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Abstract

A detailed review of the work of M. Xu “A new chaos based image encryption

algorithm” is presented in this thesis. The work focuses on an image encryption

scheme based on Chen chaotic system and Chebyshev map. In this work the

encryption of a grey scale image is performed. This encryption uses three steps.

In the first step permutation of rows is carried out by using circular shift operation,

then in second step XOR operation is used for diffusion purpose finally columns are

scrambled by using circular shift utilizing Chebyshev chaotic map. The scheme is

implemented by developing a code for the encryption and decryption of algorithm.

The implementation is then used to create various cipher images. The review work

is further extended by introducing a new scheme which is based on Henon Chaotic

map and Brownian motion. The initial keys used in the permutation and diffusion

stages interact with each other. The extended scheme is also implemented on

MATLAB and the security anaylsis is performed on various cipherimages obtained

by the implementation of modified scheme. Security anaylsis results depict that

newly developed scheme is not much different from scheme of Ming. However the

running time of the new scheme is less than the original one. The improvement

solution is novel and transplantable, it can also be used to enhance the ability of

resisting differential attack on image encryption algorithms.
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Chapter 1

Introduction

Cryptography is the study of ciphers and codes, which is important in safeguarding

and protecting data. Its traces can also be seen in the ancient Egyptian civiliza-

tion. It is not an exaggeration to say that the present encryption method is the

outcome of a lengthy and unparalleled history of evolution [1]. Cryptography has

a long history that dates back thousands of years.

The first known evidence of the use of cryptography, as stated in [2] was discovered

in an inscription carved around the central chamber of the tomb of the nobleman

Khnumhotep 2 in Egypt . To a large degree, the organizer relied on a few unusual

pictogram images rather than more typical ones. The objective was not to cover

the message, but rather to alter its structure in such a way that it appeared ethi-

cal.

Julius Caesar was reported to use a sort of crypto to convey secret communications

to his military men stationed on the battlefield circa 100 BC [3]. The substitition

cipher, the Caesar cipher, are the most cited notable codes in literature. In a

substitution cipher, each plaintext character is substituted by another character

to form the ciphertext.

At the beginning of the 19th century when everything got to be electric, Hebern

planned an electro-mechanical contraption which was called the Hebron rotor ma-

chine, detailed is given in [4]. It employments a single rotor, in which the secret

key is inserted in a pivoting circle. The key encoded a substitution table and each

1
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keypress from the console comes about within the yield of cipher content. This

was once broken by utilizing letter frequencies.

Up to the World War II, most of the work on cryptography was for military pur-

poses, as a rule, utilized to cover up important military data. In any case, cryptog-

raphy pulled in commercial consideration post-war, with businesses attempting to

secure their information from competitors. In the early 1970s, IBM realized that

their clients were requesting a few shapes of encryption, so they shaped “crypto

bunch” headed by Horst-Feistel. They outlined a cipher called Lucifer [5].

In 1973, the Country Bureau of Standards (now called NIST) within the US put

out and ask for recommendations for a square cipher that would end up a na-

tional standard. They had realized that they were buying a part of commercial

items without any great crypto back. Lucifer was inevitably acknowledged and

was called DES or the data encryption Standard. In 1997, DES was broken by a

cryptanalyst . The most issue with DES was the shorter of the encryption key.

1.1 Image Encryption

The internet and digital technology are expanding at a rapid pace. As a result,

individuals are increasingly relying on digital media for communication. For ex-

ample, image, audio, and video. Images provide a sizable portion of multimedia.

Images are used extensively in Military, National-Security, and Diplomatic com-

munications. Because these photographs may contain very personal information.

They require considerable caution when users accumulate them anywhere on an

untrustworthy site. Furthermore, when users want to share photographs via a

secure network, is critical to guarantee complete security. In summary, a image

must be protected against numerous security threats [6]. To accomplish this goal,

encryption is one of the most effective means of information concealment. Many

image encryption techniques have been developed by researchers over the past

decade. To boost security, they employ several image encryption methods. These

methods [7] are classified according to several principles such as Chaotic Maps ,

DNA, Compressive Sensing, and Optical-Image Encryption.
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Figure 1.1: Image encryption

Image encryption is a process that uses a secret key to turn a plain image into an

encrypted image [7]. Using the secret key, the decryption procedure converts the

cypher image into the original image [8, 9]. Decryption is similar to encryption,

however, it is performed in opposite order. Encryption relies heavily on secret

keys. Because the encryption approach’s security is primarily based on it. There

are two sorts of keys are used, private keys and public keys [10, 11].

Figure 1.2: Flow chart of image encryption techniques

1.1.1 Encryption of Images in the Spatial Domain

Spatial domain techniques are those that involve directly changing the pixels of

a image [7]. There are several space domain-based image encryption methods
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described in the literature [7], such as chaotic elliptic curve, fuzzy, DNA, and

metaheuristics-based approaches. However, in this research, the use of chaotic

mapping in the image encryption scheme is investigated.

1.2 Literature Survey

With the rapid development of the internet, digital information exchange has

grown more frequent in recent decades. Most of the industries (for example, mil-

itary image databases, video conferencing, medical imaging systems, web based

photos and album) now demand a secure, quick, and reliable system to store and

communicate digital images. The necessity to meet the security demands of digi-

tal pictures has resulted in the development of excellent encryption algorithms to

manage digital image security [12]. A plethora of encryption algorithms based on

various ideas have recently been presented by number of researchers. For exam-

ple, chaos-based encryption algorithms that are viable for application (e.g., video

streams). Furthermore, these algorithms offer an excellent balance of speed, high

security, complexity, appropriate computational overheads, and computing power

[12–14] . In general, digital pictures contain properties such as redundant data,

significant correlation among neighbouring pixels, being less sensitive than text

data, i.e., a slight change in the characteristic of any pixel of the image does not

dramatically damage the image’s quality, and bulk capacity of data. As a result,

standard ciphers such as IDEA (International Data Encryption Algorithm), AES

(Advanced Encryption Standard), DES (Data Encryption Standard), and RSA

(Rivest, Shamir-Adleman) are unsuitable for real-time image encryption since they

need a long calculation time and a lot of computer resources [13]. Only those ci-

phers are suitable for real-time image encryption since they need less time while

maintaining security. Any encryption technique that operates very slowly, on the

other hand, may offer a higher level of security. As a result, this type of method

would have limited practical application in real-time procedures [14].

However, in open networks, it is critical to protect confidential material including

military and medical images from unauthorized access [15]. By maintaining the
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security of sensitive information only beneficary may access , particularly multi-

media data, has been the principal impediment to the wider adoption of digital

image services.

In order to create safe cryptosystems, Claude Shannon invented a technique of

confusion and dispersion in 1949, the scheme is given in [16]. It is known as the

substitution-permutation network in current information security systems (SP-

network) [17]. Traditional symmetric ciphers, such as advanced encryption stan-

dard (AES) [18], and data encryption standard (DES) [19], as well as all versions

of these cryptosystems, are designed to have low confusion and diffusion. Several

encryption techniques have been developed to ensure the privacy of digital data.

Many parts of current cypher systems are based on SP-network to increase confu-

sion and dispersal.

Chaos is a strangely nonlinear physical phenomena that appears in the ordinary

world. Li and York [20] presented the first mathematical definition of chaos which

is widely used for one-dimensional iterative maps. Following that, a few alterna-

tive chaotic definitions were given for various types of frameworks.

The most commonly used definitions are Devaney’s chaos [21], Wiggins’ chaos [22],

and Smale’s chaos [23]. All of these definitions focus on the many performances of

chaos for example, Li-chaos York’s is concerned with the dissemination of chaotic

directions, whereas Devaney’s chaos is concerned with topological features. There

is currently no accurate numerical description that can encompass all manifesta-

tions of chaos. Regardless, the lack of a single definition does not exclude the use

of chaos. On the contrary, chaos has been widely used in practically all sectors of

science, architecture, and even the humanities.

The chaos hypothesis is inextricably linked with cryptography. Chaotic systems

have qualities with encryption, such as high entropy, sensitive to chaotic param-

eters, beginning circumstances, its undeterministic character, pseudo-randomness

and ergodicity, and so on. All of which are essential considerations for construct-

ing any modern cryptosystem [24].

The link between chaotic and encryption provided a new concept. In digital in-

formation systems, a new system has emerged. As a result, after the 1990s, chaos
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theory was widely used to construct resilient cryptosystems.

In recent years, research on bifurcation and chaotic behaviour in nonlinear dy-

namical frameworks has become extremely important. Bifurcation and chaos have

been seen in a large number of experiments, and some writers have advanced the

idea that computer simulations play an important role in the search for current

chaotic attractors [6, 25]. Chaos is often defined by a sensitive dependency on the

initial circumstances of the constituents.

There are various families of maps in mathematics, and they commonly occur in

pairs. Fibonacci maps, Lucas maps, logistic maps, cat maps, tent maps, Henon

maps [26] etc. They are generated via the same repeat connection but with dif-

ferent initial values, and multiple families connect the two families [25].

Pixels are the essential components of an image. To protect an image, we must

secure the material hidden in each pixel. The location values of pixels can also be

utilized for encryption [15].

The image encryption technique ought to be sufficiently powerful. It is necessary

to ensure that the encrypted image is suitable for testing and data file retrieval.

Transformation is the act of converting data to another form by removing any

redundancy. Using this type of encoding would render the data illegible.

Chaos-based image encryption [27] systems offer various benefits over standard

encryption techniques due to the chaotic underlying maps and the associated ini-

tial key sensitivity.

Edward Lorenz a mathematician and meteorologist, discovered chaos theory dur-

ing a weather prediction experiment in the early 1960s, the detailed of this theory

is given in [15]. The above theory is concerned with uncovering hidden patterns

in seemingly random data. It offers a handy method for solving non-linear issues

in both natural and artificial systems with unexpected behaviors.

Traffic, financial markets, earthquakes, healthy heart rhythms, DNA coding se-

quences, weather and climatic conditions are such kind of behaviors included [15].
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1.3 Thesis Contribution

A detailed review of the work of M. Xu [28] “A New Chaos- Based Image Encryp-

tion Algorithm” is presented in this thesis. The work focuses on an image encryp-

tion scheme based on Chen chaotic system and Chebyshev map. The scheme is

implemented by developing a MATLAB code for the encryption and decryption of

algorithm. The implementation is then used to create various cipher images. Fol-

lowing the smooth execution of the previously discussed technique for the grayscale

image on MATLAB, some security analysis, such as key sensitivity and statistical

analysis, are also evaluated. In this scheme the algorithm is slightly changed which

proved beneficial for good cryptosystem.

In the last part of thesis a new scheme is introduced. Because the initial procedure

of the previous scheme requires more time to run. We have used Brownian Motion

to enhance the randomness in our new scheme as well. Henon chaotic map has

been used instead of Chen chaotic map. Most of the properties of cryptographic

are found in this map. However, there is no change in algorithm for some rea-

sons. The encryption and decryption algorithm are again implemented using the

palteform MATLAB. Our new program also execute very nicely and finally some

security analysis of this game was done.

1.4 Thesis Arrangement

This thesis reviews grayscale image encryption with various techniques.

• Chapter 2: It is a basic introduction to cryptology, including basic ideas

of cryptography and various cryptographic properties. The Chaos theory is

also described in detail and then in the same chapter the Compound chaotic

map based image encryption scheme is critically examined.

• Chapter 3: The analysis of the article “A New Chaos-Based Image Encryp-

tion Algorithm” by M. Xu is presented. Some merits and some demerits of

the above scheme are dicussed. Apart from this, the security of the scheme

has also been reviewed.
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• Chapter 4: In this chapter, Henon chaotic map and Brownian motion are

explained in detail. In the same chapter image encryption and decryption

is done under the same scheme. There is the security review of our new

scheme.

• chapter 5: In this chapter, the conclusion of previously discussed work is

given and some future directions are suggested.



Chapter 2

Preliminaries and Basic Concepts

In this chapter the basic introduction to cryptology, including basic ideas of cryp-

tography and various cryptographic properties are presented. The chaos theory

is then described in great detail. The compound chaotic scheme is also critically

examined in the same chapter. In this chapter, we discussed a recent approach for

image encryption [28] in detail.

2.1 Cryptography

Cryptography is such a technique through which we can convert plaintext to ci-

phertext and ciphertext is converted to plaintext again. The plaintext is a normal

message that anyone can read and understand. Whereas, the ciphertext is a kind

of secret message that everyone can read but only few can understand. We use

cryptography to achieve confidentiality.

When it comes to compassion security there is an important concept in network

security, which is known as C. I. A (Confidentiality, Integrity, and Availability).

For example, I have to send a message to my friend which is far away from me. I

can send this message through the internet. Now someone is taking my message

on the way. He/she is trying to hack my message in an unauthorized way. But

it does not mean that either confidentiality is breached or confidentiality becomes

zero. No, anyone can take the message because all the devices are connected in a

9
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vulnerable manner on the internet. The word Vulnerable means that any person

with some knowledge can get the message but it does not mean he/she can also

can understand that message because the sended message is not in understandable

form. Any unauthorized person cannot understand the message.

For securing any message we use cryptography. Before sending the plaintext,

sender use the encryption method. In encryption, we use many algorithms to

encrypt the plaintext. In encryption the important part is key. The sender will

lock the message with a key. After applying the lock it becomes ciphertext. when

the sender sends the message on the receiver side receiver receives ciphertext nor

plaintext. The receiver will decrypt the message. Decryption means converting

ciphertext to plaintext. It means the sender does encryption and the receiver does

decryption. Now-a-days network security and cyber security are very popular. We

use cryptography in two ways symmetric key and Asymmetric key. Symmetric key

implies the same key utilized for encryption and the same key utilized for decryp-

tion.

Figure 2.1: Flow chart of security system

Asymmetric key implies diverse keys utilized for encryption and decryption. There

are many cryptographic techniques such as Ceaser cipher [29], hill cipher [5], AES

[18], DES [19], RSA [30] etc.
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2.2 Cryptosystem

A cryptosystem is a framework or scheme that consists of a series of algorithms

that convert plaintext to ciphertext in order to securely encode or decode commu-

nications. The phrase cryptosystem is shorthand for cryptographic system and it

pertains to a computer system that uses cryptography. Cryptosystem is a system

through which we secure the data and conversation via the use of codes. Only

those who intended to read and interpret the information may do so.

A cipher system is another name for a cryptosystem. Symmetric key encryption

and asymmetric key encryption are two different types of cryptosystems.

2.2.1 Cryptosystem Components

Let’s have a look at a few components of cryptosystem in more detail.

1. Plaintext is a term used to describe any piece of writing. It can be a

message or image that everyone can understand.

2. Ciphertext often known as encrypted text, is a set of completely random

characters and numerals that people cannot understand. The ciphertext can

be a message or information that is not clear. Decryption can be used to

reverse the ciphertext and recover the original plaintext.

3. Encryption Algorithm is a term used to describe a method of encrypting

data. It could be a program for converting ordinary text to ciphertext using

an encryption key. We need two types of inputs to generate the ciphertext.

The first one is plain text and the second is encryption key.

4. Decryption Algorithm is the inverse of an encryption algorithm. Decryp-

tion is the process of transforming encoded or encrypted text or data back

into its original form.

5. Encryption Key is such a key that sender of the message uses when con-

verting a plaintext message into an encrypted message.
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6. Decryption Key is such a key that recipient of the message uses when

converting the encrypted message into a plaintext.

2.2.2 Types of Cryptosystems

Cryptosystems are divided into two categories.

• Symmetric Key Encryption (SKE)

• Asymmetric Key Encryption (AKE)

1. Symmetric Key Encryption

SKE is a type of encryption that uses two keys to encrypt data. Both the

sender and recipient use the same secret key, or encryption key, to encrypt

and decrypt data. Symmetric cryptography is another name for symmet-

ric key encryption. Many programs are SKE designed to achieve security.

There are many examples such as DES (Data Encryption Standard) [19],

IDEA (International Data Encryption Algorithm) [31], 3D-ES (Triple Data

Encryption Standard) [32], Blowfish [32] and similar ones that use SKE tech-

niques. It would not be wrong to say that almost all cryptosystems use this

technique.

Both the sender and receiver of the message use the same key in symmetric-

key encryption. The sender of the message transmits some data to the

recipient of the message through encryption, which is called plaintext. This

encryption is done using a key that converts plaintext to ciphertext After

receiving the data, the receiver converts this ciphertext back to plaintext.

But the special thing is that the receiver uses the key that was used by the

sender of the content.

Advantages of Symmetric Key Encryption

The main advantage of this scheme is that it has a small key and simple

algorithm, due to which it does encryption and decryption very quickly.
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Figure 2.2: Symmetric key

Some important points to remember when using SKE are stated below.

• Both groups (senders and receivers) must share the key. Because both

have to make plaintext and ciphertext using the same key.

• The key should be updated time to time to avoid any type of attack.

• There must be a secure channel that allows the sender and recipient to

communicate a secret key.

SKE Disadvantages

• It is quite difficult for both( sender and recipient) to agree that they

will use the SKE method, which necessitates the use of a key generation

process.

• In SKE the sender and recipient have to share the symmetric key, there-

fore they must have mutual trust. For example, imagine the receiver’s

secret key is stolen by attackers and he fails to alert the sender.

2. Asymmetric Key Encryption

Two keys are employed in AKE. One is the public key and the other one is

private key.

• Public Key: This is a key that anyone can use to encrypt any message,

but the receiver decrypts the message using his own private key

• Private Key: This type of key is also called a secret or personal key.

In a mathematical relationship, these two keys are related to one another.

Generally private keys held in a secure location, whilst public keys are kept
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in a public location.

Sender encrypts the private data and sends it to the recipient using the

recipient’s public key. As soon as the receiver receives his message (encrypted

form) he decrypts this message using his own private key.

AKE Disadvantages

• In AKE the key is very long due to which encryption and decryption

procedure become very difficult. Here the key is long thats why the

encryption and decryption forms in AKE have grown difficult.

• Due to the big key the speed of encryption process slows down consid-

erably.

Figure 2.3: Asymmetric key

• The computation of the private key using the public key is not simple.

• Since public keys must be shared, they are huge in size and difficult to

remember, thus they are stored on digital certificates for secure trans-

mission and distribution. private keys, on the other hand, don’t need to

be shared they are held in the cloud computer programme or operating

system you’re using, or on equipment devices.

Advantages of Asymmetric Key Encryption

AKE has many advantages which are listed bolow.

• Since the private key is not shared with anyone, therefore it does not

need to be updated again and again.
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• There is a major problem in a cryptosystem of sharing the key in a

secure way. In this technique there is no need to share the key with

anyone this is why it is considered a secure method.

Hash Function

Any function that may be used to map data of self-assertive measures to fixed-

size values is referred to be a hash function. Hash values, hash codes, digests,

or generally hashes are the values returned by a hash operation. The values are

frequently used to list a hash table, which is a fixed-size table.

Figure 2.4: Hash function

It is easier to discover the shorter hash value than the larger string, for sorting and

locating objects in databases. Hash functions are one-way, irreversible functions

that ensure the information while preventing the recovery of the initial message.

The following are some of the most well-known hashing algorithms: MD5, SHA-1,

SHA-2, SHA-3, Whirlpool, Blake 2, and Blake 3 [33] are all examples of Hashing

Algorithms.

2.3 Cryptanalysis

Cryptology is divided into two parts: cryptography (the creation of secret codes)

and cryptanalysis (the study of cryptographic algorithms and the breaking of those

secret codes). A cryptanalyst is someone who practises cryptanalysis. It assists us



Preliminaries 16

in better understanding of cryptosystems and in improving the system by identi-

fying any flaws and working to enhance the algorithm to generate a more secure

secret code. A cryptanalyst tries to decipher the ciphertext by any means and he

gets the plaintext or somehow he get the encryption key.

Cryptanalysis is practiced by a wide extend of organizations, counting govern-

ments pointing to decode other nations’ private communications, companies cre-

ating security items that utilize cryptanalysts to test their security highlights, and

programmers, saltines, autonomous researchers and academicians who rummage

around for shortcomings in cryptographic conventions and algorithms.

2.3.1 Cryptanalysis Techniques and Attacks

It is important to attack the cryptographic system in order to attack th check

the security of a crypto system. So that we can understand the flaws of this

crypto system and then we can make our system more secure. These attacks

require the cryptanalyst to have some information for example, the nature of the

program should be known. The cryptanalyst should know in which language the

information he wants to get, that is either in english or computer language. The

attacks are based on the algorithmic nature as well as knowledge of the plaintext’s

general features, such as whether it is a conventional document written in english

or a java code. As a result, before trying to employ the attacks, the plaintext’s

nature should be understood. For detailed on cryptanlysis see [34]

2.4 Chaos Theory

Henri Poincare proposed chaos theory in 1890 and he was the first person to in-

troduce the system of determining Chaos. He believed that if the initial state

of any system is changed even slightly, the final results can change completely.

Accordingly, if we cannot correctly detect the initial changes of any system, we

will not be able to create any good system, as discussed in [35]. Ray Bradbury a

famous American science fiction novelist, wrote in one of his novels “A Sound of
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Thunder” in 1952 that a huge storm can occur due to the butterfly flutter once [1].

Lorenz started the use of a computer model in 1961 to make weather forecasts.

He put 0.506 as a shortcut rather than the full decimal figure of 0.506127, and he

realized that all the weather had changed. Complete model of this experiment is

discussed in [36].

Chaos is the science of unexpected of the nonlinear and unpredictable events. It

teaches us to be prepared for the unexpected situation. However much conven-

tional science is concerned with allegedly predictable phenomena such as gravity,

electricity, or chemical reactions. On the other hand chaos theory is concerned

with nonlinear and unpredictable phenomena that are virtually hard to antici-

pate or regulate, such as turbulence, weather, stock market, our mental states etc.

Fractal mathematics, which represents nature’s infinite complexity, is frequently

used to describe these events. Many natural objects such as landscapes, clouds,

trees, organs, rivers, etc, display fractal qualities as do many of the systems in

which humans exist.

• A dynamic system is a system that evolves with time. To determine the

state for all future times, it requires iterations of the relation by a number

of times. If the system can be solved with a given initial point it is possible

to determine all its future positions.

• The stability of the dynamical system implies that there is a class of initial

conditions for which the trajectories would be equivalent.

2.5 Some Importants Chaotic Maps

Chaos is defined by the properties of deterministic, nonlinear, sensitive depen-

dence. These are the fundamental properties of chaos. There are many other

examples of a chaotic system, such as Sine map, Tent map, Arnold map, Roses

system, Henon chaotic map and Chens system etc.

In this section brief discription of some well known chaotic maps and their prop-

erties are dissused.
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2.5.1 Logistic Map

The two-dimensional logistic map is researched for its complicated behaviors of

the evolution of basins and attractors. It has more complex chaotic behaviors than

any one-dimensional Logistic map [37].

Logistic Map:

xn+1 = rxn(1− xn). (2.1)

1. Deterministic: Chaos is deterministic. A chaotic process can be defined by

a mathematical model. A mathematical model can be expressed as a simple

equation. It can be written in two ways, discrete equation and differential

equation. A discrete equation is an example of a logistic map. It is also an

example of a chaotic map. Secondly, the Lorenz system 2.4 can be expressed

as a differential equation and is known as the chaotic system.

2. Nonlinearity: The next important property of chaos theory nonlinearity.

Nonlinearity is a mathematical term that describes a situation in which there

is no straight-line or direct relationship between variables. Nonlinear systems

are those in which the change in output is not proportional to the change

in input. Nonlinear dynamical systems, describing change in variables over

time, may appear chaotic or unpredictable. The logistic map is an example

of a nonlinear recurrence relation.

Figure 2.5: Logistic map

The logistic map is an example of a nonlinear recurrence relation.
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3. Bifurcation

One of the key concepts in understanding chaos theory is bifurcation. Mitchel.

Jf [38] an American mathematical physicist, found the bifurcation process in

a nonlinear dynamic system in 1975. He used a basic mathematical model

to characterise the system’s disorderly behaviour. In specific situations, a

model’s behaviour evolves from stability to periodicity, and subsequently

from periodicity to randomness. Small disruption in a system’s guiding rules

causes it to bifurcate and change state.

Figure 2.6: Bifurcation diagram of logistic map

2.5.2 Henon Chaotic Map

The Henon map is a 2-D invertible iterated map wich have chaotic solutions.The

Henon map, developed by Henon in 1976, is a simplified form of the Poincare map

for the Lorenz equation as discussed in [39, 40]. It is represented by state equations

with a chaotic attractor. As a method for creating pseudorandom sequences, the

chaotic Henon mapping has been suggested [41]. The following equation represents

the 2-D Henon map [42].The Henon chaotic map lies between [−1.5, 1.5] on the

Y-axis and [−0.4, 0.4] on the X-axis. If u = 0.3 is fixed and t varies in the range

of [0, 1.5] the henon map behave chaoticaly.

xm+1 = 1 + ym − tx2m,

ym+1 = uxm

(2.2)
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Figure 2.7: Bifurication diagram of Henon chaotic map

1. Lyapunov Exponent

Lyapunov [43] was a Russian mathematician scientist who published his arti-

cle in 1892 in which stability and non-periodic motions were well described in

it. This theory of Lyapunov played a fundamental role in non-linear system.

Through this we can find out

i. How much a system is chaotic.

ii. Measures of small dependance on initials conditions.

iii. The rate of seperation or convergance of infinitesmely close tracjectories

because it is ane exponential function.

Figure 2.8: LE of Henon chaotic map

Lyapunove exponent can be defined as:

λ = lim
m→∞

1

m

m−1∑
t=1

ln |g′
(xt)| (2.3)
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Lyapunove exponent has three dynamic cases which are as follows:

• λ = 0 shows the system is neutrally stable.

• λ < 0 shows orbit is directed to a fixed or stable point.

• λ > 0 shows system is chaotic and unstable.

2.5.3 Chebyshev Maps

The same holds true for Chebyshev polynomials of the first and second kinds.

There are two less well-known advanced polynomial families, the Chebyshev poly-

nomials of the third and fourth kinds. Each of the four types is an example of an

orthogonal polynomial family Pn(x).

There are too many associations between these four sorts, so first we recall a de-

scription and certain features of the first and second kind univariate Chebyshev

polynomials.

The Chebyshev polynomials are two polynomial sequences linked to the cosine

and sine functions, denoted as Tt(y) and Ut(y). They can be defined in numerous

methods.

The Chebyshev polynomials of the first kind Tt are given by

Tt(cos θ) = cos(tθ)

Similarly, define the second-order Chebyshev polynomials Ut as

Ut(cos θ) sin θ = sin((t+ 1)θ).

First Kind: The first few Chebyshev polynomials of the first kind are

T0(y) = 1

T1(y) = y

T2(y) = 2y2 − 1

T3(y) = 4y3 − 3y

T4(y) = 8y4 − 8y2 + 1

T5(y) = 16y5 − 20y3 + 5y

T6(y) = 32y6 − 48y4 + 18y2 − 1
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Second Kind: The first few Chebyshev polynomials of the second kind are

U0(y) = 1

U1(y) = y

U2(y) = 2y2 − 1

U3(y) = 4y3 − 3y

U4(y) = 8y4 − 8y2 + 1

U5(y) = 16y5 − 20y3 + 5y

U6(y) = 32y6 − 48y4 + 18y2 − 1

2.5.4 Chen Chaotic System

The equations representing the Chen Chaotic system given by

dx

dt
= a1(y − x),

dy

dt
= (c1 − a1)x− xz + c1y,

dz

dt
= xy − b1z.

(2.4)

Figure 2.9: The Chen chaotic attractor (a1 = 35, b1 = 3, c1 = 28).

The coupled Equations (2.4) are transformed into a one-dimensional circle by the

chaotic strategy. The chaotic mixing techniques in [28] are clearly more secure
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than the established blending strategies. In above equations a1, b1, and c1are

control parameters. With a few suitable settings, above system will be chaotic.

figure 2.9 shows the chaotic attractor of this system when a1= 35, b1= 3, and c1=

28. Chen chaotic framework has a high dynamical complexity. The Lyapunov

exponent of Chen framework is around 2.168, which is larger than the most often

used chaotic systems. Regardless, the complexity of each dimensional variable is

or may be considerable. In this study, a chaotic technique for generating one-

dimensional sequence with great complexity from the Chen system is described.

Actually, chaotic number sequences are utilised to mix the three-dimensional state

variables of Chen’s chaotic system.

2.5.5 Unpredictability

Chaos theory tells us that the future world is always uncertain. Every future

event is connected with the probability of occurrence. Rather, we cannot even say

with 100% certainty that the sun will rise tomorrow. The future of any complex

system is always uncertain. The way of behaving of complicated frameworks is

flawlessly delicate to conditions, so that little changes towards the beginning can

bring about ever bigger changes over the long run. On the other hand in words

that have been ascribed to both physicist Niels Bohr and baseball supervisor Yogi

Berra, “Expectation is truly challenging, particularly about what’s to come”.

Butterfly Effect

Edward Lorenz [44] presented a question during the 139th meeting of American

Association for the Advancement of Science. “Can a butterfly flapping its wings

in Brazil cause a tornado in Texas?”

The answer may be different than what you are thinking right now. However the

correct answer is that a butterfly’s wings in Brazil can cause a tornado in Texas.

It might require a truly lengthy investment, yet the association is certifiable. In

the event that the butterfly had not fluttered its wings at fair the right point in

space/time, the typhoon could not have possibly occurred. In short, it happens

many times that little changes inside the basic circumstances lead to outrageous
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changes inside the outcomes. The image is taken from IS STOCK photos which

represents small distrbance in system can lead to large-scale and unpredictable

variation in the future state of the system. This trend can be tested through some

linear equations of mathematics.

Figure 2.10: Buttrtfly effect

2.5.6 Order / Disorder

Chaos is not simply disordered. Chaos explores the transitions between order and

disorder, which often occurs in surprising ways.

2.5.7 Feedback

When there is feedback, systems frequently become chaotic. The stock market’s

behavior is an excellent example of it. Individuals are influenced to buy or sell a

stock when its value grows or decreases. This, in turn, effects the stock’s price,

leading it to fluctuate erratically.

2.5.8 Fractals

A fractal is an infinite pattern. Fractals are geometric models of chaotic functions

that are related to the study of science and mathematics. Fractals are designs that
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never end through any scale [15]. Things that appeared unconnected at first yet

had a very close link with each other φg(g). If g is the domain of some function

g, then the following sequence is the orbit of y for φg(g) is given as [15].

φg(g) = y, g(y), g(g(y)) . . . (2.5)

2.6 Image Encryption

Within the modern-day trends, the technologies are advanced. Almost everyone

uses the internet to send information from one location to another. There are

many feasible ways to transmit information using the net like: via e-mails, send-

ing textual content and images, and so forth. In the present communication world,

images are widely in use. However, one of the important issues with sending in-

formation over the net is the security and authenticity. Encryption is one of the

technique for information protection. Image encryption is a method that converts

the original image to any other shape that is difficult to recognize. Without a

decryption key, no one can view the material. Furthermore, unique and depend-

able protection in the storage and transmission of virtual images is desired in

many packages, which include cable television, online non-public image album,

scientific imaging structures, military image communications and personal video

conferences, and many others. So one can fulfill this kind of challenge. Encryption

is the manner of encoding simple text messages into ciphertext message whereas

the opposite method of remodeling ciphertextual content to straight forward text

is referred to as decryption. Many image encryption methods were proposed in

literature. The image encryption calculations can be ordered into three significant

groups.

i) Position stage based algorithm.

ii) Esteem change based algorithm.

iii) Visual change based algorithm .
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2.6.1 Terminologies Related to Image Encryption

These are some basic terms that are commonly used in image encryption schemes.

i) Encryption is the process from converting cipherimage to cipherimage.

ii) Decryption is the restoring cipherimage from cipherimage.

iii) Key is a numeric or alphanumeric text or might be a special image. The

Key is utilized at the time of encryption process on the Plainimage and

at the time of decoding process on the Codedimage. The choice of a key

in cryptography is vital since the security of an encryption scheme relies

straight forwardly upon it.

iv) Digital image is an image composed of image elements, moreover known

as pixels, each with limited, discrete amounts of numeric representation for

its concentrated or gray level that’s a yield from its two-dimensional func-

tions encouraged as input by its spatial arranges denoted on the x, y − axis

respectively.

v) Pixels is the smallest piece of data in an image. Pixels are organized in a

2-dimensional grid. Each pixel may be a sample of an original image, where

more samples regularly give more-accurate representations of the first. The

intensity of each pixel is variable in color frameworks, each pixel has regularly

three or four components such as ruddy, green, and blue, or cyan, fuchsia,

yellow, and black.



Chapter 3

A Chaos Based Image Encryption

and its Implementation

3.1 Introduction

In this chapter, the first section contains a brief description and shortcomings of

the original encryption algorithm [45] comprises the compound chaotic sequence.

Second section consists of the implementation of chaos based image encryption.

Third section comprises the security analysis of the scheme presented in the per-

vious section.

3.2 Cryptantlsis on the Original Algorithm Us-

ing a Differential Chosen-Plaintext

1. X.Tong et al. [45] presented an image encryption technique based on a com-

pound chaotic sequence. Later on, Li et al. [46] did the security anaylsis of

compound based chaotic seheme and found some drawbacks in this scheme.

They revealed that the scheme would be broken by using differential choosen

plaintext attacks. In response of this cryptanalysis Ming.Xu [28] proposed

a new scheme to counter the attack mounted by Li et al. Additionally, they

presented the figure’s 3.2 and histogram of the previous Algorithm’s image.

27
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2. They also calculated the variance 609.2568 which was large enough, causing

the procedure vulnerable to statistical examination. According to [46] the

analogous conclusion in [45] was incorrect and inadequate. Li et al. [46] gave

observations thats why the compound based chaotic scheme was not secure.

• Pixel substitution and permutation were unaffected by the plainimage.

• As a random-number generator, the Compound chaotic sequence used

for difusionis inadequate.

Figure 3.1: Plain image.

Figure 3.2: Encrypted image and its histogram.

3. However, the approach of X.Tong et al. [45] has various advantages, for

example, it makes use of Chebyshev map for confusion and diffusion, as

well as the permutation is made from of horizontal shifts and vertical shifts,

dynamical shifts, all of them are worthy of our reference.
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3.3 The Modified Image Cryptoystem

The new encryption algorithm depends on the plainimage and Chen chaotic se-

quence is used to generate the substitution instead of the compound chaotic se-

quence.

3.3.1 The Secret keys

The secret keys are two random real numbers of the modified encryption scheme

of precision 10−14 y1, z1 ∈ [−1, 1].

L0 : yn+1 = 8y4n − 8y2n + 1,

L1 : zn+1 = 4z3n − 3zn n = 0, 1, 2, . . .
(3.1)

These values of y1, z1 will be taken into account as the rst values for both of the

Chebyshev polynomials as given in [28] y1=0.32145645647836, z1=0.48124356788345.

Moreover another set of three secret values will be taken into account as the rst

values of Chen’s chaotic system are, X1=-10.058, Y1=0.368, Z1=37.368 as given

in Equation (2.4). In Equation (2.4) a1, b1 and c1 are the control parameters. If

these parmeters are replaced by 35, 3, 28 respectively [47] the system will behave

chaotically.

3.3.2 The Initial Phase

Three pseudo-random integer sequences are generated as part of the startup phase.

1. Pseudo-random sequence, {T1(t)}AB
t=1 for XOR substitution of pixel values.

A = 256;B = 256 ; Ro = A∗B
3

, 1 ≤ m ≤ Ro, h=0.0001

T1(3(m− 1) + 1) = |Xm − bXmc| ∗ 1014 mod 256

T1(3(m− 1) + 2) = |Ym − bYmc| ∗ 1014 mod 256

T1(3(m− 1) + 3) = |Zm − bZmc| ∗ 1014 mod 256

(3.2)
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In Equation (3.2), bXc represents floor function. To obtain the real values

of Xm, Ym, Zm RK 4 Method is applied.

dX

dt
= a1(Y −X) = F,

dY

dt
= (c1 − a1)X −Xr + c1Y = G,

dZ

dt
= XY − b1Z = H

(3.3)

In Equation (3.3) a1, b1,and c1 are the the control parameters and some fixed

values considered as t1=0, h=0.0001. The complete scheme of RK-4 is given

as.

k1 = h ∗ F (t(i), X(i), Y (i), Z(i)),

l1 = h ∗G(t(i), X(i), Y (i), Z(i)),

m1 = h ∗H(t(i), X(i), Y (i), Z(i)).

k2 = h ∗ F (t(i) +
h

2
, X(i) +

k1
2
, Y (i) +

l1
2
, Z(i) +

m1

2
),

l2 = h ∗G(t(i) +
h

2
, X(i) +

k1
2
, Y (i) +

l1
2
, Z(i) +

m1

2
),

m2 = h ∗H(t(i) +
h

2
, X(i) +

k1
2
, Y (i) +

l1
2
, Z(i) +

m1

2
).

k3 = h ∗ F (t(i) +
h

2
, X(i) +

k2
2
, Y (i) +

l2
2
, Z(i) +

m2

2
),

l3 = h ∗G(t(i) +
h

2
, X(i) +

k2
2
, Y (i) +

l2
2
, Z(i) +

m2

2
),

m3 = h ∗H(t(i) +
h

2
, X(i) +

k2
2
, Y (i) +

l2
2
, Z(i) +

m2

2
).

k4 = h ∗ F (t(i) + h,X(i) + k3, Y (i) + l3, Z(i) +m3),

l4 = h ∗G(t(i) + h,X(i) + k3, Y (i) + l3, Z(i) +m3),

m4 = h ∗H(t(i) + h,X(i) + k3, Y (i) + l3, Z(i) +m3).

X(i+ 1) = X(i) +
(k1 + 2k2 + 2k3 + k4)

6
,

Y (i+ 1) = Y (i) +
(l1 + 2l2 + 2l3 + l4)

6
,
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Z(i+ 1) = Z(i) +
(m1 + 2m2 + 2m3 +m4)

6
,

t(i+ 1) = t(1) + ih.

Having obtained the values of Xi, Yi and Zi from above system and using

these values in Equation (3.3), Table 3.1 can be generated.

2. Horizontal permutation {T2(m)}Am=1 for row shifting.

L0 : yn+1 = 8y4n − 8y2n + 1,

L1 : zn+1 = 4z3n − 3zn n = 1, 2, . . .
(3.4)

T2(m) =

b
1+ym

2
Bc, −1 ≤ ym < 1.

B − 1, if ym = 1.

(3.5)

Table 3.1: Some iterative values of Chen chaotic system.

ti Xi Yi Zi T1(m)

0 -10.058000000 0.3680000000 37.3680000000 0

0.001000000 -9.6915314816 0.8222343737 37.2502049356 0

0.0020000000 -9.3221265374 1.2716789579 37.1286921833 128

0.0030000000 -8.9500544887 1.7161291661 37.0038537260 128

0.0040000000 -8.5755821758 2.1553950508 36.87607989727 0

0.0050000000 -8.1989735471 2.589300904 36.74575842450 0

0.0060000000 -7.820489275 3.017684809 36.6132735235 0

0.00700000000 -7.4403864072 3.4403981536 36.4790050429 0

0.00710000000 -7.4503864072 3.4403990536 36.4790050430 0

0.00700000000 -7.4503864072 3.4403985536 36.4790050430 0
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Table 3.2: Some iterative values of Chebyshev map for column shifting.

z L1(z) T3(n)

0.481244 0.997915667292101 245

0.997915667292101 -0.981293102721896 47

-0.981293102721896 0.835811114800762 226

0.835811114800762 0.171908895833851 144

0.171908895833851 -0.495405221081258 21

-0.495405221081258 0.999873716059895 184

0.999873716059895 0.998863635902597 220

0.998863635902597 0.989788213134064 52

0.998863635902500 0.989788213134165 51

0.998863635902596 0.989788213134063 51

Table 3.3: Some iterative values of Chebyshev map for row shifting.

y1 L1(y) T2(m)

0.321456 0.258751578720439 242

0.258751578720439 0.500241933032771 136

0.500241933032771 -0.500967497778115 68

-0.500967497778115 -0.503866232407596 54

-0.503866232407596 0.515404212166988 127

0.515404212166988 0.560608755019518 28

0.560608755019518 0.724071119397409 141

0.724071119397409 0.995284246731698 25

0.724071119397410 0.995284246731700 26
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3. Vertical permutation {T3(n)}Bn=1 for column shifting dynamically (the spe-

cific process is available in) [45].

T3(n) =

b
1+zn
2
Ac, −1 ≤ zn < 1.

A− 1, if zn = 1.

(3.6)

To obtain a chaotic sequence the Equations given in (3.5) and (3.6) are solved by

using the initial values of parametes y1 and z1 from Section 3.3.1. The values of

L0(y) and L1(z) are presented in Tables 3.2 and 3.3 from these Tables one can

clearly observe that these values represent a chaotic behavior. The values of T2(m)

and T3(n) are calculated from Equation (3.5) and (3.6). The values of T2(m) and

T3(n) are tabulated in Table 3.2 and Table 3.3.

3.3.3 The Encryption Algorithm

As in the original algorithm of X.Tong et al. [45], the encryption technique is

performed in three parts: that is an XOR operation based substitution part and

two permutation parts, however the order of these three parts has been changed

and the newly obtained sequence is more resistive and secure.

1. Permutation Part, Horizontal Circular Shift Operation use a simple

image p = {Pmn|1 ≤ m ≤ A, 1 ≤ n ≤ B, } as source, where pmn signifies the

pixel of P placed at the mth row and nth column. At first, 1 equals to n

and use the mod operation to replace the starting key v0 into an unmarked

integer v between 0 and 255, then assign T2(1) to variation L (L represents

the horizontal-shift step length) then carry out the aforementioned steps to

every row in the image P (1 ≤ n ≤ m).

i) Create the sequence Q1 = {Q1(n)} B+1
n=1 where Q1(1) = v and Q1(n +

1) = Pmn, 1 ≤ n ≤ B after that, perform a horizontal shift of Q1

to L pixels. And then obtain a new sequence Q2= {Q2(n)} B+1
n=1 as

Q2(n)=Q1((n− l)mod(B + 1)).
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ii) Get the nth row of intermediate image P ? = {p?mn|1 ≤ m ≤ A, 1 ≤ n ≤ B}

as p?mn=Q2(n) 1 ≤ n ≤ B, while assigned the final pixel of Q2(B + 1)

to v , at last step of 1 replace p?mB

⊕
T2(m+ 1) to L.

iii) m = m+ 1, if m ≤ A, go back to 1, if m > A jump out of the loop.

2. XOR Based Substitution Part

Taking P ? as input. another intermediate image

P ?? = {P ??
mn|1 ≤ m ≤ A, 1 ≤ n ≤ B} (3.7)

is obtained as P ??
mn= p?mn

⊕
T1((m−1)A+n). where {1 ≤ m ≤ A, 1 ≤ n ≤ B}.

3. Permutation Part-Vertical Circular Shift Operations Taking P ?? as

input, at first, assign 1 to n and assign p??AB

⊕
T3(1) to L.

to variation L (L represents the vertical-shift step length), and then repeat

the following procedures for each column image P ?? (from m = 1 to n = B).

i) Create the sequence D1 = {D1(j)} A+1
m=1 where D1(1)= v (v is the vari-

ation which is appeared in (1), at present the value of vis that in the

last step of (1)) and D1(m+ 1)=p??mn 1 ≤ m ≤ A, then do vertical shift

at D1 by L pixels, we can obtain a new sequence D2= {D2(n)} A+1
m=1 as

D2(m)= D1((m− L)mod(A+ 1)).

ii) The nth column of the final cipher image

P
′

= {amn|1 ≤ m ≤ A, 1 ≤ n ≤ B} as dmn=D2(m) 1 ≤ m ≤ A, Mean-

while assign the last pixel of D2(A + 1) to v, assign cAn

⊕
T3(n + 1)

to L.

iii) n = n + 1, if n ≤ B, go back to 1, if n > B jump out of the loop. At

the end of encryption process cipher image P
′

is obtained.

3.3.4 The Decryption Algorithm

The decryption of the cipher image can be obtained by adopting the reverse pro-

cedure of previous steps. but inintilization process is same.
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1. Permutation part-vertical circular shift operations

Taking cipher image P
′

= {dmn|1 ≤ m ≤ A, 1 ≤ n ≤ B} and ciphertext v as

input, at first, assign B to n and then for each column of the cipher image

P
′

from (from n = B to n = 2);

repeat the following operations.

i) Create the sequence D2 = {D2(m)} A+1
m=1, D2(m) =dmn 1 ≤ m ≤ A

Meanwhile assign the last pixel D2(A + 1) to v, compute L = dA(n−1)⊕
T3(j),

and then do vertical shift at D2 by L pixel in the direction opposite to

the encryption process, we can obtain a new sequence D1 = {D1(m)}
A+1
m=1 as D1(i)= D2((m+ d)mod(A+ 1)).

ii) The nth column of the final intermediate image

P ?? = {p??mn|1 ≤ m ≤ A, 1 ≤ n ≤ B} as p??mn=D1(m + 1), 1 ≤ m ≤ A,

Meanwhile assign the first D1(1) to v.

iii) n = n− 1, if n < B, go back to 1, if n = 1 jump out of the loop and go

to 4.

iv) Create the sequence ;D2 = {D2(m)} A+1
m=1, D2(m) =dm1 1 ≤ m ≤ A

Meanwhile assign the last pixel D2(M + 1) to v , compute d = p??AB⊕
T3(1), and then do vertical shift at D2 by L pixel in the direction

opposite to the encryption process, we can obtain a new sequence D1

= {D1(n)} A+1
m=1 as D1(m)= D2((m+ L)mod(A+ 1)).

Then we get the first column of the intermediate image P ?? as

p??m1 = D1(m+ 1)1 ≤ m ≤ A (3.8)

meanwhile assign the first pixel D1(1) to v.

2. XOR substitution part

Taking P ?? as input and another intermediate image

P ?= {p?mn|1 ≤ m ≤ A, 1 ≤ n ≤ B} is obtained as

p?mn = p??mn

⊕
T1((m− 1)B + n) (3.9)
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where {1 ≤ m ≤ A, 1 ≤ n ≤ B}.

3. Permutation part-horizontal circular shift operations

Taking image P? = {p?mn|1 ≤ m ≤ A, 1 ≤ n ≤ B} and variation v as input,

(v is the variation which is appeared in (1), at present the value of vis that

in the last step of (1)) At first, assign A to m and then for each row of the

image P? (from m = A to m = 2);

repeat the following operations.

i) Create the sequence Q2 = {Q2(n)} B+1
n=1 , Q2(n) =p?mn, 1 ≤ n ≤ B,

Meanwhile assign the last pixel Q2(B + 1) to v, compute d = p?(m−1)B⊕
T2(m),

and then do vertical shift at Q2 by L pixel in the direction opposite to

the encryption process, we can obtain a new sequence Q1 = {Q1(n)}B+1
n=1

as Q1(n)= Q2((m+ L)mod(B + 1)).

ii) Get the mth row of the final image P = {pmn|1 ≤ m ≤ A, 1 ≤ n ≤ B}

as pmn=Q1(n+ 1) 1 ≤ n ≤ B, Meanwhile assign the first Q1(1) to v.

iii) m = m− 1, if m ≥ 1, go back to 1, if m = 1 jump out of the loop and

go to 4.

iv) create the sequence Q2 = {Q2(n)} B+1
n=1 , Q2(n) =p1n 1 ≤ n ≤ B Mean-

while assign the last pixel Q2(B + 1) to v , and then do vertical shift

at Q2 by T2(1) pixel in the direction opposite to the encryption pro-

cess, we can obtain a new sequence Q1 = {Q1(n)} B+1
n=1 as Q1(m)=

Q2((m+ L)mod(A+ 1)).

Then we get the first row of the plain image P as pmn=Q1(n + 1)

1 ≤ n ≤ B, meanwhile assign the first pixel Q1(1) to v.

3.4 An Implementation of Chaos based Image

Encryption

The above encryption and decryption algorithm are implemented on the MAT-

LAB. The working of these algorithms is illustrated here with the following toy
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example. The initilization procedure

T1(i) =



1 0 2 2 1

2 1 3 2 0

1 3 2 3 3

4 3 0 4 3

0 1 1 3 4


T2(i) =



3

4

3

1

2


T3(j) =



4

2

1

2

3


(3.10)

T1(i) represents a matrix values of chen chaotic system. These values are using RK-4

Method. T2(i) and T3(j) two matrices are drawn by using chebyshev maps.

3.4.1 The Encryption Algorithm

P =



2© 3 4 1 3

4 1 3 2 2

2 2 3 4 1

0 1 2 4 3

4 3 1 3 2


(3.11)

p = {Pmn|1 ≤ m ≤ A, 1 ≤ n ≤ B}

A =5 ;B=5 at start m=1 v0 =2; L=T2(1) =3; (L represents the horizontal-shift step

length), and then repeat the following procedures for each row of the image P (from

m = 1 to m = A):

1. create the sequence Q1 = {Q1(n)} B+1
n=1 where Q1(1) = v and Q1(n + 1) = pmn,

1 ≤ n ≤ B then do horizontal shift at Q1 by L pixels.

we can obtain a new sequence Q2= {Q2(n)} B+1
n=1 as Q2(n)=Q1((n − L)mod(B + 1)).

Here we assume Q3(m,n)=(n− L)mod(B + 1).

if Q3(m,n)=0 then Q3(m,n)=6; Q2=Q1(Q3)

Q1 =



2 2 3 4 1 3

3 4 1 3 2 2

2 2 2 3 4 1

4 0 1 2 4 3

2 4 3 1 3 2


Q3 =



4 5 6 1 2 3

1 2 3 4 5 6

6 1 2 3 4 5

5 6 1 2 3 4

4 5 6 1 2 3


Q2 =



4 1 3 2 2 3

3 4 1 3 2 2

1 2 2 2 3 4

4 3 4 0 1 2

1 3 2 2 4 3


(3.12)
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2. Get the mth row of intermediate image P? = {p?mn|1 ≤ m ≤ A, 1 ≤ n ≤ B} as

p?mn=Q2(n) 1 ≤ n ≤ B,Meanwhile assign the last pixel of Q2(B + 1) to v ,Assign

p?
mB

⊕
T2(m+ 1) to L.

P? =



4 1 3 2 2

3 4 1 3 2

1 2 2 2 3

4 3 4 0 1

1 3 2 2 4


(3.13)

v= Q2(m,B + 1), L= p?
mB

⊕
T2(m+ 1)

v= Q2(1, 6)=3; , L= p?
1,5

⊕
T2(2) =2

⊕
4=6

v= Q2(2, 6)=2; , L= p?
2,5

⊕
T2(3) =2

⊕
3=1

v= Q2(3, 6)=4; , L= p?
3,5

⊕
T2(4) =3

⊕
1=2

v= Q2(4, 6)=2; , L= p?
4,5

⊕
T2(5) =1

⊕
2=3

v= Q2(5, 6)=3; next to be used

2. Xor substitution part.

Taking P? as input.another intermediate image P??= {P ??
mn|1 ≤ m ≤ A, 1 ≤ n ≤ B} is

obtained as P ??
mn= p?mn

⊕
T1((m− 1)B + n). where {1 ≤ m ≤ A, 1 ≤ n ≤ B}.

P?? =



4 1 3 2 2

3 4 1 3 2

1 2 2 2 3

4 3 4 0 1

1 3 2 2 4


⊕



1 0 2 2 1

2 1 3 2 0

1 3 2 3 3

4 3 0 4 3

0 1 1 3 4


=



5 1 1 0 3

1 5 2 1 2

0 1 0 1 0

0 0 4 4 2

1 2 3 1 0


(3.14)

3.Permutation part-vertical circular shift operations

Taking P?? as input, At first, assign 1 to n and Assign p??AB

⊕
T3(1) to L. v =3, L =4,

Here we assume A3(m,n)=(m− L)mod(B + 1).

if D3(m,n)=0 then D3(m,n)=6;

D2=D1(D3)
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D1 =



3 5 0 3 1

5 1 1 0 3

1 5 2 1 2

0 1 0 1 0

0 0 4 4 2

1 2 3 1 0


D3 =



3 6 1 1 6

4 1 2 2 1

5 2 3 3 2

6 3 4 4 3

1 4 5 5 4

2 5 6 6 5


D2 =



1 2 0 3 0

0 5 1 0 1

0 1 2 1 3

1 5 0 1 2

3 1 4 4 0

5 0 3 1 2


(3.15)

2. Get the nth column of the final cipher image P
′

= {dij |1 ≤ m ≤ A, 1 ≤ n ≤ B} as

dmn=D2(m) 1 ≤ m ≤ A, Meanwhile assign the last pixel of D2(B + 1) to v,Assign dAn⊕
T3(n+ 1) to L.

3. n = n+ 1, if n ≤ B, go back to 1, if n > B jump out of the loop.

P
′

=



1 2 0 3 0

0 5 1 0 1

0 1 2 1 3

1 5 0 1 2

3 1 4 4 0


(3.16)

v= D2(M + 1, j), L= p
′
An

⊕
T3(j + 1)

v= D2(6, 1)=5 , L= p
′
5,1

⊕
T3(2) =3

⊕
2=1

v= D2(6, 2)=0 , L= p
′
5,2

⊕
T3(3) =1

⊕
1=0

v= D2(6, 3)=3 , L= p
′
5,3

⊕
T3(4) =4

⊕
2=6

v= D2(6, 4)=1 , L= p
′
5,4

⊕
T3(5) =4

⊕
3=7

3.4.2 The Decryption Algorithm

L=d
′

A(n−1)
⊕

T3(n); D3(m,n)=(m+ L)mod(B + 1).

if D3(m,n)=0 then D3(m,n)=6;

D1=D2(D3)

L=7,6,0,1,4

P
′

=



1 2 0 3 0

0 5 1 0 1

0 1 2 1 3

1 5 0 1 2

3 1 4 4 0


(3.17)
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D2 =



1 2 0 3 0

0 5 1 0 1

0 1 2 1 3

1 5 0 1 2

3 1 4 4 0

5 0 3 1 2


D3 =



5 2 1 1 2

6 3 2 2 3

1 4 3 3 4

2 5 4 4 5

3 6 5 5 6

4 1 6 6 1


D1 =



3 5 0 3 1

5 1 1 0 3

1 5 2 1 2

0 1 0 1 0

0 0 4 4 2

1 2 3 1 0


(3.18)

Substitution Part

P?? =



5 1 1 0 3

1 5 2 1 2

0 1 0 1 0

0 0 4 4 2

1 2 3 1 0


⊕



1 0 2 2 1

2 1 3 2 0

1 3 2 3 3

4 3 0 4 3

0 1 1 3 4


=



4 1 3 2 2

3 4 1 3 2

1 2 2 2 3

4 3 4 0 1

1 3 2 2 4


(3.19)

L=p
′

(m−1)B
⊕

T3(n), Q3(m,n)=(n+ L)mod(B + 1)

Q2 =



4 1 3 2 2 3

3 4 1 3 2 2

1 2 2 2 3 4

4 3 4 0 1 2

1 3 2 2 4 3


Q3 =



4 5 6 1 2 3

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3


Q1 =



2 2 3 4 1 3

3 4 1 3 2 2

2 2 2 3 4 1

4 0 1 2 4 3

2 4 3 1 3 2


(3.20)

P =



2 3 4 1 3

4 1 3 2 2

2 2 3 4 1

0 1 2 4 3

4 3 1 3 2


(3.21)

3.5 Results and Discussion

There are several tests conducted and results have proved their efficiency as well as

accuracy of suggested approach. The images utilised (Lena, Barbera, Baboon) are gray-

scale images from the USC SIPI public media library. The image encryption strategy

is implemented on a PC running MATLAB R2017a with the O.S Windows 8.0 64bit,

a Core i5-4300M with a 2.60 GHz CPU, and 8 G of RAM. Initial keys are randomly
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selected as y1 = 0.321456, z1 = 0.481244 and the initial values of Chen’s chaotic system

are X1=-10.058, Y1=0.368, Z1=37.368. Figure 3.3 depicts that outcome of our described

algorithm’s encryption and decryption.

Figure 3.3: Experimental results: (1a) Plain image of Lena,(1b) Cipher image
of Lena and (1c) Decrypted image of Lena.

Figure 3.4: Experimental results: (2a) Plain image of Barbera, (2b) Cipher
image of Barbera and (2c) Decrypted image of Barbera.

Figure 3.5: Experimental results: (3a) Plain image of Baboon,(3b) Cipher
image of Baboon and (3c) Decrypted image of Baboon.



An Implementaion of Chaos Based Image Encryption on MATLAB 42

3.5.1 Security Analysis

This part examines security assessments such as (keys-space, sensitivities, and stats)

and their correlations.

1. Key-Space Analysis

Minimum key space of 1030 is suggested to bothstrong security and resilience to

brute-force attacks [48]. The suggested technique makes use of the keys x1, y1, X1,

Y1 and Z1. The number of possible key combinations is 1070 when the precision is

set to 10−14. As a result, the brute force attack is difficult to execute successfully.

2. Key sensitivity

A decent image encryption technique should be key sensitive in order to avoid

unauthorised preliminary attacks. As an example, Figure 3.6 (a) displays the

plainimage of a Boat of size 256 by 256. Figure 3.6 (b) depicts the cipherimage of

a boat. However, decryption is then done on x
′
1, y

′
1, X

′
1, Y

′
1 and Z

′
1 . Figures 3.7

and 3.8 indicate that if a little modification of 10−14 is made in keys, the results

are wrong (c - g). This indicates how sensitive the algorithm is to key.

Figure 3.6: Key sensitivity: (a) Plain image of boat and (b) Cipher Image of
a boat.

Figure 3.7: Incorrect decryption of (b) using first two altered keys.
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Figure 3.8: Incorrect decryption of (b) using last three altered keys.

3.5.2 Differential Attacks

Differential cryptanalysis is a broad term for cryptanalysis that mostly applies to block

ciphers that operate on binary sequences. Differential cryptanalysis is commonly cred-

ited to Biham and Shamir [49]. They published their article on this form of attack

on many ciphers. They also included theoretical vulnerability of the (DES) [50]. As a

result, the differential attack has become a prevalent attack that has been be addressed

during encryption design [51]. There are two types of differential attacks given below.

1. Number of Pixels Change Rate (NPCR)

2. Unified Average Change Intensity (UACI)

It is interesting to note that, NPCR and UACI was firstly introduced in 2004 [25, 52]

From that era, NPCR and UACI have been two frequently utilized in security investi-

gations in the image encryption field for diverse attacks.

• Definition

The NPCR is developed to assess the number of changing pixels. The UACI is

developed averaged altered intensity between ciphertext images.

Assume we have a plainimage P1 and its cipherimage is P ∗1 . Now we change

in one pixel in plainimage. The new plainimage is P2 and its cipher image is

P ∗2 . Now the pixel esteem of cipherimages at that network is (m,n) indicated

by P ∗1 (m,n) and P ∗2 (m,n). we can find NPCR and UACI by solving following

equations.
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• Mathematical form

Q2(m,n) =


0, if P ∗1 (m,n) = P ∗2 (m,n),

1, if P ∗1 (m,n) 6= P ∗2 (m,n).

(3.22)

UACI =
1

L×M
[
∑
m,n

|p∗1(m,n)− p∗2(m,n)|
255

]× 100% (3.23)

NPCR =

∑
n,m Q2(m,n)

L×M
× 100% (3.24)

The greatest permitted pixels appropriate with the ciphertext image format is denoted

by L . M denotes the pixels. From the above equations we can easily conclude that the

NPCR concentrates on the absolute number of pixels that change value in differential

attacks. The UACI concentrates on the averaged difference between two paired images

[51]. The NPCR and UACI both have ranges [0,1]. Table 3.4 displays the numerical

findings for UACI and NPCR [51].

Table 3.4: Numericals findings of UACI and NPCR .

Image MeanNPCR MeanUACI

64by64 99.6094000000 33.4635416667

128by128 99.6094000000 33.4635416667

256by256 99.6094000000 33.4635416667

512by512 99.6094000000 33.4635416667

1024by1024 99.6094000000 33.4635416667

The results of testing several images by altering the value of a pixels at random positions

are shown in Table 3.5. As a result, even modest changes to the plain image result in

a drastically different cipher image. In other words, our technique satisfies the high

plaintext sensitivity criteria. Equation (3.23) is used to determine the value of UACI,

and equation (3.24) is used to calculate the value of NPCR.
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Table 3.5: Experimental Results of Different Images

Image lena Baboon Barbera

NPCR 99.609375 99.5956 99.5956

UACI 33.36271 33.4177 33.4758

3.5.3 Statistical Analysis

Data analysis is used to discover the link between plain image and cipher image. As a

result, plain imageis completely different after encryption.

1. Histogram

A histogram can be used to depict the grey distribution. The histogram of the

cipher image should be uniform or nearly uniform, and it should differ from the

plain image after encryption to match the requirements of a successful encryption

technique.

Figure 3.9: Histograms of encrypted image (Lena).

Figure 3.10: Histograms of encrypted image (Barbera).
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Figure 3.11: Histograms of encrypted image (Baboon).

2. Correlation Coefficient

The Pearson correlation coefficient (PCC) [53] of two neighboringpixels in a basic

plain image is often high. For a successful coding technique to be employed on

a basic image, there must be a weak association between nearby pixels in the

corresponding coded image. When comparing the similarity of two adjacent pixels

in a plain-image and a cipher-image, The PCC of all neighboringpixels (vertical,

horizontal, and diagonal) in a plain -image and a cipher-image is determined using

the formula below.

P (a) =
1

Z

Z∑
n=1

a(n)

Q(a) =
1

Z

Z∑
n=1

(a(n) − P (a))2

R(b, a) =
1

Z

Z∑
n=1

(bn − P (a))(a(n) − P (a))

rba =
R(b, a)√

(Q(a))(Q(b))

(3.25)

Table 3.6: Correlation Coffeicent of Cipher Image (lena).

Direction P lainimage Cipherimage

Vertical 0.9583243 -0.002944

Horizontel 0.9783154 0.0061854

Diagonal 0.933050 0.003079
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Two nearby pixels values are a and b, the correlation coefficient is r. The test

outcomes are listed in Table 3.6. The findings show that the PCC in the cipher

image generated by current approach is near to zero.

3.5.4 Information Entropy

The most essential property of randomness is information entropy. The information

entropy is computed using equation (3.26) which is then used to test the various im-

ages.The computation for information entropy P (a) of an information is as follows.

P (a) =
2Z−1∑
u=0

I(a(u)) log2
1

I(a(u))
(3.26)

If we choose information from an image Lena, then Z is number of bits of that source.We

choose 256 by 256 image so number of bits is 8 . This means Z is 8. I(au)is probability

of that source which is 1/256, then

P (a) =
255∑
u=0

I(a(u)) log2
1

I(a(u))
= 8 (3.27)

Theoretically informational entropy is equal to 8. The grey scale image Lena has an

information entropy of 7.56828525761. The value of Information Entropy is highly sen-

sitive even when the value of a one or two pixel changes, the value of Information Entropy

changes as well. It is utilized to impact the generation of our algorithm as well as key

stream selection, Table 3.7 displays the Information Entropy results of different images

such as lena, Barbera and Baboon. This is because the suggested algorithm’s informa-

tion entropy values are near to the theoretical value of 8, it may withstand information

entropy attacks and create an equivalent random message for the cipher-image after

employing the approach.

Table 3.7: Information Analysis.

image Lena Barbera Baboon

plainimage 7.5682 7.4664 7.3583

cipherimage 7.9974 7.9992 7.9769



Chapter 4

A Modified Image Encryption

Scheme based on Henon Chaotic

Map and Brownian Motion

4.1 Introduction

In this chapter, we present a new image encryption technique based on Henon chaotic

maps to improve efficiency, provide a high degree of security, and decrease the overhead

delay for real-time image encryption. A 2-D chaotic map is utilised in this study to gen-

erate the chaotic sequence and to regulate the encryption process. Henon maps, together

with all of its qualities and characteristics, have been explored and employed among the

many maps. The suggested technique randomly shuffles image pixels. Furthermore, to

strengthen the cipherimage, pixel values are adjusted using a bitwise XOR operation

between the original pixel value and a key. Table values are generated from the same

chaotic map.

4.2 Brownian motion

Our goal here is to create an image encrypted based on technique using 2-D chaotic

maps and Brownian motion. Brownian motion is the randomized particle movement

suspended in fluid (liquid or gas) caused by the quick collision of liquid or gas molecules.

48
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The word “Brownian motion” is a mathematical concept or model used in the creation

of safe cryptosystems that describes the “random movement of particles”. Wang and Xu

[54] employed the Monte Carlo approach to encrypt the original test image in 2014, using

a single particle from Brownian theory as a pixel. In 2015, Zhu [55] broke the technique

created by then [54]. since the system designed by Wan was based on permutation and

diffusion sequences that had nothing to do with plaintext images, making their approach

ineffective.

It is the chaotic (zig-zag) movement of particles along three separate axes, notably the

X, Y, and Z axes as shown in Figure 4.1. The particle’s behaviour is named for botanist

Brown, who studied microscopic particles. He discovered the notion at the first time

when pollen grains dropped into a stream and he saw variations and random motion in

the water, albeit he did not discover the basis for the behaviour he witnessed. Later, in

1905, one of the greatest scientist’s of all time, Albert Einstein, wrote a paper in which

he described the precise irregular motion of particles seen by Brown.

Our major goal is to create a strong algorithm that is resistant to cryptanalysis and

has few weaknesses that may be exploited to get access to encrypted digital items. In

cryptanalysis, hackers investigate potential breaches and flaws in attempt, to decipher

the encryption algorithm. Certain statistical procedures that assure the strength of the

suggested algorithm can be used to validate the robustness of the proposed system. The

cryptosystem’s strength is heavily dependent on two factors, the proposed algorithm

for encryption and the confidentiality of keys used in the proposed system to encrypt

information. To generate the most random sequence, we employed Brownian particle

motion and henon chaotic maps. Before this we assumed and defined a particular number

of particles with respect to time. These particles aided us in attaining the effect of zigzag

motion of initially defined particles with regard to time and presumed particle number.

The presumed particles are determined by the number of pixels in the test image, and

the track varies as the influence of these particles changes. These particles are arranged

in a three-dimension along the X, Y, and Z axes and the security analyst can propose

their cryptosystem in any direction along the X, Y, and Z axes. The combined action of

the X, Y, and Z axes can make the system more secure. To improve resistance, the zig-

zag motion sequence is injected into Hanon chaotic map to produce a highly randomized

pattern.

It is shown in Fig 4.2, that a point in space can be represented by the equation (4.1)
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that follows spherical coordinates. where 0 ≤ p ≤ ∞, 0 ≤ y ≤ 2π, and 0 ≤ z ≤ 2π.

X = p sin y cos z

Y = p sin y sin z

Z = p cos y

(4.1)

Figure 4.1: Brownian Motion in 3 dimension.

4.2.1 The Initial Strategy

Three pseudo-random integer sequences are generated as part of the startup phase.

1. Pseudo-random sequence . {T1(t)}AB
t=1 for XOR substitution of pixel values is

given as,

T1(3(m− 1) + 1) = |Xm − bXmc| ∗ 1014 mod 256

T1(3(m− 1) + 2) = |Ym − bYmc| ∗ 1014 mod 256

T1(3(m− 1) + 3) = |Zm − bZmc| ∗ 1014 mod 256

(4.2)

In equation (4.2) bXc represents floor function. To obtain the real values of

Xm, Ym, Zm we use Brownian motion and for the iteretion of brownian motion we

use Hanon chaotic map .
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A = 256, B = 256, Ro = A∗B
3 , 1 ≤ m ≤ Ro, P = 2

Xm = p sin ya(m) cos zb(m)

Ym = p sin ya(m) sin zb(m)

Zm = p cos ya(m)

(4.3)

ya(m) = ymπ

zb(m) = 2zmπ
(4.4)

ym+1 = 1 + zm − tym2 ,

zm+1 = uym

(4.5)

The Henon chaotic map lies between [−1.5, 1.5] on the X-axis and [−0.4, 0.4] on

the Y-axis. If u = 0.3 is fixed and t varies in the range of [0, 1.5] the henon map

behave chaoticaly.

2. Horizontal permutation {T2(m)}Am=1 for row shifting.

T2(m) =


b1+ym

2 Bc, −1 ≤ ym < 1.

B − 1, if ym = 1.

(4.6)

3. Vertical permutation {T3(n)}Bn=1 for column shifting dynamically.

T3(n) =


b1+zn

2 Ac, −1 ≤ zn < 1.

A− 1, if zn = 1.

(4.7)

To obtain chaotic sequences the Equation given in (4.6) are solved by using ran-

domly choosen values as zm = 0.12346545678544, ym=0.1284345344434 and pa-

rameters as t = 1.4 and u = 0.3.

The values of ym and zm can easily be calculated using matlab .Having obtained

the values of Xm, Ym and Zm from above system and using these values in equa-

tion (4.3) one gets a sequence T1. From calculated one can clearly observe that

these values represent a chaotic behavior. In view of reported values T2(m) and

T3(n) are calculated from equations (4.6) and (4.7).
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Figure 4.2: Brownian motion of particles.

4.3 The Encryption and Decryption Algorithm

We have not made any change in algorithm 3.3.3 because it is an efficent algorithm.

There were some deficiencies in the first rendering technique that eliminated using this

technique.

We have used Henon Chaotic map instead of Chebyshev map because Chebyshev map is

not a coupled map and used Brownian motion instead of Chen Chaotic system. Because

the Chen Chaotic system is based on the coupled differential Equations and one has to

solve or iterate with RK-4 method. The Chen system with the parameters set in section

2.5.4 is chaotic [56] but it may not be chaotic for some other parameters. However on

the other hand Henon chaotic map is coupled map and have only one fix parameter

detail is given in section 2.5.2. In [57] one can read, “Chens attractor exists if Lorenz

repulsor exist” and most of the literature on the Chen system is redundant because the

results obtained can be directly derived from the corresponding results on the Lorenz

system.

And also brownian motion has simple algebric equations however solution of these equa-

tion are simple. We have eliminated the first 50,000 values in our technique due to

Transient effect. Due to which the effect of chaos became prominent. We have described

some of the results of this new technique below.
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4.4 Results and Discussion

There are several tests we have conducted and results have proved their efficiency as

well as accuracy of suggested approach. The images utilised (lena, barberaera, baboon)

are gray-scale images from the USC SIPI public media library. The image encryption

strategy is implemented on a PC running MATLAB R2017a with the O.S Windows 8.0

64bit, a Core i5-4300M with a 2.60 GHz CPU and 8GB of RAM.

Initial keys are randomly selected as y1 = 0, z1 = 0 (Brownian Motion) and the initial

values of Henon chaotic map are z1 = 0.12346545678544, y1=0.1284345344434, t = 1.4

and u = 0.3. Figures 4.3, 4.4, 4.5 depict the outcome of our described algorithm’s

encryption and decryption.

Figure 4.3: Experimental results: (1a) Plain image of Lena, (1b) Cipher image
of Lena and (1c) Decrypted image of Lena.

Figure 4.4: Experimental results: (2a) Plain image of Barbera, (2b) Cipher
image of Barbera and (2c) Decrypted image of Barbera.
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Figure 4.5: Experimental results: (3a) Plain image of Baboon, (3b) Cipher
image of Baboon and (3c) Decrypted image of Baboon.

4.4.1 Security Analysis

This part examines security assessments such as (keys-space, Sensitivities, and Stats)

and their correlations.

1. Key-Space Analysis

Minimum key space of 1030 is suggested to bothstrong security and resilience to

brute-force attacks [48]. The suggested technique makes use of the keys y1, z1

(Brownian Motion) and the initial values of Henon chaotic map are z1, y1.

The number of possible key combinations is 1056 when the precision is set to 10−14.

As a result, the brute force attack is difficult to execute successfully.

2. Key sensitivity

A decent image encryption technique should be key sensitive in order to avoid

unauthorised preliminary assaults. As an example, Figure 4.6(a) displays the

plainimage of the boat of size 256 by 256. Figure 4.6(b) depicts the cipherimage

of the boat. However, decryption is then done on y
′
1, z

′
1 (Brownian Motion) and

on the initial values of Henon chaotic map z
′
1, y

′
1.

Figures 4.7 and 4.8 indicate that if a little modification of 10−14 is made in keys,

the results are wrong (c - f). This indicates how sensitive the algorithm is to key.
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Figure 4.6: Key Sensitivity: (a) Plain image of boat and (b) Cipher image of
boat.

Figure 4.7: Incorrect decryption of (b) using first two altered keys .

Figure 4.8: Incorrect decryption of (b) using last two altered keys.

4.4.2 Differential Attacks

Differential cryptanalysis is a broad term for cryptanalysis that mostly applies to block

ciphers that operate on binary sequences. Differential cryptanalysis is commonly cred-

ited to Biham and Shamir [49].
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1. Nnumber of Pixels Change Rate (NPCR) .

2. Unified Average Change Intensity (UACI).

The NPCR and UACI both have ranges [0,1]. Table 4.1 displays the numerical findings

for UACI and NPCR [51].

Table 4.1: Numericals findings of UACI and NPCR.

Image MeanNPCR MeanUACI

64by64 99.6094000000 33.4635416667

128by128 99.6094000000 33.4635416667

256by256 99.6094000000 33.4635416667

512by512 99.6094000000 33.4635416667

1024by1024 99.6094000000 33.4635416667

The results of testing several images by altering the value of a pixels at random positions

are shown in Table 4.2. As a result, even modest changes to the plain image result in

a drastically different cipher image. In other words, our technique satisfies the high

plaintext sensitivity criteria.

Table 4.2: Experimental Results of Different Images.

Image Lena Baboon Barbera

NPCR 99.703454 99.453432 99.389328

UACI 33.43672 33.5463 33.9934

4.4.3 Statistical Analysis

Data analysis may be used to discover the link between plain image and cipher image.

As a result.plain imageis completely different after encryption.
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1. Histogram A histogram can be used to depict the grey distribution. The his-

togram of the cipher image should be uniform or nearly uniform, and it should

differ from the plain image after encryption to match the requirements of a suc-

cessful encryption technique. Using new scheme he histogram of cipherimage is

uniform and different from the histograms of differents plainimages as shown in

the histograms of images so it does not provide any clue to employ any statistical

attack on the new encryption procedure.

Figure 4.9: Histograms of encrypted image (Lena).

Figure 4.10: Histograms of encrypted image (Barbera).

Figure 4.11: Histograms of encrypted image (Baboon).
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2. Correlation Coefficient. The Pearson correlation coefficient (PCC) [53] of two

neighboring pixels in a plain image is often high. For a successful coding technique

to be employed on a image there must be a weak association between nearby pixels

in the corresponding coded image. The test outcomes are listed in Table 4.3. The

findings show that the PCC in the cipher image generated by our new approach

is near to zero.

Table 4.3: Correlation Coffeicent of Cipher Image (lena).

Direction P lainimage Cipherimage

Vertical 0.912564 0.0042987

Horizontel 0.892675 -0.0045398

Diagonal 0.914754 -0.0342898

4.4.4 Information Entropy

The most essential property of randomness is information entropy. The grey scale image

Lena has an information entropy of 7.56828525761. The value of Information Entropy

is highly sensitive, even when the value of a one or two pixel changes the value of In-

formation entropy changes as well. Table 4.4 displays the Information Entropy results

of different images such as lena, Barbera and Baboon. This is because the suggested

algorithm’s information entropy values are near to the theoretical value of 8. It may

withstand information entropy attacks and create an equivalent random message for the

cipher-image after employing the approach.

Table 4.4: Information Analysis.

Image Lena Barbera Baboon

plainimage 7.23754 7.13486 7.45326

cipherimage 7.91645 7.98345 7.94778



Chapter 5

Conclusion

In this chapter, the concluding remarks regarding the scheme [45] reviewed in Chapter

3 and extended work presented in Chapter 4.

Information security is becoming the focus of attention, how to ensure the security of

digital image storage and transmission has become an important topic of information

security.

1. A detailed review of the work of M. Xu [28] “A new chaos- based image encryption”

is presented in this thesis. The work focuses on an image encryption scheme

based on Chen chaotic system and Chebyshev map. The modulation operation is

used between diffusion and permutation functions, The scheme is implemented by

developing a MATLAB code 3.3.1for the encryption and decryption of algorithm

.

2. At the receiver end, the cipherimage is decrypted by using decryption Algorithm

3.3.4 In decryption algorithm, the receiver will use three modules, i.e, inverse dif-

fusion, modulation and permutation using same secret keys and updated keys. As

the updated keys is generated with the help of chen chaotic system and cheby

shev map of permuted image, to recover plainimage from cipherimage. The im-

plementation is then used to create various cipher images Furthermore, security

analysis provides significant results.

3. As the scheme is symmetric so the secret keys are mutually shared through a

secure channel. Key is very sensitive element in the encryption scheme, the image

59
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is encrypted using secret keys (x1, y1, X1, Y1 and Z1). While in the decryption, if

the same key is used only then the original image is obtained. If a very insignificant

change of 10−14 in any of the key x1, y1, X1, Y1 and Z1 is done, then the plainimage

cannot be obtained.

4. In chapter 4 we propose a new image encryption scheme based on the Henon

chaotic map and Brownian Motion. The extended scheme is also implemented on

MATLAB and the security anaylsis is performed of the cipherimage obtained by

the updated scheme. Security anaylsis results depict that newly developed scheme

is not much different from scheme of Ming. However the running time of the new

scheme is less then the original one.
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