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Abstract

In this thesis, the numerical investigation of the inertial and micro structure char-

acteristics for magnetite ferrofluid flow over a linear stretching and shrinking sheet

of the Cattaneo-Christov heat flux model with viscous dissipation has been con-

sidered. The governing non linear PDEs, are transformed into a system of di-

mensionless ODEs, by using similarity transformation. The reduced equation are

then solved numerically with the aid of shooting method. The impact of different

parameters such as nano particle volume fraction, micro rotation parameter, mag-

netic parameter, nonlinear stretching and shrinking parameter, Eckert number and

chemical reaction parameter on the velocity profile, temperature distribution, skin

friction and Nusselt number has been analyzed. The results obtained are shown

in the form of table and graph. It is observed that the increase in the value of

nanoparticle volume fraction, micro rotation parameter, and magnetic parameter

the value of Nusselt number decreases. The results obtained reveal that there

is an enhancement in the rate of heat transfer with a rise in the shrinking and

the rate of heat transfer decreases by increasing the stretching of the sheet. The

increasing values of Eckert number and chemical reaction parameter reduces the

amount of heat transfer. The temperature distribution is also influenced by the

presence of time relaxation parameter γ, thermal radiation R and nanoparticle

volume fraction φ. This shows that the volume fraction of nanoparticles can be

used in controlling the behavior of heat transfer and ferrofluid flows.
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Chapter 1

Introduction

The rate of flow of heat transfer is dependant on the thermal conductivity of work-

ing fluid, like water, oil and ethyl glycol. By adding a little portion of nanopar-

ticles (like Cu, Ag, TiO2 and Al2O3) into a traditional liquid, another class of

liquids is acquired which is called nanofluids. Nanofluids cleared another pathway

to developments in the improvement of the attributes of heat transfer. The nan-

otechnology is firstly used by Choi and Eastman [1]. After that, this research topic

have been attracted the notice of several researcher of the world in perspective of

its interesting heat transfer and potential application in several disciplines. After

that many researchers participated in this field. Nanofluid has various application

as nanofibres, nanowires, nanotubes and nanosheets [2]. Nanofluids pulled in the

consideration of analysts because of immense uses of these liquids in car radiators,

cooling of heat exchanging equipments, transformer oil cooling and electronic cool-

ing [3, 4]. The diameter of the suspended nanoparticle varies between 1 to 100

nm. There seems a boost in the thermophysical properties of the ordinary liquid

when the nanoparticle are suspended in it.

Pak and Cho [5] carry out an experiment on the turbulant transfer of heat flow of

two kinds of drape nanoparticles γ-alumina (Al2O3) and titanium dioxide (TiO2)

nanofluid. The experimental study shows that the addition of nanoparticles in-

creases the rate of transfer of heat in water. Eastman et al. [6] performed prior

hypothesis with Cu water drape nano particles and observed that heat transfer

coefficient is greater than that of observed for water in a refined state. Qiang and

1
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Yimin [7] also observed that the addition of Cu in water produces much better

than that of produced by Eastman [6]. Some more experiments are performed

from Rashidi and Nezimabad [8], and Mahanta and Abramson [9], Sun et al. [10]

and Walvekar et al. [11].

To review the practices of nanofluids, we mainly used two different models named

as Buongiorno model [12] and Tiwari-Das model [13]. The Buongiorno model

is mainly consist of few main mechanisms of slip between solid phases and fluid

such as thermophoresis, fluid drainage, inertia, Brownian diffusion, magnus effect,

diffusionphoresis and gravity settling while the Tiwari-Das model [13] is one of

the example of single phase model. In single phase model the fluid, velocity and

temperature they are taken as the same. There are few important influential mech-

anisms in the field of nanofluids such as Brownian diffusion and thermophoresis.

Buongiorno model is used in many reserch articles by Buongiorno [12] and many

others Kuznetsov et al. [14], Noghrehabadi et al. [15], Mutuku and Makinde

[16], Xua and Pop [17], Khan and Makinde [18]. After that, this model has also

been used to solve different numerical problems of nanofluids under stretching and

shrinking case. For example, Zaimi et al. [19] observed heat transfer in nanofluid

over a stretched and shrinked surface. Khan et al. [20] uses finite difference scheme

for a convectively-heated stretching sheet by using third grade nano fluid model

inside the presence of partial slip. Qasim et al. [21] considerd a thin film over

a stretching sheet under the influence of magnetic field and observed the mass

transfer of heat in nanofluid [21] analyzed the mass transfer of a heat in nanofluid.

Akbar et al. [22] used numerical techniques for magneto-nanofluid over a stretched

sheet by using Buongiorno model. Mohyud-Din et al. [23] calculated the flow of

heat transfer and mass through different channels in nanofluids. Khan et al. [24]

investigated the MHD flow of nano fluid over a non linear stretching and shrinking

thrust. Recently, Sheikholeslami and Rokni [25] observed the effect of radiations

on the heat transfer over a stretched sheet. Furthermore, many new developments

on Buongiorno model are presented by Sheikholeslami et al. [26], Sheremet and

Pop [27], Ahrar and Djavareshkian [28], Mustafa [29] and Ahmad et al. [30].

The next model is the Tiwari-Das model [13] which basically scrutinize the nano

particles volume fraction in the base fluid inspite of the Brownian motion and
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studied the rate of flow of heat and observed different charactrastics of naoflu-

ids under different physical situations. Later, this reserch topic has gained the

attention of many reserchers to study the heat transfer charactrastics. Yu et al.

[31] calculated the heat transfer of nanofluids which contain graphene oxide as a

nanofluid and established that the increase in heat transfer is observed as com-

pared to the ethylene glycol. Yacob et al. [32] considered the heat flow in Ag and

Cu-water nanofluid over a shrinking and stretching surface. Vajravelu et al. [33]

also observed the Cu-water and Ag-water nanoparticles, and observed free con-

vection flow with internal heat absorption generation or over a stretching sheet.

Other exemplary analysis on Tiwari-Das model are studied under variable condi-

tions by using some different types of nanoparticles can be found in Hamad [34],

Hamad et al. [35], Sheikholeslami et al. [36], Sheikholeslami and Ganji [37] and

produced some great achievments. Alternatively, Ebaid and Sharif [38] consider

magnetic field on CNTs nanofluids and observed flow of heat. The impact of chem-

ical reaction with SWCNTs nanofluids and water based Cu, Al203 is observed by

Kandasamy et al. [39]. MHD water flow based on nanofluids containing Al2O3,

Cu and TiO2 over an accelerated plate was considerd by Abid Hussanan et al.

[40]. Ebaid and sharif [38] work is extended by Saleh et al. [41] by considering

both cases of injection and suction under the effect of convective condition. Both

of these problems were solved through the utility of Laplace transformation.

The Micropolar theory was invented by Eringen [42]. It offers with the fluids which

have some unique microscopic characters arise from the microrotation and neigh-

borhood structure of the fluid elements. These fluids contain dilute suspensions of

rigid macromolecules with individual motions that aid strain and body moments

and are affected from spin inertia. The microrotation vector and gyration parame-

ter are involve in such flow equations including the velocity vector. Hassanien and

Gorla [43] talk about the heat transfer in streching surface. This issue was further

expanded by Mohammadien and Gorla [44] added viscous and heat generation

effects. Turkyilmazoglu [45] observed flow due to porous streching surface. Later

on, newtonion heating was applied on micropoloar fluid by Hussanan et al. [46].

Some research articles are also available, for example Hussanan et al. [47],

Waqas et al. [48] and Saleh et al. [49], who studied micropolar model in the
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presence of different conditions. When the nanoparticles are added in these type

of nanofluids, it makes the mixture more complicated as compared to the conven-

tional nanofluids. The research provide a new path way for reserchers to explore

nanofluid characteristics. Tiwari and Das [13] uses Buongiorno model approach

to study the micropolar nanofluid flow in the presence of stretching sheet. This

difficulty was further studied by Hsiao [50] to comprise the viscous dessipation

and observed its effects on MHD transfer of heat flow in the absence of chemical

reaction.

The present work proposes the suspension of micropolar fluid Fe3O4 nanoparticles

is supended in micropolar fluid. A mathematical model for the micropolar fluid

flow in the existence of thermal radiation over a shrinking and stretching sheet

subjected to injection and suction is based on Tiwari Das nano fluid model [13].

1.1 Thesis Contributions

The present survey is focused on the numerical analysis of inertial and microstruc-

ture charactrastics of a ferrofluid over a linear stretching and shrinking sheet [13].

The reviewed work is extended by considering Cattaneo-Christov heat flux model

and viscous dessipation. The irreversible process by means of which the work

done by a fluid on adjacent layers due to the action of shear forces is transformed

into heat is defined as viscous dissipation and Cattaneo-Christov heat flux model

is used to describe the heat transfer in viscoelastic flow induced by an exponen-

tially stretching sheet. The proposed nonlinear PDEs are converted into system

of ODEs by applying similarity transformations. The reduced equation are then

solved numerically with the aid of shooting method. The numerically obtained

results are computed by using MATLAB. The impact of significant parameters

on velocity distribution F ′(η), temperature distribution θ(η) and skin friction Cfx

and Nusselt number Nux have been discussed in graphs and tables.

1.2 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful to
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understand the concepts discussed later on.

Chapter 3 provides the proposed analytical study of inertial and microstrucrure

charactrastics of a nanofluid in the existence of stretching and shrinking sheet.

The numerical results of the governing flow equations are derived by the shooting

method.

Chapter 4 extends the proposed model flow discussed in Chapter 3 by using the

nanofluid.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

Some definitions, basic laws and terminologies would be discussed in the current

chapter, which would be used in next chapters.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [51]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.”[52]

6
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Definition 2.1.3 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in

motion, that branch of science is called fluid dynamics.” [52]

Definition 2.1.4 (Fluid Statics)

“The study of fluid at rest is called fluid statics.”[52]

Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [52]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called nu. Mathematically,

ν =
µ

ρ
.”[52]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [53]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as:

α =
k

ρCp
,
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where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [54]

2.2 Viscous Dissipation

“The effects of viscous dissipation on the temperature field and ultimately on the

friction factor have been investigated using dimensional analysis and experimen-

tally validated computer simulations. Three common working fluids, i.e., water,

methanol and iso-propanol, in different conduit geometries were considered. It

turns out that for microconduits, viscous dissipation is a strong function of the

channel aspect ratio, Reynolds number, Eckert number, Prandtl number and con-

duit hydraulic diameter. Thus, ignoring viscous dissipation could affect accurate

flow simulations and measurements in microconduits.”[55]

2.3 Cattaneo-Christov Heat Flux Model

“We make use of the Cattaneo Christov heat flux model to develop the equation

of energy and investigate the qualities of surface heat transfer. The governing

flow and energy equations are modified into the ordinary differential equations

by similarity method for reasonable change. The subsequent ordinary differen-

tial equations are illuminated numerically through shooting method in MATLAB.

The impact of different flow parameters for example thermal relaxation param-

eter, suction parameter, stretching/shrinking parameter, free stream parameter,

and nanoparticles volume fraction on the skin friction coefficient, local Nusselt

number, and streamlines are contemplated and exposed through graphs. It turns

out that the lower branch solution for the skin friction coefficient becomes singular

in shrinking area, although the upper branch solution is smooth in both stretching

and shrinking domain. For oblique stagnation-point flow the streamlines pattern

are not symmetric, and reversed phenomenon are detected close to the shrinking
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surface. Also, we observed that the free stream parameter changes the direction

of the oncoming flow and controls the obliqueness of the flow. The existing work

mostly includes heat and mass transfer as a mechanism for improving the heat

transfer rate, which is the main objective of the authors.” [56]

2.4 Types of Fluid

“The fluid is classified into the following types”

Definition 2.2.1 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity.” [52]

Definition 2.2.2 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [52]

Definition 2.2.3 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [52]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = µ

(
du

dy

)m
.

Some examples of non-Newtonian fluids are toothpaste, shampoo, and honey

etc.” [52]



Literature Review 10

Definition 2.2.5 (Ideal Plastic Fluid)

“A fluid, in which the shear stress is more than the yield value and shear stress

is proportional to the shear strain( or velocity gradient), is known as ideal plastic

fluid

The examples of ideal plastic fluids is Water suspension of clay and fly ash” [52]

Definition 2.2.12 (Magnetohydrodynamics)

“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionized gases (plasmas)

and strong electrolytes.” [57]

2.5 Types of Flow

“The flow of fluid is classified as”

Definition 2.3.1 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [52]

Definition 2.3.2 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis.” [52]

Definition 2.3.3 (Laminar Flow)

“Laminar flow is defined as that type of flow in which the fluid particles move

along well-defined paths or stream line and all the stream-lines are straight and

parallel.” [52]

Definition 2.3.4 (Turbulent Flow)

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way. Due to the movement of fluid particles in a zig-zag way.” [52]
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Definition 2.3.5 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid.

Mathematically,

ρ 6= k,

where k is constant.” [52]

Definition 2.3.6 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [52]

Definition 2.3.7 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [52]

Definition 2.3.8 (Unsteady Flow)

“If at any point in an open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [52]

Definition 2.3.9 (Internal Flow)

“Flows completely bounded by solid surfaces are called internal or pipe or duct

flows.” [51]
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Definition 2.3.10 (External Flow)

“Flows over bodies immersed in an unbounded fluid are termed external flows.” [51]

2.6 Modes of Heat Transfer and Properties

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [53]

Definition 2.4.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [53]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport affected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newtons law of cooling.” [53]

Definition 2.4.4 (Radiation)

“Radiation is the energy transfer due to the release of photons or electromagnetic

waves from a surface volume. Radiation doesnt require any medium to trans-

fer heat. The energy produced by radiation is transformed by electromagnetic

waves.” [53]

Definition 2.4.9 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely due to the temperature of the medium.” [53]

2.7 Dimensionless Numbers

Definition 2.5.1 (Eckert Number)

“It is a dimensionless number used in continuum mechanics. It describes the
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relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where Cp denotes the specific heat.” [53]

Definition 2.5.2 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [53]

Definition 2.5.3 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nux =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [58]

Definition 2.5.4 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. The skin friction coefficient can be defined

as

Cfx =
2τ0
ρu2w

where τ0 denotes the wall shear stress and ρ is the density.” [59]
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Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Rex =
V L

ν
,

where U denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [52]

2.8 Governing Laws

Definition 2.6.1 (Law of Conservation of Momentum)

“The principle of conservation of linear momentum (or Newtons Second Law of

motion) states that the time rate of change of linear momentum of a given set of

particles is equal to the vector sum of all the external forces acting on the particles

of the set, provided newtons third law of action and reaction governs the internal

forces. newtons second law can be written as

∂ρ

∂t
v +∇.[(ρv)⊗ v] = ∇.ρ+ ρf

where ⊗ is the tensor (or dyadic) product of two vectors, ρ is the Cauchy stress

tensor (N/m2) and f is the body force vector, measured per unit mass and normally

taken to be the gravity vector.” [53]

Definition 2.6.3 (Law of Conservation of Energy)

“The law of conservation of energy (or the First Law of Thermodynamics) states
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that the time rate of change of the total energy is equal to the sum of the rate

of work done by applied forces and the change of heat content per unit time. In

the general case, the first law of thermodynamics can be expressed in conservation

form as.

∂ρet

∂t
+∇.ρvet = −∇.q +∇.(σ.v) +Q+ ρf.v

where et = e + 1/2v v is the total energy (J/m3), e is the internal energy, q is

the heat flux vector (W/m2) and Q is the internal heat generation (W/m3).” [53]

Definition 2.6.3 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change of

mass in a fixed volume is equal to the net rate of flow of mass across the surface.

The mathematical statement of the principle results in the following equation,

known as the continuity (of mass) equation

∂ρ

∂t
+∇.(ρu) = 0.

where ρ is the density (kg/m3) of the medium, v the velocity vector (m/s), and

∇ is the nabla or del operator.” [53]

2.9 Shooting Method

To elaborate the shooting method, consider the following nonlinear boundary value

problem.
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2y′′′(x) + y(x)y′′(x) = 0.

y(0) = 0, y′(0) = 0, y′(g) = 1.

 (2.1)

To reduce the order of the above boundary value problem, introduce the following

notations.

y = f1 y′ = f ′1 = f2 y′′ = f ′2 = f3 y′′′ = f ′3. (2.2)

As a result, (2.1) converted into the system of first order ODEs.

f ′1 = f2, f1(0) = 0, (2.3)

f ′2 = f3, f2(0) = 0, (2.4)

f ′3 = −1

2
f1f3, f3(0) = l, (2.5)

where l is the missing initial condition which will be guessed.

The above IVP will be numerically solved by the RK-4 method. The missing

condition l is to be chosen such that.

f2(g, l) = 1. (2.6)

For convenience, now onward, f2(g, l) will be denoted by f2(l).

Let us further denote f2(l)− 1 by H(l), so that

H(l) = 0. (2.7)

The above equation can be solved by using Newton’s method, which has the

following iterative formula.

ln+1 = ln − H(ln)
∂H(ln)
∂l

,

ln+1 = ln − f2(l
n)− 1

∂f2(ln)
∂l

. (2.8)
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To find ∂f2(ln)
∂l

, introduce the following notations.

∂f1
∂l

= f4,
∂f2
∂l

= f5,
∂f3
∂l

= f6. (2.9)

As a result of these new notations, the Newton’s iterative scheme, will then get

the following form.

ln+1 = ln − f2(l)− 1

f5(l)
. (2.10)

Now differentiating the system of two first order ODEs (2.3)-(2.5) with respect to

l, we get another system of ODEs, as follows.

f ′4 = f5, f4(0) = 0. (2.11)

f ′5 = f6, f5(0) = 0. (2.12)

f ′6 = −1

2
[f1f6 + f3f4] , f6(0) = 1. (2.13)

Writing all the six ODEs (2.3), (2.4), (2.5), (2.11), (2.12) and (2.13) together, we

have the following initial value problem.

f ′1 = f2, f1(0) = 0.

f ′2 = f3, f2(0) = 0.

f ′3 = −1

2
f1f3, f3(0) = l.

f ′4 = f5, f4(0) = 0.

f ′5 = f6, f5(0) = 0.

f ′6 = −1

2
[f1f6 + f3f4] , f6(0) = 1.

The above system together will be solved numerically by Runge-Kutta method of

order four. The missing condition will be updated by the Newton’s formula in

(2.10).

The stopping criteria for the Newton’s technique is set as,

| f2(l)− 1 |< ε,

where ε > 0 is an arbitrarily small positive number.[60]



Chapter 3

Inertial and Micro structure

Characteristics for Magnetite

Ferrofluid using Tiwari and Das

Model

3.1 Introduction

The numerical analysis of a ferrofluid flow towards a stretching and shrinking sheet

using Tiwari and Das [13] conductivity model has been performed in this chapter.

The governing non linear PDEs, are transformed into a system of dimensionless

ODEs, by using similarity transformation. The reduced equation are then solved

numerically with the aid of shooting method. At the end of this chapter, numerical

solutions for several parameters are discussed for the dimensionless velocity and

temperature distributions. The numerical results are expressed through tables

and graphs. This chapter contains a detailed review of micro structure and inertial

characteristic of a ferrofluid over a stretching and shrinking sheet by using effective

thermal conductivity model [47].

18
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3.2 Mathematical Modeling

A steady two-dimensional boundary layer flow of a micropolar ferrofluid over a

stretching and shrinking sheet has been considered. These fluids deals with cer-

tain microscopic characters arising from the local structure and microrotation of

the fluid elements. The flow equations of such fluids involve micro-rotation vector

and gyration parameter in addition to the velocity vector. For a stretching and

shrinking case a magnetic field B0 is applied perpendicular to the sheet and the

velocity is assumed as uw(x) = ax. Under these assumptions, the flow of microp-

olar Ferrofluid is governed by the following equations (3.1)-(3.4). Furthermore by

using shooting technique, the solution of ODEs are obtained. At the end of this

chapter, the numerical outcomes against various parameters have been discussed.
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∂u

∂x
+
∂v

∂y
= 0, (3.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= (µnf + k)

∂2u

∂y2
+ k

∂N

∂y
− σnfB2

ou, (3.2)

ρnfj

(
u
∂N

∂x
+ v

∂N

∂y

)
= γnf

∂2N

∂y2
− k

(
2N +

∂u

∂x

)
, (3.3)

u
∂T

∂x
+ v

∂T

∂y
=

knf
(ρcp)nf

∂2T

∂2y
− ∂qr
∂y

. (3.4)

The associated boundary conditions are:

u = αuw(x), v = vw at y = 0; u→ 0 as y →∞,

N = −δ∂u
∂y

at y = 0; N → 0 as y →∞,

T = Tw at y = 0; T → T∞ as y →∞,

where vw is the surface mass transfer velocity and corresponds to suction for vw > 0

and injection for vw < 0. The parameter δ is the micro gyration vector and the

value of δ varies in the interval [0,1].

3.3 Conversion of PDEs to ODEs

To convert the partial differential equations into ordinary differential equations,

we will use the following transformations.

η = y

√
a

vf
, u = axF ′(η), v = −√avfF (η), N = ax

√
a

vf
G(η),

θ(η) =
T − T∞
Tw − T∞

.

Here Tw and T∞ are the temperatures at the wall and close to the other end of

the boundary layer respectively.

Following are the derivatives used to convert the partial differential equations

(3.1)-(3.4) into ordinary differential equations.

• u = axF ′(η),
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∂u

∂x
= aF ′(η). (3.5)

∂u

∂y
= ax

√
a

vf
F ′′(η). (3.6)

∂2u

∂y2
=
a2x

vf
F ′′(η). (3.7)

• v = −√avfF (η),

∂v

∂x
= 0. (3.8)

∂v

∂y
= −aF ′(η). (3.9)

• N = ax

√
a

vf
G(η),

∂N

∂x
= a

√
a

νf
G(η). (3.10)

∂N

∂y
=
a2x

vf
G′(η). (3.11)

∂2N

∂y2
=
a

5
2x

v
3
2
f

G′′(η). (3.12)

• T = θ(η)(Tw − T∞) + T∞,

∂T

∂x
= 0. (3.13)

∂T

∂y
= (Tw − T∞)

√
a

νf
θ′(η). (3.14)

∂2T

∂y2
= (Tw − T∞)

a

νf
θ′′(η). (3.15)

Following are some useful formulae including those relating some physical proper-

ties of nanofluids to those of the base fluids.

γnf =
(
µf +

κ

2

)
j, (3.16)

j =
νf
a
, (3.17)

ρnf = (1− φ)ρf + φρs, (3.18)

µnf =
µf

(1− φ)2.5
, (3.19)

κnf
κf

=
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

, (3.20)

(Cp)nf =
φ(ρCp)s + (1− φ)(ρCp)f

ρnf
, (3.21)
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σnf =

(
1 +

3(σ − 1)φ

(σ + 2)− (σ − 1)φ

)
σf , (3.22)

S =
−vw√
aνf

. (3.23)

Furthermore, following notations will also be used in the conversion of the partial

differential equations to the ordinary differential equations.

H1 =
1

(1− φ)5/2
, (3.24)

H2 = H1 + k, (3.25)

H3 = (1− φ+ φ
ρs
ρf

), (3.26)

H4 = 1 +
3(σ − 1)φ

σ + 2− (σ − 1)φ
, (3.27)

H5 = H1 +
k

2
(3.28)

H6 =

(
κs+2κf−2φ(κf−κs)
κs+2κf+φ(κf−κs)

+R
)

Pr
, (3.29)

Pr =
νf (ρCP )f

κf
, (3.30)

H7 = 1− φ+ φ
(ρCp)s
(ρCp)f

, (3.31)

M =
σfB

2
O

αρf
. (3.32)

γ = hs

√
νf
a
, (3.33)

K =
κ

µf
, (3.34)

R =
16σ∗T∞
3κ∗κf

. (3.35)

3.3.1 Equation of Continuity

From (3.5) and (3.9) we have,

∂u

∂x
= aF ′(η),

∂v

∂y
= −aF ′(η).
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Putting these two expressions in (3.1), we get

aF ′ − aF ′ = 0.

Hence the continuity equation is identically satisfied.

3.3.2 Momentum Equations

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= (µnf + k)

∂2u

∂y2
+ k

∂N

∂y
− σnfB2

ou.

Using (3.5), (3.6), (3.7), (3.19) and (3.22) in (3.2), we get

((1− φ)ρf + φρs)
(
a2xF ′2(η)− a2xF (η)F ′′(η)

)
=

(
µf

1− φ2.5
+ κ

)
a2x

vf
F ′′′(η) + κ

(
a2x

vf
G′(η)

)
−
(

1− 3(σ − 1)φ

(σ + 2)− (σ − 1)φ

)
σfMaρfaxF

′(η)

σf
,

⇒
(

1− φ+ φ
ρs
ρf

)(
F ′2(η)− F (η)F ′′(η)

)
=
F ′′′(η)

νfρf

(
µf

(1− φ)2.5

)
+
κG′(η)

νfρf

−
(

1− 3(σ − 1)φ

(σ + 2)− (σ − 1)φ

)
MρfF

′(η)

ρf
.

⇒
(

1− φ+ φ
ρs
ρf

)
F ′2(η)−

(
1− φ+ φ

ρs
ρf

)
F (η)F ′′(η)

=
µfF

′′′(η)

ρfνf

(
1

1− φ2.5
+

κ

µf

)
+
κG′(η)

µf
−
(

1− 3(σ − 1)φ

(σ + 2)− (σ − 1)

)
MF ′(η).

⇒
(

1

(1− φ)2.5
+

κ

µf

)
F ′′′(η) +

(
1− φ+ φ

ρs
ρf

)
F (η)F ′′(η)

−
(

1− φ+ φ
ρs
ρf

)
F ′2(η)−

(
1− 3(σ − 1)φ

(σ + 2)− (σ − 1)

)
MF ′(η) + kG′(η) = 0.

By using (3.25), (3.26) and (3.27), (3.32), (3.34) in the above equation,the following

is achieved

H2F
′′′(η) +H3FF

′′(η)−H3F
′2(η)−MH4F

′(η) +KG′(η) = 0. (3.36)

Now the equation (3.3) will be converted to the dimensionless form through the

following procedure.
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Using (3.5), (3.10) and (3.11) and (3.12) in (3.3), we have

ρnfj

(
ua

√
a

νf
G(η) + v

a2xG′(η)

νf

)
= γnf

(
a2xG′′(η)

νf

√
a

νf

)
− κ

(
2N + axF ′′(η)

√
a

νf

)
,

Using equation (3.17), we have

ρnf
νf
a

(
ua

√
a

νf
G(η) + v

a2xG′(η)

νf

)
= γnf

(
a2xG′′(η)

νf

√
a

νf

)
− κ

(
2N + axF ′′(η)

√
a

νf

)
.

Using (3.16) and (3.18) in the above equation,we get

(
(1− φρf + φρs)

νf
a

)(
ua

√
a

νf
G(η) +

va2xG′(η)

νf

)
=
(
µnf +

κ

2

) νf
a(

a2xG′′(η)

νf

√
a

νf

)
− κ

(
2N + axF ′′(η)

√
a

νf

)
.

⇒
(

(1− φρf + φρs)
νf
a

)(
axF ′(η)a

√
a

νf
G(η)−

√
aνfa

2xG′(η)

νf

)
=
(
µnf +

κ

2

) νf
a

(
a2xG′′(η)

νf

√
a

νf

)
− κ

(
2ax

√
a

νf
G(η) + axF ′′(η)

√
a

νf

)
.

⇒
(

(1− φρf + φρs)
νf
a

)(
aF ′
√

a

νf
G(η)− a

√
a

νf
F (η)G′(η)

)
=
(
µnf +

κ

2

) νf
a

(
a

νf
G′′(η)

√
a

νf

)
− κ

(
2

√
a

νf
G(η) +

√
a

νf
F ′′(η)

)
.

⇒ ((1− φ)ρf + φρs) νf (F ′(η)G(η)− F (η)G′(η)) =
(
µnf +

κ

2

)
G′′(η)

− κ2G(η) + F ′′(η).

⇒ (ρfνf )

(
1− φ+ φ

ρs
ρf

)
(F ′(η)G(η)− FG′(η)) =

(
µf

1− φ2.5
+
κ

2

)
G′′(η)

− κ2G(η) + F ′′(η),

⇒µf
(

1− φ+ φ
ρs
ρf

)
(F ′(η)G(η)− F (η)G′(η)) = µf

(
1

1− φ2.5
+

κ

2µf

)
G′′(η)

− κ (2G(η) + F ′′(η)) .

⇒
(

1− φ+ φ
ρs
ρf

)
(F ′(η)G(η)− F (η)G′(η)) = µf

(
1

1− φ2.5
+

κ

2µf

)
G′′(η)
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− κ

µf
(2G(η) + F ′′(η)) .

⇒
(

1

(1− φ)2.5
+

κ

2µf

)
G′′(η)−

(
1− φ+ φ

ρs
ρf

)
F ′(η) +

(
1− φ+ φ

ρs
ρf

)
F (η)G′(η)

− κ

µf
(2G(η) + F ′′(η)) = 0.

By using (3.24), (3.26) and (3.34), we get

(
H1 +

k

2

)
G′′(η) +H3F (η)G′(η)−H3F

′(η)G(η)− k(2G(η) + F ′′(η)) = 0.

⇒ H5G
′′(η) +H3F (η)G′(η)−H3F

′(η)G(η)− k (2G(η) + F ′′(η)) = 0. (3.37)

3.3.3 Energy Equation

Using (3.13), (3.14), (3.15) in (3.20), we have

u(0)− vθ′(η) (Tw − T∞)

√
a

νf
=

κf
(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(Tw − T∞)

a

νf
.

⇒ axF ′(η)(0)−√aνfF ′(η)θ′(η) (Tw − T∞)

√
a

νf

=
κf

(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(η)(Tw − T∞)

a

νf
.

⇒ axF ′(η)(0)−√aνfF ′(η)θ′(η)

√
a

νf

=
κf

(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(η)

a

νf
.

⇒ −aF (η)θ′(η) =
κf

(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(η)a

νf
.

⇒ −aF (η)θ′(η)

a
=

κf
(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(η)a

aνf
.

⇒ F (η)θ′(η) =
κf

(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(η)

νf
.

⇒ F (η)θ′(η) =
κf

φ(ρCp)s + (1− φ)(ρCp)f

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+
16σ∗T 3

∞
3κ∗κf

]
θ′′(η)

νf
.



Inertial and Microstructure chractrastics for magnetite ferrofluid using Tiwari
and Das Model 26

⇒ − ((ρCp)s + (1− φ)(ρCp)f )F (η)θ′(η) = κf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η)

νf
.

⇒ − (ρCP )f (1− φ+ φ)
(ρCP )s
(ρCP )f

F (η)θ′(η) = κf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η)

νf
.

⇒ − (1− φ+ φ)
(ρCP )s
(ρCP )f

F (η)θ′(η) =
κf

(ρCP )f

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η)

νf
.

Using (3.30) and (3.31) we get

−H7F (η)θ′(η) =

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η)

Pr
, (3.38)

⇒ H6θ
′′(η) +H7F (η)θ′(η) = 0. (3.39)

3.4 Conversion of Conditions

• u = αuw(x) at y = 0,

⇒ (ax)F ′(η) = α(ax) at η = 0.

⇒ F ′(0) = α.

• v = vw at y = 0,

⇒ −√avfF (η) = −√avfS at η = 0.

⇒ F (0) = S.

• N = −δ∂u
∂x

at y = 0,

⇒ −δ∂u
∂x

= ax

√
a

vf
G(0) at η = 0.

⇒ −δaxF ′′(0)

√
a

vf
= ax

√
a

vf
G(0).

⇒ G(0) = −δF ′′(0).
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⇒ G(0) = −δF ′′(0).

• θ(η) =
T − T∞
Tw − T∞

at T = Tw,

⇒ θ(0) =
Tw − T∞
Tw − T∞

. at η = 0,

⇒ θ(0) = 1.

• u→ 0, as y → 0.

⇒ axF ′(η)→ 0,

⇒ F ′(η)→ 0, as η →∞,

⇒ F ′(∞)→ 0.

• G(η)→ 0. as η →∞.

• T → T∞, as η →∞,

⇒ θ(η)(Tw − T∞) + T∞ → T∞,

⇒ θ(η)(Tw − T∞)→ 0,

⇒ θ(η)→ 0, as η →∞,

⇒ θ(∞)→ 0.

3.5 Dimensionless form of Skin Friction and Nus-

selt Number

The definition of local skin friction and local Nusselt number Nux are

Cfx =
1

ρnfu2w

(
(µnf + κ)

∂u

∂y
+ κN

)
η=0

.

⇒ Cfx =
1

((1− φ)ρf + φρs)x2F ′(η)2

[(
µf

(1− φ)2.5
+KµfaxF

′′(η)

√
a

νf

)
+Kµf .ax

√
a

νf
G(η)

]
η=0

,

⇒ Re
1
2
xCfx =

Re
1
2
x

((1− φ)ρf + φρs)x2F ′(η)2

[(
µf

(1− φ)2.5
+Kµf

)
axF ′′(η)

√
a

νf

+Kµf .ax

√
a

νf
G(η)

]
η=0

.
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Re
1
2
xCfx =

ax2
√

a
νf

((1− φ)ρf + φρs)x2F ′(η)2

[(
µf

(1− φ)2.5
+Kµf

)
F ′′(η)

√
a

νf

+Kµf

√
a

νf
G(η)

]
η=0

,

⇒ Re
1
2
xCfx = µf

ax2
√

a
νf

((1− φ)ρf + φρs)x2F ′(η)2

[(
1

(1− φ)2.5
+K

)
F ′′(η)

√
a

νf

+K

√
a

νf
G(η)

]
η=0

.

⇒ Re
1
2
xCfx = µf

ax2 a
νf

((1− φ)ρf + φρs)x2F ′(η)2

[(
1

(1− φ)2.5
+K

)
F ′′(η)

+KG(η)

]
η=0

.

⇒ Re
1
2
xCfx =

a2x2
µf
νf

((1− φ)ρf + φρs)x2F ′(η)2

[(
1

(1− φ)2.5
+K

)
F ′′(η)

+KG(η)

]
η=0

.

⇒ Re
1
2
xCfx =

a2x2
µf
νf

ρf

(
(1− φ) + φ ρs

ρf

)
x2F ′(η)2

[(
1

(1− φ)2.5
+K

)
F ′′(η) +KG(η)

]
η=0

.

⇒ Re
1
2
xCfx =

a2x2(
(1− φ) + φ ρs

ρf

)
x2F ′(η)2

[(
1

(1− φ)2.5
+K

)
F ′′(η) +KG(η)

]
η=0

.

⇒ Re
1
2
xCfx =

a2x2(
(1− φ) + φ ρs

ρf

)
x2F ′(η)2

[(
1

(1− φ)2.5
+K

)
F ′′(η) +KG(η)

]
η=0

.

⇒ Re
1
2
xCfx =

1(
(1− φ) + φ ρs

ρf

)[( 1

(1− φ)2.5
+K

)
F ′′(η) +KG(η)

]
η=0

.

⇒ Re
1
2
xCfx =

1(
1− φ+ φ ρs

ρf

)[ 1

(1− φ)2.5
+KF ′′(0)−KδF ′′(0)

]
.

⇒ Re
1
2
xCfx =

1(
1− φ+ φ ρs

ρf

)[ 1

(1− φ)2.5
+ (1− δ)K

]
F ′′(0).

By the definition of the local Nusselt number,

Nux = − x

Tw − T∞

(
∂T

∂y

)
y=0

.

Nux = − x

Tw − T∞
(Tw − T∞) θ′(0)

√
a

νf
.
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⇒ Re
−1
2
x Nux = −xRe

−1
2
x θ′(0)

√
a

νf
.

⇒ Re
−1
2
x Nux = −x

x

√
νf
a
θ′(0)

√
a

νf
.

⇒ Re
−1
2
x Nux = −θ′(0). (3.40)

3.6 Numerical Method for Solution

The shooting technique is used to solve the ordinary differential equations system

(3.35) and (3.36). To achieve the numerical solution, the unbounded domain

[0,∞[ has been replaced by the bounded domain [0,η∞] where η∞ is a suitable real

number having the property that there is no significant variation in the solution

for η > η∞.

F = f1, F ′ = f ′1 = f2, F ′′ = f ′′1 = f ′2 = f3, F ′′′ = f ′3, G = f4,

G′ = f ′4 = f5, G′′ = f ′5,

H1 = (1− φ)2.5, H2 = H1 +K, H3 = 1− φ+ φ
ρs
ρf
,

H4 = 1 +
3(σ − 1)φ

σ + 2− (σ − 1)φ
, H5 = H1 +

K

2
.

As a result, the momentum equation (3.35) is converted into the following system

of first order ODEs.

f ′1 = f2, f1(0) = α,

f ′2 = f3, f2(0) = s,

f ′3 =
1

H2

(−H3f1f3 +H3f
2
2 +MH4f2 −Kf5), f3(0) = S,

f ′4 = f5 f4(0) = −δS,

f ′5 =
1

H5

(−H3f1f5 +H3f2f4 + k(2f4 + f3)) f5(0) = r.

The above IVP will be numerically solved by the RK-4 method. The missing

conditions are to be chosen such that:

f2(s, r) = 0, f4(s, r) = 0,
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which are the values of f2 and f4 at η=η∞ for the missing initial conditions (s,r).

Newton’s method will be used to solve the above algebraic equations.This method

has the following iterative scheme:

sn+1

rn+1

 =

sn
rn

−
∂f2∂s ∂f2

∂r

∂f4
∂s

∂f4
∂r

−1
(s

n,rn)

f2
f4


(sn,rn)

(3.41)

We further introduce the following notations.

∂f1
∂s

= f6,
∂f2
∂s

= f7,
∂f3
∂s

= f8
∂f4
∂s

= f9,
∂f5
∂s

= f10,

∂f1
∂r

= f11,
∂f2
∂r

= f12,
∂f3
∂r

= f13,
∂f4
∂r

= f14,
∂f5
∂r

= f15,

As a result of these new notations, the Newton’s iterative scheme get the form:

sn+1

rn+1

 =

sn
rn

−
f7 f12

f9 f14

−1
(sn,rn)

f2
f4


(sn,rn)

. (3.42)

Now differentiating the last system of five first order ODEs with respect to s and

r, we get another system of ODEs, which has been presented below.

f ′6 = f7, f6(0) = 0,

f ′7 = f8, f7(0) = 0,

f ′8 =
1

H2

(−H3f1f8 −H3f3f6 + 2H3f2Q7 +MH4f7 −Kf10), f8(0) = 1,

f ′9 = f10, f9(0) = 0,

f ′10 =
1

H5

(−H3f1f5 −H3f5f6 +H3f2f9 +H3f4f7 + k(2f9 + f8)) f10(0) = 0,

f ′11 = f12 f11(0) = 0,

f ′12 = f13 f12(0) = 0,

f ′13 =
1

H2

(−H3f1f13 −H3f3f11 + 2H3f2f12 +MH4f12 −Kf15) f13(0) = 0,

f ′14 = f15 f14(0) = 0,
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f ′15 =
1

H5

(−H3f1f15 −H3f5f11 +H3f2f14 +H3f4f12 + k(2f14 + f13)) f15(0) = 1.

The stopping criteria for the Newton’s technique is set as

max{|f2(η∞, sn, rn)|, |f4(η∞, sn, rn)|} < ε,

where ε > 0 is an arbitrarily small positive number. From now onward, ε has been

taken as 10−10.

The equation (3.37) will also be numerically solved by using the shooting method.

For this, we utilize the following notions:

θ = Y1, θ′ = Y2, θ′′ = Y ′2 .

H6 =

(
κs+2κf−2φ(κf−κs)
κs+2κf+φ(κf−κs)

+R
)

Pr
, H7 = 1− φ+ φ

(ρCp)s
(ρCp)f

, H1 =
1

(1− φ)2.5
.

As a result, the energy equation (3.37) is converted into the following system of

first order ODEs.

Y ′1 = Y2, Y1(0) = 1,

Y ′2 =
1

H6

(−H7F (η)Y2) , Y2(0) = l.

The above initial value problem will be numerically solved by RK-4 technique. In

this problem, the missing condition is l and it satisfies the following relation.

Y1(l) = 0,

where Y1(l) is the value of Y1 at η = η∞ for the missing initial condition l. The

Newton’s iterative scheme gets the form,

ln+1 = ln − Y1(η∞, l)
∂Y1
∂l

(η∞, l)
.

We further introduce the following notations,

∂Y1
∂l

= Y3,
∂Y2
∂l

= Y4.
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As a result of these new notations, the Newton’s iterative scheme gets the form:

ln+1 = ln − Y1(l
n)

Y3(ln)
.

Now differentiating the last system of two first order ODEs with respect to l, we

get two more ODEs.

Y ′3 = Y4, Y3(0) = 0,

Y ′4 =
1

H6

(−H7F (η)Y4) , Y4(0) = 1.

The stopping criteria for the Newton’s method is set as:

| Y1(η∞, l) |< ε.

3.7 Numerical Results

Tiwari-Das model is used to analyze boundary layer flow and heat transfer of

a micro polar magnetite ferro fluid over a stretching and shrinking sheet under

the effect of thermal radiation. The effects of parameters like suction/injection,

radiation, magnetic, micro rotation, boundary parameters and Prandtl number

on F ′(η), G(η), θ(η) are analyzed for stretching and shrinking cases, separately.

A thorough discussion on the graphs and tables has been conducted which con-

tains the impact of dimensionless parameters on the local skin friction coefficient

(Rex)
1
2Cfx and local Nusselt number (Rex)

−1
2 Nux. Table 3.1 explains the impact

of different parameters on the skin friction. For the rising values of φ, the skin fric-

tion coefficient decreases. It is evident that with an increase in the micro rotation

parameter K, the skin friction coefficient increases. By increasing the values of φ,

M , S, α and δ, the skin friction coefficient is decreased. In Table 3.2, the effects

of significant parameters on Nusselt number (Rex)
−1
2 Nux has been discussed. The

rising pattern is found in (Rex)
−1
2 Nux due to an increase in values of the rotation

parameter K, suction/injection and boundary parameter δ. The value of Nusselt
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number decreases as we increase the value of M , φ and radiation parameter R. In

table 3.1 and 3.2 the missing conditions are taken from the intervals represented

by s and t and w.

Figures 3.1 and 3.2 show the velocity profile for different values of M in case of

suction and injection. The graph show that if we increase the values of M , the

velocity F ′(η) decreases for both the cases. The Lorentz force, also called the

drag force which is immediately increased by increasing M plays very vital role to

maintain the fluid motion slow. It is evident that a pointy fall within the pace for

S > 0 compared to S < 0 inside the layer eta < 4 and then after it will become

uniform.

Figures 3.3 and 3.4 show the impact of the magnetic parameter M on the veloc-

ity profile for injection and suction when α < 0 (shrinking case). It depicts that

for mass transfer flow the velocity profile is a decreasing function of M . Also in

Figures 3.5 and 3.6, it can be noted that if we increase the value of K in case of

injection and suction, the velocity profile is significantly increased.

Figures 3.7 and 3.8 describe the effect of micro rotation parameter K on the ve-

locity field F ′(η) in case of suction. It is noted that an increment in the value of K

results in increasing the magnitude of the velocity profile. The same can be seen

for the injection case. The boundary layer thickness is greater for the injection

case while it is less for the case of suction when the other parameters are kept

constant.

In Figure 3.9, we have the velocity profile for suction and stretching for different

values of δ. It can be seen clearly that with an increase in the value of δ, the ve-

locity of the fluid decreases for the case of suction and stretching. In Figure 3.10,

we have the velocity profile for injection and stretching for different values of δ. It

can be seen clearly that with an increase in the value of δ, the velocity of the fluid

decreases for the cases of injection and stretching. In case of δ = 0, the stretching

sheet is not easy to rotate and shows low concentration. The stress tensor is van-

ished for value of δ = 1
2

and it reflects low concentration of micro elements and for

turbulent flow the value of δ = 1 .

The impacts of δ for suction and injection are displayed in Figures 3.11 and 3.12.It

is notable that δ significantly affects the velocity profile and causes a decrement in
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the velocity magnitude. Deceleration in the velocity boundary layer as compared

with the injection case is zero.

Figures 3.13 and 3.14 illustrate the impact of M on the micro rotation profile.

It is observed that the magnitude of the micro rotation velocity increases with

an increase in the magnetic field parameter M while on the other hand, micro

rotation velocity increases by increasing M . Figure 3.15 represent the variations

in the micro rotation velocity for suction and shrinking and Figure 3.16 represents

the variation in the micro rotation velocity for injection and shrinking.

Figure 3.17 gives the temperature distribution in case of suction and stretching

for different values of R. It is clear that a rise in R also rises the temperature. So

the heat transfer is increased with a rise in the value of R. Figure 3.18 shows the

temperature distribution in case of injection for different values of R for injection

and stretching. This graph also indicates that for micro-polar ferro fluid, the rate

of heat transfer is high as compared to that for the micro-polar fluid.

Figures 3.19 and 3.20 describe the temperature distribution for suction and stretch-

ing by taking different values of R. The increasing value of R is taken out in both

cases for micro polar ferro fluid and nanofluid as well. It is clear that a rise in R

and the percentage of nano particles in the base fluid will increase the rate of flow

of heat. It is also observed that a rise in R and the percentage of nano particles in

the base fluid will increase the flow of heat transfer for suction and injection case.

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.2

0.4

0.6

0.8
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1.6

1.8

2

M=0
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K=2, =0.5, =0.03 Suction  (S>0)
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Figure 3.1: Impact of M on velocity profile for Injection and stretching.
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Table 3.1: Results of Re
1
2Cfx for various parameters

φ K M S α δ Re
1
2Cfx s t

0.01 0.2 0.4 0.5 0.5 0.5 -0.613253 [-1,1] [-1,2]

0.05 -0.765462 [-0.4,5] [-0.4,4]

0.1 -0.999178 [-0.9,10] [-5,5]

0.2 -1.655136 [-0.9,10] [-5,5]

2 -0.451792 [1,10] [-5,-0.1]

3 -0.410157 [-1,8] [-5,-0.1]

4 -0.382136 [-0.9,0.7] [-5,1]

5 -0.362282 [-1.3,5] [-5,1]

2 -0.913687 [-1.3,5] [-5,5]

4 -1.172478 [-1,5] [-5,5]

6 -1.377868 [-1.3,4] [-5,5]

8 -1.553499 [-1.3,1] [-5,5]

1 -0.777384 [-1.1,5] [-5,5]

2 -1.165519 [-1.9,10] [-5,5]

3 -1.598276 [-3,3] [-5,5]

4 -2.052235 [-4,4] [-5,5]

5 -12.98383 [-5,5] [-5,5]

6 -16.82282 [-5,4] [-5,5]

7 -20.96724 [-5,1] [-5,5]

7.2 -21.830737 [-5,0] [-5,5]

0.1 -0.590222 [0,10] [-5,3]

0.3 -0.601494 [0,10] [-5,3]

0.5 -0.613253 [-5,5] [-5,5]

0.9 -0.638371 [0,10] [-5,5]

1 -1.590222 [0,10] [-5,3]

3 -2.601494 [0,10] [-5,3]

5 -3.613253 [-5,5] [-5,5]

9 -4.638371 [0,10] [-5,5]
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Table 3.2: Results of −(Re
−1
2
x )Nux for various parameters

φ K M S α R δ −(Re
−1
2
x )Nux s t w

0.01 0.2 0.4 0.5 0.5 0.7 0.5 2.281019 [1,10] [-5,4] [-10,10]

0.05 2.150160 [-0.7,10] [-5,5] [-10,10]

0.1 1.997185 [-0.9,10] [-5,5] [-10,10]

0.2 1.722660 [-0.9,10] [-5,5] [-10,10]

1 2.301144 [-0.9,10] [-5,4] [-10,10]

2 2.316742 [-0.9,5] [-5,0] [-10,10]

3 2.326982 [-1,5] [-5,1] [-10,10]

4 2.334257 [-1,5] [-5,1] [-10,10]

2 2.226615 [-1,5] [-5,5] [-10,10]

4 2.186344 [-1,5] [-5,5] [-10,10]

5 2.171452 [-1.3,5] [-5,5] [-10,10]

8 2.137106 [-1.3,1.3] [-5,5] [-10,10]

1 3.910179 [-1.3,5] [-5,5] [-10,10]

2 7.361208 [-1.3,5] [-5,5] [-10,10]

3 10.892073 [-1.3,5] [-5,5] [-10,10]

4 14.449370 [-1.3,5] [-5,5] [-10,10]

0 1.795305 [-0.1,5] [-5,5] [-10,10]

1 2.613540 [-1.3,5] [-5,5] [-10,10]

2 3.115141 [-1.3,5] [-5,5] [-10,10]

3 3.511772 [-1.3,5] [-5,5] [-10,10]

1 1.983329 [-0.1,5] [-5,3] [-10,10]

2 1.352791 [-1.3,5] [-5,5] [-10,10]

3 1.400985 [-0.1,5] [-5,5] [-10,10]

4 0.912845 [-0.1,5] [-5,4] [-10,10]

0.1 2.285946 [-1.3,5] [-5,5] [-10,10]

0.3 2.283545 [-1.3,5] [-5,5] [-10,10]

0.5 2.281019 [-1.3,5] [-5,5] [-10,10]

0.9 2.275547 [-1.3,5] [-5,5] [-10,10]
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Figure 3.2: Impact of M on velocity profile for Injection and stretching.
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Figure 3.3: Impact of M on velocity profile for Injection and stretching.
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Figure 3.4: Impact of M on velocity profile for suction and shrinking.
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Figure 3.5: Impact of K on velocity profile for stretching and injection.
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Figure 3.6: Impact of M on velocity profile for shrinking and injection.
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Figure 3.7: Impact of K on velocity profile for suction and stretching.
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Figure 3.8: Impact of K on velocity profile for stretching and injection.
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Figure 3.10: Impact of K on velocity profile for shrinking and injection.
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Figure 3.11: Impact of δ on velocity profile for stretching and suction.



Inertial and Microstructure chractrastics for magnetite ferrofluid using Tiwari
and Das Model 42

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0
=0.3
=0.5
=0.8

M=5, K=2, =0.03 Injection  (S<0)
Stretching ( >0)

Figure 3.12: Impact of δ on velocity profile for stretching and injection.
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Figure 3.13: Impact of δ on velocity profile for shrinking and suction.
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Figure 3.14: Impact of δ on velocity profile for shrinking and injection.
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Figure 3.15: Impact of M on micro rotation velocity profile for suction and
stretching.
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Figure 3.16: Impact of M on micro rotation velocity profile for stretching and
injection.
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Figure 3.17: Impact of M on micro rotation velocity for suction and shrinking.
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Figure 3.18: Impact of M on micro rotation velocity profile for shrinking and
injection.
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Figure 3.19: Comparison of temperature field between micro polar and clas-
sical fluid for suction and stretching.
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Figure 3.20: Comparison of temperature field between micro polar and clas-
sical fluid for injection and stretching.
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Figure 3.21: Comparison of temperature field between micro polar and clas-
sical fluid for suction and stretching.
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Figure 3.22: Comparison of temperature field between micro polar and clas-
sical fluid for Injection and stretching.
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Figure 3.23: Comparison of temperature field between micro polar and clas-
sical fluid for different values of K.
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Figure 3.24: Comparison of temperature field between micro polar and clas-
sical fluid for different values of K.



Chapter 4

Numerical Study of Viscous

Dissipation and Catteno Christov

Heat Flux

4.1 Introduction

The numerical analysis of a nanofluid flow towards a stretching and shrinking

sheet using Tiwari and Das [13] conductivity model and Cattaneo-Christov heat

flux, viscous dissipation has been studied in this chapter. The governing PDEs

are transformed into a system of dimensionless ODEs by using an appropriate

transformation. The governing non linear PDEs, are transformed into a system

of dimensionless ODEs, by using similarity transformation. The reduced equa-

tion are then solved numerically with the aid of shooting method. At the end

of this chapter, numerical solutions for several parameters are discussed for the

dimensionless velocity and temperature distributions. The numerical results are

expressed through tables and graphs.

4.2 Mathematical Modeling

A steady two-dimensional boundary layer flow of a micro-polar ferrofluid in the

presence of Cattaneo-Christov heat flux and viscous dissipation. For a stretching

49
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and shrinking case a magnetic field B0 is applied perpendicular to the sheet and

the velocity is assumed as uw(x) = ax. Furthermore by using shooting technique,

the solution of ODEs is obtained.

∂u

∂x
+
∂v

∂y
= 0, (4.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= (µnf + k)

∂2u

∂2y
+ k

∂N

∂y
− σnfB2

6 u, (4.2)

ρnfj

(
u
∂N

∂x
+ v

∂N

∂y

)
= γnf

∂2N

∂2y
− k

(
2N +

∂u

∂x

)
, (4.3)

u
∂T

∂x
+ v

∂T

∂y
=

knf
(σcp)nf

∂2T

∂2y
− ∂qr
∂y

+ λ2

[
u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂x
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y
+ u2

∂2T

∂2x
+ v2

∂2T

∂y2

]
+

µnf
(ρCp)nf

(
∂u

∂y

)2

. (4.4)

4.3 Boundary Conditions

The associated conditions are:

u = αuw(x), v = vw at y = 0; u→ 0 as y →∞,

N = −δ∂u
∂y

at y = 0; N → 0 as y →∞,

T = Tw at y = 0; T → T∞ as y →∞.

where vw is the surface mass transfer velocity and corresponds to suction for vw > 0

and injection for vw < 0. The parameter δ is the micro gyration vector and the

value of δ varies in the interval [0,1].

4.4 Conversion of PDEs to ODEs

To convert the above partial differential equation into ordinary differential equa-

tion we will use the following transformations.
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η = y

√
a

vf
, u = axF ′(η), v = −√avfF (η), N = ax

√
a

vf
G(η),

θ(η) =
T − T∞
Tw − T∞

.

Here Tw and T∞ are the temperatures at the wall and close to the other end of

the boundary layer respectively.

The Eckert number is given by

Ec =
a2x2(Cp)f
Tw − T∞

. (4.5)

viscous dessipation =
µnf

(ρCp)nf

(
∂u

∂y

)2

,

viscous dessipation =
µnf

(ρCp)nf

a3x2F ′′(η)2

νf
. (4.6)

The Cattaneo-christov heat flux is given by

λ2

(
u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂x
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y
+ u2

∂2T

∂2x
+ v2

∂2T

∂y2

)
,

= λ2 (u(aF ′(η))(0)) + v (−aF ′(η)) (0) +

(
u(0)(Tw − T∞)θ′(η)

√
a

νf

)
+ vaxF ′′(η)

√
a

νf
(0) + 2uv

(
(Tw − T∞)θ′(η)

√
a

νf

)
(0) + u2 (0)

+ v2 (Tw − T∞) θ′(η)
a

νf
,

= λ2

(
v2(Tw − T∞)θ′(η)

a

νf

)
,

= λ2
(
−√aνfF (η)

)
2(Tw − T∞)θ′(η)

a

νf
,

= λ2
(
a2F 2(η) (Tw − T∞) θ′(η)

)
. (4.7)

Equation (4.4) will now, be converted into the dimensionless form as follows.

u
∂T

∂x
+ v

∂T

∂y
=

knf
(σcp)nf

∂2T

∂2y
− ∂qr
∂y

+ λ2

[
u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂x
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y
+ u2

∂2T

∂2x

+ v2
∂2T

∂y2

]
+

µnf
(ρCp)nf

(
∂u

∂y

)2

,
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⇒ vθ′(η) (Tw − T∞)

√
a

νf
=

κf
(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η) (Tw − T∞)

√
a

νf
+ λ2

(
a2F 2(η) (Tw − T∞) θ′(η)

)
+

µnf
(ρCp)nf

a3x2F ′′(η)2

νf
.

Using similarity transformations in above equation, we get

−√aνfF (η)θ′(η) (Tw − T∞)

√
a

νf
=

κf
(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η) (Tw − T∞)

a

νf
+ λ2

(
a2F 2(η) (Tw − T∞) θ′(η)

)
+

µnf
(ρCp)nf

a3x2F ′′(η)2

νf
.

⇒ −aF (η)θ′(η) =
κf

(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′(η)

a

νf

+ λ2
(
a2F 2(η)θ′′(η)

)
+

µnf
(ρCp)nf

a3x2F ′′(η)2

νf (Tw − T∞)
.

⇒ −F (η)θ′(η) =
κf

(ρCp)nf

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′

νf

+ λ2
(
aF 2(η)θ′′(η)

)
+

µnf
(ρCp)nf

a2x2F ′′(η)2

νf (Tw − T∞)
.

⇒ −F (η)θ′(η) =
κf

φ(ρCp)s + (1− φ)(ρCp)f

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′

νf
+ λ2

(
aF 2(η)θ′′(η)

)
+

µnf
(ρCp)s + (1− φ)(ρCp)f

a2x2F ′′(η)2

νf (Tw − T∞)
.

⇒ −F (η)θ′(η) =
κf

(ρCp)f

(
1− φ+ φ (ρCp)s

(ρCp)f

)[κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′

νf
+ λ2

(
aF 2(η)θ′′(η)

)
+

µnf

(ρCp)f

(
1− φ+ φ (ρCp)s

(ρCp)f

) a2x2F ′′(η)2

νf (Tw − T∞)
.

⇒ −
(

1− φ+ φ
(ρCp)s
(ρCp)f

)
F (η)θ′(η) =

κf
νf (ρCP )f

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′

νf
+ λ2aF

2(η)θ′′(η)

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
+

µnfa
2x2F ′′(η)2

(ρCp)fνf (Tw − T∞)
.
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⇒ −H7F (η)θ′(η) =
1

Pr

[
κs + 2κf − 2φ(κf − κs)
κs + 2κf + φ(κf − κs)

+R

]
θ′′ + λ2aF

2(η)θ′′(η)H7

+
µnfa

2x2F ′′(η)2

(ρCp)fνf (Tw − T∞)
.

Using (3.29) in above equation we get

−H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +
µnfa

2x2F ′′(η)2

(ρCp)fνf (Tw − T∞)
,

⇒ −H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +
µfa

2x2F ′′(η)2

(1− φ)2.5(ρCp)fνf (Tw − T∞)
.

⇒ −H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +
H1µfa

2x2F ′′(η)2

(ρCp)fνf (Tw − T∞)
.

⇒ −H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +
H1µfa

2x2F ′′(η)2

ρf (Cp)fνf (Tw − T∞)
.

⇒ −H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +
νfH1a

2x2F ′′(η)2

(Cp)fνf (Tw − T∞)
.

⇒ −H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +
H1a

2x2F ′′(η)2

(Cp)f (Tw − T∞)
.

By using (4.5) in above equation we get

−H7F (η)θ′(η) = H6θ
′′(η) + λ2aF

2(η)θ′′(η)H7 +H1EcF
′′(η)2,

⇒ −H7F (η)θ′(η) = H6θ
′′(η) + γF 2(η)θ′′(η)H7 +H1EcF

′′(η)2.

⇒ H6θ
′′(η) + γF 2(η)θ′′(η)H7 +H7F (η)θ′(η) +H1EcF

′′(η)2 = 0.

⇒ H6θ
′′(η) +H7

(
γF 2(η)θ′′(η) + F (η)θ′(η)

)
+H1EcF

′′(η)2 = 0. (4.8)

4.5 Solution Methodology

The shooting technique is used to solve the ordinary differential equation (4.8).

The following notations have been considered:

θ = L1, θ′ = L′1 = L2, θ′′ = L′2.
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For simplification, the following notation have been defined.

H6 =

(
κs+2κf−2φ(κf−κs)
κs+2κf+φ(κf−κs)

+R
)

Pr
, H7 = 1− φ+ φ

(ρCp)s
(ρCp)f

,

Ec =
a2x2

(Cp)f (Tw − T∞)
.

By using the notations, the equation (4.8) is converted into first order ODEs.

L′1 = L2, L1(0) = 1,

L′2 =
1

H6 +H7γF 2(η)
[−H7F (η)θ′(η) +

H1

H7

EcF
′′(η)], L3(0) = s.

The above initial value problem will be numerically solved by RK-4. The missing

condition s is to be chosen such that:

L2(s) = 0.

To solve the above algebraic equation, we use the Newton’s method which has the

following iterative scheme:

sn+1 = sn − (L2(s))s=sn(
∂L2(s)
∂s

)
s=sn

,

We further introduce the following notations, in order to obtain the derivative.

∂L1

∂s
= L4,

∂L2

∂s
= L5,

∂L3

∂s
= L6.

As a result of these new notations, the Newton’s iterative scheme, gets the form

sn+1 = sn − (L2(s)s=sn

(L5(s)s=sn
.

Now differentiate the last system of two first order ODEs with respect to s,

L′3 = L4, L3(0) = 0,

L′4 =
1

H6 +H7γF 2(η)
[−H7F (η)L4], L4(0) = 1.
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The stopping criteria for the Newton’s method is set as:

| (L2(s)s=sn |< ε,

where ε is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

4.6 Analysis of Graphs and Tables

In this section, we have studied the Tiwari-Das model by adding viscous dissipa-

tion and Catteneo-Christov heat flux in energy equation to analyze the transfer of

heat and flow through the boundary layer of a micro polar magnetite ferro fluid

over a stretching and shrinking sheet under the effect of thermal radiation.The

remaining two momentum equation are remain unchanged because we are only

concerned with energy equation . The effects of parameters like suction and in-

jection, radiation, magnetic, micro rotation, boundary parameters and Prandtl

number on F ′(η), G(η) and θ(η) are observed for stretching and shrinking cases,

separately. A thorough discussion on the graphs and tables has been conducted

which contains the impact of dimensionless parameters on the local Nusselt number

(Rex)
−1
2 Nux. Table 4.1 explains the impact of different parameter on the Nusselt

number (Rex)
−1
2 Nux. For the rising values of φ, the Nusselt number decreases. It

is evident that an increase in the micro rotation parameter φ, M , Ec and γ, the

Nusselt number decreases while, it increases by increasing the values of K, M , S,

α and δ. The missing conditions are taken within the interval represented by s, t

and w.

Figures 4.1 shows the energy profile for suction and stretching for different values

of R. The results show that if we increase the values of R, the energy profile

increases. The dotted lines represent the energy field for micro polar nanofluid

while the continuous lines represent the classical micropolar fluid.

Figure 4.2 shows the comparative analysis of micropolar fluid with some nano par-

ticles in it and fluid in pure form in case of injection and stretching for different
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values of R. The energy profile increases as the value of R increases.

Figure 4.3 shows the velocity of micropolar fluid with some nano particles in it

and fluid in pure form field. The graph and table shows that the temperature field

increases in case of suction and stretching when we increase the value of R and in

this case the value of micro rotation vector K is taken as zero.

Figure 4.4 represents the comparison of experimental data on micro polar fluid of

Turkyilmazoglu [45] and temperature for different values of R in case of injection

and stretching. The graph and table shows that the temperature field increases in

case of injection and stretching when we increase the value of R and in this case

the value of micro rotation vector K is taken as zero Figure 4.5 shows the contrast

of velocity field and experimental data on micro polar fluid on micro polar fluid

of Turkyilmazoglu [45]. The velocity profile increases with increase in values of K

Figure 4.6 represents the contrast of temperature with experimental data on mi-

cro polar fluid for different values of K and graph shows that the energy profile

increases with an increase in the values of K
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                fluid
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Figure 4.1: Impact of R on velocity profile for nanoparticles for suction and
stretching .
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Table 4.1: Results of Re
1
2Cfx for various parameters

φ K M S α Ec γ −(Re
−1
2
x )Nux s t w

0.01 0.2 0.4 0.5 0.5 0.7 0.1 2.143472 [-0.5,10] [-5,4] [-10,10]

0.05 2.012606 [-0.5,10] [-5,5] [-10,10]

0.1 1.856045 [-0.5,10] [-5,5] [-10,10]

0.2 1.560458 [-0.5,5] [-5,5] [-10,10]

0.1 2.142637 [-0.5,5] [-5,5] [-10,10]

1 2.144424 [-0.5,5] [-5,1] [-10,10]

1.5 2.142877 [-0.5,5] [-5,1] [-10,10]

1.7 2.142099 [-0.5,5] [-5,5] [-10,10]

1 2.138719 [-0.5,5] [-5,5] [-10,10]

2 2.129011 [-0.5,5] [-5,5] [-10,10]

3 2.119735 [-1,5] [-5,5] [-10,10]

4 2.111355 [-1,5] [-5,5] [-10,10]

0.1 1.109603 [-1,4] [-5,5] [-10,10]

0.3 1.648827 [-1,5] [-5,5] [-10,10]

1.0 2.934839 [-1,5] [-5,5] [-10,10]

2.0 3.012396 [1,5] [-5,5] [-10,10]

0.3 2.068160 [-0.5,5] [-5,5] [-10,10]

0.6 2.166627 [-1,5] [-5,5] [-10,10]

0.8 2.189994 [-1,5] [-5,5] [-10,10]

0.9 2.191789 [-1,5] [-5,5] [-10,10]

0.2 2.195003 [-0.5,5] [-5,3] [-10,10]

0.9 2.122859 [-1,5] [-5,5] [-10,10]

1 2.112553 [-0.5,5] [-5,5] [-10,10]

1.5 2.061021 [-0.5,5] [-5,3] [-10,10]

1 0.874236 [-0.5,5] [-5,3] [-10,10]

1.5 0.657441 [-0.5,5] [-5,5] [-10,10]

2 0.537587 [-0.5,5] [-5,3] [-10,10]

2.5 0.463486 [-0.5,5] [-5,3] [-10,10]
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Figure 4.2: Impact of R on velocity profile for Injection and stretching .
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Figure 4.3: Impact of R on velocity profile for nanoparticles for suction and
stretching at K=0.
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Figure 4.4: Impact of R on velocity profile for Injection and stretching at
K=0.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Symbols: Present result
Lines:      Turkyilmazoglu

K=0,  K=2,  K=4,  K=6

Figure 4.5: Impact of R on velocity profile for Injection and stretching .
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Figure 4.6: Impact of R on velocity profile for Injection and stretching .



Chapter 5

Conclusion

In this proposal, we have reviewed the work of Abid Hussanan, Mohd Zuki Salleh

and Ilyas khan et al. [47] and extended with the effect of viscous dissipation and

Cattaneo-Christov heat transition. Firstly, we convert the momentum and en-

ergy equation into ODEs by using similarity transformation. By using shooting

technique, numerical solution can be find out for the transformed ODEs. By con-

sidering different governing physical parameters, the result are presented in the

form of tables and graph for velocity and temperature profiles. The achievement

of the current research can be summarized as below:

• Increasing the values of M , the velocity profile decreases for suction and

stretching.

• Rising the values ofM , the velocity profile decreases for injection and stretch-

ing.

• By enhancing the values of M , the velocity profile increases for suction and

shrinking.

• Increasing the values of M , the velocity profile increases for injection and

shrinking.

• The velocity profile increases for suction and stretching for the increasing

value of K.

61
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• Rising the values of K, the velocity profile increases for injection and stretch-

ing.

• Increasing the values of K, the velocity profile decreases for suction and

shrinking.

• An increment is noticed in the velocity profile distribution by rising the value

of K.

• Rising the values of δ, the velocity profile decreases for injection and stretch-

ing.

• With a rise in the values of R, the temperature profile increases for suction

and stretching.

• Rising the values of R, the temperature profile increases for injection and

stretching.

• Due to the ascending values of K, the temperature profile increases.
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