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Preface 

Undoubtedly, Manufacturing is of great importance throughout a number of industrial 
sectors. Manufacturing is an activity that creates jobs and wealth and is widely 
regarded as a key pillar of both social and economic development. 

From a technology perspective, manufacturing is both a testbed for new tech-
nologies, whilst simultaneously, it is the cause of major technological developments, 
typically geared towards addressing manufacturing challenges. 

Along these lines, manufacturing environments can be testbeds for Artificial Intel-
ligence (AI) concepts, technologies and tools, while they can also help for new 
developments in AI that address problems in the manufacturing arena. 

This book offers an AI perspective, from a manufacturing point of view by 
providing a general vision as well as applications and AI solutions to a number 
of manufacturing challenges. It presents what is emerging in the AI field, related to 
manufacturing and what the future could possibly look like. 

Rion Patras, Greece 
December 2022 

George Chryssolouris 
Kosmas Alexopoulos 

Zoi Arkouli
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Chapter 1 
Introduction 

Abstract This chapter introduces Artificial Intelligence (AI) as well as manufac-
turing and draws the links between them. AI technology has been used in manufac-
turing for decades, on complex decision making, in support of the manufacturers, 
in their business processes. AI has been studied since the 1940s, however, it is only 
recently that scientists and industry practitioners are getting closer to effectively 
exploiting its potential since AI technologies have become more mature and afford-
able. In principle, AI can be understood as “software (and possibly also hardware) 
systems, designed by humans that, given a complex goal, act in the physical or digital 
dimension by perceiving their environment through data acquisition, interpreting the 
collected structured or unstructured data reasoning on the knowledge, or processing 
the information, having derived from this data and deciding on the best action(s) to 
be taken to achieve the given goal”. The historical evolution of AI is presented in four 
upsurge periods, driven by improvements in relevant technologies. At the same time, 
manufacturing can be defined as the transformation of materials and information into 
goods for the fulfilment of human needs and it is one of the primary wealth creation 
activities for any nation besides contributing significantly to employment. Decision
-making in manufacturing considers four classes of attributes, namely cost, time, 
quality, and flexibility. These attributes are discussed and examples of AI applica-
tions, related to optimization and decision making of these attributes, are provided. At 
the end a three-layered taxonomy into process, equipment and systems are presented. 
This taxonomy will be used for discussing applications of AI in the next chapters. 

Keywords Decision-making · Decision-making criteria ·Manufacturing 

1.1 Introduction 

Artificial Intelligence (AI) has been studied since the 1940s, but it seems that only 
recently are scientists getting closer to effectively exploiting its potential. In partic-
ular, within the 80 years of AI research, there have been periods of upsurge and 
downturn, according to the restrictions of the contemporary technology e.g., diffi-
culty in handling non-linear problems, the necessity for human expertise during

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
G. Chryssolouris et al., A Perspective on Artificial Intelligence in Manufacturing, 
Studies in Systems, Decision and Control 436, 
https://doi.org/10.1007/978-3-031-21828-6_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21828-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-21828-6_1


2 1 Introduction

feature extraction, etc. Since AI has become a critical aspect of modern societies, 
it is important that a widespread understanding of key concepts, technologies, and 
applications be developed. 

Artificial Intelligence can be generally understood as “the intelligence exhibited 
by machines or software” as defined in Wikipedia. Albus (1991) defined intelligence 
as “the ability of a system to act appropriately in an uncertain environment, where the 
appropriate action is that which increases the probability of success, whilst success 
is the achievement of behavioral sub-goals that support the system’s ultimate goal.” 
[1]. In 1956, John McCarthy defined AI as “the science and engineering of making 
intelligent machines”. A stricter definition was given by Russel and Norvig, who 
defined AI as “the study and design of intelligent agents, where an intelligent agent 
is a system that perceives its environment and takes actions that maximize its chances 
of success” [2]. Moreover, there are four schools of thought according to Russel and 
Norvig: systems that think humanly (cognitive approach), systems that think ratio-
nally (laws of thoughts), systems that act humanly (imitation game), and systems that 
act rationally (intelligent agents). “Artificial intelligence (AI) refers to systems that 
display intelligent behaviour by analysing their environment and taking actions – 
with some degree of autonomy – to achieve specific goals. AI-based systems can 
be purely software-based, acting in the virtual world (e.g. voice assistants, image 
analysis software, search engines, speech and face recognition systems) or AI can be 
embedded in hardware devices (e.g. advanced robots, autonomous cars, drones, or 
Internet of Things applications)” [3]. The EC High-Level Expert Group on Artificial 
Intelligence has provided an illustration of an AI system, as depicted in Fig. 1.1 [4], 
whereas, the latest definition of AI on behalf of the European Commission has been 
published by the same group and it is as follows: “Artificial intelligence (AI) systems 
are software (and possibly also hardware) systems designed by humans that, given a 
complex goal, act in the physical or digital dimension by perceiving their environment 
through data acquisition, interpreting the collected structured or unstructured data, 
reasoning on the knowledge, or processing the information, derived from this data 
and deciding on the best action(s) to be taken to achieve the given goal. AI systems 
can either use symbolic rules or learn a numeric model, and they can also adapt their 
behaviour by analysing the ways that the environment is affected by their previous 
actions. As a scientific discipline, AI includes several approaches and techniques, 
such as machine learning (of which deep learning and reinforcement learning are 
specific examples), machine reasoning (which includes planning, scheduling, knowl-
edge representation and reasoning, search, and optimization), and robotics (which 
includes control, perception, sensors and actuators, as well as the integration of all 
other techniques into cyber-physical systems)” [4].

A classification of AI into seven distinct types, based on the degree that an AI 
system can replicate human capabilities, and in more detail, based on their likeness 
to the human mind has been proposed by Joshi (2019): reactive machines (they are 
capable of responding to different kinds of stimuli’ they do not have memory i.e. 
they cannot use previously gained experience to inform present actions, they are 
used to automatically respond to a limited set of inputs), limited memory machines 
(in addition to the capabilities of the reactive machines, they are capable of learning
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Fig. 1.1 An AI system depiction as provided by AI HLEG [4]

from historical data to make decisions), theory of mind systems (they are currently 
under development by researchers, exist in concept or work in progress, they should 
be able to better understand the entities they are interacting with, by discerning 
needs, emotions, beliefs, and thought processes), self-aware (it currently exists only 
hypothetically, since an AI that has evolved to be so akin to the human brain has devel-
oped self-awareness) [5]. AI can also be classified into Artificial Narrow Intelligence, 
Artificial General Intelligence, and Artificial Superintelligence [6]. Artificial Narrow 
Intelligence represents all the existing AI, it refers to systems that can perform tasks 
autonomously and their actions are restricted in what they have been programmed 
to do (reactive and limited memory machines) and Artificial General Intelligence 
which is the ability of an AI agent to perceive, understand, learn and function exactly 
like a human. In this case, multiple competencies are independently built and form 
connections and generalizations across domains, which in turn, massively cuts down 
on the necessary training time [7]. On the other hand, artificial superintelligence will 
not only replicate the multi-faceted intelligence of humans, but it will perform better 
at everything it is being done thanks to its capabilities for overwhelmingly greater 
memory, faster data processing and analysis, as well as decision-making [8]. 

The AI evolution comprises four stages: the infancy period (the 1940s), the 
upsurge period (1960s), the second upsurge period (1980s), and the third boom 
period (after the 2000s). The infancy period started approximately in 1940 when the 
McCulloch-Pitts Neuron model and the Herb rule were proposed for the discussion 
of the way that neurons work in the human brain. Developments of capabilities such 
as playing chess games and solving simple problems that had started. 

The first upsurge period started around 1960. The major contributions to this 
period’s AI technology were those of the Perceptron model, proposed for the simu-
lation of the nervous system of human learning, with linear optimization (1959), and 
the Adaptive Linear unit, which is a network model used in practical applications 
(communication, weather forecasting). The limitations which dominated the early 
AI were due to the difficulty in handling non-linear problems.
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The solution to this difficulty came with the second upsurge period, which started 
around 1980 namely, the development of the Hopfield network circuit, along with the 
Back Propagation algorithm, the Boltzman Machine, the Support Vector Machine, the 
Restricted Boltzman Machine and the Auto Encoder. After the non-linearity had been 
faced, the need for human expertise, during feature extraction and the dependence 
of the performance on the engineering features needed also to be handled. 

The present third boom period, which started after 2000, deals with the limita-
tions of the previous period mostly by taking advantage of deep learning models. 
Some worth mentioning innovations of the third boom are Recurrent Neural 
Networks, Long Short-term Memory (LSTM), Convolutional Neural Networks 
(CNNs), Deep Belief Networks, Deep Auto Encoder, Deep Boltzman Machine, De-
noising Auto Encoder, Deep Convolutional Neural Networks, and Attention-based 
LSTM. Furthermore, research interest in Machine Learning (ML) has intensified. ML 
is deemed one of the long-term goals of the AI community and refers to the gathering 
of new knowledge, as well as the development of motor and cognitive skills through 
instructions and practice [9]. ML can be branched into three main categories: super-
vised learning, unsupervised learning, and reinforcement learning, depending on the 
conditions required for the learning process to be held. These categories can serve as 
a high-level taxonomy, but they are not necessarily mutually exclusive. For instance, 
hybrid approaches such as semi-supervised learning also exist and can belong to 
more than one branch of this taxonomy. ML approaches are able to pinpoint highly 
complex and non-linear patterns in raw data of several types and sources, creating 
models for activities such as classification, detection, or prediction [10]. 

The advances in information technologies (communication, big-data manage-
ment, and computing power) are the key enablers of the boost in AI developments, 
which have already been integrated into many applications of everyday life. For 
instance, personal assistants e.g. Siri [11], Alexa [12], suggestive searches, such as 
Google’s autocompleting [13], and automatically steering, accelerating, and braking 
vehicles e.g. Tesla’s Autopilot [14]. Moreover, real-time conversational guidance, 
such as Cogito [15], as well as recommendation systems for amusement, including 
Pandora [16] for music, Netflix for movies, and Amazon for purchases, as well as 
smart household devices, such as Nest thermostat [17] are only some of the most 
popular AI developments, which are already in use. Besides the everyday life of 
individuals, it is worth exploring the areas where AI can contribute, the advances 
compared to the already existing approaches of the manufacturing practice, as well 
as the existing integration of AI tools into manufacturing systems. In this scope, 
the next paragraphs are dedicated to presenting fundamental definitions, related to 
manufacturing, as well as an introduction to decision-making in manufacturing. 

“Manufacturing is defined as the transformation of materials and information 
into goods for the fulfilment of human needs and it is one of the primary wealth 
creation activities for any nation and contributes significantly to employment” [18]. 
By way of illustration, Fig. 1.2 depicts the added value of manufacturing per country 
as a percentage of the gross domestic product (GDP), where for the majority of the 
studied countries the value added exceeds 9%.
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Fig. 1.2 Manufacturing, value added (% GDP) 2021 [19], Reprinted under the CC BY-4.0 license 
terms 

As a result of the definition of manufacturing, it can be claimed that manufacturing 
is a system whose inputs are the customers’ needs, together with the designers’ 
creativity that led to the starting point of production, i.e. product design (Fig. 1.3). 
The system’s output is the delivery of finished products to the market [20]. Decision-
making is often required in the context of manufacturing systems. 

In the context of manufacturing, a decision is basically the selection of values 
for certain decision variables either related to the design or to the operation of a 
manufacturing process, machine, or system. This decision-making in turn requires 
technical understanding and expertise, as well as the ability to satisfy particular 
business objectives. Hence, manufacturing is deemed as a multi-disciplinary field 
requiring engineering but also management skills and competencies. In this view, it 
is useful to define a taxonomy aiming to facilitate the identification of issues and to

Fig. 1.3 Manufacturing systems [18], Reprinted with permission from Springer-Verlag New York 
INC 



6 1 Introduction

allow a scientific approach to the encountered problems. The following subdivision 
of manufacturing is suggested:

● Design and manufacturing interfaces: design and manufacturing interfaces 
include user interfaces that are utilized during design, planning, programming, 
production monitoring, inspection, etc. These interfaces, serve among others, the 
communication of the features and characteristics of the products to be manufac-
tured that in current practice is usually performed via CAD files, virtual or even 
physical prototypes.

● Manufacturing processes: manufacturing processes refer to the set of processes 
that are responsible for altering the form, shape and/or physical properties of a 
given material.

● Manufacturing equipment: manufacturing equipment refers to the pieces of hard-
ware that are practically the embodiment of the manufacturing processes and 
perform the required physical actions to achieve the altering of the form, shape, 
and/or physical properties of the given materials.

● Manufacturing systems: manufacturing systems can be defined as the combina-
tion of manufacturing equipment and humans, bound by a common material and 
information flow. It is noted that the design of a system is interwoven with its 
operation.

● Production planning: production planning refers to the aggregate timing of 
production, and it dictates the flow of materials and information into the manu-
facturing system, as well as the workload of the production system. In short, 
a successful production plan is expected to lead to the production of sufficient 
amounts of products on time.

● Production control: production control is responsible for ensuring the proper 
execution of the manufacturing production plan. It collects data from the shop 
floor and directs a flow of information back to the planning level, closing the loop 
between the planning and execution phases. In more detail, the production control 
deals with the resources’ coordination, but also with re-organization/re-allocation 
in case of disruptions e.g. machine breakdown, or demand variations. 

When making decisions in manufacturing, four classes of attributes should be 
considered: namely, cost, time, quality, and flexibility. The set of these attributes 
is referred to as the manufacturing Tetrahedron to emphasize the interrelationship 
among them (Fig. 1.4). It is noted that the relevance and importance of these attributes 
might differ depending on the particular case and decision to be made. Decision-
making in manufacturing systems is based on performance requirements, which 
specify the values of the relevant manufacturing attributes. In this light, the decision-
making process can be regarded as a mapping from desired attribute values onto 
corresponding decision variable values. The scientific foundation of this mapping is 
usually based on techno-economical models, in which the levels of manufacturing 
attributes are related to the levels of different decision variables. As for the overall 
outcome of a manufacturing decision, it is rather a trade-off between the different 
manufacturing attributes, given that in most cases it is not possible to simultaneously 
optimize cost, time, quality, and flexibility. The AI decision-support systems could
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also be used for trade-off optimization. The assessment of these trade-offs imposes 
the evaluation of each attribute. It is noted that in current practice, the majority of 
quantitative measures in manufacturing, refer to cost- and time-related attributes, 
whereas more details about the manufacturing attributes are discussed in the next 
paragraphs. 

Cost 

Costs related to manufacturing encompass a number of different factors, which can 
be broadly classified into the following categories:

● Equipment and facility costs (e.g. costs of equipment for the operation of manu-
facturing processes, the facilities used to house the equipment, the factory 
infrastructure, etc.).

● Materials (e.g. costs of raw materials, tools and auxiliary materials, such as 
coolants and lubricants to produce the product).

● Labor (costs deriving from the direct labor needed for the operation of the 
equipment and facilities).

● Energy (costs for the performance of the different processes).
● Maintenance and training (costs for labor, spare parts, etc. required to maintain the 

equipment, facilities, and systems, as well as the training costs to accommodate 
new equipment and technology).

● Overhead (indirect costs to support the manufacturing infrastructure).
● Capital (costs deriving from loans that are taken when it is not possible to cover the 

financial issues that occur with readily available capital within the manufacturing 
firm). 

Time 

Time attributes can be analyzed into the system’s production rate i.e. how quickly 
a product can be produced, but also into the responsiveness of manufacturing to 
changes in design, volume demand, etc., which, however, will be discussed under 
the flexibility attribute. The production rate impacts, to some degree, all the other 
types of attributes. To be more specific, higher production rates typically result in

Fig. 1.4 Mapping Manufacturing Decision Variables into the Manufacturing Attributes [18], 
Reprinted with permission from Springer-Verlag New York INC 
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lower costs and potentially lower quality. Moreover, to achieve high production rates, 
it is often necessary to resort to automation, which may impact the system’s flexibility. 

Several notions are related to the time attribute and are used in industrial practice. 
For instance, the theoretical production rate of a system, or machine cycle, refers to 
the ideal scenario when a machine or system is running with no interruptions or delays 
and is the pieces produced per unit of time. The events that may arise and constrain 
this rate are typically related to the physics of the processes and the robustness of 
the machines. On the other hand, the actual production rate of a system is called 
the process or system yield, which is the number of acceptable pieces produced per 
unit of time, which incorporates delays and unpredicted interruptions e.g. machine 
breakdowns. The ratio of process yield or system yield as a percent of the machine 
cycle reflects the efficiency of the overall process, regarding the production rate. 

The identification of achievable production rates in a manufacturing system 
requires the definition of several terms that have to do with the reliability of the 
equipment and the overall structure of the system. Reliability can be defined as the 
probability of a system or a component to perform its required function. The failure 
rate of a component is the ratio of the number of failures over a particular time period, 
whereas, the mean time between failure (MTBF) is the reciprocal of the failure rate. 
Availability is often a more informative indicator of breakdown behavior than relia-
bility is, because it incorporates mean time to repair (MTTR). The availability of a 
system with a long MTBF can be deemed insensitive to the duration of the MTTR. 
On the contrary, the availability of a system with a short MTBF is very sensitive to 
the duration of the MTTR. 

Flexibility 

Flexibility, as already mentioned, refers to the responsiveness of a manufacturing 
system to changes in the target throughput, availability of resources, etc. Given 
the increasingly diversified customer base, and the decreasing lot sizes that govern 
demand nowadays, flexibility has stood out as one of the most critical attributes. 
Flexibility, however, cannot be properly considered in the decision-making process 
unless it is defined quantitatively. Although there is research academic work on the 
quantification of flexibility, industrial applications have been meagre [21]. Academic 
research has focused on one-of-a-kind or small lot size production systems, e.g. 
aerospace industry paradigms, but not on mass production systems. This is because 
the flexibility debate has concentrated on the ability of a manufacturing system to 
produce a range of products quickly and economically. The different aspects or types 
of flexibility [22] is listed hereunder:

● Machine flexibility: the ease of making changes in the machine’s configuration 
that are required to produce a given set of part types.

● Process flexibility: the ability to produce a given set of part types in different ways.
● Product flexibility: the ability to change over to produce new products economi-

cally and quickly.
● Routing flexibility: the ability to handle breakdowns and to continue producing a 

given set of part types.
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● Volume flexibility: the ability to operate profitably at different production volumes.
● Expansion flexibility: the ability to expand the system easily and in a modular 

fashion.
● Operation flexibility: the ability to interchange the ordering of several operations 

for each part type.
● Production flexibility: the set of part types that the manufacturing system can 

produce. 

A different approach to viewing flexibility is to link it to resilience, where 
resilience refers to the ability to withstand disruptions, without the incurrence of 
significant additional costs. An approach, based on the penalty of change measure-
ment method, has been proposed for the quantification of resilience in a manufac-
turing system and the enabling of decision-makers to assess alternatives for strategic 
investments [23]. 

Quality 

The quality attribute is also difficult to be quantitatively expressed as it is broadly 
related to customer satisfaction, which in turn, depends on multiple factors, including 
the features of a product, its maintainability, and a host of other subjective factors. 
Nevertheless, customer satisfaction can be traced to two major factors at the origin 
of a product: its design and manufacture. 

In manufacturing, quality typically refers to the degree that production meets 
design specifications, and is an aggregate of the quality of individual features and 
properties, i.e. geometric characteristics and the physical and/or chemical properties 
of the materials making up the product. Quality is typically measured from the 
most aggregate level, in terms of acceptance or rejection of a product, down to the 
elementary characteristics of a component. More elementary characteristics, such 
as dimensions and physical properties e.g. hardness and strength, are easier to be 
quantified, and thus provide an easier measuring task for testing and inspection, 
which is usually employed during the production process or immediately thereafter. 

AI in manufacturing 

Artificial Intelligence has already been employed to support decision-making and 
optimization in manufacturing systems since the 1970s. Focusing on the applications 
of the AI methods that were presented in manufacturing, in the period from 1970 to 
1990, researchers focused on expert systems that were used to support the decision-
making of people without expertise in a field and helped them decide as though 
they were experts [24]. Also, AI was frequently used for Manufacturing System 
Simulators in order to assign production tasks to the system resources, according to 
certain dispatching rules [25]. AI and the operations research approach to modeling 
flexible manufacturing systems, have been investigated in several use case scenarios, 
including machine layout and task scheduling [26]. 

Although AI was used in industry, there were no industrial booms, so the interest 
in AI started decreasing. This changed after 1990 thanks to the Artificial Neural 
Networks (ANN), the emergence of intelligent agents, and the availability of very
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large datasets, but mostly thanks to deep learning, which put AI in the spotlight again. 
Chryssolouris et al. [27] reviewed the contemporary decision-making in manufac-
turing, which remains one of the most interesting areas of AI in manufacturing, as 
indicated several years later by Sharp et al. [28]. In particular, in the latter review, 
an increasing interest in ML in manufacturing, especially for knowledge manage-
ment, decision support, and lifecycle management is reported, while it is recognized 
that the availability of data makes ML a promising tool for more lean, agile, and 
energy-efficient manufacturing systems. 

The next generation of industry-focused research on the development and imple-
mentation of more intelligent manufacturing systems. In this context, programs such 
as “smart manufacturing” (United States) and “Industrie 4.0” (Germany) have been 
established in several countries with the aim to reinforce domestic industry over 
the worldwide competition. At the same time, efforts have been made in defining 
architectures that will enable the necessary information flows by linking the oper-
ational technology and information technology domains, where heterogenous data 
from several sources e.g. machines, factory automation, supply chain management, 
etc. while enabling end-to-end communication among all production-relevant assets 
and fulfilling time and batch size constraints. Additional challenges include interop-
erability [29], compatibility with legacy industrial systems [30], as well as security, 
trust, and privacy that remain open research topics [31–33]. Reference architec-
ture Model for Industry 4.0 (RAMI4.0), Industrial Internet Reference Architecture 
(IIRA), Stuttgart IT Architecture for Manufacturing (SITAM), IBM Industry 4.0, 
and Lasim Smart Factory (LASFA) are some of the reference architectures that have 
been proposed to cover these needs. Figure 1.5 depicts the RAMI4.0 architecture, 
which has been defined for “Industrie 4.0” as an initial step for a consensual base of 
the upcoming developments [34]. 

Fig. 1.5 Reference architecture for “Industrie 4.0”, RAMI4.0 [34], Reprinted with permission from 
Plattform Industrie 4.0
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As artificial intelligence technologies have become more mature and affordable, 
new applications have been introduced into production systems, in support of the 
manufacturers, on complex decision making and in their business processes. For 
instance, the potential of ML have been thoroughly investigated for quality inspec-
tion. ANNs are among the most popular classifiers and they have been employed 
for many applications such as fault diagnosis [35–37]. Moreover, Sharp et al. (2018) 
used Natural Language Processing (NLP) to investigate the effort being put towards 
advancing Machine Learning in manufacturing, as well as the prominent areas of ML 
use, the ML popular algorithms and have highlighted the existing gaps and areas, 
where ML could play a vital role [28]. Wuest et al. (2016) in their review on ML 
in manufacturing, have highlighted challenges, such as the manufacturing systems’ 
dynamic nature, chaotic structures and high dimensionality, apart from foreseeing 
the upsurge of unsupervised methods with the increase of the available data [10]. 

On the other hand, Wang et al. (2018) have focused on deep learning for smart 
manufacturing, they have examined the evolution of deep learning technologies and 
their advantages over traditional ML, and pinpointed some limitations, which could 
be resolved with the evolution of computing resources [38]. In deep learning, the 
features are learnt with the transformation of data into abstract representations. In 
addition, the deep learning models have an end-to-end high hierarchical model struc-
ture, with the nonlinear combination of multi-layers, which enables the joint training 
of the parameters. On the other hand, the construction of the traditional machine 
learning models imposes step-by-step training. 

Today’s factories envision levels of automation, where industrial robots mimic the 
movements and, seemingly, the intentionality of human workers. Robots nowadays, 
not only do they work faster and more reliably than their human counterparts do, 
but also perform tasks, such as the microscopically precise assemblies, which are 
beyond the human capability altogether. The real benefit from AI in manufacturing, 
will not just be through the automation of tasks but through the provision of new 
levels of autonomy that will make entirely new applications possible and introduce 
new business processes in manufacturing. Predictive maintenance [39–41], energy 
management optimization [42, 43], involvement of customers in the design phase 
[44–46], plant-wide control [47] are some of the AI-enhanced capabilities. More-
over, automated processes, autonomous vehicles, robotics, Human–Robot collabo-
ration and the combination of all the aforementioned may contribute to achieving 
the optimum dynamic exploitation of the resources, if integrated into combination 
with smart planning and scheduling systems [48]. 

This book will present a perspective on Artificial Intelligence in Manufacturing, 
following the taxonomy of AI applications depicted in Fig. 1.6. This taxonomy has 
emanated from the consideration of the different hierarchical levels of manufacturing 
systems e.g. factory, job shop, work center, resource. Each one of these levels is 
characterized by different planning and decision horizon levels, which in turn, pose 
different requirements for the design, implementation, and performance evaluation 
of the corresponding AI applications. The higher the hierarchical level, the longer 
the decision horizon, and the greater the impact of the decision [25]. In more detail,
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Fig. 1.6 AI-based applications in the systems-equipment-process levels taxonomy and decision-
making characteristics per level 

applications related to manufacturing processes (Chap. 2), manufacturing equipment 
(Chap. 3), as well as manufacturing systems (Chap. 4) are presented. 
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Chapter 2 
Artificial Intelligence in Manufacturing 
Processes 

Abstract A manufacturing process is defined as the use of one or more phys-
ical mechanisms to transform the shape and/or form and/or properties of a mate-
rial. This chapter discusses AI topics, related to manufacturing processes. Initially, 
there is a short introduction to the main categories of manufacturing processes, 
namely, forming, deforming, removing, joining and material properties modification 
processes. Then, the chapter discusses the role of AI in supporting key activities, 
at process level, including (i) process monitoring and data processing, (ii) process 
modeling, optimization and control, (iii) fault diagnosis, tool wear prediction and 
remaining useful life estimation and (iv) process quality assessment and prediction. 
For each topic, the scope and the theoretical background are initially provided and 
then selected cases of AI applications are discussed. At the end of this chapter, both 
the impact and the limitations of AI at manufacturing process level are discussed. 

Keywords Process optimization · Process control · Process monitoring · Adaptive 
control · Fault diagnosis · Data preprocessing · Alarms management · Tool wear 

2.1 Introduction in Manufacturing Processes 

“A manufacturing process is defined as the use of one or more physical mecha-
nisms to transform the shape and/or form and/or properties of a material” [1]. A 
large variety of processes have been widely used to produce products, which in 
turn, has led to several proposals for the classification of processes. A high-level 
classification divides processes into discrete parts processes (where single items 
are processed) and continuous processes (where the material that is processed is 
continuous matter e.g. liquid). For instance, the metalworking industry involves 
the production of several single items thus, it utilizes discrete component manu-
facturing, whereas chemical processing, which is also involved in the fiber-making 
industries, uses continuous processes. Swift and Booker (2013) categorize processes 
as casting, cutting, forming, and fabrication Swift and Booker [2]. Kalpakjian and 
Schmid (2006) classified processes into six subcategories of casting, machining, 
finishing, joining, sheet metal, polymer processing, and deformation processes [3].
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Finally, Chryssolouris (2006) suggested the following taxonomy of manufacturing 
processes [1], where the following five categories were introduced: 

1. Forming or primary forming processes—these processes refer to the creation of 
an original shape from a molten or gaseous state, or from solid particles of an 
undefined shape (e.g. casting, melt processing). Normally during this type of 
process, cohesion among particles is created. 

2. Deforming processes—processes that alter the original shape of a solid to another 
shape leaving its mass or material composition intact (e.g. extrusion, forging). 
During this process, cohesion is maintained among particles. 

3. Removing processes—processes where material removal occurs (e.g. turning, 
drilling, milling) cohesion among particles is destroyed. 

4. Joining processes—processes that unite individual parts to make subassemblies 
or final products (e.g. welding, adhesive bonding, mechanical joining). Additive 
processes, such as filling and impregnating of workpieces, are also included in 
this category; cohesion among particles is increased. 

5. Material properties modification processes—processes that purposely change 
the material properties of a workpiece to improve its characteristics based on 
the requirements of each application without changing its shape (e.g. anodizing, 
electroless plating). 

The selection of the set of manufacturing processes for the production of the final 
product is a critical decision point that affects cost, production rate, part quality, and 
so forth. The discussed categories of manufacturing processes are applied to a wide 
range of engineering materials (metals, ceramics, polymers, and composites) each of 
which is more efficient to be produced via certain processes that are mainly affected 
by the following two factors that seem to be the most important ones (Fig. 2.1):

1. The lot size of the parts to be manufactured: small lot sizes require flexible 
processes capable of accommodating different geometric features, etc. (e.g., 
material removal processes). On the other hand, large lot sizes enable the amor-
tization of the high tooling costs of the primary forming or deforming processes, 
and hence their utilization. 

2. Physical properties of the material (i.e. melting point): The high melting temper-
atures of metals suggests that they are usually processed in solid form i.e., using 
material removal and deforming processes. Polymers and composites have a 
lower melting point, allowing the use of other processes such as forming, where 
the material is often in a liquid state; Nevertheless, secondary operations, e.g., 
grinding, are often required to comply with the desired dimensional accuracy 
and surface quality. Ceramics are usually brittle, which means that it is diffi-
cult to process this type of material in solid form with the use of conventional 
machining techniques. Consequently, primary forming processes are preferred 
for the creation of the basic shape of the workpiece, and secondary operations 
(usually machining) are used for the creation of the final shape and surface quality. 

Even though empirical rules allow for the selection of suitable manufacturing 
processes, the demands of the contemporary market have stimulated investments
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Fig. 2.1 The effect of melting point and lot size on manufacturing process application [1], Reprinted 
with permission from Springer-Verlag New York INC

in new technologies for manufacturing processes, including the innovative design 
of jigs and fixtures [4, 5]. Over the years, significant progress has been made by 
the improvement of hardware, energy sources, and the discovery of new materials. 
Additionally, both gradual and radical changes are expected by advanced manufac-
turing, which encompasses among other technologies, such as computer-controlled 
numerical control machines (CNC), automatic guided vehicle systems, computer-
aided design (CAM), robotics, and rapid prototyping [6]. For instance, rapid proto-
typing, which is also known as additive manufacturing, 3D printing, and additive 
layer manufacturing, can allow for the transformation of freeform design to fully 
functional products, while promoting environmental advantages [7]. On the other 
hand, research on jigs and fixtures seeks to enable flexible work-holding solutions 
that will support the gradually increasing complexity of part sizes, shapes, machines, 
assembly, and cutting tools, while minimizing the required setup times [8, 9]. 

The following paragraphs will focus on the advancements that the emerging ICT 
technologies in tandem with AI can bring towards ameliorating the current practices 
in manufacturing processes. To this effect, a wide range of indicative applications 
focus on (a) process data collection, structuring, and fusion, (b) the adaptation of 
process models and the use of the Digital Twin concept for improved decision-
making, (b) process quality assessment and prediction, (c) process optimization and 
control, and (d) tool condition monitoring and wear prediction are discussed.
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2.2 Process Monitoring and Data Processing 

The backbone of AI-based tools is the collection of meaningful data that will subse-
quently enable the development of intelligent solutions for more complex problems, 
namely process control. Under this prism, the first paragraphs of this section are dedi-
cated to the use of AI for the collection of data in an automated, reliable, and effective 
manner and for making sense out of big, multi-sensor, multi-stream data collected 
at high sampling frequencies. Relevant subjects that are likewise discussed, include 
typical sensor systems installed in the industry in current practice, approaches that 
have been investigated for the exploitation of multi-source and heterogenous data, 
as well as AI-enhanced approaches that have been proposed for monitoring process 
parameters, including tool position and speed, temperature, pressure, current, etc. 

With increasing automation, more and more human inspection activities are allo-
cated to intelligent sensors, which have sensing and processing capabilities at the 
same or a superior level. By way of illustration, machine vision has been used to watch 
for product surface changes and tool breakage and touch-probes have eliminated the 
need to establish datum points among incoming material stock, cutting tools, and 
fixtures, whereas thermocouples and/or chemical sensors can provide information on 
whether the tool temperature is too high, which was previously detected by operators, 
watching for changes in the chip color and/or the smell of cutting fluids. Accelerom-
eters and dynamometers can detect the excessive vibrations between tools and parts 
or even enable the anticipation of tool failure, which was previously achieved by the 
hearing sense of operators. Moreover, excessive cutting forces can be detected by 
strain gages and dynamometers, in place of the touching fixtures of tool holders. 

As it occurs from the examples discussed, depending on the case, it might be 
reasonable for the sensors to monitor the tools, the workpieces, but also the perfor-
mance of machines, given that with the use of the appropriate methodologies func-
tionalities, such as the automatic process control, the supervision and error recovery 
actions can be enabled. Thus, sensors can be categorized into three groups, based on 
their function: 

1. tool monitoring: this function enables among others the performance of (i) tool 
identification (e.g., bar code sensors), (ii) tool grip confirmation (e.g., proximity 
switches and limit switches), (iii) automatic tool change (ATC) and tool maga-
zine operation confirmation (e.g., using proximity switches and limit switches), 
(iv) tooltip position confirmation (e.g., mechanical contact sensors), and (v) tool 
condition monitoring (e.g. Load cells, proximity switches and acoustic emis-
sion sensors are used for lathes, acoustic emission, and touch sensors used in 
machining centers). 

2. workpiece monitoring: involves (i) work identification (e.g. proximity and limit 
switches, mechanical touch sensors), (ii) workpiece dimensions (e.g. contacting 
stylus, electrostatic capacitance, ultrasonic and electromagnetic sensors), (iii) 
mounting position (e.g. proximity switches, touch sensors, and air sensors), (iv) 
confirmation of mounting/faulty mounting, and (e.g. air sensors, air micrometers,
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pressure sensors, and touch sensors), (v) unsatisfactory chucking or loose chuck 
(e.g. proximity switches, pressure sensors and limit switches). 

3. machine performance monitoring: this function aims to satisfy requirements in 
the fields of quality control and automation as well as to improve the product’s 
competitiveness and more details are provided in the process control section. 

AI approaches for sensing and monitoring have already been studied from the 
second upsurge period of AI (the 1980s) [10–12], however, there have been some 
changes since then. The rapid advancement of technology results in increasingly 
complex mechanical equipment, with an integrated multi-sensor monitoring system, 
which in turn, perplexes the detection, and identification of faulty states of machine 
tools [13]. On the other hand, Machine vision is widely adopted for workpiece moni-
toring, as it is deemed to significantly improve defect detection in terms of efficiency, 
reliability, and quality. As a result, there is a greater variety in the captured data, since 
for instance, machine vision may extend outside the visible band of the electromag-
netic spectrum, capturing data ranging from radio waves to gamma rays [14]. The 
large amounts of data acquired at high speed (e.g. videos), in combination with the 
networking possibilities of I4.0 has inflated the adoption of big data perspectives. 
The development of AI-based tools to monitor multimode processes has attracted 
limited attention, especially in the field of discrete part manufacturing [15]. Although 
these tools may be used in order to enhance the management of the complexity, 
to make accurate and reliable decisions despite nuisance, the time-varying process 
settings, dynamic process conditions, and non-stationary patterns. Indicatively, Yang 
and Zhou (2015) have developed a method, based on neural networks, aiming to 
locate costly false alarms, due to signals’ disturbances [16]. 

The variability and richness of the collected signals call for the use of feature 
extraction (data processing) and then some technique for the detection and/or recog-
nition of defects and faults, since the direct recognition of patterns and the inference 
of the process condition are almost impossible [17]. AI can empower the anticipation 
of detecting process anomalies and defects, given as input, a fusion of multi-sensor 
data embedded into the processing machines. In this case, proprioceptive, such as 
encoders, pressure sensors, etc. whose main purpose is to monitor the machine’s 
condition and the energy source is used to extract relevant information about the 
process and the occurrence of undesired events. The contribution of AI in this scenario 
is the intelligent fusion of data in order to determine the stability of the process and 
to foresee process anomalies that may affect the final quality of the part. 

Intelligent monitoring systems usually include preprocessing that is responsible 
for the transformation of the input patterns into low-dimensional feature vectors for 
easier match and comparison [18]. Next, the feature vectors are used as the input 
of AI techniques that map the obtained information in the feature space to types 
of product defects and/or equipment faults. Indicative AI tools that have been used 
comprise mathematical optimization, classification, and probability-based, as well 
as statistical methods. Focusing on classifiers and statistical learning, the k-nearest 
neighbor algorithms [19], the Bayesian classifier [20], the support vector machine
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(SVM) [21], and the artificial neural network (ANN) [22] are the most popular and 
deep learning approaches that have started gaining interest [23]. 

Feature extraction has been frequently addressed with signal-processing methods 
e.g. time-domain analysis (mean, variance, kurtosis estimation), frequency-domain 
analysis (fast Fourier transform and bi-spectrum analysis), time–frequency anal-
ysis (Hilbert-Huang transform, wavelet transform, wavelet packet transform, sparse 
decomposition, etc.). Traditionally, the features are manually extracted, based on 
previous knowledge and expertise [24]. Nevertheless, in many cases, it is difficult to 
identify what features should be extracted to feed the AI-based techniques, which 
invite the use of deep learning. Deep learning algorithms can automatically learn 
features at multiple levels of abstraction, thus endowing, the learning of complex 
functions mapping the input to the output directly from data [25]. 

Furthermore, data fusion and feature dimensionality reduction methods are 
employed to simplify big data handling. For instance, it is a common practice to apply 
k-NN in combination with different reduction methods, such as principal compo-
nent analysis or contribution analysis [26]. Chryssolouris et al. (1992) worked on 
the synthesis of multi-sensor information, using neural networks to synthesize the 
state variable estimates, based on the input of different sensors, as well as statistical 
criteria for the estimation of the best-synthesized state variable [10]. Deep convo-
lutional neural networks performing multi-domain feature fusion were presented in 
[27]. Elbhbah and Sinha (2013) constructed a single composite spectrum, based on 
vibration measurements on multiple bearings to simplify the identification of faults 
in rotating machines [28]. 

Segreto and Teti (2019) deployed a multisensory monitoring system, comprising 
acoustic emission, strain, and current-based sensors, in a robot-assisted polishing of 
steel bars case study [29]. In their work, they present two alternatives for the extraction 
of relevant features, one using statistics, and another one using the wavelet packet 
transform. The features are used to construct different types of pattern feature vectors 
(basic and sensor fusion pattern vectors) that were propagated to a neural network 
pattern recognition algorithm in order to assess the roughness level of the surface 
of the polished part. Better success rates have been reported for the sensor fusion 
pattern feature vectors, which have confirmed the high efficacy of the sensor fusion 
technique in making full use of sensorial information. 

C. Liu et al. (2018) proposed a machining condition recognition approach, based 
on multi-sensor fusion and support of the vector machine (SVM) in order to provide 
accurate recognition of machining conditions [30]. The suggested approach is based 
on a dynamometer sensor (collection of cutting forces) and an acceleration sensor 
(collection of vibration signals) processed with the wavelet decomposition method 
for the extraction of signal characteristics including means and variances. SVM is 
used as a condition recognition method, which is fed with one characteristic vector, 
where the signal characteristics of different sensors are extracted through the infor-
mation fusion theory at the feature level. Zhang and Shin (2018) worked on turning 
process monitoring, using signals from two different types of sensors: a power meter 
and an accelerometer Zhang and Shin [31]. Their approach was based on signal 
processing and feature normalization to reduce dependencies on cutting conditions,
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workpiece materials, and cutting tools, as well as feature selection. The type-2 fuzzy 
basis function network is proposed for tool wear prediction, which is considered a 
regression problem, where the gradual growth of the tool wear needs to be moni-
tored, whilst the chatter and tool chipping are dealt with as binary classification 
problems, via the SVM classifier. Grasso, Gallina, and Colosimo (2018) proposed 
the use of the one-class-classification SVM combining multi-sensor data into a multi-
variate space, where any occurrence of multi-sensor measurements, outside a region 
corresponding to controllable states, would lead to an automated alarm [32]. Wuest, 
Irgens, and Thoben (2014) worked with cluster analysis and Support Vector Machine 
(SVM) on product state data e.g. dimensions, surface roughness, etc. to describe the 
states of individual products along the entire process plan [33]. This approach has 
been proposed in place of traditional methods of modeling cause-effect relations 
to address the high complexity and high dimensionality of field data and improve 
quality monitoring. 

Beyca et al. (2016) developed an approach, based on the Bayesian non-parametric 
Dirichlet Process for the real-time monitoring of ultra-precision machining process, 
by using multiple heterogeneous sensors, i.e. a miniature tri-axis force, tri-axis vibra-
tion and acoustic emission sensors, mounted in close proximity to the cutting tool 
[34]. A similar approach was proposed by Rao et al. (2015) who used thermocou-
ples, accelerometers, an infrared temperature sensor and a real-time miniature video 
borescope in order to monitor additive manufacturing processes[35]. 

Physics-based approaches can also enable the processing of data for the identifi-
cation of a process’s status and whether the machines will retain the desired level of 
performance. Aivaliotis et al. (2021) presented the application of a method combining 
data having derived from multiple sensors integrated into the robot controller with 
the use of physics-based models in order to predict whether and when the robot will 
underperform [36]. This approach was based on [13], where a methodology was 
discussed for the selection of sensors to be used for the monitoring as well as the 
development of machine simulation to enable predictions for the remaining useful 
life of complex equipment. 

2.3 Process Modeling, Optimization and Control 

In traditional CNC systems, machining parameters are usually selected according to 
handbooks or previous experiences, leading to conservative configurations of process 
parameters for the avoidance of failures. Even if the machining parameters have been 
optimized offline by some optimization algorithm, their in-process adjustment is 
required due to tool wear, heat changes, and other disturbances that vary the system’s 
dynamics. Thus, ensuring the quality of the products, reducing the machining costs, 
and increasing the machining efficiency, impose the online optimization and control 
of the machining process, i.e. the machining parameters must be adjusted in real-time 
to satisfy certain machining criteria.
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The optimization of the process model parameters is an ongoing research 
subject. For instance, Mellal and Williams (2016) employed the cuckoo optimiza-
tion algorithm and the hoopoe heuristic to optimize the control parameters of both 
conventional and advanced machining processes. Tamang and Chandrasekaran have 
proposed an integrated optimization methodology, using ANN, in combination with 
particle swarm optimization (PSO), for turning processes [38]. Rao, Rai, and Balic 
(2017) have created a new multi-objective optimization algorithm, having previ-
ously used and developed regression models as fitness function, tested on the wire-
electro discharge machining process, the laser cutting process, the electrochemical 
machining process, and they focused on beam micro-milling [39]. Sadati, Chinnam, 
and Nezhad (2018) have developed a framework, which is agnostic of the optimiza-
tion technique, with historical data for optimized process parameters design and 
process performance improvement [40]. 

The optimization of process parameters and process control strategies is usually 
achieved on the basis of process models. Process models are the descriptions that 
correlate the process variables measured by the sensors (e.g. cutting force) with 
the process parameters (e.g. feed and/or speed) so that the process controllers can 
achieve effective and efficient corrective actions. A prerequisite for the formation of 
the models is usually to know the objectives of the control strategy, together with 
the weighting of each objective compared with the others. Some researchers have 
deployed process Digital Twins (DTs), aiming to eliminate the manual data changes 
that are required in the digital models. The difference between the digital models and 
the digital twins is that digital models refer to the digital representation of the process 
[41], whereas a DT is a system that includes not only the digital model, but also the 
actual process as well as data and information flows between the two instances [42]. 

Given the need to accommodate environmental and social challenges, a large part 
of research on AI for adaptive control, has considered relevant criteria. AI techniques 
have been used for the prediction of power requirements in machining processes. 
Energy and production efficiency for machining process optimization is discussed 
in [43]. Dynamic prognosis is achieved by deploying a CNN on a fog node for 
the detection of potential faults, from the customized machining process through the 
evaluation of power signals, collected by power sensors. In this way, machines can be 
quickly stopped for maintenance in case of an abnormal situation. An energy-aware 
ant colony algorithm was used in [44] for the minimization of the total completion 
time and energy cost of a single machine. 

Despite the complexity of manufacturing processes that emanates from non-
linearities e.g. phase change, as well as the various physical phenomena that are 
usually involved per case e.g. self-oscillation, electromagnetic induction, etc., a wide 
range of process models (physics-based and data-driven) has been presented. Indica-
tively, the modeling and prediction of process forces in grind-hardening have been 
studied with a physics-based approach for the optimization of process parameters 
[45]. Finite element models have been also developed for laser drilling to deter-
mine the effect of the pulse repetition rate on temperature evolution and process 
efficiency [46]. The thermal modeling of the laser cladding process has been studied 
with a physics-based model for the prediction of the clad width and depth, given the



2.3 Process Modeling, Optimization and Control 23

processing speed and feed rate of the powder [47]. Pastras, Fysikopoulos, and Chrys-
solouris (2017) studied the correlation of energy efficiency (required material volume, 
absorbed energy for material heating, process duration, etc.) with process variables 
(laser power, scanning speed) and the weld pool geometry (penetration depth, inter-
face width, weld length, top and bottom surface concavity) in laser welding [48]. 
Finite element analysis and computational fluid dynamics were used to improve the 
velocity range of particles towards improving the adhesion quality in cold spray addi-
tive manufacturing [49]. Wave propagation in cutting tools was studied by [50] with 
the use of Boundary Element Method 2D simulation, in order to get insights into the 
effects of tool geometry, machine vibrations, and noise in Acoustic Emission signals 
and improve control strategies that are based on such a kind of sensor feedback. 

AI could be used to accelerate theoretical (physics-based) process models, towards 
their running in near-real time [51], where the term “near-real-time” in the context of 
decision making or optimization, refers to the ability to react to optimization requests 
within a fraction of process time. Figure 2.2 depicts an example of such functionality, 
where AI, with the help of mathematical physics, is used for the generation of a mesh 
for Finite differences that can improve the running time of the model itself. In another 
approach, Neural Networks have been employed for the production of an advanced 
simulation of grind-hardening [52], whilst [53] exploited the capabilities of data-
driven methods for the derivation of process models to reduce the required domain 
knowledge that is required for the derivation of the counterpart theoretical models.

The automation of manufacturing processes is typically accompanied by the defi-
nition and deployment of control loops which are responsible to tune process param-
eters based on the target process results and feedback information about the ongoing 
status of the manufacturing process. Therefore, the automated mapping of field data 
to parameter adjustments such as the speed and feed, to obtain adequate opera-
tion of the process invites the development of dedicated control systems. Indus-
trial Control Systems is a common term, describing all types of control systems, 
comprising controllers (e.g. Programmable Logic Controllers), actuators, sensors, 
and other components, which are installed in an industrial facility for the collection 
of large-scale data in real-time. 

The controller is typically an electronic hardware device that receives information 
from the monitoring system and utilizes the process model to compute the responses 
of the system’s actuators. Proportional-Integral-Derivative (PID) controllers are 
among the most adopted controllers in industry thanks to their cost/benefit ratio [54]. 
The control schemes presented so far are of a wide variety, extending from relatively 
simple strategies, based on PIDs of fixed gains to more complex controllers, based 
on AI methods e.g. [55]. 

The motivation to seek advanced control strategies comes from the market demand 
for high reliability, high-precision, and high productivity of the manufacturing 
processes in order for the manufacturers to remain competitive. This in practice, 
means that the developed controllers should be capable of compensating for several 
sources of uncertainty, including even those arising from the errors/assumptions of 
the process models, based on which they compute the system’s response. As an 
example, process models might induce errors or any uncertainty due to the dynamics
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Fig. 2.2 Adaptive mesh for modeling, generated with the help of AI [51], Reprinted with permission 
from Elsevier

of the systems not being fully understood and the models not being as comprehen-
sive as needed. In view of coping not only with process model errors, and uncertain-
ties, but also with the varying dynamics of the systems performing manufacturing 
processes, the corresponding control systems require robustness and adaptivity to a 
certain degree [56]. 

Early controllers were usually based on fixed-gain controllers, which however, 
have limitations to addressing such conditions, due to the critical assumption in 
their definition that the system dynamics will not vary. Consequently, this type 
of a controller is heavily dependent on the accuracy of mathematical models and 
often ends up with deteriorating the system’s performance, as the dynamics of phys-
ical processes gradually change [57]. In an effort to overcome the limitations of
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fixed-gain controllers, researchers have turned their attention to flexible controllers, 
which can seamlessly adapt to changes in signals and systems models. Chryssolouris, 
Domroese, and Zsoldos (1990) introduced the formulation of the process control as 
a decision-making problem of in-process selection of input variables, following the 
same logic as a human would, as opposed to contemporary ACO approaches, utilizing 
PID controllers [58]. This approach aims among others, to adapt to changes in the 
optimization criteria by changing the decision-making rules, as well as accounting 
for the effects of state variables, on the behavior of the overall process, at the price 
of higher in-process computational effort. Rojek and Kusiak [59] discussed control 
systems, based on data processing i.e. the analysis of registered data (including 
process parameters and signals) during the past production. Their approach searches, 
using a multi-agent methodology, the similarity among the current and the registered 
processes and selects the upcoming process parameters, according to the control 
function of the episode that was modeled via artificial networks. 

Owing to this, several adaptive control systems have been proposed over the last 
years, which are defined as a class of controllers, capable of adjusting their own 
behavior, in response to process dynamics and disturbances [60]. The particularity 
of adaptive controllers, compared with other control schemes, lies in their adapta-
tion mechanisms that may depend on initial knowledge, as well as on measurements 
(historical and/or ongoing). In more detail, adaptive controllers allow for the modi-
fication of the control law to overcome time-varying changes in any parameters of 
the process. Two kinds of adaptive control approaches can be distinguished. Firstly, 
the adaptive control constraint (ACC) operates by constraining the process within 
certain boundaries, in the attempt to maximize the machine tool and/or capabilities 
e.g., by constraining the maximum load for the prevention of machine overloading. 
The second kind is adaptive control optimization (ACO), which targets the optimiza-
tion of the production process according to a set of optimization criteria. Indicatively, 
the prediction of the performance of adaptive control policies for phase change, in 
thermal-based processes, has been performed for conduction welding, solidification, 
and cooling down with empirical calibration of control laws, in combination with 
process modeling [61]. Commercially available systems mainly provide solutions 
with an integrated ACC approach, whilst ACO has not received much attention so 
far due to its requirements for elaborated mathematical process models and more 
sophisticated approaches to process monitoring [56]. 

With the advent of smart sensors and measuring technology [62] the access to 
power, force, acoustic emission, etc. data has been improved, whereas AI endows 
the ability to automatically apply corrective actions, while producing a part once a 
disruption has been detected [1]. Corrective actions may include the adjustment of 
process parameters in-process, or their adaptation within the process lifecycle, for 
the sake of minimizing or even eliminating the impact of anomalies on the achieved 
quality. In case it is not possible for corrective actions to be applied, early process 
interruptions are enabled allowing the prevention of time and resources waste. 

Previous work on AI for adaptive control has addressed both the ACC and ACO 
approaches and uses techniques, such as Genetic Algorithms, Neural Networks, and 
expert rules. Liu, Zuo, and Wang (2010) presented a hybrid approach for milling
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processes, where ACO is achieved through a combination of neural networks and 
genetic algorithms, whereas ACC is based on neural networks and expert rules [63]. 
Dornheim and Link (2018) used AI, and in particular, multi-objective reinforce-
ment learning, to enable reconfigurable ACO in manufacturing processes [64]. Their 
approach enables them to perform adaptive control when the relative importance 
of the control objectives is unknown during the design of the control, or when it 
changes, due to the varying production conditions and requirements. Moreira et al. 
(2019) developed a neuro-fuzzy logic model, which allowed for the implementation 
of a control strategy, for multiple machining variables control in a closed-loop, as 
well as real-time surface quality assurance in CNC machines [55]. 

The adaptive control concept has been frequently combined with the DT 
concept, i.e. enabling automated process parameters adaptation based on estima-
tions, provided by digital models. Stavropoulos, Papacharalampopoulos, and Athana-
sopoulou (2020) worked on the hierarchical use of process models and the use of 
machine learning (variational autoencoder, adversarial networks) for the integration 
of simulation responses into a process DT, to make predictions and select process 
parameters towards meeting process requirements (Fig. 2.3) [65]. García-Díaz et al. 
(2018) introduced an OpenLMD architecture and a multimodal online monitoring 
system, which enables the use of machine learning techniques for process control 
and readjustments [66]. Actuators are hardware devices that accept the in-process 
control system commands as their input and convert these commands into adjust-
ments to the process parameters. Papacharalampopoulos and Stavropoulos (2019) 
have developed a control-centric DT, based on a switched dynamic system model 
for thermal (laser-based) processes, which can be adapted, based on collected data, 
thus facilitating automated decision-making [67].

A DT was designed and implemented to manage uncertainty and robust process 
control in an additive manufacturing case study [68]. This approach is based on linear 
matrix inequalities (LMIs) for the control design and considers a DT lifecycle of a 
four-phase preparation, training, running, and generalization. The training phase, 
(Fig. 2.4), is crucial for the quantification of the material properties, whereas the 
integration of the uncertainty is achieved by defining a set of different material models 
that set the nominal process model, based on which the control can be designed. 
Further functionalities for the training procedure are (i) the modeling manipulation 
(retrieving real-time models out of theoretical models, which can then be integrated 
into the DT workflow for the formulation of the process control law) and (ii) the 
capability tracking (i.e. feasibility of the control form), which is required to ensure 
that the machine controller has the ability to assimilate a new control form. AI 
can manage the workflow of information and knowledge management similarly to 
[69]. An approach, based on the Dynamic Feature concept, has been proposed for 
the integration of machining, monitoring and the online inspection operations for 
optimized machining process control of complex parts [70].

Extending the concept of DT to the implementation of advanced human–machine 
interfaces, a DT architecture that enables users to remotely control and monitor the 
state of a fused deposition machine was presented by [71]. Another study has used



2.3 Process Modeling, Optimization and Control 27

Fig. 2.3 Molecular dynamics-based simulation [65], Reprinted with permission from Springer-
Verlag London

Fig. 2.4 Robust manufacturing implementation [68], Reprinted with permission from MDPI

Augmented Reality (AR), based on DT for process monitoring of laser-based manu-
facturing, enabling real-time information analysis and advanced data visualization 
of the process’s performance discussed by [72]. Finally, the integration of robust 
control design with cyber security policies has been addressed with a game-theoretic 
approach [73].
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2.4 Fault Diagnosis, Tool Wear Prediction, and Remaining 
Useful Life Estimation 

Besides data processing and control, AI has attracted the attention of many 
researchers and seems promising in fault recognition applications. The recognition 
of the experienced faults can be regarded as a pattern recognition problem, where 
the power of AI algorithms has been frequently tested, proving their robustness and 
adaptation capabilities [25]. The motive behind developing solutions for fault diag-
nosis, but also the remaining useful life and tool wear prediction, includes among 
others, the reduction of impact on product quality, as well as the reduction or even 
the elimination of unexpected machine downtime. In particular, the objective of the 
developed methods is to diagnose and repair problems without human intervention. 

Typically, tool condition monitoring and tool wear prediction are necessary to 
prevent problems due to physical phenomena that induce performance degradation in 
machine tools, such as excessive heat, produced by external or internal heat sources 
or disturbances in machining processes. For instance, a disturbance in the cutting 
process (because of a hard spot in the work material, for example) will cause a 
deflection of the structure, which may alter the undeformed chip thickness and in 
turn, alter the cutting force [1]. The initial vibration may be self-sustaining and 
cause the machine to oscillate in one of its natural modes of vibration, causing 
instability due to the regenerative effect, which is the dominant phenomenon, and/or 
the mode-coupling effect. 

Overall, tool wear and fault detection methods can be classified into two 
approaches, direct (i.e. taking measurements of the tool itself to determine wear 
or breakage of the cutting edge) and indirect (i.e. using in-process measurements 
to monitor the tool condition) [1]. Direct methods for tool condition monitoring 
can be used to (i) check the dimensions of the workpiece; any deviation of the part 
geometry from the desired dimensions due to tool wear can be compensated for in 
subsequent cuts until the tool needs replacement, and (ii) check reflective properties 
of the surface, taking advantage of the fact that worn surfaces have higher reflective 
properties as compared with an unworn surface. The dirty conditions of the factory 
floor may undermine the performance of the required optics, (iii) check the tool’s 
shape and geometry, using computer vision techniques [74]. 

Indirect methods for tool condition monitoring include (i) tool/work displace-
ment methods, where the location of a machined surface is compared with the 
surface machined by an unworn tool. This approach is similar to the touch trigger 
direct method, but the direct method’s disadvantages are avoided if the measure-
ments are made in-process. (ii) electrical resistance methods, based on the varying 
area of contact between the tool and workpiece. The electrical resistance across the 
tool/workpiece junction increases as the tool wears. These methods may be influ-
enced by the cyclic temperature variations from intermittent cutting operations. (iii) 
radioactive techniques, where a small amount of radioactive material is implanted 
in the flank face of the cutting tool at a known distance from the edge. When the 
material is removed, the tool is discarded. However, there are questions about the
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safety of these methods and the costs of clean-up and disposal. (iv) monitoring of 
the cutting forces by utilizing an analysis of the frequency components of the force 
or torque signal. Forces and torques are easily measured in-process, by using for 
instance, tool-holder dynamometers on lathes, table dynamometers on milling and 
drilling machines and machining centers, dynamometers built into the spindle bear-
ings, or even by evaluating the cutting force, based on the spindle motor current, 
voltage, and speed. (v) A substantial amount of research has also been performed to 
develop methods of using acoustic emission (AE) signals for tool wear monitoring 
and tool breakage detection. (vi) Efforts have also been made to correlate the tool 
temperature with the tool wear. (vii) Several researchers have investigated the possi-
bility of fusing the information from a variety of sensors to obtain more accurate and 
reliable estimates of the tool wear [56]. 

Direct methods lead to lost production time due to the inability of failure to be 
detected while the tool is being cut; thus, these methods may be acceptable for small 
lot sizes, where frequent access to the tool does not cost much production time 
[75]. Nevertheless, with the increasing industrial interest in in-line and in-process 
monitoring techniques, academics and practitioners focus more and more on indirect 
methods. Stavropoulos et al. (2014) investigated the indirect tool wear monitoring in 
milling processes and the isolation of vibration signals, due to tool wear, by excluding 
other vibration sources with process simulation [76]. 

The isolation of fault-relevant signals, as well as the detection and recognition of 
faults are the core underlying functions of a fault diagnosis technique [17]. This has to 
do with determining whether the equipment condition is normal or not, identifying the 
incipient failure and its causes, reasoning and predicting the trend of fault progression. 
AI approaches have the advantage of not requiring full prior physical knowledge, 
which may be difficult to be obtained in practice, explaining why a multitude of AI 
algorithms is used in this area, including k-NN, Naive Bayes classifier, SVM, and 
ANN [25]. 

Stavropoulos et al. (2016) investigated tool wear prediction on milling processes, 
using a simultaneous collection of acceleration and spindle drive current sensor 
signals, together with third-degree regression models and pattern recognition systems 
for their prediction [77]. Other approaches that investigated wear in milling opera-
tions, comprise the use of trend lines [78], neural networks [79] and random forests 
in place of ANNs and Support Vector Regression [80]. Neural networks have also 
been suggested for the tool wear prediction in drilling operations [81]. The arc-fault 
detection problem was studied in [82] by means of real-time deep neural networks, 
using Fourier coefficients, Mel-Frequency Cepstrum data and Wavelet features as 
input to differentiate normal from malicious current measurements. 

Anagiannis, Nikolakis, and Alexopoulos (2020) performed an energy-based prog-
nosis of the remaining useful life of the coating segments in hot rolling mill [83]. 
They analyzed segments of surface temperatures and hydraulic forces and used 
nonparametric statistical processes to predict the number of remaining products to 
be processed within a certain prediction horizon. The Maximum Likelihood Estima-
tion was made in order for the probability of failure, within the defined prediction



30 2 Artificial Intelligence in Manufacturing Processes

horizon to be assessed. However, common statistical process monitoring assump-
tions regarding the temporal dependence of process data are not often representative 
of the highly time-variant and non-stationary in nature manufacturing processes 
for complex products. Unstable and time-varying cutting conditions are caused by 
the repeated tuning and recalibration of process parameters in order for small lot 
size orders and highly personalized products to be served. This impacts the system’s 
data acquired by the process monitoring, causing dynamic and non-stationary signals 
pattern. ANN algorithms are not suitable for highly varying scenarios, or they require 
a time-consuming training phase [84]. This is where deep learning solutions, e.g. 
Recurrent Neural Networks, can flourish, thanks to their capabilities to achieve high 
prediction accuracy, even with a limited training dataset and to cope with complex 
and time-varying process patterns. For instance, An enhanced deep autoencoder was 
implemented by [85] for the identification of faulty conditions in rotating machinery 
applications. 

2.5 Process Quality Assessment and Prediction 

The minimum variation in the process has been proposed by Genichi Taguchi as 
the definition of quality [86], whereas. Based on [1] “The tolerance is defined as the 
range of values within which the particular dimensional characteristic of the product 
is acceptable”. AI algorithms have the potential to detect patterns accurately, reliably, 
and quickly, which together with the advent of advanced inspection methodologies, 
namely X-ray computed tomography, enables the detection of the effects of process 
deviations and tolerances exceedance. In more detail, AI allows determining discrep-
ancy models of both external and internal features and therefore has the potential to 
address a multitude of challenges, faced by quality engineers and practitioners. 

Up until recently, statistical quality control has been one of the most popular 
approaches being based on control charts to monitor the output of manufacturing 
processes, identify unnatural variations in the measurements and specify their 
assignable causes [87]. The equipping of manufacturing systems with hundreds 
of sensors, though, has favored the collection of quality-related big data and the 
automation of analyses with the use of methods such as neural networks. Hence, 
the Zero Defect Manufacturing concept, which aims at decreasing and mitigating 
failures within manufacturing processes [88], has been provided with the required 
tools and data to flourish. The characteristic of this concept is that defects have 
to be prevented, and therefore, everything needs to be done in time scales, smaller 
than processing times, which differs from traditional quality control, i.e. six-sigma. In 
addition, corrective actions need to be identified for every single part being produced, 
as well as for every possible process anomaly that might arise. 

An example of how AI can help process and quality engineers is the fast and 
robust in-line detection of process anomalies, for instance, by inspecting the product’s 
surface. Neural Networks have been proposed for the estimation of the diameter of 
machined holes, in a metal removal monitoring application [89], as also surface
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roughness prediction [90, 91]. Statistics and the wavelet packet transform have 
been employed in a multi-sensory monitoring system, in combination with a neural 
network for the evaluation of polished parts’ surface roughness [92]. Nacereddine, 
Goumeidane, and Ziou (2019) dealt with the automatic classification of weld defects, 
based on radiographic images. In particular, they have achieved the classification 
of defects into four different types (crack, lack of penetration, porosity, and solid 
inclusion) by using an unsupervised classifier, based on the multivariate generalized 
Gaussian distribution [93]. The same problem was addressed with a combination of 
PCA and SVM methods [94, 95]. PCA and an alarm rule, based on k-means clus-
tering, are proposed for inspection in laser melting manufacturing, using frames of a 
video sequence [96]. The automated inspection in laser melting manufacturing, has 
also been the focus of Bugatti and Colosimo (2022), who compared the performance 
of an unsupervised k-means-based approach against Support Vector Machines and 
neural networks for the classification of hot-spots [97]. They have concluded that all 
tested classifiers were 80 times faster than the state-of-the-art PCA-based methods 
used for comparison. 

Automating the surface inspection task in industrial applications, is challenging 
due to the costly data collection being a prerequisite to training appropriate methods, 
which tend to be highly dataset-dependent. Ren, Hung, and Tan (2018) proposed deep 
learning in an effort to alleviate these obstacles that were used for defect segmentation 
in three defect types [98]. In their approach, a classifier is built, based on the features 
of image patches, which are transferred from a pre-trained deep learning network, 
whilst pixel-wise prediction is obtained from the trained classifier over the input 
image. Deep learning has also been used by [99] for automatic visual inspection 
of defects such as scratches, burrs, and wears on surface parts. Imaging analysis 
with CNN (Convolution Neural Network) of training samples was run to determine 
whether defects exist in an image sub-region, whereas several types of deep networks 
of different depths and layer nodes, had been tested prior to concluding that a single 
CNN-based network is enough for the detection of several types of defects on textured 
and non-textured surfaces. Advantages in time and cost saving are reported over 
traditional manpower inspection systems. 

The prediction of internal failures, before they are shipped, has attracted atten-
tion since it can prevent waste and increase customer satisfaction. The difficulty of 
this task falls into two categories, which are the scarcity of data, representing these 
failures and the limited ability of traditional machine learning algorithms for the opti-
mization of non-convex metrics, such as Matthew’s Correlation Coefficient (MCC). 
Maurya (2016) predicted internal failures with a meta-optimization algorithm that 
directly maximized MCC and a Gradient Boosting Machine (GBM) as a classifier 
for the meta-optimization algorithm [20]. Machine learning and sparse sensing were 
suggested in [100] for the prediction of shim gaps in aircraft assembly in order to 
reduce the need for gap filling, which is a time-consuming process causing produc-
tion delays. This work assumes the existence of patterns, in shim distribution and 
performs a least squares regression for prediction of the shim occurrence. 

A more complex problem is the quality prediction in the scenario of multistage 
machining processes, where various kinds of errors might influence the final quality,
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having derived from machine tools, cutting tools, previous machining stages, or 
even fixtures. Jiang et al. (2014) presented an approach, where error propagation 
networks have been employed to deal with the relationship among the consecutive 
processes [101]. The machining form-features and machining status were defined 
as the nodes of the network, back propagation neural networks were used so as 
to analyze the performance of the machining form-feature nodes, whereas support 
vector regression was used in order to predict the degradation trend of equipment. 

2.6 AI Impact and Limitations 

As a recap, AI-based tools can inflate the advancements in manufacturing processes 
and their impact can be captured and quantified via several key performance 
indicators, the most preferred among which are the following: 

Cost reduction: 

– The in-line qualification and monitoring have significantly reduced the costs by 
eliminating handling activities and waiting times for post-process inspections. 

Footprint reduction: 
– The in-line qualification and the monitoring have eliminated the need for separate 

post-process inspection workstations. 

Scrap reduction & Higher machine availability: 
– The timely detection of defects and/or underperformance of the processing tools, 

which in turn, triggers mitigation measures, such as process interruption or correc-
tions, can critically reduce or even eliminate scrap (ZDM), as well as predict 
machine failures before they occur. 

Productivity and Resilience: 
– The AI-enhanced modules can promote efficient processing and process adap-

tations to different product volumes, materials, energy sources etc. by process 
parameters optimization, as well as adaptive control. 

Nevertheless, there is still progress to be expected. The harsh environmental condi-
tions (referring to the process’s environment) sometimes restrict the use of specific 
sensors, thus, limiting access to potentially critical data for the development and 
deployment of AI based data. Additionally, the existence of legacy systems along with 
equipment, engineering, recurring, and training costs have prevented the integration 
of new sensors in industrial environments, in many cases. 

Moreover, AI-based approaches may seem too complex to attract widespread 
adoption by practitioners. Important factors that may perplex AI-based applications 
comprise, but are not limited to (i) the type of process and process mechanisms that 
may introduce mechanical, thermal, or chemical interactions, (ii) the characteristics 
of the sensor, such as sampling rate, bandwidth, mounting possibilities, sensitivity 
to humidity, electromagnetic noise, etc., (iii) the desired granularity of analysis i.e.
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the classification of quality monitoring outcomes may extend from accepted/not-
accepted to a comprehensive set of potential process defects, which are difficult to 
manage (iv) the time frame required by the application (real-time process control, 
online quality monitoring, etc.). Furthermore, the lack of established models might be 
an additional obstacle. Indicatively, [102] claim that the lack of established quality or 
adaptive control systems for laser welding and laser cladding, has been the obstacle to 
exploiting data from the already integrated machines’ thermal sensors for monitoring 
the temperature of the melt pool towards altering the process parameters to ensure 
process quality. 

Additional limitations emanate from the required computational power to imple-
ment the AI-based tools. Several methods that have been presented, employ cloud 
resources for the required computational power. This may lead to processing consid-
erable amounts of data, but it causes delays in data transferring, which undermines 
the effectiveness of the AI methods in process-level applications for which there are 
typical real-time requirements. In this context, Liang et al. (2019) have designed a fog 
and Convolutional Neural Network (CNN) enabled prognosis system for machining 
process optimization, which disentangles the requirements for local and intensive 
computations, hence, minimizing the bandwidth requirements [43]. Another limita-
tion, concerning the methods that involve traditional machine learning techniques, 
is the requirement for the extraction of features, restricting the scalability and the 
performance of the solutions. Maggipinto et al. (2018) have proposed a deep learning 
approach, in the context of process optimization, aiming to provide estimations for 
quantities that are expensive or hard to measure [103]. 
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Chapter 3 
Artificial Intelligence in Manufacturing 
Equipment, Automation, and Robots 

Abstract The machines that perform manufacturing processes are the embodiment 
of these processes. This chapter discusses AI topics related to manufacturing equip-
ment, automation, and robots. There is a wide range of problems requiring decision-
making at the machine level, including the selection of the most appropriate type of 
machine for processing one or more parts, the identification of parameters for the 
machine’s kinematic and dynamic models, the calculation of the optimum tool path, 
the selection of control strategy and gains. More specifically, the chapter examines 
(i) AI for manufacturing equipment definition—design—selection, (ii) task planning 
and machine programming, (iii) machine control and workstation orchestration and 
(iv) machine perception. For each topic the scope and the theoretical background 
is initially provided and then selected cases of AI applications are discussed. This 
chapter takes a deep dive into AI solutions for industrial robotics that are being widely 
used since their introduction in the manufacturing systems in the second half of the 
twentieth century. 

Keywords Task planning ·Machine programming ·Workstation orchestration ·
Machine perception · Equipment selection · Equipment design 

3.1 Introduction in the Manufacturing Equipment 

“The machines that perform manufacturing processes are the embodiment of these 
processes. There is a close relationship between machines and processes since the 
capabilities and limitations of a process often depend on the design and operation 
of the machine performing it”. “machines are used in manufacturing systems since 
the machines are the physical building blocks of these systems” [1]. 

Within this section, the analysis of the added value of AI will focus on one 
level higher in the hierarchy model that was presented in the introduction chapter 
(Fig. 1.6). This section discusses AI topics for manufacturing equipment, automa-
tion, and robots. There is a wide range of problems requiring decision-making at 
the machine level, including the selection of the most appropriate type of machine 
for processing one or more parts, the identification of parameters for the machine’s
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kinematic and dynamic models, the calculation of the optimum tool path, the selec-
tion of control strategy and gains, e.g. the gains of Proportional-Integral-Derivative 
(PID) controllers, and many more. This section looks more closely into AI solu-
tions for industrial robotics that are being widely used since their introduction in 
manufacturing systems in the second half of the twentieth century. 

3.2 Manufacturing Equipment 
Definition—Design—Selection 

The term “manufacturing equipment” covers a large variety of devices and machines, 
ranging from hand tools to complex automated machining centers, encountered in 
production systems. A machine tool can be defined as a non-portable machine with 
an integral power source, which causes the relative motion of a tool and a work-
piece to produce a predetermined geometric form or shape. The discussion of the 
applications of AI for machinery equipment-related topics starts with the support for 
decision-making on machinery equipment selection. For equipment to be success-
fully integrated into the production system, several criteria should be met related to 
cost, flexibility, quality, ergonomics, and so forth, which can be highly impacted by 
the desired degree of automation. In modern manufacturing systems, the customer 
expectations necessitate flawless products, which in the level of manufacturing equip-
ment can be analyzed into two categories of characteristics: (a) accuracy in geometric 
and kinematic terms, under static, dynamic, or thermal loading, and (b) reliability, i.e., 
high machinery equipment performance over an extended period. Other factors that 
may determine the selection of a particular machine could be maintainability, work 
space accessibility, ergonomics, and safety. In general, one can say that automation 
with the use of machine tools should strike a balance between cost, quality (partic-
ularly reliability), and flexibility. In this paragraph common types of machine tools 
that are used in production will be discussed categorized into the two major classes 
of machines: deforming and removing, as well as some typical types of industrial 
robots aiming to provide a comprehensive overview of the machinery equipment 
selection problem. 

Deforming machines 

Deforming machines usually have two or more tool parts that they bring together 
by providing the necessary force, energy, and torque for the process while ensuring 
adequate guidance of the tools to deform the workpiece. Deforming machines are 
typically large, low-cost, and unsophisticated controls and they are used in the metal 
working industry. These machines can be classified into two groups according to the 
relative movement of the tool parts: machines with linear relative movement, and 
machines with non-linear relative movement [2]. Machines not belonging to either 
of these categories are usually considered special-purpose machines. Furthermore, 
machines for deforming can be divided into [3] the following types: (1) Energy
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constrained whose characteristic feature is the available energy, which is converted 
into work on the workpiece; the deforming process is completed when this energy 
conversion is over; typical examples of such types of machines include belt-operated 
drop hammers, screw presses, etc., (2) movement-constrained machines that have 
constrained stroke which can be either determined through the eccentricity of a 
cam e.g. eccentric presses or the geometry of a crank shaft e.g. crank presses, (3) 
force-constrained machines, where the exerted force is controlled; the most widely 
used deforming machine that is force-constrained is the hydraulic press, which also 
provides notably accurate force control throughout the deforming process. 

Machine tools for material removal 

Material removal machines are the most used equipment type in manufacturing 
systems including machines whose working is based on mechanical, thermal, elec-
trochemical, and chemical material removal mechanisms. Machine tools for material 
removal comprise: (1) a frame supporting the relative motions between the tool and 
workpiece for the cutting action to occur (2) the main and secondary drives providing 
for the main cutting action and the relative motion between the tool and the work-
piece; (3) auxiliary devices that provide coolants and other necessary functions for 
the machine, (4) controls coordinating the movement of axes so that the motions 
of the tool, workpiece, as well as the resulting cutting action, to accurately produce 
the target workpiece geometry. In common practice, they either have a single cutting 
edge, such as in turning and milling, or multiple cutting edges, such as in grinding. In 
turn, machines with single cutting edges can be classified, depending on their cutting 
motion, into rotational machines (e.g. lathes, drilling, and boring equipment) and 
translational machines (e.g. gantry or double-column planning machines, shaping, 
and broaching equipment). Other processes include grinding, honing, and lapping 
are used to achieve high precision and good surface quality. These processes are 
most commonly used in high-precision manufacturing, where quality and precision 
are more important than production rate. 

Machine tool design 

Machine tool design, in terms of overall structure and kinematics, is primarily dictated 
by the process that the machine performs, the range of workpiece sizes, the required 
accuracy, and the operation mode (manual, semi-manual, fully automated, etc.). 
Additional, requirements and attitudes of the machine end user can also include 
maintenance procedures, cost, and a host of other factors. The design of machine 
tools is a multi-disciplinary process including aspects from applied mechanics to 
ergonomics due to the complex electromechanical structures of the machines that 
include many interconnected devices. This unique level of complexity, coupled with 
strict requirements in terms of kinematic accuracy, static and dynamic behavior, etc., 
causes the machine tool design process to rely heavily on empirical knowledge and 
expertise. For instance, force–deflection characteristics of the machine tool joints 
are highly non-linear and generally difficult to be analyzed nevertheless it is needed 
to analyze them as the joining methods of the elements of a machine tool can have 
a high impact on the machine’s performance. The dynamic loads, developed during
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the operation of the machine, propagate through the joints to the different elements 
of the machine tool. Since the joints can account for up to 90% of the total deflection 
of machine tool structures and joint deflections can downgrade the accuracy and 
surface quality of the produced parts, the design goal is to maximize the stiffness of 
the joints. 

Typically, engineering analysis delivering exact solutions for the structure of the 
machine, the size of its components, etc. is not the case, as the analysis rather enables 
the identification of trends and the creation of a framework for machine design. In 
general, stand-alone machines are designed to accommodate a variety of conditions 
in terms of workpiece size, etc., while dedicated machines, such as transfer lines 
are designed for reliability rather than flexibility. Machine tool frames are usually 
modular structures, made up of several elements e.g. baseplates, columns, beds, and 
crossbeams, whose shape, size, and material primarily depend on the position and 
length of the machine’s moving axes, accessibility, and safety of the working space, 
the direction and magnitude of the anticipated process forces and manufacturability 
and cost of the machine. An example of how AI can support machine design includes 
the work of Romeo et al. (2020) who proposed an innovative machine learning algo-
rithm for the prediction of machine specification parameters [4]. Decision/Regression 
Tree, k-Nearest Neighbors, and Neighborhood Component Features selection were 
adopted to extract decisional information to recommend the most suitable tech-
nical choice for designers and technicians and enabled the development of a Design 
Support System. Other methodologies for the prediction or estimation of machine 
components specification data and parameters include model-based approaches and 
simulation tools (e.g., CAE) [5]. Nevertheless, predictions and estimations required 
data which in industrial practice are typically insufficient, especially when it comes 
to fault data because equipment run in a healthy state most of the time. The Digital 
Twin of machines can solve this problem by generating synthetic data. However, the 
fidelity of the digital model, which is a function of the model itself, and the values 
of its parameters, determines the quality of synthetic data [6]. 

Industrial Robots 

The types of robots that are usually employed in the industry can be categorized 
into the following six main categories: articulated robots, cartesian robots, SCARA 
robots, delta robots, polar robots, and cylindrical robots. Each type is characterized by 
specific advantages and disadvantages and performs better for specific applications. 
For instance, articulated robots allow for a wide range of movement and high flex-
ibility, and thus they are commonly used for welding, packaging, machine tending, 
and material handling. On the other hand, the compact design of cylindrical robots 
is exploited for tight workspaces. Another taxonomy can be based on the level of 
decisional autonomy that is achieved by the robot, which includes the programmed, 
teleoperated, supervised, collaborative, and autonomous robots. In general, robots 
have contributed to decreasing the prices of goods by increasing productivity, as well 
as improving the quality of labor, and producing a greater variety of products and 
services. Therefore, it is expected that the utilization of AI, in combination with both 
the advancements in sensor technology [7] and the robotic structures’ design [8]
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and manufacturing, will proliferate the capabilities and benefits of industrial robots. 
The low-cost computer hardware has shifted the efforts of boosting the performance 
of robots from the amelioration of their electromechanics to the improvement of 
its computational intelligence e.g. models, control algorithms, and trajectory opti-
mization algorithms [9], which in turn has stimulated extensive research in compu-
tational intelligence of robots. The fields that are expected to benefit the most from 
AI advancements are discussed in this section, emphasizing the implementation of 
machine learning, meaning the systems’ ability to learn, decide, predict, adapt, and 
react to changes that improve from experience without being explicitly programmed. 

Machine selection 

Many companies utilize industrial equipment such as industrial manipulators, CNC 
machines, etc. to improve the performance of their manufacturing systems. However, 
this type of equipment becomes more and more complex and thus requires deter-
mining the most suitable alternative at the beginning of the cell’s design. Relevant 
considerations as per the Health and Safety Executive (Britain’s national regulator for 
workplace health and safety) are the working conditions, the user of the equipment, 
the purpose of use, ergonomics, spatial constraints including maintenance activities, 
the energy used, as well as the substances use for production [10]. The increase in 
the number of available solutions, as well as the multitude of conflicting criteria, 
challenge the decision-makers in the selection of the appropriate piece of equip-
ment. This decision-making problem is usually addressed with multiple attribute 
decision-making techniques, which are typically based on subjective statements for 
the alternatives (different pieces of equipment) and the criteria (such as cost, repeata-
bility, velocity, reach load, etc.). For instance, Chatterjee, Athawale, and Chakraborty 
(2010) compared the use of VIKOR and ELECTRE methods for the robot selection 
problem [11], and Parkan and Wu (1999) studied the OCRA, and TOPSIS methods 
[12]. These methods aim at determining a compromise solution, by weighing the 
opinions of decision-makers. Other typical methods that have been used for managing 
the selection process efficiently include statistical models, mathematical program-
ming (e.g. [13] studied Dimensional Analysis, which is a non-parametric method, for 
the case of multiple inputs and outputs comparisons), Case-based Reasoning [14], 
Graphical Method together with a framework for an exhaustive database of robotic 
arms and coding system [15], digraph and matrix methods [16]. The opinion of the 
experts or decision-makers is usually accounted for in these approaches, which led 
to the use of the quality function deployment integrated with other methods e.g. [17] 
developed an integrated decision model which combined quality function deploy-
ment (QFD) with fuzzy linear regression. Fuzzy approaches have been frequently 
used to capture the opinion of experts which is frequently incomplete or vague [18]. 
Finally, Axiomatic Design principles have also been proposed to help the decision 
maker decide based on a systematic, and objective basis [19]. A limited number of 
researchers also dealt with providing methodologies to act as decision aids, meaning 
that they will enable decision-makers to perform their duties in a more comprehen-
sive and structured manner when it comes to selecting manufacturing equipment. 
Apart from typical technical criteria, some researchers extended their views into
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considering criteria related to ergonomics and human factors, e.g. human skills and 
training compatibility, usability, and so forth. [20] worked on the measurement of 
the probability of the selected advanced manufacturing technology to satisfy the 
desirable ergonomic requirements based on linguistic terms reflecting the opinion 
of experts in fuzzy environments. This work was based on a multi-attribute fuzzy 
axiomatic approach and its scope has been to assist the management of complex 
problems involving considerable amounts of quantitative and qualitative attributes. 
Under this prism, it also provided a comprehensive list of ergonomic attributes, which 
can impact the selection of advanced manufacturing technology selection, together 
with a hierarchical structure for integrating them into the decision-making schemes 
of companies. Aly, Abbas, and Megahed (2010) suggested a method for the selec-
tion of a suitable robot to serve a group of CNC machines within a predefined space 
focusing on the optimization of the robot base location [21]. 

Workstation design 

The design of robotic cells refers to resource positioning while accounting for several 
factors such as the available footprint, resource reachability, ergonomics, and safety. 
Especially in the case of human–robot collaborative cells, the factors that should 
be considered increase further, as indicated by Michalos et al. (2015) who provided 
a comprehensive list of design considerations for safe human–robot collaborative 
workplaces, where they highlight the aspect of safety that is captured in defining 
the robot control schemes, the corresponding sensors to trigger the responses of the 
control, as well as the corresponding interfaces to communicate the robot status to 
the operators nearby Michalos et al. [22]. The consideration of all these factors, as 
well as the corresponding evaluation of the tentative selections over the satisfaction 
of process specifications (e.g. parts’ weight and characteristics, process sequence, 
etc.) and performance criteria (e.g. productivity, safety, operator satisfaction, etc.), 
is a challenging task that imposes the need for decision support tools. 

Simulation has been frequently employed to facilitate the evaluation of the 
different scenarios considering several aspects including human factors, whereas 
a comprehensive review of methods and tools helping in the ergonomic evaluation of 
manufacturing workstations is provided by [23]. These tools can extend from digital 
human modeling and software tools allowing for the calculation of metrics expressing 
postural risk (e.g. rapid upper limb assessment tool-RULA), or biomechanics risks 
e.g. NIOSH equation, to immersive simulations and AI-supported assessments of 
risks. Indicatively, Michalos, Karvouniari, et al. (2018) suggested a framework for 
workplace design and evaluation that is based on a collaborative scheme among oper-
ators and engineers and does not require the setup of physical prototypes [24]. In 
this framework, operators are invited to perform their tasks in an immersive Virtual 
Reality (VR) simulation while data are recorded to calculate metrics in real-time 
(e.g. cycle time, covered distance) and provide the corresponding visualization (e.g. 
heatmaps) to the production engineers as a support tool for workplace evaluation and 
redesign. A fuzzy-based inference engine for the assessment of full-body postural 
evaluation and tested in a setup activity for iron case production [25]. Their approach 
has considered the most relevant full-body evaluation checklists together with the
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visual acquisition of data through thermography, whereas the data processing has 
been achieved with triangular fuzzy rules. An approach using ANNs for tracking 
moving objects is presented in [26], while an unsupervised semantics-based approach 
to sensor data segmentation, in real-time activity recognition, is discussed in [27]. 
Sensor-based reconstruction of human activity enhanced with the aid of meta-data 
has been presented by [28] as an attempt to overcome shortcomings of supervised 
learning methods for the collection of training sets of sensor events, but also of 
knowledge-based methods that require manual modeling effort. 

Typically, the layout of a flexible manufacturing cell is influenced by the char-
acteristics of the material handling system in the sense that the configuration of 
the cell should allow for efficient utilization of the material handling systems used 
to serve the machines. For instance, the layout of a cell served by an Automated 
Guided Vehicle (AGV) should consider the accessibility and required clearances for 
the AGV to operate. Some approaches that have been used for the facility layout 
problem comprise the construction and improvement algorithms, which neglect the 
load/unload points of machines and the function of the material handling system, as 
well as the Quadratic Assignment Problem, whose application on the machine layout 
problem has been criticized due to the variety of sizes of the machinery equipment 
[29]. 

Tubaileh (2014) discussed an approach for determining the machine layout 
in robotic cells, as well as the feasible robot configurations, based on kinematic 
constraints [30]. A non-linear optimization model has been used for this purpose, 
solved with the available Sequential Quadratic Programming algorithm of Matlab. 
A multi-criteria decision-making framework based on heuristics, along with analyt-
ical models and simulations have been proposed for the automatic design of hybrid 
layouts in [31]. The backbone of this approach is the generalized model of resources 
and human–robot tasks, whereas the framework accounts for the input of the designer, 
the generation of alternatives, and their evaluation before visualizing the layout in 
3D, which is the final step (Fig. 3.1). The design of a multi-robot work cell layout 
has been treated as a nonlinear problem, implemented for the manufacturing of a 
fuselage panel [32].

3.3 Task Planning and Machine Programming 

Having selected the machine(s) to be used, one prerequisite for their operating 
them in production cells is to plan their tasks. Planning can be categorized into 
two categories: (a) macro planning which refers to ordering tasks, (re-)configuring 
assembly work cells, and assigning resources, and (b) micro-planning which includes 
path, motion, and trajectory planning, work instructions generation, and process 
parameters selection [33]. 

With regards to macro planning for a working station, researchers and practi-
tioners that work on task planning seek to synthesize feasible plans having taken into 
account the resources’ capacities, spatial and temporal constraints, etc. to achieve
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Fig. 3.1 Human–robot workplace design framework [31]

ad hoc objectives e.g., efficient manufacturing, high adaptability, and reduction of 
fixtures. This planning stage is especially challenging in the scheme of Human– 
Robot Collaboration, which is frequently an item of research as it is deemed to 
have the potential to keep the flexibility of modern industries at high levels thanks 
to the humans’ intelligence and creative problem solving and the robots’ repeata-
bility, strength, and precision. A number of approaches for planning/coordination for 
HRI emphasizing the manufacturing/production environment were reviewed in [34]. 
For instance, Agostini, Torras, and Wörgötter (2011) proposed an approach for task 
planning in human–robot collaboration that is based on STRIPS (Standford Research 
Institute Problem Solver)-like planning operators and a competitive learning strategy 
to rapidly learn planning operators from few action experiences [35]. In this approach, 
many alternatives of cause-effect explanations are evaluated concurrently, and the 
most successful ones, as occurring from probabilistic estimations, in relation to other 
known estimates are used to generate the planning operators with enhanced confi-
dence speeding up the learning. Takata and Hirano (2011) coped with task allocation 
by targeting the identification of the allocation pattern which has the highest poten-
tial to adapt to future changes by testing a set of possible allocations and trying to 
minimize the sum of total production costs which is estimated for a set of product 
change scenarios weighted by their occurrence probability [36]. Malvankar-Mehta 
and Mehta (2015) worked on the sharing of information that is required among a 
group of agents (humans or robots) following a nested optimization problem formu-
lation, i.e. several hierarchy levels can have control over the decision variables, whilst 
the decision variable at one level may influence the objective function of other levels 
[37]. They considered a multi-level programming model level programming model 
of two levels (computer/agent level and leader-level) and a general form utility func-
tion to optimize the allocation of information, where the utility function at the agent 
level demonstrates the effectiveness optimization need, whereas at the leader-level 
represents the team performance optimization need.
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Tsarouchi, Matthaiakis, et al. (2017) suggested an intelligent decision-making 
algorithm based on the depth search concept and the use of utility scores for multi-
criteria evaluation for human–robot task allocation [38]. The proposed method 
enabled the allocation of sequential tasks assigned to a robot and a human in sepa-
rate workspaces by considering process data, as well as data on the availability and 
characteristics of resources (Fig. 3.2) that were integrated into a Robot Operating 
System (ROS) framework. The focus was rather given to the human–robot coexis-
tence for the execution of sequential tasks, to increase the automation level in manual 
or even hybrid assembly lines. Body gestures were the means of a human’s interac-
tion with a robot for commanding and guiding reasons. Another approach is the one 
in [39] where the use of a two-level hybrid hierarchical representation (resources 
and workload) into a level that can be translated into robotic commands is proposed. 
Additionally, an intelligent search-based multi-criteria decision-making algorithm 
was presented for task allocation in human–robot collaborative assembly applied in 
an automotive case study. 

Alili et al. (2009) introduced the Human Aware Task Planner which is based on 
hierarchical task planning of two levels, i.e. operators (individual tasks), methods (a 
higher level task that can be decomposed into smaller ones), and a LAAS-based [40] 
architecture for autonomous systems in [41]. They extended the existing concepts

Fig. 3.2 Human–robot task allocation method overview [38] 
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by considering several synchronized streams dedicated to anticipating future poten-
tial actions of other agents and also considering social conventions and acceptable 
collaborative behaviors, intention explanation, situation analysis, and so forth. Chuan 
Tan et al. (2010) developed a framework based on task analysis to support human– 
robot collaboration planning, where qualitative and quantitative analysis of the tasks 
is accounted for to justify the possible collaborative solutions and detail the collabo-
ration scenario [42]. Michalos, Spiliotopoulos, et al. (2018) introduced an approach 
for task planning based on CAD models for product assembly sequence extraction 
together with a heuristics-based search algorithm for the generation and examina-
tion of the assignment scenarios alternatives [43]. In this work, the output of the 
planner is the joint planning of task-to-resource assignment and cell layout, where 
the evaluation of each planning scenario is made against ergonomics, quality, and 
productivity criteria. 

For a design to be manufactured, a set of process instructions, i.e. operation 
sheets or process plans, is necessary that describes the equipment, and/or people to 
be involved in the manufacturing process. Process planning bridges the gap between 
engineering design and manufacturing and establishes the sequence of the manufac-
turing processes to convert a part, from its initial into the final form. The process 
sequence incorporates process description, the parameters for the process, and equip-
ment and/or machine tool selection. Process planning considers factors such as the 
shape and size of the workpiece, the required tolerances, the quantity to be made, 
etc., and requires the ability to interpret a particular design and substantial familiarity 
with manufacturing processes and equipment. Since often the designer’s intention 
may not be obvious to the process planner; the designer is often unaware of potential 
manufacturing constraints and may produce a design that is either impracticable or 
costly to produce; the generation and execution of a production plan might be more 
time-consuming and involve several organizations distributed in different geograph-
ical locations; manual process planning is of limited consistency and optimization 
concerning certain performance criteria, computerized systems for process planning 
are needed [1]. 

Computer-aided process planning (CAPP) solutions usually fall into two major 
areas: variant process planning, where library retrieval procedures are applied for 
finding standard plans for similar components, and generative process planning, 
where plans are generated automatically for new components without reference to 
existing plans. Variant process planning is the easiest to implement. Variant systems 
allow for rapid generation of process plans, through the comparison of features with 
other known features in a database. However, to implement variant process planning, 
products should first be grouped into part families, based on feature commonality. 
Likewise, as the complexity of feature classifications increases, the number of part 
families also increases, causing excessive search times during the process of plan 
generation. Unlike the variant approach, which uses standardized process-grouped 
family plans, the generative approach attempts to imitate the process planner’s 
thinking by applying the planner’s decision-making logic and is based on defining 
the process planning logic with the use of methods such as decision trees, decision 
tables, artificial intelligence-based approaches, axiomatic approaches.
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Generative process planning (GCAPP) relies on a knowledge base to generate 
process plans for a new design independent of the existing plans. The knowledge 
base is a set of rules derived from the experience of a human process planner. With 
generative methods, process plans can be generated for a wide variety of designs with 
dissimilar features. However, generative methods are difficult to be implemented in 
terms of constructing a set of rules, which can encompass all anticipated design 
features one is likely to encounter. There are three areas of concern in a genera-
tive process planning system: (a) component definition, i.e. the representation of the 
design in a precise manner in order to be made “understood” by the system, (b) iden-
tification, capture, and representation of the process planner’s knowledge and the 
reasoning behind the different decisions made about the process selection, process 
sequence, etc., (c) compatibility of the component definition and the planner’s logic 
with the system. The generative process planning can be executed either in a forward 
fashion (planning starts from the initial raw material and proceeds by building up the 
component using relevant processes), or backward, (planning starts from the final 
component and proceeds to the raw material shape). Two steps are frequently involved 
in this technique: part decomposition and feature recognition. AI can enable the anal-
ysis of a part’s CAD drawing by using decomposition and feature recognition tech-
niques so that a part’s primary features to be identified. Many systems use backward 
chaining logic to generate and check the feasibility of a particular feature. Indica-
tively, Kardos et al. (2016) presented an approach for automated robotic assembly 
process planning, that includes feature-based models of assembly processes produced 
from standard CAD models of the products and the resources description, as well as 
the generation of constraints that ensure plan feasibility and the formal verification 
of fully specified plans [33]. 

An interest in automated planning, i.e. developing algorithms to decide the path 
or sequence of commands that a machine should execute to achieve a goal, has 
attracted research interest for years [44]. The goal states of automated tasks are 
associated with the features of the involved parts and their topology, as well as the 
process that should be executed as described in a part program. For machine tools, 
such as a milling machine or a lathe, the part program describes the path that the 
cutter will follow, the direction of rotation, and the travel rate. The increasing demand 
for new part programs has stimulated the development of CAD/CAM systems, such 
as the CADAM, CATIA, etc., that enable the generation of numerical-controlled 
(NC) part programs from CAD files, based on the geometric definition of a work-
piece. The CAD/NC systems allow the user to rapidly define the geometry and 
use graphics display capabilities to quickly define, verify and edit the actual cutter 
motion preventing the use of valuable machine tool time. The computer can assist a 
part programmer by animating the entire tool path on the display terminal, showing 
the location of the cutter visually, and displaying the X, Y, and Z coordinates. 

In addition, AI-based approaches can offer further capabilities, namely multi-
axis and/or multi-head path planning. A Markov decision process is discussed in 
[45] for multi-head path planning for sheet metal manufacturing applications. The 
results support that multi-robot heads can be positioned more effectively by using the 
proposed algorithm, compared with the previous state. Ahmad and Plapper (2015)
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focused on the generation of safe trajectories for multi-axis CNC machines in non-
functional trajectories, which has typically required the operator’s intervention [46]. 
They developed an intelligent trajectory system based on image processing for back-
ground differentiation exploiting information from the CAM preparation and a vision 
camera, a search-based algorithm for generating trajectory points according to the 
machining strategy and avoiding the generation of safe points on obstacle enve-
lope for collision avoidance in a virtual dynamic environment. The use of agents 
and NNs are discussed in [47] for acquiring and preparing the distribution of NC 
information to support NC planning. A combination of an agent-based organization 
and self-learning features, based on technological information is provided in order 
to support human engineers in planning and manufacturing. Energy efficiency is 
another criterion that can be critical for machine operation planning. Typically, the 
energy consumption models are either based on system models (which evaluate the 
energy consumption of a machine based on energy models of their sub-systems) or 
on process models (which focus on the relationship between material removal rate 
and energy consumption) [48]. Energy state is often coupled with many factors such 
as machine tool states, cutting, and tool conditions raising the difficulty in moni-
toring energy efficiency in machining. An expert system has been used together with 
Hidden Markov Models in [49] for energy state identification in milling processes. 

Similar to machine tools robot programming also involves engineering tools and 
user interfaces that enable engineers to optimize the robot tasks, which are typically 
combined with manual programming. Online programming and offline programming 
are the two main categories of robot programming. Traditional methods for robot 
programming typically require either using the robot teach pendant or simulating the 
robot task inside a programming environment. The first case necessitates the training 
of the operators in properly using the teach pendant, and the inherent point-to-point 
programming style is efficient only for simple movements. In the second case which 
falls under offline programming, the process is based on models of the workstation 
and simulation of the robot, and hence requires financial investments for additional 
personnel and equipment. Also, knowledge of the platform-specific programming 
language (or of a 3D CAD program) is necessary, which is characterized by steep 
learning curves. Human is in the loop in this case, as it is frequently necessary to link 
activity-specific paths with each other to create the complete robot action sequence, 
but also to correct inaccuracies and errors that emanate from uncertainties. It is thus 
apparent that AI systems are required to decrease the demand on programming time, 
as well as system integration e.g. by enabling to automatically plan the robot motion 
given the initial and target status avoiding collisions, and visualize context relevant 
information to the human operator to support decision-making. 

Some researchers have focused on the extraction of information from CAD models 
and the definition of the necessary semantic frameworks. The use of CAD models, 
with symbolic spatial relations, has been proposed for the automatic generation 
of assembly sequences and the reduction in requiring explicit robot programming 
[50]. In the same direction, an ontology-driven approach for automated software 
configuration has been developed [51]. Stenmark and Malec (2015) worked on a 
generic knowledge-based system architecture, where robot skills defined based on
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the product-process-resource triangle were used to allow the creation of compos-
able robot tasks [52]. They used ontologies to represent the necessary knowledge 
for robot programming together with AI-based services that consumed the semantic 
descriptions of skills to help users instruct the robots. The approach was applied for 
the representation and execution of force-controlled tasks, using a natural language 
interface for the formation of preliminary tasks, “ABB RobotStudio” for detailed 
engineering, and a state machine for the task execution by one- and two-armed 
ABB robots in an industrial setting. Finally, the definition of languages for the plan-
ning problem specification has been an item of research interest. A broadly utilized 
formalism is the planning domain definition language—PDDL, which can be deemed 
as a transition system with Boolean facts as state variables [53]. 

Following the task planning, motion planning which involves searching for paths 
through the robot’s configuration space to achieve moving a robot from an initial 
state to a target configuration while avoiding collision with objects in the surround-
ings is performed. Even though several robotized applications have been deployed 
in industry e.g. assembly, welding, painting, etc. their broader adoption is currently 
restricted due to the high engineering time required for the optimization and/or recon-
figuration of robot trajectories [54]. When using conventional programming methods, 
robot path programming is performed by experienced robot programmers who need 
to spend considerable time programming the robotic paths which are application 
specific. In particular in the case of programming by demonstration, which is often 
used in industry, the robot is moved sequentially through several intermediate points 
that are recorded to the goal position using the teach pendant. Subsequently, the 
robot’s path is generated by the robot controller that takes into consideration the 
dynamic constraints of the robot and interpolates the recorded points. For instance, 
Zöllner, Asfour, and Dillmann (2004) studied programming by demonstrating dual-
arm humanoid robots. In this context, researchers and practitioners have investigated 
smart methods into enabling the automatic generation of the robots’ paths [55]. The 
main functions to be boosted by AI in path planning, are the generation of alterna-
tive paths or robot configurations, along with the selection of the optimum path that 
would satisfy several criteria: for instance obstacle avoidance, shortest distance, etc. 

The classification of motion planners is not an easy task however, it is common 
to refer to roadmap-based planners and tree-based planners [56]. Starting with the 
roadmap-based panners, Kavraki et al. (1996) introduced the probabilistic road-map 
path planning for computing collision-free paths for robots in a two-phase approach: 
(a) learning, where a probabilistic roadmap is constructed by generating the robot’s 
free configurations randomly, and (b) query connecting the configurations using a 
local planner [57]. Bayazit, Lien, and Amato (2002) discussed several strategies for 
node generation and multi-stage connection strategies for cluttered 3-dimensional 
workspaces in the context of an obstacle probabilistic roadmap method [58]. Koo 
et al. (2011) discussed a sampling-based approach for deformable parts’ manipula-
tion [59]. Kohrt et al. (2013) proposed an online path planning and programming 
support system transforming the user’s interaction into a simplified task that gener-
ates acceptable trajectories, applicable to industrial robots [60]. This work used a
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combination of Voronoi roadmaps including reachability, A* search, and elastic net 
trajectory generation. 

The concept of Rapidly-exploring the Random Tree was presented by [61], and it 
is based on an initial sample being the root of the tree and newly produced samples 
which are then connected to the samples already existing in the tree. Tree-based plan-
ners have proven to be a good framework for dealing with real-time planning and re-
planning problems. In [62] a re-planning algorithm for repairing Rapidly-exploring 
Random Trees when changes are made to the configuration space was presented, 
where the algorithm efficiently removes only the obsolete parts and maintains the 
rest of the tree. Heuristic beam search in combination with AR-based interfaces has 
been suggested for collision-free path generation and easy robot programming [63]. 
Wu et al. (2009) proposed a two-stage motion planner that consists of an offline stage 
and an online stage [64]. In the off-line stage, which is more time-consuming, the 
positions of the obstacles in the workspace are computed and stored using a hierar-
chical data structure with non-uniform 2 m trees. In the online stage, the real obstacles 
are identified and the corresponding 2 m trees from the pre-computed database are 
superposed to construct the real-time space. The collision-free path is then searched 
in this C-space by using the A* algorithm. Complex cluttered environments are 
considered in [65] and have been approached via random trees for optimal motion 
planning. 

A method for trajectory optimization for multi-robot handling compliant parts, 
which can achieve collision avoidance and minimize deformations during manipu-
lation, has been proposed in [66]. This method employs a non-linear programming 
model by exploiting a Response Surface Model based on FEM-generated data for 
optimization. Kaltsoukalas, Makris, and Chryssolouris (2015) introduced a grid-
based search algorithm that uses hierarchical modeling of the robot configurations 
to gradually approach the target robot state by selecting and evaluating a number 
of alternatives [54]. The search algorithm makes use of heuristics for the genera-
tion of the robot configurations and its processing time can be adjusted to the user’s 
requirements achieving to critically lessening the need for the recording of inter-
mediate points. In this way, the proposed method can grant an inexperienced robot 
programmer the flexibility to generate automatically a robotic path that would fulfill 
the desired criteria, such as the shortest path. The alternative configurations are 
generated by emphasizing the robot’s joints that determine to a higher degree the end 
effector position. The grid of the robot’s alternative configurations can be adjusted 
by a set of parameters that affect the resolution of the grid and thus the search space. 
High grid resolutions result in smooth paths, whereas lower resolution minimizes 
computational time. Figure 3.3 depicts the main components of this approach, as well 
as an example of a set of alternatives that resulted in specific values of the following 
three user-defined parameters: (a) decision horizon (DH) that takes values from 1 
to the n degrees of freedom of the robot, (b) the Maximum number of alternatives 
(MNA), and (c) Sample Rate (SR) which is defined as the number of samples taken 
from the joints, outside the decision horizon, to form the robot’s complete alterna-
tive configurations. Motion planning can be particularly challenging in the case of 
flexible material manipulation, such as ropes, clothes, cables, etc.
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Fig. 3.3 Hierarchical levels for robot path planning and alternative robot configurations [54], 
Reprinted with permission from Pergamon 

Additional planning problems that are relevant in automation and robotics include 
navigation among movable obstacles [67], pick-and-place planning [68], manipula-
tion planning [69], and rearrangement planning [70], as well. The navigation of 
mobile robots includes modeling of their surroundings, localization of their position, 
motion control, obstacle detection, and avoidance, whereas the most critical function 
of navigational techniques is safe path planning. Mobile robot navigation has been 
categorized into global and local navigation, wherein the first case information about 
the environment, the goal position, and the position of the obstacles are required in 
contrast with the second that can deal with unknown environments. Known environ-
ments have been dealt with classic approaches such as cell decomposition, roadmap 
approach, and artificial potential field, whereas unknown or partially known with 
reactive approaches such as genetic algorithm, fuzzy logic, firefly algorithm, ant 
colony optimization, cuckoo search, etc. [67]. A q-learning algorithm is discussed 
in [71] for local path planning of mobile robots. Dynamic obstacle avoidance has 
been addressed with Polar Object Charts and supervised Machine Learning [72]. 
Furthermore, systems detecting collisions have been developed via Artificial Neural 
Networks [73] The artificial potential field method has been used for problems of high 
dimensionality, e.g. for problems involving multiple agents (robots, humans, AGVs, 
etc.), or problems where larger areas are covered by the robots. For instance, the safe 
movement of multiple mobile robots around humans [74], and the path planning of a 
cable parallel robot [75] are some of the problems falling into the discussed category 
of problems. However, there are reactive approaches to deal with similar problems 
as well, e.g. a hybrid particle swarm algorithm, combined with a gravitational search 
algorithm, is presented in [76] for multi-robot path planning concerning their energy 
consumption. 

Makris, Kampourakis, and Andronas (2022) suggested an approach that allows 
robots to adjust their behavior so that the co-manipulation of fabrics between humans 
and robots is possible [77]. The authors focused on the interpretation of human manip-
ulation actions i.e. perceiving the current postures and grasping points of humans, 
and their translation into robot reactions. In this scope, simulation based on the mass-
spring model was employed to estimate the fabric’s distortion. The main requirement
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in deformable object handling is the reliable control of deformation through efficient 
control of Grasping Points, thus the authors provide a set of strategies to plan the 
grasping point (GP) of the robot on the fabric given particular manipulation scenarios 
(human-one arm robot translation or rotation of fabric, human dual arm robot trans-
lation or rotation of fabric) the monitoring of human actions which can affect the 
generation of target grasping points. The approach has been validated for the trans-
lation and rotation in co-manipulation scenarios, in two use cases, inspired by the 
automotive composite industry (Fig. 3.4). 

It is important to highlight that human–robot collaboration (HRC) comes with a 
cost, as it entails human safety-related challenges, e.g. collision of human and robot, 
and thus calls for dedicated mitigation measures. Starting with the discussion of the 
impact of these measures in planning, it is noted that the typical mitigation measure is 
for motion controllers to modify the speed of robot motions to improve safety when 
triggered by some sensor signal that monitors the human–robot distance [78]. This 
in turn can induce important variations in the robot task cycle time and increase the 
difficulty in planning for a long planning horizon, considering performance criteria, 
since robot trajectories are computed online based on the human position that may 
occur each time [79]. A common approach is to replan the robot tasks, based on the 
ongoing human position, which frequently penalizes the efficiency of the production

Fig. 3.4 Indicative handling strategies: a operator-dual arm robot translation, b operator-dual arm 
robot rotation, c operator-single arm robot translation, and d operator-single arm robot rotation with 
pivot axis at robot tool center point [77], Reprinted with permission from Edition Colibri AG 
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performance. AI has been used to exploit the HRC potential seeking among others to 
maximize the throughput by the proper task allocation and coordination of human and 
robot tasks, which at the same time imposes the need for managing temporal uncer-
tainty while achieving robustness, flexibility, and reliability. Evangelou et al. (2020) 
distinguished the planning of operations in search-based and timeline approaches 
[80]. The work of the authors falls in the first category whereas the work of [81] 
falls into the second. Cesta, Orlandini, and Umbrico (2018) discussed an approach 
accounting for the description of production processes, operational constraints, rele-
vant temporal features, and other factors together with a closed loop control archi-
tecture, where human is put in the loop and replanning is used to managing external 
events, such as a robot failure [81]. 

On the other hand, the tools that have been suggested to support the online robot 
programming, but also HRC require perception ability, as well. Since the implemen-
tation of human–robot interaction has been affected by the user’s expectations [82], 
the design of the collaborative tasks should facilitate the monitoring of the robots’ 
operations [83]. The tools that have been developed to support humans usually involve 
indirect or direct human–robot interaction (HRI). In the first case, AR-based inter-
faces, vision systems, wearables, and microphones are used, whereas in the second 
existing or imminent physical contact needs to be monitored with sensors such as 
force/torque or proximity. For instance, [84, 85] suggested Augmented Reality (AR) 
tools to visualize robot-related information in support of the human–robot interac-
tion, Robot programming support tools are typically a combination of algorithms 
for optimizing motion planning, as well as intuitive interfaces for programming 
making use of gestures, visual features, color, shape, and contour-based approaches 
[86]. Voice commands are also popular in HRI; however, their effective implemen-
tation can be impeded in noisy industrial environments, unless filtering is used [87]. 
Hogreve et al. (2016) and Kaczmarek, Hogreve, and Tracht (2015) proposed the 
combination of gesture control, progress monitoring, and worker support [88, 89]. 
Intention awareness, which enabled the adaptation of the robot program, based on 
the user intention, has been tackled by converting robot programs into Markov chains 
and using position, gestures, and voice data [90]. Supportive AI has been identified 
as a critical factor for further advancements [91]. 

Robot programming methods such as walk-through programming, which is 
also referenced as “lead-through programming”, or “manual guidance”, have been 
proposed with early practical applications e.g. welding [92]. In these programming 
strategies, the human operator moves the robot end-effector and manually leads it 
to the target location, without needing any prior knowledge of the particular robot 
programming language and of the functionalities of the teach pendant. However, 
these approaches require effort into estimating the areas where the robot can move in 
order to minimize unwanted collisions. For example, Neto, Pires, and Moreira (2009) 
investigated robot programming with a combination of gestures, speech, and force 
control [93]. Gkournelos et al. (2018) discussed the use of wearables for operator 
support in human–robot collaborative industrial workplaces [94]. The application 
that was developed in their work supports natural language processing, automatic 
estimation of the working space where the robot is safe to move to avoid collisions,
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Fig. 3.5 Automotive hybrid assembly cell [94], Reprinted with permission from Elsevier BV 

and context-aware visualization of data. The application has been deployed in a 
smartwatch for direct interaction with the robot via audio commands, and manual 
guidance, whilst supportive visual information can be provided by AR-based visu-
alization systems. Figure 3.5 depicts the testing and validation of the application in 
an automotive case study. 

Dimitropoulos et al. (2020) presented a comprehensive approach where voice 
commands and human action recognition were used to adjust the robot behavior 
toward improving the operator’s experience [95]. Apostolopoulos et al. (2022) 
worked on a two-mode training framework (Fig. 3.6). The first mode entitled “training 
mode”, focused on introducing the operator to hybrid workstations, whereas the 
second named “assistive mode”, focused on supporting the assembly of new prod-
ucts by providing online instructions [96]. Both modes are based on a step-by-step 
walkthrough experience, at the same time, object recognition based on machine 
learning is used to provide augmented identification and instructions, based on the 
positioning of the physical objects and the robot. The object recognition algorithm 
takes into consideration the operator’s head movements, the random positioning of 
components, and the dynamic environmental conditions. Furthermore, it is built with 
the use of the AR headset’s vision sensor to ensure the easy setup of the application.
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Fig. 3.6 Training framework’s modes and main features [96], Reprinted with permission from 
Elsevier BV 

3.4 Machine Control and Workstation Orchestration 

As it occurs from the discussed examples, the contemporary production environments 
where hybrid production paradigms are deployed, dynamic updates of the machines’ 
surroundings are held constantly advanced perception abilities are required to detect 
disturbances or even safety risks and trigger the required replanning actions. More-
over, it is common that the plans produced offline based on the simulated environ-
ments involve ideal conditions and deterministic scenarios, which is not the case in 
the real world. Therefore, schemes for execution control, motion control, force and 
torque control, and others are used to ensure that the planned goal is achieved each 
time. For instance, online correction of offline routines, through force and vision 
sensors, has been investigated in an automotive and an aeronautics case study [97]. 
In more detail, the adaptation of the robotic motion is based on force control to 
address variations in the position of the objects and the changing environment, as 
well as the fine-tuning of the force to be applied to the parts. The vision algorithms
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detect deviations during the execution of the robotized tasks, which lead either to the 
modification of the robotic path or notifying the human to resolve the issues. 

A control algorithm, with the use of GA, is described in [98] for enabling a visual 
target tracker robot. As reported in the study, the application of the GA algorithm 
in the torque control of the robot has outperformed traditional tuning techniques in 
terms of mean square error, overshoot, and settling time. Adaptive speed control of 
a permanent synchronous motor has been achieved in [99] using a state feedback 
controller online, adapted by an artificial bee colony algorithm, improving the control 
performance, in comparison with a non-adaptive one. A combination of the evolu-
tionary algorithm with swarm-based intelligence algorithms is proposed in [100] to  
tune a PID controller to reduce the time required by stochastics, naturally inspired 
and population-based algorithms. 

Son (2014) worked on the division of intelligent jamming region with machine 
learning and fuzzy optimization for the control of a robot’s part micro-manipulative 
task [101]. In particular, a rule-based learning algorithm and fuzzy optimization were 
suggested for controlling a robot, which was intended to mate parts with a target, 
without jamming by adjusting the parts’ lateral and angular movements. This work 
comprises learning from experience and a reduced number of jamming areas, which 
in turn, enables the faster performance of assigned tasks. 

Dexterous multi-fingered hands can enable robots to flexibly perform a wide 
range of manipulation skills. However, many of the more complex behaviors are also 
notoriously difficult to control: Performing in-hand object manipulation, executing 
finger gaits to move objects, and exhibiting precise fine motor skills, such as 
writing, all require a delicate balancing of contact forces, breaking and reestablishing 
contacts repeatedly, and maintaining control of underactuated objects. In [102] a  
method of online planning with deep dynamics models (PDDM) that addresses 
both of these limitations is demonstrated. This study shows that AI advances 
can facilitate the training of complex behaviors directly with real-world experi-
ence on physical hardware, precluding the need for sim-to-real transfer or prior 
system/environment-specific information in general. 

The manipulation of fabrics may require not only repeatability, and precision, 
but also involves repetitive movements and the assumption of incongruous postures, 
which typically would raise the need for automation. Nevertheless, flexible mate-
rial deformation limits the robot’s cognition during fabric handling. A model-based 
closed-loop control framework that allows human–robot or multi-robot fabric manip-
ulation has been proposed in [103] towards addressing these challenges. A mass-
spring model was used to simulate ply distortion and generate the spatial localiza-
tion of the optimal grasping points (GPs). The model is enriched with the operator’s 
real-time handling actions captured by a perception system (Fig. 3.7). The proposed 
sensor and model-based controlling framework incorporate robot motion planners, 
accounting for non-rigid object human–robot co-manipulation, or synchronization 
of cooperative robots within fully automated tasks.

Autonomous task orchestration is discussed in [104]. An HMM is developed for 
modeling the autonomous task orchestration, while a state machine logic handles 
manufacturing exceptions as well as the determination of batch sizes in an adaptive
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Fig. 3.7 Model-based fabric co-manipulation overall architecture [103], Reprinted with permission 
from IEEE

way [105]. A discrete artificial fish swarm algorithm for the assembly line balancing 
problem is presented in [106]. Its purpose is to minimize the costs and the number 
of stations in two-sided assembly lines. 

George Michalos, Kousi, et al. (2018) presented a comprehensive and generalized 
approach for the implementation of a safe robotic system for HRC assembly, together 
with an orchestrator mechanism, based on the SoA concept [78]. The methodology 
suggested for the design and planning of collaborative applications, is presented 
in Fig. 3.8. It comprises seven steps, including the identification of the tasks that 
would benefit from HRC, given the experienced physical strain, the selection of the 
sequence of operations, aiming to end-up at the assignment of tasks to either humans 
or robots, based on suitability constraints; the approach was validated in a case study 
from the automotive industry. Subsequently, the layout of the respective workstation 
should be generated and then the definition of the collaborative workflow should take 
place.

This enables the breaking down of the workflow into distinct phases, depending 
on the mode of collaboration, to map them with the safety and the required by 
the safety standards specifications. Next, the system, including safety functions and 
interaction technologies is engineered i.e. the task execution, the safety behaviors, 
and the coordination of the resources are defined and the station controller module, 
together with the integration and communication architecture, are finely tuned. As 
the last step, the workflow and the safety concepts are integrated into the cell and the 
cell validation is performed.
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Fig. 3.8 Action workflow in an HRC paradigm for the automotive industry [78], Reprinted with 
permission from Pergamon

3.5 Machine Perception 

Perception refers to the system’s ability to become aware of its environment through 
the senses, where vision, touch, and hearing seem to be currently the most relevant 
areas in AI for manufacturing. Machine vision has enabled robots to autonomously 
perform operations such as navigation, handling, manipulation, and part processing, 
but also process monitoring, in-line inspections [107, 108], etc., and can thus play 
an important role in increasing the flexibility of manufacturing systems, as in [109]. 
Machine vision has also contributed to the safe and intuitive HRI, likewise audio and 
haptic signals processing. Audio processing allows the perception or generation of 
audio signals including not only speech but other sound material as well. Applications 
that have been enabled by audio processing include among others speech-based 
robot control, intuitive robot programming via voice commands, etc. Haptic signals 
can also be perceived by using force/torque, tactile, air-pressure sensors, or even 
proprioceptive sensors e.g., indicative examples for the aforementioned approaches 
are presented in the next paragraphs. 

Visual servoing or vision-based robot control is the approach, where feedback 
from vision sensors is extracted to control a robot’s motion. Visual servoing tech-
niques are classified into image-based (control based on the deviation of the current 
and the target features on the image plane, no estimation of the target’s pose is 
involved), the position/pose-based (the pose of the object is estimated having a camera 
as a reference and then a command is propagated to the robot controller) and hybrid 
approaches [110]. Furthermore, there are two configurations of the camera and end-
effector; (a) the eye-in-hand configuration based on which the camera is mounted 
on the moving hand and observes the target’s relative position e.g. [111], (b) the 
eye-to-hand where the camera is fixed in the surroundings of the robot and observes 
the target and the motion of the end-effector [112]. 

The prerequisite for the use of vision systems for the aforementioned function-
alities to be enabled is camera calibration, which is the first step to ensure that 
the collection of three-dimensional data from the images is precise and hence the
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machine vision provides reliable results. In more detail, camera calibration tech-
niques search for a set of image parameters, describing the mapping of 2D image 
reference coordinates to the 3D image reference coordinates. Neural Networks have 
been employed to compensate for lens distortion in camera calibration [113]. In addi-
tion, there are toolboxes and libraries ready to be used for camera calibration, namely 
the MATLAB toolbox [114] and the OpenCV (based on the Zhang method [115], 
which are also the most frequent ones used in research applications. Convolutional 
Neural Networks (CNN) seem to be the most popular technique for this purpose, as 
it enables calibration even in noise situations [116, 117]. 

There are various applications of vision systems that enable automated tasks. Sepp, 
Fuchs, and Hirzinger (2006) presented a hierarchical approach for object detection, 
initial-pose estimation, and real-time tracking based first on color distribution, shape, 
and texture information (histogram, particle filter, Mean-Shift) for part handling 
[118]. CNNs are frequently used to address recognition and detection tasks, as they 
have achieved in improving state-of-the-art accuracies [119–123]. Aivaliotis et al. 
applied a CNN-based approach for increasing the stability of robotized part manipula-
tion, where errors in the manipulated part’s position and orientation are identified after 
grasping [124]. The boosted random contextual semantic space [125], the first nearest 
neighbor classifier [126], the regional point descriptors [120], and the Deep Neural 
Networks have been employed for object detection and recognition, in robotic appli-
cations [127] as well as for industrial pallet classification and recognition of objects 
in noisy and cluttered scenes [128]. Some other strategies, which have also been 
proposed for object recognition and detection, are structural, probabilistic, graph-
, feature- and physics-based algorithms, and hybrid strategies [129–133]. Fiducial 
markers and minimum complexity heuristics [134], and clustering-based algorithms 
[135]. A Deep Convolutional Activation Feature for Generic Visual Recognition 
(DeCAF) has been presented in tandem with a ready-to-use Python framework for 
easy network training [136]. 

Tasks including flexible parts have sparingly been studied for automation. This 
is due to challenges, such as the requirement for human-like sensitivity, as well 
as the numerous stochastic configurations that the parts can assume and high task 
complexity owing to the parts’ nature. Additionally, lacking of a model for their 
deformation renders the manipulation of automation of flexible materials very chal-
lenging. Sardelis et al. (2021) proposed a model-free method, having considered 
the wide range of poses and deformations of deformable parts [137]. The proposed 
approach is low cost since it only requires 2D cameras; one to localize the grasping 
point (Fig. 3.9), and one to identify the cross-section. The perception algorithms are 
based on thresholding and depth of image analysis and they are easily adaptable to 
objects both similar in geometry and features.

The work in [137] presented a comprehensive solution for the automation of 
linear non-rigid components manipulation and assembly, which was the foundation 
for the later work of [112]. The manual operations were broken down into primi-
tive actions, each of which had requirements in perceiving the surroundings, part 
position or type, etc. Therefore, perception systems for grasping point localization 
and cross-section recognition, as well as for the applied force and human–robot
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Fig. 3.9 Object detection and grasping point localization algorithm [137], Reprinted with permis-
sion from Elsevier BV

distance have been included, which in turn, provide feedback for robot control and 
affect the robot’s behavior. The corresponding technological approach has addressed 
aspects, including safe flexible material supply, detection, and grasping. Figure 3.10 
depicts the step-by-step operation that is enabled by an AI-based perception module), 
cross-section recognition (in the case of non-symmetrical parts), and assembly [112]. 

The completion of manufacturing tasks is usually followed by inspections and 
quality checks to prevent the propagation of errors to the imminent production steps. 
Neogi, Mohanta, and Dutta (2014) reviewed the vision-based approaches for steel 
surface inspection by presenting several methods e.g. spatial domain based, wavelet-
based, using fractal model, support vector machine, and unsupervised classifier [138]. 
Weimer, Scholz-Reiter, and Shpitalni (2016) researched the automation of feature

Fig. 3.10 Machine vision for flexible part cross-section recognition [112], Reprinted with 
permission from Pergamon 
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extraction for industrial inspections by proposing the use of CNN [139]. Artifi-
cial Neural Networks, in combination with image fusion, have been utilized for the 
detection of flaws in machined parts [140]. 

Another type of part that presents a challenge to perception systems is large 
parts, as in the majority of the scenarios, these parts cannot be portrayed in a single 
sensor frame. Prezas et al. (2022) worked on a multi-purpose perception system for 
dispensing applications in large linear parts where data for the process inspection are 
collected in-process to minimize cycle times [111]. The presented perception system 
has a threefold scope: (a) increasing the system’s flexibility, (b) preventing process 
defects, and (c) providing a final decision on whether the process is successful or not 
(Fig. 3.11). In more detail, the first target is achieved by recognizing the part’s type 
(deep convolutional neural networks) and position (color image processing) to trigger 
the correct robot processing routine, as well as to transform the offline routine into 
the actual part’s position. Additionally, the same camera is used for the in-process 
detection of dispensed material discontinuities (HSV color model in tandem with 
a contour-based algorithm), and in-process detection of deviations (based on color 
image processing). Finally, the data that have been collected, while the process was 
running, are used for post-process quality control (DBSCAN clustering and convex 
hull calculations). This approach has been tested for a case study, inspired by the 
bus & coach sector.

The discussed approaches seem to provide promising results for enhancing robot 
perception however they usually require large volumes of annotated datasets to train 
the machine learning methods which is an expensive, susceptible to errors, and time-
intensive process to a degree proportional to the complexity and the dynamic char-
acter of the operating environment. Manettas, Nikolakis, and Alexopoulos (2021) 
suggested the use of synthetic datasets as a solution for the aforementioned chal-
lenges, which are expected to accelerate the training process [141]. The presented 
work focuses on a framework for the generation of datasets through a chain of simu-
lation tools, which generate several states of the parts of interest e.g. rotation in 
different rotation axes to be recognized by a computer-vision system. The authors 
tested their work for several CNN models, and they concluded that CNNs trained 
on synthetically generated datasets may have acceptable performance when used for 
supporting tasks in manufacturing. 

The literature includes several works on speech-based HRI that are inspired by 
communication in human teams, where information transfer is achieved mostly by 
speech, and aims at increasing intuitiveness. This way of communication is mainly 
addressed to applications where humans and robots (usually cobots) can share a 
common workspace at the same time, and communication is deemed a key factor 
for the operator’s safety and the acceptance of the robot. The core functionality 
of a speech recognition system is Natural Language Processing (NLP), however 
supporting modules and functions such as the recording device which includes wake-
word detection and end of utterance detection, dialog management, and filtering of 
background noises, are necessary to implement a speech interface. Speech-based user 
interfaces have the advantage that they do not need the worker to have eye contact with 
the communication partner, as well as they can use their hands for other tasks [142].
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Fig. 3.11 a Profile type recognition (left) and part localization (right), b detection of path devi-
ations, c Post-process quality control—point cloud manipulation steps [111], Reprinted with 
permission from Elsevier BV

The conversion of human instructions into robot actions requires speech recognition 
and speech processing, where usually the AI contribution is more intense, whereas 
the conversion process can be complex and computing power demanding. Thus, 
outsourcing speech processing to cloud-based speech recognition systems including 
Amazon Alexa [143] Google Dialogflow [144] Microsoft LUIS [145] is a common 
practice. Offline solutions such as Mozilla DeepSpeech or Rasa can be used instead 
when secure handling of the user data is prioritized. 

A critical challenge is that the meaning of words frequently depends on the 
specific context (i.e. grounding is needed). Wölfel and Henrich (2020) dealt with the 
grounding problem by working on fuzzy logic for the mapping of uncertain instruc-
tions to control an industrial robot [146]. The performance of Speech Recognition-
Systems can be assessed based on the delay under packet loss and accuracy [147]. 
Evaluated via the word error rate (comparison of the speech recognition results with 
a correct transcript of the utterance) and F1-score (true positives, false positives, true
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negatives, and false negatives for intent detection) Almansor and Hussain (2020) cate-
gorized automated conversation systems into non-task-oriented, which allow users 
to participate in different domains but does not provide help into completing any 
task, and task-oriented, which are designed based on rules to help users achieve their 
goal or complete tasks [148]. Sotiris Makris et al. (2014) worked on task-oriented 
programming i.e. programming based on a library of predefined lower-level building 
blocks, for dual-arm robots, which they combined with gestures, voice commands, 
and graphical user interfaces for easier and modular robot programming [149]. Deuer-
lein et al. (2020) designed and implemented a task-oriented software interface for 
HRC which recognized voice commands via cloud-based speech processing and 
subsequently converted them into machine-readable code [150]. Additionally, it was 
observed that for safe intent recognition when using a setup with a smart speaker, 
the sound ratio between the human utterance and the background noise should not 
exceed −8.75 dB. 

In the paradigm of hybrid workstations, safe human–robot collaboration has been 
ensured through appropriate monitoring systems, tracking the human position or 
detecting collisions and triggering appropriate control strategies. AI has promoted 
the accuracy of the alarm generation and the smart adjustment of the robot’s behavior 
for collision prevention or impact minimization. The calculation of the minimum 
distance on the fly between a human and a robot is usually needed to be used as a basis 
for the robot’s behavior adjustments (Speed and Separation Monitoring, ISO/TS) 
[78]. Depth-based image processing and filtering have been proposed for collision 
avoidance [151], image processing using input from a stereo vision system and 
HSV (Hue, Saturation, Value) color space for detecting the humans together with 3D 
models of the robot and a rule-based system were presented to address false alarms by 
[152], 3D image analysis with the help of a physical model for the human’s skin, along 
with motion analysis [153]. The potential fields method can enable the adjustment 
of the off-line planned robot paths based on field data from laser scanners, IMUs 
mounted on the operator, and the QR factorization method to compute the minimum 
distance between capsules representing humans and robots [154]. Nikolakis et al. 
(2019) presented a robot control module based on Cyber-Physical Systems together 
with depth data and heartbeat signals to dynamically control the robot’s behavior by 
modifying its trajectory and speed in relation to human proximity [155]. 

Another approach taking advantage of the virtual space was used to enable the 
adaptation of the robots’ behavior for flexible and reconfigurable systems [156]. This 
work is based on the Digital Twin concept and has been suggested in the context of 
hybrid production, where mobile dual arm workers autonomously navigate inside 
the shop floor undertaking multiple assembly operations, such as screwing, etc. 
while acting as assistants to human operators. This assembly paradigm requires high 
autonomy and flexible behavior from the robot side, which in turn necessitates orga-
nizing efficiently all production entities and reason over the perceived environment 
using real-time data from the shop floor. To this end, a Digital Twin model is able to 
virtually represent in real-time the shop floor status and enable: (a) simplified control 
integration and sensor data sharing executed by the Execution Coordinator module 
which distributes the acquired data and tasks to all relevant resources such as mobile
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Fig. 3.12 Digital Twin for real-time robot adaptation [156], Reprinted with permission from 
Elsevier 

robots, humans via HMIs, etc., (b) virtual representation of the shop floor continu-
ously updated through a network of services using resource-related information by 
the Resource Manager, sing multiple sensor data combinations (Sensor Manager) 
and CAD models (Layout Manager), (c) generic unified semantic data modeling for 
semantically representing the geometrical as well as the workload state, (d) real-time 
robot behavior adaption by integrating standard robotic manipulator motion planners 
and mobile platform navigations planners to the Digital Twin for reasoning over the 
shop floor condition and producing safe and collision free paths during the different 
assembly tasks (Fig. 3.12). 

Proprioceptive robot sensors have been frequently used together for the detec-
tion of collisions, via signal processing and dynamic thresholding-based approaches 
[157]. Kokkalis et al. (2018) also discussed an approach, based on proprioceptive 
robot sensors, to limit the forces applied by an industrial robot manipulator during 
contact [158]. The approach is based on the thresholding of the difference between 
the estimation of the current and the torque required by each joint for a given trajec-
tory, as well as the actual current provided by the robot controller. The estima-
tion is achieved via a time-invariant dynamic model, in combination with Artificial 
Neural Networks, whereas stop commands are issued in case the actual currents 
exceed the user-defined threshold (Fig. 3.13). This approach is implemented in the 
case of a low payload industrial robot and the results of the experiments show that 
the approach can provide good collision detection and force limiting results. Time-
invariant dynamic models and supervised feedforward input-delay neural networks 
have also been suggested for similar purposes in [159].

Moreover, multi-sensor systems, including vision sensors, force sensors, and 
infrared proximity sensors, along with voice systems have been proposed to provide 
the operator with feedback on HRC [160]. Papanastasiou et al. (2019) presented a 
hybrid assembly workstation where manual guidance, air pressure contact sensors, 
and vision systems were combined for seamless human–robot collaboration [161].
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Fig. 3.13 Method overview for implementing power and force [158], Reprinted with permission 
from Elsevier BV

A force/torque sensor and impedance control were used for quick refinements of the 
robot’s planned trajectories to the ongoing safety and process requirements. A shape 
detection and color segmentation-based vision system were used for the detection 
and feature tracking regardless of the accuracy in the initial positioning of the part to 
increase the accuracy of the robotized process (sealant application). Artificial Neural 
Networks were used in a thresholding-based implementation of the Power and Force 
limiting safety method (ISO/TS 15066), where motors’ current and joints’ position 
signals to execute a given trajectory are estimated via the simulation of a time-
invariant dynamic model and are then compared to the actual current as provided by 
the robot controller. 
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Chapter 4 
Artificial Intelligence in Manufacturing 
Systems 

Abstract A manufacturing system is assumed to be comprising a combination of 
machines, cells, intra-logistics devices and other peripheral devices, used on the 
factory floor as well as on logistics. This chapter focuses on AI at the manufacturing 
system level. At system level, the volume and a variety of relevant data increase, 
activities are characterized by a higher degree of uncertainty and stochasticity, with 
several interdependencies among the parameters in non-linear relations. All these 
inherited attributes make transparency, predictability and adaptability more chal-
lenging tasks for AI. More specifically, the chapter examines (i) AI for the design 
of a manufacturing system that relates the design to process and the machine selec-
tion, the system layout as well as the capacity planning, (ii) AI for the operation 
of manufacturing systems that require planning and control of the material and the 
information flows and (iii) digital platforms and ICT technologies for the develop-
ment and deployment AI applications in manufacturing systems. For each category, 
the scope and theoretical background are provided and then, selected cases of AI 
applications are discussed. 

Keywords Production scheduling ·Manufacturing systems design · Shop floor 
control · Information flows · Digital Platforms in manufacturing · Supply chain 
management 

4.1 Introduction in the Manufacturing Systems 
Hierarchical Level 

This chapter will focus on AI at the manufacturing system level. A manufacturing 
system may mean several things, depending on the viewpoint taken. In this work, 
it is assumed to comprise a combination of machines, cells, intra-logistics devices, 
and other peripheral devices, used on the factory floor. Moreover, the value chain 
of connected manufacturing systems, including logistics, is considered within this 
level. As introduced in Chap. 1, the hierarchical levels of manufacturing systems, 
equipment, and processes differ from each other in terms of context, and time hori-
zons for making decisions (Fig. 1.6). In more detail, the volume and the variety of
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Fig. 4.1 Data, accuracy, uncertainty, and time vs manufacturing hierarchy models 

relevant data increase, as data from lower levels are integrated into the system’s data 
structures. Similarly, activities are characterized by a higher degree of uncertainty 
and stochasticity, with several interdependencies among parameters in non-linear 
relations. All these inherited attributes make transparency, predictability, and adapt-
ability more challenging tasks for AI. However, at the same time, as uncertainty 
and stochasticity increase, the need for accuracy of the models’ results decreases, 
at least when compared to the AI models at the lower hierarchical levels and there 
are longer time frames available for decision making, as shown in Fig. 4.1. With 
regards to the character of the decisions, they are more strategic in comparison to the 
other hierarchical levels and can tolerate longer time frames. The two broad applica-
tion areas to be addressed in this section, comprise the design of the manufacturing 
system, including the sub-problems of layout design, resources requirement, mate-
rial handling system, material flow, and buffer capacity, as well as the operation of 
the system, along with the long-term planning and the short—term dispatching. 

4.2 AI for the Design of Manufacturing Systems 

“design and planning of a manufacturing system … relate the design to process and 
the machine selection, system layout, and capacity planning”. “In a broader context, 
the manufacturing system design is particularly concerned with establishing material 
and information flows, which dictate its architecture.” [1]. 

Manufacturing systems require the combined and coordinated efforts of people, 
machinery, and equipment, which in turn, requires the appropriate hardware and 
software infrastructure. Defining a manufacturing system, under the prism of control 
theory, requires the identification of its inputs, potential states, and outputs (Fig. 4.2). 
The inputs to a manufacturing system include production orders, raw materials, and 
labor and can generally be divided into disturbance inputs and controlled inputs. 
Controlled inputs comprise scheduling, maintenance, and overtime decisions, which 
the scheduler can regulate within bounds. Disturbance inputs include machine fail-
ures and labor outages. The input can be further classified into information e.g. 
customer demand for the system’s products, and material input, i.e. raw materials 
and energy. The state of a manufacturing system defines the levels for all completed
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Fig. 4.2 Manufacturing systems from a control theory perspective [1], Reprinted with permission 
from Springer-Verlag New York INC 

and partially completed jobs, the status of all machines (whether active, idle, or under 
repair), the availability of labor, and the inventories for all materials. The outputs of 
the manufacturing system may be defined as any portion of the state—for example, 
the inventory levels of all jobs, ready for shipment on a specified date. The outputs 
of a manufacturing system can likewise be divided into materials, such as finished 
goods and scrap, and information, such as measures of the system’s performance. 

In general, a manufacturing system design can be conceptualized as the mapping of 
performance requirements, as expressed by values of certain performance measures, 
onto suitable values of decision variables, which describe the manufacturing system’s 
physical design or the manner of its operation. A performance measure is a variable, 
whose value quantifies an aspect of a manufacturing system’s performance. Perfor-
mance measures are either benefit measures (the higher the better) or cost measures 
(the lower the better). Performance measures, similar to the attributes discussed in 
Chap. 1, can be divided into four categories: time, quality, cost, and flexibility. The 
definition of the performance measures forms the system objectives. The economic 
objectives, such as the return on investment, tend to be emphasized most followed 
by the efficient use of resources and the system’s flexibility. What makes economic 
objectives to be emphasized is that the construction of a manufacturing system is 
highly capital-intensive. Therefore, no matter how worthy its performance may be in 
other aspects, a manufacturing system will never be constructed, unless it is shown to 
be financially viable. The objectives differ from company to company and from case 
to case. Given the performance requirements, the manufacturing system designer 
has to create and describe a suitable system design. This design can be captured 
numerically with the specification of the values of an appropriate collection of deci-
sion variables, such as the number of each type of machine, in a manufacturing 
system, the floor space available, and the existing equipment, which can be incorpo-
rated into the new system. Based on the requirements and constraints that are defined, 
many alternative manufacturing systems are developed and then evaluated, over some
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predefined scenarios. A manufacturing system design can thus be viewed as a contin-
uous, cyclical activity, involving the definition of the system’s objectives, the devel-
opment of detailed system requirements and constraints, and the implementation of 
the design. 

Concerning the difficulty of designing manufacturing systems the reader can get 
the first idea from Figs. 1.6 and 4.1. The design of the manufacturing system is an 
activity of the highest manufacturing system level where the impact of the deci-
sion is more important as it is a matter of strategic planning, whereas there is high 
uncertainty. In particular, it is highly due to the inherent characteristics of manufac-
turing systems. Manufacturing systems are typically dynamic, large, and have a lot 
of interacting components. The manufacturing systems are open, influencing their 
environment and vice versa. In addition, the analytic formulation of the relationships 
between performance measures and decision variables is usually not possible. Data 
may be difficult to be measured in harsh processing environments. There are ordi-
narily multiple performance requirements for a manufacturing system, which can 
conflict with each other. On top of that, the objectives of a manufacturing system 
are often either not well defined at the time that a manufacturing system should be 
created, or are subject to a change, which makes design flexibility very important. 
Data, regarding manufacturing resources, such as machines and material handling 
systems are inexact, especially if the manufacturing process is new. This vagueness 
of the inputs to the manufacturing system design process makes its quantitative opti-
mization difficult. This vagueness tends to render futile efforts to hone solutions to 
some mathematical optimum. 

In the academic literature, the overall manufacturing system design problem 
is usually decomposed into sub-problems of manageable complexity and are then 
treated separately. These sub-problems are simplified and abstracted with the aid of 
assumptions. However, even the simplified problems are usually non-polynomial-
hard (NP-hard), meaning that the time required to find the optimal solution 
increases exponentially as the problem size increases linearly. Typical system design 
sub-problems are explained hereunder:

● Resource requirements—for this problem, the task is to determine the appropriate 
quantity of each type of production resource (for example, machines or pallets) 
in a manufacturing system.

● Resource layout is the problem of locating a set of resources in constrained floor 
space. During the resource layout problem, it is considered that the manufacturing 
systems are divided into two areas: 1. the processing area, in which materials are 
processed and individual parts or components are made, and 2. the assembly area, 
in which, if necessary, individual parts or components are joined together in a 
subassembly or final product. The facility layout affects the number of resources 
required because it determines the type of resources being accessible from each 
point in the manufacturing system. The lack of accessibility increases the number 
of resources required. The problem has been formulated in several ways, with 
different degrees of sophistication: 1. the template shuffling formulation, 2. the
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quadratic assignment problem (QAP) formulation, and 3. the relationship chart 
formulation.

● Material flow aims to determine the configuration of a material handling system 
so as for some combination of flexibility, cost, production rate, and reliability of 
the manufacturing system to be maximized. The material flow decision variables, 
which must be specified in the design of a material handling system can be divided 
into two broad categories: those which specify the type of the material handling 
system and those specifying the configuration of a given type of material handling 
system. For instance, the travel aisle layout, the number and the locations of the 
pickup and delivery stations, the pattern of material flow within the travel aisles 
(unidirectional, bidirectional, or combinations), the number of vehicles required, 
the routes used by vehicles during specific operations, the dispatching logic used 
during operation, and the storage capacities of pickup and delivery stations.

● Buffer capacity problem is concerned with the allocation of work in process or 
storage capacity in a manufacturing system. A buffer is a storage space in a manu-
facturing system for pieces during the processing stages. Buffers serve to decouple 
the separate processing stages in a manufacturing system since by providing buffer 
space for inventory among the machines, starvation and blockage are reduced. 
This comes at the expense of increased inventory. 

In industrial practice, trial and error remain the most frequently used design 
approach. At first, engineers guess a suitable manufacturing system design (guess 
values for an appropriate collection of decision variables). Subsequently, they eval-
uate the performance measures of the system. If they satisfy the performance require-
ments, then, the design process should be stopped. Otherwise, the process will be 
repeated. The success of the trial-and-error approach heavily relies on the designer 
or “guesser’s” skill, with the help of intuition and the rules of thumb that derive from 
experience. Researchers have tried to make this process more systematic and enable 
less experienced users to perform well in the design of structure and operation of 
manufacturing systems. The methods and tools that have been proposed fall into 
three broad categories: operations research, artificial intelligence, and simulation. 

Operations research 

Operations research requires theoretical expertise and refers to descriptive analyt-
ical models and the use of techniques involving Mathematical Programming, which 
is a family of techniques for optimizing a given algebraic objective function of 
several decision variables. The objective functions might involve determined (known 
exactly) or random variables (their probability distribution is presumed). As for the 
decision variables, they may be either independent of one another, or they may be 
related through constraints. In the case of, the resource requirements problem, a 
mathematical programming formulation can explicitly model as constraints in the 
mathematical program the various limits for design and operating quantities, shared 
among the resources. Furthermore, mathematical programming has been applied to 
determine the pattern of material flow in an AGV-based material handling system.
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Computer simulation 

Computer simulation is the generic name of a computer software class, which simu-
lates the operation of a manufacturing system to provide a set of statistical perfor-
mance measures (e.g. the average number of parts in the system over time) for its 
evaluation. The inputs of a computer simulator are decision variables that specify 
the design (e.g., machine processing and failure rates, machine layout), the work-
load (e.g., arrivals of raw materials over time, part routings), and the operational 
policy (e.g., “first come, first served”) of a manufacturing system. The simulator 
assembles these data into a model of the manufacturing system, which includes the 
rules on how the components of the system interact with each other. The initial state 
of the manufacturing system (e.g., the number and types of parts initially in inven-
tory at various points in the system) is user-defined and subsequently, the simulator 
follows the operation of the model over time, tracking events such as the parts’ move-
ment, machine breakdowns, machine setups. etc. The optimum decision variables are 
usually deduced after running multiple simulations. If this search for optimum deci-
sion variables is not properly organized, it can become extremely tedious, thus, statis-
tically designed experiments (the process of formulating a plan to gather the desired 
information at minimal cost, enabling the modeler to draw valid inferences) have been 
used. As an example, the role of simulation in the resource requirements problem 
is to determine the bottleneck in the production rate emanating from the “slow-
est” resource and identify strategies to alleviate bottlenecks e.g. adding additional 
resources at the bottleneck. Simulation in combination with search-based algorithms 
has been used in parametric design approaches that seek to supplement the descriptive 
capabilities of simulation with prescriptive techniques (search algorithms), capable 
of generating new manufacturing system designs. 

Artificial Intelligence-based tools for Manufacturing System Design 

Three are the main types of artificial intelligence-based tools that make computers 
more useful, namely those are search, rules, and neural networks. Search-based 
tools address the manufacturing system design as a set of values for n decision 
variables, whereas rule-based tools (also often referred to as expert systems) are 
built around rules, which consist of an if part and a then part. Neural Networks 
capture the general relationships among variables, which are difficult or impossible 
to relate analytically, in a data-driven “black box”. Whether the solution approach 
employs simulation in conjunction with search, neural networks, or other methods, it 
seems likely that considerable computational resources will be required for realistic 
industrial problems. 

Search methods 

In search-based methods, any feasible design can be viewed as a point in an n-
dimensional design space. The body of heuristics or intuitively “reasonable” rules, 
which the designer can use to establish a path through the design space, is called 
search. A sensible design process should begin at an initial design point, from which 
a designer seeks to explore the design space, moving from point to point (design
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to design), and evaluating each point as it arises. Additionally, some sophisticated 
designers use the information acquired from previous evaluations. At an abstract 
level, the search methods find solutions by exploring paths. What distinguishes the 
search methods from each other are the heuristics that are responsible for the explo-
ration to be made. There are several ways of searching for optimal paths, each one 
with specific advantages. For instance, the branch and bound search is good when 
the tree is big and the bad paths turn distinctly bad quickly. The branch and bound 
search with a guess is good when there is a good lower-bound estimate of the distance 
remaining to the goal. On the other hand, dynamic programming is good when many 
paths reach common nodes. The A* procedure is considered good when both the 
branch and the bound search with a guess and dynamic programming are also good. 

Rule-based systems 

A rule-based system consists of two major components: a rule base and an infer-
ence engine. The rule base is a collection of rules that captures human expertise or 
reasoning in a particular problem domain. The inference engine is a piece of soft-
ware, which invokes the rules in the rule-base to solve problems. In most rule bases, 
the rules are interrelated in that the implementation of actions in the “then” part of 
one rule, may cause a condition in the “if” part of another rule to become true. There 
are two ways in which the inference engine of a rule base can operate in solving 
problems. These are referred to as “forward chaining” and “backward chaining”. In 
the “forward chaining”, the inference engine answers the question, “Which actions 
should be taken?”. It works by triggering a rule when all the conditions in it are 
satisfied by the current situation. In the “backward chaining” mode of operation, 
the inference engine answers the question, “Should a given action be taken?”. It 
works, starting from a rule, whose then part includes the action in question. The 
application of rule-based systems to the resource layout problem has been limited. 
Due to the daunting combinatorial nature of the problem, it is impossible to establish 
generally applicable rules for its solution. However, simplifications should be made. 
One approach is to divide the resource layouts into a few generic classes, e.g., linear 
single-row, circular single-row, linear double-row, and multi-row, which are to be 
mated with one of the two classes of material handling systems: automated guided 
vehicles (AGVs) or robots. 

Neural Networks 

The use of neural networks seems promising for the design of manufacturing systems, 
as their guidance lies in a simple and automatic training process rather than in coding 
complicated sets of heuristic rules. The design of manufacturing systems may be 
considered as a generalization application of neural networks and requires a training 
phase and a use phase. In the training phase, simulations are run to provide sample 
correlations between the decision variable and performance measure values. A neural 
network is then trained by exposure to these correlations, which are expressed in 
the form of training pairs that allows the neural network to generalize the relation-
ship between the decision variables and the corresponding manufacturing system 
performance measures. Neural network training data for the approach are generated
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from a limited number of simulation runs in which the decision variables (resource 
quantities) are varied in some fashion, resulting in a limited number x of {decision 
variable}–{performance measure} mappings. In most cases, the ratio x/n, where n 
is the total number of feasible mappings or equivalently the total number of feasible 
decision variable permutations can be very small and in general, a fashion to reduce 
n is desired since this would mean an increase of the likelihood of success of the 
proposed approach. 

Resource layout problem 

In general, the resource layout problem is an NP-hard class of combinatorial opti-
mization problems [2] and refers to the definition of the workstations’ configuration 
in order for some pre-defined goals e.g. line efficiency [3] to be achieved. In more 
detail, a large number of feasible design alternatives can be generated, making it 
extremely difficult for the design engineer to identify a solution that could best 
satisfy all criteria, which has stimulated the development and utilization of tools for 
decision support. 

The representation of the process components, hierarchy, and sequence, the 
assignment of tasks to workstations, etc. are some of the problems that are raised 
when analyzing the resource layout problem [4]. The tools that have been used 
over the years include simulation, which has supported the generation of the layout, 
design alternatives [5–7] whereas, neural networks[8, 9], genetic algorithms [10– 
13], heuristics [14, 15], fuzzy logic [16, 17], and Pareto optimization [18] are some 
of the most commonly used approaches for the selection of the design alternative. 
Furthermore, the evaluation of the produced solutions is sometimes challenging, 
especially when it comes to the achieved flexibility. In this context, Alexopoulos 
et al. [19] presented a method for the assessment of a manufacturing system’s flexi-
bility, based on dynamic programming and statistical analysis of the discounted cash 
flow estimates of the manufacturing system’s lifecycle cost. 

Intelligent search algorithms, such as the ones proposed in the [20] are necessary, 
to enhance the efficiency in exploring the design problem’s solution space. Figure 4.3, 
shows the different steps of a method that has been developed and applied to an 
automotive case study, as well as the respective functionalities in the form of a 
workflow (left to right). The methodology comprises two main stages. Stage 1, where 
the initial configuration is designed. In this stage, an analytical way of calculating 
the required number of stations and resources is provided on the basis of the product 
structure and assembly specifications. Stage 2, where the initial design of stage 1 is 
further detailed, via an intelligent algorithm, capable of selecting specific resources 
for each station. The selection is based on the individual resource characteristics and 
the resulting system’s performance, estimated with discrete event simulation.

In [21] a method of deriving assembly line design alternatives and evaluating them 
against multiple user-defined criteria has been presented. Several process require-
ments, including the process plan and alternative possible solutions, e.g. the joining 
technology to be used, are provided as input to the AI system (Fig. 4.4). Given this 
input, the system generates multiple designs and searches the technically feasible one 
among them. Subsequently, alternative designs are evaluated with multiple criteria,
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Fig. 4.3 Multi-criteria assembly line design and configuration [20], Reprinted with permission 
from Elsevier

such as investment cost, availability, equipment reuse, production volume, and flex-
ibility. As a result, suitable alternative cell designs are generated and proposed to 
the designer (Fig. 4.5). The method discussed can translate a cell design decision 
making problem into a search one, and it can, therefore, be addressed more system-
atically, whereas the enhancement of the solution is made by using AI. The method 
was implemented in the form of a decision support tool, capable of identifying good 
quality solutions.

The performance of the designed line, in terms of possible bottlenecks, should 
be investigated before setting up the designed line. This is usually performed using 
discrete event simulation. As an alternative, a data-driven algorithm based on the 
ARIMA method has also been suggested [22]. Other attributes that can be evaluated 
are the inter-cellular movements and the utilization of machines. Noktehdan, Karimi, 
and Kashan (2010) applied a grouping version of a differential evolution algorithm 
and its hybridized version with a local search algorithm for the evaluation of cell 
formation alternatives over the two aforementioned attributes [23]. 

Besides the aforementioned evaluation criteria, ergonomics has also been 
accounted for in many approaches. Arkouli, Michalos, and Makris (2022) reviewed 
a wide range of tools that are used for the assessment of physical and mental work-
load in manufacturing applications and proposed a multi-criteria decision-making 
methodology to select a data collection technique based on the particularities of 
each manufacturing case [24]. In industry, it is quite common that there exists 
ergonomic knowledge that may not be applied in the early product development 
process, given that it is not integrated into virtual/design tools. This causes problems 
since ergonomics risks are identified at later development stages, resulting in higher 
costs [25]. As a countermeasure, researchers have proposed decision support tools
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Fig. 4.4 Alternative designs for product design [21] 

Fig. 4.5 Alternative cell designs created through a generative design process [21]

that help in identifying risks or assessing the design of a manufacturing system. For 
instance, Alexopoulos et al. (2013) presented the development of ergonomic evalu-
ation methods integrated with VMS and DHM named ErgoToolkit, which enabled 
early ergonomic analysis with the use of dynamic human task simulation [26]. The 
approach along with the common design tools uses a rules-based system to define sets 
of postures and employs an inferencing logic to decide on the type of posture selected 
for the execution of a task. The tool may be used by non-ergonomic experts (e.g. 
production or simulation engineers) to get rough ergonomic assessment and proceed 
to the necessary production process changes early in the design phase. Moreover, it 
is relatively easy for the ergonomic rules, included in ErgoTookit, to be tailored to 
company-specific needs. For example, the set of invalid postures.
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Material Handling Systems—AI for Automated Guided Vehicles and 
Autonomous Mobile Robots 

Assembly systems are usually organized in lines that involve several stations, where 
various parts and components e.g. screws, clips, cables, etc. are used in order to make 
the final products. These parts are stored in boxes, pallets, etc. located at specific 
positions in each station. The replacement of any of the assembly station boxes that 
are under depletion is performed using boxes that exist in large warehouses (markets) 
outside the line. The mass customization trend has stressed the mixed model assembly 
paradigm, where different quantities of parts are consumed by the different models. 
This in turn, frequently results in unbalanced inventory levels within each station 
and the need for consumables and parts to be supplied to the stations dynamically. 
Whenever there is a need for one or more boxes to be replaced, multiple alternative 
solutions may be realized. The material-handling system has to move parts from one 
machine to another in a timely manner. Additionally, enabling the exploitation of the 
Flexible Manufacturing Systems (FMS) benefits requires the seamless movement of 
parts from station to station, which can be achieved with several different types of 
material-handling systems. 

The selection of the type of a material-handling system is a function of several 
system features, such as the load and bulk of the part and perhaps the part fixture. 
For instance, large, heavy parts require large, powerful handling systems, such as 
roller conveyors, guided vehicles, or track-driven vehicle systems. The number of 
machines to be included in the system and the layout of the machines also present 
another design consideration. If a single material handler is to move parts to all the 
machines in the system, then the work envelope of the handler must be at least as 
large as the physical system. A robot usually can reach one or two machines and 
a load-and-unload station, whereas a conveyor or automatic guided vehicle (AGV) 
system can be expanded to include miles of the factory floor. 

AGVs and autonomous robot technology are important solutions in the field of 
handling systems that can be used for part supply in assembly lines, given their ability 
for efficient handling and transport. Nevertheless, their integration into production 
systems comes with challenges in the planning and coordination of their functioning. 
There are different alternative pathways that a mobile unit may travel on when consid-
ering possible part supply operations. These part supply operations can be clustered 
into tasks for each agent. For instance, moving to target locations, identifying pallets, 
boxes, etc., but also loading and unloading. Moreover, precedence constraints among 
the different operations should be considered, e.g. an AGV or mobile robot cannot go 
to the station for the unloading of a box before this box is loaded from the respective 
market. 

Kousi, Michalos, et al. (2016) proposed a decision-making method for the plan 
generation of part supply operations for Mobile Assistant Units (MAUs) that used 
time and inventory levels as decision-making criteria. An efficient part supply plan 
should account for a number of constraints, including the storage areas or shelves, 
where the boxes are located during their transportation. Since different types (dimen-
sions) of boxes are used to store the different parts, each storage area/shelf of the
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mobile unit can store only specific combinations, in terms of the number of boxes. 
Each feasible combination of boxes that a mobile unit can carry simultaneously in all 
its storage areas/shelves is defined as a configuration. Given the predefined dimen-
sions of each type of box and the characteristics of each mobile unit, the total number 
of feasible configuration alternatives for each mobile unit can be calculated. On the 
shop floor, the existing mobile units may have varying specifications with respect to 
their capacity, the number of shelves, speed, dimensions, etc., meaning that the total 
number of configuration alternatives will be different for each mobile unit. A crucial 
constraint that should be taken into consideration is that at least one of the mobile 
unit’s shelves needs to carry at least one box. 

Based on this formulation, a two-step approach has been proposed; the first step 
is the calculation of the number of task alternatives for each box type allowed in 
each configuration. The second step is the calculation of the overall number of task 
alternatives, which is made by aggregating the product of the number of the alternative 
tasks for each type of box, allowed in each configuration. Considering that the mobile 
unit may have one of the abovementioned configurations, alternative configuration 
combinations can be formed as a tree (Fig. 4.6). The tree is constructed in steps, 
starting with the identification of the number and type of boxes to be considered in 
the planning. 

In layer 1, a mobile unit is selected among any of the available mobile units. For 
each layer, either sequential or randomized selections are made, having no impact 
on the formulation of the alternative. All possible configurations are listed as a tree’s 
branches. For each of the remainder mobile units, all possible configurations are 
listed in separate layers by considering the configuration/boxes of the previous layer

Fig. 4.6 Short-term planning for part supply—Configuration alternatives tree [27], Reprinted with 
permission from Elsevier BV 
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to exclude any duplication of tasks in the same tree. In the configuration alternative 
tree, each node can be replaced by the tasks that are compatible with each config-
uration, meaning that the resulting tree can be further expanded, according to the 
number of tasks that have to be carried out. The selection of an alternative among 
the set of feasible ones requires the definition of metrics for the quantification of the 
performance of each one of them. In this view, transportation—representation of the 
time required by the mobile unit to perform the assigned tasks has been selected, as 
a cost criterion. Its minimization will result in the maximization of the utilization of 
resources as well as in the reduction of idle time. 

A clonal selection algorithm has been proposed for the minimization of the 
distance travel of automated guided vehicles, in material handling operations, and 
in enhancing the performance of an FMS [28]. Moreover, genetic algorithms have 
been proposed for the redundant configuration of robotic assembly lines to address 
stochastic failures [29]. On the other hand, Kulak (2005) developed a decision support 
system that relied on axiomatic design principles, the fuzzy information approach for 
incomplete information, and a multi-attribute decision-making approach to choose 
between equipment types such as conveyors, industrial trucks, AGVs, cranes, etc. 
[30]. 

4.3 AI for the Operation of Manufacturing Systems 

The operation of a manufacturing system requires planning the material and infor-
mation flows in it. The production of products on time and in sufficient quantities 
is a direct consequence of the system’s information flows; commanding information 
from human planners or planning software prescribes the material flow in the system, 
while the sensory information monitoring the status of the system’s resources is used 
to deciding on the appropriate commands. Therefore, determining the commands, 
which prescribe the material flow in the system, is a fundamental activity in the 
operation of a manufacturing system. 

In industry, the operation of a manufacturing organization is typically divided 
into three hierarchical levels: strategic planning, operations planning, and detailed 
planning and execution [1] (Fig. 4.1). At the strategic level, few decisions are made by 
the top management of the organization, but each decision takes a long time, whilst its 
impact is felt throughout the organization. For example, which manufacturing system 
structure (flow line, cellular system, job shop, project shop, or continuous system) 
is the most consistent with the organization’s overall strategy, the entry into a new 
market, or the acquisition of additional manufacturing capacity. Finally, performance 
measures, such as return on investment, market share, earnings, growth levels, and 
so forth, are established for the organization. 

Concerning the distinction of the types of commands, there are two main types: 
high-level and low-level. High-level commands—called long-term planning and 
hereafter referred to as planning—are concerned with determining the aggregate
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timing of production. Planning dictates the flow of materials into the manufac-
turing system and determines its workload. Low-level commands—called short-term 
dispatching and hereafter referred to as dispatching—are concerned with the detailed 
assignment of operations to production resources. Dispatching, dictates the flow of 
materials, within and out of a manufacturing system, and determines which produc-
tion resources are to be assigned to each part’s operation and the time that each 
operation is to take place. Since low-level commands control individual operations, 
they should be generated much more frequently than high-level commands, which 
is also aligned with the illustration of data availability and time constraints in the 
different manufacturing levels of Figs. 1.6 and 4.1. Indicatively, the time between 
commands is in the order of seconds or minutes. Long-term planning and short-term 
dispatching are collectively labeled, in broad terms, as “production scheduling.” The 
scheduling problem in most production environments is stochastic and dynamic. 
Therefore, the scheduling methods either give some guarantee as to the insensitivity 
of the schedule to future disruptions or explicitly reflect the uncertain nature of the 
available information. 

Common approaches dealing with the production scheduling problem include 
operations research techniques (more specifically, mathematical programming), as 
well as AI techniques. AI techniques include rule-based systems that seek to capture 
generic scheduling rules, applying to a wide range of situations. Knowledge in a 
rule-based system can be classified into static (or data) and dynamic knowledge 
(or solution methods). Static knowledge includes all information about the manu-
facturing system itself (e.g., the number and types of machines) and the production 
objectives (e.g., the part types to be produced, along with their processing sequences, 
quantities, due dates, etc.). The dynamic knowledge describes available expertise to 
the way that feasible schedules can be derived, and consists of theoretical expertise, 
which refers to operational research techniques that deal with the management of time 
and resources; empirical expertise, which consists of heuristic dispatch rules; prac-
tical dedicated expertise, which is provided by experienced shop floor supervisors, 
who are aware of the constraints that have to be taken into account, when preparing 
the schedule. In a rule-based approach, these types of expertise are captured in the 
knowledge base in the form of rules. 

The challenges that are encountered in scheduling are related to the high vari-
ability of the actual manufacturing systems. The entities to be scheduled are typically 
referred to as jobs, where each job corresponds to an individual part. A job comprises 
individual production operations, which are referred to as tasks. Classical scheduling 
problems can be categorized based on the following dimensions:

● Requirements generation: requirements can be generated directly by the 
customers’ orders, or indirectly by inventory replenishment decisions. This 
distinction is often made in terms of an open shop (jobs are upon customer 
request and no inventory is stocked) versus a closed shop (the customer requests 
are serviced from the inventory and the jobs are generally a result of inventory 
replenishment decisions).
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● Processing complexity: Processing complexity is concerned with the number of 
tasks, associated with each job. 

The scheduling criteria include common measures for schedule performance, 
namely the utilization level of the production resources, the percentage of late jobs, 
the average or maximum tardiness (i.e., the positive part of the difference between a 
job’s actual completion time and its desired completion time) for a set of jobs and the 
average or maximum flow time (i.e., the difference between the completion time of 
the job and the time at which the job was released to the manufacturing system) for 
a set of jobs. On the other hand, the scheduling environment deals with assumptions 
about the certainty of information, regarding future jobs and can be classified as 
being static or dynamic. In a static environment, the problem contains a finite set of 
fully specified jobs. 

In operational planning, the objectives of the strategic manufacturing plan are 
converted into more detailed and specific plans. One of the most important of these 
plans is the Master Production Schedule (MPS) expressed in specific product config-
urations, quantities, and dates, which is frequently the key link between top manage-
ment and the manufacturing facility. It is also a key link between manufacturing 
and marketing and serves to balance the demands of the marketplace against the 
constraints of the manufacturing facility. The master production schedule is one of 
the inputs to material requirements planning (MRP), which obtains future require-
ments for finished products to generate the requirements for all the sub-assemblies, 
components, and raw materials that go to make up the finished product. Although 
MRP is a generic methodology, due to the vast amount of data processing when many 
part types with possibly many layers of subassemblies are involved (Fig. 4.1), it is 
usually handled by computer software, called the MRP system. 

At the execution level, many decisions are made, each requiring a much shorter 
time, e.g. capacity planning. Although the impact of each decision is local in time 
and place, the great number of decisions, taken together, can have a significant 
impact on the organization’s performance (Fig. 1.6). Focusing on capacity planning, 
it should be mentioned that it is responsible for providing projections of the capacity 
needs, implied by the material plan so that timely actions to be taken to balance the 
capacity needs with available capacity. Flexibility is one of the attributes that should 
be considered in decision-making. Therefore, Alexopoulos et al. (2010) suggested a 
method for the comparison of the performance flexibility of manufacturing systems, 
in uncertain environments, by considering the capacity planning constraints [31]. 

The shop floor control system is responsible for detailed planning, such as the 
allocation of resources in the forms of labor, tooling, and equipment to the various 
orders on the shop floor or determining the priority sequence of orders in a queue, 
and monitoring the execution of the detailed plans, such as capacity utilization at 
the machining center (i.e. input/output control). The shop floor control system has 
to allocate four major resources available to it: (a) material, (b) labor, (c) tooling 
and (d) machine capability. Three major activities make up a detailed assignment. 
These are (1) order sequencing/dispatching, (2) scheduled maintenance, and (3) other 
assignments. In actual manufacturing systems, dispatching is typically performed ad
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hoc, or via the application dispatch rules. Decision-making procedures may provide a 
comprehensive, fundamentally sound alternative to empirically stated dispatch rules. 
In making resource-task assignment decisions, they can consider resources and tasks 
simultaneously and can assign each task to a specific resource, in contrast to the 
dispatch rules, which only select the next task to be performed. 

The shop floor control system collects data from the shop floor and directs a flow 
of information back to the operations planning level. It uses information provided by 
the planning systems for the identification of those orders and the action to be taken 
and complements other planning systems, such as material requirements planning 
and capacity requirements planning. These planning systems, provide the resources 
required by the shop floor control system and set the objectives to be achieved by 
this system. The Shop floor control is then responsible for using these resources for 
its objectives to be achieved in an effective and efficient fashion. The shop floor 
control is supposed to close the loop between the planning and execution phases of 
the manufacturing system by feeding information from the shop floor back to the 
planning systems. 

After interpretation and aggregation, this information will pass on from the oper-
ational level to the strategic. Figure 4.7, depicts the major components of the manu-
facturing planning system. The figure depicts two flows. The first flow is that of the 
product and the attendant physical allocation of resources. The second flow is that of 
information. As the shop order progresses through the various stages of processing, 
it generates information, which is then used in monitoring its progress resources 
being: 

Fig. 4.7 Major Components 
of the Manufacturing 
Planning System [1], 
Reprinted with permission 
from Springer-Verlag New 
York INC
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● Manpower. This resource includes all of the personnel that the shop floor can draw 
on for the execution of the plans released to it (overtime, workers transferred in 
from other locations, part-time help, and multiple shift operations).

● Tooling. It refers to all of the equipment and special fixtures that are used during 
the setup and the operation of a machine or the assembly operation.

● Machine Capacity. This is the total amount of productive capacity, offered by the 
equipment available.

● Material. This is the total stock of components that can be used in completing 
shop orders. 

Information links the planning system with the execution system. The information, 
provided by the shop floor control system is the major means by which the planning 
system can track the physical flow: e.g. the current location of the shop order, the 
current state of completion, actual resources used at the current operation, actual 
resources used at preceding operations, any unplanned delays encountered. Correc-
tive action by the management is required at any time that the actual progress of a 
shop order exceeds some predefined margin of difference from its planned progress. 
The progress can be monitored along several dimensions: stage of completion, costs, 
scrap produced, or nearness to the due date to name a few. Capacity control refers to 
any corrective actions that attempt to correct the problems by means of very short-
term adjustments at the level of resources, available on the shop floor e.g. changes 
in work rate, use of overtime or part-time labor, use of safety capacity, alternate 
routings, lot splitting, subcontracting of excess work. 

The final step in production is order disposition (which can be either order comple-
tion or scrap). The quantity received from the shop floor is recorded and the perfor-
mance of the shop floor system is evaluated, based on measures such as the number 
of labor hours required, the breakdown of labor hours between regular time and over-
time, the materials required by the order, the number of hours of setup time required, 
the amount of tooling required, the order’s completion date, the amount of rework 
or scrap generated by the order, the number of machine hours required. 

In product-oriented Industrial Product Service Systems (IPSSs), the customers 
benefit from the combination of a product, which is accompanied by a set of func-
tionalities and services. The IPSS supports the provision of services that can be 
offered by the product manufacturer. The services can offer a wide range of func-
tionalities, ranging from ensuring the product’s original functionality to augmenting 
the product’s original functionality. A company’s shifting to IPSS, poses many chal-
lenges, such as changing its business model. One of the most important challenges for 
the establishment of IPSS is the appropriate planning of the resources for production, 
deployment, and installation into the customers’ site. In Alexopoulos et al. (2017), 
a multi-criteria resource planning method and tool for optimizing the production, 
delivery, and installation of IPSS, has been developed [32]. The solution employs the 
AI technique for the generation of the alternative IPSS’s production and installation 
plans and evaluates them on performance measures for production and installation, 
namely time and cost. Moreover, through the integration of the planning tool with
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Fig. 4.8 IPSS production and installation planning flowchart (left); intelligence search for 
evaluating different options (right) [32], Reprinted with permission from Springer 

the IPSS design phase, information for generating the Bill of Process and Mate-
rials is presented. The objective of the AI planning method is to find an optimal 
solution that decides what IPPS equipment (e.g. sensors) suppliers to select, which 
resources (e.g. IPSS service installation technicians), and when they should perform 
what processes/tasks at the IPSS provider or customer site. The planning method 
proposed in this study is based on the approach proposed in [33] and it defines the 
approach of assigning a set of resources to a set of tasks, under multiple and often 
conflicting optimization criteria. Figure 4.8 illustrates the workflow of the proposed 
methodology as well as the main principles of the intelligence search approach that 
is used. 

Service-oriented architecture and a heuristics-based approach have been 
suggested for the dynamic scheduling of robots for the material supply [34] and 
implemented as shown in Fig. 4.9. 

Fig. 4.9 SoA implementation [34], Reprinted with permission from Elsevier BV
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A decentralized multi-agent system framework and a distributed version of the 
Hungarian Method have been proposed for mobile robot scheduling [35]. An adap-
tive preferences algorithm has been utilized for the identification of the optimal 
scheduling policy, in the multi-robot assembly of large structures (aerospace) [36]. 
Chen et al. (2011) investigated generalized stochastic Petri Net models in tandem 
with the Monte Carlo method and multi-objective optimization for scheduling the 
human–robot collaborative assembly of an industrial power supply module [37]. Re-
scheduling has been performed for a team of mobile robots by using a combination 
of the Critical Path Method, a resource leveling method, and a monitoring agent for 
the initialization of the re-scheduling process [38]. 

Dispatching 

Dispatching is concerned with the detailed assignment of operations to production 
resources. The decision-making for shop-floor dispatching and control is responsible 
for preventing the deterioration of the manufacturing plan’s execution. Traditionally, 
much of the research done in dispatching has focused on heuristics, called dispatch 
rules. A dispatch rule is a method of ranking a set of tasks, which are waiting to 
be processed on a machine. The task with the best rank is selected to be processed 
on the machine. A schedule results from the rule’s repeated application, whenever a 
machine is available for assignment. When more than one machine is available at a 
given time, a machine selection rule is also required for the order’s specification for 
which the machines will receive assignments. 

Because dispatch rules are heuristics, no dispatch rule has been found to perform 
best in all situations. Factors that affect the suitability of a dispatch rule include the 
distribution of the processing times of the tasks to be dispatched, the distribution of 
the job due dates, the distribution of job arrivals over time, the performance measure 
to be optimized (e.g., mean tardiness, production rate, etc.), the nature of the jobs’ 
process plans (presence of assembly tasks, number of tasks per job, etc.). 

The dispatch rules have a lot of limitations; for example, they only prescribe 
which task to be assigned and not which resource the task should be assigned to. 
Therefore, when several resources become available at the same time, they should 
be arbitrarily assigned to the tasks, selected by the dispatch rule or another rule for 
machine selection has to be applied. The dispatching rules, partition the dispatching 
problem accordingly by first considering the resources and then the tasks. The corre-
sponding performance measures can be based on completion times, (due dates, mean 
lateness, etc.) or based on inventory and utilization of costs e.g. mean number of jobs 
waiting for machines. Heuristics have been used in a set of approaches [39–42]. 
Other approaches for dispatching include Dynamic Programming Approach, as well 
as probabilistic approaches [33], iterative backwards and forwards scheduling [43], 
extreme value theory [44], and neural networks[45]. The progress plot of standard 
PERT network data is an approach to distinct between tolerable deviations from the 
plan and developments that may call for remedial action. 

Older approaches on scheduling, some of which are still relevant, involve genetic 
algorithms [46]. Most job shop scheduling methods, reported in the literature, usually 
address the static scheduling problem. These methods neither consider multiple
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criteria, nor do they accommodate alternate resources to process a job operation. 
The genetic algorithms approach is a schedule permutation approach that systemati-
cally permutes an initial pool of randomly generated schedules so as to return the best 
schedule found to date (Fig. 4.10). A dynamic scheduling problem was designed to 
closely react to a real job shop scheduling environment. Two performance measures, 
namely the mean job tardiness and the mean job cost, were used to demonstrating 
multiple criteria scheduling. To span a varied job shop environment, three factors 
were identified and varied between two levels each. The results of this extensive 
simulation study indicate that the genetic algorithms scheduling approach, produces 
better scheduling performance in comparison with several common dispatching rules. 

Decision making for scheduling has been addressed with the coupling of digital 
(discrete event simulation) and physical (intelligent analysis of huge amounts of 
information) worlds [47], the artificial immune system algorithm [48], and the 
branch-and-bound algorithm [49], but also reinforcement learning [50, 51] game  
theory [52] and the hybrid backward-scheduling method with hierarchical finite 
capacity shop-floor models and discrete simulation [53]. Decision-making for nesting 
and scheduling has been treated with heuristics-based search approaches [54]. 

The MADEMA approach has been proposed for dynamic dispatching, during the 
operation of the manufacturing system [55]. Within each work center, whenever one 
or more resources become free after the completion of their tasks, a dispatching deci-
sion takes place by assigning one pending task to each free resource. Simulating this 
dispatching function over time results in a list of assignments for each work center.

Fig. 4.10 A generic genetic algorithm, [46], Reprinted with permission from Kluwer Academic 
Publishers (Boston) 
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The schedule for the entire manufacturing system is built up by combining the assign-
ment lists for the individual work centers. Dispatching has to be performed dynam-
ically because the task arrivals and the resource breakdowns, constantly change the 
tasks and the resources involved. If dispatching decisions had been performed ahead 
of time, then unforeseen interruptions, such as breakdowns would have caused many 
of the resulting assignments to become infeasible. Since this dispatching should 
result in feasible assignments, it is a finite-capacity process. 

The problem of scheduling the dyeing of fibers, the yarn spinning, and the carpet 
weaving operations of a typical textile plant, from a decision-making perspective, is 
presented in [56]. In this approach, the product items ordered are grouped and then 
the duration of the weaving task, for each group, is roughly estimated via heuristic 
rules, without determining the nesting layout of the proposed schedule. In many 
industrial cases, both the nesting and the scheduling problems have to be addressed 
at the same time. 

Mourtzis, Doukas, and Vlachou (2016) proposed a knowledge-enriched, short-
term job-shop scheduling mechanism, implemented into a mobile application [57] 
(Fig. 4.11). They focused on the short-term scheduling of the machine shop’s 
resources, through an intelligent algorithm that generated and evaluated alterna-
tive assignments of resources to tasks. Based on the requirements of a new order, 
a similarity mechanism retrieves successfully past executed orders, together with a 
dataset that includes the processing times, the job and task sequence and the suitable 
resources. In addition to that, the similarity mechanism is used for the calculation 
of the orders’ due-date assignments, based on the knowledge stored in past cases. 
Afterwards, it adapts these parameters to the requirements of the new order so as to 
evaluate the alternative schedules and identify a good substitute in a timely manner. 
The derived schedule was presented on mobile devices and it was possible to be 
manipulated by the planner on-the-fly, respecting the tasks’ precedence constraints 
and machine availability. 

Giannelos et al. (2007) studied dispatching policies, through the prism of the chaos 
and nonlinear dynamics concepts [58]. The scheduling of a simple manufacturing 
system, with the help of common assignment rules, has been simulated. The results 
were studied and analyzed with the help of time-delay plots. The method was tested 
against conventional rules. The use of chaos-related concepts, such as phase portraits 
and time-delay plots, reveal interesting geometric patterns of the variables, associated 
with the production scheduling problem and may often bring to light orderly struc-
tures. A similar analysis of other scheduling variables or interrelationships between 
variables, e.g. flowtime and tardiness, may also reveal orderly patterns.

Dynamic job rotation has been addressed with mathematical programming and 
heuristic solutions [59], whereas the layout of optimal job rotation for the upper bank 
of an assembly line is shown in Fig. 4.12. The job rotation enables production systems 
to cope with the fluctuating market demand by exploiting the benefits of flexible work-
force. It provides employees with a more engaging working environment, resulting 
in far less monotonous and repetitive tasks. There is a study on a dynamic job rotation 
tool, which enables the efficient allocation of assembly tasks to suitable operators, at 
any point of time, leading to more balanced workload distribution and thus, having 
a ‘dynamic line balancing’ achieved. A hierarchical approach to multiple criteria
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Fig. 4.11 Workflow of the knowledge-enriched short-term scheduling (KES) method [57], 
Reprinted with permission from Springer-Verlag Berlin/Heidelberg

and decision-making algorithms were used for the implementation of the tool. The 
tool generates alternative rotation schedules and evaluates them against predefined 
criteria. A monitoring system coupled with a database, was also used for the storage 
of the required data for the generation of the rotation schedule. This monitoring 
allowed the triggering of the rotation schedule generation, in case that the produc-
tion deviates from the existing plan in unexpected occurrences (delayed assembly, 
equipment breakdowns, etc.). This enabled the system to absorb any disturbance 
without disrupting the production process. Fatigue levels have been considered for 
the rotation triggering.

Neural Networks have been proposed by Hao, Lai, and Tan (2004) to address the 
personnel scheduling problem in place of integer programming-based models and 
heuristics, which have been typically used [60]. In view of addressing this problem, 
modelling and simulation of workers competence, skills and preferences have been 
studied by a plethora of researchers [61–63]. Zülch, Rottinger, and Vollstedt (2004) 
have shown three different approaches for personnel planning and re-assignment by 
exploiting simulation capabilities, in order to consider the plurality of possibilities 
for personnel assignment and to exploit the flexibility of human resources [62]. The 
preferences and ability restrictions of the existing personnel have been considered. 
In their case study, a re-organized personnel structure, has resulted in a signifi-
cant improvement of the logistical goal achievement. Personnel absenteeism was 
dealt with the mode of action of a dynamic priority rule, which controlled potential 
bottlenecks, with respect to specific functional elements during the simulation run.
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Fig. 4.12 Layout of optimal 
job rotation for the upper 
bank of the assembly line 
[59], Reprinted with 
permission from Elsevier

As for the integration of scheduling approaches, a web-based tool that uses an 
intelligent search algorithm for multiple criteria decision making has been demon-
strated [64]. Through a user-friendly web interface, production engineers can repre-
sent assembly lines, the tasks to be performed for each product and the operator’s 
characteristics. The web-based tool generated job rotation schedules for human based 
assembly systems based on an intelligent search algorithm used for the generation of 
alternative solutions to the scheduling problem. Multiple criteria decision making is 
used for the evaluation of the job rotation schedule alternatives, according to criteria 
having derived from industrial assembly line requirements. Figure 4.13 depicts the 
architecture of the dynamic job rotation tool.

The quality of rotation schedules was quantified by means of the following criteria: 
(a) competence i.e., the ability to perform an assembly task without making any 
mistakes, (b) the operator’s fatigue accumulation, i.e. the amount of fatigue induced 
on an operator, (c) fatigue distribution between operators, (d) distance travelled, (e) 
travelling distance distribution between operators, (f) cost, i.e. operators with high 
training/expertise and consequently, higher cost rates, should be efficiently assigned, 
(h) repetitiveness. The method uses the calibration method for the selection of the 
values of these decision parameters provided in [40].
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Fig. 4.13 Dynamic job rotation tool architecture [64], Reprinted with permission from Edition 
Colibri AG

Efthymiou, Pagoropoulos, and Mourtzis (2013) implemented a smart scheduling 
method into a virtual platform and applied it to a refrigerator factory [65]. The method 
employs the modelling of the factory’s resources and the assignment of the workload 
of the resources in a hierarchical fashion. The developed software system simulates 
the operations of the factory and provides a schedule for the manufacturing system’s 
resources. The system is integrated with a holistic virtual platform, namely, the Virtual 
Factory Framework that enables the exchange of data, related to product, process, 
resources, and key performance indicators along with other software components 
that are also integrated with the Virtual Factory Framework. 

Kousi et al. (2019) investigated the scheduling of autonomous mobile robots 
for material supply, using discrete event simulation and a multi criteria approach 
[66]. The authors have also presented the design and prototype implementation of a 
service-based control system, responsible for the material supply operations planning 
and coordination in assembly lines. The material supply processes are carried out by 
autonomous mobile units that are responsible for the transportation of the consum-
ables from the warehouse to the production stations. The plan generation, based on 
time and inventory level driven criteria, is automatically carried out by a web-based 
software that can also distribute the derived plan to the autonomous mobile units. 
The proposed system has been implemented on a case inspired by an actual produc-
tion line from the automotive assembly sector. Discrete event simulation has been 
employed for the investigated production system, to derive the specifications for the 
mobile units (e.g. number of boxes that can carry simultaneously) that may serve 
the system efficiently. The results indicate that the proposed architecture, integrated 
with the discussed mobile assistant units, may provide high quality solutions, with 
respect to the end user’s criteria. 

The proposed SoA schema (Fig. 4.14) comprises three levels, namely the (1) 
Decisional, (2) Execution Control and (3) Physical Execution level. The Decisional 
and the Physical Execution levels are connected through the Execution Control level, 
which is responsible for the decentralized integration and communication of the
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Fig. 4.14 Different pathways of Mobile Autonomous Units (MAU) [66] 

system’s individual components. The Decisional level delegates the interpretation 
of task assignments to the Execution Control level, which in turn, delegates the 
execution of the tasks to the Physical Execution level. 

The implemented shared data repository is responsible for the storage of multiple 
pieces of information, provided by the MES. Such information includes the current 
activities, dispatched in the shopfloor as well as their execution status. The inven-
tory levels at each point of the execution are also stored into the repository. The 
information stored into the shared data repository is modelled by an ontology that 
defines a set of ontology classes, object and data properties. The shop floor ontology 
corresponds to the entire assembly plant and includes the assembly lines, the ware-
houses for the storage of the boxes with consumable parts and the available MAUs. 
Each assembly line consists of several assembly stations, where several boxes are 
stored. Respectively, each of the warehouses consists of warehouse shelves where 
boxes with consumables are stored there. Siatras et al. (2022) presented a toolbox 
of both model-based (mathematical programming) and data-driven (artificial neural 
networks) agents for scheduling the paint shop environment of a bicycle industry 
[67]. 

Control 

Approaches to the control of manufacturing systems being available in literature, 
among others, include the coupling of the physical and digital worlds together with 
discrete event simulation [47], distributed machine control systems along with a 
multi-attribute objective adaptive approach and the calculation of the mean-squared 
deviation of job completions [68], the analytic hierarchy process based approach [69], 
as well as the discrete event simulation together with the agent-based approach [70], 
a self-learning method, based on the probability distribution of random events [71]. 
In general, agent-based methods have been commonly used for control as an alterna-
tive to centralized systems [72]. Tang and Wong (2005) have proposed multi-agent 
based control, including reactive agents for high robustness, high responsiveness and
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expandability [73], the multi-agent based control with operation based time-extended 
negotiation protocol for on-line adaptation was investigated in [74]. Mahesh et al. 
(2007) suggested a web-based multi-agent system for geographically distributed 
agents, interpreting commands from one another [75]. 

Disruption monitoring in a manufacturing system, is discussed in [76]. A proto-
type implementation, using an immune based ontology and multi-agent systems, 
is suggested in order for decision makers to be provided with recommendations 
on reaction strategies. A distributed data storage mechanism collects and provides 
real time data to an ontology model, using IEC61499 function blocks, for recon-
figurable resources. Moreover, decision making is enabled via Semantic Web Rule 
Language (SWRL) rules, allowing the adaptive task execution among the manufac-
turing resources, in case of a break-down event. RFID data and wireless information 
have favoured the disruption monitoring as well as the deployment of Just-In-Time 
manufacturing [77]. Torres (2017) proposed an intelligent system for text recogni-
tion in the industry and for objects identification, using an edge-enhanced maximally 
stable extremal regions (MSER) algorithm [78]. This study has focused on the auto-
matic detection and recognition of text in unstructured images for use on shop floor 
mechatronic systems with vision systems, for the identification and recognition of 
patterns in products, thus reducing the need for predefined calibration models. The 
confirmation of undisturbed production or the detection of disruptions are the input 
of the shop floor control that in turn, triggers corrective actions. 

George Michalos, Sipsas, et al. (2016) investigated a control framework, enabling 
the real time re-configuration of shop floors with autonomous production units [79]. 
In particular, they considered (a) autonomous mobile manipulators capable of reposi-
tioning themselves on the line, (b) flexible grippers. Each one of these elements allows 
a different reconfiguration degree. Reconfigurable tools enable the easy adaptation of 
the production process to disturbances and market variations. The degree of autonomy 
can be further increased when combining such tools with mobile robotic platforms, 
since these robots can undertake multiple roles within the assembly system, allowing 
it to recover smoothly from many technical problems. Cooperating robots, on the 
other hand, i.e. robots communicating with each other for carrying out common 
tasks, involve workspace sharing, motion synchronization, program synchronization, 
and linked motion. Typically, Flexible Manufacturing Systems (FMS) comprises 
the application of agent-based control in Computer Numerical Controller (CNC) 
machines. In this case, the machines have several programs stored in and the agents 
decide which one to be executed, depending on the pending operations. The dynamic 
nature of the tasks requires more complex coordination among the resources (hori-
zontal integration) as well as a higher level of coordination services (vertical inte-
gration). Figure 4.15 illustrates the hierarchical architecture and the decisions to be 
made for each level.

The required functionalities for the application of the control logic require 1. 
monitoring and data collection, i.e. collection of signals from sensors, MES systems, 
PLC, or services running on the controllers of each resource, to identify events 
that may impose the need for line reconfiguration, 2. event detection and analysis 
that allows to traced back to the information regarding the malfunctioning resource,
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Fig. 4.15 Reconfiguration of the production system at the Resource, Station, Line, Plant levels 
[79], Reprinted with permission from Pergamon

the station that the resource belongs to, the processed product and the ongoing or 
disrupted task to the error signal, 3. the selection of the reconfiguration strategy: (a) 
reassignment of the disrupted task to another station, (b) the use of mobile units as 
replacements for malfunctioning units or as additional resources within a station. 

Figure 4.16 illustrates decision-making based on the proposed approach, whereas 
each one of the steps are detailed hereunder:

● Unit Suitability: check whether the mobile unit is capable (docking station compat-
ibility, robot capabilities, etc.) of performing the task that failed in the station. If 
there is no compatibility between the operation and the unit, the decision- making 
stops, otherwise it continuous to the next steps.

● Unit Availability: check whether the unit is at rest and can directly start moving 
to the requested area, whether the unit is in use or not available for a short period, 
or whether the unit cannot be used as it has to work in another area. The decision-
making stops in this case.

● Tool suitability: the test concerns the suitability of the tools which the robot is 
equipped for the requested operation. If the unit has no tool attached to it or it has 
a non-suitable tool, a decision as to where a suitable tool can be found needs to 
be taken (see next step), otherwise, the next step for finding a tool can be skipped

● Nearest Free Suitable Tool: the control logic examines the location of the mobile 
unit concerning the last known locations of suitable tools and determines which 
locations are candidates for tool pick up.
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Fig. 4.16 Visualization of the mobile unit consideration in the decision making [79], Reprinted 
with permission from Pergamon

● Path planning (with tool pickup if needed): the local planner of the mobile unit 
generates alternative plans for the identified locations and the locations being 
available for tool pickup.

● Calculation of the ETA: for each path generated in the previous step, the Estimated 
Time for Arrival (ETA) is calculated.

● Min ETA: the path with the minimum ETA is selected and considered in the 
upcoming assignment of tasks for the line’s reconfiguration. 

The reconfiguration scenarios derived from the control logic, have allowed for 
the smooth absorption of technical disturbances without disturbing the produc-
tion flow. The generic design of the control logic can accommodate the control 
of large-scale applications, involving more mobile units and tools as well as multiple 
product variants. However, the authors have pointed out limitations that are related 
to the mobile robots infrastructure e.g. limited examples of mobile units, capable 
of carrying high payload robotic arms, the mobile robots’ power autonomy, auto-
mated and collision-free motion planning, etc., as well as for the control and software 
infrastructure. Namely, there is a need for systematic and automatic generation of the 
re-configuration alternatives, real-time communication with each resource, through 
web services, and application of ontologies and semantics technologies for fast data 
retrieval, combined with reasoning techniques. 

Gkournelos et al. (2020) proposed a scalable assembly execution control frame-
work, aiming at facilitating the real reconfigurations for shopfloors, involving mobile 
manipulators (which consist of arms, torso, as well as a mobile base) [80]. The recon-
figurations are realized at two distinct levels (a) process level reconfiguration and (b) 
resource level and they are coordinated via the execution control framework, as shown
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Fig. 4.17 Overall approach [80], Reprinted with permission from Elsevier 

in Fig. 4.17. The proposed approach comprises a set of cognition modules for environ-
ment and process perception, wrapped as digital services consumed by the execution 
orchestration mechanism. The implementation of the framework is ROS based and 
all of the modules are developed with C++ and deployed as ROS nodelets, enabling 
zero-copy transport communication among them. For the connection with the outside 
of the framework’s shell, the standards interfaces (topics, services, actions) are for 
the easy and agnostic integration of robot suppliers or digital twin implementations. 

A real time updated digital twin of the workplace is responsible for the collection 
of data and the virtual representation of the shopfloor status. In addition, it enables the 
use of a unified semantic data model, simplified sensor data sharing, and subsequently 
simplified control integration and real-time robot behavior adaption. The workload 
coordinator operates on top of the process and robot reconfiguration levels. It is a 
simple module, which acts only as a delegator. Its main responsibility is to decode 
the production plan into robot actions and send these actions for execution. The 
process level reconfiguration consists of the mechanisms that enable the adaption of 
the process, based on the shopfloor status at runtime. The following three perception 
modules allow the online reconfiguration of the process according to the actual 
process parameters:

● The Object Detection module handles the accurate detection of the position of 
the parts that are involved in the process. The design of this module enables the 
easy integration of different detection algorithms, depending on the process or 
part requirements. Several methods can be used for the detection of parts, such 
as the contour method detects the object by detecting its outline or else contour, 
or the Point Pair Feature PPF and Iterative Closest Point ICP algorithms for 
surface matching which find the spatial relation that aligns two 3D point sets. 
This module was implemented as a C++ ROS nodelet and it can use any 2D or 
3D image published as input for the detection.
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● The Global Navigation module deals with the motion of the mobile platform, 
inside a known shopfloor map, which contains static obstacles. The static obstacles 
are defined through a mapping process, which takes place before the execution of 
the production. In case new and unknown obstacles appear, they can be included 
and avoided through the online information that the digital twin provides. A latter 
sub-component manages the connection with the digital twin, using ROS topics 
and services. The Global navigation module is responsible for retrieving from 
the digital twin, sensor data and semantic information such as the known map of 
the working area. All these data are fused and a cost map is created with all the 
static and dynamic objects. This cost map is provided as input to the Platform 
Path planner module.

● The Accurate Localization module is responsible for covering any accuracy issues 
that arise during the navigation from one process station to another. The accuracy 
issues are expected to similarly affect the object detection, due to the limited field 
of view of the sensors that are commonly used, hence risking the success of the 
complete workflow. Visual servoing of the mobile platform ensures precise virtual 
docking with the working tables or fixtures. 

The robot level adaptation is the lower level of the Execution Control Framework 
and it deals with the resource re-organization, meaning that it is responsible for the 
adaptation of navigation paths and arm motion trajectories. The main goal of this level 
is to avoid potential collisions with other resources and unmapped obstacles inside 
the environment. In turn, this requires the coordination of the different controllers, 
included in the mobile manipulator e.g. mobile base, robot arms, and torso joints. 
Based on the digital twin geometric data, a planning environment is constructed, 
containing the information of the robot’s current state, the robot kinematics, any 
objects that are rigidly attached and obstacles to be avoided. The Arms & Torso 
Motion Planner is dedicated to ensuring safe and collision free motion planning. 
This module is developed based on MoveIt! The Platform Path Planner is used for 
online path planning of the mobile platform, aiming at finding a minimum cost plan 
from a start point to an end point, by considering the static and the dynamic obstacles 
on the working environment. The path planning component is implemented, based 
on the ROS navigation stack for mobile robots; thence, the use of the common 
ROS interfaces (topics, services, actions) is essential. This provides great flexibility 
in integration of different mobile robots. The vision-based robot control with the 
output of Accurate localization, a dedicated closed loop PID velocity controller of 
the mobile, which takes as feedback the position error between the platform and the 
detected tag, has been developed. Figure 4.18 depicts a sequence diagram, describing 
the communication and the dataflows among the modules involved.

Karagiannis et al. (2018) suggested a multilayer adaptable control framework 
for easy configuration and coordination [81]. The authors discussed the design and 
implementation of a software central execution platform that undergoes the config-
uration and control activities, required in a modular production station. XML-based 
resource configuration and task allocation as well as support for controlling multiple 
resource types, such as robots, grippers, vision systems, etc. following the “plug &



4.3 AI for the Operation of Manufacturing Systems 109

Fig. 4.18 Sequence diagram for task execution [80], Reprinted with permission from Elsevier

play” concept, are the key benefits of the proposed system. The proposed approach 
is multilayer and can adapt to different assembly cells with the activation of the 
modules necessary for the execution. The lowest layer comprises the resources and 
sensors of the assembly cell. The next layer consists of the device drivers and the 
ROS nodes that are essential for receiving data and forwarding them to the top layer, 
as well as for the execution of the commands received from the dedicated controllers. 
The top layer contains the main controller of the framework, which is the core of 
the proposed software platform and the resource configurator module. These are 
responsible for executing the program and configuring the existing resources in the 
cell, based on the info received via an XML file from the programmer. The contri-
bution of this tool is the combination of resource configuration and control modules, 
allowing for multiple and different resource types and sensors to be integrated and 
execute a common program flow. Moreover, decisions are taken online, based on the 
data received from the sensors, by selecting the corresponding task chain that has to 
be performed in different cases. Furthermore, it can support different configurations 
and controllers for multiple resources of the same type by increasing the system’s 
flexibility. Finally, it allows the programmer to use parallelism in resource activities 
by running multiple operations from different resources. Potential sectors could be 
those of the automotive, aeronautics, and white goods industries. 

Maintenance planning and scheduling 

Several approaches have been proposed, aiming to reduce or even eliminate unfore-
seen downtimes, and plan maintenance activities more accurately. The vast avail-
ability of field data resulting from ICT advancements, such as the Internet of 
Things, has triggered the development of new approaches for maintenance, including 
condition monitoring and predictive maintenance. Carvalho et al. (2019) indicated 
Random Forests, k-means, and Artificial Neural Networks as the most popular
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machine learning methods for predictive maintenance, but they also highlighted that 
the predictive maintenance methodologies presented so far tend to be application-
dependent [82]. The multitude of approaches that have been presented include among 
others the study of data-based and physics-based models for condition monitoring and 
prognostics [83, 84], as well as the combination of Digital Twins with physics-based 
[85] data-driven [85] or hybrid  [86] models for planning maintenance activities. In 
more detail, the Digital Twin concept has been proposed for predictive maintenance 
applications in manufacturing, to enable physics-based predictive maintenance [87, 
88] exploiting the knowledge that can derive from the modeling of robot dynamics 
[89]. An IoT machine learning and orchestrator framework for the detection of fail-
ures [90], ARMA modeling and data-driven techniques for fault prediction [91], and 
Estimation of the Remaining Useful Life, based on Convolutional Neural Networks 
[92], are some of the approaches that have been tested. 

An integrated neural-network-based decision support system, for predictive main-
tenance of rotational equipment, has been presented [93]. Deep Boltzmann Machines, 
Deep Belief Networks, and Stacked Auto-Encoders have been employed for the 
identification of the fault condition of the rolling bearing [94]. A recurrent neural 
network-based health indicator has been proposed for the RUL prediction of bear-
ings [95]. An ensemble prognostics method considers the effect of degradation on the 
accuracy of RUL prediction, through the assignment of an optimized, degradation-
dependent weight to each learner [96]. Choo et al. (2016) suggested an adaptive 
Multi-scale Prognostic and Health Management methodology with a hierarchical 
Markov Decision Process approach to describe and find the optimal policy of a 
smart manufacturing system [97]. 

An important issue that comes up, along with the fault diagnosis, is the design of 
fault features, which usually demands effort and it does not comprise an automated 
procedure [98]. Shao et al. (2018) tried to get rid of the dependence on manual feature 
extraction [99]. A Neuro-Genetic algorithm for condition monitoring, fault diagnosis, 
and evaluation of induction motor, without any additional information [100], as well 
as a data-driven approach for prognostics, using deep convolution neural networks 
(DCNN) demanding no prior knowledge of the critical components’ degradation 
process [92], have been proposed. The degradation of the performance of intelligent 
fault diagnosis has also been addressed by Zhang et al. (2018) using deep learning 
[101]. Furthermore, decision tree classifiers have been used for the prediction of 
defective parts in an aluminum injection line [102]. 

Cloud-based Cyber-Physical Systems, along with the Internet of Things concept, 
have been proposed for adaptive scheduling and condition-based maintenance [103]. 
The proposed work presents a cloud-based cyber-physical system, depicted in 
Fig. 4.19 for adaptive shop-floor scheduling and condition-based maintenance.

The main contribution of the present work is a (a) cost-effective and reliable 
monitoring system, which integrates data from different sources, by implementing 
both industrial communication protocols and standards, follows the Industrial IoT 
and Industry 4.0 paradigms, (b) data analysis algorithms that can easily identify the 
status of the shop-floor and calculate important key performance indicators in real-
time, a monitoring system that includes a wireless sensor network, (c) an adaptive
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Fig. 4.19 The cloud-based cyber-physical system [103]

scheduling algorithm which consists of a multi-criteria algorithm, capable of taking 
into consideration, various data from the shop-floor (machines, human operators, 
etc.) in real-time, as well as input from condition-based maintenance, performing 
accurate and effective production scheduling and re-scheduling in real-time, (d) the 
implementation of different modules of the proposed cyber-physical system in a cloud 
environment, along with technologies for data storage and handling and finally the 
provision of the different modules (monitoring, scheduling, maintenance) as services 
upon end-user request.
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4.4 Digital Platforms and ICT Technologies for AI 
Applications in Manufacturing Systems 

Availability of data in manufacturing—Big Data and data analytics 

Big data are essentially data sets that are so voluminous and complex, rendering the 
traditional data processing application software inadequate to deal with them. With 
the increase in data availability and sensor fusion, in the manufacturing industry, the 
role of data analytics, in the development of smart manufacturing systems, has grown 
tremendously. For instance, Forbes reported that the global market for marketing 
analytics is currently around $3.2 billion and is predicted to grow to $6.4 billion 
by 2026, allowing companies to generate consumer insights and improve strate-
gies to reach them [104]. More and more manufacturers have been applying data and 
analytics across their processes so as to optimize their supply chains, improve product 
scheduling and sales forecasting, reduce costs, develop new propositions and monitor 
machine usage and reliability. The integration of Big Data analysis, in modern manu-
facturing systems, can significantly accelerate production and development along 
with identifying quality issues in real time. 

The notion of the data analytics comprises a collection of different tool types, 
namely those based on predictive analytics, data mining, statistics, data mapping, 
profiling, natural language processing and so on. All these techniques have been 
around for years. The difference today is that a lot more user organizations are 
actually using them. That is because most of these techniques adapt well to very 
large, multi-terabyte data sets with minimal data preparation [105]. Data mining, 
has been employed for the acquisition of knowledge about the future behavior of 
a manufacturing system [106]. The adoption of IoT in manufacturing, enables the 
transition from traditional manufacturing systems to modern digitalized ones. This is 
realized via data analytics for the production of more value, leading to the generation 
of new economic opportunities through the re-shaping of industries [107]. 

Decision making is ubiquitous in the contemporary organizational processes. Big 
Data analytics is used for the improvement of decision making in different manu-
facturing stages. The data fusion and the interpretation of data, lead both to the 
improvement of the product design and to the product use, since the value feedback 
is collected through sensor-based services, supported by IoT, following collaboration 
schemes [108]. The method of least squares, in support of vector machines, has been 
used for the estimation of the manufacturing cost of airframe structural projects [109], 
back-propagation neural networks and the least squares support vector machines to 
solve the product life cycle cost estimation [110]. 

Big data is commonly unstructured and require more real-time analysis. This 
development calls for new system architectures of data acquisition, transmis-
sion, storage, and large-scale data processing mechanisms. Considerations of fault-
tolerance, security, and access control are critical in many applications. Both struc-
tured and unstructured Product Life Cycle data analytics techniques have been intro-
duced [111]. Kumar et al. (2016) presented a MapReduce framework for automatic
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pattern recognition in the context of fault diagnosis in cloud-based manufacturing 
[112]. 

The scalability and high availability of the IoT and Big Data solutions, without 
compromising performance requirements, lead to the need for databases that could 
support the management of massive amounts of data. NoSQL databases are increas-
ingly used in big data and real-time web applications [113]. Following a Column 
data model, the proposed framework utilizes Cassandra NoSQL database, a leading 
distributed database [114]. 

In summary, the increasing use of Data Analytics in modern Manufacturing 
Systems can lead to an optimized life cycle, lower capital costs and the improvement 
of process cycle time, resulting in increased yield and faster time to market [115]. 

Information flow 

A significant part of the information flow, required in a manufacturing system, 
is covered by the Computer Integrated Manufacturing (CIM), which concerns 
activities related to the manufacturing business. These activities include among 
others, evaluating and developing different product strategies, analyzing markets 
and generating forecasts, analyzing product/market characteristics and generating 
concepts of possible manufacturing systems, designing and analyzing components 
for machining, inspection, assembly, and all other processes, relating to the nature 
of the component and/or product (i.e. welding, cutting, etc.), evaluating and/or 
determining batch sizes, manufacturing capacity, scheduling, and control strategies, 
relating to the design and fabrication processes involved in the particular product. 

The CIM systems consist of subsystems that are integrated into a whole. In turn, 
the subsystems consist of business planning and support, product design, manufac-
turing process planning, process control, shop floor monitoring systems, and process 
automation. The goal of CIM is to use advanced information processing technology, 
in all areas of the manufacturing industry to:

● Make the total process more productive and efficient.
● Increase product reliability.
● Decrease the cost of production and maintenance, relating both to the manufac-

turing system as well as to the product.
● Reduce the number of hazardous jobs and increase the involvement of well-

educated and competent humans in the manufacturing activity and design.
● Respond to rapid changes in market demand, product modification, and shorter 

product life cycles.
● Achieve better use of materials, machinery, and personnel, and reduced inventory.
● Achieve better control of production and management of the total manufacturing 

operation. 

Nowadays, the rapidly changing customer demands in combination with the 
increasing quality and documentation requirements, as well as the complex supply 
chains, involving stakeholders from all over the world, require flexible production 
environments, capable of adapting produced goods quickly and efficiently to market 
demands [116]. In turn, the corresponding information flows are complex and difficult
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to maintain. Information flows link the operational technology (OT) domain, which 
generates data and involves industrial and factory automation, supply chain manage-
ment, asset monitoring, etc., with the information technology (IT) domain, which 
consumes data and includes automation of business and office, mobile applications, 
and enterprise web. 

The emerging technologies and concepts of Industry 4.0 may fulfill these chal-
lenges by enabling end-to-end communication among all production-relevant assets 
in the production and IT, meaning that modern production environments are equipped 
with several kinds of Internet of Things (IoT) devices, varying in function and loca-
tion, collecting huge amounts of data. The main goals of Industry 4.0 include (1) 
vertical integration of IT systems in production and automation engineering; (2) 
horizontal integration of various IT systems across the value chain; (3) consistency 
of engineering over the complete lifecycle; (4) customization of products, through 
small lots or even lot size one; and (5) new social infrastructures for work. 

The major challenge in IT integration is to define the architectures, dictating the 
information and communication flows that crosscut different Industry 4.0 compo-
nents. In more detail, interoperability remains a great challenge in smart manufac-
turing [117], whereas, no consensus has been reached as to the way of addressing 
compatibility with legacy industrial systems, which often need to be kept operative 
in the production line [118]. On top of that, security, trust, and privacy remain open 
research topics [119–121]. Furthermore, a radically new industrial model that will 
merge the OT and IT domains is necessary so as to ensure the constructive use of the 
produced data. Storage and processing data management features should be based 
on data analysis libraries that support the extraction of knowledge, enabled by recent 
ICT technologies. 

A set of reference architectures have been proposed to encompass the major 
communication challenges that emanate from the difficulty of interfacing different 
types of computers, purchased by different vendors at various times. Reference 
architectures serve as blueprints for building and interoperating a software-intensive 
system and they document the essence from a collection of systems, in a given 
domain, by providing knowledge on how to develop, standardize, and evolve soft-
ware systems to this domain. AUTOSAR for the automotive sector [122], ARC-IT 
for transportation systems [123], and SOA RA for service- oriented systems [124] are  
some indicative initiatives of this kind, developed by Consortia of major industrial 
players (such as manufacturers and suppliers) and researchers. Nevertheless, there 
are a lot of different scenarios and challenges for the implementation of Industry 4.0 
systems. Industry 4.0 employs reference architectures with different content, format, 
and purpose [116]. The implementation of Industry 4.0 communications as well as 
intelligence, together with big industrial data are, so far, only covered by the IIRA, 
SITAM, IBM Industry 4.0, and LASFA reference architectures. 

Applications of AI techniques are mostly oriented on decision making and control. 
However, in the age of enhanced connectivity, distributed storage and software execu-
tion, big data have enabled AI as embedded in highly interconnected devices that 
can make them smarter [125]. Artificial intelligence and machine learning methods 
can enable new decision-making mechanisms by providing insight into production
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operations, frequently provided as AI services. AI services refer to infrastructures, 
software, and platforms, provided as services or applications, frequently on the cloud, 
available off the shelf, and executed on demand. In this way, they reduce the manage-
ment of complex infrastructures. The backbone of cloud computing is considered 
to be the Infrastructure as a service (IaaS) that provides access and management 
of virtual resources, such as servers, storage, operating systems, and networking. 
In addition, cloud platforms (provided under the Platforms as a Service policy) are 
service products of cloud applications and can be used within Software as Service 
(SaaS) architectures, which are cloud applications and adaptive intelligence software 
[126]. AI and semantic web technologies are discussed in [127], facilitating cross-
domain integration of systems and services for smart manufacturing. Case-based 
reasoning has been applied to the implementation of an intelligent fault detection 
system for the production o injection molded drippers [128]. The domain expert 
knowledge is used to determine weights of significant features, which in turn, are 
used in a local similarity measurement. An artificial immune system approach to 
case-based reasoning for fault detection diagnosis is discussed in [129]. 

Digital Twin models have been proposed for the acceleration of the training phase 
in Machine Learning (ML). For instance, Alexopoulos, Nikolakis, and Chryssolouris 
(2020) suggested a framework for the implementation of a DT-driven approach to 
developing ML models, based on an architecture, adapted for the representation of 
the main entities i.e., the CPS that links the physical world (e.g. machine or robot 
on the factory floor) to the cyber, through the creation of a digital thread between 
them. Thus, a Cyber-Physical-Production System is formulated along with the DT 
that represents the virtual model of the physical system or process. These are linked 
with the CPS entity, through the data communication channel, being capable of 
replicating aspects of the behavior of the CPS. Both CPS and DT stacks are defined 
and implemented, based on the same layered architecture approach. 

Context-aware intelligent service systems can be used to provide AI services 
to people on the shop floor and back office. Such systems may combine key 
IIoT concepts, such as multi-layered, service-oriented architecture, which integrates 
several subsystems, e.g. sensor data acquisition together with concepts for developing 
AI systems that can be combined with the digital twin concept (Fig. 4.20). Industrial 
Internet of things (IIoT) context-aware information systems [131] can be utilized 
in the context of decision support for mobile or static operators and supervisors 
according to their situation. The utilization of context-aware information delivery 
seems even more relevant in the case of dynamic, semi-structured manufacturing 
environments in that the workstations are not fixed and change dynamically over. The 
work has been applied to the shipbuilding industry, where the work areas vary among 
different projects and the workers are highly mobile and may execute different tasks 
during their shifts. The implementation of the approach has helped extracting some 
conclusions which were: 1. thorough understanding of ICT infrastructure and corpo-
rate policy restrictions have proven to be important (e.g. cloud solutions not accepted 
in some cases due to security concerns), 2. installing and deploying Industry 4.0 solu-
tions necessitates considerable effort and commitment from corporate resources due
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Fig. 4.20 Utilization of the digital twin for the development of ML-based applications for smart 
manufacturing [130], Reprinted with permission from Taylor & Francis

to the cross-sectorial nature of the solution, 3. successful architectures for manufac-
turing applications share some common characteristics such as (i) layered architec-
ture approach to ease the management of developing a complex system by isolating 
independent features and functionalities (Fig. 4.21), (ii) event-driven approach due 
to the large number of IIoT devices present in manufacturing environments, (iii) 
context awareness supported by technologies, such as ontologies and semantics to 
support the dynamic change of user and application context, (iv) finally, it is critical 
that there is operator/team leader acceptance of the solution, as well as the mentality 
that such solutions aim to help everyday job activities and support maintaining job 
positions. 

Knowledge representation 

An important activity of using AI for manufacturing is knowledge representation. 
This domain is concerned with the modeling of heterogeneous manufacturing knowl-
edge, the identification of the required level of detail for the modeling, as well as the 
manner to extract and represent new information using the knowledge. Furthermore, 
the integration of the knowledge representation with the data scientists’ workflow, 
ensuring that the knowledge representation methodology will be seamlessly acces-
sible, and defining the cost of setting up and maintaining the knowledge represen-
tation methodology, are several challenges that are of interest. Knowledge graphs 
among other tools have been proposed for knowledge representation. Within the AI 
lifecycle, the knowledge graph is the getaway to all the knowledge about the manu-
facturing system and processes of an organization, including historical data, the way 
they are related, their source, the operators involved and the date experiments that 
have been conducted.
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Fig. 4.21 Mapping of the three-tier architecture to the context-aware system layers [131], Reprinted 
with permission from Taylor & Francis

Two major technologies have usually been employed for knowledge representa-
tion; metamodeling and ontologies. A metamodel-based knowledge graph focuses 
mainly on typing and constraining the ensemble of concepts in the domain. Hence, 
it facilitates integration into a software engineering process. On the other hand, 
ontology focuses on common vocabulary, categorization, and the relationships of 
concepts for large domains. It allows automated reasoning, based on assuming an 
open world, which allows a better representation of reality. 

Knowledge graphs have been proposed for the knowledge representation, in the 
manufacturing system to make the data analysis process for AI applications more 
efficient. A knowledge graph gathers all data, information, and knowledge, related 
to the manufacturing system. It can be structured, based on conceptual models of 
a knowledge domain, such as the product design and its manufacturing processes. 
Consequently, domain experts can use real-world concepts, relationships, and vocab-
ulary to describe and solve problems, related to the domain. Knowledge graphs in 
AI for manufacturing are not yet common ground, which limits the application of AI 
on the system level, due to the difficulty in finding the relevant data and information. 
In manufacturing companies, the amount of collected data is huge, as well as the 
amount of implicit knowledge about the data and the manufacturing processes that 
hide behind them. Especially in the manufacturing industry, there is a lot of unlever-
aged domain knowledge, more than in any other (purely data-driven) application 
domains, the capturing of which would be a strong enabler for the implementation 
of AI-based applications. 

Ontology engineering has been used in multiple fields to provide a common 
understanding of a domain. In software engineering-related projects, RDF and OWL 
are two well-established standards, which have been popularized by the semantic 
web, intending to make the Internet machine-readable by structuring its metadata. 
DBpedia, a formalization attempt of Wikipedia that allows querying its resources
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and links to related resources, and the Google Knowledge Graph, which can extract 
specific information on search results in an info box, are also success stories. In manu-
facturing, similar initiatives exist, such as the Ontology for Sensors, Observations, 
Samples, and Actuators (SOSA). 

Efthymiou et al. (2015) dealt with the early design and planning of manufac-
turing systems, and in more detail, the automatic identification of past similar 
projects, whose reuse will constitute the basis for the design of a new production line 
[132]. They introduced a knowledge-based framework that the systematic capturing, 
storage, and retrieval of knowledge on manufacturing systems, permits effective 
past projects (process and infrastructure knowledge) usage during the early steps of 
system design. The main pillars of the framework are semantic technology and arti-
ficial intelligence approaches, e.g. inference rules and similarity measurement. The 
semantic technology with the use of the ontology and inference rules supports the 
detailed and accurate knowledge of the modeling of manufacturing systems. On the 
other hand, the reasoning with the similarity mechanisms and rules on the semantic 
data, enhance the identification of new knowledge. In [133], an ontology model for 
reconfigurable machines is discussed. 

Besides ontology and meta-modeling, Fuzzy Petri Nets were also suggested by 
Liu et al. [134] as a potential modeling technique for knowledge representation 
and reasoning. A knowledge-based advisory system for multi-material joining is 
discussed in [135]. The data, including joinable materials, mechanical and design 
requirements, geometry, etc. were classified and common parameters were stored in 
a general tree structure DB. A rule-based searching algorithm was used to deliver 
the knowledge of the joining methods to the structural designers. Wang et al. in 
[136] proposed a mixed knowledge model combining the features of fuzzy Petri 
Nets and the learning capability of evolutionary algorithms, using a Genetic Particle 
Swarm Optimization algorithm to diagnose faults of launch in vehicles, with potential 
applications in the design of complex products. 

Multi-modal context-aware interfaces 

A key characteristic of Industry 4.0 is the connection of physical items, such as 
sensors, devices, and enterprise assets, both to each other and the Internet. In this 
Internet of Things environment, things can sense more data, become context-aware 
and provide added-value information to assist people in making decisions. Context-
aware information distribution may offer substantial value to manufacturing as it 
includes task-relevant information, services, or context-driven recommendations, 
provided to users on a manufacturing shop floor. In this perspective, Alexopoulos 
et al. (2016) proposed a generic-layered architecture to fit into the manufacturing 
requirements and serve as a new paradigm to support information distribution and 
decision-making on the shop floor [137]. Figure 4.22, depicts the information avail-
ability in typical legacy systems, which consider only a static pre-defined description 
of users’ roles and a static definition of their context to deliver production-related 
information. On the contrary, the context and the proposed paradigm account for the 
definition of roles during the delivery of information, among the factories’ legacy/ICT 
systems, namely the MES and ERP and the people working on the shop floor.
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Fig. 4.22 Data delivery in a typical production facilities environment and proposed future informa-
tion delivery schema that utilises context and roles [137], Reprinted with permission from Taylor & 
Francis 

The proposed paradigm is expected to introduce benefits, directly inherited upon 
applying information technology to the shop floor, e.g. by reducing or eliminating 
paper-based information sheets, up-to-date availability of information, related to the 
product and production, but also reduction in the error-prone manual collection of 
process data by using sensors in several steps of the processes. Additionally, it is 
expected to allow the provision of context-based information services to be used 
for decision support. The right information can be provided to the right people, at 
the right time on display devices, static or mobile, thanks to the combination of 
primitive data, captured by sensor devices with production data (available through 
EPR). Shop-floor production information, captured and analyzed, in real-time, can 
trigger alerts and notifications. This closes the loop between production planning and 
execution and potentially results in better quality and process efficiency. Therefore, 
decision support systems can use the proposed approach as a foundation. 

In a similar approach, Belkadi et al. [138] proposed a context-aware knowledge-
based system, dedicated to supporting factory agents with the right information at 
the right time and in the appropriate format, regarding their context of work and 
level of expertise. Particularly, specific assistance functionalities are dedicated to the 
workers, in charge of the machine configuration and the realization of manufacturing
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operations. PGD-based (Proper Generalized Decomposition) algorithms are used for 
real-time simulation of industrial processes and machine configuration. At a concep-
tual level, a semantic model is proposed as key enablers for the structuration of the 
knowledge-based system. Pizoń and Lipski [139] have proposed genetic program-
ming, by providing recommendations, based on multidimensional data sheets for the 
management of manufacturing processes. 

Sotiris Makris et al. (2013) focused on providing instructions to the shop floor 
workers. In particular, they proposed an algorithm for automatic assembly sequence 
generation, together with an Augmented Reality (AR) application that visualized 
the assembly instructions [140]. The algorithm for the generation of the assembly 
sequence is based on the assumption that the disassembly subtraction paths of the 
assembly parts are parallel to one or more axes of their local or global axes system. The 
disassembly sequence and subtraction paths are first generated, based on intersection 
tests, i.e. movement constraints per part, and then, they are reversed to produce the 
assembly sequence and insertion paths of the parts. In order for the disassembly 
sequence to be generated, the 3D objects associated with the assembly parts are 
placed in a 3D scene and their names in a disassembly array. 

The AR component uses data from the AR virtual instructions repository, which 
in turn, consists of template process tasks. There are several types of screwing actions 
that are stored in the repository. Depending on the tool (e.g. screwdriver, open wrench, 
and socket wrench), the instruction templates can be used for the corresponding 
fasteners (screws, bolts, and nuts). This study has concluded that AR can be used as 
a final assembly guidance medium, in assistance to both the production engineers 
and the shop-floor operators, in the generation and usage of assembly instructions, 
respectively. The sequence generator was used to assist engineers in generating the 
AR instructions with minimum expert input. The sequence generation and the AR 
instructions components were connected through a common semantic representation 
of the sequence and steps. Apart from the cognitive load of both engineers and 
operators being decreased, the merging of these technologies can significantly reduce 
the time between product design and production, especially in the systems that handle 
customized products and require higher flexibility. These technologies could, in the 
future, replace traditional methods for the manual creation of paper-based assembly 
instructions, which will be boosted by the commercialization of new AR equipment. 

A semantic-based Augmented Reality application, extracting information from 
CAD/PDM systems for real-time operator support, has been demonstrated in an 
automotive case study, using a computer tablet [141]. In a work with a similar objec-
tive, Zhang, Ong, and Nee (2011) proposed inertial sensors and infrared enhanced 
computer vision for assembly guidance in augmented reality [142]. Another aspect 
of interest is the feedback about the operators’ performance. In this scope, there is 
a feature-based assembly recognition algorithm for the evaluation of human perfor-
mance, in assembly operations as proposed [143]. AR-based applications have also 
been proposed to support design and assembly in tractor [144] and automotive [145] 
companies. 

Makris et al. (2016) proposed an AR application by providing production and 
process information to enrich the operator’s immersion in safety mechanisms, in
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Fig. 4.23 Execution of collaborative operation sequence [146], Reprinted with permission from 
Edition Colibri AG 

support of hybrid manufacturing [146]. In more detail, the design and implementation 
of augmented reality (AR) tool, in aid of operators being in a hybrid environment, 
there was a human and robot collaborative industrial environment presented. The 
system is responsible not only for the provision of production and process-related 
information, but also for enhancing the operators’ immersion in safety mechanisms 
that emanate from the collaborative workspace (Fig. 4.23). A service-based station 
controller, responsible for orchestrating the flow of information to the operator, has 
enabled the integration of the developed system according to the task execution 
status. 

Supply chains 

Every firm is a collection of activities that are performed to design, produce, market, 
deliver, and support its product. A firm’s value chain and the way it performs indi-
vidual activities reflect its history, its strategy, its approach to implementing its 
strategy, and the underlying economics of the activities themselves. The supply 
chain is a special case of the value chain of those companies that manufacture or 
distribute physical products. The value chain has also been called the value-added 
chain to focus on the firm’s ultimate objective of adding value to its products or 
services, at each stage of its chain. A company’s supply chain comprises geograph-
ically dispersed facilities, where raw materials, intermediate products, or finished 
products are acquired, transformed, stored, or sold, and transportation links that 
connect facilities along which products flow. The facilities may be operated by the 
company, or they may be operated by vendors, customers, third-party providers, or 
other firms. The company’s goal is to add value to its products as they pass through its 
supply chain and to transport them to geographically dispersed markets in the correct
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quantities, with the correct specifications, at the correct time, and at a competitive 
cost. Therefore, the next paragraphs discuss how the supply chain and logistics are 
managed. 

AI-powered technologies e.g. pattern recognition, expert systems, and artificial 
neural networks help manage complexity [147], and in the case of supply chain, 
design and management can reduce waste, allow for lower process cycle time, and 
enable real-time monitoring and error-free production [148]. The Chaos theory-based 
analysis [149], the Branch and Bound algorithms [150] and the agent-based models 
[151] have been proposed for the design of supply chains. Saint Germain et al. [152] 
suggested a mechanism, based on PROSA and ants for the control and coordination 
of supply networks. Inventory management is discussed in [153] using reinforcement 
learning methods. 

Decision-making in logistics is a cognitive stressful task, since logistics in general, 
is a complex system. The production of highly customized products, calls for the 
dynamic querying of supply partners for information about the availability of parts 
[154]. A method of dynamically querying supply chain partners to provide real-
time or near real-time information, regarding the availability of parts is required 
for the production of highly customizable products. This method utilizes Internet-
based communication and real-time information from RFID sensors. The control 
logic handles the customization orders adequately by enabling the supply chain to 
adapt to market variation, thus reducing significantly the order to delivery time. 
The feasibility of this approach is demonstrated with its implementation in a typical 
automotive case. 

Internet-based communication and specially designed frameworks can enable 
the integration of heterogeneous information systems, while the performance of 
the supply chain can be improved through hierarchical modeling [155]. In current 
practice, companies in the manufacturing industry operate globally in order to expand 
the limits of their business and integrate their operations with those of their business 
partners. The growth of the Internet and the software technologies arising from it 
provide the means for this globalization. In this work, it is demonstrated how modern 
information technology can support the communication of different partners and 
enable the information flow within the value-added chain. Moreover, it is described 
how the efficiency of a supply chain can be improved with the application of a generic 
hierarchical model through the proper planning of critical manufacturing operations. 
Supply chain management is a relatively new term, crystallizing concepts about 
integrated business planning and it was suggested by the academic community in the 
1950s. This work is based on a ‘real-life’ ship repair scenario, where it is assumed 
that a ship has to visit a shipyard for planned maintenance. It is a typical situation 
that at least two partners will participate in the process: the shipyard and the ship 
owner. The business process is as follows (Fig. 4.24):

The system uses event-driven simulation to simulate the operation of the shipyard 
and the execution of the workload from the shipyard’s resources. The simulation 
mechanism releases the workload to the Job Shops and Work Centers, respecting the 
user-defined precedence relationships. In each Work Centre, an assignment mech-
anism decides which Task will be assigned to the available Resources. The system
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Fig. 4.24 The value-added chain communication model [155], Reprinted with permission from 
Taylor & Francis

simulates the operation of the production facilities, either for a certain period (user-
specified) or until all the Tasks have been processed by the Resources. In either case, 
a detailed schedule for each Resource is produced in a graphic or an alphanumeric 
format. 

Modern information technology has been used in order to support the Value-
Added Chain in the maritime industry. A software mechanism was developed to 
make the communication of the interrelated partners efficient. It is demonstrated in 
this study that the adoption of such an approach is feasible and the communication 
efforts are reduced. The use of XML for the implementation of communication in 
the value-added chain offers advantages, due to its simplicity and openness. 

Additionally, the planning method applied for the coordination of the ship repair 
operations produces adequate and easy-to-use results. This method requires the 
modeling of the ship repair facilities and the workload with the help of a hierar-
chical model. Using the implemented approach, the user can select an appropriate 
dispatching rule or the multi-criteria decision-making method, for the production of 
a suitable plan. 

Decision-making support for the design and operation of manufacturing networks 
[156]. The presented method and tool can support strategic level decisions, related 
to the design of efficient manufacturing network configurations. This work focuses 
on the design and operation of manufacturing networks, based on a multi-objective 
decision-making and simulation approach. The alternative network designs are eval-
uated through a set of multiple conflicting criteria, including dynamic complexity, 
reliability, cost, time, quality, and environmental footprint. Moreover, the impact of 
demand volatility on the operational performance of these networks is investigated 
through simulation. Decentralized Manufacturing Network (DMN) and Centralized 
(CMN) configurations have been modeled and their performance is compared. Two 
methodologies are used in the decision-making process for the generation and evalu-
ation of manufacturing network alternatives, namely those of the Exhaustive Search



124 4 Artificial Intelligence in Manufacturing Systems

Algorithm (EXS) and the Intelligent Search Algorithm (ISA). The incorporation of 
criteria of cost, time, environmental impact, and quality have encapsulated some of 
the most significant objectives that manufacturing industries are striving to achieve 
nowadays. Moreover, the inclusion of complexity, as a decision-making criterion, 
has depicted the operational characteristics of the networks. 

Forecast of demand for dispatching—clustering to deal with design problems 

A critical input to the manufacturing system that highly impacts its operation and even 
determines the system’s sustainability is the customers’ demand. The variation that 
is frequently observed in customers’ demand is accompanied by several challenges, 
in the design of production, related to the fast and inexpensive customization of the 
goods. The clustering technique has been proposed to address this problem. Utilizing 
the Design Structure Matrix (DSM) as a tool for the representation of the interactions 
of a system’s elements, several clustering algorithms have been developed based on 
GAs [157]. 

The customer’s behavior has been modeled via the Bayesian networks [158]. To 
deal with a customer’s individualized demand, a hybrid MPA-GSO-DNN model 
is suggested in [159] for personalized recommendation of service composition, 
regarding a manufacturing group with shared manufacturing services. Customers 
can independently define personalized manufacturing customization, task release, 
manufacturing configuration, and functions. The application of a personalized 
recommendation can greatly improve the customers’ efficiency and satisfaction. 

In [160] a probabilistic inference method for the quantification of a buyer’s like-
lihood to purchase a highly customized product was investigated. This method was 
based on the principles of Bayesian networks, and it was integrated into an internet-
based application, where the supply chain partners could provide real-time or near 
real-time information. The supply chain model utilizes the Internet to coordinate 
the entire supply chain by adapting it to market demand. Moreover, the Bayesian 
networks-based model considers a set of values of critical parameters and enables 
the quantification of the probability of a customer’s likely response, under certain 
delivery dates for her/his vehicle, additional cost for the OEM, the parts’ availability 
time in the supply chain and the suppliers’ capacity. The proposed supply chain 
control logic has produced robust plans by ensuring the supply of the right part at the 
right time, whereas at reasonable costs. Quantifying the likelihood that a customer 
will proceed to buy the final product, has allowed a consistent production schedule 
to be maintained, avoiding any last minute changes, which cause quality defects, as 
demonstrated in an automotive case study. 

The clustering of a product’s components into modules is an effective means of 
creating modular architectures that are more efficient and effective to be reconfigured 
into producing personalized products. Pandremenos and Chryssolouris (2011) inves-
tigated the clustering efficiency with the interactions of a product’s components, and 
interesting observations were extracted [161]. A novel clustering method utilizing 
neural network algorithms and design structure matrices has been introduced. The 
method can reorganize the components of a product in clusters, in order for the 
interactions to be maximized inside and minimized outside the clusters. In addition,
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a multi-criteria decision-making approach was proposed to efficiently identify the 
different clustering alternatives, having derived from the network, to be evaluated. 
Finally, a case study is presented to demonstrate and assess the method’s application. 
The derived algorithmic clustering has proven to be more efficient, compared to the 
empirical one, and thus, it can be used by design engineers as an effective tool for 
the derivation of product clustering alternatives. 

A car’s Body-in-White has been selected as a case study for the proposed algorithm 
to be applied and evaluated. The Body-in-White design structure matrix consists of 
38 parts and 108 interactions among them. In order to assess the clustering efficiency, 
the modularity performance was calculated to have a value of 0.89. Since this value 
reveals a modular architecture, the clustering is not expected to be very efficient. 

Similarities in the front and the rear-end modules are observed between the clus-
tering of the proposed method and the empirical clustering. The evaluation of the two 
approaches (Figs. 4.25 and 4.26) has shown a more efficient clustering in the case of 
the algorithm. Therefore, given that the feasibility of the clustering architectures and 
the integrity of the modules during assembly should be investigated, this approach, 
was suggested for use by design engineers as a tool for the derivation of product 
clustering suggestions, during the new product family/platform design.

Fig. 4.25 Body-in-White design structure matrix empirical clustering [161], Reprinted with 
permission from Taylor & Francis 
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Fig. 4.26 Body-in-White design structure matricx algorithm-based clustering [161], Reprinted 
with permission from Taylor & Francis 

Financial estimations 

Aside from the demand, the estimation of the cost unit is also important for the 
appropriate pricing of products. A method for a product’s unit cost estimation, using 
agent-based fuzzy collaborative intelligence with entropy as a consensus measure, is 
discussed in [162]. After a consensus has been reached a back-propagation network 
is employed to de-fuzzify the result. Moreover, an SVM with a genetic algorithm is 
described in [163] for accurately predictive fabrication costs via learning and curve 
fitting. Real-world data have been used to enable the described knowledge discovery 
mechanisms, predicting the costs of manufacturing TFT-LCD fabrication equipment. 
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139. Pizoń, J., Lipski, J.: Manufacturing process support using artificial intelligence. Appl. Mech. 
Mater. 791, 89–95 (2015). https://doi.org/10.4028/www.scientific.net/amm.791.89 

140. Makris, S., Pintzos, G., Rentzos, L., Chryssolouris, G.: Assembly support using AR tech-
nology based on automatic sequence generation. CIRP Ann. Manuf. Technol. 62, 9–12 (2013). 
https://doi.org/10.1016/j.cirp.2013.03.095 

141. Rentzos, L., Papanastasiou, S., Papakostas, N., Chryssolouris, G.: Augmented reality for 
human-based assembly: using product and process semantics. In: IFAC Proceedings Volumes 
(IFAC-PapersOnline), pp. 98–101. Elsevier (2013) 

142. Zhang, J., Ong, S.K., Nee, A.Y.C.: RFID-assisted assembly guidance system in an augmented 
reality environment. Int. J. Prod. Res. 49, 3919–3938 (2011). https://doi.org/10.1080/002 
07543.2010.492802 

143. Ong, S.K., Wang, Z.B.: Augmented assembly technologies based on 3D bare-hand interaction. 
CIRP Ann. Manuf. Technol. 60, 1–4 (2011). https://doi.org/10.1016/j.cirp.2011.03.001 

144. Sääski, J., Salonen, T., Hakkarainen, M., Siltanen, S., Woodward, C., Lempiäinen, J.: Inte-
gration of design and assembly using augmented reality. In: IFIP International Federation for 
Information Processing, pp. 395–404. Springer, Boston, MA (2008) 

145. Pentenrieder, K., Bade, C., Doil, F., Meier, P.: Augmented reality-based factory planning—an 
application tailored to industrial needs. In: 2007 6th IEEE and ACM International Symposium 
on Mixed and Augmented Reality, ISMAR. pp. 31–42. IEEE Computer Society (2007) 

146. Makris, S., Karagiannis, P., Koukas, S., Matthaiakis, A.S.: Augmented reality system for 
operator support in human–robot collaborative assembly. CIRP Ann. Manuf. Technol. 65, 
61–64 (2016). https://doi.org/10.1016/j.cirp.2016.04.038 

147. Monostori, L.: AI and machine learning techniques for managing complexity, changes 
and uncertainties in manufacturing. In: Engineering Applications of Artificial Intelligence, 
pp. 277–291. Pergamon (2003) 

148. Dash, R., Mcmurtrey, M., Rebman, C., Kar, U.K.: Application of artificial intelligence in 
automation of supply chain management. J. Strateg. Innov. Sustain. 14, 43 (2019). https://doi. 
org/10.33423/jsis.v14i3.2105 

149. Kumara, S.R.T., Ranjan, P., Surana, A., Narayanan, V.: Decision making in logistics: a chaos 
theory based analysis. CIRP Ann. Manuf. Technol. 52, 381–384 (2003). https://doi.org/10. 
1016/S0007-8506(07)60606-4 

150. Louly, M.A., Dolgui, A., Hnaien, F.: Supply planning for single-level assembly system with 
stochastic component delivery times and service-level constraint. Int. J. Prod. Econ. 115, 
236–247 (2008). https://doi.org/10.1016/j.ijpe.2008.06.005 

151. Ilie-Zudor, E., Monostori, L.: Agent-based framework for pre-contractual evaluation of partic-
ipants in project-delivery supply-chains. Assem. Autom. 29, 137–153 (2009). https://doi.org/ 
10.1108/01445150910945598 

152. Saint Germain, B., Valckenaers, P., Verstraete, P., Hadeli, Van Brussel, H.: A multi-agent 
supply network control framework. Control Eng. Pract. 15, 1394–1402 (2007). https://doi. 
org/10.1016/j.conengprac.2006.12.003 

153. Kara, A., Dogan, I.: Reinforcement learning approaches for specifying ordering policies of 
perishable inventory systems. Expert Syst. Appl. 91, 150–158 (2018). https://doi.org/10.1016/ 
J.ESWA.2017.08.046 

154. Mourtzis, D., Papakostas, N., Makris, S., Xanthakis, V., Chryssolouris, G.: Supply chain 
modeling and control for producing highly customized products. CIRP Ann. Manuf. Technol. 
57, 451–454 (2008). https://doi.org/10.1016/j.cirp.2008.03.106

https://doi.org/10.1016/J.ESWA.2013.08.034
https://doi.org/10.1080/0951192X.2015.1130257
https://doi.org/10.1016/J.CIE.2019.02.046
https://doi.org/10.4028/www.scientific.net/amm.791.89
https://doi.org/10.1016/j.cirp.2013.03.095
https://doi.org/10.1080/00207543.2010.492802
https://doi.org/10.1080/00207543.2010.492802
https://doi.org/10.1016/j.cirp.2011.03.001
https://doi.org/10.1016/j.cirp.2016.04.038
https://doi.org/10.33423/jsis.v14i3.2105
https://doi.org/10.33423/jsis.v14i3.2105
https://doi.org/10.1016/S0007-8506(07)60606-4
https://doi.org/10.1016/S0007-8506(07)60606-4
https://doi.org/10.1016/j.ijpe.2008.06.005
https://doi.org/10.1108/01445150910945598
https://doi.org/10.1108/01445150910945598
https://doi.org/10.1016/j.conengprac.2006.12.003
https://doi.org/10.1016/j.conengprac.2006.12.003
https://doi.org/10.1016/J.ESWA.2017.08.046
https://doi.org/10.1016/J.ESWA.2017.08.046
https://doi.org/10.1016/j.cirp.2008.03.106


References 135

155. Chryssolouris, G., Makris, S., Xanthakis, V., Mourtzis, D.: Towards the Internet-based supply 
chain management for the ship repair industry. Int. J. Comput. Integr. Manuf. 17, 45–57 
(2004). https://doi.org/10.1080/0951192031000080885 

156. Mourtzis, D., Doukas, M., Psarommatis, F.: Design and operation of manufacturing networks 
for mass customisation. CIRP Ann. Manuf. Technol. 62, 467–470 (2013). https://doi.org/10. 
1016/j.cirp.2013.03.126 

157. Yu, T.L., Yassine, A.A., Goldberg, D.E.: An information theoretic method for developing 
modular architectures using genetic algorithms. Res. Eng. Des. 18, 91–109 (2007). https:// 
doi.org/10.1007/s00163-007-0030-1 

158. Takai, S., Yang, T., Cafeo, J.A.: A Bayesian method for predicting future customer need 
distributions. Concurr. Eng. 19, 255–264 (2011). https://doi.org/10.1177/1063293X11418135 

159. Liu, Z., Guo, S., Wang, L., Du, B., Pang, S.: A multi-objective service composition recom-
mendation method for individualized customer: hybrid MPA-GSO-DNN model. Comput. Ind. 
Eng. 128, 122–134 (2019). https://doi.org/10.1016/J.CIE.2018.12.042 

160. Makris, S., Zoupas, P., Chryssolouris, G.: Supply chain control logic for enabling adaptability 
under uncertainty. Int. J. Prod. Res. 49, 121–137 (2011). https://doi.org/10.1080/00207543. 
2010.508940 

161. Pandremenos, J., Chryssolouris, G.: A neural network approach for the development of 
modular product architectures. Int. J. Comput. Integr. Manuf. 24, 879–887 (2011). https:// 
doi.org/10.1080/0951192X.2011.602361 

162. Chen, T.: Estimating unit cost using agent-based fuzzy collaborative intelligence approach 
with entropy-consensus. Appl. Soft Comput. 73, 884–897 (2018). https://doi.org/10.1016/J. 
ASOC.2018.09.036 

163. Chou, J.S., Cheng, M.Y., Wu, Y.W., Tai, Y.: Predicting high-tech equipment fabrication cost 
with a novel evolutionary SVM inference model. Expert Syst. Appl. 38, 8571–8579 (2011). 
https://doi.org/10.1016/J.ESWA.2011.01.060

https://doi.org/10.1080/0951192031000080885
https://doi.org/10.1016/j.cirp.2013.03.126
https://doi.org/10.1016/j.cirp.2013.03.126
https://doi.org/10.1007/s00163-007-0030-1
https://doi.org/10.1007/s00163-007-0030-1
https://doi.org/10.1177/1063293X11418135
https://doi.org/10.1016/J.CIE.2018.12.042
https://doi.org/10.1080/00207543.2010.508940
https://doi.org/10.1080/00207543.2010.508940
https://doi.org/10.1080/0951192X.2011.602361
https://doi.org/10.1080/0951192X.2011.602361
https://doi.org/10.1016/J.ASOC.2018.09.036
https://doi.org/10.1016/J.ASOC.2018.09.036
https://doi.org/10.1016/J.ESWA.2011.01.060

	Preface
	Acknowledgement
	Contents
	1 Introduction
	1.1 Introduction
	References

	2 Artificial Intelligence in Manufacturing Processes
	2.1 Introduction in Manufacturing Processes
	2.2 Process Monitoring and Data Processing
	2.3 Process Modeling, Optimization and Control
	2.4 Fault Diagnosis, Tool Wear Prediction, and Remaining Useful Life Estimation
	2.5 Process Quality Assessment and Prediction
	2.6 AI Impact and Limitations 
	References

	3 Artificial Intelligence in Manufacturing Equipment, Automation, and Robots
	3.1 Introduction in the Manufacturing Equipment
	3.2 Manufacturing Equipment Definition—Design—Selection
	3.3 Task Planning and Machine Programming
	3.4 Machine Control and Workstation Orchestration
	3.5 Machine Perception
	References

	4 Artificial Intelligence in Manufacturing Systems
	4.1 Introduction in the Manufacturing Systems Hierarchical Level
	4.2 AI for the Design of Manufacturing Systems 
	4.3 AI for the Operation of Manufacturing Systems
	4.4 Digital Platforms and ICT Technologies for AI Applications in Manufacturing Systems 
	References


