s

Ra
f

KS
R1

/2

M
EK

1/
2

ER
K1

/2

RS
K

El
k-

1
Et

s1
/2

M
yc

BR
F1

Fo
xO

3
O

th
er

s
AC

3

Ca
M

K

Ca
2+

Ca
M

co
nv

.
PK

Cs

Ca
2+

Ra
s 

G
RP

O
th

er
s

IP
3RIP
3

PL
Cγ

io
n

ch
an

ne
ls

M
SK

1/
2

M
N

K1
/2

BI
M

O
th

er
s

A
kt

PD
K1

PI
P3

PI
3K

O
th

er
s

TS
C2

PP
A

Rγ

no
ve

l
PK

Cs

CR
EB

1

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

PL
Cε

M
EK

K1
Ra

l G
D

S
TI

A
M

1
N

O
RE

1

O
th

er
s

PK
Cζ

D
G

Ex
tr

ac
el

lu
la

r s
pa

ce

Cy
to

pl
as

m

iR
ho

m

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

O
th

er
s

?

cP
LA

2

O
th

er
s

O
ut

pu
t

O
th

er
s

Fi
g

u
re

 1
.3

 T
h

e
 E

G
FR

 s
ig

n
a
li

n
g

 s
y
st

e
m

 i
n

 a
 t

y
p

ic
a
l 

m
a
m

m
a
li

a
n

 c
e
ll

. O
nl

y 
th

e 
pr

ot
ei

ns
 d

ire
ct

ly
 d

ow
ns

tr
ea

m
 o

f 
EG

FR
 a

re
 s

ho
w

n.
 In

 m
an

y 
ca

se
s 

a 
gr

ou
p 

of
 r

el
at

ed
 s

ig
na

lin
g 

pr
ot

ei
ns

 (e
.g

. t
he

 R
af

 p
ro

te
in

s)
 a

re
 r

ep
re

se
nt

ed
 b

y 
a 

si
ng

le
 s

pe
ci

es
. T

he
 d

as
he

d 
lin

es
 r

ep
re

se
nt

 r
eg

ul
at

or
y 

pr
oc

es
se

s 
w

he
re

 e
ith

er
 t

he
 e

xa
ct

 m
ec

ha
ni

sm
 is

 n
ot

 k
no

w
n 

or
 it

 is
 k

no
w

n 
bu

t 
th

e 
in

te
rm

ed
ia

te
 p

ro
te

in
s 

ar
e 

no
t 

pr
es

en
t 

on
 t

he
 d

ia
gr

am
. M

or
e 

in
fo

rm
at

io
n 

ab
ou

t 
th

e 
si

gn
al

in
g 

pr
ot

ei
ns

 a
nd

 s
m

al
l m

ol
ec

ul
es

 s
ho

w
n 

he
re

 c
an

 b
e 

fo
un

d 
in

 T
A

B
LE

 1
.2

.



SYSTEMS BIOLOGY OF CELL SIGNALING8

TABLE 1.2  Downstream Mediators of EGF Signaling

Abbreviation Full Name Description and Comments

AC3 Adenylate cyclase 3 A membrane-bound adenylate cyclase present in many cell types. AC3 is 
inhibited by CaMKII and may also be directly activated by Ca2+CaM.

ADAM17 A disintegrin and 
metalloproteinase 17

Also called TACE (tumor necrosis factor-α-converting enzyme). ADAM17 has 
been shown to be a sheddase, catalyzing the proteolytic shedding of various 
proteins, including TNF-α and TGFα, from the surface of cells.

Akt Cellular homolog of the Ak-
mouse strain thymoma virus 
onocogene

Also called PKB (protein kinase B). The Akt proteins (Akt1-3) are serine/
threonine-specific protein kinases implicated in cell survival. Their activation 
depends on binding to PIP3 and phosphorylation by PDK1 (shown) and 
mTORC2 (not shown).

BIM Bcl-2-interacting mediator 
of cell death

Also called BCL2-like protein 11 or BCL2L11. A pro-apoptotic BH3-domain-
containing (BH3-only) protein thought to be negatively regulated by ERK1/2 
and RSK1/2 phosphorylation in a coherent feedforward fashion. BIM is also 
positively regulated by JNKs and its transcription is induced by FoxO3.

BRF1 TFIIB-related factor 1 One of the three subunits of RNA polymerase III (together with TBP and 
BDP1). Pol III activity is thought to be stimulated through the phosphorylation 
of BRF1 by ERK. Akt also phosphorylates BRF1, and this is thought to inhibit 
both the activity and the degradation of BRF1.

Ca2+ Calcium ion A universal eukaryotic second messenger. At concentrations attained in cell 
signaling, most of the calcium is bound to calcium-binding proteins like 
calmodulin (CaM).

Ca2+CaM Calcium-calmodulin complex An important mediator of the effects of calcium that stoichiometrically 
activates CaMKs and other downstream targets.

CaMK Calmodulin-dependent 
protein kinase

A family of protein kinases (CaMKI through IV) activated by Ca2+CaM.

conv. PKCs Conventional protein kinase 
C proteins

A family of protein kinases (PKCα, two PKCβ isoforms, and PKCγ) that are 
activated by calcium plus diacylglycerol.

cPLA2 Cytosolic phospholipase A2 Cleaves arachidonic acid from the 2-position of phospholipids to yield this 
signaling metabolite and a lysolipid. cPLA2 localization is regulated by 
calcium and cPLA2 activity is regulated by phosphorylation by ERKs and other 
MAP kinases.

CREB1 Cyclic AMP-responsive 
element-binding protein 1

A DNA-binding transcription factor that dimerizes via a leucine zipper and 
binds to the cAMP response element, an enhancer sequence. CREB1 activity 
depends on Ser 133 phosphorylation, which can be carried out by PKA, Akt, 
CaMKIV, MSK, RSK, and number of other protein kinases.

DG Diacylglycerol A membrane-bound lipid second messenger formed by the cleavage of the 
inositol head group from PIP2.

EGFR Epidermal growth factor 
receptor

Also called HER1 (for human EGF receptor 1) and ErbB1 (for avian 
erythroblastosis virus transforming gene B (v-erbB), which was transduced 
from the avian EGFR gene). The EGFR is a receptor tyrosine kinase and can be 
activated by EGF as well as TGFα, HB-EGF, amphiregulin, betacellulin, epigen, 
and epiregulin.

Elk-1 Ets-like protein 1 A member of the ternary complex factor subfamily of ETS domain 
transcription factors. Elk-1 can dimerize with serum response factor (SRF), 
bind to the serum response element (SRE), and activate transcription of 
various immediate-early response genes, including the c-fos proto-oncogene. 
Elk-1 can also regulate transcription independently of SRF.

ERK1/2 Extracellular signal-
regulated kinases 1 and 2

Also called p44 MAPK and p42 MAPK (for 44 kDa and 42 kDa mitogen-
activated protein kinases) or MAPK1 and MAPK3. A pair of proline-directed 
serine/threonine-specific protein kinases involved in a wide range of cellular 
responses. 

Ets1/2 E twenty-six (cellular 
homolog of the E26 
leukemia virus oncogene)

Two members of the ETS domain family of transcription factors that can 
activate their own transcription when overexpressed. Ets1 and 2 are orthologs 
of POINTED, a Drosophila gene implicated in the Sevenless/Ras/ERK pathway.

FoxO3 Forkhead box O3 A forkhead family transcription factor and tumor suppressor that can be 
inhibited and translocated from the nucleus to the cytoplasm through Akt-
mediated phosphorylation.

GAP p120 Ras GTPase-activating 
protein

One of a family of GTPase-activating proteins that serve as inactivators of 
small G-proteins. This founding member of the GAP family is recruited to the 
phosphorylated EGFR, promoting its interaction with, and inactivation of, 
Ras-GTP.

Ion channels This is a general category. CaMKII has been implicated in the regulation 
of numerous ion channels, including L-type calcium channels, ryanodine 
receptors, sodium channels, and potassium channels in the heart, and AMPA 
receptors, L-type calcium channels, and potassium channels in neurons.

IP3 Inositol 1,4,5-trisphosphate A calcium-mobilizing second messenger, produced by the cleavage of PIP2 by 
a phospholipase C protein.

(Continued)
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TABLE 1.2 (Continued )  Downstream Mediators of EGF Signaling

Abbreviation Full Name Description and Comments

IP3R Inositol 1,4,5-trisphosphate 
receptor

This is a family of ligand-gated calcium channels (IP3R1-3 in humans) that 
release calcium from the endoplasmic reticulum when activated by the 
binding of IP3. 

iRhom Inactive Rhomboid-family 
protein

An enzymatically inactive relative of the Rhomboid proteases. iRhom proteins 
are involved in the transport and maturation of the ADAM17 protease, which 
cleaves pro-TGFα to produce soluble TGFα. In this way they promote the 
activation of the EGFR system. iRhom proteins are also involved in promoting 
the degradation of misfolded EGFR ligands.

KSR Kinase suppressor of Ras Two related proteins (KSR1 and KSR2) in humans with homologs in C. elegans 
and Drosophila melanogaster. The KSR proteins are close relatives of the Raf 
protein kinases and possess kinase domains; however, they have low catalytic 
activities and are thought to function as scaffolds, interacting with Ras, Raf, 
MEK, and ERK proteins.

MEK1/2 MAPK or ERK kinases 1 and 
2

Also called MAP2K1 or MAPKK1 and MAP2K2 or MAPKK2. These components 
of the MAPK cascade are activated through phosphorylation by Raf and Mos 
proteins and in turn they activate the ERK1/2 MAP kinases. Activation involves 
the phosphorylation of two residues in the kinases’ activation loops; either 
phosphorylation appears sufficient for activation.

MEKK1 MEK kinase 1 A MAPKKK protein unrelated to the Raf family kinases but related to the 
yeast MAPKKKs BCK1 and STE11. The downstream targets of MEKK1 probably 
include MEKs, which activate ERKs, as well as MAPKKs that regulate the JNKs 
and the p38 MAPKs. MEKK1 can interact with Ras, Rac, and Cdc42 in vitro and 
so may be a downstream target of these small G-proteins. MEKK1 can also be 
activated by the Ste20-related protein GCK and the adapter protein TRAF2.

MNK1/2 MAP kinase interacting 
kinases 1 and 2

Also called MKNK1 and MKNK2. A pair of related protein kinases that 
are activated by ERKs and other MAPKs. Downstream targets include the 
translation initiation protein eIF‐4E.

MSK1/2 Mitogen and stress-activated 
protein kinases 1 and 2

Also called RPS6Kα5 and RPS6Kα4, respectively. A pair of protein kinases 
related to the RSK proteins. MSK1/2 can be activated by ERKs and other 
MAPKs. Downstream targets include numerous transcription factors.

Myc Cellular homolog of the 
avian myelocytomatosis 
virus oncogene

A basic helix-loop-helix/leucine zipper (bHLH/LZ) transcription factor that 
is regulated by diverse upstream pathways, including Wnt, Hedgehog, and 
receptor tyrosine kinases.

NORE1 Novel Ras/Rap effector 1 Also called RASSF5 (for Ras association domain family member 5). NORE1 is 
a tumor suppressor gene and a mediator of the apoptotic effects of Fas. Its 
downstream targets include the MST1/2 protein kinases.

novel PKCs Novel protein kinase C 
proteins

A family of four PKCs (PKCδ, PKCε, PKCη, and PKCθ) that require DG but not 
Ca2+ for activation.

PDK1 PIP3-dependent protein 
kinase 1

Also known as PDPK1. PDK1 binds to PIP3 molecules in the inner leaflet of the 
plasma membrane and thereby gains access to downstream targets, which 
include several ACG family protein kinases.

PI3K Phosphatidylinositol 
(4,5)-bisphosphate 3-kinase

A family of lipid kinases, one group of which (the p85/p110 complexes) 
is activated by binding to specific phosphotyrosine residues on activated 
receptor tyrosine kinases.

PIP3 Phosphatidylinositol 
(3,4,5)-trisphosphate

A lipid second messenger that recruits PDK1 to the plasma membrane and 
participates in the activation of Akt through binding to these proteins’ 
modular pleckstrin-homology (PH) domains. There are believed to be about 
26 PIP3-binding PH domain proteins in humans.

PKCζ Protein kinase C ζ Also called PRKCZ. This is a so-called atypical PKC, which means it does not 
require either DG or Ca2+ for activation. It may be activated by protein–
protein interaction plus phosphorylation by PDK1. It can bring about 
activation of MEK and ERK in the absence of Raf function.

PLCε Phospholipase C ε A bifunctional enzyme. Like other PLCs, PLCε can cleave the head group 
off PIP2 to yield IP3 plus DG. This activity is stimulated by Ras, Rho, and 
heterotrimeric G-proteins. In addition, PLCε can function as a guanine 
nucleotide exchange factor for Ras and Rap1.

PLCγ Phospholipase C γ A pair of phospholipase proteins (PLCγ 1 and 2) that are regulated through 
binding to specific phosphotyrosine residues on activated receptor tyrosine 
kinases and phosphorylation by the kinases. Like other PLCs, PLCγ can cleave 
the head group off PIP2 to yield IP3 plus DG.

PPARγ Peroxisome proliferator-
activated receptor γ

A nuclear receptor and transcription factor that can be regulated by fatty 
acids and through phosphorylation by a variety of protein kinases, including 
ERK1/2 and ERK5, AMPK, GSK3, PKA, and PKC. 

Pro-TGFα Pro-form of TGFα See TGFα.

(Continued)
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serine/threonine kinases are referred to as classical protein kinases, 
and the classical protein kinases are all evolutionarily related to each 
other but not to the bacterial histidine kinases.

Furthermore, whereas the bacterial system is shallow, the EGFR system 
is deep. In the three bacterial examples shown in Figure 1.2, the histidine 
kinase directly phosphorylates the terminal effector of the pathway, the 
response regulator protein. In some bacterial pathways (e.g. the RcsCBD 
system, not shown in Figure 1.2), there is a third protein (a phospho-
transferase protein) interposed between the kinase and the terminal 
effector. But still-longer pathways have not been found, and in general 
bacterial signaling makes use of a small number of intermediaries.

This is decidedly not the case in the EGFR system. The EGFR does not 
directly phosphorylate terminal effectors; rather, it regulates signaling 
proteins that regulate other signaling proteins that regulate others… 
and on and on. One particularly striking example of this is the MAP 
kinase cascade. EGFR activation brings about the activation of the Ras 
GTPases through the intermediacy of the Shc and Grb2 adaptors and 
the Sos (shown in Figure 1.3) and Vav (not shown) guanine nucleo-
tide exchange factors. Active Ras then stoichiometrically activates the 
Raf family protein kinases A-Raf, B-Raf and Raf-1 (Raf-1 is also termed 
C-Raf). The Raf proteins can be thought of as MAP kinase kinase kinases 
or MAPKKKs. Activated Raf probably does not directly phosphorylate any 

TABLE 1.2 (Continued )  Downstream Mediators of EGF Signaling

Abbreviation Full Name Description and Comments

Raf Rapidly accelerated 
fibrosarcoma oncogene

A family of three protein kinases, A-Raf, B-Raf, and Raf-1 or C-Raf. The 
activation of Raf proteins depends on binding of Ras-GTP. The best 
characterized targets of Raf are the MEK1 and MEK2 kinases. Thus Rafs are 
MEK kinases or MAPKKKs.

Ral GDS Ral guanine nucleotide 
dissociation stimulator

Also called RalGEF for Ras-related (Ral) guanine nucleotide exchange factor. 
Ral GDS is activated by Ras, and in turn activates the Ras-related G-proteins 
Ral-A and Ral-B.

Ras Cellular homologs of the rat 
sarcoma virus oncogenes

Three small G-proteins (H-Ras, K-Ras, and N-Ras) that are activated 
downstream of receptor tyrosine kinases and PKC-activating stimuli. The 
Ras proteins act as stoichiometric regulators of various mitogenic regulatory 
proteins, including the Raf proteins.

RasGRP Ras guanine nucleotide 
releasing protein

A family of three Ras guanine nucleotide exchange factors (or dissociation 
stimulators) that are activated downstream of calcium and DG mobilization.

RSK Ribosomal S6 kinase A family of four protein kinases that are activated by ERK1/2 and PDK1.

Shc/Grb2 SH2 domain-containing 
protein/growth factor 
receptor-binding protein 2

A complex of two adaptor proteins, Shc and Grb2, that can bring Sos to 
tyrosine-phosphorylated EGFR. Grb2 itself, in the absence of Shc, can also link 
Sos to pY-EGFR.

Shp-2 SH2 domain-containing 
protein tyrosine 
phosphatase 2

Also called PTPN11, PTP-1D, and PTP-2C. One of two orthologs (with Shp-
1) of the Drosophila Corkscrew protein. Shp2 is activated by binding to 
specific phosphotyrosine residues and positively regulates Ras through an 
incompletely understood mechanism.

Sos Son of sevenless A family of two guanine nucleotide exchange factors (Sos1 and Sos2) that are 
orthologs of Drosophila Sos, which was originally identified as a downstream 
mediator of sevenless activation. Human Sos proteins can activate Ras and 
can also be allosterically activated by the binding of active Ras.

TGFα Transforming growth 
factor α

One of seven ligands for the mammalian EGF receptor. It is translated as a 
transmembrane pro-form and then proteolytically cleaved to yield active 
soluble TGFα.

TIAM1 T-lymphoma invasion 
and metastasis-inducing 
protein 1

A Ras-binding, Rac-specific guanine nucleotide exchange factor.

TSC2 Tuberous sclerosis complex 2 Also called tuberin. Forms a complex with the TSC1 protein (hamartin) that 
acts as a negative regulator of the small G-protein Rheb, which is a positive 
regulator of mTORC1. TSC2 is negatively regulated by Akt phosphorylation; 
TSC1 is negatively regulated by Rsk. As the name suggests, mutations in 
either TSC1 or TSC2 can result in tuberous sclerosis.
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terminal effector proteins. Instead, it phosphorylates and activates the 
MEK1/2 protein kinases, which are MAPKKs, and these proteins then 
phosphorylate and activate the ERK1/2 MAPKs, with the Raf/MEK/ERK 
system constituting a protein kinase cascade. ERK1/2 does regulate 
some terminal effectors, such as the Ets-family transcription factors, but 
it also regulates a number of signaling intermediaries as well, such as 
the RSK, MSK, and MNK protein kinases. Thus, the EGF receptor sign-
aling system is deep, with many signaling transduction proteins being 
interposed between the receptor and its terminal effectors.

The pathway also fans out substantially. The typical bacterial signal-
ing system has one terminal effector, the response regulator, or maybe 
two. Figure 1.3 shows seven transcription factors downstream of EGFR 
activation, and if we had traced some of the lopped off branches of the 
system further and included a more comprehensive list of ERK sub-
strates, we could have included scores of EGF-regulated transcription 
factors. One can think of each of these transcriptional terminal effectors 
as an individual output, or, alternatively, one can take all of the changes 
together as a collective biochemical and phenotypic output state.

Finally, in the EGFR system there are numerous interconnections 
between the various signaling pathways that emerge from the recep-
tor. The PLCγ/PKC pathway feeds into the Ras/ERK branch through 
activation of the guanine nucleotide exchange factor Ras GRP 
(Figure 1.3). The Ras side of the network feeds into the PLCγ/PKC side 
through PDK1, the MEKKs, and PLCε. At least five different protein 
kinases downstream of EGFR are thought to feed into the regulation 
of the transcription factor CREB1.

Instead of starting with the EGFR and mapping its downstream effec-
tors, we could have started with one of the downstream proteins and 
then traced upstream all of the proteins that regulate it, that regulate 
its regulators, and so on. This would be like a family tree that shows 
all of the ancestors of one descendant, rather all of the descendants 
of one ancestor. The result is a different kind of pathway map, but, as 
it turns out, it is similar in depth, breadth, and complexity to the one 
shown in Figure 1.3. So it is not just that the system fans out; there 
are many inputs feeding into the system as well.

Some of the components listed in Figure 1.3 may not be important for 
EGFR function in all contexts, and some may be important only when 
the receptor is overexpressed (as is the case in some cancer cells). 
But still, the EGFR signaling system is much more complicated than 
bacterial signaling systems are. This raises a serious question: how 
can one possibly understand such a complex system?

1.5 � COMPLICATED SYSTEMS CAN BE 
SIMPLIFIED BY ASSUMING MODULARITY

One way to tackle the problem of complexity is to assume that one 
can learn something about the function of the whole system by exam-
ining key subcircuits. This is a decidedly reductionistic approach to 
systems biology, and there is no a priori guarantee that it will be 
successful, because of two potential complications. First, plugging a 
subcircuit into its upstream regulators and downstream targets can 
fundamentally change the way the subcircuit behaves. A reduction-
istic approach only makes sense if signal transduction is, at least to 
some degree, modular, with there being some plug-and-play character 
to the subcircuits that constitute the system. Second, it is not certain 
that the interesting behaviors of the system emerge at the level of 
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small subcircuits. Perhaps the whole system must be present in order 
for the system to perform even its most rudimentary functions.

So, first, is signal transduction modular, with some plug-and-play char-
acter? In the case of EGFR signaling, the answer appears to be yes. As 
shown in Figure 1.4, large chunks of the EGFR system plug into other 
receptors in other biological contexts. For example, during C. elegans 
development, orthologs of mammalian Grb2, Sos, Ras, Raf, MEK, and 
Erk mediate the effects of EGFR signaling during induction of vulval cell 
fates in the nematode hypodermis. But the same proteins are also criti-
cal for mediating the effects of a different receptor, the ortholog of the 
mammalian FGF receptors, during sex myoblast migration. Likewise, 
orthologs of the same proteins mediate the effects of the Torpedo EGF 
receptor protein during Drosophila oocyte development and the effects 
of the Sevenless tyrosine kinase during eye development. In addition, 
since Ras-MAPK activation has different downstream consequences 
in these different biological settings, it presumably plugs into different 
ultimate effectors. Thus the Ras-MAPK pathway does appear to be mod-
ular, plugging into different upstream inputs and downstream outputs.

In general then, if signaling tends to be modular, what generates and 
enforces the modularity? In part the answer is compartmentaliza-
tion; signal transducers interact more often and more strongly with 
those components they are close to. Another part of the answer is 
time scales; if some signaling events take place in minutes and oth-
ers require hours, one is usually safe in thinking about the processes 
separately. Perhaps in other cases, modularity is a consequence 
of the biochemistry of individual components. For example, if an 
upstream regulator directly activates a downstream target by, say, 

Figure 1.4  Modularity in the Ras/Erk pathway. The proteins from the adaptor through the MAPK form a linear pathway 
that can plug into different upstream receptor tyrosine kinases. In addition, these pathways can mediate a variety of biological 
processes, presumably by plugging into different ultimate effector proteins.
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phosphorylating it, and a negligible fraction the regulator and target 
molecules are bound to each other at any given time, one is probably 
safe in considering the two proteins as being parts of separate modu-
lar subcircuits.

The next question is whether interesting behaviors emerge at the level 
of subcircuits, or alternatively, signal processing is so highly distrib-
uted that all parts of the system are roughly equally important. One 
way of addressing this question is through genetic analysis, and in 
several genetically tractable systems, the answer is that the most criti-
cal downstream components constitute a small fraction of the total 
network. For example, in C. elegans vulval induction and Drosophila 
R7 photoreceptor induction, the Ras-MAPK pathway seems to be a 
particularly important strand in the web of receptor tyrosine kinase 
signaling: loss of function mutations in these downstream compo-
nents prevent the receptor from carrying out its normal developmental 
function, and gain of function mutations can abrogate the requirement 
for the upstream receptor. Thus, the web downstream of EGFR and 
other receptor tyrosine kinases may be exceedingly complicated, but 
one individual thread in the web is particularly important functionally.

There are dissenting opinions on the issue of how modular signal 
transduction is, both within and without the systems biology commu-
nity. But for the purposes of this book, we will make the assumption 
that complex signaling systems can be understood by breaking them 
down into small subcircuits.

HOW SHOULD WE MODEL 
SIGNAL TRANSDUCTION 
SYSTEMS AND WHY?

1.6 � ORDINARY DIFFERENTIAL EQUATIONS 
PROVIDE A POWERFUL FRAMEWORK 
FOR UNDERSTANDING MANY SIGNALING 
PROCESSES

Once we have broken a signaling system down into simpler sub-
circuits, the next question is to figure out how the outputs of these 
circuits change as the inputs are dialed up and down. We all have 
ways of trying to intuit such behaviors. Perhaps the most common 
strategy is to consciously or unconsciously consider the system to be 
a digital Boolean network, with the components either off or on, and 
then trace the effects of a change in one component’s activity through 
the system—when this protein turns on it causes the next one to turn 
on, which causes the next one to turn off, and so on. Useful though 
it can be, this type of approach has its limitations, particularly if the 
proteins involved do not respond in a digital fashion or the circuit 
includes multiple feedback loops.

More detailed mathematical models can allow one to develop a 
richer picture of how a signaling circuit should behave. Both numeri-
cal simulation—the equivalent of computational experiments—and 
theoretical approaches can yield not-completely-intuitive, or even 
counterintuitive, predictions about the behavior of a biological sys-
tem. And such predictions can be extremely valuable. They provide 
a way of challenging or testing the model, and they can also lead to 
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the discovery of previously unsuspected or overlooked behaviors of 
importance to biology.

In this book we will concentrate on ordinary differential equation mod-
els (ODEs) for understanding biochemical reactions. Other types of 
modeling certainly have their place in biology, but ODEs are a particu-
larly good place to start. They are well-suited to aspects of cell signaling 
where the numbers of molecules are not too small, and they allow us 
to draw on the beautiful and powerful techniques of nonlinear dynam-
ics. Even when the numbers of molecules are very small—for example, 
in the transcription of a gene from two alleles in a G1-phase cell or 
two copies of two alleles in a G2-phase cell—and a different approach, 
non-deterministic stochastic modeling, is the proper framework for 
understanding the process, it is still usually worth starting with an ODE 
model to which the stochastic simulations can be compared. With ODE 
models, especially ODE models with small numbers of variables, it is 
comparatively easy to understand why the models behave the way 
they do. Understanding, rather than just reproducing the behaviors of 
biological circuits is one of the main goals of systems biology.

1.7 � THEORY CAN HELP HIGHLIGHT THE 
COMMONALITIES OF DIVERSE BIOLOGICAL 
PHENOMENA

There is a famous quotation attributed to Ernest Rutherford that “all 
science is either physics or stamp collecting” (Figure 1.5). Perhaps a 
more accurate and less dismissive-sounding version of this provoca-
tive statement might be that in all science, physics included, progress 
is made through the discovery and description of phenomena and 
through theory. Theory attempts to organize, unify, and simplify the 
descriptions of the phenomena, and the discovery of new phenomena 
serves to test the theory. Many of us are rather fond of the stamp col-
lecting aspect of biology—just watching cells divide, or neutrophils 
chase bacteria, or flowers bloom can be immensely satisfying. Biology 
is blessed with truly fascinating phenomena. But biology includes 
theory as well, most famously the theory of evolution, which uni-
fies an astonishing diversity of biological phenomena and deepens 
our understanding of them. Thus, for example, we understand why 
the process of cell division is orchestrated by the same core regula-
tory components in all eukaryotic cells; the mechanism apparently 

Figure 1.5  Stamp collecting, biology, and physics. The discovery and classification of phenomena (stamp collecting) 
plays a critical role in the advancement of all science. So does theory. Photo credits: 1. Stamp collection photo from http://www.
bucketsandspadesblog.com/2012/12/american-stamp-collection.html, used with permission. 2. Metaphase epithelial cell in 
metaphase stained for microtubules (red), kinetochores (green) and DNA (blue), from Jane Stout and Claire Walczak, Indiana 
University, GE Healthcare 2012 Cell Imaging Competition, used with permission. 3. Einstein photo originally published in the 
Pittsburgh Sun-Telegraph in 1934. Taken from Topper D, Vincent D, Einstein’s 1934 two-blackboard derivation of energy-mass 
equivalence. American Journal of Physics 75 (2007), 978.

PhysicsStamp collecting Biology

http://www.bucketsandspadesblog.com
http://www.bucketsandspadesblog.com


15CHAPTER 1     Introduction

evolved once, and all descendants of that original cell make use of 
some variation on that original mechanism.

Modeling can push this unification further. Even if the biological pro-
cesses are very different and the proteins that regulate the processes 
are unrelated to each other, there can be a fundamental similarity 
between the processes that modeling can help to reveal. For exam-
ple, the G2/M transition in eukaryotic cell cycle progression at first 
glance bears no resemblance to the transition of an E. coli bacterium 
between metabolic states when the availability of lactose changes, 
and the proteins and genes involved in regulating the processes are 
unrelated to each other. But both G2/M progression and lac induc-
tion involve the toggling between two discrete, alternative states of 
a control system that includes positive feedback loops. This toggling 
can, through modeling and theory, be attributed to the traversal of a 
saddle-node bifurcation in the phase space of the two processes’ 
control systems. At first this might not seem like a very useful insight, 
particularly if one does not know what a saddle-node bifurcation is. 
But once one does know (and by the end of Chapter 8 we will!), it is 
indeed a very useful insight. All saddle-node bifurcations are funda-
mentally the same, at some level, and so these apparently different 
phenomena, involving different proteins, different biochemical reac-
tions, and different time scales, are fundamentally the same as well.

1.8 � SIX BASIC TYPES OF RESPONSE ARE 
SEEN OVER AND OVER AGAIN IN CELL 
SIGNALING

In the experimental cell signaling literature, one observes the same 
handful of basic types of response over and over again. One common 
type of response is that shown in Figure 1.6. If the input goes up, the 
output goes up, and if the input goes back down, the output goes back 
down. Different amounts of input typically lead to different amounts 
of output; the steady-state input/output relationship is monotonic 
and graded, with the system behaving like a rheostat. This is the sim-
plest, most basic sort of signaling response: a graded, monostable, 
reversible response, where the term monostable means that for any 
given level of input, the system has one steady-state level of output, 
and that the steady state is stable, meaning that if one pushes the sys-
tem a small ways away from the steady state, it will return toward it.

Alternatively, sometimes the response is monostable and reversible, 
but switch-like rather than graded, with the initial increments of input 
producing very little change in the output until a threshold is reached 
(Figure 1.7). These are often termed ultrasensitive responses. Both 
graded and ultrasensitive monostable responses are common in cell 
signaling.
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Figure 1.6  A graded monostable 
response. (a) Time course. A step up 
in the input level drives the system to 
approach a higher steady-state (ss) output; 
a step back down drives the system back 
to where it started. (b) The steady-state 
output of the system rises gradually as the 
input is increased.
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But not all biological responses are reversible. Sometimes a response 
persists long after the stimulus is removed, or even indefinitely; the sys-
tem actively “remembers” the input (Figure 1.8). Typically this type of 
response is all-or-none in character, and the system has a point-of-no-
return, so that once an input of sufficient magnitude has been present 
for a sufficient duration, the response becomes self-sustaining. This 
type of behavior is the hallmark of bistability, and bistability is thought 
to be important for cell fate decisions, for transitions between phases 
of the cell cycle and for the laying down of memories in neural circuits.

Oftentimes in cell signaling the responses are pulses. A constant input 
causes the output to rise, but only transiently, with the output falling 
back to a low level even if the input persists (Figure 1.9), and the 
amplitude of the pulse is related to the strength of the input. This 
type of response is termed adaptation, and it is exhibited by many 
G-protein-coupled receptors; the system downstream of the input 
adapts, at least partially, to a given constant level of input. This is also 
the way receptor tyrosine kinases like the EGFR respond, and it is typi-
cal of chemotactic responses in bacteria.
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Figure 1.8  Bistability. (a) A sufficiently 
large change in input causes the system to 
switch between two discrete states. When 
the input is removed, the output stays 
high. (b) If the system starts out in the 
low output state, the steady-state output 
will rise slightly with the input until the 
input exceeds a threshold, which is at an 
input level of about 1.7. At that point, the 
steady-state output jumps to the upper 
branch of the response curve. The dashed 
part of the curve represents an unstable 
steady state; the smallest perturbation 
would drive the system up the upper 
branch or down to the lower branch.
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(a) (b)Figure 1.9  A pulsatile response. In 
this example, the transient response is 
large (a) but the steady-state response is 
small and nearly constant (b).
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Figure 1.7  A switch-like monostable 
response. (a) The dynamical response 
looks qualitatively similar to that shown 
in Figure 1.5; once again, a step up in the 
input level drives the system to approach 
a higher steady-state (ss) output and a 
step back down drives the system back 
to where it started. (b) The steady-state 
response curve is sigmoidal. Compared 
to the curve shown in Figure 1.5b, there 
is less response at low input levels and 
more at high input levels, and the system 
switches from off to on over a narrower 
range of input values.
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Sometimes the output is not just a single pulse but rather a succession 
of irregular, all-or-nothing spikes, and increasing the input increases 
the frequency or density of the spikes but has little effect on the spikes’ 
amplitudes. This is the behavior generally seen when signaling out-
puts are examined at the level of individual receptors, as can be 
accomplished by patch clamping when the receptors are ion channels. 
But all-or-none, irregular spikes are sometimes even seen at the level 
of whole cells, where tens of thousands of signaling molecules burst 
together in a seemingly random but coordinated fashion (Figure 1.10). 
Systems that generate responses like this are called excitable sys-
tems. Excitability is typical in calcium signaling and is seen in the 
responses of the Raf/ERK pathway in some biological contexts.

And, finally, some systems function as biochemical oscillators, with 
the output varying periodically with time indefinitely. In these cases 
an input can trigger the oscillations, or it can adjust the frequency, 
amplitude, or phase of the oscillations (Figure 1.11). This is the way 
that calcium signaling works in some cell types and it is the way the 
sinoatrial node pacemaker cells, which drive the heartbeat, behave.

So that comes to six types of response—graded reversible monostable 
responses, switch-like reversible monostable responses, bistability, 
pulses, irregular repeated spikes, and oscillations. Of course there 
are others, but these six constitute much of what is seen in signal 
transduction.

1.9 � FIVE OR SIX BASIC CIRCUIT MOTIFS 
ARE SEEN OVER AND OVER AGAIN IN 
SIGNALING SYSTEMS

Just as we have classified the basic types of signaling response that 
are seen over and over again in cell signaling, we can identify and 
classify the common signaling subcircuits or motifs (Figure 1.12). As it 
happens, all of these can be found in the unusually well-characterized 
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Figure 1.10  Irregular spikes. (a) In this 
example, increasing the input stimulus 
causes spikes of output to appear at 
irregular intervals. (b) The steady-state 
response, averaged over time or over 
many cells.
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Figure 1.11  Oscillations. (a) In this 
example, the input is initially too low to 
permit oscillations. When the input is 
increased, oscillations begin; when it is 
lowered back down, the oscillations are 
extinguished. (b) Steady-state response. 
For a range of inputs, the system oscillates 
rather than settling into a steady state. 
Oscillations are “born” at an input level 
of just below 0.1, where the solid line 
changes to a dashed line. At this point, 
stable steady state (solid line) becomes 
unstable (dashed line) and so the system 
never settles down. The oscillations are 
extinguished once the input level gets a 
bit higher than 0.4. The boundaries of 
the shaded region show the peaks and 
troughs of the oscillations.
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EGFR system (Figure 1.3), and it seems possible that most or all of 
these motifs will be found in many different signaling systems.

The first motif is the signaling cascade (Figure 1.12a)—a chain of 
signaling proteins reminiscent of a chain of little waterfalls in a cas-
cading stream. The best-studied of such cascades is the MAP kinase 
cascade, the Raf, MEK, and ERK proteins, mentioned in Sections 1.5 
and 1.6 above and shown in Figures 1.3 and 1.4. In principle a cascade 
can be of any length, but the best-studied ones consist of few signal 
transducers.

Feedback loops are also common in cell signaling. These are subcir-
cuits where a nominally downstream protein regulates something that 
is nominally upstream of it. For example, the ERK1/2 MAP kinases not 
only pass signals on to downstream targets but also phosphorylate 
and negatively regulate several of their upstream regulators, includ-
ing the Raf protein kinases, the Sos guanine nucleotide exchange 
factors, and the EGF receptor itself (Figure 1.3). This constitutes nega-
tive feedback.

Positive feedback (Figure 1.12c) is also common. For example, in 
the EGFR system, Sos activates the Ras GTPases. In turn, active Ras 
can bind to and allosterically activate Sos (Figure 1.3). This consti-
tutes a short, simple positive feedback loop. There are longer positive 
feedback loops built into the system as well. For example, EGFR 
activation leads to the rapid and reversible activation of ADAM pro-
teases, including ADAM17. ADAM17 functions as a “sheddase,” and 
it can cleave the membrane-bound precursor forms of several EGFR 
ligands, including TGFα, to release active, diffusible growth factors 
that can reinforce EGFR activation and spread it to neighboring cells 
(Figure 1.3). The details of ADAM17 activation are not yet worked out; 
PKC is a likely intermediary, although how it regulates ADAM17 is not 
clear. Nevertheless, it is clear that the EGFR and ADAM17 are part of 
a long positive feedback loop, with each protein activating the other, 
and it is clear that this loop is important in the overall functioning of 
the EGFR signal transduction system.

Figure 1.12  Recurring motifs in signal transduction systems. (a) A signaling cascade. (b) A negative feedback loop. (c) 
A positive feedback loop. (d) An incoherent feedforward circuit. (e) A coherent feedforward circuit. (f) A composite system with 
interlinked positive and negative feedback loops.
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Although in the bacterial signaling systems there is generally a single 
pathway from the input to the output (Figure 1.2), in the EGFR system 
there are several instances where the signal splits and then recon-
verges. For example, the EGFR affects the Ras protein both positively 
and negatively, through the guanine nucleotide exchange factors 
Sos and Ras GRP, the GTPase-activating protein GAP, and Shp-1, a 
phosphotyrosine phosphatase that positively regulates Ras through 
an incompletely understood mechanism (Figure 1.3). This constitutes 
incoherent feedforward regulation—incoherent because some of 
the regulators have opposite effects on their targets, and feedforward, 
a term from control theory, because an upstream protein (EGFR) affects 
a downstream protein (Ras) through more than one pathway, shown 
schematically in Figure 1.12d. There are also examples of coherent 
feedforward regulation (Figure 1.12e). For example, two pathways 
from PIP3 activates the protein kinase Akt through two interactions: 
a direct one and an indirect one through PDK1 (Figure 1.3). Both 
coherent and incoherent feedforward regulation are common in cell 
signaling.

These elementary motifs can, of course, be combined to produce 
composite motifs. One particularly interesting and important one is 
shown in Figure 1.12f: a system with interlinked positive and negative 
feedback loops. This is the basic architecture of the circuit that pro-
duces action potentials in neurons, cell cycle oscillations in embryos, 
and the Turing patterns thought to give rise to a leopard’s spots and 
a tiger’s stripes.

SUMMARY
Signal transduction is an important and fascinating area of biology. 
However, given the large number of signaling proteins in eukary-
otic cells (thousands) and the complexity of signaling systems (see 
Figure 1.3), the question of how best to try to understand how these 
signaling systems function is far from trivial. One reasonable way 
forward is to assume that these complex systems are at least some-
what modular (Figure 1.4) and so can be understood by examining the 
behaviors of subcircuits of the whole system. And by examining the 
behaviors, we mean a combination of experimental studies and theory 
(or, if you prefer, stamp collecting and physics; Figure 1.5). Modeling 
and theory help us to understand how the phenomena of cell signaling 
arises.

We surveyed six common types of signaling responses: graded mon-
ostable responses (Figure 1.6), switch-like monostable responses 
(Figure 1.7), bistable responses (Figure 1.8), pulses (Figure 1.9), sto-
chastic spikes (Figure 1.10), and oscillations (Figure 1.11). We also 
looked at five elementary signaling motifs, plus one important com-
posite motif (Figure 1.12).

MOVING FORWARD
This sets the stage for the next 15 chapters, which explore how the 
various types of biological responses shown in Figures 1.6–1.11 can 
and do arise, and what types of signal processing can be accom-
plished by the various simple circuits shown in Figure 1.12. We will 
begin Chapter 2 with the proteins that initiate signaling responses: the 
receptors.
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Signal transduction typically begins with the binding of a ligand to a 
receptor. In the simplest cases, a monomeric ligand binds to a monomeric 
receptor, and this produces a change in the receptor’s conformation 
and activity, as shown schematically in Figure 2.1a. In this chapter, 
we will focus on one well-studied example of this type of process, the 
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activation of the β2-adrenergic receptor by a hormone such as epineph-
rine, a neurotransmitter like norepinephrine, or a structurally related 
drug like albuterol (Table 1.1). We will begin with some background 
on what these receptors do, then examine the basic characteristics of 
their steady-state and dynamical responses as seen in experiments, and 
finally model the processes of ligand binding and receptor activation to 
gain some insight into why the responses look the way they do.

2.1 � THE β2-ADRENERGIC RECEPTOR CAN 
FUNCTION AS A MONOMERIC RECEPTOR 
THAT BINDS MONOMERIC LIGANDS

The largest class of receptors in humans is the G-protein-coupled 
receptors (GPCRs), a diverse family of proteins that are evolu-
tionarily related to bacterial rhodopsin proteins and that share a 
common topology—they span the plasma membrane seven times, 
with the N-terminus of the protein outside the cell and the C-terminus 
inside. Probably the best-studied of the GPCRs are the adrenergic 
receptors, so-named because one of the hormones that activates 
them—epinephrine or adrenaline—is synthesized and released by 
cells in the medulla of the adrenal glands. Adrenergic receptors func-
tion in the central nervous system, the peripheral nervous system, 
and in organs such as the heart and the lung. In humans there are 
nine types of adrenergic receptors, which are divided into two groups 
(α and β) based on their pharmacology. Adrenergic receptors regulate 
blood pressure, cardiac contractility, pupil size, the smooth muscles 
in the bronchial tree, and intermediary metabolism. Studies of adr-
energic signaling, from the late 19th century through the present day, 
have yielded and continue to yield enormous insights into physiology, 
disease, and the general principles of cellular regulation.

One of the best-studied adrenergic receptors is the β2-adrenergic 
receptor, which plays a particularly important role in the lungs, and 
which is the target of the bronchodilator drug albuterol (Table 1.1). 
In the absence of an activating ligand, or agonist, the β2-adrenergic 
receptor mainly adopts an inactive conformation that is unable to 
productively interact with G-proteins (Figure 2.1b, blue). Agonists 
like the circulating adrenal hormone epinephrine and the neuro-
transmitter norepinephrine bind to a site in the middle of the seven 
transmembrane (TM) helices and cause the receptor to adopt an active 
conformation (Figure 2.1b, pink). The main difference between the 
inactive and active conformations is the position of one of the helices, 
TM6. The outward displacement of TM6 in the active conformation 
allows the receptor to bind to and activate a trimeric G-protein, which 
then can activate downstream proteins. A second effector protein, 
β-arrestin, probably binds to a different active conformation of the 
receptor and brings about a different set of downstream responses.

cxy

k1

k-1

x

y

Inactive 
β2-Adrenergic receptor

Active 
Ligand-receptor complex

TM6... is displaced outward
in the active conformation

(a)

(b)

Figure 2.1  Activation of a 
monomeric receptor by a monomeric 
ligand. (a) Schematic view of a 
generic ligand–receptor interaction. 
(b) Crystal structures of the human β2-
adrenergic receptor in inactive and active 
conformations. The receptor possesses 
a bundle of seven membrane-spanning 
α-helices, and the ligand-binding pocket 
sits in the middle of this helical bundle. 
The inactive structure (blue; PDBID 2RH1) 
was obtained from a chimeric receptor 
with a T4 lysozyme sequence inserted 
into the third intracellular loop, which 
promotes crystallization. The receptor 
was also bound to the inverse agonist 
carazolol, which helps stabilize the 
top part of the receptor and promotes 
the inactive conformation. Neither the 
lysozyme domain nor the carazolol is 
shown here, for simplicity. The active 
structure (pink; PDBID 3P0G) was 
obtained from the same chimeric receptor 
in the presence of a camelid antibody 
that preferentially binds the active 
conformation, plus the agonist BI-167107. 
The agonist is shown in yellow, and it 
resides in the ligand-binding pocket of 
the receptor. The camelid antibody and T4 
lysozyme sequences are omitted. The main 
difference between the inactive and active 
conformations is that transmembrane helix 
6 (TM6) has moved outward by 11 Å in the 
latter. This conformation change creates 
an effector-binding pocket that allows a 
trimeric G-protein to interact with and 
become activated by the receptor.
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Adrenergic drugs and hormones are monomeric, and reconstitution 
studies have established that the β2-adrenergic receptor can signal 
as a monomer. Some other members of the GPCR family must be 
dimeric to function, and there is evidence that even the β2-adrenergic 
receptor may oligomerize in vivo as well. Oligomerization is indeed 
common in receptor signaling, and in signaling in general, and will 
be discussed further in Chapter 3. But for present purposes, we will 
analyze the signaling that results from the interaction of a monomeric 
ligand with a monomeric β2-adrenergic receptor.

The activation of a receptor by a ligand constitutes stoichiometric 
regulation, meaning that signaling involves a fixed integral ratio of 
the stimulus (the ligand) to its target (the receptor). In this case, one 
molecule of an agonist ligand brings about the activation of one mol-
ecule of receptor. Once the receptor is bound and activated, it acts as 
an enzyme; one molecule of active receptor can yield any number of 
molecules of activated G-proteins, depending on how long you wait.

2.2 � EXPERIMENTS SHOW THE RECEPTOR’S 
EQUILIBRIUM AND DYNAMICAL 
BEHAVIORS

What happens when some concentration of ligand is incubated with a 
dish of cells that possess, say, a few thousand β2 adrenergic receptors 
each, or a dish containing millions of recombinant receptor molecules? 
As shown in Figure 2.2a, the number of receptors bound by the ligand 
increases steadily until an equilibrium level of binding is approached. 
The time scale for binding is typically seconds or tens of seconds. If 
the ligand is washed away, the fraction of receptors bound decreases 
steadily and they return to their unbound state, although, curiously, 
the unbinding is always slower than the binding (Figure 2.2a). The 
equilibrium level of binding has a law-of-diminishing-returns quality: 
the first increment of ligand produces a good amount of binding, the 
next increment less, and the next even less (Figure 2.2b).

The consequences of this binding depend on the particular ligand 
in question. Some ligands—agonists, like the physiological ligands 
epinephrine and norepinephrine—increase the receptor’s activity 
above its measurable basal level. Other ligands (such as the drug 
carazolol, which was used to stabilize the inactive conformation 
shown in Figure 2.1b) cause a decrease in the receptor’s activity, 
and these are termed inverse agonists, and some do something in 
between. If they increase activity a bit, but not as much as the most 
efficacious agonists, they are termed partial agonists. If they bind 
but leave the basal activity of the receptor unaffected, they are called 
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Figure 2.2  Typical behavior of a 
monomeric ligand interacting with 
receptors in vitro. (a) The kinetics of the 
binding and dissociation of a high-affinity 
agonist (fenoterol) to the β2-adrenergic 
receptor in vitro. The binding and drug 
concentration data are expressed in 
arbitrary units. (b) Equilibrium binding 
of fenoterol to a β2-adrenergic receptor-
Gβs chimera in vitro, again with binding 
expressed in arbitrary units. (Redrawn 
from Aristotelous et al. ACS Med Chem 
Lett. 2013 and Reinartz et al. Naunyn 
Schmiedebergs Arch Pharmacol. 2015).
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neutral antagonists or just antagonists. In principle, there could be 
drugs that decrease the basal activity, but less effectively than the best 
inverse agonists; these would be called partial inverse agonists.

These are the basic characteristics of the interactions of β2-adrenergic 
receptors with their ligands—fast binding, slower unbinding, a law-
of-diminishing-returns equilibrium response, basal receptor activity, 
and a variety of relationships between binding and activity. The goal 
in our modeling is to understand how these behaviors arise.

2.3 � A SIMPLE BINDING-DISSOCIATION MODEL 
EXPLAINS THE HYPERBOLIC EQUILIBRIUM 
RESPONSE

We could think of binding and activation as occurring either sequen-
tially or simultaneously. The latter is simpler to model, so that is 
how we will start. Let us call the free ligand concentration x, the 
free receptor concentration y, and the concentration of the (active) 
complex cxy. We begin by writing down the rate equation for the net 
production of cxy:

(2.1)

This equation includes three time-dependent variables, although for 
simplicity we write them as x, y, and cxy rather than x[t], y[t], and cxy[t], 
and two parameters, k1 and k−1. The right-hand side consists of two 
terms that contribute to the net production rate: a positive term for 
the forward reaction, in which x and y associate to form the cxy com-
plex, and a negative term for the back reaction, the dissociation of the 
complex into its constituents. The forward rate depends on the con-
centration of x, the concentration of y, and a proportionality constant, 
which is the rate constant for the association reaction and which we 
have denoted as k1 (it is customary to use lower case k’s for rate con-
stants). The back rate depends on the concentration of the complex 
cxy and another proportionality constant, the rate constant for the dis-
sociation reaction, denoted k−1. Both the forward and back reactions 
are examples of mass action processes, where the rate of the pro-
cess is directly proportional to the concentration of the reactant or 
reactants.

To solve Eq. 2.1, we need to decrease the number of time-dependent var-
iables from three to one. If we assume that the total concentration of the 
receptor y is unchanging with time, at least on the time scale of the bind-
ing and dissociation reactions, we can write a conservation equation:

= +y y ctot xy 	 (2.2)

This equation can be used to express y as a function of the constant 
ytot and the time-dependent variable cxy, and so eliminate one variable 
from the rate equation:

( )= − − − .1 1

dc

dt
k x y c k cxy

tot xy xy 	 (2.3)
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We could similarly eliminate x by invoking a second conservation equa-
tion = −( ),x x ctot xy  and in fact we will do this in Chapter 3 when we 
consider the stoichiometric regulation of downstream signaling pro-
teins. But for now, we will assume that the ligand x is present in vast 
excess over the receptor y, so that the binding of x to y changes the 
concentration of x by a negligible amount. This assumption is a good 
approximation of the truth in many experimental situations. For exam-
ple, to measure the response of mammalian cells to epinephrine in vitro, 
one might have a 10-cm dish containing 107 cells, with each cell express-
ing, say, 5,000 β2-adrenergic receptors, which means that there is a total 
of 5 × 1010 receptors in the dish. If the cells are incubated with 10 mL of 
medium containing 1 µM epinephrine (a concentration that yields about 
half-maximal binding), there will be 10−8 mol of epinephrine present, 
or 6 × 1015 molecules. Since the total number of receptor molecules is  
5 × 1010, whereas the total number of epinephrine molecules is 6 × 1015, 
the binding of epinephrine to half (or even all) of the receptor molecules 
will change the free concentration of epinephrine by less than 0.001%, a 
negligible amount for our purposes. Thus, for now, we will assume that 
x is unchanging with respect to time and that x ≈ xtot.

The rate equation (Eq. 2.3) is an ordinary differential equation 
(ODE), with the term “ordinary” meaning that there is only one inde-
pendent variable (time t). It can be solved, yielding an expression for 
cxy as a function of time, and we will do this a little later, in Section 
2.3. But even without solving the rate equation, we can extract some 
interesting information from Eq. 2.1: we can derive an expression for 
the equilibrium concentration of cxy as a function of the input stimulus 
(the ligand concentration (x)) and the system’s parameters (the total 
concentration of the receptor (ytot) and the rate constants (k1 and k−1)). 
From the resulting expression, we can learn something about both the 
qualitative and quantitative character of the equilibrium response.

For the system to be in equilibrium, the concentration of cxy has to be 
constant with respect to time, which means that:

= 0.
dc

dt
xy 	 (2.4)

Combining Eqs. 2.3 and 2.4 yields:

( )− − =− 0.1 1k x y c k ctot xy xy 	 (2.5)

Putting the terms containing cxy on one side gives us:

⋅ = + ⋅−1 1 1k x y k c k x ctot xy xy .	 (2.6)

It follows that the fraction of the receptor molecules bound by ligand 
at equilibrium is:







=
+−

,1

1 1

c

y
k x

k k x
xy

tot eq

	 (2.7)

where we have included the subscript “eq” here to emphasize that we 
are talking about the fraction of cxy in the complex at equilibrium—we 
are no longer considering the complex as a time-dependent, dynami-
cal quantity. Equivalently, we can write this equation as:





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=
+

,
1

c

y
x

K x
xy

tot eq

	 (2.8)
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where = −
1

1

1

K
k
k

, which by definition is the equilibrium constant for 

the binding-dissociation reaction (equilibrium constants are tradition-
ally denoted by capital K’s). This form emphasizes that it is only the 
ratio of the rate constants, rather than their individual values, that bears 
on the equilibrium level of complex formation. The individual values do 
affect how quickly the system approaches equilibrium, as we will show 
below, but not what the equilibrium concentration of cxy is.

Equation 2.8 is the Langmuir equation (or the Langmuir binding 
isotherm), named in honor of Irving Langmuir, who in 1916 derived 
an equation of the same form for the adsorption of non-interacting 
gas molecules to a checkerboard surface of independent gas-binding 
sites—a process that is conceptually equivalent to our stoichiometric 
regulation process.

It is not obvious from just looking at it, but Eq. 2.8 describes a rectan-
gular hyperbola, so this type of response is sometimes referred to as 
a hyperbolic response. In addition, Eq. 2.8 is similar in form to the 
famous Michaelis–Menten equation:

=
+

,V V
S

K Smax
M

	 (2.9)

which relates the initial velocity or rate of an enzyme-catalyzed reac-
tion (V) to the concentration of substrate present (S). Because of this 
similarity, equilibrium or steady-state responses that are described 
by equations of the form of Eq. 2.8 are commonly called Michaelian 
responses. Note, however, that we have not assumed that Michaelis–
Menten kinetics govern the binding of a ligand to a receptor; we 
assumed mass action kinetics. For this reason, the term “Michaelian 
response” is a bit of a misnomer, but it is in common usage, and so we 
will use it throughout this book.

Note that there is a law-of-diminishing-returns quality to this hyper-
bolic or Michaelian response. The first increment of ligand yields some 
binding; the second increment of ligand yields a bit less incremen-
tal binding (Figure 2.3a); the third less still; until, once the binding is 
near-maximal, changes in ligand concentration have almost no effect 
on receptor binding. When the concentration of the ligand x equals 
K1, the fraction of y in the complex is equal to 0.5, so the EC50—the 
concentration of x required for 50% binding—is equal to K1.

So, does Eq. 2.8 actually account for the equilibrium binding of ligands 
to β2-adrenergic receptors? The answer is usually yes; in fact the curve  
in Figure 2.2b is a Michaelian curve, fitted to experimental data for 
the binding of a high-affinity β2-adrenergic agonist (fenoterol) to a uni-
form population of receptors (chimeras of the β2-adrenergic receptor 
and a G-protein β-subunit) in vitro. The fitted value for Keq is 2.8 nM.

Michaelian responses turn up in other cell signaling processes—for 
example, in phosphorylation-dephosphorylation cycles, as long as the 
kinase and phosphatase are operating far from saturation (Chapter 3). 
For this reason, the Michaelian response can be used as a sort of 
benchmark to which other types of response can be compared.

If the ligand inhibits the receptor rather than activating it, so that y 
rather than cxy is the active species, then the fraction of the receptors 
that are active at equilibrium is given by:







= −




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1
y

y

c

ytot eq

xy

tot eq

	 (2.10)
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
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This type of response is sometimes called hyperbolic or Michaelian 
inhibition.

Probably the best way to get a feel for the character of the responses 
defined by Eqs. 2.8 and 2.12 is to plot them. There is only one adjusta-
ble parameter—the equilibrium constant K1, which is in concentration 
units. If we choose units such that K1 = 1, we obtain the red curve 
shown in Figure 2.3a for the fraction of the receptor molecules that 
are bound by the ligand at equilibrium. Each incremental step upward 
in x gives a smaller incremental change in receptor binding—the 
law-of-diminishing-returns character—and the maximal response 
( )=c yxy tot  is approached very gradually. This is one of the qualities of 
ligand–receptor interaction that we were hoping to account for in our 
modeling (see Section 2.1) and, lo and behold, we have.

Michaelian inhibition, as defined by Eq. 2.12, exhibits the same sort of 
diminishing returns, except that the curve is flipped upside down, and 
each successive increment of stimulus yields a diminishing increment 
of inhibition (Figure 2.3b).

2.4 � A SEMILOG PLOT EXPANDS THE RANGE 
BUT DISTORTS THE GRADED CHARACTER 
OF THE RESPONSE

When stoichiometric binding curves are plotted in the experimental 
literature, very often the ligand concentration is plotted on a loga-
rithmic scale rather than a linear scale. This is sometimes because 
the binding curves for more than one ligand are being plotted, and 
a semilog plot allows ligands with dissimilar binding affinities to be 
plotted together and compared (Figure 2.4b). When a Michaelian 
response is plotted on a semilog plot, it is a sigmoidal curve, and 
changing the assumed value of the equilibrium constant shifts the 
curve to the left or right without stretching it or otherwise changing 
its shape (Figure 2.4b).

Note that there are some potentially misleading features in the pic-
ture presented by the semilog plot. It looks like there is a threshold, 
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with the response being nearly flat for small increments of input and 
then steepest when the input equals the equilibrium constant. But of 
course this is not correct; the real slope (Figures 2.2b, 2.3a, and 2.4a) 
is maximal when x is zero, and it is the initial increments of input that 
produce the largest increments of output.

Thus, while semilog plots are commonplace and useful, it is impor-
tant to not let them fool you. Some responses do exhibit thresholds, 
and thresholds are important for generating many of the complex 
responses we will discuss later in the book, but they do not arise 
out of this stoichiometric activation mechanism, despite what the 
semilog plot seems to show. We will examine several mechanisms 
that actually do produce thresholds in Chapter 3, when we discuss 
cooperativity, and in Chapters 4 and 5, when we examine some other 
mechanisms that yield ultrasensitivity.

2.5 � THE SYSTEM APPROACHES EQUILIBRIUM 
EXPONENTIALLY

So far we have concerned ourselves only with the equilibrium of the 
receptor–ligand system. We can go further by solving the rate equation 
(Eq. 2.3) to deduce an equation for the time course for approaching 
equilibrium from some out-of-equilibrium initial condition. In the 
general case, where the input x might be a function of time, we may 
have to do this numerically with a numerical ODE-solver like the ones 
in Mathematica or MATLAB®. However, for the special case where we 
imagine that the input (x) changes instantaneously from one constant 
value to another, we can solve Eq. 2.3 analytically, yielding a relatively 
simple formula for the time course of the net formation of cxy (if the 
input steps up) or the net dissociation of cxy (if the input steps down).

Let us start again with Eq. 2.3, the rate equation for the stoichiometric 
regulation process:

( )= − − − .1 1

dc

dt
k x y c k cxy

tot xy xy 	  (2.3)

Rearrange the right-hand side:

( )= − + + ⋅− ,1 1 1

dc

dt
k x k c k x yxy

xy tot 	 (2.13)
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( )= − + −
⋅
+
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	  (2.14)

( )( )( )= − + −− .1 1

dc

dt
k x k c cxy

xy xy eq
	 (2.15)

Next, we replace the variable cxy with a new variable z that repre-
sents the difference between the cxy and the equilibrium value of cxy, 
(cxy)eq:

( )= − =and .z c c
dz
dt

dc

dtxy xy eq

xy 	 (2.16)

Plugging this into Eq. 2.15 yields

= − + −( ) .1 1

dz
dt

k x k z 	 (2.17)

We can solve this. First we write

= − + −( ) .1 1

dz
z

k x k dt 	 (2.18)

We then integrate both sides of Eq. 2.18:

= − + +−ln ( ) ,1 1z k x k t C 	 (2.19)

where C is a constant of integration whose value can be determined 
from the initial conditions. Exponentiating both sides yields:

= − + − .( )1 1z e eC k x k t

	 (2.20)

We can assign a value to the constant of integration C in the term eC 
by noting that at t = 0, the value of z is:

= ⋅ =[0] .0z e e eC C 	 (2.21)

Combining Eqs. 2.20 and 2.21, we obtain an equation for the time evo-
lution of z in terms of the input stimulus x, the rate constants k1 and 
k−1, and the initial condition z[0]:

= ( )− + −[ ] [0] .1 1z t z e k x k t 	 (2.22)

Note that to emphasize that the difference between z[0], a number, 
and the z on the left-hand side of Eq. 2.20, a time-dependent function, 
we have written the time dependence explicitly in Eq. 2.22.

Eq. 2.22 shows that z[t], which represents how far cxy is from its equi-
librium value, decreases exponentially with time. We can say the 
system approaches equilibrium exponentially. But keep in mind that 
this is not an explosive, positive exponential but rather an exponential 
with a negative exponent, which therefore decreases with time.

We can convert back from z to cxy by substituting the definition for z 
(Eq. 2.16) into Eq. 2.23:

( )( ) ( )= + − ( )− + −[ ] [0] .1 1c t c c c exy xy eq xy xy eq

k x k t
	 (2.23)
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We can get a feel for this equation by plotting it. To make things sim-
ple, let us first assume that the rate constants are both equal to 1 
(which means the equilibrium constant K1 is also equal to 1), that x 
= 1 (so we should expect a half-maximal response), and that ytot = 1, 
and let us start the system at a range of initial values of cxy. As shown 
in Figure 2.5, when cxy is initially above its equilibrium concentra-
tion of cxy = 0.5, the time courses are monotonic decreases; when cxy 
is initially below its equilibrium concentration, the time courses are 
monotonic increases; and when it starts at 0.5, it remains unchanged. 
The trajectories never overshoot the equilibrium. For each of these 
curves (except for the flat cxy = 0.5 curve), the halftime for approaching 
equilibrium is:

=
+

=
+

=
−

Ln2 Ln2
1 1

0.347.1/ 2
1 1

t
k x k

	 (2.24)

The quantity + −1 1k x k  is sometimes called kapparent, the apparent rate 

constant for the exponential approach to equilibrium.

Note that whereas the expression for the equilibrium level of cxy 
depended on the ratio of the two rate constants, not the absolute 
values of the individual rate constants (Eq. 2.8), the dynamics of the 
system (from Eqs. 2.22 and 2.23) does depend on the individual rate 
constants. Thus doubling both k1 and k−1 has no effect on the equi-
librium level of cxy but does increase the speed at which the system 
approaches equilibrium.

So do experimental binding data agree with the exponential approach 
to equilibrium that the model predicts? The answer is often yes. In 
Figure 2.5b we have overlaid the experimental binding-dissociation 
time course from Figure 2.2a with best-fit exponential curves, and the 
agreement is quite good.

2.6 � INCREASING THE ASSOCIATION RATE 
DECREASES t1/2; SO DOES INCREASING 
THE DISSOCIATION RATE

From Eq. 2.24 we can see that the speeds of both the association reac-
tion (which yields the k1x term) and the dissociation reaction (k−1) 
contribute to kapparent and the halftime of the binding reaction. The 
faster the association, the smaller the halftime, and the faster the 
dissociation, the smaller the halftime. Intuitively, it seems plausible 
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that speeding up the association should quicken the process, but why 
should speeding up the dissociation do the same?

To answer this question, we first look at what happens to the time 
course when we increase the association rate. For simplicity, we will 
start with the parameters we used for Figure 2.5 and then double the 
assumed value of k1 (or, equivalently, of x). We will also take the initial 
concentration of cxy to be zero. As shown in Figure 2.6a, when k1 is 
doubled (from 1 to 2), the initial slope of the time course is doubled. 
This allows the system to reach its half-maximal response faster, even 
though it has a little farther to go to get to the half-maximum than it 
did when k1 was 1.

Next consider when happens when k1 = 1 and the dissociation rate 
constant k−1 is increased from 1 to 2 (Figure 2.6b). The initial rate of 
complex formation is unchanged; it depends only on k1, so the system 
does not start off toward equilibrium binding any faster. But the equi-
librium level of response is lower (1/3 rather than 1/2), and so for this 
reason the system gets to the half-maximal level of response sooner 
than it did when k1 was 1.

Thus, increasing the forward reaction rate constant decreases the 
halftime because you go faster, and increasing the back reaction rate 
constant decreases the halftime because you have less far to go.

2.7 � GOING UP IS FASTER THAN COMING 
DOWN

Suppose that we start with zero ligand and an unoccupied receptor, 
increase the total ligand concentration to some value x, let the system 
equilibrate, and then decrease the ligand concentration back to zero. 
How will the time courses going up and coming down compare?

We can answer this by looking at the expression for t1/2 or kapparent; 
here we pick kapparent:

= + − .1 1k k x kapparent 	 (2.25)

Going up, both terms on the right-hand side of Eq. 2.25 contribute to 
kapparent. Coming down, x is zero, so only the k−1 term contributes. 
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Thus the new equilibrium will be approached faster (kapparent is larger) 
on the way up than on the way down. This is shown in Figure 2.7. We  
have taken k1 = k−1 = ytot = 1 for the model’s parameters and have let x 
switch from 0 to 10 and back. The halftime on the way up is and on the 
way down is Ln2

11
, and on the way down is Ln2 eleven times longer. In 

general, for this sort of reaction, going up is faster than coming down.

2.8 � THE DISSOCIATION RATE CONSTANT 
k−1 DETERMINES THE HALF-LIFE AND 
MEAN LIFETIME OF A LIGAND–RECEPTOR 
COMPLEX

Note that when cxy is some nonzero concentration and x = 0, kapparent 
is equal to k−1, and the length of time it takes for half of the receptor 

molecules to lose their ligand molecules to the x = 0 void is ≈
− −

Ln2
2

0.693

1 1k k
. 

This quantity has a special meaning; it represents the half-life of the 
receptor–ligand complex.

We can also derive an expression for the average lifetime of the com-
plex, a quantity often just called the lifetime of the complex or the 
dwell time of the ligand. Equation 2.23 reduces to:

= − −[ ] [0] .1c t c exy xy
k t 	 (2.26)

The lifetime can be calculated as follows. The number of the cxy 
complexes that decay within some tiny time interval dt around t is 
given by:

− −[0] .1c e dtxy
k t 	 (2.27)

The fraction of the complexes within this time interval is:
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Note that the cxy[0]’s cancel. The decay time for these complexes is t, 
so the contribution of this interval’s complexes to the overall average 
decay time is:
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And now to get an expression for the average lifetime, which we 
call τ, we integrate over all t. The numerator can be evaluated using 
integration by parts (or the Integrate command in a program like 
Mathematica); the denominator is easier:
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Thus, the lifetime of a complex is simply the reciprocal of the dissocia-
tion rate constant k−1.

2.9 � PARTIAL AGONISTS, ANTAGONISTS, AND 
INVERSE AGONISTS CAN BE EXPLAINED 
BY ASSUMING THAT BINDING AND 
ACTIVATION OCCUR IN DISTINCT STEPS

So far we have assumed that ligand binding and receptor activation 
occur simultaneously; there are only two species of receptor: inactive, 
unbound receptors and active, ligand-bound receptors. What if we 
instead assume that ligand binding and receptor activation take place 
in separate, distinct steps?

We could imagine that the binding of the ligand promotes a con-
formation change in the receptor, in the spirit of Daniel Koshland’s 
induced fit model for allosteric activation, which we will discuss 
in Chapter 3. In this scheme, ligand binding occurs first and is fol-
lowed by receptor activation (Figure 2.8a). Alternatively, we could 
assume that the empty receptor flips between an inactive and an 
active conformation, and the ligand essentially selects and stabi-
lizes the activated conformation of the receptor (Figure 2.8b). This 
conformational selection mechanism is at the heart of the Monod–
Wyman–Changeux (MWC) models of allostery and cooperativity, 
which again we will see more of in Chapter 3. Of course both routes 
to activation could be occurring in parallel (Figure 2.8c). Here we 
will look at the first scheme (Figure 2.8a) first, because it is the easi-
est to analyze mathematically.

There are three forms of the receptor y in this model: unliganded y, 
the ligand-bound but as yet inactive species cxy, and the active species 
cxy* (Figure 2.8a). We can write rate equations for the net production 
of each of these species in the presence of a constant concentration 
of the ligand x:

= − ⋅ + −1 1

dy
dt

k x y k cxy 	 (2.31)

= ⋅ − − +− −
*

1 1 3 3

dc

dt
k x y k c k c k cxy

xy xy xy	 (2.32)
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= − −

*
* .3 3

dc

dt
k c k cxy

xy xy 	 (2.33)

At equilibrium, each of these net rates must equal zero, yielding three 
algebraic equations:

= − ⋅ + −0 ,1 1k x y k cxy 	 (2.34)

= ⋅ − − +− −0 * ,1 1 3 3k x y k c k c k cxy xy xy 	 (2.35)

= − −0 * .3 3k c k cxy xy 	 (2.36)

Note that Eq. 2.35 = – Eq. 2.34 – Eq. 2.36, so we only have two inde
pendent equations. We can obtain a third independent equation from 
the conservation relationship:

= + + * .y y c ctot xy xy 	 (2.37)

We can now solve for each of the three species of receptor as a func-
tion of the rate constants and ytot:
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Figure 2.8  Sequential binding and activation. (a) This model assumes that x binds y first and then induces a conformation 
change that activates y. If a drug can bring about a near maximum level of receptor activation (i.e., K3 = k-3/k3 is very small), the 
drug is called a full agonist. If the maximum level of activation is zero (i.e., K3 is large), the drug is called an antagonist. And if the 
maximum level of activation is intermediate between these extremes, the drug is called a partial agonist. (b) Here we assume that 
the free receptor equilibrates between the active and inactive conformation, and the ligand x captures the active receptor. (c) The 
full model assuming both pathways contribute. This is often termed the “two-state model” of receptor activation. Note that if, for 
some drug, the level of activation when the drug is bound to the receptor is actually lower than the basal level of activity (K2 < K3), 
the drug is called an inverse agonist. In all cases we have taken K1 = K2 = 10, K3 = K4 = 0.1, and ytot = 1.
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The parameters K1 and K3 are the equilibrium constants for the bind-

ing and conformation-change steps, with = −
1

1

1

K
k
k

 and = −
3

3

3

K
k
k

. The 

equilibrium concentrations of y, cxy, and cxy* depend on the equilib-
rium constants, and not on the individual values of the rate constants, 
as usual.

To see how this response function (Eq. 2.40) compares to a Michaelian 
response, we can start by plotting it for some choice of parameters. 
Let us take = 101K , and let us suppose the equilibrium between cxy and 
cxy* favors cxy*, with = 0.13K . The resulting curve (Figure 2.8a) looks a 

lot like a Michaelian response curve, except that it levels off below an 

output of 1 (10/11 or 0.909… for this choice of rate constants). In fact 
we can rearrange Eq. 2.35 to show that this is exactly the case:
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The right-hand term in Eq. 2.41 describes a Michaelian response with 

an EC50 of 
+ 1

1 3

3

K K
K

 and a maximal response of 
+

1
13K
. Note that since K3 

is a positive number, the maximal response will be less than 1.

This model predicts that activation maxes out at less than 100%, with 
the propensity of a ligand to induce the receptor to adopt its activated 
conformation being determined by K3, which could vary from ligand to 
ligand. This explains why some ligands act as full agonists—presumably 
the equilibrium in the K3 step very much favors the activated confor-
mation—while other ligands act as partial agonists (promoting the 
conformation change more weakly) and still others act as antagonists, 
binding but not promoting activation at all. The µ-opioid receptor-bind-
ing drugs morphine, heroin, and fentanyl are all regarded as full agonists, 
with maximal binding leading to maximal receptor activation, whereas 
buprenorphine is a high-affinity partial agonist, with maximal binding 
causing less-than-maximal activation. For this reason, buprenorphine is 
sometimes used to treat opioid addiction; it can maintain an addict in a 
less-than-maximally intoxicated state that can allow the addict to func-
tion more normally. The high-affinity µ-opioid receptor-binding drugs 
naltrexone and naloxone function as antagonists, binding to receptors 
without promoting receptor activation. For this reason they can save 
the life of someone overdosing on an opioid agonist, competing with a 
death-inducing agonist for access to the receptor and thus decreasing 
receptor activity to levels compatible with life.

Next let us examine the second scheme (Figure 2.8b), with the recep-
tor equilibrating between an inactive and an active conformation, and 
an agonist ligand x essentially selecting and stabilizing the active con-
formation. The rate equations for this model are:

= − + − *,2 2

dy
dt

k y k y 	 (2.42)
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Setting all of these equations equal to zero and solving for y, y*, and 
cxy* yields:
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In this case, the total active receptor is y* + cxy*, which yields:
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Now the minimal response—the response when the concentration 

of the ligand x is zero—is nonzero, equal to 
+
1

1 2K
. The response 

approaches a maximum value of 1 as x approaches infinity, and the 
shape of the response curve is again Michaelian.

Note that this model can explain why many receptors, including the 
β2-adrenergic receptor, exhibit basal activity, and it explains the exist-
ence of inverse agonists; in the context of this model, an inverse 
agonist is a drug that binds better to the inactive conformation than 
to the active conformation. In fact the structure of the inactive con-
formation of the receptor shown in Figure 2.1b was obtained in the 
presence of an inverse agonist, the drug carazolol. The ligand evi-
dently firms up the positions of the transmembrane helices, and 
without such a ligand, only structures of the lower portions of the 
helices are obtained. Carazolol not only blocks the effects of agonists 
like epinephrine on receptors and cells, it also decreases the basal 
levels of β2-adrenergic receptor signaling seen in cells by binding 
more strongly to the inactive receptor than to the active receptor. In 
this way, inverse agonists select the receptor’s inactive conformation, 
whereas agonists select the active conformation.

Perhaps not too surprisingly, if one solves the full system with all four 
species and all four interconversion processes (Figure 2.8c), the result 
is a Michaelian response with a minimum greater than zero and a 
maximum less than one. The equations for the four species are pretty 
complicated:
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But the graph of the response (which is given by 
*y c

y
xy

tot

+
) is simple 

(Figure 2.8c), and it is just as expected—there is a nonzero minimum 
response and a maximum response of less than 1—and in between 
the response curve is Michaelian in shape. This is often termed the 
two-state model of receptor–ligand interaction, and it has become 
something of a standard model in the receptor field.

Thus, adding a separate activation step to a binding reaction accounts 
for the existence of partial agonists, antagonists, and inverse agonists. 
Although the equilibrium binding equations are a bit more compli-
cated than we obtained for concerted binding and activation, they can 
be viewed as variations on the standard law-of-diminishing-returns 
Michaelian response, albeit a Michaelian response with a minimum 
greater than zero and a maximum less than 1.

SUMMARY
The simplest receptors are monomeric proteins that bind mono-
meric ligands. Here we have shown that a model of receptor–ligand 
interaction, where ligand binding and receptor activation happen 
simultaneously, can account for many of the basic qualities of ligand 
binding: a hyperbolic or Michaelian equilibrium response with a 
law-of-diminishing returns character, exponential approach to equi-
librium, and a faster response after adding ligand than after washing 
it away. A more realistic model where ligand binding and receptor 
activation occur in separate steps tweaks the equilibrium response a 
bit: the standard Michaelian response acquires a nonzero basal activ-
ity and a less-than-100% maximal activity. But, more importantly, it 
provides an explanation for the existence of partial agonists, antago-
nists, and inverse agonists, classes of drugs with varying abilities to 
activate receptors that may not activate receptors fully, but neverthe-
less can be of great utility in clinical medicine.
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INTRODUCTION
In Chapter 2 we examined the binding of a monomeric ligand to a 
monomeric receptor, a type of interaction that is commonplace in 
cell signaling. But multimeric receptors and ligands are common as 
well. Some G-protein-coupled receptors, such as the metabotropic 
glutamate receptor, function as dimers rather than monomers. Many 
receptor tyrosine kinases are multimeric and some of their ligands are 
as well. For example, the well-studied epidermal growth factor recep-
tor (EGFR) is thought to function as a dimer in which two epidermal 
growth factor (EGF) molecules interact with two receptor molecules 
to yield an active EGF2–EGFR2 complex. The platelet-derived growth 
factor (PDGF) receptor is dimeric too, and it binds a PDGF dimer. The 
downstream Raf proteins also function as dimers, as do many of the 
further downstream transcription factors. Dimerization is not pecu-
liar to receptor tyrosine kinase signaling—it has been estimated that, 
all told, perhaps 35% of proteins form homodimers, trimers, or larger 
polymeric complexes (Figure 3.1).

Whenever multiple ligand molecules (e.g., EGF, Ras, or transcrip-
tion factors) bind a multimeric target (EGFR, Raf, or the transcription 
factors’ target sequences), the equilibrium response may differ in 
important ways from the Michaelian response described in Chapter 
2. In some cases, the shape of the binding curve is sigmoidal, with 
the first increments of ligand binding relatively poorly and subsequent 
increments binding better (Figure 3.2, red curve). This mechanism is 
termed cooperativity, or, more precisely, positive cooperativity. 
The sigmoidal binding curves are sometimes termed ultrasensitive 
curves, in part because mechanisms other than cooperativity, which 
we will encounter in Chapters 4 and 5, can yield very similar response 
curves.

Alternatively, a multimeric receptor may bind ligands more gradu-
ally than a monomeric receptor does, but over a larger range of input 
stimuli (Figure 3.2, blue curve). This mechanism is termed negative 
cooperativity, and the resulting binding curves are termed subsen-
sitive response curves. Both ultrasensitivity and subsensitivity can 
contribute in important ways to the overall functioning of a signaling 
system.

Here we will begin by examining how ultrasensitive and subsensi-
tive responses can arise in multimeric systems through positive and 

Dimer
EGFR ectodomain

Trimer
TRAF-2

Tetramer
Oxyhemoglobin

Pentamer
Nicotinic acetylcholine receptor

5 nm

Figure 3.1  Examples of oligomeric proteins. (a) The dimeric extracellular portion of the Drosophila EGF receptor (PDB 
3I2T). (b) The trimeric protein TRAF-2 (human), which stands for TNF (tissue necrosis factor) receptor-associated factor-2 (PDB 
1CA4). (c) The tetrameric protein hemoglobin (human), bound to four oxygen molecules (PDB 1GZX). (d) The pentameric nicotinic 
acetylcholine receptor, from Torpedo marmorata (the marbled electric ray) (PDB 2BG9). All structures are shown to the same scale.
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negative cooperativity. The theory behind cooperativity goes back to 
the early 20th century and was contributed to by many of that centu-
ry’s most famous biochemists. The original motivation for the theory 
was not cell signaling; it was the binding of oxygen to hemoglobin, 
and the puzzle was to understand why hemoglobin exhibited a sig-
moidal oxygen-binding curve.

3.1 � THE HILL EQUATION IS A SIMPLE 
EXPRESSION FOR THE EQUILIBRIUM 
BINDING OF LIGAND MOLECULES TO AN 
OLIGOMERIC RECEPTOR

Data for the equilibrium binding of oxygen to hemoglobin in vitro are 
shown in Figure 3.3. At low oxygen tensions, hemoglobin binds less 
oxygen than predicted by the Langmuir equation (Figure 3.3a), and 
at high oxygen tensions it binds more. Moreover, the deviation from 
theory is physiologically significant. It means that hemoglobin can 
pick up more oxygen in the high-pO2 environment of the lungs, and 
then unload more of this oxygen in the low-pO2 environment of the 
tissues, than it otherwise could. The question then was how this sig-
moidal binding curve might arise.

In 1910, A.V. Hill proposed a mechanism that can account for the sig-
moidal shape. He hypothesized that at least some of the hemoglobin 
in solution was present as a multimeric complex—there were indi-
cations from experiments that this was probably true, although the 
famous tetrameric structure of hemoglobin had not yet been eluci-
dated. Next, he assumed that an n-mer of hemoglobin could bind n 
molecules of oxygen and that the n molecules of oxygen bound and 
dissociated from the protein simultaneously, so that no appreciable 
concentration of partially saturated hemoglobin molecules ever accu-
mulated. With these assumptions, the binding reaction is nth order in 
O2. The net rate of oxygen binding is therefore given by:

= − −. ,1 0 1

dy
dt

k x y k yn n
n 	 (3.1)

where x represents the concentration of the ligand oxygen, y0 is the 
concentration of hemoglobin with no bound oxygens, and yn is the 
concentration of hemoglobin with n bound oxygens. At equilibrium:

= − −0 . .1 0 1k x y k yn
n 	 (3.2)
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Figure 3.2  Three types of equilibrium binding curves: ultrasensitive, Michaelian, and subsensitive. Panel A shows a 
linear plot; panel B a semilog plot.
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Since we have assumed that there are no intermediate hemoglobin–
oxygen complexes, the conservation law for this system is = +0y y ytot n. 
Using this to eliminate the variable y0 from Eq. 3.2 yields:

= − − −0 1 1 1k x y k x y k yn
tot

n
n n	 (3.3)
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If we introduce a new parameter K, where Kn = k−1/k1, we can rewrite the 
equation for the equilibrium fraction of y in the oxygen-bound state as:







=
+

.
y
y

x
K x
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n

n n 	 (3.7)

The advantage of this form is that K is equal to the EC50 (effective 
concentration-50), the concentration of x for which y achieves a 
50%-maximal value. Equation 3.7 is the Hill equation, and the quan-
tity on the left side—the fraction of the total hemoglobin molecules 
bound to n oxygen molecules—can be regarded as the oxygen satura-
tion of the hemoglobin.

Although Hill derived the equation because of an interest in oxygen 
transport, not signal transduction, it is easy to see that a completely 
analogous equation could describe the simultaneous binding of n hor-
mone molecules to a multimeric receptor or the simultaneous binding 
of n transcription factors to an enhancer sequence. A generic Hill 
equation for signal transduction would be:
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The exponent n is either called the Hill coefficient (the more com-
mon name) or the Hill exponent (the more correct name). For the 
binding of two EGF molecules (x) to the dimeric EGFR (y), the resulting 
Hill equation would be:
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where 
2

cx y represents the concentration of dimeric EGFRs bound to 
two EGF molecules.

3.2 � THE HILL EXPONENT IS A MEASURE 
OF HOW SWITCH-LIKE A SIGMOIDAL 
RESPONSE IS

One way to get a feel for the Hill equation is to plot it for various choices 
of the Hill exponent n. When n = 1, Eq. 3.9 is identical to the Langmuir 
equation (Eq. 2.8), which means that the response is hyperbolic and 
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Figure 3.3  The binding of oxygen to 
hemoglobin in vitro. The experimental 
data are for the binding of oxygen to 
horse hemoglobin and are adapted from 
Monod et al., J Mol Biol. 1965. The curves 
are fits of the following equations to 
the data: (a) the Langmuir equation (Eq. 
2.8); (b) the Hill equation (Eq. 3.7); (c) the 
Monod–Wyman–Changeux saturation 
equation (Eq. 3.39); and (d) the Koshland–
Némethy–Filmer saturation equation (the 
four-subunit analog of Eq. 3.51). In all 
cases, the parameters for the curve fitting 
were obtained by nonlinear regression.
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Michaelian in character. Ligand binding increases linearly with x for 
small values of the stimulus x, and it gradually approaches a maxi-
mum of 1 as x becomes very large. Over the entire response range, 
the response curve is concave down (Figure 3.4). To drive the system 
from a 10%- to a 90%-maximal binding, one needs to increase the 

stimulus from 
1
9

K  to 9K, or 81-fold (TABLE 3.1).

When n is greater than one, the output is initially nth order in x and 
the binding curve is initially concave up. Overall, the curve is sigmoi-
dal; it has an inflection point where it transitions from being concave 
up to concave down. The higher the value of n, the more steeply sig-
moidal the curve becomes (Figure 3.4). With a Hill exponent of 2, it 

takes only a 9-fold-change (from 
1
3

K  to 3K) to drive the output from 

10%- to 90%-maximal, and with a Hill exponent of 4, it takes only a 
3-fold-change (TABLE 3.1). Once the Hill exponent reaches 46 (admit-
tedly an astronomical number as Hill exponents go), a 10% change 
in input is enough to drive the output from 10%- to 90%-maximal. In 
general terms, the fold-change in input required to drive the output 
from 10%- to 90%-maximal is equal to 811/ n. Thus, in the context of sig-
nal transduction, high Hill exponents can make a response be highly 
switch-like. In the limit where n approaches infinity, the Hill curve 
approaches a step function.
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Figure 3.4  The Hill equation. Six 
equilibrium binding curves described 

by the equation 
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n n  are 

shown. As the Hill exponent increases, 
the binding becomes more all-or-none in 
character.

TABLE 3.1  Fold-Change in Input Needed to Drive Output from  
10%- to 90%-Maximal

Hill Exponent (n) Required Fold-Change in Input

1 81

2 9

3 4.33

4 3

8 1.73

16 1.32

32 1.15

64 1.07
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3.3 � THE HILL EQUATION ACCOUNTS FOR 
HEMOGLOBIN’S OXYGEN BINDING 
PRETTY WELL, BUT THE ASSUMPTIONS 
UNDERPINNING THE MODEL ARE DUBIOUS

For hemoglobin, with its four oxygen-binding subunits, the simulta-
neous binding of four oxygens should yield a binding curve with a Hill 
exponent of 4. In actuality, the Hill equation, with its two adjustable 
parameters n and K, can be fitted quite well to oxygen-binding data, 
but the Hill exponent obtained is around 2.7 (and the fitted value of 
K is 10.2 torr; Figure 3.3b). Certainly the fit is much better than that 
obtained with the one-parameter Langmuir equation. The best-fit Hill 
curve does deviate a bit from the experimental data at low oxygen 
tensions (Figure 3.3b), but overall the equation captures the charac-
ter of the equilibrium binding.

The problem with the Hill model, of course, is its assumption that n 
molecules of ligand simultaneously interact with the multimeric pro-
tein. In reality, four oxygens (or even 2.7) will never collide exactly 
simultaneously with a hemoglobin molecule. It seems like a satisfac-
tory theory would need to acknowledge that ligands may associate 
with and dissociate from their binding partner one at a time.

So why does the Hill equation, an equation that comes from an incor-
rect physical model, fit the data so well? The answer is that the more 
complicated sigmoidal binding equations that arise out of more 
physically reasonable models can usually be approximated by a Hill 
function—the Hill function serves as a pretty reasonable generic sig-
moidal curve.

3.4 � THE MORE-PLAUSIBLE MONOD–WYMAN–
CHANGEUX (MWC) MODEL YIELDS 
SIGMOIDAL BINDING CURVES

What happens if we relax the Hill model’s assumption of simultane-
ous ligand binding and assume that ligand molecules bind one at a 
time? Can we still get a sigmoidal binding curve like that seen experi-
mentally for hemoglobin’s oxygen binding? The answer is yes, and 
in fact there are a number of models that assume oxygen molecules 
(or, more generally, input ligands) bind one at a time to the tetrameric 
hemoglobin molecule (or, more generally, a multimeric receptor), the 
two best known of which are the MWC model, proposed in 1965, and 
the Koshland–Némethy–Filmer (KNF) model, proposed in 1966. 
Here we will start with the MWC model.

The basic idea behind the MWC model is shown in Figure 3.5. For the 
motivating example of the binding of oxygen to hemoglobin, it was 
assumed that four oxygen molecules bind one at a time to the hemo-
globin tetramer. Hemoglobin is actually composed of two different 
subunit proteins, but for simplicity the two were considered equiva-
lent. Next, it was assumed that the hemoglobin complex can exist in 
two distinct conformations, irrespective of whether oxygen is bound 
or not. In one conformation, shown in blue in Figure 3.5, the subu-
nits bind oxygen with low affinity (this is customarily called the tense  
or T state); in the other (pink), they bind it with high affinity (the relaxed 
or R state). Monod and coworkers had already invoked this sort of 
two-conformation scheme in their work on the allosteric regulation 
(meaning regulation due to the binding of something to a site other 
than an enzyme’s active site), and so it was natural to extend the idea 
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to hemoglobin. These assumptions—one-at-a-time oxygen binding 
and two preexisting, equilibrating conformations—are the conceptual 
core of the MWC model.

Note that there are four ways that the first oxygen molecule can 
bind to hemoglobin—it can bind to any one of the four hemoglobin 
subunits—but since the subunits are assumed to be identical, we can 
consider the four Hb-(O2)1 complexes equivalent. To account for the 
four ways of making the complex, we include a factor of 4 before the 
relevant rate constant (k1) (Figure 3.5).

Next, to make the derivations a bit simpler, it was assumed that the 
four hemoglobin subunits flip in concert between the two conforma-
tions. Why assume the hemoglobin subunits flip together (Figure 3.5)? 
At the time the assumption may have seemed sort of magical, but 
we now know that oligomeric proteins are often, though not always, 
symmetrical, and it simplifies the algebra to consider only the sym-
metrical complexes. Since the subunits are assumed to flip in concert, 
the MWC model is sometimes referred to as the concerted model. 
A word of caution though—although the subunit flipping is assumed 
to be concerted, the oxygen-binding step is assumed to be separate 
from the subunit flipping, so in that sense this is a sequential model, 
a term that is usually reserved for the KNF model that we will discuss 
in the next section.

It was also assumed that the low-affinity conformation predominates 
when there are no oxygens bound to hemoglobin, but because the 
binding of oxygen to the high-affinity conformation is more energeti-
cally favorable, the equilibrium between the two conformations shifts 
more and more in favor of the high-affinity conformation as the num-
ber of oxygens bound to the hemoglobin increases. This is shown 
schematically in Figure 3.5.

To make the binding curve turn upward, one might think of assuming 
that the binding of one oxygen to the low-affinity (blue) conformation 
of hemoglobin would facilitate the binding of the next one to the same 
blue conformation. However, Monod, Wyman, and Changeux realized 
that such an assumption was not required. Instead they supposed that 
the equilibrium constants for the binding of oxygen to any of the low-
affinity species (the blue species in Figure 3.5) were identical, and 
that the equilibrium constants for the binding of oxygen to any of the 
high-affinity species (pink) were identical. Even with this assumption, 
the first oxygen to bind would still promote the binding of the next 
oxygen, though indirectly. This is because once the first oxygen binds, 
the equilibrium between the low-affinity (blue) and high-affinity (pink) 
form shifts in favor of the high-affinity form, which in turn makes the 
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Figure 3.5  The Monod–Wyman–Changeux model for the binding of oxygen to hemoglobin. The blue hemoglobin 
molecules are in the low-affinity conformation (T state); the pink molecules are in the high-affinity conformation (R state). The rate 
constants k1, k−1, k2, and k−2 are sometimes referred to as microscopic rate constants, whereas the expressions that include the 
number-of-ways factors, like 3k1 and 2k−1 for the second blue step, are termed macroscopic rate constants.
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binding of the next oxygen more energetically favorable (Figure 3.5). 
Likewise, each subsequent binding event shifts the equilibrium further 
in favor of the high-affinity form. This shift from one conformation to 
the other makes the binding of one oxygen molecule promote binding 
of the next, resulting in an upswing in the binding curve.

With these assumptions specified, we can now derive the MWC equa-
tion. But the algebra is simpler if one considers the binding of a ligand 
like EGF to a dimeric receptor like the EGF receptor (Figure 3.6), rather 
than the binding of oxygen to the tetrameric hemoglobin protein, so 
that is how we will begin.

First, we write rate equations for each of the six species shown in Figure 
3.6 and set each of the derivatives equal to zero, as they must be for the 
system to be in equilibrium. We call the low-affinity form of the dimeric 
receptor y and the high-affinity form y* and we denote the number of 
EGF molecules (0, 1, or 2) bound to the receptor by a subscript. Finally, 
we simplify the system by noting that, as far as the equilibrium behavior 
is concerned, it does not matter whether we consider all three routes 
between the blue forms and the pink forms, or just one. By considering 
just one route—say the route between y0 and y0*—we make the algebra 
a lot simpler. We then have the following algebraic equations:

0 2 ,3 0
*

3 0 1 0 1 1k y k y k x y k y= − − ⋅ +− − 	 (3.10)

0 2 2 ,1 0 1 1 1 1 1 2k x y k y k x y k y= ⋅ − − ⋅ +− − 	 (3.11)

0 2 ,1 1 1 2k x y k y= ⋅ − − 	 (3.12)

0 2 ,3 0 3 0
*

2 0
*

2 1
*k y k y k x y k y= − − ⋅ +− − 	 (3.13)

0 2 2 ,2 0
*

2 1
*

2 1
*

2 2
*k x y k y k x y k y= ⋅ − − ⋅ +− − 	 (3.14)

0 2 .2 1
*

2 2
*k x y k y= ⋅ − − 	 (3.15)

These equations can be simplified further by noting that Eq. 3.12 can 
be used to eliminate the last two terms from the Eq. 3.11; the resulting 
simplified version of Eq. 3.11 can then be used to eliminate the last  
two terms from Eq. 3.10. Likewise, Eq. 3.15 can be used to eliminate 
the last two terms from Eq. 3.14, and so on. Thus:

= −−0 ,3 0
*

3 0k y k y 	 (3.16)

0 2 ,1 0 1 1k x y k y= ⋅ − − 	 (3.17)
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Figure 3.6  A Monod–Wyman–Changeux model for the activation of the EGF receptor by EGF.
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0 2 ,1 1 1 2k x y k y= ⋅ − − 	 (3.18)

= − −0 ,3 0 3 0
*k y k y 	 (3.19)

0 2 ,2 0
*

2 1
*k x y k y= ⋅ − − 	 (3.20)

0 2 .2 1
*

2 2
*k x y k y= ⋅ − − 	 (3.21)

This simplification is equivalent to saying that the system can be in 
equilibrium only if each pair of opposing arrows is balanced.

Note that Eqs. 3.16 and 3.19 are equivalent, so we really have only 
five independent linear equations that constrain the six variables (the 
y’s and y*’s). There is one more algebraic equation, the conservation 
equation:

= + + + + + .0 1 2 0
*

1
*

2
*y y y y y y ytot 	 (3.22)

This provides us with enough constraints to solve for all of the six 
variables in terms of the rate constants and ytot. We start by using  
Eq. 3.16 and solving for 0y :

= =− ,0
3

3
0
*

3 0
*y

k
k

y K y 	 (3.23)

where = −
3

3

3

K
k
k

, the equilibrium constant for the transition between the 

low- and high-affinity conformations of the free receptor. We can plug 
this result into Eq. 3.17 to derive an expression for y1 in terms of 0

*y :

= =2 2 .1
1

0 3
1

0
*y

x
K

y k
x
K

y 	 (3.24)

Likewise for y2:

= =
2

.2
1

1 3

2

1
2 0

*y
x
K

y K
x
K

y 	 (3.25)

For the active receptor species, we begin with Eq. 3.21 and rearrange 
it to solve for 1

*y :

= 2 .1
*

2
0
*y

x
K

y 	 (3.26)

Likewise for 2
*y :

= =
2

.2
*

2
1
*

2

2
2 0

*y
x
K

y
x
K

y 	 (3.27)

We can now combine Eqs. 3.23–3.27 with the conservation equation 
(3.22) to produce expressions for each of the six forms of the EGFR 
dimer as a function of the EGF concentration. For example, the frac-
tion of the receptor in the inactive, unbound form (y0) is:
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Note that there is a factor of 0
*y  in both the numerator (from Eq. 3.23)  

and each term in the dominator (from Eqs. 3.23–3.27), which all  
cancel.

We can make this equation look a little simpler by factoring the first 
three and the last three terms in the denominator:


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And we can quickly write down analogous terms for the rest of the 
species, each with a different numerator but the same denominator:
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We can combine these equations to obtain theoretical expressions for 
the binding of EGF to the EGFR as a function of the EGF concentration 
(x), the equilibrium constants (K’s), and the total receptor concentra-
tion (ytot). We will express the binding as the fraction of the maximum 
of 2 moles of EGF per mole of EGFR—the fractional saturation of the 
receptor:
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If we assume that all of the y* species are active and all of the y spe-
cies are inactive, we can obtain a formula for the fractional receptor 
activity as a function of the EGF concentration x:

=
+ +0
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1
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2
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y y y
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	 (3.37)
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In general, the binding of a substrate x to an n subunit, two-state pro-
tein that obeys the MWC assumptions, is given by:
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and the fractional activity is:
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No matter how many subunits are present, the resulting equations 
have four adjustable parameters: the three equilibrium constants (K1, 
K2, and K3), and the number of subunits n.

To get an idea of the behavior of the MWC model, let us look at how 
the concentrations of the six different EGFR species shown in Figure 
3.6 change as the concentration of EGF increases. We will assume that 
K3, which describes the equilibrium between the unliganded EGFR in 
its loose-binding or inactive (blue) and tight-binding or active (pink) 
conformations, is a fairly large number (100), which means that ~99% 
of the EGFR will be in the blue conformation in the absence of ligand. 
Furthermore, we will assume that the pink form binds ligand 100× as 
tightly as the blue form, with K1 = 10 and K2 = 0.1.

Under these assumptions, as the concentration of EGF is increased, 
the amount of unliganded, inactive EGFR falls, and the amount of dou-
bly bound, active EGFR increases (Figure 3.7a). At intermediate EGF 
concentrations, there is some singly bound EGFR as well, and for this 
particular choice of the equilibrium constants, half of the singly bound 
EGFR is active and half is inactive (Figure 3.7a). The concentrations 
of the other two EGFR species—the unliganded active receptor and 
the doubly bound inactive receptor—are negligible at all EGF concen-
trations for this choice of parameters and are not shown in the plot. 
Thus, EGF pushes the EGFR dimer from an unbound and inactive state 
to a doubly bound active state.

The next question concerns the shape of the binding curve and of 
the input/output relationship—do these curves look like hyperbolic, 
Michaelian curves, or like Hill curves, or like something else? As shown 
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in Figure 3.7b,c, both curves are slightly sigmoidal, with half-maximal 
binding and half-maximal activation obtained when the concentra-
tion of EGF is equal to 1. In fact, for any choice of parameters, if one 
adopts concentration units such that 1 unit of EGF yields 50%-maximal 
binding and activation, then the binding curve will be guaranteed to 
fall somewhere in the shaded region between a Michaelian curve and 
an n = 2 Hill curve (Figure 3.7b,c). The activity curve can be made to 
fall between the Michaelian and n = 2 curves as well, provided one 
expresses the activity relative to its EGF = 0 value (there will be some 
receptor in the active conformation even when no ligand is present, 
especially if one assumes K3 is not too large) and its EGF → ∞ value. 
Making both K3 and the ratio between K1 and K2 large yields curves 
that approach the n = 2 limit; making K3 small and the ratio between 
K1 and K2 closer to 1 yields curves closer to the Michaelian limit. In 
between, the response curves are usually well approximated by Hill 
functions with a fractional Hill exponent between 1 and 2.

For the binding of ligands to a receptor with some other number 
of subunits, the saturation and activity curves will lie somewhere 
between a Michaelian curve and a Hill curve with a Hill exponent 
equal to the number of subunits.

3.5 � THE MWC MODEL ACCOUNTS FOR THE 
BINDING OF OXYGEN TO HEMOGLOBIN, 
BUT NOT THE BINDING OF EGF TO THE 
EGFR

The problem that originally motivated the MWC model was the bind-
ing of oxygen to hemoglobin, and, gratifyingly, the MWC saturation 
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Figure 3.7  The binding of EGF to the EGFR and the activation of the EGFR according to the Monod–Wyman–
Changeux model. (a) As the concentration of EGF increases, the dimeric receptor is converted from the inactive, unliganded 
form (blue curve), to the singly bound form, which for this choice of parameters includes equal concentrations of the active and 
inactive forms of the singly bound receptor (purple curve), and then to the doubly bound, active receptor (red curve). For the 
parameters chosen here, the concentrations of the active, unliganded form of the receptor and of the inactive, doubly bound form 
are negligible at all EGF concentrations. (b) Receptor saturation as a function of the EGF concentration. Hill curves with n = 1 and 2 
are shown for comparison. (c) Activity of the EGFR as a function of the EGF concentration. Again, Hill curves with n = 1 and 2 are 
shown for comparison. For panel a and for the solid red MWC curves in panels b and c, it is assumed that K1 = 10, K2 = 0.1, and 
K3 = 100. Regardless of the parameter choice, the saturation and activity curves will always lie between the n = 1 and 2 Hill curves, 
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equation can be fitted beautifully to the experimental data for the 
binding of oxygen to hemoglobin (Figure 3.3c). However, note that 
this agreement by itself does not really validate the model, because 
there are alternative models and equations that can be fitted just about 
as well to the data, including the Hill equation we already discussed 
and the KNF model that we will examine in the next section. Really 
the best way to test the model is to see how well the equilibrium con-
stants inferred from the model agree with more direct measurements, 
for example, by freezing hemoglobin into one state or the other and 
measuring oxygen binding. The parameters for the fit shown in Figure 
3.3c are: K1 = 67 ± 5 torr, K2 = 0.81 ± 0.11 torr (so that the high-affinity 
pink species shown in Figure 3.5 bind oxygen ~83 times as tightly as 
the low-affinity blue species), and K3 = 22065 ± 11177 (so that in the 
unbound state, the equilibrium very strongly favors the low-affinity 
(blue) T state). And, in general, the more direct measurements of 
these parameters yield similar values. Thus, the original MWC model 
holds up quite well.

MWC-type models have been successfully applied to a variety of 
signaling processes as well as to hemoglobin’s oxygen binding. For 
example, from patch-clamping experiments, we know that individual 
pentameric, ligand-gated ion channels generally flip between two 
states—one where the channel is fully closed and one where it is fully 
open—which likely correspond to the T- and the R-states in the MWC 
model, and it is easy to find parameters for the MWC equations (Eqs. 
3.41 and 3.42) to account for the slightly sigmoidal response curves 
seen experimentally for these receptors.

So then does the MWC model—specifically, the MWC saturation 
equation—also account for the binding of EGF to the EGF receptor? 
The answer is no, or at least not always. In a variety of cell types, the 
binding of EGF to EGFR rises to half-maximal levels over ~nanomolar 
EGF concentrations, but then rises much more gradually, with binding 
not approaching saturation until micromolar EGF concentrations are 
used. This behavior is not always seen with purified recombinant EGFR 
preparations, but in one case—the interaction of the Drosophila EGF 
homolog Spitz with the extracellular domain of the Drosophila EGFR—it 
is (Figure 3.8). The MWC model cannot account for this behavior no 
matter what the equilibrium constants are assumed to be; the model 
always yields a binding curve that is somewhere between a Michaelian 
response (the most graded MWC behavior) and an n = 2 Hill equation 
response (the most switch-like MWC behavior) (Figure 3.8a).

In contrast, the simple Hill equation does account reasonably well for 
the observed binding (Figure 3.8b), and the fitted Hill exponent turns 
out to be approximately 0.24. This is a bit perplexing. Recall that in 
Hill’s model, the Hill exponent nominally represents the number of 
ligand molecules that simultaneously interact with the receptor; what 
it would physically mean to have a quarter of an EGF molecule inter-
act with the dimeric receptor is unclear.

One simple way to account for the observed extremely graded bind-
ing curve is to assume that there is not just one homogenous receptor 
but two: one with a high-affinity for ligand and one with a low affinity. 
However, in the case of the Drosophila EGFR, the unbound extracel-
lular domain crystallizes as a symmetrical dimer. This observation 
suggests that the complexes are homogeneous and that within the 
complexes the two binding sites are equivalent, at least initially.

Instead, it appears that the binding of the first EGF molecule to the 
Drosophila EGFR makes it harder for the second EGF molecule to bind. 
The unbound EGFR is symmetrical, but the ligand-bound receptor is 
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Figure 3.8  The binding of a 
Drosophila EGF protein to the EGFR 
extracellular domain in vitro. (a) The 
experimental data are not satisfactorily 
accounted for by a Monod–Wyman–
Changeux model. (b, c) The experimental 
data can be accounted for by the Hill 
equation (b) or the Koshland–Némethy–
Filmer model (c). For the Hill equation, 
the best fit is obtained when n = 0.24 and 
the EC50 = 3.8 nM. For the KNF equation, 
the best fit is obtained when the first 
equilibrium constant (K1) is 12 ± 2 nM and 
the second (K2) is 4454 ± 1259 nM, which 
means that the binding exhibits high 
negative cooperativity (K1/K2 = 0.0027). 
The experimental data are taken from 
lvarado D, Klein DE, Lemmon MA. 
Structural basis for negative cooperativity 
in growth factor binding to an EGF 
receptor. Cell. 2010 Aug 20;142(4):568–
79, with permission.



SYSTEMS BIOLOGY OF CELL SIGNALING52

asymmetrical, suggesting that the binding of one EGF molecule has 
induced a conformation change and that the conformation change 
made the second site worse at binding ligand. One simple model 
that allows for either a positive or a negative interaction between 
two binding sites in a multimeric receptor protein was proposed by 
Koshland, Némethy, and Filmer shortly after the MWC model was  
proposed.

3.6 � THE KNF MODEL CAN ACCOUNT 
FOR EITHER ULTRASENSITIVE OR 
SUBSENSITIVE BINDING

The KNF model harkens back to models proposed decades earlier by 
Adair and Pauling. Again, the motivating example was originally the 
binding of oxygen to hemoglobin (Figure 3.9a), and again we will first 
consider the binding of EGF to the EGFR because the algebra is sim-
pler and because that is the example where we ran into trouble with 
the MWC model.

We assume that the interaction of EGFR with the first EGF molecule is 
characterized by an association rate constant k1, a dissociation rate 
constant k−1, and the usual number-of-ways factor (since there are 
two equivalent ways the first EGF molecule can be added). Next we 
assume that the binding immediately results in a conformation change 
in the bound receptor subunit (Figure 3.9b). Furthermore, we assume 
that this conformation change impacts on the neighboring subunits. 
This can make the second binding become more or less favorable 
than the first was, and hence we use a different pair of association and 
dissociation constants, k2 and k−2 (again with a number-of-ways fac-
tor). For the EGFR, that is all there is to the KNF model (Figure 3.9b). 
For hemoglobin, each additional oxygen binds with its own set of rate 
constants (Figure 3.9a).

For the EGFR, there are three receptor species, with 0, 1, or 2 EGFs 
bound (denoted y0, y1, and y2), and we can write three rate equations:

20
1 0 1 1

dy
dt

k x y k y= − ⋅ + − 	 (3.41)

2 21
1 0 1 1 2 1 2 2

dy
dt

k x y k y k x y k y= − ⋅ − − ⋅ +− − 	 (3.42)

2 .2
2 1 2 2

dy
dt

k x y k y= ⋅ − − 	 (3.43)

At equilibrium, each time derivative must equal zero:

0 2 1 0 1 1k x y k y= − ⋅ + − 	 (3.44)
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Figure 3.9  Koshland–Némethy–
Filmer models for the binding of 
oxygen to hemoglobin (a) and the 
binding of EGF to the EGF receptor 
(b). Each ligand molecule induces a 
conformation change in the receptor 
subunit to which it binds. In turn this 
conformation change influences, either 
positively or negatively, the affinity of the 
other subunits for the ligand.
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0 2 21 0 1 1 2 1 2 2k x y k y k x y k y= ⋅ − − ⋅ +− − 	 (3.45)

= − −0 . 2 .2 1 2 2k x y k y 	 (3.46)

From these three equations and the conservation relationship:

= + + ,0 1 2y y y ytot 	 (3.47)

we can obtain solutions for each receptor species in terms of the con-
centration of free ligand (x), the total receptor concentration ytot, and 
the rate constants:
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As usual, = − /1 1 1K k k  and = − /2 2 2K k k . The fractional receptor saturation 
is therefore:

=
+

+ +2
.2

2

1 2 2
2Saturation

K x x
K K K x x

	 (3.51)

The ratio of K1 to K2 is sometimes called c, the cooperativity of the bind-
ing. When c > 1, the binding is positively cooperative, meaning that the 
first binding event makes the second event become more favorable. 
When c < 1, the binding is negatively cooperative, meaning that the first 
event makes the second event become less favorable, and when c = 1, 
the binding is noncooperative. Note that there are only two adjustable 
parameters for this model of binding of x to a dimeric protein, but for each 
additional subunit in a higher oligomer, there is one new parameter.

Figure 3.10 shows the saturation curves for various assumed values 
of c. If c =1 (the two equilibrium constants are equal), the result is a 
Michaelian binding curve (Figure 3.10, dashed black curve). If c > 1, 
the result is a sigmoidal curve (Figure 3.10, blue curves), and the 
larger the value of c, the more steeply sigmoidal the curve is. In the 
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Figure 3.10  The binding of EGF to 
the EGFR according to the Koshland–
Némethy–Filmer model. The saturation 
curves are shown on a regular linear 
plot (a) and on a semilog plot (b). If the 
two equilibrium constants are equal, 
the binding is Michaelian (dashed black 
curves). If K1 > K2 (i.e., the second EGF 
molecule binds more strongly than the 
first), the saturation curve is ultrasensitive 
(blue curves). If K2 > K1 (i.e., the first 
EGF molecule binds more strongly than 
the second), the saturation curve is 
subsensitive (red curves).
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limit as → ∞/1 2K K , the saturation curve approaches a Hill function 
with n = 2 and an EC50 of 1 2K K .

If there is negative cooperativity and c < 1—the first ligand-binding 
event makes the next event less favorable—the result is subsensitive 
binding, with a binding curve that is more graded than a Michaelian 
curve (Figure 3.10, red curves). In the limit where / 01 2K K → , half of 
the receptor’s subunits get filled as soon as the free EGF concentra-
tion reaches a nonzero value, and the remaining half never gets filled. 
Changing the affinities while keeping the value of c constant changes 
the EC50 but leaves the basic shape of the curve unaltered. On a linear 
plot this results in stretching or contracting the x-axis; on a semilog 
plot, the curve is shifted left or right.

Either an ultrasensitive or a subsensitive binding relationship can 
provide a signaling system with interesting properties. Ultrasensitivity 
makes the system more switch-like, with the first increments of 
stimulus being essentially ignored by the receptor, and then, once a 
threshold is exceeded, producing a decisive response. Subsensitivity 
trades some of this decisiveness for the ability to continue to respond 
differently to different stimulus concentrations at concentrations that 
would saturate an ultrasensitive system.

3.7 � RESPONSE SENSITIVITY IS CUSTOMARILY 
DEFINED IN FOLD-CHANGE TERMS

At the beginning of this chapter we introduced the adjectives ultrasen-
sitive and subsensitive to describe the shapes of the binding curves 
we have encountered in these cooperative systems. This terminology 
probably merits a little further discussion.

In common parlance, the term sensitivity usually refers to the mini-
mum level of input that is required to produce a reliable output. Thus 
a highly sensitive (or ultrasensitive) assay is one that can detect small 
(or ultra-small) quantities or concentrations of a substance. In this 
sense of the word, the EC50 value of a system is an appropriate meas-
ure of sensitivity. The lower the EC50 value, the higher the sensitivity.

However, this is not what systems biologists usually mean by sensitiv-
ity. Instead of describing how much input is required to produce some 
level of output, they (we) are referring to how much of a change in 
input, measured in fold-change terms, is required to produce some 
given fold-change in output. This can be assessed either locally or 
globally. The most commonly used global measure of this type of sen-
sitivity is the fold-change in an input that is required to drive a system 
from a 10%-maximal response to a 90%-maximal response, i.e., the 
EC90/EC10. For a Michaelian response given by:
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Therefore:

=90 / 10 81.EC EC 	 (3.53)

This number (81) can be thought of as a benchmark EC90/EC10 ratio. 
For an ultrasensitive response, the ratio of EC90 to EC10 will be less 
than 81. For example, for the K1/K2 = 100 binding curve in Figure 3.10, 



55CHAPTER 3     COOPERATIVITY

it turns out that the EC10 is about 0.29 and the EC90 is about 3.0, 
so that the ratio is about 9.2—less than 81, and not too far from the 
ratio for a Hill function with n = 2 (which is 9; see TABLE 3.1). And for a 
subsensitive response, the ratio of EC90 to EC10 will be greater than 
81. For example, for the K1/K2 = 0.01 binding curve in Figure 3.10, the 
ratio is an enormous number, about 640,000. The larger the EC90/
EC10 ratio is, the smaller the sensitivity of the system.

Another common way of expressing global response sensitivity is by 
calculating the Hill exponent that would yield a Hill curve with the 
same EC90/EC10 ratio as the given response function. With a little 
algebra, one can show that this effective Hill exponent is given by:

Log [81]
Log [ 90 / 10]

.10

10

n
EC EC

= 	 (3.54)

For the ultrasensitive case where K1/K2 = 100, the effective Hill expo-
nent n is 1.98; for the subsensitive case where K1/K2 = 0.01, n = 0.33. 
The effective Hill exponent is a particularly reasonable gauge of the 
switch-like character of a response when the response curves look 
at least qualitatively like Hill curves, as MWC and KNF curves invari-
ably do. When this is not the case, this metric may not be so good. 
For example, for a linear response the EC90/EC10 is 9 and the effec-
tive Hill exponent is approximately 2, but an n = 2 Hill curve does 
not look much like a linear response. In general it is probably best 
to confine the use of the terms ultrasensitivity, subsensitivity, and 
effective Hill exponents to situations where the response looks like 
a Hill response.

Of course, a response is not equally switch-like or graded through-
out its entire range. For a Michaelian response or a Hill function, the 
response becomes progressively more graded as the input increases. 
It therefore makes sense to define a local measure of the fold-change 
of output per fold-change of input; for example:

=
∆

∆
/
/

.S
Output Output

Input Input
	 (3.55)

S is sometimes referred to as the local fold-sensitivity, but it is more 
often just called sensitivity. Note that S is a function rather than a 
single number; its value varies with Input. Its value also depends on 
how large of a fold-change in Input one is talking about. Typically the 
fold-change is chosen to be infinitesimal, and the sensitivity function 
therefore becomes:

/
/

.S
dOutput Input
dInput Output

= 	 (3.56)

Note that since =
ln 1d Output
dOutput Output

 and =
ln 1d Input
dInput Input

, it follows 

that:

=
ln
ln

,S
d Output
d Input

	 (3.57)

and one sees Eq. 3.57 fairly frequently in the systems biology litera-
ture. The higher the value of S, the more switch-like or decisive the 
response is at that value of Input; the lower the value of S, the more 
graded the response.
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Equation 3.57 shows that the sensitivity S is the slope of a log–log plot 
of the response function, which is also the same as the polynomial 
order of the response. A Michaelian response is first order when the 
input is infinitesimal, is 0.5 order when the input equals the EC50, and 
approaches zero order when the input is very large. For a Hill func-
tion, the sensitivity is nth order when the input is small, is n/2 order 
when the input equals the EC50, and again approaches zero order 
when the input is large. The sensitivities for the KNF saturation curves 
in Figure 3.10 are shown in Figure 3.11. The sensitivities are always 
less than n, and the highest sensitivities are achieved when the inputs 
and outputs are relatively small. Thus, there is a trade-off between 
how large and how decisive a KNF response can be.

3.8 � THE RELATIONSHIP BETWEEN BINDING 
AND ACTIVATION YIELDS A VARIETY OF 
POSSIBLE RESPONSES

In applying the MWC model to a signaling protein-like a receptor, it is 
natural to assume that one conformation or the other—say, the tight-
binding conformation—is the active form of the receptor (Figure 3.7). 
In the KNF model, one plausible hypothesis would be that the induced 
conformation change produced by the binding of the first ligand 
results in the activation of one receptor subunit, and the binding of 
the second ligand results in the activation of the second subunit (and 
so on if the receptor is bigger than a dimer). If this independent activa-
tion mechanism is applicable, the activity curves would be identical to 
the saturation curves and would vary from subsensitive to ultrasensi-
tive depending on the value of K1/K2 (Figure 3.12a):
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However, independent activation is not the only way that ligand bind-
ing might be coupled to receptor activation, and it may not be the 
way the EGFR works. From structural studies, it is known that the 
binding of EGF to the extracellular ligand-binding domain results in 
a symmetry-breaking change in the conformation of the intracellular 
part of the receptor, with one kinase domain allosterically activat-
ing the other. This results in the autophosphorylation of one domain 
by the other, and the autophosphorylated domain then transmits the 
activation signal downstream by recruiting phosphoepitope-binding 
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proteins. One could imagine then that the binding of a single mole-
cule of EGF results in a maximal response, the autophosphorylation of 
one intracellular domain, with the binding of a second EGF molecule 
having no further effect. This would be OR gate logic (TABLE 3.2), in 
the lexicon of electronic circuits and Boolean algebra; a binary switch 
from off to on is achieved by the binding of one molecule of EGF to 
either receptor subunit (Figure 3.12b).
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model. (a) Independent activation. Each binding event activates one receptor molecule. (b) An OR gate response. Maximal 
activation (which could be either two receptors activated, as shown, or one) is assumed to result from the binding of the first 
ligand molecule. (c) An AND gate response. The singly bound species is assumed to be inactive and the doubly bound species 
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(blue). The activation curves are shown on regular linear plots (left) and on semilog plots (right).
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One could also imagine that a single molecule of EGF results in the 
autophosphorylation of both intracellular domains; perhaps the two 
kinase domains would take turns allosterically activating each other. 
This would still be OR gate logic, and the shape of the activity curve 
would be the same.

Figure 3.12b shows Eq. 3.59 plotted for various ratios of K1 to K2. 
For the red curves there is negative cooperativity in the binding, and 
for the blue curves, positive cooperativity. The EC50 of the response 
changes as the ratio of K1 to K2 is varied, which makes it perhaps 
easier to appreciate the intrinsic shapes of the response curves on a 
semilog plot (Figure 3.12b, right). The curves range from Michaelian, 
when there is strong negative cooperativity in the binding, to ultra-
sensitive (when there is strong positive cooperativity). Surprisingly, 
perhaps, subsensitive responses are not possible.

One could also imagine that two EGFs must bind before the intracel-
lular part of the receptor becomes activated and autophosphorylated. 
Such a system would behave like a binary AND gate (Figure 3.12c; 
TABLE 3.2), and the activity would be:
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Again the result is a sigmoidal curve intermediate in shape between 
an n = 1 and an n = 2 curve. In general, for a KNF activation process 
where a protein with n subunits must bind n ligand molecules to be 
activated, the equilibrium activity is given by:
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where the coefficients in the denominator of the form 
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and are the binomial coefficients from the nth row of Pascal’s triangle.

TABLE 3.2  Some Logic Gates Relevant to Dimeric Signaling Proteins

Term Input/Output Relationship

OR gate No ligand → OFF
Ligand bound to subunit 1 → ON
Ligand bound to subunit 2 → ON
Ligand bound to both → ON

AND gate No ligand → OFF
Ligand bound to subunit 1 → OFF
Ligand bound to subunit 2 → OFF
Ligand bound to both → ON

XOR gate No ligand → OFF
Ligand bound to subunit 1 → ON
Ligand bound to subunit 2 → ON
Ligand bound to both → OFF
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There are of course other possible relationships between binding and 
activation, and we will consider one more here—not for its relevance 
to EGFR signaling but for its possible significance in other situations. 
For example, growth hormone exerts its effects through a dimeric 
transmembrane receptor, the growth hormone (GH) receptor. The GH 
receptor, which does not possess an enzymatic domain, then activates 
an associated tyrosine kinase, a Jak protein. At low concentrations, 
one molecule of GH binds and dimerizes two molecules of the recep-
tor, with each receptor subunit providing half of the ligand binding 
site, resulting in a binding stoichiometry of 1:2 (ligand to receptor). 
In principle, it should be possible for very high concentrations of GH 
to bind 2:2 to the receptor, with each molecule engaging what would 
normally be half of a binding site (Figure 3.12d). It is not clear that 
this occurs, but for the sake of argument let us assume that it does.

Next, suppose that the 1:2 complex is active but the 2:2 complex is 
inactive. The result would be a biphasic binding curve (Figure 3.12d). 
The receptor acts like an exclusive OR gate (XOR gate) (TABLE 3.2), 
turning on when bound to one ligand molecule and turning back off 
when bound to two. The ratio of the two binding constants determines 
how high and broad the activity peak is. If there is strong positive 
cooperativity in the binding (K1 >> K2), hardly any mono-ligated, active 
receptor will be produced at any concentration of GH, because the 
receptor tends to skip from unligated to doubly ligated. On the other 
hand, if there is strong negative cooperativity—which seems plausible 
here—then the peak equilibrium receptor activation will be expected 
to show a high, broad concentration peak (Figure 3.12d, red curves).

This type of mechanism may or may not be important in GH sign-
aling, but something very similar does pop up in the regulation of 
lysis vs. lysogeny in Escherichia coli infected with bacteriophage λ.  
The relevant ligand is the lambda repressor protein λcI, which actu-
ally can either activate or repress transcription, and the relevant 
targets are DNA sequences upstream and downstream of the λcI cod-
ing sequence. The binding of the first four λcI dimers promotes the 
recruitment of RNA polymerase and so activates transcription—in this 
concentration regime, the lambda repressor is actually a transcrip-
tional activator. But adding two more λcI dimers turns the gene back 
off by blocking RNA polymerase binding.

This sort of biphasic response is important in diverse biological con-
texts. It constrains the behavior of adaptor and scaffold proteins; it 
underlies the so-called prozone effect in antibody–antigen interac-
tions; it is thought to account for the phenomenon of transcriptional 
squelching; and it is critical to the formation of some microdomains 
and separated phases in the plasma membrane and cytoplasm.

SUMMARY
Many receptors, including receptor tyrosine kinases, are multimeric, 
and this can generate a variety of possible behaviors. The ligand bind-
ing curves can become sigmoidal rather than hyperbolic, through 
positively cooperative binding, where the first molecule of ligand to 
bind makes the next binding event more favorable. The MWC model, 
which is built on the idea of two interconverting conformation states 
in the receptor and the preferential binding of the ligand to one of  
the two, can account for such sigmoidal binding curves and so can 
the KNF model, which assumes that the first binding event causes the  
second binding site to have a higher (for positive cooperativity) or 
lower (for negative cooperativity) affinity for ligand. Both the MWC 
and KNF models can account for the equilibrium binding of oxygen to 
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hemoglobin, but only the KNF model can account for the binding of 
EGF to the Drosophila EGFR, which bears all the hallmarks of nega-
tive cooperativity. Positive cooperativity can make receptor activation 
more switch-like and decisive; negative cooperativity can make recep-
tor activation less decisive but allows the receptor to operate over a 
greater range of ligand concentrations without becoming saturated.

There is one important caveat to all of this: we have assumed that the 
ligand molecules are present in huge excess over the receptor mol-
ecules, so that the production of a ligand–receptor complex depletes 
the available pool of receptors but has no significant effect on the free 
ligand. This is almost always true in ligand-binding studies carried 
out in vitro. But it is not always true in vivo, and it is almost never 
true when one examines the interactions between two intracellular 
signaling proteins (as opposed to an extracellular ligand and a cell 
surface receptor). In the next three chapters, we will turn to the ele-
mentary responses of intracellular signaling proteins, beginning with 
stoichiometric regulation processes where the upstream protein is not 
in infinite supply.

FURTHER READING
COOPERATIVITY

Adair GS. The hemoglobin system. VI. The oxygen dissociation 
curve of hemoglobin. J Biol Chem. 1925;63:529–45.

Alvarado D. Klein DE, Lemmon MA. Structural basis for nega-
tive cooperativity in growth factor binding to an EGF receptor. 
Cell. 2010;142:568–79.

Eaton WA, Henry ER, Hofrichter J, Mozzarelli A. Is cooperative 
oxygen binding by hemoglobin really understood? Nat Struct 
Biol. 1999;6:351–8.

Hill AV. The possible effects of the aggregation of the mol-
ecules of haemoglobin on its dissociation curves. J Physiol. 
1910;40: Proceedings, iv–vii.

Koshland DE Jr, Némethy G, Filmer D. Comparison of experi-
mental binding data and theoretical models in proteins 
containing subunits. Biochemistry. 1966;5:365–85.

Levitzki A, Stallcup WB, Koshland DE Jr. Half-of-the-sites reac-
tivity and the conformational states of cytidine triphosphate 
synthetase. Biochemistry. 1971;10:3371–8.

Monod J, Wyman J, Changeux JP. On the nature of allosteric 
transitions: a plausible model. J Mol Biol. 1965;12:88–118.

Pauling L. The oxygen equilibrium of hemoglobin and its struc-
tural interpretation. Proc Natl Acad Sci USA. 1935;21:186–91. 



4DOWNSTREAM 
SIGNALING 1

Stoichiometric 
Regulation

IN THIS CHAPTER . . .

STOICHIOMETRIC REGULATION INSIDE THE CELL

4.1 � IN THE HIGH-AFFINITY LIMIT, DOES A HYPERBOLIC RESPONSE 
MAKE INTUITIVE SENSE?	

4.2 � THE EQUILIBRIUM RESPONSE CHANGES FROM HYPERBOLIC TO 
LINEAR WHEN DEPLETION OF THE UPSTREAM REGULATOR IS 
NOT NEGLIGIBLE	

4.3 � THE DYNAMICAL RESPONSE IS SIMILAR EVEN WHEN 
THE DEPLETION OF THE UPSTREAM REGULATOR IS NOT 
NEGLIGIBLE	

4.4 � LIGAND DEPLETION PLUS NEGATIVE COOPERATIVITY CAN 
PRODUCE A THRESHOLD	

4.5 � STOICHIOMETRIC REGULATORS MUST SOMETIMES COMPETE 
WITH STOICHIOMETRIC INHIBITORS	

SUMMARY

FURTHER READING

The signaling pathways downstream of receptors may be dauntingly 
complicated, but even the most complicated signaling pathways, such 
as the epidermal growth factor receptor (EGFR) pathway discussed in 
Chapter 1, are built out of a handful of elementary processes. The first 
such process is stoichiometric activation, where an upstream regulator 
binds to, and thereby activates, a downstream target (Figure 4.1a)—
exactly the same type of thing as happens in receptor–ligand 
interactions, only with intracellular components. Examples include 
the activation of adenylyl cyclase by a trimeric G-protein α-subunit 
or activation of Raf by Ras. Then there are various ways through 
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which a protein can be activated by an upstream enzyme rather 
than a stoichiometric regulator. Examples include the activation of 
a G-protein α-subunit by the guanine nucleotide exchange activity of 
an activated GPCR or the activation of a MAP kinase by a MAP kinase 
kinase (Figure 4.1b). The downstream proteins are being enzymati-
cally “marked,” by GTP binding and phosphorylation, respectively, by 
the upstream regulatory enzyme. Finally, there is regulated produc-
tion, with an upstream signaling enzyme making something rather 
than activating something. Examples include the regulated synthe-
sis of cAMP, mRNAs, or proteins (Figure 4.1c). There are also many 
examples of the reverse of these schemes—stoichiometric inhibi-
tion, enzymatic inhibition, and regulated destruction (Figure 4.1d–f). 
Moreover, there are a few processes that do not fit neatly into one 
of these categories—we will encounter one, termed state-dependent 
inactivation, when we examine the phenomenon of adaptation in 
Chapter 13—but stoichiometric regulation, enzymatic regulation, and 
regulated production or destruction constitute a large fraction of the 
basic reactions of signal transduction.

In the next three chapters we will model each of these three elementary 
processes and explore the models. Along the way we will encounter 
the now-familiar exponential approach to equilibrium or steady state, 
as well as hyperbolic or Michaelian steady-state responses, but we 
will discover a number of other types of response as well, including 
ultrasensitive responses that arise from mechanisms other than coop-
erativity. We begin with what is probably the simplest extension of 
the receptor–ligand interactions we examined in Chapters 2 and 3: 
stoichiometric regulation, but this time occurring between intracel-
lular components instead of through the binding of an extracellular 
ligand to a receptor.
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Figure 4.1  Six types of elementary processes in signal transduction.
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STOICHIOMETRIC REGULATION INSIDE THE CELL

4.1 � IN THE HIGH-AFFINITY LIMIT, DOES 
A HYPERBOLIC RESPONSE MAKE 
INTUITIVE SENSE?

For the interaction of a monomeric regulator with a monomeric tar-
get within the cell, one might think that we can just use the formulas 
derived in Chapter 2 for ligand–receptor interaction and change what 
we mean by x and y—say, make x be the Ras protein and y be its 
effector Raf-1. However, there is a catch, and it can be illustrated by 
thinking about ligand–receptor interactions in the high-affinity limit.

Suppose that we have a ligand x that regulates a receptor y and sup-
pose they have a very high affinity for each other. Assume that a cell 
possesses, say, 1,000 molecules of y. What would happen as you 
incrementally added x to the system?

If the affinity really is very high, then the first molecule of x will yield 
one molecule of the ligand–receptor complex cxy; 10 molecules of x 
will yield 10 cxy complexes; 100 molecules of x will yield 100 cxy com-
plexes; and so on, until all 1,000 y molecules have been used up. Thus 
the expected input/output relationship will be a straight line, with 
slope 1, that abruptly plateaus when the amount of added x equals 
the total amount of y. Simple enough.

But that is not what Eq. 2.8 indicated and it is not what the plots in 
Figure 2.4 showed. No matter how high the affinity, those response 
curves were hyperbolas that approached their maxima gradually, not 
straight lines that slammed into a response ceiling. What accounts for 
this discrepancy?

The answer is that to derive Eq. 2.8, we assumed that the ligand was 
in huge excess over the receptor, which means that even when the 
receptor was fully occupied, the depletion of x was insignificant and 

≈x xtot . But this assumption is not true in our thought experiment. In 
fact, until the total concentration of x exceeds ytot, all of the free x is 
depleted by receptor binding and so x = 0, which is very different from 
x = xtot.

This is more than just a hypothetical concern. Intracellular regulators 
are often similar to or even lower in abundance than the targets that 
they stoichiometrically regulate. So we need to derive an expression 
that acknowledges that both xtot and ytot can be depleted by complex 
formation.

4.2 � THE EQUILIBRIUM RESPONSE CHANGES 
FROM HYPERBOLIC TO LINEAR WHEN 
DEPLETION OF THE UPSTREAM REGULATOR 
IS NOT NEGLIGIBLE

We start again with the rate equation for the formation of a complex 
between an upstream regulator x and its downstream target y—the 
same rate equation we used for ligand–receptor interaction (Eq. 2.1):

= ⋅ − − .1 1

dc

dt
k x y k cxy

xy
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Next we use two conservation relationships to eliminate x and y, 
yielding:

( ) ( )= − ⋅ − − −1 1

dc

dt
k x c y c k cxy

tot xy tot xy xy .	 (4.1)

Expanding the right-hand side gives us:

( )( )= − + + +− .1
2

1 1 1

dc

dt
k c k x y k c k x yxy

xy tot tot xy tot tot 	 (4.2)

At equilibrium, the derivative must equal zero. The result is a quad-
ratic equation in cxy:

( )( )= − + + +−0 .1
2

1 1 1k c k x y k c k x yxy tot tot xy tot tot 	 (4.3)

This equation can be simplified a bit by dividing each term by k1 and 
making use of the fact that Keq = k−1/k1:

0 ( ) (( ) ) .2c x y K c x yxy tot tot eq xy tot tot= − + + + 	 (4.4)

This emphasizes that it is the ratio of the rate constants—the equilib-
rium constant—rather than the rate constants’ individual values that 
determines the equilibrium concentration of the cxy complex. Eq. 4.4 
can be solved with the quadratic formula, which yields two solutions:

( )= + + − + + −





1
2

4
2

c K x y K x y x yxy eq tot tot eq tot tot tot tot 	 (4.5)

( )= + + + + + −





1
2

4
2

c K x y K x y x yxy eq tot tot eq tot tot tot tot .	 (4.6)

The physically relevant solution is Eq. 4.5, which you can see by plot-
ting both equations for some choice of Keq and ytot and asking whether 
the values of cxy are physically possible or not—e.g., is cxy positive as 
it must be and is it less than xtot and ytot?

If we take cxy as the output and xtot as the input, there are two adjust-
able parameters, Keq and ytot; we will assume that ytot = 1 and look at 
a range of values for Keq. As shown in Figure 4.2a, when Keq = 10,  
the response given by Eq. 4.5 (solid red curve) is very similar to a 
Michaelian response (dashed black curve). This makes sense; when 
Keq is large, it takes a large concentration (~10 units) of xtot to half-
maximally saturate the 1 unit of ytot, and so the concentration of cxy is 
a reasonably small fraction of xtot, which means that ≈x xtot  However, 
when Keq is decreased to 1 and then 0.1, the approximation breaks 
down, and the discrepancy between the exact response (solid curves) 
and the Michaelian response (dashed curves) becomes greater and 
greater. As the assumed affinity increases further (Keq decreases fur-
ther), the response curve appears to approach a straight with slope = 1 
that does not begin to bend over until the response is nearly maximal 
(Figure 4.2b). This is what we thought should be the behavior of the 
system in the high-affinity limit, and we have now analytically shown 
that this is in fact the case.

In the Michaelian (low affinity) limit, the stoichiometric regulation sys-
tem does what a gentle audio compressor does, squeezing a range of 
inputs into a smaller range of outputs throughout the response range. 



65CHAPTER 4     STOICHIOMETRIC REGULATION

However, in the high-affinity limit, the system acts like a hard limiter, 
yielding a linear response up until the maximal possible response, 
which is set by the number of target molecules ytot, is achieved.

4.3 � THE DYNAMICAL RESPONSE IS SIMILAR 
EVEN WHEN THE DEPLETION OF THE 
UPSTREAM REGULATOR IS NOT NEGLIGIBLE

So the depletion of a ligand x by high-affinity binding to a target y 
can make the equilibrium response of the system be quite different 
from a Michaelian response (Figure 4.2). What about the dynamics 
of the system? Can we analytically solve the relevant rate equation 
(Eq. 4.2)? If so, does the time course look much different from expo-
nential approach to equilibrium?

It turns out that it is still possible to analytically solve the rate equa-
tion, at least with the help of the differential equation solver in 
Mathematica, but the resulting analytical expression is pages long and 
not worth displaying here. Even if it were not possible to solve the 
ODE analytically, one can solve it numerically. Either way, we can 
plot the results and compare them to the exponential approach to 
equilibrium. Figure 4.3 shows the time course for a case where the 
equilibrium constant Keq is 10× lower than the concentrations of ytot 
(Keq = 0.1 and ytot 1), with the input (xtot) being stepped up from 0 to 1 
and then stepped back by washing away the free x and letting cxy and 
xtot decay down to zero. With these parameters, the depletion of the 
added ligand x by complex formation is substantial—approximately 
73% of the xtot is complexed at equilibrium. The resulting time course 
(Figure 4.3, red curve) starts out like the exponential approach curve 
(blue curve), which makes sense since initially the depletion of x will 
be minimal. The system then gradually approaches an equilibrium 
that is somewhat lower than it would have been without the deple-
tion. The shape of the red curve is not exactly the same as that of 
an exponential curve, but it is not that different either (Figure 4.3). 
When the ligand is washed away, the system returns back to cxy = 0, 
as expected, and once again the system takes longer to respond to the 
step down than it did to the step up (Figure 4.3).
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Figure 4.2  Deviation from the Michaelian response in the high-affinity limit. (a) For various values of the equilibrium 
constant, the exact equilibrium binding responses are shown as solid curves and the corresponding Michaelian responses are 
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4.4 � LIGAND DEPLETION PLUS NEGATIVE 
COOPERATIVITY CAN PRODUCE A 
THRESHOLD

In Chapter 3, when we discussed the various models for cooperative 
binding and activation—Hill, MWC, and KNF—we also tacitly assumed 
that the ligand was present in great excess over the receptor. As we 
mentioned, this is certainly true for most experiments where dishes 
of cells or recombinant receptors are incubated with large volumes of 
buffer containing the ligand. But just as this assumption is generally 
not true for intracellular signaling, it is probably not true for EGFR—
the receptor we used as a prototype for a multimeric receptor—either. 
The ligands for EGFR—epidermal growth factor (EGF), TGFα, and five 
other less abundant EGFR ligands (Figure 1.3)—are typically provided 
locally, released through the proteolysis of precursor proteins from 
the surface of one cell and then spread by diffusion or flow to allow 
interaction with receptors on nearby cells in, say, an epithelial sheet. 
So for the ligand concentration to greatly exceed [EGFR], one would 
expect to find at least some cell type where the ligands outnumber 
the receptors. So far, no such cells have been found. The same is 
true in the whole organism. If you tally the total number of EGFR and 
EGFR ligand molecules in the human, mouse, or fruit fly, there is more 
receptor than ligand. This means that we should consider how ligand 
depletion might affect the responses of cooperative receptors, as we 
just did for a monomeric-ligand monomeric-receptor system.

Ligand depletion would be most significant if the binding affinity were 
extremely high, so let us carry out a thought experiment for what we 
would expect in this high-affinity limit. If we start with no ligand and 
dial up its concentration, in the high-affinity limit we will end up with 
more and more ligand–receptor complexes until the concentration of 
the ligand exceeds that of the receptor. This is shown in both schemes 
in Figure 4.4a,b. Next, let us suppose that the receptor is activated 
via a KNF mechanism, and there is AND gate logic—that is, two 
ligand molecules must bind for the receptor to become active. If there 
is strong positive cooperativity in the binding, the first and second 
ligands will bind the same receptor dimer. Every two ligand molecules 
will result in the activation of one receptor (Figure 4.4a), yielding a  
linear input–output relationship (Figure 4.4c, blue) rather than a 
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sigmoidal one like we saw in Chapter 3. On the other hand, if there is 
strong negative cooperativity in the binding, all of the receptor dimers 
will bind one ligand molecule before any of the receptors bind two 
(Figure 4.4b). The result is a sharp concentration threshold (Figure 
4.4c, red), with the receptors then snapping from off to on over a 
tighter range of input concentrations than they do in the positive 
cooperativity case. Between these two extremes of cooperativity, the 
result is intermediate. For example, if the binding is noncooperative, 
the result response curve is concave-up until the maximum response 
is reached (Figure 4.4c, dashed black curve).

That is the intuitive picture for this limiting case of very high affinity. 
Can we derive a formula that captures this behavior and also shows 
the behavior when the binding affinity is not so extremely strong? 
Conceptually this does not seem so hard. We start again with by set-
ting the rate equations for the net production of the empty receptor 
(y0), the singly ligated receptor (y1), and the doubly ligated receptor 
(y2) equal to zero:

= − + −0 2 ·1 0 1 1k x y k y 	 (4.7)

= − − − +− −0 2 · · 21 0 1 1 2 1 2 2k x y k y k x y k y 	 (4.8)

= − −0 . 2 .2 1 2 2k x y k y 	 (4.9)

We then add two conservation equations:

= + +0 1 2y y y ytot 	 (4.10)

= + + 2 .1 2x x y ytot 	 (4.11)

Next we would like to derive an equation for the doubly bound receptor, 
y2, as a function of xtot, ytot, and the rate constants. We begin by elimi-
nating the variables y0, y1, and x. This yields the following expression:

( )
( )+ + − − − +

− − + − + =
− − − −

− −

4 ( )( )

2 ( 2 ) ( ) ( 4 2 ) 0.
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2 2 1
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2 2 2 2 2 2

1 1 2
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2 2 2 2

k k y k k y k y x y y y y

k k x y y y k y x y y

tot tot tot

tot tot tot tot

	 (4.12)

We can simplify this a bit by using the definitions K1=k−1/k1 and K2=k−2/
k2 and replacing the rate constants with equilibrium constants:

+ + − − − +

− − + − − =

4 (2 ( )( ))

(( 2 ) ( ) 2 ( 4 2 )) 0
1
2

2 2 2 2 2 2 2 2

1 2
2

2 2 2 2

K K y K y K y x y y y y

K x y y y K y x y y
tot tot tot

tot tot tot tot

.� (4.13)

Equation 4.13 implicitly defines the relationship between the inde-
pendent variable, xtot, and the dependent variable, y2. It is possible 
to solve this cubic equation to get an expression for y2 as a func-
tion of xtot, but it is much easier, and the resulting expression is much 
more compact, if one solves for xtot as a function of y2. Either using 
the quadratic formula or, more simply, using the equation solver in 
Mathematica, the result is:
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This looks very complicated, but still one can plot xtot as a function of 
y2 and then flip the axes so that the input (xtot) will be on the horizontal 
axis and the output (y2) on the vertical axis, and see what the input/
output curves look like. As expected, the curves look like standard 
KNF curves when the affinities are low compared to the abundances 
(not shown) and like the curves we imagined in our thought experi-
ment when the affinities are high (Figure 4.4c).

So is this how multimeric signaling proteins actually respond to 
upstream regulators? In vitro experiments using DNA oligos to stand 
in for the ligand and its multimeric target provide proof-of-principle 
for this idea (Figure 4.5a). The advantage here is that comple-
mentary DNA oligos of reasonable length bind each other with the 
requisite high affinity. Moreover, either positive or negative coopera-
tivity can be engineered into the binding. Positive cooperativity can 
be produced by simply having the ligand oligos abut each other; the  
energetically favorable base stacking interaction between the ligand 
oligos makes it so that the binding of the first (whichever it is) pro-
motes the binding of the second (Figure 4.5a). Noncooperativity can 
be achieved by putting a gap between the bind sites for the two ligand 
oligos, and negative cooperativity can be produced by having the 
ligand oligos overlap, so that each interferes with the binding of the 
other (Figure 4.5a). The equilibrium binding can be assessed by non-
denaturing gel electrophoresis.

The results agree well with the theory derived above. In the case of 
high affinity, positively cooperative binding, the amount of doubly 
bound receptor increases linearly with the concentration of the two 
ligands (Figure 4.5b, blue). In the case of noncooperative binding, the 
binding curve is concave-up (Figure 4.5b, green), and in the case of 
negative cooperativity, there is a sharp threshold followed by a lin-
ear response (Figure 4.5b, yellow). Thresholds like this can allow a 
signaling system to filter out the first increments of stimulus and then 
respond decisively to suprathreshold signals, and they can be useful 
for generating more complex system-level behaviors such as bistabil-
ity and oscillations.
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Figure 4.5  In vitro, high-affinity binding of two DNA ligand oligos to a complementary receptor strand. 
(a) Structures of the receptor with pairs of ligands expected to exhibit positively cooperative, noncooperative, or negatively 
cooperative binding. Although different in length, each ligand oligo has a similar affinity for the receptor. (b) Experimental binding 
data. The curves are fits to Eq. 4.14, with the cooperativity (K1/K2) as the only fitted parameter. (Adapted from Ha and Ferrell, 
Science. 2016.)
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4.5 � STOICHIOMETRIC REGULATORS 
MUST SOMETIMES COMPETE WITH 
STOICHIOMETRIC INHIBITORS

Let us take a look again at this idea that high-affinity binding with 
negative cooperativity can yield a switch-like, ultrasensitive response 
with a discrete threshold. Basically the first binding site in each recep-
tor is acting like a buffer, soaking up the first increments of ligand, 
and the negative cooperativity and high-affinity binding ensure that 
most of these buffer sites will be filled before the ligand can bind to the 
receptors’ second sites, which are the sites that yield receptor activa-
tion (Figure 4.6a). Thus, the unoccupied receptor is competing with 
the singly occupied receptor for access to ligand.

A similar sort of competition can happen whenever a high-affinity sto-
ichiometric inhibitor is present in a pathway with a limited supply of 
upstream activator molecules, and stoichiometric inhibitors are quite 
common in signaling both at the level of ligand–receptor interaction 
and in downstream signaling. For example, the high-affinity µ-opioid 
receptor antagonist naloxone can compete with opioid agonists such 
as heroin, and so a sufficient dose of naloxone can block or reverse 
heroin intoxication (Figure 4.6b). In Drosophila EGF receptor signaling,  
the Argos protein binds to and sequesters the EGF-like protein Spitz; 
thus the receptor and Argos are competing for binding to Spitz/EGF 
(Figure 4.6c). Likewise, in cell cycle regulation, the cyclin-dependent 
kinases are regulated by a variety of high-affinity stoichiometric 
inhibitors, including the tumor suppressors p21Cip1, p27Kip1, p16INK4a, 
and p19INK4a. These can be viewed as competing with substrates for 
access to the active cyclin–Cdk complex (Figure 4.6d).

Here we will model the competition between a stoichiometric inhibitor 
and some other pathway component, be it a ligand or a downstream 
target, and see under what circumstances it can produce a threshold 
and ultrasensitivity in the equilibrium response. The simplest of the 
cases shown in Figure 4.6 is the competition between an opioid ago-
nist (which we will call x) and an antagonist (I) for the binding to an 
opioid receptor (y). We can write down the rate equations for the net 
production of cxy—the complex of x with y—and of cIy, the complex of 
the inhibitor I with y:

= ⋅ − −1 1

dc

dt
k x y k cxy

xy	 (4.15)
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Figure 4.6  Four examples of stoichiometric competition in cell signaling. (a) Competition between unbound EGFRs and 
EGFRs with one bound ligand. (b) Competition between an opioid agonist (heroin) and an antagonist (naloxone) for binding to the 
µ-opioid receptor. (c) Competition between Argos and the Drosophila EGF receptor for binding to the EGF-like protein Spitz. (d) 
Competition between the Cdk inhibitor p21 Cip and a substrate for binding to a cyclin A–Cdk1 complex.
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= ⋅ − − .2 2

dc

dt
k y I k cIy

Iy 	 (4.16)

At equilibrium the derivatives must equal zero, and so:

= ⋅ − −0 1 1k x y k cxy 	 (4.17)

= ⋅ − −0 .2 2k y I k cIy 	 (4.18)

In addition we have a conservation equation:

= + + .y y c ctot xy Iy 	 (4.19)

We can assume that the ligands (x and I) are present in great excess 
over the receptor (ytot), and so the binding of either ligand to y has a 
negligible effect on the total concentrations of either x or I.

We can then go ahead and solve Eqs. 4.17–4.19 to derive an expression 
for the output of the system, cxy, as a function of the rate constants, 
ytot, and the concentrations of x and I:
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where KD = k−1/k1, the equilibrium constant for the binding of x to y, 
and KI = k−2/k2, the equilibrium constant for the binding of I to y.

If the inhibitor concentration is zero, Eq. 4.21 reduces to the standard 
Langmuir equation for the binding of a non-depletable ligand x to a 
receptor y. Moreover, even if I is not zero, the response is still hyper-
bolic or Michaelian, but it has a larger EC50 than it would have had 
in the absence of inhibitor. The relationship between the equilibrium 
constant KD and the observed EC50 is given by:

= +






50 1 .EC K
I

KD
I

	 (4.22)

Equation 4.22 is known by pharmacologists as the Cheng–Prusoff 
equation, and it can be used to extract the thermodynamic constants, 
KD and KI, from binding experiments in which the concentration of the 
inhibitor is varied.

The effect of a fixed concentration of a stoichiometric inhibitor on the 
binding of ligand x to receptor y is shown in Figure 4.7. Binding is 
still a hyperbolic function of x, just as it was in the absence of inhibi-
tor. There is no threshold and no ultrasensitivity, despite the fact that 
intuition (see above) says there should be.

The reason for this is that we have not yet accounted for the possibil-
ity that either the inhibitor I or the regulator x, or both, might be in 
less-than-infinite supply. So now let us have x represent EGFR, y the 
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EGF protein Spitz, and I Argos (Figure 4.6b), where the basic idea 
is that as the concentration of Spitz/EGF rises, Argos binds Spitz/
EGF until all the Argos has been used up. This means that for none of 
the three proteins—x, y, or I—can we assume that the free and total 
protein concentrations are going to be approximately equal. Thus we 
write down two more conservation equations:

= +I I ctot Iy 	 (4.23)

= + ,x x ctot xy 	 (4.24)

and then derive an expression for cxy in terms of xtot, ytot, Itot and the 
equilibrium constants. As was the case above for the treatment of 
negative cooperative with a depletable ligand (Eqs. 4.13 and 4.14), 
this requires solution of a cubic equation, which is cumbersome, but 
again we can make things simpler by flipping the derivation around—
deriving an equation for xtot as a function of cxy rather than for cxy as a 
function of xtot. The result is:

( )( )= +
−

+
+ −











1
1

.x c K
y c

I

K c K y c
tot xy D

tot xy

tot
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	 (4.25)

To get some insight into what this equation means, we plot Eq. 4.25 
(Figure 4.8). Now the binding curves agree with our intuition—there 
is a threshold and an ultrasensitive response. The higher the affinity of 
the inhibitor for the ligand x, the sharper the threshold is (Figure 4.8a). 
The higher the affinity of the target for the ligand, the more switch-like 
the approach to a maximal response is (Figure 4.8b). The higher the 
total concentration of I (Itot), the bigger the threshold (Figure 4.8c). 
If the affinities and the concentration of Itot are sufficiently high, the 
response approaches a step function (Figure 4.8). In principle, any 
degree of ultrasensitivity can be obtained.

Note that stoichiometric inhibition can work just as well at building a 
threshold into the response of an enzymatic regulator, like a protein 
kinase—the cyclin-dependent kinases and their many stoichiometric 
inhibitors are a good example (Figure 4.8)—or of regulated synthesis 
or destruction, which will be examined in Chapter 6.
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SUMMARY
Stoichiometric regulation is commonplace in intracellular signaling, 
but because the upstream regulator is often substantially depleted 
by binding to its effector, the equations derived in Chapters 2 and 
3 for the stoichiometric regulation of a receptor by a vast excess of 
ligand no longer apply. For the activation of a monomeric effector by 
a monomeric ligand, the response is more linear than that predicted 
by the Langmuir equation, and the dynamics also differ a bit from the 
exponential approach to steady state. Moreover, strangely enough, if 
a high-affinity upstream protein stoichiometrically regulates a multi-
meric effector, then negative cooperativity in the binding can result 
in a sharp threshold in the activation response. The same is true for 
a high-affinity stoichiometric inhibitor—it can build a threshold into 
a response, so that low concentrations of an upstream activator 
produce little downstream signaling, and then once the threshold is 
exceeded, the output of the system rises from low to high in a deci-
sive, switch-like fashion.

This can be viewed as one simple way that intracellular regulators 
can generate some ultrasensitivity. We will explore several others in 
the next two chapters, beginning with a look at protein regulation 
through covalent modification as exemplified by phosphorylation and 
dephosphorylation.   
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The second basic type of downstream signaling is the regulation of 
a target by a signaling enzyme rather than by a stoichiometric regu-
lator, where the upstream regulator enzymatically tags or modifies 
the downstream target. This modification can and often does result 
in a change in the target’s activity, if the target is an enzyme, but it 
can also regulate the protein’s intracellular localization or its stoi-
chiometric interactions with other proteins. The reversible covalent 
modification of a protein by phosphorylation is the most common 
tagging mechanism in cell signaling, so that is what we will focus 
on here, but the same approaches could be applied to methyla-
tion, acetylation, or ubiquitylation. Proteins can also be regulated 
by enzymes non-covalently, the best example being the reversible 
binding of a G-protein to GTP to turn it on or GDP to turn it off, 
with a guanine nucleotide exchange factor and a GTPase-activating 
protein playing similar roles in this enzymatic cycle to those played 
by protein kinases and phosphoprotein phosphatases in protein 
phosphorylation.

Protein kinases transfer the γ-phosphate of ATP to amino acid side 
chains in substrate proteins. In eukaryotes, most phosphoryla-
tion is carried out by the so-called classical protein kinases, which 
phosphorylate serine, threonine, and/or tyrosine residues, and is 
reversed by phosphoprotein phosphatases, with phosphorylations 
typically going on and coming off on a time scale of seconds to 
minutes. Phosphorylation can bring about a change in the overall 
conformation of the substrate protein, subtly or not-so-subtly affect-
ing the folding of a protein domain. The ERK2 MAP kinase, which is 
a substrate of the MEK1 and MEK2 MAP kinase kinases, is a well-
studied example of this: phosphorylation of a threonine residue and 
a tyrosine residue in the ERK2 activation loop results in a conforma-
tion change that activates the kinase and promotes its dimerization. 
Phosphorylation can also regulate a protein’s function without 
inducing a conformation change. For example, the phosphoryla-
tion of cyclin B-Cdk1 at two adjacent residues in Cdk1’s ATP-binding 
cleft, threonine 14 and tyrosine 15, interferes with the positioning of 
the γ-phosphate in ATP and thus decreases the activity of Cdk1, with-
out grossly affecting the kinase’s conformation. Alternatively, if the 
phosphorylation occurs in a poorly structured region of the substrate 
protein, the result may not be a conformation change but rather the 
production of a short phosphoepitope that can interact with “reader” 
domains in other signaling proteins. Given that perhaps 90% of pro-
tein phosphorylations are thought to occur in intrinsically disordered 
regions, this is likely to be the most common way for phosphoryla-
tion to affect protein function.

5.12 � INESSENTIAL PHOSPHORYLATION SITES CAN CONTRIBUTE 
TO ULTRASENSITIVITY

5.13 � INESSENTIAL BINDING SITES CAN CONTRIBUTE TO 
ULTRASENSITIVE RECEPTOR ACTIVATION

5.14 � VARIATION: COHERENT FEED-FORWARD REGULATION

5.15 � VARIATION: RECIPROCAL REGULATION

SUMMARY

FURTHER READING



77CHAPTER 5     COVALENT MODIFICATION

Here we will model a phosphorylation–dephosphorylation cycle, with 
phosphorylation activating the protein and dephosphorylation inacti-
vating it. We will start by examining the steady-state and dynamical 
behaviors of a simple model of the process with mass action kinetics.

5.1 � A MASS ACTION PHOSPHORYLATION–
DEPHOSPHORYLATION CYCLE YIELDS A 
MICHAELIAN STEADY-STATE RESPONSE 
WITH EXPONENTIAL APPROACH TO THE 
STEADY STATE

A phosphorylation reaction involves the binding of two different 
substrates, ATP and the protein being phosphorylated, and so the 
production of a phosphorylated substrate is a multistep process. 
Likewise, dephosphorylation begins with the formation of a phos-
phatase–phosphosubstrate complex before catalysis occurs. But if the 
intermediates are low in concentration, we can reduce the system to 
a simple kinetic scheme where the substrate protein is phosphoryl-
ated in a one-step, mass action process and dephosphorylated in an 
opposing one-step, mass action process, as shown in Figure 5.1a. 
The net rate is then given by:

*
· · * .1 1

dy
dt

k kinase y k phosphatase y= − − 	 (5.1)

The phosphorylated and active form of y is designated y*; kinase and 
phosphatase denote the concentrations of the active enzymes; and 
k1 and k−1 are the second-order rate constants for the forward and 
back reactions. We have implicitly included the concentration of ATP 
in the k1 rate constant. Note that for most protein kinases, the affinity 
for ATP is high (~10 µM) compared to the cellular ATP concentration 
(~1 mM), so even if the cellular concentration of ATP varies a bit it 
is unlikely to affect the phosphorylation rate. We consider kinase to 
be the input to the system, and call it x. Furthermore, we assume the 
concentration of active phosphatase to be unchanging and lump it 
into the rate constant, defining a new k−1 to be the old k−1 times phos-
phatase. Equation 5.1 then becomes:

*
* .1 1

dy
dt

k x y k y= ⋅ − − 	 (5.2)
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Figure 5.1  The steady-state response (a) and time course (b) for a 
phosphorylation–dephosphorylation reaction. In each panel we have 
assumed that k1 = k−1 = 1 and in panel b we assumed x = 1.
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In addition there is a conservation relationship:

* .y y ytot = + 	 (5.3)

Note that Eq. 5.2 is identical in form to Eq. 2.1 and the conservation 
relationship is identical in form to Eq. 2.2. Thus, all of the equations 
we derived in Sections 2.1–2.6 hold here; this model of phosphoryla-
tion is mathematically identical to our first model of ligand–receptor 
interaction. There are two conceptual differences worth pointing out, 
though. First, the system is not in equilibrium when the forward and 
back rates are balanced. The phosphorylation reaction consumes 
ATP, and the dephosphorylation reaction does not resynthesize it. The 
balance point is therefore termed a steady state rather than an equi-
librium. Second, the ratio of the rate constants k−1 and k1 is no longer 
an equilibrium constant. The ratio still defines the EC50 for the reac-
tion, however, and it is still usually denoted by an upper case K just as 
an equilibrium constant is.

As shown in Figure 5.1a, the relationship between the input and the 
steady-state output is Michaelian:

*
.

1

y
y

x
K xtot ss







=
+

	 (5.4)

The system responds to a step-change in input by exponentially 

approaching its new steady state with a halftime of 
+ −

Ln2

1 1k x k
:

*[ ] * *[0] * 1 1y t y y y ess ss
k x k t( )= + − ( )− + − 	 (5.5)

Note that just as our ligand–receptor model showed a quicker response 
to a step up in ligand concentration than to a step back down, this 
phosphorylation–dephosphorylation system shows a quicker response 
to a step up in kinase activity than to a step back down.

If we were to take the phosphatase rather than the kinase as the 
input to the system—that is, we assume that the concentration of 
active kinase is constant and the concentration of active phosphatase 
varies—the steady-state response would be identical to Michaelian 
inhibition (Eq. 2.12), and the dynamics again would be an exponential 
approach to the steady state.

5.2 � THE STEADY-STATE RESPONSE OF A 
PHOSPHORYLATION–DEPHOSPHORYLATION 
REACTION WITH MICHAELIS–MENTEN 
KINETICS CAN BE ULTRASENSITIVE

For simplicity we initially assumed that our phosphorylation and 
dephosphorylation reactions could be described by mass action kinet-
ics, with the rate of each process rising linearly with the amount of 
substrate to be phosphorylated or dephosphorylated. But we know 
that that is not how enzymes work; they are saturable, and the 
standard way of describing that saturability is the Michaelis–Menten 
equation, which we first encountered in Chapter 2:

=
+

.
dP
dt

k E
S

K Scat
M

	 (5.6)

P is the product of the reaction, E is the enzyme concentration, S is 
the substrate concentration, KM is the Michaelis constant, and the 
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proportionality constant kcat represents the maximal rate of one 
molecule of enzyme. What happens to the steady-state response of 
a phosphorylation/dephosphorylation reaction if we use Michaelis–
Menten kinetics rather than mass action kinetics?

The rate of phosphorylation will be:

=
+1

1

Phosphorylation rate k kin
y

K yM

	 (5.7)

where kin is the concentration of kinase, KM1 is the KM value for the 
kinase, and k1 is the kcat value for the kinase. Note that the substrate 
for the kinase is the dephosphorylated form of the substrate; thus y 
appears where S normally would in this Michaelis–Menten expression.

Likewise, the rate of dephosphorylation will be:

*
*1

2

Dephosphorylation rate k pase
y

K yM

=
+− 	 (5.8)

where pase is the concentration of phosphatase, KM2 is the KM value 
for the phosphatase, and k−1 is the kcat for the phosphatase. Note that 
phosphorylated y is the substrate of the phosphatase, and so here y* 
takes the place of S. The net rate of production of y* will therefore be:

* *
*

.1
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1
2

dy
dt

k kin
y

K y
k pase

y
K yM M

=
+

−
+− 	 (5.9)

If we assume the concentrations of the kinase y and phosphatase y* 
complexes are negligible, we can invoke the conservation relation-
ship = + *y y ytot  and eliminate y from Eq. 5.9:
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At steady state, the derivative must be equal to zero. The resulting 
algebraic equation can be solved for y*. The result is formidable:
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	 (5.11)

where K1 = k−1/k1. Only the solution with the + sign is biologically 
relevant, and it is called the Goldbeter–Koshland equation. The 
Goldbeter–Koshland equation describes the steady-state output of a 
phosphorylation–dephosphorylation system, or any covalent modifi-
cation cycle, where the enzyme-mediated reaction rates are described 
by the Michaelis–Menten equation.

The next question is how to understand such a behemoth of an equa-
tion. A plausible first step is to plot it. There are four parameters in the 
equation (ytot, KM1, KM2, and K1) and two “knobs” to turn—the kinase 
(kin) and phosphatase (pase) concentrations. For a start, let us take 
all of the K values equal to 1, fix the phosphatase concentration at 1,  
and look at the output as a function of the kinase concentration for 
different values of ytot and hence different degrees of saturation of 
the two opposing enzymes. As shown in Figure 5.2b, when ytot = 1 
the response resembles that of a Michaelian system, though a bit 
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less graded. When ytot = 10, so that the enzymes’ substrates (y and y* 
respectively) will be present at up to 10× the KM values, the result is 
a markedly switch-like, sigmoidal response curve (Figure 5.2b). The 
effective Hill exponent for the response, calculated with Eq. 3.53, is 
about 3.7, and the overall response resembles that of a Hill function, 
though it is a bit steeper in the middle of the response range and less 
steep at the top and bottom of the range (Figure 5.2c). When ytot = 100, 
the response is nearly a step function (Figure 5.2b), with an effec-
tive Hill exponent of about 26. Koshland and Goldbeter termed this 
phenomenon zero-order ultrasensitivity, because it is an ultrasen-
sitive response that occurs when the opposing enzymes have a nearly 
flat, zero-order dependence on substrate concentration.

In fact it was the discovery of this phenomenon that led them to coin 
the term ultrasensitivity. With the KNF and MWC models one only 
gets a sigmoidal response if one assumes there is cooperativity in the 
binding. The same is almost true for multisite phosphorylation, which 
we will examine in Sections 5.8–5.11, although if the phosphorylation 
is ordered, the response is slightly sigmoidal even when the phos-
phorylation and dephosphorylation reactions are noncooperative. So 
prior to the discovery of zero-order ultrasensitivity, cooperativity was 
almost synonymous with sigmoidal response. But in the case of zero-
order ultrasensitivity, nothing even remotely resembling cooperativity 
is involved, and yet a sigmoidal response is still obtained. The term 
ultrasensitivity implicitly acknowledges that cooperativity is not the 
only type of mechanism that can yield a sigmoidal response.

5.3 � RATE–BALANCE PLOTS ARE MUCH LIKE 
THE ECONOMIST’S SUPPLY-AND-DEMAND 
PLOTS

At this point we have seen that enzyme saturation can produce an 
ultrasensitive response—even an extremely ultrasensitive, highly 
switch-like response—but it is not clear why. One good approach to 
this question is rate-balance analysis, a way of depicting rates and 
steady states graphically. Rate–balance plots can deepen one’s under-
standing of dynamical systems in cases where the algebra is simple, 
like the simple Michaelian phosphorylation response we got when 
we assumed mass action kinetics (Eq. 5.4), and in cases where the 
algebra is not so simple, like zero-order ultrasensitivity (Eq. 5.11), the 
rate–balance plots are often still easy to analyze and understand, and 
thus are especially helpful.
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Figure 5.2  Zero-order 
ultrasensitivity. (a) Schematic view of 
a phosphorylation–dephosphorylation 
cycle with saturable enzymes. (b) Steady-
state phosphorylation for different kinase 
concentrations and different assumed 
total concentrations of the substrate 
y (1, 10, or 100, as indicated). In each 
case it is assumed that KM1 = KM2 = K1 = 1. 
The black dashed curve is a Michaelian 
response, for comparison. (c) Similarity 
between a Goldbeter–Koshland curve, 
assuming KM1 = KM2 = K1 = 1 and ytot = 10, 
and a Hill curve with the same effective 
Hill exponent (n = 3.7). The EC50 and Hill 
exponent for the Hill curve were chosen 
so that the Hill and Goldbeter–Koshland 
curves would have the same EC10 
and EC90 values. The 10% and 90% 
responses are indicated by the horizontal 
dashed lines.
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A rate–balance plot is similar to the supply-and-demand curves seen 
in introductory economics. Economists plot the supply of some com-
modity—let us say widgets—as a function of price. Typically the supply 
goes up monotonically with price (Figure 5.3, blue curve). Then they 
plot the demand for the commodity as a function of price—typically 
demand goes down as price goes up (Figure 5.3, green curve). Where 
the two curves cross, supply equals demand, and the price at which 
this intersection occurs is the steady-state market price for the com-
modity.1 For the curves shown in Figure 5.3, the steady-state price for 
a widget is $2.40, and the number of widgets produced and sold per 
year is 3 million.

5.4 � RATE-BALANCE ANALYSIS EXPLAINS THE 
MICHAELIAN STEADY-STATE RESPONSE

We can do the same thing for any signal transduction reaction that 
involves just one time-dependent variable. Here we will start with the 
mass action model of a phosphorylation–dephosphorylation cycle, 
and then work our way up to the Goldbeter–Koshland model with its 
Michaelis–Menten rate expressions.

We begin with the rate equation (Eq. 5.2) for the phosphorylation of y 
by kinase x and plug in the conservation relationship (Eq. 5.3) so that 
we have an equation with a single time-dependent variable:

*
* * .1 1

dy
dt

k x y y k ytot( )= − − − 	 (5.12)

We break down the right-hand side of this expression into one term 
for the rate of the forward reaction and one term for the back reac-
tion. Both of these rates can be thought of as functions of y*. We plot 
the forward and back reaction rates vs. y* on one set of axes, and 
the point where the two rate curves cross is the steady state for the 
system. For Eq. 5.12, the forward reaction rate, which is the rate of 
phosphorylation, is:

* ,1Phosphorylation rate k x y ytot( )= − 	 (5.13)

and the rate of the back reaction, which is the dephosphorylation 
reaction, is:

*1Dephosphorylation rate k y= − 	 (5.14)

We can explain these two rate equations in intuitive terms. The 
dephosphorylation reaction rate will be maximal if all of the substrate 
y is phosphorylated and therefore available to be dephosphorylated 
( =*y ytot); the rate will be zero if none of the substrate is phosphoryl-
ated; and if the concentration of y* is somewhere between these two 
extremes, the rate will be intermediate. Because we have assumed 
mass action kinetics, the result is a straight line with a positive slope 
of k−1 (Figure 5.4, blue line). For simplicity we have arbitrarily taken 
k−1 = 1.

We can explain the forward reaction rate curve similarly. The 
phosphorylation rate will be maximal when the concentration 
of unphosphorylated y is the largest, which occurs when y* = 0. 

1	 Economists plot price on the y-axis and supply or demand on the x-axis. We have put the 
independent variable (price, since we are considering how supply and demand vary as the price 
is changed) on the x-axis, as is more common in science and mathematics.
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Conversely, the forward rate will be zero when y* = ytot so that there 
are no substrate molecules available for phosphorylation. In between 
there is again a straight-line relationship because we have assumed 
mass action kinetics, this time with a negative slope of −k1x (Figure 5.4, 
green line). We have arbitrarily assumed that k1 = 1 and the kinase 
x = 4. The blue and green lines cross at a single point, at which y* = 0.8. 
This means that the equilibrium for the system occurs when 80% of 
the substrate molecules are phosphorylated. This makes sense; the 
forward reaction is “stronger” than the reverse reaction since its pro-
portionality constant is bigger (4 vs. 1), so the steady state favors the 
forward reaction.

No matter what slopes we choose for the green and blue curves, there 
will always be a single intersection point—a single steady state for 
the system. Moreover, the steady state will always be stable. By sta-
ble, we mean that if we were to displace the system from its steady 
state, the association and dissociation reaction rates would change 
in such a way as to make the system return toward the steady state. 
For example, for the system shown in Figure 5.4, suppose you were 
to increase y* from 0.8 to 0.9 without changing the rate curves. At 
this value of y*, the blue curve is higher than the green curve—the 
dephosphorylation rate is larger than the phosphorylation rate—and 
there will be net dephosphorylation, returning the system toward its 
stable steady state. Conversely, suppose you were to decrease y* to 
0.7. Now the green curve is higher than the blue curve, so the phos-
phorylation reaction predominates, returning the system toward its 
stable steady state.

It might at first seem obvious that a steady state should be stable, 
but actually it is not always going to be the case. The lowest point 
in a valley is a steady state, and it is stable, but the peak of a moun-
tain is a steady state too, and it is unstable. If you are perfectly 
balanced you can rest on the mountaintop indefinitely, but any tiny 
perturbation will send you plummeting down one side or another. 
Unstable steady states are involved in some of the most interesting 
behaviors in signal transduction, including bistability, excitability, 
and oscillations, and we will encounter them in Chapters 8, 9, 13, 
and on.

So far we have chosen one particular value for the kinase x in our rate-
balance analysis. What happens if we vary x? Varying x has no effect 
on the back reaction curve (the blue lines in Figures 5.4 and 5.5a) since 
the rate of y* dephosphorylation does not depend on x. However, it 
does affect the forward reaction curve; the rate of phosphorylation is 
directly proportional to x. Increasing x increases the slope of the green 
line, and decreasing it decreases the slope (Figure 5.5a). As the slope 
of the line increases, the point at which it intersects the blue line—the 
steady-state concentration of y*—shifts to the right, but it does so with 
a law-of-diminishing-returns quality; the geometry of the situation is 
such that a change from 0 to 1 units of x shifts the equilibrium point 
further than a change from 1 to 2, which shifts it further than a change 
from 2 to 3, and so on.

One can extract and reconstruct the Michaelian steady state response 
curve from the rate–balance plot. On the x-axis we plot the assumed 
value of x; on the y-axis we plot the corresponding steady state 
value of y*, which we read from the rate–balance plot (Figure 5.5). 
By repeating this for a few additional assumed values of x, we can 
sketch out the whole response curve (Figure 5.5b). Not surprisingly, 
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the points fall exactly on the curve defined by a Michaeilian response 
equation (Eq. 5.4).

5.5 � THE DYNAMICS OF THE SYSTEM CAN  
ALSO BE UNDERSTOOD FROM THE  
RATE–BALANCE PLOT

So far we have focused on what the rate–balance plot can tell us about 
the steady state of the system. But actually the plot contains more 
information than that. For any value of the concentration of y*, the 
plot shows us whether there will be net phosphorylation or dephos-
phorylation, and it shows us how fast or slow the phosphorylation or 
dephosphorylation will be. This is emphasized in Figure 5.6a. To the 
left of the steady state, the forward rate (green line) is larger than the 
back rate (blue line), and so there is net association; to the right of the 
steady state the back rate is larger than the forward rate, and so there 
is net dissociation. The net rate of phosphorylation or dephosphoryla-
tion is simply the vertical distance between the rate curves.

Note that for each value of y*, the net rate can be viewed as a vector 
whose direction is either to the right (positive) or the left (negative) 
and whose magnitude is the absolute value of the rate. The collection 
of all such vectors is the one-dimensional vector field of the system’s 
reaction rates. We can display a sampling of the vector field to show 
us in which direction and at what rate the system will move as a func-
tion of y* (Figure 5.6b). We have depicted the steady state—that is, the 
point where the magnitude of the vector field is zero—as a filled circle, 
which is customary for stable steady states. The steady state is stable 
because all of the vectors point toward it.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

y* (as a fraction of ytot)

Ra
te

 (r
ea

ct
io

ns
/t

im
e)

In
cr

ea
si

ng
 x

0

0.2

0.4

0.6

1

0 1 2 3 4 5 6 7 8

Input (x)

0.8

O
ut

pu
t (

y*
/y

to
t)Forward

reaction

Back 
reaction

k
1

x

k–1

y*y

(a) (b)
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From either the rate–balance plot (Figure 5.6a) or the vector field plot 
(Figure 5.6b) we can see that the rate at which the system moves 
toward the equilibrium is linearly proportional to how far the sys-
tem is from equilibrium. This is exactly what it takes for a system to 
exponentially approach its equilibrium. If we define the variable z[t] 
to represent the distance from the present value of y* to the equilib-

rium and if we know that the velocity of the system, 
[ ]dz t

dt
, is linearly 

proportional to z[t] and opposite in sign (the velocity opposes the dis-
placement from steady-state), this means that:

= −
[ ] [ ]dz t

dt
k zapparent

t 	 (5.15)

and it immediately follows that:

= −[ ] [0] .z t z e k tapparent 	 (5.16)

Two things contribute to kapparent: the (positive) slope of the back 
reaction line and the (negative) slope of the forward reaction line. 
By simple geometry (Figure 5.6), it follows that at any point in time, 

the net rate ( )= − +
[ ]

[ ]1 1

dz t
dt

k x k z t , and so = + −1 1k k x kapparent . We have 

re-derived Eq. 5.5 and in a way that is arguably simpler and more 
physically motivated than the approach taken in Section 5.1.

Anytime a one-dimensional system’s vector field has its magnitude 
increase linearly with the distance from equilibrium or steady state, 
the system will approach the steady state exponentially. Likewise, if 
the system approaches its steady state exponentially, the magnitude 
of the vector field must increase linearly with the distance from the 
steady state. Even if we cannot solve the ODE for some complicated 
kinetic system exactly, we may be able to tell by examining the vector 
field whether it will approach its steady state with a time course that 
falls off more or less abruptly than an exponential approach does.

The rate–balance plot shows us geometrically why the halftime for the 
response to a step up in the input ligand will always be smaller (faster) 
than the halftime for the response to a step back down. Suppose 
that we step the quantity x up from 0 to 4, so that the concentration 
of y* will rise from 0 to 0.8 (Figure 5.7a). The net rate at which y* 
approaches its steady state are relatively large quantities, depicted 
by the vertical distances between the green and the blue rate curves 
(Figure 5.7a). On the way back down, the net rate is the distance 
between the blue curve and the x-axis, which will be smaller than the 
on-the-way-up rate was (Figure 5.7b). Thus the response to a step up 
is faster than the response to the step back down.

5.6 � RATE-BALANCE ANALYSIS HELPS EXPLAIN 
ZERO-ORDER ULTRASENSITIVITY

With rate-balance analysis now in our armamentarium, we can take 
on the challenge of trying to understand why enzyme saturation gives 
rise to ultrasensitivity. Let us saturate one enzyme at a time: first the 
phosphatase (Figure 5.8b), then the kinase (Figure 5.8c), and finally 
both (Figure 5.8d), and see what happens. For comparison, Figure 
5.8a shows the now-familiar rate–balance plot for a phosphorylation–
dephosphorylation reaction with no saturation.

If the phosphatase is saturable, we know that the blue dephosphoryla-
tion curve will be a hyperbola rather than a straight line. Arbitrarily 
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we will assume the KM value for dephosphorylation (KM2) to be 
100-fold lower than the total concentration of the substrate y; i.e., the 
phosphatase is running close to saturation for most of the range of y* 
concentrations. The result is shown in Figure 5.8b (blue curve); the 
dephosphorylation rate rises steeply initially and then levels off once 
y* reaches about 0.1 or so. As the kinase activity increases in 0.2 unit 
increments (Figure 5.8b, green lines), there is very little production 
of y* until the intersection points get to where the blue curve starts 
to level off, which happens at a kinase concentration of about 1. As a 
result, the steady-state response curve (Figure 5.8b, right, red curve) 
acquires a threshold. At kinase concentrations beyond the thresh-
old, the system responds in a graded way to additional increments of 
kinase. We are halfway toward generating a full sigmoidal response 
curve.

Next, let us assume that the phosphatase is not saturable, but the 
kinase is, and again let us take its KM value (KM1) to be 100-fold lower 
than the total concentration of substrate y. Now the dephospho-
rylation rate curve is a straight line (Figure 5.8c, blue line) and the 
phosphorylation rate curves are a family of hyperbolas with different 
maximum values (Figure 5.8c, green curves). The result is that as the 
kinase activity increases, the nearly horizontal green curves march 
their way up the blue line (Figure 5.8c, left), yielding a linear response 
until the response is very close to maximal (Figure 5.8c, right). The 
steady-state response curve does not have a threshold but does have 
an abrupt approach to maximum.

Finally, if both the kinase and phosphatase are assumed to be close to 
saturation, the response shows both a threshold and an abrupt leveling 
off at maximal response (Figure 5.8d). There is virtually no response 
until a kinase concentration of about 1 is obtained, and beyond that 
the response is nearly maximal. The result is a steeply sigmoidal input–
output relationship (Figure 5.8d, right). Thus, saturation of the kinase 
and phosphatase synergize to produce a highly switch-like response, 
and the reason is because both rate curves are nearly flat over most of 
the range of y* concentrations. Note that the flatness of the rate curves 
not only produces a switch-like steady-state response but also makes 
it so that the steady states are approached relatively sluggishly. The 
vertical distance between the forward and back rates when the system 
is away from steady state—which is the rate at which the system heads 
back toward the steady state—is substantially smaller than it would 
be for a mass action system with the same steady-state and the same 
steady-state phosphorylation turnover rate.

5.7 � DOES ZERO-ORDER ULTRASENSITIVITY 
OCCUR IN VIVO?

Does this simple, powerful mechanism for generating a switch-like 
response actually occur in vivo? Ultrasensitivity does seem to be fairly 
common in cellular regulation (TABLE 5.1), and there are a couple of 
classic examples of zero-order ultrasensitivity from experiments done 
in the 1980s. For example, reconstitution studies showed that the 
steady-state phosphorylation of muscle glycogen phosphorylase by 
phosphorylase kinase in the presence of phosphorylase phosphatase 
in vitro is sigmoidal when the substrate is present at a concentration 
of 70 µM, which is a few-fold higher than the observed KM values for 
the two enzymes, but not at 20 µM. This demonstrates that zero-order 
ultrasensitivity can be made to happen in vitro. Moreover, the sub-
strate protein, glycogen phosphorylase, is highly abundant, perhaps 
as high as 100 µM in skeletal muscle, so the concentrations required 
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to produce zero-order ultrasensitive in vitro are probably relevant to 
the situation in vivo.

Sadly there are few other examples where we know with reason-
able certainty that a protein kinase substrate is present in vivo at a 
concentration several-fold above its KM values for phosphorylation 
and dephosphorylation. Thus, zero-order ultrasensitivity remains a 
triumph of theory that seems likely, but not certain, to be of broad 
significance in cell signaling systems.

MULTISITE PHOSPHORYLATION
5.8 � THE TEMPORAL DYNAMICS OF A 

MULTISTEP ACTIVATION PROCESS 
TELLS YOU THE NUMBER OF PARTIALLY 
RATE-DETERMINING STEPS

Most proteins that are phosphorylated at all are phosphorylated at 
multiple sites. Sometimes several kinases and/or phosphatases are 
involved, and sometimes a single kinase will phosphorylate a target 
protein at several or even dozens of sites. Under the right circum-
stances, a multisite phosphorylation process can be mathematically 
equivalent to a KNF mechanism and so can yield ultrasensitive steady-
state responses. Here we will work through such a case.

To make things as simple as possible, let us assume that our target 
protein y is phosphorylated by a kinase x at two specific sites, yielding 
a singly phosphorylated species y1 and a doubly phosphorylated spe-
cies y2. Next let us make a series of simple but plausible mechanistic 
assumptions:

•	 Both the phosphorylation and dephosphorylation reactions can 
be described as mass action processes.

•	 Only the doubly phosphorylated species is active. This means 
that protein y acts like an AND gate; phosphorylation of site 1 
AND phosphorylation of site 2 yields activation.

•	 The phosphorylation and the dephosphorylation reactions are 
distributive rather than processive; that is, both the kinase and 
phosphatase release their protein substrate after each phos-
phorylation or dephosphorylation reaction, so that the dual 
phosphorylation of y requires two productive collisions between 
kinase and substrate, and the complete dephosphorylation of 
y2 requires two productive collisions between phosphatase and 
substrate.

•	 The phosphorylation and dephosphorylation reactions are 
strictly ordered, so that only one mono-phosphorylated form is 
ever produced.

•	 The kinase x can be considered the input to the system, and the 
phosphatase(s) can be lumped into the two dephosphorylation 
rate constants.

These assumptions yield the mechanism shown schematically in 
Figure 5.9a.

We can write down three rate equations for the system:
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= − + −·0
1 0 1 1

dy
dt

k x y k y 	 (5.17)

= − − +− −· ·1
1 0 1 1 2 1 2 2

dy
dt

k x y k y k x y k y 	 (5.18)

= − −· .2
2 1 2 2

dy
dt

k x y k y 	 (5.19)

These three rate equations are almost identical to those for the bind-
ing of two ligands to a dimeric receptor through a KNF mechanism 
(Eqs. 3.41–3.43); the only difference is a factor of two that arose from 
the assumption that a ligand could bind to either of two equivalent 
sites in the KNF case, which is lost here because we are considering 
the two phosphorylation sites to be nonequivalent and the two phos-
phorylations to be strictly ordered.

Let us begin with a look at the initial dynamics of this system. Suppose 
we carried out an experiment where we added a fixed amount of x to 
some totally unphosphorylated y, and then monitored the time course 
of appearance of singly phosphorylated y1 and doubly phosphorylated 
y2. Furthermore, let us assume that the two phosphorylation reactions 
are similar in speed. For the initial increments of time, y1 and y2 are 
negligible, which means that Eq. 5.18 reduces to:

= ⋅ .1
1 0

dy
dt

k x y 	 (5.20)

We can solve this by integrating both sides:

= ⋅ + .1 1 0y k x y t C 	 (5.21)

As we have assumed that y1[0] = 0, the constant of integration C must 
equal 0. Thus, initially y1 increases linearly with time:

∞ .1y t 	 (5.22)

This is shown in Figure 5.9.
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Figure 5.9 The initial time course of distributive dual phosphorylation. 
(a) Schematic of the process. (b) The time course for the formation of singly 
phosphorylated y1 (blue) and doubly phosphorylated y2 (red). For comparison, the 
small t limits are shown as dashed curves. (c) The same data as in B but plotted 
on a log–log plot. The slope of the curve is its polynomial order. For both B and C, 
we have assumed that k1 = k2 = k−1 = k−2 = y0 = x = 1.
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For the doubly phosphorylated y2 species, at very early times Eq 5.19 
reduces to:

= ⋅ = ,2
2 1 1 2

2
0

dy
dt

k x y k k x y t 	 (5.23)

which means that y2 is initially proportional to t2:

=
1
2

.2 1 2
2

0
2y k k x y t 	 (5.24)

If there is AND gate logic, and y2 is the only active form of y, then there 
will be a time lag in the appearance of active y2—the time course curve 
will be concave-up and parabolic in shape (Figure 5.9b). Likewise, 
in a triple-phosphorylation process, where all steps are partially rate 
determining (i.e. none one is hugely faster than the others), the con-
centration of the triply phosphorylated species will increase like t3, 
and for four, t4, and so on.

In general, if you have an input connected to an output through some 
incompletely understood mechanism, you should be able to estimate 
the number of partially rate-determining steps between the input 
and the output by plotting the data on a log–log plot and extracting 
the initial slope, which is the polynomial order of the relationship 
(Figure 5.9c). It requires having a sensitive, accurate way of obtaining 
time course data, but in principle it can be done.

Note that if we were to remove x after y had been maximally phospho-
rylated, the logic would be reversed: y1 would increase proportionally 
with t, and y0 would go up like t2. Thus, if y1 is an inactive species 
(as we assumed), then there will be no time lag in the inactivation 
response; only in the activation response.

5.9 � ASSUMING MASS ACTION 
KINETICS, STEADY-STATE MULTISITE 
PHOSPHORYLATION IS DESCRIBED BY A 
KNF-TYPE EQUATION

To analyze the steady-state response of our multisite phosphorylation 
model, we set the three derivatives equal to zero:

= − + −0 .1 0 1 1k x y k y 	 (5.25)

= − − − +− −0 . .1 0 1 1 2 1 2 2k x y k y k x y k y 	 (5.26)

= − − −0 . .2 1 2 2k x y k y 	 (5.27)

Note that we can use Eq. 5.25 to eliminate the first two terms from the 
right-hand side of Eq. 5.26; just as we found with equilibrium binding 
to multisubunit receptors, this system is in steady state only when all 
of the individual phosphorylation–dephosphorylation reactions are in 
steady state.

There is also a conservation equation:

= + + .0 1 2y y y ytot 	 (5.28)

From these four algebraic equations (5.25–5.28) we can derive expres-
sions for the fraction of the total y in each of its three phosphorylation 
states, y0, y1, and y2, as a function of the kinase concentration x and 
the rate constants. In particular, the fraction in the active, doubly 
phosphorylated y2 form is:
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If we define K1 = k−1/k1 and K2 = k-2/k2, we can write:







=
+ +

.2
2

1 2 2
2

y
y

x
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	 (5.30)

Keep in mind that these K’s are not equilibrium constants but instead 
are ratios of rate constants for two opposing reactions. From past 
experience (Eqs. 3.48–3.50) and the form of the denominator in Eq. 5.30, 
you can probably correctly guess what the corresponding expressions 
for y0 and y1 are—they have K1K2 (for y0) or K2x (for y1) in the numera-
tor in the place of x2.

Let us examine the response function defined by Eq. 5.30 in more 
detail. If we assume that the two K values are equal, meaning that 
no matter what the individual values are for the phosphorylation and 
dephosphorylation of the two sites, the balance between the forward 
and back reactions is no more favorable for the first phosphorylation 
than for the second, the result is a slightly sigmoidal response curve 
(Figure 5.10b,c, dashed black curve). We can extract the EC10 and 
EC90 values from this curve, and then use Eq. 3.54 to calculate an 
effective Hill coefficient for the response of 1.36. If we assume that K2 
is smaller than K1, either because the phosphorylation of y1 is more 
favorable than the phosphorylation of y0, or the dephosphorylation of 
y1 is more favorable than the dephosphorylation of y2, or both—i.e., 
there is positive cooperativity in the phosphorylation and/or dephos-
phorylation reactions—the resulting curves are more switch-like. In 
the limit where / 02 1K K → , the response approaches a Hill curve with 
n = 2 (Figure 5.10b,c, blue curves). And if K2 is larger than K1, mean-
ing that there is negative cooperativity in the phosphorylation and/
or dephosphorylation, then the curves will be intermediate between a 
Michaelian curve and the n = 1.36 curve (Figure 5.10b,c, red curves).

These ultrasensitivities are fairly modest compared to the largest Hill 
exponents in TABLE 5.1. Keep in mind, though, that some substrates 
are phosphorylated at many sites—sometimes dozens—which could 
yield higher degrees of ultrasensitivity. In general, if a protein’s activity 
depends on the ordered, mass action, non-processive phosphoryla-
tion of n sites, the resulting steady-state activity is:
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Figure 5.10  Multisite phosphorylation. (a) Schematic view. Here we have assumed that substrate y can be phosphorylated 
at two sites by kinase x; that the phosphorylation and dephosphorylation reactions are distributive and ordered; and that only the 
doubly phosphorylated form of y (y2) is active. (b, c) Steady-state activities are plotted for 5 choices of K1 and K2: 100 and 0.01 
(red); 10 and 0.1 (red); 1 and 1 (dashed black); 0.1 and 10 (blue); and 0.01 and 100 (blue). The activity curves are shown on linear 
plots (b) and on semilog plots (c).
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With this model the effective Hill exponent will always be less than 
or equal to the number of phosphorylation sites, with the greatest 
ultrasensitivity achieved when there is substantial cooperativity in the 
phosphorylation and/or dephosphorylation.

So far we have assumed AND gate logic for the activation of the 
substrate by phosphorylation—so for a substrate with two phospho-
rylation sites, only the doubly phosphorylated species are active, and 
the result is an ultrasensitive activity curve. By analogy with the KNF 
model, we should be able to achieve a subsensitive response as well. 

TABLE 5.1  Examples of Subsensitive and Ultrasensitive Responses

Stimulus Response Effective Hill Exponent Experimental System Reference

EGF (Spitz) EGFR binding 0.24 Purified recombinant 
Drosophila proteins 

Alvarado et al. (2010)

Insulin Insulin receptor 
binding

0.46 Purified recombinant 
human proteins

Whittaker et al. (2008)

Aspartate Aspartate receptor 
(Tar) binding

0.6 Purified Salmonella 
typhimurium Tar protein

Biemann and Koshland 
(1994) 

Acetylcholine Nicotinic cholinergic 
receptor conductance

1.3 Chicken neuronal 
homomeric σ7 receptors

Galzi et al. (1996)

Delta (in trans 
only)

Notch production 1.7 CHO cells Sprinzak et al. (2010)

Mos MEK1 activity 1.7 Xenopus laevis oocyte 
extracts

Huang and Ferrell (1996)

Phosphorylase 
kinase/
phosphatase

Glycogen 
phosphorylase activity

2 Reconstituted 
mammalian muscle 
enzymes

Meinke et al. (1986)

RsbQP σB activity 2.1 Bacillus subtilis Locke et al. (2011)

AICAR AMPK activity 2.5 Rat INS-1 cells Hardie et al. (1999)

Ca2+ Calmodulin-
dependent cAMP 
phosphodiesterase 
activity

2.7 Purified beef heart 
proteins

Teo and Wang (1973)

IP3 Calcium release 3 Permeablized rat 
basophilic leukemia cells

Meyer et al. (1988)

Cdk1 Wee1A 
hyperphosphorylation

3.5 Xenopus laevis egg 
extracts

Kim and Ferrell (2007)

Anisomycin or 
sorbitol

JNK activity 3–10 HeLa, HEK293, and 
Jurkat cells

Bagowski et al. (2003)

Mos Erk2 activity 5 Xenopus laevis oocytes Huang and Ferrell (1996)

Cln2 Cln2 synthesis 5 Saccharomyces cerevisiae Charvin et al. (2010)

KinA σE and σF activities 10 Bacillus subtilis Narula et al. (2012)

CheY-P Flagellar motor 
output

~10–20 Escherichia coli Cluzel et al. (2000); Yuan 
and Berg (2013); Yuan 
et al. (2012)

Cdk1 Cdc25C 
hyperphosphorylation

11 Xenopus laevis egg 
extracts

Trunnell et al. (2011)

Delta (cis and 
trans)

Notch production 12 CHO cells Sprinzak et al. (2010)

 Cdk1 APC/CCdc20 activity ≥17 Xenopus laevis egg 
extracts and embryos

Tsai et al. (2014); Yang 
and Ferrell (2013)

HGF HGF-inducible mRNAs >1,000 mRNAs showed 
ultrasensitive responses 
with Hill exponents 
ranging from just above 
1 to 76

MDCK cells Senthivel et al. (2016)



SYSTEMS BIOLOGY OF CELL SIGNALING92

For this to occur, we would need (1) negative cooperativity, with the 
first phosphorylation making the second more difficult, and, impor-
tantly (2) an activation mechanism where the singly phosphorylated 
form is half as active as the doubly phosphorylated form. I do not 
know of an example where this latter assumption is true, but it is 
probably worth bearing in mind that an ultra-graded, subsensitive 
response is a theoretical possibility. It is also possible that the sin-
gly and doubly phosphorylated forms are comparably active; in other 
words, there is OR gate logic in the activation. This is in fact true for 
the activation of the MAP kinase MEK1 by Raf or Mos. This means that 
MEK should respond promptly when Raf is turned on but only after a 
time lag when it is turned back off—the opposite of what we found for 
dual phosphorylation when both sites must be phosphorylated for the 
substrate to change in activity.

5.10 � PRIMING CAN IMPART POSITIVE 
COOPERATIVITY ON MULTISITE 
PHOSPHORYLATION

Let us return now to a multisite phosphorylation system with AND 
gate logic. As seen in Figure 5.10, the most switch-like responses are 
obtained when K2 is small compared to K1, which could arise because 
of positive cooperativity in the phosphorylation reaction, the dephos-
phorylation reaction, or both. Is positive cooperativity ever actually 
found in such reactions, and, if so, how does it arise?

It is not hard to imagine how the positive cooperativity arises a mul-
tisubunit protein like hemoglobin. The hemoglobin tetramer consists 
of globular subunits with their amino acids packed in an orderly fash-
ion (Figure 3.1), so the binding of oxygen to one heme group could 
cause a local conformational change that would then be transmit-
ted through a network of energetically coupled residues to the other 
heme groups. Likewise with the negative cooperativity of the epider-
mal growth factor receptor (EGFR), the binding of the first epidermal 
growth factor (EGF) molecule appears to cause a gross rearrangement 
of one receptor subunit, which then pushes on the other receptor sub-
unit, putting into a conformation that makes the binding of the second 
EGF molecule less favorable.

This kind of allosteric regulation might well contribute cooperativ-
ity to some instances of multisite protein phosphorylation, with, say, 
a first phosphorylation inducing a conformation change that makes 
a second phosphorylation site more accessible to the kinase. But, 
as mentioned earlier, most phosphorylations occur at residues that 
reside in intrinsically disordered regions of proteins. It is not so easy 
to see how conformation changes and a traditional allosteric mecha-
nism could link the phosphorylation of two residues in intrinsically 
disordered regions.

However, a simpler type of coupling can still take place. There are a 
number of examples now where the phosphorylation of one residue, 
even in an intrinsically disordered region, produces a phosphoepitope 
that can serve as a docking site for a protein kinase—sometimes, but 
not always, the same kinase that carried out the first priming phos-
phorylation. In this way, a priming phosphorylation can promote 
subsequent phosphorylations through enforced proximity, a simple 
but powerful alternative to allostery. The cyclin–Cdk–Cks complex is 
one nice example of a kinase that makes use of priming phospho-
rylations, as shown schematically in Figure 5.11. In this case, the Cks 
subunit (called Suc1 in S. pombe, Cks1 in S. cerevisiae, and Cks1 or 2 
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in vertebrates) serves as the phosphoepitope-binding subunit, binding 
phosphothreonine residues in a particular primary sequence context 
and facilitating the phosphorylation of other nearby serine and threo-
nine residues. This priming-and-multisite-phosphorylation theme is 
probably relevant to the regulation of scores of substrate proteins by 
the cell cycle Cdk complexes. Glycogen synthase kinase 3 (GSK3) and 
casein kinase 1 (CK1) are two other kinases that depend on a priming 
phosphorylation to carry out multisite phosphorylation and regulate 
their substrates. In these cases, the priming phosphorylation interacts 
with a region of the kinase’s catalytic domain rather than a separate 
subunit, but otherwise the basic phenomenon is similar.

5.11 � DISTRIBUTIVE MULTISITE 
PHOSPHORYLATION IMPROVES 
SIGNALING SPECIFICITY

In any signaling system, specificity is an important issue, and in the 
case of protein phosphorylation, it is a particularly challenging one. 
There are probably approximately 10,000 different proteins in a typi-
cal human cell, with an average length of ~400 amino acids. This 
means that there are about 4,000,000 different amino acid residues. 
About 17% of these are Ser (8.5%), Thr (5.7%), or Tyr (3.0%) resi-
dues and hence are potential phosphorylation sites, which means 
that there are ~700,000 possible phosphorylation sites for a protein 
kinase to choose among. Yet despite the fact that all of the 500+ 
classical protein kinases are evolutionarily related and have similar 
structures, each one is somehow able to focus in on a few to a few 
hundred of the ~700,000 possible target sites. Maximizing on-target 
phosphorylation and minimizing off-target phosphorylation is a for-
midable challenge.

To achieve this specificity, protein kinases often make use of multiple 
binding interactions to recognize their on-target substrates. Amino 
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Figure 5.11 Positive cooperativity in multisite phosphorylation 
through the interaction of a phosphoepitope-binding domain with 
an unstructured priming site. (a) The unprimed substrate interacts relatively 
weakly with the kinase. (b) The primed substrate interacts more strongly through 
interaction with the blue Cks2 subunit. (Based on work from McGrath et al., 
Nat Struct Mol Biol. 2013.)
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acids adjacent to the phosphorylation site interact with residues near 
the kinase’s active site, and this interaction contributes to specificity, 
but kinases also often make use of a separate docking site that binds 
to residues far from the phosphorylation site to increase the binding 
energy. Only substrates that have the right primary sequence motif 
around the phosphorylation site and the right docking motif will be 
phosphorylated efficiently.

In addition, multisite phosphorylation can amplify whatever specific-
ity is inherent in the kinase–substrate interaction. We can illustrate 
this with a specific example: consider the MAP kinase (MAPK) cas-
cades that crop up over and over again in eukaryotic signaling and 
which were introduced in Section 1.5. Most eukaryotic cells possess 
several classes of MAPK cascades that operate in parallel, with little 
cross talk. In human cells, one cascade starts with four MAPKKKs 
(MAP kinase kinase kinases; the Raf proteins and Mos) followed by 
two MAPKKs (MAP kinase kinases; MEK1/2) and two MAPKs (ERK1 
and 2); another starts with one of at least 13 JNKKKs followed by two 
JNKKs (MKK4 and 7) and three JNKs (JNK1, 2, and 3). The last two lev-
els of these cascades are shown schematically in Figure 5.12a. How 
do the MEKs manage to activate ERKs, and not the structurally related 
JNKs, and how do the JNKKs manage to activate JNKs without activat-
ing ERKs?

Let us first consider the issue of specificity in a hypothetical system 
where only one phosphorylation was required for activation of JNK 
and ERK. For simplicity let us also assume that mass action kinetics 
describes the phosphorylation and dephosphorylation reactions. Let 
us suppose that MEK phosphorylates its on-target substrate ERK with 
a rate constant of k1 and the off-target substrate JNK with a rate con-
stant of ϕk1, where the factor ϕ is less than 1. The steady-state level of 
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Figure 5.12 Distributive multisite 
phosphorylation can enhance 
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MAP kinase cascades that operate 
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state response (ERK*) (b) and signaling 
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phosphorylation reactions are required for 
ERK or JNK activation, with ϕ = 0.01.
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active ERK (ERK*) in the presence of some concentration x of the right 
MEK will be Michaelian:
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Next consider the off-target phosphorylation of JNK by MEK. If we 
assume for simplicity that the rate constants for JNK and ERK 

dephosphorylation (the k−1 values) are equal, then since 
φ
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steady-state level of off-target activation of JNK* will be:
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We can define the specificity of the process to be the ratio of the result-
ing steady-state activities of ERK and JNK:
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+

+
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K
x

K x
	 (5.34)

Equation 5.34 is plotted as the blue curve in Figure 5.12c for one 
value of ϕ, ϕ = 0.01. We used a semilog plot, because it facilitates the 
comparison of this specificity curve to the one we will obtain for the 
dual phosphorylation case, and we show the steady-state response in 
Figure 5.12 as well (on a regular linear plot). Specificity is maximal, 
approaching 1/ϕ = 100, when the stimulus x is infinitesimal, and it falls 
quickly as x is increased. When x = K1 and the ERK activation is half-
maximal, the specificity falls to 50.5, and when x = 9K1 so that the ERK 
activation is 90% maximal, the specificity falls to 10.9. As the input 
approaches infinity and the output approaches 100%, the specificity 
approaches 1; in other words, the MEK is producing as much off-tar-
get JNK activation as on-target ERK activation. Thus, the system is 
very good at distinguishing on-target from off-target MAPKs when the 
output of the system is very low but not so good at high output levels.

Now consider the case where we have two distributive phosphoryla-
tions, each described by mass action kinetics. Furthermore, assume 
that each of the two phosphorylations is a factor of ϕ slower for JNK 
than for ERK and again assume the dephosphorylation rate constants 
for the two substrates are equal. From Eq. 5.30, the steady-state acti-
vation of ERK by MEK (x) is given by:
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and the steady-state activation of JNK is:
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The specificity of ERK activation is the ratio of these two expressions:
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This specificity function is plotted as the red curve in Figure 5.12c, 
taking K1 = K2 = 1 and ϕ = 0.01. Now the specificity approaches 1/ϕ2  = 
10,000 for small levels of activation. The specificity still falls off as the 
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input (x) and the output (ERK*) increase (and, in fact, in relative terms 
it falls off more abruptly), but because the specificity starts at such 
a high value, even when the output is 90% maximal (which occurs 
when x = 9.9K1) the specificity is still a whopping 102, higher than the 
specificity for activation by a single phosphorylation ever was. Thus, 
distributive multisite phosphorylation can greatly enhance the speci-
ficity of a signal transduction process, and in the limit of low inputs and 
outputs, the specificity of an n-site activation process is equal to 1/ϕn.

So far we have assumed that the phosphorylation and dephosphoryla-
tion reactions are distributive. This is true for the ERK2 MAPK in vitro, 
but there is evidence that ERK2 phosphorylation may be processive in 
vivo, possibly because of scaffold proteins or macromolecular crowd-
ing. If phosphorylation and dephosphorylation are strictly processive, 
would the dual phosphorylation still enhance specificity? The simple 
answer is no. However, if the process is only semi-processive—for 
example, if some fraction of the time the kinase (MEK1/2) dissoci-
ates from the mono-phosphorylated form of pMAPK substrate, which 
is then rapidly dephosphorylated, and the off-target MEK-pJNK com-
plexes are more likely to dissociate than the on-target MEK–pERK 
complexes—then some specificity enhancement will still occur.

This sort of mechanism has been called kinetic proofreading, and it 
was proposed by John Hopfield to explain the high fidelity of amino 
acid incorporation during mRNA translation and nucleotide incorpo-
ration during DNA synthesis. Kinetic proofreading is now regarded 
as a critically important contributor to specificity in a wide variety of 
biological contexts.

5.12 � INESSENTIAL PHOSPHORYLATION 
SITES CAN CONTRIBUTE TO 
ULTRASENSITIVITY

So far we have assumed that our doubly phosphorylated protein 
substrate is active, and the non-phosphorylated and singly phospho-
rylated species are inactive. To a first approximation, this is true for 
the ERK2 MAP kinase—the singly phosphorylated form does possess 
a measurable activity, but it is 10- to 100-fold lower than the dou-
bly phosphorylated form. But this is not always the case for proteins 
regulated by multisite phosphorylation. For example, as mentioned 
above, MEK1, the immediate upstream activator of ERK2, undergoes 
the ordered, distributive phosphorylation of two sites during its acti-
vation, but it appears that the protein is maximally activated by the 
first phosphorylation. This means that ERK2 is relatively hard to turn 
on but easy to turn off, whereas MEK1 is easy to turn on but hard to 
turn off. It also means there will be a time lag in ERK2 activation and 
a time lag in MEK1 inactivation, which could act as a temporal fil-
ter. And, finally, it means that the shapes of the steady-state response 
curves will be a bit different from each other. This raises the question 
of which requirement produces the more switch-like, ultrasensitive 
response. Or, more generally, if a protein is phosphorylated at n sites, 
how many phosphorylations should it take to activate the protein to 
produce the maximal degree of ultrasensitivity?

Let us begin with the dual phosphorylation case. If both phospho-
rylation sites must be phosphorylated to achieve activation (AND gate 
logic), the fraction of the protein activated is, as discussed above:
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On the other hand, if both the singly and doubly phosphorylated forms 
are active, the activity is:
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We can gauge the overall ultrasensitivity of these two activation 
responses by calculating the EC10 and EC90 values and plugging them 
into Eq. 3.53. To start with, let us assume that the two K’s are equal; 
i.e., that there is no cooperativity, positive or negative, in the phos-
phorylation. Equation 5.33 yields a sigmoidal curve with an effective 
Hill exponent of 1.36. Equation 5.34 yields a response that is shaped 
differently—it starts out linear and then approaches a maximum rela-
tively abruptly—but, strangely enough, its effective Hill exponent is 
exactly the same, 1.36. The requirement for two phosphorylations 
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makes the activity curve more switch-like at low levels of input and 
output; the requirement for one phosphorylation makes the activity 
curve less graded at high levels of input and output; and, based on 
effective Hill exponents, overall the two curves are equally ultrasensi-
tive (Figure 5.13a,d).

So then what happens if there are three phosphorylation sites? We 
can imagine three activation models, one where one phosphorylation 
suffices for activation and two are “extras;” one where two phospho-
rylations are required and one is an extra; and one where all three 
phosphorylations are required (Figure 5.13b). The first model yields 
the most linear response at the low end of the response range and the 
most abrupt response at the high end (Figure 5.13b, blue curve); the 
third model yields the most non-linear response at the low end and 
the most gradual response at the high end (Figure 5.13b), and the 
second model is intermediate at both ends. Models 1 and 3 yield iden-
tical effective Hill exponents, 1.56 (Figure 5.13d), and model 2 yields 
a higher n value (exactly 2).

And four phosphorylation sites? The same pattern is seen 
(Figure 5.13c). In general, for a system with n phosphorylation sites, 

if n is an odd number, requiring =
+ 1
2

m
n

 phosphorylations for activa-

tion yields the highest effective Hill exponent, and if n is even, then 

=
2

m
n

 and +
2

1
n

 yield identical, maximal Hill exponents (Figure 5.13d). 

Somehow having extra inessential phosphorylation sites contributes 
to the switch-like character of the response.

So far we have assumed that all of the K values are equal. What if, 
say, the final K were 100-times smaller than the others, so that there is 
substantial positive cooperativity to the phosphorylation–dephospho-
rylation reactions. What would happen to the ultrasensitivities? From 
Figure 5.13d, we know that for the equal K value case, the effective 
Hill exponents for a 5-site phosphorylation reaction are 1.77, 2.72, 3, 
2.72, and 1.77, and the maximum value is obtained when 3 out of 5 
sites must be phosphorylated for activation. If we now assume that 
K5 = 0.01 and the other K’s are equal to one, the resulting effective 
Hill exponents are 2.44, 4.11, 4.35, 4.29, and 4.18. Overall the Hill 
exponents are higher, but the middle value is still the highest. At the 
opposite extreme, if we assume that the first K is 100 times smaller 
than the others so that there is substantial negative cooperativity, the 
resulting effective Hill exponents are 1.02, 1.74, 2.43, 2.01, and 1.69. 
Again, the middle value is the highest. It is possible to select K values 
so that some number of sites other than 3 gives the highest effective 
Hill exponent, but for a wide range of K values this general up-then-
down trend holds.

5.13 � INESSENTIAL BINDING SITES CAN 
CONTRIBUTE TO ULTRASENSITIVE 
RECEPTOR ACTIVATION

Note that these results apply equally well to the regulation of a mul-
timeric receptor by ligands. Suppose we have a KNF model of a 
pentameric receptor, like the nicotinic cholinergic receptor, and for 
simplicity, let us suppose that all of the binding constants are equal. 
From the approach laid out in Chapter 3.6 and Eq. 3.61, the fraction 
of the receptor (ytot) in the 6 different ligand-bound states (0 through 
5 molecules bound) as a function of the free ligand concentration x is:
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If we now consider 5 activation schemes, where 1 bound ligand is suf-
ficient for activation, 2 ligands are required, and so on, and calculate 
the effective Hill exponents, we get values of 1.33, 1.83, 1.97, 1.82, 
and 1.33. These are all a bit smaller than they were for ordered phos-
phorylation (1.77, 2.72, 3, 2.72, and 1.77), but still the effective Hill 
exponents go up and then down, and the most ultrasensitive activa-
tion is obtained when the binding of ligand molecules to 3 out of the 
5 receptor subunits is required for activation.

5.14 � VARIATION: COHERENT FEED-FORWARD 
REGULATION

The regulation of an oligomeric receptor by multiple ligand molecules 
and the regulation of a protein via multisite phosphorylation are exam-
ples of processes where an input feeds into the production of an output 
more than once. Both of these processes can be viewed as variations 
on what is termed coherent feed-forward regulation, a signaling motif 
mentioned back in Chapter 1. There are other more explicit examples of 
coherent feed-forward regulation in cell signaling as well, and, like oli-
gomeric receptors and multiply phosphorylated proteins, they can yield 
ultrasensitive responses. Feed-forward regulation is commonplace in 
Escherichia coli transcriptional networks. One well-studied example is 
the arabinose-utilization system (Figure  5.14a). The upstream tran-
scription factor CRP (for cAMP receptor protein) can, in the presence of 
its activating ligand cAMP, stimulate the transcription of various down-
stream genes, including those of the araBAD and araFGH operons. 
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Figure 5.14 Coherent feed-forward regulation. (a) A transcriptional feed-forward system from Escherichia coli. (b) A post-
translation feed-forward system in the activation of PKC by the PIP2-derived second messengers Ca2+ and diacylglycerol (DG). (c) 
Schematic view of a simple model of the activation of PKC by the sequential binding of DG and Ca2+. (d) Steady-state response 
curves. Activities are plotted for 5 choices of K1 and K2: 100 and 0.01 (red); 10 and 0.1 (red); 1 and 1 (dashed black); 0.1 and 10 
(blue); and 0.01 and 100 (blue).
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CRP also induces the transcription of araC, and the araC protein, when 
bound to its activating ligand arabinose, stimulates the transcription 
of the araBAD and araFGH operons. Therefore when arabinose is pre-
sent, the system functions as a coherent feed-forward system, with 
CRP feeding into to the transcription of araBAD/FGH via two routes.

Another famous example of coherent feed-forward regulation, this 
time from eukaryotic signaling, is the activation of classical protein 
kinase C (Figure 5.14b). The activation of a phospholipase C (PLC) 
brings about the conversion of the inner leaflet phospholipid PIP2 into 
diacylglycerol (DG) and IP3. DG acts as a stoichiometric regulator of 
PKC, helping to recruit it to the plasma membrane. IP3 acts as a regu-
lator of Ca2+ release from the endoplasmic reticulum, and cytosolic 
Ca2+ in turn acts as a stoichiometric activator of DG-bound PKC.

Here we will construct a simple model for coherent feed-forward 
regulation based on the PKC system. As shown in Figure 5.14c, we 
assume that the output protein (PKC) can exist in three states: the 
apo-PKC (y0), PKC bound to DG (DG-PKC, y1), and PKC bound to both 
DG and Ca2+ (Ca2+-DG-PKC, y2). For simplicity we assume the binding 
is ordered and that the Ca2+-PKC complexes are negligible. We can 
write down three rate equations:

0
1 0 1 1

dy
dt

k DG y k y= − ⋅ + − 	 (5.46)

1
1 0 1 1 2

2
1 2 2

dy
dt

k DG y k y k Ca y k y= ⋅ − − +−
+

− 	 (5.47)

= −+
− .2

2
2

1 2 2

dy
dt

k Ca y k y 	 (5.48)

We can simplify this further by assuming that the concentrations of 
both DG and Ca2+ are directly proportional to the phospholipase C 
activity, which we denote as x. It follows that:

0
1 0 1 1

dy
dt

k x y k y= − ⋅ + − 	 (5.49)

1
1 0 1 1 2 1 2 2

dy
dt

k x y k y k x y k y= ⋅ − − ⋅ +− − 	 (5.50)

.2
2 1 2 2

dy
dt

k x y k y= ⋅ − − 	 (5.51)

Note that we have redefined the rate constants to include the pro-
portionality factors that relate x to DG and Ca2+. At steady state all of 
these derivatives must equal zero:

0 1 0 1 1k x y k y= − ⋅ + − 	 (5.52)

0 1 0 1 1 2 1 2 2k x y k y k x y k y= ⋅ − − ⋅ +− − 	 (5.53)

k x y k y= ⋅ − −0 .2 1 2 2 	 (5.54)

We also have a conservation relationship:

= + + .0 1 2y y y ytot 	 (5.55)

These four equations, which define the steady-state response of this 
stoichiometric feed-forward system, are identical in form to those for 
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the enzymatic activation of a protein through two-site phosphorylation 
(Eqs. 5.25–5.28). It follows then that the output of the system is given by:







=
+ +

.2
2

1 2 2
2

y
y

x
K K K x xtot ss

	 (5.56)

As usual, = − /1 1 1K k k  and = − /2 2 2K k k . Thus, the result is a response 
approaching an n = 2 Hill function when the cooperativity in the two 
activation steps is very high (i.e. K1 >> K2) and approaching an n = 1 
Michaelian curve when there is strong negative cooperativity (K1 << 
K2) (Figure 5.14d). 

5.15 � VARIATION: RECIPROCAL REGULATION
One final variation on feed-forward regulation is probably worth exam-
ining: reciprocal regulation. Sometimes an input stimulus will not only 
turn on a process but also turn off the corresponding reverse reaction 
(Figure 5.15a). For example, stresses like DNA damage result in the phos-
phorylation and activation of Wee1, a protein kinase that blocks mitotic 
entry by phosphorylating the master mitotic regulator cyclin B-Cdk1. 
These same stresses result in the phosphorylation and inhibition of 
Cdc25, the protein phosphatase that undoes the phosphorylations done 
by Wee1. Thus DNA damage feeds into Cdk1 regulation in two ways, by 
reciprocally regulating the opposing enzymes that determine the phos-
phorylation state of Cdk1. This is not exactly the same as a traditional 
feed-forward system, where an input affects two different proteins, nor 
is it exactly the same as multisite phosphorylation or multisubunit recep-
tors, where an input affects two different protein states. But, like these 
processes, reciprocal regulation can generate some ultrasensitivity.

To show that this is the case, we begin by writing down the rate equa-
tion for the phosphorylation and dephosphorylation of Cdk1 by Wee1 
and Cdc25:

1(1 ) 251 1

dyp
dt

k Wee yp k Cdc yp= − − ⋅− ,	 (5.57)

where yp represents the fraction of the Cdk1 molecules that are phos-
phorylated. At steady state, the derivative is zero:

0 1 (1 ) 25 .1 1k Wee yp k Cdc ypss ss= − − ⋅− 	 (5.58)

The activities of both Wee1 and Cdc25 are functions of the upstream 
stress stimulus x. We could make the simple assumption that the 
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Figure 5.15 Reciprocal regulation. (a) Schematic view of a reciprocal 
regulation where a stimulus x both activates a kinase and inhibits a phosphatase. 
(b) Steady-state activity curves. The response can be ultrasensitive (blue curves), 
Michaelian (dashed black curve), or subsensitive (red curve) depending on which 
enzyme, the kinase or phosphatase, is more responsive to x.
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steady-state responses are Michaelian activation and inactivation, 
respectively:

=
+

1
2

Wee
x

K xss 	 (5.59)

+
25 .3

3

Cdc
K

K xss 	 (5.60)

If we plug Eqs. 5.59 and 5.60 into Eq. 5.58 and solve for yp, we get:

( )=
+

+ + +
.3

2

1 2 3 1 3 3
2yp

K x x
K K K K K K x xss 	 (5.61)

We can simplify this a little by choosing to measure the concentration 
of x in multiples of K1, so that K1 = 1. This yields:

=
+

+ +2
.3

2

2 3 3
2yp

K x x
K K K x xss 	 (5.62)

This equation is identical in form to the KNF saturation equa-
tion (Eq.  3.51). If K2 equals K3, it reduces to a Michaelian response 
(Figure 5.15b, dashed black curve). If K2 is smaller than K3—i.e., it is 
easier for the stimulus to activate the forward reaction than it is to 
inactivate the reverse reaction—the result is a subsensitive response 
(Figure 5.15b, red curves), like what one would get from negatively 
cooperative binding in the KNF case. If K2 is larger than K3, the result 
is an ultrasensitive response (Figure 5.15b, blue curves), like what 
one would get from positive cooperativity.

SUMMARY
For an enzymatic regulation system, such as a phosphorylation–
dephosphorylation reaction, the system approaches a steady state 
rather than an equilibrium. In the simplest models of this type of pro-
cess—with mass action kinetics for both the phosphorylation and 
dephosphorylation reactions—the steady-state response is Michaelian 
and the system responds to a step-change in input by exponentially 

approaching its new equilibrium with a halftime of 
+ −

Ln2

1 1k x k
.

If, instead, the enzymes are operating close to saturation, so that 
Michaelis–Menten kinetics rather than mass action kinetics applies, 
the system can give rise to zero-order ultrasensitivity. This is a sig-
moidal, switch-like steady-state response that arises from enzyme 
saturation rather than cooperativity. The conceptual basis of zero-
order ultrasensitivity—and particularly why saturating the phosphatase 
and saturating the kinase have different effects on the steady-state 
response curve—can be understood through rate-balance analysis, a 
powerful graphical method for analyzing the steady states and the 
dynamics of systems with one time-dependent variable.

Even if the kinase and phosphatase are not operating close to saturation, 
ultrasensitivity can arise if a substrate’s regulation depends on multisite 
phosphorylation, especially if the first phosphorylations promote the 
subsequent phosphorylations through a mechanism such as priming. 
Multisite phosphorylation is very common in cell signaling, and there 
are at least a few examples of priming as well. Multisite phosphorylation 
has the potential for improving the specificity of regulation; multistep 
systems can accomplish kinetic proofreading. Finally, we examined 
two related types of signaling circuits—coherent feed-forward regula-
tion and reciprocal regulation—that can, under the right circumstances, 
generate ultrasensitive responses.
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6.1 � STIMULATED PRODUCTION YIELDS A LINEAR STEADY-STATE 
RESPONSE WITH EXPONENTIAL APPROACH TO THE STEADY 
STATE	
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THE STEADY-STATE RESPONSE	

6.4 � ZERO-ORDER DEGRADATION MAKES DRUG DOSING 
DICEY	

SUMMARY

FURTHER READING

6.1 � STIMULATED PRODUCTION YIELDS 
A LINEAR STEADY-STATE RESPONSE 
WITH EXPONENTIAL APPROACH TO 
THE STEADY STATE

The third basic type of signal transduction process is the regulated 
production or destruction of some downstream signaling molecule. 
Famous examples include the second messenger cyclic AMP (cAMP), 
and the best-studied (but not the only) way of bringing about its pro-
duction is through the stoichiometric activation of an adenylyl cyclase 
protein, which can be considered the input stimulus, by a trimeric 
G-protein’s GTP-bound Gαs subunit. The result is that some of the cell’s 
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stockpile of ATP is converted into cAMP, which is considered to be 
the output of this process. The cAMP can then stoichiometrically acti-
vate downstream targets like protein kinase A and cAMP-regulated 
ion channels.

This type of regulation is not confined to second messenger signaling. 
The regulated transcription of a gene is, in broad strokes, the same 
type of process. An input stimulus—in this case an activated tran-
scription factor—brings about the production of one or more mRNAs 
from a stockpile of ribonucleotide bases. Likewise for translation: an 
input mRNA brings about the production of a protein, the output, from 
a stockpile of amino acids via charged tRNAs.

A stimulus can also bring about a decrease, rather than an increase, 
in the concentration of a downstream signaling molecule through 
stimulated destruction. This occurs during photoreception in the ver-
tebrate retina. The activation of an opsin photoreceptor protein brings 
about the activation of the G-protein transducin, which then stoichio-
metrically activates a cyclic GMP (cGMP) phosphodiesterase, resulting 
in a decrease in the concentration of cGMP and a closure of cGMP-
regulated sodium channels.

Here we will model a stimulated production system. We assume that 
the rate of the synthesis of y is proportional to an input stimulus x 
and that the rate of destruction of y is proportional to the amount of y 
present—mass action kinetics, the simplest case scenario. This yields 
the following rate equation:

= − − .1 1

dy
dt

k x k y 	 (6.1)

To obtain an expression for the steady-state concentration of y in 
response to a constant concentration of the input x, we set the time 
derivative equal to zero:

= − −0 1 1k x k y 	 (6.2)

=
−

.1

1

y
k
k

xss 	 (6.3)

This shows that there is a simple linear relationship between the input 
(x) and the steady-state output (y), as depicted in Figure 6.1a, rather 
than the Michaelian relationship seen with the simplest models of 
stoichiometric regulation (Chapter 2, Eq. 2.8) and with mass action 
enzymatic regulation (Chapter 5, Eq. 5.4).
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An equation for the dynamical response (Figure 6.1b) is suggested 
by the rate–balance plot (Figure 6.1c). We define a new variable z[t] 
= y[t] − yss, which is a measure of how far y is from its steady-state 
value. The rate–balance plot shows that the rate at which the sys-

tem approaches the steady state, 
[ ]dz t

dt
, is linearly proportional to z[t] 

and opposite in sign (the rate opposes the displacement from steady 
state), which means that:

= −[ ] [ ]Dz t k z tapparent 	 (6.4)

In the case of our phosphorylation–dephosphorylation rate–balance 
plot (Figure 5.4), two factors contributed to the net rate back toward 
the steady state: a change in the forward reaction rate and a change 
in the back reaction rate. However, now only the back reaction rate 
changes when the system is pushed out of steady state; the forward 
reaction rate lines are flat (Figure 6.1c). Therefore, only one slope 
figures into the value of the apparent rate constant, the slope of the 
back reaction line:

= −1k kapparent .	 (6.5)

Therefore,

= − −[ ] [0] .1z t z e k t 	 (6.6)

And, in terms of y,

( )− = − − −[ ] [0] 1y t y y y ess ss
k t	 (6.7)

= − +− −− −[ ] [0]1 1y t y y e y ess ss
k t k t 	 (6.8)

( )= − +
−

− −− −[ ] 1 [0] .1

1

1 1y t
k x
k

e y ek t k t 	 (6.9)

The output exponentially approaches steady state, with a halftime 
that depends only on the speed of the reverse reaction:

=
−

Ln2
.1 2

1

t
k

	 (6.10)

This seems a little counterintuitive. Should not the system approach 
its steady state faster if the synthesis rate, which is determined by k1 
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and x, is faster? The answer is no, and we can see why from the time 
courses shown in Figure 6.2. We have assumed that y[0] = 0 and have 
calculated the time courses for x = 1 and x = 2, with the rate constants 
kept constant (k1 = k−1 = 1). Doubling x doubles the initial rate at which 
y approaches steady state, but, as seen in Eq. 6.3, it also doubles the 
final steady-state level of y. Thus, when x is bigger, y initially increases 
faster, but it has farther to go. The same is true if k1 rather than x is 
varied. Therefore the halftime does depend only on the k−1 term and 
is independent of k1 and x.

6.2 � THE STABILITY OF THE STEADY STATE CAN 
BE QUANTIFIED BY THE EXPONENT IN THE 
EXPONENTIAL APPROACH EQUATION

Suppose we have two signaling processes operating at steady state—
a phosphorylation–dephosphorylation reaction that activates 500 of 
a cell’s 1,000 molecules of y1 and a synthesis–destruction reaction 
that produces 500 molecules of active y2. Suppose also that the two 
reactions have the same flux, so that at steady state 500 molecules 
of y1 or y2 turns over every second. Now suppose that some fluctua-
tion transiently pushes both processes out of steady state, so that 
there are 600 active molecules of y1 and y2. Both systems will return 
toward their stable steady state, but the phosphorylation reaction 
will return faster than the synthesis reaction (Figure 6.3a). The rea-
son for this can be seen from the two rate–balance plots. In the 
phosphorylation reaction, when the system is pushed away from its 
steady state, the back reaction rate increases and the forward reac-
tion rate decreases, and both of these factors contribute (equally in 
this case) to the driving force that restores the system back toward 
its steady state (Figure 6.3b). However, in the synthesis reaction, 
only the back reaction changes when the system is out of steady 
state (Figure 6.3c). The driving force that restores the system back 
toward steady state is smaller, and so the return to steady state is 
slower. The steady state is still stable, but less stable, in some sense, 
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than the steady state was in the phosphorylation–dephosphoryla-
tion system.

The crux of the matter is that the forward reaction in the phosphoryla-
tion system not only produces an active y* molecule, it also consumes 
an activatable y molecule. The same is true for stoichiometric regula-
tion; the binding event both produces an active cxy complex, but also 
consumes an activatable free receptor (y) molecule. It is this target 
depletion that makes the forward reaction rate decrease with increas-
ing y* or cxy, and it is this decrease in the forward rate that makes the 
system return to steady state so fast.

To make the synthesis–destruction reaction return to steady state as 
quickly as the phosphorylation–dephosphorylation reaction does, one 
would have to double the phosphorylation and dephosphorylation 
rate constants, and thus double the flux through the system.

A simple way to assess whether a steady state is stable, and to quan-
tify how stable steady state is, is from the sign and the magnitude 
of the exponential factor in the time course equation (Eq. 6.6). If the 
exponential factor, usually designated λ, is negative, the steady state 
is stable, and the larger λ is in magnitude, the more stable the steady 
state is. For the phosphorylation system shown in Figure 6.3b, λ = −2, 
and for the synthesis reaction shown in Figure 6.3c, λ = −1. Thus, 
the steady state in the phosphorylation–dephosphorylation system is 
twice as stable, by this measure, as the steady state of a comparable 
synthesis–destruction system.

6.3 � SATURATING THE BACK REACTION 
BUILDS A THRESHOLD INTO THE  
STEADY-STATE RESPONSE

So far we have assumed that both the forward and the back reactions 
of our synthesis–destruction system are described by mass action 
kinetics. What if the back reaction was saturable and was running 
close to saturation? Would we get something akin to zero-order ultra-
sensitivity out of the system?

In this case, Eq. 6.1 would become:

= −
+− ,1 1

dy
dt

k x k
y

K yM

	 (6.11)

and the steady-state concentration of y as a function of the input x and 
the parameters would be:

=
−−

.
1

1

y
K x

k
k

x

M 	 (6.12)

Note that this equation implies that as x approaches a critical value, 

−1 1k k , the steady-state value of y increases without bound. This makes 
sense; if the synthesis rate (k1x) exceeds the maximum possible deg-
radation rate (k−1), the amount of y will blow up.

The steady-state response curves defined by Eq. 6.12 are shown in 
Figure 6.4 for = =− 11 1k k  and various assumed values of KM. When 
x is small, the response curves are not too different from the linear 
responses predicted by Eq. 6.3, but as x gets close to 1, the curves 
turn upward, and a tiny change in x results in a large change in y.  
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Thus, saturating the back reaction adds a threshold to the response, 
and the higher the saturation (the lower the KM value), the sharper the 
threshold. In terms of the local definition of ultrasensitivity discussed 

in Section 3.7 and defined in Eq. 3.57, =
ln
ln

S
d Output
d Input

, the response is 

highly ultrasensitive near the critical point.

6.4 � ZERO-ORDER DEGRADATION MAKES DRUG 
DOSING DICEY

The synthesis–degradation models we have been examining can also 
be applied to models of drug levels in patients treated with drugs. 
If the drug is administered by constant infusion or constant-release 
pills, the rate accumulation of the drug in the blood will be a linear 
function of the drug dosage, just as the production of second mes-
senger was assumed to be a linear function of the input stimulus. 
Likewise, the rate of elimination of the drug, by excretion and metab-
olism, corresponds to the degradation of a second messenger. If the 
elimination of the drug is first order in drug concentration—i.e., the 
kidney’s excretion capacity and the liver’s metabolic capacity are far 
from being maxed out—then Eq. 6.3 describes the blood level of the 
drug as a function of dose. If the dose is doubled, the steady-state 
blood concentration doubles too. This is the case for most drugs in 
clinical use.

But if the elimination of the drug is saturable and is close to saturation 
at therapeutic blood levels, then Eq. 6.12 applies, and this can spell 
trouble. A small change in the daily dose of one of these drugs can 
produce a big change in its blood concentration.

I used to tell the following story to our medical students to drive home 
the distinction between zero-order and first-order elimination. The 
story is not true (and I admitted as much to the students), but it could 
be—the basic facts are right—and it seemed to make the importance 
of degradation kinetics stick. Here goes:
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Our medical student, who has a knack for quantitative biology, sees a 
newly diagnosed patient with epilepsy in clinic. The patient has been 
treated with carbamazepine (trade name Tegretol) for two weeks and 
had a seizure yesterday. His carbamazepine blood concentration is 
measured, and it comes back right at the bottom of the therapeutic 
range; it needs to be boosted by 50%. Our medical student knows that 
carbamazepine is eliminated with first-order kinetics and decides to 
increase the dosage by 50%. One week later the patient returns to 
clinic. His carbamazepine level is smack in the middle of the thera-
peutic range, and he has not had any more seizures. The medical 
student is a hero. Everybody loves her.

The medical student’s intern, who does not have such a good grasp of 
quantitative biology, sees another newly diagnosed seizure patient 
in clinic the next day. This patient has been treated with a differ-
ent antiseizure drug, phenytoin (trade name Dilantin), and, wouldn’t 
you know it, he had a seizure the day before and his phenytoin lev-
els came back at the bottom of the therapeutic range (10 µg/mL). 
Phenytoin is one of those rare drugs whose elimination is close to 
saturation at therapeutic levels—a typical daily dose might be 300 mg 
and a typical maximum elimination rate might be only 400 mg per 
day. Nevertheless, the intern figures a 50% increase in dose should 
do it, because that worked for the medical student’s patient, and so 
the patient is sent home with a prescription for 450 mg phenytoin per 
day. Four days later the patient is brought to the emergency room 
by his partner with signs and symptoms of phenytoin intoxication—
unsteady gait, weakness, and drowsiness. His serum phenytoin 
concentration comes back at 42 µg/mL—way too high. The intern 
is a goat.

The attending physician draws Figure 6.5 to explain why a small 
change in phenytoin dosage can lead to big changes in the blood con-
centration of phenytoin, and she gently points out that since 450 mg of 
phenytoin is more than many patients can clear in a day, this patient 
would maybe eventually turn into a pillar of solid phenytoin if he had 
continued with taking a 450-mg dose for long enough.

The long and the short of it is, most drugs do not come close to satu-
rating the body’s elimination mechanisms, but a few do, and for those 
that do, small changes in dosing can result in big changes in steady-
state blood concentrations. Phenytoin is one such drug. The other two 
are drugs most of us have some experience with: aspirin and ethanol. 
For all of these drugs, one needs to be particularly cautious with the 
dosage.
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SUMMARY
For regulated production or destruction, the input–output relationship 
is simple; if the destruction is first order, then the steady-state con-
centration of the product is proportional to the input stimulus and the 

proportionality constant is simply 
−

1

1

k
k

. The system responds to a step-

change in input by exponentially approaching its new steady state 

with a halftime of  
−

Ln2

1k
; that is, the halftime is determined solely by the 

kinetics of the destruction reaction, which might seem counterintui-
tive but is true. If the destruction process is saturable rather than first 
order, then the steady-state response will have a threshold, and the 
system will blow up if the synthesis rate exceeds the maximal destruc-
tion rate.

Finally, we introduced a way for quantifying the stability of a sta-
ble steady state. For a system that exponentially approaches steady 
state, we simply look at the proportionality constant in the exponen-
tial term. If the system approaches (rather than being repelled by) the 
steady state, the constant (traditionally designated λ) will be negative, 
and the larger the magnitude of λ, the higher the stability of the steady 
state. We will return to this way of quantifying stability in Chapters 8 
and 9, when we will investigate the local stability of multiple steady 
states in bistable systems.
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7CASCADES AND 
AMPLIFICATION

INTRODUCTION
A few eukaryotic signaling systems are about as simple as prokaryotic 
two-component systems are (Figure 7.1a), with a receptor directly 
regulating one or two transcription factors. One such system medi-
ates cytokine signaling. Various cytokines and hormones, including 
growth hormone, the interferons, and tissue necrosis factor α (TNFα), 
function by binding to what are termed cytokine receptors and they 
thereby activate an associated Janus-family (Jak) tyrosine kinase. The 
active Jak protein then directly phosphorylates and activates STAT 
family transcription factors (Figure 7.1b). Another simple example 
is TGFβ signaling. TGFβ and its relatives function by binding to and 
activating a multimeric receptor serine/threonine kinase complex, 
which then phosphorylates and activates SMAD family transcription 
factors. Once again, the terminal effector, here the SMAD complex, is 
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regulated by a receptor without a long chain of intermediary signaling 
proteins (Figure 7.1c).

However, many eukaryotic signaling systems interpose at least a few 
intermediaries between the receptor and the terminal regulator. For 
example, as we saw in Chapter 1, there are six proteins between the 
epidermal growth factor receptor and the Ets family transcription 
factors: the Shc and/or Grb2 adaptors, the Sos guanine nucleotide 
exchange factor, the Ras protein, and the three sequential protein 
kinases of the evolutionarily ancient MAP kinase cascade (Figures 
1.3 and 1.4). This raises the question of what the advantages (and 
disadvantages) of signaling via so many intermediaries are. Here we 
begin by examining how a cascade like the MAP kinase cascade can 
function as an amplifier, turning small signals into large ones.

SIGNALING CASCADES AND TWO 
TYPES OF AMPLIFICATION

7.1 � CASCADES CAN DELIVER SIGNALS FASTER 
THAN SINGLE SIGNAL TRANSDUCERS

As a thought experiment, suppose that nature dispensed with the 
three-kinase cascade and instead had the first kinase—e.g., Raf in 
the Raf/MEK/ERK cascade—directly regulate some terminal effec-
tors. There would be a number of advantages to this stripped-down 
arrangement. Only one protein kinase would need to somehow be 
insulated from off-target upstream regulators and only one protein 
kinase would need to be prevented from regulating off-target down-
stream substrates. If every component in a cascade possesses some 
vulnerabilities, then the smaller the number of levels in the cascade, 
the fewer the vulnerabilities.

But there are potential advantages to the three-kinase system too; 
one such advantage is the speed with which it can regulate abundant 
terminal effectors. To see why this is so, suppose that in our hypo-
thetical one-kinase cascade, some modest concentration of active 
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Figure 7.1  Cytokine and TGFβ signaling, like two-component signaling in bacteria, directly link a kinase to a 
transcription factor. (a) Phosphate detection in E. coli. Phosphate is sensed by the PstACAB/PhoU receptor/transport complex, 
which brings about activation of the associated PhoR histidine kinase, which phosphorylates and activates the PhoB transcription 
factor. (b) TNFβ signaling in mammalian cells. TNFβ binds to the trimeric TNFβ receptor, which activates the associated Jak family 
tyrosine kinases, which phosphorylate and activate STAT family transcription factors. (c) TGFβ signaling in mammalian cells. TGFβ 
binds to a tetrameric receptor complex composed of type I and type II dimers. The type II dimer phosphorylates and activates 
the type I dimer, which phosphorylates SMAD proteins. The phosphorylated SMAD proteins form an active transcription factor 
complex with SMAD4.
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Raf—say 10 nM—must regulate substrates whose total concentration 
is 1,000-fold higher (10 µM). Furthermore, let us assume that the phos-
phatases acting on these substrates are low in activity compared to 
the fully active Raf protein, so that the phosphorylation reaction goes 
to completion as rapidly as possible. The maximum speed (kcat) of 
a protein kinase is typically about one phosphorylation reaction per 
molecule per second, and if Raf was functioning at this maximum 
speed, it would take 1,000 s, or about 17 min, for Raf to phosphorylate 
all of its substrate molecules (Figure 7.2a).

Next, let us consider the actual system, where Raf sits at the top of 
a three-kinase cascade. For simplicity, assume that each kinase in 
the cascade is regulated by a single phosphorylation. In the first 10 s, 
10 nM Raf operating at maximal velocity could activate 100 nM MEK. 
In the next 10 s, those activated MEK proteins could activate a total of 
1 µM ERK—less than 10 s, actually, since some of the MEK molecules 
will be active before the first 10 s is up. The active ERK could regulate 
10 µM substrate proteins in the next (less than) 10 s. Hence in less 
than 30 s the three-kinase cascade could accomplish what it would 
take 17 min for a single kinase to do (Figure 7.2b).

Of course you could imagine a system with 10 µM active Raf directly 
phosphorylating 10 µM substrate proteins. This would be a fast pro-
cess, but it just pushes back the problem upstream; there is not 
enough Ras to stoichiometrically activate that much Raf. And even 
if there was, it might take a long time for the super-abundant Ras to 
become activated.

These arguments assume constant rates of phosphorylation to make 
the calculations easy. What if we try a more realistic kinetic model, 
using realistic abundances and KM values? Let us assume again that 
the kcat values for all of the kinases are 1 s−1. Let us take the abun-
dance of active Raf again to be 10 nM and the abundances of MEK and 
ERK to each be 1 µM, which is the approximate concentration of these 
kinases in many vertebrate cell lines and tissues. Let us assume the KM 
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Figure 7.2  Magnitude amplification from a protein kinase cascade. (a) A single protein kinase could eventually 
phosphorylate even very abundant substrate proteins, but it would take some time. At a constant speed of 1 phosphorylation 
per kinase molecule per second, it would take ~17 min for 10 nM Raf to phosphorylate a 1000× excess of substrates. (b) A three-
kinase cascade can phosphorylate abundant substrates much faster. At a speed of 1 phosphorylation per kinase molecule per 
second, it would take the cascade less than 30 s to phosphorylate the same number of substrate molecules. (c) Time courses for 
substrate phosphorylation by a single kinase (blue) or a three-kinase cascade (red). Here the assumed abundances are Raf, 10 nM; 
MEK, 1,000 nM; and ERK, 1,000 nM. The assumed KM values for all three kinases are 500 nM and the assumed kcat values for all 
three kinases are 1 s−1. The inset highlights the first 5 s of the time course.
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values are all equal to 500 nM, which is in line with the admittedly lim-
ited in vitro kinetics data available for the pathway, so that the kinases 
are somewhat but not completely saturated by their substrates, and let 
us again assume that the dephosphorylation reactions are insignificant 
compared to the phosphorylation reactions, so that all of the phospho-
rylation reactions will go to completion as quickly as possible. Under 
these assumptions, the single kinase system takes a little longer to 
phosphorylate its 10 µM substrates—about 1,200 s, or 20 min, for the 
phosphorylation to reach 99% of completion (Figure 7.2c, blue curve, 
compared to Figure 7.2a). Again, the three-kinase cascade is much 
quicker, now taking about 28 s to reach 99% of completion (Figure 4.2c, 
red curve). From the inset to the graph in Figure 7.2c, one can see that 
the single kinase system is actually faster than the three-kinase cas-
cade for the first 3 s or so (Figure 7.2c)—interposing additional kinases 
adds a time lag to the process. However, very quickly the three-kinase 
system outpaces the one-kinase system.

Note that with a single kinase in the cascade, substrate phosphoryla-
tion initially increases linearly with respect to time (Figure 7.2c). If 
there were two comparably slow kinases, the substrate phospho-
rylation would increase like time squared, and for the three-kinase 
case shown here, substrate phosphorylation is initially proportional 
to t3 (Figure 7.2c). Just as we found for multisite phosphorylation 
(Chapter 5), the initial polynomial order of a cascade-mediated signal 
transduction process provides an estimate of how many slow, rate-
determining steps connect the input to the output.

The phenomenon demonstrated here, where a cascade of signaling 
molecules quickly converts a small signal at the top of the cascade 
into a large signal at the bottom, is termed magnitude amplifica-
tion. Note though that it is not the case that a single kinase could not 
produce just as large of a signal; it is just that it would take longer to 
do so.

There are a number of striking examples of magnitude amplification 
in cell signaling—for instance, signal transduction in the vertebrate 
retina. A single photon activates one molecule of rhodopsin, which 
activates hundreds of molecules of the G-protein transducin. Each 
active transducin molecule can stoichiometrically activate a phos-
phodiesterase molecule, and the active phosphodiesterase can cleave 
up to 4,200 cGMP molecules per second. Finally, the cGMP mole-
cules bind to a multimeric cation channel, whose activity is a highly 
ultrasensitive function of the cGMP concentration. All told, the ampli-
fication achieved is estimated to be a few hundred thousand-fold. The 
activation of T cells, which can be initiated by the binding of a few 
peptides to T-cell receptors, is another good example of magnitude 
amplification.

In the MAPK cascade, the current evidence is that the Raf and Mos 
MAPKKKs are relatively scarce—in HeLa cells, the B-Raf and C-Raf 
proteins together are ~50 nM and in Xenopus oocytes the Mos pro-
tein is ~5–10 nM—whereas the MEK and ERK proteins are relatively 
abundant (nearly micromolar for both). In both systems, physiologi-
cal stimuli result in the activation of most of the MEK and ERK. This 
means that there is at least 20-fold magnitude amplification at the 
MAPKKK-to-MAPKK step. However, there is probably little, if any, 
magnitude amplification at the MAPKK-to-MAPK step. Thus overall 
the magnitude amplification achieved by the MAPK cascade appears 
to be pretty modest.

But magnitude amplification is not the only useful systems-level behavior  
that can be accomplished by a cascade of signaling proteins; a cascade 
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can also generate what is termed sensitivity amplification, convert-
ing slightly ultrasensitive responses into highly ultrasensitive ones. 
However, before we discuss sensitivity amplification, we will examine 
how signals can, in principle, be severely degraded when they propa-
gate down a cascade.

7.2 � A CASCADE OF MICHAELIAN RESPONSES 
LEADS TO SIGNAL DEGRADATION

So far we have been discussing the speed of signaling down a cascade; 
here we will turn to the steady-state response, taking both the phos-
phorylation reactions and dephosphorylation reactions into account.

Let us suppose again that active Raf, at the top of the cascade, relays 
signals to MEK, and then ERK, and then on to some terminal effec-
tors like transcription factors. Typically the transcription factors act 
on a time scale of tens of minutes, so there should be enough time for 
the phosphorylation–dephosphorylation reactions to approach their 
steady states.

MEK and ERK are both activated through the phosphorylation of two 
sites that reside in the kinases’ activation loops. From Chapter 5, we 
would expect that the steady-state responses of MEK to Raf and ERK 
to MEK should be something between a Michaelian response and a 
Hill response with a Hill exponent of 2. For now, though, let us assume 
that they are both Michaelian responses, for simplicity (Figure 7.3a).

The fraction of the MEK that is activated (MEK*) as a function of the 
fraction of Raf that is activated (Raf*) would therefore be:

*
*

*1

MEK
Raf

K Rafss( ) =
+

.	 (7.1)

The fraction of the ERK that is activated (ERK*) as a function of MEK* is:

*
*

*2

ERK
MEK

K MEKss( ) =
+

.	 (7.2)

Likewise, if the response of an ERK substrate is Michaelian, the frac-
tion activated at steady state will be:

*
*

*3

Substrate
ERK

K ERKss( ) =
+

.	 (7.3)

We can combine these three equations and eliminate two of the varia-
bles (MEK* and ERK*) to obtain an expression for substrate activation 
as a function of Raf*:

*
1

1
*

1
*3 2 3 1 2 3

3 2 3

Substrate
K K K

Raf
K K K
K K K

Raf
ss( ) =

+ +
+ +

+
.	 (7.4)

We can simplify this equation a bit by letting:

*
1

1 3 2 3

Substrate
K K Kmax =

+ +
	 (7.5)

and

=
+ +

50
1

.1 2 3

3 2 3

EC
K K K
K K K

	 (7.6)
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Plugging these definitions into Eq. 7.4 yields:

* *
*

50 *
Substrate Substrate

Raf
EC Rafss max( ) =

+ 	 (7.7)

Equation 7.7 shows that the steady-state response of a cascade whose 
individual levels exhibit Michaelian responses is Michaelian, although 

the maximum response is less than 100% since 
+ +

<
1

1
1

3 2 3K K K
. The 

EC50 for this Michaelian response (Eq. 7.6) is no greater than the  
product of the three K values.

To get a better idea of what this would mean for signal propagation 
down the cascade, we can look at the steady-state responses at each 
level. First, consider the response of MEK to some change in Raf activ-
ity. We could assume that the system steps up from zero input (Raf* = 0) 
to some constant level of input, but instead let us assume something 
more realistic—that the net level of Raf activity goes from some small 
but non-zero level to a higher level. The initial level of Raf activity 
could be due either to some small amount of active Raf even when 
there is no upstream input or to “inactive” Raf having some small but 
non-zero level of activity. Let us say that a signal impinging upon the 
system causes the Raf activity to increase 9-fold (where this number 
is chosen in part because the resulting arithmetic is fairly simple). 
The resulting change in the steady-state activities of the downstream 
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Figure 7.3  Signal degradation on a Michaelian protein kinase cascade. (a) Schematic view of the cascade. (b) Responses 
of each level to its immediate upstream activator. In all cases the input stimulus, on the x-axis, is expressed in multiples of the 
corresponding K value. The input to each level is geometrically centered on the K value so as to maximize the resulting change in 
output. For example, Raf* goes from 3-fold below the K value to 3-fold above it, so that MEK activity increases from 0.25 to 0.75 
(Δ = 0.5). (c) Overall the cascade compresses a 9-fold change in input into a ~32% (1.3-fold) change in substrate activation.
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components—MEK, ERK, and ERK’s substrates—can be regarded as 
the amplitude of the signal as it passes down the cascade, and this 
amplitude can be expressed in either absolute terms (numbers or con-
centrations of active molecules) or in fold-change terms (the ratio of 
the stimulated activity to the basal activity).

The change in the response of MEK to this 9-fold change in Raf* will 
depend on how the initial and final values of Raf* compare to K1, the 
EC50 value for the Michaelian response. If we want to maximize the 
change in MEK in absolute terms (MEK*[∞] – MEK*[0]), it turns out 
we need to choose the initial value of Raf* to be 3-fold below K1 and 
the final value of Raf* to be 3-fold above it. That is, we geometri-
cally center the initial and final Raf activities about the K value. From 

Eq. 4.1, when =*
1
3 1Raf K , the steady-state value of MEK* will be:

*

1
3

1
3

1
4

.
1

1 1

MEK
K

K K
ss( ) =

+
= 	 (7.8)

Likewise, when =* 3 1Raf K :

*
3

3
3
4

.1

1 1

MEK
K

K Kss( ) =
+

= 	 (7.9)

Thus, the 9-fold change in Raf activity has been squashed into a 3-fold 
change in MEK*. This is shown in Figure 7.3b.

If we feed this 3-fold change in MEK* into Eq. 7.2, we get the largest 
change in ERK* if we choose K2 to be 3-fold above the initial value of 

MEK* (1/4) and 3-fold below the final value (3/4); this means =
3

42K .  

This results in a basal ERK* value of 
+
1

1 3
 and a final ERK* value of 

+
3

3 3
. The 9-fold change in Raf activity is now down to a meager  

3-fold change in ERK* (Figure 7.3b).

If we feed this optimally into Eq. 4.3, the 3-fold change in ERK* yields 
a 34 -fold change in the steady-state value of Substrate*. All in all, our 
9-fold change in Raf activity has been whittled down to about a 32% 
change in substrate activation (Figure 7.3c). The fold-change ampli-
tude of a signal becomes severely degraded after even a few levels of 
propagation down a Michaelian signaling cascade. The floor of the 
response gets higher, and the ceiling of the response gets lower. This 
seems like a big problem.

7.3 � FOLD-SENSITIVITY DECREASES AS A SIGNAL 
DESCENDS A CASCADE OF MICHAELIAN 
RESPONSES

One way to see why this phenomenon happens is to consider the 
sensitivity function for a Michaelian response. As defined in Chapter 
5, the local sensitivity is given by:

= ,S
dOutput
dInput

Input
Output

	 (7.10)

or, equivalently:

=
ln
ln

,S
d Output
d Input

	 (7.11)
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which emphasizes that the sensitivity represents the slope of the 
input/output curve plotted on a log–log plot.

For a Michaelian response, Eq. 7.10 becomes:

=
+

.S
K

K Input
	 (7.12)

This sensitivity function S is a maximum of 1 when Input is zero (i.e. the 
response is at most a first-order function of Input) and approaches zero 
when Input approaches infinity. For intermediate values of Input, 0 < S < 1.

Now, by the chain rule, the sensitivity for the whole signaling cascade 
is equal to the product of the sensitivities of the individual levels:

ln *
ln *

S
d Substrate

d Raf
= 	 (7.13)

ln *
ln *

ln *
ln *

ln *
ln *

S
d Substrate

d ERK
d ERK
d MEK

d MEK
d Raf

=
















 .	 (7.14)

Each multiplicative term in Eq. 7.14 is less than 1, no matter what 
the value of the input Raf*, so each level of the cascade decreases 
the value of S and makes the response less switch-like. Even if the 
amount of signal goes up as the cascade is descended (magnitude 
amplification), the fold-change sensitivity of the response goes down.

This decrease can be partially mitigated by using the low end of the 
Michaelian response curve, where the response is closest to first 
order, rather than the middle of the curve. For example, if instead of 
geometrically centering the inputs above and below the EC50 values 
for each level (which maximizes the change in response), as we did in 
Figure 7.3, suppose we start with the basal Raf activity at 1/9 of K1 and 
the final Raf activity equal to K1 (Figure 7.4). Then the output (MEK*) 
would rise from 1/10 to 1/2. This is a smaller absolute increase in 
MEK* than we obtained in Figure 4.3b (0.40 vs. 0.80), but it is a larger 
fold-change (5-fold vs. 3-fold) (Figure 4.4b). If we feed this change in 
MEK* into ERK* the same way, ERK* changes from 1/6 to 1/2 (0.33), 
an increase of 3-fold. If we feed ERK* into Substrate*, Substrate* will 
change from 1/4 to 1/2 (0.25), an increase of 2-fold. So the response  
has still become less switch-like—a 9-fold change in Raf* translates to 
a 2-fold change in Substrate*—but not to the extent it did in Figure 7.3.

This improvement has come at a cost. We had to assume that nature 
uses only the lower halves of the cascade’s Michaelian response 
curves, so the cell is effectively carrying around a 2-fold excess of 
each of the kinases. In addition, since we are not activating as many 
signaling molecules as we might at each step of the cascade, we are 
slowing down signal propagation. Nevertheless, we have substan-
tially decreased the degradation of the signal, which is a plus.

But we can do better than this.

7.4 � ULTRASENSITIVITY CAN RESTORE OR 
INCREASE THE DECISIVENESS OF A SIGNAL

So far we have assumed that each level of the cascade exhibits a 
Michaelian response. But both MEK and ERK are activated through 
the phosphorylation of two sites, and, as we saw in Chapter 5, that 
can result in an ultrasensitive steady-state response. In particular, if 
there is strong positive cooperativity in the phosphorylation/dephos-
phorylation reactions—i.e., the first phosphorylation promotes the 
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second or the first dephosphorylation promotes the second—then the 
steady-state response can approach a Hill function with a Hill expo-
nent of 2. What happens if we stack n = 2 responses one on top of 
another in a signaling cascade?

We can approach this question algebraically. Suppose we now have 
the following equations for the individual steady-state responses:

*
*

*

2

1
2 2MEK

Raf

K Rafss( ) ( )
( )

=
+

	 (7.15)

*
*

*

2

2
2 2ERK

MEK

K MEKss( ) ( )
( )

=
+

	 (7.16)

*
*

*

2

3
2 2Substrate

ERK

K ERKss( ) ( )
( )

=
+

.	 (7.17)

We can combine these three equations to obtain an expression for the 
fraction of the substrate activated as a function of Raf*. The result is 
complicated:
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Figure 7.4  Signal degradation can be partially mitigated by using only the lower half of the Michaelian response 
curve. (a) Schematic view of the cascade. (b) Responses of each level to its immediate upstream activator. In all cases the input 
stimulus, on the x-axis, is expressed in multiples of the corresponding K value. The input is assumed to never exceed the K value. 
Thus, Raf* goes from 9-fold below the K value to the K value. (c) Overall the cascade still compresses the response, but not as 
much as in Figure 7.3; a 9-fold change in input becomes a 2-fold change in substrate activation.
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However, complicated or not, one thing is clear—for small values of 
Raf*, the response (Substrate*)ss is no longer a linear function of Raf*, 
as it was with a cascade of Michaelian signaling responses; it is now 
8th-order in Raf*, a hugely nonlinear response that would start out 
nearly flat and then explode upward as the stimulus increases. With 
this high degree of nonlinearity, perhaps we can not only maintain the 
fold-change difference between input and output but even increase it.

Let us examine how a 9-fold increase in active Raf would propagate 
down a cascade built out of n = 2 responses. As was the case with 
a Michaelian cascade, the maximum amount of activation of MEK* 
will be achieved if we arrange the initial and final values of Raf* to 
be 3-fold below and 3-fold above K1. From Eq. 7.13, the initial steady-
state value of MEK* will be:

*

1
3

1
3

1
10

.
1

2

1
2

1

2MEK
K

K K
ss( ) =


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
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+ 





= 	 (7.16)

Likewise, the final steady-state value of MEK* will be:
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2MEK
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K Kss( ) ( )
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=
+

= 	 (7.17)

Thus, the 9-fold change in Raf* has yielded a 9-fold change in MEK*. 
The fold-change in the signal has neither decreased nor increased; 
it has been transmitted with perfect fidelity. The same would be true 
for any fold-change in Raf*, provided it is geometrically centered on 
K1, and the same is true for the subsequent levels of the cascade, as 
shown in Figure 7.5. Thus, our cascade with n = 2 responses at each 
level has preserved the fold-change amplitude of the input signal.

In addition, the overall response curve has become more switch-like 
(Figure 7.5c). Maximal substrate activation in the presence of infinite 
Raf* turns out to be ~90.3%; to get from 10% of this maximum out-
put (0.10 × 0.903) to 90% of the maximum output (0.90 × 0.903), Raf* 
must go from ~0.33 units to ~0.80 units. From Eq. 3.53, this corre-
sponds to an effective Hill exponent of 5.0, a pretty big number as Hill 
exponents go.

What would happen if we were to use only the first half of the response 

range, starting with an input Raf* that increases from 
1
9 1K  to K1? In this 

case, MEK* would change from a basal level of 
1

82
 to 

1
2

, which is a 

41-fold change (Figure 7.6b). If this 41-fold change in y is fed into the  
next level of the cascade the same way, ERK* turns out to change by 
841-fold (Figure 7.6b). And if this change is fed into the next level, 
the fold-change in substrate activity is a whopping 353,641-fold 
(Figure  7.6b). The basal input to the cascade is almost completely 
suppressed, and the overall response is highly switch-like, with an 
effective Hill exponent of 3.7 (Figure 7.6c).

One way to understand why the fold-change of the signal increases 
is to examine the sensitivity functions. When we assumed the cas-
cade was composed of Michaelian responses (above), the sensitivity 
function for each level were always less than 1, irrespective of the 
input stimulus, and so they combined multiplicatively to be an even 
smaller number. But here we have assumed the individual steady-
state responses are Hill functions with n = 2. From Eq. 4.10, the local 
sensitivity is now:
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=
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2
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2 2S
K

K Input
	 (7.19)

Equation 7.19 is an inhibitory Hill function multiplied by a factor of 
2, and it is plotted in Figure 7.7b (the right-most blue curve). The 
sensitivity S starts at a maximum of 2 and then approaches 0 as the 
input increases. S turns out to be greater than 1 as long as the input 
is lower than K, i.e., over the lower half of the response. So if we con-
fine ourselves to the lower half of the response range, the individual 
sensitivities are all greater than 1, and the overall sensitivity, which 
is the product of the individual sensitivities (Eq. 7.14), will be greater 
than any of the individual sensitivities. The multiplicative nature of 
the sensitivity function made it so that responses lost their oomph on 
a Michaelian cascade, but now the same multiplicative nature makes 
it so that the slightly ultrasensitive responses become more and more 
switch-like as the cascade is descended. This phenomenon is termed 
sensitivity amplification.
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Figure 7.5  The fold-change amplitude of the response is preserved by an ultrasensitive protein kinase cascade.  
(a) Schematic view of the cascade. (b) Responses of each level to its immediate upstream activator. Each level’s steady-state 
response is assumed to be given by a Hill function with a Hill exponent of 2. In all cases the input stimulus, on the x-axis, is 
expressed in multiples of the K value, and the range of input stimuli is geometrically centered on the K value to maximize the 
change in output. For example, Raf* goes from 3-fold below the K value to 3-fold above it, and MEK activity increases from 0.1 to 
0.9 (a change of 0.8 units and a fold-change of 9-fold). (c) Overall the fold-change in the output is equal to the fold-change in the 
input. The effective Hill exponent for the overall response is n = ~5.
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Figure 7.6  Sensitivity amplification by an ultrasensitive protein kinase cascade. (a) Schematic view of the cascade. 
(b) Responses of each level to its immediate upstream activator. Each level’s steady-state response is assumed to be given by a Hill 
function with a Hill exponent of 2. In all cases the input stimulus, on the x-axis, is expressed in multiples of the corresponding K 
value. The input is assumed to never exceed the K value. Thus, Raf* goes from 9-fold below the K value to the K value and MEK* 
increases from 1/81 to 1/2—a 41-fold increase. (c) Overall the 9-fold change in input results in a huge 353,641-fold change in the 
cascade’s output, and the effective Hill exponent for the response is n = ~3.7.
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So far we have examined two specific cases: a cascade composed 
of Michaelian responses and one composed of n = 2 Hill equation 
responses. From the model developed in Chapter 5 for activation by 
distributive phosphorylation of two sites, we know that the response 
can be intermediate between these two extremes. From Eq. 5.24, the 
steady-state response for activation by the ordered, distributive phos-
phorylation of two sites is:

y
y

x
K K K x xtot ss





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=
+ +

*
,

2

1 2 2
2 	 (7.20)

where K1 is the ratio of the rate constants for the first phosphoryla-
tion–dephosphorylation reaction and K2 is the ratio for the second, so 
that if K1 > K2 there is positive cooperativity in the dual phosphoryla-
tion, and if K1 < K2 there is negative cooperativity. It follows that the 
sensitivity function is:
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When the input is very small, this function approaches 2; when the 
input is large it approaches 0.

Figure 7-7 shows responses and sensitivities for two-site phos-
phorylation–dephosphorylation systems with different degrees of 
cooperativity (K1/K2 ratios). In each case we have fixed the K1/K2 ratio 
and then chosen individual values of K1 and K2 so that the EC50 = 1. 
In the extreme case where the ratio approaches infinity—i.e., very 
high positive cooperativity—the sensitivity is greater than one until 
the input exceeds the EC50—just as we saw for an n = 2 Hill function. 
For the noncooperative case, the sensitivity is greater than 1 until the 
input exceeds about 0.62*EC50 (the EC50 divided by the Golden Ratio). 
In the presence of very strong negative cooperativity, the range of 
inputs that yield sensitivities greater than 1 gets smaller and smaller. 
Thus, two-site phosphorylation can yield local sensitivities greater 
than 1, and the more cooperative the two-site phosphorylation, the 
greater the range of inputs that produce these sensitivity-amplifying 
S > 1 sensitivities.

At this point we have only considered a cascade composed of dual 
phosphorylation activation mechanisms, like the MAPK cascade, 
where the individual levels will have steady-state responses that are 
somewhere between Michaelian responses and n = 2 Hill equation 
responses. If the individual levels generate even higher degrees of 
ultrasensitivity, either through additional phosphorylations or some 
other mechanism, such as zero-order ultrasensitivity or stoichio-
metric inhibitors, the cascade could generate even more switch-like 
outputs.

7.5 � IN XENOPUS OOCYTE EXTRACTS, 
RESPONSES GET MORE ULTRASENSITIVE AS 
THE MAPK CASCADE IS DESCENDED

So does sensitivity amplification actually occur in signaling cascades? 
As usual, there is little experimental evidence on this point, but in 
at least one system—Xenopus laevis oocyte extracts, a good system 
for quantitative biology studies—sensitivity amplification is known 
to occur. We will discuss oocyte maturation and oocyte signaling 
in more detail in Chapter 8. It suffices for now to note that oocytes 
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possess a MAP kinase cascade consisting of the Mos oncoprotein (a 
MAP kinase kinase kinase), a MAP kinase kinase (mainly MEK1), and 
a MAP kinase (mainly ERK2). Activation of the cascade is driven by 
synthesis of Mos, which is absent from immature oocytes.

Cell-free extracts from immature oocytes, like the oocytes them-
selves, are devoid of Mos and have inactive MEK1 and ERK2. 
Various concentrations of purified recombinant Mos can be added 
to these extracts, and the steady-state responses of MEK1 and ERK2 
can be assessed. The results are shown in Figure 7.8. The response 
of MEK1 to Mos is slightly ultrasensitive, and the response of ERK2 
to Mos is quite markedly ultrasensitive, with an apparent Hill expo-
nent of about 5. Thus, responses become more switch-like as the 
cascade is descended, as the theory we developed in Section 7.4 
says it might.

SUMMARY
In Chapters 2–6 we examined the steady-state and dynamical behav-
iors of the simplest signaling systems. Here we have turned our 
attention to something a bit more complicated—a linear cascade of 
signaling proteins. Signaling cascades are reasonably common in 
eukaryotes, and so we have asked what a cascade might be able to 
do that a single signaling protein could not.

We showed that signaling cascades can act as two types of amplifiers. 
First, they can be magnitude amplifiers, meaning that a small number 
of active upstream signaling molecules are converted into a larger 
downstream response than a single-tiered system would be able to 
generate in the same amount of time. Magnitude amplification allows 
the retina to detect small numbers of photons and the immune system 
to detect small numbers of peptide antigens.

The second phenomenon is termed sensitivity amplification. If each 
level in a cascade generates a slightly ultrasensitive response, the 
overall response can be highly ultrasensitive. This occurs because 
sensitivities combine multiplicatively. But just as ultrasensitive 
responses become more ultrasensitive as a cascade is descended, 
graded responses become more graded, a potential problem in signal 
transduction.
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Figure 7.8  Responses get more switch-like as the MAPK cascade is 
descended. These experimental data are for the steady-state responses of MEK 
and ERK to different concentrations of purified Mos in Xenopus oocyte extracts. 
(Adapted from Ferrell and Ha, Trends Biochem Sci. 2014, and Huang and Ferrell, 
Proc Natl Acad Sci USA. 1996.)
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In the last two chapters we showed how a simple signaling system can 
generate an ultrasensitive response and how a cascade can amplify 
the ultrasensitivity. The end result could approach a step function, 
with the system behaving like a doorbell buzzer (Figure 8.1a). Press 
the doorbell a tiny bit and nothing happens; press it a little harder and 
the buzzer buzzes at maximal volume; release the button and the 
buzzing stops. A doorbell buzzer is an all-or-none, reversible, mon-
ostable switch.

Another kind of switch, which is common in everyday life and in cell 
signaling, is the toggle switch (Figure 8.1b). Like a doorbell, a tog-
gle switch turns on in an all-or-none fashion, but unlike a doorbell, 
the response is irreversible; once you have flipped the switch, it stays 
on indefinitely. A toggle switch is an all-or-none, irreversible, bistable 
system.

Here we will examine how bistability, with either irreversibility 
or hysteresis (a less-extreme variation on irreversibility), can be 
generated by a cell signaling system. Bistable switches are found 
in a variety of biological contexts: the lysis-lysogeny decision in 
phage-infected bacteria, the induction of the metabolic enzyme 
β-galactosidase in E. coli, and the G1/S and G2/M cell cycle transi-
tions in diverse eukaryotic cells. Bistability also probably underpins 
apoptotic cell death and memory in the brain. But the archetypal 
example of biological bistability is cell fate induction, and that is 
what we will start with here.

8.1  �CELL FATE INDUCTION IS TYPICALLY 
ALL-OR-NONE AND IRREVERSIBLE IN 
CHARACTER

If you treat a dish of pluripotent stem cells with a cocktail of 
myogenesis factors and wait long enough, many of the cells will 
differentiate into myocytes (Figure 8.2). This differentiation is all-
or-none in character—a cell either differentiates or it does not. Once 
a cell commits to differentiating, it will continue to differentiate and 
remain differentiated even if the myogenesis factors are washed 
away. The same is true for fat cell differentiation, for neuronal dif-
ferentiation, and for many other examples of cell fate determination 
in culture, and it is true for differentiation in a developing animal. 
Thus the biology of differentiation is characteristically all-or-none 
and irreversible.1

Cell differentiation is typically driven by the activation of some cell 
surface receptor. As we saw in Chapter 2, the activity of a monomeric 
receptor is often a Michaelian function of the concentration of the 
ligand, and if the receptor is oligomeric the response may be ultrasen-
sitive. But unless the ultrasensitivity is extreme, it should be possible to 
end up with one receptor molecule activated, or two, or three, and so 
one might expect an almost continuously graded array of outcomes to 
be possible. Yet the biology driven by these activated receptors is gen-
erally all-or-none. Likewise, receptor activation should be reversible; 

1	 Note that although differentiation is normally irreversible, differentiated cells can be 
engineered to revert to an undifferentiated, pluripotent state. Shinya Yamanaka was awarded 
the 2012 Nobel Prize in Physiology or Medicine for his work on the production of pluripotent 
stem cells from differentiated cells in culture. Likewise, if the nucleus of a differentiated frog 
cell is transferred into an unfertilized, enucleated egg, it is possible to obtain a viable tadpole 
with a full complement of cell types. For this dramatic demonstration of de-differentiation, 
John Gurdon shared the 2012 Nobel Prize with Yamanaka.

(a) (b)

Figure 8.1  Two types of switches. (a) 
A doorbell switch. (b) A toggle switch.
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wash away the ligand and the receptor quickly becomes inactivated. 
Yet the biology driven by receptor activation is typically irreversible. 
How does graded, reversible receptor activation get transformed into 
an all-or-none, irreversible response?

The answer, we think, is that in these cases, the system of signaling 
proteins and transcription factors downstream of the receptor includes 
positive feedback loops, and these loops function as a bistable toggle 
switch. In this chapter we will explore how positive feedback can gen-
erate bistability.

XENOPUS OOCYTE MATURATION

8.2  �XENOPUS OOCYTE MATURATION IS AN 
ALL-OR-NONE, IRREVERSIBLE PROCESS

One particularly well-studied cell fate switch, which we will examine 
here in detail, is Xenopus laevis oocyte maturation (Figure 8.3a). 
Immature Xenopus oocytes are gargantuan cells, about 1.2 mm in 
diameter, and they are arrested in the equivalent of G2 phase of the 
cell cycle. This can be regarded as the default fate of the oocyte, and 
the oocyte can remain in this state for months in the frog’s ovary.

In response to environmental cues, the frog’s pituitary gland releases 
gonadotropins that induce the secretion of the steroid hormone pro-
gesterone by epithelial cells that surround each oocyte. Progesterone 
acts on the oocyte through nontraditional, plasma membrane-
associated progesterone receptors, initiating the signal transduction 
process that allows the oocyte to be released from its G2-phase arrest 
and undergo maturation.

This signal transduction begins with a drop in cAMP levels, activa-
tion of the protein kinase Aurora A, and then an increase in Mos 
translation and decrease in its degradation. Mos sits at the top of 
a MAP kinase cascade—it is a MAP kinase kinase kinase—and its 
accumulation brings about the phosphorylation and activation of 
MEK1, which phosphorylates and activates ERK2, the MAP kinase. 
ERK2 activation is critical for oocyte maturation. Blocking ERK2 
activation blocks progesterone-induced maturation, and activating 
ERK2 artificially induces maturation in the absence of progesterone 
(Figure 8.4).

Activation of the MAPK cascade ultimately results in activation of 
cyclin B-Cdk1. Cyclin B-Cdk1 is the universal trigger of M-phase 
and, when active, it phosphorylates hundreds of substrate proteins. 
These phosphorylations result in the migration of the oocyte’s huge 
nucleus (traditionally called the germinal vesicle—its relationship 
to the normal-sized nuclei present in somatic cells was not initially 
clear) to the animal pole of the cell, which results in the displace-
ment of pigment granules and the appearance of a characteristic 

Myogenesis
cocktail

HGF
IGF-1
FGF-2

Stem cell Myocyte

Figure 8.2  Differentiation of a 
stem cell into a myocyte. A variety 
of differentiation protocols have been 
devised, typically including growth 
factors and signaling inhibitors, that can 
convert embryonic stem cells or induced 
pluripotent stem cells into myocytes and 
ultimately mature myofibrils. Key steps in 
the cell fate induction process are all-or-
none and irreversible in character.

Progesterone

Immature oocyte Mature oocyte

(a) (b) Figure 8.3  Xenopus oocyte 
maturation. (a) A female Xenopus 
laevis frog. The photograph is by Brian 
Gratwicke, and was downloaded from 
Wikipedia. (b) The appearance of an 
oocyte before and after progesterone-
induced maturation. Photos by Tony Tsai.
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white dot (Figure 8.3b). At about the same time, the nuclear enve-
lope of the germinal vesicle breaks down. Next there is a dip in 
Cdk1 activity, which triggers the first meiotic division and the expul-
sion of the first polar body, which contains half of the homologous 
chromosomes. Cdk1 activity promptly rises back to M-phase lev-
els, and the second meiotic spindle is organized. The oocyte then 
arrests in metaphase of meiosis II with high Cdk1 activity. At this 
point the oocyte is said to be mature. This whole process typically 
takes around 10 h.

The metaphase II-arrested state can be thought of as the induced fate 
of the oocyte, and, like the default state, it is stable. The mature oocyte 
can stay arrested in meiosis II for at least a day or so, whereupon 
it will either be ovulated and fertilized, and proceed with the rapid 
embryonic cell cycles, or it will die an apoptotic death.

The details of oocyte maturation vary from species to species—for 
example, mature oocytes are not always arrested in metaphase of 
meiosis II, and ERK2 activation is not always required for maturation. 
But there are recurring themes, including the all-or-none, irreversible 
character of the process, and Xenopus oocyte maturation is probably 
the best-understood example of oocyte maturation. Thus Xenopus 
oocytes have become the standard to which others, including human 
oocytes, are compared.

8.3  �THE RESPONSE OF ERK2 IS ALL-OR-NONE 
IN CHARACTER

At what point along the pathway from the progesterone receptor to 
Cdk1 activation does the signal become all-or-none and irrevers-
ible? When pools of oocytes are examined, the ERK2 response to 
graded doses of progesterone is graded (Figure 8.5a). But this could 
mean either of two things: it could be that each individual oocyte 
has a graded response, or, alternatively, the individual oocytes 
could be exhibiting all-or-none responses, with some heterogene-
ity in the concentration of progesterone required to flip the switch  
(Figure 8.5b). These two possibilities can be distinguished by single-
cell biochemical analysis, which, because oocytes are large enough 
to be picked up with a pipette and individually lysed, and contain 
enough protein for standard immunoblots and kinase assays, is not 
particularly difficult. As shown in Figure 8.5c, when a dish of oocytes 
is treated with a low dose of progesterone, each individual oocyte 
phosphorylates its ERK2 either fully, shifting up to a higher appar-
ent molecular weight on an immunoblot, or not at all. Even though 
an oocyte contains about 180,000,000,000 ERK2 molecules, so that 
there is the potential for an almost infinitely-graded range of ERK2 
activity, somehow the ERK2 molecules act not just individually, but 
also collectively, like a switch.

The all-or-none response to progesterone could, in principle, be 
generated upstream of the MAPK cascade and simply relayed by the 
cascade or it could be generated by the MAPK cascade itself. If the 
former is true, then an injection of recombinant Mos in the absence 
of progesterone should yield a graded ERK2 response; if the latter, 
the response should still be all-or-none. Experiments showed that, 
indeed, the response is still all-or-none (Figure 8.5c). Evidently in 
oocytes the Mos-MEK-ERK cascade can turn a graded stimulus into 
an all-or-none response.
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Figure 8.4  The MAPK cascade and 
its role in activating Cdk1 during 
Xenopus oocyte maturation.
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8.4  �THERE IS POSITIVE FEEDBACK IN THE 
OOCYTE’S MAPK CASCADE

The depiction of the MAPK cascade in Figure 8.4 is actually not com-
plete. It turns out that Mos does activate ERK2 (via MEK), but also 
ERK2 stimulates Mos production. This constitutes a positive feedback 
loop. Moreover, compromising the feedback from ERK2 to Mos, either 
by blocking protein synthesis altogether or by selectively blocking 
Mos translation with an antisense morpholino oligonucleotide, which 
binds to the Mos mRNA and inhibits its translation, converts the 
response from all-or-none to more graded in character (Figure 8.5c).  
Thus, positive feedback is critical for the all-or-none response.

8.5  �THE RESPONSE OF ERK2 TO 
PROGESTERONE IS NORMALLY 
IRREVERSIBLE

After a frog ovulates and releases an egg (which is a mature oocyte 
plus a coat of jelly that it acquires during ovulation) into the pond, one 
would expect that the progesterone that induced the maturation pro-
cess would become diluted to almost zero. But since mature oocytes 
do not de-mature when they are laid as eggs, it seems likely that the 
signaling system that regulates maturation must be able to convert a 
transitory stimulus into an irreversible response. This is in fact the case; 
as shown in Figure 8.6, once ERK2 is phosphorylated, it stays phos-
phorylated for many hours after progesterone is washed away. This 
irreversibility is not due to slow dephosphorylation kinetics; actually, 
the phosphates that activate ERK2 turn over on a time scale of 5–10 min, 
so the phosphorylation state of ERK2 must be actively maintained. The 
irreversibility of ERK2 activation can be compromised by blocking Mos 
synthesis, which means that positive feedback is critical for both the 
all-or-none character of the response and for the irreversibility.

(a) Pooled oocytes

Single oocyte immunoblots

Intermediate [Progesterone]
ERK2*
ERK2

(b)

(c)

Possible individual oocyte behaviors

[Progesterone]

Intermediate [Mos]
ERK2*
ERK2

–Cycloheximide +Cycloheximide

[Progesterone]

ERK2*
ERK2

Figure 8.5  All-or-none, irreversible 
activation of ERK2 during oocyte 
maturation. (a) When oocytes are 
pooled, ERK2 activation, which is 
indicated by a shift to a higher apparent 
molecular weight on the immunoblot, is 
a graded function of the progesterone 
concentration. (b) A graded response at 
the population level could be due to either 
a graded or an all-or-none response at the 
level of individual cells. (c) The single-cell 
ERK2 response to progesterone (top) or 
microinjected Mos (bottom) is all-or-none, 
and blocking protein synthesis makes the 
response to Mos more graded. (Adapted 
from Ferrell and Machleder, Science. 
1998.)
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These are the experimental results: incubating or injecting oocytes 
with graded, reversible stimuli (progesterone or Mos) gives rise to an 
all-or-none, irreversible ERK2 response. To understand how such a 
response is generated, we will next build a computational model and 
analyze the model with methods from non-linear dynamics.

8.6  �THE MOS/ERK2 SYSTEM CAN BE REDUCED 
TO A MODEL WITH A SINGLE TIME-
DEPENDENT VARIABLE BECAUSE OF A 
SEPARATION OF TIME SCALES

Let us focus our model on the protein that sits atop the MAPK cas-
cade, Mos. Its regulation is shown schematically in Figure 8.7, and we 
can convert this scheme into a rate equation.

Mos levels are determined by Mos synthesis and degradation; first 
let us examine Mos degradation. We will make the simplest-case 
assumption that the rate of Mos degradation is directly proportional 
to the Mos concentration (mass action kinetics):

= .Degradation rate k Mosdeg 	 (8.1)

It is actually not known whether Mos degradation is first order or sat-
urable, but for simplicity we will assume that it is first order.

Mos synthesis is more complicated. There should be a feedback-
dependent synthesis term where, in the simplest possible world, the 
synthesis rate would be directly proportional to the concentration of 
active ERK2. In addition, there should be some basal synthesis term 
that gets things started, where the rate could be directly proportional 
to the progesterone concentration (prog). Thus two terms contribute 
to the overall rate of synthesis:

* .Synthesis rate k prog k ERK2basal feedback= + 	 (8.2)

The time-dependent variable ERK2* represents the concentration of 
active ERK2.

The regulation of ERK2 by MEK and Mos occurs via phosphorylation, 
which takes place on a time scale of a few minutes, whereas the syn-
thesis of Mos occurs over a few hours. We can therefore assume that 
at any given instant in time, ERK2 will be at its steady-state level of 
activity for whatever the Mos concentration is. This is referred to as a 
separation of time scales, and it allows us to replace the rate equations 
for the fast processes (MEK regulation by Mos and ERK2 regulation 
by MEK) by a single algebraic expression describing the steady-state 
response of ERK2 to Mos. For the moment we will not specify the 
exact functional form for the steady-state response; instead, we say 
that at any instant in time.
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Figure 8.6  ERK2 activation 
becomes irreversible during oocyte 
maturation. (a) ERK2 stays activated 
after progesterone is washed away, and 
(b) the activation is maintained for many 
hours. (Adapted from Xiong and Ferrell, 
Nature. 2003.)
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Figure 8.7  Simplified view of the  
Mos-ERK2 system in oocyte 
maturation.
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= [ ],ERK2* f Mos 	 (8.3)

which means that

= + [ ].Synthesis rate k prog k f Mosbasal feedback 	 (8.4)

With equations for the synthesis rate (Eq. 8.4) and degradation rate 
(Eq. 8.1) in hand, we can explore the steady states of this system and 
learn something about the dynamics as well, through rate-balance 
analysis.

8.7 � RATE-BALANCE ANALYSIS SHOWS WHAT IS 
REQUIRED FOR A BISTABLE RESPONSE

For the rate-balance analysis, we plot the rates of Mos synthesis and 
Mos degradation as functions of the concentration of Mos. Where the 
rate curves intersect, synthesis and degradation are balanced and 
Mos is in steady state.

We start by plotting the degradation rate as a function of the Mos 
concentration. From Eq. 8.1 we know this will be a straight line, with 
the slope of the line being determined by the rate constant kdeg. This is 
shown as in blue in Figure 8.8, where we have arbitrarily chosen the 
value of kdeg to be equal to 1.

Next we plot the synthesis rate curve. First let us ignore the feedback 
term and just plot the basal component of the synthesis rate, which 
we have assumed to be directly proportional to the progesterone 
concentration and independent of Mos. The result is the flat green 
line in Figure 8.8, where we have chosen kbasal = 1 and prog = 25. The 
two rate curves intersect at one point; the system has a single steady 
state, with Mos = 25 units and the rate of Mos synthesis and degrada-
tion balanced at 25 units per sec. And the steady state is stable: if 
we raise the Mos concentration, the degradation rate will exceed the 
synthesis rate and the Mos concentration returns toward the steady 
state, and if we lower the Mos concentration, the synthesis rate will 
exceed the degradation rate and the system again returns toward 
steady state. Thus, if there is no feedback, we will have a monostable 
system.

If we were to double the progesterone concentration, we would dou-
ble the height of the green curve and shift the steady state from 25 to 
50. On the other hand, if we were to double kdeg, we would double 
the slope of the blue line and shift the steady state from 25 to 12.5. 
Regardless of what we choose for parameters, there will be a single 
steady state and it will be stable.

Now let us look at the feedback contribution to Mos synthesis, and 
for simplicity let us take the progesterone concentration to be zero so 
that there is no basal synthesis. At this point we need to make some 
assumption about how the steady-state level of ERK2 activity depends 
on Mos activity. One simple possibility would be a Michaelian rela-
tionship, with the fractional activation of ERK2 given by:

=
+

.*ERK2
Mos

K Mosss 	 (8.5)

For any choice of K and kfeedback (and here we have chosen K = 10 and 
kfeedback = 40), the rate curve will be a hyperbola, and if the hyperbola 
is tall enough it will intersect the degradation line in two places: at the 
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of Mos synthesis and degradation 
assuming no feedback.
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origin (Mos = 0) and at one other place where Mos > 0 (Figure 8.9a). 
The system has two steady states, an off-state and an on-state, rather 
than the usual one. So is it bistable?

The answer is no. The on-state is stable, but the off-state is not. To 
signify this difference, we have represented the stable on-state with a 
solid circle and the unstable off-state with a hollow circle. If the sys-
tem begins in the off-state, the Mos synthesis and degradation rates 
would be balanced (both would be zero), but if we perturb the system 
by adding even a single molecule of Mos, the synthesis rate would 
increase more than the degradation rate, and so the system would 
move away from the off-state, not back toward it. Ultimately the per-
turbed system would settle into the on-state, the only stable steady 
state the system has.

The problem is that Mos synthesis increases faster than Mos degra-
dation when you nudge the system to the right of the off-state. So 
what happens if we decrease the initial slope of the green curve, 
say by decreasing kfeedback? Surely if the feedback is weak enough, 
the Mos = 0 state will become stable. And that is in fact the case 
(Figure 8.9b); once we decrease kfeedback to 10 or lower, the Mos = 0 
state does become stable. But note that the system no longer has two 
steady states; as kfeedback gets smaller, the on-state moves leftward, 
and only after it has moved all the way to Mos = 0 and the system 
changes from having two steady states to one does the Mos = 0 state 
become stable. No matter what the choice of parameters, the system 
will have a single stable steady state. We have still not succeeded in 
producing a bistable system.

What is needed is for the green curve to snake around the blue curve, 
starting out increasing more gradually with Mos than the blue curve 
does but then catching up. That is what we would get with a sig-
moidal curve, and, as luck would have it, we already know that the 
experimentally determined steady-state relationship between Mos 
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and ERK2 activity is, in fact, sigmoidal, well-approximated by the Hill 
equation with a Hill exponent of about 5 (see Figure 7.8):

=
+

.*
5

5 5ERK2
Mos

K Mosss 	 (8.6)

If kfeedback is sufficiently large, as it is in Figure 8.10, then there will 
be three places where the synthesis and degradation curves intersect: 
a stable off-state at the origin (designated by a filled circle); a stable 
on-state with ≈ 39Mos  units (again a filled circle); and an unstable 
steady state between the two, with = 20Mos  units (hollow circle). If 
one starts with Mos anywhere above 20 units, the system will move 
to the on-state. Below 20 units, the system will move to the off-state. 
And right at = 20Mos , the system is balanced, but precariously bal-
anced, so that the slightest nudge will push it down to the off-state or 
up to the on-state.

We now have a bistable system, with two stable steady states and 
one unstable one. And we can see how various features of the model 
contributed to the bistability. The positive feedback made it so that the 
rate of Mos synthesis increases with the Mos concentration, which 
means that the green curve has a positive slope, which is essential 
if we want it to intersect the blue curve more than once; in fact, it 
has been shown that for a deterministic biochemical reaction system 
to exhibit bistability, the system must include positive feedback. The 
ultrasensitivity within the positive feedback loop enabled the green 
curve to snake around the blue curve, allowing the system to be 
bistable. Any Hill exponent greater than one would permit a bistable 
response, but the bigger the exponent, the easier it is to make the two 
curves intersect at three points.

8.8 � INCREASING THE PROGESTERONE 
CONCENTRATION PUSHES THE SYSTEM 
THROUGH A SADDLE-NODE BIFURCATION

The rate curves in Figure 8.10 assumed that the progesterone con-
centration was zero. What happens if we raise the concentration to 
some constant non-zero level?

Adding progesterone does nothing to the degradation rate curve, but it 
adds a constant level of basal Mos synthesis to the synthesis rate curve, 
which means that the green curve shifts upward but otherwise stays 
identical in shape. This is shown in Figure 8.11a for 0, 2, 4, 6, 8, and 10 
units of added progesterone. As the rate curve shifts upward, the posi-
tions of the three steady states change, and, in particular, the off-state 
moves toward higher Mos concentrations and the unstable steady state 
moves lower. Eventually (at about 9 units of progesterone) the off-state 
and the unstable steady state collide with and annihilate each other—
boom! The system then transitions from being bistable to monostable, 
with a single stable steady state, the on-state. Once this transition from 
bistability to monostability takes place, no matter what the starting Mos 
concentration is, the system will end up in the on-state.

On the other hand, if we start with a high progesterone concentra-
tion and the system in the on-state, and then wash the progesterone 
away, the steady-state concentration of Mos will drop a bit, down to 
~39 units. But it will not drop all the way to zero; the on-state does not 
disappear, and it is still stable, so there is no reason for the system to 
leave it. Thus the transition from the off-state to the on-state is irre-
versible, even though the binding of progesterone to the progesterone 
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receptor, the synthesis of Mos, and the phosphorylation of ERK2 are 
all intrinsically reversible.

We can construct a stimulus–response plot based on the intersection 
points in the rate–balance plot. On the x-axis we plot the progesterone 
concentration; on the y-axis, the Mos concentrations at each of the 
steady states, including the unstable one. The result is an S-shaped 
curve that can be divided into three sections: a bottom section made 
up of stable off-states; a top section that includes the stable on-states; 
and a middle section, designated by the dashed curve, where the 
unstable steady states reside (Figure 8.11b). The middle and bottom 
sections merge and then disappear at the progesterone concentra-
tion where the two rate curves (Figure 8.11a) go from having three 
intersections to one. Thus if one were to start in the off-state and 
dial up the progesterone concentration, there would be a discontinu-
ity in the steady-state response. The modeled Mos response is not 
quite all-or-none in character; it is more like a big-or-small response. 
But since ERK2* is a steeply sigmoidal function of Mos, the modeled 
ERK2* response is pretty close to all-or-none (Figure 8.11c), which 
accounts for the experimental results shown in Figure 8.5c. Positive 
feedback plus nonlinearities has yielded a bistable response, and the 
bistable response converts a graded, reversible stimulus into a nearly 
all-or-none, irreversible output.

The transition where the system goes from being bistable to monosta-
ble is called a saddle-node bifurcation, and because we are varying 
one parameter of the model (prog), a plot like Figure 8.11b or c is 
sometimes called a one-parameter bifurcation diagram. Some expla-
nation of this terminology is probably in order. A bifurcation is a 
splitting of one thing into two, and, if you look at the plot from right 
to left, the lower steady state does bifurcate or split immediately after 
it appears (splitting into a stable and an unstable steady state). Node 
is another term for a stable steady state; the term and saddle is bor-
rowed from the two-variable version of this type of bifurcation, which 
we will explore in Chapter 9.

What determines the position of the progesterone threshold for the 
system? That is, what determines the concentration of progesterone 
at which the off-state and the unstable steady state meet and annihi-
late each other (Figure 8.11a)? For one thing, it depends on the slope 
of the degradation rate curve; the steeper it is, the higher the thresh-
old. It also depends on the shape of the degradation rate curve. We 
assumed that mass action kinetics applies, making the blue curve a 
straight line (Figure 8.11a), but we could have assumed a saturable 
process, and if the blue curve levels off as Mos increases, it would 
make it easier for the green curve to “catch up” to the blue curve. 
The height, shape, and EC50 of the synthesis rate curve all contribute 
to the position of the threshold as well. For example, the higher the 
ultrasensitivity, the flatter the curve will initially be, which will shift 
the threshold to a higher progesterone concentration. The relation-
ship between the progesterone concentration and the basal rate of 
Mos synthesis also figures into the position of the threshold. For mass 
action kinetics, the position of the threshold scales with kbasal. But if 
we had assumed something other than a linear relationship between 
progesterone and the basal synthesis rate, the additional parameters 
that define that relationship would figure into the threshold as well. 
Thus the position of the threshold—the saddle-node bifurcation for 
flipping from the off-state to the on-state—is a systems-level property, 
influenced by all of the factors that bear on Mos synthesis, Mos degra-
dation, and the balance between the two.
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Saddle-node bifurcations show up very commonly in systems that 
transition in and out of bistability; it is the typical (but not the only) 
way bistability arises and disappears. All saddle-node bifurcations 
share certain properties, so what you learn about what happens at the 
saddle-node bifurcation in a model of oocyte maturation can help you 
to understand other phenomena involving totally unrelated proteins 
organized in different circuits.

8.9 � TWEAKING THE MODEL CAN CHANGE 
AN IRREVERSIBLE RESPONSE TO A 
HYSTERETIC ONE

Bistable systems can be irreversible, but irreversibility is not inevita-
ble. We can demonstrate this by slightly modifying our model.

Suppose we were to start with a synthesis rate curve like that shown 
in Figure 8.10, but made the feedback a little weaker—made kfeedback 
smaller—so that in the absence of progesterone, there was only a sin-
gle intersection between the synthesis and degradation rate curves 
(Figure 8.12a). The system therefore has a single steady state, an off-
state, and it is stable. As the progesterone concentration increases, 
the green curve moves upward, and at just above 2 units of proges-
terone, the upper knee of the curve touches the blue degradation 
rate curve (Figure 8.12a). Thus a new steady state appears and then 
splits into a stable on-state and an unstable steady state through a 
saddle-node bifurcation (Figure 8.12a,b). As the progesterone con-
centration increases further, the green curve shifts up. The unstable 
steady state and the off-state approach each other and then disappear 
(boom!) through a second saddle-node bifurcation. The result is a 
hysteretic stimulus–response relationship (Figure 8.12b). The system 
requires more stimulus (progesterone) to move from the off-state to 
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the on-state than it does to maintain itself in the on-state once it has 
gotten there, but the response is not irreversible.

Both hysteretic and irreversible responses are important in biological 
regulation. Oocyte maturation is an example of biological irrevers-
ibility that arises out of a bistable control system, and probably many 
other cell fate induction processes are as well. On the other hand, 
the activation of the master regulator Cdk1 is an example of a hyster-
etic process, which we will discuss in more detail when we examine 
relaxation oscillators in Chapter 15.

The fact that an irreversible bistable response can be converted into 
a hysteretic bistable response fits nicely with the observation that dif-
ferentiated cells can be engineered to de-differentiate into pluripotent 
stem cells. Presumably the bistable circuits that maintain the differ-
entiated state have been nudged into a hysteretic regime and then 
switched off by, say, the expression of Yamanaka factors or the trans-
fer of a differentiated nucleus into an egg.

8.10 � THE DYNAMICS OF THE SYSTEM 
CAN BE INFERRED FROM THE  
RATE–BALANCE PLOT

To understand the dynamics of our bistability model, we begin by writ-
ing down the ODE for the system by combining Eqs. 8.1, 8.2, and 8.6:

= +
+

− .
5

5 5

dMos
dt

k prog k
Mos

K Mos
k Mosbasal feedback deg 	 (8.7)

Ideally we would next solve the ODE and explore how the solution 
varies with different assumed values of the parameters and initial 
conditions, but this ODE is too complicated to solve analytically. 
Nevertheless, we can solve the ODE numerically and explore the 
solutions.

First let us parameterize the system to yield an irreversible response 
(as it was in Figure 8.10), and start with the system in its off-state, 
with a progesterone concentration of 0 and a Mos concentration of 
0. Then let us step the progesterone up to 2, 4, 6, 8, 10, or 12 units 
and calculate the resulting time courses. As shown in Figure 8.13a, 
for progesterone concentrations of up to 8 units, the system smoothly 
approaches a low steady state Mos concentration. The curves look 
qualitatively like the typical exponential approach to steady state, and 
indeed for very low progesterone concentrations this is exactly the 
case.

Once the progesterone concentration reaches 10 units—just 
beyond the saddle-node bifurcation where the off-state disappears 
(Figure 8.12), something strange happens. The system initially looks 
like it is approaching a steady state with ~10–15 units of Mos, but it 
sort of does a rolling stop and then accelerates onward toward the 
on-state (Figure 8.13a). We can see why this happens by looking at 
the corresponding rate–balance plot (Figure 8.13b) or the vector field 
of reaction velocities (Figure 8.13c). Even though there is no longer 
an intersection point between the green and the blue curves in the 
vicinity of 10–15 units of Mos, the green curve does come close to the 
blue curve, and so the net velocity of the reaction—the synthesis rate 
minus the degradation rate—becomes very small (Figure 8.13b,c). 
This is a phenomenon called critical slowing; with progesterone 
concentrations just past the saddle-node bifurcation, which can be 
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viewed as a critical point, the annihilated steady state exerts a sort of 
ghostly influence on the reaction dynamics. Critical slowing is one of 
those general properties of bistable systems with saddle-node bifur-
cations we alluded to in Section 8.8. 

8.11 � THE VELOCITY VECTOR FIELD CAN 
BE REPRESENTED AS A POTENTIAL 
LANDSCAPE

The energetics of protein folding are often depicted as a potential 
energy landscape, with the minimum-energy species residing at the 
bottom of a potential energy well. This landscape is a scalar field—
a bunch of energies—and we can intuitively infer the forces on the 
species—a vector field—from the slope of the landscape. If the land-
scape is flat, there is no net force; if it slopes upward, there is a force 
to the left; and if it slopes downward there is a force to the right. The 
reason for constructing the landscape is that it conveys the dynamics 
of the system in a particularly easy-to-understand fashion.

We can construct an analogous potential landscape for any one-ODE 
model, including our Mos model. The vector field of relevance in this 
case is not a force field, like we have with an energy landscape, but 
rather a velocity field. Thus we want to construct a scalar field—in 
other words, a function—which, when differentiated, gives us a vector 
field like that shown in Figure 8.13c. To do this we start with the rate 
equation (Eq. 8.7) and call the right-hand side f[Mos], the instantane-
ous net rate of Mos production as a function of the Mos concentration. 
Next we integrate f with respect to Mos, put a minus sign in front of 
the integral, and obtain a potential function Φ:

∫Φ = − [ ] ,f Mos dMos 	 (8.8)
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The minus sign in front of the integral comes from the fact that we 
want a positive slope of the potential to drive the Mos concentration 
toward a smaller Mos concentration, and a negative slope to drive 
the Mos concentration higher. This makes zero-velocity stable steady 
states end up at the bottoms of valleys, just as the zero-acceleration 
states are in energy landscapes.

The first and third terms of the integrand are easy to integrate. The 
second one is not so easy, but it can be done, and the overall expres-
sion for the potential function is:

1
20

20 10 20

2 10 2 5 ArcTan
1 5 4

10 2 5

2 10 2 5 ArcTan
1 5 4

10 2 5

4 Ln

1 5 Ln 1 5

1 5 Ln 1 5

.

2

2 1
2

2

2 1
2

2

( )

( )

( ) ( )
( ) ( )

[ ]

Φ = −

− + ⋅

− + ⋅
− + +

+















− − ⋅
− − +

−















− ⋅ +

− − + ⋅ + − + ⋅ +





+ + ⋅ + + ⋅ +













































k Mos k Mos k Mos prog

K k
K Mos

K

K k
K Mos

K

K k K Mos

K k K K Mos Mos

K k K K Mos Mos

feedback deg basal

feedback

feedback

feedback

feedback

feedback

	 (8.10)

Eq. 8.10 is too complicated to gain much insight from—sorry—but still 
we can plot it and see what the potential curve looks like. Figure 
8.14a shows the potential for the prog = 0 case. There is a half-valley 
whose bottom represents the off-state, a full-valley whose bottom 
is the on-state, and a local maximum corresponding to the unstable 
steady state between them.
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Dialing the progesterone concentration by up to 10 units skews the 
potential curve so that height of the unstable steady state decreases 
to zero and the depth of the on-state’s potential well increases. This 
means that there is a monotonic path from Mos = 0 to the on-state, 
albeit with some slowing (the critical slowing) near where the unsta-
ble steady state used to be. Moreover, one can see why the potential 
varies with the progesterone concentration as it does. Even though 
Eq. 8.10 is complicated, there is only one term that depends on the 
progesterone concentration—− ⋅k Mos progbasal . As the progesterone 
concentration increases, this term contributes a steeper and steeper 
negatively sloped line to the potential function, skewing the curve 
downward, and this accounts for the disappearance of the off-state 
and unstable steady state and the deepening of the on-state’s poten-
tial well.

We can also plot the potential as a two-dimensional landscape, a 
surface that shows how the potential varies with both the Mos and 
progesterone concentrations (Figure 8.14c). When the progesterone 
concentration is small (at the back of the plot), the potential surface 
has two valleys with a small hill between them. As the progester-
one concentration increases (moving toward the viewer), the hill 
gets smaller and the on-state’s valley gets deeper. Eventually the 
off-state and unstable steady state disappear at the saddle-node bifur-
cation, and from there on the on-state dominates and the system is 
monostable.

Thus, a potential function is another way, like the rate–balance plot, 
of conveying the character and dynamics of a bistable system and 
of understanding what changes about a system at a saddle-node 
bifurcation.

SUMMARY
Here we have shown how positive feedback can give rise to bista-
bility. Bistability is a systems-level property, and it depends on the 
feedback, some nonlinearity in the feedback loop, and the proper bal-
ance between the positive and negative reactions within the loop. In 
a bistable system, transitions between the alternative stable steady 
states typically occur when something changes about the system—for 
example, the basal rate of activation increases—causing one stable 
steady state to collide with an unstable steady state or saddle and 
disappear at a saddle-node bifurcation.

Bistable systems are generally at least hysteretic—it is harder to switch 
into a new state than it is to maintain the new state—and are some-
times irreversible. An irreversible bistable system behaves much like 
a toggle switch, flipping on in response to a stimulus and then staying 
on even after the stimulus is removed. Progesterone-induced Xenopus 
oocyte maturation is one well-studied example of how a bistable sign-
aling system can give rise to an irreversible switch between cell fates; 
Cdk1 activation during mitotic entry and inactivation during mitotic 
exit represents an example of a hysteretic bistable switch. Bistability 
provides nature with a way of building discrete biological states out 
of continuously variable components and of building irreversible 
responses out of reversible components.

For one-variable systems, one can make inferences about the global 
stability of a steady state through rate-balance analysis, and one can 
visualize the dynamics of the system from either the rate–balance plot 
or by constructing a potential function whose slope tells the direc-
tion and speed at which the system will go toward or away from a 
steady state.
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Systems with Two 
Time-Dependent 

Variables

Both the rate–balance plot and the potential landscape, which we 
used to analyze the bistability of the Mos/ERK2 system in Chapter 8, 
rely on the fact that our model had a single time-dependent variable, 
which in turn depended on our identification of a single slowly varying 
species (Mos), with the activities of all of the other components of the 
positive feedback loop responding quickly enough that we can invoke 
a separation of time scales. But sometimes it is not possible to make 
such a simplification. For example, in cell cycle regulation, the master 
M-phase regulator Cdk1 inactivates Wee1 through phosphorylation 
and Wee1 feeds back to inactivate Cdk1 through phosphorylation—a 
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double-negative feedback loop—and the time scales for both phos-
phorylation reactions are probably similar. Likewise, in fat cell 
differentiation, the master transcriptional regulator PPARγ and C/EBPβ 
stimulate each other’s transcription in a positive feedback loop, and 
again the time scales for both processes are probably similar. Thus, it 
is useful to have ways of analyzing and understanding two-variable 
positive feedback systems.

Here we present one such way: a graphical way of looking for steady 
states in the two-dimensional phase plane, coupled with linear 
stability analysis to characterize the stability of each steady state.

9.1 � TWO-VARIABLE POSITIVE FEEDBACK AND 
DOUBLE-NEGATIVE FEEDBACK LOOPS CAN 
FUNCTION AS BISTABLE SWITCHES

Figure 9.1 depicts two simple two-variable systems that can, under 
the right circumstances, function as bistable switches: a positive feed-
back loop, with x activating y and y activating x (Figure 9.1a), and a 
double-negative feedback loop, with each species inhibiting the other 
(Figure 9.1b). Either or both of the species could accept regulatory 
inputs to flip the bistable switch, and either or both could regulate 
downstream targets.

We can characterize the properties of these two-variable systems 
through what is termed phase plane analysis. The phase plane in 
this case is one quadrant of the x–y plane, with one time-dependent 
variable (x) plotted on the x-axis and the other variable (y) on the 
y-axis. Phase plane analysis is not as simple or as directly intuitive 
as rate-balance analysis, but it is nevertheless a powerful method for 
graphically understanding the dynamics and steady states of two-
variable models.

Let us start with the positive feedback loop (Figure 9.1a) and begin 
by writing down rate equations for x and y. In principle the positive 
arrows could represent stoichiometric activation, enzymatic activa-
tion, or stimulated production; here we will work through an example 
where both arrows represent stimulated production. Moreover, since 
ultrasensitivity in the feedback proved to be important in generating 
bistability in the Mos model, let us assume that rate of production 
of x is a Hill function (here we chose n = 2) of the concentration of y, 
and vice versa. Let us also assume, as we did in the Mos model, that 
the degradation processes are described by mass action kinetics. And 
finally, let us assume that there is some tunable basal rate of produc-
tion of x, which we will use to flip the system between an off-state, 
with x and y inactive, and an on-state, with x and y active. We then 
have:

= +
+

− −1

2

1
2 2 1

dx
dt

k k
y

K y
k xbasal 	 (9.1)

=
+

− − .2

2

2
2 2 2

dy
dt

k
x

K x
k y 	 (9.2)

Next let us choose values for the parameters; for a start, let kbasal equal 
0, let each of the other rate constants equal 1, and let K1 = K2 = 0.4.

With the model specified and parameterized, let us see how many 
steady states the system has. For the system to be in steady state, 
neither x nor y can be changing with respect to time. This means that:

X

y y

X
(a) (b)

Figure 9.1  Two-variable systems with 
positive (a) and double-negative (b) 
feedback.
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x 	 (9.3)
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2 2

x
x

y 	 (9.4)

Equations 9.3 and 9.4 define curves in the phase plane, which are 
plotted in Figure 9.2. We call the blue curve, which comes from set-

ting = 0
dx
dt

, the x-nullcline and the green curve the y-nullcline. The 

two curves intersect at three points, {0, 0}, {0.2, 0.2}, and {0.8, 0.8}, 
and each intersection point represents a steady state; that is, a point 

where both =and 0
dx
dt

dy
dt

. The ability of the nullclines to intersect 

three times arises out of the positive feedback in the model—positive 
feedback means that x increases with y (from the x-nullcline) and y 
increases with x (from the y-nullcline), and that keeps the nullclines 
pointed in the same general direction—and the ultrasensitivity, which 
allows the two nullclines to snake around each other and intersect 
multiple times.

By analogy to our one-variable Mos model, you probably suspect that 
two of the steady states are stable and one is unstable (and in fact 
that is how we have colored the points in Figure 9.2). But how do we 
know for sure? With the one-variable model, we could use the rate–
balance plot to quickly determine the stability of each of the steady 
states, but not so for the two-variable model.

One way to approach the stability question is to plot some sample 
trajectories and see if they go toward or away from each of the steady 
states. As shown in Figure 9.3, the on-state at {0.8, 0.8} is stable; all 
of the nearby trajectories converge to it. In fact, any trajectory that 
begins in the pink region of the phase plane will ultimately approach 
the on-state. For this reason, a stable steady state like this on-state 
is sometimes called an attractor, and the pink region is called the 
stable manifold of this attractor, or the basin of attraction for the on-
state. The trajectories do not necessarily approach the steady state 
monotonically, unlike the trajectories in our one-variable model; for 
example, if we start in the bottom right-hand corner of the phase plot, 
x will initially decrease and then subsequently increase on its way 
to the stable on-state. In fact, the trajectories appear to initially be 
attracted to the diagonal, and then once they get close to it, veer off 
toward the on-state. Overall the trajectories look like a collection of 
side streets that all empty into a main thoroughfare running along the 
diagonal. Or like the veins of a banana leaf connecting to the midrib.

The off-state {0, 0} is also stable, and all of the trajectories that start 
in the yellow region ultimately approach the off-state, although again 
they tend to initially head toward the diagonal and then turn toward 
the off-state. So far so good.

The behavior of the third steady state, at {0.2, 0.2}, is a bit more com-
plicated. The trajectories right on the boundary between the stable 
manifolds of the off- and on-states—the separatrix, designated by 
the dashed black line—are attracted by this steady state. However, 
trajectories close to the separatrix, but not on it, appear to be initially 
attracted to the steady state, but then veer away toward either the on-
state or the off-state. A steady state like this one is termed a saddle 
or a saddle point, because if you imagine a potential surface that 
might produce trajectories like this, it would be shaped like a saddle. 
A saddle point is conventionally denoted by an open circle just like 
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Figure 9.2  Nullclines and steady 
states in the phase plane for the 
two-variable positive feedback 
system. (a) Detailed schematic of 
the positive feedback system, with x 
stimulating the production of y and vice 
versa. (b) Nullclines and steady states. The 
filled circles will prove to be stable steady 
states and the open circle a saddle.
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Figure 9.3  Trajectories in the phase 
plane for the two-variable positive 
feedback system. The pink region is the 
basin of attraction for the on-state; the 
yellow region is the basin of attraction for 
the off-state; and the dashed line is the 
separatrix.
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the unstable steady state in the Mos model was. From one direction 
a saddle behaves like an attractor and from another direction—here 
the +45° angle—it behaves like a repeller. The dashed black line rep-
resents the stable manifold of the saddle, and it separates the basins 
of attraction of the two stable steady states. The diagonal is the unsta-
ble manifold of the saddle, and the saddle has the peculiar property 
of attracting trajectories and then deflecting them toward one of the 
stable steady states.

9.2 � LINEAR STABILITY ANALYSIS EXPLAINS THE 
DYNAMICS OF THE SYSTEM NEAR EACH OF 
THE STEADY STATES

To understand why the off-state and on-state are stable and to get a 
better understanding of what the saddle represents, we turn to what 
is called linear stability analysis, which tells us whether trajectories 
that start out very close to a steady-state will converge to it or not. 
The basic idea behind linear stability analysis is to (1) choose a steady 
state; (2) perturb the system away from that steady state by an infini-
tesimal amount; (3) calculate the rate at which the system returns to 
or is repelled from the steady state; and (4) repeat for the rest of the 
steady states. Linear stability analysis is easier to do for a one-variable 
system than a two-variable system, so let us start by returning to our 
one-variable Mos model from Chapter 8.

We start by re-plotting Figure 8.10, which showed the rate–balance 
plot for the system with prog = 0, with three intersection points cor-
responding to two stable and one unstable steady state (Figure 9.4a). 
Before, we considered and plotted the synthesis and degradation 
rates individually; here we will combine them into an expression for 
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Figure 9.4  Linear stability analysis 
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the instantaneous net rate of Mos synthesis as a function of the Mos 
concentration. From Eq. 8.7, this rate, which we will call f, is given by:

=
+

− .
5

5 5f k
Mos

K Mos
k Mosfeedback deg 	 (9.5)

This function equals zero when Mos is zero, goes negative immedi-
ately thereafter, crosses zero at the unstable steady state and becomes 
positive, then dives back to zero at the on-state and stays negative 
thereafter (Figure 9.4b). At Mos concentrations where f is negative, 
Mos will decrease in abundance, and where f is positive it will increase.

Now let us look at what happens if you are initially sitting on a 
steady state—let us start with the off-state—and perturb the system 
by increasing the Mos concentration by a small amount, δMos. The 
net rate of Mos production will fall below zero, and the function that 
defines how negative the f will be is Eq. 9.5, a complicated nonlinear 
equation. But for small values of δMos, we can approximate f (the red 
curve in Figure 9.4b) by the dashed black line, the tangent to the red 
curve at the off-state, as long as the function f is smooth and con-
tinuous at the steady state (which it is). The slope of the tangent is 






df
dMos ss

, and so the net rate of Mos production at Mos = Mosss + δMos 

is given by:

.δ δ[ ]+ = 





⋅f Mos Mos
df

dMos ss
Mosss 	 (9.6)

This is a linear equation—how fast you come back toward or go away 
from the steady-state is linearly proportional to δMos—which is why 
this way of assessing the dynamics of the system near the steady 
states is called linear stability analysis.

Note that Eq. 9.6 is the same in form as the equation for the exponen-
tial decay or explosion of some variable z:

= ,
dz
dt

k zapparent 	 (9.7)

where the sign of kapparent determines whether the system decays or 
explodes, and the magnitude of kapparent tells you how fast. Thus, the 
slope of f at the steady state is a gauge of whether the steady state is 
stable or unstable and of how stable or unstable it is. If the slope of f 
is a negative number, the steady state is an attractor and is stable. If 
it is positive, the steady state is a repeller and is unstable. The larger 
the magnitude of the slope, the more stable (if the slope is negative) 
or unstable (if the slope is positive) the steady state is. It is possible for 
the slope at a steady state to be zero, although we will not see this in 
the examples we examine.

We can evaluate the slope of the rate function by differentiating the 
right-hand side of Eq. 9.5:

( )
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−
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5 54
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For the values of the parameters we chose for Figure 9.4 (kfeedback = 40; 
kdeg = 1; K = 20), when we evaluate this expression at Mosss = 0, we get:

= −1.
df

dMos
	 (9.9)
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Because 
df

dMos
 is a negative number, this steady state is stable.

For the steady state at Mos = 20, the slope evaluates to:

= +1.5.
df

dMos
	 (9.10)

This positive number means the distance between the perturbed 
system and the steady state initially grows exponentially, and so the 
steady state is unstable. For the on-state at Mos = ~38.6, the slope is:

= −0.819
df

dMos
	 (9.11)

Thus the on-state is stable, but not quite as stable as the off-state; the 
magnitude of the negative slope is smaller. Note that this fits nicely 
with the potential surface picture in Figure 8.14a; the sides of the 
potential well for the on-state are slightly less steep than they are for 
the off-state.

This is the essence of linear stability analysis. One calculates the 
slope of the net rate function at the steady state, and from its sign and 
magnitude, makes an inference about the local stability of the steady 
state.

9.3 � TO APPLY LINEAR STABILITY ANALYSIS TO 
A TWO-VARIABLE SYSTEM, WE CALCULATE 
EIGENVECTORS AND EIGENVALUES

Let us return now to the two-variable positive feedback system given 
by Eqs. 9.1 and 9.2 and apply linear stability analysis to it. Let us call 
the right-hand side of Eq. 9.1 f, and the right-hand side of Eq. 9.2 g:

= +
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− −1

2
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2 2 1f k k
y

K y
k xbasal 	 (9.12)
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2
2 2 2g k
x

K x
k y 	 (9.13)

Suppose we begin at the off-state {0, 0} and perturb the system by 
some small amount δx in the x-direction. The perturbation will pro-
duce a response in the x-direction, but also potentially one in the 
y-direction. We can calculate each of the components of the velocity 
by evaluating the partial derivatives of f (for the x-component of the 
velocity) and g (for the y-component of the velocity) with respect to x 
at the steady state {0,0}:
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∂

= − = −1
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As luck would have it, the velocity in the y-direction (Eq. 5.23) is 
zero. Thus, if you perturb the system by some small δx, it will return 
straight back to the steady state and the proportionality constant is –1. 
Likewise, if you perturb the system along the y-axis, the two compo-
nents of the velocity are:
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= − = −− 1.
{0,0}

1 {0,0}

dg
dy

k 	 (9.17)

So again you come straight back toward the steady state, and again 
the proportionality constant is −1 (which you probably already guessed 
because of the symmetry of the equations). And if you perturb the 
system in any other direction, the response is still a vector pointing 
straight back toward the steady state. Thus, the steady state is locally 
stable, with a kapparent of −1 for perturbations in any direction. So far 
so good.

Let us now examine the steady state at {0.2, 0.2}, where some trajec-
tories come toward the steady state and some go away from it. We 
will need all four partial derivatives here; for compactness, we will lay 
them out in matrix form:
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This is referred to as the Jacobian matrix of the rate equations {f, g}. 
Pulling together the results from Eqs. 9.14–9.17, we have:
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and evaluating the partial derivatives at {0.2, 0.2} yields:

−
−











1 1.6
1.6 1

.	 (9.20)

These results show that if you perturb the system slightly in the posi-
tive x-direction, the response is to come toward the steady state in the 

x-direction (since 
∂
∂

= −1
f
x

) but also to go away from the steady state in 

the y-direction (because 
∂
∂

= 1.6
g
x

). The response to the perturbation is 

not in the same direction as the perturbation. This is shown schemati-
cally in Figure 9.5. Likewise, if you perturb the system in the positive 
y-direction; it comes back in toward the steady state in the y-direction 
but away from it in the x-direction, and one can see this behavior from 
the sample trajectories in Figure 9.3. The velocity vector {vx, vy} that 
results from these perturbations is not equal to kapparent • {δx, δy} the 
way it was for the {0, 0} steady state.

However, just by looking at Figure 9.3, one can see that there are 
two special directions—the ±45° diagonals going through the {0.2, 0.2} 
steady state—where the trajectories do go straight back (for the 45° 
diagonal with negative slope) or straight away (for the 45° diagonal 
with positive slope) from the steady state. We could do a change of 
variables using a rotation matrix to recast the problem in this coor-
dinate system, but we can take a shortcut: from matrix algebra, the 
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Figure 9.5  Perturbation of a two-
variable system from a steady 
state (SS) can generate responses 
that are not in the same direction 
(or in the opposite direction) as the 
perturbation.
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special directions seen here correspond to the eigenvectors of the 
Jacobian matrix, and the proportionality constants for trajectories 
in these special directions are the eigenvalues of the Jacobian. The 
eigenvectors and eigenvalues can be calculated by hand, but for now 
we can simply use software like Mathematica to evaluate them for 

us. The eigenvectors turn out to be −







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2

2
,

2
2
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2

2
,

2
2

, which 

are vectors of unit length at ±45°, and the corresponding eigenvalues 
are −2.6 and 0.6. Thus, along the −45° direction, the steady state is an 
attractor (with its eigenvalue λ1 = −2.6), and along the +45° direction 
the steady state is a repeller (with its eigenvalue λ2 = 0.6). This is one 
definition of a saddle: a steady state of a two-variable system with one 
positive and one negative eigenvalue. In addition, the magnitude of 
the two eigenvalues indicates that it attracts faster than it repels, and 
by plotting the time courses of a few trajectories (Figure 9.6), we can 
verify that this is in fact the case.

If we apply the same procedure to the steady state at {0, 0}, we get 
eigenvectors of {0, 1} and {1, 0}—that is, the unit vectors along the 
x- and y-axes—and eigenvalues of λ1 = −1 and λ2 = −1. Since the eigen-
values are equal, any combination of the eigenvectors would qualify 
as an eigenvector with the same eigenvalue; for this system and this 
steady state, all directions are equally special. For the on-state at {0.8, 

0.8}, we get eigenvectors of −

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2

 and eigenvalues 

of λ1 = −1.4 and λ2 = −0.6—two negative eigenvalues, confirming that 
the steady state is locally stable.

Thus we have analyzed the stabilities of the three steady states for our 
two-variable model. And we have a general plan for how to carry out 
linear stability analysis:

1.	 Write down the Jacobian matrix for the system.

2.	 Choose a steady state.

3.	 Evaluate the elements of the Jacobian matrix at the steady state.

4.	 Calculate the eigenvectors and eigenvalues of the matrix at the 
steady state.

The eigenvectors show you the special directions for trajectories 
close to the steady state in the phase plane. The eigenvalues tell you 
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Figure 9.6  Trajectories in the phase plane (left) and in a time course plot (right) for the two-variable positive 
feedback system. In the time course plot, the dashed black lines represent the three steady states.
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whether the steady state is locally stable (two negative eigenvalues), 
a saddle (one positive and one negative eigenvalue), or unstable (two 
positive eigenvalues). Eigenvalues of zero are possible too, but we 
will not encounter them in any of the systems we will analyze.

5.	 Repeat steps 2–4 for the other steady states.

This procedure works not only for two-variable systems but for any 
number of variables—the Jacobian matrix gets bigger, and the eigen-
value calculation gets more complicated, but the basic recipe is the 
same.

9.4 � THE SYSTEM CAN CHANGE BETWEEN 
STATES VIA A SADDLE-NODE BIFURCATION

In our two-variable positive feedback model, the input into the sys-
tem was the term kbasal in the x rate equation (Eq. 9.1). How do the 
nullclines and the steady states change as kbasal is varied?

Each increment of kbasal shifts the x-nullcline to the right, without 
affecting the y-nullcline (Figure 9.7a). The result is that the off-state 
(a node) and the saddle move toward each other and annihilate each 
other through a saddle-node bifurcation (and the terminology now 
makes sense!), beyond which the system has no alternative but to 
settle into the on-state. The resulting transition is irreversible; once 
the system makes it into the on-state, it remains there even if kba-

sal decreases to zero. (Figure 9.7b). Although it is not obvious from 
looking at the phase plane picture, which shows the positions of the 
trajectories but not the speeds, the same critical slowing we saw with 
the Mos model occurs when trajectories come near to where the off-
state and saddle have annihilated each other.

Note that if we were to weaken the positive feedback—say by decreas-
ing the value of k1 and/or k2 (Eqs. 9.1 and 9.2)—we could make the 
system be hysteretic rather than irreversible, with the transitions from 
the off-state to the on-state and from the on-state to the off-state both 
taking place through saddle-node bifurcations.
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concentration of y as a function of kbasal. At a kbasal value of just over 0.08, the off-state and saddle collide and annihilate each 
other at a saddle-node bifurcation. The result is an irreversible switch to the on-state.
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9.5 � DOUBLE-NEGATIVE FEEDBACK PLUS 
ULTRASENSITIVITY CAN YIELD BISTABILITY

As a final example, let us analyze the double-negative feedback circuit 
shown in Figure 9.1b and, in more detail, in Figure 9.8a. We begin by 
writing down the rate equations, with x stimulating the degradation 
of y and vice versa. As was the case with our other bistable models, 
some source of ultrasensitivity will prove to be important; here we 
acknowledge this by making the degradation rate terms be described 
by Hill functions. We assume there is some basal rate of degradation 
of x that does not depend on y (and vice versa), and that degradation 
is opposed by constitutive production processes. Finally, we assume 
there is some basal level of degradation. The resulting equations are:

= − −
+− ,1 1 1

2

1
2 2

dx
dt

k k x k x
y

K yfeedback 	 (9.21)

= − −
+− .2 2 2

2

2
2 2

dy
dt

k k y k y
x

K xfeedback 	 (9.22)

We calculate the nullclines by setting each rate equation equal to zero:

− −
+

=− 01 1 1

2

1
2 2k k x k x
y

K yfeedback 	 (9.23)

− −
+

=− 0.2 2 2

2

2
2 2k k y k y
x

K xfeedback 	 (9.24)

For our example we have chosen = = = =− − 11 2 1 2k k k k ; 1 2=k kfeedback feedback

20= ; and = = 0.51 2K K ; the resulting nullclines are shown plotted in the 
phase plane in Figure 9.8b.

Next we solve Eqs. 9.23 and 9.24 simultaneously and obtain the 
coordinates of the steady states, which are (to 3 significant figures) 
{0.0683, 0.732}, {0.227, 0.227}, and {0.732, 0.0683}. We can also plot 
some sample trajectories in the phase plane (Figure 9.8a) and show 
that the first and the third steady states appear to be stable—a high 
y, low x state and a high x, low-y state—and the middle steady state 
appears to be a saddle, and that is the way the steady states are 
denoted in Figure 9.8b. The +45° diagonal is the separatrix between 
the stable manifolds of the two attractors or stable steady states.

Finally, we can carry out linear stability analysis to establish what we 
have provisionally concluded about the stabilities of the three steady 
states. We define the right-hand side of Eq. 9.21 to be f, and the right-
hand side of Eq. 9.22 to be g, and write the Jacobian matrix of partial 
derivatives:
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	 (9.25)

At the first steady state, this matrix evaluates to:

− −
− −











14.6 0.811
7.71 1.37

.	 (9.26)
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The eigenvalues of this matrix are λ1 = −15.1 and λ2 = −0.911—it is 
indeed a stable steady state, since both eigenvalues are negative—
and the corresponding eigenvectors are {−0.872, −0.490}, which is a 
unit-length vector at an angle of 209.3°, and {0.0590, −0.998}, which 
corresponds to −86.6°.

At the second steady state, the Jacobian matrix is:

− −
− −











4.41 5.66
5.66 4.41

.	 (9.27)

The eigenvalues are λ1 = −10.1 and λ2 = 1.25; the steady state is a saddle, 
and it attracts faster than it repels. The corresponding eigenvectors 

are 











2

2
,

2
2

 and −











2

2
,

2
2

, so the attracting direction is the +45° 

diagonal and the repelling direction is the +135° diagonal. At the third 
steady state, λ1 = −15.1 and λ2 = −0.911, just as they were for the first 
steady state, so it is stable as well. The corresponding eigenvectors 
are {0.490, 0.872} or +60.7°, and {0.998, −0.0590} or −3.4°. Thus, we 
have a bistable system with two stable steady states and a saddle.

To make a transition from the high-x state to the high-y state, or vice 
versa, we manipulate the input to the system, which we will take to be 
k1, the rate of production of x. If we make k1 large enough, the high-
y state collides with the saddle and disappears, making the system 
monostable with only a high-x state (Figure 9.8c). Conversely, if we 
make k1 small enough, the saddle moves toward and then annihilates 
the high-x state, making the system monostable with only a high-y 
state. The result is the hysteretic input–output relationship shown in 
Figure 9.8d. Note that if we were simply to limit the minimum or 
maximum possible values of k1, we could make the system irrevers-
ible rather than hysteretic.

9.6 � PERFECT SYMMETRY CAN PRODUCE A 
PITCHFORK BIFURCATION

To push our double-negative system from one state to the other, we 
varied the relative values of k1 and k2. When k1 (the rate of x synthe-
sis) was large enough, the high-x state predominated; when the two 
were equal, both the high x and the high y states co-existed; and when 
k1 was small enough, the high y-state predominated. This makes intu-
itive sense.

Let us consider another way that the parameters of the system might 
be regulated by some input—let us suppose that the input makes 
x better at inhibiting the production of y and y better at inhibiting 
the production of x. For example, x and y could be transcriptional 
inhibitors, and the input could be something that promotes the trans-
location of both x and y to the nucleus. This is modeled in Figure 9.9; 
we start with = = = =− − 11 2 1 2k k k k  and = = 0.51 2K K , set =1 2k kfeedback feedback , 
and vary the feedback strength. The resulting nullclines and steady 
states are shown in Figure 9.9a. When the feedback strength is zero, 
neither species affects the expression of the other. The result is a blue 
vertical line for the x-nullcline, and the green horizontal line for the 
y-nullcline, which yields a single stable steady state at {1, 1}. When 
the feedback strength increases to 1, the steady state moves down 
the diagonal to about {0.622, 0.622}—still a single stable steady state. 
But then at kfeedback ~10, something remarkable happens; the steady 
state splits in three, yielding two alternative stable steady states, 
one with high x and one with high y, and a saddle on the diagonal. 
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As kfeedback increases further, the high x and high y states move farther 
apart. This behavior can be seen in the phase plane plot (Figure 9.9a) 
and in the input–output plot (or, if you prefer, one-parameter bifurca-
tion diagram) shown in Figure 9.9b.

The transition that takes place at kfeedback ~10 is called a pitchfork 
bifurcation, because the curves shown in Figure 9.9b sort of look 
like a pitchfork, and it is designated by the Greek letter Ψ, because Ψ 
resembles a pitchfork. (In cardiology, the splitting of a blood vessel into 
three is called a trifurcation, which makes etymological sense, but in 
nonlinear dynamics the term bifurcation is used). A familiar example 
of a pitchfork bifurcation from everyday life would be a vertical ruler 
being pushed on from above; above some critical strength of push, 
the straight ruler becomes unstable and two alternative bowed states 
become stable (Figure 9.10a). Related processes in biology include 
the buckling of epithelial sheets (Figure 9.10b) as well as certain sign-
aling processes. For example, the Notch protein and its ligand Delta 
are cell surface proteins involved in a phenomenon termed lateral 
inhibition. Delta on one cell can repress, via its binding to Notch, the 
expression of Delta in its neighbors (Figure 9.10c). At low expression 
levels, the antagonistic Delta proteins on adjacent cells may be able 
to co-exist, but once the mutual inhibition becomes strong enough, 
in theory the system will traverse a pitchfork bifurcation and one or 
another of the two cells will win out.
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Figure 9.9  Pitchfork bifurcation. (a) Nullclines and steady states for a double-negative feedback system where the strength 
of x’s inhibition of y and y’s inhibition of x (kfeedback) is varied together. (b) One-parameter bifurcation plot showing a transition 
between one stable steady state and three steady states at kfeedback ~ 10 units. At this pitchfork bifurcation, the middle state (with 
x = y) becomes a saddle and the stable high-x and high-y states appear.
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Figure 9.10  Pitchfork bifurcations in mechanics and signaling. (a) The bending of a ruler. (b) The buckling of an epithelial 
sheet. (c) Lateral inhibition through the Notch/Delta system.
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9.7 � IN THE ABSENCE OF PERFECT SYMMETRY, 
A PITCHFORK BIFURCATION MORPHS INTO 
A SADDLE-NODE BIFURCATION

The pitchfork bifurcation seen in Figure 9.9 arose because we assumed 
that the system was perfectly symmetrical. What would happen if 
the symmetry was not quite perfect? This is shown in Figure 9.11,  
where we have assumed that the synthesis rates of x and y are close 
but not exactly the same (k1 = 1 vs. k2 = 1.01). The answer is that the 
pitchfork bifurcation changes into a saddle-node bifurcation. As the 
feedback strength is increased, the steady state value of y falls, as it 
did in Figure 9.7, but when the critical feedback strength is reached, 
a new steady state appears and splits into a saddle and a stable low-y 
state, and the high-y state moves back upward (Figure 9.11). There is 
no chance for the system to switch from its initial state to the low-y 
state; it was destined for the high-y state right from the start thanks 
to the slightly higher rate of synthesis of y. Of course if there is any 
noise in the system—for example, fluctuations in the concentrations 
of x and/or y—it might be possible for the system to jump from one 
stable steady state over the intervening saddle and into the alternative 
stable steady state. The smaller the difference is between the k1 and 
k2, the easier it is for the system to jump between states and the more 
the saddle-node bifurcation behaves like a pitchfork bifurcation.

SUMMARY
Here we have shown how positive feedback and double-negative feed-
back can give rise to bistability in models with two time-dependent 
variables, where rate-balance analysis is not applicable. We identify 
the steady states by plotting nullclines in the phase plane and look-
ing for their intersection points. And we analyze the stability of the 
steady states through linear stability analysis. This involves setting up 
a Jacobian matrix of partial derivatives, evaluating the derivatives at 
the steady states, and then calculating the eigenvalues and eigenfunc-
tions of the matrix. The same approach can be taken for systems with 
more than two variables, although it is harder to visualize a higher 
dimensional phase plot.

Linear stability analysis will continue to be an important tool when 
we analyze oscillators in Chapters 14 and 15 and excitable systems 
in Chapter 16.
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Figure 9.11  Imperfect symmetry 
changes a pitchfork bifurcation to 
a saddle-node bifurcation. Here we 
assumed k1 = 1 and k2 = 1.01. The other 
parameters for the x and y rate equations 
are identical to those used in Figure 9.9.
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INTRODUCTION
Along the way to formulating our bistable model of Mos and ERK2 
regulation during Xenopus oocyte maturation (Chapter 8), we exam-
ined a model with Michaelian rather than ultrasensitive responses in 
the positive feedback loop. We discarded this model because it did 
not yield bistability and did not account for the system’s all-or-none, 
irreversible responses. But positive feedback does not always involve 
ultrasensitivity, and bistability is not the only useful behavior that can 
emerge out of a positive feedback system.

Here we will explore two examples of this, both taken from biology, 
although not cell signaling biology. The first is liquid–liquid phase 
separation, a process that can concentrate proteins and other cell 
components in functional compartments that lack membrane bound-
aries. The second is the spread of an infectious disease through a 
population. In both cases, positive feedback yields a system with a 
critical point, above which you get one kind of behavior (phase sepa-
ration in the one case and pandemic disease spread in the other) and 
below which you get another (no phase separation in the one case 
and sporadic disease in the other).

LIQUID–LIQUID PHASE 
SEPARATION

10.1 � LIQUID–LIQUID PHASE SEPARATION 
CAN PRODUCE DISCRETE FUNCTIONAL 
DOMAINS THAT LACK MEMBRANES

The current interest liquid–liquid phase separation arose in part out 
of the realization that P granules, which are protein- and RNA-rich 
species that localize to one pole of a fertilized C. elegans egg, behave 
more like liquid droplets than solid granules. They are spherical, they 
flow and fuse, and their contents are more dynamic than would be 
expected in a solid.

To explain why these liquid droplets maintain a discrete identity even 
though they are not separated from the bulk cytoplasm by a mem-
brane, it was proposed that they represent a distinct liquid phase, 
just as oil droplets dispersed in water are. The significance of being 
a phase-separated compartment is that it potentially promotes bind-
ing processes and reactions among components of the compartment 
while minimizing off-target interactions with components of the bulk 
cytoplasm. A number of other membraneless cell compartments have 
also been proposed to be separated liquid phases, including nucleoli, 
centrosomes, and heterochromatin.

Here we aim to understand the mechanism of liquid–liquid phase 
separation better by modeling it. Phase separation is often modeled 
by starting with an expression for the free energy or the chemical 
potential of the system, and then working out what is needed for the 
system to be in equilibrium. However, there is a simple rate equation 
approach, similar to what we have been doing for cell signaling pro-
cesses, which allows both the equilibria and dynamics of the process 
to be explored. This theory is a good way for biologists to begin to 
explore these fascinating processes.
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10.2 � PHASE SEPARATION CAN BE MODELED BY 
A SINGLE RATE EQUATION WITH POSITIVE 
FEEDBACK AND A TRANSCRITICAL 
BIFURCATION

Figure 10.1 shows a simple scheme for a phase separation process. 
We suppose that there is a species that can slowly equilibrate between 
the well-mixed bulk cytoplasm and a single phase-separated liquid 
droplet, and we assume that this species is the main macromolecu-
lar component of the droplet. We initially consider a single but will 
extend the model to multiple droplets later.

We call the equilibrating species x when it is in the cytoplasm and x* 
when it is in the droplet. And, finally, we will assume that each com-
partment is spatially homogeneous. With these assumptions, we can 
model the two-compartment system with an ODE that describes the 
exchange of the species between the compartments.

The rate of association of x with the droplet should be proportional to 
x and to the surface area of the droplet (since the molecule x would 
have to interact with the surface of the droplet to enter it). If the vol-
ume of the droplet is proportional to x*, then the surface area of a 
spherical droplet will be proportional to ( )* 2/ 3x . Thus it follows that:

( *)1
2/3Association Rate k x x= ⋅ 	 (10.1)

The rate at which x* is lost back to the cytoplasm is assumed to be 
proportional to the surface area of the droplet. It follows that:

( *)1
2/3Dissociation Rate k x= − 	 (10.2)

The net rate of production of x* is therefore:

*
( *) ( *) .1

2/3
1

2/3dx
dt

k x x k x⋅ − ⋅− 	 (10.3)

We can eliminate the variable x using the conservation equation 
*x x xtot = + :

( )( ) ( )= − − −
*

* * * .1
2/ 3

1
2/ 3dx

dt
k x x x k xtot 	 (10.4)

This is our one-ODE model of the equilibration of a species x between 
the bulk cytoplasm and phase-separated liquid droplet. Note that 
there is positive feedback in the production of x*; the bigger the drop-
let is, the faster it grows.

At equilibrium, the time derivative must be zero:

0 ( *) ( *) ( )1
2/3

1
2/3K x x x k xtot= − ⋅ − ⋅− 	 (10.5)

There are two solutions for the equilibrium concentration of x*. Either

= 0*xeq 	 (10.6)

or

x*x
x*

x*
x*
x*

x*
x*

x*

x*
x*

x*x*

x*
x*

x*

x*

Bulk
cytoplasm

Condensed
droplet

k1x x *( )2/3

k 1 x *( )2/3

Surface area x *( )2/3

Figure 10.1  Schematic view of the 
equilibration of a macromolecule 
between the cytoplasm and a 
condensed droplet.
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= − − .* 1

1

x x
k
keq tot 	 (10.7)

Note that the rate constants enter into the equilibrium solutions only 
as their ratio, and the ratio is the equilibrium constant for the process.

The first solution (Eq. 10.6) is valid for any value of xtot. However, the 
second solution (Eq. 10.7) only applies when ≥ − /1 1x k ktot , because it 
yields negative values for x* when < − /1 1x k ktot . Thus, as shown in 
Figure 10.2a, the system has a single equilibrium, with x* = 0, when 
xtot is less than a critical concentration given by xcrit = k−1/k1, and two 
equilibria when xtot > k−1/k1.

Likewise, we can plot the equilibrium concentration of x as a function 
of xtot (since x = xtot − x*) (Figure 10.2b). The equilibrium concentration 
of x grows with xtot until xtot reaches k−1/k1, and it then splits to either 
plateau at that value or continue rising with xtot.

To determine which of the equilibria are stable, we can carry out 
rate-balance analysis, since it is a one-variable system. To this end 
we plot Eqs. 10.1 and 10.2 and look for where the two rate curves 
intersect each other. Figure 10.2c,d show rate–balance plots for two 
values of xtot, one below the critical concentration (xtot = 0.5 k−1/k1) 
and one above it (xtot = 1.5 k−1/k1). In the first case, there is one inter-
section point between the two rate curves, at x* = 0, and it represents 
a globally stable equilibrium; perturb the system to the right and the 
dissociation rate will exceed the association rate, and so the system 
will return back toward that equilibrium. In the second case, there 
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Figure 10.2  The behavior of a one-ODE model of equilibration of a species between the bulk cytoplasm and 
a condensed droplet. (a, b) The condensed phase (a) and the dispersed phase (b) as a function of xtot. The solid red lines 
represent stable equilibria and the dashed red lines unstable equilibria. TC designates the transcritical bifurcation where the 
single equilibrium splits into two, and where the condensed droplet appears. (c, d) Rate-balance analysis, showing the association 
and dissociation rates as a function of x*, the amount of x in the condensed droplet, for one concentration of xtot below the 
transcritical bifurcation (c) and one above it (d).
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are two intersection points, at x* = 0 and 0.5. The x* = 0 equilibrium 
is now unstable; perturb the system to the right of x* = 0 and the 
association rate exceeds the dissociation rate, so that the system 
will move further to the right toward the x* = 0.5 equilibrium, which 
is stable.

Thus, when the total concentration of x is less than a critical value of 

= −1

1

x
k
kcrit , the system has one equilibrium, with = 0*xeq  and =x xeq tot,  

and it is a stable equilibrium. The system also has only one phase: all 
of the x is in the bulk cytoplasmic phase and none of it is in a con-
densed droplet.

But when the total concentration of x is greater than = −1

1

x
k
kcrit , the 

system has two equilibria: an unstable equilibrium with = 0*xeq  and 

=x xeq tot, and a stable equilibrium with = − −* 1

1

x x
k
keq tot , and = −1

1

x
k
keq . 

This means that when xtot is above the critical concentration there 

will be a constant concentration of x in the bulk phase, irrespective 
of the total concentration of x, as long as the dispersed phase is not 
in the supersaturated unstable equilibrium state. Momentary changes 
in x will be buffered by opposing movements of x into or out of the 
condensed phase, a potential mechanism for keeping free protein 
concentrations constant in the face of fluctuations in their production 
rate. This has been proposed as a mechanism for suppressing noise in 
biological processes mediated by x in the bulk cytoplasm.

Note that = −1

1

x
k
kcrit  represents a critical point in two senses. It is where 

the single stable equilibrium bifurcates into an unstable equilibrium 
and stable one, a type of bifurcation referred to as a transcritical 
bifurcation. It is where the system goes from having one (dispersed) 
phase, with no condensed droplet, to two phases (dispersed and con-

densed), with x at its maximum-possible concentration of = −1

1

x
k
k

 and 

the condensed droplet taking up all of the excess. These are the char-
acteristics of the equilibria in our simple model of liquid–liquid phase 
separation.

What if we were to assume that x was equilibrating not with just one 
droplet, but several, or many? In this case we could write a rate equa-
tion for each droplet:

( )( ) ( )= − − − − − −

1
*

1 1
*

2
* *

1
* 2/ 3

1 1
* 2/ 3dx

dt
k x x x x x k xtot n 	 (10.8)

( )( ) ( )= − − − − − −

2
*

1 1
*

2
* *

2
* 2/ 3

1 2
* 2/ 3dx

dt
k x x x x x k xtot n 	 (10.9)

…

( )( ) ( )= − − − − − − ,
*

1 1
*

2
* * * 2/ 3

1
* 2/ 3dx

dt
k x x x x x k xn

tot n n n 	 (10.10)

where the variables of the form *xn represent the amount of the x spe-
cies in the nth droplet. The system will still have an equilibrium when 
all of the *xn variables are zero in concentration, and the system will 
have another equilibrium when the total concentration of x* in all of 

the droplets is equal to ( ) = − −* 1

1

x x
k
ktot eq tot . There is still a critical point 

= −1

1

x
k
kcrit  where the system transitions from having a single dispersed 
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phase to having coexisting droplets and dispersed x. Thus, the model 
is completely agnostic about how the x molecules are distributed 
among the droplets.

10.3 � THE TIME COURSE OF DROPLET 
FORMATION IS SIGMOIDAL

So far we have considered the system’s equilibria; its dynamical 
properties are interesting as well. Suppose that we start with xtot = 0 
and x* = 0, and then step xtot up above the critical point. In principle 
the system can stay in the unstable x* = 0 state indefinitely, but it 
is supersaturated; any fluctuation that results in the production of 
a little x* will result in a transition to the stable equilibrium, with 

= − −* 1

1

x x
k
keq tot  and = −1

1

x
k
keq . Because the two rate curves are close 

together when x* is close to zero, and then get farther apart as x* 
grows (Figure 10.2d), the time course for such a transition will be 
sigmoidal (Figure 10.3); there will be a time lag in the production of 
the condensed phase. The time course makes it appear that the pro-
cess consists of an initial slow nucleation phase followed by a rapid 
growth phase and then saturation, but note that our model did not 
assume that it is more difficult to add the first couple of x molecules 
to the condensed phase than the 100th or 1000th. Instead the slow 
initial kinetics emerge from the dynamical properties of a system 
with positive feedback.

To sum it up, the main features of this simple model of liquid–liquid 
phase separation are: (1) at equilibrium, there will be a condensed 

phase only if the concentration of xtot is above a critical value given 

by = −1

1

x
k
kcrist ; (2) when the condensed phase does exist, the bulk 

cytoplasmic concentration of x is a constant maximal value; (3) super-
saturation of the cytoplasm is possible, although the supersaturated 
state is unstable; and (4) there will be a temporal lag in the production 
of the condensed phase from a dispersed system. All of these predic-
tions are characteristic of a positive feedback system that traverses a 
transcritical bifurcation.
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Figure 10.3  The dynamics of droplet growth above the transcritical 
bifurcation. Here we have assumed that we are above the transcritical 
bifurcation (at xtot = 1.5 k−1/k1, as in Figure 10.2d), and the system begins with 
various low concentrations of x*. The assumed parameters for the simulation 
were k−1 = k1 = 1.
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10.4 � THE SAME PRINCIPLES UNDERPIN THE 
FORMATION OF PHOSPHOLIPID VESICLES

Decades before it was appreciated that membraneless organelles such 
as P granules and nucleoli might represent discrete liquid phases, it 
was known that certain phospholipids could, when dispersed in water, 
self-organize into micelles or vesicles, and the vesicle membranes 
resembled natural biological membranes in terms of their structure 
and permeability properties. A schematic of the process is shown in 
Figure 10.4.

To model this process, note that the situation is very similar to that 
shown in Figure 10.1, except that if the phospholipid vesicle is hol-
low and there is a single bilayer, its surface area will be proportional 
to x* rather than to (x*)2/3. It follows that the rate equation for the 
system is:

= − − −( ) ,
*

1
*

1
*dx

dt
k x x k xtot 	 (10.11)

and the equilibrium solutions are:

= = − −0 and .* * 1

1

x x x
k
keq eq tot 	 (10.12)

Thus once again we have one equilibrium ( = 0*xeq ) when xtot is below a 
critical value of k−1/k1, which, in this case, is usually termed the criti-
cal micelle concentration; a transcritical bifurcation when xtot = k−1/k1; 
and then coexisting vesicle and monomer phases when xtot is above 
the critical micelle concentration. Once again the model makes no 
predictions about whether one or many vesicles will form, or of the 
size distribution of the vesicles.

INFECTIOUS DISEASE

10.5 � THE SIR (SUSCEPTIBLE-INFECTED-
RECOVERED) MODEL EXPLAINS WHY 
INFECTIOUS DISEASES SOMETIMES 
SPREAD EXPLOSIVELY

As I write (May 2020) the world is in the grip of the SARS-CoV-2 
coronavirus, which is causing the COVID-19 pandemic. Modeling 
the spread of the virus is of obvious importance for planning mitiga-
tion strategies and allocating resources, and several different types 
of models have been proposed. One category is statistical models, 
which use data from countries that experienced early outbreaks to 
try to predict the course of later outbreaks. A second is agent-based 
modeling, where individual members of the population are treated 
individually. The third is ordinary differential equation modeling, very 
similar in flavor to the modeling we have been carrying out for signal 
transduction. As usual, ODE models are particularly useful for under-
standing the basic principles of the disease, including its dynamics 
(will the disease explode in my neighborhood, or just fizzle out?) and 
its steady-state behavior (what proportion of the population will ulti-
mately be infected?), and so we will work through one of these models 
here, the SIR model.

Bulk
solution

Vesicle

x

x*

k1x x *

k 1x *

Surface area     x *

Figure 10.4  Schematic view of the 
equilibration of a phospholipid 
between a bulk solution phase and 
a vesicle.
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The SIR model was developed in the 1920s by the Scottish epidemiol-
ogists Anderson Gray McKendrick and William Ogilvy Kermack. In its 
simplest form, the model divvies up the population (of a city, a county, 
a country, or the earth) into three compartments or well-mixed pools 
(Figure 10.5). Those who are susceptible to the disease are said to be 
in the S pool, and in our case that is initially everyone, since for a new 
disease like COVID-19 the expectation is that none of us are immune. 
Those who have caught the virus and are infectious are in the I pool. 
Those who had caught the virus but are no longer infectious, either 
because they have recovered to health and immunity or have died, are 
in the R pool. The conversions from S to I and I to R are assumed to 
be one-way processes.

With these assumptions stated, we can write equations for the rates of 
infection and recovery. We assume that the rate of infection is directly 
proportional to the fraction of the population that is susceptible (S) 
and the fraction that is contagious (I):

= ⋅ .1rate of infection k S I 	 (10.13)

Note that there is positive feedback built into this expression: the rate 
of infection goes up as the fraction of the population that is infected 
(and infectious) goes up.

The rate of recovery is proportional to I:

= .2rate of recovery k I 	 (10.14)

We can then combine Eqs. 10.1 and 10.2 to yield ordinary differential 
equations (rate equations) for the net rate of change of each of the 
three time-dependent species (S, I, and R):

= − ⋅1

dS
dt

k S I	 (10.15)

= ⋅ −1 2

dI
dt

k S I k I 	 (10.16)

= .2

dR
dt

k I 	 (10.17)

In addition, we have a conservation equation:

+ + = 1S I R 	 (10.18)

This constitutes the SIR model of infectious disease spread.

10.6 � THE SIR MODEL PREDICTS EXPONENTIAL 
GROWTH FOLLOWED BY EXPONENTIAL 
DECAY

Figure 10.6 shows the time course for a modeled infection, assuming 
rate constants and initial conditions that are probably reasonably close 
to what was initially true for the COVID-19 pandemic: k1 = 2.4 week−1 
and k2 = 1.2 week−1. The model shows an initial exponential rise in 
infections, which peak and then fall, with the fall eventually approach-
ing a negative exponential. The rise is quicker than the fall. Ultimately 
about 80% of the population becomes infected, and then recovers (or 
dies), whereas 20% never become infected and remain susceptible.

Susceptible (S) Infected (I) Recovered (R)

+

Figure 10.5  The SIR model of 
infectious disease. Individuals in 
the population get transferred from 
susceptible (S) to infected (I) to recovered 
(R) pools through one-way processes.
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To understand why the rise is initially exponential, we focus on  
Eq. 10.16, which is perhaps easier to understand when rearranged:

( )= − .1 2

dI
dt

k S k I 	 (10.19)

Both S and I are time-dependent variables, but at least initially the 
susceptible population will not change much from its initial value 
S[0] = 1, and so we can assume S = S[0]. This assumption allows us to 
solve Eq. 10.19, and the solution is a simple exponential function:

= ( )−[ ] [0] .[0]1 2I t I e k S k t 	 (10.20)

If >[0]1 2k S k , which for our case means >1 2k k , we have an increasing 
exponential function. Infections will grow exponentially with a dou-

bling time τ =
−

Ln[2]

1 2k k
, which agrees with what is seen in our modeled 

time course (Figure 10.6). However, if >2 1k k , we have a decreasing 
exponential and infections will fall exponentially, with a half-time 

τ =
−

Ln[2]

2 1k k
. Thus, it makes a huge difference whether the ratio k1/k2 is 

greater than or less than 1.

At the end of the outbreak shown in Figure 10.6, S becomes nearly 
constant again, this time with = ∞[ ]S S . From Eq. 10.19 it follows that:

= ( )∞ −[ ] [0] .[ ]1 2I t I e k S k t 	 (10.21)
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Figure 10.6  Simulated infection dynamics for the COVID-19 pandemic 
according to the SIR model. We have assumed an infection rate constant k1 
of 2.4 infections per week and a recovery rate constant k2 of 1.2 per week, which 
means that R0, the basic reproduction number, is 2. We have also assumed that 
no quarantines or social distancing measures are adopted, so that R0 remains 
equal to 2 throughout the course of the infection. Finally, we assumed that at 
time zero there was one infected individual in a population of 330,000,000—the 
population of the United States.
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Since we assumed k1 to be twice as big as k2, and S[∞] proved to be 
0.2, ∞ −[ ]1 2k S k  is negative and we have exponential decay of the infec-
tion. Because ∞ <[ ] [0]S S , the exponential decay will be slower than the 
exponential rise was. Again, this agrees with what the simulated time 
course shows (Figure 10.6).

10.7 � THE BASIC REPRODUCTION NUMBER R0 
DETERMINES WHETHER AN INFECTION 
WILL GROW EXPONENTIALLY

The ratio of k1–k2 is critical for determining whether the infection 
will initially grow exponentially or decline exponentially, and it is 
traditionally termed R0 (R naught). R0 specifies how many secondary 
infections, on average, are going to be produced from each primary 
infection when 100% of the population is susceptible to infection. It is 
often referred to as the basic reproduction number for the virus (so R 
here stands for “reproduction number,” not “recovered fraction”; it is 
a bit confusing to have two different capital R’s in the equations, but 
this is standard nomenclature). However, note that its value depends 
both on the intrinsic properties of the virus and the behavior of the 
susceptible and infectious populations. For COVID-19, R0 is estimated 
to be 2–3; for comparison, R0 ≈ 1.3 for influenza, a less highly conta-
gious disease. Note that with an R0 = 1.3 infection, in 10 “generations” 
one initial infection will yield a total of 1.310 ≈ 14 cases, whereas with 
R0 = 2 there will be 210 = 1,024 cases and with R0 = 3 there will be 59,049 
cases. Thus, small changes in R0 can yield huge changes in the dis-
ease’s dynamics.

To highlight the importance of R0, Eq. 10.19 is often written as:

( )= − 1 .2 0

dI
dt

k R S I 	 (10.22)

If the product R0S is greater than one, the disease will grow exponen-
tially; if it is smaller than one, the disease will fizzle out.

With COVID-19, S[0] is believed to have been equal to approximately 1 
through at least the first half of 2020. Eventually, as more and more of 
the population becomes infected, recovered, and (we hope) immune, 
or immunized and immune, the value of S will fall. For an R0 = 2 dis-
ease (the optimistic estimate for COVID-19), once S falls below 0.5, a 
new spark of infection would fizzle out rather than growing exponen-
tially. This is an illustration of the concept of herd immunity; if half of 
the people that you, as an unwittingly infected and infectious person, 
interact with are not susceptible to the virus, then a new spark of dis-
ease will likely fizzle out rather than explode in an epidemic fashion. 
The minimum proportion of the population that must be immune in 

order to get herd immunity is −1
1

0R
. So if COVID-19 has an R0 of 3, 

the more pessimistic end of the range, then herd immunity will kick 
in once 2/3 of the population is immune. And for a disease like mea-
sles, mumps, or chicken pox, which have R0 values of at least 12, the 
immune population must be at least 92% to ensure against a new 
epidemic. This is why people who opt not to be vaccinated against 
diseases like measles, or not to have their children be vaccinated, can 
be a substantial danger to themselves, their children, and their neigh-
bors (especially if their neighbors cannot be vaccinated for one reason 
or another). They are providing tinder that will allow the infection to 
spread like a blaze.
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10.8 � THE PROPORTION OF THE POPULATION 
THAT WILL ULTIMATELY BECOME 
INFECTED DEPENDS ON R0

At first you might think that an epidemic would eventually infect 
every susceptible member of a population, like a fire that burns every 
flammable twig, or you might think that for an R0 = 2 infection, the 
epidemic would ultimately affect only half the population, since once 
S falls to 0.5, the product R0S falls below one. But this is not what our 
time course showed—with R0 = 2 we ended up with 80% of the popula-
tion infected and recovered, with 20% remaining susceptible. To see 
why this is the case, we need to derive an expression for the steady-
state fraction of the population that will become infected (Rss or R[∞]) 
as a function of the model’s parameters.

Normally the way we find the conditions required for steady state is to 
set all of the derivatives in the model equal to zero, since steady state 
occurs when none of the time-dependent variables are changing with 
time. Eqs. 10.15 − 10.18 become:

= − ⋅0 1k S I	 (10.23)

= ⋅ −0 1 2k S I k I 	 (10.24)

=0 .2k I 	 (10.25)

From Eq. 10.24, we can see that Iss = 0, no matter what the choice of  
k1 and k2 was. However, these equations do not yield any information 
on the steady-state fraction of the population in either the S or the R 
pool. We need a different approach.

For this we go back to the rate equations. If we divide Eq. 10.15 by  
Eq. 10.17, we get:

=
− ⋅

= − = − .1

2

1

2
0

dS
dt

dR
dt

k S I
k I

k
k

S R S 	 (10.26)

Keep in mind that R0 is not R; the former is the basic replication num-
ber (which is k1/k2) and the latter is the fraction of the population 
in the recovered pool. Rearranging, integrating, and exponentiating 
both sides, we get:

∫ ∫= − 0

dS
S

R dR	 (10.27)

= − +Ln 0S R R C	 (10.28)

= ( )− −[ ] [0] .[ ] [0]0S t S e R R t R 	 (10.29)

We have chosen the constant of integration such that S[t] = S[0] when 
t = 0. In the case of COVID-19, S[0] was believed to be initially 1—none 
of us had encountered the virus previously, so none of us had antibod-
ies to it and all of us were susceptible—and R[0] is 0. Even after we 
move a few individuals in the S pool into the I pool to start the infec-
tion, S[0] will still be very close to 1. Thus:

= −[ ] .[ ]0S t e R R t 	 (10.30)
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This defines the relationship between R and S at any time point. Now 
since ∞ =[ ] 0I  and S + I + R =1, it follows that as t → ∞,

− ∞ = − ∞1 [ ] .[ ]0R e R R 	 (10.31)

Equation 10.31 is a transcendental equation with a single variable, 
R[∞], and a single parameter, R0. For a given value of R0, it implicitly 
defines the value of R[∞]. The equation cannot be solved in closed 
form, although it can be solved in terms of a particular named func-
tion, the Lambert W function or product logarithm. For example, if you 
ask Mathematica to solve Eq. 10.31, this is what you will get:

∞ = + − 
−[ ] 1

1
ProductLog .

0
0

0R
R

R e R 	 (10.32)

However, even without delving into the properties of product loga-
rithms, we can get a good idea of how ∞[ ]R  varies with R0 through a 
graphical approach.

We plot the expressions on the left- and right-hand sides of Eq. 10.31 
as functions of ∞[ ]R ; ∞[ ]R  is on the x-axis and − ∞ − ∞1 [ ] and [ ]0R e R R  on the 
y-axis (Figure 10.7a). When the two curves intersect, the left-hand 
side of Eq. 10.31 equals the right-hand side, and the value of ∞[ ]R  at the 
intersection is its steady-state value.

Repeating this for various assumed values of R0, we see that if R0 is less 
than or equal to 1, there will be a single intersection point, at ∞ =[ ] 0R . 
Nobody gets infected (at least in the limit where I[0] is infinitessimal), 
and nobody needs to recover. However, once R0 exceeds 1, the curves 
have two intersection points (Figure 10.7a), meaning that Eq. 10.31 
has two solutions—one with ∞ =[ ] 0R  and the other with ∞ >[ ] 0R . The 
higher the value of R0, the higher this second steady-state value of ∞[ ]R  
is (Figure 10.7b). The system undergoes a transcritical bifurcation at 
R0 = 1, where it goes from having a single steady state to two. Below the 
bifurcation point, the ∞ =[ ] 0R  steady state is stable as indicated by the 
solid line in Figure 10.7b; above it, the ∞ =[ ] 0R  steady state is unstable 
(dashed line) and ready to explode to the stable ∞ >[ ] 0R  steady state 
(solid curve) upon the introduction of a single infected individual.

Thus, the basic replication number R0 determines what proportion of 
the population will eventually get the disease, and, since some propor-
tion of those who get the disease will die, it determines the fatalities as 
well. When R0 is below 1, almost no one will get the disease (exactly no 
one if I[0] = 0 and S[0] = 1, and a small but non-zero number if, say, I[0] = 1 
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Figure 10.7  The final infection toll as a function of R0. (a) Solving the transcendental equation − ∞ = − ∞1 [ ] [ ]0R e R R  
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ultimately be infected, R[∞], as a function of R0. There is a transcritical bifurcation (designated TC) at R0 = 1.
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person in a population of 330 million, the current US population, and 
S[0] = 329,999,999/330,000,000). As R0 rises above 1, the proportion 
that will ultimately become infected rises, so that when R0 = 2, ulti-
mately 80% of the population will be expected to become infected. Note 
that this proportion is larger than that required to obtain herd immunity 
(which was 50%). This is because a rapidly-spreading infection infects a 
substantial number of people even after the fraction in the susceptible 
pool has fallen below the threshold required for exponential growth.

10.9 � MANIPULATING R0 CAN DELAY AN 
EPIDEMIC, DECREASE THE PEAK, AND 
DIMINISH THE FINAL NUMBER OF 
INFECTED INDIVIDUALS

Note that even though R0 is called the basic reproductive number of 
the virus, its value depends both upon the biology of the virus and 
on the behavior of the infected population. So if a virus has a value 
of R0 = 2 when a population’s physical interactions are at baseline, 
decreasing encounters within the population by a factor of, say, 3 will 
decrease R0 to 2/3, well below the threshold required for exponential 
growth and epidemic spread. This is why public health officials and 
epidemiologists put so much emphasis on measures to decrease R0, 
like masks and stay-at-home orders.

Figure 10.8 shows how the time course of the disease would be 
expected to change if a country instituted a social distancing policy 
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that reduced the number of secondary cases per primary case from 
its nominal value of R0 ≈ 2 to something less. A relatively modest 
decrease in R0, from 2 to 1.5, would delay the epidemic and “flatten 
the curve,” shifting the peak of infections from 16 weeks to 31 weeks 
and decreasing the peak height from 15% to 6% (Figure 10.8). This 
would not only buy the country some time but also make it so that the 
worst days of the infection were less likely to overwhelm the health-
care system and therefore improve the ultimate mortality rate.

Moreover, the proportion of the population that would ultimately 
be infected (and hence the proportion that would ultimately die of 
the infection) would drop, from 80% to 58% (Figure 10.8). This is 
an improvement—58 million infections is certainly better than 80 
million—but this hypothetical scenario is still catastrophic; it would 
result in hundreds of thousands of deaths.

But if R0 can be lowered to 1 or less, something remarkable happens: 
the peak of infected individuals vanishes, and the proportion of the 
population that will ultimately become infected drops precipitously. 
The disease fizzles out instead of growing exponentially. For R0 = 1, an 
initial case of one individual in a population of 330 million would ulti-
mately result in ~26,000 cases—only 0.008% of the population (Figure 
10.8). If R0 = 0.5, our initial case would, on average, result in only a 
single additional case.

Of course this is all predicated on the assumption that the SIR model 
is actually applicable to real diseases like the COVID-19 pandemic. To 
be sure, some of the assumptions built into the model are suspect. For 
example, the model assumes that the population of the county, state, 
country, or whatever, is a well-mixed system, where every person 
interacts with every other person on the time scale of the epidemic. 
This is clearly not true—there is spatial structure to the evolving epi-
demic. But the most basic lessons of the model, that the infectiousness 
of a virus determines whether the infection will fizzle out or explode 
and that the infectiousness also determines the fraction of the popula-
tion that will ultimately become infected, probably are true.

SUMMARY
Here we have examined two different examples of biological pro-
cesses that involve positive feedback but not bistability: liquid–liquid 
phase separation and the spread of an infectious disease. In both 
cases, the modeled system undergoes a dramatic change in behavior 
at a critical point, a transcritical bifurcation.

In liquid–liquid phase separation, positive feedback is present because 
the larger the separated phase, the faster it takes up more dispersed 
molecules. The critical point, above which the separated phase 
becomes able to persist, corresponds to the maximum solubility of 
the species x, and it is given by xcrit = k−1/k1, where k−1 is the rate con-
stant for the dissociation of x from the condensed phase and k1 is the 
rate constant for the association of x with condensed phase. When the 
total concentration of x is below xcrit, x will be dispersed throughout 
the cytoplasm or buffer and the system will have a single phase; above 
it, the system changes to an inhomogeneous, two-phase system with 
some of the x dispersed and some condensed. This basic behavior is 
shared by simple models of other condensation phenomena, includ-
ing the formation of vesicles from phospholipids.

In the spread of an infectious disease, the SIR model includes positive 
feedback because the larger the infected pool, the faster new infections 
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occur. The critical point in the model occurs when R0S[0] = 1, where R0 
is the number of secondary infections per primary infection and S[0] is 
fraction of the population that is initially susceptible to the infection. 
If R0S[0] > 1, the infections will increase exponentially, and if R0S[0] < 1 
they will fizzle out.

Thus, positive feedback can provide a system with a threshold and a 
critical point, where the traversal of a transcritical bifurcation makes 
the system switch from one type of behavior (dispersed molecules or 
a disease that fizzles out) to a second, qualitatively different behavior 
(separated phases or a disease that grows exponentially).
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11NEGATIVE 
FEEDBACK 1

Stability and Speed

INTRODUCTION
Negative feedback is ubiquitous in cellular regulation. It is probably 
most famous for its involvement in adaptation, allowing a system 
to recover after the introduction of a stimulus, and we will examine 
perfect adaptation through negative feedback in Chapter 12. Negative 
feedback can also generate oscillations and is believed to be at the 
heart of all biological oscillators. We will examine oscillations in 
Chapters 14 and 15.

Here in this brief chapter, we examine two other things that negative 
feedback can accomplish: it can make a stable steady state more sta-
ble and can allow a system to approach the steady state faster than it 
otherwise could. Both of these properties can help a system to adjust 
to an uncertain, fluctuating environment.

11.1 � NEGATIVE FEEDBACK CAN INCREASE THE 
STABILITY OF A STEADY STATE

To construct an adapting system we will need to use a model with 
at least two time-dependent variables—one-variable systems always 
approach their steady states monotonically. But even a one-variable 
system can be stabilized and speeded through negative feedback, so 
we will start with a simple one-variable, one-ODE model here.

Suppose we have a mass action synthesis-destruction system, like 
that shown in Figure 11.1a. The rate equation for the system is:
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= − − .1 1

dy
dt

k x k ytot 	 (11.1)

Species x could be an enzyme that produces a second messenger 
y from some highly abundant precursor, with y being destroyed by 
some unspecified, unregulated, unsaturated enzyme, or x could be an 
mRNA being translated by unsaturated ribosomes, and y could be the 
resulting protein product.

The rate–balance plot for this system is shown in Figure 11.1c, with a 
horizontal line for the synthesis reaction and a line of positive slope 
for the destruction reaction; it is just the same as what we had in 
Figure 6.1. Arbitrarily we have chosen k1 = k−1 = 1 for the values of the 
rate constants, and x = 500 for the concentration of the enzyme x, so 
that the steady-state value of y is given by:

=
−

,1

1

y
k
k

xss tot 	 (11.2)

is 500 (Figure 11.1c).

Next let us add a negative feedback loop to the system. We will sup-
pose that y can bind to and stoichiometrically inhibit x (Figure 11.1b). 
The rate equation for the production of y becomes:
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Figure 11.1  Negative feedback can 
stabilize steady states and speed 
responses. (a, b) Schematic view of a 
production/destruction circuit with (b) 
or without (a) stoichiometric negative 
feedback. (c) Rate–balance plots. Various 
values of the parameter K2, which bears 
on the strength of the negative feedback 
(the smaller the value of K2, the stronger 
the feedback), were chosen, and the value 
of k1 was adjusted to make the steady 
state level of y, and the flux through the 
system, equal to 500 in all cases. d) Net 
production rates as a function of the 
instantaneous concentration of y. (d) Time 
course of approach to steady-state for a 
system with negative feedback (and with 
K2 being vanishingly small) vs. no negative 
feedback.
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( )= − − − ,1 1

dy
dt

k x c k ytot xy 	 (11.3)

where cxy represents the concentration of the inhibited xy complex. 
Note that cxy is a time-dependent quantity, but if we assume that the 
equilibration of x and y with cxy is rapid compared to the synthesis and 
destruction of y, we can substitute an expression for the equilibrium 
concentration of cxy into Eq. 11.3. Assuming that the concentration of  
y is much higher than the concentration of x, so that x is depletable but 
y is not, the equilibrium concentration of cxy is given by the Langmuir 
equation:

=
+

,
2

c
y

K y
xxy tot 	 (11.4)

where K2 is the equilibrium constant for the binding of x to y. It fol-
lows that:

=
+

− − .1
2

2
1

dy
dt

k
K

K y
x k ytot 	 (11.5)

This is our one-ODE model for the production of y in the presence of 
stoichiometric negative feedback from y to x.

We can carry out a rate-balance analysis of this model and use this 
as the basis for comparing the stability of the two systems at steady 
state. We have not altered the degradation rate term, and we will 
choose k−1 = 1 again, so both models will have the same degradation 
rate curves—the blue diagonal line on Figure 11.1c. The difference 
then is the synthesis rate, which is constant in the no-feedback model 
and decreases as y increases in the negative feedback model.

Probably the fairest way to compare the stabilities of the steady states 
in the two models is to arrange that the two systems have the same 
steady-state level of output y and the same steady-state flux. Since we 
have assumed that the two models have the same destruction curves, 
this means that the value of the synthesis rate at the steady state for 
the feedback model,

+1
2

2

k
K

K y
x

ss
tot	 (11.6)

must equal the value of the synthesis rate for the no-feedback model:

′ .1k xtot 	 (11.7)

Note that since we have not assumed that the two models have the 
same synthesis rate constants—it would not be possible to make their 
synthesis rate curves meet up at the steady state if we did—we are 
calling the rate constant for the no-feedback model by a new name, 

′1k . With a little algebra we can see that the two models will have the 
same steady state value of y if we choose values for k1 such that:

= ′
+

= ′
+ ′

− .1 1
2

2
1

2
1

1

2

k k
K y

K
k

K
k
k

x

K
ss

tot

	 (11.8)

So now for our choices of ′ = 11k , =− 11k , and = 500xtot , we can choose 
various values for K2, calculate the appropriate value for k1, and 
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plot the resulting stimulus rate curves. The results are shown in 
Figure 11.1c. As the value of K2 decreases, meaning that the inhibi-
tion of x by y gets stronger, the negative slope of the stimulus rate 
curve at the steady state gets larger and larger. The steeper the curve, 
the faster the system will approach the steady state, and so the more 
stable the steady state will be.

We can calculate how much more stable the steady state is through 
the procedure introduced in Section 9.2. We define a function to be the 
net rate of production of y as a function of y. This yields:

= ′ − −1 1 1f k x k ytot 	 (11.9)

for the no-feedback model, and:

=
+

− −2 1
2

2
1f k

K
K y

x k ytot 	 (11.10)

for the model with negative feedback. These curves are plotted in 

Figure 11.1d; the parameters assumed are ′ = 11k  (for the first model), 

= 500xtot  (for both models), =− 11k  (for both models), and for the second 
model, K2 is small and k1 is given by Eq. 11.8, because this gives the 
steepest slope for the net rate curve. We can then calculate the slopes 

of the net rate curves, 1df
dy

 and 2df
dy

>, and evaluate them at = = 500y yss .  

We obtain = −11df
dy

 and = −22df
dy

. Both are negative numbers, so the 

steady state is stable for both models, and the slope for the negative 
feedback model is twice that of the no-feedback model. This means 
that the negative feedback has doubled the stability of the system.

Recall that in Section 6.2, we compared the stability of a synthesis/
destruction model to that of a phosphorylation/dephosphorylation 
cycle with the same steady-state output and flux and we found that 
the latter was twice as stable as the former. The reason for this was 
substrate depletion. Now we have shown that negative feedback can 
also double the stability of a steady state, and the reason for it can be 
viewed as enzyme depletion—inhibition of x by its product y. Negative 
feedback and depletion are conceptually similar, and both phenomena 
yield a rate equation where the time-dependent variable negatively 
affects its own rate of production. Perhaps it is not too surprising then 
that complex systems-level behaviors such as adaptation, which can 
arise from negative feedback (Chapter 12), can also arise from deple-
tion mechanisms like state-dependent inactivation (Chapter 13). We 
will see another example of this equivalence in Chapter 15 when we 
examine relaxation oscillators.

11.2 � NEGATIVE FEEDBACK CAN ALLOW A 
SYSTEM TO RESPOND MORE QUICKLY

In addition, the speed at which the system responds to a stimulus 
is substantially faster for the negative feedback system than for the 
no-feedback system, provided the two circuits have the same steady 
state. This can be seen from the rate–balance plot (Figure 11.1c) 
or the net rate plot (Figure 11.1d); the net rate at which the system 
approaches steady state is always higher, at any value of y, for the 
negative feedback system. This is because to get the two models to 
approach the same steady state, the synthesis rate constant for the 
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negative feedback system, k1, had to be substantially larger than the 

corresponding rate constant ( ′1k ).

So how much faster is the approach? For the no-feedback system, 
we have simple exponential approach to steady state with a halftime 

of  
Ln2

2
 (Figure 11.1e); this is a good gauge for how fast the system is. 

However, for the negative feedback system the approach to steady 
state is not a simple exponential. Nevertheless, we can calculate 
numerically how long the system takes to get to various levels of out-
put and compare the results to those of the no-feedback system.

To get 90% of the way to steady state, the negative feedback system 
is 2.8-fold faster. To get 50% of the way, the negative feedback system 
is 4.8-fold faster. And to get 10% of the way, the negative feedback 
system is 21-fold faster. Negative feedback has allowed the system to 
respond faster to x, especially at the start of the response when the 
feedback is weak.

It is not an exact analogy, but one way to see why negative feedback 
allows for a faster response is to think about two cars approaching 
a stop sign from a dead stop at the bottom of a little hill. The no-
feedback car is constrained to not use the brakes, so it has to start at a 
relatively low speed and let the car gradually come to a stop at the top 
of the hill. However, the negative feedback car can start fast and wait 
to apply the brakes until it is almost to the stop sign. This ability to put 
on the brakes allows the negative feedback car to go faster, especially 
at first, and to get to the stop sign faster than the no-feedback car can.

Curiously, negative feedback can also destabilize a steady state if you 
have a long enough negative feedback loop. It is this destabilization 
that allows negative feedback loops to sometimes function as bio-
chemical oscillators, and we will explore the properties of a famous 
negative feedback oscillator, the Goodwin oscillator, in Chapter 14.
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 Adaptation

INTRODUCTION
So far we have focused mainly on how signaling systems initiate a 
response. But how a system terminates a response is just as impor-
tant, and cells have evolved numerous strategies to ensure that their 
responses are not too protracted. Sometimes a cell stops responding 
by getting rid of the stimulus. This is true in the case of acetylcholine, 
the neurotransmitter that mediates the contraction of skeletal muscle 
and the relaxation of smooth muscle in the peripheral nervous system 
and functions as a neuromodulator in the central nervous system. 
Cholinergic signals are terminated largely through the hydrolysis of 
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acetylcholine by the enzyme acetylcholinesterase, and compounds 
that inhibit acetylcholinesterase are used in the treatment of 
Alzheimer’s disease and for killing insects. The effects of the neuro-
transmitters dopamine, serotonin, and norepinephrine are limited by 
degradation too, and drugs that inhibit one of the degrading enzymes, 
monoamine oxidase, are used to treat depression. These neurotrans-
mitters are also pumped back into the neuron that released them, 
and this reuptake plays a role in terminating their action. The most 
commonly prescribed antidepressants inhibit one or more of these 
reuptake pumps, and so does cocaine.

But often the signal stops before the stimulus is gone; the receptor, or 
the signaling proteins downstream of the receptor, changes in response 
to the signal in a way that limits the duration of the response. These 
changes can be viewed as adaptation, with the system adapting to the 
presence of the stimulus. If a system initially responds and then returns 
to exactly its pre-stimulus output, the adaptation is said to be perfect.

There are at least two common motifs for adapting to the presence of 
stimuli: negative feedback loops and incoherent incoherent systems. 
Another motif, state-dependent inactivation (which some consider 
to be a variation of either feedback or incoherent regulation), can 
yield adaptation as well. In Chapter 13 we will analyze examples of 
incoherent feedforward regulation and state-dependent inactivation. 
Here will start with negative feedback, and begin with one example 
from bacterial chemotaxis and a second from receptor tyrosine kinase 
signaling and the MAP kinase cascade.

BACTERIAL CHEMOTAXIS

12.1 � BACTERIA FIND FOOD SOURCES THROUGH 
A BIASED RANDOM WALK

One of the best-studied examples of adaptation in biology is chemot-
axis in E. coli. As mentioned in Chapter 1, E. coli can detect and thence 
swim toward food. The sensing is accomplished by a receptor (e.g. 
Tsr, the serine receptor, or Tar, the aspartate receptor) that is linked 
through an adaptor protein (CheW) to a histidine kinase, CheA (with 
Che standing for chemotaxis) (Figure 12.1a). The receptors are multi-
meric and clustered at the poles of the rod-shaped bacterium, which 
allows them to function cooperatively and translate small changes in 
chemoattractant concentration into large changes in receptor output.

high Asp or Serlow Asp or Ser

1 µm

Cytoplasm

Periplasmic
space

(a)

(b)

Receptor
cluster

Motor

Flagellum

Figure 12.1  Chemotaxis in E. coli. 
(a) Location of the receptors that detect 
chemoattracts and the motors and 
flagella that propel the bacterium. The 
receptors span the membrane between 
the periplasmic space and the cytoplasm, 
and are clustered at the two poles. The 
flagella and the motors that rotate them 
are located at various positions. (b) 
Swimming toward food through a biased 
random walk. The cell swims for a second 
or two, then tumbles and reorients. If 
the cell detects that the chemoattractant 
concentration is increasing, it increases the 
length of time between tumbles.
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The swimming is powered by flagella that propel the bacterium. E. coli 
has peritrichous flagella, meaning that they are present all over the 
surface of the cell rather than being confined to just one pole as is true 
of some bacteria. These flagella are rotated by a multiprotein motor, 
which can make them turn either clockwise or counterclockwise. If 
the rotation is counterclockwise, the flagella form a neat bundle, and 
they work together to propel the bacterium in a smooth, more-or-
less straight trajectory (Figure 12.1b). If the rotation is clockwise, the 
flagella fly apart and the bacterium tumbles (or “twiddles,” the word 
Berg and Brown originally used in their studies of the phenomenon). 
The tumbling bacterium changes direction, and then sets off in a new 
direction. Thus, the cell switches between two discrete modes of 
locomotion—smooth swimming and tumbling.

If a bacterium is swimming in a medium where food is present at a 
constant concentration, it will swim for a couple of seconds, covering 
~20 µm of distance, then tumble, reorient, and take off in a new direc-
tion. The turns are not completely random in direction—small turn 
angles are more common than large ones—but overall the process 
resembles a random walk, and once a few tumbles have occurred, on 
average a bacterium’s distance from its original starting point will be 
proportional to t . This is the default swimming mode of the bacterium.

But if there is a food source at some particular location, and so there is 
a spatial gradient of chemoattractant concentration (Figure 12.1b), the 
bacteria will bias their random walk. When they are going up the gradi-
ent toward the food source, they will maintain their smooth swimming 
for longer than they do when they are swimming down the gradient. 
They accomplish this biasing by increasing the time between tumbles.

12.2 � BACTERIA SUPPRESS TUMBLING IN 
RESPONSE TO CHEMOATTRACTANTS 
AND THEN ADAPT PERFECTLY

Figure 12.2 shows quantitative data on the E. coli chemotactic response. 
After addition of a sufficiently high concentration of the chemoattract-
ant aspartate, the cells rapidly suppress their tumbling, so that the 
average duration of their smooth swimming runs increases from about 
2 s to about 50 s. Then, over the next 15 min, the tumbling rate returns 
back to basal and, within experimental error, the adaptation is perfect. 

In addition, although changing the expression level of various chem-
otaxis proteins changes the basal tumbling frequency and/or the 
adaptation time of the system, the adaptation always remains perfect. 
Thus the precision of the adaptation is robust with respect to pertur-
bations in pathway components, although neither the time scale of 
adaptation nor the steady-state frequency of tumbling is. This sug-
gests that there was stronger evolutionary pressure for the system to 
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adapt perfectly than to adapt to a particular basal level of tumbling, or 
to adapt at a particular speed.

So is there a simple way to achieve perfect adaptation in receptor 
signaling, compatible with what is known about the downstream bio-
chemistry of this two-component signaling system? 

12.3 � A PLAUSIBLE NEGATIVE FEEDBACK MODEL 
CAN ACCOUNT FOR PERFECT ADAPTATION

The prevailing model was introduced by Barkai and Leibler and fur-
ther explored by Alon, Leibler, and colleagues; here we will expand 
on Alon et al.’s approach. The basic logic of the model is shown in 
Figure 12.3a and in more molecular detail in Figure 12.3b.

The model begins with the chemotaxis receptor/histidine kinase 
complex. For the chemoattractant aspartate, the relevant receptor is 
Tar, and it is linked through the CheW adaptor protein to the histidine 
kinase CheA. This complex can be considered a single functional unit. 
Next, it is assumed that three states are possible for the receptor com-
plex. In the first state, the receptor is methylated and is not bound to 
aspartate. This is the active form of the receptor. In the second state, 
the methylated receptor is bound to aspartate. This is an inactive form 
of the receptor; aspartate turns the kinase off. The third state is also 
inactive. This state represents receptors inactivated by demethylation, 
via the enzyme CheB, rather than by ligand binding, and the inactive, 
demethylated receptors can be viewed as receptors held in reserve. 
We could also consider a fourth state that is both demethylated and 
bound to ligand, but, as it turns out, the model works better if it is 
assumed that CheB only demethylates active receptors. That is, the 
inactivation of CheA is state-dependent, an aspect of this model that 
we will see again in Chapters 13 and 15.

Next we add negative feedback to the model by assuming that active 
receptors activate the demethylase CheB. The demethylation (by CheB) 
and methylation (by the unregulated CheR protein) reactions eventu-
ally come into balance, and the hope is that at this steady state, the 
activity of the receptor and the tumbling rate of the bacterium will have 
returned to what they were before the chemoattractant was applied.

At this point we have five time-dependent species—the three states of 
the receptor complex and the two states of CheB—and we can write 
rate equations for each of them. First, for the receptor complex, which 
we call A for CheA, we write a rate equation for the ligand-bound 
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(a) (b)Figure 12.3  Two views of the 
chemotaxis adaptation circuit. 
(a) Course-grained view, emphasizing the 
negative feedback between CheA and 
CheB. (b) Detailed view, showing the three 
states of the receptor: inactive (methylated 
but ligand bound), active (methylated and 
ligand free), and in reserve (demethylated 
and ligand free).
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receptor Abound, which we assume is produced by the binding of 
ligand to only the active, methylated receptors—again a form of state-
dependent inactivation:

	 (12.1)

where, as usual, K1 = k-1/k1.

Next, for the active, non-ligand-bound, methylated state of the 
receptor:

	 (12.2)

B* represents the active form of the demethylase CheB. Note that for 
the moment we are assuming that the methylation and demethyla-
tion rates are described by mass action kinetics, with the rates being 
directly proportional to the concentrations of the enzymes and the 
substrates. Note also that R*, the activity of the methylase CheR, is 
assumed to be constitutive, so we can include it in a redefined k-2 for 
simplicity:

	 (12.3)

For the demethylated, reserve form of the receptor, we have:

	 (12.4)

Next we turn to the activation and inactivation of the demethylase 
CheB. We could write two ODEs, one for active CheB and one for 
inactive CheB, but it is simpler to write a single ODE for active CheB 
and eliminate inactive CheB from the equation with the conservation 
relationship Btotal = B* + B:

	 (12.5)

Eqs. 12.2–12.5 constitute a four-ODE model of E. coli chemotaxis.

To see how well the modeled system responds and adapts, we 
can choose some arbitrary values for the rate constants and con-
centrations, and solve the ODEs numerically. Figure 12.4 shows 
typical results. In response to a step increase in aspartate, the system 
responds with a rapid decrease in the proportion of active receptors. 
This is followed by a return back toward the initial level of receptor 
activity, but the adaptation is not perfect. We can quantify how good 
the adaptation is, defining the percent adaptation (here called α) to be 
how big the adaptation is relative to how big the initial response was. 
This amounts to:

	 (12.6)

For the first increment of stimulus shown in Figure 12.4, the adapta-
tion is 66%, and for each subsequent increment it is a little worse. 
The  model does not adapt nearly as well as the actual bacterium 
does. One can improve the performance of the model with a judicious 
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choice of parameters, but, as Barkai realized, there is a better way 
forward.

So far we have assumed that the methylation and demethylation 
reactions are described by mass action kinetics. What if we assume 
instead that the kinetics of these two processes are described by the 
Michaelis–Menten equation? This would mean that:

(12.7)

	 (12.8)

It turns out that, other things being equal, this improves the percent 
adaptation for the model. And the more saturated the two reactions 
are, the better the adaptation. If one assumes near saturation—that 
is, that there is a very high degree of zero-order ultrasensitivity in the 
methylation/demethylation steady-state response—then the model 
can produce near-perfect adaptation. In the limiting case where the 
methylation and demethylation kinetics are of zero order, and so the 
steady-state response of the methylation/demethylation system is a 
step function, then the adaptation becomes perfect.

We can implement this by taking:

	 (12.9)

� (12.10)
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Figure 12.4  Partial adaptation 
in a model of chemotaxis that 
assumes mass action kinetics in the 
negative feedback. (a) Schematic of 
the adaptation circuit. (b) Step changes 
in input (aspartate). (c) Changes in 
receptor activity. The parameters for the 
model (Eqs. 12.1 and 12.3–12.5) were 
k1 = k−1 = 100; k2 = 1; k3 = 0.1; k4 = k−4 =1; 
Atot = 1; and Btot = 1. The model responds 
to changes in the chemoattractant, and 
then adapts, but does not adapt as well as 
the bacterium actually does.
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The response of this zero-order model is shown in Figure 12.5. The 
system always returns to exactly the same level of Aactive, irrespec-
tive of the stimulus. The dynamics of the response do vary with the 
stimulus—the first response has the highest amplitude and the quickest 
overall time course—but the adaptation is always ultimately perfect.

We can see why the adaptation is perfect by deriving an expression 
for the steady-state level of Aactive in the zero-order model defined by 
Eqs. 12.1, 12.5, 12.7, and 12.8. At steady state, all of the time derivatives 
must equal zero. This yields three independent algebraic equations:

= ⋅ − −0 ,1 1k Asp A k Aactive bound 	 (12.11)

= − − −0 ( *) *,3 3k A B B k Bactive tot 	 (12.12)

0 * .2 2k B k= − − 	 (12.13)

They can be solved simultaneously to derive the steady-state levels of 
the three time-dependent variables:
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=* ,2B K 	 (12.16)

where = − /1 1 1K k k , /2 2 2K k k= − , and = − /3 3 3K k k . We can also calculate 
Areserve from the conservation relationship = + +A A A Atot active bound reserve.

Note that the steady-state level of Aactive, which is the output of the 
system, as well as of B*, is independent of the stimulus level of Asp. 
This explains why the adaptation is perfect. Moreover, the adaptation 
is perfect, albeit at different steady-state values of Aactive, irrespective 
of the affinity of the receptor for aspartate (K1), the zero-order rate 
constants (Vmax values) for receptor methylation and demethylation 
(which figure into K2), and the first-order rate constants for the mass 
action activation and inactivation of the demethylase CheB (which 
figure into K3). Thus the adaptation is not only perfect, but the per-
fection is robust with respect to perturbations in the activities and 
affinities of all of the proteins that make up the circuit, as is true of 
adaptation in the actual bacterium.

In summary, the observed adaptation in bacterial chemotaxis can be 
accounted for by a negative feedback model, and we can make the 
adaptation perfect and robust by assuming that the reactions of the 
negative feedback loop are zero-order. The zero-order kinetics pos-
tulated in the Barkai model have not been looked for experimentally, 
but if the methylation and demethylation enzymes really are running 
very close to saturation it could be far and away the most dramatic 
example of zero-order ultrasensitivity to be found since Goldbeter and 
Koshland proposed the idea in the early 1980s. Note though that any 
of the other mechanisms for ultrasensitivity outlined in Chapters 4 
and 5 could possibly work in the place of zero-order ultrasensitivity—
for example, some multistep process (not implausible given that there 
are multiple methylation sites on each receptor, and each receptor 
functions as part of a multimeric complex) or some as yet unidentified 
stoichiometric inhibitor.
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12.4 � THE RESPONSE OF THE ERK MAP KINASES 
TO MITOGENIC SIGNALS IS TYPICALLY 
TRANSITORY

Here we will explore a second example of adaptation, the transitory 
response of the Ras/MAP kinase system to a prolonged dose of a 
mitogen. The transitory nature of the pathway’s activation is biologi-
cally important—mutations in the pathway that result in abnormally 
prolonged MAPK activation, such as the Val 12-KRas point mutation, 
contribute to malignancy in a substantial fraction of human cancers. 
As it turns out, we can formulate a satisfactory model of the process 
that is a bit simpler and easier to analyze than the Barkai model of 
bacterial chemotaxis.

If a dish of tissue culture cells is treated with serum or EGF and the down-
stream activity of the main relevant MAP kinase, ERK2, is assessed by 
immunoblotting or kinase assays, typically one sees the phosphoryla-
tion and activity rise over the course of a few minutes and then fall over 
the course of an hour or so (Figure 12.6a). Note that this is qualita-
tively different from the irreversible, all-or-none ERK2 responses seen 
in Xenopus oocyte maturation (Chapter 8), probably because different 
feedback loops are present in the two situations. In some cell lines, this 
population-level ERK2 response hides interesting single-cell behaviors 
like excitability, and we will see an example of this in Chapter 16. But 
sometimes the individual cells behave much the way the population 
does (Figure 12.6b). The transitory response is not due to degradation 
of the mitogenic signal; the cells turn their responses off.

Activated ERK2 translocates to the nucleus, and transcription factors 
are prominent among the targets of active ERK2 (recall Figure 1.3), 
raising the possibility that ERK2-stimulated transcription might con-
tribute to the termination of ERK2 signaling. One of the early clues 
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Figure 12.5  Perfect adaptation 
in a model of chemotaxis that 
assumes zero-order kinetics in the 
negative feedback. (a) Schematic of 
the adaptation circuit. (b) Step changes 
in input (aspartate). (c) Changes in 
receptor activity. As in Figure 12.4, the 
parameters for the model (Eqs. 12.1, 12.5, 
12.9 and 12.10) were k1 = k−1 = 100; k2 = 1; 
k3 = 0.1; k4 = k−4 =1; and Atot = 1; Btot = 1. 
Note that although the responses vary in 
height and duration, they always return 
exactly to the baseline.
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that this is the case came from comparing responses to mitogenic 
signals in NIH 3T3 cells, a commonly studied mouse cell line, in the 
presence and absence of the protein synthesis inhibitor cyclohex-
imide. In the absence of cycloheximide, cells responded to mitogens 
with a pulse of ERK2 activation, as expected, but in the presence 
of cycloheximide, the ERK2 activation went up and remained high 
(Figure 12.6a). This suggests that perhaps some protein whose mRNA 
is induced by mitogens is a negative regulator of ERK2 and that block-
ing its synthesis interfered with the normal deactivation of ERK2. Sure 
enough, one of the proteins upregulated by mitogens turned out to be 
a dual-specificity phosphatase that can dephosphorylate the activating 
threonine and tyrosine phosphorylations on the ERK2 proteins. This 
phosphatase, usually called MKP1 (for MAP kinase phosphatase  1) 
or DUSP1 (for dual-specificity phosphatase-1), is thought to play an 
important role terminating receptor tyrosine kinase signaling in NIH 
3T3 cells.

Here we will see how well a simple model of MKP1 induction can 
account for the kinetics of ERK2 activation and inactivation shown in 
Figure 12.6.

12.5 � DELAYED NEGATIVE FEEDBACK CAN YIELD 
NEAR-PERFECT ADAPTATION

We begin by considering the activation and inactivation of ERK2. 
ERK2 activation involves the phosphorylation of two sites, a threo-
nine and a tyrosine residue, by the kinase MEK. But for simplicity we 
will assume that activation is a one-step, mass action process, and 
that there are only two ERK2 species. Likewise, we will assume that 
the inactivation of ERK2 is a one-step, mass action process catalyzed 
by MKP1. If we let x denote inactive ERK2 and x* active ERK2, and y 
denote MKP1, then the rate equation for x* would be:

	 (12.17)

Note we have chosen units for x such that the total x + x* equals 1.
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Figure 12.6  The time course of ERK2 activation and inactivation mammalian cells. (a) Bulk data from immunoblotting 
of ERK2* phosphorylation in NIH 3T3 cells, a mouse fibroblast cell line. ERK2* denotes the bis-phosphorylated, active form of ERK2, 
and CHX stands for cycloheximide. The mitogen was serum. (Based on data in Sun et al., Cell. 1993 and used with permission)  
(b) Single-cell dynamics from live cell imaging experiments in H1299 cells, a human lung cancer cell line. Here the mitogen was EGF, 
and the translocation of fluorescently tagged ERK2 to the nucleus, which accompanies ERK2 activation, was assessed. Tracings from 
ten individual cells are shown. (Adapted from Cohen-Saidon et al., Mol Cell. 2009 and used with permission.)
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To write a rate equation for the phosphatase y, we assume that its 
synthesis rate is proportional to x*, and for the moment assume its 
degradation is described by mass action kinetics:

	 (12.18)

Equations 12.17 and 12.18 constitute our two-ODE model for the nega-
tive feedback regulation of ERK2 by MKP1 production.

We want to examine how the concentrations of x* and y evolve 
with time for some choice of initial conditions—say, x*[0] = 0 and 
y[0] = 0—and parameters (the four rate constants and the assumed 
concentration of active MEK). We turn to numerical solution of the 
system of two ODEs, plot the results, and adjust the parameter values 
until we obtain a reasonable-looking pulse of x*. One such result is 
shown in Figure 12.7. In response to 1 unit of MEK, the ERK2 activ-
ity (x*) rises quickly to a peak of about 0.38, and then slowly drops, 
approaching a steady-state value of about 0.1. The percent adaptation 
in this case works out to be 75%—not perfect adaptation, but pretty 
good. The next increments of MEK, though, result in poorer adapta-
tion. We can do better. 
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a model of the ERK2/MKP1 system 
that assumes mass action kinetics in 
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12.6 � ULTRASENSITIVITY IN THE FEEDBACK 
LOOP IMPROVES THE SYSTEM’S 
ADAPTATION

Because the ERK2/MKP1 model contains only two time-dependent 
variables (x* and y), it is a candidate for phase plane analysis, which 
will let us see why the adaptation is reasonably good but not perfect, 
and get an idea of how to make it perfect. In a system with perfect 
adaptation, the x* coordinates of the steady states should all be iden-
tical, irrespective of the amount of stimulus (MEK). So we start by 
plotting the nullclines in the phase plane and examine the steady 
states.

The nullclines are obtained, as usual, by setting the time derivatives in 
the rate equations (Eqs. 12.17 and 12.18) equal to zero. The x* nullcline 
is defined by:

	 (12.19)

	 (12.20)

The y nullcline is:

	 (12.21)

	 (12.22)

These nullclines are plotted in Figure 12.7a, using the same kinetic 
parameters that were (fairly arbitrarily) chosen for Figure 12.6. The x* 
nullclines (in green) correspond to five different values of MEK (0, 1, 2, 
3, and 4), and the single y nullcline is shown in blue. The plot does not 
show us anything about the initial response of x* to MEK—the upward 
portion of the time course—but it does show where the system ulti-
mately settles: the places where the x* and y nullclines intersect. And 
the steady-state values of x* increase with MEK, which is why the 
adaptation is not perfect.

There are two easy ways to make the blue y nullcline vertical or near 
vertical and thus make the adaptation perfect or near perfect. The first 
would be to make k−2 small. The result would be near perfect adapta-
tion to an increase in MEK at the cost of an extremely slow decay in 
MKP1 concentration after MEK was turned off.

The second way would be to saturate the reaction that degrades y. 
Recall from Section 6.3 that saturating a degradation reaction results 
in a steady-state response curve that approaches vertical as the syn-
thesis rate approaches the maximal degradation rate. If the EC50 for 
the saturable degradation reaction is very small, the whole curve 
approaches a vertical line—that is, the rate of degradation is inde-
pendent of the concentration of y. Note that this is essentially the 
same trick as was used to make the Barkai model of chemotaxis adapt 
perfectly—zero-order kinetics in the negative feedback loop.

Figure 12.8 shows the dynamics of the ERK2/MKP1 model assum-
ing zero-order degradation of MKP1. The model now adapts perfectly, 
with the steady-state level of ERK2 activation always returning to 
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x* = k−2/k2, which equals 0.1 for the parameters chosen here. Any other 
variation on the negative feedback that produces a vertical or near-
vertical y nullcline would yield perfect or near-perfect adaptation. For 
example, a negative feedback mediated by highly cooperative multi-
site phosphorylation, or by a high-affinity stoichiometric inhibitor that 
was only effective once its concentration exceeded that of a higher-
affinity binding protein, would work. Other things being equal, adding 
ultrasensitivity, from any source, to the negative feedback improves 
the quality of the adaptation, just as it did in the Barkai model of 
chemotaxis. 

12.7 � INDUCTION OF IMMEDIATE-EARLY GENE 
PRODUCTS IS NOT REQUIRED FOR ERK 
INACTIVATION IN MANY CELL TYPES

So does the ERK2/MKP1 negative feedback loop account for the ter-
mination of EGFR signals? It may in NIH 3T3 cells, but in many other 
cell types, it does not. For example, in PC12 cells (a rat pheochromocy-
toma cell line), 3T3-L1 cells (mouse fibroblasts that can be induced to 
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Figure 12.8  Perfect adaptation in a 
model of the ERK2/MKP1 system that 
assumes zero-order kinetics in the 
degradation of MKP1. (a) Schematic of 
the adaptation circuit. (b) Step changes in 
input (MEK). (c) Resulting changes in ERK2 
activity. (d) Nullclines in the phase plane. 
The closed circles denote the steady states. 
The parameters used in Figure 12.7 
were also used here: k1 = 1; k−1 = 10; k2 = 2; 
and k−2 = 0.1, and MEK was stepped from 
0 to 4.
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transdifferentiate into fat cells), and porcine aortic endothelial (PAE) 
cells, one can block the translation of all immediate-early response 
genes without significantly affecting the pulsatile nature of the ERK 
response.

There are other possible negative feedback loops that do not involve 
transcription or translation that could be responsible for the adap-
tation in these cases. For example, active ERK can phosphorylate 
and inactivate the upstream Sos protein, and there is evidence for 
negative feedback to the EGFR, Raf, and MEK as well (Figure 12.9). 
But there is another possibility as well—that adaptation is carried 
out not through negative feedback but through incoherent feedfor-
ward regulation. This is generally considered to be a different class 
of signaling motif, and we will explore this mechanism for adapta-
tion in Chapter 12. 

SUMMARY
Here we have explored two examples of adaptation: the adapta-
tion of E. coli to the presence of chemoattractants, which allows 
the organism to search out food sources through a biased random 
walk, and the adaptation of mammalian cell lines to the presence 
of a mitogenic activator of the MAP kinase cascade. In both cases, 
models of the process can be made to adapt by including a negative 
feedback loop, and in both cases, saturating one or more regula-
tory reactions in the negative feedback loop allows the adaptation to 
be perfect. So would any other mechanism that makes the negative 
feedback mediator be produced or activated with very high ultrasen-
sitivity. Negative feedback loops do not always yield adaptation—we 
saw that in Chapter 11, and we will see it again in Chapter 15—and 
they are not the only way of generating a transient response from a 
sustained stimulus. But negative feedback is so widespread that it 
probably does qualify as one of the most important mechanisms for 
adaptation in cell signaling.

EGFR

Shc/Grb2

Sos

Ras

Raf

MEK1/2

ERK1/2

Receptor
tyrosine kinase

Adaptors

Guanine nucleotide
exchange factor

Ras protein

MAPKKK

MAPKK

MAPK

Figure 12.9  Additional negative 
feedback loops in MAPK signaling.
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INTRODUCTION
Negative feedback is not the way of producing adaptation. There are 
at least two other simple adaptation mechanisms—incoherent feed-
forward regulation and state-dependent inactivation—and in this 
chapter we will work through biological examples of each.

13.1 � RECEPTOR TYROSINE KINASE  
ACTIVATION IS FOLLOWED BY 
TRANSITORY RAS ACTIVATION

As mentioned in Chapter 1, an incoherent feedforward system is one 
where an upstream regulator regulates a downstream target in two 
different and opposite ways, with a time lag between the two. As an 
example, we turn again to receptor tyrosine kinase signaling, this 
time focusing on the regulation of Ras.

Receptor tyrosine kinases relay signals onward by recruiting spe-
cific proteins to autophosphorylated docking sites on the receptor. 
Curiously, two of the proteins recruited to various receptor tyros-
ine kinases, including the epidermal growth factor receptor (EGFR), 
are enzymes that have opposite effects on the downstream tar-
get Ras. The first is the guanine nucleotide exchange factor Sos, 
which translocates from the cytosol to the activated EGFR through 
the intermediacy of the Shc and/or Grb2 adaptor proteins. Since 
EGFRs are transmembrane proteins, this puts Sos in proximity of 
Ras, which is also membrane associated. The receptor-associated 
Sos then causes inactive GDP-bound Ras to drop its GDP, which 
allows it to pick up a GTP and flip into its activated conformation 
(Figure 13.1).

Note that Ras–GTP is not only activated by Sos but is also a stoichio-
metric activator of Sos (Figure 13.1), so there is positive feedback in 
the system. We will return to this positive feedback loop in Chapter 16, 
but for now we will ignore it and focus on how Ras activation is turned 
off.

The second protein to be recruited to the autophosphorylated EGFR 
is the GTPase-activating protein p120 GAP, which causes Ras to 
hydrolyze its bound GTP to GDP. This hydrolysis allows Ras to flip 
back to its inactive conformation (Figure 13.1). The actions of Sos 
and GAP on Ras constitute a cycle of activation and inactivation 
that is roughly analogous to a phosphorylation–dephosphorylation 
cycle, except that the “marks” that distinguish active from inactive 
Ras are non-covalently bound GTP vs. GDP molecules rather than 
covalently bound phosphate vs. hydroxyl groups on amino acid 
side chains.

Both the Sos and GAP proteins are recruited to the EGFR in EGF-
treated cells fairly quickly, with both peaking about 1 min after 
addition of EGF for the experiment shown in Figure  13.2a. But 
there is a time lag of 30 s or so between when Sos begins to appear 
at the plasma membrane and when GAP does. This fits well with 
the time course of Ras activation: Ras–GTP binding rises for the 
first 30 sec and then falls over the next few minutes (Figure 13.2a, 
bottom). This sequential recruitment of antagonistic enzymes 
is a conceptually simple mechanism for generating a pulsatile 
response, and, as shown below, it has the potential to yield perfect  
adaptation. 

Sos

GAP

Ras

GDP

Ras

GTP

Figure 13.1  Schematic view of the 
activation of Ras by Sos and the 
inactivation of Ras by GAP. Note 
there is also positive feedback—active Ras 
stoichiometrically binds to and increases 
the activity of Sos.
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13.2 � THE SEQUENTIAL RECRUITMENT OF 
SOS AND GAP TO THE EGFR CAN BE 
VIEWED AS INCOHERENT FEEDFORWARD 
REGULATION

Here we will formulate a simple mass action model of the sequential 
activation and inactivation of Ras. We begin with the activated and 
autophosphorylated EGFR, and we assume it can exist in three forms: 
with no recruited proteins, which we designate x1; with the Sos pro-
tein recruited, which we call x2; and with both Sos and GAP recruited, 
designated x3 (Figure  13.2b). By assuming that GAP only binds to 
receptors that have already bound Sos, we ensure that the two pro-
teins will be recruited sequentially and also guarantee that there will 
be a time lag, as seen in Figure 13.2a, between the recruitment of Sos 
and the recruitment of GAP. This system can be viewed as carrying  
out incoherent feedforward regulation (Figure 13.2c); the activation of 
the EGFR not only turns Ras on but also brings about its inactivation.

We can write down mass action rate equations for the three forms of 
the EGFR as follows:

= − + −
1

1 1 1 2

dx
dt

k x Sos k x 	 (13.1)

= − − +− −
2

1 1 1 2 2 2 2 3

dx
dt

k x Sos k x k x GAP k x  	 (13.2)

= − − .3
2 2 2 3

dx
dt

k x GAP k x 	 (13.3)

Note that these equations put only two constraints on the three time-
dependent variables, since Eq. 13.2 is a combination of the other two. 
We obtain a third constraint from the conservation relationship:

= + + .1 2 3x x x xtot 	 (13.4)

For simplicity, we will assume that the concentrations of free Sos 
and GAP are sufficiently high relative to the total concentration of 
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with permission). (b) Schematic view of the sequential binding of Sos and GAP to activated EGF receptors. (c) Even more schematic 
view of the logic of this incoherent feedforward circuit.
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activated EGFRs (xtot) that they are not changed appreciably when the 
proteins dock. We can then simply lump the approximately constant 
concentrations of free Sos and GAP into the rate constants.

Using Eq. 13.4 to eliminate one variable (x1), we reduce the model to:

( )= − − − − +− −
2

1 2 3 1 2 2 2 2 3

dx
dt

k x x x k x k x k xtot 	 (13.5)

= − − .3
2 2 2 3

dx
dt

k x k x 	 (13.6)

Once these two variables are solved for, the conservation equation 
(Eq. 13.4) can be used to calculate the third (x1).

Finally, we can write a rate equation for the activation of Ras (y) by 
EGFR–Sos (x2) and the inactivation of Ras by EGFR–Sos–GAP (x3):

*
* *,3 2 3 3

dy
dt

k x y y k x ytot( )= − − ⋅− 	 (13.7)

where y* denotes active Ras, y denotes inactive Ras, and we have 
used the conservation relationship *y y ytot = +  to eliminate y from 
Eq. 13.7. Equations 13.5–13.7 constitute our three-ODE model of Ras 
regulation.

13.3 � INCOHERENT FEEDFORWARD SYSTEMS 
CAN YIELD PERFECT ADAPTATION

We can solve these equations numerically for some choice of rate 
constants and initial conditions. The results are shown in Figure 13.3. 

A
ct

iv
e 

Ra
s 

(y
*)

Time
0 10 20 30 40 50

0 10 20 30 40 50

0

1
2
3
4

0A
ct

iv
e 

EG
FR

 (x
to

t)

α = 100%

Ras

–P

–P

P–

P–

–P

–P

P–

P–

Sos –P

–P

P–

P–

Sos

GAP

k1

k–1

k2

k–2

k3

k–3

x1 x2 x3

y*

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a)

(b)

(c)

Figure 13.3  Perfect adaptation in Ras regulation. (a) Schematic view of 
the model, shown again (cf. Figure 13.2) for reference here. (b) Steps in the 
concentration of active EGFR (xtot). (c) The resulting dynamics of Ras activation. 
Although the pulses of activity differ in height and shape, the adaptation is 
always perfect (α = 100%). We have assumed k1 = k2 = k3 = 1; k−1 = k−2 = 0.1; 
k−3 = 10; and ytot =1.
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Each successive step in the concentration of active EGFR (xtot) pro-
duces a pulse of Ras activity, and the system returns to the same 
baseline level of Ras activity irrespective of the value of xtot—perfect 
adaptation.

To see why the system adapts perfectly, we return to the rate equa-
tions. At steady state, all three derivatives must equal zero, which 
means:

( )= − − − − +− −0 1 2 3 1 2 2 2 2 3k x x x k x k x k xtot 	 (13.8)

= − −0 2 2 2 3k x k x 	 (13.9)

0 * * .3 2 3 3k x y y k x ytot( )= − − ⋅− 	 (13.10)

We can solve these three equations simultaneously to yield expres-
sion for x2, x3, and y* at steady state:

( ) =
+ +12

2

2 1 2

x
K x
K K Kss

tot 	 (13.11)

( ) =
+ +13

2 1 2

x
x

K K Kss
tot 	 (13.12)

( ) =
+

* .2

2 3

y
K y

K Kss
tot 	 (13.13)

An expression for the steady-state level of x1 follows quickly from 
Eqs. 13.11, 13.12, and the conservation relationship (Eq. 13.4):

( ) =
+ +1

.1
1 2

2 1 2

x
x K K
K K Kss
tot 	 (13.14)

As usual, we have taken K1 = k−1/k1, K2 = k−2/k2, and K3 = k−3/k3.

Equation 13.13 shows that the steady-state level of y* is independ-
ent of xtot. Thus, the system always returns to the same level of 
y*—the adaptation is perfect. The steady-state values of the two 
antagonistic species x2 and x3 (Eqs. 13.11 and 13.12) do depend on 
xtot, but they scale the same way, with both being directly propor-
tional to xtot.

13.4 � STRICT ORDERING OF SOS AND GAP 
BINDING TO THE EGFR IS NOT REQUIRED 
FOR PERFECT ADAPTATION

So far we have assumed that GAP only binds EGFRs that have already 
recruited an Sos molecule. This assumption ensures that the two 
opposing factors will be recruited sequentially, and it also simplifies 
the model by making it so that we need not consider the formation or 
dissociation of EGFR–GAP complexes. What if we relax the assump-
tion, making GAP binding slower than Sos binding but not dependent 
on it?

We now have four distinct complexes of the activated EGFR, as shown 
in Figure 13.4a. We have kept the same numbering scheme as before 
for EGFR (x1), EGFR–Sos (x2), and EGFR–Sos–GAP (x3), and have added 
a species (x4) for EGFR–GAP. The rate constants k4 and k−4 describe 
the binding and dissociation of GAP to EGFR, and k5 and k−5 the bind-
ing and dissociation of Sos to EGFR–GAP. We can write rate equations 
for the four EGFR species:
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= − + − +− −
1

1 1 1 2 4 1 4 4

dx
dt

k x k x k x k x 	 (13.15)

= − − +− −
2

1 1 1 2 2 2 2 3

dx
dt

k x k x k x k x 	 (13.16)

= − −
3

2 2 2 3

dx
dt

k x k x 	 (13.17)

= − − +− − .4
4 1 4 4 5 4 5 3

dx
dt

k x k x k x k x 	 (13.18)

As before, we have assumed that the concentrations of Sos and 
GAP are approximately constant and have lumped these quanti-
ties into the rate constants. We can then use the conservation law 

= + + +1 2 3 4x x x x xtot  to eliminate x1 from Eqs. 13.16 and 13.18 and 
reduce the system to three ODEs:

( )= − − − − − +− −
2

1 2 3 4 1 2 2 2 2 3

dx
dt

k x x x x k x k x k xtot 	 (13.19)

= − −
3

2 2 2 3

dx
dt

k x k x 	 (13.20)
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Figure 13.4  Perfect adaptation in Ras regulation in the absence of 
strict ordering in the recruitment of Sos and GAP to the active EGFR. 
(a) Schematic view of the model. (b) Steps in the pulses of activity differ in height 
and shape, the adaptation is always perfect (α = 100%). We have assumed 
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to Sos, but both binding reactions do occur.
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( )= − − − − − +− − .4
4 2 3 4 4 4 5 4 5 3

dx
dt

k x x x x k x k x k xtot 	 (13.21)

Finally, we write a rate equation for Ras activation and inactivation. 
For simplicity we will assume that EGFR–GAP (x4) and EGFR–Sos–GAP 
(x3) are equally active in catalyzing the conversion of Ras–GTP to Ras–
GDP. This yields:

*
* * .3 2 3 3 4

dy
dt

k x y y k x x ytot( ) ( )= − − +− 	 (13.22)

Equations 13.18–13.22 constitute a 4 ODE model of Ras activation and 
inactivation. We can solve this numerically; as a first go, we assume 
the same rate constants as we did for the strictly ordered model, and 
that the binding of EGFR to GAP is 10× slower than the binding to 
Sos. The results are shown in Figure 13.4c. The system still responds 
to each step in xtot and appears to adapt perfectly, irrespective of the 
level of stimulus (xtot).

To prove that this is in fact the case, we set each of the rate equations 
equal to zero—the requirement for the system to be in steady state—
and derive algebraic equations for each of the species at steady state. 
The equation for y* at steady state is more complicated than it was in 
the strictly sequential model:

y
k k k k k y

k k k k k k k k k k k k k k kss

tot( )
( ) ( )( ) =

+
+ + + + +

− −

− − − − − − − −

* ,1 3 2 5 4

4 1 2 3 1 3 2 5 4 1 2 3 5 4 5

	 (13.23)

but, again, the steady-state level of Ras activation does not depend on 
the stimulus, xtot. This is why the adaptation is perfect.

On the other hand, the assumption that the concentrations of Sos 
and GAP are much higher than the concentrations of the EGFR–Sos 
and EGFR–Sos–GAP complexes does turn out to be critical for perfect 
adaptation. Thus, the wiring of the circuit is not sufficient to guarantee 
perfect adaptation; the parameters of the system, in this case the rela-
tive concentrations of the proteins, are important too. Note that the 
same was true of the Barkai model for bacterial chemotaxis analyzed 
in Chapter 11, where a simple negative feedback circuit yielded per-
fect adaptation only if it was assumed that the receptor concentration 
was high enough that the methylase and demethylase that acted upon 
it were operating in their zero-order regimes.

13.5 � THE VOLTAGE-SENSITIVE SODIUM 
CHANNEL ALSO UNDERGOES SEQUENTIAL 
ACTIVATION AND INACTIVATION

The most famous pulse generator in biology is probably the voltage-
sensitive sodium channel, the protein at the heart of the action 
potential in nerves and heart muscle cells. In response to a depo-
larization of the plasma membrane (where depolarization means that 
the cytoplasmic side of the plasma membrane becomes less nega-
tively charged relative to the extracellular side), the voltage-sensitive 
sodium channel undergoes a conformation change that allows mil-
lions of sodium ions to flow through it into the cell (Figure 13.5a). But 
then after a few milliseconds, the protein undergoes a second confor-
mation change that plugs the sodium pore (Figure 13.5a), allowing 
the Na+–K+ ATPase pump to restore the intracellular Na+ to its normal 
low concentration and the membrane potential to its initial negative 
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value. After this repolarization, the inactivated receptor slowly returns 
to the initial closed state. Only then is the receptor able to be opened 
again in response to a depolarization.

Just as there was in the case of Ras activation, there is a positive feed-
back loop built into the system: when sodium rushes in through the 
open channel, the membrane becomes further depolarized, leading to 
activation of more channels. This provides the action potential with 
its bursty, all-or-none (or almost all-or-none) character. But there 
is no obvious negative feedback loop, as there was in the bacterial 
chemotaxis system, and no clear feedforward regulation à la EGFR–
Sos–GAP (at least not according to the usual definitions). Thus the 
central motifs we have previously seen in adapting circuits are not 
present here.
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Figure 13.5  The voltage-dependent sodium channel. (a) Schematic view of 
the conversion of a closed channel to an open channel in response to membrane 
depolarization, followed by channel inactivation. The inactivated channel then 
slowly returns to the closed state; here we assume that the time scale of this 
return is too long to be relevant to our modeling. In addition, we are ignoring 
one of the hallmarks of the channel—the fact that the influx of sodium through 
an open channel further depolarizes the membrane and causes other closed 
channels to open—in the interest of focusing on the recovery (adaptation) phase 
of the response. (b–d) The fraction of the channels that are closed (d), open (c), 
and inactivated (d) in response to steps of depolarization (b). Note the toilet flush 
phenomenon. We have assumed k1 = k2 = 1 and k−1 = 0.1.
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To model the system, let us call the three states of the sodium chan-
nel xclosed, xopen, and xinactivated (Figure  13.5a), and assume that the 
recycling of the channel from the inactivated state to the closed state 
is too slow to be relevant to our model. Let us also ignore the positive 
feedback; once again it is an interesting feature but is not necessary 
for adaptation. We write three rate equations for these three time-
dependent species, assuming mass action kinetics for each of the 
interconversions:

= − ⋅ + −1 1

dx
dt

k Input x k xclosed
closed open 	 (13.24)

= ⋅ − − +− −1 1 2 2

dx

dt
k Input x k x k x k xopen

closed open open inactivated 	 (13.25)

= − − .2 2

dx
dt

k x k xinactivated
open inactivated 	 (13.26)

In addition, we have the conservation equation x xtot closed= +
+x xopen inactivated. By setting the derivatives all equal to zero, we can 

solve for the steady-state levels of all three channel species, and for 
the open channel we get:

( ) =
⋅

+ +
−

− − −

.1` 2

1 2 1` 2 1 2

x
k k Input x

k k Input k k Input k kopen ss

tot 	 (13.27)

In general the steady-state value of xopen will depend on Input since 
it appears in the numerator and in some, but not all, of the terms in 
the denominator (Eq. 13.27). However, if either k−1 or k−2, or both, are 
equal to zero, then:

( ) =
+
−

−

,1` 2

1 2 1` 2

x
k k x

k k k kopen ss

tot 	 (13.28)

and we have perfect adaptation. As long as one or the other or both 
of the two steps that lead from the closed receptor to the inactivated 
receptor are irreversible, the steady-state activity of the receptor is 
unaffected by the input.

The response of the model to a series of step increases in the Input 
depolarization, calculated by numerical integration of the rate equa-
tions (Eqs. 13.24–13.26), is shown in Figure 13.5. We have assumed 
that the second step is irreversible (k−2 = 0), which means that the 
steady-state level of xopen should be zero. In response to the first 
increment of Input there is a brisk increase in xopen, followed by a 
return toward xopen = 0 (Figure 13.5c). But the response to the next 
increment is virtually imperceptible. This is because there are hardly 
any closed receptors left to be opened; essentially all of the receptors 
are in the inactivated state. Thus the system functions like a toilet. 
In response to a stimulus (pushing down on the flusher) there is a 
response (the toilet flushes), and then the toilet is refractory to a sec-
ond stimulus until the toilet tank slowly refills. Many of us find it kind 
of nice that our nervous systems and our toilets operate by similar 
principles.

Circuits like these, that adapt without explicit negative feedback 
or incoherent feedforward regulation, have been dubbed state-
dependent inactivation systems, and although they are not always 
foremost in the minds of students of adaptation, they appear to be 
commonplace in biology.
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And what about the positive feedback that we have ignored here? It is 
not critical for a discussion of adaptation, but it is certainly an impor-
tant aspect of neuronal signaling. We will return to neuronal signaling 
and add positive feedback back into the model in Chapter 15, when 
we explore the FitzHugh–Nagumo model, and in Chapter 16 when we 
examine excitable monostable systems.

13.6 � EGFR INTERNALIZATION CAN BE VIEWED 
AS STATE-DEPENDENT INACTIVATION

A second example of state-dependent inactivation is provided by the 
internalization of the EGF receptor. This is shown schematically in 
Figure 13.6a. First the plasma membrane-bound receptor is activated as 
a result of ligand binding, and then the activated receptor becomes inter-
nalized. The internalized receptor is either degraded or recycled to the 
plasma membrane. This process is substantially slower than the inco-
herent feedforward regulation of Ras, occurring over tens of minutes; 
the downregulation of signaling in the EGFR/MAPK system appears to 
operate at multiple points in the pathway and over different time scales.

The essence of this process is sequential activation-inactivation, just as 
it was with the voltage-dependent sodium channel, although the time 
scales are different (tens of minutes vs. milliseconds) and the mecha-
nisms of activation and inactivation are different as well (dimerization 
and trans-autophosphorylation followed by clathrin-dependent and 
clathrin-independent internalization vs. two conformation changes).

We can model this process by writing rate equations for the three EGFR 
species shown in in Figure 13.6a: the inactive receptor (EGFRoff), the 
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Figure 13.6  Perfect adaptation in the internalization of the EGF 
receptor. (a) Schematic of the receptor as a three-state system. We assume that 
the return of the internalized receptor to the plasma occurs on a longer time 
scale. (b, c) EGFR activity (c) in response to step changes in EGF (b).
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EGF-bound active receptor (EGFRon), and the internalized EGF–EGFR 
complex (EGFRin):

= − + −.1 1

dEGFR
dt

k EGF EGFR k EGFRoff
free off on 	 (13.29)

= ⋅ − −−1 1 2

dEGFR
dt

k EGF EGFR k EGFR k EGFRon
free off on on 	 (13.30)

= .2

dEGFR
dt

k EGFRin
on 	 (13.31)

Note that we are assuming that on the time scale of interest, the return 
of the internalized EGF–EGFR complex to the plasma membrane is 
insignificant. Next we write conservation equations for EGF and EGFR, 
bearing in mind that in vivo the concentration of EGF is not likely to 
greatly exceed that of the EGFR; in fact, as discussed in Chapter 4.4, 
proteomics data indicate that there are probably more EGFR than EGF 
molecules present. The two conservation equations are:

= + +EGF EGF EGFR EGFRtot free on in 	 (13.32)

= + + .EGFR EGFR EGFR EGFRtot off on in 	 (13.33)

We can use Eqs. 13.32 and 13.33 to reduce the model to two rate equa-
tions with two time-dependent variables, EGFRon and EGFRin:

( ) ( )= − − ⋅ − −

− −−

1

1 2

dEGFR
dt

k EGF EGFR EGFR EGFR EGFR EGFR

k EGFR k EGFR

on
tot on in tot on in

on on

	 (13.30)

= .2

dEGFR
dt

k EGFRin
on 	 (13.31)

By setting the derivatives equal to zero we can see that at steady state, 
the output EGFRon = 0, irrespective of the input (EGFtot). And by exam-
ining the time course in response to steps of EGFtot, we see that the 
system responds with a pulse of output followed by perfect adaptation 
(Figure 13.6). Note that we did not get the same toilet flush effect that 
we did with the voltage-sensitive sodium channel model, because we 
assumed that both EGF and EGFR are taken out of play by internaliza-
tion after the first increase in EGFtot, some EGFR will be left on the cell 
surface to respond to the next increment.

13.7 � GPCR SIGNALING IS SWITCHED FROM 
G-PROTEINS TO β-ARRESTIN VIA A 
MECHANISM AKIN TO STATE-DEPENDENT 
INACTIVATION

One final variation on state-dependent inactivation is provided by GPCR 
signaling, and we will take the well-studied β-adrenergic receptor as 
an example. As we mentioned in Chapter 2, the binding of an agonist 
ligand to the receptor shifts the receptor between a conformation where 
it is inactive as a guanine nucleotide exchange factor and one where it  
is active (Figure 13.7). The active receptor is a substrate for βARK and 
other protein kinases, and the kinases phosphorylate multiple sites in 
the receptor’s C-terminus and cytoplasmic loops. The phosphorylations 
allow the β-arrestin protein to bind to the active receptor, and stoichio-
metrically prevent it from activating G-proteins. So far this is just like 
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the conversion of the voltage-sensitive sodium channel from off to on to 
inactivated. Although the β-arrestin-bound receptor is unable to active 
G-proteins, it is able to activate a different pathway, the ERK MAPK 
cascade. Both pathways ultimately contribute to the receptor’s output. 
Thus, this variation on state-dependent inactivation yields a pulse of 
G-protein activation followed, after a time lag, by ERK signaling.

The same is true of the μ-type opioid receptor, and in this case the 
two pathways contribute to different aspects of opioid pharmacol-
ogy. Based on experiments in mice, G-protein signaling seems to be 
the main pathway for opioid-induced analgesia, whereas β-arrestin 
mediates respiratory depression and also appears to be important for 
making opioids addictive. Moreover, agonists have been identified 
that are biased toward activation of one pathway or the other. This 
raises the hope for selective pathway activators as analgesics with 
less potential than standard opioids for great harm.

SUMMARY
In Chapter 12 we showed how negative feedback can allow a cell sign-
aling circuit to adapt to the sustained presence of a pathway input and 
we worked through examples where particular assumptions about 
the response functions in the pathway made the adaptation perfect. 
Here we have examined two other mechanisms that can yield perfect 
adaptation: incoherent feedforward regulation and state-dependent 
inactivation. All three of these mechanisms appear to be in common 
use in cell signaling. Indeed, EGFR receptor signaling appears to use 
all three—multiple negative feedback loops (e.g. ERK-induced MKP1/
DUSP1 expression and negative regulation of various upstream pro-
teins by ERK phosphorylation), incoherent feedforward regulation (e.g. 
the sequential recruitment of Sos and GAP to the activated receptor), 
and state-dependent inactivation (e.g. receptor internalization). This 
emphasizes that nature can use multiple signaling motifs to accom-
plish adaptation, even in a single pathway. And it probably uses these 
multiple mechanisms because turning off signaling is important.

Conversely, a single motif may sometimes be able to generate more 
than one systems-level behavior. This is well-illustrated by the vari-
ous types of response that can come from negative feedback systems. 
Negative feedback can speed and stabilize a response without neces-
sarily making the response pulsatile (Chapter 11), and it can give rise 
to adaptation (Chapter 12). Moreover, in the next chapter, we will see 
how negative feedback can destabilize a steady state and how that 
destabilization can result in a system that never settles into a steady 
state at all and instead exhibits sustained oscillations.    

β-arrestinO� P P
P P

β-adrenergic
receptor

Activated for
G-protein signaling

Inactivated for
G-protein signaling;

activated for
β-arrestin signaling 

Figure 13.7  A G-protein-coupled receptor as a three-state system.
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14NEGATIVE 
FEEDBACK 3

Oscillations

INTRODUCTION
One of the conclusions of Chapter 11 was that negative feedback can 
stabilize a steady state. Curiously, negative feedback can also desta-
bilize a steady state, if the negative feedback loop is long enough. It is 
this destabilization that allows negative feedback loops to sometimes 
function as biochemical oscillators, and we will explore a classic 
example of a negative feedback oscillator, the Goodwin oscillator, in 
this chapter.
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OSCILLATORS
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14.1 � BIOLOGICAL OSCILLATIONS CONTROL 
MYRIAD ASPECTS OF LIFE AND OPERATE 
OVER A TEN-BILLION-FOLD RANGE OF 
TIME SCALES

Anyone who has seen a living, beating heart or watched a fertilized 
Xenopus egg divide, knows how compelling biological oscillations can 
be. Biological oscillations range in time scale from periods of 0.03–0.3 s  
for the various classes of cortical brain waves to 150 years, or ~5 × 109 s,  
for the flowering cycle of some species of bamboo (TABLE 14.1). That 
is a span of about 11 orders of magnitude, a truly remarkable range.

If you were to attend a recent conference on biological oscillations, you 
probably would hear mostly about circadian oscillations, cell cycles, 
somite formation, and p53 and NF-κB oscillations—all fascinating pro-
cesses where good progress has been made. But a lot remains to be 
learned, especially with the slower biological clocks. For example, how 
do those cicadas figure out if this is the right year to emerge and mate? 
How do those bamboo plants know when they turn 150?

In the next two chapters we will examine two basic classes of biological 
oscillator circuit, starting with the simplest: oscillators constructed from 
a single negative feedback loop. The classic example is the Goodwin 
oscillator, and it consists of a three-tier transcription-translation cas-
cade with negative feedback connecting the bottom to the top.

14.2 � THE GOODWIN OSCILLATOR IS BUILT UPON 
A THREE-TIER CASCADE WITH HIGHLY 
ULTRASENSITIVE NEGATIVE FEEDBACK

A one-variable negative feedback model, like that considered in 
Chapter 11, cannot generate oscillations; one-variable systems always 
go monotonically toward or away from a steady state, so there is no 
possibility of up-and-down oscillatory outputs. Two-variable negative 
feedback models can generate pulses, as explored in Chapter 12, and 
damped oscillations, but they cannot continue to oscillate indefinitely. 
However, three-variable negative feedback models can oscillate, and 
that is where we will begin here.

Brian Goodwin proposed the negative feedback oscillator model 
that bears his name in the 1960s. It is not a model of some particular 

TABLE 14.1  Biological Oscillations

Rhythm Period

Human brain waves 0.03 to 0.3 s

Human heartbeat 0.5 to 1 s

Calcium oscillations in astrocytes 30 s

Xenopus embryonic cell cycle 25 min (1.5 × 103 s)

Somitogenesis 30 min (1.8 × 103 s) in zebrafish
90 min (5.4 × 103 s) in chicks

p53, NF-κB, ERK oscillations in cell 
culture

A few hours (~104 s)

Circadian oscillations 1 day (8.6 × 104 s)

Human menstrual cycle and other 
circalunar rhythms

28 days (2.4 × 106 s)

Circannual rhythms 365 days (3.1 × 107 s)

Cicada life cycle 13 or 17 years (4.1 or 5.3 × 108 s)

Bamboo flowering cycle 3 to 150 years (9.4 × 107 to 4.7 × 109 s)
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known biological oscillator; it is more an example of a “toy” oscil-
lator that is relatively easy to analyze and understand. However, it 
has proven enormously useful, and it has been invoked, sometimes 
with modifications, to model a wide variety of real oscillatory bio-
logical phenomena, from circadian oscillations to the periodic gliding 
motions of myxobacteria.

The Goodwin oscillator is built out of a cascade of three synthesis-
destruction processes. At the top level there is transcription, producing 
an mRNA we will call x. Next comes the translation of x to produce 
an enzyme y. Then there is the synthesis of some small molecule z by 
y. Finally, there is feedback, with z inhibiting the production of x, per-
haps through some unmentioned ligand-regulated repressor protein. 
This leads to a decrease in x, followed by a decrease in y and then a 
drop in z, and with z gone, the production of x can resume. Intuitively 
it seems like this logic might result in sustained cycles of production 
and destruction of x, y, and z.

To see if this is the case, we want to construct a model of this process 
and examine the resulting dynamics. We start by writing rate equa-
tions for x, y, and z:

=
+

− − ,1 1

dx
dt

k
K

K z
k x

n

n n 	 (14.1)

= − − ,2 2

dy
dt

k x k y 	 (14.2)

= − − .3 3

dz
dt

k y k z 	 (14.3)

The equation for the production and destruction of mRNA x (Eq. 14.1) 
assumes that the rate of transcription–the first term–will be maximal, 
and equal to k1, when the concentration of z is zero, and that the 
rate of transcription decreases as z increases. It also assumes that 
the function that describes the decrease is an inhibitory Hill function 
and that the inhibition of transcription is an ultrasensitive function 
of z. The reason for this assumption was not that Goodwin knew 
of some experimental system where transcription had been shown 
to be inhibited in an ultrasensitive fashion. Rather, it was because 
the model did not yield sustained oscillations if simple stoichiomet-
ric inhibition was assumed. For a three-variable negative feedback 
loop with a single ultrasensitive step built in, one must assume a 
very high degree of ultrasensitivity (n > 8) to generate sustained oscil-
lations. When Goodwin was working, this assumption was thought 
to be highly implausible, although now many examples of regulatory 
reactions with high degrees of ultrasensitivity are known (Table 5.1).

The parameter K determines the concentration of z required to half-
maximally inhibit the production of x. K is inversely proportional to 
the strength of the negative feedback; as K approaches infinity, the 
strength of the feedback approaches zero, and as K approaches zero, 
the strength of the feedback becomes maximal.

The rest of the model is more straightforward. The degradation terms 
for all three species are simple mass action expressions, and the syn-
thesis terms for y and z are mass action expressions as well.

We can explore the dynamics of the model by choosing arbitrary 
values for the rate constants (let us take them all equal to 1), for n 
(n = 10), and for K (K = 0.1 to start), as well as initial values for the three 
variables (x[0] = y[0] = z[0] = 0). Numerical solution of the rate equations 
yields the time courses shown in Figure 14.1b. Species x grows right 
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from the start, followed by y and then z. The rising concentration of z 
then slows production of x to the point where x begins to fall, followed 
by decreases in y and z. As time goes on, the oscillations in all three 
species dampen, but eventually they appear to settle into a constant 
amplitude rhythm. It is perhaps easier to appreciate that the ampli-
tude really does stop dampening by plotting a longer time course 
(Figure 14.1c). If we reset the circuit so that x = y = z = 0.13, which we 
do when t = 200 in Figure 14.1c, the system works its way back to the 
same “groove,” with the same amplitudes and phase relationships for 
the three variables, except that this time the oscillations grow into the 
final rhythm rather than shrinking down to it.

Another helpful way to portray the oscillations, and to see how the oscil-
lations approach this groove, is to plot the trajectories in phase space. 
Since there are three time-dependent variables, phase space is three-
dimensional, and we can plot the oscillations in this three-dimensional 
space (Figure 14.2b). However, often two-dimensional projections of 
phase space, like that in Figure 14.2c where the trajectories are projected 
into the x-y plane, are invoked because they are easier to apprehend. 
In both representations, it is clear that one sample trajectory (the blue 
one that starts at x[0] = y[0] = z[0] = 0) spirals counter-clockwise inward, 
approaching an avocado-shaped closed curve (the dashed white curve), 
and the other sample trajectory (red) spirals outward, approaching the 
same closed curve from the other side. This closed curve is called a limit 
cycle. A limit cycle is analogous to a steady state, but rather than being 
a single point that trajectories approach (if it is a stable steady state) or 
diverge from (if it is an unstable steady state), the limit cycle is a closed 
curve that attracts trajectories (if it is a stable limit cycle, as this one is) 
or repels them (in the case of unstable limit cycles, which we will not 
encounter in our modeling). A stable limit cycle is an attractor, just as a 
stable steady state is. Moreover, any orbit that starts exactly on a limit 
cycle, stable or unstable, will remain there forever. 

(a)

(c)

(b)

x

y

z

mRNA

protein

small
molecule

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

x,
 y

, a
nd

 z

0

x

y

z
x,

 y
, a

nd
 z

0 50 100 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

200

reset to {0.13, 0.13, 0.13}

250 300 350 400
Time

start from {0, 0, 0}

0

Figure 14.1  The Goodwin oscillator. (a) Schematic diagram of the model. (b,c) Time courses. For both panels we have 
assumed that all of the rate constants are equal to 1, K = 1, and n = 10, and that the initial values of x, y, and z are {0, 0, 0}.
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14.3 � LINEAR STABILITY ANALYSIS YIELDS A 
PAIR OF COMPLEX EIGENVALUES

Does an oscillatory system like this even have a steady state? After all, 
the system never comes to rest. To answer this question, we start with 
the rate equations and set them all equal to zero, as required for the 
system to be in steady state:

=
+

− −0 ,1 1k
K

K z
k x

n

n n 	 (14.4)

= − −0 ,2 2k x k y 	 (14.5)

= − −0 .3 3k y k z 	 (14.6)

We cannot solve this set of equations in closed form but can solve it 
numerically, and for our choice of parameters, the solution is:

= = ≈ 0.122.x y zss ss ss 	 (14.7)
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Figure 14.2  Limit cycle oscillations 
in phase space and projected 
onto the x–y phase plane for the 
Goodwin oscillator. (a) Schematic. (b) 
Trajectories in phase space. The blue curve 
corresponds to initial conditions of x, y, 
and z = {0, 0, 0}. The red curve starts at x, 
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The same trajectories projected onto the 
x-y plane.
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Thus the system has a single steady state. Note that its coordinates 
are why we started one of our trajectories at x[0] = y[0] = z[0] = 0.13; we 
were starting close to the steady state to see what would happen, and 
what happened was that the trajectory spiraled out away from the 
steady state, ultimately approaching the limit cycle.

So is this single steady state stable or unstable? To address this we 
need to carry out linear stability analysis and calculate the eigenval-
ues and eigenvectors of the three-variable system at the steady state. 
The procedure is the same as what we did in Chapter 9.3, except here 
we have three variables rather than two.

First, we define functions f, g, and h:

=
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− − ,1 1f k
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K z
k x

n

n n 	 (14.8)

= − − ,2 2g k x k y 	 (14.9)

	 (14.10)

Next, we calculate the partial derivatives and arrange them in a 
Jacobian matrix:
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Finally, we plug in the assumed values for the rate constants, K, and 
n, and the z-coordinate of the steady state, and calculate the eigen-
vectors and eigenvalues. The three eigenvalues (to three significant 
figures) are:

λ
λ
λ

= −
= +
= −

3.06

0.0316 1.79

0.0316 1.79

1

2

3

i

i

	 (14.12)

and the corresponding eigenvectors are {−0.880, 0.427, −0.207}, 
{0.880, 0.213 − 0.379i, −0.103 − 0.179i}, and {0.880, 0.213 + 0.379i, 
−0.103 + 0.179i}.

The first eigenvector represents a special direction in real phase space, 
and it corresponds to a negative eigenvalue, so trajectories that begin 
from this general direction are initially attracted to the steady state. 
However, as they get close to the steady state, they are repelled out 
to the limit cycle. Thus the steady state shares some of the dynami-
cal character of the saddles we saw in two-variable bistable systems 
(Chapter 9), first attracting and then repelling. We can plot the one-
dimensional stable manifold of the steady state by making all of the 
rate constants in the model negative, picking a starting point close to 
the steady state along the eigenvector and then numerically calculat-
ing the trajectory of this time-reversed model. The result is shown in 
Figure 14.3b, with this stable manifold, the limit cycle, and one sam-
ple trajectory all projected onto the x–y plane.

= − − .3 3h k y k z
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The other two eigenvectors and eigenvalues are complex numbers 
rather than real numbers—pairs of complex conjugates. To see what 
the complex eigenvalues mean physically, recall that exponential 
functions with imaginary exponents can be related to trigonometric 
functions through Euler’s equation:

= +cos sin ,e y i yiy 	 (14.13)

and so:

( )= ++ cos sin .e e y i yx iy x 	 (14.14)

Thus, the response to an infinitesimal perturbation corresponding to 
the second and third eigenvalues is proportional to:

( )
( )

( ) ( )
( ) ( )

= +

= −
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+

−

cos 1.79 sin 1.79

cos 1.79 sin 1.79 .

0.0316 1.79 0.0316

0.0316 1.79 0.0316

e e t i t

e e t i t

i t t

i t t
	 (14.15)

There is a periodic component to the trajectories, the real part of 
which is the cosine function, and there is a real exponential com-
ponent, with a positive exponent. The cosine explains why the 
trajectories circle the steady state in the phase plane, and the positive 
exponential explains why they spiral outward from the steady state 
rather than inward. From Eq. 14.15 it follows that the period of the 
oscillations when the trajectory is very close to the steady state is 
π2 / 1.79 time units (~3.51), and by numerical simulation the period is 

not too different from this even as the trajectory approaches the limit 
cycle (~3.70).

Thus, the three-variable Goodwin oscillator model possesses a single 
steady state. Linear stability analysis of the model at this steady state 
yields one negative real eigenvalue, which means that from one spe-
cial direction the steady state attracts trajectories. But there are also 
two complex eigenvalues. The imaginary parts of these eigenvalues 
show that the trajectories have an inherent periodicity, and the mag-
nitude of the imaginary parts determines the period of the oscillations 
close to the steady state. The real parts determine whether the oscilla-
tions will spiral out from the steady state (in the phase plane) or spiral 
in toward it. In our case the real parts were positive, which means 
that the oscillations spiral out. A steady state like this is often called 
an unstable spiral point.
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It is interesting that even though biological oscillations are time-
dependent, dynamical behaviors, analysis of the steady state—the point 
in phase space where the model’s behavior is not time-dependent—
yields a great deal of insight into the model’s dynamics.

There are other oscillator models whose steady states have real rather 
than complex eigenvalues and we will see examples of this in the next 
chapter. But a pair of complex eigenvalues ensure that a model will 
exhibit at least damped oscillations, and complex eigenvalues with a 
positive real part ensure that the oscillations will not be damped.

14.4 � OSCILLATIONS ARE BORN AND 
EXTINGUISHED AT HOPF BIFURCATIONS

We can make the negative feedback weaker by increasing the assumed 
value of K, and see what happens to the oscillations and to the stabil-
ity of the steady state. Figure 14.4b shows the model with K set at 0.1. 
Figure 14.4a assumes stronger negative feedback (K = 0.01), and the 
result is a loss of amplitude. Figures 14.4c,d assume weaker (C, K = 1) 
and absent (D, K = ∞) negative feedback, and the results are damped 
oscillations (C) and no oscillations whatsoever (D).

By taking a finer range of K values, we can carry out a one-dimensional 
bifurcation analysis of the system. As shown in Figure 14.4e, oscil-
lations are present when K is less than about 0.175. Above this value 
of K, the real portions of the complex conjugate of eigenvalues, Re[λ2] 
and Re[λ3], are negative—the steady state is a stable spiral point—and 
above it they are positive, so the spiral point becomes unstable, and a 
stable limit cycle is born. This transition in the stability of the steady 
state and the dynamics of the system is termed a Hopf bifurcation. 
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Hopf bifurcations are the most common way that oscillations are born 
and extinguished in models of biological oscillations.

The amplitude of the oscillations is a sensitive function of K, rising 
from 0 at the Hopf bifurcation to a maximum when K is close to our 
original value of 0.1, and then falling again as K decreases and the 
negative feedback strength increases further (Figure 14.5). The period 
of the limit cycle is much less sensitive to the assumed negative feed-
back strength, varying by less than 10% over the oscillatory range of 
K values. These qualities—a variable amplitude and a less variable 
period—are commonly found in negative feedback oscillators.

14.5 � SIMPLE HARMONIC OSCILLATORS ARE 
NOT LIMIT CYCLE OSCILLATORS

Most manmade clocks, as opposed to biological clocks, are harmonic 
oscillators. Are harmonic oscillators similar to the Goodwin oscillator 
in terms of their dynamics, or are they a different kind of thing?

For a mass on an ideal spring in the absence of friction (Figure 14.5a), 
the equation of motion is: 

= −
2

2m
d x
dt

kx 	 (14.16)

or:

= − ,
2

2

d x
dt

k
m

x 	 (14.17)

where m is the mass, k is the spring constant, and x is the displacement 
of the mass from its resting position. This is a second-order differential 

equation, but we can convert it to two first-order differential equations 

by noting that the mass’s velocity v is 
dx
dt

, which means that:

=
dx
dt

v 	 (14.18)
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= − .
dv
dt

k
m

x 	 (14.19)

Equations 14.18 and 14.19 constitute our two-ODE model of a har-
monic oscillator.

We can solve these ODEs analytically:

	 (14.20)

	 (14.21)

where the frequency ω =
k
m

. We can then plot these solutions either 

as time courses (Figure 14.5b), or in the x–v phase plane (Figure 
14.6b), for some choice of the initial conditions (say x[0] = 1, v[0] = 0) 
and ω  (say ω = 1). The trajectories are, as expected, sine and cosine 
waves in the time course plots, and a closed circle in the phase plane 
(Figure 14.5b,c). One might be tempted to call this circle a limit cycle. 
However, unlike a limit cycle, no trajectories spiral into or away from 
it. And the system does not eventually approach the same “groove” 
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irrespective of its starting conditions, the way it did for the Goodwin 
oscillator. Instead, if two different starting conditions put you on dif-
ferent circles, they will oscillate with different amplitudes (but with 
identical periods).

What about the steady state of the harmonic oscillator system? By 
setting Eqs. 14.18 and 14.19 equal to zero, it quickly follows that the 
nullclines are the two axes in the phase plane, and that there is a sin-
gle steady state for the system at {0, 0}. And as to the stability of the 
steady state, what would happen if you perturbed the system by some 
small amount δ in the x direction (or in any direction, actually)? The 
answer is that the trajectory would not spiral into the steady state, nor 
away from it. It would just orbit the steady state at a constant distance 
of δ. Thus the steady state is neither a stable spiral point nor an unsta-
ble spiral point.

And, finally, what does linear stability analysis say about the steady 
state? The Jacobian matrix is:
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and the eigenvalues of this matrix are ω−i  and ωi —two purely 
imaginary numbers. Since the real parts of the eigenvalues are neither 
positive nor negative, the steady state is neither unstable nor stable. A 
steady state of this sort, which in our case sits in the center of all the 
orbits, is called a center.

To sum it up: the harmonic oscillator is a wonderful, simple system to 
study, but it is not a limit cycle oscillator and does not behave like the 
oscillators encountered in cell signaling.

SUMMARY
Here we have examined the Goodwin oscillator model, in which a 
negative feedback loop of sufficient length (at least three variables) 
and with a substantial amount of ultrasensitivity (n > 8) generates 
limit cycle oscillations. The system has a single steady state with one 
negative eigenvalue and two complex ones, and when the negative 
feedback is dialed up to the point where it is strong enough to allow 
sustained oscillations to occur, the real parts of the complex eigen-
values switch from negative to positive. The point where the real 
parts go through zero and a stable limit cycle is born is termed a Hopf 
bifurcation. The Goodwin oscillator always approaches the same 
“groove”—the stable limit cycle—irrespective of the system’s initial 
conditions. This distinguishes it from the familiar harmonic oscillator, 
where the initial position and velocity of the oscillator determines its 
amplitude.

Goodwin oscillators, sometimes with phosphorylation/dephospho-
rylation reactions in place of the synthesis/destruction reactions and 
with zero-order ultrasensitivity in place of the cooperative inhibition, 
have been used to model a wide variety of biological clocks and tim-
ers. However, biological oscillator circuits often possess an additional 
feature, a positive feedback loop that functions as a bistable trigger, 
and in Chapter 15 we will see how this can change the basic character 
of the oscillator.
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INTRODUCTION
Although a simple negative feedback loop of sufficient length, like 
the Goodwin oscillator, can give rise to limit cycle oscillations, many 
biological oscillators possess an additional circuit element: a bistable 
trigger. The trigger fires once per cycle, and its presence changes the 
character of the oscillations. This is why many biological oscillations 
look more like a succession of spikes than a sinusoidal (harmonic 
oscillator) or almost-sinusoidal (Goodwin oscillator) ebb and flow. 
Oscillator circuits with a fast positive feedback trigger and a slower 
negative feedback loop are termed relaxation oscillators. The pace-
maker cells of the cardiac sinoatrial node, which give rise to periodic 
spikes in membrane potential that spreads throughout the heart to 
make the heart contract, represent a classic example of a relaxation 
oscillator (Figure 15.1a). Another good example is the embryonic 
cell cycle, which is driven by regular spikes of Cdk1 activity (Figure 
15.1b). Although the time scales of these oscillations are quite differ-
ent and the proteins involved are completely unrelated, the character 
of the oscillations is remarkably similar (Figure 15.1).

Here we will begin with an analysis of the cell cycle oscillator, 
followed by the Fitzhugh–Nagumo model, which is a favorite of physi-
cists that can be used to model neuronal action potentials and cardiac 
pacemaker oscillations. We will finish with a depletion-based oscilla-
tor model recently proposed to account for oscillations in the RhoA 
GTPase cycle.

15.1 � THE XENOPUS EMBRYONIC CELL CYCLE 
IS DRIVEN BY A RELIABLE BIOCHEMICAL 
OSCILLATOR

Many model organisms have contributed to our understanding of 
the cell cycle oscillator, including fission yeast (Schizosaccharomyces 
pombe), budding yeast (Saccharomyces cerevisiae), Drosophila mela-
nogaster embryos, and various mammalian cell lines. But the most 
detailed quantitative picture arguably comes from the eggs and 
embryos of the South African clawed-toed frog, Xenopus laevis.

Unfertilized Xenopus eggs are huge cells (~1 µL in volume, compared 
with ~2–3 pL for typical somatic cells) that are arrested in metaphase 
of meiosis II. After fertilization, they complete meiosis II, expelling 
the tiny second polar body that contains half of the mother’s sister 
chromatids, and then they enter interphase of the first mitotic cell 
cycle. The remaining sister chromatids from the egg (in the female 
pronucleus) and the sister chromatids from the sperm (in the male 
pronucleus) are replicated, the pronuclei move toward each other, 
and they enter mitosis. At the end of mitosis the replicated sister 
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chromatids are pulled apart and two daughter cells are formed; the 
spherical egg is split longitudinally, from the dark brown animal pole 
down to the cream-colored vegetal pole (Figure 15.2). In total, this 
process takes about 90 min. This is followed by a succession of cell 
cycles that consist of a ~15-min interphase, during which DNA rep-
lication occurs, and a ~15-min M-phase. No cell growth takes place 
during these cell cycles; the fertilized egg simply divides in half, and 
then in quarters, and so on, until after 12 cell cycles the embryo is 
composed of about 4,000 cells (Figure 15.2).

The embryonic cell cycle is streamlined—there are no G1 or G2 phases 
and no S-phase or M-phase checkpoints. This simplicity, plus the 
rapidity of the cycles (~30 min vs. ~24 h for typical mammalian cells in 
culture), has made the Xenopus embryo a workhorse system for stud-
ies of cell cycle regulation. In addition, the regularity of the cycles—the 
period varies only a few percent between cells within a cleaving 
embryo or even between embryos—makes the system appealing to 
those interested in biological clocks and oscillators. Something this 
precise and “physics-like” seems likely to be understandable. And 
finally, it turns out that undiluted, crudely-fractionated extracts from 
Xenopus eggs can carry out the cell cycle in vitro (Figure 15.3). These 
cell cycles can be monitored in various ways. For example, if sperm 
chromatin is added to the extract, it will turn into an intact nucleus dur-
ing interphase that undergoes nuclear envelope breakdown whenever 
the extract goes into mitosis, and then nuclear envelope reforma-
tion when the extract progresses into the next interphase, and these 
events can be followed by microscopy. Microtubule polymerization 
can also be used to read out cell cycle progression (Figure 15.3b); dur-
ing interphase, the cytoplasm is filled with a network of microtubules, 
whereas during M-phase most of these microtubules are depolym-
erized, and only the spindle microtubules remain. Cycling extracts 
can also be sampled repeatedly for biochemical assays. Figure 15.3c 
shows experimental measurements of the activity of cyclin B-Cdk1 
during a cycle: it starts low, rises gradually, and then spikes upward 
right when mitosis begins. It then plummets back to its original level 
of activity, at which point the extract exits mitosis and enters the next 
interphase, ready to carry out the cycle again.

Extracts can be manipulated in ways that would be impossible with 
intact cells. A good example of these sorts of extract-only approaches 
came during the work on cyclin function in the mid-1980s. It was 
already known that the cyclin proteins accumulate during interphase 
and then become degraded prior to division in the embryonic cell 
cycle, but it was not certain that these oscillations drove the cell cycle. 
Minshull, Blow, and Hunt inhibited cyclin synthesis in cycling Xenopus 
extracts by adding in antisense oligonucleotide, and found that the 
mitotic entry was delayed or blocked. At about the same time, Murray 
and Kirschner treated cycling Xenopus extracts with ribonuclease 

Fertilized egg 2 cell embryo 4 cell embryo 8 cell embryo 16 cell embryo 32 cell embryo

90 mpf 120 mpf 150 mpf 180 mpf 210 mpf

Figure 15.2  The rapid, nearly synchronous divisions of the early embryonic cell cycle in Xenopus laevis. 
Photos: Graham Anderson. Here mpf stands for minutes postfertilization.
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(RNase), which degraded mRNAs and blocked mitotic entry, then 
neutralized the RNase and added back a cyclin mRNA to the extract, 
and found that this cyclin mRNA restored the extract’s ability to cycle. 
These discoveries placed cyclins at the core of the cell cycle oscillator.

15.2 � THE CELL CYCLE OSCILLATOR INCLUDES 
A NEGATIVE FEEDBACK LOOP AND A 
BISTABLE TRIGGER

The current view of regulatory circuit that drives the cell cycle is 
shown schematically in Figure 15.4. Oscillations are now know to 
be driven by the synthesis of several related mitotic cyclin proteins 
(cyclins B1α, B1β, B2, B4, B5, and A1, here collectively referred to as 
cyclin B). The cyclin B binds with high affinity to Cdk1, which is present 
in modest excess, and when the cyclin B–Cdk1 complex is in the right 
phosphorylation state, it is active as a protein kinase, phosphorylating 
hundreds of substrate proteins at many hundreds of phosphorylation 
sites. The collective effect of these phosphorylations is the dramatic 
cellular changes of mitotic entry, including chromatin condensation, 
nuclear envelope breakdown, vesiculation of the golgi, endoplasmic 
reticulum, and mitochondria, and reorganization of the microtubules 
into a football-shaped spindle.

Four particular regulatory proteins that are targets of active Cdk1 
are of special importance for this regulatory circuit. The first is the 
Greatwall kinase (Gwl), which is activated by Cdk1 and then inacti-
vates the phosphatase PP2A-B55 by phosphorylating and activating 
a pair of stoichiometric inhibitors of PP2A-B55 (ENSA and ARPP19). 
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when bound to microtubules (a silicon 
rhodamine taxane derivative, SiR-tubulin). 
This extract carried out 20 cell cycles, with 
the troughs of SiR-tubulin fluorescence 
corresponding to mitosis. (Adapted from 
Afanzar et al., Elife. 2020.) (c) Cdk1 
activity as a function of time in a cycling 
extract. (Adapted from Kamenz et al., Curr 
Biol. 2020.)
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PP2A-B55 is the phosphatase responsible for dephosphorylating 
many of the substrates that Cdk1 phosphorylates, so the inactivation 
of PP2A-B55 potentiates the effect of Cdk1 activation.

The second key regulatory target of Cdk1 is the anaphase-promoting 
complex or cyclosome (APC/C), which in the embryonic cell cycle 
is bound to the Cdc20 activator protein (as opposed to the Cdh1 
activator protein, which is important in somatic cells but not in the 
embryonic cell cycle). APC/CCdc20 phosphorylation leads to activa-
tion. Active APC/CCdc20 polyubiquitylates the N-terminus of cyclin B, 
leading to its rapid destruction by the proteasome. This constitutes a 
negative feedback loop: cyclin B-Cdk1 activates APC/CCdc20, which 
feeds back to destroy cyclin and thereby inactivate Cdk1. Thus, like 
the Goodwin oscillator, the cell cycle oscillator possesses a negative 
feedback loop. This loop is essential for oscillations; engineered cyclin 
proteins that lack their N-termini and cannot be polyubiquitylated by 
APC/CCdc20 will drive mitotic entry normally, but then arrest in mitosis 
because Cdk1 cannot be inactivated. It has been conjectured that all 
biochemical oscillators must possess a negative feedback loop, or the 
equivalent, and whether this is or is not true in general, it is true for 
the embryonic cell cycle.

The remaining key targets of Cdk1 are a pair of enzymes with opposite 
effects on Cdk1, Wee1 and Cdc25C. These enzymes are responsible 
for determining whether the cyclin B–Cdk1 complex is in the right 
phosphorylation state to be fully active. Wee1 is a protein kinase, and 
it phosphorylates Cdk1 at a residue in its catalytic cleft and renders 
Cdk1 unable to position the γ-phosphate in ATP properly for phos-
photransfer. Cdc25C is the phosphatase that dephosphorylates the 
Wee1-phosphorylated site and restores full activity to cyclin B1–Cdk1. 
Moreover, cyclin B1–Cdk1 activates it activator, Cdc25C, through mul-
tisite phosphorylation, and inactivates Wee1, also through multisite 
phosphorylation. These interlinked feedback loops—one a positive 
feedback loop and the other a double-negative feedback loop—
function as the bistable mitotic trigger. The loops are also reinforced 
by additional feedback. For example, Cdc25C is inactivated by PP2A–
B55, which is inactivated by cyclin B1–Cdk1, which means that cyclin 
B1–Cdk1 –| PP2A–B55 –| Cdc25C –> cyclin-B1–Cdk1, a double-negative 
feedback loop. And Wee1 is activated by PP2A-B55, which means 
that cyclin B1–Cdk1 –| PP2A–B55 –> Wee1 –| cyclin–B1–Cdk1, another 
double-negative feedback loop. Multiple interlinked feedback loops 
appear to be common in bistable regulatory systems.
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Figure 15.4  The regulatory circuit 
that drives mitotic entry and exit. 
Mitosis is driven by the collective effects 
of the phosphorylation of hundreds of 
substrate proteins (blue), which is in turn 
determined by the activity of the master 
mitotic kinase cyclin B–Cdk1 (pink) and 
the phosphatase PP2A-B55 (green). The 
cyclical changes in the activities of cyclin 
B–Cdk1 and PP2A-B55 are ensured by a 
negative feedback loop: Cdk1 activates 
APC/CCdc20, which then polyubiquitylates 
cyclin B, leading to its degradation by 
the proteasome. There are also several 
interlinked positive and double-negative 
feedback loops (e.g., Cdk1 activates 
Cdc25C and Cdc25C activates Cdk1) 
that make Cdk1 activation and PP2A-B55 
inactivation explosive in character.
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In summary, cyclin B1-Cdk1 activation is driven by cyclin synthesis 
during interphase; boosted to mitotic levels by a bistable trigger con-
sisting of interlinked positive and double-negative feedback loops; and 
then inactivated through a negative feedback loop where activated 
APC/CCdc20 feeds back to bring about the proteolysis of cyclin.

15.3 � A SIMPLIFIED MODEL CAPTURES THE 
BASIC DYNAMICS OF THE CELL CYCLE 
OSCILLATOR

To a hardcore student of the cell cycle, every step shown in Figure 15.4 
is interesting and important. But the system is too complicated to be 
useful as an introduction to relaxation oscillators. Fortunately, it can 
be pared down to a much simpler model, which is relatively easy to 
learn from and which fairly faithfully reproduces the dynamics of cyc-
lin B-Cdk1 oscillations.

We focus on three key time-dependent species. The first is cyclin 
B, whose concentration is regulated by synthesis and degradation. 
We will call the total concentration of cyclin B xtot. The second is the 
cyclin B-Cdk1 complex, whose activity is regulated by phosphoryla-
tion and dephosphorylation. We will call the active cyclin B-Cdk1 
species y* and the inactive form y. The third is APC/CCdc20, which is 
also regulated by phosphorylation, and which we will call z* (active) 
or z (inactive). This is shown schematically in Figure 15.5a.

We assume that cyclin B is translated at a constant rate (k1), and that it 
rapidly binds to the excess Cdk1 with high affinity, so that the produc-
tion of cyclin B-Cdk1 complexes also occurs at a constant rate of k1. 
We assume that the polyubiquitylation of cyclin B (in active or inactive 
complexes, or free) leads immediately to its destruction, and hence 
the destruction of xtot, by the proteasome, and we assume that the 
process is described by mass action kinetics, and so is proportional to 
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Figure 15.5  A simplified model 
of the cell cycle oscillator yields 
sustained oscillations in cyclin B 
abundance (xtot) and cyclin B–Cdk1 
activity (y*). (a) Schematic of the 
oscillator circuit. (b) Rate-balance analysis 
for the mitotic trigger, showing the rate of 
y activation and inactivation as a function 
of y* for one value of xtot (xtot = 50). 
(c) Time courses. For panels b and c, the 
parameters were: k1 = 1; k−1 = 0.2; K1 = 30; 
n1 = 5; a2 = 0.03; k2 = 5; k−2 = 1; K2 = 30; 
and n2 = 5.
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xtot and to the concentration of active APC/CCdc20 (z*). The resulting 
rate equation is:

* .1 1

dx
dt

k k x ztot
tot= − − 	 (15.1)

Next we consider the activity of the cyclin B–Cdk1 complexes. The cir-
cuits that regulate cyclin B–Cdk1 activity include multiple interlinked 
positive and double-negative feedback loops, which collectively make 
the steady-state response of cyclin B–Cdk1 activity as a function of the 
cyclin B concentration hysteretic and bistable. For simplicity we will 
reduce the interlinked loops to a single loop, with inactivated cyclin B–
Cdk1 (x) activated by the phosphatase Cdc25, which is itself activated 
by active cyclin B–Cdk1 (y*). We will ignore the double-negative Wee1 
loop and assume that y* is inactivated by a constitutive kinase with 
mass action kinetics. We will make use of the fact that the binding of 
cyclin B to Cdk1 is fast, so that that amount of free cyclin B is negligi-
ble and *x y ytot = + . This leaves us with the following rate equation:

*
25 * * .2 2

dy
dt

k Cdc x y k ytot( )= ⋅ − − − 	 (15.2)

The steady-state activity of Cdc25 has been shown experimentally to 
be a switch-like function of y*, with a fairly high basal activity. Thus:

Cdc a
y

K y
ss

n

n n

( )
( )

∝ +
+

25
*

*
.2

2

2
2 2 	 (15.3)

Since Cdc25 is regulated by phosphorylation and dephosphorylation, 
which occur quickly relative to protein synthesis and destruction, we 
will assume that for any given value of y*, the activity of Cdc25 is 
approximately the steady-state activity given by Eq. 15.3. This allows 
us to reduce Eq. 15.2 to one with a single variable that changes slowly 
(xtot) and a single variable that changes more rapidly (y*):

* *

*
* * .2 2

2

2
2 2 2

dy
dt

k a
y

K y
x y k y

n

n n tot( )( )
( )

= +
+









 − − − 	 (15.4)

Note that this is similar to what we did in Chapter 8 to model the 
bistable Mos/MAPK switch that drives Xenopus oocyte maturation: 
we combined a simple positive feedback loop with a nonlinear Hill 
function for the mediators of the feedback and produced a bistable 
system—a system where, for some values of parameters and xtot, 
the rates of activation and inactivation of y* balance at three steady 
states, two of which are stable (Figure 15.5b). In the present case, 
though, the feedback promotes the activation of a species (y*) rather 
than the production of a species (Mos).

Finally, we need to implement the negative feedback that degrades 
cyclin B after mitotic entry. The activation of APC/CCdc20 (z) is the 
result of phosphorylation by cyclin B–Cdk1, and it is known to be 
switch-like in character. Since z* is regulated by phosphorylation and 
dephosphorylation, we will assume that z* is at the steady-state level 
determined by whatever y* is.1

1	 Note that this is a fiction—it has been experimentally shown that z* lags significantly behind 
y*, and it has been hypothesized that this time lag contributes to the robustness of the cell cycle 
oscillator. Nevertheless, making this simplification allows us to have a model with only two 
time-dependent variables, xtot and y*, and this allows us to make use of 2D phase plane analysis 
to probe the workings of the model. So the fiction is useful for the purposes of teaching.
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Since the activation of APC/CCdc20 is switch-like, we use a Hill func-
tion for the steady-state activity of z*, in fractional terms:

*
*

*
.

1

1
1 1z
y

K y

n

n n=
+

	 (15.5)

Substituting this into Eq. 15.1 yields:

*
*

.1 1

1

1
1 1

dx
dt

k k x
y

K y
tot

tot

n

n n= −
+− 	 (15.6)

Equations 15.4 and 15.6 constitute our two-ODE model of cell cycle 
oscillations: one equation for the relatively slow synthesis and 
destruction of cyclin (xtot) (Eq. 15.6) and one for the relatively rapid 
activation and inactivation of cyclin B–Cdk1 (y) (Eq. 15.4).

Figure 15.5c shows the time course of cyclin abundance (xtot) and 
cyclin B–Cdk1 activity (y*) for this model, using judiciously chosen 
parameters (k1 = 1, k−1 = 0.2, K1 = 30, n1 = 5, k2 = 5, k−2 = 1, a2 = 0.03, 
K2 = 30, and n2 = 5) and initial conditions of xtot[0] = y*[0] = 0. The model 
yields sustained sawtooth waves of cyclin abundance and periodic 
spikes of cyclin B–Cdk1 activity. These are very similar in character 
to the oscillations in these quantities measured experimentally, and 
they are quite different from the sinusoidal oscillations seen in the 
harmonic oscillator, or the almost-sinusoidal oscillations seen in the 
Goodwin oscillator. Periodic spikes and sawtooth waves are common 
in biological oscillations.

15.4 � THE CELL CYCLE MODEL HAS A SINGLE 
UNSTABLE STEADY STATE

To better understand the dynamics of the system, we can carry out 
local stability analysis of the steady state. We plot the two nullclines 
of the two-ODE system in the phase plane, determine the position of 
the steady state, and calculate the eigenvalues of the Jacobian matrix 
at the steady state.

An equation for the xtot-nullcline can be obtained by setting the time 
derivative in Eq. 15.6 equal to zero:

0
*

*
.1 1

1

1
1 1k k x
y

K ytot

n

n n= −
+− 	 (15.7)

Equation 15.7 can be rearranged to yield an expression for xtot as a 
function of y*:

*
*

.1

1

1
1 1

1x
k
k

K y
ytot

n n

n=
+



−

	 (15.8)

This xtot-nullcline is shown as the blue curve in Figure 15.6b.

For the y*-nullcline, we set the time derivative equal to zero in Eq. 15.4:

0
*

*
* * .2 2

2

2
2 2 2k a

y

K y
x y k y

n

n n tot( )( )
( )

= +
+









 − − − 	 (15.9)
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Solving for xtot yields:
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This is shown as the red curve in Figure 15.6b. Note that when plotted 
this way, with xtot on the x-axis and y* on the y-axis, the y*-nullcline is 
an S-shaped, multivalued function.

The y*-nullcline represents the steady-state response of y* to xtot in 
the absence of any negative feedback. This relationship has been 
measured experimentally and, as shown in Figure 15.6c, the experi-
mental and modeled curves are similar. Both show a monostable, low 
value of y* for low xtot concentrations, a monostable, high value of 
y* for high concentrations, and bistability when xtot is between about 
40 and 70 nM (note that we have chosen parameters for the model 
such that the concentrations end up in nM units and time ends up 
in minutes). In the bistable region, the portion of the S-shaped curve 
with negative slope corresponds to the unstable steady state for the 
no-negative-feedback system.

The two nullclines intersect at a single point, with 48.8 nMxtot ≈  and 
≈* 19.4y  nM, and we can carry out linear stability analysis for the 

system at this steady state. If we let:

*
*

, and1 1
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then the Jacobian matrix is:
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Plugging in the parameters and the steady-state values of xtot and y*:

=






-0.021 -0.231
0.663 1.809

.J 	 (15.14)

The eigenvectors of this matrix are {0.131, −0.991} and {−0.935, 0.356} 
and the corresponding eigenvalues are λ λ≈ ≈1.721and 0.0671 2 . This 
means that the single steady state is unstable—it repels in all direc-
tions. Note that for this set of parameters, the eigenvalues are a pair 
of positive real numbers rather than the pair of complex conjugates 
we obtained in the case of the Goodwin oscillator, which means that 
very close to the steady state, there is no intrinsic periodicity to the 
trajectories. Nevertheless, they acquire a counterclockwise rotation 
as they move away from the steady state and eventually converge 
upon a stable limit cycle (Figure 15.6b, black dashed line).

To further explore the dynamics of the system, suppose that we start a 
trajectory from the phase plane origin. This is right on the y*-nullcline, 

so =
*

0
dy
dt

, but because APC/CCdc20 is inactive, cyclin will accumulate 

and the trajectory will crawl to the right. This results in the initial lin-
ear increase in xtot and the gradual increase in y* in the time course 
(Figure 15.5c). Eventually though, the trajectory reaches the end of 
this part of the y*-nullcline—the sharp knee that would be a saddle-
node bifurcation if this were a one-variable, bistable system with no 
negative feedback. At this point, the trajectory turns nearly straight 
upward, because the reactions that determine the activity of Cdk1 
are rapid, and it approaches the upper part of the S-shaped nullcline 
(Figure 15.6b). This produces the spike in y* activation in the time 
course (Figure 15.5c). By the time the trajectory reaches this leg, the 
high level of y* has turned APC/CCdc20 on, which means that cyclin 
B destruction is now faster than synthesis. This makes both the cyc-
lin level (xtot) and the Cdk1 activity (y*) begin to drop (Figure 15.5c), 
and the trajectory crawls down the upper leg of the y*-nullcline 
(Figure 15.6b). This continues until the trajectory reaches the end of 
this part of the y*-nullcline and so turns nearly straight down toward 
the lower leg of the nullcline. Cyclin B levels plummet, Cdk1 activity 
drops back to basal levels, APC/CCdc20 turns back off, and the system 
is ready to begin another cycle of cyclin accumulation, followed by 
Cdk1 activation, cyclin destruction, and Cdk1 inactivation.

This is how a typical relaxation oscillator works. It is built from a 
hysteretic bistable switch, with the oscillations being a walk around 
the hysteretic loop. And the relaxations for which the oscillator is 
named? They are the quick bursts upward and downward, which can 
be thought of as releasing some “tension” that builds up when you 
get toward the end of the nullcline you are walking along. The quick-
ness of these relaxations gives the oscillator its spiky, nonsinusoidal 
character.
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15.5 � TUNING THE OSCILLATOR CHANGES THE 
PERIOD MORE THAN THE AMPLITUDE

The cell cycle oscillator is driven by cyclin B synthesis. What happens 
if we increase or decrease the cyclin synthesis rate?

Figure 15.7a–f shows time courses for the oscillator with the syn-
thesis rate, k1, ranging from 0.1 to 3. Oscillations begin somewhere 
between k1 = 0.1 and 0.2, and they persist until k1 reaches a bit less 
than 3. The bifurcation diagram corresponding to these changes in 
k1 is shown in Figure 15.7g. There are Hopf bifurcations at k1 = 0.139 
and 2.86, where the real portions of both eigenvalues (shown for λ1 in 
Figure 15.7h) pass through zero.
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Figure 15.7  Varying the cyclin synthesis rate. (a–f) Time courses assuming cyclin synthesis rates (k1) between 0.1 and 3 µM/
min. In panels b through E the model yields limit cycle oscillations. (g, h) One-parameter bifurcation analysis, varying the synthesis 
rate k1. (g) Steady-state values of Cdk1 activity (y*) as a function of k1. Stable steady states are depicted by solid red curves; 
unstable, by the dashed red curve. In the unstable regime, the peak and trough of the limit cycle is also depicted. Oscillations are 
born and extinguished at Hopf bifurcations, at k1 = 0.139 and 2.86. (h) The real portion of one of the eigenvalues, λ1, as a function 
of k1. The Hopf bifurcations occur when the eigenvalue equals zero. The same is true for the other eigenvalue, λ2. (i, j) The 
amplitude (i) and period or frequency (j) of the limit cycle as a function of the cyclin synthesis rate k1.



SYSTEMS BIOLOGY OF CELL SIGNALING236

Note that the amplitude of the oscillations varies relatively little 
over almost the entire range (Figure 15.7i), whereas the period or 
frequency varies substantially (Figure 15.7j). This is the opposite of 
the behavior we saw with the Goodwin oscillator, where the period 
was nearly constant but the amplitude varied substantially (Figure 
14.5). The constant amplitude and period tunability seen here for the 
cell cycle oscillator turns out to be a fairly general property of relaxa-
tion oscillators. This is probably why the sinoatrial node pacemaker, 
another classic biological relaxation oscillator, can be tuned over a 
substantial range of frequencies (~40 to 160 beats per min) without 
changing its amplitude much, so that at the extremes of frequency it 
is still able to perform its vital function, making the heart beat.

15.6 � PHASE PLANE ANALYSIS SHOWS WHY 
THE HOPF BIFURCATIONS OCCUR WHERE 
THEY DO

Plotting the nullclines in the phase plane provides an explanation 
for why the system oscillates with our original choice of parameters 
(including the choice of k1 = 1) and why the two Hopf bifurcations occur 
at k1 = 0.139 and 2.86. When k1 = 1, the xtot-nullcline (Figure 15.8, blue 
curve) intersects the S-shaped y*-nullcline (Figure 15.8, red curve) 
in the middle section of the S, that is, the segment where the slope 
of the y*-nullcline is negative. This is also the section of the nullcline 
that would be unstable if this were a one-variable system, with the y* 
ODE representing the rate of y* production as a function of xtot in the 
absence of feedback. In fact, whenever the blue curve intersects this 
middle portion of the red curve, there are sustained limit cycle oscilla-
tions, and whenever it intersects the top or bottom portion there are 
no oscillations.

We can see why this is the case through linear stability analysis, 
examining the signs of the four partial derivatives rather than their 
exact values. For the function f, which defines the xtot-nullcline when 
f = 0, the value of f is positive for the part of the phase plane to the 
left of the nullcline and negative to the right of the nullcline (Figure 
15.8b). This means that irrespective of where the steady state is posi-

tioned on the xtot-nullcline, ∂
∂

f
xtot

 will be a negative number (since f 

decreases from left to right) and ∂
∂ *

f
y

 will be a negative number as 

well (since f decreases from bottom to top). This gives us the signs of 

two elements of the Jacobian matrix. For the function g, which defines 

the S-shaped y*-nullcline when g = 0, ∂
∂

g
xtot

 will be always be a positive 

number, since g is positive to the right of the nullcline and negative to 

the left of it (Figure 15.8c). But the sign of ∂
∂ *

g
y

 depends on whether or 

not the steady state is on the middle part of the S-shaped nullcline. If it 

is on the middle part, then ∂
∂ *

g
y

 will be positive; otherwise, ∂
∂ *

g
y

 will be 

negative. This means the signs of the elements of the Jacobian matrix 
if the steady state is on the unstable part of S-shaped nullcline are:









 ,

neg neg

pos pos
	 (15.15)
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and otherwise the signs are:









 .

neg neg

pos neg
	 (15.16)

Next, we make use of the formula for the two eigenvalues of a 2 × 2 
matrix:

λ τ τ
=

± − ∆4
2

,1,2

2

	 (15.17)

where τ is the trace of the matrix (the sum of the diagonal elements) 
and Δ is the determinant of the matrix (the product of the diagonal 
elements minus the product of the off-diagonal elements). First let us 
assume that the steady state is on the top or bottom portions of the 
S-shaped nullcline, so that the sign pattern shown in Eq. 15.16 per-
tains. The trace will be:

τ = + =neg neg neg	 (15.18)

and the determinant will be

∆ = ⋅ − ⋅ =( ) .neg neg pos neg pos	 (15.19)

If the quantity τ − ∆ ≥4 02 , then τ τ− − ∆4
2

2

 is a negative real number 

since both terms in the numerator are negative real numbers and 

τ τ+ − ∆4
2

2

 is a negative real number as well since the negative term 

in the numerator (τ) is larger in magnitude than the positive term  

( τ − ∆42 ). If, on the other hand, the quantity τ − ∆ <4 02 , then τ τ+ − ∆4
2

2

 

and τ τ− − ∆4
2

2

 will be complex conjugates with negative real parts 

equal to τ/2. The eigenvalues will either be two negative real numbers 
or will have negative real parts, and the steady state will be stable. 
Thus, theory says the system will not oscillate if the blue (xtot) nullcline 
intersects the red (y*) nullcline on the top or bottom portions, and this 
is what we found in Figure 15.8a.

So what if the xtot-nullcline intersects the y*-nullcline on its middle 
section? In this case, the trace will be:

τ = + .neg pos 	 (15.20)

This means that the trace could be either a postive or a negative num-

ber, depending on whether ∂
∂

f
xtot

 or ∂
∂ *

g
y

 is larger. Thus the eigenvalues 

might have positive real parts, but they might not. So the system 
might oscillate, if the parameters are right, but it will not necessarily 
oscillate.

We can show that this is in fact the case for the cell cycle oscillator. 
If we slow down the reactions of the bistable switch by dividing the 
values of the rate constants for the activation and inactivation of cyc-
lin B–Cdk1 (k2 and k−2), by 100, so that the switch is no longer fast 
compared to the rates of cyclin synthesis and degradation, we are 
left with exactly the same nullclines as shown in Figure 15.6b, and 
exactly the same coordinates for the steady state (Figure 15.9). But 
the eigenvalues have become complex numbers with negative real 
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parts, the steady state is a stable spiral point, the oscillations have 
taken on more of a sinusoidal in character, and they peter out with 
time (Figure 15.9).

Thus the key elements of our cell cycle relaxation oscillator are: (1) a 
bistable trigger regulating the activation of cyclin B–Cdk1, built from a 
positive feedback loop: (2) negative feedback, which resets the system 
after its bistable trigger is fired; (3) a balance between the strengths 
of the positive and negative feedback that makes the negative feed-
back nullcline intersect the S-shaped positive feedback on its middle, 
unstable segment; and (4) quick kinetics in the bistable trigger relative 
to the synthesis and degradation of cyclin B.

15.7 � INTERLINKED POSITIVE AND DOUBLE-
NEGATIVE FEEDBACK LOOPS CAN MAKE 
THE MITOTIC TRIGGER MORE ALL-OR-
NONE AND MORE ROBUST

Our simple model of the embryonic cell cycle included a single posi-
tive feedback loop in the mitotic trigger (Figure 15.5). However, we 
know that in reality the trigger possesses a double-negative feedback 
loop, through which cyclin B–Cdk1 inhibits Wee1 and Wee1 inhibits 
cyclin B-Cdk1, as well as the positive feedback loop. This is a con-
served feature of the circuit, and such interlinked positive and/or 
double-negative feedback loops appear to be quite common in cell 
regulation. This raises the question of what it is such circuits might 
accomplish that a single loop system would not.

One possibility is that the circuits operate on different time scales, 
with the fast circuit providing a rapid response and the slower circuits 
providing irreversibility. This appears to be the case in fat cell differ-
entiation in cells in culture, which is regulated by multiple interlinked 
positive and double-negative feedback loops with different speeds. 
However, in the case of Wee1 and Cdc25, the responses are essen-
tially identical in speed.

Another possibility is suggested by rate-balance analysis of the 
trigger. Figure 15.10a shows the trigger circuit if the Wee1 loop is 
added, and Figure 15.10b,c shows the rate–balance plots assuming 
Wee1 is constitutively active (Figure 15.10b) or feedback-regulated 
(Figure 15.10c). With one loop (Figure 15.10b) it is pretty easy to 
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Figure 15.9  Slowing the bistable switch makes the oscillations become damped. (a) Phase plane plot of the 
nullclines, steady state, and one trajectory (starting at {0, 0}) for the oscillator model with k2 = 0.05, k−2 = 0.01, and all of the other 
parameters the same as in Figure 15.5. The trajectory spirals in toward the stable steady state or spiral point (SSS). (b) Time courses 
corresponding to the trajectory shown in panel a.
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choose parameters that yield bistability, but the off-state is not com-
pletely off—6.6 nM of the 50 nM total cyclin B-Cdk1 complexes are 
active—and the on-state is not completely on—40.5 nM of the 50 nM 
complexes are active. The system can tolerate some perturbation in 
the parameter values and still remain bistable but not too much. For 
example, we can change the rate constant for cyclin B–Cdk1 inactiva-
tion (k−2) or the assumed concentration of Wee1, which is built into 
that rate constant, by a factor of 2.6.

But if Wee1 is part of an ultrasensitive, double-negative feedback 
loop, as it really is, the situation is different. The rate curve for cyc-
lin B–Cdk1 inactivation becomes essentially the mirror image of the 
activation rate curve (Figure 15.10c). Since Wee1 activity is low 
when Cdk1 activity is high, the curve dips down at high Cdk1 activi-
ties, which makes the on-state closer to fully-on (48.2 nM vs. 40.5 nM 
active cyclin B-Cdk1). The flux through the system at this on-state is 
much lower since the ATP-utilizing kinase Wee1 is so low in activ-
ity, which saves some metabolic energy. The off-state is, likewise, 
closer to being completely off (1.6 nM vs. 6.6 nM active cyclin B-Cdk1), 
because the blue curve is steeper at low cyclin B–Cdk1 activities than 
it was in the one-loop case. The range of k−2 (or [Wee1]) values over 
which the system is bistable becomes huge, increasing from 2.6-fold 
to 27.8-fold. Similar results are obtained if the Wee1 concentration is 
held constant and the Cdc25 concentration is varied.

Thus, adding double-negative feedback to the mitotic trigger can 
improve the performance of the trigger. It makes the switching more 
all-or-none in character, decreases the wasteful burning of ATP in 
the on-state, and increases the robustness of the system to changes 
in concentrations of its components. These improvements in per-
formance may be one reason why interlinked feedback loops are 
commonly found in cell signaling systems.

15.8 � THE FITZHUGH–NAGUMO MODEL 
ACCOUNTS FOR THE ELECTRICAL 
OSCILLATIONS OF THE SINOATRIAL NODE

One of the earliest relaxation oscillator models was proposed by the 
Dutch electrical engineer Balthasar van der Pol in 1920 in a paper 
in Radio Review. In fact it appears to be van der Pol who coined the 
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term “relaxation oscillator.” Van der Pol’s model was motivated by 
the triode vacuum tube oscillator circuits he was building and study-
ing, but as early as 1928 he and his collaborator Jan van der Mark 
hypothesized that something akin to this oscillator could plausibly be 
responsible for the heartbeat.

Our modern understanding of cellular electrophysiology began with 
the publication of five landmark papers by Alan Hodgkin and Andrew 
Huxley in 1952. The papers presented detailed, quantitative exper-
iments on the responses of the giant squid axon to voltages2. The 
unusual size (up to 1.5 mm diameter) of this axon makes it easy to 
probe with microelectrodes, and as it turns out, the basic lessons 
obtained from this particular, peculiar axon apply pretty well to essen-
tially all neuronal signaling, as well as the pacemaker rhythm of the 
modified muscle cells of the sinoatrial node. Hodgkin and Huxley 
accounted for their data through an experimentally inspired ODE 
model, which could be fitted to their experimental results beautifully. 
Hodgkin and Huxley’s work arguably remains the most important tri-
umph in mathematical biology.

One problem though is that the model is hard to understand; with 
four ODEs it is difficult to see why the model behaves the way it does. 
But in the early 1960s, Richard FitzHugh and Jin-Ichi Nagumo (and 
colleagues) came up with an electric circuit model that captures the 
essence of the Hodgkin–Huxley with only two time-dependent varia-
bles. This model, originally dubbed the Bonhoeffer–van der Pol model 
by FitzHugh but now almost universally called the FitzHugh–Nagumo 
model, has become probably the best-studied oscillator in nonlinear 
dynamics because of its relative simplicity and the rich behaviors it 
can produce.

Here we will work through the FitzHugh–Nagumo model and compare 
it to the cell cycle model analyzed in the first part of this chapter.

15.9 � THE FITZHUGH–NAGUMO MODEL 
CONSISTS OF A QUICK BISTABLE SWITCH 
AND A SLOWER NEGATIVE FEEDBACK 
LOOP

The FitzHugh–Nagumo model imagines the neuron’s signaling cir-
cuit to be composed of a bistable switch that operates on a relatively 
fast time scale that controls the potential across the nerve membrane 
(which we designate y), plus a slow negative feedback variable (which 
we designate x) that resets the neuron back to its resting potential after 
it fires. The two rate equations of the FitzHugh–Nagumo model are:

= − − +3
1

dy
dt

y y x k	 (15.21)

τ
( )= + −

1
.2 3

dx
dt

y k k x 	 (15.22)

There are three rate constants plus a variable (τ) that determines how 
slow the negative feedback is relative to the bistable switch. For the 
right choice of parameters (e.g., k1 = 0.1, k2 = 0.5, k3 = 0.1, and τ = 15), 

2	 Note that the giant squid axon is not an axon from a giant squid. Rather it is a really big 
axon from a squid of whatever size. The giant axons Hodgkin and Huxley used were from the 
longfin inshore squid, an animal ~30–50 cm in length. The function this axon performs is to tell 
the squid’s jet propulsion system to fire, which is how the squid escapes from danger, and the 
large diameter of the axon allows it to conduct impulses quickly.
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voltage oscillations closely resembling those of the sinoatrial node 
can be obtained (Figure 15.11a). For that matter, they qualitatively 
resemble the oscillations of Cdk1 activity seen in the embryonic cell 
cycle, except for the fact that both of the variables take on negative as 
well as positive values.

These oscillations can be understood by examining the nullclines and 
trajectories in the x–y phase plane (Figure 15.11b). The y-nullcline is 
shaped like a backward S, so the response of y to a constant level of 
x would be hysteretic, with a bistable response at intermediate levels 
of x (from approximately x = −0.28 to 0.48). The x-nullcline is a straight 
line with positive slope that intersects the y-nullcline on its middle 
part. All told, the nullclines look a lot like the nullclines for the cell 
cycle oscillator (Figure 15.6b), except reversed left to right.

The eigenvalues of the Jacobian matrix evaluated at the steady state 
for our choice of parameters are λ ≈ ±0.078 0.244i. The imaginary 

parts mean that the steady state is a spiral point, and the positive real 

parts mean it is unstable. As was the case with the cell cycle oscil-
lator, if we change some parameter in the FitzHugh–Nagumo model 
(say k1) to change where the nullclines intersect, the Hopf bifurcations 
occur when the steady state changes from being on the middle part 
of the y-nullcline to the top or bottom part. And, finally, if we keep 
the nullclines in place but change the speed of the slow ODE (e.g., by 
changing τ; the smaller the value of τ, the faster the ODE is), we lose 
oscillations once the slow ODE gets too fast relative to the bistable 
switch. For the rate constants we chose, the oscillations are lost once 
τ falls below about 0.61. All of these behaviors correspond well to 
what we found for the cell cycle oscillator.

15.10 � THE CELL CYCLE OSCILLATOR AND THE 
FITZHUGH–NAGUMO OSCILLATOR SHARE 
THE SAME SYSTEMS-LEVEL LOGIC

We have looked at two different two-variable relaxation oscillator 
models. One describes the embryonic cell cycle; the other, repetitive 
neuronal firing and the rhythm of the modified cardiomyocytes of the 
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sinoatrial node. One is built from translation, proteolysis, and protein 
phosphorylation; the other from potentials and ion flows. The equa-
tions in the two models look pretty different.

Yet, in the most important ways the two models are very much alike, 
and this can be seen from the phase plots (Figures 15.6b and 15.11b). 
Both models have an S-shaped or reverse S-shaped nullcline that can 
be viewed as a bistable switch. Both have a second nullcline for a 
slower recovery process, with a slope that is the same in sign as that 
of the middle part of the S-shaped nullcline. Both models require the 
two nullclines to intersect in the middle of the S to get oscillations. 
Both are parameterized so that the bistable switch is fast relative to 
the recovery process. The result is that both systems have a single 
unstable steady state, and both systems give rise to spiky relaxation 
oscillations, where the limit cycle can be thought of as a walk around 
a hysteretic stimulus/response loop.

15.11 � DEPLETION CAN TAKE THE PLACE OF 
NEGATIVE FEEDBACK IN A RELAXATION 
OSCILLATOR

In Chapter 12 we examined how systems with negative feedback 
loops can function as pulse generators and can even adapt perfectly—
return exactly to baseline after a pulse of output—if the system is set up 
properly. Then in Chapter 13 we examined systems that also generate 
pulses and adapt perfectly but do not, at least on the face of it, contain 
negative feedback loops. These included incoherent feedforward sys-
tems and three-state systems with state-dependent activation. Might 
such a system be able to substitute for negative feedback in the gen-
eration of sustained, limit cycle oscillations? The answer is yes, and a 
good example comes out of studies of cortical contraction in oocytes 
and eggs.

These spatial cortical waves are generated by the cortical actin 
cytoskeleton, and they arise through the activation of the Ras-like 
small GTPase RhoA. Wigbers, Tan, and their coworkers have pre-
sented a simple model for RhoA activation built on a three-state 
activation cycle. For our purposes, this is interesting because the 
model can, if the parameters are right, generate pulsatile oscillations 
in RhoA activity.

The RhoA cycle is shown schematically in Figure 15.12a. There are 
three time-dependent species. First, there is the cytoplasmic form 
of inactive, GDP-bound RhoA. We designate the fraction of the total 
RhoA in this state as y1. Next there is the membrane-bound but still 
inactive form, y2. And finally, there is the active, GTP-bound form, y3. 
We assume that y1 is taken away by binding to the membrane, yield-
ing y2, and is produced from y3 by the simultaneous hydrolysis of its 
GTP to GDP and its dissociation from the membrane. This yields the 
first rate equation:

= − + .1
1 1 3 3

dy
dt

k y k y 	 (15.23)

Note that we could have added a term describing the production of y1 
by the dissociation of y2 from the membrane, but for our purposes it 
is not necessary.

For the second rate equation, we assume that the conversion of inac-
tive y2 to active y3, catalyzed by a guanine nucleotide exchange factor, 
takes place at a basal rate defined by k2, but also that there is positive 
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feedback, with the feedback contribution to the rate being propor-
tional to 3

2y . This introduces some nonlinearity that will be important 
for the behavior of the model. We could instead use a Hill equation 
here, but the simpler 3

2y  factor suffices.

= − − .2
1 1 2 2 3

2
2

dy
dt

k y k y k y yfeedback
	 (15.24)

Finally, the rate equation for the active form y3 is:

= + − .3
2 2 3

2
2 3 3

dy
dt

k y k y y k yfeedback
	 (15.25)

These three ODEs constitute our three ODE model of RhoA activation 
and inactivation. Note that there is no explicit negative feedback in the 
model, just as there was no explicit negative feedback in the three-
state model of sodium channel adaptation we analyzed in Chapter 13. 
But there is state-dependent inactivation, because we have assumed 
that only the active, membrane-bound form of RhoA (y3) can be con-
verted into the inactive, GDP-bound form.

Figure 15.12b shows the time courses of y1, y2, and y3 for one choice of 
parameters (k1 = 5; k2 = 1; k3 = 100; kfeedback = 10,000), starting with y1 = 1 
and y2 and y3 = 0. Initially y1 falls, and the inactive y2 accumulates—the 
first phase of the oscillation. This also produces tiny amounts of y3, 
which feeds back to increase the rate of y3 production, and the con-
centration of y3 rises exponentially—the second phase. The increase 
in y3 occurs at the expense of y2, and so eventually y2 is depleted and 
no more y3 can be produced. The concentration of y3 plummets as it 
is converted to the inactive form y1—the third phase—and the whole 
cycle starts over, with y1 falling, y2 rising, and ultimately y3 spiking 
upward.

Note that the three ODEs imply that the total concentration of y must 
be constant, since:

+ + = 0.1 2 3dy
dt

dy
dt

dy
dt

	 (15.26)
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Since we are measuring the three y species in fractional terms, it 
follows that:

= + +1 .1 2 3y y y 	 (15.27)

We can use this relationship to reduce the model to two ODEs with 
two time-dependent variables (e.g., y2 and y3):

( )= − − − −12
1 2 3 2 2 3

2
2

dy
dt

k y y k y k y yfeedback
	 (15.24)

= + − .3
2 2 3

2
2 3 3

dy
dt

k y k y y k yfeedback
	 (15.25)

In this form, the system does appear to possess a negative feedback 
loop, since y2 promotes the activation of y3 and y3 promotes the 
inactivation of y2. With the system reduced to two time-dependent 
variables, we can carry out phase plane analysis of the model, plotting 
the y2 and y3-nullclines in the y2–y3 plane.

Figure 15.12c shows the two nullclines. The y2-nullcline is a mono-
tonic function and the nullcline for y3-nullcline is something more 
complicated. It is not a full S-shaped nullcline like we saw with the 
cell cycle oscillator and the Fitzhugh–Nagumo oscillator; it is more 
like  the bottom half of a bistable nullcline. If we start a trajectory 
from the origin, it crawls slowly up the y3-nullcline until it runs out 
of nullcline. Then it bursts quickly upward, due to the rapid posi-
tive feedback, and to the left, due to the depletion of y2 during the 
burst. Finally, once y2 is essentially gone, the concentration of y3 falls 
precipitously, the system approaches the y3-nullcline, and the cycle 
begins again. The nullclines intersect at a single point, which repre-
sents an unstable steady state, and the limit cycle is stable, attracting 
trajectories from every part of the phase plane. Depletion oscilla-
tors like this one may be common in cell signaling—both the action 
potential (which we modeled with the Fitzhugh–Nagumo equations) 
and calcium oscillations can be viewed as depletion oscillators that 
cycle through three states.

SUMMARY
Here we have analyzed three relaxation oscillator models that pro-
duce periodic spikes of activity. The first was a two-ODE model 
inspired by the Xenopus embryonic cell cycle; the second, the two-
ODE Fitzhugh–Nagumo model, which accounts for the neuronal 
action potential and for the periodic electrical pulses of cardiac 
pacemaker cells. Both of these models consist of slow negative feed-
back loops coupled to fast bistable triggers. The third model was 
developed to account for cortical contraction waves in oocytes. It 
uses state-dependent inactivation to reset the oscillator by depletion 
after each firing, although this depletion mechanism can be viewed 
as including a sort of implicit negative feedback. All of these models 
yield periodic bursts of activity in their time courses and limit cycle 
oscillations in the phase plane. All can be tuned over a range of fre-
quencies without changing the amplitude of their outputs by much, 
and all have a single steady state that is either an unstable spiral 
point or a simple unstable steady state, for choices of parameters 
that yield sustained oscillations.



SYSTEMS BIOLOGY OF CELL SIGNALING246

FURTHER READING
THE XENOPUS LAEVIS EMBRYONIC CELL CYCLE—
DATA AND MODELS

Ferrell JE Jr. Feedback regulation of opposing enzymes gener-
ates robust, all-or-none bistable responses. Curr Biol. 2008 Mar 
25;18(6):R244–5.

Mochida S, Hunt T. Protein phosphatases and their regulation 
in the control of mitosis. EMBO Rep. 2012 Mar;13(3):197–203.

Morgan DO. The Cell Cycle: Principles of Control. New Science 
Press, 2007.

Minshull J, Blow JJ, Hunt T. Translation of cyclin mRNA is nec-
essary for extracts of activated xenopus eggs to enter mitosis. 
Cell. 1989 Mar 24;56(6):947–56.

Murray AW, Kirschner MW. Cyclin synthesis drives the early 
embryonic cell cycle. Nature. 1989 May 25;339(6222):275–80.

Murray AW, Hunt T. The Cell Cycle: An Introduction. W. H. 
Freeman & Co., 1993.

Novak B, Tyson JJ. Numerical analysis of a comprehensive 
model of M-phase control in Xenopus oocyte extracts and 
intact embryos. J Cell Sci. 1993 Dec;106 (Pt 4):1153–68.

Pomerening JR, Sontag ED, Ferrell JE Jr. Building a cell cycle 
oscillator: hysteresis and bistability in the activation of Cdc2. 
Nat Cell Biol. 2003 Apr;5(4):346–51.

Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, Tyson JJ, Sible 
JC. Hysteresis drives cell-cycle transitions in Xenopus laevis egg 
extracts. Proc Natl Acad Sci USA. 2003 Feb 4;100(3):975–80.

Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW. 
Cyclin activation of p34cdc2. Cell. 1990 Nov 30;63(5):1013–24.

Tsai TY, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE 
Jr. Robust, tunable biological oscillations from interlinked 
positive and negative feedback loops. Science. 2008 Jul 
4;321(5885):126–9.

Tyson JJ, Novak B. Bistability, oscillations, and traveling waves 
in frog egg extracts. Bull Math Biol. 2015 May;77(5):796–816.

THE VAN DER POL AND FITZHUGH–NAGUMO 
OSCILLATORS

FitzHugh R. Impulses and physiological states in models of 
nerve membrane. Biophys J. 1961;1:445–66.

Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmis-
sion line simulating nerve axon. Proc Inst Radio Engineers 
1962;50:2061–70.

van der Pol B. A theory of the amplitude of free and forced 
triode vibrations. Radio Review. 1920;1:701–710, 754–62.

van der Pol B. On “relaxation-oscillations”. The London, 
Edinburgh, and Dublin Philosophical Magazine and Journal of 
Science Ser 7. 1926;2:978–92.

van der Pol B, van der Mark J. The heartbeat considered as 
a relaxation oscillation, and an electrical model of the heart. 
The London, Edinburgh, and Dublin Philosophical Magazine 
and Journal of Science Ser 7. 1928;6:763–75.

RhoA OSCILLATIONS

Wigbers M, Tan TH, Brauns F, Jinghui L, Swartz Z, Frey E, 
Fakhri N. A hierarchy of protein patterns robustly decodes cell 
shape information. Nature Physics, https://doi.org/10.1038/
s41567-021-01164-9.

https://doi.org/10.1038/s41567-021-01164-9
https://doi.org/10.1038/s41567-021-01164-9


16EXCITABILITY

IN THIS CHAPTER . . .

INTRODUCTION

16.1 � THE RECEPTOR TYROSINE KINASE/MAP KINASE SYSTEM 
INCLUDES MULTIPLE POSITIVE AND NEGATIVE FEEDBACK 
LOOPS

16.2 � EXCITABLE RESPONSES CAN BE GENERATED BY A FAST 
POSITIVE FEEDBACK LOOP COUPLED TO A SLOW NEGATIVE 
FEEDBACK LOOP

16.3 � NOISE CAN CAUSE AN EXCITABLE SYSTEM TO FIRE 
SPORADICALLY

SUMMARY

FURTHER READING

INTRODUCTION
Neurons quite commonly exhibit spontaneous, irregular spikes of 
output like those shown in Figure 16.1a, rather than the sustained 
relaxation oscillations analyzed in Chapter 15. Like relaxation oscil-
lations, these spikes require positive feedback. Thus, the famous 
pufferfish poison tetrodotoxin, which blocks the voltage-dependent 
sodium channels responsible for positive feedback, extinguishes the 
calcium spikes seen in neuronal explants (Figures 16.1a).

Likewise, various mammalian cells exhibit spontaneous, irregular 
pulses of ERK1/2 activity (Figure 16.1b). These pulses are slower 
than neuronal calcium spikes, occurring on a time scale of hours, 
but otherwise are similar in character. Like neuronal spikes, there is 
generally a digital, all-or-none quality to the ERK1/2 spikes, although 
in both cases some submaximal spikes are seen. Adding epidermal 
growth factor (EGF) to the cells increases the average frequency of 
the ERK1/2 spikes without affecting their amplitude substantially 
(Figure 16.1b).
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These spikes of output, whether unprovoked or stimulated by some 
input, are termed excitable responses, and the cytoplasm or mem-
brane that gives rise to the response is referred to as an excitable 
medium. The minimal circuits that produce excitable responses con-
sist of a fast positive feedback loop and a slower negative feedback 
loop—exactly the ingredients required for a relaxation oscillator. The 
only difference is that the parameters of the circuit are such that there 
is a stable steady state rather than an unstable one.

Here we will examine the dynamics of a simple model of an excitable 
response, based on the receptor tyrosine kinase/MAP kinase cascade.

16.1 � THE RECEPTOR TYROSINE KINASE/MAP 
KINASE SYSTEM INCLUDES MULTIPLE 
POSITIVE AND NEGATIVE FEEDBACK 
LOOPS

We start by examining the various feedback loops that could be impor-
tant for these spikes of activity. Previous experimental and modeling 
studies have identified at least five plausible positive feedback loops 
(Figure 16.2), not including the Mos/MAPK loop that is important 
in oocyte maturation (Chapter 8) but thought not to be important in 
somatic cells.

First, activated EGF receptors can bring about the activation of other 
EGF receptors, possibly through double-negative feedback between 
the receptors and phosphotyrosine phosphatases. Second, active 
Ras-GTP can allosterically activate Sos, the upstream activator of 
Ras. Third, the distributive (or even semi-processive) dual phospho-
rylation of ERK1/2 by MEK can, in principle, yield a bistable response 
through an implicit positive feedback that arises from competition 
between the various ERK1/2 phosphoforms for MEK and the oppos-
ing phosphatases. Fourth, ERK1/2 activation can bring about release 
of fibroblast growth factor (FGF), which likewise can activate FGF 
receptors in the same cell or in neighboring cells. And finally, ERK1/2 
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Figure 16.1  Excitability. (a) Irregular pulses of cytosolic calcium in neurons. 
The sodium channel blocker tetrodotoxin inhibits the calcium pulses. (Adapted 
from Dailey and Smith, J Neurobiol. 1994 with permission.) (b) Irregular pulses 
of ERK1/2 activation in MCF-10A cells, an immortal but nonmalignant human 
mammary epithelial cell line. (Adapted from Albeck et al., Mol Cell. 2013 with 
permission.)
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activation can activate metalloproteases that release membrane-
bound epidermal growth factor receptor (EGFR) ligands like epidermal 
growth factor (EGF) and TGF-α, freeing them up to activate more 
EGF receptors on either the same cell or neighboring cells. We do 
not currently know which of these loops is responsible for the pulses 
of ERK1/2 activation seen in MCF-10A cells. Somewhat arbitrarily, 
we will assume that it is the metalloprotease loop; the time course 
fits with the phenomenon, and there is evidence for its importance in 
some other cells and cell lines.

Likewise, as mentioned in Chapter 12, there are many choices for the 
relevant negative feedback (Figure 16.2), including induction of MAP 
kinase phosphatases (MKPs) and phosphorylation of the upstream 
regulators MEK, Raf, Sos, and the receptor tyrosine kinase itself. In 
addition there are various state-dependent inactivation systems, 
including the Ras cycle and EGFR internalization, with their implicit 
negative feedback. Somewhat arbitrarily, we will assume that MKP 
induction is the main relevant negative feedback here, and we will 
assume that it operates on a slower time scale than ERK-induced EGF 
release from the plasma membrane.

These are the two loops of our positive-plus-negative feedback system  
(Figure 16.3a). As was the case with our cell cycle oscillator model, 
and with the FitzHugh–Nagumo model, the model is simpler than the 
real system is known to be. But it is complicated enough to allow it 
to generate an excitable response and simple enough to be a good 
example to learn from. 

16.2 � EXCITABLE RESPONSES CAN BE 
GENERATED BY A FAST POSITIVE 
FEEDBACK LOOP COUPLED TO A SLOW 
NEGATIVE FEEDBACK LOOP

We first formulate a rate equation for the positive feedback loop. For 
the no-feedback component of the activation of ERK1/2, by which we 
mean the activation in the absence of the ERK-induced EGF release, 
we will assume that that rate of ERK1/2 activation is proportional 
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Figure 16.2  Feedback loops in the 
EGFR/MAP kinase cascade.
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Figure 16.3  A minimal model of excitability in the MAPK cascade. (a) Schematic of the regulation of the ERK1/2  
MAP kinase. (b) Nullclines (red and blue curves) and trajectories (black curves) in the phase plane. The concentration of MKP (z) 
is plotted on the x-axis, and the fraction of the ERK1/2 that is active (y*) on the y-axis. (c) Time courses corresponding to the 
trajectories are shown in panel b.
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to the concentration of added EGF (x) and the concentration of non-
phosphorylated ERK1/2 (1 − y*), plus a term 1 *0k y( )−  that represents 
a basal rate of ERK1/2 activation (Eq. 16.1).

( )(1 *).0 1no feedback activation rate k k x y= + − 	 (16.1)

For the feedback component of ERK1/2 activation, we will assume 
that the concentration of new EGF released from the membrane is 
proportional to a Hill function of the ERK1/2 activity and that the pro-
cess is fast enough that we can assume the amount of EGF is always 
in steady state with the ERK1/2 activity. The Hill function allows us to 
obtain the S-shaped (or actually reverse S-shaped) nullcline that that 
we would need for either relaxation oscillations or excitability, and 
the assumption that the process is relatively fast allows us to end up 
with a model with only two time-dependent variables.

1 *
*

*
1 * .0 1

1

total activation rate k k x y k
y

K y
ypos

n

n n( )( ) ( )= + − +
+

− 	 (16.2)

For the inactivation of ERK1/2, we will assume that there is a basal 
rate of inactivation that is proportional to y*, the concentration of 
substrate to be dephosphorylated, and a rate of inactivation by the 
induced MKP protein that is proportional to both MKP (the enzyme, 
denoted z) and y* (the substrate). This completes our rate equation 
for y*:

*
1 *

*
*

1 * * .0 1
1

1

dy
dt

k k x y k
y

K y
y k k z ypos

n

n n neg( )( )( ) ( )= + − +
+

− − +− 	 (16.3)

In this scheme, the phosphatase z is the slowly changing variable. 
We will assume mass action kinetics for both its synthesis and 
degradation:

1
* .2 2

dz
dt

k y k z
τ

( )= − − 	 (16.4)

Note that we have included a parameter τ that adjusts how fast z 
changes relative to y*, just as we did in the FitzHugh–Nagumo model 
in Chapter 15.

Next we choose parameters to make the y* nullcline have an inverted 
S shape, like the y nullcline in the FitzHugh–Nagumo model. For Figure 
16.3b we have taken k0= 0.1, k1 = 1, x = 0, k−1 = 0.1, kpos = 1, K1 = 0.5, and 
kneg = 0.1.

Finally, we choose parameters to make the z nullcline intersect the 
y* nullcline below the lower knee, so that the steady state sits on the 
bottom part of the y* nullcline (k2 = 1 and k−2 = 0.4 for Figure 16.3b). 
We choose a value of τ (τ = 10) that makes the bistable switch (the y* 
variable) change substantially faster than the negative feedback (the z 
variable). For these parameter choices, the system has a single steady 
state, at approximately y* = 0.176 and z = 4.394, and the steady state is 
stable, with the eigenvalues of the Jacobian matrix being λ ≈ −0.3721  
and λ ≈ −0.0092 . As you might guess, the eigenvectors are nearly verti-
cal and very nearly horizontal.

As expected, all of the trajectories eventually approach the sta-
ble steady state, but they do so by one of two qualitatively different  
routes. The black curves in Figure 16.3b show 21 such trajectories—10 
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starting to the left of the steady state, 10 starting to the right of the 
steady state, and one starting directly below the steady state. The tra-
jectories to the right all approach the lower portion of the y* nullcline, 
turn left, and then follow the nullcline up to the steady state (Figure 
16.3b), resulting in time courses that monotonically approach the 
steady state (Figure 16.3c). The trajectories just to the left of the steady 
state also approach the lower portion of the y* nullcline, and then they 
turn right and follow the nullcline down to the steady state (Figure 
16.3b). However, the two trajectories furthest to the left do something 
altogether different. They miss the lower portion of the y* nullcline, 
and then proceed up to the top portion, producing a spike in ERK 
activity. The trajectories then turn right and proceed down the top part 
of the y* nullcline and continue until they run out of nullcline. They 
then fall down and finally head for the steady state (Figure 16.3b). The 
net result is a pulse of y* in the time course (Figure 16.3c), or a walk 
around the hysteretic y* curve in the phase plane (Figure 16.3b). This 
is much like a single cycle of a relaxation oscillator.

What if we were to start a trajectory such that it missed the bottom 
part of the y* nullcline by the tiniest margin? The result is shown in 
Figure 16.4, with four trajectories that start very close together, too 
close to distinguish by eye. In the phase plane, the trajectories just 
pass the knee of the y* nullcline, and then they follow the middle part, 
the unstable part, of the nullcline further upward. Eventually, and at 
different points, the trajectories all fall off the nullcline, either to the 
right or to the left, and make their way to the steady state. The result-
ing pulses vary substantially in amplitude and timing. Thus, even 
though the behavior of the system is, in principle, fully deterministic, 
near the pulse threshold it is so sensitive to initial conditions that it 
may as well be unpredictable.

We can see this as well by plotting the peak height—the maximum 
value of y*[t] − y*[∞]) as a function of z[0], taking the initial value of y* 
in all cases to be 0. This is one measure of the output of the system, 
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Figure 16.4  High sensitivity to initial conditions around the threshold. (a) Four trajectories starting at y*[0] = 0 and 
z[0] = 4.394450 to 4.394454. (b) Time courses of the same four trajectories. (c) Peak height (the maximum value of y*[t] − y*[∞])  
as a function of z[0] for trajectories starting from y*[0] = 0.
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and perhaps a more important measure than the steady state output, 
since the steady state output will always be the same. As shown in 
Figure 16.4c, the resulting curve is continuous; there is no discontinu-
ity the way there would be with a bistable system. But once the pulses 
of output begin to disappear (if you decrease z[0]) or appear (if you 
increase z[0]), the peak height changes enormously over a very small 
range of z[0] values. The peak height is a highly ultrasensitive, but not 
discontinuous, function of the initial conditions.

16.3 � NOISE CAN CAUSE AN EXCITABLE SYSTEM 
TO FIRE SPORADICALLY

We can imagine the irregular pulses of ERK activity as arising because 
even when the system is in steady state, there are fluctuations in 
something—say the rate of synthesis of z—that occasionally push the 
trajectory far enough to the left to allow it to produce a spike of y*. 
We can model this by adding a noise term to the rate equation for z:

τ
η( )= − +−

1
* [ ],2 2

dz
dt

k y k z t 	 (16.5)

where the variable η[t] fluctuates randomly with time. This is an exam-
ple of a Langevin equation, a way of adding stochastic behavior to 
an otherwise deterministic ordinary differential equation. The results 
of such a simulation are shown in Figure 16.5a,b. For the parameters 
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chosen, and the noise function chosen (Gaussian white noise sampled 
once per time unit), we obtain infrequent, nearly all-or-none pulses 
of ERK1/2 activity. No two simulations are exactly the same; Figure 
16.5a,b represents a typical one.

So far we have evaluated the model with x, the concentration 
of added EGF, equal to zero. If we add a small amount of x, the y* 
nullcline shifts, and the steady state moves closer to the firing thresh-
old. Intuitively it seems like this should make the random excursions 
of the system pass the firing threshold more frequently, and so the 
average frequency of the pulses should increase. This is in fact the 
case (Figure 16.5c,d). Thus, the model accounts for key aspects of  
the experimental data, including the sporadic pulses of ERK activity 
in the absence of EGF, the increased average frequency of the pulses 
when EGF is added, and the nearly (but not absolutely) all-or-none 
character of the pulses.

Very similar results would have been obtained using the FitzHugh–
Nagumo model or the cell cycle oscillator model from Chapter 15 
and adjusting the parameters to make the steady state sit on the 
bottom part of the S-shaped nullcline. The behaviors we found 
for the excitable ERK model can be found in a whole range of  
models.

SUMMARY
Here we have shown that interlinked positive and negative feed-
back loops can result in excitability, a phenomenon where some 
perturbations of the system from its steady state produce a transi-
tory spike in output. The necessary ingredients are a bistable trigger 
that operates on a fast time scale, a negative feedback loop that 
operates on a slower time scale, and model parameters that make 
the steady state stable, but not too far in the phase plane from 
where an unstable steady state would be. When random fluctua-
tions are imposed upon the system, the result is stochastic firing of 
the system’s response. This is therefore an example of noise being 
not a hazard for the system but an essential element of the system’s 
qualitative and quantitative behavior. Adding an external input 
that moves the steady state closer to the Hopf bifurcation where 
it would become unstable can increase the average frequency of 
these stochastic spikes of output.

FURTHER READING
EXAMPLES OF EXCITABILITY IN CELL SIGNALING

Albeck JG, Mills GB, Brugge JS. Frequency-modulated pulses 
of ERK activity transmit quantitative proliferation signals. 
Mol Cell. 2013 Jan 24;49(2):249–61.

Cai L, Dalal CK, Elowitz MB. Frequency-modulated nuclear 
localization bursts coordinate gene regulation. Nature. 2008 
Sep 25;455(7212):485–90.

Dailey ME, Smith SJ. Spontaneous Ca2+ transients in developing 
hippocampal pyramidal cells. J Neurobiol. 1994 Mar;25(3):243–51.

Dalal CK, Cai L, Lin Y, Rahbar K, Elowitz MB. Pulsatile dynamics 
in the yeast proteome. Curr Biol. 2014 Sep 22;24(18):2189–94.

POSITIVE FEEDBACK LOOPS IN RECEPTOR TYROSINE 
KINASE/ERK SIGNALING

Baumdick M, Gelléri M, Uttamapinant C, Beránek V, Chin JW, 
Bastiaens PIH. A conformational sensor based on genetic code 
expansion reveals an autocatalytic component in EGFR activa-
tion. Nat Commun. 2018 Sep 21;9(1):3847.

Cox BD, De Simone A, Tornini VA, Singh SP, Di Talia S, Poss KD. In 
Toto Imaging of Dynamic Osteoblast Behaviors in Regenerating 
Skeletal Bone. Curr Biol. 2018 Dec 17;28(24):3937–3947.e4. 
doi:10.1016/j.cub.2018.10.052.

Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, 
Chakraborty AK, Roose JP. Digital signaling and hysteresis 
characterize ras activation in lymphoid cells. Cell. 2009 Jan 
23;136(2):337–51.

https://doi.org/10.1016/j.cub.2018.10.052


SYSTEMS BIOLOGY OF CELL SIGNALING254

Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda 
M. Intercellular propagation of extracellular signal-regulated 
kinase activation revealed by in vivo imaging of mouse skin. 
Elife. 2015 Feb 10;4:e05178.

Markevich NI, Hoek JB, Kholodenko BN. Signaling switches 
and bistability arising from multisite phosphorylation in pro-
tein kinase cascades. J Cell Biol. 2004 Feb 2;164(3):353–9.

Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI. EGFR 
activation coupled to inhibition of tyrosine phosphatases 

causes lateral signal propagation. Nat Cell Biol. 2003 
May;5(5):447–53.

NEGATIVE FEEDBACK LOOPS IN MAP KINASE 
SIGNALING

Lake D, Corrêa SA, Müller J. Negative feedback regula-
tion of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 2016 
Dec;73(23):4397–413. 



17WRAP-UP

IN THIS CHAPTER . . .

17.1 � THE BUILDING BLOCKS

17.2 � MOTIFS

17.3 � SIGNAL PROCESSORS

17.4 � NONLINEAR DYNAMICS

Let us finish now with a quick wrap-up.

17.1 � THE BUILDING BLOCKS
We started by analyzing the building blocks of cell signaling: stoichio-
metric regulation (Chapters 2–4), which is how receptors work and 
how many downstream signaling processes work as well, activation/
inactivation cycles (like phosphorylation, Chapter 5), and production/
destruction cycles (Chapter 6). The simplest of these little systems 
respond to an input by exponentially approaching a new steady-state 
output, and their steady states are graded, Michaelian functions of the 
input. These are the basics.

We looked at how a graded, Michaelian response can be made more 
graded through negative cooperativity (Chapter 3) or more switch-like 
though positive cooperativity and other mechanisms for generating 
ultrasensitivity (Chapters 3 and 5). Ultrasensitivity is interesting in and 
of itself, and also because it makes a number of more complex behav-
iors, such as bistability and oscillations, easier to generate.

17.2 � MOTIFS
Next we examined some simple circuit motifs—a bit bigger and more 
complicated than the basic building blocks but still simple enough to 
be understood. These included cascades (Chapter 7), positive feed-
back loops (Chapters 8–10), negative feedback loops (Chapter 11, 
12, and 14), coherent and incoherent feedforward systems (Chapters 
5 and 13), state-dependent inactivation systems (Chapter 13), and 
finally positive-plus-negative feedback circuits (Chapters 15 and 16). 
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We saw that sometimes a single motif can generate multiple quali-
tatively different responses, like stabilized monostable responses 
vs. pulses vs. oscillations from negative feedback, depending on the 
kinetic parameters and other details of the system.

17.3 � SIGNAL PROCESSORS
We also saw how various types of signal processors can be constructed, 
including amplifiers (Chapter 7), doorbell switches (Chapter 5), tog-
gle switches (Chapters 8 and 9), pulse generators (Chapters 12, 13, 
and 16), stabilizers (Chapter 11), and oscillators (Chapters 14 and 15). 
If you know how a system behaves through careful quantitative 
experiments, these chapters tell you what types of circuit are likely to 
be responsible.

17.4 � NONLINEAR DYNAMICS
We learned various concepts and approaches from nonlinear dynam-
ics. We examined sensitivity (Chapters 3, 5, and 7) and rate-balance 
analysis (Chapter 5). We used phase plane analysis, plotted nullclines, 
and made use of linear stability analysis (Chapter 9). We calculated 
eigenvalues and eigenvectors (Chapter 9) and classified steady states 
as stable, unstable, or saddle points (especially Chapters 9, 10, and 16), 
or as stable or unstable spiral points (Chapters 14 and 15). Finally, we 
examined various bifurcations: saddle-node (Chapters 8 and 9), pitch-
fork (Chapter 9), transcritical (Chapter 10), and Hopf (Chapters 14 and 
15). These tools and concepts can provide insight into why systems 
behave the way they do and help conceptually unite all manner of 
biological phenomena.

* * *

There is of course more to explore, but these concepts, models, and 
approaches should allow the student of cell signaling to dig deep into 
many, many biological behaviors.

And that’s all for now! 
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adaptation
In biology in general, adaptation is the process of 
adjusting to a change in the environment. In cell 
signaling it is a process that makes an output return to 
or toward baseline despite the presence of a sustained 
input. Perfect adaptation is achieved when the 
output returns exactly to where it was before the input 
was applied.

allosteric, allostery
A phenomenon where something that happens at one 
site in a macromolecule causes a change at a distant 
site. For example, the binding of a cyclin (an allosteric 
regulator) to a Cdk (the protein being regulated) causes 
a conformation change in the Cdk that aligns its 
catalytic residues and increases its activity.

antagonist
A substance, often a drug or other small molecule, that 
prevents another substance, often a hormone, from 
initiating a signal. Antagonists often work by binding 
to the hormone-binding site on a receptor, but they 
may also bind to the hormone itself or to an allosteric 
site on the receptor.

attractor
Another name for a stable steady state or a stable limit 
cycle.

bifurcation
In normal usage, a bifurcation is a fork, a splitting of 
one thing into two. In nonlinear dynamics it connotes 
a sudden change in the properties of a steady state in 
response to a gradual change in some parameter of 
the system. Common examples include the splitting 
of a steady state into two steady states (in the case 
of a saddle-node bifurcation), or into three (in the 
case of a pitchfork bifurcation), or the switching of 
a steady state from stable to unstable (as in a Hopf 
bifurcation).

bistable, bistability
A bistable system is one that has two stable steady 
states or equilibria.

coherent feedforward regulation
See feedforward regulation.

concerted model
Another name for the Monod–Wyman–Changeux 
model of positive cooperativity for multisubunit 
proteins. The key assumption is that all of the protein 
subunits flip in concert between two alternative 
conformations.

cooperativity
A phenomenon where one event (for example, ligand 
binding) makes it easier (positive cooperativity) or 
harder (negative cooperativity) for a second event to 
occur (e.g. binding of a second ligand molecule to the 
same protein or complex).

EC50
Effective concentration-50; the concentration 
of an input that produces half-maximal binding, 
phosphorylation, or other response.

effective Hill exponent
For a response that is not exactly described by a Hill 
equation, this is the Hill exponent that would yield a 
Hill curve with a similarly switch-like response. It is 
customarily defined as:

=
Log [81]

Log [ 90 / 10]
10

10

n
EC EC

where the EC90 is the concentration of input that 
yields a 90%-maximal response and the EC10 
is the concentration that yields a 10%-maximal 
response.

eigenvalues and eigenvectors
Suppose you have a square matrix J, like an n x n 
Jacobian matrix of partial derivatives evaluated at a 
steady state. The eigenvectors v are n-dimensional 
vectors that satisfy the equation:

λ=v v,J

where the scalars λ are the corresponding 
eigenvalues. If the eigenvalues and eigenvectors 
are real numbers, one can think of the eigenvectors 
as “special directions” such that if you perturb the 
system away from the steady state in this direction, it 
will come either straight back toward the steady state 
(if λ is negative) or straight away from the steady state 
(if λ is positive).
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equilibrium constant
For an equilibrium reaction like the binding of a ligand 
to a receptor, the equilibrium constant Keq is:

= − / ,1 1K k keq

where k−1 is the rate constant for the back 
(dissociation) reaction and k1 is the rate constant for 
the forward (association) reaction. It is also equal to 
the concentration of free ligand at which the receptor’s 
binding site is half-maximally occupied.

excitable systems, excitability
An excitable system is a monostable system where 
some perturbations from the steady state are amplified 
into explosive responses before the system settles 
back into the steady state. Nerve cells are the classic 
example; either spontaneously or in response to 
inputs, they may generate a spike of depolarization 
and of intracellular calcium.

feedforward regulation
In cell signaling, feedforward regulation means that 
an upstream input takes two distinct paths to produce 
a downstream output. Coherent feedforward 
regulation means that both paths act together rather 
than antagonistically. Incoherent feed forward 
regulation means that the two pathways are 
antagonistic.

full agonists
A substance, generally a hormone or drug, that 
activates a receptor maximally when it binds 
maximally.

G-protein-coupled receptors
The largest family of receptors in the human genome. 
G-protein-coupled receptors (GPCR) all have seven 
transmembrane segments, and generally (perhaps 
always) activate trimeric G-proteins when bound to 
agonist ligands.

Goldbeter–Koshland equation
An equation describing the steady-state response of a 
phosphorylation–dephosphorylation cycle if the rates 
of the forward and back reactions follow Michaelis–
Menten kinetics. The equation can be written as:

( )( )
( )=

− − + ⋅ − ⋅ + − + + − ⋅ + ⋅
−

* 4

2
2 1 1 1 2 1 2 1 1 1

2

1

y
K kin K K pase kin y K pase y K kin kin K pase y K kin K K pase kin y K pase y

kin K pasess
M M tot tot M tot M M tot tot

where y*ss is the steady-state fraction of y that is 
phosphorylated, K1 is the ratio of the kcat values 
for the dephosphorylation and phosphorylation 
reactions, KM1 is the Michaelis constant for the kinase, 
KM2 is the Michaelis constant for the phosphatase, 
and kin and pase are the kinase and phosphatase 
concentrations.

Hill coefficient or Hill exponent
The number n in the Hill equation.

Hill equation
An equation of the form:

=
+

y
x

K x

n

n n

where x is an input and y is an output. The constant K 
is the EC50 and the exponent n is the Hill coefficient 
or Hill exponent.

Hopf bifurcation
A bifurcation where, in response to a change in some 
parameter, a steady state changes from stable to 
unstable and limit cycle oscillations arise.

hyperbolic inhibition
An equation for a steady-state response y as a function 
of the concentration of an inhibitor x of the form:

=
+

y
K

K x

where the constant K is the IC50, the concentration of 
x where the response is half-maximally inhibited. This 
is also sometimes called Michaelian inhibition.

hyperbolic response
An equation for a steady-state response y as a function 
of the concentration of an inhibitor x of the form:

=
+

y
x

K x

where the constant K is the EC50, the concentration 
of x where the response is half-maximal. This is also 
sometimes called a Michaelian response.
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hysteretic, hysteresis
Hysteresis is a phenomenon that occurs in systems 
being affected by a change in some parameter such 
that the state of the system depends not only on the 
value of the parameter, but also on the history of the 
system. In nonlinear dynamics the classic example 
of a hysteretic response occurs in bistable systems 
with positive feedback, where it may take more of a 
stimulus to push the system from the off-state to the 
on-state than it does to maintain the system in the 
on-state. If the feedback is strong enough to maintain 
the system in the on-state after the stimulus has been 
lowered to zero, the response is irreversible.

incoherent feedforward regulation
See feedforward regulation.

inverse agonists
A substance that decreases the basal activity of a 
receptor when bound.

Jacobian matrix
A matrix of partial derivatives. A 2 × 2 Jacobian matrix 
for the functions f and g is:

=

∂
∂

∂
∂

∂
∂

∂
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Koshland–Némethy–Filmer (KNF) model
A model for cooperativity in the binding of ligands to 
a multisubunit protein where it is assumed that the 
first binding event induces a conformation change in 
another subunit that either increases or decreases the 
affinity of that subunit for the ligand. It is sometimes 
referred to as the sequential model.

Langevin equation
An ordinary differential equation of the form:

η( ) ( )= + ,
dx
dt

F x t

where η is a time-dependent random noise term with a 
Gaussian probability distribution.

Langmuir equation
An equation for the equilibrium binding of a ligand x to 
a receptor y of the form:







=
+

,
c

y
x

K x
xy

tot eq eq

where cxy is the concentration of receptor–ligand 
complexes, ytot is the total concentration of the 
receptor, and Keq is the equilibrium constant.

limit cycle
A closed loop in the phase plane (or phase space) 
corresponding to sustained oscillations. If the limit 
cycle is stable, trajectories that start inside the limit 
cycle will spiral out toward it, and trajectories that start 
outside the limit cycle will spiral in toward it.

linear stability analysis
A procedure for analyzing the stability of a steady state 
that assumes that in some small neighborhood of the 
steady state, the rate of approaching or going away 

from the steady state 





dz
dt

 is proportional to how far 

you are from the steady state (z):

λ= .
dz
dt

z

magnitude amplification
A phenomenon in a signaling cascade where the 
size of the output—the number or proportion of the 
molecules that are active—increases as you go from 
the top to the bottom of the cascade.

mass action kinetics or process
A reaction scheme that assumes the rate of the 
reaction is directly proportional to the concentrations 
of the reactants. In contrast to a Michaelis–Menten 
reaction, a mass action process is not saturable.

Michaelian inhibition
A synonym for hyperbolic inhibition.

Michaelian response
A synonym for hyperbolic response.

Michaelis–Menten equation
An equation for the rate of an enzyme-catalyzed 
reaction of the form:

=
+

,V V
S

K Smax
m

where V is the reaction rate, the constant Vmax 
corresponds to the maximal rate of the reaction, 
and the parameter Km corresponds to the substrate 
concentration at which the rate is half-maximal.

Monod–Wyman–Changeux (MWC) model
A model for positive cooperativity in the binding 
of a ligand to a multimeric receptor (or other 
macromolecular species); for example, the binding 
oxygen to hemoglobin or EGF to the EGFR. The model 
assumes that there are two conformations for the 
receptor, that the two conformations have different 
affinities for the ligands, and that the subunits of the 
receptor flip in concert between the two states. It is 
also sometimes called the concerted model.
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monostable, monostability
A monostable system is one with a single stable steady 
state. This contrasts with a bistable system, which has 
two stable steady states, and an oscillatory system, 
which usually has a single unstable steady state or 
unstable spiral point.

negative cooperativity
A phenomenon where the binding of a ligand to 
a multimeric receptor makes it more difficult for a 
subsequent binding reaction to occur.

negative feedback
A phenomenon in biochemical regulation where a 
downstream protein negatively regulates its upstream 
activator or downstream protein positively regulates its 
upstream inactivator.

node
In nonlinear dynamics, node is another term for a 
steady state.

oocyte maturation
The process through which an immature oocyte re-
enters meiosis and becomes ready for fertilization.

ordinary differential equation
A differential equation with a single independent 
variable, typically time (t), as opposed to a partial 
differential equation, where the derivative depends on 
both time and position.

partial agonists
A substance, generally a hormone or drug, that activates 
a receptor submaximally when it binds maximally.

phase plane
A plane or, often, a quadrant of a plane, where the two 
axes represent two variables, each of which may vary 
with time.

pitchfork bifurcation
A bifurcation where a single steady state splits into 
three as some parameter is varied.

positive cooperativity
A phenomenon where the binding of a ligand to a 
multimeric receptor directly or indirectly promotes 
subsequent binding reactions.

positive feedback
A phenomenon in biochemical regulation where a 
downstream protein positively regulates its upstream 
activator, or a downstream protein negatively 
regulates its upstream inactivator. The latter is 
sometimes called double-negative feedback.

protein kinase cascade
A succession of protein kinases where the first kinase 
phosphorylates and activates the second, and the 
second protein kinase phosphorylates and activates 
the third, and so on. The MAP kinase cascade, where 
Raf activates MEK and MEK activates MAPK, is a 
classic example.

rate-balance analysis, rate–balance plot
A graphical approach to the analysis of the steady 
states and the dynamics of systems with one time-
dependent variable, where the forward and back 
reaction rates are plotted on one set of axes as a 
function of that variable, and the steady state(s) is/are 
deduced from the intersection points.

reciprocal regulation
A phenomenon where a regulator regulates a 
downstream target by increasing the rate of its 
activation and decreasing the rate of its inactivation (or 
the reverse).

relaxation oscillators
Oscillators composed of a positive feedback trigger 
operating on a fast time scale, and a slower negative 
feedback loop. Relaxation oscillators typically generate 
spiky oscillations like the repetitive action potentials 
of the sinoatrial node or the Cdk1 oscillations of the 
Xenopus embryonic cell cycle.

response regulator
In bacterial signal transduction, signals are often 
transmitted by two-component systems, where 
the first component is a histidine kinase receptor 
protein and the second component is a response 
regulator. Response regulators often regulate 
transcription.

saddle or saddle point
A steady state where linear stability analysis yields a 
positive and a negative eigenvalue.

saddle-node bifurcation
A bifurcation where a steady state appears out of thin 
air and then immediately splits into a saddle point (or, 
in one-variable systems, an unstable steady state) and 
a stable steady state, as some parameter is varied. Or, 
conversely, where a stable steady state and a saddle 
point (or unstable steady state) approach each other, 
annihilate each other, and disappear.

second messengers
Small molecules that are produced as a result of 
receptor activation and then regulate downstream 
effector proteins. Classic examples include cAMP, Ca2+, 
diacylglycerol, and inositol trisphosphate.
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sensitivity
In systems biology, sensitivity usually refers to how 
switch-like a response is. The two most common 
measures of sensitivity are the effective Hill 
exponent of a response, which is a global gauge of 
sensitivity, and the polynomial order of the response, 
which is a local measure.

sensitivity amplification
A phenomenon in a signaling cascade where the 
sensitivity of the response—the switch-like character 
of the response—increases as you go from the top to 
the bottom of the cascade.

separatrix
A boundary between two regions in the phase plane.

sequential model
Another name for the Koshland–Némethy–Filmer 
model of cooperativity for multisubunit proteins. 
The key assumption is that the binding of a ligand to 
one subunit induces a conformation change in other 
subunits that alters their ability to bind ligand.

signal transduction
The process of transferring a signal from one 
component to another in a cell or an organism. 
Alternatively, it can be taken to mean the process of 
converting a signal from one form (e.g. the free energy 
of a binding reaction) to another (e.g. a conformation 
change).

signaling cascade
A protein kinase cascade, or a succession of any of 
signaling proteins of any sort, where the main task of 
the first protein is to activate the second, the main task 
of the second protein is to activate the third, and so on.

state-dependent inactivation
A phenomenon where a protein can cycle between 
three activity states, like the voltage-dependent sodium 
channel does (going from off to on to inactivated).

steady state
A situation where the values of all of the time-
dependent species are no longer changing with respect 
to time.

stoichiometric regulation
The type of regulation that occurs when one species 
affects another by binding to it. This contrasts to 
enzymatic regulation, where the regulator may affect 
an indeterminant number of downstream targets by, 
say, phosphorylating them.

subsensitive, subsensitivity
A response that is more graded than a benchmark 
Michaelian response, with an effective Hill exponent 
less than one.

transcritical bifurcation
A bifurcation where a steady state becomes unstable 
and a new stable steady state emerges as some 
parameter is varied. Alternatively, a bifurcation where 
a stable steady state and an unstable one converge, 
cross, and switch stabilities.

two-component system
The most common and best-studied type of bacterial 
signal transduction system, consisting in its 
simplest form of a receptor histidine kinase (the first 
component) and a response regulator (the second 
component) that is often a transcription factor.

two-state model
A model for receptor activation where the receptor 
interconverts between two discrete conformations, 
and ligand binding influences the equilibrium between 
the two.

ultrasensitive, ultrasensitivity
A response that is more switch-like than a benchmark 
Michaelian response, with an effective Hill exponent 
greater than one.

zero-order ultrasensitivity
A switch-like response that occurs in a 
phosphorylation–dephosphorylation cycle (or some 
analogous process) where the kinase, the phosphatase, 
or both enzymes are operating close to saturation. 
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