


 
 
 
 
 
 

  
 
 

 

“This book is a welcome addition to the literature on economic dynamics. 
Its clear writing style and the emphasis on coding using MATLAB® make 
it a compelling text for introducing undergraduate economics students 
to stability issues, cycles, and growth. The emphasis on both standard 
models like the Solow growth model and less standard ones such as 
the Goodwin growth cycle appeal to a broad spectrum of economists 
in the profession, and the highly competent authors have put years of 
experience with the material into a highly accessible textbook. I highly 
recommend the book to anyone willing to incorporate numerical methods 
into macroeconomic courses.” 

Daniele Tavani, Associate Professor, Colorado State University 
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An Introduction to Economic Dynamics provides a framework for students 
to appreciate and understand the basic intuition behind economic models 
and to experiment with those models using simulation techniques in 
MATLAB®. 

This book goes beyond the often-limited scope of other texts on 
economic models, which have largely focused on elucidating static 
equilibrium models. Comparative static analysis inhibits students from 
asking how the equilibrium position is achieved from an initial out-of-
equilibrium position and limits their understanding of the dynamics that 
underlie such analysis. In this textbook, readers are introduced to ten 
well-established macroeconomic models – including Keynesian multiplier 
models, Samuelson’s multiplier and Solow’s growth model – and guided 
through the dynamical systems behind each model. Every chapter begins 
with an overview of the economic problem which the model is designed 
to help solve followed by an explanation of the mathematics of the model. 
Solutions are provided using simulation and visualisation techniques in 
MATLAB®, which are interwoven organically with the analysis and are 
introduced in a step-by-step fashion to guide the reader along the way. 
Appendices provide an introduction to MATLAB® along with all the 
necessary codes. 

The book is ideally suited for courses in economic dynamics, 
macroeconomic modelling and computational economics, as well as for 
students of finance, mathematics and engineering who are interested in 
economic models. 
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 PREFACE 

This book aims to introduce economic dynamics to the undergraduate stu-
dents of economics. Undergraduate economics education remains largely 
focused on elucidating static equilibrium models. The ensuing comparative 
static analysis inhibits students from asking how an equilibrium is reached 
from an initial out-of-equilibrium position and limits their understanding of 
the dynamics that underlie such analysis. In turn, static models and methods 
have become a standard mode of thinking about real economic problems 
and the associated analytical tools and techniques are used for exploring 
economic reality, i.e. data, in the wider policy analysis. This self-reinforc-
ing dynamic has locked-in much of the undergraduate economic teaching 
in the static mode and has also limited the scope of the undergraduate text-
book market. The aim of this book is to contribute to this challenge in a 
modest way by introducing economic dynamics to undergraduate eco-
nomics students. 

The idea for the book arose from our long-standing collaboration in 
teaching a joint module called Modelling, Analysis and Simulation, which 
was offered to the second-year B.Sc. program in Financial Mathemat-
ics and Economics at the National University of Ireland Galway (NUI 
Galway) in Ireland. The B.Sc. program, which is one of the most successful 
undergraduate programs, is an interdisciplinary program taught between the 
School of Mathematics, Statistics and Applied Mathematics and the School 
of Business and Economics. 

Around 2009, following an external review of the B.Sc. program, there 
was an opportunity to introduce a new module. At that time we were working 
together on a few research projects in economics, particularly looking at 
business cycle models. From our own discussions on various aspects of eco-
nomics, Petri, who is an applied mathematician specialised in non-smooth 
dynamics, was bemused by the lack of dynamics in economic models. Raghav, 
an economist trained in macroeconomics and political economy, was always 
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PREFACE 

aware of limitations of static equilibrium models in teaching and their useful-
ness for applied policy. When the request for a new module came about, we 
both thought it would be a great opportunity to put some of our own ideas into 
action and suggested that we will offer a module on economic dynamics. 

Our diverse backgrounds, experiences and perspectives of teaching 
and learning shaped our thoughts about the content and the approach for 
the module. We were also cognizant of the wider context that underpinned 
the dominant perception and prescriptions about teaching and learning 
practices in the Universities, and also the experiences and expectations of 
the students. All things considered, we decided to design a module that 
would help widen students’ skill set in terms of thinking about problems 
with an analytical and critical bent of mind, and also enhance their basic 
computing skills, necessary for experimentation and self-learning. 

These principles informed and shaped our ideas for the new module, 
which we titled Modelling, Analysis & Simulation. In order to ease them 
into the dynamic way of thinking, we used some of the popular economic 
models that undergraduate students would have been exposed to in their 
first and second years of study. We used models such as the Cobweb model, 
the IS/LM model, the Solow-Swan model, etc., which are usually taught in 
the first two years of the undergraduate economics curriculum. Since stu-
dents knew the comparative static analysis of such models, it was easier for 
us to introduce the dynamics that underpins these models. So the choice of 
models in the module is driven by this consideration of students’ familiarity 
with these models rather than our personal preferences. However, familiar-
ity is not the only requirement for this book and it is written in such a way 
that it would be accessible for students from other disciplines who are not 
familiar with these models. 

In terms of the approach, contrary to the usual mathematics-led 
approach, we use a more inclusive organic approach of building the models 
from the bottom up. The chapters start with the economic logic and central 
questions of the model. We then discuss how they are translated into math-
ematical models, and then help the reader understand the analysis of the 
models, both qualitatively using simulation, and quantitatively through ana-
lytical methods. We felt that such a “bottom-up” approach would be more 
inclusive since students would always be guided by the economic logic that 
underpins the (scary!) mathematical equations and learn them in an intu-
itive manner. We also felt that the aspect of experimentation in learning 
economics would empower students as they would know exactly how the 
model is set up from scratch and that they can play with the model using 
simulation. The latter aspect provides the avenue for self-learning and we 
have often seen that students feel more confident and sure-footed in their 
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PREFACE 

understanding of economic models when they “discover” various unstated 
properties of the model on their own. 

Furthermore, experimentation using MATLAB® would enable stu-
dents to learn more about programming and allow them to work with 
computer codes more freely, as opposed to the menu-driven computa-
tional software like spreadsheet-based programs. Moreover, the approach 
used in the book should help students learn MATLAB® coding in the 
context of economic models and such a context-driven approach will 
help students to acquire the programming and simulation skills in a more 
assured way. We hope that the MATLAB® codes that are integrated in the 
analysis of the models in each chapter will encourage numerical experi-
mentation, which in turn will lead to a deeper understanding of the eco-
nomic intuition and limitation of these models. Our belief is that the 
synergy between the three central aspects of our approach – modelling, 
analysis and simulation – will enrich students’ understanding of economic 
dynamics, their learning experiences and also help widen and deepen their 
skill set. 

Since our main aim is to introduce economic dynamics to the under-
graduate economics students, we have written it in a way that should make 
it accessible for the undergraduate programmes in economics and those 
specialising in economics in B.Comm. and B.A. programmes. The only 
prerequisite is to have some basic training in calculus, algebra and dif-
ferential equations, which are usually part of modules on mathematics for 
economics and offered in the first year of the undergraduate programmes. 
Since the book arose from our joint module taught to the second year B.Sc. 
Financial Mathematics and Economics students between the academic 
years 2009–10 and 2019–20, it should be readily useful for such interdis-
ciplinary undergraduate economics programmes. The book should also be 
of interest to other interdisciplinary science programmes where economics 
is introduced as part of the social sciences curricula. More broadly, the 
book should also be useful for general readers from the physical and math-
ematical sciences who are interested in the models of economic growth, 
inflation, or business cycles. Throughout the book, we have introduced 
concepts and historical notes, keeping such readers in mind, and we hope 
they find the book provides a useful introduction to the subject. Also the 
chapters in this book are purposefully kept short to cater to those readers 
from other scientific fields. 

The book would not have been possible without the amazing and generous 
support of Routledge, particularly the senior editors during this project. The 
Covid-19 pandemic did throw the schedule and time lines in disarray, but 
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PREFACE 

the editors were extremely helpful, understanding and supportive through 
the project, and we owe them a great deal of gratitude. 

The idea of the book and phases of its evolution happened in various 
periods and geographies. The book was one of our sabbatical projects 
and started in early 2019 in the temple city of Madurai in the southern 
Indian state of Tamil Nadu. We would like to extend our sincere thanks 
to the School of Mathematics in the Madurai Kamaraj University, espe-
cially to Prof. Lelis Thivagar, the Head of School, for giving us office 
space and other facilities, and other faculty members in the School, who 
welcomed us with warmth and friendship during our stay in Madurai, 
where the seeds for the book were planted. We would also like to thank 
Dr. Pushparaj in the School of Economics, who kindly helped us with the 
hosting arrangement in the School of Mathematics, and to Prof. Sankar 
Natesan, School of BioTechnology for his support during our stay. We 
would also like to thank Dr. Krishnakumar, Department of Physics at the 
Thiagarajar College in Madurai, for helping out and ensuring our stay in 
Madurai was very pleasant and also for his enthusiastic invitations for 
talks at his College. 

We then moved to Austria, where we were invited to the Institut 
für die Gesamtanalyse der Wirtschaft (ICAE) at the Johannes Kepler 
University in Linz. We were very warmly welcomed by the young, 
friendly and dynamic colleagues at ICAE. We owe our debt of gratitude 
to Professor Dr. Jakob Kapeller, Director of the Institute, Dr. Stephen 
Pühringer, Dr. Katrin Hirte, Mr. Matthias Aistleitner, Dr. Claudius 
Gräbner and Dr. Bernhard Schütz. They made our stay very productive 
and enjoyable. 

We would also like to acknowledge our home institution when the 
project started, with the School of Mathematics, Statistics and Applied 
Mathematics and the J.E. Cairnes School of Business and Economics, 
the National University of Ireland Galway, for facilitating our sabbatical 
leave and all the support for this project. We also like to acknowledge the 
research grant awarded to us towards the manuscript preparation by the 
Office of Vice President for Research at NUI Galway. Even though we did 
not use the money, we still would like to record our thanks to the Research 
office in NUI Galway for supporting this project. In the interim, Petri 
moved to Sweden and we would like to thank his current institution Chalm-
ers Institute of Technology in Gothenborg, for facilitating his work for this 
book. We are also very greatful to MathWorks® who supported us through 
the MathWorks® Book Program (software and promotion) with MATLAB® 

access. 
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1 INTRODUCTION TO 
ECONOMIC DYNAMICS 

The modern economy is a complex system comprising heterogeneous agents 
such as individuals, firms, and governments interacting with each other 
directly and indirectly in the market place. The main aim of Economics, as 
a subject of study in the Social Sciences, is to understand the workings of 
the economies and to explain the underlying mechanisms that drive such 
complex systems. Classical economists, such as Adam Smith, who is con-
sidered as the father of economics, emphasised the role of an individual 
agents’ self-interest in seeking their own gain in the market as the mech-
anism driving the self-regulating nature of the modern economies, as if 
regulated by an invisible hand. In contrast, Karl Marx argued that modern 
economies are characterised by the inherent tendency for unequal exchange 
between the owners of capital and the workers in the marketplace and con-
sequently the economic relations between the agents that underpin the struc-
ture of production and determine distribution and economic growth in such 
complex systems. These contrasting views about the conception of modern 
economies underpin and continue to inform the development and articulation 
of contenting economic policy paradigms. 

Economic theory strives to understand the mechanisms that underpin 
the workings of the modern economies through models. An economic 
model is an abstract description of a particular economic reality, since 
the complexity of the reality under investigation cannot be compre-
hended in its entirety. The subjective nature of scientific exploration in 
economics arises from our conception of the economic system, which 
is driven by a host of overlapping socio-cultural-political factors, and 
as a result there exist multiple and differing perspectives or conceptual 
frameworks. Economists often agree upon a set of empirical realities, 
known as stylised facts, and try to explain those realities or outcomes 
from their own point of view. For example, there is a rich diversity of 
economic models that explores the questions of unemployment, inflation 
and economic growth. The fundamental purpose of theoretical models 
is to elicit features of the underlying, or generative mechanisms that 
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INTRODUCTION TO ECONOMIC DYNAMICS 

generate those particular stylised facts. In contrast, empirical models aim 
to verify those theoretical propositions about the generative mechanisms 
of the phenomenon under investigation. 

Therefore, the term modelling in economics refers to deriving mean-
ingful hypotheses about an economic phenomenon or reality of interest. A 
meaningful hypothesis proposes plausible explanation of the specific phe-
nomenon under investigation and lends itself for verifiability where it can 
be validated or refuted. However, what is meaningful depends on the par-
ticular conceptual framework, or lens, that is being used to view the system. 
In this sense, modelling in economics is influenced by the particular con-
ceptual framework that is being used to view the empirical phenomenon. 
This is one of the reasons why there are several “schools of thought” in eco-
nomics, each providing distinct explanations for economic phenomena such 
as unemployment, inequality, growth etc. It is this particular characteristic 
that distinguishes economics from the pure science disciplines (mathemat-
ics, physics, chemistry, etc.). 

Perspectives also influence the mode of analysis such as if an eco-
nomic phenomenon is to be investigated in a static or a dynamic mode. 
The static mode is one where the notion of time is suspended, as if one is 
analysing a snapshot of the system, and the analysis focuses on the rela-
tionships between variables in that timeless context. If the analysis, on 
the other hand, is concerned with the evolution of the relationships over 
time then time needs to be explicitly introduced. The latter mode of ana-
lysis is done through specifying dynamic models of the phenomenon under 
study. Consider, for instance, the textbook model of demand and supply 
(see Chapter 2), where the equilibrium price (and quantity) is determined 
by what is demanded and what supplied, or where the demand curve inter-
sects the supply curve. In determining the equilibrium price (and quantity) 
in a static mode, the only consideration is the equality between demand and 
supply, and there is no reference to the passage of time. In other words, the 
static analysis looks at the relationships, say between demand and supply, at 
a specific point in time. When we compare two static equilibrium positions 
the analysis is known as comparative statics. 

In contrast to static analysis, dynamic analysis is concerned with the 
description of movement from an arbitrary out-of-equilibrium position to 
the equilibrium, and between one equilibrium and another. In other words, 
the dynamic analysis considers the notion of time explicitly. Answers to 
such questions is not just theoretical curiosity but imperative for practical 
policy making. In fact, in many instances practitioners and policy makers 
require an understanding of how the market is going to reach its equilibrium, 
and also how long it will take to reach the equilibrium. In the context of the 
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INTRODUCTION TO ECONOMIC DYNAMICS 

Covid-19 pandemic, policy makers were concerned with whether the nature 
of the economic recovery would be a “K- or W-shaped” recovery and the 
policy measures to alleviate such an unequal recovery process. However, for 
making such predictions one needs to provide a meaningful description of 
the evolution of the system over time and dynamic analysis provides such 
a description. Even for the comparative statics analysis to yield meaningful 
results it is necessary to understand the dynamics of the system under study. 
Paul Samuelson, a Nobel Memorial Prize winner in Economics, reminded us 
about the importance of dynamic analysis in his seminal book Foundations 
of Economic Analysis published in 1947: 

In order for the comparative-statics analysis to yield fruitful results, we 
must first develop a theory of dynamics. 

(Samuelson [3], pp. 262–63) 

In the comparative statics analysis there is an assumption that the 
equilibrium of a model is where the system settles down and to which it 
will return after a small perturbation. However, this assumption need not 
always hold. Consider for instance the equilibrium price in the demand 
and supply model, which is obtained at the intersection between demand 
and supply functions. The assumption is that the equilibrium price (and 
quantity) is where the system will settle down. However, this is true 
only under certain conditions. In the demand and supply model, as you 
will see in Chapter 2, the system settling down at the equilibrium point 
depends on the relative slopes of the demand and supply functions. If 
the relative slopes are not favourable, the system may never gravitate 
towards the equilibrium price. Therefore, we need to qualify the nature 
of the equilibrium. It is a common practice in Economics to use the 
notion of equilibrium without any qualification, whether they are stable 
or not. Therefore, in the dynamic analysis we first need to determine the 
stability of the equilibrium and then quantify whether it is a stable or 
an unstable equilibrium. This is where the study of economic dynamics 
begins. 

Understanding the characteristics of an equilibrium, i.e. its stability, 
is important in the study of the nature of movement towards or away from 
the equilibrium position. This crucial insight is often missed in the static 
and comparative static analysis. The analysis of the stability of an equi-
librium will, however, reveal the characteristic features of the equilibrium 
that one is dealing with. How does the system converge to a particular 
value, i.e. an equilibrium point? Does it converge monotonically or does it 
exhibit oscillatory convergence? Does it oscillate around the equilibrium 
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INTRODUCTION TO ECONOMIC DYNAMICS 

value? Characterizing the nature of the oscillations are essential when 
studying aperiodic fluctuations, e.g. volatility in the stock market, and 
periodic fluctuations, e.g. business cycles that are often exhibited by the 
economic data. For instance, in the demand-supply model, we are inter-
ested in whether the market tends to a particular price in a monotonic way 
or exhibits oscillations before converging. These questions are important 
for our understanding of how a system, e.g. the economy, would behave if 
perturbed by a shock, like the Covid-19 pandemic, and its movement back 
towards the equilibrium position. 

There is also the question of movement between different equilibrium 
positions. For instance, in the demand and supply model, if there is a shift 
in the demand curve, due to a change in the price of the substitute good, then 
the system moves to the new equilibrium position. In comparative statics ana-
lysis the two equilibria are compared from a welfare perspective. However, 
the characteristic of the new equilibrium and the movement between the 
equilibria is not taken into account in the welfare analysis. Suppose the new 
equilibrium is stable but oscillatory, then the nature of convergence would be 
qualitatively different from the dynamics around the previous equilibrium. On 
the other hand, if it is unstable then the market never reaches the new equilib-
rium position, i.e. the market never clears. 

These two questions, namely, the characteristic feature of an equilibrium and 
the nature of movement between equilibrium positions, are quite fundamental for 
our understanding of the economic system. Exploration of these questions pro-
vides us with an understanding of the fundamental mechanisms that underpin 
the economic phenomena in modern economies. It is akin to asking what is the 
dynamics (mechanisms) that generates earthquakes, for instance. In economics, 
we are interested in the dynamics that generates booms and busts, economic 
growth and the disparities in economic growth between different economies, 
inflation and unemployment etc. Since we are trying to understand these phe-
nomena using economic data, which is generated by the dynamical system called 
the economy, we need to use the dynamical-systems approach that can shed light 
on the evolution and other dynamical properties of the economic system. 

This book aims to provide a gentle introduction to these concepts using 
some well known models in Economics. Most of these models are intro-
duced in the first and second year undergraduate modules and some in the 
senior undergraduate modules. Mostly, these models are taught in the com-
parative statics mode and students do not always get to see the dynamics that 
underpin such analysis. Our aim in this book is to explore the dynamics that 
underpin these models and help students better appreciate the economic intu-
ition of these models. To that end, we use the economic logic of the model to 
guide us and lead us to the dynamic analysis, rather than the other way around. 
We believe this approach will keep the economic intuition or logic in the 
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INTRODUCTION TO ECONOMIC DYNAMICS 

forefront of the analysis with the hope that students do not feel overwhelmed 
by mathematical modelling. There are some excellent books that provide rig-
orous introduction to economic dynamics at this level, for instance, by Gian-
carlo Gandolfo [2] and Ronald Shone [4]. In relation to these text books, our 
objective here is more modest. We aim to initiate students to think in terms of 
dynamics, and prepare them to explore using simulation methods, using some 
of the popular economic models taught in the undergraduate modules such as 
microeconomics and macroeconomics. This, we hope, will create sufficient 
impetus for learning economic dynamics and help students to pursue more 
advanced books such as by Gandolfo, Shone and others in this area. 

In this book, in addition to initiating students’ interest in dynamics, we 
also aim to introduce them to simulation methods using the MATLAB® pro-
gramming language. In our view, and from our own experience of teaching 
economics in Ireland and in various other countries, there is a lack of compu-
tational training at the undergraduate level in economics programs. More often 
than not, students of economics miss out on this crucial skill that would help 
them to prepare for the so called fourth industrial revolution. Here we introduce 
students to simulation and visualisation, which help students to analyse, visual-
ise and experiment with models. We believe that this is another distinguishing 
aspect of the book and we hope it will induce an interest in working with pro-
gramming languages, in this instance MATLAB® and will give students con-
fidence to pursue others such as R and PYTHON, all of which have become 
industry standard and widely used in the banking, finance/fintech sectors, and 
in economic and public policy institutes. While the programming languages 
like MATLAB® have a relatively steeper learning curve than the worksheet-
based programs like MS Excel, we believe that the long-term benefits more 
than outweigh the initial time spent on learning the language. There are many 
primers and introductory books on MATLAB® computing. For our purposes, 
we provide a very brief introduction to MATLAB® in the following section. 

1.1 A SHORT PRIMER ON MATLAB® 

The software known as MATLAB® (for “MATrix LABoratory”) is an extraor-
dinarily useful computational tool for analysis and design, which we will use 
for numerical analysis and visualisation throughout this book. Here we will 
provide a very short introduction to the language of MATLAB®, which is not 
meant to be exhaustive or complete but to give a taste of the language. 

Start the MATLAB® program by clicking on the MATLAB® symbol 
in your computer where-after the MATLAB® command window will 
appear. You will see that the window has several panes and we will initially 
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be entering commands into the “Command Window”. Defined variables 
appear in the “Workspace window” (upper left side) and previous com-
mands appear in the “Command History” window (lower left). 

It is possible to use the command window as a normal calculator. We 
can for instance perform basic calculations. 

    

 
 

          

Basic calculations 

>> 2+4 >> 2^4 
ans = ans = 

6 16 

Seeking information about functions is easy in MATLAB® . 

There are a fair number of special operators, variables and constants in 

Elementary functions 

Type 
>> help 

in the command window and you will get a list of useful functions, such as 
sin, cos, tan, exp, abs, log, sqrt, round 

It is also possible to write 
>> help ops 
>> doc ops 

which gives you a list of useful operators, such as 
+, -, *, ^, /, \, .*, ./ 

The command doc provides comprehensive information about the query. 

MATLAB® 

Special variables and constants 

Some operators 

ans Most recent answer. Inf Infinity 
eps Floating-point relative accuracy. NaN Not a number 
i,j Imaginary unit. pi 3.141592653589793 
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Time 

clock Wall clock. etime Elapsed time function. 
cputime Ellapse CPU time. tic, toc Stopwatch timer function 
date Calendar. 

Every entity in MATLAB® is represented as a matrix. Therefore, a 
good understanding of elementary operation of vectors and matrices would 
be very helpful. 

Vectors and matrices 

Create a row vector v with elements 1,3,4,6 
>> v = [1,3,4,6] 
v = 

1 3 4 6 

and create a column vector of v with elements 1,3,4,6 in two ways 

>> v1 = [1;3;4;6] >> w = v’ 
v1 = w = 

1 1 
3 3 
4 4 
6 6 

Notice that the transpose operator is given by ’. Next, create a row 
vector v with elements 1,2,...,7 by 
>> v = 1:7 
v = 

1 2 3 4 5 6 7 

and create a row vector v with elements 1.1,1.3,..., 1.9 using : 
>> v = 1.1:0.2:1.9 
v = 

1.1000 1.3000 1.5000 1.7000 1.9000 

Creating matrices and manipulating matrices is very easy to do, but 
there are many different ways to do it. Here a few of them are shown. 
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Vectors and Matrices 

To create a 2 × 3 matrix M with elements 1,3,4,6,7,9 write either 
>> M = [1,3,4;6,7,9] 
M = 

1 3 4 
6 7 9 

or 
>> M = [1 3 4 

6 7 9] 
M = 

1 3 4 
6 7 9 

or 
>> M(1,1) = 1; M(1,2) = 3; M(1,3) = 4; 

M(2,1) = 6; M(2,2) = 7; M(2,3) = 9; 
>> M 
M = 

1 3 4 
6 7 9 

or 
>> M(1,:) = [1,3,4]; M(2,:) = [6,7,9]; 
>> M 
M = 

1 3 4 
6 7 9 

or 
>> M(:,1) = [1;6]; M(:,2) = [3;7]; M(:,3) = [4;9]; 
>> M 
M = 

1 3 4 
6 7 9 

To create a 3 × 3 identity matrix Id write 
>> Id = eye(3) 
Id = 

1 0 0 
0 1 0 
0 0 1 

8 



    

 

 

 

INTRODUCTION TO ECONOMIC DYNAMICS 

MATLAB® is as mathematical and scientific computing tool, not 
only a calculator, and offers a lot of flexibility. One of the main features of 
MATLAB® is the use of M-files, which are simply files with a set of code 
to perform a computation that can be saved, instead of typing directly in the 
command window, and recalled in any other program. M-files can be either 
script files that have no input or output arguments; or functions that have 
input arguments. They are useful for automating a series of MATLAB® 

commands, such as computations that you have to perform repeatedly from 
the command line. The M-files are executable files and they are saved in 
MATLAB® with the extension .m. 

M-files 

To open a new file choose File → New → M-File from the Menu bar 
and start typing your MATLAB® code. As always, Don’t forget to 
save!!, but files will be automatically saved when executing an .m-file. 

x = linspace(0,2,100); 

y = sin(2*pi*x); 

% variable vector x 
% with 100 elements. 
% output 

plot(x,y,’k’,’LineWidth’,2) 
axis([0 2 -2 2]) 

% Plot of x versus y 
% Set figure axes 

xlabel(’x’), ylabel(’y’) % Name of axes 
title(’My first plot’) % The figure title 

Save this as the M-file myfirstplot.m. 

Then, in the command window type following command 

Execute the m file 

>>myfirstplot 

and you will get the output in Figure 1.1. 
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INTRODUCTION TO ECONOMIC DYNAMICS 

Figure 1.1: The graph generated by the file myfirstplot.m. 

Plotting graphs is very important for anybody working in any applied 
sciences and MATLAB® is very good for this purpose. 

The built-in MATLAB® function PLOT(X,Y,S) plots vector X versus 
vector Y, where S is a character string describing the way in which the data 
is shown. If X or Y is a matrix, then the vector is plotted versus the rows or 
columns of the matrix, whichever line up. If X is a scalar and Y is a vector, dis-
connected line objects are created and plotted as discrete points vertically at X. 

To find lots of information on how to plot your data, type help plot 
or doc plot. 

Visualisation 

Consider the following example where we will graph three different 
functions and show it in the same plot 

x = 0:4*pi/100:4*pi; % variable vector x with 100 
% elements. 

y1 = sin(x); % output of the first function 
y2 = 2*sin(x); % output of the second function 
y3 = sin(2*x); % output of the third function 

figure(1) % open a new figure window 
% called 1 

hold on % do not erase old plots when 
% plotting 

% Plot of x versus y1; solid black (k); width 2cm 
plot(x,y1,'k','LineWidth',2) 
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% Plot of x versus y2; dashed red (r--); 
plot(x,y2,'r--','LineWidth',2) 

% Plot of x versus y3; dotted blue (r:); 
plot(x,y3,'b:','LineWidth',2) 
% label the axes 
xlabel('x'),ylabel ('y_1, y_2, y_3') 
axis([0 4*pi -2.5 2.5]) % set figure axes 
box on % outline box on 
hold off % erase old plots when plotting 

Save this as the M-file mysecondplot.m. The output of the above 
code is displayed in Figure 1.2. 

Figure 1.2: The graph generated by the file mysecondplot.m. 

While the above discussion provides a brief introduction to MATLAB® 

programming, one of the issues with such an approach is similar to the prob-
lems associated with the rote learning strategies in mastering a language. The 
rote learning strategies use memorisation, repetition and practising of vocabu-
lary and grammar, which may be helpful in the short term, but a more effective 
way to mastering languages is through contextual learning. Linguistic scholars, 
like Henry Douglas Brown [1], have long argued that by learning how to use 
words in different contexts the learner is more sure of its meaning and such an 
approach will also help the long-term memory of those words. 

In this book, we follow the contextual approach in introducing 
MATLAB® to students who are new to programming. Since the economic 
problem provides the background context for MATLAB® programming, we 
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believe that students will see the purpose, usefulness of simulation and vis-
ualisation, which will enable them to experiment with models and provide 
an avenue for experiential learning. 

In the following example, we illustrate our approach using the basic 
Demand and Supply model. This model will be examined at length in 
Chapter 2. The purpose here is to use the model as an illustration for simu-
lation and visualisation in MATLAB®. 

Simulation & Visualisation: An economic example 

The most basic model of demand and supply equation is given by 

Dt = d0 + d1 pt, b < 0, (1.1) 
St = s0 + s1 pt−1, b1 > 0. (1.2) 

The equilibrium condition Dt = St yields the first-order difference equation 

d p  d p  s s p s 
d 

p s d 
dt t t t0 1 1 0 1 

1 

1 
1 

0 0 

1 

1˜ ° ˜ ˛ ° ˝ ˜ 
˜ ˜ , (1.3) 

which describes the evolution of price p from one time period to the next. 
Setting the parameter values of the demand and supply functions and 
the initial value p0 of price to 

d0 = 4, d1 = −1.7, s0 = 0.5, p0 = 1, 

yield the simulation plots in Figure 1.3 (a), for s1 = 1.1, and Figure 1.3 (b), 
for s1 = 1.9. See Chapter 2 for a full exploration of this example. 

Figure 1.3: Evolution of price pt over time t. In (a) s1 = 1.1 and the price con-
verges in an oscillatory manner and in (b) s1 = 1.9 the price diverges in an 
oscillatory manner. 
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INTRODUCTION TO ECONOMIC DYNAMICS 

Using the MATLAB® code corresponding to the above example (see 
Chapter 2 and Appendix B), students can experiment with the parameter values 
for demand and supply functions, and also varying initial conditions, and vis-
ualise the model in various scenarios. Such an experimentation helps students 
to see when the models turn from having a stable equilibrium to an unstable 
equilibrium, and understand the economic intuition behind those scenarios. 
Thus, the MATLAB® simulation enables experimentation and allows students 
to understand the underpinning dynamics of the model by simply varying the 
parameters of the model before they even learn to analytically solve the model. 
As students begin to see the visual output of their simulation in terms of plots 
and begin to analyse them, learning through experimentation will begin to 
create a self-reinforcing effect in terms of their confidence and interest. 

We believe that the context-based learning approach adopted in this book, 
where economic problems lead and motivate the dynamic analysis and simula-
tion using MATLAB®, helps not only in introducing a new programming lan-
guage but also helps initiating the undergraduate students to take up the study 
of dynamical systems. The interwoven nature of discussion between model-
ling, analysis and simulation is a unique feature of this book and we hope it 
will help bring the joy of experiential learning to economics classrooms. 
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 2 THE COBWEB MODEL 

2.1 ECONOMIC PROBLEM 

Markets are the fundamental organizing institutions of a modern 
economy. Every market, be it for potatoes, labour or financial assets, 
enables the coordination of decentralised decision making by bringing 
together disparate buyers and sellers of goods and services. The study 
of individual markets and the decision – making process of buyers and 
sellers fall in the realm of microeconomics. The traditional neoclassical 
approach describes the decision-making process of buyers and sellers 
such as households, firms or governments using the analytical frame-
work of utility or profit maximisation.1 The description rests on various 
assumptions such as perfect competition, i.e. atomistic individuals, perfect 
knowledge or rational behavior, and no transaction costs or friction-less 
markets etc. 

At one level the success of neoclassical theory can be attributed to 
its uncompromising focus on scarcity, and hence competition as the key 
to understanding economic behaviour, as evinced in microeconomics. 
However, the analytical formalism and elegance of microeconomic 
theory comes at the cost of using some of the most unrealistic assump-
tions such as rationality, which underlies the frictionless conception of 
the economy. The rational-choice framework assumes that individuals 
know the underlying model of the economy and are able to discern 
what is best for them in their self interest and act accordingly. Such a 
decision-making process fails under the conditions of uncertainty, where 
we cannot possibly know what we need to know in order to maximise, 
or even safe guard our self interest. Herbert Simon [2] articulated this 
more precisely: 

If … we accept the proposition that both the knowledge and the 
computational power of the decision maker are severely limited, then 

DOI: 10.4324/9780429324406-2 15 
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THE COBWEB MODEL 

we must distinguish between the real world and the actor’s perception of 
it and reasoning about it. That is to say we must construct a theory (and 
test it empirically) of the process of decision. Our theory must include 
not only the reasoning processes but also the processes generated the 
actor’s subjective representation of the decision problem, his or her 
frame. 

The analytical elegance, the mathematical formalism and the precision 
of microeconomic theory also comes with another fundamental limita-
tion, namely, that it is set in a timeless, or static, conceptual structure. As 
Douglas C. North [3] put it more eloquently: 

It is not clear where economics is going. But the direction is suggested 
by two glaring shortcomings of neoclassical theory: it is a frictionless 
theory in a world in which frictions are where the action is, and it is static 
in a world in which dynamic change is going on at an unprecedented 
rate. 

The power of microeconomic theory comes from its simplicity in 
organizing economic behaviour of people in terms of two fundamental pre-
cepts, one at the individual level and the other at the market level. On the 
individual level economic decisions of people can be understood by the 
optimisation process, e.g. people try to make the best possible choices they 
can afford. On the market level the functioning of markets can be under-
stood through the equilibrium process where, for instance, prices adjust 
dynamically and coordinate buyers and sellers to trade goods and services 
that benefit both sides. 

Of the two, the assumption that economic agents use the process 
of optimisation to arrive at the best possible outcomes for themselves is 
relatively less problematic, although it assumes certain pre-suppositions 
such as agents have the freedom to choose or that they have complete 
information etc. However, the notion of an equilibrium, as an analytical 
mechanism to understand how markets function, needs careful considera-
tion since the meaning of an “equilibrium” in an economic context is 
not an easy term to define precisely. Since we are concerned with eco-
nomic dynamics, let us first discuss the notion of equilibrium and how it 
is applied in economics. 

The definition of the term equilibrium differs depending on the context 
of the problem. In economics, we define the term as a state of rest, which 
could be a fixed value of a variable that has no tendency to change – like a 
rocking horse that “settles down” to the position of rest after being rocked. 
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In physical systems, an equilibrium is often defined as a state of balance 
between opposing forces. For example, if the state of a mechanical system 
is at rest or in a non-accelerated motion then the total sum of all forces 
acting on the system is zero. We can also have a situation where a system 
exhibits a repeated pattern without ever coming to a single point of rest, but 
we still refer to such a behaviour as a steady-state motion. For example, 
think of a central air-conditioner that is repeatedly switched on or off such 
that the room temperature oscillates between two different values and stays 
within a desired band. The steadily oscillating room temperature can be 
seen as “steady-state path”, as long as there are no other external distur-
bances like power failure etc. 

In this book, we will encounter all these types of equilibria or steady-
state behaviours, and in this chapter we will study the first type of equi-
librium, one where the system, or the market in question, “settles down” 
to the position of rest. However, even if a system has an “equilibrium” or 
“steady state” it does not automatically mean that the system settles down 
to a particular value, or a particular pattern. It is one thing for a system to 
possess an equilibrium, but it is another thing whether the system, start-
ing from any arbitrary point away from equilibrium, is able to get to it, i.e., 
whether it is stable or not. The stability of an equilibrium point is crucial 
because it determines whether the system, starting from a nearby initial 
condition, converges towards the equilibrium value or diverges away from 
it. For instance, a particular market may have an equilibrium price (and 
quantity) at which it clears, where demand equals supply. But, mere exist-
ence of such an equilibrium price by itself does not guarantee that starting 
from an arbitrary initial price, the market will converge to that price. Only 
if the equilibrium is stable, the market converges to the market clearing or 
the equilibrium price. However, if the equilibrium is unstable, the deviation 
between the demand and supply price grows over time leaving the market 
negotiations to diverge and the market does not clear. Therefore, in addi-
tion to determining equilibrium values of particular markets, it is crucial to 
determine whether they are stable or not. In other words, the term ‘equilib-
rium’ needs to be qualified with respect to whether it is a stable or unstable 
equilibrium.2 

Although much less appreciated in the undergraduate teaching, the 
notion of stability of equilibria is fundamental to economics, be it in 
microeconomics or macroeconomics. The fundamental question here is 
whether the system will return to its equilibrium value after being per-
turbed away from it. If the answer is affirmative then there are two 
further questions that need to be answered. First, what is the nature 
of the convergence, i.e. will it converge back to the equilibrium in a 
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THE COBWEB MODEL 

monotonic or oscillatory manner? Second, how long will it take for the 
system to return to its equilibrium value? The importance of such ques-
tions can for instance be seen in the context of the Covid-19 crisis, where 
the economic policy discussions were focussed on whether the economy 
will experience a “V-”, “W-”, or “K”-shaped recovery and what would 
be the time-scale (or speed) of the recovery process. 

In this chapter we will study this question in a microeconomic setting 
using a basic demand and supply model, referred to as the cobweb model. 
Every student of economics is introduced to this basic demand-and-supply 
model, or the Marshallian scissors, and remains as a basic pedagogic tool 
for the analysis of markets. Here, we consider a single market, as shown 
in Figure 2.1, where the relationship between the price (p) and quantity (q) 
of a product are given by demand and supply curves labelled as D and S, 
respectively. We assume, for simplicity, that demand and supply depend lin-
early on the price. Suppose the initially quoted price for the product is p0, at 
which there is excess demand, i.e. the quantity demanded by the consumers 
is greater than the quantity offered by the suppliers. The usual analysis of 
the problem would argue that excess demand would drive the prices upwards 
because the suppliers notice that there is demand for their product and expect 

p 

p* 

p
0 

S 

D 

q 

Figure 2.1: A schematic representation of a demand-and-supply model for 
a product, where the quantity q is plotted versus the price p with D repre-
senting demand and S representing supply. An initial price p0 as well as the 
equilibrium price p* are indicated. 
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THE COBWEB MODEL 

they could sell the corresponding quantity at that higher price, as shown by 
the supply curve S in Figure 2.1. However, at that higher offer price, buyers 
would demand a lower quantity, as dictated by the demand curve D, than 
that offered by the seller. This process of tâtonnement, or grouping orders, 
will continue until the market reaches the equilibrium price p* and the corre-
sponding equilibrium quantity q*, where all the excess demand is eliminated. 

In the above analysis, two things are not discussed. Firstly, what is 
the guarantee that the process will converge to the equilibrium price? One 
should be aware of the possibility that starting from an initial price p0, the 
price may diverge away from the equilibrium price, i.e. the negotiation 
between the buyer and seller could break down and that no trade takes 
place. Secondly, assuming that the market converges to the equilibrium 
price and quantity, how does it converge, i.e. does it converge monotoni-
cally or oscillatory? 

What we are attempting to describe here is the disequilibrium 
dynamics of the price mechanism in this market, i.e. what makes the price 
move from p0 to p* and the characteristic features of such a movement. 
Such a description is fundamental to both theoretical and policy analysis, 
because we need to know what renders markets unstable to be able to pre-
scribe effective stabilisation policies. In the following section, we con-
sider the basic cobweb model of demand and supply in a single market, 
and explore these questions. We will use simulation and visualisation tech-
niques to highlight the underpinning dynamics as well as analyse how the 
model behaves under parametric variations. 

2.2 MODELLING 

Consider a linear demand and supply model in discrete time3 given by 

Dt = d0 + d1 pt, d0 ≥ 0, d1 < 0, (2.1) 
St = s0 + s1 pt−1, s0 ≥ 0, s1 > 0, (2.2) 

for t = 1,2,3,… and some initial price p0, where Dt represents the demand 
at time t as a function of the price at time t (pt) and St represents the 
supply at time t as a function of price at time t − 1 (pt−1). The intercept 
and slope parameters d0, d1, s0 and s1 are specific to the goods being 
bought and sold. Here we are dealing with goods whose demand is nega-
tively related to price pt in the current time t, i.e. d1 < 0. On the other 
hand, since supply of the produce is positively related to the price pt−1 
in the previous time t − 1, the slope of the supply function is positive, 
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THE COBWEB MODEL 

and so s1 > 0. In Figures 2.2 (a) and (b) schematic representations of the 
demand and supply curves D and S are shown and in particular we note 
that D depends on pt and S on pt−1. 

Historical note 

The original cobweb model was developed in the context of agricul-
tural markets where the supply of produce is influenced by the time 
lag between planting and harvesting, and where the producer’s price 
expectations are assumed to be based on a previous period’s price 
realisation, see Nicholas Kaldor [4]. 

The economic intuition behind the supply curve St is that the suppliers 
(e.g. farmers) would supply more of their produce in the present time t, 
if they had received a favourable price at the previous time period t − 1. 
In Figure 2.2 (c) we see two steps of how the negotiation process works, 
which is driven by the fact that the demand and supply curves depend on 
the price at different times, and will be discussed further in Section 2.3. 

(a) (b) 
p p p 

p p
D 

t-1 t-1 
p

t+1 

p p
t t 

S 

q q q
t+1 t 

Figure 2.2: Schematic representation of the demand and supply model, 
where in (a) the demand curve (2.1) and (b) the supply curve (2.2) are 
shown. In (c) a representation of two steps of the negotiation process 
between a buyer and seller is shown. 

Finally, the situation where both the consumer and supplier are satis-
fied in an exchange referred to as the market clearing condition and which 
happens when 

Dt = St. (2.3) 

Specifically note that the equilibrium price is given by the market clear-
ing condition (2.3) and is represented by p* in Figure 2.1. We shall now 
proceed to study the determination of the equilibrium price (and the corre-
sponding quantity q*) and analyse its stability properties in the next section. 

q 

D 

S 

(c) 

q 

20 



  

  

 

 

 

    

THE COBWEB MODEL 

2.3 ANALYSIS, SIMULATION AND VISUALISATION 

Let us analyse the demand-and-supply model set up in Section 2.2 by sub-
stituting equations (2.1) and (2.2) into the market clearing condition (2.3) 
that yields 

d ˜ d p  ° s ˜ s p  , t ° 1 2 3, , ,˛ (2.4)
0 1 t 0 1 t˝1 

or 
s s ˛ d

1 0 0p ˜ p ° , t ˜1 2 3, , ˝ (2.5)t t ̨ 1d
1 d

1 

which is a first-order difference equation that gives us a relationship 
between the price p at time t and at t − 1. 

In order to iterate the equation we need an initial condition, which is 
an “initial” price at a specific time period. For instance, let p0 be the initial 
price at t = 0 (see Figure 2.1). Once we have specified the initial price, we 
can use it in (2.5) and see how the price evolves, i.e. p0, p1, p2, . . . ,  as a result 
of the negotiation between the buyer and the seller. 

In the traditional treatment of the demand-and-supply models one 
typically solves the first-order difference equation (2.5) and use the 
analytical solution to describe the dynamics. However, we shall take a 
more qualitative and experimental route by using simulation of (2.5) in 
MATLAB® to get an intuitive feel for the underlying dynamics of the 
model. The following MATLAB® code sets up the parameter values and the 
initial condition.4 

Parameter values and initial conditions 

In order to start a simulation, we need to specify numerical values for 
the parameters d0, d1, s0 and s1 as well as the initial price p0. In what 
follows we will use the following numerical values guided only by the 
sign restrictions 

d0 = 4, d1 = −1.7, s0 = 0.5, s1 = 1.1 and p0 = 1. 

Note that these values are only used as an example. You are encour-
aged to experiment with different parameter values (even “non-
allowed” or unrealistic values) in order to get a better feeling for the 
dynamics of the system. 
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Initiation and parameter values 

%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

%Simulation parameters - specifying parameter values 
d0 = 4; 
d1 = -1.7; 
s0 = 0.5; 
s1 = 1.1; 

%Initial Condition 
p0 = 1; 

Next we need to specify the length of time we would like to iterate the 
equation (2.5). For our purposes, we iterate the equation for 10 time steps, 
and the code to stipulate the time steps is given as follows. 

Simulation parameter 

%Simulation parameter - specifying the number of 
%iterations 
n=10; 

We can now iterate the difference equation (2.5) using the following 
code. 

Simulation 

%Simulation 
p=[]; 
p(1) = p0; 
for t = 1:n 

p(t+1) = (s1/d1)*p(t) + (s0−d0)/d1; 
end 

To briefly explain the code, we first create an empty vector p where the first 
element p(1) is being equal to the initial condition p0. Note, the first index 
of a vector in MATLAB® is 1 so, for instance, p(0) is not allowed. 
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After initialising p, we iterate the difference equation (2.5) for n = 10 
time steps using a for-loop, where t is the index representing time. The 
end result will be stored in p, which is a vector of length 11 with entries 
p0,…, p10. 

When the simulation (the for-loop) is completed, we can visualise the 
output to see the evolution of the price pt with respect to time t. We use the 
following code to visualise the price dynamics: 

Visualisation 

%Visualise time versus price 
figure(1) 
plot(0:n,p,’ko’,’MarkerFaceColor’,’k’) 
xlabel(’t’),ylabel(’p_t’) 

In the above set of visualisation commands, we first open an empty figure 
pane, called “Figure 1”. We then plot the time vector 0:10 = [0, 1,…, 10] 
versus the price vector p = [p(1),…, p(11)] and label the horizontal axis 
t and the vertical axis pt. Figure 2.3 shows the output from this set of 
commands. 

Figure 2.3: Evolution of price pt over time t with initial condition p0 = 1. In 
(a) s1 = 1.1 and the price converges in an oscillatory manner and in (b) s1 = 
1.9 and the price diverges in an oscillatory manner. 

In Figure 2.3, we can see two scenarios emerging in this model. In 
Figure 2.3(a), we set s1 = 1.1 and see that starting from the initial value of 
p0 = 1, the model yields oscillations in price, but these oscillations gradually 
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dampen and converge to a fixed value around p = 1.25. We can also verify 
this by simulating the model for longer duration by increasing the value of 
n. Next, in Figure 2.3(b) we set s1 = 1.9 and see that starting from the same 
initial value, the model yields a diverging price sequence as the amplitude 
of the oscillation increases over time. 

Question 

Why does the model produce two different price dynamical scenarios? 
In one case (Figure 2.3(a)) the price converges to a fixed value in an 
oscillating manner and in the other case (Figure 2.3(b)) the price 
diverges without bound in an oscillating manner. 

To answer this question, let us first analytically solve the difference 
equation (2.5). We start by solving for the fixed or equilibrium price (p*) 
that should exist, as suggested by the simulations in Figure 2.3.5 Since the 
price sequence converges to a particular fixed value (p*), we solve for the 
equilibrium price by substituting pt = pt−1 = p* in (2.4), which yields 

d ˜ d p˛ ° s ˜ s p˛ 
, (2.6)0 1 0 1 

and so the equilibrium price in this market is 

˜ s ˛ d p ° 0 0 . (2.7)
d

1 ˛ s
1 

The equilibrium price is also called the market-clearing price as it is the 
price at which the demand equals supply and the market clears, as seen in 
Figure 2.4.6 We also note that d1 – s1 ≠ 0 (see (2.1) and (2.1)), which means 
that the equilibrium price (2.7) is well-defined and economically meaning-
ful. From (2.1), (2.2) and (2.7) we can calculate the equilibrium quantity q*, 
corresponding to the equilibrium price p*, that is 

d s  ˛ d s˜ 1 0  0 1q ° . (2.8)
d

1
˛ s

1 

Next we want to study the stability properties of the market equilib-
rium, or in other words, we want to determine under what conditions the 
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THE COBWEB MODEL 

Figure 2.4: Quantity q versus price p. In (a) s1 = 1.1 and in (b) s1 = 1.9. The 
demand and supply curves are highlighted with a D and an S, respectively. 
The curves cross at the fixed price p* and quantity q*. 

equilibrium price is stable or unstable.7 The solution to the difference equa-
tion (2.5) (see Appendix A.1 for the derivation) is given by 

° s
1 ˙

t 
� �pt ˜ ˝ ˇ � p0 ˘ p � � p . (2.9)

d˛ 1 ˆ 

The solution (2.9) shows that the necessary condition for the price pt, start-
ing from an initial condition p0, to converge to the equilibrium value p* is 

s
that the absolute value of the ratio 1  is less than 1. As we can see fromd1(2.9), when this condition holds and as t → ∞, the price pt converges to p*. 
Note that the ratio is nothing else but the relative slopes of the supply and 
demand curves, see (2.1) and (2.2). 

The next question is to study the nature of convergence towards 
the stable equilibrium, i.e. is it going to be an oscillatory convergence or 

s
a monotonic convergence? The simple answer is that if d 

1  is negative we 
s 1have oscillations and if 1  is positive we have monotonic dynamics. Thed1stability condition and the analytical condition for the nature of conver-

gence (or divergence) are summarised in Table 2.1. 
In Table 2.1 the stability conditions are given along the columns 

and the conditions for the nature of convergence (or the disequilibrium 
dynamics) are read along the rows. For instance, starting from any initial 
price, the condition for the price to converge to the equilibrium value p* 
is given by |s1/d1| < 1 (column 1). At the same time, if s1/d1 < 0 (row 1) 
the disequilibrium dynamics exhibits oscillations in the price close to p*.8 
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THE COBWEB MODEL 

On the other hand, if s1/d1 > 0 (row 2) the disequilibrium dynamics exhibits 
monotonic convergence to the equilibrium price p*. Similarly, the system 
becomes unstable when |s1/d1| > 1 (column 2) and for the disequilibrium 
price dynamics to become oscillatory and monotonic the conditions can be 
read off from rows 1 and 2 respectively 2 of Table 2.1. 

Table 2.1: Stability and behavioural conditions 

Condition 
s1 <1 
d1 

s1 > 1 
d1 

s
1 < 0 

d
1 

stable and oscillatory unstable and oscillatory 

s
1 > 0 

d
1 

stable and monotonic unstable and monotonic 

We can also check this numerically from our example in Figure 2.3. 
In Figure 2.3(a), for the stable and oscillatory case, the equilibrium 
price is 

p* = (s0 – d0)/(d1 – s1) = (0.5 − 4) / (−1 .7 – 1.1) = 1.25 

with s1/d1 = 1.1/−1.7 ≈ −0.65 and in Figure 2.3(b), the oscillatory divergence 
case, the equilibrium price 

p* = (s0 – d0)/(d1 – s1) = (0.5 − 4) / (−1 .7  − 1.9) ≈ 0.97 

with s1/d1 = 1.9/−1.7 ≈ −1.12, which both follow the results in 
Table 2.1 

2.3.1 COBWEB PLOTS 
In this section, we provide an alternative way to visualise the dynamics 
of the model through – so-called cobweb plots. This is a popular repres-
entation of the cobweb model in the undergraduate textbooks and high-
lights the disequilibrium dynamics in an alternative way, but one that is 
still based on the equations and graphical representations introduced in 
Figure 2.2. 
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THE COBWEB MODEL 

First we rewrite equations (2.1) and (2.2) using the general notation for 
quantity q instead of D and S and ignoring the time subscripts, for now, and get 

q d  ° d p, d ˛ 0 d˜ 
0 1 0

,
1 ˝ 0, (2.10) 

q s˜ ° s p, s ˛ 0, s ˝ 0, (2.11)
0 1 0 1 

which are two separate dependencies (demand and supply) between price 
and quantity. We can also swap the order of the dependencies between p 
and q so that 

d
0 1 p ˜ °  ˛ q, d

0 ˝ 0, d
1 ˙ 0, (2.12)

d
1 d

1 

p ˜ ° s
0 ˛ 1 q, s

0 ˝ 0, s
1 ˙ 0. (2.13)

s
1 s

1 

The two functions (2.12) and (2.13) (or equivalently (2.10) and (2.11)) are 
plotted in Figure 2.4, for the same parameter values as in Figure 2.3. Since 
we are interested in how (q, p) evolves over time we consider (2.10) and 
(2.13) and reintroduce time to get 

qt ˜ d
0 ° d p

1
, d ˛ 0, 

1 ˝ 0, (2.14)
1 t˙ 0 d 

s
0 1 p ˜ °  ˛ q , s ˝ 0, s ˙ 0, (2.15)t t 0 1 s
1 s

1 

where the former equation corresponds to the demand function and the 
latter to the supply function. 

We can now determine how the quantity qt and price pt evolve at every 
step of the iteration using the following steps: 

The cobweb algorithm 

1. Given the price pt–1 at time t, qt–1 is the quantity that the consumer 
wants to buy at time t as given by (2.14). 

2. Given that the consumer wants to buy quantity qt at time t, the 
seller offers price pt at time t as given by (2.15). 

3. Go back to step 1. 

This process can be seen as a haggling between the seller and buyer 
until a common price can be agreed upon. In Figure 2.5, we can see how the 

27 



  

 
 

 
  
 

THE COBWEB MODEL 

Figure 2.5: Evolution of price pt and quantity qt over time t corresponding to Fig. 
2.3. Panel (a) shows the stable case, where the market clears, and the (b) 
panel shows the unstable case, where the market does not clear. The respec-
tive parameter values are s1 = 1.1 in (a) and s1 = 1.9 in (b). 

haggling process unfolds at each time step starting from an arbitrary initial 
price and quantity pair ( q0, p0) .  Figure 2.5 (a) shows the convergence of the 
haggling process whereas Figure 2.5 (b) shows the divergence or breaking 
down of haggling between the buyer and the seller. The two cases in Figure 
2.5 correspond to the cases in Figure 2.3 (a) and (b), respectively, and visu-
alise the unfolding of the haggling process at each time step that underpins 
the convergent and divergent price dynamics. 

Together with the MATLAB® codes for simulating and generating 
the time histories in Figure 2.3, introduced earlier, the MATLAB® code to 
generate the analysis plots in Figures 2.4 and 2.5 is given below. 

Visualisation 

figure(2),hold on, 
plot( [0,d0],[−d0/d1,0],’k’,[s0,d0],[0,(d0-s0)/s1],’k’) 
plot((d1*s0−d0*s1)/(d1−s1),(s0−d0)/(d1−s1),’ko’,... 

’MarkerSize’,6,’MarkerFaceColor’,’k’,... 
’MarkeredgeColor’,’k’) 

box on, hold off 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 

figure(3),hold on, 
D = d0 + d1*p; %Demand 
S = s0 + s1*p; %Supply 
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THE COBWEB MODEL 

plot([0,d0],[−d0/d1,0],’k’,[s0,d0],[0,(d0−s0)/s1],’k’) 
for k=1:n 

plot([D(k) S(k)],[p(k) p(k)],’k-o’,... 
’MarkerFaceColor’,’k’) 

if mod(k,2)==0 && k>1 
plot([S(k−1),D(k)],[p(k−1),p(k)],’k−−’) 

elseif k>1 
plot([D(k),S(k−1)],[p(k−1),p(k)],’k−−’) 

end 
end 
box on, hold off 
axis([2.1,2.5,0.8,1.1]) 
%axis([1.2,2.6,0.8,1.6]) %Figure 2.3(b) 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 

2.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

The cobweb model discussed in this chapter provides a basic analytical 
framework to study the dynamics at and around the demand-supply equi-
librium in the microeconomic setting. The model, set in discrete time, pro-
vides a basis for understanding the underlying disequilibrium dynamics of a 
market in terms of monotonic and oscillating behaviours. The conventional 
textbook treatment of the model uses comparative statics to study the impact 
of demand or supply shocks to the model, i.e. by shifting the demand and 
supply curves due to various shocks and comparing various equilibrium 
positions, without explaining the story of how the system moves from one 
equilibrium to another. Such an analysis assumes that the stability of the 
equilibrium price is always guaranteed and neglects its context and the out-
of-equilibrium dynamics, which is clearly very important for applied policy 
purposes. As we discussed above, the market does not clear when the equi-
librium is unstable. Therefore instability of markets is clearly a cause of 
concern for both the policy makers and the market participants as it may lead 
to wider economic crisis. Even persistent oscillations about a stable equilib-
rium price, like the never-ending negotiations case in the box below, would 
introduce additional costs for both buyers and sellers from the market effi-
ciency point of view, so policy measures to quickly dampen the oscillations 
is always preferred. 
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Task: Never-ending negotiations 

There is a case where the model gets stuck in a stable oscillation mode 
with a constant amplitude about the equilibrium point – akin to negoti-
ations going round in circles! Experiment with the simulation parameters 
to find under what conditions the model generates oscillations with con-
stant amplitude. You can also find the parameter values analytically. 

The model can also be generalised by incorporating future expectation 
behaviour. Let us consider the following generalisation 

D = d + d p , d ˛ 0, d < 0,t 0 1 t 0 1 

S = +s s pe 
, s ˛ 0, s > 0,t 0 1 t 0 1 

where the supply is a function of expected price pt
e , rather than the price in 

the past time. Since s1 > 0 the slope of the supply function is positive, which 
means that the supply of the produce is positively related to the expected 
price, i.e. if the supplier expects a higher price for the produce at the next 
time period t + 1, the supply will be increased at time t. 

In order to complete the model, we need to specify how the suppliers 
would determine the expected price, i.e. how suppliers form expectations 
about the future price pt

e. This is one of the most challenging problems in 
economics, and in fact it is this behavioural aspect that distinguishes eco-
nomics from other scientific disciplines. The rules of forming expectations 
about the future vary across individuals and contexts. Therefore, articu-
lating a general theory of expectations is a very difficult challenge in eco-
nomics; nonetheless, we will see in the next chapter how the basic cobweb 
model can be extended to study market dynamics under expectations. 

NOTES 

1 There are alternative heterodox approaches in microeconomics, like the 
post-Keynesian approach, where the decision-making process is viewed 
through the prism of asymmetric power, for instance between sellers and 
buyers, firms (owners) and households (workers), or shareholders and 
managers etc. See Lavoie [1] for a lucid elucidation of post-Keynesian 
microeconomics. 
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THE COBWEB MODEL 

2 The Dynamical Systems theory uses the term fixed point, which is clearer 
than the usage of the term equilibrium in Economics. 

3 It is also possible to study the relationship between demand and supply in 
continuous time. However, since most of the economic data are recorded 
at discrete intervals of times, the discrete-time models are more intuitive. 
For example, the GDP data is reported quarterly in most countries. There-
fore, empirical policy analysis stipulates the use of discrete-time models. 

4 Note that we provide a brief explanation of the commands in this 
chapter. However, from the next chapter onwards, except in some 
instances, we will include self-explanatory comments as preamble to the 
codes. Note also that all commands that follow “%” in the MATLAB® 

environment are treated as comments and are not evaluated. 
5 See Appendix A.1 for the general treatment of the mathematical methods 

for solving difference equations. 
6 For the price p* to be positive the inequalities d0 > s0 ≥ 0 have to hold 

since d1 < 0 and s1 > 0 (see (2.1)–(2.2)). 
7 In general, when an equilibrium p* is stable it is often referred to as an 

“attractor” and when it is unstable it is referred to as a “repellor”. 
8 From the topological point of view, the word ‘close’ means infinitesimally 

near the equilibrium point, i.e. we are only concerned with local stability 
of the equilibrium, not global stability. However, since the demand-and-
supply model is linear the local stability condition applies globally. 
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3 EXPECTATION DYNAMICS 
IN THE COBWEB MODEL 

3.1 ECONOMIC PROBLEM 

There is one significant difference between physical and economic systems – 
in the former, only past and current states matter, while in the latter, expec-
tations about the future (alongside past and current states) play a part in 
determining current actions. The economic system is made up of a multi-
tude of economic actors such as individuals, firms, institutions, governments 
etc., and their economic decisions are driven by their expectations about 
the future. In that sense, the future influences agents’ current decisions and 
will thus affect the current market dynamics. Financial markets are the most 
obvious example highlighting the crucial role expectations play in determin-
ing the current prices on a variety of financial assets (currency, stocks, bonds 
etc.), where an individual agent’s decision to buy, sell or hold a financial 
asset is mainly driven by the expected future price of the asset. The agricul-
tural commodity markets provide another example of how expectations play 
a role in (re-)allocating resources to the current production. 

The role of expectations in explaining market volatility, particularly in 
financial markets that are driven by “news” about economic fundamentals, 
has always been debated, both in academic literature and in the media. In 
the economic literature, the self-referential process of future expectations 
affecting current realisations of variables, which in turn lead to a revision 
of the expectations, underpins many of the models of inflation, exchange-
rate volatility and financial market volatility models. Therefore, under-
standing the role of expectations for the stability of markets is important for 
both practical investment decisions at the individual level as well as macro-
economic policy considerations. In particular, specifying how agents form 
expectations about the future becomes crucial for determining the dynamics 
and stability of the market equilibrium. 

Since the introduction of adaptive expectations by Muth [1], the 
rational expectations hypothesis (REH) proposed by Lucas [2] has become 
the dominant paradigm in economics and finance. According to the REH, 
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agents’ subjective expectation about the future, taking into account all 
available information, coincides with the mathematical expectation condi-
tional on the same information set. In simple terms, agents’ subjective fore-
casts, based on their knowledge of the “correct” model of the economy, 
coincide, on an average, with realised outcomes. If this is indeed true, how 
does the REH explain observed market fluctuations in price and other vari-
ables? The REH hypothesis, in the general form, argues that the fluctua-
tions are due to forecasting errors of rational agents, due to unanticipated 
shocks, but it assumes that they will learn from these errors and revise their 
expectations in such a way that the average forecast error tends to zero. In 
a sense, the REH argues that the fluctuations observed in economic data are 
due to rational response of agents to various shocks. Thus, it is argued that 
market dynamics, under rational expectations, becomes more stable than 
other forms of expectation behaviour by agents. 

The REH imposes a heavy burden on agents’ ability to know the 
“correct” or the mathematical model of the economy. In recent decades, 
attempts have been made to generalise the rationality assumption via the 
notion of bounded rationality [3]. In a bounded rational-agent economy, 
the agents use their subjective or perceived model of the economy to learn 
the correct model of the economy from the past data using econometric 
techniques [4]. This induces a relationship, or a mapping, between the per-
ceived and the correct model of the economy. The rational expectations 
equilibrium is a fixed point or the equilibrium point of that mapping and the 
bounded rational agents learn how to converge towards it. The literature on 
this topic discusses how different types of learning such as ordinary least 
squares learning [5], genetic algorithm learning [6] and other types of adap-
tive learning techniques enforce convergence to the rational expectations 
equilibrium (REE). It argues that if convergence occurs it implies that the 
REE is an accurate description of the realised market equilibrium outcome, 
see Hommes et al. [7]. However, there are counter results showing how 
adaptive-learning techniques may not lead to convergence to the REE. For 
instance, Hommes [8] uses the cobweb model to show how adaptive learning 
need not lead to convergence to the REE. Other articles, such as Grandmont 
and Laroque [9], show how learning may even lead to instability. 

With this somewhat simplified introduction to a highly technical 
and voluminous literature as a background context, let us proceed to the 
chapter with a modest objective of studying the influence of expectations 
on the dynamics and the stability properties using a simple demand-supply 
model. For the purposes of continuity and for pedagogical reasons, we will 
use a generalised cobweb model and study the role of expectations on the 
stability properties of the model. 
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3.2 MODELLING 

To model price expectation in the demand and supply model we will use 
a generalised cobweb model, where the supply decisions are based on 
expected price, rather than past price. In such case, the basic demand and 
supply model (2.1)-(2.2) is generalised as 

D ˜ d ° d p , d ˛ 0, d ˝ 0 (3.1)t 0 1 t 0 1 

S ˜ s ° s pe 
, s ˛ 0, s ˝ 0 (3.2)t 0 1 t 0 1 

for t = 1,2,3, . . ., where, as in Chapter 2, Dt represents demand at time t and 
is negatively related (d1 < 0) to the price pt at time t. However, supply (St) at 
time t is now a function of the expected price ( )

e  at time t, rather than thept 
past price, and is positively related (s1 > 0) to it.1 

In order to complete the model, we need to articulate specific rules or 
models of expectation formation by the suppliers. For the purposes of illus-
tration, we use two simple models of expectations and study the dynamics 
of the generalised cobweb model (3.1)-(3.2). 

Naïve expectation. First, let us assume that the supplier is naïve and 
expects that the next period’s price will be the same as the previous period’s 
price, so that 

pe ˜ p (3.3)t t°1 

Task1: Reduce the generalised cobweb model under the naïve 
expectation rule. 

Show that the naïve-expectation rule reduces the generalised cobweb 
model (3.1)-(3.2) to the original cobweb model (2.1)-(2.2) described 
previously in Chapter 2. 

Normal price expectation. Second, we assume that the supplier has a 
notion of a normal price (or a long-run price) pN towards which the current 
market price will tend over time. A simple way to formalise this expecta-
tions rule is by letting 

ep ˜ p ° c p  p ˙, 0 ̂ ˆ1, (3.4)˝ ˛ ct t˛1 N t˛1 

where the parameter c is referred to as the speed of adjustment. The intu-
ition behind this rule is that if the price in the previous time t – 1 is lower 
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than the normal price pN, then the supplier would expect a higher price in the 
current time period relative to the previous time period’s price. The parameter 
c reflects the speed with which the previous time period’s price adjusts 
towards the normal price. Note that when c = 0 the expected price pt

e ˜ pt°1, 
yields the naive-expectation case, and when c = 1 the expected price pt

e = PN , 
yields the instantaneous adjustment to the normal price. Also, when c is close to 
0 (or 1), the supplier expects the convergence to the normal price to be slower 
(or faster). The choice of normal price pN can, of course, be argued as it requires 
some notional knowledge of the system. To keep things simple, we will choose 
the normal price as the equilibrium price (2.7) of the original demand and 
supply model (2.1)-(2.2) such that 

s0 ° d0pN ˜ . (3.5)
d1 ° s1 

The market clearing condition is the same as in Chapter 2, namely, 

Dt = St , (3.6) 

which together with (3.1)-(3.2) is the generalised cobweb model where 
expectation rules are introduced, for instance (3.3) or (3.4). Let us next 
analyse the stability properties of the system based on these expectation rules. 

3.3 ANALYSIS, SIMULATION AND VISUALISATION 

Since the naïve expectation model (3.3) results in the original cobweb 
model discussed in Chapter 2, we focus our attention on the normal price 
expectation model (3.4). First, substitute equations (3.1) and (3.2) into the 
market clearing condition (3.6) that gives 

s s ˛ d1 e 0 0pt ˜ pt ° . (3.7)
d1 d1 

Next, using the normal price expectation rule and substituting (3.4) into 
(3.7) yields 

s s cp  ˛ s ° d1 1 N 0 0pt ˜ (1° c p) t°1 ˛ , (3.8)d1 d1 

a first-order difference equation that describes the evolution of the price pt 
for the generalised cobweb model with the normal-price expectation rule, 
similar to (2.5) in Chapter 2. 
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To get an intuition of the behaviour of the demand and supply model 
with expectation, let us start by simulating the difference equation (3.8) 
using the same parameter values and initial condition as in Section 2.3, see 
the box below. 

Parameter values and initial conditions used in simulations 

The same parameter values and initial condition are used here as in 
Section 2.3, namely, 

d0 = 4, d1 = –1.7, s0 = 0.5, s1 = 1.1 and p0 = 1. 

We also need to set a value for the speed of adjustment, and to start 
with let us set the value as 

c = 0.8. 

Recall that these values are chosen arbitrarily for the purpose of illustra-
tion. You are encouraged to test different parameter values (even non-
sensible ones) in order to get a better feeling for dynamics of the system. 

The MATLAB® code for simulating and visualising the output is very 
similar to what we had in Section 2.3, and is given below. The main differ-
ence is the addition of the speed of adjustment parameter c. 

Demand and supply with normal-price expectation rule 

%Demand and supply with normal price expectation rule 
%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

%Parameters 
d0 = 4; 
d1 = −1.7; 
s0 = 0.5; 
s1 = 1.9; 
c = 0.8; 

%Initial Condition 
p0 = 1; 
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%Normal price 
pN = (s0-d0)/(d1-s1); 

%Simulation parameters 
n=10; % Number of iterations 

%Simulation 
p(l) = p0; 
for k = l:n 

p(k+l) = (sl/dl)*(l-c)*p(k) + (sl*c*pN+s0-d0)/dl; 
end 

%Visualize time versus price 
figure(1) 
plot(0:n,p,’ko’,’MarkerFaceColor’, ’k’) 
xlabel(’t’),ylabel(’p_t’) 

Alternatively, if we want to use the original formulation of pt
e (see equa-

tion (3.4)) for the expected price, we can instead use the following for-loop 
for simulation. 

Simulation with price expectation 

%Simulation 
p(l) = p0; 
pk(l) = p0; 
for k = l:n 

pe(k+l) = p(k) + c*(p_N – p(k)); 
p(k+l) = (sl/dl)*pe(k+l) + (sO-dO)/dl; 

end 

In Figure 3.1 we analyse two scenarios for the demand-and-supply 
model with normal price expectations, where the speed of adjustment para-
meter c plays an important role in capturing suppliers’ expectations. We 
analyse the effect of the speed of adjustment parameter on the stability 
of the equilibrium, we use the same initial price p0 but with two different 
values of parameter c. Figure 3.1(a) shows the case with the speed of 
adjustment parameter set at c = 0.8, as introduced in the box above, and in 
Figure 3.1(b) the value is set at c = 0.2. The MATLAB® code to simulate 
the modified system is shown below. 
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Parameter values 

%Parameters 
d0 = 4; 
d1 = −1.7; 
s0 = 0.5; 
s1 = 1.9; 
c = 0.2; 

Comparing the two cases in Figure 3.1, we can see that starting 
from the same initial condition the market converges to the equilibrium 
price faster in Figure 3.1(a), where the value of c is higher (c = 0.8) than 
in Figure 3.1(b), where the value of c = 0.2. Therefore, from the simula-
tion results, it is clear that the introduction of the normal price expectations 
seems to impact the speed with which the marker reaches its stable equilib-
rium. Let us next explore the reason analytically. 

Figure 3.1: Evolution of price pt over time t in the demand-and-supply 
model with normal price expectation, where in (a) c = 0.8 and in (b) c = 0.2. 
In both cases the initial price p0 = 1. 

Question 

How does the dynamics of the demand-and-supply model with normal 
price expectation differ from the original model in Chapter 2? Has the 
introduction of the expectation rule made the model more (or less) 
stable? 

To answer this question we follow the method used in Chapter 2, where 
we start by finding the equilibrium price p* for which the market clearing 
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condition (3.6) holds. However, we will take a slightly different approach 
than in Section 2.3 in that we use (3.8) directly and determine the location 
of the the fixed or equilibrium price by letting p* = pt = pt−1, which yields 

s s cp  ˝ s ˛ d˜ 1 ˜ 1 N 0 0p ° (1˛ c p) ˝ (3.9)d1 d1 

and thus 

˜ s cp1 N ˛ s0 ˝ d0p ° . (3.10)d1 ˝ s1(1˝ c) 

Now substituting for pN from (3.5) we get 

˜ s0 ˛ d0p ° , (3.11)d1 ˛ s1 

which we will also get if we let c = 0 (the naïve expectation rule). 
Note that we assumed pN = p*, which implies that the suppliers’ 
expectations do not influence the equilibrium price of the market and 
the market discovers the equilibrium/normal price. However, in the 
case when agents adapt their expectations about the equilibrium price, 
a self-reinforcing dynamic between agents’ expectations and market 
outcome, it can lead to multiple equilibria. In such cases, depend-
ing on agents’ adaptation behaviour, the market could exhibit diverse 
dynamics, including the boom-bust dynamics as regularly exhibited in 
financial market data. 

It is clear from the above simulation analysis that suppliers’ 
expectations influence the stability properties of the market equi-
librium. To further understand how the introduction of expectation 
impacts the stability properties, let us solve the difference equation 
(3.8). The solution to the difference equation (3.8) is given by (see 
Appendix A.1) 

˛ s ˆ
t 

1 � �pt ˜ ˙ (1° c)˘ � p0 ° p � � p (3.12)
d˝ 1 ˇ 

or equivalently 

˛ s ˆ
t 
˛ s ° d ˆ s ° d1 0 0 0 0pt ˜ ˙ (1° c)˘ ˙ p0 ° ˘ � . (3.13)

˝ d1 ˝ d ° s1 ˇ d1 ° s1ˇ 1 
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The solution (3.13) shows that the necessary condition for price pt, starting 
from the initial condition p0, to converge to the equilibrium value p* is 

s1 (1˜ c) °1. 
d1 

Further, since 0 < c < 1, the nature of the disequilibrium dynamics, whether 
oscillatory or monotonic, is determined by 

s1 ˜ 0 or s1 ° 0,
d1 d1 

respectively. Thus, as in the original cobweb model in Chapter 2, the dis-
equilibrium dynamics simply depends on the relative slopes of the supply 
and demand curves, the parameters s1 and d1 of the model. 

The stability condition in this generalised model is similar to the ori-
ginal cobweb model in Chapter 2, except the multiplicative scaling term 
1 – c. The parameter c reflects the strength of suppliers’ expectations 
regarding the actual price converging to the normal price. When c is higher, 
it implies that the suppliers expect the convergence to the “normal” price 
is faster, and therefore the market clears more quickly, as seen in Figure 
3.1(a). On the other hand, when suppliers expect the convergence to the 
normal price to be slow, the market takes a longer time reach its equilibrium 
price, as shown in Figure 3.1(b), where the value of c is smaller. All these 
conditions are summarised in Table 3.1. 

Table 3.1 Stability and behavioural conditions 

Condition 
s1 1( ˜ c) °1 
d1 

s1 1( ˜ c) °1 
d1 

s1 < 0 
d1 

stable and oscillatory unstable and oscillatory 

s1 > 0 
d1 

stable and monotonic unstable and monotonic 

We can also check this numerically from our example in Figure 3.1. In 
both Figure 3.1(a) and (b), the value of the equilibrium price is 

s ˛ d 0 5. ˛ 4˜ 0 0p ° ° ° . .1 25 
d1 ˛ s1 ˛1 7. ˛1 1. 
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However, as mentioned above, in Figure 3.1(a) c = 0.2 and in Figure 3.1(b) 
c = 0.8. The numerical value of the stability condition is 

s 1 9.1 1 c) ˛ . ˝ ˜0 22 ( ˜ °  0 2  . 
d1 ˜1 7. 

in Figure 3.1(a) and 
s1 1 9. 

1 c) 0 8. ˜0 89 ( ˜ °  ˛ ˝ . 
d1 ˜1 7. 

in Figure 3.1(b). This is interesting since, as we saw in Chapter 2, for the 
same parameter values (s1 = 1.9 and d1 = −1.7) the system was unstable, but 
now with the introduction of the expectations parameter c, we see that the 
system has turned stable. 

Moreover, we can calculate for the range of parameter values c for 
which the equilibrium price is stable. From (2.9) we have 

s1 d1 d1(1˜ c) °1 ˛ 1˝ c° °1˜ . 
d1 s1 s1 

For example, the numerical values of the parameters used in Figure 3.1 
yield the interval 

°1 7. °1 7. 
1˜ ˛ ˛1° ˝ . ˛ ˛1 895.c 0 105 c . 

1 9. 1 9. 

Of course, this interval is specific to this particular example, but the prin-
ciple is generic. Since 0 < c < 1 we see that the interval 0.105 < c < 1 yields 
a stable equilibrium price p* and also validates Figure 3.1. 

3.3.1 COBWEB PLOTS 
Finally, as we did in Chapter 2, we can visualise the dynamics of the model 
through cobweb plots, as shown in Figure 3.2. Figures 3.2(a) and (b) respec-
tively correspond to the two cases presented in Figures 3.1(a) and (b). The 
main difference between the cobweb plots here and the ones of the original 
model in Chapter 2 is the speed of convergence to the equilibrium price, 
which depends on the value of the parameter c, as shown in Figure 3.2 and 
discussed above. Figure 3.2(a), with a higher value of c, implies that the sup-
pliers expect that any deviation from the normal price will vanish quickly and 
Figure 3.2(b), with a lower value of c, indicates that the suppliers expect a 
slower convergence to the normal price. Note specially the difference in the 
cobweb plots in Figure 3.2, vis-à-vis the cobweb plots in Figure 2.5 for the 
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Figure 3.2: Evolution of price pt and quantity qt over time t corresponding 
to Figure 3.1. In (a) c = 0.8 and in (b) c = 0.2. 

original cobweb model in Chapter 2. Here we see a “slant” in the cobwebs, 
which signifies faster convergence to the equilibrium. This is because the 
supply function S( p) here depends on the expected price pt

e, instead of the 
past period’s price pt–1. In the current model, with normal price expectations, 
the size of the expectation parameter c determines the speed of convergence 
to the equilibrium. In other words, when suppliers strongly expect (i.e. when c 
= 0.8) that price will converge to the normal price the market reaches its equi-
librium quickly, as shown in Figure 3.2(a), and when the suppliers’ expec-
tation is weaker (i.e. when c = 0.2) the market takes more time to reach its 
equilibrium value, as shown in Figure 3.2(b). In general, when suppliers, or 
agents, form expectations about the future, they take into account all available 
information, and depending on the assumption about the expectation rules, 
the model suggests the speed with which markets reach their equilibrium 
values. This can be seen in Figure 3.2, where the slant is more in (a) because 
the value of the supplier’s expectations or learning parameter is higher (c = 
0.8) than in (b) (c = 0.2). 

To generate Figure 3.2, a very similar MATLAB® code that generated 
Figure 2.5 in Chapter 2 is used and given below. 

Cobweb plots 

figure(3),hold on, 
D = d0 + dl*p; %Demand 
S = s0 + sl*pe; %Supply 

plot([0,d0],[-d0/dl,0],’k’,[s0,d0],[0,(d0-s0)/si],’k’) 
for k=2:n 
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plot([D(k-l) S(k)],[p(k-l)pe(k)],’k-o’,... 
’MarkerFaceColor’,’k’) 

if mod(k,2)==0 && k>l 
plot([S(k),D(k)],[pe(k),p(k)],’k-– ’) 

elseif k>l 
plot([D(k),S(k)],[p(k),pe(k)],’k--’) 

end 
end 

box on, hold off 
axis([2.28 2.38 0.95 1.01]) %Figure 3.2(a) 
%axis([2.28 2.42 0.94 1.01]) %Figure 3.2(b) 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 

3.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter, we generalised the original cobweb model in Chapter 2 and 
investigated the role of expectations in determining the length of time the 
market could spend in the disequilibrium state before converging to the 
equilibrium price. In simple terms, we see that expectations influence both 
whether or not the market will clear and how long the market would take 
to reach its equilibrium. The expectation rules we attributed to suppliers in 
this model may be considered unrealistic because in real life people adapt 
their expectations based on the actual realised outcomes. While the rational 
expectations hypothesis provides the theoretical limit, the adaptive expec-
tations hypothesis yields a more realistic alternative in which the expected 
price is gradually adjusted to the forecast error. More formally, the adaptive 
expectations rule can be written as 

e e ep ˜ p ° ˇ ˝ p ˛ p ˙, 0 ̂ ˆ  (3.14)ˇ 1,t t˛1 t ̨ 1 t ̨ 1 

where pt
e 
−1 is the expected price at time t – 1, and β is the adaptation 

parameter. 
Setting β = 1, the expectation model (3.14) reduces the gener-

alised cobweb model to the original cobweb model in Chapter 2. The 
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economic intuition here is if the observed value in the previous period 
is greater, i.e. p ° pe 

(or smaller, i.e., p ˛ pe 
) then the agent willt ̃ 1 t ̃ 1 t˜1 t˜1 

revise the current expected value pt
e upwards (or downwards). 

Task 2: Solving the model under adaptive expectations 

Solve model (3.1)-(3.2) using the adaptive expectations rule (3.14) 
and verify whether you get the solution 

p p p s 
d 

pt 

t 

˜ °˛ ˝ °
˙ 

ˆ
ˇ

˘ 

�
�

˙ 

ˆ
ˇ̌ 

˘ 

�
�� �

� � 
0 

1 

1 
1� 

or not and determine the stability condition. 

Task 3: Compare the stability conditions 

Comparing the stability condition of the original model, given by 

˜ °  °1 11 

1 

s 
d 

, 

with the result in Task 2 and discuss how the introduction of the adap-
tive expectations changes the stability of the cobweb model? 
Hint: Use numerical values for β and determine the range of values of 
β that leads to a stable equilibrium price. 

Task 4: Simulate and plot the adaptive expectations model 

Simulate and plot how the price varies in the adaptive expectations 
case vis-a-vis the expectation models introduced in this chapter. 
Experiment with different parameter values and initial prices. 
Hint: Adapt the codes used in Chapter 2 and in this chapter. 

NOTE 

1 To clarify the notation, it denotes the price that is expected to materialise 
at time t. A more elaborate expression is Et –1 [ pt], i.e., expectation made 
at time t–1 regarding the price at time t. For notational simplicity, we 
will use the notation pt

e to denote the expected price at time t. 
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 4 KEYNESIAN MULTIPLIER MODEL 

4.1 ECONOMIC PROBLEM 

In the previous chapters we studied the dynamics of a single market in a 
microeconomic setting. We now move on to analyse the macroeconomy, 
which is the study of the whole economy encompassing all the markets, 
such as labour market, product market, financial market and all the insti-
tutions such as governments, central banks etc. Alternatively, one could 
think of the macroeconomy as a network of markets and institutions inter-
connected through multilevel feedback mechanisms that evolve over 
time. Therefore, the study of macroeconomics – the study of the whole 
economy – deals with an evolving complex system. There are two methodo-
logical approaches in macroeconomics. 

The first approach takes the route of explaining the macroeconomy 
through aggregating individual agent decisions, at the micro level. This, so 
called, microfoundations approach is referred to as the methodological indi-
vidualism, where the macroeconomic outcomes are explained by the sub-
jective preferences and choices of individual agents. In this approach, the 
macroeconomic level of employment is a consequence of individual level 
decisions of supply and demand for labour by workers and firms, respec-
tively. Both workers and firms are assumed to be optimising agents, whose 
decisions of supply of labour and demand for labour are driven purely by 
their own utility and profit maximizing behaviour respectively. In dynamic 
models, the inter-temporal optimisation, i.e. the decision to consume today 
and save for tomorrow, of the rational agents drives product, labour and 
capital markets and determines macroeconomic output and employment 
in the economy. Prices act as the fundamental mechanism that coordinates 
demand and supply in these markets and thereby leads to the overall macro-
economic equilibrium of the economy. Fortified by further assumptions such 
as homogeneity of rational agents in an economy with single (composite) 
good and other mathematical restrictions on the utility and the production 
functions, the existence, uniqueness and stability of the macroeconomic 
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equilibrium are guaranteed in these models. The family of such models is 
referred to as the neoclassical general equilibrium models.1 

The second approach to study the macroeconomy is to look at the 
overall structure of the economy using aggregate variables such as consump-
tion, investment, government expenditure and net exports of the economy. 
In this approach, the dynamics of the macroeconomy is studied through the 
evolution of the aggregate variables. We will see in the later chapters that 
macroeconomic growth is studied by looking at how the aggregate variables 
such as the investment expenditure, i.e., the stock of tangible physical capital 
or human capital, evolve over time. In that sense, this approach emphas-
ises the structural conditions of production, influenced by socio-economic-
political factors, in the economy that drives the evolution of aggregate 
variables such as investment, human capital, etc. In this structural approach, 
individual agents’ behaviour is treated as exogenous parameters such as the 
marginal propensity to consume or the marginal propensity to import, etc., in 
contrast with the micro-foundations approach. 

The structuralist approach 

The term structuralist macroeconomics is associated with the work of 
the Economic Commission for Latin America (ECLAC), also known as 
CEPAL, and has its roots in the works of John Maynard Keynes [5], 
Michal Kalecki [4], Joan Robinson [8], Roy Harrod [2], Luigi Pasinetti 
[7] and their followers. From a methodological point of view, the 
guiding principle of this approach lies in the idea that the economic 
system should be studied as an organic system of inter-related constitu-
ent elements and not as a collection of individual elements considered 
in an atomistic manner. In other words, the relations between the ele-
ments that constitute the economic and social structure, and their evo-
lution, are important as opposed to the a-contextual or a-historical 
behaviour and actions of individual elements of the system. 

The Keynesian economics and the schools of thought in this lineage, 
like the post-Keynesian economics, follow the structural approach. The 
aggregate output and employment are demand driven in the sense that they 
are determined by expenditures of households, firms and governments. For 
instance, the consumption and investment expenditures determine aggregate 
output and employment. Unlike what we see in the neoclassical general 
equilibrium approach, the level of investment in the economy is independent 
of the level of saving. In the general equilibrium models, these two decisions 
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are indistinguishable, so that the total income is divided between consump-
tion and saving (which is nothing but investment), which leads to the Say’s 
law story of saving leading to investment and the determination of output 
and employment in the economy. In contrast, in the Keynesian economics, 
this causation is reversed where the aggregate saving is determined by the 
aggregate level of investment. 

Schools of Thought in Macroeconomics 

The umbrella term Keynesian economics is used to include different 
schools of thought, such as the older neo-Keynesian and the more 
modern new Keynesian schools, all of which propose a theory that 
provides a synthesis that combine both the general equilibrium theory 
and Keynesian ideas. For example, the older neo-Keynesian approach 
advanced the IS-LM model’s (see Chapter 5) interpretation of Keynes’ 
General Theory and the current new Keynesian approach advocates 
the class of consensus models known as the dynamic stochastic 
general equilibrium (DSGE) that incorporates some key Keynesian 
ideas such as nominal rigidities in the representative rational agent 
general equilibrium framework [1]. 

With the macroeconomic equilibrium condition being that saving is 
equal to investment, one of the fundamental differences between the neo-
classical general equilibrium and the Keynesian approach is in the direc-
tion of causation between investment and saving. The neoclassical general 
equilibrium theory proposes the causation from saving to investment, and 
the Keynesian approach suggests the opposite direction of causation that 
is starting from investment to saving. From a policy perspective, the direc-
tion of causation between saving and investment underlies the diametrically 
opposite policy prescriptions arising from these approaches. For instance, 
when an economy is in recession, the Keynesian approach would suggest 
an increase in government expenditure to stabilise the markets, whereas 
the neoclassical general equilibrium approach would suggest a reduction of 
government expenditure to enable the markets to lead the recovery. 

In this and the following chapters, we will study the Keynesian 
approach for the determination of output and employment, through the so 
called multiplier process and study the stability properties of the macro-
economic equilibrium. In Chapter 12 we will study the real business cycle 
model, which forms the basis for a class of dynamic stochastic general 
equilibrium (DSGE) models. 
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4.2 MODELLING 

The macroeconomic output, or gross domestic product (GDP), is estimated 
in three different ways using measures such as expenditure, value of final 
goods and services, and income. 

The expenditure method measures GDP as the total expenditures 
incurred by households, firms, governments etc., on various goods and ser-
vices so that 

Y C I G  X M˜ ° ° ° ( ˛ ), (4.1) 

where Y denotes output (or GDP), C denotes consumption expenditure, 
I denotes investment expenditure, G is the net government expenditure 
(i.e. expenditure (E)−revenue (T)), and X − M denotes net exports (exports 
X−imports M). Note that the government expenditure is the net of transfers 
(e.g. social security benefits and other subsidies). The expenditure method 
(4.1) only includes final or finished goods. However, the production of final 
goods and services also uses raw materials and other intermediary goods as 
inputs, but the expenditure method includes only the purchases of the fin-
ished goods. 

The value-added method addresses the issue of raw materials or inputs 
by estimating the net value created in all the production sectors and is 
defined as 

Y ˜ value of output sold ° cost of raw materials. (4.2) 

Finally, in addition to the expenditure and value-added methods we 
have the income method. In this method GDP is calculated as the total 
income of all agents in the economy, so that 

Y W °˛, (4.3)˜ 

where W and ∏ denote wages or salaries of workers and profits of the 
owners of capital, respectively. 

The three methods of estimating the GDP are identities that must hold 
at every point in time and, in principle, should yield the same value for GDP. 
Intuitively, it makes sense that the total income should equal total expendi-
ture because every transaction in the economy has a buyer (spends) and a 
seller (earns). However, in practice these measures yield different estimates 
due to measurement errors. In some countries, the income method may be 
more difficult to estimate due to the, so called, black economy and in some 
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cases, the value added measure may yield an underestimation of GDP due 
to the presence of a large informal sector. The expenditure method is relat-
ively less noisy and easier to measure than the other methods, and therefore 
macroeconomic policy analysis relies mostly on the expenditure method. In 
the reminder of this chapter we will work with the expenditure method (4.1). 
The aim here is to study the determination of the equilibrium level of macro-
economic output and then study its stability properties. 

Let us consider a closed economy (closed for foreign trade) with 
government. First we would like to understand the notion of the goods or 
product market equilibrium and the mechanics of the multiplier process. In 
the Keynesian approach the emphasis is on the demand side and assumes 
that supply always adjusts to demand, which implies that firms have under-
utlised production capacity to meet any level of demand. 

The standard approach in undergraduate textbooks is to equate the 
planned expenditure with the actual expenditure and then describe the 
multiplier process. In the closed economy, the aggregate demand Yd is 
given by 

° (4.4)Y d ˜ °C I G. 

We note that all variables are in real terms or in constant prices. The equi-
librium in the goods market is where the planned real expenditure on 
goods and services (i.e. the aggregate demand) equals the real output, and 
therefore 

Y d = Y . (4.5) 

The term Y is also income because of the circular nature of the economy, 
where spending on goods and services becomes income for those producing 
them. 

The next step is to specify the consumption, investment and govern-
ment expenditure functions. Let us consider a basic, linear consumption 
function given by 

C a bY , a ˛ 0 0 b˜ °  ˝ ˝1, (4.6) 

where a represents autonomous consumption, which is the part of con-
sumption that does not depend on income. But consumption expenditure 
is driven by income (or disposable income), which is given by the second 
term of (4.6). The slope parameter b reflects the marginal propensity to 
consume (MPC), the responsiveness of consumption to changes in income. 
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For simplicity, assuming the investment expenditure I = Ī and government 
expenditure G G are given constants and substituting these assumptions, and = 
(4.6), in (4.4) yields the aggregate demand for the closed economy 

a I G° °  Y a bY I G˜ °  Y .° °  ̨ ˜  (4.7) 
1˝b 

We can now use the equilibrium condition (4.5) to study the mul-
tiplier process by comparing the planned and actual expenditures in the 
(Yd, Y )-plane, which is known as the Keynesian cross diagram (similar to 
Figure 4.1 below), where the planned expenditure is shown on the vertical 
axis and the actual expenditure on the horizontal axis. 

In so far as the multiplier process is concerned, equation (4.7) implies 
that for a unit increase in either autonomous consumption a, investment 
expenditure Ī or government expenditure G , the national income Y will 
increase by multiplier 1  times. With this realisation, we can also use (4.7) 
for instance, to see how 1− a b change ΔI in the investment will lead to a change 
ΔY in the output by writing 

1
˜Y ° (a ̋ ˜I ˝ G). (4.8)

1˛ b 

The principle of the process can be visualised along the lines as shown in Figure 
4.1 in the (Yd , Y )-plane (planned expenditure – actual expenditure plane). 

Yt=Y t-1
Yt 

Y t= bYt-1
+I+ I+G

Y t= bYt-1
+I+G 

I 

Y*Y0 Y1 Y2 

Y Yt-1 

Figure 4.1: The Multiplier process 

However, the above presentation can be confusing for novice readers 
as well as students on two counts. First, the equilibrium condition that the 
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planned expenditure is equal to actual expenditure may confuse readers as 
the former is exogenously defined rather than arrived at intuitively. Second, 
explaining the dynamic multiplier process in the static framework in itself 
can be confusing for some. 

A more straightforward way to present the Keynesian multiplier ana-
lysis is in its dynamic form. This will alleviate the confusion caused by the 
static presentation of the multiplier process and allow readers to understand 
the notion of the equilibrium in a more intuitive way. 

Let us restate the national income identity (4.4) in discrete time as 

Y ˜ C ° I ° G , (4.9)t t t t 

where, as above, Yt denotes output at time t, Ct denotes consumption 
expenditure at time t, It denotes investment expenditure at time t and Gt is 
the net government expenditure at time t. Further, let us assume that the 
consumption expenditure C at time t depends on the income Y at time t − 1, 
so that 

Ct ˜ °a bYt ̨ 1, (4.10) 

where a is the autonomous expenditure and b the MPC. For simplicity, let 
us assume that the investment expenditure I  = Ī and government expendi-
ture G G are exogenously given constants, and thus= 

It = Ī (4.11) 

and 

Gt = G. (4.12) 

Substituting assumptions (4.10)-(4.12) to the national income identity (4.9) 
yields 

Y bY ˛ ° ° °  (4.13)˜ a I G.t t 1 

Equation (4.13) is a first-order difference equation that provides the basic 
Keynesian income determination model in a dynamic form. In this formu-
lation, the equilibrium condition is relatively intuitive and is given by the 
level of income satisfying the condition 

Y Y˜ t (4.14)t °1. 
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This means that the equilibrium level of income is the “fixed” or “stationary” 
value to which the dynamic income process (4.13) converges. The analytical 
condition for convergence is given by the stability condition, which we will 
analyse next in Section 4.3. Intuitively, we can see that the stability of the 
fixed point is guaranteed under the assumption that 0 < b < 1, which cor-
responds to a slope of the output function (4.13) being less then 1 (which is 
the slope of (4.14)). Note that the MPC parameter determines both the size 
of the multiplier and the value of the fixed point Y*. Consider an exogenous 
increase in the investment expenditure (ΔI), which shifts the actual expendi-
ture line upwards as shown in the Figure 4.1. For a given value of the MPC 
parameter (0 < b < 1), starting from the initial output Y0, the figure shows the 
dynamics of adjustment of the system arising from an increase in investment 
and the convergence to the fixed point Y*. 

Since the equation (4.13) is a first-order difference equation we 
can analyse this national income model using the same methods as we 
employed for solving the demand and supply models in Chapters 2 and 3. 

4.3 ANALYSIS, SIMULATION AND VISUALISATION 

Following the methodology in Appendix A.1, we can find the equilibrium 
level Y* of national income Y from the difference equation (4.13) to be 

˜ a I G˛ ˛Y ° (4.15)
1˝ b 

and the solution to (4.13) is given by 

Y ˜ (Y  Y b  Y° *) t ˛ *, (4.16)t 0 

where Y0 is the initial value, at t = 0, of the national income. Note the sim-
ilarity with the equilibrium value in (4.15) and the aggregate demand for a 
closed economy calculated in (4.7). 

As was the case for the Cobweb models in Chapters 2 and 3, two ques-
tions need to be answered. First, what is the condition for convergence to 
the equilibrium level of income Y*? Second, starting from any initial level 
of income, say Y0, what is the nature of the movement towards the equilib-
rium level of income? Can we say whether it will be monotonic or oscil-
latory? These two questions are important from a policy point of view, as 
policy makers would like to know if there are any costs associated with the 
adjustment of the economy to a new level of income. 
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From both (4.13) and (4.16) we can see that the fixed income is stable 
if |b| ≤ 1, which will always be satisfied given the assumption that the eco-
nomically meaningful range for MPC is 0 < b < 1. Since the equation (4.13) 
is linear, we can start from any arbitrary initial level of income (initial con-
dition) Y0 and the system (economy) will monotonically evolve (since b ≥ 
0) towards the equilibrium level of income Y*. 

The multiplier process 

The equilibrium level of income Y*, given by (4.15), is driven by the so 
called “multiplier” process. The multiplier is here given by 1 

1− b , where the 
parameter b is the marginal propensity to consume (MPC), which is a value 
between 0 and 1. As an example, in economic terms, if b = 0.6 
it means that individuals consume only 60 per cent of income. Now suppose 
that there is an increase in any of the autonomous variables in (4.15), for 
instance, an increase in the exogenous investment expenditure Ī. The multi-
plier process works along the following lines: An initial increase in the 
investment expenditure increases aggregate demand by ΔI. This increase in 
output, or income, increases aggregate consumption by 1 

1˜ 
° 
˛
˝

˙

ˆ
ˇb 

I˘ , which in 
turn increases the aggregate demand by the same amount leading to further 
increase in output and income. This, in turn, leads to a second round 
increase in aggregate consumption, given by 1 

1˜ 
° 
˛
˝

˙

ˆ
ˇb 

I 
2 
˘ , and so on. The 

arrows in Figure 4.1 visualise each round of expansion and the eventual 
convergence towards the equilibrium level of output Y*. 

To simulate and solve the difference equation (4.13) numerically, we 
can use the following MATLAB® code, which is very similar to the one 
used in Chapter 2. Note that the entries for the parameter values a, b, Ī and 
G, the initial condition Y0 and the number of iterations n are left empty, so 
the readers is encouraged to experiment with the system. 

Simulation of the Keynesian multiplier model 

%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

%Parameters 
a = 
b = 
Ibar = 
Gbar = 
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%Intial Condition 
Y0 = ; 

%Fixed point 
Yfp = (a+ Ibar + Gbar)/(1-b); 

%Simulation parameters 
n= ; % Number of iterations 

%Simulation 
Y(1:n+1)=zeros(1,n+1); 
Y(1) = Y0; 
for m = 1:n 

Y(m+1) = b*p(k) + a + Ibar + Gbar; 
end 

%Plotting 
figure(9),hold on 
plot(0:n,Y,’ko’,’MarkerFaceColor’,’k’) 
plot([0,n],[Yfp,Yfp],’k--’) 
xlabel(’t’),ylabel(’Y_t’) 
box on 
hold off 

Since we have the analytical solution of difference equation (4.13), it is 
of course possible to iterate the solution (4.16) directly in the %Simulation 
part of the above code by replacing it with the following code. 

The iterate the solution 

%Simulation 
Y(1:n+1)=zeros(1,n+1); 
Y(1) = Y0; 
for m = 1:n 

Y(m+l)=(Y0-Yfp)b^t+Yfp; 
end 

Exercise: Simulate the Keynesian multiplier model. 

Simulate the Keynesian multiplier model and try different values of 
the parameters a, b, Ī and G , initial condition Y0 and iteration para-
meter n. 

56 



  
 

 
 
 
 
 
 

 
 
 
 
 
 

KEYNESIAN MULTIPLIER MODEL 

4.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter, we studied the Keynesian income determination model. The 
model we used is linear and quite basic, with a view to understanding the 
underlying dynamics of the multiplier process. We saw that the Keynesian 
model is a demand driven system where expenditures of households, firms and 
governments determine national income via the multiplier. This is one of the 
fundamental insights of Keynes [5], where he showed how expenditures drive 
the system to macroeconomic equilibrium, i.e. the saving-investment equal-
ity. Keynes’ approach ran counter to the Neoclassical economics’ view of the 
savings driven system, where investment passively adjusts to available savings. 
Keynes reversed the causation and described how investment determines the 
required level of saving that brings the macroeconomy to equilibrium. Further, 
Keynes’ analysis showed how the savings driven system can exhibit what he 
called the paradox of thrift, where increase in savings leading to weakening of 
demand and the consequent fall in the equilibrium level of output. 

We can analyse the paradox of thrift argument using our model by 
comparing two different values of b. A large value of b means that agents’ 
propensity to consume (save) is higher (lower), and a small b means that 
agents’ propensity to consume (save) is lower (higher). In Figure 4.2 we 
simulate the system for two different values of b, with two different initial 
values Y0 in each case. In Figure 4.2(a) with b = 0.2, where the system 

Figure 4.2: Evolution of output Y over time t for the Keyenesian multiplier 
model (4.13) with parameter values a = 10; Ī = 20 and G = 20 and where 
in (a) b = 0.2 and in (b) b = 0.8. The equilibrium values are indicated with 
horizontal dashed lines and the two initial conditions in each case are Y0 = 
10 and Y0 = 300. 
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yields a lower equilibrium value (Eqn. 4.15) than in Figure 4.2(b) where b = 
0.8 yields a higher equilibrium value. We also see in Figure 4.2 that when b 
is low the speed of convergence to the equilibrium value is faster than when 
b is high where the convergence is slower, which is what we would expect 
from Eqn. (4.16). 

Further, the basic model can also be extended by introducing taxes 
(denoted by τ) and an independent investment function for firms. These are 
standard textbook cases, which the readers can explore as simple tasks. 

Task 1: Introduce taxes and determine the multiplier. 

Verify that the introduction of a lump-sum tax τ in the model and by 
rewriting the consumption as a function of disposable income yields 
the multiplier relation: 

1 
1 1˜ ˜b( )° 

. 

Task 2: Extending the investment function 

Consider a linear investment function given by I = I0 − I1r, where I0 > 
0 is the autonomous investment and I1 > 0 is the part of investment 
that relates to the interest rate r, which is the cost of borrowing. 
Verify that you get the following expression for the equilibrium 
income: 

Y 
b t 

a I I r  G m a I G I r A ar˜ ° 
˛ ˛ 

˝ ˛ ˝ ° ˝ ˝ ˛ ° ˛
1 

1 1 0 0 1 0 0 1 
( ) 

[ ( ) ] [( ) ] , 

where 

m 
b t 

A m  a I G a mI˜ 
° ° 

˜ ˛ ˛ ˜
1 

1 1 0 0 1 
( ) 

, ( ) and . 

Task 3: The goods market equilibrium curve or the IS curve 

As we will see in the next chapter, the expression Y* = A − ar in Task 
2 is the goods market equilibrium curve that is known as the IS curve, 
i.e. the investment-saving equality curve. Readers are encouraged to 
experiment with different parameter values of I1 and then study the 
implications for the equilibrium level of income. 
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We can also introduce another extension to the investment function by 
incorporating the “acceleration effect” through the general function 

dI dI
˜ , ˛I I  ( ,r Y  ) with ° 0 0. 

dr dY 
In this formulation, the derivative dI  is assumed to be negative reflecting 

dr
the adverse effect of the cost of borrowing on investment, but the deriv-

dIative 
dY

 is assumed to be positive reflecting the positive impact increas-
ing output has on investment, which is the so-called “acceleration” effect. 
Such a formulation introduces interaction between the multiplier effect, on 
the one hand, and the acceleration effect, on the other, and generates richer 
dynamics in the Keynesian income determination model. We will study the 
dynamics of the multiplier-accelerator interaction in detail in Chapter 11. 

NOTE 

1 See Edmond Malinvaud [3] for a modern introduction to the general 
equilibrium theory and Alan Kirman’s succinct critique [6] of the general 
equilibrium theory. 
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 5 THE IS/LM MODEL 

5.1 ECONOMIC PROBLEM 

In the previous chapter we considered the Keynesian system without its most 
important aspect – the role of money. The most fundamental contribution of 
Keynes’ seminal book General Theory of Employment, Interest and Money 
(General theory) [7] is the articulation of the commodity production in the 
capitalist market economies as a monetary theory of production – emphasiz-
ing the central role of money in the commodity production. For Keynes, as 
opposed to the neoclassical economics, money is not just a unit of account and 
a medium of exchange, but also a store of value. The store of value character-
istic of money is what determines interest rates, through the money-demand 
function, which together with the so-called ‘animal spirits’ determines invest-
ment, output and employment. Whereas in the neoclassical economics, the 
level of output in the economy is determined by the supply of labour and the 
demand for labour by the optimizing households and firms, respectively, and 
is then allocated between consumption and saving by the interest rate. As we 
discussed in the previous chapter, the available saving (or the supply of loan-
able funds) leads to investment (or the demand for the loanable funds) and in 
this sense these models are referred to as the ‘supply-side’ models. From the 
macroeconomic saving-investment equilibrium point of view, the neoclassical 
economists believe that the direction of causation runs from saving to invest-
ment. However, Keynes’ fundamental contribution in the General theory is to 
show how the direction of causation works in reverse, i.e. investment deter-
mining saving in the context of a modern monetary economy. 

John R. Hicks, the renowned British economist, compared the two con-
trasting models in his article titled Mr. Keynes and the Classics: A suggested 
interpretation [5], where he created an analytical apparatus for the purpose, 
which became known as the IS-LM model (Investment and Saving – Liquidity 
preference and Money supply). Since then the IS-LM model became the main 
theoretical framework for the exposition of the Keynesian ideas in the class 
room as well as a popular tool for policy analysis. 
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Although the IS-LM apparatus appears to be ‘Keynesian’ in spirit, it 
has many inconsistencies in terms of representing the analytical core of 
Keynes’ General theory. One of the major issues with the IS-LM model is 
its neglect of the relation between stocks and flows. In the IS side of the 
model, the relation between capacity utilisation of investments under-
taken by firms is not considered, while on the LM side, the effect of private 
and public savings over the stock of government bonds is neglected. For 
instance, Godley and Lavoie [4] argue that the IS-LM model does not 
specify what the households do with their savings and consequently the 
flows of income (as savings) bear no relation to the level of existing stocks 
of financial assets, such as government bonds. 

This inconsistency has serious implications for the notion of equilib-
rium of the IS-LM model. Tobin [10] highlighted how the inconsistency 
between the relation between stocks and flows leads us to question the 
stationarity, or the stability of the equilibrium of the model. Tobin argued 
that the solution of the model in terms of the flow variables implies that 
the underlying stocks are either increasing or decreasing. For example, 
a rise in equilibrium level of households’ savings implies that their net 
worth (stock) has increased; similarly, an increase in government deficit 
(or surplus) implies an increase (decrease) in the stock of public debt. Such 
stock changes matter because they determine flows, for instance, wealth in 
the saving function or capital in the production function. Therefore, given 
this internal dynamics in the IS-LM model, the only way it can display a 
stable equilibrium is when all the underlying stocks of the flow variables 
grow at the same proportional rate. 

The theoretical problem posed by this inconsistency means that there 
is no correspondence between the comparative statics of the IS-LM model 
and the fully fledged dynamic analysis where the relations between flows 
and stocks are fully specified. For these reasons, it is argued that the 
IS-LM apparatus does not represent Keynes’ original ideas espoused in the 
General theory [7]. 

The stock-flow inconsistency 

Hicks understood the stock-flow inconsistency in the IS-LM model 
and in a conversation with Arjo Klamer in 1988 he conceded: “I did a 
sort of revision of IS-LM, not many years ago, but I now feel that I 
have gotten to the point. It is quite simple. Those two curves do not 
belong together. One is a flow equilibrium, the other a stock. They 
have no business being on the same diagram.” (see p. 175 of [6]) 
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Notwithstanding these inconsistencies, the IS-LM model remains the 
popular classroom model for teaching “Keynesian” economics. There is a 
rich discussion on the history and persistence of the IS-LM model in the 
undergraduate teaching (see for instance [2]). Since the purpose of this book 
is limited to understanding the dynamics of some well-known models, we 
will stick to that objective and look at the dynamics of the IS-LM model in 
this chapter. 

5.2 MODELLING 

In setting up the dynamic version of the IS-LM model, we assume that 
the readers have already been introduced to the basic model. For a pre-
liminary understanding of the IS-LM model, readers are directed to any 
standard introductory/intermediate level macroeconomics textbooks, such 
as Mankiw [8] or Dornbusch and Fisher [3]. Let us first introduce the IS 
and LM curves, and then set up the IS-LM model. 

The IS curve. In the following we consider a closed economy with a 
central bank, but without government. The IS curve represents the goods 
market equilibrium, where planned expenditure is equal to actual expendi-
ture, and is given by 

Y C I ,  (5.1)˜ °  

where C is the consumption expenditure and I is the investment expendi-
ture, and yields the equilibrium condition 

Y C I˜ °  ˛ S I ,° (5.2) 

where S is the total savings in the economy. 
Further assuming that both saving S and investment I are deter-

mined by the income Y and interest rate r, the goods market equilibrium is 
expressed as 

S Y r  = ( , ),( , )  I Y r  (5.3) 

where both S(Y,r) and I(Y,r) are nonlinear functions, in general. The IS 
curve is given by the solution of (5.3), which lives in the (Y,r) plane, and 
it shows the combination of real income and interest rate that leads to the 
equilibrium in the goods market. 
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The LM curve. In terms of the money market, there are two financial 
assets in the economy, money supplied by the central bank and bonds 
issued by private firms. The money supplied by the central bank is denoted 
by M and is assumed here to be constant, and the demand for money in the 
economy is assumed to be given by L = L(Y,r), which depends on income Y 
and interest rate r. The transaction and precautionary motives for the money 
demand is being driven by income (Y) and the speculative motive for the 
money demand is reflected by the interest rate (r). The transaction and pre-
cautionary motives imply that the money demand increases with a rise in 
income, i.e. money demand L increases with income Y. With regards to the 
speculative motive, the money demand is inversely related to interest rate, 
i.e. if bonds offer a higher (lower) interest rate then the demand for money 
falls (rises). 

Let M denote the nominal amount of money supply and P be the 
general price level, then the money market equilibrium is characterised by 

M L Y r  (5.4)= ( , ), 

Mwhere M = 
P

 represents the supply of real money balances in the economy. 
The LM curve is given by the solution of (5.4), which lives in the (Y,r) 
plane and shows the combination of real income and interest rate that leads 
to the equilibrium in the money market. 

The IS-LM model. The macroeconomic equilibrium is obtained when 
both the goods and money market simultaneously clear, and can formally 
be written 

I Y r  ˜ ( , ) ° 0 ˛ ˝  (5.5)( , )  S Y r  , IS 

L Y  r( , ) ˜ M ° 0, ˛LM˝ (5.6) 

where the equations describe two equilibrium curves in the (Y,r) plane. The 
two curves intersect in a point (Y*,r*) – the macroeconomic equilibrium – 
where the real and the monetary sectors are in balance simultaneously, as 
shown in Figure 5.1. 

In order to study the disequilibrium dynamics, i.e. to find out what 
happens if the system is not in equilibrium, we need to recast the IS-LM 
model in a dynamic form. This is where we need to be guided by eco-
nomic theory. The economy in Keynes’s General theory [7] is character-
ised by under full-employment, where firms have unutilised capacity and 
workers are involuntarily unemployed due to lack of demand. In such an 
economy, output adjusts through, the so-called quantity adjustment for any 
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r 

r * 

LMIS 

Y* Y 

Figure 5.1: The IS/LM model with the two curves, IS and LM, and the equi-
librium point (Y*,r*) where the curves cross. 

excess demand in the product market, i.e. when investment exceeds saving. 
However, in the money market, where the money supply is fixed by the 
central bank, excess money demand leads to a price adjustment, i.e. an 
increase in the rate of interest r. Therefore, excess demand triggers quantity 
adjustment in the product market and price adjustment in the money market. 
We can formalise this economic intuition using a system of first-order 
ordinary differential equations as 

dY c I Y r( (  , ) ° S Y r (5.7)˜ 1 ( , )), 
dt 
dr 

˜ ( ( , )c L Y r  ° M ). (5.8)
dt 2 

where c1 > 0 and c2 > 0 and referred to as the speed of adjustment coeffi-
cients. The economic interpretation of the speed of adjustment coefficients 
is simply the speed with which a particular market adjusts for excess 
demand (or supply). For instance, the product market may adjust relatively 
slowly due to the gestation lags of new investment, whereas the money 
market reacts relatively quickly for any excess demand (or supply) con-
ditions. The reader will be able to experiment with the relative speeds of 
adjustment later in the simulation exercises and study their effect on the 
dynamics of the system. 
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The signs and magnitudes of partial derivatives in the investment I, 
saving S and money demand L functions with respect to the variables Y and 
r are assumed as 

° I 
0 ̃  

° Y 
˜1, ° I 

° r 
˜ 0, (5.9) 

˛ S 
0 ̃  

˛ Y 
˜1, ˛ S 

˛ r 
° 0, (5.10) 

˜ L 
° 0,

˜ Y 
˜ L 

˛ 0,
˜ r 

(5.11) 

where (5.9) says that the investment I increases with income Y and 
decreases with the interest rate r, the conditions in (5.10) stipulate that 
savings S increases with both income and the interest rate, and (5.11) states 
that the money function L increases with income and decreases with the 
interest rate. Further, note that the magnitude of the “acceleration” effect 
in (5.9), i.e. the response of investment for any change in income, is less 
than 1, which is necessary, as we shall see below, for the stability of the 
equilibrium. Otherwise, the acceleration effect will introduce a self-
reinforcing dynamics between investment and output, and together with 
the multiplier effect it will make the system expand indefinitely.1 The mag-
nitude of the partial derivative of saving with respect to output (5.10) also 
provides a necessary condition for the stability of the equilibrium such that 
it prevents the system from being trapped in excess savings, also referred 
to as savings glut.2 

Now, using (5.2), i.e. S(Y,r) = Y – C(Y,r), we can rewrite (5.7)-(5.8) as 

dY 
˜ c I Y r  ° C Y r ˛ Y ), (5.12)( ( , )  ( , )

dt 1 

dr 
˜ 2 ( ( , )c L Y r  ° M ), (5.13)

dt 

where (5.12) represents the goods market, and thus the goods market equi-
librium curve found when I = S (= C – Y), which yields the goods market 
nullcline where dY 

= 0. Similarly, from (5.13) we can find the money market 
equilibrium curve 

dt 
when L(Y,r) = M, which is the money market nullcline 

where dr
dt = 0. 

In the following analysis, we will work with specific functional forms 
for consumption, investment and money demand functions and study the 
dynamics. 
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Dimensional consistency 

Before we proceed to analyse the system, we would like to alert the 
readers to be cognizant of the units, or dimensions, in which the variables 
and parameters are defined in the model. A simple definition of dimension 
is that it is a set of all quantities that can be compared, added, or sub-
tracted, etc. For instance, if apples are defined in money terms (M) and 
oranges are defined in terms of quantities (Q), then we cannot add the 
two. However, we can add apples and oranges in terms of their value, 
which is expressed in money units. Similarly, the IS-LM model has vari-
ables with different dimensions and therefore one has to verify whether 
the dynamical system is dimensionally consistent. Consider the LM equa-
tion (5.13), the right-hand side is the difference between the money 
demand and money supply variables, which are given in money terms 
with dimension M. However, the left-hand side is the rate of change in 
interest rate, whose dimension is 1 

2T 
, where T denotes time and the interest 

rate has dimension 1 
T . Therefore, the left-hand side and right-hand side of 

equation (5.13) are potentially dimensionally inconsistent. In order to make 
them consistent, the dimension of the speed of adjustment parameter (c2) 
has to be 1 

2MT 
(‘per unit of money and (unit of time)2’) [9]. Similarly, 

the reader can verify the dimension of the speed of adjustment (c1) of the IS 
curve (5.12) that renders its dimensional consistency. The issue of dimen-
sional consistency is very important, like the stock-flow consistency, but 
usually ignored in the undergraduate textbooks in economics. 

5.3 ANALYSIS, SIMULATION AND VISUALISATION 

The standard representation of the IS-LM model in undergraduate textbooks 
is to assume linear forms for the consumption function C, the investment 
function I and the money demand function L(Y,r) as 

C Y( ) ˜ a Y , 0 ° a °1, (5.14)1 1 

I r( ) ˜ °a r2 ˛ I , a2 ˝ 0, (5.15) 

where I  is autonomous investment, a1 and a2 are two positive constants, and 
thus substituting (5.14) and (5.15) in (5.12) we get 

dY 
( ° ˛ s (5.16)˜ c a Y a r I˛ °Y ) ˜ °c sY ° c a r c I , 0 ˝ ˝1,1 1 2 1 1 2 1dt 

where s = 1 – a1. 
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THE IS/LM MODEL 

Next, let us turn to the money demand function L(Y,r) and assume that 
the money demand is a linear increasing function of income Y and decreas-
ing with respect to interest rate r, so that 

L Y  r ˜ k Y k r, k ˛ , k ˛ 0 (5.17)( , ) ° 0 ,1 2 1 2 

where k1 and k2 are two positive constants. 
The money supply M  is determined by the Central bank and assumed 

to be constant. Substituting (5.17) and the assumption on M  in equation 
(5.13), which defines the rate of change in interest rate, yields 

dr
˜ c k Y c k r° ° c M . (5.18)2 1  2 2 2dt 

Equations (5.16) and (5.18) represent the IS-LM model in the dynamic form 
with specific functions of consumption, investment and money demand, 
and describe the dynamics of output and interest rate in a simple closed 
economy. Since both (5.16) and (5.18) are linear we can analyse the system 
analytically and then perform experimentation of parameter variations using 
the numerical simulation. 

First, for the analysis, let us rewrite equations (5.16) and (5.18) in 
matrix form,3 so that 

(5.19) 

The equilibrium point for this system, i.e. where dY 
= 0 and dr 

= 0 simultan-
dt dt

eously, is given by 

0 
0 

ˇ 
c M2 

c I1 

c M2 

c I1 

Y 

r 

� 

c k2 2  

Y 
r 

c a1 2c s1 

c k2 2  

c a1 2 

c k2 1  
˘ 

c s1 

c k2 1  

0 
0 

ˇ 
dY 

dY 
dt 
dr 
dt 

dt 
dr 

and thus the equilibrium level of income Y* and interest rate r* yields 

°Y ˜ ˙ 1 ° k I � a M ˙ 1 ° k a ˙° I ˙2 2 2 2˝̋
˜ ˇ̌ ˘ ˝ ˇ ˘ ˝ ˇ˝ ˇ. sk � a k  k I � sM sk � a k  k �s M˛ r ˆ 2 2 1 ˛ 1 ˆ 2 2 1 ˛ 1 ˆ˛ ˆ 

The stability of the equilibrium point (Y*, r*) is determined by the eigenval-
ues λ1 and λ2 of the coefficient matrix 

°c s  °c a˛ 1 1 2 ˆA ˜ ˙ ˘ , (5.20)c k  °c k˝ 2 1  2 2 ˇ 

dt 

˝˜˝˜˝˘˘˜
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THE IS/LM MODEL 

which is given in (5.19). The two eigenvalues are found directly by calcu-
lating the roots of the corresponding characteristic equation 

˜c s ˜ ˆ ˜c a1  1 2 2° ˆ ˛ ˝c s ˛ c k  ̇ ˆ ˛ c c  ˝sk ˛ a k  ̇ ° 0 (5.21)1  2 2  1 2  2 2 1c k  ˜c k  ˜ ˆ2 1  2 2  

and thus they are 

1 ˘ 2 �˜ ° ˛˙c s ˝ c k  ̂ ˇ ˙c s ˛ c k  ̂ ˛ 4c c a k  .1 2, � 1  2 2  1 2 2  1 2 2 1 � 
2 � � 

Note, the characteristic equation is nothing but λ2 – τλ + Δ = 0, where τ 
and Δ are respectively the trace and determinant of the coefficient matrix A. 
Since c1, c2, s, a2, k1, k2 are all positive, we can directly infer from (5.20) that 
T < 0 and Δ > 0, and thus 

˜ °˙ c s ˛ c k  ˝ 0,1 2 2 

˜ ° c c  ˝sk ˛ a k  ̇ ˆ 0,1 2 2 2 1 

which are the sufficient conditions for stability of the equilibrium point. 
Having found the equilibrium point and determined its stability conditions 

analytically, we will next introduce MATLAB® code for numerical simulation 
of the IS-LM model and study and visualise its dynamics. To do this we need to 
specify the parameter values and initial conditions for the analysis of the system. 

Parameter values and initial conditions 

To see how the IS-LM model behaves we use the following numerical 
values for the parameters 

c c s a k k I M1 2 2 1 21 1 0 5  1 1 0 1  0 55 1= = = = = = = =, , . ,  , , . ,  . ,  

and initial conditions 

Y r0 01 0 01= =, . . 

We note that this set of values are only used as an example. The 
readers are encouraged to test different parameter values (even values 
that do not make economic sense) in order to get a better feeling for 
dynamics of the system. 
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The MATLAB® code to simulate the system of two first-order differ-
ential equations (5.19) is given below in five separate parts, namely, (i) the 
initiation of the simulation and parameter values, (ii) the initial conditions, 
the call of the differential equation solver ode454 and the output, (iii) the 
IS-LM system, (iv) the calculation of the equilibrium point and the eigen-
values, and (v) the plotting of the time histories of Y(t) and r(t), and the 
trajectory (Y(t), r(t)). 

The first set of code clears the memory, closes all the figures and sets 
the parameters. 

Initiation and parameter values 

%IS-LM model 
clear all 
close all 
format compact 

%Parameters 
cl = 1; 
c2 = 1; 
s = 0.5; 
a2 = 1; 
kl = 1; 
k2 = 0.1; 
Ibar = 0.55; 
Mbar = 1; 
A = [-cl*s, -cl*a2; c2*kl, -c2*k2]; % The coefficient matrix 
b = [cl*Ibar; -c2*Mbar]; % The constant vector 

Next we set up the simulation that starts at time t = 0 and runs for 
200 time units, i.e. t = 200, with initial conditions (Y0, r0) = (1, 0.01). In 
MATLAB® one can chose between different numerical solvers to solve 
ordinary differential equations (ODEs), and here we have picked a solver 
named ode45. Through the options structure, we can set solver prop-
erties such as error tolerances, i.e. the maximum size of the errors of the 
numerical ODE solution. The output for the ODE solver is a time vector 
t and 2-column state matrix Z, where the first column is Y and the second 
column is r. Finally, we separate the output in a Y and r vector to be used 
in the plotting. 
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Initial condition and the ODE solver 

%Simulation time 
t_start = 0; 
t_end = 200; 

%Initial conditions 
Y0 = 1; 
rO = 0.01; 

%Simulation tolerances 
options = odeset(’RelTol’,le-6,’AbsTol’,le-6); 
[t,Z] = ode45(@(t,y) islm_system(t,y,A,b),... 

[t_start t_end],[Y0;r0],options); 

%0utput 
Y = Z(:,1); 
r = Z(:,2); 

The ODE solver ode45 calls the function islm_system(t,y,A,b), 
which evaluates the right-hand side of (5.19), with time t, state variables 
y and parameters matrix A and vector b, as input. The code for the islm_ 
system(t,y,A,b) function shown below is typically placed at the end of 
the MATLAB® file, after the plotting instructions and other calculations 
(see Appendix B). Note that A and b are defined outside of the function 
islm_system(t,y,A,b) and can therefore be updated without having to 
change the islm_system(t,y,A,b) function module. 

The IS-LM system 

function dYdr = islm_system(t,y,A,b) 

%Variables 
Y = y(l); 
r = y(2); 

%The ODE system 
dYdr = A*[Y;r]+b; 

end 
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In order to locate the equilibrium point (Y*,r*) and calculate the 
eigenvalues of the coefficient matrix (5.20) we do not need to simulate the 
system, but instead we can use the following MATLAB® code. 

Equilibrium and eigenvalues 

%Equilibrium point 
Yr_eq = A\(-b); %same as inv(A)*b 
Y_eq = Yr_eq(l); 
r_eq = Yr_eq(2); 

%Eigenvalues 
eigenvalues = eig(A); 
lambda_l = eigenvalues(l) 
lambda_2 = eigenvalues(2) 

To visualise the output of the simulation, we can use a similar code 
that was used in Chapters 2–4. However, note the use of subplot for plotting 
the Y(t) and r(t) curves separately in Figure 5.2(a) and (b), and the IS and 
LM curves in Figure 5.2(c). 

Plotting the output 

%Plotting 
figure(1) 
subplot(2,1,1) 
plot(t,Y,’k’,’LineWidth’,2) 
axis([0,20,0.98,1.04]) 
ylabel(’Y(t)’) 
subplot(2,1,2) 
plot(t,r,’k’,’LineWidth’,2) 
axis([0,20,0,0.08]) 
xlabel(’time (t)’),ylabel(’r(t)’) 

Y_LM = [1,1.008]; 
r_LM = kl/k2*Y_LM – Mbar/k2; 
Y_IS = [0.98,1.04]; 
r_IS = Ibar/a2-s/a2*Y_IS; 
figure(2) 
hold on 
plot(Y,r,’k’,’LineWidth’,2) 
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plot(Y_eq,r_eq,’ko’,’MarkerSize’,6,... 
’MarkerEdgeColor’,’k’,’MarkerfaceColor’,’k’) 

plot(Y0,r0,’ko’,’MarkerSize’,6,... 
’MarkerEdgeColor’,’k’,’MarkerfaceColor’,’k’) 

plot(Y_IS,r_IS,’k’,’MarkerSize’,4) 
plot(Y_LM,r_LM,’k’,’MarkerSize’,4) 
axis([0.98,1.04,0,0.08]) 
xlabel(’Y’),ylabel(’r’) 
hold off, box on 

After running the entire file, see Appendix B.5, we first get the follow-
ing output in the MATLAB® workspace: 

lambda_1 = 
−0.3000 + 0.9798i 

lambda_2 = 
−0.3000 − 0.9798i 

We see that the system has two complex conjugate eigenvalues 

1 . 2 ° ˛0 3000 ̋ 0 9798. i˜ ° ˛0 3000 ̨ 0 9798. i, ˜ . 

and we know from Appendix A.5 that if the real parts of the complex 
conjugate eigenvalues are negative, then the equilibrium point is stable. 
Furthermore, since the eigenvalues are complex conjugate we can 
expect oscillations or spiraling motion around the equilibrium point, 
while at the same time getting closer to it as time passes. After running 
the entire MATLAB® code, we also get three figures as output. In 
Figures 5.1(a) and (b) we see time evolutions of the income Y(t) and 
interest rate r(t) and notice the oscillations, which are as expected due 
to the complex conjugate eigenvalues. In Figure 5.2(c) the interest rate 
r is plotted against the income Y, where we see the counter-clockwise 
spiralling motion corresponding to the oscillations in Figure 5.2(a) 
and (b). In Figure 5.2(c) we have also plotted the IS and LM curves 
given by 

sY ˜ a r  ° I2 ˛ 0, ˝ ˙IS 

k Y ˜ k r ˜ M1 2 ° 0, ˛LM˝ 
which are derived from (5.5), (5.6), (5.16) and (5.18). 
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THE IS/LM MODEL 

Figure 5.2: Evolution of (a) the income Y and (b) the interest rate r versus 
time t of the system described in (5.19), and in (c) the income Y is plot-
ted versus interest rate r. In all three plots the parameter values used are 
c1 = 1, c2 = 1, s = 0.5, a2 = 1, k = 1, I = 0 5. 5 and M = 1. The curves Y(t) 
and r(t), the initial conditions (Y0,r0) and the equilibrium point (Y*,r*) are 
indicated in (c). 

5.4 REMARKS, EXTENSIONS AND 
CHALLENGES 

In this chapter we set up a dynamic IS-LM model (5.19), which is ready 
to be used for further experimentation and analysis. At the minimum, 
one can think of three different scenarios for experimentation. First, we 
can conduct policy experimentation, in terms of both fiscal and monetary 
policy. For instance, to introduce an expansionary monetary policy, 
we increase the money supply, i.e. M  in (5.18), which will shift the 
LM curve to the left, and study the resulting disequilibrium dynamics 
of the system. As we know from the stability conditions, the system 
will “spiral” towards a new equilibrium, which is a lower-output and 
higher-interest-rate equilibrium. The spiralling dynamics means that both 
output and interest rate fluctuate in the short run as they converge to the 
new equilibrium. The policy question is how one could reduce the fluc-
tuations, which are costly since they introduce some uncertainty in the 
minds of investors, and make the system converge relatively monotoni-
cally towards a new equilibrium. This is where the role of the ‘speed of 
adjustment’ parameters (c1,c2) comes into play, which leads to the second 
experimentation task. 
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Task 1: Policy analysis 

Experiment with various policy options using the system (5.19) by (i) 
varying the money supply (M ) and the autonomous investment spend-
ing ( I ) values; (ii) changing the slope of the IS and LM curves (the 
parameters s, a2, k1 and k2) and study the effectiveness of an expansion-
ary fiscal (or monetary) policy; (iii) simulating scenarios that maintain 
the interest rate at a particular level when an expansionary monetary 
policy takes place, or keeping the economy at a particular level of 
income when an expansionary fiscal policy is undertaken. 

In the above analysis of the numerical example, we have assumed that both 
the goods market and money market have equal speed of adjustment, by 
assuming the parameter values as c1 = c2 = 1. In reality, the goods market 
adjusts more slowly than the money market. Therefore, one could experi-
ment with the relative speeds of adjustment in the above simulation. One 
possibility is to make the money market adjustment much faster, relat-
ively to the goods market, and explore the disequilibrium dynamics. In 
the extreme scenario, the money market clears instantaneously. In such a 
scenario, for instance when money supply is decreased, the dynamics of the 
system ‘jumps’ from the original equilibrium onto the LM curve and then 
moves along the curve to reach the new equilibrium, as the goods market 
slowly adjusts to monetary shock. In this case, the speed of adjustment 
parameter c2 introduces a discontinuity in the disequilibrium dynamics of 
the system.5 While this is an extreme scenario, readers are encouraged to 
experiment with varying the relative speeds of adjustment, i.e. the para-
meters c1 and c2, and study the resulting dynamics. 

Task 2: Disequilibrium dynamics 

Study the disequilibrium dynamics of the system by experimenting 
with the relative speeds of adjustment parameters c1 and c2. For 
instance, keep c1 constant and simulate the system for three different 
values of c2 and visualise the spiraling dynamics for the three cases. 

There are many ways one could extend the IS-LM model. The basic 
textbook model used here ignores the role of expectations, which affects 
investment, money demand and possibly other functions as well. The role 
of expectation can be explicitly introduced by considering nominal and real 
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interest rates in the money demand and investment functions, respectively. 
As we saw in Chapter 4, the specification of the expectation rule, adaptive 
or otherwise, will impact the nature of the spirals or fluctuations in output 
and interest rate. 

NOTES 

1 The interaction between the accelerator and multiplier generates interest-
ing dynamics in terms of business cycle fluctuations and we will study 
these aspects in Chapter 11. 

2 Interestingly, the “global savings glut” due to excess saving in the 
emerging market economies was argued as one of the main reasons for 
the Great Financial Crisis of 2008 that was witnessed in the developed 
western economies [1]. 

3 The general method of solving a system of equations is discussed in 
Appendix A.5. 

4 An explicit (4,5) Runge-Kutta solver [11]. 
5 See Shone [9] for a qualitative analysis of this issue. 
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6 DEBT, DEFICIT AND 
STABILISATION POLICY 

In broad terms, fiscal policy is concerned with the role governments play 
in the market economy. Fiscal policy is a tool for governments to stabilise 
the economy when markets crash, to stimulate the economy during reces-
sions, and to achieve their wider social objectives such as redistribution of 
income between different sections of society and the provision of public 
goods. Governments use a progressive (income) tax system and the trans-
fers such as unemployment benefits and social security benefits to redis-
tribute income across the income groups. This aspect of redistribution is 
one of the main reasons why fiscal policy remains more contentious than 
monetary policy. Fiscal policy also plays a vital role in the provision of 
public goods, which are non-excludable and non-rivalrous such as military, 
clean water etc. 

The role of fiscal policy becomes more crucial particularly in those 
times when monetary policy becomes ineffective. For example, following 
the financial crash of 2007–2008, the conventional monetary policy hit the 
zero lower bound, where the nominal interest rate set by the central bank is 
almost equal to zero and became ineffective for stimulating the economy. 
The central banks had to resort to unconventional monetary policies such 
as quantitative easing, where the central banks purchased various financial 
assets from the commercial banks with a view to stimulating the economy 
through enhancing the availability of credit to firms and households. But in 
the absence of demand in the economy, a mere availability of credit need 
not necessarily guarantee a pick-up of funds by investors and stimulate eco-
nomic growth, which was the case in many European economies that were 
experiencing sluggish recovery post 2008 crash. In these circumstances, 
fiscal policy became more important, or was the only tool available for 
governments to stimulate the economy. However, given the unique charac-
teristic of the 2007–2008 crisis where governments had to bailout big or 
systemically important banks, fiscal stimulus was based more on austerity 
policies. This may sound contradictory and one may wonder how one could 
stimulate the economy via contractionary austerity policies. The logic was 
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that reducing the debt overhang for governments would bring more confi-
dence in the minds of the lenders and ease credit conditions for the private 
sector to borrow in the international debt markets. 

The financial crash of 2007–2008 and the subsequent recession, referred 
to as the Great recession, have highlighted the economic consequences of 
high levels of government debt (particularly in the USA and Europe) and 
brought intense debate on debt, deficits and fiscal policy. In this chapter, we 
will look at the dynamics of debt and deficits in a simple model and analyze 
and discuss various policy scenarios. 

6.1 ECONOMIC PROBLEM 

Fiscal policy is conducted through discretionary and automatic spend-
ing measures. Governments use discretionary spending measures when 
the economy plunges into recession or crisis. The discretionary spending 
measures, be it tax cuts or an increase in expenditure, are often unplanned 
and have a direct impact on the fiscal or budget deficits. On the other 
hand, the automatic component, known as automatic stabilisers, is a 
mechanism that allows increases in spending (e.g. unemployment bene-
fits, tax credits, food stamps etc.) that are built in the government budgets 
that come into play without a need for any vote from the legislators during 
an economic slowdown. In other words, the automatic stabilisers refer to 
the changes in the budget deficit that occur automatically as a response to 
an economic slow down or crisis. Depending on the severity of recession 
and crises, governments use these two components to stabilise and stimu-
late the economy. In the case of the USA, under the American Recovery 
and Reinvestment Act (ARRA) of 2009, which was the fiscal stimu-
lus program in response to the Great recession of 2008–2009, the auto-
matic stabilisers provided half of total stabilisation and the other half was 
administered through the discretionary spending. The relation between 
these two different fiscal policy concepts can be seen in simple terms as 
follows: 

Discretionary fiscal spending ˜ Budget deficit s° Automatic stabilisers 

At any point of time, if the economy enters recession, i.e. when the 
current output is below the equilibrium or potential level of output, the 
automatic stabilisers kick in. If it is absorbed in the budget deficit, i.e. 
if the two cancel out, then there is no increase in the discretionary fiscal 
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stimulus in the economy. However when budget deficit is greater than 
the automatic stabiliser component, the additional spending amounts to 
the discretionary fiscal stimulus. Since the discretionary fiscal spend-
ing is driven by the recessionary state of the economy, the deficit thus 
caused is known as the cyclically adjusted budget deficit or structural 
budget deficit. In the context of the Covid-19 crisis, many governments 
announced discretionary fiscal stimulus and pledged more fiscal support 
through fiscal measures to aid economic recovery. Such stimulus will 
undoubtedly will have a huge impact on their budget deficits, not just in 
the current period but also in the near future. There are serious concerns 
about debt sustainability and its implications for future growth prospects. 
Some economists argued that countries with a debt-to-GDP ratio above 
90 per cent are not sustainable and make economies vulnerable to crisis 
[2]. However, others argue that there is no such critical threshold and as 
long as the debt can stimulate economic growth it can be sustainable. We 
develop a simple model to study the debt-deficit dynamics and study the 
conditions for debt sustainability. 

6.2 MODELLING 

Consider an economy with a government that is closed to foreign trade.1 

In order to finance its expenditure, the government can use taxation, sell 
new bonds or print new money. We assume here that government debt is 
the stock of government bonds that has been sold to the private sector. 
The government must continuously finance its current expenditure plan 
and also pay down its outstanding debt. Equating the uses and sources of 
funds by the government yields the budget identity of government and is 
given by 

 G iD T  D + M , (6.1)+ = + 

where G = G(t) is the government expenditure (in nominal terms) on goods 
and services, i = i(t) is the nominal interest rate, D = D(t) denotes the out-
standing stock of debt (bonds, in this case), T = T (t) denotes tax revenues 

dDnet of transfers and M = M(t) denotes central bank money. Also, D = 
dt

denotes the rate at which new bonds are issued and M = dM  denotes the rate
dtat which new central-bank money is issued by the government. 

To further simplify the model, we assume that the government does 
not have the option of printing new money to finance its deficit, which 
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means that M = 0. Therefore, the government has to finance its expendi-
tures through taxation or by issuing new bonds (taking on more debt) and, 
thus, the budget identity (6.1) becomes 

G i ° ˜  (6.2)˜ D T  D. 

Rearranging the identity (6.2) to see the relationship between current budget 
deficit (the new bonds) and the stock of debt as 

 ˜ ° ˛ , (6.3)D G T iD 

which shows that the change in debt equals the current budget deficit 
plus the interest on outstanding debt. The current budget deficit, exclud-
ing interest payments on the debt, is called the primary deficit. We 
express (6.3) as a per cent of GDP by dividing with the nominal GDP py, 
where p (= p(t)) is the price level and y (= y(t)) the real national income, 
to yield 

D G T° iD
˜ ˛ ˜ b id (6.4)˛ , 

py py py 
G T  D° where b ˜ py  is the ratio of primary deficit to GDP, and d = is the debt topy 

GDP ratio. Using the debt-GDP ratio, the total value of debt at any point in 
time is given by 

D = dpy. (6.5) 

Differentiating (6.5) with respect to time yields 


D pyd˜ ° dyp ° dpy. (6.6) 

And dividing (6.6) by the nominal GDP py we get 

D pyd dyp dpy  

 d y 


 
˜ 

 
° ° d d p 

° d d  (6.7)˜ °  ˜ ° ˛ ° dg, 
py py py py p y 

where ˜ ° p is the rate of inflation and g = y is the rate of growth of output 
(GDP). 

p y 

Equating (6.4) and (6.7), and incorporating the Fisher equation 

˜ °  , r i ˛ (6.8) 
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which states that the real interest rate r is equal to the nominal interest rate i 
minus inflation π, we find the dynamic relation between debt and deficit as 

d ˜ ° °i ˝ g d) b (r g d) ˛ b. (6.9)( ˛ ˜ °  

Equation (6.9) is the dynamical system that describes the relationship 
between the rate of change in debt to GDP ratio ( )d  and its level (d) along 
the real interest rate r, the growth of real GDP g and the primary deficit to 
GDP ratio b. 

6.3 ANALYSIS, SIMULATION AND VISUALISATION 

In the analysis of (6.9) we will assume that the timescale at which the 
primary deficit b, the real interest rate r and the growth of real GDP g vary 
is much slower than the debt-GDP ratio d. In practice, this means that we 
can consider b, r and g as constants and thus treat 

d ˜ °(r g d) ˛ b (6.10) 

as a linear first-order ordinary differential equation and analyse using the 
methods introduced in the previous chapters. 

First, from (6.10) we find that the equilibrium point d* is given by 

 * * b bd ˜ 0 ° b  r g)d ˜ 0 ° d( ˜˛ ˝  ˜ ˝
˝ (6.11)r g˝ g r  

and note that d* is not defined if r − g = 0 (assuming b ≠ 0). From (6.10) 
we also note that the equilibrium point d* is stable if r − g < 0 and unstable 
if r − g > 0 (for further discussion on the stability properties of first-order 
differential equations, see Appendix A.3). Note that b is the primary 
balance of the government and, depending on whether it is in surplus or 
deficit, we can study the dynamics of (6.10) through four different cases 
depending on whether the equilibrium d* is either stable or unstable and the 
government is either in surplus (b < 0) or in deficit (b > 0), as shown in 
Figures 6.1–6.4. 

In each of the four cases, we show both the phase-plane plots in the (d, d) 
plane to visualise stable (unstable) dynamics of the equilibria and the corre-
sponding time histories of converging (diverging) trajectories, starting from 
an arbitrary initial condition. At any given level of debt-GDP ratio d, the 
phase plane plots show how it evolves. The arrows in the phase planes point 
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towards or away from the equilibrium value. We first consider the stable 
debt-dynamics case where the growth rate g is greater than the real interest 
rate r and analyse two scenarios where the government’s primary balance 
is positive (deficit) and negative (surplus), as shown in Figures 6.1 and 6.2, 
respectively. We have used numerical values for parameters for illustrative 
purposes and they do not reflect real-world data (it is of course possible to 
use the real economic data here to simulate a real scenario). 

Case I. In Figure 6.1 we have the case where growth exceeds the real 
interest rate, and thus r − g < 0, with the government’s primary balance being 
in deficit, i.e. b > 0. In this case, the debt-deficit model (6.10) has a stable 
equilibrium, with the equilibrium value d* = 1. The arrows in the phase-plane 
plot show the direction of the dynamics, in this case towards the equilibrium 
value, meaning that any perturbation away from the equilibrium point will 
bring the system towards the equilibrium value. We see the stability of the 
equilibrium clearly in the time histories plot in Figure 6.1(b) where we con-
sider two different initial values of the debt-deficit ratios (d = 1.8 and d = 
−0.8) and show the evolution of the debt-GDP ratio towards the equilibrium 
value of d* = 1. In economic terms, this means that as long as the economic 
growth rate exceeds the real interest rate, the growth of debt is dampened 
by the fact that the higher growth in the economy more than offsets any 
increase in interest costs. In other words, the growth in debt is sustainable 
as long as the economy grows more than the interest cost on its debt. 

Figure 6.1: The case where b = 1, r = 2 and g = 3 that yields d* = 1 > 0. In. 
(a) d versus d  is plotted and in (b) time histories for two trajectories with 
initial condition d(0) = −0.8 and d(0) = 1.8 are shown, which highlight that 
d* = 1 is stable. The solid curves correspond to the dynamics of d(t), the 
dashed lines correspond to d = 0 and d = 0 and the dotted line corresponds 
to the equilibrium value. 

84 



 

 

 

 
  

 
 
 
 
 

  
 

   
 
 

  

DEBT, DEFICIT AND STABILISATION POLICY 

Case II. The argument in Case I holds even in the case when the gov-
ernment’s primary balance is in surplus, i.e. when b < 0. This case is shown 
in Figure 6.2. Like in the previous case the debt-deficit equilibrium is stable 
(since r − g < 0), and the only difference in this case is that the economy 
will converge towards a negative debt-GDP ratio (d* = −1), which means 
that the government is the net holder of private-sector financial assets. 

Figure 6.2: The case where b = −1, r = 2 and g = 3 that gives d* = −1 < 0. . 
In (a) d versus d  is plotted and in (b) time histories for two trajectories with 
initial condition d(0) = −1.8 and d(0) = 0.8 are shown, which highlight that 
d* = −1 is stable. The solid curves correspond to the dynamics of d(t), the. 
dashed lines correspond to d = 0 and d  = 0 and the dotted line corresponds 
to the equilibrium value. 

Case III. If instead the interest rate is greater than the growth rate of 
the economy (r − g > 0), the equilibrium point (6.10) becomes unstable. 
The economic intuition behind the dynamics about the unstable equilib-
rium is straightforward since the cost of interest on debt increases more 
than the rate of growth, and the debt-GDP ratio will grow monotonically, 
as shown in Figure 6.3. Note that the government’s primary balance is 
positive (b > 0), i.e. it is in deficit. For the particular parameter values 
considered here, the equilibrium value of debt-GDP ratio is the same as 
in Case II, i.e. d* = −1, as shown in Figure 6.3, but now it is unstable. 
As can be seen from Figure 6.3(b), starting from the two different initial 
values (d = −0.8 and d = −1.2) the debt-GDP ratio diverges away from its 
equilibrium value. The intuition for the monotonic growth of debt in this 
case is clearly driven by the positive primary deficit of government (b > 0). 
Note that even in the case where the negative debt-GDP ratio, for the ini-
tial value of d = −0.8, which implies that the economy is a net creditor, 
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the system shows continuous growth of debt after an initial period of sur-
plus. The reason being that the cost of borrowing to maintain or reduce 
the primary deficit more than offsets the benefits of the initial value of 
negative debt-GDP ratio (think of it as interest owed on debt vis-a-vis 
interest earned on credit) and makes the debt-GDP grow and diverge 
away from the equilibrium. On the contrary, when the initial value of the 
negative debt-GDP ratio is well below the equilibrium value (in Figure 
6.3(b) the initial value d = −1.2), the debt-GDP ratio falls monotonically 
since the benefits of the initial negative debt (or credit) more than out-
weigh the primary deficit of the government. 

Figure 6.3: The case where b = 1, r = 3 and g = 2 that gives d* = −1 < 0. In . 
(a) d versus d  is plotted and in (b) time histories for two trajectories with 
initial condition d(0) = −0.8 and d(0) = −1.2 are shown, which highlight that 
d* = −1 is unstable. The solid curves correspond to the dynamics of d(t), the. 
dashed lines correspond to d = 0 and d  and the dotted line corresponds to 
the equilibrium value. 

Case IV. The instability of the system cannot be salvaged by simply 
making the government’s primary balance negative (b < 0), i.e. when 
the government’s balance is in surplus. This case is shown in Figure 6.4 
and the equilibrium value of the debt-GDP ratio is positive (d* = 1) and 
unstable, meaning that the system (6.10) will never converge towards the 
equilibrium. The debt-GDP ratio can grow without bounds for some ini-
tial conditions and fall without bounds for others. As discussed in Case 
III, depending on the size of the primary surplus b < 0 relative to the ini-
tial debt-GDP value, the system can yield a continuous fall in the debt-GDP 
ratio as shown in Figure 6.4(b). For instance, when the initial value of the 
debt-GDP ratio d = 1.2, the dynamics of the system yields a monotonic 
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growth in debt. However, when the initial debt-GDP ratio d = 0.8, which 
is less than the primary surplus (b = −1), the time history of the trajectory 
shows a monotonic fall in the debt-GDP ratio. Note that we are analysing 
a linear system and do not study the feedback between the government’s 
primary balance on growth. Therefore, the mathematical possibility of 
having such high government primary surpluses may not be economically 
feasible or viable in reality. 

Figure 6.4: The case where b = − 1, r = 3 and g = 2 that gives d* = 1 > 0.. 
In (a) d versus d  is plotted and in (b) time histories for two trajectories with 
initial condition d(0) = 0.8 and d(0) = 1.2 are shown, which highlight that 
d* = 1 is unstable. The solid curves correspond to the dynamics of d(t), the. 
dashed lines correspond to d = 0 and d  = 0 and the dotted line corresponds 
to the equilibrium value. 

6.3.1 SIMULATION AND VISUALISATION 
Now that we have analytically understood the debt-deficit model (6.10) in 
terms of its equilibrium and stability properties, we can now simulate the 
model and experiment with various parametric variations. To simulate the 
linear first-order ordinary differential equation (6.10) we can use a similar 
methodology as in Chapter 5. First we set the scene with the following 
MATLAB® code, where the parameters correspond to Case I: 

Initiation and parameter values 

%debt-deficit 
clear all 
close all 
format compact 
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%Parameters 
b = 1; 
r = 2; 
g = 3; 

p = [b,r,g]; %Vector of parameters 

After this initialisation we set up the model for simulation. 

Simulation 

%Simulation time 
t_start = 0; 
t_end = 10; 

%Initial conditions 
d0 = 1; 

%Simulation tolerances 
options = odeset(’RelTol’,le-6,’AbsTol’,le-6); 
%Simulation tolerances 
[t,d] = ode45(@(t,y) debt_deficit_system(t,y,p),... 

[t_start t_end],d0,options); 

The function ode45 calls the function debt_deficit_system that is given 
by the following MATLAB® code. 

The ODE system 

function dd = debt_deficit_system(t,y,p) 

%Parameters 
b = p(l); 
r = p(2); 
g = p(3); 

%Variables 
d = y(1); 

%The ODE model 
dd = b +(r-g)d; 

end 
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Finally, we plot the time history of d(t) and indicate the location of the equi-
librium point through the following MATLAB® code. 

Visualisation 

%Equilibrium point 
d_eq = b/(g-r); %Solve dd/dt = 0 => b+(r-g)d_eq = 0 

%Plotting 
figure(1) 
hold on 
plot(t,d,’k’,’LineWidth’,2) 
plot([t_start,t_end],[d_eq,d_eq],’k:’,’LineWidth’,2) 
xlabel(’time (t)’),ylabel(’d(t)’) 
hold off, box on 

Experiment with the code 

Using the above MATLAB® code, the reader should be able to repro-
duce Figures 6.1–6.4, and is also encouraged to experiment with dif-
ferent parameter values and initial conditions. 

6.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter, we discussed the debt-deficit dynamics using a basic set-up, 
beginning with government budget identity (6.1). The question of sustain-
ability of debt has always been a challenging question in fiscal policy delib-
erations, and more so in the context of the Covid-19 pandemic in 2020–2021. 
The stability condition (6.10) tells us that the solvency of public debt depends 
crucially on whether the growth rate of the economy is higher or lower than 
the real interest rate. The first scenario is if the growth rate is higher than the 
interest rate where the economy converges to a stable debt-GDP ratio and 
the question of solvency does not arise. However, in the second scenario, if 
the growth rate falls below the interest rate the question of solvency becomes 
critical in fiscal policy deliberations. Interestingly, the former scenario was 
characteristic of the advanced economies like the US and Germany in 1960s 
and 1970s and the latter seems to be the case in the recent decades.2 

We saw in the analysis that the role of the primary surplus (b < 0) 
comes into play. This is particularly relevant in the unstable scenario, 
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when the interest rate is greater than the growth rate, where a substantial 
primary surplus may be required to reduce the debt burden (see Figure 6.4). 
However, increasing a large primary surplus requires either painful expend-
iture cuts or increases in taxation. Both these avenues have adverse income 
distributional impacts and other supply-side effects all of which may not be 
economically feasible and political viable. 

The model discussed in this chapter is limited in the sense that we have 
restricted ourselves to a linear model and the growth rate, interest rate and 
government’s primary balance all are considered as exogenous parameters. 
However, a more general model that takes the feedback effects between 
these variables into account would be useful from a policy perspective. 
We can easily see this from the model presented here. Consider the stable 
case where the growth rate exceeds the real interest rate, and where a large 
primary deficit is associated with a high, but stable debt-GDP ratio. As long 
as the increasing levels of debt induce growth via increasing the investment 
in new capital stock and increasing employment and are higher than the 
interest rate, the increasing levels of debt must be sustainable. However, if 
the higher growth is mainly driven by consumption and asset price increases 
then the increasing debt-GDP ratio may seem to be unsustainable. Further, 
the perceived risk associated with asset-price driven growth can become 
unsustainable in the eyes of the investors, which may result in higher risk 
premiums and higher interest rates on new borrowing for the government. 
In the absence of such non-linear feedback between the variables, the linear 
articulation limits our understanding of the debt-deficit dynamics. 

NOTES 

1 We have adapted the standard textbook exposition of modelling the debt-
deficit dynamics as in [1]. 

2 See Carlin and Soskice [1], pp. 525–526. 
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  7 EXPECTATION DYNAMICS 
AND HYPERINFLATION 

In Chapter 4, we studied a simple Keynesian model of macroeconomic 
income determination. The economy was viewed as an ’aggregate’ entity 
and was analysed using the aggregate income-expenditure relation. While 
the model helped us to derive the equilibrium level of output, there are 
couple of questions that were not addressed. First, there is no story of what 
happens to prices (and inflation) in the model. Second, the aggregate ana-
lysis does not tell us how individual agents adapt their behaviour for any 
policy changes. For instance, an increase in taxes can impact on both the 
current and future spending plans of consumers and investors. Therefore, 
policy changes impact not only on current decisions but also future deci-
sions by impacting on individuals’ expectations about the future. This is 
important from a policy evaluation perspective. Policy makers in govern-
ments and central banks need to consider the impact their policy stance 
may have on individual agents’ expectations because of its effect on current 
and future spending patterns. In the aggregate Keynesian models, studied 
in Chapters 4 and 5, economic policy analysis and predictions do not take 
into account the adaptive behaviour of individual agents, which in fact can 
impact the equilibrium value of the system. Therefore, aggregate macro-
economic models need to be micro-founded, so that they take into account 
how some of the behavioural parameters, so called ‘deep parameters’ of the 
system evolve with respect to policy changes. This is known as the Lucas 
critique of econometric policy evaluation and the Cagan’s model, discussed 
in this chapter, provides a simple and intuitive way to illustrate this point. 

7.1 ECONOMIC PROBLEM 

In this chapter we will introduce a seminal study in monetary economics 
published in 1956 by Philip Cagan [1], an economist at the National Bureau 
of Economic Research (NBER) in the USA. The main aim of Cagan’s paper 
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was to explain episodes of hyperinflation, which is defined as a period in 
which prices rose by more than 50 percent a month. For instance, during 
1920–23 the average monthly inflation in Germany was 322 percent, 
whereas in Poland it was 81.4 percent. Cagan presented a formal model of 
hyperinflation episodes in six European countries after World War I and 
Hungary and China after World War II. The empirical results appeared 
to confirm the quantity theory of money hypothesis that hyperinflation is 
caused by the growth in nominal money stock. The model can also be used 
to describe the deflationary situation that was witnessed during the Great 
Depression in the 1930s. 

Quantity theory of money 

The underpinning logic in Cagan’s model is driven by the quantity 
theory of money, which is given by MV = PY, where M is the quantity 
of money supplied by the Central Bank, V is the ‘velocity’ of money 
circulation in the economy, i.e. how many times money changes hands 
in a certain time, which is determined by the payment technology like 
debit/credit cards etc., P is the general price level and Y is the full-
employment level of output. The theory says that given V and Y, any 
increase in money supply will lead to a rise in the price level. 

Although set in the quantity theory of money framework, the inter-
esting point about Cagen’s model is to highlight the dynamic interaction 
between macroeconomic level monetary policy decisions and micro-level 
behaviour of individual agents in the study of inflation. While the equi-
librium of the model is determined by the intersection of money demand 
and money supply, the dynamics of adjustment towards the equilibrium 
is driven by the interaction between the aggregate money-supply deci-
sions at the macro level and the micro level individual agents’ expecta-
tions about future money supplies. While Cagan’s model used adaptive 
expectations, where expectations about the future are learned from the 
difference between past expectations and actual realisations, we will 
analyse the model using few simpler assumptions on agents’ expecta-
tions and analyse the dynamics of the system. For instance, we explore 
the special case of ‘perfect foresight’, where agents’ expectations coin-
cide with the actual outcome. In the deterministic setting, the perfect 
foresight model will coincide with the scenario of rational expectations 
and we will discuss the possibility of emergence of the so-called rational 
bubbles in this case. 
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7.2 MODELLING 

Cagan assumed that the demand for money balances Mt
d, in a period t, is 

negatively related to the expected rate of price inflation ˜ t
e 
°1, in the follow-

ing period, as given by the money demand function 

Mt
d ˜ e˛˙ˆ t

e 
˝1 , ˙ ° 0, (7.1) 

where the parameter α captures the responsiveness of money demand with 
respect to the expected inflation. The money demand function (7.1) implies 
that if agents expect inflation to increase in the next time period, then they 
know that the real value of their money balances will be diminished and hence 
they will desire to hold less money. Viewed at time t, the expected inflation is 
defined as the expected growth rate of the price in period t to t + 1 and given 
by 

pe ˝ pe t °1 t˜ t °1 ˛ . (7.2)
pt 

sThe money supply Mt is assumed to be controlled by the central bank and is 
exogenously given in the model and thus the real money supply is given by 

Mt
s 

. (7.3)
P 

The money market is in equilibrium when the real money demand equals 
the real money supply and from (7.1) and (7.3) we get 

Mt
s 

°˝˙ t˛1˜ e
e 

. (7.4)
Pt 

The economic meaning of the equilibrium condition (7.4) is the same as the 
money demand function (7.2). When agents expect higher inflation tomor-
row, they will reduce their money balances as their real value is diminished 
under higher inflation. 

We can now simplify the analysis by linearising the equilibrium con-
dition (7.4). We first take the natural logarithm of (7.4) and get 

e
ln ̃ M ln ̃ ° ˝ ˛ˆˇ ˙ . (7.5)° ˛ Pt t t 1 

Next we approximate (7.2) to linear order through 

e e e 
e P ˝ P ˆ P ˝ P � ˆ P �t°1 t t °1 t t°1˜ t ° ˛ ˙ ln 1° � ˛ ln . (7.6)˘ ˘ �1 Pt ˇ Pt � ˇ Pt � 
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The equilibrium condition (7.5) now becomes 

e
ln ̃ Mt ° ˛ ln ̃ °Pt ˝ ˛ˆ ˜ln ̃ Pt ̇ 1 ° ˛ ln ̃ °Pt ° . (7.7) 

and by denoting 

e em ˜ ln °M ˛, p ˜ ln ° ˛P and p ˜ ln ° p 1 ̨t t t t t˝1 t˝ 

we can rewrite (7.7) as 

em ˜ p ° ˜ˆ ̨  p ˜ p ˝, (7.8)t t t˙1 t 

where m, p and pe are natural logarithms of the nominal money supply, 
general price level and expected price level, respectively. Collecting the 
price terms pt in (7.8) we get 

˛ e 1 p ˜ pt °1 ° m . (7.9)t 
1°˛ 1°˛ t 

Equation (7.9) is the dynamical system that describes the evolution of 
price in this model. In economic terms, (7.9) shows that today’s price pt is 
determined by current money supply mt and the individual agent’s expecta-
tion about tomorrow’s price level pt

e 
+1. However, without specifying how 

expectations are formed, i.e., by defining the pt
e 
+1 term, we cannot determine 

the price pt. In the following section we consider three different models 
of expectations formation by agents and analyse the price dynamics under 
these models. The expectation models analysed here are: 

1. Naïve expectation, where 
ep ° p ˛ ˆ ˝ p ° p ˙t˜1 t t t °1 

for some constant γ > 0. 

2. Perfect foresight, where 

pe ° p 1.t˜1 t˜ 

3. Rational expectation, where 
ep ˜1 ° Et ˛ p ˝t t˜1 

with the term Et [Pt+1] being the expected value of Pt+1. 
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7.3 ANALYSIS, SIMULATION AND VISUALISATION 

7.3.1 THE NAÏVE EXPECTATION MODEL 
In the first instance, we assume that agents form their expectations about 
the future in a naïve manner where they expect the future rate of inflation to 
hover just above the historical trend and given by 

ep ˜ ° p ˛ ˇ ˝ pt ° p 1 ̇ , ˇ ˆ 0. (7.10)t 1 t t° 

The parameter γ is a ‘correction’ parameter that incorporates the devi-
ation of the current price level with that of the previous period’s price. If 
the current price is above the previous period’s price, the agent expects an 
upward momentum in the next period’s price level. On the other hand, if 
the current price is below the previous period’s price, the agent expects a 
downward momentum in the next period’s price. Therefore, the agent is 
mechanically following the trend, which we call here the ‘naïve’ expecta-
tion behaviour. 

Substituting the expectation rule (7.10) in the price-dynamics equation 
(7.9) and simplifying yields the first-order difference equation 

˝˙ m p ˜ °  pt ˛ t . (7.11)t °1 
1°˝˙ 1°˝˙ 

We assume that money supply is exogenously advanced by the central bank 
and further suppose that the agents believe that the central bank is com-
mitted to keeping the nominal money supply in the economy constant, say 
mt = m, we can solve the first-order different equation and study its dynamic 
properties. With the assumption of constant money supply, the difference 
equation (7.11) becomes 

˝˙ m pt ˜ °  pt °1 ˛ (7.12)
1°˝˙ 1°˝˙ 

and the solution to this difference equation is 

* ˙ °�� ˘
t 

* pt ˜ ˛ p0 ° p ˝ˇ � � p , (7.13) 
1°��ˆ � 

where the equilibrium price level is given by p * = m. In economic terms, 
this means that the equilibrium price level is determined by the given level 
of money supply.1 The solution shows that starting from any initial arbitrary 
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value of price level p0 the system will converge to the equilibrium price 
level p * if the condition 

˜˙ˆ 
° ˛1 ˙ˆ ° ˜1 ˙ˆ ˝ °˙ˆ ° 1 

0 (7.14)
1˜˙ˆ 2 

holds, where we have αγ > 0. This is the stability condition for the price 
dynamics equilibrium, i.e. the price will converge to the equilibrium p * = m 
only when condition (7.14) is satisfied; otherwise the prices will diverge 
from the equilibrium and the equilibrium point is said to be unstable, 
meaning that there will be inflation in the economy. Figure 7.1 shows both 
stable and unstable cases. 

Figure 7.1: Three examples of dynamics given by (7.12) with constant 
money supply m =10 (and thus p* = 10) and initial condition p0 = 11. In 
(a) α = 0.5, γ = 0.5 (αγ = 0.25), which give a oscillatory dynamics about the 
stable equilibrium point, in (b) α = 0.8, γ = 0.8 (αγ = 0.64), which yields 
an oscillatory dynamics about the unstable equilibrium point, and in (c) α 
= 4, γ = 0.8 (αγ = 3.20), which results in a monotonic dynamics about the 
unstable equilibrium point. 

The stable case is shown in Figure 7.1(a) and the unstable cases 
are shown in Figures 7.1 (b) and (c). It is clear from the figures that 
small changes in the parameters, both α and γ, change the stability of 
the system, which highlights how sensitive the system dynamics is to 
the agents’ behaviour. The parameter α captures how agents’ money 
demand is responsive to expected inflation and γ represents agents’ 
belief on how prices are going to evolve in the future. Figure 7.1 shows 
that the model yields persistent inflation when the responsiveness of 
money demand to expected inflation (α) increases even when the cor-
rection parameter (γ) remains the same (compare Figures 7.1(b) and 
(c)). In a way, the above analysis shows that persistent inflation can 
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happen purely through the agents’ expectation behaviour in a model 
that assumes inflation to be a monetary phenomena, as postulated by the 
quantity theory of money. We can now explore the system along this 
line and verify the hypothesis under different types of expectation-for-
mation behaviour. 

7.3.2 THE PERFECT FORESIGHT MODEL 
As an alternative to the naïve expectation case, let us suppose that the 
agents have perfect foresight, where the expected values coincide with the 
actual materialised values so that 

pe ° p 1. (7.15)t˜1 t ̃  

Substituting the rule (7.15) into (7.9) and rearranging yields the first-order 
difference equation 

1˜˝ 1 pt˜1 ° pt ˛ mt (7.16)
˝ ˝ 

for the price evolution. Assuming a constant money supply, as in Section 
7.3.1, where mt = m, we again see that the equilibrium price p * = m. If the 
initial price p0 equals the equilibrium price p* then the system will stay at 
this price forever. However, in order to see what happens if the initial price 
differs from the equilibrium price, we solve the differential equation (7.16) 
and get 

* ˆ 1˙� �t 
*p t( ) ˜ ˛ p0 ° p ˝˘ � ˙ p , (7.17)

ˇ � � 

with p * = m. We immediately note that the price will always diverge mono-
tonically away from p* since 

1˜˛ 
°1 (7.18)

˛ 

for all α > 0. This implies that for all initial conditions, except the one that 
coincides with the equilibrium price, the price monotonically diverges away 
from the equilibrium value, and the equilibrium is thus unstable, and this 
divergent dynamics is driven purely by agents’ perfect foresight rather than 
by the growth in money supply. 
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Figure 7.2: A solution to (7.16) for mt = m =10, α = 4 and p0 = 11. 

In Figure 7.2 we see a typical case of the divergent dynamics when 
agents have perfect foresight and it is often referred to as a case of a rational 
bubble in the literature [2], and in this deterministic setting the perfect fore-
sight assumption is equivalent to the assumption of rational expectations. 
In order to understand the intuition behind the divergent dynamics in this 
setting, consider the case where the price level is growing at an increasing 
rate, so that the expected inflation rate is rising over time.2 In terms of the 
money market equilibrium, an increase in price level implies that the 
demand for money, and the real money supply, would diminish. However, 
depending on the relative difference between the real money supply and 
money demand (see (7.4)) the model can result in hyperinflation (or defla-
tion). If the fall in money demand is greater than the fall in the money 
supply, then the actual price level will rise, leading to a rise in the expected 
price. This is the case where the parameter α is large, which results in a 
steeper downward facing money demand curve and makes the price diverge 
monotonically away from the equilibrium price. Therefore, higher actual 
price leads to higher expected price which in turn leads to further increase 
in actual price level. Thus continued inflation, or hyperinflation, is fuelled 
by self-fulfilling expectations. Hyperinflation in this case (or deflation in 
the opposite case of α being a smaller value) is driven by the self fulfill-
ing expectations as opposed to central bank expanding (contracting) money 
supply at an increasing rate. 

There are many objections to the rational bubbles argument in the liter-
ature [3]. The assumption that agents expect that the price can rise indefin-
itely, in the absence of money growth, is highly problematic. On the other 
hand, if agents do not believe that prices can rise indefinitely, then the only 
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solution for the system is where the system’s initial condition coincides 
with the steady-state value and the system is stuck at the steady state value 
forever, which is also unrealistic. Thus, skeptics argue that these rational 
bubbles are unreasonable characterisations of real-world inflation dynamics. 

The scenarios we have seen so far represent two extreme cases of 
expectation formation where agents’ expectations, at any given level 
of money supply, drive the dynamics of the model. However, the funda-
mental point about the quantity theory of money, upon which Cagan’s 
model rests, is the role money-supply growth has in driving inflation. 
Therefore, in the case where money supply growth is varying, it is clear 
that agents’ expectation about the future price level must be based on the 
future money-supply growth. Let us next study a scenario where agents’ 
expectation about future prices is ultimately derived from their expectation 
about the future money supply. 

7.3.3 ANALYSIS OF THE RATIONAL 
EXPECTATION MODEL 

In this scenario we assume that expectations are formed on the basis of 
rational scientific calculation of the economy, i.e. based on rational expec-
tations. Unlike in the adaptive expectations scenario where agents learn 
from past deviations between the actual and expected values, the rational 
expectations set-up is a forward-looking iterative method where the future 
price is formally expressed as 

ept˜1 ° Et ˛ pt ̃ 1 ̋ . (7.19) 

In order to determine the price at each time, let us rewrite the money market 
equilibrium condition (7.9) using (7.19) so that 

pt 
˙

˜ 
1° ̇  

1E ˛ p ˝ ° t t°1 1° ̇  
mt (7.20) 

at time t, and 

pt˜1 
˙

° 
1˜ ̇  

1E 1 ̨  p ˝ ̃t ̃  t˜2 
1˜ ̇  

mt˜1 (7.21) 

at time t + 1, from which we get 

�E p ˛ ̋t ° t˜1 
1˜ � 

1E E  p ˇt ˙̂ t˜1 ° t˜2 ˛˘ ˜ 
1˜ � 

E mt ° t˜1 ̨  (7.22) 
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or equivalently 

E pt 1 ̨ ˝ ˙ E pt˜2 ˛ ˜ 1 
t t 1 ̨t ° ˜ t ° E m° ˜ , (7.23) 

1˜˙ 1˜˙ 
where we use the law of iterated expectations rule that says 

E E p  E p . (7.24)t ˝̇ t˜1 ° t˜2 ˛ˆ̌ ˘ t ° t˜2 ˛ 
The law of iterated expectation implies that an agent’s expectation today 
about tomorrow’s expectation of the day after tomorrow’s price is equal 
to today’s expectation of the day after tomorrow’s price. A simpler way to 
understand the intuition behind the law is to imagine a forward contract that 
a supplier places for supplying an agreed quantity of an agricultural com-
modity, say wheat, at an agreed price in a month from now. Then the law 
of iterated expectation implies that the future price that is set today is an 
average of expectation made today about tomorrow’s expectation of the day 
after tomorrow’s expectation and so on, of the end of the period price. 

If we continue the iteration process for pt+2, pt+3, … and substitute for 
Et [pt+2], Et [pt+3], … in the price equation (7.20) we get 

1 1 � 1 ˙ � ˘
2 

p ˜ m ° E m  E m  ˝ °�t t t ˛ t°1 ̋ ° ˇ � t ˛ t°2 (7.25)
1°� 1°� 1°� 1°� ˆ1°� � 

or 

1 � ˛ � ˆ
k 

pt ˜ �˙ ˘ Et �mt°k �, (7.26)
1°� ˝ 1°� ˇk ̃ 0 

with Et [mt] = mt. The expression (7.26) simply shows that today’s price 
level pt is a weighted sum of today’s and the expected future nominal 
money supply, where the weights get smaller the further in the future we 
look. Thus, in the scenario where the money supply growth is a variable, 
the rational expectation calculation about the future price level converges to 
agents’ expectation about the future money supply, and therefore the equi-
librium price is determined by the money supply. 

The rational expectation hypothesis 

The reader might wonder about the wisdom of the rational agent to 
know the underlying model of the economy, i.e. the quantity theory 
of money, and look at the money supply process for estimating 
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expected inflation. This is one of the fundamental assumptions of the 
rational expectations hypothesis. It assumes that the rational agent 
knows the ‘correct model’ of the economy. Even if the agent makes 
some error in their expectation calculation, the rational expectations 
hypothesis assumes that the errors are uncorrelated over time and 
tends to zero on average. Furthermore, the hypothesis also assumes 
that the errors are uncorrelated across the variables in the model. 
Readers might wonder, given the power of rationality that agents 
seem to posses, how errors appear in the first place. We will discuss 
this point below. 

We can first examine the rational expectations expression (7.26) with 
different money supply assumptions. Suppose that the central bank is com-
mitted to keeping the nominal money stock in the economy constant, such 
that mt   = m. As we discussed in the naïve expectation scenario, the equi-
librium price level will be exactly equal to m. We can see this, using the 
rational expectation solution (7.26), as 

� k � k 
1 ˛ � ˆ m ˛ � ˆ pt ˜ �˙ ˘ Et �mt°k � ˜ �˙ ˘

1°� ˝ 1°� ˇ 1°� ˝1°� ˇk ̃ 0 k ̃ 0 
(7.27)m 1 m

˜ ˜ (1°� ) ˜ m. 
1°� � 1°�

1� 
1°� 

Therefore, when the money supply is constant the price level is constant 
over time. 

Second, we instead consider the case where the central bank conducts 
its monetary policy based on discretion without any commitment to a par-
ticular level of money supply. In such a situation, assume that the rational 
agents’ best guess is to believe that the money supply process follow a sto-
chastic process such as 

mt m ˛ t (7.28)˜ ° , 

where εt is a random variable with zero mean and represents the surprise 
shock to money supply at time t. In economic terms this means that there 
is a discretionary increase money supply over and above the constant part 
m, say, some target base level of money supply. Furthermore, assume 
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that the effect of the random component, the ‘shock’ component, lasts only 
one period, and the effect of the shock remains temporary. In policy terms 
this means that the central bank wants to keep the money supply at m and 
whenever the money supply is discretionarily moved away from this level, 
the central bank’s action to bring the money supply back to m impacts the 
economy with a one-period lag. 

Now, substituting the stochastic money supply rule (7.28) in the 
rational expectations equilibrium price (7.26) yields 

� k m ˛ � ˆ p ˜ ˘ E mt k , (7.29)t �˙ t � ° � 
1°� 1°�k˜0 ̋ ˇ 

and since 

E m ˛ E m ˝ ˙ ˛ ˝ ˙ and E m  ˛ E m ˝ ˙ ˛ ˝ ˛m 0˜ ° ˜ ° m ˜ ° ˜ ° mt k  t k t t t t t t ˝ t ˝ 

for k = 1, 2, …, the equilibrium price level follows the stochastic process 

1 p ˜ ˝ ° m, (7.30)t 
1°˛ t 

=which is essentially a random walk about p m. An example of this process 
can be seen in Figure 7.3, where the random variable εt is taken from a 
normal distribution with mean 0 and variance 1. Recall that the parameter α 
> 0 represents the responsiveness of money demand with respect to expected 
inflation. Further note that the money supply shocks, or the discretionary 

Figure 7.3: A solution to (7.30) for m= 10, α = 4, p0 = 10 and ε ~ N(0,1). 
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1increases in money supply, will remain temporary since ° 1. This simply
1˜˛

means that the rational agents are responding to the money supply shocks 
by reducing their money demand in anticipation of inflation. Therefore, the 
price level today pt does not increase to the full extent of the shock because 
the rational agent expects the inflation to be temporary and that the price 
level will return to the level corresponding to the m level of money supply. 

However, the central bank looking at aggregate money supply and inflation 
data might interpret the less than proportionate increase in inflation as providing 
it with more wiggle room for further expansion of the money supply. The dis-
crepancy between the actions of rational agents and the central bank cannot go 
on and will end as soon as the former begin to realise that the latter is increasing 
the target base level rather than the discretionary increases in the money supply 
via the temporary shocks. Once the discrepancy is resolved, inflation will be 
tracked correctly to the extent of the increase in the money supply. 

The preceding example provides an illustration of the so called Lucas 
critique of policy evaluation: a change in the macroeconomic policy will 
change not only the policy variable, money supply in this example, but also 
rational agents’ expectations. The impact of policy plays out in the short 
run until rational agents catch up with the intention of the central bank that 
is obscured by its discretionary actions. Therefore, central banks’ policy 
evaluation, using the aggregate macroeconomic data without taking into 
account the reaction of rational agents, can render misleading analysis of 
the effect of a policy change. This is the economic essence of the critique. 

The Lucas critique 

Robert Lucas critiqued the then prevailing large-scale macro-econo-
metric models that lacked ‘microfoundations’ in that they do not 
specify how economic agents’ preferences change with policy changes. 

Given the structure of an econometric model consists of optimal 
decision rules of economic agents, and that optimal decision rules 
vary systematically with changes in the structure of series relevant 
to the decision maker, it follows that any change in policy will 
systematically alter the structure of econometric models. 

(Lucas, R. E. [4], p. 41) 

The critique paved the way for the modern micro-foundations 
approach to macroeconomics where the evaluation of agent’s behavi-
oural parameters, or the ‘deep parameters’, in various policy scenarios 
are one of the central considerations. 
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The implications of the Lucas critique are overarching in the sense 
of the following arguments. The discretionary way in which the central 
bank conducts its policy making can thwart rational agents’ expectations 
by introducing uncertainties in their expectations calculations. By exten-
sion, the critique also applies to government’s fiscal policy making, where 
discretionary spending or taxation decisions can distort rational agents’ 
expectations and their inter-temporal consumption and investment deci-
sions. Therefore, the force of the Lucas critique is to argue that in a world 
where central banks and governments conduct a “rule-based” policy 
making, the scope for expectational errors by the rational agents is lower 
and consequently their inter-temporal decisions would be more certain 
thus leading to smaller fluctuations in the economy. The implications of 
the Lucas critique were profound in a way that it has influenced macro-
economic theory as well as applied macroeconomic policy making since 
the 1980s. 

7.3.4 SIMULATION AND VISUALISATION 
To simulate the price evolution for the three cases of price expectation in 
Sections 7.3.1–7.3.3, as seen in Figures 7.1–7.3, we can use very similar 
MATLAB® codes as in Sections 2.3 and 4.3 since they all solve first-order 
difference equations. In all three cases we start by clearing the memory and 
closing all windows, by writing 

Clear variables and close windows 

%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

The code for simulating the price evolution using the naïve expectation model 
analysed in Section 7.3.1 and plotted in Figure 7.1(a) is given in the following. 

Initial conditions and naïve expectation simulation 

%Parameters 
alpha = 0.5; 
gamma = 0.5; 
m = 10; 
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%Intial Condition 
p0 = 11; 

%Simulation parameters 
n= 10; % Number of iterations 

%Simulation 
p(1) = p0; 
for k = 1:n 

p(k+1) = -alpha*gamma/(1-alpha*gamma)*p(k)+... 
m/(1-alpha*gamma); 

end 

The code for simulating the price evolution using the perfect foresight model 
analysed in Section 7.3.2 and plotted in Figure 7.2 is given as follows. 

Initial conditions and perfect foresight simulation 

%Parameters 
alpha = 4; 
m = 10; 

%Intial Condition 
p0 = 11; 

%Simulation parameters 
n = 10; % Number of iterations 

%Simulation 
p(1) = p0; 
for k = 1:n 

p(k+1) = (1+alpha)/alpha*p(k) – m/alpha; 
end 

The code for simulating the price evolution using the rational expectation 
model analysed in Section 7.3.3 and plotted in Figure 7.3 is given as follows. 

Initial conditions and rational expectation simulation 

%Parameters 
alpha = 4; 
m = 10; 
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%Intial Condition 
p0 = 10; 

%Simulation parameters 
n = 10; % Number of iterations 

%Simulation 
p(1) = p0; 
for k = 1:n 

e = randn(1,1); 
p(k+l) = 1/(1+alpha)*e + m; 

end 

Finally, we can plot the time histories of the price pt for each of the three 
cases introduced above and also indicate the location of the fixed point 
through the following MATLAB® code. 

Visualisation 

%Fixed point 
pfp = m; 

%Plotting 
figure(1),hold on 
plot(0:n,p,’ko’,’MarkerFaceColor’,’k’) 
plot([0,n],[pfp,pfp],’k--’,’LineWidth’,2) 
xlabel(’t’),ylabel(’p_t’) 
box on 
hold off 

7.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

Cagan’s model was designed to explain hyperinflationary episodes. His 
model was set in the framework of quantity theory of money, where there 
is a strict dichotomy between the monetary and real sectors of the economy 
and the analysis of hyperinflation as a purely monetary phenomenon. The 
monetary equilibrium is driven by the supply and demand for money, where 

106 



 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 

EXPECTATION DYNAMICS AND HYPERINFLATION 

the former is exogenously supplied by the central bank and the latter is a 
function of the expected rate of inflation. The novelty of the model is that 
it shows the possibility of hyperinflation in this standard set up via agents’ 
expectation formation. In his model, Cagan employed the so called adaptive 
expectation, where expectations of the future are formed by applying expo-
nentially declining weights to past inflation rates. 

The aim of this chapter is to study the dynamics of Cagan’s model 
using a few different expectations hypotheses. For the purposes of exposi-
tion, we started with a simpler expectation formation rule called the ‘naïve’ 
adaptive approach to study the stability of the equilibrium. The analysis 
showed how sensitive the stability of the system is with respect to the 
agents’ behavioural parameters, namely, the responsive of money demand 
to expected inflation (through α) and the correction parameter γ. As we saw 
in Figure 7.1, the model yields persistent inflation for certain values of the 
parameters. 

In the second model, we studied the case of ‘perfect foresight’. Interest-
ingly, the stability analysis showed the possibility of rational bubbles and the 
hyperinflation in this case is driven purely by the self fulfilling expectations at 
any given money supply. This may sound unrealistic, particularly for models 
in the framework of the quantity theory of money. A more generalised model 
would encompass perfect foresight as a special case and the rational expecta-
tions approach, discussed in Section 7.3.3, provides such a model. 

The rational expectations model was analysed in two scenarios – first, 
with a given level of money supply and, second, in the case where the central 
bank discretely changes the money supply around a base level. The analysis 
showed the dynamics is driven by agents’ expectation about the size of the 
impact of the money supply shocks on prices. If the impact is less than pro-
portionate, rational agents will see the shock as temporary and inflation will 
track the level of money supply in the next time period. In this case, the central 
banks could use a less than proportionate increase in inflation as a signal and 
the freedom to push the money supply further. This may create a discrepancy 
between rational agents’ expectation calculation and actual money supply 
growth in the economy, and consequently leading to fluctuations in the macro-
economic variables. However, once the rational agents realise that the central 
bank’s actions have led to permanent increase of money supply above the base 
level, the inflation will fall in line with the increased money supply growth. 

Cagan’s model also provides a simple example to discuss how the 
stability of the system is driven by the interaction between macro-level 
policy, such as money supply, and microeconomic agents’ behaviour. In 
that sense, it provides an example of the Lucas critique that we discussed 
above. The rational expectations model brings out the dynamics, albeit 
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in a limited way. The implications of the critique were profound in that it 
replaced the ‘structural’ approach with the ‘micro-foundational’ approach to 
the study of macroeconomics. 

The question that arises in this context is how to describe the fluc-
tuations in output, employment and inflation in the rational expectations 
framework, where agents have knowledge of the underlying model of 
the economy. As partly discussed in Section 7.3.3, fluctuations in macro-
economic variables arise due to unanticipated shocks. These shocks could 
be driven by the discretionary policy stance of the central banks or govern-
ments, or due to various institutional frictions, or due to natural phenomena 
like epidemics. The study of fluctuations, or ‘business cycles’, is one of the 
central themes of macroeconomics and we will study this question using a 
micro-founded macroeconomic model in Chapter 12. 

NOTES 

1 Note from the solution that for certain values of α and γ we get αγ = 1 
and where the model (7.12) is not mathematically defined. The rela-
tion, between α and γ, in fact, stipulates the range of values γ < 1 and 
α > 0 for which the model yields meaningful results. 

2 Think of comparative statics analysis performed on the conventional down-
ward sloping money demand curve and the vertical money supply curve. 
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 8 THE DORNBUSCH EXCHANGE 
RATE OVERSHOOTING MODEL 

In Chapter 7 we studied how the dynamics between macro-level monetary 
policy and individual agents’ expectations play a central role in understand-
ing inflation and different hyperinflationary scenarios. In this chapter, we 
extend the analysis further to study the complex dynamics of exchange rates 
in an open economy context. Here we consider one of the most influential 
papers in the field of international economics: Expectations and exchange 
rate dynamics by Rudiger Dornbusch published in the Journal of Polit-
ical Economy in 1976 [1]. The paper was written in the context when the 
developed countries in the western world had just made the transition from 
fixed to flexible exchange rates. Policy makers and policy analysts were 
grappling with the volatility in the exchange-rate markets as exchange-
rate changes did not mirror international inflation differentials between 
the trading countries. Dornbusch’s paper was timely and quite revealing 
in that it showed that the exchange-rate volatility is not necessarily due to 
the myopia or herd behaviour of traders as a response to adverse monetary 
shocks, but rather it is inherent to the system due to the different speed 
adjustment of prices in the economy. The model relies on what is known as 
the overshooting phenomenon to explain the volatility in the exchange rates. 
While his conjecture about why exchange rates overshoot may not be an 
empirical success, the idea of the differential speed of changes in prices in 
various markets – the sluggish adjustment of goods market prices vis-a-vis 
the instantaneous adjustment in the currency markets prices – was certainly 
more realistic and useful from a policy perspective. 

8.1 ECONOMIC PROBLEM 

We shall briefly outline the model and discuss some important con-
cepts. There are two core equations in the model, the uncovered interest 
rate parity (UIP) condition and the money demand function. The 
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uncovered interest rate parity condition states that the home (nominal) 
interest rate on bonds i (for example, government treasury bonds) must 
equal the foreign interest rate i*, which is assumed to be constant here, 
plus the expected rate of depreciation of exchange rate e. From this we 
have that the home interest rate at time t + 1 is given by 

it+1 = i* + Et [et+1 − et], (8.1) 

where we note that Et [⋅] denotes agent expectations based on information at 
time t. The condition states that the interest gain from holding home-currency 
assets equals the loss of expected depreciation of home currency vis-a-vis the 
foreign currency. The following example will help us understanding the UIP 
condition. 

Example: the UIP condition 

Suppose we consider a European country, in the European monetary 
union, as the home country and the USA as the foreign country. 

Let us first define the concept of the exchange rate, both the 
nominal and real exchange rates. The nominal exchange rate (e) of the 
home country is the amount N of home currency that can be bought 
with one unit of foreign currency, i.e. here we get 

e N 
= ¬ 

$ 
. 

1 
An increase in e gives that one US dollar can buy more Euros, which 
means that the Euro has depreciated (or weakened).a The nominal 
exchange rate thus shows the rate at which the currencies are traded. 

To measure the rate at which home and foreign goods and services are 
traded, we define the real exchange rate Q, which also takes into account 
the relative price level between the two countries, and is defined as 

Q p e  
p 

= 
* 

, 

where p*e is the price of foreign goods expressed in home currency 
(in Euros) and p is the price of home goods. In a way Q is a measure 
of price competitiveness between the two countries. When the price of 
home goods falls relative to the price of foreign goods Q increases 
implying depreciation of the real exchange rate, which makes home 
exports more competitive for the foreign countries and imports 
become more expensive for domestic consumers. 

€ 

110 



 

 
 

  
 
 
 
 
 

 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

THE DORNBUSCH EXCHANGE RATE OVERSHOOTING MODEL 

With these definitions, we are now in a position to understand the 
UIP condition. Suppose we start with a situation where the home 
interest rate and the foreign interest rate are equal, say 2%, and that 
the home central bank increases its interest rate to 4% for control-
ling the domestic inflation. The positive interest rate differential 
between the home and foreign interest rates creates an arbitrage 
opportunity, which translates to an increased demand for Euro 
bonds. What happens to the exchange rate e in this situation? The 
interest differential, in favour of Euro bonds, results in a stronger 
demand for Euro currency, which forces the currency to appreciate 
vis-a-via the dollar. Since investors try to maximise their returns, 
the Euro will appreciate by 2% as soon as the interest rate decision 
is announced to eliminate the arbitrary opportunity. Assuming that 
the interest rate will be reversed to its initial level in the next period 
(or in the near future), the UIP condition states that the expected 
depreciation of the Euro over this period is equal to the interest gain 
from holding the higher yielding Euro bonds over the same period. 
This argument applies in the opposite situation as well. 

a Since the nominal exchange rate is defined as the amount of home currency 
per one unit of foreign currency, a depreciation of the home currency is the 
same as an increase in the exchange rate e. 

The second core equation of the model is the money demand function 

M d ˜ f i y, , (8.2)t ° t t ˛ 

where the money demand Md is negatively affected by the interest rate 
i, representing the speculative demand, and positively affected by the 
output y, arising from the transactions demand. A higher interest rate 
increases the opportunity cost of holding money and thereby reduces 
the demand for money. However, an increase in output, or income, 
raises the transaction demands for money. Assuming an exogenously 
given money supply Ms, the money market equilibrium condition is 
simply given when the supply of real money balance equals the demand 
for money, and is given by, 

Mt
s 

˜ f i y, . (8.3)° t t ˛ pt 
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In order to understand the intuition behind the exchange rate overshoot-
ing, we assume that the price level pt is fixed, or moves sluggishly, and the 
output yt is constant. Now, suppose that there is an unanticipated increase in 
the money supply. This means that the supply of real money balance will rise, 
and since the price level is fixed the demand for real money balance must rise 
to equilibrate the money market. However, given that the output is fixed, the 
only way the demand for money can increase is if the interest rate on domestic 
currency bonds falls. According to the UIP condition, the fall in domestic 
interest rate, relative to the given level of foreign interest rate, must trigger an 
upward adjustment in the exchange rate, i.e. the home currency depreciates, 
and an expected appreciation of the exchange rate over the duration of the 
interest rate differential. However, since rational agents, who know that money 
supply will increase the price level, will expect the currency to depreciate more 
than proportionally before it reverts to the original level. In fact, Dornbusch’s 
model explains this behaviour where the exchange rate immediately depreci-
ates more, or overshoots, than the long-run equilibrium value and then appre-
ciates along with the increase in commodity prices. Thus, he showed that the 
exchange rate initially overshoots and then retracts to the long-run equilibrium 
value. As you will see from the analysis of the model the overshooting result 
is driven mainly by the relative speeds of adjustment in prices, i.e. the slug-
gish movement in the commodity prices and the instantaneous adjustment in 
the exchange rate. 

8.2 MODELLING 

Let us study the dynamics of the model in more detail.1 The assumptions of 
the model are as follows: the economy is assumed to be a small open economy 
with perfect capital mobility (no controls on its capital account), where the 
exchange rate is fully flexible (market is determined) and assumed to adjust 
instantaneously for any ‘news’. On the contrary, the commodity prices are 
assumed to be fixed, i.e. assumed to adjust slowly to their equilibrium value, 
and the economy’s output is assumed to be at the full-employment level. At the 
micro level, agents are assumed to be rational and the model is set in the deter-
ministic context. 

To analyse the model, we first express the UIP condition (8.1) in con-
tinuous time so that 

r(t) = r* + ė(t), (8.4) 
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where 
de d ln( )  EE r(t) = ln(i(t)), r* = ln(i*), e(t) = ln(E) and e t( ) = = = . 

dt dt E 
Note that under the rational expectations assumption, which in a determin-
istic setting is equivalent to perfect foresight, the expected exchange rate is 
equal to the actual exchange rate and thus E[e]= e. 

Next, we focus on the money market equilibrium (8.3) and consider the 
money demand function 

Md = Yϕ e−αr , (8.5) 

where α > 0 represents the responsiveness of money demand to the interest 
rate and ϕ > 0 represents the responsiveness of money demand with respect 
to income Y. Assuming the money supply M to be exogenous, the money 
market equilibrium can be written as 

M ˛ °˝˜ Y e  r . (8.6)
P 

Taking the natural logarithm on both side of (8.6) and substituting the UIP 
condition (8.4), which incorporates agents’ rational expectations, yields 

p − m = −ϕyF + αr* + αė (8.7) 

where 

p = ln(P), M = ln(M) and yF = ln(Y), 

with yF denoting the full-employment level of output. However, at equi-
librium where all expectations are fulfilled, and both output and prices 
are at their steady-state values, the money market equilibrium condition 
becomes 

p m ˜ yF ˙ * (8.8)˜ ° ˝ ˛ r . 

Subtracting (8.8) from (8.7) gives rise to the dynamic equation for the 
exchange rate, 

1 e ˜ ( p ° p). (8.9)
˛ 
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We can see that the exchange rate dynamics is determined by the deviation 
of the current price level from its equilibrium level. Note, the parameter 
α, which captures the responsiveness of money demand to interest rates, 
governs the speed of adjustment of prices in the exchange rate dynamics. 
We will return to this point later in Section 8.3. 

8.2.1 COMMODITY PRICE DYNAMICS 
Let us now model the price dynamics. The Dornbusch model assumes 
that output y (= yF) is at the full-employment level and any excess 
demand (or excess supply) will lead to changes in the price level, or the 
economy adjusts through prices adjustment. The aggregate demand for 
domestic output depends on the relative price of domestic goods vis-a-
vis foreign goods (that is (e + p*) − p), the interest rate r, and the real 
income y.2 For simplicity, we normalise the price of foreign goods, so 
that p* = 1 and using these assumption, we can write the aggregate 
demand function as 

ln(D) ≡ d = v + β (e − p) + γy − σr, (8.10) 

where v is the intercept or shift parameter. 
Since the economy is at full-employment level and any excess demand 

(or supply) adjusts only through prices, the price dynamics is given by 

p ˜˛ (d ° yF 
), (8.11) 

where θ > 0 is the speed of adjustment of prices. Substituting the aggregate 
demand d from (8.10) in the price equation (8.11) yields 

p ˜˝ (v ° ˙ (e p ° ˆ ˛ )y ˛ˇ r˛ ) ( 1 ). (8.12) 

Thus, from (8.9) and (8.12) we have a two-dimensional system of ordinary 
differential equation given by 

1 e ˜ ( p ° p), (8.13)
˛ 

p ˜˝˙ (e ° p) ̨ ˝ (v ̨  (ˆ °1) y °ˇ r), (8.14) 

where the former equation defines the exchange rate (e) dynamics, based 
on the UIP condition and the money-market equilibrium, and the latter 
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equation defines the price (p) dynamics based on the goods-market 
equilibrium.

All equilibrium values are determined by setting p = 0 and e = 0. Since 
at equilibrium the expectations are fully realised, the domestic and foreign 
interest rates are equal, i.e. r = r*, and using the equilibrium value for the 
price p, we can determine the equilibrium value for exchange rate e . 
Letting p = 0 and substituting the equilibrium for the interest rate (i.e, the 
money market clearing interest rate r* obtained from (8.8)) and price level  
(p) yields

e p r y v= + + - -( )1
1

B
- y*

( ) ,  (8.15)

and the equilibrium of the two-dimensional system is thus given by 
( ,e p) .

We now turn to the disequilibrium dynamics of the system. Given the 
e  equation is expressed in terms of a price deviation from its equilibrium, it 
would be convenient if we express the p  equation similarly.

To transform the price-dynamics equation (8.14) as deviations from 
the equilibrium, we first substitute the value of the interest rate r*, the 
interest rate that yields the money market equilibrium (8.8), and further 
simplify as

p e p v m p yF= - + + - -(
(
|

)
)
|0B 0

-
a

p( ) ( ) ,  (8.16)

where 0-
p = +1 .-y

a
Now subtracting the above equation (8.16) from the long-run equilib-

rium of the price dynamic equation ( )p = 0 ,  with variables in their respec-
tive steady-state values given by

0 = + - + - -(
(
|

)
)
|0 B

-
a

pv e p m p yF
( ) ( ) ,  (8.17)

results in the price dynamics equation with both the exchange rate and the 
price level expressed in terms of deviation from their respective long-run 
equilibrium values as

p p p e e= - +(
(
|

)
)
| - + -

[

[
|

]

]
|0 B

-
a

B( ) ( ) .  (8.18)

We now have the coupled system of exchange rate and price dynamics

e p p= -
1

a
( ),  (8.19)
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˝ � ˇ p ˜�� (e ° e ) °� � ˛ ( p ° p), (8.20)ˆ �
˙ � ˘ 

in the desired form where the variables are expressed as deviation from their 
respective long-run equilibrium values, which makes the economic interpreta-
tion of the analysis easier. We can now analyse the dynamics of the system. 

8.3 ANALYSIS, SIMULATION AND VISUALISATION 

Since the system (8.19)–(8.20) is linear, we can thus rewrite it as 

1 ˝ e e 
˛ ˆ ˇ ˛̨ � ˆ̂ ˛ ˆ 
˜ e ˝ ˜ 0 � ˜ ˘ ˝ 

° p ˙ ° ˘� �� � � �˙ ° ˘ ˙�� p p 

˜ 0 1 ˝ e ˜ ˘ p ˝ (8.21)
� ˜ ˝ �ˇ ˆ �˛̨ � ˆ̂ ˛ ˛̨ � ˆ̂

�� ˘� �� � � � ° p ˙ � �� � � p ˘�� e° ˙ ° � ˙ 

e pfrom which we clearly see that the equilibrium is defined when  = = 0 are 
satisfied simultaneously and the equilibrium point is when e e= , =p p . To 
determine the local stability properties of the equilibrium point ( ,  )e p  of the 
system (8.21), we can follow the method in Chapter 5 and calculate the eigen-
values of the corresponding Jacobian J, which we can see directly from (8.21), 

1ˆ 0 � � 
J ˜ ˘ .˘ � �� (8.22)°� �˝ ˛ ˙ˇ�� � � 

The characteristic equation corresponding to the Jacobian (8.22) yields two 
eigenvalues that are given by 

� 2 �
1 � ˝ � 2 � ˝ � °˛

˜ ˆ � ˇ° ˛ ˘ � ˘ ° ˛ ˘ ˘ 4 � ,1 � � �
2 � � ˙ � � ˙ � ˙ �
� � 
� �

1 � ˝ � 2 � ˝ �
2 °˛

˜2 ˆ �ˇ° � ˛ ˘ � ˇ ° � ˛ ˘ � ˘ 4 �. 
2 � � ˙ � � ˙ � ˙ �
� � 

Since the parameters α, β, σ, θ > 0 the two eigenvalues are real, one is 
negative and the other one positive. From the theory of dynamical systems 
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we know that an equilibrium point ( ,  )e p  where the corresponding eigen-
values have such properties is a saddle point. In linear systems, a saddle 
point is characterised by its manifolds, or simply directional lines, in phase 
space that cross at the equilibrium point and determine the dynamics in the 
neighbourhood of the equilibrium point. The alignment of the manifolds 
is given by the eigenvectors of the Jacobian J and the sign of the corre-
sponding eigenvalues describes the direction of the dynamics. A negative 
eigenvalue, in this context, is sometimes referred to as the stable eigen-
value since the direction of the dynamics on the corresponding manifold is 
pointing towards the equilibrium point. Similarly, a positive eigenvalue is 
sometimes referred to as the unstable eigenvalue since the direction of the 
dynamics on the corresponding manifold is pointing away from the equi-
librium point. 

The dynamics of the model and the time histories of the exchange rate 
and price are shown in Figure 8.1. Figure 8.1(a), which visualises the dynamics 
about the saddle point equilibrium, shows the two manifolds, the dashed lines 
cutting across the equilibrium point ( ,  )e p , and the direction of the dynamics 
on the manifolds are shown by the arrows. To understand the dynamics about 
the saddle point equilibrium, let us consider three initial conditions I, II and III, 
as seen in Figure 8.1(a). As can be seen from the directional arrows, among 
the three initial conditions only I, which is on the stable manifold, leads to a 
trajectory that ends up at the equilibrium point ( ,  ). The other two initiale p 
conditions, II and III, which do not lie on the stable manifold, lead to traject-
ories that initially follow the manifold and get closer to the equilibrium point 
but eventually diverge away from it. The dynamics highlights how a small 
change in the initial condition can have a large impact on the future outcome – 
here with a small deviation in the initial condition, say, from I to either II or 
III, the system diverges away from the equilibrium, as shown by the arrows, 
and will lead to either a continuous fall or rise in prices and the exchange rate, 
respectively. 

The economic argument and insight of ‘overshooting’ that Dornbusch 
articulated as an explanation for the volatility in the exchange rate market 
can be explained using Figure 8.1(a). Consider that the system is at an arbit-
rary position such as (e0, p0) in Figure 8.1(a). 

Suppose that there is an unanticipated permanent increase in the money 
supply. The rational agent would expect the price level and exchange rate to 
increase and that the economy would move to the equilibrium position ˜e p, °.0 0 
However, the economy cannot instantaneously move to the equilibrium position 
since prices are assumed to be ‘sticky’, i.e. they only adjust gradually. The ques-
tion that then remains is how does the economy get to the equilibrium level, i.e. 
what is the dynamics of adjustment towards the equilibrium? 
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The central analytical tool in Dornbusch’s model that takes the economy to 
an equilibrium is the exchange rate, which is assumed to be the jump variable. 
Let us see how the dynamics works in Figure 8.1(a). Since prices are assumed to 
be rigid, for any increase in nominal money supply the equilibrium in the money 
market requires an increase in the demand for real money balances, which can 
happen only if the interest rate on domestic currency bonds falls. From the UIP 
condition (8.4) we can see that the domestic interest rate differential vis-a-vis 
the world interest rate (r − r *), due to the fall in the home interest rate, will be 
offset by the expected appreciation of the home currency. The question is how 
does this happen since rational agents know that money is neutral and an increase 
in the money supply must lead to a proportionate depreciation in the exchange 
rate. Dornbusch’s fundamental insight is that the initial depreciation (jump) of 
the exchange rate must be larger than the equilibrium level to leave room for 
the ensuing appreciation required to clear the bond and money markets, i.e. the 
exchange rate must overshoot the equilibrium level and then gradually adjust 
back to the equilibrium ( ,  )e p during the period of the interest rate differen-
tial. Thus, starting from the initial equilibrium position (e0, p0) in Figure 8.1(a), 
the exchange rate depreciates from e0  by ‘jumping’ to point I, which is on the˜ °  
stable manifold, and then gradually appreciates back to the new equilibrium point 
( ,  )e p . Note that point I is on the same price level as p0 and only the exchange 
rate e has moved to a level higher than the equilibrium level of e . 

The idea of overshooting hinges on the assumption that exchange 
rates can jump easily, within seconds, of the arrival (or even in the antici-
pation) of ‘news’. Also, it crucially depends on the stickiness of prices 
(and wages) that do not change immediately, as fast as the exchange 
rate. However, the dynamics of the model is such that the exchange rate 
has to jump exactly onto the stable manifold, i.e. to the point I, to take 
the system to the equilibrium. A small slip-up in the jump, so that the 
exchange rate lands on either II or III, will lead to dynamics that moves 
away from the equilibrium. The time histories of e(t) for the three traject-
ories with initial conditions at I, II and III are shown in Figure 8.1(b). As 
can be seen from the figure, only the initial condition I, on the stable man-
ifold, allows the system to reach the equilibrium ( ,  )e p . The neighbouring 
points II and III lead the system away from the equilibrium. Therefore, 
the discrete jump in exchange rate e has to be very precise for it to land 
exactly on the stable manifold in order for the system to converge to the 
equilibrium. While economic intuition makes sense, the arbitrary nature 
of the out of equilibrium adjustment, i.e. a discrete jump in a continuous 
model, makes the model intractable from a mathematical point of view. 

To simulate and visualise the Dornbusch model we can follow the 
method used for the IS-LM model in Chapter 5. The MATLAB® code 
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Figure 8.1: Trajectories of the Dornbusch system for α = 1, β = 1, σ = 1 
and θ = 0.5 with the saddle point located at ( ,  ) (2 2, )  are plotted in (a), e p = 
where the initial conditions are I: (2.7321,1), II: (2.4,1), III: (3,1). In (b), 
time histories for e(t) are plotted for initial conditions I, II and III in (a). The 
thin lines in (a) indicate the manifold location and the arrows show direc-
tion of the dynamics in forward time. 

to simulate the system of the two first-order differential equations (8.21) is 
given below in five separate parts, namely, (i) the initiation of the simu-
lation and parameter values, (ii) the initial conditions, the call of the dif-
ferential equation solver ode45 and the output, (iii) the Dornbusch system, 
(iv) the calculation of the eigenvalues and eigenvectors, and (v) the plotting 
of the trajectories (e(t), p(t)) and time histories of e(t) and p(t), as seen in 
Figure 8.1(b). The first set of code clears the memory, closes all the figures, 
sets the parameters and equilibrium point and creates the Jacobian J. 

Initiation and parameter values 

%Dornbusch overshooting model 
clear all 
close all 
format compact 

%Parameters 
alpha = 1; 
beta = 1; 
sigma = 1; 
theta = 0.5; 

J = [0 1/alpha ;theta*beta −theta*(beta+sigma/alpha)]; 
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%Equilibrium 
e_eq = 2; 
p_eq = 2; 

Next we set up the simulation and decide simulation time, initial con-
ditions, solver properties. The output from the ODE solver is a time vector 
t and 2-column state matrix Y, where the first column is e and the second 
column is p. Finally, we separate the output in an E- and P-vector for the 
plotting. 

Initial condition and the ODE solver 

%Simulation time 
t_start = 0; 
t_end = 5; 

%Initial conditions 
e0 = 3; 
p0 = 1; 

%Simulation tolerances 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 
[t,Y] = ode45(@(t,y) dornbusch_system(t,y,p),... 

[t_start t_end],[e0;p0],options); 
%Output 
E = Y(:,1); 
P = Y(:,2); 

The ODE solver calls the function dornbusch_system(t,y,p) 
which evaluates the right-hand side of (8.21), with time (t), state vari-
ables (y), equilibrium values (e_eq and p_eq) and the Jacobian (J) as 
input. 

The Dornbusch system 

function dedp = dornbusch_system(t,y,e_eq,p_eq,J) 

%Variables 
e = y(1); 
P = y(2); 

120 



 
  

 

 
 
 

 
 

THE DORNBUSCH EXCHANGE RATE OVERSHOOTING MODEL 

%The ODE model 
dedp = J*[e-e_eq; p-p_eq]; 

end 

In order to calculate the eigenvalues and eigenvectors of the Jacobian J, which 
were discussed but not shown above, we can use the following MATLAB® 

code. 

Eigenvalues and eigenvectors 

%Eigenvalues 
[eigenvectors,eigenvalues] = eig(J); 
mu_1 = eigenvalues(1,1) 
mu_2 = eigenvalues(2,2) 

ev_1 = eigenvectors(:,1); 
ev_2 = eigenvectors(:,2); 

To visualise the output of the simulation, we follow the same 
methodology as in earlier chapters. The new thing here is that we use 
the eigenvectors ev_1 and ev_2 for plotting the stable and unstable 
manifolds. 

Visualisation 

%Plotting 
figure(1) 
subplot(2,1,1), hold on 
plot(t,E,’k’,’LineWidth’,2) 
plot(0,e0,’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
xlabel(’time (t)’),ylabel(’e(t)’) 
hold off, box on 
subplot(2,1,2), hold on 
plot(t,P,’k’,’LineWidth’,2) 
plot(0,p0,’o’,’MarkerFaceColor’,’k’,... 
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’MarkerEdgeColor’,’k’) 
xlabel(’time (t)’),ylabel(’p(t)’) 
hold off, box on 

figure(2), hold on 
plot(E,P,’k’,’LineWidth’,2) 
xlabel(’e(t)’),ylabel(’p(t)’) 
k1 = ev_l(2)/ev_1(1); 
k2 = ev_2(2)/ev_2(1); 
plot([0 4],kl*([0 4]-2)+2,’k—’) 
plot([0 4],k2*([0 4]−2)+2,’k--’) 
plot(2,2,’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
plot(e0,p0,’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
axis([0 4 0 4]) 
hold off, box on 

8.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter, we discussed the role of expectations in exchange-
rate markets. Rudiger Dornbusch developed the theory of exchange 
rate dynamics in 1976 with an aim to explain the volatility in the 
exchange-rate market particularly in the context when the advanced 
economies moved from a fixed exchange rate to a fully flexible 
exchange rate regime. Dornbusch introduced the idea of so called 
‘overshooting’, which centred on the fact that the exchange rate is a 
variable whose timescale is much faster than other variables in the 
economy and reacts, or jumps, within seconds of news arriving, or 
sometimes in anticipation of the news. In fact, this is also true of the 
prices of other financial assets like securities, shares and bonds, and 
also goods traded in the commodity futures exchange market such as 
oil and wheat. By contrast, the prices of most goods and services, such 
as labour or capital (rent), do not adjust as quickly (or jump) like fin-
ancial assets. Dornbusch’s idea of overshooting rests on the interaction 
between prices with different timescales – one set of prices jump 
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quickly in relation to ‘news’ and others do not. More fundamentally, 
the model postulates that overshooting in the exchange-rate market 
compensates for the sticky or sluggish prices of goods and services in 
the product market, and hence the former markets are more volatile 
than the latter. 

The idea of overshooting is also integral to monetary policy, par-
ticularly the inflation targeting policy. Monetary policy makers take into 
account the impact of policy announcements on movements, or volatility, 
in the exchange-rate market. However, such a policy analysis depends 
on a number of underlying assumptions such as the economy in ques-
tion is well integrated into the international financial market, i.e. an 
open economy with a flexible exchange rate, the agents are rational, par-
ticularly in the foreign exchange market, the economy in question is a 
price taker in the sense it cannot unilaterally influence the world interest 
rate, and on the sluggish adjustment of wages and prices. While over-
shooting may be seen as a short-term phenomenon in the exchange-rate 
market, there are instances in the history that it has had real long-term 
economic consequences. One such example is Thatcher’s 1979 anti-
inflationary monetary policy in the UK of reducing the growth of the 
money supply, which was expected to produce an equivalent amount of 
reduction in inflation. The prediction of the quantity theory of money-
based model did not turn out to be true during that period. Instead, in 
anticipation of high interest rates to reduce inflation, the British pound 
appreciated sharply following the tight money policy. This led to an 
increase in unemployment, peaking at around 12 percent in 1983–1984, 
with the consequence of an appreciated real exchange rate and a higher 
real interest rate, and it took a few years for the economy to return to its 
trend level. This episode reminds us of the influence monetary variables 
such as exchange rates have on the real production economy, and the 
need to develop dynamic models of interaction between the two spheres, 
particularly in the current context of globally integrated financialised 
economies. 

NOTES 

1 Note that here we adapt Gandolfo’s characterisation of the Dornbusch 
model. For a full elaboration of the model, see [2]. 

2 Note that we are dealing with a private economy without a government. 
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9 THE SOLOW-SWAN 
GROWTH MODEL 

9.1 ECONOMIC PROBLEM 

In the preceding chapters while studying Keynesian macroeconomic 
dynamics (Chapters 4 and 5), we looked at the economy in the short-run 
where the capital stock was held constant even when the level of invest-
ment increased (or decreased). This was indeed one of the inconsistencies 
in Keynes’s General theory [5] as pointed out by Pigou [6]. Any change in 
aggregate investment has two effects on the economy – one on the demand 
side and other on the supply side. The demand side impact is well known 
as the multiplier effect, where changes in investment lead to a change in 
output through a multiplier. However, the change in investment also leads 
to a change in the productive capacity, or change in the capital stock, which 
changes the potential supply capacity of the economy. 

Ever since the publication of the General theory, there were early 
attempts to extend the model in a long-run setting. For instance, Roy 
Harrod [3], a contemporary of Keynes in Cambridge University (UK), and 
Evsey Domar [2] in the USA, who, independently and almost concurrently, 
advanced such models of growth, which came to be known as the Harrod-
Domar model in the Keynesian literature. The Harrod-Domar model pro-
vided the initial conditions for the emergence of the modern growth theory 
in macroeconomics. We will briefly outline the Harrod-Domar model 
before we study the Solow growth model, which forms the foundation for 
the modern growth theory. We shall simply refer to the Harrod-Domar 
model as the Harrod model for presentational simplicity.1 

Harrod’s model is a dynamical system that describes equilibrium 
growth (or a warranted growth rate), consistent with the ex-post saving-
investment equality. In other words, the dynamical system generates a 
unique rate of growth that is compatible with firms’ optimal rate of utilisa-
tion of capital. However, Harrod showed that this equilibrium is unstable, 
i.e. a deviation from the equilibrium will make the economy either explode 
or implode, and does not guarantee full employment. 
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To see the key insight of Harrod’s model, let us assume a closed 
economy without government and abstracting from other components of 
aggregate demand except private investment. The level of output is driven 
by aggregate demand and the goods market equilibrium is given by the 
multiplier relation 

1Y ˜ I , 0 ° s °1, (9.1)
s 

where Y represents total output, I is investment, s denotes the saving rate, or 
marginal propensity to save, and the multiplier is here given by 1 

s . 
However, investment decisions are driven by demand dynamics (or 

in other words, expected profitability from employing additional capital 
stock) consistent with the accelerator principle. Since investment increases 
the productive capacity of the economy, the latter should have supply side 
implications for the goods market equilibrium. Taking the increase in the 
productive capacity into consideration, the system achieves a ‘steady’ 
growth when the aggregate demand grows at the same rate as the increase 
in the productive capacity of the economy. This can be seen by rewriting 
(9.1) as 

I 
Y 
= s (9.2) 

and decomposing the investment-output ratio as 

I s = 
K 

K ,
Y 

(9.3) 

I Kwhere K  is the rate of capital accumulation and is the capital-output
Y Kratio. The latter ratio is assumed to be a constant v, so that v = 

Y  (where the 
coefficient v describes a fixed production function), and the rate of capital 
accumulation, which is the rate of capacity growth, is denoted by g. At 
equilibrium, the rate of capital accumulation, or the capacity growth, will 
equal the rate of growth in output, i.e. 

I ˛K ˛Y
˜ ° ° g. (9.4)K K Y 

Using (9.4), we can rewrite the investment output and saving relation as 

I K 
= =s or gv s. (9.5)

K Y 
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Therefore, the condition for the steady-state growth in Harrod’s model is 

s g = . (9.6) 
v 

Harrod and Domar originally held both s and v constants, since they 
are determined by institutional structures in the economy, and called the 

sratio gw =  as the warranted growth. We can now see the economic intu-
v

ition that underlies the so called ‘knife-edge’ dynamics of the model. 
If the actual growth is slower than the warranted rate (i.e. when g < gw), 

then excess capacity would be generated, i.e. the growth of an economy’s 
productive capacity is outstripping growth in aggregate demand, and will 
induce firms to invest less, which in turn will reduce demand growth further 
leading to more excess capacity being generated. 

On the other hand, if the actual growth is greater than the warranted 
rate (i.e. when g > gw), then the aggregate demand growth outstrips the 
capacity growth, which will induce firms to increase capacity through new 
investment and in turn will increase demand, and thus further reinforce the 
excess demand. 

This is the famous ‘knife-edge’ property of the Harrodian equilibrium. 
The growth path is stable only where the actual and warranted growth rates 
are equal, which is a path on which it is like being on a knife edge and any 
deviation from the path will make the system unstable where the system can 

° °˙ ˙s seither explode when g ˜ when g ˘˝
˛

ˇ
ˆ
or implode ˝

˛
ˇ
ˆ 
. 

v v 
An interesting implication of the Harrod model is that there is no 

reason to believe that the dynamic equilibrium, i.e. when g = gw, would 
guarantee full employment. To see this, let us assume that the labour force 
grows at some rate gn, which Harrod called the natural rate of growth, since 
it refers to the maximum growth permissible by the population growth. 
Now, at any level of production technology, employment growth is pro-
portional to output growth. Therefore, given the labour force growth gn, the 
necessary condition for full employment in this economy is that the output 
must grow at the same rate as the labour force growth. In fact, this is the 
necessary condition both for full employment and for the stability of the 
employment growth. If the two rates are not equal, i.e. the rate of growth 
of output g and the rate of growth of labour force gn, then the economy will 
eventually either run out of labour (when g > gn) or battle with an ever-
increasing unemployment rate (if g < gn). 

However, the only way these three growth rates, i.e., the actual growth 
g, the warranted growth gw, and the labour force growth gn, can coincide is 
by pure chance because the condition for dynamic equilibrium, g = gw is 
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independent of the condition for a stable employment growth rate g = gn. 
Further, since the parameters defining the warranted growth gw, the saving 
rate s, the capital-output ratio v, and the labour force growth gn are all exog-
enous and driven by different mechanisms, it is highly unlikely that the 
three rates would coincide, i.e. g = gw = gn, yielding to both a desirable and 
highly unlikely state of the economy referred to as the ‘golden age’ [7].2 

Therefore, the question that remained unanswered in the context of 
Harrod’s model was whether growth in the capitalist economies is pre-
cariously balanced on a knife-edge. There were several attempts to answer 
this question by both the followers of Keynes, the post-Keynesian econo-
mists, and the neoclassical economists. In the following, we will look 
at how the latter addressed the question using the famous Solow-Swan 
growth model. 

9.2 MODELLING 

As discussed in the previous section, in Harrod’s model economic growth is 
unstable, both in terms of the dynamic equilibrium between actual growth 
and the warranted growth (where g = gw) and the full-employment equilib-
rium, where the actual growth equals the growth in the labour force (and 
thus g = gn). Robert M. Solow and Trevor Swan argued that the instab-
ility in Harrod’s model arises due to the exogenously fixed capital-output 
ratio and proposed a growth model where the very same ratio becomes 
the adjusting variable that leads the system back to its growth path. This 
means that the parameter v would endogenously change to bring the system 
to the steady-state growth path. In other words, while dynamic equilibrium 
is assumed, with investment passively adjusting to available saving, the 
full-employment equilibrium is achieved through the infinitesimal substi-
tutability between capital and labour, using a twice continuously differenti-
able production function that exhibits constant returns to scale. The model 
is often referred to as the neoclassical model because of the following 
reasons: (a) savings determines investment and (b) disequilibrium adjust-
ment is explained by fully flexible and competitive factor markets. Let us 
now study the model in more detail. 

The assumptions of the Solow-Swan growth model are as follows. 
The production function F with arguments of both capital K and labour L is 
given by 

(9.7)Y F K A= ( ,  L), 
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where A represents technology/knowledge and AL is referred to as effective 
labour. The technology term written in this way reflects the labour-aug-
menting, or Harrod-neutral, nature of technical progress.3 The production 
function F is assumed to exhibit constant returns to scale, or homogeneous, 
in both capital K and labour L. This means that doubling the quantities of 
inputs (with A fixed) doubles the output Y. Since we are interested in how 
output per labour grows over time (or in general, how output per capita 
grows over time), we can rewrite the production function in the intensive 
form, since the function is homogeneous as4 

where  is the amount of output per unit of effective labour and r is the 

° K ˙Y ALF ,1˜ ˝ ˇ
˛ AL ˆ 

˘ Y 
˜ F r( , )1 ,

AL 
r ˜ K 

,
AL 

(9.8) 

Y 
AL

amount of capital per unit of effective labour. Letting y = Y , (9.8) can be
ALrewritten as 

y = f ( ) = F r 1r ( , ). (9.9) 

The production function f (r) is assumed to satisfy 
2df d ff ( )0 ˜ 0, (r) ° 0 and (r) ̨  0

dr dr2 

implying that the marginal product of capital is positive, but decreasing as 
capital increases. In addition there are conditions on the curvature of f (r), 
namely, 

df df 
lim  

° 
(r) ˛˝ and lim ( )r ˛ 0, 

r˜0 dr r˜˝ dr 

which are referred to as the Inada conditions. These conditions ensure that 
growth of the economy does not diverge when capital stock becomes large 
(or tends towards infinity). 

Aggregate demand in this one-good, closed, and private economy is 
given by 

Y C I ,  (9.10)˜ °  

where C denotes consumption and I denotes investment expenditures. The 
macroeconomic equilibrium condition for this economy is 

S I . (9.11)= 
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Further assuming that a part of income is being consumed and the rest is 
saved, the savings function can be written as 

S sY , 0 ° (9.12)˜ s ° 1, 

where s is the saving propensity. 
The gross investment of the economy is defined as the change in capital 

stock plus the depreciation of the existing capital stock and is given by 

dKI ˜ °˝K , 0 ˝ (9.13)˛ ˛1 
dt 

where δ denotes the depreciation rate of capital stock. Finally, assume that 
both the labour supply L in the economy and the knowledge accumulation A 
grow at constant exponential rates n and a respectively as 

nt atL t( ) = L e0 , A t( ) = A e0 , (9.14) 

for some positive intial values L0 and A0. 
Substituting (9.12) and (9.13) in (9.11) yields, 

dKsY ˜ °˛ K. (9.15)
dt 

Now we need to find the expressions for the left hand and right hand side of 
(9.15) to complete the model. 

From (9.8) and (9.9) we get 

Y ALf= ( )r , (9.16) 

which can be substituted in the left-hand side of (9.15). 
In order to determine dK  on the right-hand side, we use r = K  (from

dt AL 
(9.8)), which can be written as K = ALr and upon total differentiation yields, 

dK dA dL dr drLr ° A ° ˜ aALr ° nALr ° AL . (9.17)˜ r AL 
dt dt dt dt dt 

Finally, substituting (9.16) and (9.17) in (9.15) yields 

drsALf r ° ° °˛ ALr (9.18)( ) ˜ aALr nALr AL 
dt 
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and further simplification gives rise to the equation 

dr 
˜ sf r 1 n a ˝ ) ,  (9.19)( , ) (° ˛ ˛  r 

dt 
which is the fundamental dynamic equation of Solow’s growth model. 

To further understand the dynamics and the stability properties of the 
model, we will use the so called Cobb-Douglas production as a special case 
for the production function f (r), which is given by 

˝ 1˛˝Y K  (AL) , 0 °˝ ° (9.20)˜ 1, 

where α is the proportion of capital K, and 1–α is the proportion of effective 
labour AL, used to produce the output. Expressing the Cobb-Douglas pro-
duction function (9.20) in terms of output per effective labour, i.e. dividing 
by AL, yields 

Y ° K ˙
� 

�˜ ˝ ˇ ˘ ˜y r  (9.21)
AL ˛ AL ˆ 

and the production function for this specific case becomes f (r) = rα . 
Therefore, using (9.21) in (9.19) yields 

dr ˝˜ sr (n a  ̇ )r, (9.22)° ˛ ˛  
dt 

which is the fundamental dynamic equation of Solow’s growth model for 
the special case of Cobb-Douglas production function. Note that equation 
(9.22) is a first-order nonlinear differential equation, whose dynamic prop-
erties will be explored in the following section. 

9.3 ANALYSIS, SIMULATION AND VISUALISATION 

As mentioned in the previous section, the fundamental equation in Solow’s 
model (9.22) is a first-order nonlinear differential equation, which usually 
means that no analytical solution is available for further analysis. However, 
this is one of those cases where it is possible to transform the nonlinear 
system to a linear one through a variable transformation and the linear 
system can be solved analytically. In what follows we will first show how 
this transformation can be done and what the solution looks like. Second, 
we will use traditional linear stability analysis methods for (9.22) to find 
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and analyse the stability of all equilibrium points. Finally, we will show a 
graphical method to locate and determine the stability of the equilibrium 
points. After these three methods we will show how to numerically solve 
(9.22) using MATLAB®. 

STABILITY ANALYSIS THROUGH BERNOULLI 
TRANSFORMATION 
Equation (9.22) can be made linear by a simple transformation, known as 
the Bernoulli transformation, by defining a new variable 

1˜ ˛ r ˝° 
. (9.23) 

Note that this mathematical transformation has an economic interpretation, 
since from (9.20) we have 

1˘�K K ˙˜ °˝ ˇ ˜ r1˘� ˜� , (9.24)
Y ˛ AL ˆ 

where κ transforms the non linear system (9.22) in capital/effective labour 
(K/AL) ratio to a linear system in capital/output (K/Y) ratio owing to the use 
of the Cobb-Douglas production function (9.20). 

We can now restate the fundamental dynamic equation of Solow’s 
model (9.22) in lieu with the transformation variable κ, as follows. First, we 
differentiate κ = r1−α with respect to time and get 

d˜ ˝° dr 1 d˜ ˝° dr 
(1 °˛ ˝ )r ˙ ˛ r . (9.25)

dt dt 1˝° dt dt 

Now multiplying both sides of (9.22) by r−α yields, 

˜˝ dr 1˜˝r ° ˜s (n ̨ ˛a ˙ )r (9.26)
dt 

and using equations (9.25) and (9.26) we have 

1 d˙
° ˜ (n ̨ ˛a ˆ ˙  (9.27)s ) 

1˜˝ dt 

or 

d˜ 
˝ ( ˝ ) ( ˙˛n a  ˝° )(1˙˛ ˜ ˆ s 1 ), (9.28)

dt 
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which is a linear differential equation in κ with constant coefficients. 
Assuming that κ = κ0 at t = 0, the general solution to (9.28) is 

ˇ s � ˙ ˆ ˆn a ° )(1 ˛ s( ˙ )t˜ ( )t ˝ �˜0 ˙ �e ˆ . (9.29)
˘ ˆ ˆ° n aˆ ˆ°n a  � 

Since n + a + δ and 1 − α are positive, the term e−(n+a+δ)(1−α)t → 0 as t → ∞ 
and κ(t) tends to its equilibrium value 

˜˛ ˝ s . 
˙ ˙°n a  

Furthermore, recall that the difference (κ0 − κ*) tends to 0 at a rate given by 

˜ ˝ ( ˙ ˙° 1ˆ˛ ), (9.30)n a  )( 

where β is sometimes referred to as the coefficient of convergence. 
Finally, the solution for the original system (9.22), using the trans-

formed equation (9.28), is given by 
1 

1
1°�˝˝ s ˇ ° ˛ ˛(n a � )(1°� )t s ˇ r t( ) ˜� 1°� ˜ ˆˆ r0 ° �e ˛ � , (9.31) 

˙˙ n a˛ ˛� ˘ n a  ˘˛ ˛� 

˛ 1˝° where we used ˜0 r0  and the equilibrium, or the steady-state value of 
capital to effective labour ratio, r * is 

1 

˜ ˙ s ˘1°� 
r ˛ (9.32).ˇ �

ˆ n a � �˝ ˝  

LINEAR STABILITY ANALYSIS 
Instead of using the Bernoulli transformation we can analyse the original 
system (9.22) directly by first locating all equilibrium points and analysing 
their stability. 

First locate the equilibrium points r * as 

dr � � � � ˇ �˙1 n a  �� ˆ ˆ �° s r  (n a  � )r ˜ s r 0˜ 0 ˛ ˝ ˙ ˆ ˆ r �˛ ˝ ˙ � ˜ , (9.33)dt ˘ s � 

which yields two equilibrium points that are given by 
1 

s 1°�˜ ˜ ˙ ˘ r ˛ 0 and r ˛ .1 2 ˇ �
ˆ n a �˝ ˝ � 
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The former equilibrium point is the trivial one, which is not picked up by 
the Bernoulli transformation above, and the latter is the same as the one 
given by the Bernoulli transformation. To calculate the stability of the 
equilibrium points we can differentiate the right-hand side of (9.22) with 
respect to r and evaluate at the two equilibrium points. If the sign of the dif-
ferential is negative (positive), it implies that the equilibrium point is stable 
(unstable). Here we have, 

d ˜ dr ˝ � 1

˛ ˆ ˇ� sr ˘ ˘ � �n a  � ), (9.34)(
dr ° dt ˙ 

and evaluating at the equilibrium points respectively yields, 

d ˜ dr ˝ � s
ˇ lim ˘ � �(n a  ˇ � , (9.35)� ) � 0˛ ˆ � 1˘�r�0 rdr ° dt ˙ rˇ0 

��1
1˜ ˝ 

˛˜ s ˝1�� ˆd ˜ dr ˝ ˇ� s (n a1 � ˘ ˘� )˛ ˆ 
�dr ° dt ˙ ˜ s ˝1 � ˛ n a˘ ˘� ˆ (9.36)

rˇ˛ ˆ ˛ °
˛ 

˙
ˆ

ˆ 
° n a � ˙ °˘ ˘  ˙ 

ˇ � �1)( ˘ ˘� ) � 0 for 0 �� �1( n a  . 

The above expressions (9.35) and (9.36) show that r1 
˜ ° 0  is unstable 

˜ ˙ s ˘ 1and r2 ˛ˇ � 1°� is stable. 
ˆ n a �˝ ˝  � 

In economic terms the stable equilibrium, where r (the ratio of capital 
to effective labour) reaches the equilibrium value r2 

∗ , is often referred to as 
the balanced growth path, the reason being that as the equilibrium value of 
capital stock K is equal to ALr2 

∗ (see (9.24)) and will grow at a constant rate 
given by n + a (derived from (9.8)), which is the rate of growth of effective 
labour. With both capital and effective labour growing at the constant 
rate of n + a, output Y will also grow at the same rate. Consequently, at 
the stable equilibrium r2 

∗ , capital per effective worker ˜ K ˝, and output per˛
°

ˆ
˙AL˜ Y ˝effective worker will grow at the constant rate of n + a. This constant˛

°
ˆ
˙AL 

rate of growth is called the balanced or the steady state growth path. 

GRAPHIC STABILITY ANALYSIS 
Next we will use a graphical method to perform the analysis in the previous 
section. The graphical method is a popular presentation of the Solow model 
in undergraduate textbooks. Accordingly, we shall analyse the two terms on 
the right-hand side of (9.22) graphically and qualitatively compare them in 
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order to determine whether dr is growing or declining. Let us denote the 
dttwo terms as 

y r( ) ˜ sr˛ 
and ( ) (n ay r ˜ ° °˝ )r ,

1 2 

and plot them in Figure 9.1. 

Figure 9.1 Schematics of graphical stability analysis, where (a) is the base 
case. In (b) s is increased that leads to an increase in r2 

∗  and in (c) n is 
increased that leads to a decrease in r2 

∗ . 

We see that the functions are equal and cross at two separate points, r1
* and 

r2
*, where 

˙ ˙dr 
˜ y r1 ° ˛k ˝ y r2 ° ˛k ˜ 0, k ˜1,2,

dt 
as expected, since it is the condition for an equilibrium point, as we saw in 
(9.33). Furthermore, in Figure 9.1 we see that for r > 0 we have the follow-
ing two cases 

˜ * dr 
I: r r r ˛ y ˝ y and ° °  ˝ 0,1 2 1 2 dt 

II: r r˝ ° y ˛ y and dr
˜ ˛ 0.2 1 2 dt 

The way to interpret these conditions is that r(t) is increasing with time t 
˜ ˜ ° ∗if r  r r and decreasing if ˜ r° °  r r2 , which means that is repelling1 2 1 

(unstable) and r2 
∗  is attracting (stable) equilibrium points respectively. That 

is, an economy with a low level of capital-labour ratio (r close to zero) will 
grow and an economy with a capital-labour ratio higher than the steady-
state value ( r2 

∗ ) will contract. This is consistent with the above analytical 
methods, first through the Bernoulli transformation and (9.32) and second 
through the standard stability analysis (9.35) and (9.36). The MATLAB® 

code to generate Figure 9.1 is given in the following. 
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Graphical stability analysis 

%Solow model 
clear all 
close all 

%Parameters 
s = 0.8; 
alpha = 0.5; 
n = 0.5; 
a = 0.3; 
delta = 0.4; 

%Variable r 
rl = linspace(0,1,100); 
r2 = [0,1]; 

%Plotting 
r_eq=(s/(n+a+delta))^(1/(1-alpha)); 

figure(10), hold on 
plot(r1,s*r1.^alpha,’k’,’LineWidth’,2) 
plot(r2,(n+a+delta)*r2,’k’,’LineWidth’,2) 
plot(r_eq*[1,1],s*r_eq^(alpha)*[0,1],’k--’) 
plot(r_eq*[0,1],s*r_eq^(alpha)*[1,1],’k--’) 
xlabel(’r’),ylabel(’y_1,y_2’) 
axis([0,1,0,1]) 
box on, hold off 

The graphical analysis shown in Figure 9.1 is often used in undergrad-
uate textbooks to convey the underlying dynamics and other comparative 
static analysis of the model. Here we show the base equilibrium scenario 
(Figure 9.1 (a)) and two other scenarios where the saving rate s is increased 
and the other case where the depreciation of capital δ is increased (in 
Figures 9.1 (b) and (c), respectively). The shifts in the respective curves are 
shown with solid lines in these plots. 

From a policy perspective, maximizing social welfare implies maxi-
mizing consumption per capita (or per worker). Therefore, policy makers 
would be more interested in the behaviour of consumption than in the 
output itself. So the obvious question is to find consumption per effective 
labour on the balanced growth path. In this model, consumption per unit 
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of effective labour is obtained by multiplying the fraction of output (1 − s) 
that is consumed with output per unit of effective labour f(r). We know 
that an increase in s increases the steady-state capital per effective labour 
r *. The question then is whether the increase in the savings rate raises or 
lowers the steady-state consumption. This would depend on whether the 
slope f′(r) – the marginal product of capital – of the production function f(r) 
is larger or smaller than n + a + δ, the depreciation loci. In other words, 
if the additional capital (via higher savings) produces more output than the 
depreciation, then it would increase consumption. If the additional capital, 
via higher savings, produces less output than the depreciation loci, then 
consumption will have to decrease to maintain the steady-state growth. 
Therefore, the optimal level of consumption is when f′(r) equals the depre-
ciation loci and the steady-state capital stock (or capital-labour ratio). This 
scenario that generates the optimum level of consumption and is referred to 
as the golden rule level of capital stock. 

SIMULATION AND VISUALISATION 
In Chapters 5 and 6, we simulated and visualised first-order linear ordinary 
differential equations. We will follow the same methodology here for simu-
lating the Solow model. Starting with the following MATLAB® code that 
sets up the scene. 

Initiation and parameter values 

clear all 
close all 
format compact 

%Parameters 
s = 0.8; 
alpha = 0.5; 
n = 0.3; 
a = 0.3; 
delta = 0.4; 

After initialising the parameters, we are ready to simulate the system by 
defining start and end times, an initial condition, simulation options and 
finally simulate the system using the MATLAB® function ode45. 
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Simulation 

%Simulation time 
t_start = 0; 
t_end = 10; 

%Initial conditions 
r0 = 0.9; 

% Simulation setup 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 

% Simulation 
[t,R] = ode45(@(t,r) solow_system(t,r,s,alpha,...

 n,a,delta),[t_start t_end],r0,options); 

The function ode45 calls the function solow_system that is given by 
the following MATLAB® code. 

The ODE system 

function dr = solow_system(t,r,s,alpha,n,a,delta) 

%The ODE model 
dr = s*r^alpha-(n+a+delta)*r; 

Finally we plot the time history of r(t) and also indicate where the 
stable equilibrium value lies using the following MATLAB® code. 

Visualisation 

%Plotting 
r_eq = (s/(n+a+delta))^(1/(1-alpha)); 

figure(21), hold on 
plot(t,R(:,1),’k’,’Linewidth’,2) 
plot([t_start,t_end],r_eq*[1,1],’k--’,’Linewidth’,1) 
axis([0,10,0,1]), box on 
xlabel(’t’), ylabel(’r(t)’) 

138 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 

   

  

THE SOLOW-SWAN GROWTH MODEL 

In Figure 9.2 we plot the time history of r(t), the ratio of capital 
to effective labour, for two different initial conditions – think of two 
economies with different starting points. Figure 9.2 (a) is the base-
line scenario and the other plots, Figures 9.2 (b) and (c), show when α, 
the marginal product of capital per effective labour (the capital’s share 
in national income) is increased and when the population growth rate 
n is increased respectively. Two observations are in order. First, the 
increase in capital’s share α, or the marginal product of capital, increases 
the steady-state growth (Figures 9.2 (b)). Second, when the population 
growth rate is increased, the steady-state value declines (Figures 9.2 
(c)), which is in line with what we saw in scenario in Figure 9.1 (c). 
Third, in all the scenarios we have seen the economy with a low capital 
to effective labour as a starting point (r(0) = 0.01) grows faster than the 
economy with a high capital to effective labour (r(0) = 0.9). This is one 
of the fundamental insights of Solow’s growth model and influenced the 
question of ‘convergence’ and attracted considerable empirical work in 
the economic-growth literature, which investigates whether poor coun-
tries tend to grow faster than rich countries and how long it would take 
the former to catch up with the latter. One of the reasons for such con-
vergence is the flow of capital from rich countries to the poor countries 
where the rate of return on capital would be greater because of low level 
of capital per worker. Also, technological development and diffusion 
of knowledge that comes along with it, albeit with a lag, will help poor 
countries to grow faster and help them converge with the richer coun-
tries. Solow’s growth model opened up a huge area of empirical research 
in this area, which has since dominated the debate on growth differentials 
between countries around the world. 

Figure 9.2: Time histories of the capital-labour ratio (r(t)) for different para-
meter values. In (a) s = 0.8, α = 0.5, n = 0.3, a = 0.3 and δ = 0.4, while in 
(b) α = 0.9 and (c) n = 0.5. In all three cases two different initial conditions 
are used, namely r(0) = 0.01 and r(0) = 0.9. 
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9.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter we studied Solow’s growth model, which is considered as the 
fundamental growth model in the modern growth literature. Robert Solow’s 
aim was to provide a solution to Harrod’s instability problem, or the knife-edge 
instability, by endogenising the capital-output ratio, which would bring the 
system to steady-state growth. In other words, Solow proposed a model where 
investment was passively adjusting to available saving and the full-employment 
equilibrium is achieved through the variable capital-labour ratio via the neoclas-
sical production function mechanism. This is one of the reasons why Solow’s 
model is often referred to as the neoclassical growth model. 

The Solow model articulated the limit to the then dominant view that 
accumulation of physical capital can create sustained economic growth and 
also helped understanding of the cross-country income differences. Solow’s 
model showed the inevitability of reaching a stationary state for such physical 
capital accumulation driven growth process and pointed to the central role of 
effectiveness of labour, or technology A, in generating permanent growth in 
output per worker. Solow further argued that the differences in the effective-
ness of labour are fundamental for understanding the cross-country growth and 
wealth differences temporally and spatially. However, Solow’s model assumed 
the technology term as a given constant and neither explored its determinants 
nor examined how it creates conditions for permanent growth. It remains a 
catch all or a residual term for factors other than labour and capital that affect 
economic growth – it is referred to in the literature as the Solow residual. That 
task was taken up by models referred to as endogenous growth models. In 
this family of models, the effectiveness of labour or technology corresponds 
to abstract knowledge. Intuitively, these models argue that economic growth 
is driven by the evolution of knowledge over time and the cross-country dif-
ferences in real incomes could be explained by the availability, or lack, of 
education, skills of the labour force, etc. In the next chapter, we will study a 
general model in the family of endogenous growth models. 

NOTES 

1 See Daniele Besomi [1] for the history of Harrod’s model. 
2 The period 1945–1973, in which full employment actually did prevail in 

most advanced capitalist economies came to be known as the ‘golden age 
of capitalism’ (cf. Marglin and Schor 1990) [4]. 
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3 If technology augments the capital input as in Y = F(AK,L), then it is 
called capital augmenting or Hicks-neutral technical progress. 

4 See Romer [8] for a more detailed description of the mathematical 
derivations. 
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  10 AN ENDOGENOUS 
GROWTH MODEL 

10.1 ECONOMIC PROBLEM 

In Chapter 9, we looked at the Solow-Swan growth model in some detail 
(henceforth the ‘Solow model’). The central result of the Solow model is that 
saving drives growth, but this is temporary, as the economy tends to a station-
ary state in the long run, due to the diminishing returns to capital. In other 
words, increasing savings can only deliver ‘scale’ effects but not ‘growth’ 
effects, i.e. the scale of output growth increases in the short term but there 
is no increase in the long-run growth rate. Such a result runs counter to the 
Keynes-inspired growth models where capital accumulation – the inde-
pendent role of investment – is the prime mover, similar to what we saw in 
the Harrod-Domar model and other Keynesian models. Solow’s model shows 
the limit to the capital accumulation led growth process whereby the economy 
hits a stationary state in the long run. 

Solow’s model inspired a huge empirical literature on the so called 
convergence hypothesis. At the most basic level, the question was about 
how the poor countries can grow faster and catch up with the rich coun-
tries. From the perspective of Solow's model there are three reasons why 
one might expect such convergence. First, the model predicts that coun-
tries converge to their steady-state growth and depending on their relative 
difference in the initial conditions of capital per worker, one would expect 
poor countries to grow faster and catch up with the rich countries. Second, 
the Solow model implies that the rate of return on capital is lower in coun-
tries with more capital per worker and thus there are incentives for capital 
to flow from rich to poor countries, which tends to help convergence. Third, 
differences between growth rates may be due to the lack of availability of 
production technologies and these differences might tend to shrink as know-
ledge diffuses to the poor countries and improve their rate of growth. 

However, the empirical literature, for instance see [4], fails to explain 
the growth differentials across countries purely in terms of the variations 
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in capital per effective worker ˜˛
° 

K 
AL 

˝
ˆ
˙ 
. Neither the empirical differences in 

capital per worker across countries nor the relationship between output 
per worker and capital per worker suggest the role of capital per worker in 
explaining variations in countries’ growth rates [5, 6]. Further, as noted above, 
growth differentials in output per worker on the basis of capital per worker 
implicitly imply significant differences in the rate of return on capital across 
countries over time and space. If this is true, we would observe huge flows 
of capital from rich to poor countries. However, empirical literature high-
lights evidence of capital flows in the opposite direction [3]. 

The question then is since capital accumulation (capital per worker) 
neither explains the permanent increase in the steady-state growth rate (the 
growth effect) of individual countries nor the cross-country income differen-
tials, what other factors could explain these central questions of economic 
growth? In the Solow model, the only other factor that could come into play 
is the ‘effectiveness of labour’, i.e. the technology term A. However, the 
term remains exogenous to the model and represents all the residual factors 
other than labour and capital that could affect output. Notably, in the growth 
accounting exercises, pioneered by Abramovitz [1] and Solow [9], it is 
known as the Solow residual. 

The next logical step is to understand whether the effective labour or 
technology can create any growth effect, and what causes its variations 
temporally and spatially. In other words, one needs to study how tech-
nology evolves endogenously with the economy to create the so called 
growth effect. In the economic growth literature, the class of models that 
endogenise the technology term have been collectively known as the endo-
genous growth models, where the focus is on knowledge production as the 
fundamental determinant of technology, and these models strive to under-
stand the cross-country growth differentials in output per worker in terms of 
knowledge accumulation and diffusion. 

Two seminal papers by the Nobel prize winning economist Paul Romer 
laid the foundations for the development of the endogenous growth theory. 
Romer’s key insight is that knowledge production is fundamentally driven 
by ‘ideas’ (Romer [7], [8]). According to Romer [8], an idea is a design, or 
a blueprint, or a set of instructions for producing something new, or trans-
formation of an existing object in some way that generates more output or 
utility. Examples may include a formula for a new vaccine, mathematical 
tools such as algebra and calculus, or the design of the QWERTY keyboard 
layout. Romer argued that the nonrival nature of ideas generates increasing 
returns to a scale that can then lead to sustained growth. Let us unpack the 
intuition behind Romer’s argument. 
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The standard ‘goods’ used in economics, for instance in the utility 
or production functions, are rivalrous, i.e. as more people consume or 
use them there are fewer of these goods at any given level of supply. 
Examples of rival goods include apples, oranges, durable goods and 
services of a specialist neurosurgeon etc. The rivalrous nature of 
such goods and services is what underlies the scarcity principle in 
economics. 

However, ‘ideas’ are nonrival. For example, consider the case of a 
computer operating system such as Linux, Windows and Unix, or the Inter-
net and telecommunication signals, where even as more and more people 
use them, they do not immediately become scarce for others. Romer’s 
favorite example was oral rehydration therapy, which was based on the idea 
of dissolving a few minerals such as salt and sugar in the right proportion 
to produce a solution that rehydrates children. Once this idea, or chem-
ical formula, was discovered it can be used over and over again for years 
without becoming scarce. 

How can the nonrivalrous nature of ideas explain economic growth? 
Think of the standard production function with constant returns to scale. 
If we want to double the output production, we need to double the inputs 
(labour and capital). However, once the design or blueprint for making 
a nonrival good is produced, firms do not need to reinvent the idea each 
time for building a new computer, aircraft, or a programming language. 
Instead firms can use the same idea and produce an increasing number 
of nonrival goods, be it advanced versions of the same product, and 
derive increasing returns to scale. Thus, taking both the constant return 
to scale of the rival goods and the increasing returns to scale of ideas in 
the standard production process into consideration, it is easy to see how 
growth would follow naturally. Since the stock of ideas, or knowledge, 
does not need to be divided among all people in the economy, unlike 
capital in the Solow model, increasing the stock of knowledge leads to 
an increase in output per person. We can see this argument analytically 
in the simple model referred to as the AK model that is expressed as 

Y t( ) = AK ( )t , (10.1) 

K t( ) ˜ sY t( ) ° nK t( ), (10.2) 

where Y is output, A is an exogenously given index of the level of techno-
logy (or the stock of knowledge), s is an exogenous saving (and investment) 
rate, n is the constant rate of population growth and K is the physical capital 
that can be interpreted as human capital as in Lucas (1988)[2]. Substituting 
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the knowledge production function (10.1) into the capital accumulation 
equation (10.2) and defining gK as the relative change in capital yields 

K t ( )gK ˜ ˜ sA ° n. (10.3)
K t( )  

The fundamental insight of the AK model, which is a first-order linear dif-
ferential equation of the form 

dK t ˜ (sA n K t  ̃  ( ),( )  ° ) ( )  g K t 
dt K 

is that the increase in the stock of knowledge could generate exponential 
growth in the economy.1 

Romer’s insight inspired many extensions and modifications and laid 
the foundation for the development of the endogenous theory (also known 
as the new growth theory) as well as influenced growth policies around the 
world. The question is how the stock of knowledge varies over time as the 

dA t flow of new ideas, i.e. ( ) , add to it and permanently increase the rate of 
dt

per capita growth and produce the so called growth effect. We will answer 
this question in the next section by using Romer’s model [8], as expos-
ited in [6], where both capital accumulation and knowledge accumulation 
interact, and study how it generates permanent growth effect. 

10.2 MODELLING 

For the model we will develop, consider a closed economy without a gov-
ernment. There are two sectors in the economy, a goods-producing sector 
where output Y is produced and a research and development (R&D) sector 
where technology A (knowledge) is produced.2 In terms of shares of labour 
and capital employed in these sectors, a fraction aL (0 ≤ aL ≤ 1) of the labour 
force is used in the R&D sector and the remaining fraction 1 − aL is used in 
the goods producing sector. Similarly, the R&D sector employs a fraction 
aK (0 ≤ aK ≤ 1) of the total capital stock and the remaining fraction 1 − aK is 
employed in the goods producing sectors. We assume that the shares aL and 
aK are exogenously given constants. 

The production function in the goods-producing sector is now given by 

� 1°�
Y t( ) ˜ ˙ 1° a K t  A t( ) 1° a ˝L t ˇ , 0 �˛ ˝ ( )ˇ ˙ ˛ ( )  � �1, (10.4)ˆ K ˘ ˆ L ˘ 
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where L and K represent labour and capital, respectively, and the parameter 
α is a constant. The coefficients aK and aL represent the fraction of capital 
and labour employed, respectively, as defined above. Note that the goods 
production function written in the Cobb-Douglas form implies constant 
returns to both capital and labour. 

Next, the production of new ideas depends on the quantities of capital and 
labour engaged in research and on the existing level of technology (knowledge), 
and is given by 

A t( ) ˜ B a  K t( )  ˇ a L t( )  ˘ A t( )  ,  B ˝ 0, ˇ ˙ 0, ˘ ˙ 0, � ˆ  (10.5)° ˛ ° ˛ � 
K L 

where B, β and γ are exogenously specified constants. Note that the know-
ledge production function A(t), given the parameter restrictions, is not 
assumed to obey constant returns to scale of capital and labour. The para-
meter θ captures the influence of existing stock of knowledge on the 
success of new knowledge, or the output of the R&D sector, and there is no 
restriction placed on θ as the influence of the existing stock of knowledge 
can be positive or negative for generating new knowledge. For instance, it 
is always harder to make new discoveries when the stock of knowledge is 
greater, and so θ can be both negative and positive. 

Similar to what we had in Solow’s model (Chapter 9), we assume the 
labour force to grow at a constant rate n so that 

L t( ) ˜ nL( )t , n ° 0. (10.6) 

We also assume that the savings rate s is an exogenous constant, but do not 
allow depreciation, and thus the capital accumulation is given by 

K t( ) ˜ sY ( )t , s ° 0. (10.7) 

Using (10.4), (10.5) and (10.7), we can rewrite and define the goods pro-
duction function gK and the knowledge production function gA as 

1˛�
K � 1˛ ˆ A t L t  � ( )  ( ) � g t( ) ˜ ° s ˝1˛ a ˙ ˝1˛ a ˙ , (10.8)

K K L ˘ �K K t( )ˇ � 
A ˆ ˇ ˘ ˙1g t  ̃ ° B a  K t( )  a L t( )˝ A t ( )  ˛ ˝ ˛ ( )  , (10.9)A K LA 

respectively. Note that the sign restrictions on K(t) > 0, L(t) > 0 and A(t) > 
0, for all t, from (10.5) yield gA > 0 and gK > 0 in (10.8) and (10.9), respec-
tively. This makes the analysis both economically meaningful and easier. 
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Note on mathematical analysis 

It is worth pointing out that even if the mathematical analysis allows 
for a wide range of numerical values, it is pertinent to identify the set 
of values that is meaningful, i.e., economically meaningful in our case, 
in terms of the context for which it is intended. Notably, many models 
allow for a more general analysis than they are intended for. 

Finally, we take natural logarithms of (10.8) and (10.9), differentiate 
with respect to time and use (10.6) to get 

K ( )  A ( ) ˛ ° K ( )˙ K , (10.10)g t ˜ °(1 ˆ )˝g t  n g t g t( )  

 ( ) ˜ ˆ g t ° ˇ n ° ( ˛ )g t g t (10.11)g t  ˝ ( )  ˘ 1 ( )˙ ( ),A K A A 

which is a nonlinear dynamical system (a system of two first-order non-
linear differential equations) that describes the interaction between capital 
accumulation gK and knowledge accumulation gA. We shall proceed to 
analyse the dynamics of this system. 

10.3 ANALYSIS, SIMULATION AND VISUALISATION 

The steady-state or equilibrium points of the system (10.10)–(10.11) are 
found by setting both the equations to zero, and thus 

 ( )  = 0 and  ( )  g t  , g t = 0.K A (10.12) 

g t( )First, K = 0  yields 

* * * 
(1˜ˆ )˛ g ° n ̃  g ˝ g ˙ 0, (10.13)A K K 

which in turn gives rise to two equilibrium values of gK given by 

* * * g ˜ 0 and g ˜ g ° n. (10.14)
K K A 

Similarly, setting g t A ( ) = 0  we get 

* * *ˆ˜ g ˝ ° n ˝ (̨ ˙1)g gˇ ˘ 0, (10.15)K A A 
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which yields two equilibrium values of gA given by 

* * * g ˜ 0 and ˝ g ° ˙ n ° (̂ ˛1)g ˜ 0. (10.16)A K A 

Therefore, from (10.14) and (10.16), we find that the system (10.10)– 
(10.11) has four equilibrium points (gK 

* , g * 
A) that are given by 

˛ � n ˆ* * * e1 ˜ 0 0  e2 ˜ n 0 e3 ˜ ˙ , ˘ (10.17)( , ), ( , ), 0 
˝ 1°� ˇ 

and 

n( ° ) n(� � ) ˇ* ˝ � �  ° e4 ˜ ˆ ° n, �. (10.18) 
˙1˛ ( ° ) 1˛ (� � ˘� �  ° ) 

In order for the equilibrium points to make economic sense, we need to 
check the implied parametric conditions under which they are positive. We 

* * ˙ � n ˘see that the equilibrium point ˜ gK , gA ° ˛ ˇ 0, �  is positive for θ < 1 and neg-
ˆ 1˝� �ative for θ > 1. In this case, from an economic point of view, we need gA > 

0, which implies the restriction that θ < 1. Similarly, the equilibrium point 
n( ˝ ˙� � ) n(� � ) �ˆ 1 ˝* *˜gK , gA ° ˛ ˘ , � only makes economic sense if β + θ < 1. Note 
˙ ( ˝ ) 1˙ ( ˝ )1 � �  � �ˇ � 

Figure 10.1: The endogenous growth model for the parameter values α 
= 0.5, β = 0.2, γ = 2, θ = 0.5 and n = 1. (a) A state-space plot showing 
four trajectories of (gK(t), gA(t)), for four different initial conditions, that 
all approach the stable equilibrium point e4

* . The values of the equilibrium 
* * * *points are e = ( , ), e = ( ,  ), e = ( , ) and e = ( .  3 7 33 0 0  1 0  0 4  8 3 , . ). (b) Time-1 2 3 4 

histories of gK(t) and gA(t)) corresponding to the initial condition IC1: (14,1) 
in (a). The three other initial conditions in (a) are at IC2: (14,14), IC3: (1,14) 
and IC4: (2,3). 
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in particular that this point (e4
*) is the only stable equilibrium point, of the 

four equilibrium points, where both gK 
*  and g * 

A are non-zero and is thus of 
primary interest in this general model of interaction between capital accu-
mulation and knowledge accumulation. 

10.3.1 STABILITY ANALYSIS 
To determine the local stability properties of the equilibrium points 
(gK 

* , g * 
A) (given in (10.17)-(10.18)) of the system (10.10)-(10.11) we can 

follow the method in Chapters 5 and 8 and calculate the eigenvalues of 
the corresponding Jacobian J, and evaluate it at each of the equilibrium 
points as given below. 

* * *ˆ (1˝ˇ )˜ gA ˙ n ˝ 2gK ° (1˝ˇ )gK 
� 

* * � �J g  g, ˛ .˜ K A ° (10.19)
* * *� ˘ g ˘ g ˙ � n ˙ 2(� ˝1)g �A K A� � 

The Jacobian is far from trivial for analytical determination of the signs 
of the eigenvalues for all four equilibrium points. However for the three 

˜˝ ˇof them, (0,0), (n,0) and
˜ ° g g, ˛ ( , )  * * 

0 0  we getK A 

, it is pretty straightforward. First, forn
ˆ
˙ 

0, 
1 �

˘°˛ 

˛ n(1°� ) 0 ˆ
J ( ,  )0 0  ˜ ˙ ˘ , (10.20)

0 �˝ n ˇ 
which has the eigenvalues μ1 = n(1 − α) and μ2 = γn that are both positive 
for n > 0, 0 < α < 1 and γ > 0 and thus the equilibrium point (0, 0) is an 
unstable or repellor node. 

Second, evaluating the Jacobian at the second equilibrium 
* * g g, ˛ ( , )n 0  yields˜ K A ° 

˝°n(1°� ) n(1°� ) ˇ
J n( , )0 ˜ ˆ � , (10.21)

0 n(� �˛ )˙ ˘ 

which has the eigenvalues μ1 = −n(1 − α) and μ2 = (β + γ)n. Since μ1 is neg-
ative, given n > 0 and 0 < α < 1, and μ2 is positive given β > 0 and γ > 0, the 
equilibrium point (n,0) is a saddle node, which is stable in one direction and 
unstable in the other direction (see Figure 10.1) 

* *Third, evaluating the Jacobian at the third equilibrium point ˜ gK , gA ° ˛ 
˙ � n ˘ 
ˇ 0, ̋ �  yields 
ˆ � ˝1 � 
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° °� ˜ ˜1 � ˙ ˙ 
˝ (1˜� )n 0 ˇ˝ ˇ° � n ˙ ˛ � ˜1 ˆJ ̋ 0,˜ ˇ ˘ ˝ ˇ , (10.22)

˛ � ˜1ˆ ˝ �� n ˇ˜ �˜ n˝ ˇ
˛ � ˜1 ˆ 

˛ 1 ˝ �which has the eigenvalues 1̃ (1 ° )n�
ˇ ˆ ˆ  

� and μ2 = −γn where μ1 is neg-˙ ˆ  
˘ ˛ ˆ1 � 

ative if 0 < θ − 1 < γ and positive if θ − 1 < 0 < γ or 0< γ < θ − 1 for 0 < 
α < 1, n > 0, γ > 0, and μ2 is always negative. Thus, the equilibrium point 
° ˜˘ n ˙ 
˝ 0, ˇ  is stable (stable node) if 0 < θ − 1 < γ and unstable (saddle node)
˛ � ˜1 ̂  
if θ − 1 < 0 < γ or 0 < γ < θ − 1. This gives that the equilibrium point e3

* is 
also a saddle point in the (gK, gA) plane. 

Finally, a similar stability analysis can be done by evaluating the the Jac-
n( ˝ ˙� � ) n(� � ) �ˆ 1 ˝* * * *obian at the fourth equilibrium point ˜gK , gA ° ˛ ˜gA ˝ n, gA ° ˛ ˘ , � ,
˙ ( ˝ ) 1˙ ( ˝ )1 � �  � �ˇ � 

which is given by 

ˆ n(˜ ° ) n( ˝ ) �˝ ˜ °J ˝ n, .˘ � (10.23)
(˜ ˛ ) 1 (˜ ˛ )1˙ ˝ ˙ ˝ˇ � 

However, because of the complexity of parametric conditions involved 
in this case, instead of performing an analytical analysis we will numeri-
cally locate the eigenvalues at the same time as we simulate the system. 

10.3.2 SIMULATION ANALYSIS AND 
VISUALISATION 

To simulate and visualise the endogenous growth model we will 
follow the methodology that we used for the IS/LM model in 
Chapter 5 and the Dornbusch overshooting model in Chapter 8. The 
MATLAB® code to simulate the system of two first-order differen-
tial equations (10.10)–(10.11) is given below in five separate parts, 
namely, (i) the initiation of the simulation and parameter values, (ii) 
the initial conditions, the call of the differential equation solver ode45 
and the output, (iii) the endogenous growth model system, (iv) cal-
culation of the eigenvalues and eigenvectors, and (v) plotting of the 
trajectories (gK(t), gA(t)) and time histories of gK(t) and gA(t), as seen 
in Figure 10.1. The first set of code clears the memory, closes all the 
figures, sets the parameters and calculates the equilibrium points and 
builds the Jacobian. 
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Initiation & parameter values & Jacobian & eigenvalues 

%Endogenous growth model 
clear all 
close all 
format compact 

%Parameters 
alpha = 0.5; 
beta = 0.2; 
gamma = 2; 
theta = 0.5; 
n = 1; 

params = [alpha, beta, gamma, theta, n]; 

% Jacobian 
J4 = [(1-alpha)*(eq4(2)+n-2*eq4(l)),(l-alpha)*eq4(l);... 

beta*eq4(2),beta*eq4(l)+gamma*n+2*(theta-l)*eq4(2)]; 

% Equilibrium points 
eq1 = [0,0]; 
eq2 = [n,0]; 
eq3 = [0,gamma*n/(l-theta)]; 
eq4 = [n*(beta+gamma)/(1-(beta+theta))+n,... 

n*(beta+gamma)/(1-(beta+theta))]; 

Next we set up the simulation and decide simulation time, initial con-
ditions, solver properties (as in Section 5.3). The output from the ODE 
solver is a time vector t and 2-column state matrix Y, where the first 
column is gK(t) and the second column is gK(t) and thus we separate the 
output in a g_K and g_A vector that will be used for plotting the figures. 

Initial conditions and the ODE solver 

%Initial conditions 
g_K0 = 14; 
g_A0 = 1; 
y0 = [g_K0;g_A0]; 
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%Simulation time 
t_start = 0; 
t_end = 10; 

% Simulation setup 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 

%Simulation 
[t,Y] = ode45(@(t,y) endogenous_system(t,y,params),... 

[t_start t_end],y0,options); 

%Output 
g_K = Y(:,1); 
g_A = Y(:,2); 

The ODE solver calls the function endogenous_system(t,y,params), 
which evaluates the right-hand side of (10.10)–(10.11), with time (t), state 
variables (y), and parameter vector (params) as input. 

The Endogenous growth model system 

function dy = endogenous_system(t,y,params) 

%Parameters 
alpha = params(1); 
beta = params(2); 
gamma = params(3); 
theta = params(4); 
n = params(5); 

%Variables 
g_K = y(1); 
g_A = y(2); 

%The ODE model 
dg_K = (1-alpha)*(g_A+n-g_K)*g_K; 
dg_A = (beta*g_K+gamma*n + (theta-l)*g_A)*g_A; 

dy = [dg_K;dg_A]; 

end 
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In order to calculate the eigenvalues of the Jacobian J, which was dis-
cussed above, we use the MATLAB® code 

Eigenvalues 

%Eigenvalues and eigenvectors 
[eigenvectors4,eigenvalues4] = eig(J4); 
mu4_l = eigenvalues4(1,1) 
mu4_2 = eigenvalues4(2,2) 

that gives the output 

mu4_1 = 
-6.4013 

mu4_2 = 
-1.4320 

Since we are focused on the fourth equilibrium point of (10.18) here, 
we see that both eigenvalues are negative, which indicates that the equilib-
rium point is a stable node. 

To visualise the output of the simulation, we follow the same method-
ology as in the previous chapters. 

Visualisation 

%Plotting 
figure(1), hold on, box on 
plot(t,g_K,’k’,’LineWidth’,2) 
plot(t,g_A,’k’,’LineWidth’,2) 
xlabel(’t’), ylabel(’g_K(t), g_A(t)’) 

figure(2), hold on, box on 
plot(g_K,g_A,’k’,’LineWidth’,2) 
plot(eql(1),eql(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
plot(eq2(1),eq2(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
plot(eq3(l),eq3(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
plot(eq4(l),eq4(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
xlabel(’g_K(t)’), ylabel(’g_A(t)’) 
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10.3.3 DISCUSSION 
The analysis of the dynamic interaction between capital accumulation gK 
and knowledge accumulation gA as described by equations (10.10)–(10.11) 
yields some interesting results. The dynamics of the system is visualised 
in Figure 10.1 and a few observations are in order. First, the four equi-

* * * *librium points of the system (10.18) are denoted by e , e , e  and e  in the1 2 3 4 
(gK(t),gA(t)) plane. As shown in the stability analysis section, the trivial 
equilibrium point e1

* at the origin is an unstable, or a repellor node. This 
is visualised by the arrows indicating the direction of the vector field, thus 
pointing outwards from the equilibrium point. Second, the equilibrium 
point e2

*  is a saddle node – as can be seen from the arrows it is stable in 
one direction (arrows going towards the node), i.e. along the gK(t) axis and 
unstable in the vertical direction (arrows going away from the node), i.e. 
along the gA(t) axis. In fact, the equilibrium point e2

* , where gK 
* = n and 

g * 
A = 0, yields the result of the original Solow model, where growth in 

capital accumulation converges to the stead state rate n, here, and perma-
nent growth can only be achieved by increasing the technology parameter 
A. However, when we introduce the dynamics of knowledge accumula-
tion and study its interaction with the capital accumulation as in (10.10)– 
(10.11), the generalised Solow model in this 2-dimensional set-up yields a 
saddle node equilibrium, which is stable along the capital accumulation axis 
gK(t) and unstable along the knowledge accumulation axis gA(t). 

Similarly, the equilibrium point e3

*  yields the result of another special 
case, where only the dynamics of knowledge accumulation  A ( )  is con-g t  
sidered without the capital accumulation K ( )  In this special case, theg t . 
equilibrium point e3

*  is a stable node, with arrows pointing inwards from 
both directions along the gA(t) axis. However, when we introduce the 
dynamics of capital accumulation and study its interaction with the know-
ledge accumulation, the general model (10.10)–(10.11) yields a saddle node 
dynamics at e3

*. It is stable along the gA(t) axis, as shown by arrows point-
ing towards the e3

* , and unstable along the gk(t) axis shown by arrows point-
ing outwards the equilibrium point e3

* . 
The only stable equilibrium point in this system (10.10)–(10.11) is e4

* , 
as shown in Figure 10.1, i.e. it is the only attractor in the (gK(t), gA(t)) plane. 
As visualised in Figure 10.1, every point in the plane is attracted towards the 
equilibrium point as shown by the arrows. Here we have shown dynamic 
behaviour for four initial conditions IC1, IC2, IC3 and IC4 – four different 
points of (gK (0), gA(0)) – and we can see they all converge to the equilibrium 
point e4

* . Think of the initial conditions as countries that are similar with the 
same parameter values (α, β, γ and θ) in their production functions, but start 
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at different initial conditions. For instance, the country starting from the 
initial condition IC1 has a very high growth in capital accumulation but a 
low growth in knowledge accumulation. The trajectory of convergence 
reveals that as the interaction between knowledge accumulation and capital 
accumulation ensues, the rate of growth in capital accumulation slows down 
initially as the growth in knowledge accumulation increases and then both 
increase in tandem to reach the equilibrium growth rate e4

*. This could be 
thought of as a case where the growth in knowledge accumulation begins 
to rationalise and reshape the process of capital accumulation where there is 
an initial reduction in the rate of growth in the latter and then an increase to 
reach the steady state growth. In other words, the out of equilibrium dynamics 
could be thought of as a Schumpeterian process of creative destruction, 
where the tangible capital stock is being creatively destroyed to produce 
new efficient, or smarter, machines by the process of knowledge accumu-
lation, and together they generate growth and converge the economy to the 
steady state growth rate e4

* . The time histories in Figure 10.1(b) show the 
convergence of the gK(t) and gA(t) to the steady growth e4

*  for the initial con-
dition IC1. 

Similarly, an economy starting with a high knowledge accumulation 
and low capital accumulation, such as at IC3, also shows a non-linear path 
of reaching the steady state growth. Further, when an economy starts with a 
high (or low) capital and knowledge accumulation, for the initial condition 
at IC2, (or IC4), it takes a more direct path to reach the steady state growth. 
While these out of equilibrium dynamics are subject to the particular para-
meter values of the respective production functions, it would be interesting 
to calibrate the model for different economies and study whether the model 
could explain the historical experience of particular economies. 

10.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter, we explored the dynamics of interaction between capital 
accumulation and knowledge accumulation in a general model. The analysis 
revealed that the Solow model and the pure knowledge accumulation based 
growth models emerge as special cases in the general set up. Moreover, we 
also highlighted that in the model the stability properties of the special cases 
change from stable nodes, or yielding steady growth, to unstable (saddle) 
nodes along one direction either in gA(t) (knowledge accumulation) or gK(t) 
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(capital accumulation) axes when the interaction between them is explicitly 
considered. The out of equilibrium dynamics showed interesting paths of 
convergence, albeit for the particular numerical parameter values considered 
here. These paths of convergence could be of interest for policy analysis. For 
instance, the convergence path of the initial condition IC1 in Figure 10.1(a) 
may prompt questions about investment in the type of knowledge that can 
generate growth in the economy, which starts with a historically high level 
of tangible capital. 

In this model, and in the family of such models, knowledge accumula-
tion is treated as a homogeneous entity like the tangible capital in the pro-
duction function – a fraction of labour aL and capital aK in the R&D sector 
produce the output called ‘knowledge’. But knowledge is not homogen-
eous as it comes in different forms such as the basic theoretical to the highly 
applied knowledge. There is also knowledge about specific goods, that may 
not apply outside that particular species of goods. Furthermore, although 
all knowledge is in principle nonrival, they can be excluded from general 
use depending on the type of property rights regime. The degree of prop-
erty rights on knowledge can have an impact on the knowledge production 
and consequently on economic growth. In the Covid-19 context, the vaccine 
recipes are protected by the intellectual property rights regime, which had 
its impact both on the vaccination programme in different countries and 
the consequent differential impact on economic recovery around the world. 
Within this broad institutional context, the endogenous growth literature 
concentrates on the determinants of knowledge accumulation. Some of these 
include creating private incentives for R&D, the development of entrepre-
neurship and enabling environment for learning by doing, among others. 

The central motivation of endogenous growth models, as in the case of 
Solow’s growth model, is to explain variations in long-run growth and also 
cross-country growth differentials. Arising from the theoretical literature, 
there is a huge empirical literature exploring whether economic growth is 
driven by the factors proposed by these models. 

Allied to these explorations there is also the question of what deter-
mines technological progress. The endogenous growth models suggest that 
technological progress is an increasing function of population size. 

The intuition behind the argument is simple: the larger the popu-
lation, the more people available to make discoveries resulting in rapid 
knowledge accumulation leading to growth. The impact of endogenous 
growth models can be seen in recent policy focus, both in developing 
and developed countries, in terms of creating knowledge-based eco-
nomies and underscoring the importance of skill development. However, 
while these proximate determinants of knowledge accumulation and 
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knowledge-based economies are well articulated in the endogenous 
growth literature, the social structure underpinning these determinants 
seems to be assumed rather than explained or included in these models. 
Further extensions to include these fundamental determinants in the 
knowledge accumulation or human capital models would not only 
enrich the literature but also be insightful and impactful from a policy 
perspective. 

NOTES 

1 Romer’s introduction of nonrival ideas provides a solution to the 
Maluthusian problem in Solow’s model where an increase in popula-
tion size adversely impacts the steady per capita growth. In Romer’s 
conception, the increase in population size need not put brakes on eco-
nomic growth as long as it is offset by the growth in the stock know-
ledge (A). 

2 For pedagogic purposes, we consider the standard representation as in 
David Romer [6]. 
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11 BUSINESS CYCLES I: 
SAMUELSON’S MULTIPLIER-

ACCELERATOR MODEL 

One of the main objectives of the study of macroeconomics is to under-
stand the business cycle fluctuations. While the classical economists were 
interested in long cycles in the capitalist economies, the early contributors 
in the Keynesian tradition such as Paul Samuelson, John Hicks and others 
like Michal Kalecki, who straddled between the two traditions, were inter-
ested in understanding the cyclical fluctuations in the short run. The busi-
ness cycle studies were at the heart of macroeconomics research in the 
1920s and the 1930s. Paul Samuelson’s paper published in 1939 is one of 
the seminal contributions to the business cycle literature. The publication 
of the multiplier-accelerator model [11] in many ways laid out a rigorous 
dynamical systems approach formalism to the theory of business cycles. 
Note that the analysis of the business cycle in the Keynesian tradition con-
siders the aggregate structure of the economy and investigates the fluctua-
tions in output in the aggregate variables such as investment, consumption, 
or government expenditure etc. The modern business cycle studies, which 
are interestingly labelled as the new Keynesian models, are articulated 
using the micro-foundations approach that locates the origin of fluctuations 
in the economic decisions of rational agents in the economy. In Chapter 12 
we will study one such model called the real business cycle model. 

In terms of the Keynesian tradition in the business cycle studies, the 
formalism adopted in Samuelson’s article [11], though limited in terms 
of the dynamics generated by the model, led to the subsequent theoretical 
developments in this area. Samuelson himself was aware of the limitation 
of his model, which he explicitly stated 

. . .this representation is strictly a marginal analysis to be applied to the 
study of small oscillations. . . 

(Samuelson [11], p. 78.) 

The implication of such a marginal analysis is that the time series generated 
by any particular solution of the model will determine actual income only 
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for a short time about a market equilibrium. The limitation in the possible 
dynamics produced by the model, in particular the case of generating sustained 
oscillations, led to a great body of work by way of extensions and modifications 
of the original Samuelson’s model that continues to evolve to the present day. 

The initial developments came from Hicks [6], Goodwin [5] and Kaldor 
[7]. Both Hicks and Goodwin articulated models that generated non-damped 
cycles. Hicks’s trade-cycle model is a non-linear modification of Samuelson’s 
multiplier-accelerator model with an upper bound on the income as a ‘ceiling’ 
and a ‘floor’ set by the depreciation rate of investment. More precisely, Hicks 
rewrites the induced part of the investment equation in Samuelson’s model 
as piecewise-linear equations. The economic intuition behind the piecewise-
linear transformation is that as the income increases, the induced part of the 
investment becomes positive and reinforces the rise in income and the upswing 
of the economy may continue until the income reaches its ceiling level. When 
income remains at the ceiling level, the induced investment becomes zero 
causing a down swing of the economy. Moreover, with the assumption of the 
autonomous investment growing exogenously at a constant rate, Hicks was 
able to show the possibility of how a growth process can be coupled with the 
business cycles.1 Goodwin, in his pioneering work [5], endogenised the Hick-
sian ceiling and floor as being determined by the desired capital stock and con-
sequently the discontinuities in net investment generates sustained oscillations 
in the rate of change in both the level of output and the actual capital stock. 
However, later in the paper, by introducing lags in the accelerator and multi-
plier coefficients Goodwin shows that his non-linear flexible accelerator model 
is capable of generating self-sustained fluctuations [9]. 

In more recent times, with the hindsight of developments in dynami-
cal systems theory, the issue of generating sustained oscillations in the class 
of multiplier-accelerator models was reconsidered by Hommes [4], Galle-
gati et al. [2] and Puu et al. [10]. Hommes revisits this issue from the point 
of view of periodicity in the dynamic behavior generated by Hicks’ model. 
In particular, Hommes poses the question whether every time path in Hicks’ 
trade cycle model converges to a periodic time path or not. He extends 
Hick’s model by considering lags in consumption and/or investment, i.e. 
being distributed over several time periods, and demonstrates the existence 
of quasi-periodic orbits and strange attractors. From the perspective of the 
dynamics, Hommes’ extension of Hick’s trade-cycle model is interesting 
in that the attractors in the model exhibit periodic behaviour interspersed 
by sudden bursts of erratic behaviour, which is pertinent for understanding 
regime shifts that we encounter in real economies. In a more detailed inves-
tigation of the dynamics of Hicks’ model, Gallegati et al. [2] use bifurcation 
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analysis to study the conditions under which the model produces periodic 
and quasi-periodic dynamics. In particular, their study reveals the nature 
of the attracting set, for the values of the accelerator coefficient where 
Hicks’ original model turns unstable. In another interesting paper on the 
reformulation of Hicks’ trade cycle model, Puu et al. [10] revisit the ori-
ginal issue of growth oscillations using the relative deviations approach. 
In order to generate growth and cycles in the original Hicks model, Puu 
et al. [10] relate the ‘floor’ directly to the growth in capital stock through 
a constant depreciation rate with the rationale that as capital stock grows 
it increases the absolute value of maximum disinvestment and hence the 
‘floor’ should be falling or decreasing with capital accumulation. With 
this set-up, the authors reformulate Hicks’ model to generate endogenous 
growth trend and show that the model can produce cycles of various 
periodicities. 

From this brief review of the literature, it can be seen that most of these 
extensions in the class of multiplier-accelerator models followed Samuel-
son-Hicks or Goodwin frameworks to generate sustained fluctuations. Since 
our aim in this chapter is to introduce you to this approach to business cycle 
modelling, we use Samuelson’s model, which is in a way relatively straight-
forward, in its original form, and study the range of dynamics generated by 
the model. 

11.1 MODELLING 

The Samuelson multiplier-accelerator model is a discrete model of a closed 
economy. 

The main aim of the model is to understand the fluctuations in the level 
of output through the dynamic interaction between the multiplier and the 
accelerator. The set up of the model is as follows: 

C ˜ bY  , 0 ° b ° 1, (11.1)t t ̨ 1 

g pI ˜ I ° I , (11.2)
t t t 

It
g ˜ G, G ° 0, (11.3) 
pI ˜ k ̨ C ° C ˝, k ˙ 0, (11.4)t t t °1 

Y ˜ C ° I . (11.5)t t t 
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where Yt denotes income (national income), Ct denotes consumption, and 
It stands for total investment. Note that the model is a discrete model with 
time periods denoted by t = 0,1, 2,. . . . 

Let us now understand the equations of the model. First, the aggregate 
consumption expenditure (11.1) is a function of the previous period’s 
income Yt−1, where the coefficient b is the marginal propensity to consume 
(MPC). Second, (11.2) is the investment function that has two terms, 
I g and I p, where the former stands for autonomous investment, which is 
assumed to be a constant (G) as given by equation (11.3), and the latter is 
the induced investment as in (11.4), where k is the accelerator coefficient. 
It is assumed that induced investment is driven by consumer demand and 
increases as the consumer spending C increases between t and t-1. Finally, 
(11.5) represents the macroeconomic income-expenditure equilibrium con-
dition, or the savings-investment equilibrium condition. 

Substituting (11.1), (11.3), (11.4), in (11.2) yields, 

It G k C˝ ˛Ct˛1 ̇ ˜ kb Yt˛1 Yt˛2 ˙ °G, (11.6)˜ °  t ˝ ˛ 

which together with (11.5) implies 

Y ˜ C ° I ˜ bY  ° bkY ˛ bkY  ° G. (11.7)t t t t˛1 t ̨ 1 t˛2 

and rewriting (11.7) gives 

Y b(1° k Y  ° bkY ˛ G. (11.8)˜ )t t˜1 t˜2 

Equation (11.8), a second-order non-homogeneous difference equation, is 
the fundamental equation of Samuelson’s multiplier-accelerator model. We 
note that are only two parameters in the model, namely, the marginal pro-
pensity to consume (MPC) parameter b and the accelerator coefficient k, 
determine the dynamics of the model. The analysis of the model will reveal 
how the interaction between the multiplier b and the accelerator k generates 
various dynamics in output (Yt). 

11.2 ANALYSIS, SIMULATION AND VISUALISATION 

The Samuelson model is relatively easy to solve, but it leads to non-trivial 
solutions that are dependent on the relationship between b and k. We will 
go through the solution to explain this point. First, we know from theory 
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of difference equations (see Appendix A.2) that the solution is given by the 
h psum of the homogeneous ˜Yt °  and particular ˜Yt ° solutions so that 

Y Y  Y° , t ˜ 0 1˛˜ h p 
, , .  (11.9)t t t 

Since the right-hand side of (11.8) is assumed to be constant, we can easily 
determine that the particular solution Yt 

p is the same as the fixed value Y* 

of the output Yt, which is given by 

˛ GY p ˜ Y ˜ . (11.10)
t 

1° b 

To determine the homogeneous solution we need to solve the homogeneous 
equation given by 

h h hYt ˜ b(1° k Y) t ̃ 1 ° bkYt˜2 ˛ 0, (11.11) 

whose characteristic equation 

˜ 2 ° b(1˛ k)˜ ˛ bk ˝ 0 (11.12) 

gives rise to the roots 

2 2 2 2b(1˛ k) ̨  b (1˛ k) ˝ 4bk b(1˛ k) ̋  b (1˛ k) ˝ 4bk
˜1 ° , ˜2 ° . 

2 2 

Now, depending on the sign of the discriminant 

˜ ° b2
(1˛ k)

2 ˝ 4bk, 

μ1 and μ2 can either be real or imaginary, and thus leading to different char-
acteristics to the solution of the homogeneous equation, such that 

h t t˜ ° 0 : Y ˛ c ˙ ˝ c ˙ , (11.13)t 1 1  2 2  

˜ ° 0 : Y h ˛ rt ˙c ˇ t ˝ c ˇ t) (11.14)sin( )  cos( ˆt 1 2 

for t = 0, 1, . . . , where 

� ˇ˝ Im° ˛�1 ir ˜ � ˜ arg  �i ˜ tan � , iand ° ˛ ˆ ˜1 2, ,�i ˆ �Re �˙ ° ˛i ˘ 
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and the parameters c1 and c2 are given by the initial conditions. Therefore, 
the solution to (11.8) can be summarised as 

ˇc � t ˛ c � t 
, � ˝ 0,G � 1 1  2 2Yt ˜ ˛ ˘ (11.15)

1° b � 
t ˙ 1 sin( cos( )  r c  � t) ̨  c2 � t ˆ, � ˝ 0.� 

The necessary condition for the convergence to the fixed point or the equilib-
rium value of output (Y*), such that the homogeneous solution Yt

H → 0, is bk < 
1 (see Appendix A.2 for the analytical proof). Further analysis shows that this 
condition is in fact is sufficient to guarantee convergence to the equilibrium, i.e. 

˘ Gbk ˜ °1 Y ˛Y ˝ ˆconvergenceˇ (11.16)t 
1˙ b 

bk ˜ °1 ˛˝˙divergenceˆ (11.17)Yt 

However, the sign of the discriminant Δ determines whether the solution is 
oscillatory or monotonic. In particular, we note that 

2 4k
˜ ° b (1˛ k)

2 ˝ (4bk) ̇ 0 ˆ b ̇  (oscillatory), (11.18) 
(1˛ k)

2 

2 2 4k
˜ ° b (1˛ k) ˝ (4bk) ˙ 0 ˆ b ˙ 

2 (monotonic). (11.19) 
(1˛ k) 

We can graphically describe the stability properties of Y* in terms of 
four regions in the parameter space (k, b) for 0 < b < 1 and k > 0, deter-
mined by the inequalities (11.18) and (11.19). Furthermore, the boundaries 
of these regions are given by the identities 

4k 1b ˜ , b ˜ , b ˜ 0 and b ˜1. 
(1° k)

2 k 

In Figure 11.1 we see four regions A–D defined by the four identities (two 
lines and two curves) that also define the dynamics about Y*. In region A, 
the roots μ1 and μ2 of the characteristic equation (11.12) are real, positive 
and less than 1, and the dynamics monotonically converges to the equilib-
rium value Y*. In region B the roots μ1 and μ2 are complex and less than 1 in 
magnitude and thus generate oscillatory convergence to Y*. In region C, the 
roots μ1 and μ2 are complex and greater than 1 in magnitude and thus there 
is a oscillatory divergence from Y*. In region D, the roots μ1 > μ2 are real, 
positive and at least μ1 is greater than 1 and thus the system exhibits mono-
tonic divergence from Y*. 

166 



 

  

  

 

 

 
 
 

BUSINESS CYCLES I: SAMUELSON’S MULTIPLIER-ACCELERATOR MODEL 

Figure 11.1: Samuelson’s original qualitative stability diagram 

We can further analyse the dynamics in the different regions from 
the time histories of the output Yt in Figure 11.2. In region A the system 

Figure 11.2: Times-series corresponding to regions A–D in the (k,b)-parame-
ter space in Figure 11.1. The parameter values are G and in (a) (k,b) = (0.2,0.9), 
(b) (k,b) = (1,0.5), (c) (k,b) = (3,0.35) and (d) (k,b) = (3,0.9). In (a) two dif-
ferent initial conditions converge monotonically to the equilibrium value, in 
(b) the dynamics of the trajectory shows oscillatory convergence to the equi-
librium, in (c) the dynamics generates oscillatory divergence away from the 
equilibrium, and in (d) the dynamics yields monotonic divergence away from 
the equilibrium as shown by the time-series of two different initial conditions 
diverging monotonically. 
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exhibits monotonic convergence and thus starting from any initial condition 
˜output converges monotonically to its equilibrium value ° yt ˛. In region B, 

the dynamics of output shows oscillatory convergence, in region C oscilla-
tory divergence and in region D monotonic divergence. The dynamics in the 
respective regions of Figure 11.1 correspond to the time-series in Figures 
11.2 (a)–(d), respectively. 

We can now understand the economic intuition behind the 
dynamics of the model. For any given value of the MPC parameter b, as 
the acceleration coefficient k is increased the model turns from a stable 
system, showing monotonic and oscillatory convergence to the equilib-
rium, to an unstable system exhibiting oscillatory and monotonic diver-
gence away from the equilibrium. In particular, when the acceleration 
coefficient remains below 1 the system always exhibits stability as given 
by stability condition (bk < 1). However, when the acceleration coeffi-
cient exceeds 1, the system loses stability (bk > 1) as the dynamics of 
the system is taken over by the stronger acceleration effect, where firms 
will respond to higher demand and increase their investment, which in 
turn leads to higher output (demand) via the multiplier, and the positive 
feedback between the multiplier and accelerator takes the system away 
from the equilibrium. 

The MATLAB® code to generate the stability diagram in Figure 11.1 is 
given in the following. 

Samuelson’s stability diagram 

%Preamble 
clear all 
close all 

%Parameters 
k_end = 5; 

%Intial Conditions 
k1 = linspace(0,k_end,100); 
k2 = linspaced(1,k_end,100); 
k3 = [0,k_end]; 
b1 = 4*k1./(1+kl).^2; 
b2 = 1./k2; 
b3 = [1,1] 
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%Plotting 
figure(9),hold on 
plot(k1,b1,‘k’,’LineWidth’,2’) 
plot(k2,b2,‘k’,’LineWidth’,2’) 
plot(k3,b3,‘k--’,‘LineWidth’,2’) 
xlabel(‘k’),ylabel(‘b’) 
box on, hold off 
axis([0 5 0 1.2]) 

Simulating the Samuelson model (11.8) follows the same method that 
we used for other difference equations in Chapters 2 and 3. 

Simulation of Samuelson’s model 

%Preamble 
clear all 
close all 

%Parameters 
b = 0.9; %0 < b < 1 
k = 0.2; %k > 0 
G = 10; 

%Intial Conditions 
Y0 = G/(1-b)-0.1; 
Y1 = G/(1-b)—0.2; 

%Simulation parameters 
n = 8; % Number of iterations 

%Simulation 
Y(1) = Y0; 
Y(2) = Y1; 
for t = 3:n+1 
Y(t) = b*(1+k)*Y(t-1) − b*k*Y(t-2) + G; 

end 

%Fixed point 
Yfp = G/(1-b); 
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%Plotting 
figure(49),hold on 
plot(0:n,Y,‘ko’,‘MarkerFaceColor’,‘k’,’Markersize’,4) 
plot([0,n],[Yfp,Yfp],‘k--’) 
xlabel(‘t’),ylabel(‘Y_t’) 
box on, hold off 

Numerical explorations 

Readers are encouraged to experiment with the parameter values and 
the initial conditions to try and visualise the dynamics of the model. 
For instance, using the MATLAB® codes above, you are encouraged 
to explore the parametric values for which the model generates period 
orbits. Hint: Explore the boundaries of the regions in Figure 11.1. 

11.3 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

Samuelson’s multiplier-accelerator model laid a rigorous foundation for 
the study of business cycles. The model is set in the framework of Keynes-
ian economics, which began flourishing in the 1930s, and articulates a 
dynamical-systems approach to the study of business cycles. As we noted 
earlier, initial extensions of the model came from Hicks [6] where he was 
able to show how a growth process can be coupled with the business cycles. 
The growth part in the Hicksian model was introduced via the assumption 
of exogenously growing autonomous investment in Samuelson’s model. 
However, in order to generate non-damped cycles, Hicks introduced bound-
aries such as ‘ceiling’ and ‘floor’ within which the dynamics exhibit busi-
ness cycles around the trend rate of growth. Goodwin [5] further extended 
Hick’s concept of ceiling with the desired level of capital stock and was 
able to show self-sustained oscillations within the general framework of the 
multiplier-accelerator interaction. 

The intellectual context of the initial wave of business cycle models 
was surely Keynesian in the sense that they were focused on variables 
such as investment, capital stock etc., in the aggregate. Looking at these 
models in the current intellectual context of the new Keynesian economics, 
the first generation business cycle models proposed by Samuelson, Hicks 
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and Goodwin arguably lack the necessary micro-foundations. One of the 
implications of the Lucas critique[8] is that of articulating the necessary 
microeconomic behavioural foundations for the study of business cycles, 
and macroeconomics in general. The modern business cycle studies articu-
late such micro-founded business cycle models and in the next chapter, we 
will study the the foundational model in the genre called the Real Business 
Cycle (RBC) model. 

NOTE 

1 Here we provide a schematic overview pertaining to the dynamics of var-
ious models in this area. We would refer the interested reader to other 
excellent sources for a detailed discussion on the models. For an elab-
orate discussion on Hicks’ model, see Goodwin [5], Dussenberry [1], 
Gandolfo [3] and Tu [12]. 
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 12 BUSINESS CYCLES II: THE REAL 
BUSINESS CYCLE MODEL 

12.1 ECONOMIC PROBLEM 

The family of business cycle models can be divided into two broad 
groups. In one group we can assimilate all the models that consider the 
economy from an aggregate point of view and argue that the business 
cycle fluctuations are driven mainly by the volatility in the aggregate 
variables, such as the investment expenditure, due to a wide range of 
reasons from non-realisation of expectations to animal spirits. Broadly 
speaking, this group of aggregate economy models can be labelled as the 
Keynesian business cycle models with notable examples including Samu-
elson and Hick’s Multiplier-Accelerator models seen in Chapter 11. The 
second group comprises those models that articulate micro-foundations 
to the aggregate economy and argue that the business cycle fluctua-
tions arise as a result of the rational response of agents to unanticipated 
shocks to the economy. The most prominent and widely used model in 
this group is the real business cycle model (RBC), which is the subject of 
study in this chapter. 

The real business cycle model form the basis for the more advanced 
dynamic stochastic general equilibrium (DSGE) model, which is the 
benchmark model for macroeconomic policy analysis. The real busi-
ness cycle model is an extension of the conventional general equilibrium 
models and where the representative agent maximises life-time utility 
rather than utility at a point in time. These models are derived from the 
class of Ramsey-Cass-Koopmans inter-temporal optimal growth models 
(see the box below). 

In the following, we shall explore the general analytical architecture 
that underpins real business cycle models and in turn discuss and analyse 
those building blocks in detail. 
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The Ramsey-Cass-Koopman growth models 

The Ramsey-Cass-Koopman class of growth models generalises 
Solow’s growth model by endogenising the savings rate and proposes 
the determination of the optimal growth in a decentralised market 
economy. These models followed Frank Ramsey’s [6] pioneering 
articulation of the optimal saving model published in 1928 as a central 
planner’s problem of maximizing social welfare over successive gen-
erations. David Cass [1] and Tjalling Koopmans [5] simultaneously 
and independently adopted and extended Ramsey’s model to a decen-
tralised economy setting. 

12.2 MODELLING 

In terms of the basic RBC model, we assume a private economy, with 
households and firms, that is closed for foreign trade and which lasts for T 
discrete time periods.1 Let us further discuss various assumptions and set up 
the economic problem of the households and firms in this economy. 

HOUSEHOLDS 
There exists a large number of identical households and for simplicity the 
total number of households is normalised to 1. The fact that we assume a 
large number of identical households intuitively means that households are 
assumed to behave competitively, i.e. no individual household can affect 
the behaviour of prices in the economy. The households do not take leisure 
and they work 1 unit of time per period. In other words, households work 
all the time and leisure does not give them any utility. The economic choice 
that the households have to make in each period is how much to consume in 
the current period and how much to save for the future. 

Let ct ≥ 0 denote the household’s consumption and u(ct) its utility at time 
t, and assume that each household’s life-time utility function U is of the form2 

U c  c, ,˜,cT ˛ u c0 ˙ ˇu c1 ˙ ˇ
2u c2 ˙ ̇ ˇ T u c° ˛T ° 0 1 ˝ ° ˛  ° ˛  ° ˛  

T 
t˝ˆ ˇ u c° ˛t , (12.1) 

t˝0 

where β ∈ (0,1) is the discount factor that reflects the degree of impatience 
the household has for future consumption, i.e. it derives less utility from the 
same consumption if that consumption occurs at a future date. 
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Household impatience 

In practice, the degree of household’s impatience is measured by the 
time discount rate ρ that is related to the discount factor β through 

˜ 
°

˛ 
˝ 
1 

1 
. 

A high discount rate ρ implies a low discount factor β, which means 
that the households are more impatient towards future consumption. 

Now, let us write down the inter-temporal budget constraint of the house-
holds. The households work one unit of time each period, for which they 
earn a wage income of wt. They also earn interest income rt for their saving. 
Since it is a perfectly competitive economy, the households take prices as 
given, i.e. they are price takers. The households spend part of their income 
on the composite consumption good, which is assumed to be the numeraire 
good and its price is normalised to 1. Consequently, this economy is akin to 
a pure-commodity exchange economy with the composite consumption good 
where money is assumed to act as veil or simply a medium of exchange in the 
market. Finally, households are assumed to hold an initial asset endowment, 
a0, at the starting time period t = 0. Now letting wt denote the real wage and rt 
denote the real interest rate, the households’ budget constraint at time t is given 
by 

c ˜ a ° w ˜ ˜ r1 a .t t˜1 t ˛ t ˝ t (12.2) 

The inter-temporal budget constraint (12.2) equates the expenditure for 
consumption ct and the expenditure of purchase of assets that pay out in the 
next period at+1 with the labour income wt plus the principal and the interest 
of assets purchased in the previous period (1 + rt)at. 

Assets 

All assets in this economy are real and there are no monetary assets. 
Capital assets are assumed to fully depreciate in one time period. 

The assets owned by the households are assumed to be capital assets 
and in each period, the households decide to ‘rent’ their capital to the firms 
and earn interest or rental income. The firms use the capital in the production 
of goods and services, which in turn are bought by the households. 
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At the start of life, so to speak, say at t = t0, the households start with 
(or are born with) assets a0. Since the economy lasts only up to time T, we 
need to figure out what happens at the end of life or at period T. For simpli-
city, we assume the households do not leave any unspent assets after death, 
which implies that aT+1 = 0. 

Capital and labour assumption 

While the household owns capital assets, firms have the technology to 
produce output using capital and labour. Firms hire labour and borrow 
capital from the households. This is an inconsequential assumption 
and simplifies the model without taking away any substantive content 
of the argument. 

With the above assumptions, the household’s economic problem can 
now be stated as follows. Given the time path of wages and interest rates 

t T= w r( ,t t t) =0 and initial assets a0, the household wants to maximise its life-time 
utility function and solve the inter-temporal optimisation problem 

max U c° 0 , ,˜ cT ˛, (12.3) 
,n kt t 

subject to c ˜ a ° w n ˜ ˜ r a , (12.4)˛1 ˝t t˜1 t t  t t 

where 

ct ≥ 0, (12.5) 
° 0. (12.6)aT ̃ 1 

Assuming that the utility function u(ct) is guaranteed for all ct ≥ 0, for all 
times, and when c is close to zero 

du(c)
lim ° ˛, 
c˜0 dc 

we want to derive the necessary and sufficient conditions for the optimal 
consumption choice. To that end, we set up a Lagrangian function as given by 

T 

˛ ˝ ˇ ˛ ˛1 r a˝ ˆ ˆ  ˝ ˜U c , ,° c ˙ ˘ w n ˙ ˙ c a0 T t t t  t t t t˙1 
t˜0 (12.7)T T 

t˜ˇ� u c˛ ˝ ˙ˇ˘ ˛w n ˙ ˙ r a  c a ˝,˛1 ˝ ˆ ˆt t t t  t t t t˙1 
t˜0 t˜0 
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where λt denotes the Lagrangian multiplier at time t. Setting the first-order 
conditions with respect to ct, ct+1 and at+1 to zero and simplifying yields, 

˛ ˝ ˙  (12.8)˜ tu ct ˆ ° t 
t˛1˜ u c  ° (12.9)˝˙ ˆ ˇt˛1 t˛1 

˜ ° ˜ ˝1˛ rt ˙ (12.10)t t˛1 ˛1 

Combining (12.8)-(12.10) results in the inter-temporal optimality condition 
or the Euler equation 

u c˜° ˛t
1 .˝ ˙ r (12.11)t˙1 u cˆ ˜° ˛t˙1 

The Euler equation (12.11) is the household optimality condition that states that 
the marginal cost of foregoing current consumption (for future consumption) is 
equal to the marginal benefit of saving today as given by the rate of interest. 

From the budget constraint (12.2) we get 

c ˜ w ° ˛1° r a˝ ˙ a (12.12)t t t t t°1 

and further iteration leads to 

ct ̃ 1 ° wt ̃ 1 ˜ ˛1˜ rt ̃ 1 ̋ at ̃ 1 ˙ at ̃ 2 , (12.13) 

both of which can be substituted into the Euler equation and can be 
simplified as, 

u w˜ ˛1 r a˝ ˙ a ˝ ˆ ˇ 1° r ˝ ˜˛ ˛1 r a (12.14)˛ t ° °  t t t°1 ˛ t°1 ˛u wt°1 ° °  t°1 ̋ t°1 ˙ at°2 ˝˝. 
Thus, the households’ optimal consumption plan is derived by solving the

˛ 
t t  ° t˛Euler equation (12.14) by taking wages and interest rates ˜w r, t T  

0
 as given. 

Equation 12.14) is a second-order difference equation in terms of households’ 
assets, i.e. at, at+1, at+2, with a given initial condition a0 and the terminal con-
dition aT+1 = 0. Next, let us derive the optimality conditions for the firms. 

The Euler equation 

Equation (12.11) is known as the Euler equation, which provides 
the solution to the households’ own optimisation problem. It is the 
households’ own potential supply (of labour) and demand (for goods) 
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decision that maximises its own utility. The Euler equation is a differ-
ence equation (or in the continuous case, a differential equation) that 
describes the evolution of economic variables along an optimal path. 
The name recognises the pioneering works of mathematicians Leon-
hard Euler, Joseph-Louis Lagrange and Daniel Bernoulli in the 1750s, 
in the context of the study of classical dynamics of physical objects. 

FIRMS 
Like for the households, we assume all firms are identical and normalise the 
total number of firms to 1. The representative firm in each period hires nt 
number of labour and rents kt amount of capital (machines) from the house-
holds and produces the consumption good yt. The production technology is 
described by the standard Cobb-Douglas production function 

˝ 1˛˝y ˜ Ak n  , 0 °˝ °1, (12.15)t t t 

where A is the technology parameter. The parameter α measures the contri-
bution (and hence the share of) capital in production and the share of labour 
in production is thus given by 1 − α. 

Physical capital 

Recall that the asset the households save is the physical capital, which 
is being rented to (or invested in) the firm. 

We let the rental price per unit of capital be μt. Taking depreciation of 
physical capital into account, the effective rental income that the household 
receives is rt = μt − δ, where δ is the depreciation rate. The representative 
firm takes wages wt, the rental rate of capital is rt, and maximises its profits 
at time t as given by 

max y ˜ w n ˜ ° kt t t t tn k, , (12.16)
t t 

˛ 1°˛
subject to y ˜ Ak n  , (12.17)t t t 

where 

kt ≥ 0, (12.18) 
nt ≥ 0. (12.19) 
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Since we can transform the constrained optimisation problem to an uncon-
strained problem by substituting the constraint in the objective function, the 
maximisation problem can be written 

max 
n kt , t 

˜ ˜1˛Ak n  t t ˛ w nt t ˛ ° k ,t t  (12.20) 

subject to wt 
˛ kt˜ °(1 � )A˙ n˝ t 

�
ˆ 
˘ 
ˇ 

, (12.21) 

˜t 
˝ kt˛ ° Aˆ n˙ t 

°1�
ˇ 
� 
˘ 

, (12.22) 

where 

kt ≥ 0, (12.23) 
nt ≥ 0. (12.24) 

The optimality conditions for the firms imply that they set their wage rate 
equal to the marginal product of labour and the rental rate of capital equal to 
the marginal product of capital. 

COMPETITIVE EQUILIBRIUM 
The competitive equilibrium is defined as the state where both households 
and firms maximise their objective functions, subject to their constraints, 
and markets clear. The markets in this economy are the labour, capital and 
goods markets. In a competitive equilibrium all these markets have to clear, 
where demand equals supply, for each time period. 

The labour market clearing condition simply states that the demand 
for labour by the representative firm nt equals the supply of labour by the 
representative household. Since we have assumed that the household sup-
plies one unit of labour in each period, the labour market clearing con-
dition is 

nt = 1. (12.25) 

In the capital rental market, the demand for capital by the representa-
tive firm at t is given by kt and the household’s asset holdings at t equals at. 
Therefore, the capital market clearing condition becomes 

at = kt. (12.26) 
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Walras’ law 

Given the prices (wt, rt, μt, pt), as the both labour and capital markets 
clear with nt = 1 and at = kt for all t, and as the households and firms 
achieve their respective optimal choices, the goods market also clears 
for all t. 

The goods market clearing condition again is simply demand equals 
supply. The demand for goods arises from households’ expenditure on con-
sumption goods ct plus their expenditure (or investment) on future assets 
at+1. Using the household budget constraint 

c ˜ a ° w n ˜ ˜ r a˛1 ˝ (12.27)t t˜1 t t  t t 

and using at = kt and at+1 = kt+1 we can rewrite it as 

c ˜ k ° w n ˜ ˜ r k . (12.28)˛1 ˝t t˜1 t t  t t 

Since rt = μt − δ, we have 

c ˜ k ° ˛ w n ˝ ° ˙ (12.29)k ˜ ˆ ˇ kt t˜1 t t t t t 

or 

c ˜ k ° (1°˝ )k ˛ w n  ˜ ˙ k (12.30)t t˜1 t t t t t 

Starting with the representative firm’s problem, substituting for wt and 
μt, and further simplifying yields 

ˆ 1°ˆc ˜ k ° (1°˝ )k ˛ w n  ˜ ˙ k ˛ Ak n , (12.31)t t˜1 t t t t t t t 

which is the goods market clearing condition. 

The Euler’s product exhaustion theorem 

When labour and capital are rewarded exactly equal to their respective 
marginal products they will exhaust the total product, so that 

w n  k y Ak nt t  t t  t t t˜ ° ° ˛˝ ˙ ˙1 
, 

which is referred to as the Euler’s product exhaustion theorem. 
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Finally, we can characterise the equilibrium allocation with a view to 
assessing how well the model describes reality. We can do this by substitut-
ing the labour market, capital market and goods market clearing conditions 
in the household optimality condition, i.e. the Euler equation (12.14). 

First, from the capital market clearing condition we have kt ˜ atkt°1 ˜ at °1 

and kt ̃ 2 ° at ̃ 2. Then we know from the optimality conditions of the repre-
sentative firm that 

˛ k ˆ
� 

wt ˜ °1 � )A t ˘ ˜ °� ) t 
� 

(12.32)( ˙ (1 Ak , 
n˝ t ˇ 

1°�
˛ k ˆ r ˜ ° ˜ A t ,� � � ˘ °� (12.33)t t ˙ n˝ t ˇ 

and similarly for wt+1 and rt+1. Substituting (12.32)–(12.33) in the household 
Euler equation (12.14) and further simplifying yields 

u˜ˇAk ° ˙ ˆ˛ )k ˆ k ˘(1 �t t t ̇ 1 
(12.34)

°ˆ1 ° ˝ 1˙° Akt ̇ 1 ˆ˛ ˘u˜ Akt ̇ 1 ˙ ˆ1 ˛ )kt ̇ 1 ˆ kt ̇ 2 ˘,ˇ ˇ ( 

which yields the optimal path or the steady state solution for the inter-
temporal optimisation problem. Note that equation (12.34) is a second-
order difference equation in capital stock, i.e. kt, kt+1 and kt+2, that requires 
the parameters α, A, δ and β, the derivative of the utility function u(c) that 
needs to be specified, along with the initial condition for k0 = a0 and a ter-
minal condition kT +1 = aT+1 = 0. 

12.3 ANALYSIS AND VISUALISATION 

The final version of the Euler equation (12.34) is the solution to the 
problem of market exchange where, at any given prices, both households 
and firms find their respective optimal plans and the economy is at its equi-
librium. In this homogenous representative agent set up, it is also the equi-
librium path, or the optimal path, for the economy as a whole. In an “ideal” 
world, given the assumptions such as agents are rational, the markets are 
perfectly competitive, frictionless, and a world without any uncertainty, the 
optimal path of the model will always yield. However, the real business 
cycle model provides a simple way to describe the reality of fluctuations 
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and cycles in real economic data such as GDP, employment etc. The market 
clearing Euler equation (12.34) brings forth the essence of the real busi-
ness cycle argument in a succinct way where the business cycle fluctuations 
are nothing but optimal responses of rational agents for shocks. Exogenous 
shocks unsettle households and firms off the optimal path and generate fluc-
tuations in the short run. If the shocks are temporary, there will be fluctua-
tions around the optimal path whereas permanent shocks will lead to a shift 
in the optimal paths. In any case, the real business cycle theory argues that 
the fluctuations and business cycles are fundamentally driven by exogenous 
shocks to various parameters in the model. The dominant candidate used in 
this literature is the technology shock, i.e. perturbing the term A in the pro-
duction function, although other parameters like the discount factor β, pref-
erence parameter σ etc., are also used. 

The final Euler equation (12.34) cannot be solved analytically. The 
general method used in the literature is to log-linearise the system around a 
‘steady state’ path, where all variables are growing at the same rate. Then, 
using the Taylor approximation and the perturbation method, the model 
is used to study the impact of various shocks or impulses. The shocks 
(impulses) are applied to the technology and other parameters, and the 
resulting response of the system, in terms of both return time to the steady 
state and the nature of convergence to the steady state path, is analysed. In 
this chapter, we adopt an alternative approach of solving the inter temporal 
optimisation problem (12.34) using numerical methods and approximate 
the optimal solution to the problem. This approach seems more intuitive 
since the original problem is a dynamic optimisation problem, whose solu-
tion is an optimal or steady state trajectory, and business cycle fluctuations 
are deviations from the optimal trajectory. 

In the following, we will use three parameters to introduce shocks in 
the model and analyse and visualise them. First, we shall find the solu-
tion for the Euler equation (12.34) using numerical methods and deter-
mine the market clearing optimal path for the economy. For this we need 
to assume a specific utility function u(c) for the households, which is 
given by 

1°˙c °˙ °1°˙u c( ) ˜ ˛ 0, uˆ( )c ˜ c ˛ 0, uˆˆ( )c ˜ °˙ c , 0 ˝˙ ˝1, (12.35) 
1°˙ 

where the parameter σ is the preference parameter and the perceived contri-
bution of future utility is less than current consumption. 

The Euler equation (12.34) is a second-order difference equation, 
with two boundary conditions, one at t = 0 and one at t = T + 1, i.e. at the 
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beginning and the end of the life span. In economic terms, this means that 
the capital stock is time dependent and has memory, which can be seen in 
(12.34), where kt, kt+1 and kt+2 depend on one another. 

12.3.1 SOLUTION METHOD 
The solution of nonlinear discrete boundary value problems like the 
Euler equation (12.34) described here can get quite technical, but we will 
provide a qualitative description of the pathway. There are a number of 
ways in which one can solve these kinds of boundary value problems 
such as shooting methods, finite difference methods and collocation 
methods. Here we will use a finite difference method, since we have a 
natural discretisation in k that is defined at discrete times t. This means 
that we need to find the entire path simultaneously for all time steps 
by solving a multidimensional nonlinear problem. Since the number of 
unknowns is relatively large and the equation is nonlinear, we cannot 
find a solution analytically. Instead we will use the Newton-Raphson 
method to approximate the optimal path. 

First we discretise the the optimal path over T + 1 years in T + 2 time 
steps that are given by 

a ˜ k k ° k , ,k k  ° k k, , , , , ,  ˜ 0,0 0 1 t˛1 t t˝1 T T ˝1 

which means that the problem has T unknowns, since the boundary values 
k0 = a0, kT+1 = 0 are known. Now, letting 

k ˛ k k k , ˝ T
˜( ) ° ˜ ˛ ˝k ,˜ ˛ , , ˝,˙,˜ ˛k ,k k  ,˜ ˛k ˝˝0 0 1 0 1 2 T T ˆ1 T T ˇ1 T ˇ1 T ˇ1 

and 

k ˜ ˛k , , , ,° k Tk k ˝0 1 T T ̇ 1 

we can rewrite (12.34) as a system of equations 

˙ ˜ k �
0 ˛ ˝0 ˙0� 

ˇ � ˇ �k k kˇ ˜1 ˛ 0 , ,1 2 ˝ � ˇ0� 
˜( )k ° 0 or ˇ  � ° ˇ  � (12.36)

ˇ � ˇ �˛ k k 0�ˇ˜T kT ˘1, ,T T �1 ˝� ˇ 
ˇ � ˇ �
ˆ ˜T �1 ˛kT �1 ˝ � ˆ0� 
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that we want to solve, where 

˜ ° k ˛ a ,0 0 0 

˜ ° uˇ˙ Ak˘ ˝ (1˛� )k ˛ k ˆ˛t t˛1 t˛1 t 

˘˛1 ˘� ˙1˝˘ Ak ˛� ˆ uˇ ˙ Ak ˝ (1˛� )k ˛ k ˆ,t t t t˝1 

˜ ° k ˛ a ,T ̋ 1 T ̋ 1 T ̋ 1 

for t = 1,...,T. 
The Newton-Raphson method for finding the optimal path k* can now 

be written 

n˜1 n n nk ˛ k ° Dˇ k ˇ k , n ˛ 0 1, ,ˆ˝ ˝ ˙˙°1 ˝ ˙  
where 

ˇ ˛ ˝ ˙k ˜ k˜ ˛ ˝ ˙ �
0 0 0 0

� ˜ �
˛k ˛k� 0 T ˆ1 � 

� �D k( )  ° ˛ °˜ ° 
� � 
� ˛˜ ˝k ˙ ˛˜ ˝k ˙ �T ˆ1 T ˆ1 T ˆ1 T ˆ1˜� �˛k ˛k˘ 0 T ˆ1 � 

is the Jacobian for Φ (k) that is needed for the method. 

Initial conditions 

To solve the optimisation problem, using the Newton-Raphson 
method, we need an initial guess kt 

0  for the optimal path. There are 
many different approaches to make an initial guess, but the problem 
is that we do not know anything else regarding the optimal path other 
than the values k0 and kT+1. Therefore, a basic approach is to discretise 
the initial guess linearly between k0 and kT+1 so that 

k a t 
T 

t Tt 
0 

0 1 
1 

0 1  1˜ ° 
˛ 

˝ 
˙
ˆ 

ˇ 
˘
� ˜ � ˛, , , ,  , 

which forms a straight line between k a0 
0 

0 =  at t = 0 and k aT T˜ ˜ ° ° 1 
0 

1 0 
at t = T + 1. 

Having found the initial conditions, the Newton-Raphson method is 
iterated until the solution kn converges to the optimal path p * , so that 

*n ˜184 k k , n ̃ °. 
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However, since we do not know what the optimal path k* looks like nor do 
we want to iterate the Newton-Raphson method for ever, the next best thing 
we can do is to compare two consecutive iterations of kn and stop the itera-
tion when the difference becomes smaller than some error ε, or 

n n˜1 2
 k ˜ k  2 ° ˛ 

for some n. 
We will not introduce the MATLAB® code for the method here; 

instead it can be found in Appendix B. 

12.3.2 EQUILIBRIUM SOLUTION: THE OPTIMAL 
PATH 

The equilibrium solution to the RBC model (12.34) is shown in Figure 12.1 
with the parameters described below. It is the unique optimal solution that 
puts the representative agent economy on the Pareto-efficient allocation path. 
We can now analyse the stability of the optimal path for parametric variations, 
where we analyse the optimal path for different values of the technology para-
meter A, the discount factor β, the preference parameter in the utility function 
σ, the depreciation rate δ, and the capital income share parameter α. 

Parameter values for the base case scenario 

For the base case, the life span of the economy is T = 100, the tech-
nology parameter A = 1, the discount factor β = 0.975, the preference 
parameter σ = 0.5, the depreciation rate δ = 0.025 and the capital income 
share parameter α = 0.4. The initial condition for the Newton-Raphson 
method is taken to be a0 = 10 and the terminal condition as ε = 0.0001. 

Figure 12.1: The optimal path p* for a life cycle of T = 100, with α = 0.4, 
β = 0.975, δ = 0.025, σ = 0.5, A = 1 and a0 = 10. 
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12.3.3 OPTIMAL PATHS UNDER 
PARAMETER VARIATIONS 

From Figures 12.2 (a), (b) and (d) we can see that the optimal path is sens-
itive to the technology parameter A, the discount factor β and the factor 
income share α, respectively. On a relative scale, the optimal path is more 
sensitive to the discount factor β than the other two parameters. This is 
understandable since the discount factor influences an individual agent’s 
allocation between consumption today and tomorrow. As the discount 
factor decreases, from the base case of β = 0.975, the optimal path flat-
tens suggesting that the representative agent’s consumption favours current 
consumption over future consumption, which is intuitive since the higher 
discount rate ρ puts more weight on the present vis-a-vis the future. This 
would in turn imply that there would be relatively less growth in capital 
accumulation in the lower discount factor case, for instance in the case of β 
= 0.9, as compared to the base case. 

Figure 12.2: The optimal k for a life for T = 100. In (a) A is varied between 
0 and 10, in (b) β is varied between 0.9 and 0.975, in (c) σ is varied between 
0.2 and 0.8 and in (d) α is varied between 0.2 and 0.6. 

186 



 
 
 
 
 
 
 
  

 

    

  
 
 
 
 
 
 
 

BUSINESS CYCLES II: THE REAL BUSINESS CYCLE MODEL 

Similarly, the optimal path is also sensitive to the technology para-
meter A. The technology shocks are also known as productivity shocks 
since improvements in technology, assuming these shocks last one 
time period, lead to an increase in the marginal product of labour and 
wages. This, in turn, will increase consumption and output, and the 
representative agent household will smooth consumption by building 
capital for tomorrow and thus increase the capital accumulation in the 
economy. This can be seen in the increase in the scale of the optimal 
path for higher values of the technology parameter A, as shown in 
Figure 12.2 (a). 

The optimal path is also sensitive to α, but relatively less than for the 
parameters discussed above. Higher income share of capital (increasing α 
from 0.2 to 0.6) implies higher capital accumulation, as shown in Figure 
12.2 (d). The increase in capital accumulation is via increased savings in 
the model. Since it is a representative agent model with the same saving 
rate, higher income share for capital translates to higher saving and higher 
capital accumulation. In a more realistic heterogeneous agent model with 
different saving propensities, this result may not yield as increased saving 
on the one hand would be countered by the adverse impact of income dis-
tribution on consumption on the other hand, and the net impact on capital 
accumulation may become ambiguous. 

12.3.4 OPTIMAL PATHS FOR STOCHASTIC 
VARIATIONS IN PARAMETERS 

We can also study the sensitivity of the optimal path when the system para-
meters are varied stochastically over the life span of the economy. Since 
the idea here is to provide an example of the impact of such stochastic vari-
ations in parameters on the optimal path, we choose the parameters from a 
uniform distribution for each time step and see how this affects the optimal 
path. More specifically, we perturb or shock the technology (A), agents’ 
preference (β and σ) and other parameters (α) in the model, and assume that 
the shocks are drawn from a uniform distribution. 

In Figure 12.3(a) the value of A at each time step is taken from the 
uniform distribution U([1,1.5]) and a single optimal path corresponding 
to that value is shown, while in Figure 12.3(b) for 100 different paths of 
A are depicted. We can see the variability, or fluctuations, in the optimal 
paths for different values of the technology parameter A. One could also 
extend this analysis by considering the technology shocks as having 
‘memory’ by assuming that they follow an autoregressive model AR(1) 
process, so that At = At−1 + εt, where εt can be drawn from a distribution of 
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one’s choice. Such an analysis will also yield a similar result showing the 
fluctuations in the optimal path. 

Similarly, Figure 12.4 shows the variability in the optimal paths 
when the representative agent’s preference parameter σ and the capital 
income share parameter α are shocked by drawing the respective values 
from different uniform distributions. In both these cases, we see that the 
model generates fluctuations, or business cycles. In Figure 12.5 (a) we 
plot the optimal paths for 100 different values of A drawn from a uniform 
distribution. The mean optimal path and the standard deviation of these 
curves are superimposed on top of the optimal curves. One can easily 
infer the amount of variability that the technology shocks generate in 
this model. This can also be seen in a more conventional way of visu-
alizing business cycle fluctuations in Figure 12.5 (b) where we plot the 
standard deviation of 100,000 optimal paths for as many different values 
of the technology shocks drawn from the uniform distribution. We can 
clearly see the level of variability that the technology shocks and other 
parameters induce in this simple model of the real business cycle. The 
success of the real business cycle models is this very fact that they 
generate fluctuations that closely ‘mimic’ the real economic data. From a 
policy perspective, one can calibrate the model, assuming that the model 
is the underpinning model of the real economy, to study the potential 
economic cost of technology shocks and potential benefits of fine tuning 
the agents’ preference parameters through policy interventions. 

Figure 12.3: The optimal k for a life span of T = 100 years for different 
values of the technology parameter A taken from the uniform distribu-
tion U([1,1.5]). In (a) a single outcome is depicted and in (b) 100 separate 
optimal paths corresponding to different A values are shown. 
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Figure 12.4: The optimal k for a life span of T = 100 years for 100 different 
σ values in (a), where σ taken from the uniform distribution U([0.35,0.65]), 
and in (b) α taken from the uniform distribution U([0.35,0.45]). 

Figure 12.5: The optimal k for a life cycle of T = 100 years for 100000 
values of A taken from the uniform distribution U ([1,1.5]). In (a) 100 
optimal paths corresponding to different values of A are plotted against 
time. The mean (dashed curve) and standard deviation limits (solid curve) 
are superimposed on top of the optimal paths. In (b) the standard deviation 
is plotted for the 100,000 individual values of A versus time. 

12.4 CONCLUDING REMARKS, EXTENSIONS 
AND CHALLENGES 

In this chapter, we set up a basic real business cycle model and ana-
lysed the model both analytically and through numerical simulation 
methods. The intuition of the model is quite straightforward, namely, 
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business cycle fluctuations are optimal responses of rational agents to 
unanticipated changes, or shocks. Since the representative rational 
agents know the underlying model of the economy and have taken all 
possible information into consideration in their supply and demand deci-
sions, only unanticipated or random shocks can thwart agents’ optimal 
plans. Therefore, business cycle fluctuations in economic data arise 
due to the rational agent’s optimal response to unanticipated shocks. 
When the shocks are temporary, the fluctuations arise from consump-
tion smoothing along the same optimal path, whereas a more permanent 
shock may induce shifts in the optimal path as the agent recalibrates the 
optimal path. 

Although the model we presented here is a deterministic model, where 
we introduced stochastic variations in some parameters, a more general 
model would build stochasticity in the objective function of the households. 
For instance, in such a general model, at the most basic level, the house-
holds would be maximizing their expected life-time utility, which can be 
represented as 

ˇ ˛ 
t � 

max E �˝˜ ˙ ˆt �u c 
ct ˘ t °0 � 

and firms face a production function with a time varying technology 
At, which follows an AR(1) process. With this general set-up, the com-
petitive general equilibrium becomes a stochastic process and the solu-
tion of the model would entail solving the evolution of the endogenous 
variables and deriving the optimal path. This general model is known as 
the dynamic stochastic general equilibrium (DSGE) model in the liter-
ature [8,9], which has become the workhorse model for macroeconomic 
policy analysis. The success of the DSGE models is their ability to 
mimic styliɀed facts in terms of volatility, persistence and co-move-
ments between variables that can be seen in the macroeconomic data. 

However, the basic DSGE model still suffers from the shortcoming of 
lacking agent heterogeneity and remaining non-monetary in terms of the 
effects of the financial side of the economy on agents’ consumption and 
saving decisions. The latter shortcoming became more pressing for the 
DSGE models post-2008 financial crisis. The newer generation of DSGE 
models, generically known as the heterogeneous agent new Keynesian 
(HANK) models [3] address some of these concerns. These models have 
an infinite number of households who differ in terms of labour endow-
ments, and vary stochastically at each period, and as a consequence the 
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capacity to accumulate savings varies over the population. The supply 
side is represented by a standard representative firm that determines its 
labor and capital demand according to the marginal return of both these 
production factors. The complexity in these heterogeneous agent models 
is such that at any given time the agents need to forecast future path of 
prices, which requires the knowledge of the aggregate capital stock of 
the economy. In a standard representative agent model, the problem can 
be solved in a trivial way since individual savings and aggregate capital 
stock coincide. However, in the heterogeneous agent set-up the aggregate 
capital stock depends on the distribution of savings across individual con-
sumers. Or in other words, the distribution of wealth becomes a crucial 
element in the households’ optimisation problem. Moreover, these 
complex models rely on modern computational techniques and policy 
implications that are sensitive to particular numerical techniques used to 
find solutions.3 

In more recent times, the heterogeneous agent DSGE models are 
undergoing further refinements. Some of these attempts take inspiration 
from the complexity science and extend the DSGE models with hetero-
geneous agent population that can give rise to multiple equilibria result-
ing from the agent diversity and interaction. Professor David Vines, at 
the University of Oxford in the UK, issues a clarion call for such refine-
ment in his project ‘Rebuilding Macroeconomic Theory’, where he pro-
poses ‘a new multiple-equilibrium and diverse (MEADE) paradigm’ 
as the future of macroeconomics. He argues that the way forward for 
macroeconomics is 

. . . to start with simple models, ideally two-dimensional sketches, that 
explain mechanisms that can cause multiple equilibria. These mechanisms 
should then be incorporated into larger DSGE models in a new, multiple-
equilibrium synthesis. All of this will need to be informed by closer 
fidelity to the data, drawing on lessons obtained from detailed work on 
policy models . . . 

(Vines and Wills [10], p. 427). 

These methodological refinements provide a more secure founda-
tion for the DSGE models. Further extensions, particularly on the substan-
tive front in terms of integrating the monetary side of the economy and 
endogenising the evolution of wealth distribution in the model would help 
incorporate more realistic features in the DSGE models. 
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NOTES 

1 For the purposes of this book, we will deal only with the non-overlapping 
finite-time horizon model. See Romer [7] for a discussion on the over-
lapping generations model. 

2 For the purposes of description, we adapt the textbook model developed 
by Krueger [4]. We gratefully acknowledge Dirk for sharing the manu-
script with us. 

3 See Giri [2] for a survey of the heterogenous DSGE literature. 
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A DIFFERENCE AND 
DIFFERENTIAL EQUATIONS 

A.1 FIRST-ORDER LINEAR DIFFERENCE EQUATION 

Consider a first-order linear difference equation of the form 

x ° Ax  ˜ B,n˜1 n 

where A and B are constants and n = 0,1,2, . . . Since the equation is linear, 
the general solution is of the form 

x ˜ xH ° xP ,n n n 

where xn
P  is a particular solution and xn

H  satisfies the homogeneous equation 

xH ° AxH 
.n˜1 n 

Clearly 
H H 2 H n Hx ˜ Ax  ˜ A x ˜°˜ A x .n n˛1 n˛2 0 

To find a particular solution we try xP = x0 
P, i.e. a fixed-point solution inde-n 

pendent of n. Then 

P P P B x ˜ Ax  ° B ˛ x ˜ , A ̇  1.0 0 0 
1˝ A 

Hence, we find that the general solution for A ≠ 1 is 

n B x ˜ C A ° , A ̋  1.n 1
1˛ A 

When A = 1 then try xn
P = nx0 

P  to find 

P P P
(n ̃  )x ° nx ˜ B ˛ x ° B A  °1.1 0 0 0 , 
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Hence we find the general solution for A = 1 is 

xn ˜ C1 ° Bn, A ̃ 1. 

Next we find the behaviour of the solution for large n. 

For −1 < A < 1: we have 

n B * B xn ˜ A C1 ° ˝ x ˜ as n ̋ ˙, 
1˛ A 1˛ A 

i.e. the sequence converges to the fixed point particular solution. For 
0 < A < 1 the sequence is monotonically convergent whereas if −1 < 
A < 0 the sequence converges oscillatory. 

For A > 1 and A < −1: we have 

n B x ˜C A ° ˝˙ˆ as n ̋ ˆ,n 1
1˛ A 

i.e. the sequence diverges away from the fixed point x* oscillatory if 
A < −1 and monotonically if A > 1. 

For A = −1: we have 

n B B x ˜C A ° ˝˙x ° as n ̋ ˆ,n 1 0 
1˛ A 1˛ A 

i.e. the sequence alternates between x* − x0 and x* + x0, where x0 is 
the initial condition for n = 0. 

For A = 1: we have 

xn ˜ C1 ° nB, 

which diverges linearly for B ≠ 0 and constant otherwise. 

A.2 SECOND-ORDER LINEAR DIFFERENCE 
EQUATION 

Here we first consider the second-order linear homogeneous difference equation 

(A.1)Ax ˜ Bx ˜ Cx ° 0,n˜2 n˜1 n 
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for constants A, B and C, we get a quadratic equation. In order to find a 
solution to (A.1) we first try the solution xn = mn and thus 

n˜1 n˜2x ° m and x ° m .n˜1 n˜2 

Substituting into (A.1), and ignoring the case m = 0, we obtain the follow-
ing characteristic equation 

Am2 ˜ Bm ̃  C ° 0. 

The solution to the difference equation depends on the roots, and 
whether the discriminant B2 − 4AC is positive, negative or zero. The general 
solution for (A.1) can be split into three different cases. 

Case 1: B2 − 4AC > 0 with real roots (m1 ≠ m2) 

If |m1| > |m2| then the limiting behaviour of the sequence 

x ˜ c  mn ° c mn 
n 1 1  2 2  

is the same as that of 

c mn 
1 1  

provided that c1 ≠ 0. 
Thus, if |m1| ≥ 1 the sequence diverges, otherwise it converges. If the 

sign of m1 is negative the behaviour will be oscillatory; otherwise it will 
converge or diverge monotonically. 

Case 2: b2 − 4ac = 0 with real root m 

The limiting behaviour of the sequence 

x ˜ c mn ° nc mn 
n 1 2 

will depends on whether or not |m| ≥ 1. If m ≥ 1 the sequence diverges, 
otherwise it converges. If the sign of m is negative the behaviour will be 
oscillatory; otherwise it will converge or diverge monotonically. 

Case 3: b2 − 4ac < 0 with complex roots 

In this case the solution sequence is in the form 

x ˜ rn 
1 cos n ° c sin ṅ  ,n ˛c ( )˙ 2 ( )˝ 
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and the convergence of the solution depends on whether or not |r| ≥ 1. 
In all three cases we consider the roots λ1, λ2 of the quadratic equation 

2 2˜ ˜  ̃ ˜ ˆ ˙˜  ˜ ˜ ˜ ˜° °˜ ° B˜ °C ˛ ˙ ˝ ˆ˙ ˝ ˛ ˜ ˝ ˆ ,1 2 1 2 1 2  

hence 

˜ ° ˜ ˛ ˝B, ˜ ˜  ˛C.1 2 1 2  

The solution sequences are thus convergent in all cases provided |λ1|, |λ2| < 1. 
Hence convergence implies 

C ˜ ˛ ˛2 °1.1 

We note that in case (II) C = λ2 > 0 and in case (III) C = λ1λ2 = r2 > 0 also. 

A.3 FIRST-ORDER LINEAR DIFFERENTIAL 
EQUATIONS 

Consider the ordinary differential equation (ODE) 

dx 
= ax or x ax= (*) 

dt 
with initial condition (IC) – the starting point for the solution – 

x( )0 = x0. 

For this problem we can find the explicit solution by rewriting the ODE as 

dx 
= a dt

x 
and integrating to find 

ln x at C ˛ ( )  ̃  Ceat˜ ° x t  

for a constant C. Now we can use the IC x0 = x(0) = C to find 

x t( ) = x e0 
at 

. 
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A.3 FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS 

Figure A.1: (a) Solutions for a < 0. (b) Solutions for a > 0 

Some useful definitions and common dynamics: 
Equilibrium: A value of x (denoted by xeq) for which ẋ = 0. xeq = 0 for 

the above equation (*). 
Equilibrium solution: 

x t( )  = xeq for all t 

The solution starts at x(0) = x0 = xeq(= 0) and stays there for all future times, 
i.e. no motion occurs as times goes by. 

Non-equilibrium solution: Any solution corresponding to a starting 
point x0 ≠ xeq. 
If a > 0 

• x0 > 0 gives x(t) = x0eat → ∞ as t → ∞, 
• x0 < 0 gives x(t) = x0eat → −∞ as t → ∞, 

i.e. all solutions move away from the equilibrium point. 
If a < 0 

• x0 > 0 gives x(t) = x0eat → 0+ as t → ∞, 
• x0 < 0 gives x(t) = x0eat → 0− as t → ∞, 

i.e. all solutions move towards the equilibrium point. 
The solutions to the ODE with IC x0 = −0.1,0,0.1 for a < 0 and a > 0 

are shown in Figure A.1 
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A.4 SECOND-ORDER LINEAR DIFFERENTIAL 
EQUATIONS 

A second order linear differential equation is an equation of the form 
2d y t( )  dy t( )a t  ˜ b t( )  ˜ ( )  ( ) ° f t( )  c t  y t  ( ). 
dt2 dt 

We shall be concerned with the case where a, b and c are constant. 

HOMOGENEOUS CASE 
Let us consider the case where a, b and c are constant and where f(t) is zero 
so that we have 

2d y( )t dy( )t a 
2 ˜ b ˜ cy( )t ° 0. 

dt dt 

Assume that the solution is of the form y = eλt, which leads to the character-
istic equation 

a˜ 2 ° b˜ ° c ˛ 0 (A.2) 

with roots 

˛ ˝  b2 ˛ 4b ac
˜ ˜, ° . (A.3)1 2 

2a 

Similarly to what we saw for first-order differential difference equations the 
solutions of depends on the following conditions:

 (i) b2 > 4ac, and thus λ1, ˜2 °  , λ1 ≠ λ2

 (ii) b2 = 4ac, and thus λ1, ˜2 °  , λ1 = λ2. 
(iii) b2 < 4ac, and thus λ1, ˜2 ° , λ1 = α + iβ, λ2 = α − iβ, 

Now, the solution for the three cases can be written 

˛ t ˛ t1 2(i) y t( ) ˜ c e1 ° c e2 , 
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A.5 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS 

1(ii) y t( ) ˜ ˛c ° c t e˝ ˙ t 
,1 2 

(iii) y(t) = c1eαt(c1 sin(βt) + c2 cos(βt), 

where the parameters c1 and c2 are found from the initial conditions. 

A.5 SYSTEMS OF LINEAR FIRST-ORDER 
DIFFERENTIAL EQUATIONS 

The best way to view the system 

dx 
˜ ax ° by

dt 
dy 

˜ cx ° dy
dt 

is by using matrix notation, where 

, dX 
dt 

˜ 
° 
˝
˛
˝ 

dx 
dt 
dy 
dt 

˙
ˇ 
ˆ
ˇ ,     A ˜

a b° ˙ ° ˙x
X ˜ ˝

˛
ˇ
ˆ

˝
˛ 

ˇ
ˆc dy 

giving the matrix ODE 

dX 
= AX , X (0) = X 0. 

dt 

The properties of the matrix A determine the nature of the solutions of the 
equation, where the solution can be written 

X t( ) = X e0 
At 

. 

Notice that X0 is a vector and eAt is a matrix and the solution is given by the 
multiplication between X0 and eAt. What does the term eAt mean? One way to 
look at it is to Taylor expand eAt, such that 

2 2  3 3A t  A tAt ˜ °e 1 At ° ° °. 
2! 3! 
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DIFFERENCE AND DIFFERENTIAL EQUATIONS 

The difficulty lies in identifying the matrix representation of eAt. Some, but 
not all, 2 × 2 matrices can be diagonalised with their eigenvalues along the 
diagonal. This corresponds to a linear transformation of the vector space to a 
different set of basis vectors, aligned with the eigenvectors of the matrix. This 
means that the stability of the linear system is given by the eigenvalues of A. 

To find the eigenvalues λ1,2 we solve the characteristic equation of A: 

det (A ̃ ˛I ) ° 0, 

where I is the identity matrix, and if expanded out 

˜ 2 ˝ tr( )A ˜ ˙ det( )  ̂0 or ˜ 2 ˝° ˙ ˆA ˜ ˛  0 

if use the notation 

˜ ˛ tr( )A ˛ a ̋  d and  ° ˛ det( )A ˛ ad ˙ bc. 

The solution to this equation are the eigenvalues of A, i.e. 

1
1̃ 2, ˝ ˇ° ˙ 

2 
The equilibrium is stable if the real parts of both λ1 and λ2 are negative and 
unstable if the real parts of one eigenvalue is positive. Here we have: 

τ2 > 4δ: Two distinct real eigenvalues and two distinct eigenvectors. 
τ2 = 4δ: Two equal real eigenvalues and two distinct eigenvectors or 

one real eigenvalue and one eigenvector. 
0 < τ2 < 4δ: Two complex eigenvalues and two (complex) eigenvectors. 
τ = 0, δ > 0: Two imaginary eigenvalues and two (complex) eigenvectors. 

° ˛2 
4 .ˆ ˘ 
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B MATLAB® CODES 

B.1 CHAPTER 1 

mysecondplot.m 

x = 0:4*pi/100:4*pi; % variable vector x with 100 elements, 
yl = sin(x); % output of the first function 
y2 = 2*sin(x); % output of the second function 
y3 = sin(2*x); % output of the third function 

figure(l) % open a new figure window 
% called 1 

hold on % do not erase old plots 
% when plotting 

plot(x,yl,’k’,’LineWidth’,2) % Plot of x versus yl; 
% color=black (k); 
% solid; width of the graph 2cm 

myfirstplot.m 

x = linspace(0,2,100); % variable vector x with 
% 100 elements. 

y = sin(2*pi*x); % output 

plot(x,y,’k’,’LineWidth’,2) % Plot of x versus y 
axis([0 2 −2 2]) % Set figure axes 

xlabel(’x’), ylabel(’y’) % Name of axes 
title(’My first plot’) % The figure title 
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plot(x,y2,’r--’,’LineWidth’,2) % Plot of x versus y2; 
% color=red (r); dashed (--) 

plot(x,y3,’b:’,’LineWidth’,2) % Plot of x versus y3; 
% color=blue (r); dotted (:) 

xlabel(’x’),ylabel(’y_l, y_2, y_3’) % label the axes 
axis([0 4*pi −2.5 2.5]) % set figure axes 
box on % outline box on 
hold off % erase old plots when 

% plotting 



 

 

  

  
 

B.2 CHAPTER 2 

B.2 CHAPTER 2 

The Cobweb model 

%The Cobweb model 

%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

%Parameters 
d0 = 4; 
d1 = −1.7; 
s0 = 0.5; 
s1 = 1.9; 

%Intial Condition 
p0 = 1; 

%Simulation parameters 
n = 10; % Number of iterations 

%Simulation 
p(1:n+1)=zeros(1,n+1); 
p(l) = p0; 
for t = 1:n 

p(t+l) = (s1/d1)*p(t) + (s0-d0)/d1; 
end 

%Plotting 
figure(1) 
plot(0:n,p,’ko:’,’MarkerFaceColor’, ’k’) 
xlabel(’t’),ylabel(’p_t’) 

figure(2),hold on, 
plot([0,d0],[-d0/d1,0],’k’,[s0,d0],[0,(d0-s0)/s1],’k’) 
plot((d1*s0-d0*s1)/(d1-s1),(s0-d0)/(d1-s1),’ko’,... 

’MarkerSize’,6,’MarkerFaceColor’,’k’,... 
’MarkeredgeColor’,’k’) 

box on, hold off 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 
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figure(3),hold on, 
D = d0 + d1*p; %Demand 
S = s0 + s1*p; %Supply 

plot([0,d0],[-d0/d1,0],’k’,[s0,d0],[0,(d0-s0)/s1],’k’) 
for k=l:n 

plot([D(k)S(k)],[p(k)p(k)],’k-o’,... 
’MarkerFaceColor’,’k’) 

if mod(k,2)==0 && k>1 
plot([S(k-1),D(k)],[p(k-1),p(k)],’k--’) 

elseif k>1 
plot([D(k),S(k-l)],[p(k-l),p(k)],’k--’) 

end 
end 
box on, hold off 
axis([2.1,2.5,0.8,1.1]) 
%axis([1.2,2.6,0.8,1.6]) %Figure 2.4(b) 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 



 

 

 
 
 
 

 

 

  
  

B.3 CHAPTER 3 

B.3 CHAPTER 3 

The Cobweb model 

%Demand and supply with expectation 
%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

%Parameters 
d0 = 4; 
d1 = −1.7; 
s0 = 0.5; 
s1 = 1.9; 
c = 0.2; 

%Intial Condition 
p0 = 1; 

%Normal price 
p_N = (s0-d0)/(d1-s1); 

%Simulation parameters 
n=10; % Number of iterations 

%Simulation 
%p(l) = p0; 
%for k = 1:n 
% p(k+1) = (s0/d1)*(1-c)*p(k) + (b1*c*p_N+s0-d0)/d1; 
%end 

p(1:n+1)=zeros(1,n+1); 
pe(l:n+1)=zeros(1,n+1); 
p(1) = p0; 
for k = 1:n 

pe(k+1) = p(k) + c*(p_N − p(k)); 
p(k+1) = (s1/d1)*pe(k+1) + (s0-d0)/d1; 

end 

205 



206 

MATLAB® CODES

 
   
  

 
  
  
    
  
   
  

%Plotting 
figure(1) 
plot(0:n,p,’ko:’,’MarkerFaceColor’, ’k’) 
xlabel(’t’),ylabel(’p_t’) 

figure(2),hold on, 
plot([0,d0],[-d0/d1,0],’k’,[s0,d0],[0,(d0-s0)/s1],’k’) 
plot((d1*s0-d0*s1)/(d1-s1),(s0-d0)/(d1-s1),’ko’,... 

’MarkerSize’,6,’MarkerFaceColor’,’k’,... 
’MarkeredgeColor’,’k’) 

box on, hold off 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 

figure(3),hold on, 
D = d0 + d1*p; %Demand 
S = s0 + s1*pe; %Supply 

plot([0,d0],[-d0/d1,0],’k’,[s0,d0],[0,(d0-s0)/s1],’k’) 
for k=2:n 
plot([D(k-l)S(k)],[p(k-l)pe(k)],’k-o’,... 

’MarkerFaceColor’,’k’) 
if mod(k,2)==0 && k>1 

plot([S(k),D(k)],[pe(k),p(k)],’k--’) 
elseif k>1 
plot([D(k),S(k)],[p(k),pe(k)],’k--’) 

end 
end 
box on, hold off 
axis([2.28 2.38 0.95 1.01]) %Figure 3.1(a) 
%axis([2.28 2.42 0.94 1.01]) %Figure 3.1(b) 
ylabel(’Price (p)’) 
xlabel(’Quantity (q)’) 



 

 

 
 

 
 

  

  

B.4 CHAPTER 4 

B.4 CHAPTER 4 

The Macroeconomic multiplier model 

%Preamble 
clear all %Clears all variables 
close all %Closes all figure windows 

%Parameters 
a = 10; 
b = 0.8; 
Ibar = 20; 
Gbar = 20; 

%Intial Condition 
Y0 = 300; 

%Simulation parameters 
n = 30; %Number of iterations 

%Fixed point 
Yfp = (a+ Ibar + Gbar)/(1-b); 

%Simulation 
Y(1:n+1) = zeros(1,n+1); 
Y(1) = Y0; 
for m = 1:n 

Y(m+1) = b*Y(m) + a + Ibar + Gbar; 
end 

%Solution 
%Y(1:n+1) = zeros(1,n+1); 
%Y(l) = Y0; 
%for m = l:n 
% Y(m+1) = (Y0-Yfp)*b^t+Yfp; 
%end 

%Plotting 
figure(10),hold on 
plot(0:n,Y,’k--o’,’MarkerFaceColor’,’k’) 
plot([0,n],[Yfp,Yfp],’k--’) 
xlabel(’t’),ylabel(’Y_t’) 
box on 
hold off 
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B.5 CHAPTER 5 

The IS-LM model 

%IS-LM model 
clear all 
close all 
format compact 

%Parameters 
c1 = 0.1; 
c2 = 0.1; 
s = 0.5; 
a2 = 1; 
k1 = 1; 
k2 = 0.1; 
Ibar = 0.55; 
Mbar = 1; 
% The coefficient matrix 
A = [-c1*s,−c1*a2; c2*k1, −c2*k2]; 
b = [c1*Ibar; −c2*Mbar]; % The constant vector 
%p= [c1,c2,s,a2,k1,k2,Ibar,Mbar]; %Vector of parameters 

%Simulation time 
t_start = 0; 
t_end = 200; 

%Initial conditions 
Y0 = 1; 
r0 = 0.01; 

%Simulation 
%Simulation tolerances 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 
[t,Z] = ode45(@(t,y)islm_system(t,y,A,b),...

 [t_start t_end],[Y0;r0],options); 

%Output 
Y = Z(:,1); 
r = Z(:,2); 



 

 
 
 

         

         

B.5 CHAPTER 5 

%Equilibrium point 
Yr_eq = A\(-b); %same as inv(A)*b 
Y_eq = Yr_eq(l); 
r_eq = Yr_eq(2); 

%Eigenvalues 
eigenvalues = eig(A); 
lambda_1 = eigenvalues(1) 
lambda_2 = eigenvalues(2) 

%Plotting 
figure(1) 
subplot(2,1,1) 
plot(t,Y,’k’,’LineWidth’,2) 
axis([0,20,0.98,1.04]) 
ylabel(’Y(t)’) 
subplot(2,1,2) 
plot(t,r,’k’,’LineWidth’,2) 
axis([0,20,0,0.08]) 
xlabel(’time (t)’),ylabel(’r(t)’) 

Y_LM = [1,1.008]; 
r_LM = kl/k2*Y_LM − Mbar/k2; 
Y_IS = [0.98,1.04]; 
r_IS = Ibar/a2-s/a2*Y_IS; 

figure(2) 
hold on 
plot(Y,r,’k’,’LineWidth’,2) 
plot(Y_eq,r_eq,’ko’,’MarkerSize’,6,... 

’MarkerEdgeColor’,’k’,’MarkerfaceColor’,’k’) 
plot(Y0,r0,’ko’,’MarkerSize’,6,... 

’MarkerEdgeColor’,’k’,’MarkerfaceColor’,’k’) 
plot(Y_IS,r_IS,’k’,’MarkerSize’,4) 
plot(Y_LM,r_LM,’k’,’MarkerSize’,4) 
axis([0.98,1.04,0,0.08]) 
xlabel(’Y’),ylabel(’r’) 
hold off, box on 
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 % 
function dYdr = islm_system(t,y,A,b) 

%Variables 
Y = y(1); 
r = y(2); 

%The ODE model 
dYdr = A*[Y;r]+b; 

end 



 

 

 
  

B.6 CHAPTER 6 

B.6 CHAPTER 6 

Debt, deficit and stabilisation 

%debt-deficit 
clear all 
close all 
format compact 

%Parameters 
b = 1: 
r = 2 
g = 3 

p = [b,r,g]; %Vector of parameters 

%Simulation time 
t_start = 0; 
t_end = 10; 

%Initial conditions 
d0 = −0.8; 

%Simulation 
%Simulation tolerances 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 
[t,d] = ode45(@(t,y) debt_deficit_system(t,y,p),[t_start t_end],... 

d0,options); 

%%Output 
%Y = d(:,1); 
%r = d(:,2); 

%Equilibrium point 
d_eq = b/(g-r); %Solve dd/dt = b+(r-g)d_ed = 0 

%Plotting 
figure(1) 
d_vec = linspace(-2,2,100); 
hold on 
plot(d_vec,(r-g)*d_vec+b,’k’,’LineWidth’,2) 
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plot([d_vec(1),d_vec(end)],[0,0],’k--’,’LineWidth’,2) 
plot([0,0],[d_vec(1),d_vec(end)],’k--’,’LineWidth’,2) 
plot(d_eq,0,’ko’,’Markersize’,8,’Markerfacecolor’,’k’) 
xlabel(’d’),ylabel(’d’) 
axis([-2 1-1 2]) 
hold off, box on 

figure(2) 
hold on 
plot(t,d,’k’,’LineWidth’,2) 
plot([t_start,t_end],[d_eq,d_eq],’k:’,’LineWidth’,2) 
%plot([t_start,t_end],[0,0],’k’, ’LineWidth’ ,2) 
xlabel(’time (t)’),ylabel(’d(t)’) 
axis([0 3 -3 2]) 
hold off, box on 

% 
function dd = debt_deficit_system(t,y,p) 

%Parameters 
b = p(1); 
r = p(2); 
g = p(3); 

%Variables 
d = y(1); 

%The ODE model 
dd = b +(r-g)*d; 

end 



 

 

 
 

 

 
    

B.7 CHAPTER 7 

B.7 CHAPTER 7 

Cagan – linear expectation 

%Preamble 
clear all % Clears all variables 
close all % Closes all figure windows 

%Parameters 
alpha = 0.5; %0.75; %4; 
gamma = 0.5; %0.75; %0.75; 
m = 10; 

%Intial Condition 
p0 = 11; 

%Simulation parameters 
n= 10; % Number of iterations 

%Simulation 
p(l) = p0; 
for k = 1:n 

p(k+1) = −alpha*gamma/(l-alpha*gamma)*p(k)+... 
m/(1-alpha*gamma); 

end 

%Fixed point 
pfp = m; 

%Plotting 
figure(1),hold on 
plot(0:n,p,’ko’,’MarkerFaceColor’,’k’) 
plot([0,n],[pfp,pfp],’k--’,’LineWidth’,2) 
xlabel(’t’),ylabel(’p_t’) 
box on 
hold of 
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Cagan – perfect forsight 

%Preamble 
clear all %Clears all variables 
close all %Closes all figure windows 

%Parameters 
alpha = 4; 
m = 10; 

%Intial Condition 
p0 = 11; 

%Simulation parameters 
n= 10; % Number of iterations 

%Simulation 
p(l) = p0; 
for k = 1:n 

p(k+1) = (1+alpha)/alpha*p(k) − m/alpha; 
end 

%Fixed point 
pfp = m; 

%Plotting 
figure(1),hold on 
plot(0:n,p,’ko’,’MarkerFaceColor’,’k’) 
plot([0,n],[pfp,pfp],’k--’,’LineWidth’,2) 
xlabel(’t’),ylabel(’p_t’) 
box on 
hold off 



 

 
 

 
 

  
  

B.7 CHAPTER 7 

Cagan – stochastic 

%Premeable 
clear all % Clears all variables 
%close all % Closes all figure windows 

%Parameters 
alpha = 4; 
m = 10; 

%Intial Condition 
p0 = 10; 

%Simulation parameters 
n= 10; % Number of iterations 

%Simulation 
p(l) = p0; 
for k = 1:n 

e = randn(1,1); 
p(k+1) = 1/(1+alpha)*e + m; 

end 

%Fixed point 
pfp = m; 

%Plotting 
figure(100),hold on 
plot(0:n,p,’ko’,’MarkerFaceColor’,’k’) 
plot([0,n],[pfp,pfp],’k--’,’LineWidth’,2) 
xlabel(’t’),ylabel(’p_t’) 
box on 
hold off 

215 



216 

MATLAB® CODES

 

 
 
 
 

 
 

 

 
  

B.8 CHAPTER 8 

The Dornbusch overshooting model 

%Dornbusch overshooting model 
clear all 
close all 
format compact 

%Parameters 
alpha = 1; 
beta = 1; 
sigma = 1; 
theta = 0.5; 

J = [0 1/alpha; theta*beta −theta*(beta+sigma/alpha)]; 

%Equilibrium 
e_eq = 2; 
p_eq = 2; 

%Simulation time 
t_start = 0; 
t_end = 5; 

%Initial conditions 
eO = 2.7321; 
p0 = 1; 

%Simulation 
%Simulation tolerances 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 
[t,Y] = ode45(@(t,y)dornbusch_system(t,y,e_eq,p_eq,J),... 

[t_start t_end],[e0;p0],options); 

%Output 
E = Y(:,1); 
P = Y(:,2); 
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%Eigenvalues and eigenvectors 
[eigenvectors,eigenvalues] = eig(J); 
mu_l = eigenvalues(1,1); 
mu_2 = eigenvalues(2,2); 

ev_l = eigenvectors(:,1); 
ev_2 = eigenvectors(:,2); 

%Plotting 
figure(2),hold on 
%subplot(2,1,1), hold on 
plot(t,E,’k’,’LineWidth’,2) 
plot(t,P,’k’,’LineWidth’,2) 
plot(0,e0,’o’,’MarkerFaceColor’,’k’,’MarkerEdgeColor’,’k’) 
plot(0,p0,’o’,’MarkerFaceColor’,’k’,’MarkerEdgeColor’,’k’) 
xlabel(’time (t)’),ylabel(’e(t)’) 
hold off, box on 
subplot(2,1,2), hold on 
plot(t,E,’k’,’LineWidth’,2) 
plot(t,P,’k’,’LineWidth’,2) 
plot(0,e0,’o’,’MarkerFaceColor’,’k’,’MarkerEdgeColor’,’k’) 
plot(0,p0,’o’,’MarkerFaceColor’,’k’,’MarkerEdgeColor’,’k’) 
xlabel(’time (t)’),ylabel(’p(t)’) 
hold off, box on 

figure(1), hold on 
plot(E,P,’k’,’LineWidth’,2) 
xlabel(’e(t)’),ylabel(’p(t)’) 
k1 = ev_l(2)/ev_1(1); 
k2 = ev_2(2)/ev_2(l) 
plot([0 4] ,k1*([0 4]-2)+2,’k——’) 
plot([0 4] ,k2*([0 4]-2)+2,’k——’) 
plot([2 2-l/k2],[2 1],’k-’) 
plot(2-1/k2,1,’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
plot(2,2,’o’,’MarkerFaceColor’,’k’,’MarkerEdgeColor’,’k’) 
plot(e0,p0,’o’,’MarkerFaceColor’,’k’,’MarkerEdgeColor’,’k’) 
axis([0 4 0 4]) 
hold off, box on 
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%------------------------------------------------------
function dYdr = dornbusch_system(t,y,e_eq,p_eq,J) 

%Variables 
e = y(l); 
p = y(2); 

%The ODE model 
dYdr = J*[e-e_eq; p-p_eq]; 

end 
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B.9 CHAPTER 9 

The Solow model 

%The Solow model 
clear all 
close all 
format compact 

%Parameters 
s = 0.8: 

Graphical stability analysis 

%Solow dynamics 
clear all 
close all 

%Parameters 
s = 0.8; 
alpha = 0.5; 
n = 0.5; 
a = 0.3; 
delta = 0.4; 

%Variable r 
r1 = linspace(0,1,100); 
r2 = [0,1]; 

%Plotting 
r_eq=(s/(n+a+delta))^(1/(1-alpha)); 

figure(10), hold on 
plot(r1,s*r1.^alpha,’k’,’LineWidth’,2) 
plot(r2,(n+a+delta)*r2,’k’,’LineWidth’,2) 
plot(r_eq*[1,1],s*r_eq^(alpha)*[0,1],’k--’) 
plot(r_eq*[0,1],s*r_eq^(alpha)*[1,1],’k--’) 
xlabel(’r’),ylabel(’y_1, y_2’) 
axis([0,1,0,1]) 
box on, hold off 
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alpha = 0.5: 
n = 0.3: 
a = 0.3: 
delta = 0.4: 

%Simulation time 
t_start = 0: 
t_end = 10; 

%Initial conditions 
rO = 0.9; 

% Simulation setup 
options = odeset(‘RelTol’,1e-6,’AbsTol’,1e-6); 

% Simulation 
[t,R] =... 
ode45(@(t,r) solow_system(t,r,s,alpha,n,a,delta),... 

[t_start t_end],r0,options); 

%Plotting 
r_eq=(s/(n+a+delta))^(l/(1-alpha)); 

figure(1) 
hold on 
plot(t,R(:,1),’k’,’Linewidth’,2) 
plot([t_start,t_end],r_eq*[1,1],’k--’,’Linewidth’,1) 
axis([0,10,0,1]) 
box on 
xlabel(’t’), ylabel(’r(t)’) 

% 
function dr = solow_system(t,r,s,alpha,n,a,delta) 

%The ODE model 
dr = s*r^alpha-(n+a+delta)*r; 
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B.10 CHAPTER 10 

The endogenous growth model 

%Endogenous growth model 
clear all 
%close all 
format compact 

%Parameters 
alpha = 0.5; 
beta = 0.2; 
gamma = 2; 
theta = 0.5; 
n = 1; 

params = [alpha, beta, gamma, theta, n]; 

% Jacobian 
J4 = [(1-alpha)*(eq4(2)+n-2*eq4(1)),(1-alpha)*eq4(1);... 

beta*eq4(2),beta*eq4(1)+gamma*n+2*(theta-l)*eq4(2)]; 

% Equilibrium points 
eq1 = [0,0]; 
eq2 = [n,0]; 
eq3 = [0,gamma*n/(1-theta)]; 
eq4 = [n*(beta+gamma)/(1-(beta+theta))+n,... 

n*(beta+gamma)/(1-(beta+theta))]; 

%Initial conditions 
g_K0 = 10; %8+1/3+0.0001; 
g_A0 = 8.44382; %7+1/3+0.0001; 
y0 = [g_K0;g_A0]; 

%Simulation time 
t_start = 0; 
t_end = −1; 

% Simulation setup 
options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6); 
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%Simulation 
[t,Y] = ode45(@(t,y) endogenous_system(t,y,params), . . . 

[t_start t_end],y0,options); 

%Output 
g_K = Y(:,1); 
g_A = Y(:,2); 

%Eigenvalues and eigenvectors 
[eigenvectors4,eigenvalues4] = eig(J4); 
mu4_1 = eigenvalues4(1,1); 
mu4_2 = eigenvalues4(2,2); 

%Plotting 
figure(1), hold on, box on 
plot(t,g_K,’k’,’LineWidth’,2) 
plot(t,g_A,’k’,’LineWidth’,2) 
xlabel(’t’), ylabel(’g_K(t), g_A(t)’) 

figure(2), hold on, box on 
plot(g_K,g_A,’k’,’LineWidth’,2) 
%plot(eq1(1),eq1(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
%plot(eq2(1),eq2(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
%plot(eq3(1),eq3(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
%plot(eq4(1),eq4(2),’o’,’MarkerFaceColor’,’k’,... 

’MarkerEdgeColor’,’k’) 
xlabel(’g_K(t)’), ylabel(’g_A(t)’) 

%--------------------------------------------------------
function dy = endogenous_system(t,y,params) 

%Parameters 
alpha = params(1); 
beta = params(2); 
gamma = params(3); 
theta = params(4); 
n = params(5); 



 B.10 CHAPTER 10 

%Variables 
g_K = y(1); 
g_A = y(2); 

%The ODE model 
dg_K = (1-alpha)*(g_A+n-g_K)*g_K; 
dg_A = (beta*g_K+gamma*n + (theta-1)*g_A)*g_A; 

dy = [dg_K;dg_A]; 
end 
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The Samuelson model 

%Preamble 
clear all 
close all 

%Parameters 
b = 0.9; %0 < b < 1 %0.9, 0.5, 0.35 
k = 3; %k > 0 %0.2, 1, 3 
G = 10; 

Samuelson’s stability diagram 

%Preamble 
clear all 
close all 

%Parameters 
k_end = 5; 

%Intial Conditions 
k1 = linspace(0,k_end,100); 
k2 = linspace(1,k_end,100); 
k3 = [0,k_end]; 

b1 = 4*k1./(1+k1).^2; 
b2 = 1./k2; 
b3 = [1,1] 

%Plotting 
figure(1),hold on 
plot(k1,b1,'k','LineWidth',2') 
plot(k2,b2,'k','LineWidth',2') 
plot(k3,b3,'k--','LineWidth',2') 
xlabel('k'),ylabel('b') 
box on, hold off 
axis([0 5 0 1.2]) 
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%Intial Conditions 
Y0 = G/(1-b)-0.1; 
Y1 = G/(1-b)-0.2; 

%Simulation parameters 
n = 8; % Number of iterations 

%Simulation 
Y(1) = Y0; 
Y(2) = Y1; 
for t = 3:n+1 

Y(t) = b*(1+k)*Y(t-1) − b*k*Y(t-2) + G; 
end 

%Fixed point 
Yfp = G/(1-b); 

%Plotting 
figure(2),hold on 
plot(0:n,Y,'ko','MarkerFaceColor','k','Markersize',4) 
plot([0,n],[Yfp,Yfp],'k--') 
xlabel('t'),ylabel('Y_t') 
box on 
hold off 
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The deterministic real business cycle model 

%Preamble 
clear all 

%Parameters 
alpha = 0.6; 
beta = 0.975; 
delta = 0.025; 
sigma = 0.5; 
A = 1; 

a0 = 10; 

%Time steps 
T = 100; 
n = (0:1:T+1)'; 

%Varying parameters 
%aa = [0.2,.4,.6]; %alpha + linspace(0,0.2,10); 
%bb = [0.975,0.95,0.925, 0.9]; %beta − linspace(0,0.2,10); 
%AA = [1,3,5,10]; %A + linspace(0,10,5); 
%ss = [1,2,5,10]; 

%Imitial conditions 
k0 = a0*(1 − n/(T+1)); %Linear 

%Newton-Raphson 
Kold = k0; 

for tt = 1:1 %length(vector_name) %Choose a parameter to vary 
%alpha = aa(tt); 
%beta = bb(tt); 
%sigma = ss(tt); 
%A = AA(tt); 
err = 1; 
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while err > 0.0001 

G = Gfun(Kold,a0,A,alpha,beta,delta,sigma); 
dG = dGfun(Kold,A,alpha,beta,delta,sigma); 
Knew = Kold − dG\G; 
err = norm(Knew − Kold,2) 
Kold = Knew; 

end 
figure(313), hold on 
plot(n,Knew,'k','linewidth',2) 

%pause 
end 

figure(313) 
xlabel('t'),ylabel('k') 

%Plot results 
figure(600),hold on 
plot(n,Knew,'c') 
xlabel('t'),ylabel('k') 

function G = Gfun(k,a0,A,alpha,beta,delta,sigma) 
%Calculates the value of 
%G = u'(k_t,k_t+1)-beta*u'(k_t+1,k_t+1) 

k1_temp = k(1:end-2,1); 
k2_temp = k(2:end-1,1); 
k3_temp = k(3:end,1); 

R1 = A*k1_temp.^(alpha) + (1-delta)*k1_temp-k2_temp; 
R2 = A*k2_temp.^(alpha) + (1-delta)*k2_temp-k3_temp; 
Q = 1+alpha*A*k2_temp.^(alpha-1)-delta; 

FT0 = k(1,1)-a0; 
F = R1.^(-sigma) − beta*Q.*R2.^(-sigma); 
FT1 = k(end,1); 

G = [FT0;F;FT1]; 
end 
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function dG = dGfun(k,A,alpha,beta,delta,sigma) 
% Calculates the Jacobian of 
% G = u’(k_t,k_t+1) - beta*u’(k_t+1,k_t+1) 

k1_temp = k(1:end-2,1); 
k2_temp = k(2:end-1,1); 
k3_temp = k(3:end,1); 

R1 = A*k1_temp.^(alpha) + (1-delta)*k1_temp-k2_temp; 
R2 = A*k2_temp.^(alpha) + (1-delta)*k2_temp-k3_temp; 

dR1_dt = alpha*A*k1_temp.^(alpha-1)+1-delta; 
%dR2_dt = 0; 

dR1_dt1 = −1; 
dR2_dt1 = alpha*A*k2_temp.^(alpha-1)+1-delta; 

%dR1_dt2 = 0; 
dR2_dt2 = −1; 

Q = 1+alpha*A*k2_temp.^(alpha-1)-delta; 
%dQ_dt = 0; 
dQ_t1 = alpha*(alpha-1)*A*k2_temp.^(alpha-2); 
%dQ_t2 = 0; 

dG_t = −sigma*R1.^(-sigma-1).*dR1_dt; 
dG_t1 = −sigma*R1.^(-sigma-1).*dR1_dt1 −... 

beta*dQ_t1.*R2.^(-sigma) -... 
beta*Q.*(-sigma).*R2.^(-sigma-1).*dR2_dt1; 

dG_t2 = −beta*Q*(-sigma).*R2.^(-sigma-1).*dR2_dt2; 

N = length(k); 
zM = zeros(1,N); 
dG0 = zM; dG0(1,1) = 1; 
dGt = spdiags([dG_t,dG_t1,dG_t2],0:2,N-2,N); 
dGT1 = zM; dGT1(1,N) = 1; 

dG = [dG0;dGt;dGT1]; 
end 
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The stochastic real business cycle model 

close all 
clear all 

%Parameters 
alpha0 = 0.4; 
beta = 0.975; 
delta = 0.025; 
sigma0 = 0.5; 
A0 = 1; 

a0 = 10; 

%Time steps 
T = 100; 
n = (0:1:T+1)'; 

%Imitial conditions 
k0 = a0*(1 − n/(T+1)); %Linear 

KK = zeros(length(n),100000); 

%Newton-Raphson 
Kold = k0; 
for sim = 1:100000 

%Pick variables randomly 
%alpha = alpha0 − 0.05 + 0.1*rand(size(n)); 
%sigma = sigma0 − 0.15 + 0.3*rand(size(n)); 
A = A0 + 0.5*rand(size(n)); 

while err > 0.0001 

G = Gfun(Kold,a0,A,alpha,beta,delta,sigma); 
dG = dGfun(Kold,A,alpha,beta,delta,sigma); 
Knew = Kold − dG\G; 
err = norm(Knew − Kold,2); 
Kold = Knew; 

end 
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KK(:,sim) = Knew; 

%Plot results 
%figure(1),hold on 
%plot(n,KK,'k','linewidth',0.5) 
%xlabel('t'),ylabel('k') 

Kstd = std(KK,1,2); 

figure(2), hold on 
plot(n,Kstd','k') 
xlabel('t'),ylabel('Std') 

figure(3), hold on 
mKK = mean(KK,2); 
plot(n,KK(:,1:1000:end)-mKK(:,1:1000:end),'k') 
xlabel('t'),ylabel('k') 

figure(3) 
plot(n,mean(KK,2),'w--') 
plot(n,-Kstd,'w',n,+Kstd,'w') 

figure(4),hold on 
plot(n,mean(KK,2),'w--') 
plot(n,mean(KK,2)-Kstd,'w',n,mean(KK,2)+Kstd,'w') 
end 

function G = Gfun(k,a0,A,alpha,beta,delta,sigma) 
% Calculates the value of 
% G = u’(k_t,k_t+1) - beta*u’(k_t+1,k_t+1) 

k1_temp = k(1:end-2,1); 
k2_temp = k(2:end-1,1); 
k3_temp = k(3:end,1); 
A1 = A(1:end-2,1); 
A2 = A(2:end-1,1); 
sigma1 = sigma(1:end-2,1); 
sigma2 = sigma(2:end-1,1); 
alpha1 = alpha(1:end-2,1); 
alpha2 = alpha(2:end-1,1); 
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R1 = A1.*k1_temp.^(alpha1) + (1-delta)*k1_temp-k2_temp; 
R2 = A2.*k2_temp.^(alpha1) + (1-delta)*k2_temp-k3_temp; 
Q = 1 + alpha2.*A2.*k2_temp.^(alpha2-1)-delta; 

FTO = k(1, 1)−a0; 
F = R1.^(-sigma1)−beta.*Q.*R2.^(-sigma2); 
FT1 = k(end, 1); 

G = [FT0; F; FT1]; 
end 

function dG = dGfun(k,A,alpha,beta,delta,sigma) 
%Calculates the Jacobian of 
%G = u'(k_t,k_t+1)-beta*u'(k_t+1,k_t+1) 

k1_temp = k(1:end-2,1); 
k2_temp = k(2:end-1,1); 
k3_temp = k(3:end,1); 
A1 = A(1:end-2,1); 
A2 = A(2:end-1,1); 
sigma1 = sigma(1:end-2,1); 
sigma2 = sigma(2:end-1,1); 
alpha1 = alpha(1:end-2,1); 
alpha2 = alpha(2:end-1,1); 

R1 = A1.*k1_temp.^(alpha1) + (1-delta)*k1_temp-k2_temp; 
R2 = A2.*k2_temp.^(alpha2) + (1-delta)*k2_temp-k3_temp; 

dR1_dt = alpha1.*A1.*k1_temp.^(alpha1-1)+1-delta; 
%dR2_dt = 0; 

dR1_dt1 = −1; 
dR2_dt1 = alpha2.*A2.*k2_temp.^(alpha2-1)+1-delta; 

%dR1_dt2 = 0; 
dR2_dt2 = −1; 

Q = 1+alpha2.*A2.*k2_temp.^(alpha2-1)-delta; 
%dQ_dt = 0; 
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dQ_t1 = alpha2.*(alpha2-1).*A2.*k2_temp.^(alpha2-2); 
%dQ_t2 = 0; 

dG_t = −sigma1.*R1.^(-sigma1-1).*dR1_dt; 
dG_t1 = −sigma1.*R1.^(-sigma1-1).*dR1_dt1 −... 

beta*dQ_t1.*R2.^(-sigma2) -... 
beta*Q.*(-sigma2).*R2.^(-sigma2-1).*dR2_dt1; 

dG_t2 = −beta.*Q.*(-sigma2).*R2.^(-sigma2-1).*dR2_dt2; 

N = length(k); 
zM = zeros(1,N); 
dG0 = zM; dG0(1,1) = 1; 
dGt = spdiags([dG_t,dG_t1,dG_t2],0:2,N-2,N); 
dGT1 = zM; dGT1(1,N) = 1; 

dG = [dG0;dGt; dGT1]; 
end 
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