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Abstract

The boundary layer flow of Williamson nanofluid over a stretching sheet with ther-

mal and velocity slips is studied numerically. Buongiorno model is used to explore

the heat transfer phenomena caused by Brownian motion and thermophoresis.

The impact of MHD, Joule heating , porosity parameter and activation energy

has been analyzed. Using similarity transformations, the governing equations are

reduced to a set of nonlinear ordinary differential equations . These equations

are solved numerically by using shooting method. The effects of non-Newtonian

Williamson parameter, porosity parameter, activation energy, Joule heating, veloc-

ity and thermal slip parameters, Prandtl number, Brownian parameter, Schmidt

number, Lewis number, Brownian motion parameter, thermophoresis parameter

on velocity, temperature and concentration profile are shown in graphs and tables.

The results reflect that the thickness of boundary layer decreases as the slip and

thermal factor parameter increases. Further, the nanofluid temperature profile

is enhanced with the raise of Williamson parameter, Eckert number, activation

energy and Lewis number, while for the magnetic parameter, Prandtl number and

thermal slip parameter, it is declinded. The concentration profile is increased by

accelerating value of the Williamson and Eckert number, however for the rising

value of the magnetic and activation energy, the concentration profile is dropped.
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Chapter 1

Literature Review

1.1 Introduction

Many researchers have analyzed and determined a special kind of fluid having

ideal properties and recognized as the suspended colloidal liquid having very small

metallic or non-metallic particle called nanofluid. Buongiorno [1] found that the

total velocity of nanoparticles look out as the sum of base fluid velocity and relative

velocity. He examined seven slip components such as Newton’s first law, Brown-

ian dispersal, thermal diffusion, diffusiophoresis, magnetic impact, fluid drainage,

and gravity settling. Analyzing every of these terms one by one, he stated that

the Brownian dispersal and thermal diffusion is important when there is no exis-

tence of turbulent effect. The thermal conductivity of ordinary heat transfer fluids

such as water, kerosene mineral oils and ethylene glycol rises by the inclusion of

nanoparticles to a base fluid. Thus, there is no issue to use nanofluid as heat

trasfer fluid for cooling of electronics, automobile engine and vibrating heat pipes.

Corcione et al. [2] used Buongiorno’s work to examine natural convection flow of

nanofluid’s internal differentiable heated cavity and concluded that the dual phase

combination technique is much reliable than the distinct phase model. A numer-

ical study was conducted by Garoosi et al. [3] using Buongiorno’s model. They

examined natural and combine convection heat transfer of a nanofluid (Al2O3-

water) to one side inflamed quadrangle cavity. Eiamsa-ard et al.[4] found that in

1
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a heat exchanger tube embellished with coinciding double warped-tape, the heat

transfer of TiO2-water is accelerated. Outcomes of various papers show that for

different nanofluids like AL2O3-water and especially TiO2-water, the thermal dif-

fusion force is essential. For such nanoparicles whose thermal conductivity is low,

the thermal diffusion force is much essential. Many scholar’s e.g namely Turkyil-

mazoglu [5], Qasim et al. [6], Hussanan et al. [7], Swalmeh et al. [8] and Afridi

et al. [9] mentioned that the suspensions can increase thermal conductivity up

to 20 percent even in the presence of low concentration nanofluid. An increase

in the thermal conductivity mostly relies on different components such as size,

shape, material and temperature of fluid particles, and so on. The objective of

heat transfer coefficient is to obtain the components in forced convection cooling

or heating application.

Krishnamurthy et al. [10], classified the Williamson nanofluid as an inelastic vis-

cous fluid. The effect of velocity boundary layer on smooth flat surface was first

time examined by Blasius [11]. Later on the theoretical features of estimated

and exact techniques for the boundary layer on smooth surface was analyzed by

Sakiadis [12]. Also, the convective boundary condition has been examined by

Ramesh et al. [13] on Blasius and Sakiadis flows with the Williamson fluid. Pre-

ceding to that, Khan and Khan [14] used the homotopy analysis method (HAM)

to examine the flow of Williamson fluid on boundary layer. He observed that by

enhancing the Williamson parameter, the width of the boundary layer is reduced.

Later on, Nadeem and Hussain [15] determined that the thermal conductivity of

Williamson fluid become less than MHD Williamson nanofluid when it passes over

the heated warm surface. Due to difference of temperature between objects, the

thermal energy is caused. In various fields, heat transfer in non-Newtonian fluids

has become common and essential. The issue of turbine cooling application with

heat transfer in non-Newtonian inelastic viscous fluid was analyzed by Kurtcebe

and Erim [16] concluded that the upper limit of inelastic viscous parameter re-

lies on the Reynolds number. To obtain the best standard of the final products

mostly in thermoplastic extrusion manufacture, the study of heat transfer flow in

nanofluid over an elastic sheet is essential. The heat transfer and MHD boundary

layer flow in nanofluid across a stretchable sheet was examined by Ibrahim and
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Shankar [17]. Krishnamurthy et al. [18] using Williamson nanofluid, studied the

consequences of chemical change on mollifying the heat transfer and magnetohy-

drodynamics boundary layer flow. At the same time, the flow characteristics and

convective heat transfer of Cu-water nanofluids were analyzed by Xuan and Li

[19]. Their analysis shows that, the heat transfer property enhences when vol-

ume fraction of nanoparticles rises. For identical Reynolds number, the swinging

nanoparticles manifest greater heat transfer co-efficient and highly increase the

heat transfer procedure contrast to the sub-structural fluid. Heris et al. [20] in-

vestigated the convective heat transfer resembling flow across the oxide nanofluid

with boundary condition of constant wall temperature and finalized that there are

many factors which increase the heat transfer such as disordered motion, thermal

conductivity and instability of nanofluid. Slip condition plays a very important

role in the interface of slip velocity between fluid and solid boundary in the pres-

ence of nanoparticles. Yang [21] expressed the viscous flow over a solid surface

with slip boundary condition. The boundary relationship between fluid and solid

is indicated by slip condition provided by the interaction of molecules and rough-

ness of wall surface. The issue of the partial slip boundary condition influences on

nanofluids with formulated wall temperature across a stretchable sheet was stated

by Noghrehabadi et al. [22] . His results indicated that by increasing the velocity

slip parameter, the Nusselt and Sherwood number are reduced. Malvandi et al.

[23] carried out an experiment on the slip effects of nanofluids irregular immobil-

ity point over a stretching sheet. They observed that the value of skin friction

decreases by increasing the values of the slip parameter. Numerically Raisi et al.

[24] studied the slip and no slip conditions on the stratified nanofluids by forced

convection. They found that the rate of heat transfer effects only higher Reynolds

number as slip velocity coefficient increases. Keeping in view the above discus-

sion our object is to analyze the slip conditions and heat transfer for Williamson

nanofluid flowing across a stretchable sheet.

1.2 Thesis Contributions

The present work is focused on the numerical analysis of 2-D heat and mass trans-

fer of the flow of a Williamson fluid with thermal and velocity slips and to analyze
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the effect of magnetohydrodynamics, porosity parameter on velocity profile. An-

other purpose is to investigate the impact of Joule heating and activation energy on

temperature and concentration profile respectively. The given non-linear PDEs are

converted into system of ODEs by applying similarity transformations. Further-

more, for finding the numerical results of non-linear ODEs, the shooting technique

is applied. The numerical results are computed by using MATLAB. The impact

of significant parameters on f ′(η), θ(η), φ(η) , skin friction Cfx , Nusselt number

Nux and Sherwood number Shx have been discussed through graphs and tables.

1.3 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful

to understand the concepts discussed later on.

Chapter 3 provides the proposed analytical study of heat and mass transfer

analysis of Williamson fluid over a non-linear stretching sheet. The numerical re-

sults of the governing flow equations are derived by using the shooting method.

Chapter 4 extends the flow model discussed in Chapter 3 by including MHD,

porosity parameter, Joule heating and activation energy.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Basic Terminologies and Laws

In this chapter, some basic definitions, basic laws, terminologies and basic concepts

of fluid dynamic have been presented. These concepts will be helpful to develop

an understanding for the rest of the thesis.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [25]

Definition 2.1.2 (Mechanics)

“‘Mechanics is the oldest physical science that deals with both stationary and

moving bodies under the influence of forces. ”[26]

Definition 2.1.3 (Fluid Mechanics)

“Fluid mechanics is defined as the science that deals with the behavior of fluids

at rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids

with solids or other fluids at the boundaries.”[26]

5
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Definition 2.1.4 (Dynamics)

“The branch of physics that deals with bodies in motion is called dynamics.”[26]

Definition 2.1.5 (Fluid Dynamics )

“ The study of fluids if the pressure forces are considered for the fluid in motion,

that branch of science is called fluid dynamics.”[27]

Definition 2.1.6 (Statics )

“ The branch of mechanics that deals with bodies at rest is called statics.”[26]

Definition 2.1.7 (Fluid Statics)

“The study of fluids at rest is called fluid statics.” [27]

Definition 2.1.8 (Viscosity)

“Viscosity is that property of a fluid by virtue of which it offers resistance to

the movement of one layer of fluid over an adjacent layer. It is primarily due

to cohesion and molecular momentum exchange between fluid layers, and as flow

occurs, these effects appear as shearing stresses between the moving layers of fluid.

Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [28]

Definition 2.1.9 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called nu. Mathematically,

ν =
µ

ρ
.” [27]
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2.2 Types of Fluids

The fluids may be classified into the following types

Definition 2.2.1 (Ideal Fluids)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [27]

Definition 2.2.2 (Real Fluids)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [27]

Definition 2.2.3 (Newtonian Fluids)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [27]

Definition 2.2.4 (Non-Newtonian Fluids)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = µ

(
du

dy

)m
.” [27]

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [29]
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2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

“A flow is said to be rotational if the fluid particles while moving in the direction

of flow rotate about their mass centres.” [28]

Definition 2.3.2 (Irrotational Flow)

“ A flow is said to be irrotational if the fluid particles while moving in the direction

of flow do not rotate about their mass centres.” [28]

Definition 2.3.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= q,

where q is constant.” [27]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = q,

where q is constant.” [27]

Definition 2.3.5 (Steady Flow)

“Fluid flow is said to be steady if at any point in the flowing fluid, various char-

acteristics such as velocity, pressure, density, temperature etc., which describe the

behaviour of the fluid in motion, do not change with time. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [28]

Definition 2.3.6 (Unsteady Flow)

“Fluid flow is said to be unsteady if at any point in the flowing fluid any one or
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all the characteristics which describe the behavior of the fluid in motion change

with time. Mathematically,
∂Q

∂t
6= 0,

where Q is any fluid property.” [28]

Definition 2.3.7 (Laminar Flow)

“ A flow is said to be laminar when various fluid particles move in layers (or lam-

inae) with one layer of fluid sliding smoothly over an adjacent layer. Thus in the

development of a laminar flow, the viscosity of the flowing fluid plays a significant

role. As such the flow of a very viscous fluid may in general be treated as laminar

flow.” [28]

Definition 2.3.8 (Turbulent Flow)

“ A fluid motion is said to be turbulent when the fluid particles move in an entirely

haphazard or disorderly manner, that results in a rapid and continuous mixing of

the fluid leading to momentum transfer as flow occurs.” [28]

Definition 2.3.9 (Uniform Flow)

“ When the velocity of flow of fluid does not change, both in magnitude and di-

rection, from point to point in the flowing fluid, for any given instant of time, the

flow is said to be uniform. Mathematically,

(
∂V

∂s

)
= 0,

where V is called velocity.” [28]

Definition 2.3.10 (Non-uniform Flow)

“If the velocity of flow of fluid changes from point to point in the flowing fluid at

any instant, the flow is said to be non-uniform. Mathematically,

(
∂V

∂s

)
6= 0,

where V is velocity.” [28]
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Definition 2.3.11 (Internal Flow)

“Flows completely bounded by a solid surface are called internal or duct flows.” [25]

Definition 2.3.12 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [25]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Thermal energy from a hot body flows to a cold body in the form of heat. This

is called transfer of heat. Transfer of heat is a natural process. It continues all the

time as long as the bodies in thermal contact are at different temperature.” [30]

Definition 2.4.2 (Conduction)

“The mode of transfer of heat by vibrating atoms and free electrons in solids from

hot to cold parts of a body is called conduction of heat.” [30]

Example

”Touching a stove and being burned.

Ice cooling down your hand.

Definition 2.4.3 (Convection)

‘Transfer of heat by actual movement of molecules from hot place to a cold place

is known as convection.” [30]

Example

Hot air rising, cooling, and falling (convection currents).

Definition 2.4.4 (Radiation)

“Radiation is the mode of transfer of heat from one place to another in the form

of waves, called electromagnetic waves. ” [30]

Example

Heat from the sun warming your face.
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Definition 2.4.5 (Thermal Conductivity)

“The rate of flow of heat across the opposite faces of a metre cube of a sub-

stance maintained at a temperature difference of one kelvin is called the thermal

conductivity of that substance. Mathematically,

k =
Q

t

L

A(T2 − T1)

where k is the proportionality constant called thermal conductivity of the solid.” [30]

Definition 2.4.6 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as,

α =
k

ρCp
,

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [31]

2.5 Dimensionless Numbers

Definition 2.5.1 (Sherwood Number)

“It is a non dimensional quantity which shows the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically,

Sh =
kL

D
,

where L is characteristics length, D is the mass diffusivity and k is the mass

transfer coeffcient.” [32]

Definition 2.5.2 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal

diameter (D). The mean velocity is denoted by uw. The skin friction coefficient

can be defined as

Cf =
2τ0

ρu2
w
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where τ0 denotes the wall shear stress and ρ is the density.” [33]

Definition 2.5.3 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [34]

Definition 2.5.4 (Eckert Number)

“It is a dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where Cp denotes the specific heat.” [25]

Definition 2.5.5 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [25]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,
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where U denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [27]

Definition 2.5.6 (Schmidt Number)

“The number expressed the ratio of the kinematics viscosity or momentum trans-

fer by internal friction to the molecular diffusivity. It characterized the relation

between the material and momentum transfers in mass transfer.”[35]

2.6 Basic Principles of fluid flow

Difination 2.6.1 (Principle of conservation of mass)

“ The principle of conservation of mass states that mass can neither be created

nor destroyed.”[28]

Difination 2.6.2 (Principle of Conservation of Energy)

“ The principle of conservation of energy states that energy can neither be created

nor destroyed. ”[28]

Difination 2.6.3 (Principle of Conservation of Momentum)

“ The principle of conservation of momentum or impulse momentum principle

states that the impulse of the resultant force, or the product of the force and time

increment during which it acts, is equal to the change in the momentum of the

body.”[28]

2.7 Governing Laws

Definition 2.7.1 (Continuity Equation)

“The continuity equation is actually a mathematical statement of the principle of

conservation of mass. The most general expression on the basis of this principle

may be obtained by considering a fixed region within a flowing fluid. Since fluid

is neither created nor destroyed within a close region it may be stated that the

rate of increase of the fluid mass contained within the region must be equal to the

difference between the rate at which the fluid mass enters the region and the rate

at which the fluid mass leaves the region. Mathematically, it can be written as
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Dρ

Dt
+ ρ∇.V ) = 0.” [28]

Definition 2.7.2 (Momentum Equation)

“This principle is a modified form of Newtons second law of motion. Newtons

second law of motion states that the resultant external force acting on any body

in any direction is equal to the rate of change of momentum of the body in that

direction. Thus for any arbitrarily chosen direction x, it may be expressed as,

Fx =
dMx

dt

In which Fx represents the resultant external force in the x-direction and Mx

represents the momentum in the x-direction. Above Equation may also be writ-

ten as Fx(dt) = d(Mx) . The term Fx(dt) is impulse and the term d(Mx) is the

resulting change of momentum.” [28]

Definition 2.7.3 (Energy Equation)

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is the dissipation function.” [36]



Chapter 3

Analysis of Williamson Nanofluid

with Thermal and Velocity Slips

for the Transfer of Heat and Mass

3.1 Introduction

In this chapter, our aim is to study the flow of a 2-D Williamson nanofluid across

a stretchable sheet and to analyze the computed results subject to the slip con-

ditions. The set of non-linear PDEs is converted into the dimensionless ODEs

by using some appropriate transformations. In order to solve ODEs, the shoot-

ing technique is implemented by using MATLAB. At the end of this chapter, the

numerical solutions for different choices of various parameters will be analyzed

for velocity, temperature and concentration profile. For a quantitative view, the

obtained numerical findings are presented in tables and graphs.

3.2 Mathematical Modeling

In this section, we consider a 2-D flow of an incompressible Williamson nanofluid

in steady state across a stretchable sheet. The linear stretching velocity of the

15
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sheet has been taken as Uw(x) = bx, where b is a constant and x is the coordinate

measure along the stretching sheet respectively. The y-axis has been taken perpen-

dicular to the stretching sheet. The wall temperature is taken as Tw = T∞ + bx2,

where T∞ is the ambient temperature. The fluid’s concentration at the sheet Cw is

considered as constant throughout the stretching surface and when y continuously

approaches to infinity, it approaches to C∞.

Figure 3.1: Geometric representation of the physical model.
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The set of equations describing the non-Newtonian Williamson flow are as follows.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+
ρpCp
ρC

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
. (3.4)

The associated BCs have been taken as

u = uw + δ∗µ

(
∂u

∂y

)
, v = 0, T = Tw +B ∗ ∂T

∂y
, C = Cw, at y = 0,

u→ 0, T → T∞, C = C∞, as y →∞.


(3.5)

To convert equations (3.1)-(3.4) into a system of ODEs, the following similarity

transformations [32] will be used.

u = bxf ′(η), v = −(bν)
1
2f(η), η =

√
b

ν
y,

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

 (3.6)

For the conversion of equations (3.1)-(3.4) into the dimensionless form, the de-

tailed procedure has been discussed as bellow.

• u = bxf ′(η),

∂u

∂x
=

∂

∂x
(bxf ′(η)) ,

= bf ′(η) . (3.7)

u
∂u

∂x
= bxf ′(η)(bf ′(η)),

= b2xf ′2(η). (3.8)

∂u

∂y
= bxf ′′ (η)

√
b

ν
, (3.9)

v
∂u

∂y
= −

√
bνf (η) bxf ′′ (η)

√
b

ν
,
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= − b2xf (η) f ′′ (η) . (3.10)

∂2u

∂y2
= bxf ′′′

b

ν
,

=
b2x

ν
f ′′′,

ν
∂2u

∂y2
= b2xf ′′′. (3.11)

• v = −
√
bνf (η) .

∂v

∂y
= −

√
bνf ′ (η)

√
b

ν

= − bf ′ (η) . (3.12)

• θ(η) =
T − T∞
Tw − T∞

.

T = θ(η)(Tw − T∞) + T∞. (3.13)

∂T

∂x
= 0.

u
∂T

∂x
= 0. (3.14)

∂T

∂y
= (Tw − T∞)θ′(η)

√
b

ν
. (3.15)

v
∂T

∂y
= −

√
bνf(η)(Tw − T∞)θ′(η)

√
b

ν

= − b(Tw − T∞)f(η)θ′(η). (3.16)

∂2T

∂y2
= (Tw − T∞)θ′′(η)

√
b

ν

√
b

ν
,

=
b

ν
(Tw − T∞)θ′′(η). (3.17)

• φ(η) =
C − C∞
Cw − C∞

.

⇒ C = φ(η)(Cw − C∞) + C∞. (3.18)

∂C

∂x
= 0.

u
∂C

∂x
= 0. (3.19)

∂C

∂y
= (Cw − C∞)φ′(η)

√
b

ν
. (3.20)

v
∂C

∂y
= −

√
bνf(η)(Cw − C∞)φ′(η)

√
b

ν

= − b(Cw − C∞)f(η)φ′(η). (3.21)
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∂2C

∂y2
= (Cw − C∞)φ′′(η)

b

ν
. (3.22)

We can easily satisfy equation (3.1) by using the above equations (3.7) and (3.12),

as follows

.
∂u

∂x
+
∂v

∂y
= bf ′(η)− bf ′(η),

∂u

∂x
+
∂v

∂y
= 0. (3.23)

Now, to convert the momentum equation (3.2), into the dimensionless form we

will use equations (3.8) and (3.9) in the left side of equation (3.2) as below

u
∂u

∂x
+ v

∂u

∂y
= b2xf ′2(η) + (−b2xf (η) f ′′ (η)),

= b2xf ′2(η)− b2xf (η) f ′′ (η) ,

= b2x
(
f ′2(η)− f (η) f ′′ (η)

)
. (3.24)

Using (3.9) and (3.11), in the right side of equation (3.2) it becomes

ν
∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
= b2xf ′′′ +

√
2Γ(bxf ′′

√
b

ν
)(b2xf ′′′).

⇒ ν
∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
= b2xf ′′′ +

√
2Γb2x2

√
b3

ν
f ′′f ′′′. (3.25)

By comparing (3.24) and (3.25), the dimensionless form of (3.2), is given by

b2xf ′2(η)− b2xf (η) f ′′ (η) = b2xf ′′′ +
√

2xΓb2x2

√
b3

ν
f ′′f ′′′.

⇒ b2x
(
f ′2(η)− f (η) f ′′ (η)

)
= b2x

(
f ′′′ +

√
2xΓ

√
b3

ν
f ′′f ′′′

)
.

⇒ f ′2(η)− f (η) f ′′ (η) = f ′′′(η) +
√

2xΓ

√
b3

υ
f ′′f ′′′(η).

⇒ f ′′′(η) +
√

2xΓ

√
b3

ν
f ′′f ′′′(η) + f (η) f ′′ (η)− f ′2(η) = 0.

⇒ f ′′′(η) + λf ′′(η)f ′′′(η) + f (η) f ′′ (η)− f ′2(η) = 0, (3.26)

where λ =
√

2xΓ
√

b3

ν
is called non-Newtonian Williamson parameter.



Analysis of Williamson Nanofluid 20

Now, to convert equation (3.3) into the dimensionless form, we will use equations

(3.14) and (3.16) in left side of (3.3), to get

u
∂T

∂x
+ v

∂T

∂y
= 0− b(Tw − T∞)f(η)θ′(η),

= − b(Tw − T∞)f(η)θ′(η). (3.27)

Now, using equations (3.15), (3.17) and (3.19) in the right hand side of equation

(3.3), we get

α

(
∂2T

∂y2

)
+
ρpCp
ρC

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

= α
b

ν
(Tw − T∞)θ′′(η)+

ρpCp
ρC

DB(Tw − T∞)(Cw − C∞)θ′(η)φ′(η)
b

ν
+
ρpCp
ρC

DT

T∞

(
b

ν
(Tw − T∞)2 θ′2(η)

)
.

(3.28)

By comparing equation (3.27) and (3.28), we can obtain the dimensionless form

of equation (3.3), which is as below.

− b(Tw − T∞)f(η)θ′(η) = α
b

ν
(Tw − T∞)θ′′(η)

+
ρpCp
ρC

DB(Tw − T∞)(Cw − C∞)θ′(η)φ′(η)
b

ν

+
ρpCp
ρC

DT

T∞

(
b

ν
(Tw − T∞)2 θ′2(η)

)
.

⇒ α
b

ν
(Tw − T∞)θ′′(η) +

ρpCp
ρC

DB(Tw − T∞)(Cw − C∞)θ′(η)φ′(η)
b

ν

+
ρpCp
ρC

DT

T∞

(
b

ν
(Tw − T∞)2 θ′2(η)

)
+ b(Tw − T∞)f(η)θ′(η) = 0.

⇒ α
b

ν
(Tw − T∞)

(
θ′′(η) +

ν

α
f(η)θ′(η) +

ρpCp
ρC

DB

α
(Cw − C∞)θ′(η)φ′(η)

)
+ α

b

ν
(Tw − T∞)

(
ρpCp
ρC

DT

T∞
(Tw − T∞) θ′2(η)

)
= 0.

⇒ θ′′(η) +
ν

α
f(η)θ′(η) +

ρpCp
ρC

DB

α
(Cw − C∞)θ′(η)φ′(η)

+
ρpCp
ρC

DT

T∞
(Tw − T∞) θ′2(η) = 0.

⇒ θ′′(η) + Prf(η)θ′(η) +
Nc

Le
θ′(η)φ′(η) +

Nc

LeNbt
θ′2(η) = 0, (3.29)
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where Pr = ν
α

is Prandtl number, Nc = ρpCp

ρC
(Cw − C∞), is the heat capacity

ratio parameter, Le = DB

α
is the Lewis number and Nbt = ρpCp

ρC
DT

T∞

(Cw−C∞)
(Tw−T∞)

is the

diffusivity ratio parameter.

Now, using equations (3.19) and (3.21) in the left side of equation (3.4), it is

converted into the following dimensionless form.

u
∂C

∂x
+ v

∂C

∂y
= 0− b(Cw − C∞)f(η)φ′(η),

= −b(Cw − C∞)f(η)φ′(η). (3.30)

Using equations (3.17) and (3.22) in the right hand side of equation (3.4), we get

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
= DB

b

ν
(Cw − C∞)φ′′(η) +

DT

T∞

b

ν
(Tw − T∞)θ′′(η). (3.31)

By comparing equation (3.30) and (3.31), we can obtain the dimensionless form

of equation (3.4), which is

− b(Cw − C∞)f(η)φ′(η) = DB
b

ν
(Cw − C∞)φ′′(η) +

DT

T∞

b

ν
(Tw − T∞)θ′′(η).

⇒ DB
b

ν
(Cw − C∞)φ′′(η) +

DT

T∞

b

ν
(Tw − T∞)θ′′(η) + b(Cw − C∞)f(η)φ′(η) = 0.

⇒ DB
b

ν
(Cw − C∞)

(
φ′′(η) +

DT

T∞DB

(Tw − T∞)

(Cw − C∞)
θ′′(η) +

ν

DB

f(η)φ′(η)

)
= 0.

⇒ φ′′(η) +
υ

DB

f(η)φ′(η) +
DT

T∞DB

(Tw − T∞)

(Cw − C∞)
θ′′(η) = 0.

⇒ φ′′(η) + Scf(η)φ′(η) +
1

Nbt
θ′′(η) = 0. (3.32)

Here Sc = ν
DB

is called Schmidt number and Nbt = T∞DB

DT

(Cw−C∞)
(Tw−T∞)

is called diffu-

sivity ratio parameter.

Now, for the conversion of boundary conditions into the dimensionless form we

follow the procedure shown as below

• u = uw + δ∗µ
∂u

∂y
), at y = 0.

⇒ bxf ′(η) = bx+ δ∗µbxf ′′(η)

√
b

ν
, at η = 0
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.⇒ bxf ′(η) = bx

(
1 + δ∗µf ′′(η)

√
b

ν

)
, at η = 0.

⇒ f ′(η) = 1 + δ∗µf ′′(η)

√
b

ν
, at η = 0.

⇒ f ′(η) = 1 + δf ′′(η), at η = 0.

⇒ f ′(0) = 1 + δf ′′(0), at η = 0.

• T = Tw +B∗
∂T

∂y
, at y = 0.

⇒ θ(η)(Tw − T∞) + T∞ = ax2 + T∞ +B∗
∂T

∂y
, at η = 0.

⇒ θ(η)(Tw − T∞) = ax2 +B∗θ′(η)(Tw − T∞)

√
b

ν
, at η = 0.

⇒ θ(η)(bx2 + T∞ − T∞) = ax2 +B∗θ′(η)(bx2 + T∞ − T∞)

√
b

ν
, at η = 0.

⇒ θ(η)(bx2) = ax2 +B∗θ′(η)bx2

√
b

ν
, at η = 0.

⇒ bx2θ(η) = ax2(1 +B∗
√
b

ν
θ′(η)), at η = 0.

⇒ θ(η) = (1 +B∗
√
b

ν
θ′(η)), at η = 0.

⇒ θ(η) = (1 + βθ′(η)), at η = 0.

⇒ θ(0) = (1 + βθ′(0)), at η = 0.

• C = Cw, at y = 0.

⇒ φ(η)(Cw − C∞) + C∞ = Cw, at η = 0.

⇒ φ(η) =
Cw − C∞
Cw − C∞

, at η = 0.

⇒ φ(0) = 1, at η = 0.

• v = 0, at y = 0.

⇒ − (bν)
1
2f(η) = 0, at η = 0.

⇒ f(η) = 0, at η = 0.

⇒ f(0) = 0, at η = 0.

• u→ 0, as y →∞.

⇒ af ′(η)x2 → 0, as η →∞.

⇒ f ′(η)→ 0, as η →∞.

• T → T∞ as y →∞.
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⇒ θ(η)(Tw − T∞) + T∞ → T∞, as η →∞.

⇒ θ(η)(Tw − T∞)→ 0, as η →∞.

⇒ θ(η)→ 0, as η →∞.

• C → C∞ as y →∞.

⇒ φ(η)(Cw − C∞) + C∞ → C∞, as η →∞.

⇒ φ(η)(Cw − C∞)→ 0, as η →∞.

⇒ φ(η)→ 0, as η →∞.

The final dimensionless form of the governing model, is

f ′′′(η) + λf ′′(η)f ′′′(η) + f (η) f ′′ (η)− f ′2(η) = 0. (3.33)

θ′′(η) + Prf(η)θ′(η) +
Nc

Le
θ′(η)φ′(η) +

Nc

LeNbt
θ′2(η) = 0. (3.34)

φ′′(η) + Scf(η)φ′(η) +
1

Nbt
θ′′(η) = 0. (3.35)

The associated BCs (3.5) in the dimensionless form are

f(η) = 0, f ′(η) = 1 + δf ′′(η), θ(η) = 1 + βθ′(η), φ(η) = 1 at η = 0

f ′(η) = 0, θ(η) = 0, φ(η) = 0 as η →∞.


(3.36)

The skin friction coefficient, is given as follows

Cf =
τw

ρU2
w(x)

. (3.37)

τw = µ

[
∂u

∂y
+

Γ√
2

(
∂u

∂y

)2
]
. (3.38)

Therefore, the dimensionless form of Cf is

Cf =

µ

[
∂u
∂y

+ Γ√
2

(
∂u
∂y

)2
]

ρUw(x)2
,
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=
µ
(
bxf ′′(η)

√
b
ν

+ Γ√
2
b2x2f ′′2 b

ν

)
ρb2x2

,

=
νρ
(
bx
√

b
ν

)(
f ′′(η) + Γ√

2
bx
√

b
ν
f ′′2
)

ρb2x2
,

=
υ
√

b
ν

(
f ′′(η) + Γ√

2
bx
√

b
ν
f ′′2
)

bx
,

=
υ
√

b
ν

(
f ′′(η) + Γ√

2
bx
√

b
ν
f ′′2
)

bx
,

⇒ Cf

√
b

ν
x =

(
f ′′(η) +

√
2b3

ν
Γxf ′′2

)
.

⇒ Cf
√
Re =

(
f ′′(η) +

λ√
2
f ′′2
)
, (3.39)

where Re denotes the Reynolds number defined as Re = b
ν
x2.

Now, Local Nusselt number is defined as follow

Nu =
xqw

k(Tw − T∞)
. (3.40)

To achieve the dimensionless form of Nu, the following formula will be helpful.

qw = −k
(
∂T

∂y

)
y=0

. (3.41)

Using equation (3.41), in equation (3.40) we get the following form

Nu =
−xk

(
∂T
∂y

)
y=0

k(Tw − T∞)
,

=
−x
(√

b
ν
(Tw − T∞)θ′(η)

)
y=0

(Tw − T∞)
,

=− x

(√
b

ν
θ′(η)

)
y=0

,

=− x
√
b

ν
θ′(0),

=
√
Reθ′(0).
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⇒ Nu√
Re

=θ′(0). (3.42)

Now, Sherwood number is defined as follow

Sh =
xqm

DB(Cw − C∞)
. (3.43)

Since

qm =−DB

(
∂C

∂y

)
y=0

, (3.44)

therefore, the dimensionless form of Sh is

Sh =
−xDB

(
∂C
∂y

)
y=0

DB(Cw − C∞)
,

=
−x
(

(Cw − C∞)
√

b
ν
φ′(η)

)
y=0

(Cw − C∞)
,

= − x

(√
b

ν
φ′(η)

)
y=0

,

= −
√
Reφ′(0).

⇒ Sh√
Re

= − φ′(0). (3.45)

3.3 Numerical Method for Solution

The shooting method has been used to solve the ordinary differential equation

(3.33). The following notations have been considered.

f = y1, f ′ = y′1 = y2, f ′′ = y′′1 = y′2 = y3, f ′′′ = y′3.

As a result, the momentum equation is converted into the following system of first

order ODEs.
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y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 1 + δT,

y′3 =
1

1 + λy3

(y2
2 − y3y1), y3(0) = T,

The above initial value problem (IVP) will be numerically solved by RK-4 method.

For the numerical solution, the unbounded domain [ 0, ∞ [ has been replaced by

[ 0, η∞ ] where η∞ is a real number having the property that for η > η∞, there is

no significant variation in the solution. In this initial value problem, the missing

condition g is to be chosen such that

y2(η∞, g) = 0,

For the convenience, let us denote y2(η∞, g) by y2(g). Such notations will also be

used for all yi or their derivatives, where i = 1, 2, 3, 4, 5, 6

To find g we will use Newton’s method which has the following iterative scheme.

gn+1 = gn − y2(gn)

(∂y2
∂g

)g=gn

We further introduce, the following notations to obtain the derivative (∂y2
∂g

)g=gn

∂y1

∂g
= y4,

∂y2

∂g
= y5,

∂y3

∂g
= y6.

By differentiating the last system of ODEs with respect to g, we get.

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = 0,

y′6 =
2y5y2 − y1y6 − y3y6 + 2λy2y3y5 − λy2

3y4 − λy2
2y6

(1 + λy3)2
y6(0) = 1.

The stoping criteria for the Newton’s technique, is set as

| y2(g) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been
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taken as 10−10.

The equation (3.34) and equation (3.35) are coupled equations will be solved nu-

merically by using the shooting method by assuming f as a known function. For

this we use the following notions

θ = Y1, θ′ = Y2, θ′′ = Y ′2 .

φ = Y3, φ′ = Y4, φ′′ = Y ′4 .

The system of equation (3.34) and (3.35)can be written in the form of the following

first order coupled ODEs.

Y ′1 = Y2, Y1(0) = 1 +Bq,

Y ′2 = −
(
PrC1y2 +

Nc

Le
Y2Y4 +

Nc

LeNbt

Y2
2

)
, Y2(0) = q,

Y ′3 = Y4, Y3(0) = 1.

Y ′4 = −ScC1Y4 +
1

Nbt

(
PrC1Y2 +

Nc

Le
Y2Y4 +

Nc

LeNbt

Y2
2

)
, Y4(0) = r.

The RK-4 method has been taken into consideration for solving the above initial

value problem. For the above system of equtions, the missing conditions are to be

chosen such that

Y1(q, r) = 0, Y3(q, r) = 0.

Note that Yi(q, r) and their partial derivatives w.r.t q and r at η = η∞ will be

denoted by Yi(q, r),
∂Yi
∂q

, and ∂Yi
∂r

, where i = 1, 2, 3.......12

To solve the above algebaric equations, we apply the Newton’s method.

qn+1

rn+1

 =

qn
rn

−
∂Y1∂q ∂Y1

∂r

∂Y3
∂q

∂Y3
∂r

−1 Y1

Y3


(qn, rn)

Now, introduce the following notations.

∂Y1

∂q
= Y5,

∂Y2

∂q
= Y6,

∂Y3

∂q
= Y7,

∂Y4

∂q
= Y8,

∂Y1

∂r
= Y9,

∂Y2

∂r
= Y10,

∂Y3

∂r
= Y11,

∂Y4

∂r
= Y12.
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As a result of these new notations, the Newton’s iterative scheme gets the following

form. qn+1

rn+1

 =

qn
rn

−
Y5 Y9

Y7 Y11

−1 Y1

Y3


(qn, rn)

.

Now differentiating the system of four first order ODEs with respect to q and r

we get

Y ′5 = Y6, Y5(0) = B.

Y6′ = −
(
PrC1Y6 +

Nc

Le
(Y6Y4 + Y2Y8) +

2Nc

LeNbt

Y2Y6

)
, Y6(0) = 1,

Y ′7 = Y8, Y7(0) = 0.

Y8′ = −ScC1Y8 +
1

Nbt

(
PrC1Y6 +

Nc

Le
(Y4Y6 + Y2Y8) +

2Nc

LeNbt

Y2Y6

)
, Y4(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y10′ = −
(
PrC1Y10 +

Nc

Le
(Y4Y10 + Y2Y12) +

2Nc

LeNbt

Y2Y10

)
, Y10(0) = 0.

Y ′11 = Y12, Y11(0) = 0.

Y12′ = −ScC1Y12 +
1

Nbt

(
PrC1Y10 +

Nc

Le
(Y4Y10 + Y2Y12) +

2Nc

LeNbt

Y2Y10

)
,

Y12(0) = 1.

The stopping criteria for the Newton’s method is set as

max{|Y1(q, r)|, |Y3(q, r)|} < ε.

3.4 Representation of Graphs and Tables

This section includes a thorough discussion on the numerical results in the form of

graphs and tables. The main focus of this section will be on the physical impacts

of significant parameters on skin friction, Nusslet number and Sherwood number.

The results presented in Table 3.1 demonstrate the impact of significant param-

eters on the skin friction coefficients Re
1
2Cfx. For the rising values of velocity slip

parameter δ, the skin friction coefficient is increased. However, by increasing the
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value of the Williamson parameter λ, the skin friction coefficient is droped.

Table 3.2, illustrates the impact of significant parameters on Sherwood number

Re−
1
2Shx . It is found that the values of Sherwood number Re−

1
2Nux are dropped

due to the accelerating values of the velocity slip parameter δ and Williamson pa-

rameter λ, while for the accelerating value of thermal slip parameter β, diffusivity

ratio parameter Nbt and Schmidt number Sc, the Sherwood number is increased.

Table 3.3 demonstrates the effects of some dimensionless parameters on Nusslet

number Re−
1
2Nux. It can be found that by enhancing the values of the velocity

slip parameter, thermal slip parameter, Williamson parameter and heat capacity

ratio parameter, the value of Nusslet number Re−
1
2Nux is dropped. Furthermore

by increasing the value of the diffusivity parameter, Prandtl number and Lewis

number, the value of Nusslet number Re−
1
2Nux is increased.

Figures 3.2 and 3.3 show the impact of the velocity slip parameter and Williamson

parameter on the velocity profilef ′(η). It is found that the velocity profile is de-

creasing as the velocity slip parameter and Williamson parameter enhance.

Figures 3.4, 3.6 and 3.8 describe the impact of the velocity slip parameter, Williamson

parameter and heat capacity ratio parameter on temperature profile θ(η). Results

show that by increasing the value of the above parameters, the value of temper-

ature profile θ(η) is enhanced. It is found that the skin fraction coefficient for

Williamson nanofluid is getting low as the Williamson parameter increases. It is

very useful as lubricant in cooling system due to the reason that the suspended

nanoparticles could keep longer in the sub-structural fluid and increase the flow

characteristics of nanofluids.

Figures 3.5, 3.7, 3.9 and 3.10 indicate that by increasing the values of the diffusiv-

ity ratio parameter, Prandtl number, Lewis number and thermal slip parameter,

the temperature profile θ(η) is declined. An increment in Prandtl number causes

the slow rate in thermal diffusion. Physically, it means that fluid with high Prandtl

number has large viscosity and small thermal conductivity, which implies that the

fluid becomes thick which decreases the velocity of the fluid. Figure 3.11 and 3.13

describe the impact of the velocity slip parameter and Williamson parameter on

the concentration profile φ(η). By increasing the value of the velocity slip param-

eter and Williamson slip parameter, the concentration profile φ(η) is enhanced.
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Figures 3.12 and 3.14 describe the impact of diffusivity ratio parameter and ther-

mal slip parameter on the concentration profile φ(η). Results indicate that by

enhancing the value of diffusivity ratio parameter and thermal slip parameter con-

centration profile is decreased. Figure 3.15, shows the influence of Schmidt number

on the concentration profile φ(η). By increasing Schmidt number, the value of the

concentration profile φ(η) is dropped. This is because due to the momentum, dif-

fusivity would increase and at the same time it will slow down the effects of the

mass transfer rate leading to a reduction in the concentration profile.

Table 3.1: Impact of δ and λ on skin fraction

δ λ Ig Cfx

0.25 0.5 [-0.8,0.8] -0.824627
0.75 [-0.5,0.8] -0.521313
1.25 [-0.4,0.8] -0.391317
1.75 [-0.3,0.8] -0.316124
0.5 0 [-0.5,0.8] -0.430631

0.2 [-0.5,0.8] -0.442676
0.8 [-0.5,0.8] -0.457476
1.4 [-0.6,0.8] -0.489301

Table 3.2: Effects of various parameters on Sherwood Number

δ β λ Nbt Iq Ir Sh

0.25 1 0.5 2 [-9.4,7] [-9.1,7] 1.20844
0.75 [-8.3,7] [-8.0,7] 1.05352
1.25 [-7.7,7] [-7.3,7] 0.95993
1.75 [-7.5,7] [-6.4,7] 0.89353
0.5 0.2 [-9.8,7] [-6.0,7] 0.98078

0.4 [-9.8,7] [-6.0,7] 1.03282
0.6 [-9.8,7] [-6.0,7] 1.06981
0.8 [-9.8,7] [-6.0,7] 1.09554

0 [-8.5,7] [-4.0,7] 1.05297
0.4 [-8.3,7] [-4.0,7] 1.03313
0.8 [-8.0,7] [-4.0,7] 1.00939
1.4 [-7.7,7] [-3.7,7] 0.96174

0.3 [-2.2,8] [-1.6,8] 0.26600
0.4 [-2.9,8] [-1.9,8] 0.50018
0.6 [-4.3,8] [-2.1,8] 0.74850
0.9 [-5.5,8] [-4.3,8] 0.92166
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Table 3.3: Effects of various parameters on Nusselt Number

δ β λ Pr Nc Nbt Le Iq Ir Nu

0.25 1 0.5 7 2.5 2 [-9.4,7] [-9.1,7] 0.59575

0.75 [-8.3,7] [-8.0,7] 0.56428

1.25 [-7.7,7] [-7.3,7] 0.54276

1.75 [-7.5,7] [-6.4,7] 0.52612

0.2 [-9.8,7] [-6.0,7] 1.06418

0.4 [-9.8,7] [-6.0,7] 0.88039

0.6 [-9.8,7] [-6.0,7] 0.75008

0.8 [-9.8,7] [-6.0,7] 0.65308

0 [-9.8,7] [-6.0,7] 0.50583

0.4 [-8.5,7] [-4.0,7] 0.50151

0.8 [-8.3,7] [-4.0,7] 0.49620

1.4 [-8.0,7] [-4.0,7] 0.48505

4 [-7.8,7] [-4.0,7] 0.49037

6 [-8.9,7] [-6.6,7] 0.55456

8 [-9.5,7] [-9.2,7] 0.59807

10 [-11,7] [-9.8,7] 0.63027

5 [-6.2,7] [-2.0,7] 0.54461

10 [-3.0,8] [-1.0,8] 0.47062

15 [-1.8,8] [-1.0,8] 0.38967

20 [-1.4,8] [-0.6,8] 0.30735

0.3 [-2.2,8] [-1.6,8] 0.55491

0.4 [-2.9,8] [-1.9,8] 0.56202

0.6 [-4.3,8] [-2.1,8] 0.56889

0.9 [-5.5,8] [-4.3,8] 0.57335
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Figure 3.2: Change in f ′(η) for rising value of δ.
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Figure 3.3: Change in f ′(η) for rising value of λ.
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Figure 3.4: Change in θ(η) for rising value of δ.
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Figure 3.5: Change in θ(η) for rising value of B.
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Figure 3.6: Change in θ(η) for rising value of λ.
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Figure 3.7: Change in θ(η) for rising value of Pr.
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Figure 3.8: Change in θ(η) for rising value of Nc.
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Figure 3.9: Change in θ(η) for rising value of Le.
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Figure 3.10: Change in θ(η) for rising value of Nbt.
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Figure 3.11: Change in φ(η) for rising value of δ.
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Figure 3.12: Change in φ(η) for rising value of B.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

=0
=0.4
=0.8
=1.4

B=1, =1, Nc=2.5, Nbt=2,
Le=10, Sc=5, Pr=7

Figure 3.13: Change in φ(η) for rising value of λ.
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Figure 3.14: Change in φ(η) for rising value of Nbt.
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Figure 3.15: Change in φ(η) for rising value of Sc.



Chapter 4

Williamson Nanofluid flow with

MHD, Porosity, Joule Heating

and Activation Energy.

4.1 Introduction

This chapter demonstrates the extension of the model discussed in Chapter 3 by

adding MHD and porous parameter in the momentum equation. The behavior

of temperature and concentration profiles is further analyzed by including Joule

heating and activation energy respectively. Furthermore, by using the similarity

transformations, the nonlinear PDEs are transformed into a system of ODEs. By

using the shooting method, the numerical solution of ODEs is obtained. At the

end of this chapter, the final concluding results are illustrated for some significant

parameters that have impact on the velocity, temperature and concentration pro-

files. For a quantitative view, the obtained findings are expressed in tables and

graphs.

4.2 Mathematical Modeling

Consider a steady, incompressible flow of non-Newtonian Williamson nanofluid

past over a stretching sheet in porous medium. The linear stretching velocity

39
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Figure 4.1: Geometric representation of the physical model.

of the sheet has been taken as Uw(x) = bx, where b is a constant and x is the

coordinate measure along the stretching sheet respectively. The y-axis has been

taken perpendicular to the stretching sheet. An external magnetic field Bo is

applied along y-axis. In the presence of the Joule heating and activation energy,

energy transport and concentration of fluid flow is analyzed respectively. The wall

temperature has been taken taken as Tw = T∞ + bx2 where T∞ is the ambient

temperature. The fluid concentration at the sheet Cw is considered as constant

throughout the stretching surface and when y continuously approaches to infinity,

approach to C∞.
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Associated governing equations can be expressed as

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
− αB

2
0u

ρ
− νu

kp∗
, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+
ρpCp
ρC

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

+
αB2

0u
2

ρCp
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
+ k2

0(C − C∞)

(
T

T∞

)n
exp

[
−Ea
kT

]
. (4.4)

The associated BCs have been taken as

u = uw + δ∗µ

(
∂u

∂y

)
, v = 0, T = Tw +B ∗ ∂T

∂y
, C = Cw, at y = 0,

u→ 0, T → T∞, C = C∞, as y →∞.

 (4.5)

For the conversion of the mathematical model (4.1)-(4.4) into the ODEs, the fol-

lowing similarity transformation will be used.

u = bxf ′(η), v = −(bν)
1
2f(η), η =

√
b

ν
y,

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.

 (4.6)

Equation (4.1) can easily satisfied same as (3.1) in Chapter 3.

For the conversion of momentum equation (4.2) into the dimensionless form, we

will use following derivatives and the rest of them from Chapter 3

αB2
0u

ρ
=
αB2

0

ρ
bxf ′(η). (4.7)

νu

kp∗
=
νbxf ′(η)

kp∗
. (4.8)

The left hand side of (4.2) is the same as that (3.2) in Chapter 3 i.e

u
∂u

∂x
+ v

∂u

∂y
= b2xf ′2(η)− b2xf (η) f ′′ (η) . (4.9)

Using (4.7), (4.8) and the rest of derivatives from Chapter 3, in the right side of

equation (4.2), we get
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ν
∂2u

∂y2
+
√

2νΓ
∂u

∂y

∂2u

∂y2
− αB2

0u

ρ
− νu

kp∗
=

b2xf ′′′(η) +
√

2νΓbx2

√
b3

ν
f ′′(η)f ′′′(η)− αB2

0

ρ
bxf ′(η)− νbxf ′(η)

kp∗
.

(4.10)

By comparing (4.9) and (4.10), the dimensionless form of (4.2) can be written as

b2xf ′2(η)− b2xf (η) f ′′ (η) = b2xf ′′′(η) +
√

2νΓbx2

√
b3

ν
f ′′(η)f ′′′(η)

− αB2
0

ρ
bxf ′(η)− νbxf ′(η)

kp∗
,

⇒ b2x
(
f ′2(η)− f (η) f ′′ (η)

)
=

b2x

(
f ′′′(η) +

√
2νΓ

√
b3

ν
f ′′(η)f ′′′(η)− αB2

0

bρ
f ′(η)− νf ′(η)

bkp∗

)
.

⇒ f ′2(η)− f (η) f ′′ (η) = f ′′′(η) +
√

2νΓ

√
b3

ν
f ′′f ′′′(η)− αB2

0

bρ
f ′(η)− νf ′(η)

bkp∗
.

⇒ f ′′′(η) +
√

2νΓ

√
b3

ν
f ′′f ′′′(η) + f (η) f ′′ (η)− f ′2(η)

−
(
αB2

0

bρ
+

ν

bkp∗

)
f ′(η) = 0.

⇒ f ′′′(η) + λf ′′(η)f ′′′(η) + f (η) f ′′ (η)− f ′2(η)− (k1 +Mn) f ′(η) = 0. (4.11)

For the conversion of equation (4.3) into the dimensionless form, we will use the

following derivatives and the rest of them from Chapter 3, we get

αB2
0u

2

ρCP
=
αB2

0

ρCP
b2x2f ′2. (4.12)

The left hand side of (4.3) is same as that (3.3) in Chapter 3 i.e

⇒ u
∂T

∂x
+ v

∂T

∂y
= −b(Tw − T∞)f(η)θ′(η). (4.13)

Now, using equations (4.12) and the rest of derivatives from Chapter 3 , in right

side of equation (4.3), to get

α

(
∂2T

∂y2

)
+
ρpCp
ρC

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]

+
αB2

0u
2

ρCP
=



MHD Nanofluid with porosity, Joule Heating and Activation Energy 43

α
b

ν
(Tw − T∞)θ′′(η) +

ρpCp
ρC

DB(Tw − T∞)(Cw − C∞)θ′(η)φ′(η)
b

ν

+
ρpCp
ρC

DT

T∞

(
b

ν
(Tw − T∞)2 θ′2(η)

)
+
αB2

0

ρCP
b2x2f ′2. (4.14)

By comparing equation (4.13) and (4.14), we can obtain the dimensionless form

of equation (4.3), which is as below

− b(Tw − T∞)f(η)θ′(η) =

α
b

ν
(Tw − T∞)θ′′(η) +

ρpCp
ρC

DB(Tw − T∞)(Cw − C∞)θ′(η)φ′(η)
b

ν

+
ρpCp
ρC

DT

T∞

(
b

ν
(Tw − T∞)2 θ′2(η)

)
+
αB2

0

ρCP
b2x2f ′2.

⇒ α
b

ν
(Tw − T∞)θ′′(η) +

ρpCp
ρC

DB(Tw − T∞)(Cw − C∞)θ′(η)φ′(η)
b

ν

+
ρpCp
ρC

DT

T∞

(
b

ν
(Tw − T∞)2 θ′2(η)

)
+ b(Tw − T∞)f(η)θ′(η)

+
αB2

0

ρCP
b2x2f ′2 = 0.

⇒ α
b

ν
(Tw − T∞)

(
θ′′(η) +

ν

α
f(η)θ′(η) +

ρpCp
ρC

DB

α
(Cw − C∞)θ′(η)φ′(η)

)
+

α
b

ν
(Tw − T∞)

(
ρpCp
ρC

DT

T∞
(Tw − T∞) θ′2(η) +

σνB2
0

ρCPα(Tw − T∞)
bx2f ′2

)
= 0.

⇒ θ′′(η) +
ν

α
f(η)θ′(η) +

ρpCp
ρC

DB

α
(Cw − C∞)θ′(η)φ′(η)

+
ρpCp
ρC

DT

T∞
(Tw − T∞) θ′2(η) = 0.

⇒ θ′′(η) + Prf(η)θ′(η) +
Nc

Le
θ′(η)φ′(η) +

Nc

LeNbt
θ′2(η)

+ PrMEcf
′2 = 0. (4.15)

For the conversion of equation (4.4) into the dimensionless form, we will use the

following derivatives and the rest of them from Chapter 3, we get

•
(
T

T∞

)n
=

(
θ(Tw − T∞) + T∞

T∞

)n
=

(
θ
Tw − T∞
T∞

+ 1

)n
= (θδ∗ + 1)n (4.16)

• exp

(
−Ea
kT

)
= exp

(
− Ea

k (θ(Tw − T∞) + T∞)

)
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= exp

− Ea

k
(
θ(Tw−T∞)+T∞

T∞

)
T∞


= exp

− Ea

k
(
θ(Tw−T∞)+T∞

T∞

)
T∞


= exp

− Ea

k
(
θ Tw−T∞

T∞
+ 1
)
T∞


= exp

(
− Ea

k (θδ∗ + 1)T∞

)
. (4.17)

• C − C∞ = (φ(Cw − C∞) + C∞)− C∞

= φ(Cw − C∞). (4.18)

The left hand side of (4.4) is the same as that (3.4) in Chapter 3 i.e

u
∂C

∂y
+ v

∂C

∂y
= −b(Cw − C∞)f(η)φ′(η) (4.19)

Now, using equation (4.16),(4.17), (4.18) and recall some derivatives from Chapter

3 in the right hand side of equation (4.4), we get

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
+ k2

0(C − C∞)

(
T

T∞

)n
exp

[
−Ea
kT

]
=

DB
b

ν
(Cw − C∞)φ′′(η) +

DT

T∞

b

ν
(Tw − T∞)θ′′(η)

+ k2
0(Cw − C∞) (θδ∗ + 1)n exp

[
−Ea

(kθδ∗ + 1)T∞

]
φ. (4.20)

By comparing equation (4.19) and (4.20),we can obtain the dimensionless form of

equation (4.4), which is

− b(Cw − C∞)f(η)φ′(η) = DB
b

ν
(Cw − C∞)φ′′(η) +

DT

T∞

b

ν
(Tw − T∞)θ′′(η)

+ k2
0(Cw − C∞) (θδ∗ + 1)n exp

[
− Ea

(θδ∗ + 1) kT∞

]
φ,

⇒ DB
b

ν
(Cw − C∞)φ′′(η) +

DT

T∞

b

ν
(Tw − T∞)θ′′(η) + b(Cw − C∞)f(η)φ′(η)

+ k2
0(Cw − C∞) (θδ∗ + 1)n exp

[
− Ea

(θδ∗ + 1) kT∞

]
φ = 0.

⇒ DB
b

ν
(Cw − C∞)

(
φ′′(η) +

DT (Tw − T∞)

DBT∞(Cw − C∞)
θ′′(η) +

ν

DB

f(η)φ′(η)

)



MHD Nanofluid with porosity, Joule Heating and Activation Energy 45

+
DBb

ν
(Cw − C∞)

[
k2

0

ν

bDB

(θδ∗ + 1)n exp

(
− Ea

(θδ∗ + 1) kT∞

)]
φ = 0.

⇒ φ′′(η) +
DT (Tw − T∞)

DBT∞(Cw − C∞)
θ′′(η) +

ν

DB

f(η)φ′(η)

+ k2
0

ν

bDB

(θδ∗ + 1)n exp

(
−Ea

(θδ∗ + 1) kT∞

)
φ = 0.

⇒ φ′′(η) +
1

Nbt
θ′′(η) + Scf(η)φ′(η) + Scσ (1 + δ∗θ)n exp

(
− E1

(1 + δ∗θ)

)
φ = 0.

(4.21)

The final dimensionless form of the model is

f ′′′(η) + λf ′′(η)f ′′′(η) + f (η) f ′′ (η)− f ′2(η)− (k1 +Mn) f ′(η) = 0. (4.22)

θ′′(η) + Prf(η)θ′(η) +
Nc

Le
θ′(η)φ′(η) +

Nc

LeNbt
θ′2(η) + PrMEcf

′2 = 0. (4.23)

φ′′(η) +
1

Nbt
θ′′(η) + Scf(η)φ′(η)+

Scσ (1 + δ∗θ)n exp

(
−E1

(1 + δ∗θ)

)
φ = 0. (4.24)

The associated BCs (4.5) is same as that (3.5) in Chapter 3, i.e

f(η) = 0, f ′(η) = 1 + δf ′′(η), θ(η) = 1 + βθ′(η), φ(η) = 1 at η = 0,

f ′(η) = 0, θ(η) = 0, φ(η) = 0 as y →∞.

 (4.25)

Here

M =
σB2

0

αρ
, Ec = bx2

Cp(Tw−T∞)
, δ∗ = Tw−T∞

T∞
, E1 = Ea

kT∞
, σ =

k20
b

,

β = B∗
√

b
ν
, β = B∗

√
b
ν
, δ= δ∗µ

√
b
ν
.

4.3 Numerical Method for Solution

The shooting method has been used to solve the ordinary differential equations

(4.22). The following notations have been considered

f = Z1, f ′ = Z ′1 = Z2, f ′′ = Z ′′1 = Z ′2 = Z3, f ′′′ = Z ′3.
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By appling following notations, equation (4.22) is converted into first order ODEs

Z ′1 = Z2, Z1(0) = 0.

Z ′2 = Z3, Z2(0) = 1 + δZ3.

Z ′3 =
1

1 + λZ3

[
(Z2

2 − Z3Z1) + (k1 +Mn)Z2

]
. Z3(0) = m.

The above initial value problem (IVP) will be numerically solved by the RK-4

method. For the numerical solution, the unbounded domain [ 0, ∞ [ has been

replaced by [ 0, η∞ ] where η∞ is a real number having the property that for

η > η∞, there is no significant variation in the solution. In this initial value

problem, the missing condition m is to be chosen such that

Z2(η∞,m) = 0.

For the convenience, let us denote Z2(η∞,m) = 0 by Z2(m). Such notations will

also be used for all Zi or their derivatives, where i=1,2........6. To find m we will

use Newton’s method which has the following iterative scheme,

mn+1 = mn − Z2(mn)

(∂Z2

∂m
)m=mn

We further introduce, the following notations to obtain the derivative

∂Z1

∂m
= Z4,

∂Z2

∂m
= Z5,

∂Z3

∂m
= Z6.

Z ′4 = Z5, Z4(0) = 0.

Z ′5 = Z6, Z5(0) = 0.

Z ′6 =
2Z5Z2 − Z1Z6 − Z3Z6 + 2λZ2Z3Z5 − λZ2

3Z4 − λZ2
2Z6 + λ(k1 +Mn)Z2Z6

(1 + λZ3)2

Z6(0) = 1.

The stopping criteria for the Newton’s technique is set as

| Z2(m) |< ε,
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where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

The equation (4.23) and equation (4.24) are coupled equations will be solved nu-

merically by using the shooting method by assuming f as a known function. For

this we use the following notions

θ = Y1, θ′ = Y2, θ′′ = Y ′2 .

φ = Y3, φ′ = Y4, φ′′ = Y ′4 .

Now, we can write equations (4.23) and (4.24), in the form of first order ODEs.

Y ′1 = Y2, Y1(0) = 1 +Bu,

Y ′2 = −
[
PrC1Y2 +

Nc

Le
Y2Y4 +

Nc

LeNbt

Y2
2 + PrMEcC2

]
, Y2(0) = u,

Y ′3 = Y4, Y3(0) = 1,

Y ′4 = −
[
ScC1Y4 +

1

Nbt

(
−(PrC1Y2 +

Nc

Le
Y2Y4 +

Nc

LeNbt

Y2
2)

)]
−
[
Scσ(1 + δ∗θ)nexp

(
−E1

1 + δ∗θ

)
Y3

]
, Y4(0) = v,

Y ′4 = −
[
ScC1Y4 −

1

Nbt

(
PrC1Y2 +

Nc

Le
Y2Y4 +

Nc

LeNbt

Y2
2

)]
−
[
Scσ(1 + δ∗θ)nexp

(
−E1

1 + δ∗θ

)
Y3

]
, Y4(0) = v.

The RK-4 method has been taken into consideration for solving the above initial

value problem. For the above system of equations, the missing conditions are to

be chosen such that

(Y1(u, v)) = 0, (Y3(u, v)) = 0.

Note that Yi(u, v) and their partial derivatives w.r.t u and v at η = η∞ will be

denoted by Yi(u, v), ∂Yi
∂u

, and ∂Yi
∂v

, where i = 1, 2, 3..........12.

To solve the above algebaric equations, we apply the Newton’s method.un+1

vn+1

 =

un
vn

−
∂Y1∂u

∂Y1
∂v

∂Y3
∂u

∂Y3
∂v

−1 Y1

Y3


(un, vn)
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Now, introduce the following notations,

∂Y1

∂u
= Y5,

∂Y2

∂u
= Y6,

∂Y3

∂u
= Y7,

∂Y4

∂u
= Y8,

∂Y1

∂v
= Y9,

∂Y2

∂v
= Y10,

∂Y3

∂v
= Y11,

∂Y4

∂v
= Y12.

As a result of these new notations, the Newton’s iterative scheme gets the following

form. un+1

vn+1

 =

un
vn

−
Y5 Y9

Y7 Y11

−1 Y1

Y3


(un, vn)

Now, differentiating the system of last four first order ODEs with respect to u and

v, we get

Y ′5 = Y6, Y5(0) = B.

Y6′ = −
[
PrC1Y6 +

Nc

Le
(Y6Y4 + Y2Y8) +

2Nc

LeNbt

Y2Y6

]
, Y2(0) = 1,

Y ′7 = Y8, Y7(0) = 0.

Y8′ = −
[
ScC1Y8 −

1

Nbt

(
PrC1Y6 +

Nc

Le
(Y4Y6 + y2Y8) + 2

Nc

LeNbt

Y2Y6

)]
−
[
Scσ(1 + δ∗θ)nexp

(
−E1

1 + δ∗θ

)
Y7

]
, Y8(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 = −
[
PrC1Y10 +

Nc

Le
Y4Y10 + Y2Y12 + 2

Nc

LeNbt

Y2Y10

]
, Y10(0) = 0.

y′11 = Y12, Y11(0) = 0.

Y12′ = −
[
ScC1Y12 −

1

Nbt

(
PrC1Y10 +

Nc

Le
(Y4Y10 + Y2Y12) +

2Nc

LeNbt

Y2Y10

)]
−
[
Scσ(1 + δ∗θ)nexp

(
−E1

1 + δ∗θ

)
Y11

]
, Y12(0) = 1.

The stopping criteria for the Newton’s method is set as

max{|Y1(u, v)|, |Y3(u, v)|} < ε.

4.4 Representation of Graphs and Tables

A detail explanation on the numerical results in the form of the graphs and ta-

bles has been discussed. The main focus of this section will be on the influence
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of dimensionless parameters on the Skin fraction Cfx , Nusselt number Nux and

Sherwood number Shx.

Table (4.1), demonstrate the impact of δ, λ , k1 and M on the skin friction Re
1
2Cfx.

The rising value of above mention parameters the skin fraction Re
1
2Cfx increases

except Williamson parameter λ, by rising Williamson parameter the skin fraction

Re
1
2Cfx decreases.

Table (4.2), shows the impact of the significant parameters like Eckert number,

magnetic parameter, Prandtl number, Lewis number, thermophoretic parameter,

coefficient of activation energy, temperature ratio parameter and diffusivity ratio

parameter on Nusselt number and Sherwood number.

Figures 4.2-4.5, show the effect of distinct parameters on f ′(η) respectively. By in-

creasing the value of velocity slip parameter δ, the velocity of fluid f ′(η) decreases

as shown in Figures 4.2. The impact of Williamson parameter λ on velocity profile

f ′(η) is shown in Figures 4.3. We observed that the velocity of fluid decreases by

increasing the value of Williamson parameter λ. Also by increasing the value of

magnetic and porosity parameter the velocity of fluid f ′(η) decreases as shown in

Figures 4.4 and 4.5.

Figures 4.8, 4.9, 4.11, 4.13 and 4.14 demonstrated that by increase the values of the

Prandtl number, Lewis number, difusivity ratio parameter, thermal slip parame-

ter and activation energy the temperature profile is declined. While by enhancing

the values of Eckert number, magnetic parameter, thermophoretic parameter and

temperature ratio parameter the temperature profile θ(η) increases as shown in

Figures 4.6, 4.7 ,4.10 and 4.12.

The value of concentration profile increases by increasing the values of Prandtl

number, magnetic parameter, thermophoretic parameter, temperature ratio pa-

rameter and Schmidt number as shown in Figures 4.16, 4.17, 4.18, 4.20 and ??

respectively. While by enhancing the values of Eckert number and activation en-

ergy the concentration profile φ(η) decreases as shown in Figures 4.15, and 4.19.
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Table 4.1: Effects of various parameters on skin fraction

δ λ k1 M Im Cfx

0.25 0.5 0.3 0.1 [-0.8.0.8] -0.98242
0.75 [-0.5,0.8] -0.59876
1.25 [-0.4,0.8] -0.44334
1.50 [-0.3,0.8] -0.39405
0.5 0.1 [-0.5,0.8] -0.68904

0.2 [-0.5,0.8] -0.69913
0.8 [-0.5,0.8] -0.79095
1 [-0.6,0.8] -0.85288

0.01 [-0.6,0.8] -0.66438
0.05 [-0.6,0.8] -0.67514
0.1 [-0.5,0.8] -0.68816
0.25 [-0.5,0.8] -0.72468

0 [-0.5,0.8] -0.71292
0.05 [-0.5,0.8] -0.72469
0.09 [-0.5,0.8] -0.73782
0.2 [-0.4,0.8] -0.75784

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
=0.25
=0.75
=1.25
-1.50

=0.5, k1=0.3, M=1.50

Figure 4.2: Change in f ′(η) for rising value of δ.

ss
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Table 4.2: Effects of various parameters on Nusselt Number and Sherwood
Number

Ec M Pr Le δ∗ E1 σ Iu Iv Nu Sh

0 0.1 0.5 5 0.1 0.01 0.1 [-0.9,2.0] [-0.9,0.4] 0.14653 0.98156
0.4 [-0.8,2.0] [-0.7,0.3] 0.14413 0.98139

0.8 [-0.8,2.0] [-0.6,0.3] 0.14053 0.98121
1 [-0.7,1.0] [-0.7,0.3] 0.0.14053 0.98112

0.3 -0.6 [-0.5,0.9] [-0.5,0.8] 0.19266 1.26103
-0.2 [-0.4,0.8] [-0.5,0.8] 0.16038 1.09456

-0.1 [-0.5,0.9] [-0.5,0.8] 0.15453 1.05592
0.1 [-0.5,0.9] [-0.5,0.8] 0.0.14473 0.98143

1 [-0.9,0.6] [-0.9,-0.1] 0.20380 0.91332
3 [-0.9,0.6] [-2.0,-0.1] 0.36513 0.99192

5 [-0.9,0.6] [-2.0,-0.1] 0.45318 1.03517
7 [-0.9,0.6] [-2.0,-0.1] 0.51049 1.06622

3 [-0.9,4.5] [-2.0,4.0] 0.15699 0.87425
7 [-0.9,4.5] [-0.9,4.0] 0.16536 0.87907

10 [-0.8,0.8] [-0.8,0.8] 0.17677 0.88571
12 [-0.8,0.8] [-0.8,0.8] 0.18760 0.89170

-0.5 [-0.9,0.8] [-2.0,-0.1] 0.14771 1.17252
0 [-0.8,0.7] [-2.0,-0.2] 0.14533 0.97795

0.2 [-0.7,0.6] [-2.0,-0.3] 0.14640 0.70484
0.4 [-0.7,0.6] [-2.0,-0.3] 0.14744 0.45619

0.5 [-0.9,0.9] [-3,-0.1] 0.14539 0.99147
2.5 [-0.8,0.9] [-3,-0.1] 0.14489 1.15690

5 [-0.9,0.9] [-3,-0.1] 0.14481 1.18303
7 [-0.9,0.9] [-3,-0.1] 0.14480 1.18546

-0.03 [-0.9,0.9] [-3,-0.1] 0.14456 1.26991
0 [-0.9,0.9] [-3,-0.1] 0.14481 1.18587

0.01 [-0.9,0.9] [-3,-0.1] 0.14489 1.15684
0.06 [-0.9,0.9] [-3,-0.1] 0.14536 1.00298
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Figure 4.3: Effect of Williamson parameter λ on velocity profile f ′(η).
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Figure 4.4: Effect of porosity k1 on velocity profile f ′(η).
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Figure 4.5: Effect of Magnetic parameterM on velocity profile f ′(η).
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Nc=2.5, =0.5, =0.5

Figure 4.6: Effect of Eckert number Ec on temperature profile θ(η).
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Figure 4.7: Effect of magnetic parameter M on temperature profile θ(η).
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Figure 4.8: Effect of Prandtl number Pr on temperature profile θ(η).
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Figure 4.9: Effect of Lewis number on temperature profile θ(η).
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Figure 4.10: Effect of Thermophoretic parameter δ∗ on temperature profile.
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Figure 4.11: Effect of coefficient of activation energy E1 on temperature
profile θ(η).
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Figure 4.12: Effect of temperature ratio parameter σ on temperature profile
θ(η).
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Figure 4.13: Effect of diffusivity ratio parameter Nbt on temperature profile
θ(η).
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Figure 4.14: Effect of thermal slip parameter β on temperature profile θ(η).
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Figure 4.15: Effect of Eckert number Ec on concentration profile φ(η).
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Figure 4.16: Effect of Prandtl number Pr on concentration profile φ(η) .
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Figure 4.17: Effect of Magnetic parameter M on concentration profile φ(η).
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Figure 4.18: Effect of thermophoretic parameter δ∗ on concentration profile
φ(η).
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Figure 4.19: Effect of coefficient of activation energy E1 on concentration
profile φ(η) .
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Figure 4.20: Effect of temperature ratio parameter σ on concentration profile
φ(η).



Chapter 5

Conclusion

In this research work, the work of Y. B. Kho at al. [32] is reviewed and extended

by the addition of MHD, porous parameter, activation energy and Joule heating.

By using similarity transformations, the momentum equation, heat equation and

concentration equation are converted into ODEs. Furthermore, the numerical

solution of these converted ODEs has been analyzed by using shooting technique.

Considering different parameters and using different values of these parameters,

the results are presented in the form of tables and graphs for velocity, temperature

and concentration profile. The important results of current research can be precise

as below.

• By increasing the value of the velocity slip δ and Williamson parameter λ, the

values of the velocity profile increase while temperature profile is decreased.

• As we increase the value of Prandtl number Pr, Lewis number Le, diffu-

sivity ratio parameter Nbt and thermal slip parameter β, the the value of

temperature profile is declined.

• The concentration profile decreases by increasing the values of Schmidt num-

ber Sc, diffusivity ratio parameter Nbt and thermal slip parameter β, while

the concentration profile is increased by increasing the values of the velocity

slip parameter δ and the Williamson parameter λ.
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• For rising the value of the velocity slip parameter δ, the skin friction coeffi-

cient is increased. However by increasing the value of Williamson parameter

λ, the skin friction coefficient is droped.

• It is found that values of Nusselt number and Sherwood number fall down

by increasing the values of δ and λ, while an ascending pattern of Nusselt

and Sherwood is found for increasing values of Pr, Sc and Le.

• A decrement is noticed in the temperature profile due to ascending values of

the Eckert number Ec.

• Due to the decreasing values of M and k1, the velocity profile is increased.
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