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ABSTRACT

This thesis presents three different kinds of complex synchronization (CS), (i)
Complex Complete Synchronization (CCS), (ii) Complex Projective Synchronization
(CPS), (iii) Complex Generalized Synchronization (CGS) of Identical and Non-
identical Nonlinear Complex Systems with unknown parameters. Based on adaptive
integral sliding mode control, an adaptive controller and parameter update laws are
designed to realize CCS, CPS and CGS. To employ the adaptive integral sliding mode
control, the error system is transformed into a special structure containing nominal
part and some unknown terms. The unknown terms are computed adaptively. Then
the error system is stabilized using adaptive integral sliding mode control. The
stabilizing controller for the error system is constructed which consists of the nominal
control plus some compensator control. The compensator controller and the adapted
law are derived in such a way that the time derivative of a Lyapunov function
becomes strictly negative. The proposed scheme is successfully applied to complex
chaotic nonlinear systems with unknown parameters for the realization of (i) Complex
Complete Synchronization (CCS),(ii) Complex Projective Synchronization (CPS),(iii)

Complex Generalized synchronization (CGS).

vii



TABLE OF CONTENTS

ACKNOWIEAGMENT ...ttt e s reenne e v
DIECIATALION ...ttt Vi
ADSTFACT ... vii
Table OF CONTENES ....c..iiiiieic s viii
LISt OF FIQUIES ...ttt ettt e aeeteenaesre e e Xi
LESE OF TaADIE ... e XV
LISt OF ACTONYIMS ...ttt bbbttt nb b ene s XVi
(@4 o= T o] (-] SO S SR SSORRTI 1
1. INTRODUCTION ..ottt 1
1.1 INErOAUCTION ...ttt 1
L1.1L1 OVEIVIBW .ttt bbbttt bbbt 1

1.1.2 IMIOTIVALION ...t 1

1.2 Problem StatemMeNt.........ocooeiiiiieiee e 2

1.3 Application of RESEArCh...........ccoiiiiiiiicicccce e 2

1.4 Structure OF the THESIS ......ciiiiiiieee s 2
CRAPTET 2 ... bbb bbbt 4
2. LITRATURE REVIEW ..ot 4
2.1 INEFOTUCTION ... 4

2.2 ChaotiC SYSTEIMS.......eiuieiiiieiteiie sttt bbbt 4

2.3 Chaos SYNCRIONIZALION ........ccoiiiiiiiieiee s 5

2.4 Types of Synchronization............ccoevieiiiiiiii i 5

2.4.1 Complex Complete Synchronization ...........ccccceevvievvevesiesie e, 6

2.4.2 Complex Projective Synchronization ...........cccceevvvevvevesiiesecse e, 7



2.4.3 Complex Genralized Synchronization ............cccceeveveiiienieesesieeseenienes 8

2.5 Sliding Mode Control...........coeiiiiiiii e 10
2.5.1 Sliding SUrfaces DESIGN .......ccueiviriiriiiiesieeeee e 10

2.5.2 Chattering PNENOMENON.........ccovviieiieie e 11

2.6 Integral Sliding Mode Control............ccoviiiiiiiiiiii e, 12
2.6.1 Properties of Integral SlidingMode .................ooiiiiiiinnin, 12

CRAPTEE 3 bbbt 14
3. Complex Complete synchronization(CCS) .......cccvvvevinieieneneseseseeeee e, 14

S L INEOAUCTION ... 14

3.2 Problem formulatiom ............ccooiiiiiiiiieee e 14

3.3 General Proposed AlGOrthm ..., 14

3.4 Numerical EXamPIE .......cccoiiiiiieieee e 19
CRAPTEE 4 ...t 28
4. Complex Projective synchronization(CPS).........ccccccevieieiieiiececc e 28
4.1 INEFOTUCTION ...t 28

4.2 Problem formulatiom ... 28

4.3 General Proposed AlGOrithm ..........ccocoiiiiiiiiiineee e, 29

4.4 Numerical EXaMPIE .....ccvoieiieiiee et 34

(O T 01 (=] gl TSR PTR 59
5. Complex Genralized synchronization(CGS)..........ccoovirinieneneieninesieee, 59
5.1 INEFOTAUCTION ...ttt 59

5.2 Problem formulatiom .........cccvoeiiiiiii e 59

5.3 General Proposed AIGorithm ... 60

5.4 Numerical EXamMPIE ......ccoiiiiiii e 65

(@ g T=T 0] (=] g TSR 95
CONCLUSION AND FUTURE WORK ..ot 95



B.1 INEFOAUCTION. ...t e e et e ettt e e e e e e e ee e enaeeeaans

6.2 Conclusion

B.3 FULUIE WOTK ..

References



LIST OF FIGURES

Figure 2.1: The phase portrait of Lorenz system X;,, X, , X3 voovevvrererenineneieseneneeenes 4
Figure 2.2: The Sliding Phase, Reaching Phase and Sliding Surface............cccccccveu... 11
Figure 2.3: The Chattering Effect ... 12
Figure 3.1: 3D phase portrait of complex LOrenz SyStem..........cccevvvvveieeriesieeseereenns 23
Figure 3.2: Time Response Of SUIMTACE .........cccvveiieii e 24
Figure 3.3: Time Response of CONtrol INPUL ... 24
Figure 3.4: Time Response of error €;,,€;,,€,,,65 & €5 cvrviviiiiiiciiiiiiieiee, 24
Figure 3.5: Time Response of adaptive controller u,,u,,U;,U; &Ug ..ccoovevvvrirnennnnes, 25
Figure 3.6 Estimation parameter of 8,0 & € ......co.ovvovvververiiseeseeeeeseesessesneesnees 25
Figure 3.7: Time Response of x;,&y;, With IC (2,2.001)......ccccceiiiiiiniiiiiiieienns 25
Figure 3.8: Time Response of x;&y;; WIith IC (1,-1) .coovviiiiiiiiiveeeeeees 26
Figure 3.9: Time Response of x;, &y, With IC (5,5) ...ocviiiiiiiiiicce 26
Figure 3.10: Time Response of x;;&y,;With 1C (3,3) ...ccvviiiiiiiceee 26
Figure 3.11: Time Response of x3&y3 With IC (4,4.01).....cccccceiieiiiiiieeie e 27
Figure 4.1: Time Response of error €,,,€;,,€,,,€,,€3,€, &€y cirireiirireiiniireireennen, 43
Figure 4.2: Time Response of adaptive controller u,,u,,u;,u,,Us,Us &U; ............... 43
Figure 4.3: Time ReSpoNSe Of SUMTACE ........cccveiiiiiii e 43
Figure 4.4: Time Response of CONtrol INPUL ..........ccooeiiiiiiniiee e 44
Figure 4.5: Estimation parameter of &,,8,, & &,; .cocoovveriniiiiiie e, 44
Figure 4.6: Estimation parameter of 8,,,8; & @, ..coooovvviiiiiiiiic e, 44
Figure 4.7: Estimation parameter of b,,0,,0,,0, &g ...ovvvvevvveerriierreeees e, 45
Figure 4.8: Time Response of x1, &y, WIth IC (2, -1) cccoveiveiiiieeeeee e 45
Figure 4.9: Time Response of x1;&y;; With IC (20, -2) .oooveeiiieiceeee e 45

Xi



Figure 4.10: Time Response of x5, &Yz, WIth IC (1, -3) cceeoviiiieiieeee e 46

Figure 4.11: Time Response of x,;&y,; With IC (10, -4) c.cccoovvviiiiiiiee e 46
Figure 4.12: Time Response of x3&y3 With IC (-1,-5) ..cceeviiiiiieiiiieceee e 46
Figure 4.13: Time Response of x4, &Yy, WIth IC (2,-6) ...coovvvveviiiiiiiiieee e 47
Figure 4.14: Time Response of x4;&y,; With 1C (20,-7) cvevvveieiieiieeceee e 47
Figure 4.15: Time Response of error e;,,€;;,€,,,€5 &€; .covvvviivriiiiiiiiiicee e, 54
Figure 4.16: Time ReSpoNSe Of SUIMTACE ........c.coveiiiiiiiiiisieeeee e 54
Figure 4.17: Time Response of CONtrol INPUL ..........cocoiiiiiiniieec e 55
Figure 4.18: Time Response of adaptive controller u,,u,,U;, U, &Ug ..cooovevrirrennne, 55
Figure 4.19: Estimation parameter of &,,8,,8; &8, ....ccccovvviiiiiiiciiiccc, 55
Figure 4.20: Estimation parameter of b,,D, &b, covv.ovveeecveeeeineeeseieseeeeeeseesesie 56
Figure 4.21: Estimation parameter of b, Dy &D, ...oovvveevveeerereseseeeeeesesan, 56
Figure 4.22: Time Response of x1, &y, WIth 1C (10, 2)...cccviviiiiiiiiiiiiiieicee, 56
Figure 4.23: Time Response of x1;&y;; With IC (5, 20)....ccccviiiiiiiiiiiicee, 57
Figure 4.24: Time Response of x5, &y,, With IC (10, 1) ..ooovviviiiiiiiieeecee 57
Figure 4.25: Time Response of x3;&y,; With 1C (6, 10) ..c.covvvviiiiiiiiiieiiiecee 57
Figure 4.26: Time Response of x3 + x4&y3 With IC (2, 12, -1)...cccccvvivriiiiiiiee, 58
Figure 5.1: Time Response of error €;,,€;;,€,,,€5,83 &€, cevvvvviciiiiiiiiiiieie, 71
Figure 5.2: Time ReSpoNSe Of SUMTACE ........ccovviiiiiiiene e 71
Figure 5.3: Time Response of CONtrol iNPUL ... 72
Figure 5.4: Time Response of adaptive controller u,,u,,u;,U,,Us &Ug ..oovvevrnnnnne, 72
Figure 5.5: Estimation parameter of 8,,8,,8; &8, ...c.ccooviviiiiciiicc e, 72
Figure 5.6: Estimation parameter of 61, 62,63 &64 ..................................................... 73
Figure 5.7: Time Response of x1,, — x2;&y1, With IC (-1,1,10) ..ocovevviveircieveee 73

Xii



Figure 5.8: Time Response of xq; + x2,&y1; With IC (2,1,-8) .ccvvvvvvvviiiiiievie 73

Figure 5.9: Time Response of 2x,, + x3; &y, With IC (1,1,4) ..oooiiiiiiiiiiiieee, 74
Figure 5.10: Time Response of 2x,; — x2,&y,; With IC (1,1,-3).ccceeeiviiiiiieiieie 74
Figure 5.11: Time Response of x3 + x4&y3 With IC (2,-1,6)......cccccvrivriiniiiriieine 74
Figure 5.12: Time Response of x2 + y; With IC (2,-1,6) c..vvvevveerrrerereeeiesece e, 75
Figure 5.13: Time Response of error €;,,€,:,€,,,€,,,83 &€, eovivrireiiririeieeiieieenen, 82
Figure 5.14: Time ReSpoNse Of SUIMACE ........c.coeiiiiiiiiiiiirieeeee e 82
Figure 5.15: Time Response of CONtrol INPUL ... 82
Figure 5.16: Time Response of adaptive controller u,,u,,u;,U,,Us &Ug ...coovvnrnennee. 83
Figure 5.17: Estimation parameter of €,,C, &Cy ..oovviiveiiiiiiiiiece e, 83
Figure 5.18: Estimation parameter of 61,62 , 63 &64 ................................................... 83
Figure 5.19: Time Response of x;; &y, With IC (-2,2) .ccecvvviiiiiiiicieceee e 84
Figure 5.20: Time Response of x;,&y;; With IC (-3,-2) ..ecovvviiiiiiceeee e 84
Figure 5.21: Time Response of x,;&y,, With IC (-5,1)....cccccviviiiieiiiieiecie e 84
Figure 5.22: Time Response of x,,-&y>; With 1C (-1,-1) .ceooviieiieiiceveee e 85
Figure 5.23: Time Response 0fx3&ys With IC (-4,6) ....cccocvvveieiieiicieceee e 85
Figure 5.24: Time Response of x3&y, With 1C (-4,1) ...ocovviiiiiiiieeeeeee 85
Figure 5.25: Time Response of error e;,,€;;,€,,,€, &€;..ccvvvviiiciiiiiiiicc e, 91
Figure 5.26: Time Response Of SUMACE .........cccvvveiiiiiii i 91
Figure 5.27: Time Response of control INPUL ..........ccccvevieiiiciic e 91
Figure 5.28: Time Response of adaptive controller u,,u,,U;, U, &Ug....coovevrirnnnnnnen, 92
Figure 5.29: Estimation parameter of 8,,8,,8; &8, ...cccocoovvviiiciiiic e, 92
Figure 5.30: Estimation parameter of &1,&2 &&3 ....................................................... 92
Figure 5.31: Time Response of x,;&y1, With IC (1,4) c..ccvvevviiiiieeceeeee e 93



Figure 5.32: Time Response of x5, &y1;With 1C (1,10) ....cccovvviiieiiieieeieee e 93

Figure 5.33: Time Response of x1;&y,, With 1C (2,6) ....ccevvviiieiiiieieee e 93
Figure 5.34: Time Response of x1,&y,; With IC (-1,10).....ccccoviiieiiiiiiieece e 94
Figure 5.35: Time Response of x3 — xZ&y; With IC (2, -1, 6) ..covevrvereereerciceae, 94

Xiv



LIST

2.1 Types of function synchronization

OF TABLES

XV



CS

AS

CCS

CP

MPS
MHPS
CPS
CMPS
CMHPS
CMHFPS
CGS
SMC
ISMC
RP

SM

SS
SOSM
HOSM

LIST OF ACRONYMS

Complete Synchronization

Anti Synchronization

Complex Complete Synchronization

Projective Synchronization

Modified Projective Synchronization

Modified Hybrid Projective Synchronization

Complex Projective Synchronization

Complex Modified Projective Synchronization
Complex Modified Hybrid Projective Synchronization
Complex Modified Hybrid Function Projective Synchronization
Complex Generalize Synchronization

Sliding Mode Control

Integral Sliding Mode Control

Reaching Phase

Sliding Mode

Sliding Surface

Second Order Sliding Mode

Higher Order Sliding Mode

XVi



Chapter 1

INTRODUCTION
1.1 Introduction

All physical systems are nonlinear by nature. In order to attain better understanding
about the dynamical behavior of different nonlinear systems, an interesting and
important phenomenon is to investigate synchronization between these dynamical
systems. Synchronization, observed as naturally occurring process, has significant
impact in diverse areas of engineering, sciences and even in the social life.
Synchronization of nonlinear systems is an attractive area among researchers of
different disciplines due to its numerous applications in the fields of engineering and
technology. Noteworthy efforts by researchers have been devoted to investigate the
problem of synchronization of nonlinear systems. To address the problem of complex
synchronization of nonlinear systems, the estimation of different unknown parameters
associated with nonlinear system is crucial. The unknown parameters have strong

influence on complex synchronization.

1.1.1 Overview

Synchronization of complex chaotic systems is the rudimentary determination of this
research work. We need to stabilize the error system for any initial condition. The
technique used is Adaptive Integral Sliding Mode Control. Appropriate Hurwitz
sliding surface and Lyapunov function are selected to stabilize the error system.

Adaptive laws are obtained using Lyapunov stability theory.

1.1.2 Motivation

The complex chaotic synchronization has been a topic of interest for the researchers
over the last two decades. It is hardly possible to avoid contact with complex chaotic
systems. Such problems arise in our daily life. Some of these problems are simple to
solve but there are control problems with more complications. Synchronization of

nonlinear systems contains diverse area of application in almost every field of life.



1.2 Problem statement

The purpose of this study is to develop appropriate synchronization schemes for
different nonlinear complex chaotic systems working according to master-slave

principal that addresses

e Complex Complete Synchronization of two identical nonlinear complex
chaotic systems.

e Complex Projective Synchronization of two non-identical nonlinear complex
chaotic systems.

e Complex Generalized Synchronization of two identical, non-identical and
hyperchaotic nonlinear complex chaotic systems.

1.3 Application of Research

As we are dealing with the complex chaotic systems, there are many examples of
these systems in our daily life. We have begun to understand that the tools of chaotic
theory can be applied on the way to understanding, manipulation, and control of a
variety of systems. Complex chaotic system is applicable in actual-world as epileptic
seizure, heart fibrillation, neural process, chemical reactions, climate, industrial

control processes, and many more.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows:

Chapter 2: Literature review

This chapter will give us a review of the literature published about the chaotic systems

and synchronization of complex chaotic systems.
Chapter 3: Complex Complete Synchronization (CCS)

This chapter contains the proposed algorithm for complex complete synchronization
(CCS) systems. Adaptive Integral Sliding Mode Control law is developed to
investigate the problem of synchronization of nonlinear systems with unknown

parameters.



Chapter 4: Complex Projective Synchronization (CPS)

This chapter contains the proposed algorithm for complex projective synchronization

(CPS) systems. Adaptive Integral Sliding Mode Control verify the proposed scheme.
Chapter 5: Complex Generalized Synchronization (CGS)

This chapter contains the proposed algorithm for complex generalized syn-
chronization (CGS) systems. Adaptive Integral Sliding Mode Control is used to prove

the proposed scheme.
Chapter 6: Conclusion and future work

A brief conclusion of thesis is outlined in this Chapter. Moreover, some future
research work is suggested for the researchers to work in the area of complex

synchronization of nonlinear systems.



Chapter 2
LITRATURE REVIEW

2.1 Introduction

This chapter presents literature review of complex chaotic systems, synchronization

types, sliding mode control and integral sliding mode control.

2.2 Chaotic Systems

Chaos is the irregular motion of a dynamical system; it is deterministic, sensitive to
initial conditions, and impossible to predict in the long term. It is neither harmonic nor
random. Chaos is characterized by the way a dynamical system does not repeat itself
even though the system is governed by deterministic equations [1]. Phase plane and
correlation is used to identify the attractor and randomness of the chaotic system. The
attractor is a region of the state space from which there are no exit paths. For chaotic
systems, the attractor does not settle to one of these but span the state space around
the attractor for all time without ever repeating. It does not come back to previously
points in the state space, this describes the stretching and folding properties [2], which
can be seen when plotting the states of the system against each other. Figure 2.1 plots
the trajectory of the Lorenz attractor in the phase space, depicting the stretching and
folding properties [3], which can be seen when plotting the states of the system

against each other.

X
dr

Figure 2.1: The phase portrait of Lorenz system X;,, X, , X5.



2.3 Chaos Synchronization

Dutch researcher Christian Huygens was probably the first scientist who observed and
described the synchronization phenomena in seventeenth century. In 1658, Christian
Huygens investigated the synchronization between two coupled pendulum clocks [4].
Despite the study of the first synchronization phenomena, the actual work on
synchronization of nonlinear systems was started late in 1920. After a few years, in
1927, Balthasar Vander Pol extended the efforts of W. H. Reck and J. H. Vincent by
obtaining theoretical and practical results for synchronization [5]. In the literature
Peccora and Carrol first introduced the idea of synchronization of nonlinear chaotic
systems, by investigating the properties of two nonlinear systems and described that
two nonlinear systems can be synchronized by linking them with a common signal.
After the inspirational work of Peccora and Carrol, on synchronization of dynamical
systems, this problem attracted a great number of researchers from different fields of
engineering and sciences [6]. Considerable research work has been carried out to
investigate the synchronization phenomena in different nonlinear systems and
different control strategies have been developed [7]. Since after the pioneer work on
synchronization of two identical nonlinear systems, namely, response and drive
systems [8], the problem of synchronization of nonlinear systems has been

extensively studied in both theoretical and practical systems.

2.4 Types of Synchronization

There are some main types of synchronization:

(1) Complete Synchronization: When driven and response meet to be exactly same.
lim e(®)] = lim[y(®) - x()] = 0.

(2) Generalized synchronization: Synchronization between the states of two systems

by a functional relation is defined as generalized synchronization.

lim e(®)] = fim]y(®) - DG =0.



(3) Phase synchronization: When their phase difference remains bounded and

amplitudes remain uncorrelated. |, (t) — @, (t)[ =0. Where, ¢,(t) and ¢, (t)indicate

the phases of two coupled oscillators.

(4) Lag synchronization: When dynamics is described by delay differential
equations. One of the oscillators follows of other. | X, (t) — X, (t+7) | =0, Where 7 is

delay.

(5) Projective synchronization: The states of master x(t) and response system y(t)

synchronize with respect to scaling factor o.. i.e. lim le®)]| = lim ly(®) — e (1) =0.

2.4.1 Complex Complete Synchronization (CCS)

Chaos synchronization, as an important topic in nonlinear science, has been widely
investigated in many fields, such as physics, chemistry and ecological science [9, 10,
11]. Chaotic system is deterministic, as long-term a periodic behavior, and sensitive
dependence on the initial conditions. If the system has one positive Lyapunov-
exponent, then the system is called chaotic. For more details see synchronization of
chaotic systems [12-14]. In the literature reference some results on chaos
synchronization are derived by using the known parameters of master and slave
systems, and the controller is constructed by those known parameters. The
synchronization will be destroyed with the effects of these uncertainties. On the other
hand, in real physical systems or experimental situations, chaotic systems may have
some uncertain parameters and may change from time to time [9-12]. Thus, it is a
very important problem to realize chaos synchronization for these uncertain chaotic
systems. The adaptive control is one of popular and useful approaches to control and
synchronize nonlinear systems with uncertain parameters [9-21]. In early 1950s,
research on the adaptive control was first proposed to design the autopilot for high-
performance aircrafts, which operate at a wide range of speeds and altitudes [22]. In
last few years researcher has been introduced and studied several examples of chaotic
nonlinear systems with complex variables [23-29]. These systems which involving
complex variables are used to describe the physics of a detuned laser, rotating fluids,
disk dynamos, electronic circuits, and particle beam dynamics in high energy

accelerators.



Consider the two complex chaotic systems:

x=f(x)+F(x)0 (2.1)

y=9(y)+G(y)d+u (2.2)

are said to be complex complete synchronization if:
limle®| = lim|y®) -x®] =0  (23)
2.4.2 Complex Projective Synchronization (CPS)

Projective synchronization is a form of chaos synchronization recently observed in
coupled partially linear systems of three dimensions [31]. In projective
synchronization, the phases are locked and the amplitudes of the two coupled systems
synchronize up to a scaling factor. The scaling factor is a constant transformation
between the synchronized variables of the master and slave systems.

In the literature Zhang et al. [32] discussed modified projective synchronization
(MPS) with complex scaling factors of uncertain real chaos and complex chaos.
Mahmoud et al. [33] achieved complex modified projective synchronization (CMPS)
of two certain chaotic complex systems. Sun et al. [34] introduced combination
synchronization with complex scaling matrix. Liu and Zhang [35] discussed function
projective synchronization (FPS) with complex function matrix of coupled chaotic
complex system with known real parameters.

It should be noted that the above papers only consider complex chaotic
synchronization of the same dimensional, and the states of the drive and response
systems synchronize by a diagonal matrix, so each state variable of response system
synchronizes one of drive system by a special scaling factor. As a matter of fact, the
synchronization can be carried out through different dimensional oscillators,
especially biological science and social science [36], where the drive and response
systems could synchronize by a desired transformation matrix, not a square matrix.
Therefore, Luo and Wang [37] introduced hybrid modified function projective
synchronization (MHFPS) of two different dimensional complex chaotic systems.
Moreover, as the complex function transformation matrix is more unpredictable than
real function transformation matrix in [38], it will greatly increase the complexity and

diversity of the synchronization.



Consider master/slave complex chaotic systems:

x=f(x)+F(x)0 (2.4)

y=9(y)+G(y)d+u (2.5)

are said to be complex projective synchronization if:

lim|e(t)] = lim|ly(t) - DE)x(®)]| =0 (2.6)

2.4.3 Complex Generalized Synchronization (CGS)

In complex projective synchronization the response complex systems has been
synchronized with the drive complex systems up to the desired complex scaling
matrices. Rulkov et al. firstly proposed the generalized synchronization, where two
chaotic systems are said to be synchronized if a given functional relation can be
realized between the wvariables of drive and response systems [40].
In the literature generalized synchronization of chaotic or hyperchaotic real systems
has been widely investigated in last two decade. For instance, [41, 66] realized
generalized synchronization of different chaotic and hyperchaotic systems, while [47,
48] achieved adaptive generalized synchronization (AGS) and parameter
identification of different chaotic systems with unknown parameters. There were few
published achievements on CGS of non-identical nonlinear complex systems. So, it is
meaningful and challenging to extend GS from real systems to complex systems, and
to realize CGS and parameter identification of chaotic and hyperchaotic complex
systems with unknown parameters using adaptive integral sliding mode. In [49], the
author presented adaptive control scheme and parameter update laws for two non-

identical and hyperchaotic complex chaotic systems with unknown parameters.
Consider master/slave complex chaotic systems:

%= f(X)+F(x)@ 2.7)

y=9(y)+G(y)¢+u (2.8)

are said to be complex generalized synchronization if:
lim e(t)] = lim[[y(®) - ()] = 0 (2.9)

The above types of synchronization can be summarized by the following table.



Settings the matrix M

Type of synchronization

M =diag(LL....1)

Complete Synchronization (CS)

M =diag(-1-1...,-1)

Anti Synchronization (AS)

M =diag(d,d,....d) e R™"

Projective synchronization (PS)

M =diag(d,,d,,....d ) e R™

Modified Projective Synchronization (MPS)

M e Rmxn

Modified Hybrid Projective Synchronization
(MHPS)

M =diag(d,d,....d) e C™

Complex Projective Synchronization (CPS)

M =diag(d,,d,,....d ) eC™"

Complex Modified Projective Synchronization
(CMPS)

M ECI’T]XI’]

Complex Modified Hybrid Projective
Synchronization (CMHPS)

M =M, (t)+ jM, () eC™"

Complex Modified Hybrid Function Projective
Synchronization (CMHFPS)

limfe®] = imy() - M 9] =0

Table 2.1: Types of function synchronization




2.5 Sliding Mode Control

Sliding mode control (SMC) is a nonlinear control technique featuring remarkable
properties of accuracy, robustness, and easy tuning and implementation. Nonlinear
control laws are designed to drive the system states onto a particular surface in the
state space, named sliding surface. Once the sliding surface is reached, sliding mode
control keeps the states on the close neighborhood of the sliding surface. Hence the
sliding mode control is a two part controller design. The first part involves the design
of a sliding surface so that the sliding motion satisfies design specifications. The
second is concerned with the selection of a control law that will make the switching
surface attractive to the system state [50]. There are two main advantages of sliding
mode control. First is that the dynamic behavior of the system may be tailored by the
particular choice of the sliding surface. Secondly, the closed loop response becomes
totally insensitive to some particular uncertainties like parameter uncertainties,

disturbance.

2.5.1 Sliding Surface Design

This section explores variable structure control as a speedy swapped feedback control
causing in sliding mode. The reason for transferring control function is to make the
nonlinear system state onto a pre-indicated plane in the state space and to keep up
system state path on this surface for consequent time. The surface is known as a
switching surface. The feedback track has gained one when the plant states route is
“above” the surface and different gains if the path is “beneath” the surface. This
surface characterizes the principle for proper switching. This surface is similarly

named the sliding surface.

The uncertainties and disturbances are always present in practical system and in such
cases, discontinuous control ensures robustness. Figure 2.2 shows the reaching phase
(RP), sliding mode (SM) and sliding surface (SS).
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x(%y)
Reaching

Phase

Sliding surface

Sliding Phase

Figure 2.2: The Sliding Phase, Reaching Phase and Sliding Surface

2.5.2 Chattering Phenomenon

In sliding mode scheme the control signal exhibits high frequency oscillation called
chattering. Such chattering has much effect in real world applications. This
phenomenon may lead to large unwanted oscillations that degrade performance of the
system. In order to avoid chattering effect, various solutions of this problem have
been proposed. i.e. the boundary layer design. A new design scheme based on
estimation of sliding variable was presented [51]. The method based on the describing
function approach was developed for chattering analysis of the system in the presence
of the un-modeled dynamics. Another way to reduce chattering effect is by means of
Second Order Sliding Mode (SOSM) and the Higher Order Sliding Mode (HOSM)
control techniques. Figure 2.3 shows the chattering effect.
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Figure 2.3: The Chattering Effect

2.6 Integral Sliding Mode Control

The basic idea of ISMC was initially proposed to enforce a sliding mode from the
beginning of the system response, which means a controller based on ISMC ideas can
provide compensation to matched uncertainties throughout the entire system response.
In ISMC, it is assumed that there exists a nominal plant, for which a properly
designed state feedback controller has already been designed to ensure asymptotic
stability of the closed-loop system, and to satisfy predefined performance
specifications. Integral term is ‘added’ to the nominal state feedback controller to
ensure the nominal performance is maintained, and the system is insensitive to
external disturbances. This design philosophy provides the opportunity to retro-fit an
ISM to the existing baseline controller to compensate for the matched uncertainties
and external disturbances throughout the system response.

2.6.1 Properties of Integral Sliding Mode

The properties of integral sliding mode are listed below:

* There is no reaching phase and a sliding mode is enforced throughout the entire

system response.

12



« During sliding, the order of the motion is the same as the original system.

* By a suitable choice of sliding surface, the effect of unmatched uncertainty can be

ameliorated.
* During the sliding mode, the system motion is invariant to matched uncertainties.

 The ISM approach has the ability to be retro-fitted to an existing feedback

controller.
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Chapter 3

Complex Complete Synchronization (CCS)

3.1 Introduction

In this chapter we present a new control design methodology to achieve Complex
Complete Synchronization (CCS) in complex chaotic systems with unknown
parameters. The proposed design methodology is based on Adaptive Integral Sliding
Mode Control. First, the design methodology is presented for the general case of
complex chaotic systems. Then, to illustrate the design procedure, to verify its
validity, and to show its effectiveness, the proposed design approach is applied on two

identical complex Lorenz systems [30] with unknown parameters.

3.2 Problem formulation

The aim of this chapter is to study and investigate the complete synchronization of
two identical complex Lorenz systems with unknown parameters. We design adaptive
integral sliding mode control and prove the effectiveness of this scheme for these
complex systems.

Consider the following two complex chaotic nonlinear systems as:

x = f(X)+F(x)0 (3.1)

y=9(y)+G(y)d+u 3.2)

Where X =(X,,X,,...,X,)" and y=(y,,Y,,....Y,) are complex state vector, and
u=(u, + ju;) e R" is the control input.

Definition: For the drive system (3.1) and the response system (3.2), it is said to be

complete synchronization between y(t) and x(t), if there exists a controller u(x, y)
suchthat:  lim le(®)]| = Jim ly(t) —x(t)|=0 (3.3)
for all initial conditions.

3.3 General Proposed Algorithm for Complex Complete

Synchronization

Consider the following two systems

14



= f(x)+F(x)@ (3.4)

y=9(y) +G(y)d+u(x,y) (3.5)

Where X = (X, X, .., ;)" €R" and  y=(y,,Y,,..Y,) €R™ are complex state
vectors of the drive system (3.4) and response system (3.5) respectively, where
X, =X + X, K=12...0, Y, =Y, + i¥;i,] =1,2,...,n, j=+/—1, the subscripts r and
i denote the real and imaginary parts of the complex variables, vectors and matrices
throughout this paper. & € RPand < R%are real vectors of unknown parameters.
F(x)eC™ and G(y)eC™are complex matrices, F(x)=F, (X)+ jF (x),
G(X) =G, (X)+ JG;(x). f(x) eC"and g(y) eC"are vectors of nonlinear complex
functions, and f(x)=f (X)+ jf.(X), a9(y)=09,(y)+jo;(y). u(x,y)eC"is the

complex control vector, and u(x,y) =u, (x,y)+ ju,(X,y).
Assume that m = n define the complex CCS error vector gives as:

e=y_)(:er_'_jei :(yr+jyi)_(xr+jxi)

| _ (3.6)
e + e =y, —x)+ iy =)

Wheree = (e,,€,,....6,)" €C",e, =(&,,6,,...8,,) €R"€ =(6;,6y,.,.6,;) €R"

By taking the derivative of equation (3.6) with respect time, the error dynamic can be

written as:

e=¢ +j& =y—x=9g(y)+G(y)d+u(x,y)— j{f (x)+ F(x)&}

=0, () +19;(Y)+ G, ()0 + JG; (V)& +u (X, y) + ju; (X, )

—{f. () + Jf; () + F.(x)0 + jF, (x)6} 3.7)
=g, (V) +G, ()0 +u,.(xy)—{f (x)+ F, (x)6}

+J09; () + G ()& +u; (X, y) —{f, (X) + F; (x)6}]

The complex error system (3.7) can be written in real form as:

e'r = gr (y) + C-:'r (y)H + l'Ir (X1 y) _{fr (X) + Fr (X)e}
& ={0,(¥) + G, ()0 +u, (x, y) —{f,(x) + F, ()6} (3.8)

Let § be estimate of 6 respectively and let 6 =6—6 be error in estimating 6

respectively. Then equation (3.8) can be written as:
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¢, =0,(Y)+G, (Y)8+G,(y)0 +u, (x,y) —{f,(X) + F, ()0 + F, ()6}
& =0,(Y) +G; ()0 +G, (¥)8 +u, (%, ¥) —{f,(x) + F; ()8 + F,(x)5}

That can be written in vector form:
Fq: g(ﬁ+emwé—fxm—meé_%?xmyq
&1 LoM+G(NI-F(0-F 6 | W)
L[ G (00 -F(x)0
G, ()0 ~F. ()0
By choosing
PAKW]{%J_FAW+GAW@4A@—Ewﬁ}

ui(xy) ] [eei ] | g,(y)+G(y)d- f,(x)-F (x)8
_le_ _eZi_
Car &si
Where €€, =| @ |,€€ =| :
€. €
Ew vV

v is the new input, then system (3.10) becomes:

{a}_ra]+exwé—Fxm§
& lee | |G (y)d—F (08

_élr i _e2r ] or
éZr :
: enr
Sl _|ea |, [Gi(E ~F (%8 (312)
%l e | (G0 -F (00
€,; :
_éni _ Vv

3.9)

(3.10)

(3.11)

To employ the integral sliding mode control, choose the nominal system for (3.12) as:
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_élr_ e?r

e.2r

E enr

Cor €y

& | ey, (3.13)

e.2i

_éni_ _Vo_

Define the Hurwitz sliding surface for nominal system (3.13) as:

o,=Ce=Cie, +C,e

C, =[c,...c.,1.C, =[c,,C..i»--,Crn 1]

n-1 n-2
Oy =€ +Z Ci€iyr T Cini)€kr2)i T Eni
i=1 k=0

n-1

n-2
6.0 = e.1r +Z Cié(i+1)r +Z C(n+k)é(k+2)i +éni
i=1 k=0

n-1 n-2
Gy =€y +Z Ci€isoyr +Z Ciniy k)i TVo
i=1 k=0
n-1 n-2
By choosingVv, =—,, = > Ci€i.zr =D Crnirrzy — Koo —ksign(oy), k >0,
i1 k=0

we haves, =—ko,—ksign(c,). Therefore the nominal system (3.13) s

asymptotically stable.

Now choose the sliding surface for the system (3.12) as:

c=0,+2=Ce+12
c=Ce +Ce +2

Where zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0)=0. Choose V =V, +V, where,V, is the nominal input and v,

IS compensator term computed later. Then
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c=Ce +C,e +1

n-1 n-2
o =8, + z Ci€iioyr t+ z Cini) k)i TVo TV + z
i-1 k=0
+C[G, () - F, )01+ C,[G,(y)6 - F, (x)0]
n-1 n-2
=€, + Z Ci€ii2)r +Z Cinik) ki) T Vo TVs +1
i=1 _ k=3_ N _ (3.14)
+C,G, (y)0 -C,F, ()¢ +C,G;(y)0 -C, F.(x)¢
n-1 n-2
=[e, + z Ci€ii2)r +Z i) Ckrayi Vo Vs +7]
i-1 k=0

+{C,G, (y) +C,G, (y)}§ —{C,F, () +C,F, (X)}§

By choosing a Lyapunov function: V = =¢? + 070, design the adaptive laws for

N~
N |~

6,6,3,9 and compute v,such that V <0.

n-1 n-2
Z=-6, + Z Ci€iioyr _Z CinsiCk+2)i ~ Voo
i=1 k=0

v, =—ko —ksign(o)

0 =-o{G,(y)'Cl +G,(y)' Cl}+0 {F, () C] (3.15)
+F,(x)"CI}—k,6, where,k, k, >0

Proof:

Since

V=05+60"6
n-1 n-2

=o{l[e, + Z Ci€hioyr T z Cinin)rkszyi +Vo +Vs +7]
i-1 k=0

+{C,G, (¥) +C,G; ()30 ~{C,F, (x) + C,F, (x)}6}

+070
n-1 n-2

=o{[e, + z Ci€iioyr + z Cini)Crkaz)i TVo +Vs + 1}
i=1 k=0

+07[0 - {C,G, (¥) + C,G, (¥)}+ 0 {C,F, () + C,F, ()}]

18



By using

n-1 n-2
Z=-e, + Z Ci€ia)r —Z Cini)€kr2)i ~ Voo
i-1 k=0

v, =—ko —ksign(o)

6 =—o{G,(¥)"C] +G,(y) C]}o {F, ()" C]
+F,(X)"CI}-k,6, where,k, k,, k, >0

We have

V =—ko? —k|o| k076 .

From this we conclude thato, @ — 0. Since o —> 0, therefore e.e 0.

3.4 Numerical Example

The following example is taken from [30] where CCS problem was solved by
adaptive control scheme. We have achieved CCS using adaptive integral sliding mode

control.

Consider the Master system given in [30] as:

X, = a(xz - Xl)

X, =bX; — X, — X, X, (3.16)

X, = 0.5(X; X, + X, X,) —CX,4

Where, X, = X, + JX;;, X, =X,, + JX,; are complex and x; =X, , are real. XX,
denote the complex conjugate variables of x;,X,. a,band care unknown real
parameters. Whena =14 ,b=35,c=3.7 and x(0)=[2+1j, 5+3], 4]" ,the chaotic
attractor is plotted in Fig 3.1.

The slave system consider as [30]:

Y1 = a(Yz - yl) +Uu;

yz :byl_yZ —Yi¥; T U, (3-17)

ys = 0-5(71 y, + y172) —Cy; +U,

Where, y; = Yy, + Yy, Y2 = Yo + ¥ arecomplexand y, =y, ,arereal. y,,Y,

denote the complex conjugate variables of y,, y,and u,,u,,u, controllers.

We investigate CCS of two identical complex systems with the same orders.
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Let &, b,¢é be estimates of a, b,cand & =3, —é,S =b—b,C =c—¢ be the errors

in estimations ofa, b,c respectively. Then systems (3.16) and (3.17) can be written

as:

¥ =a(X, = %) +a(x, —X)

X, =bx, +bx, =%, — XX, (3.18)
Xs = 0.5(X X, + X, X,) —€X; —CX,

Vi =a(y, -y +aly, —y.) +u

Yo :6y1 +6y1_y2 —Yi¥s tU, (3.19)

Y3 = 0-5()_/1 Yo + Y1yz) _éY3 _Eys +U;

The 3-dimensional complex systems (3.18)-(3.19) can be written into 5-dimensional
real systems:

X, = A(Xy — Xy ) +a(Xg — Xy, )

X = 8(Xy = Xy) + (X = Xy;)

Xpp = 6X1r +~5x1r = Xop = X X3 (3.20)

Xy = lei + bxli = Xy — Xy X5

X3 = (Xy Xy + XXy ) — €%y — CXg

Yoo = (Yo = Yar) +A(Yor — Vi) + Uy,

Vi =a(Ya = Yy) +a(Yz = Yy) + Uy

Vor =BYy +DYy = Vo = Vi Ya + Uy, (3.21)

Yo =bYy +0Yy = Yo = V3 Y5 + Uy

Ya = Yur Yor + Yu Y2 —CY3 —CY3 +Us

Where u,,U;,U, U, and uzin Equation (3.21) are the control functions to be

determined.

The complete complex synchronization error signals are defined as:

€ = Yir =X € = Yy — X558y = Yor = Xpps

(3.22)
€ = Yo =X €3 = Y3 = X3
Then the dynamics of the error system becomes:
e.1r = ylr _Xlr'éli = yli _Xli ’éZr = er - XZr’ (323)

é2i = YZi _Xzi’és = Y3_X3
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€ = Vi =Xy =AYy = Vi) FA(Y5r — V) T Uy — (@06 — X ) +A(X, — X))

€ =Yy — Xy =Yy — Yu) +a(Ya — Yu) +Uy — (@Xy — Xy) +a(Xy — Xy))

€ = Vor =X = Bylr + BYH —Yor =Y Y3 tUy — (6X1r + 6Xlr = Xar = X1 Xg)

€y = Vo — Xy = 63/1i + b~Y1i — Yo —YuYs t Uy — (6X1i + 6Xli — Xy = X3iX3) (3.24)

€= Y5 =X = Y Yor + Y1 Yai —CYs _Eys + Uy = ((Xgr X + X35 X5) = €Xg _Exs)
By choosing

Uy, =—a(Y, — Yy ) +alX, —X,)+e;,

Uy =—a(Y, — Yy, ) +a(Xy, — X)) +€,,

Uy = —(BYr = Yor = Yar Vo) + (BXy, = Xor = X, %5) + €5, (3.25)
Uy = —(BYy — Yo — Yui Va) + (DX — Xy — Xy X3) + €5

Ug ==Yy Yor + Y Vo —CYs) + (X, Xy 4+ XX, ) —CX5) +V

Where v is the new input, the system (3.24) can be written as:

€ =a(Yy — Vo) —aA(Xy = X) +8y

€ = a(Yy — Vi) —a(Xy — Xy) + 8,

6, =by, —bx, +e, (3.26)
€, = EYu - b~X1i +€

€, =—CY,+CX;+V

Choose the nominal system for (3.26) as:

€ =€
€ =€,
Cor = & (3.27)
€ =8
€5 =V,

Define the sliding surface for nominal system (3.27) as:
d.,
o, =1+ a) e, =€, +4e, +6e, +4e, +e,

Then

c, =6, +4¢, +6¢, +4¢, +¢,=e; +4e, +6e, +4e;, +V,
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By choosingv, =—e; —4e,, —6e, —4e, —ko, —ksign(c,), k>0, we have
6, =—k o,. Therefore the nominal system (3.27) is asymptotically stable.

Define the sliding surface for system (3.26) as:

oc=0,+7=¢, +4¢e; +6¢, +4e, +€,+1Z

Where, zis some integral term computed later. To avoid the reaching phase, choose

z(0) such thato(0)=0. Choose V =V, +V where,V, is the nominal input and v,

is compensator term computed later. Then

=6, +4¢, +66, +46, +€,+12
= a(er - ylr) - a(XZr - Xlr) +€; + 4a(y2i - yli) _4§(X2i - Xli)+ 4le

+6by,, —6bX,, +6e, +4by, —4bX, +4e, —Cy, +CX; +V, +V, +2 (3.28)
By choosing a Lyapunov function: V = %az +%(52 +b? +E2), design the adaptive

laws for &,4,,b,b,¢,¢ and compute v,such that V <0.

7=-e,—4e, —6e, —4e, -V,

v, = —ko —ksign(o)

a= =0 (Yo = Yor) —40(Yy — Vi) + 0 (X5 — Xy,) 3.2
+4o (X, — X)) — k@, a=-a (3.29)
6:—60y1r +60 X, —4oy, +4o X, —kzg : b=-b
C=oy,—ox,—ks, E=—C k. k >0,i=1..3

Proof:

Since

V = 66 +33+bb +&¢

=o{a(y, — Vi) — Xy — Xy, ) + &y +4a(Y, — Yy) —4a(Xy — Xy) + 48,
+6by, —6bx, +66e, +4by, —4bx, + 4e, —CY, +CX, +V, +V, + 2}
+A3+bb +8¢

=ofe, +4e, +6e, +4e, +V, +V, + 7}

+ 5{5 +0 (Yo = Yo ) 40 (Yo = Vo) —0(Xy — %) —4o(Xy — X))}

+b{b + 60y, —60 X, +45 Yy, —box;}+T{E — oy, + o X}
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By using

=—e, —4e, —6e, —4e, —-v,, VvV, =-ko-ksign(o)

N-

a= =0 (Yo = Yir) =40 (Yo — Vi) + 0 (X = X;,)
+4o(X, —X;)—ka, 4a=-a
6:—60y1,+60x1r—4ay1i+4axli—k26, B:b~
C=oy,—oX,— ki, 6=C k. k >0,i=1..3

We have

V = —ko? —k|o| -k a2 —k,b? —k,&2.
From this we conclude thata,E,E,E —>0. Since o —0, therefore
e=(e.,;,8,,8,,8) 0.

In simulations, the initial conditions are chosen as:x(0)=(2+1j,5+3j,4)and
y(0) =(2.001+1j,5+3j,4.01). The true value of the unknown parameters are chosen

as:;a=14 ,b=35,c=3.7.

Simulation results:

ir X5

Figure 3.1 3D Phase portrait of complex Lorenz system
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Chapter 4

Complex Projective Synchronization (CPS)

4.1 Introduction

In this chapter we present the extended version of control design strategy proposed in
the previous chapter to achieve Projective Synchronization (PS) in complex chaotic
systems with unknown parameters. The proposed design methodology is based on
Adaptive Integral Sliding Mode Control. The proposed design approach is applied on

different dimensional complex chaotic systems with unknown complex parameters.

4.2 Problem formulation

We consider the following general m-dimensional complex chaotic (hyperchaotic)

drive system
x=f(xX)+F(x)& (4.2)

and n-dimensional complex chaotic (hyperchaotic) response system
y=9(y)+G(y)d+u (4.2)

X=(X, Xy, X)) €R™ and Yy =(Yy, Y, Y,) €R"are complex state vector, and
u=(u, + ju;) e R" is the control input.
Next, we introduce the definition of projective synchronization with complex function

transformation matrix of complex chaotic (hyperchaotic) systems with complex

parameters as follows.

Definition: For the drive system (4.1) and the response system (4.2), it is said to be

CMHFPS with D(t) between y(t) and x(t), if there exists a controller u(x, y,t) such

that Jim le®)]| = lim ly(®) — D(t)x(t)| =0 (4.3).

Where D(t) = D, (t) + JD, (t), the elements of D(t) should be continuously differential

functions with bounded.
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4.3 General Proposed Algorithm for Complex Projective Sy-

nchronization

Consider the following non-identical drive and response complex system with fully

unknown parameters

x= f(x)+F(x)0 (4.4)
y=9(y) +G(y)3+u(x,y) (4.5)

Where X = (X, X,,..., X, )" € R™ and y=(y,Y,,..Y,) €R" are complex state
vectors of the drive system (4.4) and response system (4.5) respectively.
X, =Xy + X, K=12,,m,y, =y, + ¥, 1 =12,..,n, j=~/-1, the subscripts r
and i denote the real and imaginary parts of the complex variables, vectors and
matrices throughout this paper. 8 e RPand $eR%re real vectors of unknown

parameters. F(x)eC™® and G(y) eC™%are complex matrices,
F(X)=F (X)+ jF(X), G(X) =G, (X)+ JG;(x). f(x) eC™and g(y) e C"are vectors
of nonlinear complex functions, and f(x) = f.(xX)+ Jf,(xX), 9(y)=9,(y)+ jg,(y).
u(x, y) e C"is the complex control vector, and u(x,y) =u, (X,y) + ju. (X, y) .

For the drive system (4.4) and response system (4.5), CPS is achieved if there exist a

complex controller u(x, y) and a complex matrix D(t) € C™" sych that !im||e(t)|| =0
where | || represent the matrix norm

Define the complex CMHFPS error vector as

e=y—-Dx
€ + jei = (yr + jyi)_(Dr + jDi)(Xr + in) = (yr + jyi)_{(DrXr + Dixi) (46)
+J(D,x +Dix;) =y, = (D, X, + Dix;) + Hy; —(D,X; + D;ix, )}

Wheree = (€,,€,,...,€,)" €C",e, =(&,,8,,-€,) €R"€ =(€;,€y,..€,) €R"

By taking the derivative of equation (4.6) with respect time we obtain the error
dynamic system as:
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6=y—(Dx+Dx)=g(y)+G(y)I+u(x,y)— D{f (x) + F(x)d}- D x

e +J& =9,(y)+ 9 (¥) + (G, () + IG; (V)(& +3) +u, (X, y)
+ Jui (%, y) = [(D, + D, F, 0 + Jf, (x) + (F, (%) + jF (X)), + ]6,)}
+(Dr + jDi)(Xr + jxi)]

=g, (V) +19:(Y)+ (G, (V)F +G;(y4) + (G (V)4 + G, (¥)I)
+U (X, Y)+ J+u; (% y) = [DAf, (X) + (F. ()6, + F,(x)6,)}
+D{f, (X) + (F (x)0, + F.(X)8,)}+ D {f; () + (F, (X)&, + F.(X)6,)} (4.7)
+ DA{F. (X)+ (F, (X)0, + F.(x)8)}+ D, x, + D,x, + jD.x. + jD, ]

=g, () + (G, (V) +G;(yS)+u,(x,y) - [D.{f, (x) + (F (x)6,
+F()0)}+ D{f;(x) + (F(x)0, + F.(x)0,) + DrXr + Di x H+ i{g;(y)
+(Gi (V)3 + G, (V)&) +u; (x,y) - [D{f; (x) + (F. (x)6; + F,(X)6,)}
+D{f. (X)+(F, (X)0, + F.(x)8)}+D,x, + D, x.]}

The complex error system (4.7) can be written in real form as:
e.r = gr (y) + (Gr (y)lgr + Gi (ygl) + ur (X’ y) - [Dr{fr (X) + (Fr (X)er
+F (X)8)}+ D{f;(x) + (F, ()0, + F.(x)6,) + DrXr + Dixi}]

8, ={0,(¥) + (G, ()&, +G,(¥)9) +U,(x,y) ~[D,{f, (%) + (F, (8,
+F, (08,0} + DLT, () + (F, (06, + F,()6)}+ D,x, +D,x T}

(4.8)

Let 9,9 be estimate of 6,9 respectively and let @ =0-0,9 = 9—3 be error in

estimating 4,9 respectively. Then error system (4.8) becomes:

6 =9,(V)+G, ()3, +G, (I, +G, (), +G, (), +u, (x,y)
—[D{f, () + (F, ()6, + F, (X)6, + F, ()8, + F,(x)6,)}+ D{F, (x)
+(F(x)0, +F, (x)§r +F. (x)0, + F, (x)6~’i)+ D, x, + D,x}]

& ={9,(¥) + (G, ()9, +G,(Y)&, +G ()9 +G,(y)4) +u;(x,y)
—[D{f.(xX)+ (F, ()6, + F, (X)&. + F, ()0, + F. (x)6.)}+ D.{f, (x)
+(F. ()0, + F. ()0, + F.(X)0, + F.(x)8,)}+ D.x, + D, x. }]

(4.9)

That can be written in vector form:
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9. () +G, ()&, +G;(y)4, ~[D, f,(x) + D, f,(x) +{D;F, (x) |
{e } +D,F (x)8.}+{D,F.(x)+ D,F. (x)4.}+ D,x, + D,x ]
9;(¥) +G,(y)9, + G, (y)4 -[D, f,(x) + D, f, (x) +{D;F, (x)

|+ D,F,(x)0,}+{D,F,(x) + D,F, (x).}+ D, + D;x, ]
G, ()9, +G, ()8 ~[{D,F, (x) + D, F, ()6} |
{ur(x, y)}+ +{D,F,(0+D,F,(06,}] )

U6 ] | Gi(y)S, +G, ()9 —[{D, Fi(x) + D;F, (x)6,}
| +{D,F, (x)+ D,F, (x),}]

(4.10)

By choosing

9,.(9)+G,(¥)3, +G, (V)4 -[D, f,(\)+D, f,(x) |

+{D;F, (x) + D, F,(x)0.}+{D,F, (x) + D,F, (x)é,}

|:Ur(X, y)}:{eer}_i_ +Drxr +DiXi]A . (411)
Ui (x,y) ee; g; (y) +G, (y)'gr +G, (y)‘gi _[Dr fi (x) + D, fr (x)

+{D;F, (x) + D, F,(x)0,}+{D,F, (x) + D,F, (x)d}

|+ D, % +D;x]

e2r eZi
e3r e3i
Where €€, =| : |,€€ =] :
€. €
L€ | vV

v is the new input vector, then system (4.10) becomes:

m B {eer}+ G, ()9, +G;(y)9 ~[{D;F, (X) + D, F, ()6, }+{D, F, () + D, F, (), }]
&) leei | |G,(v)3 +G, ()8 —HD,F (X) + D,F,(x)8,}+{D,F, (x) + D,F, (x)83]

Or
€ ] _ezr_
éZr : r ~ ~ =~
| e, | [6.08 +6,(93 ~HDF,(x)+ D,F.(05}
| ley |, |+DF.00+D,F (03] (442
e:” ey G; (y)§r +G, (y)§| —[{D,F (x) + D;F; (X)ér}
i1 | 5| |+{D,F.(0+D,F,(x\0} |
: eni
_éni i V
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To employ the integral sliding mode control, choose the nominal system for (4.12) as:

_élr | _GZr |
€,
f e
o €
€, - e, (4.13)
€, :
€ni
_enl 4L V, i

Define the sliding surface for nominal system (4.13) as:
. n-1 -1
o, =Cle,+¢;] =¢, +Z Cr€y +z Cinii) i
k=2 k=1

C =[Lc,....c,4,C,,...,Cp4.1] is chosen in such a way that o, becomes Hurwitz
polynomial.
do = C[er +ér]T

n-1 n-1

Go =€y +z C€kanyr +Z Cinsk) € Vo
k=2 k=0
. n-1 n-1
By choosingv, =—€,, =Y C€u.ur — 2, CinoCicn — Koo —ksign(o,), k>0, we
k=2 k=0

have ¢, = —k o,. Therefore the nominal system (4.13) is asymptotically stable.

Now choose the sliding surface for the system (4.12) as:

c=0,+2=Ce+z
oc=Ce +C,e +2

Where zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0)=0. Choose V =V, +V where,V, is the nominal input and v,

IS compensator term computed later. Then
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o=Ce +C,¢ +12

n-1 n-1
o= € t Z Cluunyr T Z Cinri)Crianyi TVo Vs + z
k=2 k=0
+C,G, (y)3 +C,G,(y)9 —C,D()F, (x)0 ~C,D(t) F, ()&
n-1 n-1
o= € t Z Cluunyr T Z Cinri) €riani TVo TV +2
k=2 k=0 (4.14)

+C,G, ()9, +C,G,(¥)d, +C,G; ()9, +C,G, (),
~[C,(D,F, (X)+ D;F, (x))d, +C,(D,F,(x) + D;F, (X)),
+C, (D, F,(x) + D,F, (X)), +C,(D;F,(x) + D,F, (x))é

C, =[kc,...c.,1.C, =[C,,Cr.is--,Cop ]

By choosing a Lyapunov function: V = = o~ +1§rT§r +1§iT§i o1 3"3 W1
2 2 2 2 2
design the adaptive laws for 6,6, 3,4 and compute v, such that V <0.
n-1 n-1 .
2=-8, _Z Cu€anyr _Z Cnet) 8t +Vor Vs = —Ko —ksign(o)
k=2 k=0

=o(D,F.(X)+ D,F.(x)) C] +(D,F.(x)+D,F.(x))' CJ —k,6.
o(D,F,(x)+ D,F, (x))" CJ +(D,F.(x)+D,F (x))"CJ —k,0,
. =—0G, (¥)' C =G, (y)'C] —k,5,

= oG, (y) CJ] —0G, (y)"Cl —k,3,where,k,k,,k,, ks, k, >0

- D

(4.15)

Yoyl

18

Proof:

Since

V=06+0."0+6"0+9"3 +3'3
n-1 n-1

=o{e, + Z CCusyr T Z Conei)€rkanyi TVo Vs +2
k=2 k=0

+C,G, ()9 +C,G; (y)9 —C,D()F, (x)& —C,D(t) F, (x)8}

4070 +0'0+373 +3°3

n-1 n-1
=o{e, + Z CCusyr T z Conri)€ranyi TVo Vs + z}
k=2 k=0

+8,{6, - (D, F, (x) + D,F,(x))" C] —(D,F,(x)+ D,F, (x)) C] }
+8{8, —o(D,F,(x)+ D,F,(x)' C] —(D,F,(x) + D,F,(x)) C]}
+8.749, + 06, (y) CJ +0G,(y)TCI}+8 {8, +G,(y) CI +G,(y) C]}
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By using

n-1 n-1
2=, — D C8unyr — 2, CinoBresni TVor Vs = ko —ksign(o)
k2 k=0

8, = (D, F. (x) + D,F. (X)) C +(D,F.(x)+D,F. (x)"Cl —k,3,
= o(D,F,(x)+ D,F, (x))"C] +(D,F,(x)+D,F (x))"C] —K,0,

- ==0G, (y)'C] =06, (y)' C] —k;9,

= —6G,(y)"C] —0G, (y)'C] —k,3,where,k,k, .k, k;, k, >0

18

13

13

We have

V =—ko? —k|o|-k,0," 6, —k,0," 6, —k,9." 9. —k, 3" ..
From this we conclude that o, §r , 5, , §r , 5, — 0. Since o — 0, therefore e,,6; = 0.

4.4 Numerical Example

The following example is taken from [39], where CPS problem was solved by
adaptive control scheme. We have achieved CCS using adaptive integral sliding mode

control.
Case 1: m<n

Consider the Master system given in [39] as:

X =ay (X, = X;)
X, =8,X; — 83X, — X Xq (4.16)
X = 0.5(X; X, + X, X,) —a,X,

Where, X, = X, + JX;;, X, =X, + JX,; are complex and x, =X, are real. XX,

r

denote the complex conjugate variables ofx,,x,. a;,a,,a; &a, are unknown real

parameters .Whena, =2, a, =60+0.02j,a, =1-0.06j &a, =0.8 and
x(0) =[2+0.02j, 1+0.2 j,—1]" the hyperchaotic attractor is plotted in Fig 4.1.

The Slave system given in [39] as:

34



Vi =bi(y, —yi) +u

Yo =D,¥i =V, = ViYs + Y, +U,
Y3 =0.5(Y, Y, + ¥:¥,) —byY; + U,
Yo =byy, +bsy, +u,

(4.17)

Where,y, =Y, + Vi, Yo =Yor + Yo Y =Ya + 1Y, arecomplexand y, =y, is
real. y,,y, denote the complex conjugate variables ofy,,y,. b;,b,,b;,b, and b are
known real parameters.u,,u,,u,and u,are controllers. When

b, =14,b, =35,b, =3,b, =-5,b, =—4 y(0) =[-1-2j, —3—-4j, -5-6-7]j]", the
hyperchaotic attractor is plotted in Fig4.2.

We investigate CPS of two non-identical complex systems with the different orders.
Let 4&,b,,i=1.,4 f=1..5 be estimates of a,b,,i=1.,4, f=1..5and
a, =g —éi,ﬁf =b, —b,,i=1...4,f =L...,5, be the errors in estimations of
a,b,,i=1.47f :1,...,5’ respectively. Then systems (4.16) and (4.17) can be
written as:

X, =&, (X, = %)+ 3, (X, —X,)

X, = 8,% +8,X, — 3%, — 33X, — X, X5 (4.18)
Xy =0.5(X, X, + X, X,) —8,X; — a, X,

¥y =B,(y, —y) +b,(y, —y) +y,

Y, =0,y +b,, — ¥, — Viys + Y, +U,
Y5 =05(Y, Y, + ¥1¥,) ~byys —byy, +u,
Y, = 64y1 +54y1 +t35y2 +55y2 +U,

(4.19)

The 3-D complex systems (4.18) can be into 5-dimensional real system:

Yoo = 83 (Xpr — Xy ) + 8, (X = Xy,)

Xy =8 (X — Xy ) + & (Xp = Xy;)

Xo, = 8y Xy, + 8y, Xy, — g, Xy, — g, Xy, — Xy X (4.20)
XZi = éZixli + 52ixli - é‘Bi Xoi — a3i Xai = X3 X3

Xs = (Xlr Xor + X XZi) — X3 —a,Xg

The 4-dimensional complex systems (4.19) can be into 7-dimensional real systems:
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Vir =0, (Yar = Vi) +0, (Ve = V) + Uy,

Vi =By (Vs — Yar) +0, (Vo = V) + Uy

Vor =0, Y3 #0500 = Vor = Yar Vs + Yar + Uy,

Vo =B, Y3 +0,Y5 = Vo = Ya Vs + Vi + Uy, (4.21)

A ~

Ys = Yir Yor T Y Yo _bsya _b3Y3 +Y, tU;
Y4r = 64 Yir + b4 Yir + 65 Yor + bs Yor t Uy

y4i = 64 Yi + 64 Yi + 65y2i + 65 Yoi + Uy

Where u,,,Uu;,U,, Uy ,U; U, andu, in Equation (4.21) are the control functions to

be determined.

The complex function transformation matrix is taken as:

0.5exp(jzt/5) 0 0
0 exp(jxt/10 0
D= Xp(J7t/10) _ (4.22)
0 0 1.5cos(jxt/15)
2exp(jzt/20) 0 0
Where gexp(jot) = p(cosft+ jsinot).
The error signals are defined as:
€ = Yir —(Di Xy + DXy ) 85 = Yy — (D Xy + Dyixy,)
€ = Yor = (D Xy + DyiXy). €5 = Yo = (D Xy + DyiXy,) (4.23)
€3 = Y5 —(D3Xy + D3X;) €4 = Yar — (DyrXyr + DyiXy),
€4 = Yai = (Dyr Xy + DXy,
Then the dynamics of the error system becomes:
€, =Y — (Dlr Xy + Dy Xy + Dli Xy + Dy Xli)’
€; = Vi — (D Xy + Dy Xy + Dy Xy, + DXy, ),
€ = Yar _(DZrXZr + Dy %, + DZi Xoi + DyiXy),
€y = Yo = (Do X5 + Dy Xy + Dy Xy + Dy Xy, ),
&, = Y, — (DyX, + D,Xy), (4.24)

é4r = y4r - (D4rX4r + D4rX4r + D4i Xy + D4iX4i )
é4i = y4i - (D4rX4i + D4rx4i + D4i Xye + D4iX4r)

Then
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e =V, — (D, X, +Dy,%, +Dux; +Du%;) =0, (Y, — Vi)

B, (Yo = Vi) + Uy = (D (B 0 =, ) + 8,0 = %,,)

+ Dy (& (X = Xy) + 8, (X — X)) + Dlrxlr + Dlixli)v

€. =V, — (DX, + Dy X + DyXy, + Dy, ) =0 (Yo — Vi)

4B, (Yo = Vi) + Uy = (Oy (& 0 = %) + & O = %)

+ Dy (A (X, — X, ) +8,(Xy, — X, )+ Dy, X, + DyXy,),

&y = Vor — (D X, + Dy, X, + Dy Xy + DyiXy,) =

(b,Y,, +52ylr —Yor = Yur Ya + Yar ) Uy — (D, (A5, Xy, + 85, Xy — 85, %5,

— 8, Xy, — Xy Xg) + Dy (B Xy + By Xy — 8y Xy — By X, — Xy Xg) + Dy X, + DyiXoy),

€y = Vo — (Dyy Xy + Dy Xy + Dy Xy, +Dyi%,, ) =

(b,Y,; +52 Vi = Yoi = Vi Va + Vai) + Uy — (D, (8 Xy + @y Xy,

— Ay Xy, — g Xo; — Xy Xg) + Doy (g, Xy, + 8y, Xy, — 8, Xy, — 8y, Xy,

— Xy, X3) + Dy, Xy + Dy X, ),

6 = Vs — (DgX; + DyXs) = (Vs Yar + Yo —By¥s —Dyys + V)

+u, — (D, ((x‘lr Xy, + X Xy;) —él‘}x3 —a,%,) + D3x3?, i A @.25)
€, =Va —(Dy X, + Dy X, + DXy + Dy %) =0,y +0, Y5, +05Y,,
+ Eser) +U,, — (D, (A,(X,, — X )+, (X, — X%, )+ Dy (8, (X — %)
+8, (X, — X)) + Dy, Xy, + Dy X)),

€, = Vui — (Dy Xy + Dy Xy + Dy Xy, + D%y, ) = (0, Yy +0, Yy +0.Y,
+55y2i) +U, — (D, (A, (Xy — Xy) + 3, (X, — X)) + Dy (A, (X5, — Xy,)
+8,(X,, — X, )+ Dy, X; + Dy Xy,

By choosing
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Uy =B, (Yy — Vo) + (D&, (X, — X, ) + Dy, (Xy — %)

+ D, X, +Dyx;) ey,

Uy = _61(Y2i = Yi) + (D (X5 = X)) + Dydy (X = %;,)

+ D, x; + D%, ) +e,,,

Uy = =00, Y1, = Yor = Yar Vs + Yar) + (Do (A Xy, — 85 %y,

— Xy, Xg) + Dy (8 Xy — 85 Xp, — Xy Xg) + Dy, Xy, + Doy Xy ) + €54,
Uy = =0, = Yo = Yu¥a + V) + (Dar (8%, — 8y Xo = Xy, Xs)
+ D, (8, X, — 85, X, — Xy X3) + Dy Xo; + Dy Xy, ) + €5,

Uy = (Yar Yor + YaYar —Ds¥s + Ya) + (D (X4, Xop +X,X5:)
—8a,X;) + D;yX;) +e,,,

Uy = —(0,Yy +b5Ys ) + (D éy (Xy — Xy, ) + Dy Xy — Xy5)
+D,, X, + Dy X;) +¢€4,

Uy = (64 Yi + 65 Yai) + (D @y (X5 — X35) + Dy (X5, — Xy,)

+ D, X, + D%, ) +V (4.26)

where Vv is the new input, the system (4.25) can be written as:

&, =0 (Y, — Vi) = (Dya, (X, — Xy, )+ Dy, (X — Xy )) + €514

& =0, (V55 — ¥i) = (Dy & (X1 — %) + Dy, (X5, =Xy )) + €5y

6, = 52 Vi, — (Do, (85, Xy, — 85, %y, ) + Dy (85 Xy — 85Xy ) + €51,
€, = 52 Vi — (Dy, (35 Xy — 85 Xy ) + Dy (85, %y, — 5, Xy, ) + €5,

6, = —53y3 +D,a,X;) +e,,

&, =0,y +5.Y, ) = (Dy A (X, — Xy ) + Dy, (X — X)) + €4y

€ = (64 Yi + E;5 Yai) = (Dyr@y (X = Xy5) + Dy (X — X)) +V

Choose the nominal system for (4.27) as:

€ =&y
€ =€
€ =8y
©a =8 (4.28)
€3 =€y
€ =&
€4 =Vo

Define the sliding surface for nominal system (4.28) as:

(4.27)
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Oy = (1+%)6e1r =g, +6e, +15e, +20e, +15¢, +6¢e,, +€,

Then

o, =6, +6¢€, +15¢, +20¢é, +15¢, +6¢, +¢, =e; +06e, +15e, +20e, +15¢,, +6e, +V,

By choosingv, = —e, —6e,, —15e, —20e, —15e,, —6e,, —k o, —kssign(o,), k >0,
we have o&,=-ko,—ksign(c,). Therefore the nominal system (4.28) is

asymptotically stable.

Define the sliding surface for system (4.27) as:
o=0,+7=¢, +6e; +15¢, +20e, +15¢, +6e, +e, +z

Where, zis some integral term computed later. To avoid the reaching phase, choose

z(0) such thato(0)=0. Choose V =V, +V where,V, is the nominal input and Vv,

IS compensator term computed later. Then

o =6, +66, +15¢, +20¢,, +15¢, +6¢, +¢€, +2

=0, (Yar = Yar) = Dy, (X — Xy, ) = Dy, (% — %) + &,

+ 6D, (Y — Yy ) — 6Dy, 3, (X, — Xy ) — 6D, 3, (X, — Xy, ) + 68,

+15h,Yy,. —15D,.d, X, +15D,,8, X,, —15D,,3, X, +15D,d;X,; +15€,
+20b, Y, — 20D, &, X, + 20D,,d; X, — 20D,,d,,X,, + 20D,,3,, X,, + 20e,
—15b,y, +15D,3,x, +15¢,, + 6b, Y, +6b.Y, ) — 6D, (X, — X, )

(4.29)

—6D,a, (X, —X;) +66,, +b,yy; +byy, —Dya; (Xy — Xy
- D4ial(X2r - Xlr) +Vo +V +2

By choosing a Lyapunov function:

Y :%02 +%(§f +32 +32 +32+32+32+b” +b2+b7 +bZ+b?), design the
adaptive laws for a,,4,,r =1...4,a,,4,,i =1,...2, Bf ,6f ,1=1..,5 and compute v such

that V <0.

39



2 =-e, —6e, —15e, —20e, —15e,, —6e,, —V,,

v, =—ko —ksign(o)

a =0 Diry (Xor =X )+ 0 Dy (X5 = Xy) + 60 Dy, (X5 — Xy)
+60 Dy (X5 =Xy ) + 60 Dy (X5 =X ) + 60 Dy (X5 — Xy)

A -~

+o D4r (Xzi — Xy ) +0D4i (er - Xlr) - klal ) a =—-q

a, =150 D, x, +200 D, X, —k,a, , &, =-a,
a, =150 D, X, +200 D, X, —Kid, , &, =-a,

a, =-150D, X, —200 D, x,, —K,a, , A&, =-a,
8, = —150 Dy X, — 200 Dy, X, —Ked,, , A, =2,
a, =-150D,x, k3, , &4, =-a,

b, =0 (Yo — Vo)~ 60 (Yo — ¥u) — Kby, b, =—b,
b, = 150y, —500y, —kib,, b, = b,

b, =150y, —kib,, b, = b,

- ~ : : (4.30)
b, =60y, —oyy; —Kb,,

4
b, =60y, —0 Y, —kub,, b, =-b,, Kk >0i=1..11

Proof:

Since
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~ ~

00 +@, 8; +,8, +a8y8y +8a; +a3a;

<
Il

~ < ~ ~ <

+ 454 +51 51 +b,b,, +Db, 531+5464 +b, b,
= 0{51(er — ¥, )= Dy a (X, — %, )— Dy, (X, — X, )+ €y

+ 651(y2i —¥,:)—6D,,a (X, —X;) —6Dya, (X,, — Xy, ) + 66,

+15b,y,, —15D,,a,, %, +15D,,a, X,, —15D,.a,X;; +15D,,a, X,; +15e,.
+20b, Y, —20D,,d,X, + 20D, &, X, — 20D,,d, X,, + 20D, &, X,, + 208,
—15b,y, +15D,3,X, +15€,, +6b,Y,, + 60y, ) — 6D, 3, (X, — X,
—6D,,a,(X,; — X, ) +6e,, + 54 Yy + EsyZi =D, a, (X, —X%y)

- D4i al(XZr - Xlr) +Vy TV, + Z}+ a;a; +a,3, ta,a, +a;a,

2

~ -~ ~ -~

+a,a, +a,3, +51 51 +52 b, +63 b, +54 b, +55 b,

=o{e, +6e, +15e, +20e, +15e,, +6e, +V, +V, + 7}

+ a1 {51 -0 Dlrl(XZr =X, )= 0 Dy (X5 = %;) =60 Dy, (X5 — Xy)

—60 Dy (X5, —X;,) =60 Dy, (X5, =X, ) =60 Dy (X — Xy

—0o Dy (Xy —X;) =Dy (X — X, )3+ aZr{§2r —150 D, X;, —200 Dy X,
+8,{8, —150 D%, — 200 D, X} + &, {&;, +150 D, X, + 200 Dy;%,, }
+2,{a, +150 D, X, + 200 D, X, }+3a,{a, +150 D,x,}

+b, {b, +o (Y, —VYy,) +60 (Y, — Yyu)3+b,{b, +150y,, +500y;;}

+ 63 {63 —-150 y,}+ 54 {64 +60 Yy, +o Yy}t 65 {65 +60Y, +o Yy}
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By using

? =—-e,; —6e, —15e, —20e, -15¢,, —6e, —V,, V, =—-Ko—-ksign(o)
a—:-1 =0 Dypy (Xor = X3 )+ 0 Dy (X = Xy3) + 60 Dy, (X5 — Xy5)
+60 Dy (Xor =X ) +60 Dy (X =X, ) +60 Dy (X — X;;)

+o D4r (X2i - Xli) +0D4i (X2r - Xlr) - k]_a]_ ) al = _51

a, =150 D,,x,, +200 D,;x,, —k,a,, , &, =-a,

a, =150 D, X, +200 D, X, —k,a, , &, =-a,

a, =—-150 D, X, —200 DyX, —K,a, , &, =-a,
a, =—150 D, X, —200 D, X, —K.a,, , &, =-a,
a, =—150D,x, —k,a, , 4&,=-a,

b, =~ (Yar — Vi) —60 (Y5, — Yu) —k;by, by = b
b, = 150y, —505 Yy, —kib,, b, =-b,

13

=150y, —ksb,, b, =-b,,

o
w

l
l

4 =—60 Y, —0 Yy — Koy, l54 = _64'

ol O

=60y, —0Y, —kib, b =-b, Kk >0,i=1..11
We have

V =—ko? —k|o]-k,a’ —k,a; —k,aj; —k,az

- ksaszi - kﬁé:f - k7t312 - k8622 - k9632 - k10642 - k11652

From this we conclude thato,a,,a;,b, -»0. Since o —>0, therefore

e:(e1r1eli’e2r’eZi'e3’e4r’e4i)_)0 .

In simulations, the initial conditions are chosen as: x(0)=[2+0.02j,1+0.2j,-1]"
andy(0) =[-1-2j, -3—-4j,-5-6-7j]". The true values of the unknown
parameters are chosen as:a, =2,a,=60+0.02j a,=1-0.06j a, =0.8

b, =14,b, =35,b, =3,b, =—5,b, =—4
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Simulation results of Case 1:

600
e1r
O = Mmniai 1
: le
— ']
= 200 ‘= ----- &i
L °
oD ———
Vv T e €
-200 - : ;
0 5 10 15 20 25
Time(sec)
Figure 4.1: Time Response of error e;,,€;;,€,,,€5,6;,€,, &€,
x 10"
3
!
e )
U3
i | ==——— Uy
Ug
— g
u
-1 r r r !
0 5 10 15 20 25

Time(sec)

Figure 4.2: Time Response of adaptive controller u,,u,,u,,u,,us,u, &u,

200 r r r r r r r
------ surface
e e el g - -
i
1
1
1
200}
1
1
-400
-600 : . . : : :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(sec)

Figure 4.3: Time Response of surface

43



x 10
3 E L
control input
2
1
0
-1 r r r r
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(sec)
Figure 4.4: Time Response of control input
20 :
""" &
o o ) ] r
0 _
dal
-20
1
\l
1
1
-40 1}
)
[\
Y
\b___ ____________________________________________________
-60 ; -
0 2 4 6 8 10 12 14 16 18 20
Time(sec)
Figure 4.5: Estimation parameter of a,,8,, &4,
2 L
— ar
1 ————————————————T————F——————————] --—-—- ~ T
azsl
0 S ——————————————————| i R Y
-1
-2
-3
-4 r r r r
0 2 4 6 8 10 12 14 16 18 20

Time(sec)

Figure 4.6: Estimation parameter of 4,,,4,, &€,

44



40 . : : : : : :
0 T T T 6|
f """ b
208 6 |
: 6
10 - B |

0 -
-10 r r r r r r r r r
0 2 4 6 8 10 12 14 16 18 20
Time(sec)
Figure 4.7: Estimation parameter of b,,b,,b,,b, &b,
50
Xlr
JA A A AANA L N e v
NNV, VA VV Y ir
‘vl\‘ '/ ~)
_50 ‘\ ‘\l'
\\ ”,
\‘\ ,.."
-100 oot
ST
-150 - - i
0 5 10 15 20 25
Time(sec)
Figure 4.8: Time Response of x4, &y, with IC (2, -1)
40
X3
20 "4——\‘~~~ ————— yll .
’4' ~. _
/ Jasy
0 A~ o=
1 'I
H ’
t /
-20 s
W/
v
[V2%)
-40 " - -
0 5 10 15 20 25

Time(sec)

Figure 4.9: Time Response of x;&y;;with IC (20, -2)

45



100

so% | m=—— y2l’ M

-50
-100 :
0 5 10 15 20 25
Time(sec)
Figure 4.10: Time Response of x,,.&y,,with IC (1, -3)
40
X5
N 2i
20 -y AN H
ﬁw it T N A N R Yai
0 Aﬂvh:,}.w. o R B
vuu ‘.\'\—-’"’"
-20
-40 §
[
;
-60 i : :
0 5 10 15 20 25
Time(sec)
Figure 4.11: Time Response of x;; &y,;with IC (10, -4)
150
ll
48 %3
100 1‘4}.". _____ Y3
e 508 Rl B & Ao N AR 2R
mhanaafAA SN RARARARARARAARA
AAVANAY WAVAVAN AN A WA WL ANV WL LA W AW L WA
501} VA MAAAVA AV AV AVAYA AL AS
o
-50 - : :
0 5 10 15 20 25
Time(sec)

Figure 4.12: Time Response of x3&yswith IC (-1, -5)

46



100

[]
]
1
50
(]
]
1
1
1

M AL PAANA NANAN
W VYN

~MWWN VY VO VYV VLV
] 14
\ S
[
-50 - i
0 5 10 15 20 25
Time(sec)
Figure 4.13: Time Response of x;, &y,,-with IC (2, -6)
600
X1
i0p—— | mm=——— y4i M
J
J
)
200 |\
\
1
\
0 Rl
|| /
[} l’
v
-200 ; ;
0 5 10 15 20 25

Time(sec)

Figure 4.14: Time Response of x; &y4;with IC (2, -1)

47



Case 2: m>n

Consider the Master system given in [39] as:

Xl = a'l(XZ - Xl) + X,

X, = a,X, — X X5 + X, (4.31)
X3 = 0.5(X; X, + X, X,) — 85X,

X, = 0.5(X, X, + X, X,) —a,X,

Where, X, = X,, + jX;;, X, =X,, + JX, are complex X, =X, and X, =X, are real.
X,,X, denote the complex conjugate variables ofx,,X,. a,,a,,a, &a, are unknown
real parameters .

When a, =42, a, =25,a, =6&a, =10

x(0) =[10+5j,10+6j,2,12]".

Consider the Slave system given in [39] as:

i = bl(Y2 - Y1) +U;

yz = bz Y. — b3y2 —Y.Y; +U, (4-32)

Y5 =0.5(Y;, Y, + ¥1Y,) —by; +Us

Where,y; =Y, + Yy, Y2 =Ya + 1y are complex and y, =y, is real. y,Yy,
denote the complex conjugate variables ofy,,y,. b,b,,b,,b,are known real
parameters.u,,u,,uand u,are controllers. When
b, =20,b, =60+0.02j,b, =1-0.06,b, =0.8 y(0) =[2+0.02j, 1+0.2j,—1]"

We investigate CPS of two non-identical complex systems with the different orders.

Let a,b.,i=1..4 be estimates of a, b,i=1..,4and

!

(op

a =a —4a,

. =b, —b,,i=1...,4 be the errors in estimations ofa,, b,,i =1,.,4

respectively. Then systems (4.31) and (4.32) can be written as:

Xy é‘l(XZ o Xl) + a1()(2 o Xl) X,
X, = 8,X, +3,X, — X X5 + X, (4.33)
Xs = 0.5(X; X, + %, X,) — 83X, — 83X,

X, = 0.5(X, X, + X, X,) —a,X, —a,X,
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yl = 61(y2 - yl) +61(y2 - yl) +U;
yz =62y1+b2y1_63YQ _bsyz _y1Y3+u2 (4-34)
ys = 0-5(71 Y, + Y1)72) _64Y3 _b4y3 +U;

The 4-dimensional complex systems (4.33) can be into 6-dimensional real system:

é’l(XZr - Xlr) + é:1()(2r - Xlr) + X4
8y (X — Xy )+, (X —Xy) + X,
= é‘ZXZr + 52X2r = X X3 + Xy

Xlr
Xy
XZr
Xpi = 8, Xy + 85Xy — Xy X5 + X, (4.35)
Xg = Xy Xop + Xy Xp — 8%y — 83X,
Xy = Xy, Xop + Xy Xgy =8, X, —8,X,

The 3-D complex systems (4.34) can be into 5-dimensional real systems:

Vir =0, (Var = Vi) +0y (Vor = Yor) + Uy,

Vi =By (Yo = Ya) + By (Yo = yu) + Uy

Yo = lﬁzrylr + EZrylr - Bsr Yo — Ssr Yor = Y1, Y5 + Uy, (4.36)
Yoi = D5 Vi +05 Yo =3 Yo =03 Vo = Vi Y5 + Uy

A~ ~

Y3 = Yar Yor + Yui¥ai —04Ys —byys +Us
Where u,,U;,U,, U, andu, in Equation (4.36) are the control functions to be

determined.

The complex function transformation matrix is taken as:

0.5exp(jzt/5) 0 0 0
D= 0 exp(jzt/10) 0 0 (4.37)
0 0 1.2+sint 1.2+cost

Where gexp(jét) = S(cosft+ jsinot).

The projective synchronization error signals are defined as:
e =Yy — (Dy Xy + DyX),8y = Yy —(Dy Xy + Dy Xy, )

€ = Yor —(Da Xy + DyiXyi) 85 = Yo —(Dyr Xy + DXy, )
€=V _(sza)

(4.38)
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Then the dynamics of the error system becomes:

&, = Var —(Dy Xy, + Dy Xy, + DyXy + DyXy),

€ =Yy — (Dy Xy + Dy ¥y + Dy Xy, + Dy, ),

€, =Y, — (D, X, + D, X, + Dy Xy + Dy Xy ), (4.39)
€5 = Yo = (Do Xy + Dy Xy + Dy Xy, + Dy, ),

&, = V5 — (D3X, + D3X,)

Then

e, =V, — (DX, + D, X, + DXy + Dy ) = b, (Y, — Vi)
+b,(Yar = Yo ) + Uy, — (D (&, (Xyy — Xy, )+ 8, (Xpp — Xy, )+ X,)

+ Dy (A (Xy — X)) + 8, (X, — Xy ) + X, ) + Dy, Xy, + Dy Xy),

€y = Yy — (Dy Xy + Dy Xy + Dy Xy, + DXy, ) = l51(3/2i — Y1)

+by (Y = Yy ) + Uy — (Dy (& (Xy — %) + &, (X5 = X;) + X,)

+ D (A (Xy, — Xy, )+ 8, (X, — X, )+ X,) + Dy Xy + Dy, ),

&, =V, — (Dy Xy + Dy Xy + Dy Xos + Dy Xi) = (B Yy + By Vi
-b,. Y, —Egrer =¥, Vo) + Uy, — (D, (A, X5, + 5%, — X, X5 + X,)
+ D, (A, Xy + Ay Xy — Xy Xy + X, ) + Dy X, + DyiXy),

€ = Yo = (Dy Xy + Dy Xy + Dy Xy, + Dy X%y,) = (62i Yai +62i Yii

- 63i Yoi — 63i Yai = Yui Y3) T Uy — (Dy (8 Xy + &, X5 — Xy X5 +X,)

+ D, (8, %y, + 8, Xy, — Xy, Xy + X, ) + Dy, Xy + Dy X, ),

&, =V, — (DyX; + DyXy + DX, + D,%,) = (Vg Var + Yy Vo

—64y3 —54y3) Uy — (Dy (X, Xy + X Xp; — 83Xy — A3X3) (4.40)
+ D, (X, X, + XXy — 8, X, —a,X,) + DX, + D, X,)

By choosing
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Uy, =B, (Vo — Yar ) + (Dyy (& (Xor — Xor ) + X, ) + Dy (& (X5 — Xy)
+ X4) + Ijlrxlr + I:.)lixli) + eli 1
Uy = =By (Vo — Yar) + (Dip (& (X — Xy )+ X,) + Dy (& (X5 = X;,)
+ X4) + I:‘)lrxli + I:.)lixlr) + e2r'

Uy, = _(BZr Yar — t‘33r Yor = Yur y3) + (DZr (éz Xor = Xy X3 + X4)

) . (4.41)
+ Dy (X, — XX + X)) + Dy Xy + DyiXy) + €5,
Uy = _(62i Yi — 63i Yaoi = YaiYa) + (Dyr (@3%5 — Xy X5 +X,)
+ Dy (A, Xy — Xy X5 + X,) + DZrXZi + DZiXZr) +€;,
Ug = ~(Yy Yor +YuYai — 64 Y3) + (D3 (Xy X + Xy Xg; —85X,)
+ D, (X Xop + Xy Xy =8, %) + DyXg + Dyx,) +V
Where v is the new input, the system (4.40) can be written as:
€, =b (Yo = Yir) — Dy (X5, — X, — Dy (X — %) + 8y,
€; = b (Yo — Vi) — Dy (X5 — Xy;) = Dy, (X5, — Xy, ) + €5,
€, = (05, Yy, — b5 Y5, ) = Dy @, X,, — Dy, Xy + 8y,

(4.42)

€y = (b5 Yy — by Yy ) — Dy @, X, — Dy, Xy, + 85,

é, =—b,y, + D;a,x; + D,a,x, +v

Choose the nominal system for (4.42) as:

€ =&

e.:I.i - le

S = & (4.43)
eZi - e3

é3 - VO

Define the sliding surface for nominal system (4.43) as:
d.,
o, =1+ a) e, =€, +4e, +6e, +4e, +e,
Then
o, =6, +4¢, +6¢, +4¢, +¢,=e, +4e, +6e, +4e, +V,

By choosingv, =—e; —4e, —6e, —4e, —ko, —ksign(c,), k>0, we have
6, =—ko, —ksign(o,). Therefore the nominal system (4.43) is asymptotically

stable.
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Define the sliding surface for system (4.42) as:
oc=0,+7=¢, +4e, +6e, +4e, +e,+12

Where, zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0)=0. Choose V =V, +V where,V, is the nominal input and Vv,
IS compensator term computed later. Then

o=6€,+4¢, +66, +46, +€,+12

=0, (Yar = Yar) = Dy (X — Xy, ) = Dy, (x5 — %) + 8y

+4b, (Y, — Yy ) — 4D, A, (X, — X, ) — 4Dy A, (X,, — X, ) + 4e,, (4.44)

+ 652, Vi — 653r Y,, —6D,, a,X,, —6D,a,X, +6e, + 452i Yy — 453i Yai

—4D,,a,x, —4D,,a,x,, +4e— 54y3 +D,a,X; + D,a,x, +Vy+V, +7

By choosing a Lyapunov function:
V= %02 +%(§f +32+32+32+b7 +b2 +b2+b2 +b2 +b2),  design  the
adaptive laws for a,,a,,r =1...4,a,,4,,i =1,...2, Bf ,Bf ,1=1...,5 and compute v such

that V <0.
7=-e; —4e, —6e, —4e, -V,,
v, =—ko -k sign(o)

5‘:1 =0 Dy, (X5 =X ) +0 Dy (Xy —X;) +4Dy, (X5 — Xy)

+4Dy, (%o =%, ) —ky®, , & =7
8, =60 D, X,, +60 D, X, +40 D, Xy,
+40 DyX, —Kya, , 4, =-3,

a, =-oD,x,—k,a, , 4,=-a,

54 =-oD,x,—-k,a, , 4, 2—54

6-1 = _O'(yzr - ylr)_40'(y2i - yli)_k561’ 61 = _b~1

-~ A ~

b, =60y, —Ksby, b, =D,
EZi — 4oy, kb, Bm = —GZi

53r =60y, — kgt-);r : B3r = —53r :
63, =40y, —kK

- (4.45)
4 :_b4, k’ki >0,i :1,...,10
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Proof:

Since

~ ~ ~

V =06+3,4 +a,3, +3,3, +3,4, +b, b, +b, b, +b,b, +b,b, +53i63i +b, 54
= a{Bl(er — V., )— Dy a (X, — Xy, ) — Dya; (X, — %)+ e + 451(y2i ~Y:)

— 4D, a, (X, — X;;) — 4Dy, (X,, — X, ) +4e,, + 6l—3~2ry1r —653ry2r —6D,,a,X,,
—6D,,&,X,, + 66, + 40y, —4b, y, — 4D, &,X, —4D,,X,, +4e—b,y,

+D,a,x, + D,a,x, +V,+V, +2}+4a 4, +a,a, +3,a, +a,a, +h, 61 + EZrEZr

+ EZil;Zi + EsrbSr + by by +b, 54

=o{e, +4e, +6e, +4e, +V, +V, +2}+a, {51 —o D, (X, =X, )—0 D, (X —Xy)
— 4D, (X — Xy;) — 4Dy, (X — X, )3+ &, {8, —60 D, X,, — 60 D, X, — 40 Dy, Xy,

— 40 DyXy 3+ 8, {8, + 0 Dyx, 3+ 3,48, +0 DX 3+b, {b, + 0 (Vp - Vy)

+40 (Y, — Vi )3+ 62,{52r +60 Yy, }+ BZi{GZi +40 Y, }+ Ssr{63, -60Y,}

+ b, {Dy — 40y, }+ 0, {b, — oy}

By using

7 =-e,; —4e, —6e, —4e, -V,
v, = —ko —ksign(o)

51 =0 Dy, (X5, =X, )+ 0 Dy (X —X;) + 4D, (X — Xy;)

+ 4D1i1(X2r - Xlr) - klal ) él =-q

a, =60 D, X,, +60 D, X,, +40 D,, X,

+40 D, X, —k,3, , &, =-2,

a, =—-oD,x,—k,a, , A&, =-a,
a,=-oD,x,—k,a,, 4&,=-3,

b, =0 (Y, — Vo) =40 (Y5, = Yu) =KDy, b, = b,
EZr =—60y, — k662r, BZr = —EZr

EZi =—4oy, - k752i , BZi = —62i

E3r =60y, — k853r, l;sr = —63r,

63i =40y, — k953i , 63i = —Eai ,

b, =oy, —kgb,, b, =-b,, Kk >0i=1...10
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We have

V=—ko® - k|(7| —k& —k,a; —koa; —k,a; - k5512 - kegzzr - k7BZZi - ksgaz; - kggs? - k10542

From this we conclude thato, ., ,b, — 0. Since o —> 0, therefore
e=(e,€;,8,,8,8) 0.
In simulations, the initial conditions are chosen as: x(0) =[10+5j,10+6j,212]" and

y(0)=[2+0.02j,1+0.2j, —1]". The true values of the unknown parameters are

chosen as:

a, =42 a,=25a,=6,a, =10 b, = 20,b, =60+0.02j,b, =1—0.06,b, = 0.8

Simulation results of Case 2:
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Chapter 5

Complex Generalized Synchronization (CGS)

5.1 Introduction

In this chapter we present the extended version of control design strategy proposed in
the previous chapter to achieve Complex Generalized Synchronization (CGS) in
complex chaotic systems with unknown parameters. The proposed design
methodology is based on Adaptive Integral Sliding Mode Control. The proposed
design approach is applied on synchronize a memristor-based hyperchaotic complex
Li system and a memristor-based chaotic complex Lorenz system, a chaotic complex
Chen system and a memristorbased chaotic complex Lorenz system, as well as a
memristor-based hyperchaotic complex Li system and a chaotic complex Lu systems

with fully unknown parameters.

5.2 Problem formulation

Consider the following non-identical drive and response complex systems with fully
unknown parameters

x = f(x)+F(x)0 (5.1)
y=g(y) +G(y)$+u (5.2)

X= (X, Xy, X )T €R™ and Yy =(Yy, Y, Y,) €R"are complex state vector, and

u=(u, + ju,) e R" is the control input.

Some nonlinear complex systems can be formed as system (5.1), such as complex
Lorenz system, complex Chen system, complex Li system, memristor-based complex
Lorenz system, memristor-based complex L system, and so on. For synchronizing
such complex systems, the complex variables and functions could be divided into the

real parts and imaginary parts.

Definition: For the drive system (5.1) and the response system (5.2), CGS is
achieved if there exist

a complex controller u(x, y)and a given complex map ¢(x):C"™ — C"such that
lim [e(t)] = lim |y(®) - 6(x)] =0 (5.3)
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Where ¢(x) =[4,(X), #, (X)---4, (X)]" a nonzero complex map vector is whose
elements are continuously differentiable complex functions of x, and

$(X) =4, (X) + [ (X).

5.3 Proposed Algorithm for Complex Generalization Synchronization
Consider the Master system (5.4)

x=f(x)+F(x)0 (5.4)

Where X = (X,, X,,..., X,)" are complex states vectors of the drive system (5.4)
X, =X, + X,k =12,..,n,j=+-1, the subscripts r and i denote the real and
imaginary parts of the complex variables, 8 € R”, real vectors of known parameters.
F(x)eC™ are complex matrices, F(x)=F, (x)+ jF (x), f(x)eC" vectors of
nonlinear complex functions, and f(x)= f, (x)+ jf,(x), is the complex control

vector.

Consider the slave system as (5.5):

y=9(y) +G(y)g+u(x,y) (5.5)

Y=Y, Y, y,) are complex state vectors of the slave system (5.5)
Y, =V, + ¥y, 1 =12,...m, j=+/-1, the subscripts r and i denote the real and
image parts of the complex variables , 9 € R%are real vectors of unknown parameters.
G(y) e C™ are complex matrices, G(x) =G, (x) + JG,(x).g(y) € C"are vectors of
nonlinear complex functions, g(y)=g,(y)+ jg;(y). u(x,y)eC™is the complex
control vector, and u(x,y) =u, (X, y)+ ju,(x, ).

For the drive system (5.4) and response system (5.5), Complex generalized
synchronization (CGS) is achieved if there exist a complex controller u(x,y)) and a

given complex map #(x):C" — C™such that:

lim [e(t)] = lim|ly(®) - 4(x)] =0 (56)
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where | | represent the matrix norm, ¢(x) =[4,(x) #,(x) - ¢, (x)] isanonzero
complex map vector whose elements are continuously differentiable complex
functions of x, and @(X) =@, (X) + j& (X) .

Define the complex CGS error vector as

e:y_¢(x):er+jei

= (Y, + Iv)) ~ (4, 00+ §4,09) 5.7)

= (Y, =4, () + i(yi =41 (X))

Wheree:(el’GZ’ ’m) ECme _(elr’eZU ’mr) Eg’Rm _(1|’e2|’ ’m|) Emm

From equation (4) we have

e=y-g()=¢ +Je
= (y, + I9) - (4,09 + 4, ()
= (y, ~ 4, () + i(Y, ~4,(0) (5.8)

Choose: J :%(X)
a(X)

By taking the derivative of equation (5.8) with respect time, the CGS error dynamical

system is obtained as:

e=¢,+6 = 9~ 00 %= g(y) +Gy)I+u(x,y) - I{T (¥ +F (G}

=9, (Y)+G, (y)3+ ur(x, y)— 3 Af (%) + F. ()8} + 3. {f; (x) + F (x)6} (5.9)
+{0; (V) + G () I +u;(x,y) = I {f. () + F. ()0} - I {f; (X) + F, (x)F} }

Or

e =9, (V+G (Y)9+u,(x,y) = I {f. () + F ()} + I {f, (x) + K, (x)} }

& =0,(Y)+G (I+u,(xy)— I{f () +F, (- I {f, () + F ey ©-10)
Let 6,3 be estimate of 6,9 respectively and let 0 = 49—67,5 =9-94 be error in
estimating 4,9 respectively. Then error system (5.10) becomes:

6 =0, () +G, (NI+G ()8 +U, (x,y) = I L, () + F, ()6 + F, ()6}
+I{f,00+F 000+ F ()03}

& =0, (¥)+G,(Y)I+G, ()8 +U,(x,y) I {f, (X) + F, ()0 + F, (x)0}
—3{f,(x)+F,(x)0+F,(x)8}

(5.11)
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That can be written in vector form:

m _gr(y>+Gr(y)9—Jr{fr(x)+Fr(x)é}+Ji{fi<x)+Fi(x)é}}}
L0, (V) + G, (03— I {F, () + F, ()8} + 3 {f,(x) + F, ()0} }
LJuetx y)HGr(y)ié ~3,F,(90 - JF (x)é}
Ui Y) ] |G (y)9-J,F, (X0 —J,F (x)0

By choosing

9, (¥)+G, (y)3-3,{f,(x) + F, ()6}
{ur (%, y)} {eer}_ +3.{f,(x) +F, ()63}

ui(x )1 (e8] | gi(y)+G(y)Id- I {f.(X)+F (x)}
L+ 3 {f,(0 + F (00}
_e2r_ _ezi_
e3r e3i
Where €€, =| : |,€€ =
enr ni
L€y | vV

v is the new input vector, then system (5.12) becomes:

m B {eerHGr(y)ié ~J,F. (90 - J;F (x)é}

&) lee ] [G(n9-3F (X0 -IF(X0
Or
_elr | _e2r_
€ar :
S el’]l’
€| le, | [G,(y)F-3,F ()60 -J.F(x)0
. = + _ ~ ~
“lle | [G(y)d -3 (00 -, F (00
€ .
e.ni Vv

(5.12)

(5.13)

(5.14)

To employ the integral sliding mode control, choose the nominal system for (5.14) as:
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_élr ] e?r
e.2r :
enr
Cor €,
1i €,
€y :
: eni
_eni i V,

Define the Hurwitz sliding surface for nominal system (5.15) as: o, =C[e, +¢,]"

1 1
;
o, =Cle,+¢;] =¢e, +Z CiCyr +Z Cin+k) Cii
k=2 k=1

C =[Lc,....,c,4,C,,...,Cpp4.1] is chosen in such a way that o, becomes Hurwitz

b1l

polynomial.

do = C[er + e.r]T

n-1 n-1
Go =8 + 2 Ceyr T 2 ConutgCreni + Vo
k=2 k=0

n-1 -1
By choosingv, =—€,, =" Ci€u.r — 2, Cinurini — Koo —Ksign(o,), k>0, we
k=2 k=0

have ¢, = -k o, —ksign(o,). Therefore the nominal system (5.15) is asymptotically
stable.
Now choose the sliding surface for the system (5.14) as:

c=0,+72=Ce+z
oc=Ce +C,e +12

Where zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0)=0. Choose V =V, +V, where,V, is the nominal input and v,

IS compensator term computed later. Then
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c=Ce +C,e +1

n-1 n-1
o =8+ Z Celisyr T+ Z Cinik)rksnyi TV TVs +1
k=2 k=0
+C,G, ()3 +C,G,(y)9 - C{j, F, (0 + jiF, ()0}
-C{JiC,F. ()0 + j,F(x)0}
n-1 n-1 . (516)
=€, t Z Clunyr T Z Ciniy€anyi TVo TV +2

k=2 k=0

+C,G,(y)9 - J,C,F, () — j,C,F,(x)@
+C,G;(¥)9 - j;C,F. (00 — j,C,F, ()@

¢ =Lkec,...,c,,c1C,=[C,;,Crpr--,Coy ]
1

By choosing a Lyapunov function: V :502 +§ 973, design the adaptive

070 +

N |-

laws for 6,6, 9,9 and compute v, such that V <0.

n-1
—ko —k sign(o)

n-1
2=-8, _Z Cu€ksayr _Z Cinit)€ani TVor Vs =

k=2 k=0
6 =o{j,F.(0"Cl + iF(0"Cl + i, F, (0"C] + j R ()" CI}-k0
9=—0G,(y) C —0G,(y)"Cl —k,d ,where,k k,,k, >0 (5.17)

Proof:

Since

V=c6+0"0+9"9
n-1

n-1
=ofe, + Z CCuiyr T Z Cinik)kanyi TVo +Vs +1
k=2 k=0

+C,G, (¥)9 - j,C,F, ()8 — j,C,F ()0
+C,G,(y)9 - J,C,F, ()6 — j,C,F, ()0
+§T§+§T§

n-1 n-1
=ofe, + Z Ce€ipyr + Z Cinet 8snyi + Vo +Vs +2}
k=2 k=0

+87{0 - o{(i,F.(0"C] + R, ()7 C] + [, F, () C] + },F, ()" C] 1}

+37{9+0G,(y)'C] +0G,(y) CI'}

By using
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n-1 n-1
Z=-8€, _z Ck€kanyr _Z Cinetr€ani +Vor Vs =—kKo —ksign(o)
k=2 k0

6 = o(j,F,(0TCJ + j;F,(0)7Cl + J, F,(07C + j, ()" C] ~k,d

9 =-0G.(y)'C/ —6G,(y)'C] —k,9 ,where,k,k,k, >0

We have

V = —ko? —k|o|-k,070 —k, 97 9.

From this we conclude that o, §r,67i,§r,1§ — 0. Since o — 0, therefore e,,e, > 0.

5.4 Numerical Example

The following example is taken from [49], where CPS problem was solved by
adaptive control scheme. We have achieved CCS using adaptive integral sliding mode

control.
Casel when n=m:

Consider the Master system given in [49] as:

X, =a,(X, —X)

X, ==X X5 +8,X, — 85 (a, + 3B, X)X, (5.18)

Xy = 0.5(X, X, +X,X,) —a,X,

X, =0.5(X, +x,)

Where, X, = X;, + jX;;, X, =X, + JX,; are complex and X, =X, ,X, =X, are real.
X,,X, denote the complex conjugate variables of x;, X,. a,,a,,a, and a,are unknown
real parameters «, and g, are considered as known positive constants. When «, =4,
B, =001, a, =36,a,=20,a,=3.2,a, =3 and x(0) =[-1+2j,1+ j, 2,-1]",and a
hyperchaotic attractor is plotted in Figl.

The Slave system given in [49] as:

yl = _blyl +b2Y2 —(0(2 +3ﬂ2y§)y1 +U;

3:/2 = b3yl__ Y, — y13_/3 +U, (5.19)
Y3 = 0.5()/1 Y, + ylyz) _b4y3 +U;

y4 = _0-5(71 + yl) +u,
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Where,y, =y, + I¥y, Y, =Y, + 1Y, arecomplexand y, =y, ,y, =Y, are real.
¥, Y, denote the complex conjugate variables ofy,,y,. b,,b,,b,and b,are unknown
real parameters «, and /,are considered as known positive constants. u,,u,,u, and
u, arecontrollers.When «, = 0.67x107%, 8, = 0.02x10°,and

b, =8,b, =11,b, =50,b, =8/3 y(0) =[2, 1+ 4], 0.1,0]", the system (5.19) operates
in chaotic orbits without control, as shown in Fig 2.

In this section, we investigate CGS of two nonidentical complex systems with the
same orders.

Let &, b,,i=1,..,4 be estimates of a,, b,,i =1,..,4

and a, = a, —éi,ﬁi —=b, —b,,i=1....4 be the errors in estimations of

a;, b,,i=1,..,4 respectively. Then systems (5.18) and (5.19) can be written as:

X =a, (%, —X)+a, (X, — %)

X, = =X, Xg +8,X, +8,%, — 8 (e +3B%;)% — 8y (a; +36,X)%,

Xs = 0.5(X, X, + X, X,) —8,X; — 3, X, (5.20)
X, = 0.5(X, +X;)

Y, = A1Y1 +61y1 +t;2y2 +t-)~2y2 —(a, +3ﬂ2y§)y1 +U,
Y2 = 63y1 +b3y1 -Y, = Y1¥; tU,
ya = 0-5(71 y, + ylyz)_64y3 _b4y3 +U;

Yo = —0-5()_/1 + yl) +u,

(5.21)

The 4-dimensional complex systems (5.20)-(5.21) can be into 6-dimensional real

SyStemS:
Xlr = aA‘l(XZr - X1r) + é:1(XZr - Xlr)
Xy =8, (Xy — Xy ) + 8, (X — Xy;)

. N - A 2 ~ 2
Xor = =Xy Xg +8,X5, +8,X,, —A5(ay +3B, X)Xy, —a5(ay +3B,X;)%,

. A ~ A 2 =~ 2 5.22
Xoi = =Xy X5 +8,Xp; + 3, Xy — Az (@ + 36X, )Xy — 85 (ay + 3B, X)X, ( )
Xs = (Xlr Xor + Xy X2i) - é4X3 —a,X%;

Xy =Xy
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Vir = Alylr +61y1r +62y2r +62y2r —(a, +3ﬁ2Y§)Y1r +U,
Vi = Alyli +0,y;, +62y2i +b,Y, —(a, +3ﬁ2Y§)Y1j +Uy;
er = bA?,ylr +b3y1r - er - ylr y3 +u2r

_ X N (5.23)
Yoi =05Yy +05Yy — Vo — Yy Ys + Uy,
Y3 =Y Yor T YuYoi _b4Y3 _b4YS +U;
y4 ==Y tu,
The complex map vector is given by
#(X) = [xl + X, 2%, — X, Xz + X, xf]T (5.24)
This gives:
B (X) = Xy, = Xgi , By (X) = Xyj + Xy, By, (X) = 2%, + Xy, (5.25)
By (X) = 2X5 — Xpp s B3 (X) = X5 + X, , B, (X) = Xj
The error signals are defined as:
€ = Yir —Ai (X) 85 = Yy — 4 (X), 85 = Yor =05 (X), (5.26)
€ = Yo — Py (X),85 = Y5 —5(X),€, = Y, =, (X)
Then the error dynamics becomes:
élr = Y1r _¢1r = ylr - (Xlr - XZi) = 61y1r + blylr + 62 Yor
+b, Y, —(a, + 3ﬂ2Y§)y1r Uy =8 (X, =X, ) =& (X, —Xy,)
— Xy Xg +8,Xp, + azxzr —8,(ay + 3ﬂ1X§)X1r - a3 (o, + 3/31X§)X1r
€ = Yy _¢51i =¥y = (Xy +Xy) = 61y1i +hyyy; +b, Y, +b,Yy
—(a, +3p, yf)ylj Uy — 8, (Xy = Xy ) =8y (X — Xyp) + Xy X5 — 8, Xy
—a,Xy +a;(a; + 3131X5)X1i +a, (o + 3/31X§)X1i
e2r = YZr _¢2r = er —(2X2r + XZi) = 63ylr +b3ylr Yo = Y Y5 t Uy
+2X;, X3 = 28,X,, — 252 Xy, +28,(ay + 3181X§)X1r + 253 (o, + 3ﬁle)xlr
+ X X5 — Ay Xy — §2X2i +8,(a, + 3ﬂlxi)xli + a3 (o, + Bﬂlxj)xli
€ = Yy _¢2i =¥y — (2% — Xy, ) = 63y1i +D, Yy = Yo = Vi Ys + Uy,
+2X; X5 — 28X, — 252 Xy + 28, (o, + 3ﬂle)xli + 253 (o, + 3ﬂ1XZ)X1i
— Xy X5 + A,y X, + §2X2r —8,(ay + 3ﬂlxj)xlr - él~3 (o, + 3/31Xj)x1r
éa = Y3 _¢3 = Y3 _(Xs + X4) =Y Yor ¥ ViiYai _b4YS _b4y3 +U;
— Xir Xor = X Xpi F é4X3 + a4)(3 — Xy (5.27)

€, =Y, — @ =Y, —2X X, ==Y, +U, +2X, X,
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By choosing

A ~ 2 A
Uy =€ =By, =B, Yo + (0, +36,Y0) Vi + 8 (X, —X,)
A A 2
+ X, Xg — 8y X,, + 85 (e + 38X )Xy,
~ ~ 2 A
Uy =€ =0 Yy =0, Y5 + (a2, +35, y4)ylj +8, (% = Xy;)

. A 2
— Xy X3 + 8, Xy — a5 (ay + 3B, X)Xy,

~

Uy =€y —D3Yi + Yy + Y5, Yo — 2%, X3 +28,X,, —28;(ay (5.28)
+38,X0 )Xy, — Xy Xg + 8, X5 — 85 (0, +36,X0) X,

Uy =€ — 63yli + Yo + Y Ya — 2%y X5 + 28, Xy — 28, (o,

+ 38, X0 )Xy + Xy Xg — 8y X, + 85 (0 +36,X0) Xy,

U3 =€ — Yo Yor =YY + 64y3 + Xy Xor Xy X — 84X + X,

Uy =V + Yy = 2%, X,

Where v is the new input, the system (5.27) can be written as:

€ =€; + l;1Y1r + 62 Yor =8 (X = X3 ) + 8, %5, —85(e + 3,31X5)X1,

€ =€ + 61y1i + E;2 Yo =8 (X =Xy ) = &, Xy, +85(at; +36,%7) %,

€ =€y + l-53 Yar —28,%,, + 285 (0, + 3131X§)X1r —8,Xy; +85(ay + 3131X§)X1i (5.29)

; N = = 2 = = 2
€, = €5 +byYy; —2a,Xy + 285 (a + 3B, X5 )Xy + 3%, — a5 (e +3B,X; )X,
€; =€, —b,y; +a,X,

e, =V

To employ the integral sliding mode control, choose the nominal system for (5.29) as:

€ =&y

€ =€,

€y =€y

e, =6, (5.30)
e, =¢,

€, =V,

Define the sliding surface for nominal system (5.30) as:
o, =6, +5¢; +10¢,, +10¢,, +5¢, +¢€, =e; +5¢e,, +10e,, +10e, +5¢, +V,

By choosingv, =—e,; —5e,, —10e,, —10e, —5e, —k o, —k sign(c,), k >0, we have

o, =—ko, —ksign(o,). Therefore the nominal system (5.30) is asymptotically

stable.
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Now choose the sliding surface for the system (5.29) as:
oc=0,+2=¢, +5¢; +10e, +10e, +5¢, +€, +2

where, zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0) =0. Choose Vv =V, +V where,V, is the nominal input andv; is

compensator term computed later. Then

o =6, +5¢, +10¢, +10e, +5€, +¢€, +2

=e, +b Y, +0,Y, — & (X — Xy, ) + A, X, — 8y (0 +3B,X2)X,,

+56,, +5b, Vi + 5b, Y, — 53, (X, — X;;) — 58, X, + 58, (e, +3B8,X2)Xy (531)
+10e,; +10b,y,, —20a,X,, + 203, (c, +3B,X5)X,, —108,X,, +108, (e,

+3B,X2)%,; ++10e, +10b,y, — 203,%,, + 208, (cr, + 38,X2)%;; +108,%,,

—107, (cr, +3B,X2)%,, +5€, —5b, Y, +58,X; +V, +V, +2

By choosing a Lyapunov function:

V= %az +%(512 +32+32+32+b? +b2 +b? +b?), design the adaptive laws for

a,4,,b,b,,i=1..4 and compute v,such that V <0.

z=-e; —5e, —10e, —10e, —5e, —v,, Vv, =—-ko —ksign(oc)

l

1= O_(XZr - Xlr) + 50—(X2i - Xli) - k151 ' él =-q

a, =90 X, +350 X, —k,a,, 4&,=-2,

8, =—90(a, +3B8,X2)%, —350 (0, +3B,X2)%; — ko8, , 8y =18,

54 :_50')(3—k454 y é4:—§4

b, 5 b--b 5.32
bl =—-0 ylr _50- y]_i - k5b11 bl = _bl ( )
b2 = -0 y2l’ _5(7 y2i - k6b2’ 62 = —b2

13

. O

s =100y, —100y, _k763' 63 = _63’
b, =50y, —kb,, b, =-b,, Kk >0,i=1..8
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Proof:

Since

V = o6 +a,3, +3,3, +8,3, +3,4, +bb, +b,b, +b,b, +b,b,

=ofe, +b,Y, +b,Y, — & (X, — X, ) +3,X,, — 85 (cy +3B,X2)X,,

+5€,, +5b, Y, +50, Y, =53, (X, — Xy ) — 58,X,; + 53, (ar, +38,X2)X,

+10e,; +10b,Yy,, — 20&,X,, + 208, (a, +3B,X?)X,, —108,X,; +10a, (o, +3B,X2)X, +
+10e, +10b, Y, — 208,X,, + 208, (c, +3B,X2)%; +103,X,, —108, (a; +3B,X2)X,,
+5e, —5k');y3 +5a, X, +V, +V, + 2}

+4a,a, +2,a, +a,a, +4a,a, + 5161 - 5252 - 5363 + 6464

=o{e,; +5e,, +10e,, +10e, +5e, +V, +V, + 2}

+8,{8, — (X, — X, ) =50 (X, — X; )3+ &, {&, — 90 X,, —350 X,;}

+a,{a, + 9o (a, +3B,x2)x, +350(a, +38,x2)x, }+a,{a, +50x.}

+ E)-1{61 +0 Y, +50 Y1+ k—)”2{6-2 +0 Y, +50 Yy 3+ l:R)-s{b;-:-; +100y,, +100y,;}+ 6-4{6-4 —5o0y,}

By using

z=-e, —5e, —10e, —10e, —5e, —v,, Vv, =-ko —ksign(c)

18

1= O-(XZr - Xlr) + 50—(X2i - Xli) - k151 y él = _51

DY

, =90X, +350%, —k,a,, &,=-a,

5 ==90(a; +3B,%7)%,, —350 (e, +38,%)%; Ky, é3 =—a,

l

A

=-box, —k,a,, 4,=-a,

)
S

=-0Y; —30Y; _k561’ 61 =-b,

o

13

2 = =0 Yy —30 Yy, _keaz’ b, = -b,

(=2

~

,=-10cy, —100y, —k,b,, b, =—b,,
b, =50y, —kb,, b, =-b,, Kk >0,i=1..8

13

. O

We have

V = —ko? —k|o]— ka7 —k,a7 —k,a2 — k&2 —kgb? — ke, —k,b? —kgb?.
From this we conclude that o, 3 5, — 0. Since o — 0, therefore

e=(8,,€;,€,,6,,6;58)—>0.
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In simulations, the initial conditions are chosen as:
(%,(0), %, (0), X, (0), X, (0)) = (-1+2j,1+ j,2,-1) ,and
(v,(0),,(0),y,(0),y,(0)=(10-8j,4-3j,6,5). The values of known parameters are:
a,=4,8, =001, a,=0.67x10",3,=0.02x10"°. The true values of unknown
parameters are chosen as:

a, =36,a,=20,a,=32,a, =3,b, =8,b, =11,b, =50,b, =8/3.

Generalized Synchronization Case 1 results:

400 1~ r

200

-200

-400

-600 - - -
0 5 10 15 20 25
Time(sec)

Figure 5.1: Time Response of error e, ,€;,&,,,6,,,6, &€,

50 r r r r r r r
surface

-50

-100

-150 - - - - - -
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Time(sec)

Figure 5.2: Time Response of surface
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Case 2 when (n<m):

Consider the Master system given in [49] as:

X, = Cl(XZ - X1)

X, = (C; =C1)X; — X, X3 +C, X, (5.33)

X3 = 0.5(X; X, + X, X,) —C3X;

Where x; = X;, + JX;;, X, =X, + JX,; are complex and X, = X,, is real. X;,X, denote
the complex conjugate variables of x,, X,. d,,d,and d,are unknown real parameters.
u,,u,and u,are controllers. When c, =27,c, =23,,c, =1, and
x(0)=[-3-2j,1-5],—4]'

The Slave system given in [49] as:

Y, =-byy, +b,Y, — (@, +38,¥4) Y, +u,

Y, =b3yi =Y, = YiYs +U,
ys = 0.5(71 Y, + ylyz) _b4y3 + U,

Y. = _0-5(71 + yl) +u,

(5.34)

Where,y, =Y, + Yy, Y, =Y, + 1y, arecomplex and y, =vy, ,y, =Y, are real.
Y, Y, denote the complex conjugate variables of y,,y,. b;,b,,b,and b,are unknown
real parameters «, and p,are considered as known positive constants. u,,u,,u, and
u, arecontrollers.When o, =0.67x107°, 8, =0.02x10°,and

b, =8,b, =11,b, =50,b, =8/3 y(0) =[2, 1+ 4], 0.1,0]"

In this section, we investigate CGS of two nonidentical complex systems with the
different orders.

Let ¢,,f=1.3b,i=1.,4 be estimates of c,,f=1..3b,i=1.,4and
¢, =c,—¢,,f=1..3,b=b—b,i =1...,4 be the errors in estimations of
c,,f=1..3Db,i :1,..,4’ respectively. Then systems (5.33) and (5.34) can be
written as:

Xl = él(XZ _X1)+61(X2 - Xl)

X, = (€, — €)X, +(C, —C,)% — X, X3 +C,X, +C, X, (5.35)

X =0.5(X; X, + X, X,) —C3X; — C3X,
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The 3-D complex system (5.35) can be written into 5-D real system as:

X =€ (X =X ) + El(XZr —Xy)

Xii = € (Xy = X3) + €y (Xy — Xy)

er = (62 _él)xlr + (62 _El)xlr — X X3+ é2X2r + 62X2r
Xoi = (€, = €)Xy +(C; — C) Xy — Xy Xg + €, Xy +Cy Xy
X3 = (Xlr Xor + Xy Xzi)_éaxs —53X3

(5.36)

We consider the system (5.36) as a drive system and the following system (5.34) as a
response system.

Vir = 61y1r +B—1V1r +62y2r +62Y2r _(052 +3ﬁ2y§)ylr +U,

Vi = l31Y1i +hyyy +62Y2i +0,Y, — (o, "‘3,323’5)3/1] + Uy

y2r = 63y1r + b3Y1r ~Yor =Y Y3 t Uy

. n ~ (5.37)
Yaoi =03y +05Yy — Vo = Vi Vs + Uy,

A

Y3 =Y Yor + YuYai —baYs =D, y; + Uy

y, =05y, +u,

The complex map vector is given by
p(X)=[-jx, —ijx, —X; ] .Thisgives:

¢1r (X) =Xy ’¢1i (X) ==Xy ’¢2r (X) = X5 (5 38)
B (X) = —Xyp .5 (X) = =Xy , 4, (X) = X, '

The error signals are defined as:

e1r = Y _¢1r’e1i =VYii _¢li 1le =Yor _¢2r1

(5.39)
€ = Yai _¢2i1es =Y _¢3'e4 =Y, _¢4

Then the error dynamics becomes:
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élr = YIr _¢1r = ylr _Xli = 61y1r +61y1r +62y2r +62y2r _(052 +3ﬂ2y§)Y1r +Ug,

- Cl(XZi - Xli) - 61 (X2i =Xy

. . ; . . N N N N 2

€ =Yy — @y = Yy X, =0y +byy + 0y, +0,Y, — (e, +3B,Y5) Yy + Uy
+ él(XZr - Xlr) + 61(X2r = Xy

e2r = er _¢2r = YZr - X2i = bser +b3Y1r —Yor = Yir Y3 Uy
— (€, = €)Xy —(C; —Cy )Xy + Xy X3 — €, Xy — Cy Xy,

. A - (5.40)
éZi = yZi _¢2i = y2i + er = b3y1i +b3yli — Yo — YiuYs tUy
+ (62 - 61)X1r + (62 - E51))(1r — X X3 + 62X2r + EZXZr
éa = ys _¢3 = ya + Xs =Y Yor ¥ YuYai _b4y3 _b4y3 +Us
+ (X, Xy + XXy ) = CaXg — 83X3
é4 = Y4 _¢4 = Y4 - X3 = _O-SY1r +U, _(Xlr Xy + XliXZi) +63X3 +63)(3
By choosing:
U, =€; — blylr _bz Yor + (052 +3:32 yf)ylr + 61(X2i - Xli)
U; =€, — blyli - bz Yo + (az + 3132 yj)ylj - c31 (X2r - Xlr)
Uy =€y _b3Y1r + Yo tYuYst (62 _Cl)xli — X X5+ ézxzi (5_41)

A

Uy, =€ _b3yli + Yot YuYs — (Cz _Cl)xlr + X X3 = Co Xy,
Us =€, = Yy Yor — Yo Vai T 0,5 = (X, Xor + X35 X5) +C5Xg
Uy =V+0.5Y; + (X Xpr + Xy Xp) = €3,

where Vv is the new input, the system (40) can be written as:

élr =€+ blylr + bz Yor — Cl(XZi - Xli)
éli =€ t b1Y1i + bz Yo +Cyy (XZr = Xy
€, =€, +byy, —(C, —C)X; —CyXy

. ~ ~  ~ ~ 5.42
€ =€+ b3Y1i + (Cz - Cl)xlr +C, Xy, ( )

~

éa =€, _b4y3 —C3X;
€, =V+CyX,

To employ the integral sliding mode control, choose the nominal system for (5.42) as:
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e.Zl.i - le

éZr - eZi

6, =6, (5.43)
6, =e,

€, =V,

Define the sliding surface for nominal system (5.43) as:
dis
o, =1+ E) e, =€, +5¢; +10e,, +10e,, +5¢, +¢,

Then
o, =€, +5¢, +10¢,, +10¢,, +5¢, +¢€, =e; +5e,, +10e,, +10e, +5¢, +V,
By choosingv, = —e,, —5e,, —10e,, —10e, —5e, —k o, —k sign(o,), k > 0, we have

6, =—ko, —ksign(o,). Therefore the nominal system (5.43) is asymptotically

stable.
Now choose the sliding surface for the system (5.42) as:
oc=0,+7=¢, +5; +10e, +10e, +5¢, +e, +2

where, zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0) =0. Choose Vv =V, +V,where,V, is the nominal input andv, is

compensator term computed later. Then

o =6, +5¢; +10¢, +10¢é, +5¢, +¢é, +2

=& + blylr + bz Yor = 61 (X2i - Xli) +58,, + 5b1Y1i + 5b2 Yo + 561 (XZr - Xlr)

+10e,, +10b,y,, —10(C, —¢,)x;; —10C,X,;, +10e, +10b,y,; +10(C, —C,)X,,

+10C,X,, +5€, — 50, Y3 — 5CX; + CaXq + Vo +V, +2

= e, +5€,, +10e, +10e, +5e, + C,{-X, + X, +5%X,, —5%, +10x, —~10x,}  (5.44)
+C,{~10x,, +10x,, —10%,, +10%,, }+ E{=5%, + X} + b, {y,, +5y,}

+b,{Y, +5Y,}+b{10y,, +10y,}—b,{By,}+ v, +v, +2
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By choosing a Lyapunov function: V = %02 +%(512 +b7 +b2+b7 +87 +E2 +82),
design the adaptive laws for Ei,Bi,i =1...,4,¢,,¢,, f =12,3 and compute v,_such that
V <0.

z=-e; —5e, —10e, —10e, —5e, —v,, Vv, =—-ko —ksign(o)

l5-1 = —0Yy, =90y, — k161 ' l31 =-b,

62 =—0 Y, —90Y,, _k262 , 62 = _62

63 =-100y,, —100y,; - k363 ) 63 = _63

64 =50y, - k464 ' 64 = _54 (5.45)
G, = oX,, — oX,, — 50X, +50X,, —100%, +100%,, —K.d,, €& =-C,

¢, =100x, —100%,, +100x,, —100X,, — k652, ¢, =,

G, =50x, —oX, —k,d;, 6 =-¢C,, kk >0i=1..7

Proof:

Since

V =06+ 5151 + 5252 + 5353 + 5454 +C,C, +C,C, +CyCs

= o{e,; +5e,, +10e,, +10e, +5e,

+C (=X, + Xy +5X,, —5%;, +10x,; —10x,,) + C, (-10x,; +10x,,

_10X2i +10X2r}+ E53{_5)(3 + X3) + bl(ylr + 5y1i ) + bz (y2r + 5y2i)

+b,(10y, +10y,) b, (5y,) +V, +V, + 2} +bb, +b,b, +b,b, +b,b, + T, +E,C, + C:C,
=o{e,; +5e,, +10e,, +10e; +5e, +V, +V, + 7}

+b{b, + oy, +50y,}+ bz{gz +0 Y, +50 Yy}

+ b3{b3 +100y,, +100y1i}+ b4{b4 - 50y3}

+C,{C, — X, + X +5X,, —5x,, +10x,, —10x,, }

+¢,{C, —10x, +10x,, —10x,, +10x, }+C,{C; — 5%, + X;}
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By using

z=-e; —5e, —10e, —10e, —5e, —v,, Vv, =—-ko —ksign(oc)

) = —O0Yy, _50y1i - k161 ) l31 = _bl

o

-

b, =—0 Y, =50 Y, —kyb, 62 =-b,

63 =—-100y,, —100y,; - k363 ' 63 = _63

b, =50y, —k,b, , 64 =-b,

C, = 0X,; — o%,; — 50X, +50%,, —100%,, +100%,, —k.d,, ¢ = ¢,
¢, =100%, —100X,, +100x,, —100%,, —kd,, ¢, =G,

G, =50%, —oX, —K,d;, G, =—C, Kk >0,i=1..7

We have

V = —ko? —k|o|—k,b? —k,b2 —kb? —k,b? — kT — kT2 —k,C2.
From this we conclude thata,lsi,ai —0. Since o —0, therefore
e=(&,,€;,€,,€,,635,8)>0.

In simulations, the initial conditions are chosen as:, and x(0) =[-3-2j,1-5j,—4]"
»and (y,(0),,(0),y,(0),y,(0)=(10-8j,4-3j,6,5). The values of known parameters

are: o, =0.67x107°, 8, =0.02x10°°. The true value of the known parameters are :

¢, =27,c,=23,¢, =1,b, =8,b, =11 b, =50,b, =8/3.
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Generalized Synchronization results of Case 2:
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Case 3 when (n>m):

Consider the Master system given in [49] as:

X =8y (X, —X)

, 2

Xp ==X X3 +8,X, —83(a; +36,X;)%
Xy = 0.5(X, X, +X,X,) —a,X,

X, =0.5(X, +x,)

(5.46)

Where, X, = X, + JX;;, X, =X, + JX,; are complex and X, =X, ,X, = X, are real.
X,,X, denote the complex conjugate variables of x;, X,. a,,a,,a, and a,are unknown
real parameters «, and g, are considered as known positive constants. When «, =4,
B, =001, a, =36,a,=20,a,=3.2,3, =3 and x(0) =[-1+2j,1+j, 2,-1]"

The Slave system given in [49] as:

Y1 = d1(Y2 - yl) +U;
Y, ==Y,¥; +d,y, +u, (5.47)
y3 = 0-5(71 Yy, + ylyz)_d3y3 +U,

Where, y; =y, + [y, Yo =VYa + 1y, are complex and y, =y, , arereal. y,,y,
denote the complex conjugate variables of y,,y,. d,,d,,d; are unknown.. u,,u,,u,

are controllers.When d, =29,d, =21,d, =2 y(0)=[4+10j, 6+10j, 12]"

In this section, we investigate CGS of two nonidentical complex systems with the
different orders.

Let &,d,,i=1.,4f=1..,3 be estimates of a,d,,i=1.4,f=1..3and
a, =3 —éi,af =d, —d,,i=1...,4,f=1..,3 be the errors in estimations of

a;, b,,i=1.,4f =1..3 respectively.

Then systems (5.46) and (5.47) can be written as:

X =a, (%, — %) +a, (X, — %)

X, ==X Xg + 8%, +8,%, =85 (a; +38,x7)% — 8 (e, +36,X;)X,

Xy = 0.5(X X, + X, X,) — 8,X; — 3, X, (5.48)
X, = 0.5(X, +X;)
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Vo =dy(y, = y) + (Y, — Y1) +u,
Y, =—yly3Jr(§2y2thﬁfzyzjtu2 (5.49)

Y5 =05(Y, ¥, + ¥1¥,) —dyys —dyy; +U,

The 4-dimensional complex systems (4.48) can be into 6-dimensional real systems:
X, =8 (Xy, — Xy, )+, (X, — Xy,

X =& (Xy; — Xy ) + 3, (X, — %)

Xy = =Xy Xg +8,X,, + 8, Xy, —85(a; + 3B X)Xy, — 85 (0, + 3B X)Xy,

r

(5.50)
. N ~ A 2 ~ 2
Xoi = =Xy X5 + 8, Xy + 3, Xy — Az (@ + 36X, )Xy — 5 (g + 3B, X)X,

Xs = (Xlr Xor + Xy X2i) — A, X3 — X
X, = 0.5x,,

The 3-D complex system (5.49) can be written into 5-D real system as:

Vir =y (Yar = Vo) + 0y (Yar — Vi) + Uy,

Vi = 4y (Vo = i) + 0, (Vs = Ya) + Uy

Vor ==Yy Y5+ 62y2, + a'zyzr +U,, (5.51)
Vo = —Yui¥s + 055 + 0,5 +Uy

ya =Y Yor T YiiYai _dSY3 _dSY3 +Us

The complex map vector is given by
H(X) = [jx2 XX, xf]T . This gives:

B (X) = Xy, (X) = —X5,, B, (X) = Xy,

B2 (X) = Xy 5 (X) = =%, + X (5:52)
The error signals are defined as:
€r =Yu _¢1r’e1i =Y _¢1i 1€ = Yo, _¢2r’ (5 53)

€ = Yai _¢2iie3 = y3_¢3

Then the error dynamics becomes:
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€ = Yir _¢;1r = Vi Xy = dl(er = Yie) A (Yo = Vie) H Ui — X5 Xg
+ 8, Xy + 8, %y — 85(ey +3ﬂ1X§)X1i —8,(y +3:81X§)X1i

€y = Vo —y = Yoy — X = dAl()’zi = Vi) F (Yo = Yi) + Uy + X, Xy
= 8,Xp, — &)Xy, +85(e +3181X§)X1r +8,(ey +3ﬁ1X2)X1r

€ = Yor —Por = Yor + Xy ==Yy Ys + Ay Y, + Ay Y, +Uy,

A .. (5.54)
+8, (Xy — Xy ) +ay (X — Xy

€ = Voi =Py = Vo — Ry, ==Yy Y3 A,y +d, Yy +Uy
- al(XZr - Xlr) - a1(X2r = Xy

A ~

Y3 _¢3 = Y3 _(Xs _2X4X4) =Y Yor ¥ VYo _d3Y3 _d3y3 +U;
= Xy Xy = XXy + A, X5 + 3, X5 + X, X,

By choosing:

A A A 2

Uy = =0y (Yar = Yir) + X Xs — 8, X5 + 83 (0 +361X) Xy + €
N A A 2

Uy =—=d; (Yo = Vi) = Xar Xg + 85X —85(a; +3BX) X, + €y

A

Uy =Yy, Vs — 0, Y, —8, (X, — X)) + €y (5.55)
Uy = Yy Ys — 0,y +8, (X — X, )+ €,

Us ==Yy Yor = Vi Vo + d3y3 + Xy Xop Xy Xy — 8y X5 — X, Xy, +V

where Vv is the new input, the system (5.54) can be written as:

6, =d,(Y, — V) +8,%,; — 3, (ay +3B,X2)X, +6y

&, =, (Vy — Vo) — B, %y, + 3, (aty +3B,X2)Xy, +6yy

= JZ Yo, +3, (X, —Xy) + €, (5.56)
&, = JzyZi —a, (X, — %, )+,

€,

6, =—d,y, +3,X; +V

To employ the integral sliding mode control, choose the nominal system for (5.56) as:

e.:I.I’ - eli

éli - e2r

Cu =8 (557)
eZi - e3

€, =V,

Define the sliding surface for nominal system (5.57) as:

d
o, =1+ a)“elr =e, +4e, +6e, +4e, +e,
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Then
o, =6, +4¢, +66, +4¢, +¢é, =¢;, +4e, +6e, +4e,+V,

By choosingv, =—e; —4e, —6e, —4e, —ko, —ksign(c,), k>0, we have
6, =—ko, —ksign(o,). Therefore the nominal system (5.57) is asymptotically

stable.
Now choose the sliding surface for the system (5.56) as:
oc=0,+7=¢, +4e; +6e, +4e, +e,+z2

where, zis some integral term computed later. To avoid the reaching phase, choose
z(0) such thato(0) =0. Choose Vv =V, +V,where,V, is the nominal input andv, is
compensator term computed later. Then

o=6€,+4¢, +66, +46, +€,+12

=d, (Y, — V) + 8, Xy — 8, (e, +3B,X2) % + €55 +4d, (Y — Yy ) — 48, %,,

~ ~ 5.58
+ 48, (a, +3B,X5)%,, +48,, +6d, Y, +68 (X, —X;)+ 68, +4d,Y,, (5:59)

—4a, (X, — X, )+ 46, —dyy, +a,X; +V, +V, + 2

By choosing a Lyapunov function: V = %02 +%(5f +32+82+32+d2+d2+d2)
design the adaptive laws for a,,4.,i=1...,4, d"f ,cff , f =1...,3 and compute v such
that V <0.

7=-e; —4e, —6e, —4e;,-v,, V,=-ko-ksign(c)
a =40(X, —%,)—60(X, —X;)—ka , & =-2

, =—0 X, +40X, —k,a,, &,=-a,

).

Q)
Il

2 2 ~ :
s =0(oy + 3B, X)Xy —do(ay + 3B, X)X, —K;a, , d; =—d,

A

=-oX,—k,a,, 4,=-a,

).
D

15

(5.59)

o

1 =0 (Yo =Yy ) —40(Yy _yli)_k5b~1’ al :_d~1
, =—60Y, —4oy, - k662’ az = _az

. O

d,=oy,—kb,, d,=-d,, kk >0i=1..7
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Proof:

Since

V =06 +a,a, +a,a, +a,a, +a,a, +d,d, +d,d, +d,d,

= U{al(er — Y )+ a8 Xy — a5 (e, + 3:81X§)X1i +€; + 451(Y2i — Yu) —4a,X,,

+4a, (o, + 3:31X§)X1r +4e,, + 652 Yar +68, (X, — Xy) + 68y + 462 Yoi
—4a,(X,, — X, )+ 4e, —53y3 +a,X; +V, +V, + 2}

+4a,a, +a,a, +a,a, +a,a, +d,d, +d,d, +d,d,
=o{e, +4e, +6e, +4e, +v, +V, +72}
+a{a, —4o(Xy =Xy ) +60(Xy — X))} +a{a, + o X —40 X, }

+ 53{’33 —o(a, + 3ﬂ1X§)X1i +4do(a, + 3:31X§)X1r}+ 54{54 +0X3}

+ al{al +0 (Yo — Yo ) 40 (Yo — Yy )3+ az{az +60 Y, +40 Y, }+ as{as

By using

z=-e, —4e, —6e, —4e,-v,, Vv, =-ko-ksign(o)

a, = 4G(X2r - Xlr) - 6(7()(2i - Xli) - I(13-1 ' é1 =-q

8, =—0Xy +40 X, —k,a,, &,=-2a,

= 2 2 ~ A ~
a, =0o(a, +3B X)X —do(ay +3B X )%, —Ka, . a3 =-a,
a, =-ox,—k,a,, 4&,=-a,

13

o

1 =0 Yy =Y ) —40o(Yy _Y1i)_k561’ le =_al
, =—6cy, —4oy, _ksaw ciz = _CTz

. Q).

d,=oy,—k,d, d,=-d,, kk >0i=1..7
We have

V = —ko? —k|o]— ka2 —k,a2 —k,a2 —k,a2 —k.d? —k,d2 —k,dZ.

~

From this we conclude thato,a;,b, >0. Since o —0,

€= (88,8, ,8,;,6)—>0.

-0 Y3}

therefore

In simulations, the initial conditions are chosen as: x(0)=[-1+2j,1+ j,2,-1]",and

y(0)=[4+16j,6+10j,12]". The values of known parameters are: «, =4, 5, =0.01.

The true value of the unknown parameters are chosen as: a, =36,a, =20,a;, =3.2,

a, =3,d,=29,d, =21d, =2.
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Generalized Synchronization results of unknown parameter:
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Figure 5.25: Time Response of error ¢, ,e;;,e,,,&,, &€,
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Figure 5.27: Time Response of control input
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Figure 5.29: Estimation parameter of &,,4,,4, &4,
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Figure 5.30: Estimation parameter of d,,d, &d,
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Chapter 6
CONCLUSION AND FUTURE WORK

6.1 Introduction

The work done by human being can never be complete. Taking into account this
reality, this chapter is aimed to explain the results and conclusion of this research

thesis.

6.2 Conclusion

This thesis presents three different kinds of complex synchronization (CS), (i)
Complex Complete Synchronization (CCS), (ii) Complex Projective Synchronization
(CPS), (iii) Complex Generalized Synchronization (CGS) of Identical and Non-
identical Nonlinear Complex Systems with unknown parameters. Based on adaptive
integral sliding mode control, an adaptive controller and parameter update laws are
designed to realize CCS, CPS and CGS. To employ the adaptive integral sliding mode
control, the error system is transformed into a special structure containing nominal
part and some unknown terms. The unknown terms are computed adaptively. Then
the error system is stabilized using adaptive integral sliding mode control. The
stabilizing controller for the error system is constructed which consists of the nominal
control plus some compensator control. The compensator controller and the adapted
law are derived in such a way that the time derivative of a Lyapunov function
becomes strictly negative. The proposed scheme is successfully applied to complex
chaotic nonlinear systems with unknown parameters for the realization of (i) Complex
Complete Synchronization (CCS),(ii) Complex Projective Synchronization (CPS),(iii)
Complex Generalized synchronization (CGS).Numerical results have verified the

effectiveness and feasibility of the presented method.
6.3 Future Work

In this thesis Synchronization of different complex chaotic systems is considered.
This work can be extended for complex chaotic systems, such as the typical multi-
scroll chaotic systems by some effective design methods using piecewise-linear
functions, cellular neural networks, nonlinear modulating functions, circuit

component design, switching manifolds, etc.
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