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Preface

The study of programming languages and their implementations is a central theme
of computer science. The design of a compiler—a program translating programs
written in a high-level language into semantically equivalent programs in another
language, typically machine code—is influenced by many aspects of computer
science. The compiler allows us to program in high-level languages, and it provides
a layer of abstraction so that we do not have to worry when programming about the
complex details of the underlying hardware.

The designer of any compiler obviously needs to know the details of both the
source language being translated and the language being generated, usually some
form of machine code for the target machine. For non-trivial languages, the com-
piler is itself a non-trivial program and should really be designed by following a
standard structure. Describing this standard structure is one of the key aims of this
book.

The design of compilers is influenced by the characteristics of formal language
specifications, by automata theory, by parsing algorithms, by processor design, by
data structure and algorithm design, by operating system services, by the target
machine instruction set and other hardware features, by implementation language
characteristics and so on, as well as by the needs of the compilers’ users. Coding a
compiler can be a daunting software task, but the process is greatly simplified by
making use of the approaches, experiences, recommendations and algorithms of
other compiler writers.

Why Study Compiler Design?

Why should compiler design be studied? Why is this subject considered to be an
important component of the education of a computer scientist? After all, only a
small proportion of software engineers are employed on large-scale, traditional
compiler projects. But knowing something about what happens within a compiler
can have many benefits. Understanding the technology and limitations of a



compiler is important knowledge for any user of a compiler. Compilers are complex
pieces of code and an awareness of how they work can very helpful. The algorithms
used in a compiler are relevant to many other application areas such as aspects of
text decoding and analysis and the development of command-driven interfaces. The
need for simple domain-specific languages occurs frequently and the knowledge of
compiler design can facilitate their rapid implementation.

Writing a simple compiler is an excellent educational project and enhances skills
in programming language understanding and design, data structure and algorithm
design and a wide range of programming techniques. Understanding how a
high-level language program is translated into a form that can be executed by the
hardware gives a good insight into how a program will behave when it runs, where
the performance bottlenecks will be, the costs of executing individual high-level
language statements and so on. Studying compiler design makes you a better
programmer.

Why Another Book?

Why is there now yet another book on compiler design? Many detailed and
comprehensive textbooks in this field have already been published. This book is a
little different from most of the others. Hopefully, it presents key aspects of the
subject in an accessible way, using a practical approach. The algorithms shown
are all capable of straightforward implementation in almost any programming
language, and the reader is strongly encouraged to read the text and in parallel
produce code for implementations of the compiler modules being described. These
practical examples are concentrated in areas of compiler design that have general
applicability. For example, the algorithms shown for performing lexical and syntax
analysis are not restricted for use in compilers alone. They can be applied to the
analysis required in a wide range of text-based software.

The field of programming language implementation is huge and this book covers
only a small part of it. Just the basic principles, potentially applicable to all
compilers, are explained in a practical way.

What’s in this Book?

This book introduces the topic of compiler construction using many programmed
examples, showing code that could be used in a range of compiler and
compiler-related projects. The code examples are nearly all written in C, a mature
language and still in widespread use. Translating them into another programming
language should not cause any real difficulty. Many existing compiler projects are
written in C, many new compiler projects are being written in C and there are many
compiler construction tools and utilities designed to support compiler



implementations in C. Character handling and dynamic data structure management
are well-handled by C. It is a good language for compiler construction. Therefore, it
may have seemed appropriate to choose the construction of a C compiler as a
central project for this textbook. However, this would not have been sensible
because it is a huge project, and the key algorithms of language analysis and
translation would be overwhelmed by the detail necessary to deal with the
numerous complexities of a “real” programming language, even one regarded as
being simpler than many.

This book is primarily about compiler construction, and it is not specifically
about the use of compiler-related algorithms in other application areas. Hopefully,
though, there is enough information in the analysis chapters to show how these
standard grammar-based techniques can be applied very much more widely.

Although many examples in this book are taken from code that may appear in a
complete C compiler, the emphasis is on the development of a compiler for the DL
language. This is a very simple language developed for the needs of this book from
languages used in a series of practical exercises from various undergraduate and
postgraduate compiler construction courses presented by the author. The syntax of
DL is loosely based on a subset of C, but with many restrictions. In particular, there
is just one data type (the integer), and although functions are supported, their
functionality is rather restricted. Nevertheless, DL is sufficiently powerful to be
usable for real problems. The syntax of DL is presented in the appendix.

The widely-available flex and bison tools are introduced, and their use in
practical implementations is discussed, especially in the context of generating a
compiler for DL. These particular packages provide a good insight into the benefits
offered by the many powerful compiler generation tools now available.

The software examples in this book were developed and tested on systems
running Fedora Linux on an x86-64 architecture. The C compiler used was GCC.
Machine and operating system dependencies are probably inevitable, but any
changes needed to move this code to a different computer or operating system
should be comparatively minor.

The code examples are concentrated on the compiler’s front-end. Code for
intermediate code optimisation, target machine code generation and optimisation
tends to be long, complex and often overwhelmed by target machine detail. Hence,
code examples from the back-end are largely avoided in this book so that no
introduction to or detailed discussion of assembly language programming is
included. Instead, the text presents the basic principles of back-end design from
which code generators for diverse target architectures can be developed. References
are given to sources providing further algorithm examples.

The source code of a complete DL compiler is not presented in this book. The
real reason for this is that there is an underlying assumption that one of the most
important practical exercises of the book is to produce a complete compiler for DL.
A large number of code examples taken from a compiler are included in the text to
illustrate the principles being described so that the reader will not be coding from
scratch.



How Should this Book be Used?

This book can be used to accompany taught courses in programming language
implementation and compiler design, and it can also be used for self-study. There is
an assumption that students using this book will have some programming skills but
not necessarily significant experience of writing large software systems. A working
understanding of basic data structures such as trees is essential. The examples in the
book are coded in C, but a comprehensive knowledge of C is really not required to
understand these examples and the accompanying text. A basic knowledge of
computer hardware is also assumed, including just the rudiments of the principles of
assembly-level programming.

Each chapter ends with a few exercises. They vary a great deal in complexity.
Some involve just a few minutes of thought, whereas others are major programming
projects. Many of the exercises are appropriate for group discussion and some may
form the basis of group projects involving code implementation as well as research.

It is especially important to make the most of the practical aspects of this subject
by coding parts of a compiler as the book is being read. This will help greatly to
alleviate boredom and will hugely help with the process of understanding. For
example, for the newcomer to recursive descent parsing, the power and elegance
of the technique can only be fully appreciated when a working implementation has
been written.

The obvious project work associated with this book is to write a complete
compiler for the DL language. Assuming that a simple target machine is chosen, the
project is of a reasonable size and can fit well into an average size university or
college course. Extensions to such a compiler by including optimisation and reg-
ister allocation can follow in a more advanced course. The project can be taken
even further by developing the DL compiler into a complete C compiler, but the
time required to do this should not be underestimated. Writing a simple compiler
following the steps described in this book is not a huge task. But it is important not
to abandon the standard techniques. I have seen some students getting into major
difficulties with the implementation of their compilers, coded using a “much better
algorithm” of their own devising! The correct approach is reliable and really does
involve a careful and systematic implementation with extensive testing of each
module before it is combined with others.

Although the DL language is used as an example in most of the chapters, this
book is not intended to be a tutorial guide for writing DL compilers. Its aims are
much broader than this—it tries to present the principles of compiler design and the
implementation of certain types of programming language, and where appropriate,
DL-targeted examples are presented. Should the reader want to accept the challenge
of writing a complete DL compiler (and I would certainly recommend this), then the
key practical information about lexical and syntax analysis is easy to find in
Chaps. 3 and 5 and semantic analysis in Chap. 6. There is then some information
about DL-specific issues of code generation in Chap. 8.



Turning the compiler construction project into a group project worked well.
Programming teams can be made responsible for the construction of a complete
compiler. The development can be done entirely by members of the team or it may
be possible for teams to trade with other teams. This is a good test of
well-documented interfaces. Producing a set of good test programs to help verify
that a compiler works is an important part of the set of software modules produced
by each team.

Generating standard-format object code files for real machines in an introductory
compilers course may be trying to go a little too far. Generating assembly code for a
simple processor or for a simple subset of a processor’s features is probably a better
idea. Coding an emulator for a simple target machine is not difficult—just use the
techniques described in this book, of course. Alternatively, there are many virtual
target architecture descriptions with corresponding emulator software freely avail-
able. The MIPS architecture, with the associated SPIM software [1], despite its age,
is still very relevant today and is a good target for code generation. The pleasure of
writing a compiler that produces code that actually runs is considerable!
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Chapter 1
Introduction

The high-level language is the central tool for the development of today’s software.
The techniques used for the implementation of these languages are therefore very
important. This book introduces some of the practicalities of producing implemen-
tations of high-level programming languages on today’s computers. The idea of a
compiler, traditionally translating from the high-level language source program to
machine code for some real hardware processor, is well known but there are other
routes for language implementation. Many programmers regard compilers as being
deeply mysterious pieces of software—black boxes which generate runnable code—
but some insight into the internal workings of this process may help towards their
effective use.

Programming language implementation has been studied for many years and it is
one of themost successful areas of computer science. Today’s compilers can generate
highly optimised code from complex high-level language programs. These compilers
are large and extremely complex pieces of software. Understanding what they do and
how they do it requires some background in programming language theory as well
as processor design together with a knowledge of how best to structure the processes
required to translate from one computer language to another.

1.1 High-Level Languages

Even in the earliest days of electronic computing in the 1940s it was clear that there
was a need for software tools to support the programming process. Programmingwas
done in machine code, it required considerable skill and was hard work, slow and
error prone. Assembly languages were developed, relieving the programmer from
having to deal with much of the low-level detail, but requiring an assembler, a piece
of software to translate from assembly code tomachine code. Giving symbolic names
to instructions, values, storage locations, registers and so on allows the programmer
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to concentrate on the coding of the algorithms rather than on the details of the binary
representation required by the hardware and hence to become more productive. The
abstraction provided by the assembly language allows the programmer to ignore the
fine detail required to interact directly with the hardware.

The development of high-level languages gathered speed in the 1950s and beyond.
In parallel there was a need for compilers and other tools for the implementation
of these languages. The importance of formal language specifications was recog-
nised and the correspondence between particular grammar types and straightforward
implementationwas understood. The extensive use of high-level languages prompted
the rapid development of awide range of new languages, some designed for particular
application areas such as COBOL for business applications [1] and FORTRAN for
numerical computation [2]. Others such as PL/I (then called NPL) [3] tried to be very
much more general-purpose. Large teams developed compilers for these languages
in an environment where target machine architectures were changing fast too.

1.1.1 Advantages of High-Level Languages

The difficulties of programming in low-level languages are easy to see and the need
for more user-friendly languages is obvious. A programming notation much closer
to the problem specification is required. Higher level abstractions are needed so that
the programmer can concentrate more on the problem rather than the details of the
implementation of the solution.

High-level languages can offer such abstraction. They offer many potential advan-
tages over low-level languages including:

• Problem solving is significantly faster. Moving from the problem specification to
code is simpler using a high-level language. Debugging high-level language code
is much easier. Some high-level languages are suited to rapid prototyping, making
it particularly easy to try out new ideas and add debugging code.

• High-level language programs are generally easier to read, understand and hence
maintain. Maintenance of code is now a huge industry where programmers are
modifying code unlikely to have been written by themselves. High-level language
programs can be made, at least to some extent, self-documenting, reducing the
need for profuse comments and separate documentation. The reader of the code is
not overwhelmed by the detail necessary in low-level language programs.

• High-level languages are easier to learn.
• High-level language programs can be structuredmore easily to reflect the structure
of the original problem. Most current high-level languages support a wide range
of program and data structuring features such as object orientation, support for
asynchronous processes and parallelism.

• High-level languages can offer software portability. This demands some degree of
language standardisation. Most high-level languages are now fairly tightly defined
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so that, for example, moving a Java program from one machine to another with
different architectures and operating systems should be an easy task.

• Compile-time checking can remove many bugs at an early stage, before the pro-
gram actually runs. Checking variable declarations, type checking, ensuring that
variables are properly initialised, checking for compatibility in function arguments
and so on are often supported by high-level languages. Furthermore, the compiler
can insert runtime code such as array bound checking. The small additional runtime
cost may be a small price to pay for early removal of errors.

1.1.2 Disadvantages of High-Level Languages

Despite these significant advantages, there may be circumstances where the use of a
low-level language (typically an assembly language) may be more appropriate. We
can identify possible advantages of the low-level language approach.

• The program may need to perform some low-level, hardware-specific operations
which do not correspond to a high-level language feature. For example, the hard-
ware may store device status information in a particular storage location—in most
high-level languages there is no way to express direct machine addressing. There
may be a need to perform low-level i/o, or make use of a specific machine instruc-
tion, again probably difficult to express in a high-level language.

• The use of low-level languages is often justified on the grounds of efficiency in
terms of execution speed or runtime storage requirements. This is an important
issue and is discussed later in this section.

These disadvantages of high-level languages look potentially serious. They need
further consideration.

1.1.2.1 Access to the Hardware

A program running on a computer system needs to have access to its environment.
It may input data from the user, it may need to output results, create a file, find the
time of day and so on. These tasks are hardware and operating system specific and
to achieve some portability in coding the high-level language program performing
these actions, the low-level details have to be hidden. This is conventionally done by
providing the programmer with a library acting as an interface between the program
and the operating system and/or hardware. So if the program wants to write to a
file, it makes a call to a library routine and the library code makes the appropriate
operating system calls and performs the requested action.

To address the stated advantage of low-level languages mentioned above there is
nothing to stop the construction of operating system and machine-specific libraries
to perform the special-purpose tasks such as providing access to a particular storage
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location or executing a particularmachine instruction. Theremay bemachine-specific
problems concerned with the mechanism used to call and return from this library
code with, for example, the use of registers, or with the execution time cost of the
call and return, but such difficulties can usually be overcome.

A fewprogramming languages provide an alternative solution by supporting inline
assembly code. This code is output unchanged by the compiler, providing the high-
level language program direct access to the hardware. This is a messy solution,
fraught with danger, and reliable means have to be set up to allow data to be passed
into and returned from this code. Such facilities are rarely seen today.

1.1.2.2 Efficiency

There are many programming applications where efficiency is a primary concern.
These could be large-scale computations requiring days or weeks of processor time
or even really short computations with severe real-time constraints. Efficiency is
usually concerned with the minimisation of computation time, but other constraints
such as memory usage or power consumption could be more important.

In the early development of language implementations, the issue of efficiency
strongly influenced the design of compilers. The key disadvantage of high-level
languages was seen as being one of poor efficiency. It was assumed that machine-
generated code could never be as efficient as hand-written code. Despite some
remarkable optimisations performed by some of the early compilers (particularly
for FORTRAN), this remained largely true for many years. But as compiler tech-
nology steadily improved, as processors became faster and as their architectures
became more suited to running compiler-generated code from high-level language
programs, the efficiency argument became much less significant. Today, compiler-
generated code for a wide range of programming languages and target machines is
likely to be just as efficient, if not more so, than hand-written code.

Does this imply that justifying the use of low-level languages on the grounds
of producing efficient code is now wrong? The reality is that there may be some
circumstances where coding in machine or assembly code, very carefully, by hand,
will lead to better results. This is not really feasible where the amount of code is
large, particularly where the programmer loses sight of the large-scale algorithmic
issueswhile concentrating on the small-scale detail. But it may be a feasible approach
where, for example, a small function needs to run particularly quickly and the skills
of a competent low-level programmer with a good knowledge of the target machine
are available. Mixing high-level language programming with low-level language
programming is perfectly reasonable in this way. But if the amount of code to be
optimised is very small, other automatedmethodsmay be available (for example [4]).

When developing software, a valuable rule to remember is that there is no need
to optimise if the code is already fast enough. Modern processors are fast and a huge
amount can be achieved during the time taken for a human to react to the computer’s
output. However, this does not imply that compilers need never concern themselves
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with code optimisation—there will always be some applications genuinely needing
the best out of the hardware.

The case for using high-level languages for almost all applications is now very
strong. In order to run programs written in high-level languages, we need to consider
how they can be implemented.

1.2 High-Level Language Implementation

Asimplistic but not inaccurate view of the language implementation process suggests
that some sort of translator program is required (a compiler) to transform the high-
level language program into a semantically equivalent machine code program that
can run on the target machine. Other software, such as libraries, will probably also
be required. As the complexity of the source language increases as the language
becomes “higher and higher-level”, closer to human expression, one would expect
the complexity of the translator to increase too.

Many programming languages have been and are implemented in this way. And
this book concentrates on this implementation route. But other routes are possible,
and it may be the characteristics of the high-level language that forces different
approaches. For example, the traditional way of implementing Java makes use of
the Java Virtual Machine (JVM) [5], where the compiler translates from Java source
code into JVM code and a separate program (an interpreter) reads these virtual
machine instructions, emulating the actions of the virtual machine, effectively run-
ning the Java program. This seemingly contrary implementation method does have
significant benefits. In particular it supports Java’s feature of dynamic class loading.
Without such an architecture-neutral virtual machine code, implementing dynamic
class loadingwould be verymuchmore difficult.More generally, it allows the support
of reflection, where a Java program can examine or modify at runtime the internal
properties of the executing program.

Interpreted approaches are very appropriate for the implementation of some pro-
gramming languages. Compilation overheads are reduced at the cost of longer run-
times. The programming language implementation field is full of tradeoffs. These
issues of compilers versus interpreters are investigated further in Chap. 2.

To make effective use of a high-level language, it is essential to know something
about its implementation. In some demanding application areas such as embedded
systems where a computer system with a fixed function is controlling some elec-
tronic or mechanical device, there may be severe demands placed on the embedded
controller and the executing code. There may be real-time constraints (for example,
when controlling the ignition timing in a car engine where a predefined set of opera-
tions has to complete in the duration of a spark), memory constraints (can the whole
program fit in the 64k bytes available on the cheap version of the microcontroller
chip?) or power consumption constraints (how often do I have to charge the batter-
ies in my mobile phone?). These constraints make demands on the performance of
the hardware but also on the way in which the high-level language implementing

http://dx.doi.org/10.1007/978-3-319-52789-5_2
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the system’s functionality is actually implemented. The designers need to have an
in-depth knowledge of the implementation to be able to deal with these issues.

1.2.1 Compilers

The compiler is a program translating from a source language to a target language,
implemented in some implementation language.Aswehave seen, the traditional view
of a compiler is to take some high-level language as input and generate machine code
for some target machine. Choice of implementation language is an interesting issue
and we will see later in Chap.9 why the choice of this language may be particularly
important.

The field of compilation is not restricted to the generation of low-level language
code. Compiler technology can be developed to translate from one high-level lan-
guage to another. For example, some of the early C++ compilers generated C code
rather than target machine code. Existing C compilers were available to perform the
final step.

The complexity of a compiler is not only influenced by the complexities of the
source and target languages, but also by the requirement for optimised target code.
There is a real danger in compiler development of being overwhelmed by the com-
plexities and the details of the task. A well-structured approach to compiler devel-
opment is essential.

1.2.2 Compiler Complexity

The tools and processes of programming language implementation cannot be consid-
ered in isolation. Collaboration between the compiler writer, the language designer
and the hardware architect is vital. The needs of the end-users must be incorporated
too. Compilers have responded to the trend towards increased high-level language
complexity and the desire for aggressive optimisation bybecoming significantlymore
complex themselves. In the early days of compilers the key concern was the gener-
ation of good code, rivalling that of hand coders, for machines with very irregular
architectures. Machine architectures gradually became more regular, hence mak-
ing it easier for the compiler writer. Subsequent changes (from the 1980s) towards
the much simpler instruction sets of the reduced instruction set computers (RISC)
helped simplify the generation of good code. Attention was also being focused on
the design of the high-level languages themselves and the support for structures and
methodologies to help the programmers directly. Today, the pressures caused by new
languages and other tools to support the software development process are still there
and also the rapid move towards distributed computing has placed great demands on
program analysis and code generation. Parallelism, in its various forms, offers higher
performance processing but at a cost of increased implementation complexity.

http://dx.doi.org/10.1007/978-3-319-52789-5_9
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The language implementation does not stop at the compiler. The support of col-
lections of library routines is always required, providing the environment in which
code generated by the compiler can run. Other tools such as debuggers, linkers, doc-
umentation aids and interactive development environments are needed too. This is
no easy task.

Dealing with this complexity requires a strict approach to design in the structuring
of the compiler construction project. Traditional techniques of software engineering
are well applied in compiler projects, ensuring appropriate modularisation, testing,
interface design and so on. Extensive stage-by-stage testing is vital for a compiler.
A compiler may produce highly optimised code, but if that code produces the wrong
answers when it runs, the compiler is not of much use. To ease the task of producing
a programming language implementation, many software tools have been developed
to help generate parts of a compiler or interpreter automatically. For example, lexi-
cal analysers and syntax analysers (two early stages of the compilation process) are
often built with the help of tools taking the formal specification of the syntax of the
programming language as input and generating code to be incorporated in the com-
piler as output. The modularisation of compilers has also helped to reduce workload.
For example, many compilers have been built using a target machine independent
front-end and a source language-independent back-end using a standard intermediate
representation as the interface between them. Then front-ends and back-ends can be
mixed and matched to produce a variety of complete compilers. Compiler projects
rarely start from scratch today.

Fortunately, in order to learn about the principles of language implementation,
compiler construction can be greatly simplified. If we start off with a simple pro-
gramming language and generate code for a simple, maybe virtual, machine, not
worrying too much about high-quality code, then the compiler construction project
should not be too painful or protracted.

1.2.3 Interpreters

Running a high-level language programusing a compiler is a two-stage process. In the
first stage, the source program is translated into targetmachine code and in the second
stage, the hardware executes or a virtual machine interprets this code to produce
results. Another popular approach to language implementation generates no target
code. Instead, an interpreter reads the source program and “executes” it directly.
So if the interpreter encounters the source statement a = b + 1, it analyses the
source characters to determine that the input is an assignment statement, it extracts
from its own data structures the value of b, adds one to this value and stores the result
in its own record of a.

This process of source-level interpretation sounds attractive because there is no
need for the potentially complex implementation of code generation. But there are
practical problems. The first problem concerns performance. If a source statement
is executed repeatedly it is analysed each time, before each execution. The cost of
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possibly multiple statement analysis followed by the interpreter emulating the action
of the statement will be many times greater than the cost of executing a few machine
instructions obtained from a compilation of a = b + 1. However this cost can
be reduced fairly easily by only doing the analysis of the program once, translating
it into an intermediate form that is subsequently interpreted. Many languages have
been implemented in this way, using an interpreted intermediate form, despite the
overhead of interpretation.

The secondproblemconcerns the need for the presence of an interpreter at runtime.
When the program is “executing” it is located in the memory of the target system in
source or in a post-analysis intermediate form, together with the interpreter program.
It is likely that the total memory footprint is much larger than that of equivalent
compiled code. For small, embedded systems with very limited memory this may be
a decisive disadvantage.

All programming language implementations are in some sense interpreted. With
source code interpretation, the interpreter is complex because it has to analyse the
source language statements and then emulate their execution.With intermediate code
interpretation, the interpreter is simpler because the source code analysis has been
done in advance. With the traditional compiled approach with the generation of
target machine code, the interpretation is done entirely by the target hardware, there
is no software interpretation and hence no overhead. Looking at these three levels of
interpretation in greater detail, one can easily identify tradeoffs:

Source-level interpretation—interpreter complexity is high, the runtime efficiency is
low (repeated analysis and emulation of the source code statements), the initial
compilation cost is zero because there is no separate compiler and hence the delay
in starting the execution of the program is also zero.

Intermediate code interpretation—interpreter complexity is lower, the runtime effi-
ciency is improved (the analysis and emulation of the intermediate code statements
is comparatively simple), there is an initial compilation cost and hence there is a
delay in starting the program.

Target code interpretation—full compilation—there is no need for interpreter soft-
ware so interpreter complexity is zero, the runtime efficiency is high (the inter-
pretation of the code is done directly by the hardware), there is a potentially large
initial compilation cost and hence there may be a significant delay in starting the
program.

The different memory requirements of the three approaches are somewhat harder
to quantify and depend on implementation details. In the source-level interpretation
case, a simplistic implementation would require both the text of the source code and
the (complex) interpreter to be inmainmemory. The intermediate code interpretation
case would require the intermediate code version of the program and the (simpler)
interpreter to be in main memory. And in the full compilation case, just the compiled
target code would need to be inmainmemory. This, of course, takes no account of the
memory requirements of the running program—space for variables, data structures,
buffers, library code, etc.
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There are other tradeoffs. For example, when the source code is modified, there is
no additional compilation overhead in the source-level interpretation case, whereas in
the full compilation case, it is usual for the entire programormodule to be recompiled.
In the intermediate code interpretation case, it may be possible to just recompile the
source statements that have changed, avoiding a full recompilation to intermediate
code.

Finally, it should be emphasised that this issue of lower efficiency of interpreted
implementations is rarely a reason to dismiss the use of an interpreter. The interpreting
overhead in time and space may well be irrelevant, particularly in larger computer
systems, and the benefits offered may well overwhelm any efficiency issues.

1.3 Why Study Compilers?

It is important to ask why the topic of compiler construction is taught to computer
science students. After all, the number of people who actually spend their time
writing compilers is small. Although the need for compilers is clear, there is not
really a raging demand for the construction of new compilers for general-purpose
programming languages.

One of the key motivations for studying this technology is that compiler-related
algorithms have relevance to application areas outside the compiler field. For exam-
ple, transforming data from one syntactic form into another can be approached by
considering the grammar of the structure of the source data and using traditional
parsing techniques to read this data and then output it in the form of the new gram-
mar. Furthermore, it may be appropriate to develop a simple language to act as a user
interface to a program. The simplicity and elegance of some parsing algorithms and
basing the parsing on a formally specified grammar helps produce uncomplicated
and reliable software tools.

Studying compiler constructionoffers the computer science studentmany insights.
It gives a practical application area for many fundamental data structures and algo-
rithms, it allows the construction of a large-scale and inherently modular piece of
software, ideally suited for construction by a team of programmers. It gives an insight
into programming languages, helping to show why some programming languages
are the way they are, making it easier to learn new languages. Indeed, one of the best
ways of learning a programming language is to write a compiler for that language,
preferably writing it in its own language. Writing a compiler also gives some insight
into the design of target machines, both real and virtual.

There is still a great deal of work to be done in developing compilers. As new
programming languages are designed, new compilers are required, and new pro-
gramming paradigms may need novel approaches to compilation. As new hardware
architectures are developed, there is a need for new compilation and code generation
strategies to make effective use of the machine’s features.

Although there is a steady demand for new compilers and related software, there
is also a real need for the development of new methodologies for the construction
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of high-quality compilers generating efficient code. Implementing code to analyse
the high-level language program is not likely to be a major challenge. The area has
been well researched and there are good algorithms and software tools to help. But
the software needed to generate target code, particularly high-quality code, is much
harder to design and write. There are few standard approaches for this part of the
compiler. And this is where there is an enormous amount of work still to be done.
For example, generating code to make the best use of parallel architectures is hard,
and we are a long way from a general, practical solution.

Is there really a need for heavily optimised target code? Surely, today’s processors
are fast enough and are associated with sufficiently large memories? This may be
true for some applications, but there are many computations where there are, for
example, essential time or space constraints. These are seen particularly in embedded
applications where processor power or memory sizes may be constrained because of
cost or where there are severe real-time constraints. There will always be a need to
get the most from the combination of hardware and software. The compiler specialist
still has a great deal of work to do.

1.4 Present and Future

Today’s compilers and language tools can deal with complex (both syntactically and
semantically) programming languages, generating code for a huge range of computer
architectures, both real and virtual. The quality of generated code from many of
today’s compilers is astonishingly good, often far better than that generated by a
competent assembly/machine code programmer. The compiler can cope well with
the complex interacting features of computer architectures. But there are practical
limits. For example, the generation of truly optimal code (optimising for speed, size,
power consumption, etc.) may in practice be at best time consuming or more likely
impossible. Where we need to make the best use of parallel architectures, today’s
compilers can usually make a good attempt, but not universally. There are many
unsolved optimisation-related problems. Also, surely there must be better processor
architectures for today’s and tomorrow’s programming languages?

Compilers are not just about generating target code from high-level language
programs. Programmers need software tools, probably built on compiler technology,
to support the generation of high-quality and reliable software. Such tools have
been available for many years to perform very specific tasks. For example, consider
the lint tool [6] to highlight potential trouble spots in C programs. Although huge
advances have beenmade, muchmore is required and this work clearly interacts with
programming language design as well as with diverse areas of software engineering.
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1.5 Conclusions and Further Reading

A study of the history of programming languages provides some good background
to the development of implementations. Detailed information about early languages
appears in [7] and more recent articles are easily found on the web. Several pictorial
timelines have been produced, showing the design connections between program-
ming languages.

Similarly, the history of processor design shows how the compiler writer has had
to deal with a rapidly changing target. Web searches reveal a huge literature, and it is
easy to see how the development of hardware architectures in more recent years has
been influenced by the compiler writer and indirectly by the needs of the high-level
language programmer. A full and wide-ranging coverage of computer hardware is
contained in [8]. A comprehensive coverage of modern architecture together with
historical perspectives is found in [9].

To help put the material appearing in the rest of this book into context, it is worth
looking at some existing compiler projects. But it is important not to be put off
by the scale of some of these projects. Many have been developed over decades,
with huge programming teams. Perhaps most famous is GCC (the GNU Compiler
Collection), documented at https://gcc.gnu.org/ which “… includes front ends for
C, C++, Objective-C, Fortran,1 Java, Ada, and Go”. This website includes links to
numerous documents describing the project from the point of view of the user, the
maintainer, the compiler writer and so on. The LLVM Compiler Infrastructure is
documented at http://llvm.org — another collection of compilers and related tools,
now in widespread use. The comp.compilers newsgroup and website (http://
compilers.iecc.com/) is an invaluable resource for compiler writers.

Exercises

1.1 Try to find a compiler that has an option to allow you to look at the generated
code (for example, use the -S option in GCC). Make sure that any optimisation
options are turned off. Look at the code generated from a simple program (only
a few source lines) and try to match up blocks of generated code with source
statements. Details are not important, and you do not need an in-depth knowledge
of the architecture or instruction set of the target machine. By using various
source programs, try to get some vague idea of how different source language
constructs are translated.
Now, turn on optimisation. It should be very much harder to match the input with
the output. Can you identify any specific optimisations that are being applied?

1.2 Find the documentation for a “big” compiler. Spend some time looking at the
options and features supported by the package.

1.3 Find the instruction set of the main processor contained in the computer you
use most often. How much memory can it address? How many registers does

1Note the capitalisation. After FORTRAN 77, the language became known as Fortran.

https://gcc.gnu.org/
http://llvm.org
http://compilers.iecc.com/
http://compilers.iecc.com/
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it have? What can it do in parallel? How many bits can it use for integer and
for floating point arithmetic? Approximately how long does it take to add two
integers contained in registers?

1.4 Look back at the design of a much older processor (for example, the DEC PDP-
11 architecture is well documented on the web). Answer the questions listed
above for this processor.

1.5 Try to find out something about the optimisations performed by the early
FORTRAN compilers. The work done by IBM on some early FORTRAN com-
pilers is well documented and shows the efforts made by the company to move
programmers away from assembly language programming. Try also to find out
about more recent attempts with Fortran (note the capitalisation!) to make the
most of parallel architectures.

1.6 Do some research to find out the key trends in processor design over the last few
decades. Do the same for high-level language design. How have these trends
affected the design of compilers and interpreters?

1.7 To prepare for the practical programming tasks ahead, write a simple program
to read a text file, make some trivial transformation character by character such
as swapping the case of all letters, and write the result to another text file. Keep
this program safe. It will be useful later when it can be augmented to produce a
complete lexical analyser.
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Chapter 2
Compilers and Interpreters

Before looking at the details of programming language implementation, we need to
examine some of the characteristics of programming languages to find out how they
are structured and defined. A compiler, or other approach to implementation, is a
large and complex software system and it is vital to have some clear and preferably
formal structure to support its construction.

This chapter examines some of the approaches that can be used for high-level
programming language implementation on today’s computer hardware and provides
some of the background to enable high-level to low-level language translation soft-
ware to be designed in a structured and standard way.

2.1 Approaches to Programming Language
Implementation

The traditional approach for the implementation of a programming language is to
write a program that translates programs written in that language into equivalent
programs in the machine code of the target processor. To make the description of this
process a little easier, we shall assume that the source program iswritten in a language
called mylanguage and we are producing a program to run on mymachine. This
view is shown in Fig. 2.1.

This trivial diagram is important because it forces us to consider some important
issues. First, what precisely is the nature of the source program? It is obviously
a program written in mylanguage—the language we are trying to implement.
But before we can contemplate an implementation of the translator software, we
have to have a precise definition of the rules and structure of programs written in
mylanguage. In Sect. 2.2, we consider the nature of such a definition.
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source program
written in mylanguage translator

program to run
on mymachine

Fig. 2.1 A simple view of programming language implementation

Second, what sort of programming language is mylanguage? At this stage it
may not reallymatter, but the nature of the languagewill of course affect the design of
the translator software. For example, if mylanguage is a high-level programming
language and mymachine is a hardware-implemented processor, then the translator
program is usually called a compiler. This book concentrates on this particular con-
figuration. If, however, mylanguage is an assembly language (for mymachine)
then the translator is usually called an assembler and would be significantly easier
to implement than a compiler.

Can programs in mylanguage be passed directly into the translator or does it
make more sense to preprocess the programs first? For example, programs written in
C can include language features best dealt with by a preprocessor. This stage could
of course be regarded as being an integral part of the translation process.

Third,what sort of language is used to express theprogram to runonmymachine?
Again if mymachine is a hardware-implemented processor, then we are probably
looking at the generation of machine code programs encoded in some object file for-
mat dependent on the design of mymachine and probably on the operating system
running on mymachine. Generating assembly language may be the right thing to
do, requiring the existence of a separate assembler program to produce code directly
runnable on mymachine. And there are other possibilities too. A popular approach
to language implementation assumes that mymachine is a virtual machine. This is
a machine for which there is no corresponding hardware and exists only as a conse-
quence of a piece of software which emulates the virtual machine instructions. This
approach is examined in Sect. 2.1.1. Furthermore, the translator could have a some-
what different role. It could be used to translate from mylanguage to a high-level
language rather than to a low-level language for mymachine. This would result
in a software tool which could be used to translate programs from one high-level
language to another, for example from C++ to C. In this case, aspects of the internal
design of the translator may be rather different to that of a conventional compiler and
there is an assumption that mymachine somehow runs programs written in the tar-
get high-level language. There are many common principles and algorithms that can
be used in all these language translation tasks. Whatever the form of mymachine
and the generated code, a precise specification is required, just as for mylanguage.

At the beginning of this section is a statement that the translator generates “equiv-
alent programs” for mymachine. This is an important issue. The translator should
preserve the semantics of the mylanguage program in the running of the generated
code on mymachine. The semantics of mylanguage may be specified formally
or informally and the user of mylanguage should have a clear idea of what each
valid program should “mean”. For example, translating the statement a = a + 2
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into code that increments the value of a by 3 is not right, certainly for a sensible
programming language! The translator should translate correctly.

Assuming that mylanguage and mymachine are both non-trivial, the transla-
tor is going to be a complex piece of software. It is the role of this book to help explain
how this software can be structured to make it feasible to produce a reliable transla-
tor in a reasonable time. We concentrate in this book on the structure of compilers
and later in this chapter a traditional internal structure of a compiler is described.
But it is helpful now to say that a compiler can be built of two distinct phases. The
first is the analysis phase, reading the source program in mylanguage, creating
internal data structures reflecting its syntactic and semantic structure according to the
definition of mylanguage. The second is the synthesis phase, generating code for
mymachine from the data structures created by the analysis phase. Thinking about
a compiler in terms of these two distinct phases can greatly simplify both design and
implementation.

2.1.1 Compile or Interpret?

Figure 2.1 illustrates the conventional view of a compiler used to generate code
for a target machine from a source program written in a high-level language. This
book concentrates on the design of this type of translator, how it can be structured
and implemented. The term compiler is usually used for a translator from a high-
level programming language to a low-level language such as the machine code of
a target machine. However, as we have seen, the term is sometimes used to cover
translation from and to a wider range of programming language types, such as high-
level language to another high-level language.

When a program is passed through a compiler generating code for some target
machine (say, the mymachine processor), the code can be run on the mymachine
architecture and this has the effect of “running” the original program. The processor
hardware interprets the machine instructions generated by the compiler and the cpu
state is altered according to the nature of the sequence of instructions executed.
However, other implementation routes are possible and in particular there is no
fundamental necessity for the instructions generated by the compiler to be interpreted
directly by the hardware.

There are many implementations of high-level programming languages where
the compiler generates code for a virtual machine and then a separate program, the
interpreter, reads the virtual machine code and emulates the execution of the virtual
machine, instruction by instruction. At first sight this may seem a strange thing to
do—why not generate target machine code directly? But this approach has several
significant advantages, including the following.

• The design of the code generated by the compiler is not constrained by the archi-
tecture of the target machine. This can simplify the design of the compiler because
it does not have to deal with the quirks and restrictions of the real hardware. For
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example, it may be convenient to use a stack-based architecture for the virtual
machine, not directly supported by the target hardware.

• Portability is enhanced. If the interpreter is written in a portable language, the
interpreter and the virtual machine code can be shipped and easily run onmachines
with different architectures or operating systems. This ties in well with today’s
prevalence of heterogeneous networked environments.

• The virtual machine code can be designed to be particularly compact. There are
application areas where this may be very important.

• Runtime debugging and monitoring features can be incorporated in the virtual
machine interpreter allowing improved safety and security in program execution.
The virtual machine code can run in a sandbox, preventing it from performing
illegal operations. For example, the virtual machine can operate on typed data,
and runtime type checking can provide helpful debugging information.

The obvious disadvantage of this approach concerns the question of efficiency.
Interpreted code is likely to be slower than native execution. But formost applications
this turns out not to be of real significance. The advantages usually easily outweigh
this disadvantage and so many modern programming languages are implemented in
this way.

The nature of the virtual machine poses interesting questions. The design of the
virtual machine should not be too close to that of the hardware because the advan-
tages of compiler simplification essentially disappear. But if the virtual machine’s
design is made very close or identical to the language that is being implemented,
the compiler is made very simple, but the interpreter has to deal with the detail of
decoding and analysing this potentially complex code. The functions of the compiler
are being shifted into the interpreter. However, several languages have been imple-
mented successfully in this way, where the interpreter does all thework, removing the
necessity for the separate compiler. Some implementations of the BASIC language
have been implemented in this way. Because of the need for repeated analysis of the
source language statements in the interpreter, this is rarely a practical approach for
a production system.

These implementation issues are examined again in Chap.9.

2.2 Defining a Programming Language

The definition of a programming language is fundamentally important to users of
the programming language as well as to the compiler writer. The definition has to
provide information about how to write programs in the language. It has to specify
the set, presumably infinite, of valid programs and also what each valid program
“means”. The specification of syntax is central here. Syntax defines the sequences
of characters that could form a valid program. And the meaning of these programs
is specified by the semantics of the language.

http://dx.doi.org/10.1007/978-3-319-52789-5_9
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The language definition should be clear, precise, complete, unambiguous and
preferably understandable by all language users. Specifying a programming language
in an informal way using a language such as English makes the definition accessible,
but precision can suffer. Aspects of many programming languages have been defined
using natural language and ambiguities have been common, particularly in early
revisions of the definitions. The definition of the language’s syntax is usually done
using amore formal approach and a range ofmetalanguages (languages used to define
other languages) have been developed. A few of these metalanguages are described
in Sect. 2.2.1. For most of the current and popular programming languages, the use
of a simple metalanguage to define syntax results in a compact and largely complete
syntactic specification. We shall see in Chap. 4, how this specification can be used
as the starting point for the design of a syntax analyser for the language.

2.2.1 BNF and Variants

Backus–Naur Form or Backus Normal Form is a metalanguage which was popu-
larised by its use in the definition of the syntax of ALGOL 60 [1]. It is a very simple
yet powerful metalanguage and it has been used extensively to support the formal
definitions of a huge range of languages. It has become one of the fundamental tools
of computer science.

A BNF specification consists of a set of rules, each rule defining a symbol (strictly
a non-terminal symbol) of the language. The use of BNF is best illustrated by some
examples. This first example (see Fig. 2.2) makes use of some of the simpler rules
and terminology of English grammar to define the syntax of some trivial sentences.

<sentence> ::= <subject> <verb> <object>
<subject> ::= <article> <noun>
<object> ::= <article> <noun> | <article> <adjective> <noun>
<verb> ::= watches | hears | likes
<article> ::= a | the
<noun> ::= man | woman | bicycle | book
<adjective> ::= red | big | beautiful

Fig. 2.2 A trivial language

Here, we define a structure called a <sentence> as a <subject> followed by a
<verb> followed by an<object>. An<object> includes an optional<adjective>.
The tokens on the right-hand sides of<verb>,<article>,<noun> and<adjective>
are terminal tokens implying that they cannot be expanded further. Tokens enclosed
in angle brackets in BNF are called non-terminal tokens. Terminal tokens are just
treated as sequences of characters. The symbol ::= separates the token being defined

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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from its definition. The symbol | separates alternatives. It is the alternation operator.
The symbols ::=, |, < and > are the metasymbols of BNF.

This set of rules can be used to generate random“sentences”.Where there are alter-
natives, random choices can be made. For example, starting with the non-terminal
<sentence>, expanding just a single non-terminal at each step:

<sentence>
<subject> <verb> <object>
<article> <noun> <verb> <object>
the <noun> <verb> <object>
the woman <verb> <object>
the woman watches <object>
the woman watches <article> <adjective> <noun>
the woman watches a <adjective> <noun>
the woman watches a beautiful <noun>
the woman watches a beautiful bicycle

Be aware that BNF is far from being sufficiently powerful to define the syntax of
English or any other natural language. And we have not considered the consequences
of semantics here. For example, this simple grammar can generate sentences with
little sense such as the bicycle hears the book.

The power of BNF is better seen in a slightly more complicated example, shown
in Fig. 2.3.

<expr> ::= <term> | <expr> + <term> | <expr> - <term>

<term> ::= <factor> | <term> * <factor> | <term> / <factor>
<factor> ::= <integer> | (<expr>)

<integer> ::= <digit> | <integer> <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 2.3 BNF for simple arithmetic expressions

These rules define the syntaxof simple arithmetic expressions using integer values,
the operators +, -, * and /, together with parentheses for grouping. Expressions such
as 2+3+4/5 and 2+3*(44-567) can be generated via this set of BNF rules.

Several important points should be highlighted.

• There is no upper limit to the length of expressions that can be generated by
these particular rules. This is because these rules make use of recursion, allowing
rule expansion to continue for an arbitrary number of steps. Strict BNF has no
mechanism for simple iteration and recursion is used instead. For example,<expr>
is defined in terms of itself.

• Consider the generation or derivation of the expression 1+2*3 using this set of
rules (we omit here the steps between <factor> and a literal integer value).

<expr>
<expr> + <term>

<term> + <term>
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<factor> + <term>

1 + <term>

1 + <term> * <factor>
1 + <factor> * <factor>
1 + 2 * <factor>
1 + 2 * 3

Note particularly that in the expansion 1+ <term>, there is an implication that
the 2*3 part of the expression is grouped as a single entity called a <term>. The
BNF rules can be used to support the idea of operator precedence where here the
precedence of the * operator is higher than the precedence of the + operator—the
multiplication is “done before” the addition. This of course coincides with the
rules of traditional arithmetic and algebra. The phrasing of the BNF rules allow
the specification of the precedence of operators. This notion will arise repeatedly
in the techniques used for compiler construction.

• Similarly, the BNF rules can be used to express the associativity of operators. For
example, consider the generation of the expression 1+2+3. Here, the 1+2 part of
the expression is grouped as a single entity called a <term>. The implication is,
therefore, that the expression 1+2+3 is interpreted as (1+2)+3. The + operator
is left-associative.
If different associativity or precedence rules are required, then the BNF could be
modified to express these different rules. It is perhaps surprising that such a simple
metalanguage can do all this.

BNF has been used in the definition of many programming languages and over the
years, many extensions to BNF have been proposed and subsequently used. There
are several different variants of the low-level syntax of BNF-like metalanguages, but
one variant became popular after its use in the ISO Pascal Standard [2]. This variant
was called Extended Backus–Naur Form (EBNF). It retains the basic principles of
BNF but the syntactic detail is a little different. The BNF example above can be
translated easily into EBNF as follows:

expr = term | expr "+" term | expr "-" term.
term = factor | term "*" factor | term "/" factor.
factor = integer | "("expr")".
integer = digit | integer digit.
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
The terminal symbols (the symbols that cannot be expanded any further) are all

enclosed in double quotation marks, each production rule is terminated with a full
stop and the token = (rather than BNF’s ::=) separates the non-terminal token from
its definition. The < and > brackets have disappeared. There are some other key
additional features.

• Parentheses can be used to indicate grouping in the rule.
• There is a specific feature to indicate optionality in a rule: [X] specifies zero or
one instance of X, in other words specifying that X is optional.

• Repetition (not by recursion) is supported too: {X} implies zero or more instances
of X.
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We can therefore write an essentially equivalent set of rules:

expr = term | expr ("+" | "-") term.
term = factor | term ("*" | "/") factor.
factor = integer | "("expr")".
integer = digit {digit}.
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

EBNF offers a more compact and probably clearer route towards the definition of
the syntax of a programming language. It ties in well with the hand construction of
syntax analysers as will be seen in Chap. 4.

Finally, a brief mention should be made of the use of syntax diagrams in the
definition of programming languages. This approach was popularised in the original
definition of Pascal [3] and uses a pictorial notation to represent the syntax of each of
the non-terminal tokens of the language. This too proves to be an easily understood
and compact notation.

2.2.1.1 Limitations

The formal syntax of most common programming languages, expressed in the form
of BNF or equivalent, will almost certainly lack a specification for some of the rules
for the construction of “well-formed” programs. This is likely to result from the
fact that a BNF specification cannot express contextual constraints. For example,
the programming language being defined may be such that all variables have to be
declared appropriately before they are used. The C statement i = 2; is only valid
in the context of a valid declaration for i such as int i;. This constraint does
not appear in the usual syntax specification for C. We will see exactly why this is a
problem caused by the limitations of metalanguages such as BNF a little later in this
chapter.

It is tempting, therefore, to rethink the metalanguage used for language specifi-
cation so that these additional rules can be incorporated somehow. Such metalan-
guages do exist; an example is the two-level grammar introduced in the definition of
ALGOL 68 [4]. This approach essentially uses two distinct rule sets in two different
metalanguages, the first set being used to generate the second (infinite) set which in
turn is used to generate valid programs in ALGOL 68. This infinite set of production
rules has the effect of allowing the specification of context-dependent constraints in
the language.

This and similar approaches have not proved to be popular because of their com-
plexity. The preferred approach is to stick with the simple context-free rules of BNF,
or equivalent, and rely on other sets of rules, formal or informal, to define the addi-
tional constraints. As we will see, one of the key advantages of retaining this simple
form of syntax specification is that the generation of the corresponding analysis phase
of the compiler can be made very simple.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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2.2.2 Semantics

Unfortunately, the specification of semantics is much harder than the specification
of syntax. Formal approaches may be possible, based on mathematical formalisms.
These definitions may prove to be long and complex, inaccessible to the casual user
of the programming language. Formal semantics opens up the possibility of prov-
ing program correctness and removes the possibility of semantic ambiguity. Sev-
eral approaches to the specification of programming language semantics have been
developed—operational semantics, denotational semantics and axiomatic semantics,
basing a formal description of semantics on the language’s syntax. There are many
good textbooks in this area, for example see [5].

Attribute grammars can be used to help define aspects of the semantics of a
programming language, allowing the specification of context-sensitive aspects by
augmenting a context-free grammar. Here, grammar symbols are associated with
attributes. These are values that can be passed to both parent and child of the grammar
node in which the symbol appears. This approach allows the formal specification of
the language’s operational semantics (how the program is interpreted as a sequence
of computational steps), supporting semantic checks such as requiring the definition
of a name before its use [6].

An alternative approach is to specify semantics somewhat more indirectly by pro-
ducing a reference implementation. Here, a particular implementation is selected to
define howall other implementations should behave.Aprogram running on any of the
implementations should behave as if it is running on the reference implementation.
The simplicity of this approach is attractive. However, there are potential problems
that may arise because of software or even hardware errors in that reference imple-
mentation which, strictly speaking, should be followed by all other implementations.

A third approach, and an approach used widely in the specification of popular lan-
guages, is to specify the semantics using a natural language. Here, text in a natural
language such as English is used to describe the semantic rules of the programming
language. Care is needed to avoid omission or ambiguity and to prevent the spec-
ification from becoming overly long. There is a real danger of assuming that the
semantics of programming language constructs are “obvious”. This is far from being
true—there are many examples of real programming language features that are often
misinterpreted by the programmer and sometimes mis-implemented by the compiler
writer.

This book takes the easy route and avoids issues concerned with the formal spec-
ification of semantics. There will be many semantics-related issues discussed, but
using an informal (English language) notation. We, in common with many other
compiler writers, follow this third approach for semantics specification.
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2.3 Analysis of Programs

Before looking at practical approaches for the analysis phase of programming lan-
guage translation, we have to cover just a little theory. We need a formal structure
on which to base the process of analysis. It just cannot be done reliably in an ad
hoc way. We need to look first at the idea of formal grammars and the notations
associated with them. These grammars form the rock on which we can build code
for programming language analysis.

2.3.1 Grammars

The term “grammar” has a wide range of definitions and nuances and it is hardly
surprising that we need a tight and formal definition for it when used in the context
of programming languages. The idea of a set of BNF rules to represent the grammar
of a language has already been used in this chapter, but formally a little more is
required.

The grammar (G) of a language is defined as a 4-tuple G = (N , T, S, P) where:

• N is the finite set of non-terminal symbols.
• T is the finite set of terminal symbols (N and T are disjoint.)
• S is the starting symbol, S ∈ N . The starting symbol is the unique non-terminal
symbol that is used as the starting point for the generation of all the strings of the
language.

• P is the finite set of production rules. A production rule defines a string transfor-
mation and it has the general form α → β. This rule specifies that any occurrence
of the string α in the string to be transformed is replaced by the string β.
There are constraints on the constitution of the strings α and β. If U is defined by
U = N ∪ T (i.e. U is the set of all non-terminal and terminal symbols), then α
has to be a member of the set of all non-empty strings that can be formed by the
concatenation of members of U , and it has to contain at least one member of N . β
has to be a member of the set of all strings that can be formed by the concatenation
of members of U , including the empty string (i.e. β ∈ U ∗).

Looking back at the BNF definition of the simple arithmetic expressions in
Fig. 2.3, it is easy to see that this forms the basis of the formal grammar of the
language. Here N is the set {expr, term, factor, integer, digit}, T is the set {+, -, *,
/, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, S is expr and P is simply the set of rules in Fig. 2.3,
translating the BNF syntax into whatever syntax is used to represent the rules, tra-
ditionally ::= being replaced by →. In practice, we can afford to be a bit sloppy in
the definition and use of the term grammar since the specification of N , T and S are
usually obvious from the BNF (or equivalent) production rules. There is a convention
that the starting symbol is the non-terminal defined in the first production rule.
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If BNF, EBNF or syntax diagrams are used to specify the production rules, all
rules have a particular characteristic that the left-hand sides of productions are always
single non-terminal symbols. This is certainly allowed by the rules defining a gram-
mar, but this restriction gives these grammars certain important features which will
be examined in Sect. 2.3.2.

A grammar gives the rules for deriving strings of characters conforming to the
syntactic rules of the grammar.A sentential form is any string that can be derived from
S, the starting symbol. And a sentence is a sentential form not containing any non-
terminal symbols. A sentence is something final, it cannot be expanded any further.
In the context of grammars for programming languages, a sentence is a complete
program, containing just terminal symbols (i.e. the characters of the language).

2.3.2 Chomsky Hierarchy

Looking at the definition of a grammar in the last section, it is clear that the important
and potentially problematic component is P , the set of production rules. A production
rule has the form α → β, loosely translated as “anything can be transformed to
anything” (although we have already stated some restrictions on the content of α
and β). The key question then is to remove this generality by restricting the forms of
the production rules to see whether less general rules can be useful for defining and
analysing computer programming languages.

In the 1950s, Noam Chomsky produced a hierarchical classification of formal
grammars which provides a framework for the definition of programming languages
as well as for the analysis of programs written in these languages [7]. This hierarchy
is made up of four levels, as follows:

• A Chomsky type 0 or a free grammar or an unrestricted grammar contains produc-
tions of the form α → β. The restrictions on α and β are those already mentioned
in the section above. This was our starting point in the definition of a grammar and
as suggested, these grammars are not sufficiently restricted to be of any practical
use for programming languages.

• A Chomsky type 1 or a context-sensitive grammar has productions of the form
αAβ → αγβ where α,β, γ ∈ U ∗, γ is non-null and A is a single non-terminal
symbol. The left context is α, the right context is β and in this particular context,
A is transformed to γ.
This type of grammar turns out to have significant relevance to programming
languages. The concept of context is central to programming language definition—
“… this statement is only valid in the context of an appropriate declaration of i …”,
for example.However, in practice, these grammars do not turn out to be particularly
helpful because defining the context-sensitive aspects of a programming language
in terms of a type 1 grammar can turn into a nightmare of complexity. So we
need to simplify further and specify context-sensitive aspects by resorting to other
means, such as English language descriptions.
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• A Chomsky type 2 or a context-free grammar has productions of the form A → γ
where A is a single non-terminal symbol. These productions correspond directly
to BNF rules. In general, if BNF can be used in the definition of a language, then
that language is no more complex than Chomsky type 2.
These grammars are central to the definition and analysis of the majority of pro-
gramming languages. Despite the simplicity of the productions they are capable
of defining powerful and complex program syntax. Chapters4 and 5, in the discus-
sion of syntax analysis, are based on this grammar type. Programming languages
are generally defined using type 2 grammars and these grammars are used directly
in the production of code for program analysis.

• A Chomsky type 3 or a regular grammar or a finite-state grammar puts further
restrictions on the form of the productions. Here, all productions are of the form
A → a or A → aB where A and B are non-terminal symbols and a is a terminal
symbol. These grammars turn out to be far too restrictive for defining the syntax of
conventional programming languages, but do have a key place in the specification
of the syntax of the basic lexical tokens dealt with by the lexical analysis phase of a
compiler (see Chap.3). They are the grammars for languages that can be specified
using regular expressions and programs in these languages can be recognised using
a finite-state machine.

These grammar types form a hierarchy, such that all type 3 languages are also
type 2, 1 and 0, all type 2 languages are also type 1 and 0 and all type 1 languages
are also type 0.

2.3.3 Parsing

Suppose we have a set of BNF (or equivalent) production rules defining the grammar
of a programming language. We have already seen how by expanding these rules,
programs can be generated. This is a simple process. We can use these grammar
rules as a reference while writing programs in that language to help ensure that what
is written is syntactically correct. Because the BNF specification lacks the power to
define the context-sensitive aspects of the language, we will need additional advice
about, for example, making sure that names are declared, that types have to match,
and so on. This collection of information serves to define the programming language
and should offer enough to allow the writing of syntactically correct programs.

The reverse process of going from a program to some data structure representing
the structure and details of the program, also checking that the program is indeed
syntactically correct, is unfortunately much harder. This is the process of program
analysis or parsing and is one of the key tasks performed by a compiler.

Why is parsing somuch harder? Consider a simple example based on the grammar
presented in Fig. 2.3 and on its subsequent use to generate the expression 1+2*3.
Let us try using this grammar to work backwards from the expression 1+2*3 to the
starting symbol <expr>. We know that this should be possible because it can be

http://dx.doi.org/10.1007/978-3-319-52789-5_4
http://dx.doi.org/10.1007/978-3-319-52789-5_5
http://dx.doi.org/10.1007/978-3-319-52789-5_3
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achieved by simply reversing the steps used in its generation. Again, to simplify, we
ignore the steps between a literal integer value and <factor>.

1 + 2 * 3
<factor> + 2 * 3 (using <factor>→ 1)
<term> + 2 * 3 (using <term>→<factor>)
<expr> + 2 * 3 (using <expr>→<term>)
<expr> + <factor> * 3 (using <factor>→ 2)
<expr> + <term> * 3 (using <term>→<factor>)
<expr> * 3 (using <expr>→<expr> + <term>)
<expr> * <factor> (using <factor>→ 3)
<expr> * <term> (using <term>→<factor>)
<expr> * <expr> (using <expr>→<term>)

At this stage we seem to be stuck, implying that 1+2*3 is syntactically incorrect.
What has gone wrong?

The process of parsing repeatedly matches substrings with the right-hand sides of
productions, replacing the matched substrings with the corresponding production’s
left-hand side. Problems arise when there is more than one substring that can be
matched or reduced at any stage. It turns out that the choice of substring to be
matched is important. By trying this parsing process again using a different set of
reductions, we get a different result.

1 + 2 * 3
1 + 2 * <factor> (using <factor>→ 3)
1 + <factor> * <factor> (using <factor>→ 2)
1 + <term> * <factor> (using <term>→<factor>)
1 + <term> (using <term>→<term> * <factor>)
<factor> + <term> (using <factor>→ 1)
<term> + <term> (using <term>→<factor>)
<expr> + <term> (using <expr>→<term>)
<expr> (using <expr>→<expr> + <term>)

In this case, we end with the starting symbol so that the parse has succeeded.
But how dowe determine the proper set of reductions? It may be that we can reach

the starting symbol via several different sets of reduction operations. In this case, we
conclude that the grammar is ambiguous and it needs repair, either by altering the set
of productions or (not so desirable) by adding additional descriptive explanation to
indicate which particular set of reductions is correct. Choosing the set of reductions
to be applied on a sentence is the central issue in parsing. In Chaps. 4 and 5 algorithms
are proposed for tackling this problem.

2.3.3.1 The Output of the Parser

The parser obtains a stream of tokens, from the lexical analyser in a conventional
compiler, and matches them with the tokens in the production rules. As well as
indicating whether the input to the parser forms a syntactically correct sentence, the
parser must also generate a data structure reflecting the syntactic structure of the
input. This can then be passed on to later stages of the compiler.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
http://dx.doi.org/10.1007/978-3-319-52789-5_5
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This data structure is traditionally a tree. The parse tree is constructed as the
parser performs its sequence of reductions and the form of the parse tree directly
reflects the syntactic specification of the language. The root node of the parse tree
corresponds to the starting symbol of the grammar. For example, the tree generated
by running the parser on the 1+2*3 example could take the general form shown in
Fig. 2.4a.

This formof tree accurately reflects the formal syntactic definition of the language,
and much of the tree may turn out to be redundant. Therefore it may be adequate
to generate a tree closer to the form shown in Fig. 2.4b. This is an abstract syntax
tree where not every detail of the sequence of reductions performed by the parser is
reflected in the tree. Nevertheless, the data in the tree is sufficient for later stages of
compilation.

(a)

<expr>

<expr> + <term>

<term>

<factor>

1

<term> * <factor>

<factor>

2

3

(b)

+

1 *

2 3

Fig. 2.4 Syntactic structure of the expression 1 + 2 * 3
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These trees and the algorithms used for their construction will be examined in
detail in later chapters.

2.3.3.2 Parsing Strategies

There are two broad approaches for the construction of an algorithm for parsing.Most
parsers can be classified as being either top-down parsers or bottom-up parsers. The
parsing process takes the string to be parsed and repeatedly matches substrings with
the right-hand sides of productions, replacing those substringswith the corresponding
left-hand sides. Ifwe start offwith a syntactically correct sentence, the parsingprocess
should transform the sentence to the starting symbol via a sequence of sentential
forms.Wehave already seen that the choice ofwhich reductions aremade is important
and a correctly written parser gets that choice right. Practical parsers rarely take this
approach of repeatedly manipulating a potentially very long character string, but the
principle applies.

The top-down parser starts with the starting symbol of the grammar and hence
with the root of the parse tree. Its goal is tomatch the input availablewith the definition
of the starting symbol. So if the starting symbol S is defined as S → AB, the goal
of recognising S will be achieved by recognising an instance of an A followed by
recognising an instance of a B. Similarly, if S is defined as S → A|B, then the goal of
recognising S will be achieved by recognising an instance of an A or by recognising
an instance of a B. The subgoals of recognising A and B are then dealt with according
to subsequent rules in the grammar. When the right-hand side of a production that
is being matched with the input contains terminal symbols, these symbols can be
matched with the input string. If the matching fails, then the parsing process fails
too. But if the matching succeeds then the process continues until, hopefully, all
characters in the input have been matched, at which point the parse succeeds. It is
hard to visualise how this top-down process corresponds to the process described
above of parsing using repeated reductions on the original and then transformed input
string, but the top-down parser is making repeated reductions, the order and choice
being controlled by the structure of the set of productions. Chapter 4 examines this
whole process in detail.

The bottom-up parser perhaps reflects a more obvious way of thinking about
parsing, where, instead of starting with the starting symbol, we start with the input
string, choose a substring to be matched with the right-hand side of a production,
replace that substring with the corresponding left-hand side, and repeat until just
the starting symbol remains (indicating success) or until no valid reduction can be
performed (indicating failure). The parse tree is being constructed upwards from the
leaves, finally reaching the starting symbol at the root. The key problem here is of
course one of determining which reductions to apply and in which order. Again, we
return to this issue in Chap.4.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
http://dx.doi.org/10.1007/978-3-319-52789-5_4
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2.4 Compiler and Interpreter Structure

Having looked at someof the issues of programming languagedefinition and analysis,
we have to step back and examine the overall structure of the programming language
translation process. The implementation of a programming language is potentially a
huge software project. The GNUCompiler Collection (GCC) now contains well over
10 million lines of source code. This is, admittedly, an extreme example, but it does
illustrate the need for good software engineering principles for compiler or interpreter
projects. In order to start thinking about such a project, it is essential to consider the
structure of a compiler or an interpreter in terms of a collection of logically separate
modules so that a large task can be viewed as a collection of somewhat simpler tasks.

We start with the trivial view of a compiler or interpreter shown in Fig. 2.1. In
the case of a compiler, the translator is generating code to run on a real or virtual
machine. In the case of an interpreter, the translator is generating code which is
interpreted by the interpreter program. There is no profound difference between these
two approaches (a compiler can generate code that is interpreted by the hardware)
and hence some of the internal structures of compilers and interpreters can be similar.
In this section, we discuss specifically the modular structure of a compiler generating
code for a real machine.

The first subdivision, we canmake is to consider the compiler as having to perform
two distinct tasks, as shown in Fig. 2.5. The analysis phase and the synthesis phase
are often referred to as the front-end and the back-end respectively.

source
program analysis of source program

synthesis of target machine program
code for

target machine

Fig. 2.5 The analysis/synthesis view of compilation

This subdivision, although simple, has major consequences for the design of
compilers. The interface between these two phases is some intermediate language,
loosely “mid-way” between the source and target languages. If this intermediate
language is designed with care, it may then be possible to structure the compiler so
that the analysis phase becomes target machine independent and the synthesis phase
becomes source language independent. This, in theory, allows great potential savings
in implementation effort in developing new compilers. If a compiler structured in this
way needs to be retargeted to a new machine architecture, then only the synthesis
phase needs to be modified or rewritten. The analysis phase should not need to
be touched. Similarly, if the compiler needs to be modified to compile a different
source language (targeting the same machine), then only the analysis phase needs
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source
program lexical analysis

syntax analysis

semantic analysis

machine-independent
optimisation

code generation

machine-dependent
optimisation

code for
target machine

Fig. 2.6 Phases of compilation

to be modified or rewritten. We look at this issue from the view of the intermediate
representation in Chap. 6.

But the subdivision into phases needs to be taken further to be of any use in
the practical construction of a compiler. A traditional view of compiler structuring,
referred to repeatedly in this book, is shown in Figure 2.6.

The lexical analysis, syntax analysis, semantic analysis and the machine-indepen-
dent optimisation phases together form the front-end of the compiler and the code
generation and machine-dependent phases form the back-end. These phases all have
specific and distinct roles. And to support the design of these individual modules,
the interfaces between them have to be defined with care.

2.4.1 Lexical Analysis

This first phase of compilation reads the characters of the source program and groups
them together into a stream of lexical tokens. Each lexical token is a basic syntactic
component of the programming language being processed. These are tokens such
as numbers, identifiers, punctuation, operators, strings, reserved words and so on.
Comments can be ignored unless the language defines special syntactic components

http://dx.doi.org/10.1007/978-3-319-52789-5_6
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encoded in comments that may be needed later in compilation. White space (spaces,
tabs, newlines, etc.) may be ignored except, again, where they have some syntactic
significance (where spacing indicates block structure, where white space may occur
in character strings and so on).

For example, this C program fragment:

sum = 0;

for (i=0; i<=99; i++) sum += a[i]; /* sum array */

will be read by the lexical analyser and it would generate this stream of tokens:

sum (identifier), =, 0 (integer constant), ;, for (reserved word), (, i (identifier), =, 0
(integer constant), ;, i (identifier), <=, 99 (integer constant), ;, i (identifier), ++, ),
sum (identifier), +=, a (identifier), [, i (identifier), ], ;

The syntax of these basic lexical tokens is usually simple, and the expectation
is that the syntax can be specified formally in terms of a Chomsky type 3 grammar
(i.e. in terms of regular expressions). This considerably simplifies the coding of the
lexical analyser.

The output of the lexical analyser is a stream of tokens, passed to the syntax
analyser. The interface could be such that the lexical analyser tokenises the entire
input file and then passes thewhole list of tokens to the syntax analyser. Alternatively,
the tokens could be passed on to the syntax analyser one at a time, when demanded
by the syntax analyser.

2.4.2 Syntax Analysis

The syntax analyser groups and structures the lexical tokens according to the syntax
rules of the programming language. It performs the parsing process, as outlined above
in Sect. 2.3.3, repeatedly grouping together components by performing reductions
according to the production rules. Assuming that the sequence of tokens is syntacti-
cally correct, the parse should succeed. If the sequence is not syntactically correct,
then the syntax analyser should report an error and then perform some appropriate
recovery action.

The syntax analyser constructs a data structure representing the syntactic structure
of the input. This is usually based on some form of tree where the nodes represent
syntactic components defined by the grammar. This is the parse tree or abstract syntax
tree. This data structure should contain or link to all the information needed by later
phases of compilation. So, for example, a node corresponding to the occurrence of a
constant value in the original program should contain or link to information defining
that constant such as its type, value and so on.

It is clear that the lexical and syntax analysers are doing similar things. They
are both grouping together characters or tokens into larger syntactic units. So there
is an issue about whether a particular syntactic structure should be recognised by
the lexical analyser or by the syntax analyser. The traditional approach, and it is
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an approach that works well, is to recognise the simpler structures in the lexical
analyser, specifically those that can be expressed in terms of a Chomsky type 3
grammar. Syntactic structures specified by a type 2 or more complex grammar are
then left for resolution by the syntax analyser. In theory, the syntax analyser could
deal with the lexical tokens using a type 2 grammar parsing approach, but this would
add significantly to the complexity of the syntax analyser. Furthermore, by leaving
the lexical analyser to deal with these tokens improves compiler efficiency because
simpler and faster type 3 parsing techniques can be used.

2.4.3 Semantic Analysis

The analysis phase is not quite complete even after the syntax tree has been con-
structed. Traditional type 2 grammars used to build the syntax analyser cannot deal
directly with contextual issues such as type checking, declaration and scopes of
names, choice of overloaded operators and so on. This is the role of the semantic
analysis phase. Traversing the tree, inserting and checking type information is done
here. Typed languages may require that all or almost all the nodes in the tree be
labelled with a data type. Complexity is increased when the language being com-
piled allows user-defined types. Rules for type compatibility have to be applied here
too. For example, does the language allow an integer value to be assigned to a real
(floating point) variable?

A second task of the semantic analysis phase is to flatten the parse tree to produce
some form of intermediate code. The nature of this code is discussed in Chap.6.
It should be straightforward to generate this intermediate code by traversing the
tree. The type information is preserved so that the intermediate code is functionally
equivalent to the original source program. This intermediate representation can be
regarded as the machine code for a carefully designed virtual machine.

2.4.4 Machine-Independent Optimisation

Generating intermediate code by simple tree traversal will yield code with oppor-
tunities for improvement. This optimisation phase, together with the optimisation
performed during and after code generation, can make a dramatic difference to the
quality of the code generated by the compiler. In Fig. 2.6 these phases are enclosed in
dashed lines, indicating that they are optional. The compiler will still work without
them, but the quality of generated code may be poor.

Post-semantic analysis is a good stage of compilation for code optimisation. The
intermediate representation will have been designed with optimisation in mind and
many optimisation techniques can be applied. These result, in some cases, in dramatic
performance improvements. Removal of redundant code, function inlining, loop
unrolling, dependence and flow analysis and so on can all be done here. This is

http://dx.doi.org/10.1007/978-3-319-52789-5_6
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a target machine-independent phase because the optimisations being performed are
making no assumptions about the low-level design of the target machine.

The output of this phase is a representation of the program being compiled in an
intermediate form. It is likely, but not essential, that the input and the output of this
phase are expressed in the same intermediate representation.

2.4.5 Code Generation

At this point, attention shifts away from the nature of the source language and moves
towards the design and characteristics of the target machine. The code generation
phase reads the (optimised) intermediate code and outputs functionally equivalent
target machine instructions. This is easy to specify but the implementation requires
the handling of complex detail.

The code generator has to select appropriate machine instructions, decide how
the target machine registers are to be used, deal with a storage allocation scheme for
all the variables and structures needed by the program as it runs, generate code to
interface with libraries and the operating system. This is all being done in the context
of the need to generate high-quality code.

2.4.6 Machine-Dependent Optimisation

At least partially incorporated into the code generation phase is the process of opti-
misation specifically geared towards the characteristics of the target machine. Use
of special-purpose instructions and addressing modes, making use of target machine
parallelism, using the target machine registers effectively and so on can make a sig-
nificant impact on the quality of the target code. There are some optimisations that
are best done as code is actually generated, whereas there are other techniques that
are best run as a separate pass over the generated code.

There are some general issues concerning optimisation. First, the term “optimi-
sation” is used in the compiler context in a somewhat unconventional way. It is not
taken to mean “generate the best code possible”, but instead it implies “generate
better code”. Furthermore, the aims of optimisation need to be clear when develop-
ing the compiler. Is the aim of optimisation to generate code that will run fast on
the target machine? Or is it to generate compact code (maybe more appropriate for
embedded systems)? Or is it some combination of the two? Is the aim to minimise
the power consumption as the code runs? Managing these tradeoffs may be difficult
and the aims should be clear as the optimisation phases are being developed.

The final output of the compiler is a program that can be run on the target machine,
maybe after some further processing. The output may be some form of object file
requiring processing by a linker or loader before it can actually run or maybe an
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assembly language file requiring processing by an assembler to produce loadable
target code.

2.4.7 Symbol Tables

The names (identifiers, symbols) used in the source program need to be stored during
the compilation process. Further information relating to types, scope, declarations,
values or locations and other source language-dependent features will need to be
stored too. This information allows the compiler, for example, to ensure that variables
are appropriately declared, perform type checking, generate appropriate intermediate
code instructions and include symbolic names in the code generator output to allow
symbolic debugging at runtime. Therefore, the symbol table in a typical compiler is
a complex data structure, supporting efficient name lookup, accessible by any of the
compilation phases.

Symbols may be inserted into the symbol table by the lexical analyser, but it may
be better to perform this task in the syntax analyser where more context information
is known. The syntax analyser can distinguish between the declaration and the use of
a name and this is important when accessing the symbol table. The semantic analysis
phase makes heavy use of the symbol table, and it may generate intermediate code
that implicitly includes enough of the symbol table information to allow the code
generation and optimisation phases to be free of the need to access the symbol table.

2.4.8 Implementation Issues

Finally, there are many practical issues to consider in designing the implementation
plan of a compiler. Inwhich programming language should the compiler or interpreter
be written? What sort of testing strategy should be adopted? Are there techniques
to simplify the implementation process? Are there good software tools to use? Can
we make use of software that is already freely available by incorporating it in the
compiler?

It may be that more software than just the compiler or interpreter needs to be
written. Is there a need for a runtime debugger, linker or loader? Are there program
development tools needed to be integrated with the compiler? Do we need a runtime
system providing an interface between the running compiled program and the oper-
ating system and/or hardware? The task can easily get out of control but there are
many standard implementation routes, some of which are examined in Chap.9.

http://dx.doi.org/10.1007/978-3-319-52789-5_9
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2.5 Conclusions and Further Reading

This chapter has shown that the design of the implementation of a programming lan-
guage is by no means a trivial task but has also shown that the task may have become
tractable by imposing a solid structure on which an implementation can be built.
Good planning is vital in this sort of project especially if a team is involved. Starting
from accurate definitions is essential. Formalising and automating the process makes
the production of a reliable implementation so much more straightforward.

Compilers and interpreters are now very rarely constructed from scratch. Making
use of already available software may well be crucial to make the project feasible.
The separation of the compilation process into clearly defined modules and the use
of standardised or pre-existing interfaces makes this process of modular construction
very much easier.

This may be completely obvious, but it is worth stating nevertheless. It pays to
start off with an excellent, in-depth knowledge of both the source language and the
target machine. Conversely, writing a compiler may be one of the best ways to learn
a programming language and a target machine!

The documents formally defining programming languages form a valuable
resource for anyone involved in the task of language implementation. Early lan-
guage definitions, such as the FORTRAN standard [8], are well worth examining to
see how far we have come in both programming language design and also in tech-
niques for programming language definition. The ALGOL 60 definition [1] is also
a key historical document, particularly for its use of BNF. It is also worth taking a
look at the definition of ALGOL 68 [4], again a key historical document but it clearly
shows the importance of having an accessible language definition. The definitions of
most more modern languages are easily found on the web, some simple and others
of astonishing complexity.

Routes towards programming language implementation are sometimes complex.
This is usually and paradoxically the case because of the need to reduce the amount of
programming effort required. Understanding the stages required in such implemen-
tations is often difficult and T-diagrams were introduced as a simple visualisation
mechanism [9, 10]. Deciding on whether to compile or interpret is a key question
and picking out the language features (such as reflection in Java) that push towards
an interpreted implementation is a helpful task.

A great deal has been written about the design of virtual machines (for example,
see [11]) and documents easily accessible via the web provide designs for general-
purpose and domain-specific virtual machines. The Java Virtual Machine (see [12])
is perhaps themost famous virtual machine and has been used in the implementations
of a wide range of programming languages.

This is not a textbook about the more formal aspects of grammars and parsing.
There are so many high-quality published resources in this area. A classic text is [13]
and much useful background information is contained in [14, 15].

Finally, an excellent source of design information is the source code and documen-
tation of existing compilers and interpreters. For example, the GNU GCC project is
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well documented and the compiler source code is freely available. A good indication
of the functionality offered by the compiler is given by the range of options available
when running the compiler.

Exercises

2.1. The Java Virtual Machine has been used as a route to the implementation of
many programming languages. Produce a list of some of these languages and
implementations. Why was the JVM often chosen? Are there programming
language features that do not map well onto the JVM?

2.2. Suppose you had to write a program to count the number of if statements used
in a C program. Explain why the obvious approach of counting the number of
matches with the character string “if” may produce the wrong answer. Why
can the use of lexical analyser techniques help? Are aspects of syntax analysis
required too?

2.3. Write a program to read grammar productions expressed in BNF or EBNF and
generate random sentences from the grammar. To make the sentences more
interesting it may help to be able to alter the relative probabilities of choice
where alternatives are specified by the grammar.
Try this programon the grammar of a real programming language and if possible
put it through a compiler for that language. Did you expect it to compile?

2.4. Write the syntax of BNF in EBNF (and the other way round).

2.5. Produce the grammar for a simple language specifying conventional arithmetic
expressions involving integer constants, brackets and the four binary operators
+, -, * and /. Make sure that expressions of the form 1+2*3 are interpreted
correctly by the grammar. Then extend the grammar to allow the unary operators
+ and-.Make sure that the grammar correctly interprets expressions of the form
-1-2. Maybe produce an implementation, although this will be much easier
once material in later chapters has been read!

2.6. Produce a grammar for simple arithmetic expressions with unconventional rules
of precedence so that, for example, the expression 3*2+1 is interpreted as
3*(2+1).

2.7. Check how your grammar interprets expressions of the form 1-2-3. Change
the grammar to make all four operators right-associative so that the value of
1-2-3 is 2 rather than -4.
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Chapter 3
Lexical Analysis

It is appropriate to start the details of compiler implementation by considering the
lexical analyser. The place of the lexical analyser in the complete compiler has already
been discussed in Chap.2. Because it is the first phase of source code analysis, the
format of its input is governed by the specification of the programming language
being compiled. The output of the lexical analyser has to satisfy the needs of the next
phase of compilation (syntax analysis) and details of this interface will be examined
later in this chapter.

Making a clear separation between lexical analysis and syntax analysis is impor-
tant. Regarding and implementing them as separate modules has several advantages.
It increases the degree of modularity of the compiler—the principles of software
engineering emphasise that this is a good thing. It makes the implementation eas-
ier with the coding of the syntax analyser not having to worry about the low-level
details of the lexical structure of the source language. This is particularly noticeable
when attempting to produce a formal definition (for example, in BNF) of a program-
ming language to include lexical tokens, optional white space between tokens, and
so on. Implementation from this inevitably complicated grammar may be difficult.
Furthermore, leaving the more complex syntactic structures for the syntax analyser
makes the coding of the lexical analyser much easier. Debugging is helped by this
separation too. For example, if the examination of the interface between the two
phases indicates that the tokens generated by the lexical analyser are correct, the
problem should lie in the syntax analyser. Finally, the separation can offer benefits
of efficiency since the algorithms used to analyse tokens within the lexical analyser
are simpler than those used to analyse syntactic structures in the syntax analyser.
Simpler grammars, specifically Chomsky type 3 grammars, can be used to define the
syntax of lexical tokens. These efficiency gains in terms of both execution time and
space requirements may not be of paramount importance for today’s hardware but
they have certainly influenced the historical development of compiler design.

This chapter examines two general approaches to lexical analyser design, pre-
senting some code examples and highlighting some of the pitfalls. The first approach
shows how a hand-crafted lexical analyser can be structured by following some sim-
ple guidelines. The second approach follows a more formal path, starting with a
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syntactic specification of the lexical tokens. This specification, expressed in the form
of regular expressions, can always be transformed via the construction of finite-state
automata to the code for a lexical analyser. We concentrate on the practicalities of
lexical analyser construction, including only just a little background theory.

These approaches have their individual advantages and disadvantages and in some
cases there are aspects of the language being analysed that cause difficulty for both
approaches. The use of a specification based on regular expressions forms the basis
of a range of software tools that can help greatly in the construction of a lexical
analyser.

Writing a lexical analyser for simple languages usually turns out to be a uncom-
plicated task. Code complexity is low because the lexical analyser should not need
to store much state information as it runs. The analysis can usually be done essen-
tially in a single pass with very little or no backtracking. However in a real compiler,
efficiency may be particularly important and this may influence the algorithms used
for lexical token recognition.

The lexical analyser is constrained by the syntax of the source language and by
the details of the stream of tokens it has to pass to the next phase of compilation—the
syntax analyser. So it makes sense to look next at the nature of these lexical tokens.

3.1 Lexical Tokens

The role of the lexical analysis phase of a compiler is to read the program being
compiled, breaking up the input into a sequence of tokens. Each token represents a
basic syntactic component of the language being compiled. For example, a compiler
for C would be recognising tokens such as reserved words, identifiers, numerical
constants, single character tokens such as ‘+’, multiple character tokens such as
‘<=’, strings, character constants, and so on. Some of the characters read from the
input can be thrown away by the lexical analyser. For example, white space (spaces,
tabs, newlines, etc.) may, in most but not all circumstances, be ignored. In general,
comments can also be ignored.

3.1.1 An Example

Consider this fragment of a C program:

while (i <= 100) {

tot += a[i]; /* form vector total */

i++;

}
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The lexical analyser would read this input combining adjacent characters to form
syntactically correct tokens, ignoring irrelevant input and passing a stream of tokens
to the next phase of compilation. In this case, the tokens generated would be

while (reservedword),(,i (identifier), <=,100 (integer constant),),{,tot (identifier),
+=, a (identifier), [, i (identifier), ], ;, i (identifier), ++, ;, }

This simple example raises some important issues.

• For many programming languages, the lexical analyser can easily distinguish
between identifiers (or other names) and reserved words. This is because in these
languages the language specification simply lists a set of reserved words (such as
while in C) that cannot be used as identifiers.Wewill look later at more awkward
languages where the rules are not so straightforward and context has to be taken
into account.

• White space and comments have not been passed on as tokens. It is tempting to say
that white space and comments are ignored but this is not strictly accurate. There
are circumstances where white space must be used in order to separate tokens.
For example, in the declaration int a; the space character must not be ignored.
In other circumstances, such as a+1, white space is not necessary to separate the
tokens and if white space appears, it can be ignored.

• There are three cases here of two-character tokens where there is potential for con-
fusion in their interpretation. These tokens are<=, += and ++. We are interpreting
each of these to be single tokens although, for example <= could be considered
incorrectly as< followed by =. Doing the work of combining these character pairs
in the lexical analyser rather than in the syntax analyser makes good sense, and
again, we will be returning to this issue later in this chapter.

• The lexical analyser makes no attempt to verify that this example contains a well-
formed while statement. The lexical analyser does not need to worry whether
the stream of tokens it is generating is syntactically correct because that is done
later in the compiler. Beginners often try to do too much in the lexical analyser
and attempt to include tests on the sequencing of tokens that should be left for
the syntax analyser. It is important to realise the limits of the tasks of the lexical
analyser.

Hopefully at this stage the coding of a lexical analyser should not feel too daunting
and there may be a temptation to tackle it straight away. However, there are some
potential pitfalls in the process and it is worth taking the time to examine these before
routes to implementations are described.

3.1.2 Choosing the List of Tokens

When designing a lexical analyser the first task is to use the specification of the input
language to help produce a list of all the lexical tokens that the lexical analyser should
be recognising, together with their (preferably formal) definitions. The language
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definition is unlikely to provide a neatly separated list of lexical tokens. The choice
of tokens is largely the responsibility of the language implementer.

As an example, here is an outline of a list of tokens for writing a lexical analyser
for C. Further detail is clearly required.

• Identifiers, starting with a letter followed by an arbitrary sequence of letters or
digits or underscores, such as a, Ab123, next_one.

• Integer constants, such as 12345. The C language definition allows a wider range
of integer constant types such as octal (0123) and hexadecimal (0x12ff) con-
stants, and optional suffices to specify that the constant is unsigned and/or long.

• Character constants also can take several forms. The simple form is a single char-
acter enclosed between single quote marks (’a’). Escape sequences can be used
(’\n’) and characters can be expressed as octal or hexadecimal values.

• Floating constants too can be expressed in several ways. The traditional repre-
sentation is an integer part followed by a full stop followed by a fractional part
(123.45), but an exponent can be added (1.234e10). The type of the constant
(float, double, long double, determining its internal representation) can
also be specified.

• String constants are sequences of characters enclosed by double quotes
("Hello"). There are alsominor complications herewith the inclusion of escaped
characters within the string, the use of an extended character set and the automatic
concatenation of adjacent strings.

• The operator tokens are numerous but somewhat simpler in structure. They take
the form of a single character (such as +, *, (, =, <, ?) or a pair of characters
(<<, +=, ++, <=) or in a few cases three characters (..., <<=).

• Keywords and reservedwords have special meanings in the syntax of the language.
Reserved words cannot be used as identifiers. Examples from C include while,
int, if, typedef. Reserved words like these are assumed to be keywords of
the language. But some languages allow keywords that are not reserved and it is
the context of their use which determines whether or not they are being used as a
keyword. This issue is discussed later in this chapter.

• Finally, although not tokens as far as the rest of the compiler is concerned, com-
ments have to be parsed by the lexical analyser so that they can be ignored. So,
for example, the lexical analyser recognises the pair of characters /* and con-
tinues skipping the input until encountering the character following the character
pair */. Similarly, white space (spaces, horizontal and vertical tabs, newlines and
formfeeds) can also be ignored, except that it can be used to separate tokens.

In some respects, this list of tokens is simple. The number of token types is com-
paratively small and none of them appear to have a particularly complex syntax.
But there is complexity here and dealing with this detail can cause serious imple-
mentation difficulties. This complexity largely arises from the fact that C is a real
programming language, requiring extensive functionality and expressivity for its use
in diverse application areas. Other popular programming languages are even more
complex, even at the lexical token level, and some of these complications will be
examined later in this chapter.
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This complexity can be tamed by an understanding of the detail, requiring access
to an accurate and preferably formal definition of the language. And this can help to
achieve a lexical analyser implementation that is well structured and more likely to
be correct.

In Chap.2 the use of a Chomsky type 3 or regular grammar for the specification of
lexical tokens was described. This results in a compact, clear and accurate statement
of the syntax of these tokens. But the key advantage as far as we are concerned here is
that there are clear methods to take these formal specifications and generate a lexical
analyser directly from them, as shown later in Sect. 3.4. This implies that there is
considerable benefit in ensuring that all the lexical tokens should be definable in
terms of regular expressions. For example, the syntax of all the lexical tokens for
C presented above can be expressed in terms of regular expressions. More complex
syntactic structures and in particular nested structures cannot be represented in terms
of regular expressions and are therefore not appropriate for handlingwithin the lexical
analyser. Instead, they are tackled by the more powerful analysis algorithms in the
syntax analyser.

3.1.3 Issues with Particular Tokens

Once we have this list of lexical tokens, precisely defined, we can prepare for an
implementation by looking at some of the things that can go wrong.

The concept of an identifier or name is widespread in programming languages.
Often identifiers are described as “starting with a letter, followed by a sequence
of letters or digits”. We need to know more. For example, we should ask detailed
questions about the programming language we are trying to compile:

• What is the set of characters that can appear in an identifier? Is this set restricted
for the first character of the identifier? For example, does the language allow
underscore characters (_) in an identifier and can that character appear at the start
of an identifier? Can characters from an extended character set such as Unicode
appear? Is white space allowed in an identifier?

• What about the case of letters? Are both upper and lower case letters allowed? Are
upper case letters translated automatically to lower case (or vice versa), making
identifiers such as ABC123 and Abc123 equivalent?

• Is there any limit on the length of identifiers? This will have an effect on the way
in which identifiers are stored within the compiler. For example, the rules may
state that “an identifier can be arbitrarily long but only the first six characters
are significant”, implying that, for example, abc123x and abc123y are both
allowed but are equivalent.

Context sensitivity issues arise in a lexical analyser when the nature of a lexical
token may depend not only on its composition in terms of characters but also on its
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context. For example, in C, identifiers declared by the typedef declaration may
need special treatment in the lexical analyser. Suppose t is defined as

typedef int t;

and later in the program the code fragment (t*) appears. This is valid in C, being
a type cast operation. One would expect the lexical analyser to return the tokens
open bracket, identifier, asterisk, close bracket and these tokens would be dealt with
appropriately by the syntax analyser. But the grammar of C could also interpret this
sequence of tokens as a malformed expression (a multiplication without the second
operand). To avoid this ambiguity, the lexical analyser may be expected to return
the token type identifier instead of identifier when t has already been defined in a
typedef declaration. And to do this, there must be some communication back from
the lexical analyser to the syntax analyser to allow the lexical analyser to determine
the nature of t. This is messy, and it is a consequence of the way in which the C
grammar is defined. We will revisit this problem in Chap.5.

Integer and floating point constants may appear fairly straightforward but there
are some important issues to address.

• Check the syntax, and ensure that all possible forms of numerical constants are
being dealt with appropriately. It depends on the details of the language being
analysed but handling a leading + or - as being part of the constant is rarely a
good idea. If the language allows hexadecimal constants, are there restrictions on
the case of the letters a to f?

• Are there restrictions on the length or numerical range of constants? Are both 1
and 123456789012 acceptable? Is there a rule which says that there is a limit on
the range of integer constants, but if an out of range constant is input, there should
be an automatic conversion to floating point format. And this leads on to …

• Reading and analysing numeric constants for most languages will require looka-
head. For example, the input of 12345678.1 will require 12345678. to be
read before the lexical analyser can determine whether this is an integer or a float-
ing point number. This issue is examined later in this chapter when implementation
techniques are described.

• If there is a limit on the range of integer constants then the lexical analyser should
really check for out of range constants. For example, Java specifies that the largest
integer literal is 2147483648 (that’s 231) when preceded by a unary minus and
2147483647 (231 − 1) otherwise. Code to check this in a lexical analyser is not
trivial.

• Floating point constants may have a more complex syntax with a range of alterna-
tive representations. Writing a recogniser by hand may be hard work so generating
recognising code automatically from a formal specification may be an easier and
safer route.

The operator tokens are often just single characters and pose little difficulty. But
with multi-character operator tokens, the lexical analyser recognising code has to
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combine the characters as appropriate. So, for example, the input . . . <=. . . should
be, if that is what the language definition says, a single “less-than-or-equal” token
rather than a “less-than” token followed by an “equals” token. But with the input
. . . < =. . . (with a space between the two characters), does the space force the
recognition of two separate tokens, or is the space ignored? The language definition
should tell you.

Keywords and reserved words should be fairly easy to deal with. Again, does the
case of the lettersmatter? In languageswhere all keywords are reservedwords (where
identifiers and reserved words cannot be confused), they can be dealt with by the
lexical analyser regarding them as special cases of identifiers—read a token that can
be an identifier or a reserved word and consult a table of reserved words to determine
whether or not the string is a reserved word. If instead a lexical analyser is being
written for a language where a keyword can be an identifier in certain contexts, then
the identity of the keyword must be passed on to the syntax analyser where context
information is available and a decision on the nature of the token can be made.

Comments appear in programming languages in a wide variety of forms. Some
languages support comment markers where the marker and all that follows to the
end of the line can be ignored. Comment brackets are also often found, where the
comment is enclosed between a pair of matched tokens. In theory these comment
brackets could support the notion of nested comments but this rarely offered, for good
reason: if the syntax of lexical tokens is being specified in terms of a Chomsky type 3
grammar, then nested/recursive lexical structures cannot be supported. For example,
comments in C cannot be nested and it may be helpful for the lexical analyser, on
encountering the character sequence /* within a comment, to issue a warning. This
does not immediately indicate a C syntax error, but may be a useful warning and
help the resolution of trouble ahead.

Can comments be inserted anywhere in the source program? Some languages
may impose restrictions by stating that a comment should be replaced by a single
space character in the lexical analysis process. For example, in C, is verylong/*
comment */identifier = 0; valid?

Some language implementations support special comments having a particular
syntax with the purpose of controlling compilation options. For example, the pro-
gramming language and/or implementation may support a form of comment that
tells the compiler to turn on or off the generation of special code to perform array
bound checking in that selected part of the source program. Representing these spe-
cial comments as lexical tokens and passing them on to later stages of compilation
is the appropriate action.

The role of white space is not the same in different programming languages. In
some languages, white space can largely be ignored and this is trivially done in
a lexical analyser. But there may be contexts, such as in character strings, where it
would be wrong to ignore white space. White space is often used as a token separator
or terminator.

In other languages,white space has a syntactic significance. For example in Python
the indentation (i.e. white space at the beginning of a line) denotes block structure,
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in a similar style to the { and } tokens of C. Indenting starts a block and unindenting
ends it:

n = 2

print ’n =’, n

if n>1:

print ’Greater’

print ’than 1’

else:

n = 1

print ’Finally n =’, n

The lexical analyser can deal with such indentation by noting whenever there is a
change in indentation level and generating appropriate “start block” and “end block”
tokens.

3.1.4 Internal Representation of Tokens

Now that the constraints placed on the lexical analyser by the syntax of the source
language have been outlined, it is time to look at the structure of the stream of tokens
it has to pass to the next phase of compilation—the syntax analyser. For each token
read by the lexical analyser the syntax analyser has to be able to determine the token’s
identity (it is a numerical constant, an identifier, a plus symbol and so on) and in the
case of some tokens, the “value” of the token (the value of the numerical constant, the
string of characters making up the identifier, etc.). A simple approach which fulfils
these requirements is to represent tokens by their type or identity togetherwith a string
containing the characters of the token. The technique used to represent the identity
of the token depends on the features offered by the implementation language. This
could be some sort of enumerated type or symbolic constant, typically resulting in
an integer value being used to specify the identity of the lexical token. Including this
identity information in the data structure representing the token is important because
it saves the syntax analyser from having to re-analyse the string representations of
the tokens.

The handling of constants, particularly numerical constants, needs special care.
On recognising a numerical constant, the lexical analyser has to return an indication
of the type of the constant (integer constant, floating point constant, etc.) together
with the value of the constant. The obviousway of returning the value is for the lexical
analyser to convert the string of characters representing the constant into a standard
binary form (for example, a 32-bit or maybe 64-bit 2’s complement integer or a 32
or 64-bit IEEE 754 floating point representation), passing it on to the next phase of
compilation. However, in some circumstances, this approach may be inappropriate.
Consider a compiler for a language whose definition states that the integer constant
range is determined by the architecture of the target system, and the target systemuses
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64-bit integers. If the compiler is running on a 32-bit machine, the lexical analyser
would have to make special provision to pass 64-bit integers to subsequent phases
of compilation. In particular the lexical analyser’s code would be affected by the
architecture of the target machine. But in Chap. 2 we saw the huge benefits of having
a targetmachine-independent front-end. An easy resolution is to delay the conversion
of the text representation of the constant into some binary internal form until much
later in the compilation process, where target machine dependencies are already
being dealt with. So numerical constants can be returned from the lexical analyser
represented as a pair—the type of the constant and its text (string) representation.

Conversion from a text representation to a binary representation is fairly easy for
integers, but accurate conversion of floating point values is much harder [1, 2].

The compiler uses the symbol table to store information about identifiers. So it is
important to consider whether the lexical analyser should have the responsibility for
placing identifiers into the symbol table. To some extent this is an issue influenced by
the design of the source language. But in practice the manipulation of symbol table
data is only feasible when full context information is available, for example distin-
guishing between the appearance of an identifier in a declaration and its appearance
in an expression. This is most easily done later in the compiler, typically in the syntax
analyser.

Source line numbers can be included in the data returned by the lexical analyser.
This is easy to do and can make the later production of accurate and helpful error
messages much easier.

3.2 Direct Implementation

The previous section outlined the nature of lexical tokens in the source language and
made suggestions about the representation of tokens emitted by the lexical analyser.
To construct a correct and reliable lexical analyser, we need some structure on which
to hang the details of the analysis of individual token types. We also need a clear and
unambiguous definition of the structure and meaning of each lexical token.

This is a practically oriented book about compiler construction with the aim of
presenting techniques that will work. There are then two broad approaches to lexical
analyser construction. The first is essentially just to tackle the problem directly by
coding in an appropriate implementation language. Code is written that reads the
input, matches strings according to the syntax of the lexical tokens and passes those
tokens on. The lexical analysers in many compilers are written in this way. The
second approach takes a more formal view of lexical tokens by working directly
with the syntactic definition of the tokens, expressed as regular expressions. Later in
this chapter, we will see how regular expressions can be converted into recognising
code, thus forming the main part of the lexical analyser. This transformation from
regular expressions to code is best performed by software and there are now many
lexical analyser generator packages available, enabling a complete lexical analyser
to be generated from a formal specification of the tokens. The use of these tools
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is described in Sect. 3.4. Hybrid approaches are of course possible too, where part
of the lexical analyser can be written by hand and the rest generated from formal
specifications (such as the code to recognise more complex lexical tokens).

We look first at a direct implementation of lexical analysers by programming them
from scratch and we start with a plan for an overall structure.

3.2.1 Planning a Lexical Analyser

It is convenient to regard the lexical analyser as a function (or procedure or method),
callable by the syntax analyser. This enables the syntax analyser to call for the next
token from the input. A natural approach to the source code analysis is to read
the entire source file into a buffer directly accessible by the lexical analyser and
then make maybe multiple passes over any part of the buffer to determine where
each token starts and ends, in effect tokenising the entire input. This demands the
allocation of a buffer sufficiently large to hold the entire source program together
with another buffer to hold the identities of all the tokens. Having the entire source
program directly available makes tokenising and error reporting somewhat easier.
The more common alternative is for the lexical analyser to read characters from the
input as they are required. In the discussion that follows we will assume that we
are following this conventional approach. Each time the lexical analyser is called
it will examine characters from the input. Once the identity of the token has been
recognised, the lexical analyser can read to the end of the token, storing it for return
to its caller. It returns the identity of the token and where appropriate the text of the
token itself, and is then in a state ready to accept the next call.

Turning now to a practical example, we can start the design of a lexical analyser
for the DL language described in the appendix. Our C implementation of this lexical
analyser has the following characteristics:

• The set of possible lexical tokens returned by the lexical analyser is defined as an
enum type, and so an individual token is represented as an int value, returned
by the lex function.

• To make the code a little simpler, the lexical analysis function, lex, returns a
single integer value rather than a structure containing in addition the source line
number and the string representation of the token. The only tokens that require
additional information to be passed on to the next phase of compilation are those
representing identifiers and numeric constants. We can achieve all we need here
by maintaining a couple of global variables, one storing the string representation
of the last identifier read (identifier) and the other storing the last numerical
value read (ival).

• To make the coding of the lexical analyser manageable, we will make use of a one
character lookahead. Here, we adopt the rule that each time the lexical analyser
is entered via the lex function, the next character of the input to be analysed has
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already been read and is stored in a global variable. This removes the need for
backtracking in the lexical analyser and makes its coding very much simpler.

So the key declarations in our lexical analyser look something like this:

#define MAXIDLEN 30

typedef enum {
elsesym, ifsym, intsym, printsym, readsym, returnsym, whilesym,
semicolonsym, commasym, opencurlysym, closecurlysym,
opensquaresym, closesquaresym, openbracketsym, closebracketsym,
dividesym, multiplysym, plussym, minussym, assignsym,
eqsym, nesym, ltsym, lesym, gtsym, gesym, eofsym,
constantsym, identifiersym, errorsym} lextokens;

lextokens lex();

char identifier[MAXIDLEN+1];
char ch;

The definition of the constant MAXIDLEN provides an upper limit on the length of
an identifier and makes it possible to use fixed length arrays for identifier storage (we
are assuming that DL allows us to place some implementation restriction on identifier
length). The enum declaration lists the complete set of lexical tokens. The order is
not significant, neither is the actual assignment of names to integer values which is
done automatically. The code for the function doing the lexical analysis (lex())
appears later. This is just the prototype declaration indicating that the function takes
no arguments and returns an lextokens result, selected from the values declared
in the enum type declaration. Finally we have the global declarations for the last
identifier read and for the single character lookahead.

3.2.2 Recognising Individual Tokens

The next step in the coding of a lexical analyser by hand is to tackle the recognition
of the individual token types. On entry to the lexical analysis function, the global
variable ch contains the next character to be analysed and it will typically be the
first character of the next token to be returned.

3.2.2.1 White Space

In DL, white space (spaces, tabs, newlines) can be inserted freely between lexical
tokens. So the first action of the lex function has to be to skip over these white space
characters so that ch contains a “significant” character:

while (white(ch)) ch=getchar();



48 3 Lexical Analysis

For the majority of programming languages it is not feasible nor sensible to rely on
the existence of white space to separate all tokens.

3.2.2.2 Single Character Tokens

At this stage, the value of ch will determine, but not quite uniquely, the nature of
the token being recognised. So the main body of the lex function consists of an
if .. then .. else if .. then .. else if ...
structure or a
switch .. case .. case ...
construct. In this implementation, we will use the switch statement.

Many of the lexical tokens of DL are single characters, so the next step is easy:

switch (ch) {

case ’;’: lextoken = semicolonsym; ch = getchar(); break;

case ’,’: lextoken = commasym; ch = getchar(); break;

case ’+’: lextoken = plussym; ch = getchar(); break;

case ’-’: lextoken = minussym; ch = getchar(); break;

case ’/’: lextoken = dividesym; ch = getchar(); break;

case ’*’: lextoken = multiplysym; ch = getchar(); break;

case ’(’: lextoken = openbracketsym; ch = getchar(); break;

case ’)’: lextoken = closebracketsym; ch = getchar(); break;

case ’{’: lextoken = opencurlysym; ch = getchar(); break;

case ’}’: lextoken = closecurlysym; ch = getchar(); break;

case ’[’: lextoken = opensquaresym; ch = getchar(); break;

case ’]’: lextoken = closesquaresym; ch = getchar(); break;

case EOF: lextoken = eofsym; break;

Note the use of ch = getchar(); to maintain the one character lookahead
before exiting from thelex function. But there is no need for lookahead after finding
end of file because there are no further characters left and the lexical analyser can
assume that the rest of the compiler will not attempt to call lex again after the input
has all been read. If lex is called again, it will just return end of file again. Also,
note that the code to deal with the token ’/’ will need to be redesigned because the
character / can start a comment. This is dealt with in Sect. 3.2.2.6.

3.2.2.3 Other Short Tokens

Looking at the syntax specification for DL, it is easy to see that there are a few more
single character tokens, but since they can also start a double character token, the
recognising code has to be slightly more sophisticated. Specifically, we have to deal
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with the tokens <, =, >, <=, ==, >= and !=. The one character lookahead helps
here.

cases’<’:
ch = getchar();
if (ch==’=’) {

lextoken = lesym;
ch = getchar();

}
else lextoken = ltsym;
break;

cases’>’:
ch = getchar();
if (ch==’=’) {

lextoken = gesym;
ch = getchar();

}
else lextoken = gtsym;
break;

cases’=’:
ch = getchar();
if (ch==’=’) {

lextoken = eqsym;
ch = getchar();

}
else lextoken = assignsym;
break;

cases’!’:
ch = getchar();
if (ch !=’=’) {

fprintf(stderr,"***Error - expected = after ! (%c)\n",ch);
lextoken = errorsym;

}
else {

ch = getchar();
lextoken = nesym;

}
break;

Looking first at the code to recognise < and <=, it can be seen that once a <

character is found, the next character is read and if it is not = there is no need to
call getchar() again because the lookahead has already been done. The code for
recognising != is very similar, except that we know that a = character must directly
follow the ! character. The code here complains if the = is not found and an error
token is returned for the pair ! and the character following it (not =). Note that white
space between the two characters is not allowed.
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3.2.2.4 Identifiers and Reserved Words

The order in which tokens are recognised is not particularly important. We can tackle
identifiers and reserved words next.

case ’a’: case ’b’: case ’c’: case ’d’: case ’e’: case ’f’:
case ’g’: case ’h’: case ’i’: case ’j’: case ’k’: case ’l’:
case ’m’: case ’n’: case ’o’: case ’p’: case ’q’: case ’r’:
case ’s’: case ’t’: case ’u’: case ’v’: case ’w’: case ’x’:
case ’y’: case ’z’:

{
int i = 0;
while (islower(ch) || isdigit(ch)) {

if (i < MAXIDLEN) identifier[i++] = ch;
ch = getchar();

}
identifier[i] = ’\0’;

if (strcmp(identifier,"else")==0) lextoken = elsesym;
else if (strcmp(identifier,"if")==0) lextoken = ifsym;
else if (strcmp(identifier,"int")==0) lextoken = intsym;
else if (strcmp(identifier,"print")==0) lextoken = printsym;
else if (strcmp(identifier,"read")==0) lextoken = readsym;
else if (strcmp(identifier,"return")==0) lextoken = returnsym;
else if (strcmp(identifier,"while")==0) lextoken = whilesym;
else lextoken = identifiersym;
break;

}

Identifiers and reserved words in this language have to start with a lower case
letter but can continue with lower case letters or digits. The string of characters of
the identifier or reserved word is accumulated in the array identifier and there
is a simple check for string equality with the various reserved words of DL. When
there are many reserved words to check it would make sense to use a more efficient
algorithm to determine whether a string is a reserved word, but this approach is fine
for now. Note that upper case letters do not feature at all in DL. The identity of the
lexical token just recognised is stored in the variable lextoken and this value will
be passed back to the caller as the result of the call to the lex function.

In this code, identifiers longer than MAXIDLEN characters are silently truncated.
This may not be a sensible or correct thing to do in all circumstances.

3.2.2.5 Integer Constants

In a first attempt, integer constants are handled in a standard way by converting a
stream of decimal digit characters into a binary internal int representation:

case ’0’: case ’1’: case ’2’: case ’3’: case ’4’: case ’5’:

case ’6’: case ’7’: case ’8’: case ’9’:
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{

ival = 0;

while (isdigit(ch)) {

ival = ival*10 + ch - ’0’;

ch = getchar();

}

lextoken = constantsym;

break;

}

It would also be possible to use the C library function atoi by passing it a string
of the decimal digit characters accumulated in an array, just as was done in the case
of reading an identifier. Recall that ival is a global variable containing the value of
the last integer constant read.

However, there is an important problem here. What happens if the number read
by this code is larger than can be represented in an int variable in C, our compiler’s
implementation language? And how does this interact with any limits placed on
the maximum value of an integer in DL? This issue was introduced in Sect. 3.1.3
and the resolution requires knowing the language’s specification. Some languages
specify that numerical limits are implementation-defined, probably influenced by the
architecture of the target hardware. In this case, since there are advantages in making
the compiler’s front-end target machine independent, it would be sensible to delay
the conversion of the string representing the number into some internal binary form
until later in the compilation. So the lexical analyser can return a character string
representation of the number. But let us assume in this case that the upper limit of
an int value in DL is the same as the upper limit imposed by the use of C as an
implementation language. We can then use code of the form:

case ’0’: case ’1’: case ’2’: case ’3’: case ’4’: case ’5’:

case ’6’: case ’7’: case ’8’: case ’9’:

{

int overflow = 0;

ival = 0;

while (isdigit(ch)) {

if (ival > INT_MAX/10) overflow = 1;

else if (ival*10 > (INT_MAX - ch + ’0’)) overflow = 1;

else ival = ival*10 + ch - ’0’;

ch = getchar();

}

if (overflow) {

lextoken = constantsym;

ival = INT_MAX;

fprintf(stderr,"integer constant overflow\n");

}
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else lextoken = constantsym;

break;

}

The constant INT_MAX contains themaximumvalue that can be stored in aC inte-
ger and the C standard header filelimits.h defines this value. Note that an attempt
to check for overflow by including code of the form if (ival > INT_MAX) ...
is not correct and may give unexpected results. In this code a constant token is
returned even if overflow is detected. This may not be the right thing to do even
though an error message is generated.

In some languages and implementations based on 2’s complement arithmetic, the
absolute value of the largest negative number is likely to be larger than the largest
positive number. This may need care both with the interpretation of the language
definition as well as with the implementation.

Handling overflow like this in the lexical analyser is not always the right thing to
do. Some languages make explicit statements in their definitions about size limits on
constants and under those circumstances performing the checks in the lexical analyser
is sensible. But particularly with languages where limits are implementation-defined,
it makes more sense to delay the checking and conversion of constants into some
machine-dependent form until much later in compilation.

3.2.2.6 Comments

TheDL language supports comments bracketed by/* and*/. The general strategy to
skip comments in the lexical analyser is straightforward (ignore everything between
the comment brackets), but coding this may need some care, particularly to maintain
the one-character lookahead. To deal with comments in DL, the code to handle the
/ token can be modified:

case ’/’:

ch = getchar();

if (ch==’*’) { /* start of comment */

incomment = 1;

ch = getchar();

while (incomment) {

if (ch==EOF) {

fprintf(stderr,"warning - end of file in comment\n");

incomment = 0;

}

else if (ch==’*’) {

ch = getchar();

if (ch==’/’) {

ch = getchar();

incomment = 0;
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}

}

else ch = getchar();

}

lextoken = lex(); /* recursive call */

}

else lextoken = dividesym;

break;

Once the / character has been found, a comment starts if the following character
is *. The variable incomment is set to TRUE. The comment is ended if the end
of the input is detected (and a warning is output) or if the closing comment bracket
is found. When the while (incomment) loop exits after finding the closing
comment bracket, ch contains the character immediately following the comment,
ready for a recursive call to lex. This call will return the lexical token following the
comment.

This code does not and should not handle nested comments, so that the lexical
analyser will deal with input of the form:

/* comment /* comment */ */

by treating the input as a comment terminated by the first */ and then returning a
multiplysym and then a dividesym.

3.2.2.7 Errors

In the code examples above, there are three occasions where the lexical analyser is
directly outputting an error/warning message. This is unlikely to be an acceptable
strategy when the lexical analyser is integrated within the complete compiler.

The lexical analyser can detect a number of errors such as reading an unexpected
character, not in the alphabet of the language. Clearly such errors have to be com-
municated to the user of the compiler. But also, the compiler has to recover from the
error so that the analysis of the input can continue. The actions taken by this recovery
may depend on the syntactic context of the error. The syntax analysis phase of the
compiler has to deal with error reporting and error recovery and so it is sensible to
allow the syntax analyser to deal with errors detected by the lexical analyser too. A
conventional way of doing this is to pass back a special lexical token when an error
is detected, and the syntax analyser can then handle the error. For example, if our
lexical analyser encounters a character not in DL’s alphabet:

default:

fprintf(stderr,"***Unexpected character %c\n",ch);

lextoken = errorsym;

break;
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Once the syntax analyser has been integrated with the lexical analyser and is deal-
ing with errors satisfactorily all the fprintf(stderr...) calls can be removed.
But they should stay while the lexical analyser is being developed and debugged.

3.2.3 More General Issues

The last section has illustrated how a simple enclosing structure containing individual
pieces of code to deal with each of the lexical tokens can be developed. But to produce
a lexical analyser for a real language requires further design decisions and careful
attention to coding details.

In the example code above, a one character lookahead simplifies the programming.
For example, analysing the input 123+ starts with the character 1 having already
been read. This leading character indicates that an integer constant has just started.
The 2, 3 and + characters are read and the existence of the non-numeric + indicates
that the numeric string has ended. The number 123 can then be returned, but the
character + has already been read, ready for the next call to the lexical analyser. Even
for this simple language DL, more lookahead is sometimes required. For example,
to distinguish the token types of print and print1 (reserved word and identifier)
requires several characters to be read and analysed. Storing the whole of an identifier
or reserved word in an array of characters simplifies this process. Similarly, if the
lexical analyser detects an overly large constant, at least part of the constant has to
have been read before being able to make that decision.

Even for more complex languages it should be possible to use the first character
of the token (the character used as the switch expression) as a fair indicator of the
identity of the complete token. This suggests that structuring the lexical analyser as
a large switch statement is probably a good idea. And as already advised, starting
off with a comprehensive list of token types makes the implementation easier.

In this section various constructs from popular programming languages are exam-
ined to see how they may influence the lexical analysis process.

3.2.3.1 Identifiers and Reserved Words

The syntax of identifiers and reservedwords/keywords is easy to specify and the rules
have to be followed in the lexical analyser. Issues which sometimes cause mistakes
include:

• Are upper case and lower case letters equivalent? Do the identifiers ABC and abc
refer to the same thing?

• If the language has keywords or reserved words, is the case of letters significant?
Are while, WHILE, While and whilE all the same keyword or reserved word?

• Is there a limit on the length of an identifier, and are all characters significant?
• Is white space allowed within an identifier?
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In some cases, the language specification may use the term “implementation-
defined”. The C language treats at least the first 31 characters of an internal identifier
to be significant [3]. Java and Python allow identifiers of unlimited length. Fortran 90
allows identifiers up to 31 characters long, they are case-insensitive and Fortran key-
words can be used as identifiers, although not recommended for readable programs.
Allowing arbitrarily long identifiers requires some sort of dynamic data structure for
the storage of the characters of the identifiers.

The lexical analyser clearly needs access to a data structure containing the lan-
guage’s keywords so that keywords can be identified and returned as keywords,
identifiers or reserved words as appropriate. Rapid lookup is desirable to help main-
tain compilation efficiency and some compilers use part of the symbol table for this
purpose. Hash tables are often used.

3.2.3.2 Numerical Constants

The issue of size limits on integer constants has already been covered. The complexity
of the analysis code is further increasedbyhaving to dealwith awide rangeof numeric
constant types supported by most programming languages. For example, ANSI C
allows integer constants expressed in various forms: decimal, octal (if the number
begins with a zero), hexadecimal (if preceded by 0x or 0X), unsigned (followed by
u or U) or long (followed by l or L). Floating point constants have a more complex
syntax and require a systematic approach to the coding of their lexical analysis
otherwise messy and unreliable code results. It is sensible to disconnect the reading
and analysis of a numerical constant from its conversion to an internal binary form.
The lexical analyser can pass on a string representation and the conversion is done
later in compilation. Care has to be taken with this conversion process, particularly
for floating point values, to maintain accuracy [2].

3.2.3.3 Testing

Writing a compiler can be a huge task, requiring a good grasp of the principles
of software engineering. Testing should of course be a key aspect of the project.
Beginners to compiler writing often fall into the trap of inadequate testing. They
will start a compiler construction project, perfectly reasonably, by coding a lexical
analyser, but only testing it on a handful of small test programs. Then the syntax
analyser is coded andmuch time is wasted in attempting to debug the syntax analyser
while, in fact, the problems are caused by problems with the lexical analyser.

The lexical analyser should not be overly difficult to test, but the testing has to
be systematic and thorough. Write a trivial main program that repeatedly calls the
lexical analysis function until end of input is detected. The main program can output
the identity of the token returned at each call. Making use of a large library of test
programs as input to the lexical analyser is a good first step. The lexical analyser
must also be tested with erroneous input such as test programs with carefully crafted



56 3 Lexical Analysis

syntactic errors, random data, files containing non-text data, and so on. Limiting
cases are essential too. For example, identifiers just shorter than the length limit, at
the limit and just over the limit can help reveal “out-by-one” errors.

Such testing with random data can also highlight problems with error handling.
The lexical analyser should be capable of dealing with any input and report error
tokens when necessary. The next phases of compilation can produce helpful error
messages for the user and recover appropriately.

3.2.3.4 Difficult Languages

Most programming languages include some “features” that pose particular problems
for the lexical analyser. For example, there are some languages where distinguishing
between keywords and identifiers can only be done by examining the context in
which they are used. A nightmare example is the PL/I language where the language’s
keywords are not reserved words, allowing statements of the form
IF THEN THEN THEN = ELSE; ELSE ELSE = THEN.

Similar difficulties arise in FORTRAN where white space is in general insignifi-
cant. A famous example of the difficulties this causes is
DO 5 I = 1,10
compared with
DO 5 I = 1.10
The former starts a DO loop iterating to statement number 5 and the latter sets the
value of the variable DO5I to the value 1.10.

Dealing with these awkward cases is not easy. Some form of lookahead is essen-
tial here, and practical solutions may have to resort to multi-pass lexical analysis.
Fortunately languages requiring such treatment are becoming less common.

3.2.3.5 Evaluation

Implementing a lexical analyser in the direct way outlined in this section has much
to recommend it. The overall structure of the lexical analyser is intuitive, with clear
separation between the sections of code dealing with each individual token. The
code for most tokens seems straightforward. However, some aspects of the design of
most programming languages can cause implementation difficulties and may require
annoying-to-program lookahead. Furthermore, some lexical tokens may have a com-
plicated syntax (the floating point number is the often-quoted example) and ensuring
that the hand-written code dealing with these tokens is reliable may turn out to be a
taxing task.

To make dealing with these complex tokens easier, a more structured approach
to lexical analysis is needed. This approach is described in the next section. We
need a way of generating a formal specification of the syntax of the tokens and then
transform that specification into recognising code. The more that this process can be
automated the better.
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3.3 Regular Expressions

In Chap.2 we saw how Chomsky type 3 (finite-state or regular) grammars have a
special significance for lexical analysis.We aim to specify the syntax of lexical tokens
in terms of a finite-state grammar and then somehow transform that specification into
the actual code for the lexical analyser.

3.3.1 Specifying and Using Regular Expressions

Regular expressions arise fromChomsky type 3 grammars. A Chomsky type 3 gram-
mar has productions of the form:

A → a or A → aB

Directly expressing the syntax of lexical tokens using this formulation is not really a
practicable task. Instead, we use a different notation that is formally equivalent to a
type 3 grammar expressed using productions of the form shown above. This notation
makes use of regular expressions.

A regular expression ismade up of symbols of the language being defined together
with operators that support:

• concatenation (traditionally specified by symbol adjacency in the regular expres-
sion),

• alternation (symbols or groups of symbols are separated by the | operator) and
• repetition (symbols or groups of symbols are followed by the ∗ operator to signify
zero or more repetitions).

Parentheses can also be used to group symbols. Conventionally, the repetition oper-
ator has highest precedence, followed by concatenation, with alternation having the
lowest precedence.

For example:

• abc denotes the set of strings with the single member {abc}.
• a|b|c denotes the set {a, b, c}.
• a∗ denotes {ε, a, aa, aaa, . . .}. ε is the empty string.
• ab∗ denotes the infinite set {a, ab, abb, abbb, . . .}.
• (a|b)∗ denotes the set of strings made up of zero or more a’s or b’s.
• a(bc|d)∗e denotes the set of strings including {ae, abce, abcde, ade, . . .}.

Regular grammars and regular expressions are equivalent in the sense that a lan-
guage expressed in one can be transformed to the same language expressed in the
other. Note also that a specification in terms of a regular expression is not necessarily
unique. For example a(b|c) and ab|ac are equivalent regular expressions.

http://dx.doi.org/10.1007/978-3-319-52789-5_2
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The regular expression notation is simple yet powerful. It is compact and unam-
biguous. And it is well-suited to the specification of the syntax of lexical tokens. For
example, we can define an integer constant as follows:

digit → 0|1|2|3|4|5|6|7|8|9
intconstant → digit digit∗

Similarly, we can define an identifier as an initial letter followed by a sequence,
possibly empty, of letters or digits:

digit → 0|1|2|3|4|5|6|7|8|9
letter → a|b|c| . . . |z|A|B|C| . . . |Z
identifier → letter (letter | digit)∗

3.3.2 Recognising Instances of Regular Expressions

Transforming a set of regular expressions into code that recognises instances of those
regular expressions is our aim. We start with a set of regular expressions defining
the syntax of all the lexical tokens of our language and then transform the regular
expressions into recognising code, yielding the basis of a complete lexical analyser.

Suppose we wish to recognise instances of the regular expression (ab|c)∗d. This
regular expression can be expressed in the form of a syntax diagram, as shown in
Fig. 3.1.

Generating this form of directed graph from a regular expression is uncomplicated
(it is just a different way of presenting the regular expression) and by following the
arrows, the graph can be used to generate instances of the regular expression. But we
really have the reverse problem: that of using this graph to parse strings to determine
whether they are capable of being generated from the regular expression. It turns out
that this is possible and an algorithm described in [4] can be used. Unfortunately
this algorithm proves to be too inefficient for practical lexical analyser construction,
particularly for complex regular expressions. A different approach is needed.

Fig. 3.1 Directed graph
representation of (ab|c)∗d

a

c

b

d
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3.3.3 Finite-State Machines

The directed graph presented in the previous section is ideal for generating instances
of the regular expression but not so good for recognising instances. An alternative
structure is needed. This is the transition diagramwhich is another directed graph but
with labelled branches. The transition diagram for the regular expression (ab|c)∗d
is shown in Fig. 3.2. Each node in the transition diagram is called a state. One or
more states are enclosed in double circles to signify they are accepting states.

In this form of transition diagram there is a unique starting state (state 1 in
Fig. 3.2). In this simple example there is just one accepting state (state 3). Each edge
or transition in the diagram is labelled with a character. These characters are matched
with characters read from the input during the recognition process.

To illustrate the actions of this finite-state machinewhile operating as a parser for
strings from the regular expression, we consider the input abccd.

• Start in state 1. Read a. Find the edge labelled a from state 1 and follow that
transition. Move to state 2.

• Read b. Move to state 1.
• Read c. Stay in state 1.
• Read c. Stay in state 1.
• Read d. Move to state 3.
• Because we end in an accepting state, the parse has succeeded, showing that abccd
is an instance of the regular expression represented by this finite-state machine.

This approach provides an efficient parser for instances of regular expressions.
The time complexity is clearly O(n) where n is the number of characters in the
input—the cost of parsing tends to grow linearly with the length of the input.

If erroneous input is input to this machine, the actions are different. For example,
consider the input ad.

• Start in state 1. Read a. Move to state 2.
• Read d. There is no edge labelled d from state 2, so an error is reported. Usefully,
the error message can provide the information that a b was expected at this point.

Fig. 3.2 Transition diagram
for the regular expression
(ab|c) ∗ d

1start 3

2

c

d

ab
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The transition diagramcanbe represented in otherways. In particular, representing
it as a transition table may be helpful. Figure3.2 can be represented as:

input character
state a b c d

1 2 — 1 3

2 — 1 — —

3 finished

This is looking encouraging. Representing regular expressions as finite-state
machines allows efficient parsing, and the code of the parser is simple, controlled by
a directed graph or a transition table. Assuming that it is manageable to transform
regular expressions into finite-state machines, this approach looks as though it might
be a good, practical route for the implementation of lexical analysers.

To give an overview of the process of going from regular expressions to finite-
state machines, we need to examine the characteristics of a finite-state machine a
little more carefully. The finite-state machines described so far in this section are
called deterministic finite-state machines because they have the characteristic that
for any state, there is at most one possible next state for each input symbol. In
other words, the entries in the transition table are either empty or contain a single
next state. No two edges from a node representing a state can be labelled with the
same input symbol. Thesemachines are contrastedwith non-deterministic finite-state
machineswhere an input symbol can trigger themachine intomore than one next state
simultaneously. Theremay be states having two ormore edges labelledwith the same
input symbol.Anon-deterministic finite-statemachine can also havemultiple starting
states. The inherent parallelism of these machines clearly causes implementation
difficulties. However they are important because there is a straightforward algorithm
for transforming a regular expression into a non-deterministic finite-state machine.

There are several steps in this implementation process.

• Start with the regular expression. This can be transformed into a non-deterministic
finite-state machine.

• Because the implementation of a non-deterministic machine is complicated and
potentially inefficient, the non-deterministic finite-state machine is transformed
into an equivalent deterministic finite-state machine.

• The deterministic finite-state machine thus generated may well have many more
states than strictly necessary, and a process of state minimisation is performed to
ensure that the machine is the simplest possible for the parsing of instances of the
original regular expression.

These algorithms will not be detailed here. They are standard, well-understood
algorithms described on the web and in many textbooks. For example, see [5].
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This results in a powerful process for the construction of a lexical analyser. The
syntax of the individual tokens is expressed in terms of a set of regular expres-
sions, these regular expressions are transformed into state-minimised deterministic
finite-state machines which can then be implemented by transforming the finite-state
machine into code. This results in an efficient lexical analyser. The resulting lexical
analyser has implementation issues that have to be considered, particularly concern-
ing the representation of a potentially large but sparse transition matrix, but these
issues can be overcome without too much difficulty.

Unfortunately, this process is really not appropriate for carrying out by hand. The
individual steps may appear simple but as soon as there is any complexity in the
regular expressions, the detail becomes overwhelming and it is very hard and time-
consuming to produce a lexical analyser with any hope for correctness. On the other
hand, carrying out this process by machine is a much more attractive proposition and
there are nowmany software tools that are capable of generating lexical analysers, in
a wide variety of implementation languages, starting from a set of regular expression
specifications. And this gives us a second, practical approach to the construction of
lexical analysers with the key advantage of being able to handle arbitrarily complex
regular expressions, generating recognisers that are likely to be correct as well as
efficient, using little human effort.

3.4 Tool-Based Implementation

Techniques for the automated production of lexical analysers are not new. The Unix-
based program lex was described in [6] and became very popular soon after its
introduction, being used for a wide range of applications, not all by any means in
the field of compiler construction. Lex takes as input a set of regular expressions
defining the tokens, each being associated with some C code indicating the action to
be performed when each token is recognised. The output of the lex program is itself
a C program that recognises instances of the regular expressions and acts according
to the corresponding action specifications.

Many descendants of lex were then developed, generating code in a wide variety
of languages. Tools such as flex [7] (again, generating C) and JLex (generating Java)
have become very popular. Most of these tools share a largely common format for the
specification of the regular expressions. Other compiler-construction tools combine
lexical analyser generationwith syntax analyser generation andmaybeother compiler
phases too.

These software tools have been refined over the years so that they are now capable
of generating very efficient lexical analysers, in terms of both execution time and
runtime storage requirements,withminimumeffort from the programmer. They often
contain functionality which addresses many of the irritating practical difficulties of
lexical analysis.
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3.4.1 Towards a Lexical Analyser for C

As an example of the use of software tools for the generation of lexical analysers, this
section examines the use of the flex tool, ending with its use in constructing various
parts of a lexical analyser for the C language.

Although lexical analyser generating tools are large and complex pieces of soft-
ware, their use is not difficult. For example, flex takes as input a specification file
that contains amongst other things a set of regular expressions, each associated with
a corresponding piece of C code. These are the ruleswhich specify the actions of the
lexical analyser. Flex will generate C code defining a function yylex(). This is the
lexical analyser itself and it is subsequently linked with the remainder of the code
for the compiler. Each time the function yylex() is called, it finds the next token
from the input, the tokens being defined by the regular expressions originally used
as the specification file for flex. The C code associated with the matching regular
expression is executed, and it is this code that has the responsibility in a conventional
lexical analyser for returning the identity of the token just recognised. The automated
generation of the recognising code makes the construction of a lexical analyser much
easier.

The high-level structure of the input is simple. It consists of three sections, sepa-
rated by lines containing just the characters %%.

definitions

%%

rules

%%

user code

The definitions section consists of a set of name/definition pairs, used pri-
marily to associate mnemonic names with regular expressions used in the rules
section. The rules section is a list of regular expression/corresponding C action
pairs. Finally, the user code section is copied directly to the output generated
by flex and contains C functions which call or are called by the code in the rules
section.

The details of flex syntax are easily available. There are many internet resources
and textbooks, such as [7]. The power of flex is illustrated here by some examples of
its use.

3.4.1.1 A Simple Example

Before tackling the lexical analysis of C and to illustrate the structure of the input to
flex, an example of a very simple lexical analyser may be helpful. The language for
which this lexical analyser is being written includes just three distinct lexical tokens:
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1. A “word”, consisting of a letter (all letters can be upper or lower case), followed
by an arbitrary number (can be zero) of letters or digits.

2. A “number”, consisting of one or more decimal digits.
3. Any other character. White space (consisting of any number of spaces, tabs and

newlines) is ignored. But note that white space can be used to separate adjacent
words or numbers.

This lexical analyser could form the starting point for the front-end of a compiler
for a very simple programming language or for a command language interface to a
software package.

Flex generates a function yylex which is called to get the next token from the
input. We would like yylex to return an integer value to indicate the identity of the
token, 1 for a “word”, 2 for a “number” and 3 for any other character. There are no
illegal tokens in this language.

Here is a file for input to flex, complete with a main program to repeatedly call
the lexical analyser generated by flex.

letter [a-zA-Z]

digit [0-9]

letter_or_digit [a-zA-Z0-9]

white_space [ \t\n]

other .

%%

{white_space}+ ;

{letter}{letter_or_digit}* return 1;

{digit}+ return 2;

{other} return 3;

%%

int main() {

int lextoken;

while (lextoken = yylex())

printf("%d - %s\n",lextoken, yytext);

}

int yywrap()

{

return 1;

}

This file is input to flex, thus generating a C program, in default, a file called
lex.yy.c. This C program is compiled and the resulting executable program
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extracts the tokens from its input, outputting the identities of the tokens. If this lexical
analyser were to be included in a complete compiler, the main program would obvi-
ously have to change and the syntax analyser would probably have the responsibility
of calling yylex. But this structure for a main program offers a simple way to help
verify that the lexical analyser is operating correctly.

The first section of the flex code (the definitions) gives symbolic names to regular
expressions used later in the rules section. The letter expression matches a single
(upper or lower case) letter. The digit expression matches a single decimal digit.
letter_or_digit matches a single letter or decimal digit and white_space
matches a single space, tab or newline. Finally, othermatches any single character
except newline. These definitions are not strictly necessary, but they allow the use of
symbolic names in the rules section to improve readability.

The rules section consists of just four rules. Each rule consists of a regular expres-
sion/pattern followed by the action in C code to be taken on matching that regular
expression. The first rule matches white space of any length on the input and the
null C statement as the action causes the white space to be ignored. The pattern in
the second rule matches a “word” as defined at the beginning of this section (a letter
followed by an arbitrary number of letters or digits). The action on recognising a
“word” is for the lexical analyser (i.e. the function yylex) to return the integer
value 1. The third rule matches a “number” as a string of one or more decimal digits
and returns the value 2. The final rule is a catch-all so that any other character still
unmatched causes the integer value 3 to be returned by yylex.

Finally, the user code section of the input to flex defines a main program to
repeatedly callyylex() outputting the value returned byyylex (the identity of the
lexical token) togetherwith a string representation of the token. flex provides a special
variable yytext that contains the text that matched the regular expression pattern
in the rule. The while loop repeatedly calls yylex() and this loop terminates
when yylex() returns the value 0, signifying end of file.

The yywrap() function is also defined here as always returning the value 1.
yywrap is automatically called when yylex encounters the end of the input file.
If yywrap returns 1, then yylex assumes that its job is done and there are no more
characters to analyse. If, however, yywrap returns 0, this indicates that yylex
should continue and yywrap will have opened a new file for processing. This is a
mechanism for allowing input frommultiple files, not needed in this simple example.

The rules and the user code can be seen in action in this sample run. When the
program generated by flex runs and is presented with the input:

a

abc

ABc123a

abc 123+45

1.2 * 3
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it produces the output:

1 - a

1 - abc

1 - ABc123a

1 - abc

2 - 123

3 - +

2 - 45

2 - 1

3 - .

2 - 2

3 - *

2 - 3

This simple example illustrates the issue of ambiguity in the set of regular expres-
sion patterns. The first line of the sample input consists of a single a and the lexical
analyser correctly identifies this as a “word” (lexical token 1). But thisa alsomatches
the final rule (lexical token 3). The flex-generated lexical analyser has a feature ensur-
ing that if two or more rules match the same string, the earlier rule takes precedence.
So the ordering of patterns in the rules section may be important. Furthermore, the
input ABc123a is also recognised here as a single “word”. It could also match the
given rules as a “word” (ABc), followed by a “number” (123), followed by another
“word” (a). Because flex has the feature that the longest match is the one chosen,
the action here is to return a single “word”. These two rules for resolving ambi-
guity greatly help simplify the construction of lexical analysers for programming
languages. If the rules input to flex had to be formally unambiguous, they would
become unmanageably complex.

3.4.1.2 A Lexical Analyser for DL

DL is a simple language with a small set of easily-defined lexical tokens. We have
already seen how a lexical analyser for DL can be coded directly in C but it is
certainly worth examining a different approach, using the flex tool. As ever, the path
to an implementation starts with producing a list of the tokens to be recognised, and
generating regular expression definitions for each token. This leads directly to the
flex specification.

%{

.

.

.

int lexnumval;
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char lexident[MAXIDLEN+1];

%}

letter [a-z]

digit [0-9]

letter_or_digit [a-z0-9]

white_space [ \t\n]

other .

%%

"==" return EQSYM;

"<=" return LESYM;

">=" return GESYM;

"!=" return NESYM;

else return ELSESYM;

if return IFSYM;

int return INTSYM;

print return PRINTSYM;

read return READSYM;

return return RETURNSYM;

while return WHILESYM;

{letter}{letter_or_digit}* return IDENTIFIER;

{digit}+ { lexnumval = atoi(yytext);

return CONSTANT;

}

"/*" { comment(); }

{white_space}+ ;

{other} return yytext[0];

%%

.

.

.

This example code is not quite complete. It needs a short preamble to include
header files providing a link to the syntax analyser and defining token names and so
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on. It also needs a few lines of code to read to the end of a comment (thecomment()
function has to be written).

The definitions ofletter,digit,letter_or_digit,white_space and
other are simplymade to improve readability in the rules section. The two-character
tokens are defined first, followed by the reserved words, followed by identifiers and
numerical constants. Comments and white space are then ignored and finally all the
single character tokens are handled by the simple rule matching all remaining single
characters.

The order of the rules has to be checked. This is a common source of error. The
reserved words have to be matched before the identifiers to prevent an input such as
else being recognised as an identifier rather than a reserved word. Here, both rules
match the same number of characters and the first rule of the two takes precedence.
Using the numerical value of the character for single character tokens is a useful trick,
saving coding effort. The traditional way of managing the encoding of tokens is to
make sure that the defined values of all the non-single character tokens are greater
than 255 (the maximum numerical value of a single character, assuming the use of
an 8-bit character set). This is handled almost automatically if these token names
(EQSYM, LESYM, etc.) are declared in the bison file defining the syntax analyser.
Examples of this integration are given in Chap. 5.

Finally, the code associated with integer constants would need a little enhance-
ment to handle errors such as overflow. The function atoi needs to be replaced by
something that can handle these errors. The value of the constant is placed in the
global variable lexnuval to make it available to the syntax analyser.

3.4.1.3 Towards a C Lexical Analyser

Flex and other lexical analyser generating tools have many more features to support
the specification of programming language-oriented regular expressions and actions.
To illustrate this, we now look at some of the techniques that can be used to construct
a lexical analyser for C. Some of the more interesting lexical tokens from C are
selected for implementation using flex.

It is tempting to start off by coding the regular expressions required to recognise
the individual tokens, but some careful planning is required first. It is essential to
begin with an accurate list of all the lexical tokens to be recognised, obtained from
a language definition document. Next, various design issues should be considered,
including:

• What is the interface between the lexical analyser and the syntax analyser? Typi-
cally, the token identity is encoded as an integer value and the “values” of tokens
such as constants and identifiers are returned as strings.

• How are source lines beginning with # to be treated? Are they all handled by the
preprocessor? Presumably the #line directive has to be handled in the lexical
analyser.

http://dx.doi.org/10.1007/978-3-319-52789-5_5
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• There is a particularly nasty problem in the analysis of C in the handling of
typedef names (see Sect. 3.1.3). It is probably advisable for the lexical analyser
to ignore this particular issue and leave it to the syntax analyser.

• How is it best to handle reserved words? Having a separate regular expression
for each reserved word (e.g. if return t_if;) is certainly possible, but it
may be better to handle reserved words and names using the same rule (letter or
underscore followed by any number of letters, underscores or digits) together with
some simple code to check whether the matched string is in fact a reserved word.

• Are there constraints on the ordering of patterns in the rules section? Is there any
potential ambiguity?

• Are there any regular expressions that could usefully be included in the flex defi-
nition section to make the rules section more readable? This should become clear
as the rules are developed.

We can now examine the coding implications of some of the issues involved with
writing a lexical analyser for C. The full source is not presented here because there
are good examples of such code available on the internet. A simple search will reveal
a great deal of useful information. We can follow the design of the lexical analyser
presented in Sect. 3.4.1.1, adding more rules and providing functions in the C code
section to support the recognition of particular tokens. Some of the more interesting
aspects of an implementation are as follows.

• The identities of the tokens recognised by the lexical analyser are returned as
integers, but to make the code a little more readable and maintainable, the tokens
are given symbolic names:

typedef enum {t_constant = 1000, t_string_literal,

t_right_assign, t_left_assign, t_add_assign, t_sub_assign,

t_mul_assign, t_div_assign,

.

.

.

All the tokens can be defined in this way. The starting value of 1000 is prompted
by a simple trick for the representation of all the single character tokens in the
language. These are all returned as their character values assuming that they can
all be represented as conventional ASCII values, starting the representation of
other tokens at 1000 can cause no conflict.

• A simple main program is required to support the testing of the lexical analyser.
Something like this will probably suffice:

int main()

{

int lextoken;

while (lextoken = yylex())
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printf("%d is \"%s\"\n", lextoken, yytext);

}

Here, the lexical analyser (yylex()) is called repeatedly until the end of the
input file, each time outputting the identity of the token read as an integer and the
text actually recognised (yytext).

• Comments (starting with /* and ending with */) are best recognised by a rule of
the form:

"/*" { comment(); }

The function comment() reads the input, discarding characters until it has read
a * followed by a / or end of file. Implementing it this way is much simpler than
puzzling over the details of a regular expression to represent a complete comment
which can, of course, run over multiple lines.

• Identifiers and reservedwords can be dealt with together. Assuming thatLETTERS
is defined as [a-zA-Z_] and DIGITS as [0-9], the rule for identifiers and
reserved words is:

{LETTERS}({LETTERS}|{DIGITS})* { return(classify()); }

Here, classify() is a function returning the integer identity of the word just
recognised—is it a reserved word (if so, which one) or an identifier (if so, return
the value t_identifier)? A simple binary or even linear search or a hash table
would be appropriate for classify().

• Numerical constants have a variety of forms. For example, a decimal integer con-
stant consists of a nonzero decimal digit followed by zero or more decimal digits
followed by an optional integer-suffix. The integer-suffix is either l or u or ul or
lu, and the l’s and u’s can be in upper or lower case. A possible rule is:

[1-9][0-9]*([uU][lL]?)|([lL][uU]?)? { return t_constant; }

There are many other constant types to deal with. At first sight, these regular
expressions may seem overwhelmingly complex, but constructing them step by
step from a formal definition of the language is tractable.

• String constants are based on a sequence of characters enclosed between double
quotes. A pattern of the form \"(\\.|[ˆ\\"])*\" deals with a sequence
of escape characters (a \ followed by another character) and ordinary characters
(except for \ or " – the ˆ specifies that the set of characters to be matched excludes
those in the square brackets), all enclosed between double quotes. Dealing with
escape characters in their various forms is handled elsewhere in the lexical analyser.
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• Simple single and multi-character tokens are much easier. Rules of the form:

">>=" { return t_right_assign; }

.

.

.

"<=" { return t_le_op; }

">=" { return t_ge_op; }

"==" { return t_eq_op; }

.

.

.

"=" { return’=’; }

"<" { return’<’; }

">" { return’>’; }

.

.

.

can be used. Note that the rules of the flex-generated lexical analyser will result in
t_le_op rather than ’<’ and ’=’ being recognised when presented with the
input <=.

• White space can be ignored, and finally any remaining unrecognised characters
can also be flagged as an error and then ignored:

[ \t\v\f] ;

[\n] { lineno++; }

. { yyerror("Illegal character"); }

It would be better in the complete compiler to report the illegal character to the syntax
analyser as an error token, but for testing a stand-alone lexical analyser this simple
error message will suffice.

Attention to detail is the key message. The syntax of the lexical tokens of most
programming languages can be surprisingly complex, and ensuring that the rules in
flex correspond precisely to the rules in the language definition needs care.

As can be seen, specifying more complex regular expressions can be challenging.
The syntax of flex’s regular expression includes many powerful constructs, and this
flexibility results in a regular expression language that needs careful study [7].

3.4.2 Comparison with a Direct Implementation

This chapter has examined two distinct approaches for the construction of a lexical
analyser. Both have advantages and both are used today for real compilers. Hybrid
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approaches are also possible, where some of the tokens are recognised by hand-
written code and the others via the regular expression rules of a lexical analyser
generator.

Writing a complete lexical analyser by hand has several advantages.

• Programming by hand may be the only option because there may be no lexical
analyser generating tools available that are compatible with the programming
language being used for the compiler’s implementation.

• The process of compiler construction is less dependent on the availability of other
software tools, and there is no need to learn the language of a new software tool.
For example, the newcomer may find specifying complex regular expressions in
flex (and other, similar tools) rather difficult.

• There are no real constraints on the techniques used for recognising tokens because
it is easy to add ad hoc code to deal with awkward analysis tasks.

• Thememory requirements of the lexical analyser can bemodest. A lexical analyser
generated automatically may be more memory hungry despite the effect of tech-
niques for internal table compression.

• Performance of the lexical analyser produced in this way can be very good.

However, using a software tool purposely made for the job offers some significant
benefits.

• The code is more likely to be correct, particularly for lexical tokens with a complex
structure. For example, writing code by hand for recognising a floating point
constant as found in traditional programming languages is a daunting task. But
once a regular expression has been constructed, the software tool should generate
accurate code without a problem.

• Regular expression specifications for the lexical tokens may be available in the
language specification or documentation. Transcribing them into a flex-acceptable
form should be easy.

• The task of writing the lexical analyser is potentially much simpler because much
less code has to be written.

• The lexical analyser is easy to modify.
• Performance of the lexical analyser produced in this way can also be very good.

Lexical analysers for DL have been written by hand and also by using flex. The
hand-written lexer is approximately 140 lines of code, the flex file is approximately
70 lines of code, including all the preamble and associated functions. The C code
generated by flex has approximately 1870 lines (but not designed or intended for
human reading!). One would expect to find increased proportional savings in lines
of source code as the complexity of the lexical analyser increases. When execution
times are compared, it is clear that there is very little difference between the two
approaches, with the flex-generated parser just marginally ahead in most tests.

There is no clear winner here. Nevertheless the advice of “using the right tool for
the job” is worth bearing in mind.
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3.5 Conclusions and Further Reading

The lexical analyser is a good place to start when undertaking a compiler construction
project. The algorithms and data structures that have to be used do not need to be
complex, and their use should result in code that is efficient in terms of both space
and computation time.

Starting with a precise definition of all the lexical tokens is essential. This implies
a good understanding of the interface between the lexical and syntax analysers and
their division of responsibilities. Thinking in terms of a regular expression formalism
is undoubtedly the right way of managing tokens.

Testing is essential too. Leaving testing of the lexical analyser until it is connected
to the syntax analyser will make debugging very much more difficult. Testing the
lexical analyser as a stand-alone program is clearly the right thing to do.

There are many compiler textbooks explaining the theory of finite-state automata
anddiscussinghow thesemachinesmaybe implemented in software. For example, [5,
8–10] all contain much relevant background material to the construction of lexical
analysers. A good reference for the compiler construction tools lex and yacc (and
flex and bison too) is [7].

There are now many high-quality open-source examples of lexical analyser code
available on the web, easily foundwith any search engine. These form a superb learn-
ing resource. Compilers today are rarely written from scratch and freely available
examples can be used for ideas and as the basis for further development. There are
also good tutorials available for the compiler construction tools. The archives of the
comp.compilers newsgroup andmailing list forman invaluable compiler construction
resource.

Exercises

3.1. Write a lexical analyser for a simple programming language (such as DL) firstly
by hand and then by using a lexical analyser generator, generating code in the
same language as you used for the hand-written version. Compare the sizes of
the two sources. Also compare code sizes and execution times.

3.2. Gather together the specification of several high-level programming languages
and extract precise information about:

• The characters that can appear in an identifier/name. Are there length restric-
tions? Are upper and lower case letters treated as being identical?

• Comments—exactly where can they appear?
• White space—where and how is it significant?

3.3. Write some code to read and analyse a floating point constant. Assign its value
to a floating point variable and print it. How “accurate” is your conversion.
Maybe [1] will help with the understanding of these issues.

3.4. A floating point constant in a hypothetical programming language consists of
one or more decimal digits followed by a full stop, followed by zero or more
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decimal digits. Express this in terms of a regular expression. Try it out using
flex or a similar alternative.

3.5. What high-level language characteristics make lexical analysis difficult? Why
should a particular construct be recognised in the syntax analyser rather than in
the lexical analyser?

3.6. Write a piece of software to count the number of times the reserved word if
appears in a C program source file. Consider modifying this program to count
the number of distinct identifiers used in the program. Why is this harder?

3.7. Write a complete lexical analyser for a real programming language. Make sure
that it works.
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Chapter 4
Approaches to Syntax Analysis

The heart of the analysis phase of the compiler is the syntax analyser. It takes a stream
of lexical tokens from the lexical analyser and groups them together according to
the rules of the language, thus determining the syntactic structure of the compiler’s
input. The syntax analyser creates data structures reflecting this syntactic structure
and then it is up to later phases of compilation to traverse these structures and finally
to generate target code.

Section2.3.3 introduced the idea of parsingwhere the syntax rules of the language
guide the grouping of lexical tokens into larger syntactic structures. Parsing requires
the repeated matching of the input with the right-hand sides of the production rules,
replacing thematched tokenswith the corresponding left-hand side of the production.
But as we have seen, the order in which this matching is done and also the choice of
which productions to use is fundamentally important. We need to develop standard
algorithms for this task, and as a first step, examining the reverse process of derivation
may help with this.

4.1 Derivations

We start with a very simple grammar, shown in Fig. 4.1 defining a rudimentary form
of arithmetic expressions using the variables x, y and z, with the operators + and *.

Our aim is to show how the string x+y*z can be derived from the starting symbol
<expr>, thus showing that x+y*z is a sentence of this grammar.

Fig. 4.1 BNF for a trivial
arithmetic language

<expr> ::= <term> | <expr> + <term>

<term> ::= <factor> | <term> * <factor>
<factor> ::= x | y | z

http://dx.doi.org/10.1007/978-3-319-52789-5_2
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4.1.1 Leftmost and Rightmost Derivations

The process of generating a derivation starts, naturally, with the starting symbol.
Then, at each stage of the derivation a non-terminal symbol in the sentential form
is chosen and this symbol is replaced by the corresponding production’s right-hand
side. For example, x+y*z can be derived from <expr> as follows:

<expr>
<expr> + <term>

<term> + <term>

<factor> + <term>

x + <term>

x + <term> * <factor>
x + <factor> * <factor>
x + y * <factor>
x + y * z

In this example, the leftmost non-terminal in each sentential form is expanded
at each step, and when x+y*z is generated, the expansion stops because there is
nothing left to expand. This is the leftmost derivation.

It is possible to derive x+y*z in a different way. For example:

<expr>
<expr> + <term>

<expr> + <term> * <factor>
<expr> + <term> * z
<expr> + <factor> * z
<expr> + y * z
<term> + y * z
<factor> + y * z
x + y * z

Here, the rightmost non-terminal in each sentential form is being expanded at each
step. This is the rightmost derivation, sometimes called the canonical derivation.

It is of course possible to perform the derivation by using other selection methods
for non-terminals to be expanded but at each step there has to be an explicit or implicit
indication of which non-terminal is being expanded and hence which production rule
is being used. In the cases of leftmost and rightmost derivations, the identity of the
non-terminal being expanded is implicit.

4.1.1.1 Parse Trees

These two derivations look radically different although they both produce the same
sentence. They also share a common parse tree. The generation of the parse tree
while performing the derivation is not difficult. The root of the tree is the starting
symbol (here, <expr>). If the production X → a1a2 . . . an is used in the derivation
process, add the children a1a2 . . . an to the node X . This implies that the number of
children of a node is equal to the number of non-terminal symbols in that node.



4.1 Derivations 77

Fig. 4.2 Tree from the
derivation of x+y*z

<expr>

<expr> + <term>

<term>

<factor>

x

<term> * <factor>

<factor>

y

z

It is easy to verify in the example above that the parse tree generated in both the
leftmost and the rightmost derivations is the tree shown in Fig. 4.2. It is just the order
in which the nodes are generated that is different.

The parse tree has embedded within it all the production rules used in constructing
the derivation. The parse tree defines a unique leftmost derivation and a unique
rightmost derivation.

The process of parsing is equivalent to performing derivation in reverse. We have
already seen in Sect. 2.3.3 that the choice of which substring to reduce at each step
is critically important to the parsing process. Specifically, the substrings cannot be
chosen at random. But if we guarantee that the substring matching corresponds to the
choice and order of either the leftmost or the rightmost derivation then the parsing
process will succeed.

4.2 Parsing

Many algorithms have been developed to help solve the parsing problem. Most of
these algorithms are designed to work using grammars with particular characteris-
tics and later in this section we will see some of these constraints. Some algorithms
work with grammars with few constraints and such parsers are rarely used in real
compilers largely because of their significant demands of computation time and/or
memory space. For nearly all programming languages comparatively simple pars-
ing techniques can be used and it is those that will be examined in this book. The
principles behind parsing will be presented in this chapter. Practicalities of parser
implementation are covered in Chap. 5.

Section2.3.3.2 distinguished between top–down parsers and bottom-up parsers.
The reductions performedby the top–downparser correspond to the order and identity
of the substitutions performed by the leftmost derivation. The bottom-up parser

http://dx.doi.org/10.1007/978-3-319-52789-5_2
http://dx.doi.org/10.1007/978-3-319-52789-5_5
http://dx.doi.org/10.1007/978-3-319-52789-5_2
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corresponds to the rightmost derivation, performing the substitution steps in the
reverse order to that used by the rightmost derivation.

4.2.1 Top–Down Parsing

The top–down parser starts by constructing the parse tree with a single node labelled
with the start symbol. It can then build up the complete parse tree by creating the
subtrees one by one, in a left-to-right order. In building a subtree, the root node of
that subtree is created and than all the sub-subtrees of that subtree are generated.
This is a recursive algorithm, generating the tree in pre-order (node, then its subtrees
in a left-to-right order).

This is hard to visualise. Fortunately, the algorithms required to do this are usually
very simple for compliant grammars and the construction of the parse tree integrates
easily with the reading and recognition of the lexical tokens.

4.2.2 Parse Trees and the Leftmost Derivation

To showhow this type of parserworks,we can return to the trivial arithmetic language
presented above. Our task is to illustrate the parsing of x+y*z.

• The parser starts off by constructing a tree containing just the starting symbol as
the root node.

<expr>

• The next step in the pre-order generation is to set up the leftmost subnode. This is
done by looking at the grammar of the language and noting that<expr> is defined
as
<expr> ::= <term> | <expr> + <term>

Which alternative should be chosen? This turns out to be a difficult issue because
of the characteristics of this grammar. We choose the
<expr> ::= <expr> + <term>

alternative in this case (because we happen to know that it is the right thing to do).
This approach is acceptable for an example, but clearly has no place in a parsing
algorithm used in a compiler. This problem will be examined in detail later in this
chapter. The tree then looks like this.
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<expr>

<expr> + <term>

• We then have to deal with the nodes and their subtrees from left to right. This time
we use the production
<expr> ::= <term>

and the tree becomes:

<expr>

<expr> + <term>

<term>

• The lower <term> node has to be tackled next. Use the production
<term> ::= <factor>
Again, the reason for this choice has to remain tenuous for now.

<expr>

<expr> + <term>

<term>

<factor>
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• The <factor> node is given a single child via the production
<factor> ::= x

<expr>

<expr> + <term>

<term>

<factor>

x

• Since we have ended this branch of the tree with a terminal symbol, this symbol is
matched with the input. Our input is x+y*z, the x is matched and the remaining
input is +y*z. We then unwind from the recursion all the way back up to deal
with the <expr> + <term> node. We have just dealt with the leftmost <expr>
node and its children, so we now tackle the node +. This again is matched with the
input and so y*z remains. The next step is to deal with the third node <term>.
We use the
<term> ::= <term> * <factor>
production and the tree becomes:

<expr>

<expr> + <term>

<term>

<factor>

x

<term> * <factor>
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• The latest <term> is given the child <factor> from the production
<term> ::= <factor>

<expr>

<expr> + <term>

<term>

<factor>

x

<term> * <factor>

<factor>

• That <factor> corresponds to y. We use the production
<factor> ::= y

<expr>

<expr> + <term>

<term>

<factor>

x

<term> * <factor>

<factor>

y

• This y is matched with the input and the remaining input is *z. The recursion
returns to the * node which again is matched with the input, resulting in just z
remaining. Finally we use the production
<factor> ::= z

The resulting tree is then:
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<expr>

<expr> + <term>

<term>

<factor>

x

<term> * <factor>

<factor>

y

z

• The z is matched with the input, leaving nothing on the input. Matching all tokens
of the input leaving nothing is an indication of parsing success.

This detailed example illustrates how the top–down parsing process corresponds
to the leftmost derivation. The order in which the productions are used is the same as
the order in the leftmost derivation. However, this is not a good example to illustrate
how the top–down parser can be programmed. In particular, we have glossed over
the problem of how to choose the productions when there are alternatives.

4.2.3 A Top–Down Parsing Algorithm

There are easier ways of thinking about the top–down parsing process. Instead of
being driven by the construction of the parse tree, one can think more about the
process of the recognition of the input. Our starting point here is the formal grammar
for the language.

Initially, the task of tree generation can be ignored so that we can concentrate
instead on the matching of the terminal symbols in the grammar with the input
stream presented to the parser. This formulation of the top–down parser also starts
with the starting symbol of the grammar. Suppose the starting symbol S is defined
as S → AB. Our goal of recognising S can then be restated as recognising the
subgoal A and then recognising the subgoal B. Then, recognising A and B requires
the recognition of their subgoals, and so on.

If instead S is defined as S → A|B, then S is recognised by recognising an A or by
recognising a B.When terminal symbols appear in the right-hand sides of production
rules, these symbols are matched with the corresponding instances of those tokens
in the input string. If the match fails, then the parsing fails. As the parsing process
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continues, more and more tokens from the input will be matched and in the case of
a successful parse the process will end with all input tokens having been matched.

This approach sounds both attractive and feasible and the obvious way of imple-
menting it is to associate a programming language function with each non-terminal
symbol and the role of the function is to recognise an instance of that non-terminal.
For example, given the definition of the non-terminal P as P → QR a function P()
could be written as follows.

void P() {

Q(); R();

}

Unfortunately dealing with a definition of the form P → Q|R is harder. An
obvious approach is to allow the recognising functions to return a value indicating
success or failure. Then Q() could be called, if it returned failure, then R() is called.
However this is in general wrong because in running Q(), tokens from the input will
have been read and consumed, and should R() then be called it will start reading at
the point where Q() left off rather than from the beginning.

Again, there seems to be an obvious answer which involves the use of backtrack-
ing. After the failed call to Q() the input could be backspaced to the state it was in
just before Q() was called. Then R() is called and it will read the correct input.
And for some grammars this approach will work correctly. But for other grammars,
problems remain.

Consider the scenario where Q() matches, returning success. Suppose also that
R() could have matched, matching a different substring to that matched by Q().
Which match should be chosen? It depends on what follows the matching of P in the
grammar. This is beginning to look complicated because it may require the handling
of backtracking amongst potentially all of the recognising functions.

In practice, backtracking should be avoided if at all possible. The complexity of
the parsing code increases a great deal and the parsing may become considerably
less efficient. Fortunately this does not mean that productions of the form P → Q|R
cannot be handled by a top–down parser. It just means that some constraints have to
be placed on the details of such productions.

4.2.3.1 Lookahead

To recognise P defined as P → Q|R we really have to know whether to select
the Q route or the R route. If we are to avoid backtracking then there has to be
some characteristic of the definitions of Q and R to enable the selection to be made.
The way in which this is commonly done is to make use of lookahead. Suppose
the parsing process is at a stage where P has to be recognised. A certain number of
tokens have already been consumed from the input. Suppose also that it is possible to
examine (without preventing them from being read again) some tokens beyond the
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current point of input. It may be that the identity of these lookahead tokens allows
us to determine whether to follow the Q path or the R path. For example, if the
definition of Q is Q → a . . . and the definition of R is R → b . . . where a and b are
terminal symbols, then if the first lookahead token is a we follow the Q path and if
the first lookahead token is a b we follow the R path.

This idea of lookahead is essential for practical parsers for non-trivial grammars.
But managing many tokens of lookahead adds to parser complexity especially if the
tokens are being input as they are required. Perhaps surprisingly just a single token
lookahead will suffice for the syntax of most programming languages. Managing a
single token lookahead is straightforward and will be discussed in Chap.5.

Consider this simple example illustrating how lookahead can help.

S → Az|z
A → x A|B
B → y

Here, x , y and z are terminal symbols. In the code to recognise an S, if the current
lookahead token is a z, we use the production S → z, otherwise (if it is an x or a y)
use S → Az. Similarly in the code to recognise an A, if the current lookahead token
is a x , we use the production A → x A and if it is a y use the production A → B. If
the current lookahead token is a z this indicates a parse error (see Sect. 4.2.6).

If the lookahead can allow the correct alternative to be chosen in a production
involving alternation, as in the example above, then a parser can be written with-
out having to make use of any backtracking. The parsing process has been made
deterministic. This allows the construction of a predictive parser. The traditional
and practical way of coding such a parser is, as we have seen, to associate a func-
tion with each non-terminal symbol whose task is to recognise an instance of that
non-terminal. These functions call each other according to the syntax rules of the
grammar, matching terminal tokens from the input as they go. This is a recursive
descent parser and many examples, including the parsing code for this language,
will be presented in Chap. 5.

Unfortunately, this approach to parsing will still have difficulties with some par-
ticular constructs found in production rules. Fortunately, there are usually uncom-
plicated solutions.

4.2.3.2 Factoring

Suppose there is a production rule of the general form A → αβ|αγ. Writing a
recognising function for A is problematic because our current lookahead symbol
(presumably something that can start an α) is not enough to enable us to determine
whether to follow the αβ or the αγ branch. The solution here is not to resort to more
lookahead. Instead this production rule can be rewritten as:

A → αA1
A1 → β|γ

http://dx.doi.org/10.1007/978-3-319-52789-5_5
http://dx.doi.org/10.1007/978-3-319-52789-5_5
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This technique is known as factoring. There is now no alternative in the first
production so that can be coded easily, and in the second production the current
lookahead token should hopefully be capable of predicting which branch to take,
depending on the definitions of β and γ. There are of course grammars that are best
dealt with by increasing the parser lookahead, but this comes at a cost of increased
complexity.

4.2.3.3 Left Recursion

There is a second issue which occurs often in the definitions of traditional program-
ming languages. Consider a production of the form E → E + T |T . This style of
production is often seen in programming language grammars, defining an expression-
like structure. When recognising an E , determining whether to follow the E + T
or the T path needs consideration, as described above in the section on factoring.
But there is another specific problem in the handling of E → E + T . The task of
recognising an E starts off by recognising an E which in turn starts by recognising
an E…. This process will never terminate because it consumes no input at each
stage. This is a left-recursive production, and left recursion always causes problems
for top–down parsers. In order to make the recognition terminate, the alternative
production E → T has to be used somehow. The grammar has to be modified.

Fortunately there are easy solutions. There is a standard transformation that can
be applied to these left-recursive productions. A production of the form A → Aα|β
is transformed into the productions

A → βA1
A1 → αA1|ε

where ε represents the empty string. So E → E + T |T can be transformed into

E → T E1
E1 → +T E1|ε
The left recursion has been removed at the cost of an extra non-terminal symbol

(E1) and a little extra complexity. However, in many cases of left recursion occurring
in the definitions of programming languages, there is a simpler solution. Left recur-
sion is replaced by iteration. The power of EBNF allows us to rewrite E → E+T |T
as

E → T { + T }
This turns out to be easy to implement and examples appear in Chap.5.

Unfortunately, this is not quite the end of the story for this form of left recursion.
The replacement of left recursion by iteration may need to be done with care when
the parse tree nodes are generated since productions of the form E → E + T |T
imply that the + operator is left-associative and this has to be carried forward even
when the E → T { + T } formulation is used. However this is not difficult. Also it
should be noted that left recursion is sometimes not so easy to spot. For example

http://dx.doi.org/10.1007/978-3-319-52789-5_5
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A → α|Bβ
.
.
B → Aγ|δ

or even

A → BA|α
.
.
B → . . . |ε

In these examples, multiple productions may be involved in the left recursion and
dealing with this neatly and reliably may need some care.

4.2.3.4 Ambiguity

There is another problem area, but not confined to top–down parsing. A grammar
is ambiguous if there exists more than one parse tree representing a given sentence.
For example, returning to the grammar in Fig. 4.1 for the trivial arithmetic language,
we can simplify the grammar by just allowing the + operator.

<expr> ::= <factor> | <expr> + <factor>
<factor> ::= x | y | z

There is nothing wrong with this grammar and the + operator is left-associative.
An alternative grammar could be written as

<expr> ::= <factor> | <expr> + <expr>
<factor> ::= x | y | z

This grammar is ambiguous because sentences such as x+y+z have more than one
parse tree as shown in Fig. 4.3. Specifically in this example, the + operator is being
defined as being both left- and right-associative. It has to be one or the other.

Detecting ambiguity in a grammar is not always easy. But removing it saves
difficulties later.

4.2.4 Classifying Grammars and Parsers

In the discussion above about top–down parsers, it became clear that certain con-
straints had to be put on the grammar to make it amenable to top–down parsing.
The Chomsky hierarchy points to type 2 context-free languages as the class that
should be targeted for use as programming languages but the type 2 languages are
not subdivided to indicate, for example, which are appropriate for top–down parsing.

A useful terminology for describing grammars exists and this terminology gives
some indication of how the grammar should be parsed. An LL(k) grammar can be
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(a)
<expr>

<expr> + <expr>

<expr> + <expr>

<factor>

x

<factor>

y

<factor>

z

(b)
<expr>

<expr> + <expr>

<factor>

x

<expr> + <expr>

<factor>

y

<factor>

z

Fig. 4.3 Two parse trees for x+y+z

parsed using a top–down parser using a lookahead of at most k symbols. The LL(k)
parser reads the input from Left to right (i.e. from the beginning to the end) and
produces a Leftmost derivation. It needs up to k symbols of lookahead to determine
which production to apply at any stage. The LL(1) grammars are widely found in
practice because they are sufficiently powerful to cover the needs of most program-
ming languages and they are simple to implement using a top–down parser. As we
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have already seen in this chapter these parsers are simple and efficient and do not
require any backtracking.

In contrast, an LR(k) grammar can be parsed using a bottom-up parser using a
lookahead of at most k symbols. The LR(k) parser reads the input from Left to right
and produces a Rightmost derivation in reverse. The parser reads the input from
left to right and makes a decision on which production to use next on the basis of
the symbols already read and the k symbols of lookahead. These parsers will be
examined in the next section. They are harder to implement than top–down LL(k)
parsers but nevertheless are efficient and require no backtracking. They are important
primarily because of their power. It is possible to construct some sort of LR parser
for virtually all programming languages for which Chomsky type 2 grammars exist.
Furthermore all LL(k) grammars are LR(k). The practical consequences of this are
discussed in Chap. 5 where it is argued that both approaches to parsing have a role
in the field of high-level language compilers and other software tools.

4.2.5 Bottom-Up Parsing

Top–down parsers start with the starting symbol. Bottom-up parsers, in contrast,
start with the first token of the input. Their mode of operation may seem very much
more intuitive than top–down parsing. They repeatedlymatch symbols from the input
with the strings on the right-hand sides of production rules, replacing the matched
strings with the corresponding left-hand sides. This continues until, hopefully, just
the starting symbol remains. This process has already been illustrated in Sect. 2.3.3
where the choice of which substring to reduce at each stage is shown to be critically
important in order to achieve a correct parse.

The correct order of matching for the bottom-up parser is defined by the right-
most derivation. The bottom-up parser has to perform the rightmost derivation in
reverse. This produces the canonical parse. For example, if we start with the input
x+y*z from the example in Sect. 4.1.1 using the grammar in Fig. 4.1 and reverse
the rightmost derivation, we can see how the bottom-up parser should operate:

x+y*z (use < factor >→ x)
< factor > +y*z (use < term >→< factor >)

< term > +y*z (use < expr >→< term >)

< expr > +y*z (use < factor >→ y)
< expr > + < factor > *z (use < term >→< factor >)

< expr > + < term > *z (use < factor >→ z)
< expr > + < term > * < factor > (use < term >→< term > * < factor >)

< expr > + < term > (use < expr >→< expr > + < term >)

< expr >

http://dx.doi.org/10.1007/978-3-319-52789-5_5
http://dx.doi.org/10.1007/978-3-319-52789-5_2
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This looks promising in that it could give a pointer to a particularly simple route
to an implementation. However, a major problem remains. This example is easy
because we already have the rightmost derivation. But in general we will not have
this derivation to hand, so the bottom-up parser has to decide itself which substring
to reduce at each stage. This substring that is matched with the right-hand side of
a production and replaced by the corresponding left-hand side is called the handle
and the key problem of bottom-up parsing is the identification of the handle at each
stage.

The algorithm used to identify the handle obviously has to be based on the identity
of the lexical tokens read from the input. Ideally, the number of tokens needed to iden-
tify the handle should be limited in order to achieve an efficient parser. Furthermore,
backtracking should not be necessary, again for efficiency reasons. So the identifi-
cation of the handle should be possible by just considering the tokens of the handle
itself together with tokens in the immediate locality of the handle. In other words,
we may need to examine some left context, the handle itself and some lookahead.
Practical algorithms for handle identification will be presented in Chap. 5.

4.2.6 Handling Errors

The compiler has to be able to deal with syntactically incorrect input. The user of a
compiler cannot guarantee that the input presented to the compiler always conforms
to the formal syntax of the language and so it is important for the compiler to identify
these errors and provide the programmer with appropriate information to make the
correction of these errors easy. This turns out to be a surprisingly difficult requirement
to fulfil.

We have already looked at some of the issues concerned with errors detectable
by the lexical analyser (see Sect. 3.2.2.7). Dealing with errors found in the syntax
analyser is rather more complicated. Furthermore the syntax analyser is likely to
have to deal with the errors detected and reported by the lexical analyser too. Error
handling requires the detection of the error (generally easy), producing an appropriate
error message for the compiler user (again, generally easy) and finally recovering
appropriately from the error (generally difficult).

Detection and reporting of a syntax error in the syntax analyser usually presents no
real difficulty. At all stages in the parsing process a top–down or a bottom-up parser
will be aware of the set of lexical tokens that can be validly accepted in that particular
location (this is indirectly specified by the grammar) and should an unexpected token
be read, the syntax analyser can generate an error message of the form “On source
line 123 the token ‘.’ was found, but ‘;’ was expected”. However, there are often
slight complications here because precise localisation of the cause of the error, as
far as the programmer is concerned, may not be possible because the error may be
detected some way away from the mistake actually made by the programmer. For
example, consider this fragment of a C program:

http://dx.doi.org/10.1007/978-3-319-52789-5_5
http://dx.doi.org/10.1007/978-3-319-52789-5_3
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if (a>b) {

a=0;

b=10;

c=100;

}

If the { token is omitted from the line starting if, the error will probably be reported
on the line containing the } or even beyond. Whether or not this is a major issue is
not clear, but getting it “right” may not be easy because it may not be obvious what
“right” means in this context.

Real difficulties can occur when recovering from the error. It is rarely acceptable
for the syntax analyser to report the error and then stop, relying on the programmer
to correct the error and restart the compilation process. In most circumstances, the
correct thing to do is to allow the syntax analyser to continue so that it can report any
remaining errors in the source file. But the difficulty is that it is usually very awkward
to predict how best to restart the syntax analyser. Which syntactic structure should it
be expecting after detecting the error? If a strange tokenwas erroneously added to the
input and found, for example, when the syntax analyser was parsing an expression,
that token could be skipped and the expression parsing resumed. But if that strange
token resulted from omitting another token, then skipping that strange token may not
be the best thing to do. Ideally we would like just a single error message for each
distinguishable error in the input and so there is a need for a mechanism to allow
the syntax analyser to resynchronise itself with the input. We will look at a practical
approach in Chap.5. In some cases, avoiding over-reporting syntax errors is easy to
achieve. For example, one should only report an undeclared variable the first time it
is used. But the general case of over-reporting errors is somewhat harder.

4.3 Tree Generation

So far in this chapter, the focus has been on the syntax analyser’s role in reading
the stream of lexical tokens and ensuring that they form a syntactically correct pro-
gram. The syntax analyser has another essential task to perform. It has to generate
some output for the next phase of compilation. This output is conventionally in the
form of a tree and this tree is generated as the parser, top–down or bottom-up, per-
forms reductions, matching right-hand sides of productions. A full parse tree can
be generated by creating a new node each time a reduction is made. Later stages of
compilation will not need all this data and structure, and so some simplifications to
the tree structure can be made. This simplified structure is the abstract syntax tree
(AST). An example of the simplification is shown in Fig. 2.4.

Generating this form of tree is not complicated, but requires some planning. The
set of node types should correspond closely with the formal syntax of the language,
omitting nodes for simple productions of the form E → T and for tokens that
are now redundant such as parentheses in expressions, where grouping is reflected

http://dx.doi.org/10.1007/978-3-319-52789-5_5
http://dx.doi.org/10.1007/978-3-319-52789-5_2
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by the tree structure. Each node has to contain some indication of the node type
(e.g. “if statement”, “identifier”, “string constant”, and so on), together with the
corresponding data for that node type. The form of the data depends on the node
type. For example, an integer constant may contain a binary or string representation
of the value of the constant. A node for a variable may contain a string representation
of the variable name or, more likely, a pointer to that variable’s entry in a symbol
table. Creating the node and initialising the data should not be difficult and this code
can be added easily to the parsing code. But the node has to be linked in with an
existing partial tree structure. This can be done by designing the parsing functions to
return pointers to these tree nodes to their callers. For example, in a top–down parser
a function to parse a simple assignment statement will generate a new “assignment”
node with space for two subtrees. One subtree will be set to be a pointer to a node
representing a variable, returned by the call to the variable recognition function called
in simple assignment, and the other subtreewill be set to the value returned by the call
to the expression recognition function. The simple assignment function then returns
a pointer to the newly-created node. Practical examples are given in Chap.5.

4.4 Conclusions and Further Reading

This chapter has highlighted the relationship between derivation and parsing, how a
top–downparser generates the leftmost derivation and the bottom-up parser generates
the rightmost derivation in reverse. A major issue in the development of a compiler
is the choice of parsing strategy for the language being compiled. Top–down parsers
can in general be written by hand or by parser generator programs, directly from the
grammar specification. Bottom-up parsers can offer greater parsing power (dealing
with harder grammars) but at the expense of code complexity. They are rarely written
by hand, instead requiring the use of a parser generator tool. We will look at practical
examples in later chapters.

Practical parsers need to be able to handle errors in their input, reporting and
recovering appropriately. They also need to generate an abstract syntax tree for pass-
ing on to the semantic analyser—the next phase of compilation. There is considerable
flexibility in the design of the AST.

There is an extensive literature on the theory of grammars and parsing. Perhaps one
of themost famous textbooks in this area is [1] and amore compiler-oriented coverage
of context-free grammars and parsing is found in [2]. Ambiguity in programming
language grammars is covered by [3], together with advice on the transformation of
grammars tomake themunambiguous and suitable for traditional parsing techniques.
A classic reference for LR parsing is [4].

Most programming language definitions are based on a context-free grammar
written in such a way as to avoid the use of constructs that cause difficulties when
writing a parser. But when the grammar is not quite so helpful, there are standard
transformations available to turn the grammar into a form that is much easier to
implement. For example, a context-free grammar can be transformed into Greibach

http://dx.doi.org/10.1007/978-3-319-52789-5_5
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Normal Form, yielding something that can be parsed easily, with a bound on the
complexity of the parse. This, and the relationship between context-free languages
and pushdown automata is covered in [1].

Compiler writers tend to be rather conservative in their choice of parsing tech-
niques for conventional programming languages. There are good, practical reasons
for this, but there are times where different and maybe more powerful techniques
are required. A comprehensive description of a wide range of parsing techniques is
presented in [5], applicable not just to the compiler’s syntax analyser. An example
of a powerful parser is the Earley parser [6], based on dynamic programming. It
is capable of parsing any context-free language. Another powerful parser uses the
CYK algorithm and again makes use of techniques of dynamic programming. It is
described in [1].

Exercises

4.1 Produce a BNF or EBNF grammar for a simple language designed to be used
as a numerical calculator. It should handle the four operators +, -, * and /
with the conventional precedences, allow parentheses and operate on integer
constants. Use this grammar to produce a calculator program, reading a line of
input containing an arithmetic expression and outputting the numerical result.

4.2 Extend the grammar for the numerical calculator to include other operators such
as % to perform percentage calculations, trigonometric functions, hexadecimal
arithmetic, . . .. This may not be trivial.

4.3 Extensive use of productions of the form E → E + T |T has been made in
this chapter and this form of production fits in well with the generation of a
syntax tree. But to avoid the left recursion, E → E + T |T is often rewritten as
E → T {+T }. How would you generate a correct syntax tree from this form of
production?

4.4 Produce an outline design for an abstract syntax tree for a programming lan-
guage of your choice. Are there any syntactic constructs that cause particular
difficulties? Are names/symbols/variables better stored in the tree or in a sep-
arate symbol table? By hand, try generating a tree in your format for a simple
program.

4.5 Look at the syntax rules of a programming language of your choice and attempt
to find rules that might cause difficulty for a predictive top–down parser. Can
the rules be rewritten to avoid these difficulties?

4.6 Many high-level languages make use of tokens that appear to be redundant. For
example, some programming languages support a while ... do statement
and the do is sometimes, strictly speaking, redundant. Why is this done—after
all, it’s more typing for the programmer… ?

4.7 A list of items is defined as<list>→<item><list> | <item>where<item>

is defined as any of the lower case letters. The string abcd is a list. Generate
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its abstract syntax tree. Suppose the list is defined as <list>→<list> <item>

| <item>. Generate the new abstract syntax tree. Comment on the differences.

4.8 Do some research on the famousif...then...else ambiguity and find out
ways in which the syntax of conditional statements changed in order to remove
the ambiguity.

4.9 Insert some deliberate mistakes into a high-level language program and investi-
gate how the compiler deals with them. Can you produce an example where the
error message is really misleading? What error detection and recovery features
would you like to see in a compiler designed for the novice programmer?
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Chapter 5
Practicalities of Syntax Analysis

Chapter4 provided an introduction to the process of parsing, giving some of the
theory and background. In this chapter we adopt a somewhatmore practical approach
to syntax analysis and we look in detail at the two most popular techniques used
for the construction of syntax analysers for programming language compilers and
similar tools. After some introduction to these two approaches, together with some
simple examples, we move on to the development of two syntax analysers for the DL
language, showing how they can be developed and augmented to produce the data
structures needed by the next phase of compilation.

The differences between the top-down and bottom-up approaches have already
been described, but the actual choice of a parsing technique for any particular project
needs a little more discussion. In practice, the favourite top-down technique is the
predictive top-down parser, usually with just one token of lookahead (i.e. LL(1)).
Sometimes greater lookahead can be an advantage, but comes at the cost of increased
coding complexity. Furthermore, backtracking top-down parsers are not in general
needed or appropriate for programming language parsing.

Some of the details of bottom-up parsing will be presented later in this chapter.
Although there are many different algorithms that can be used to control a bottom-
up parser, most practical implementation make use of a parser generator program to
produce an LR(1)-style parser.

Bottom-up parsers can offer the advantage of being able to cope with more com-
plex grammars than those usablewith a top-downparser. There are commongrammar
features that need to be transformed and removed before a conventional top-down
predictive parser can be used. The use of factoring and left recursion elimination are
important here. These transformations are usually possible for the grammars defining
constructs commonly found in today’s programming languages, but sometimes the
transformations may need to be extensive and may require some care and skill to
make them effective.

Therefore, to simplify the choice of parser implementation technique, we can
restrict the set of possibilities by examining just four approaches: top-down or
bottom-up and hand-written or machine-written using a parser generating tool.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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• Top-down, hand-written: a popular and widely used technique, particularly for
simpler programming languages. The grammar should permit the construction of
predictive parsers and backtracking should be avoided.

• Top-down, machine-written: there are good software tools available, generating
top-down parsers from a formal grammar specification, in a variety of languages.
For example, JavaCC generates top-down parsers in Java and can generate lexical
analysers too. Some of these tools (JavaCC included) can deal painlessly with
grammars requiring more lookahead than just one token.

• Bottom-up, hand-written: not recommended!The taskof generating the controlling
rules of a bottom-up parser is complex and error-prone even for simple grammars.
For a parser for all but the simplest of grammars, this would be an unwise choice.

• Bottom-up, machine-written: there are many powerful software tools generating
bottom-up parsers and they have been used extensively for the construction of real
compilers. Tools such as yacc [1], bison [2] or CUP [3] have been used for a huge
variety of parsing problems.

This book concentrates on two of these categories—top-down, hand-written and
bottom-up, machine-written. But as far as their use is concerned, the tools for gen-
erating top-down parsers appear quite similar to the bottom-up parser generators
in that they both require BNF-like grammar specifications. So the experience of
using the bottom-up parser tools is valuable when learning how to use a top-down
parser-generating tool and vice versa.

There are so many different ways of writing a parser. They vary enormously in
complexity, efficiency, power, application area and popularity. We will be concen-
trating on just a tiny subset of the approaches available, but the parsers chosen cover
the most popular techniques appropriate for today’s programming languages.

5.1 Top-Down Parsing

Section4.2.3 presented the basic ideas of practical top-down parsing. Ideally, recog-
nising code can be written directly from the language’s BNF or EBNF or equivalent
rules, structured so that there is a recognising routine, function or procedure for
each of the language’s non-terminals. For example, the production rule P → QR is
handled by the code

void P() {
Q(); R();

}

To recognise a P , a Q followed by an R have to be recognised. And once recognising
code has been implemented for all the non-terminals in the language, the code recog-
nising the starting symbol can be called, having the effect of recognising complete
programs written in that language. Before looking at the practicalities of coding all
this recognising code, we should understand exactly what is being achieved here.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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These functions simply recognise an instance of the corresponding non-terminal
construct. The function P above just recognises an instance of P . In general these
recognising functions produce no output unless an error is found. But programs that
produce no form of output are rarely useful. We will see later in this section how
these recognising functions can be augmented to produce nodes in a syntax tree and
also produce output to help debugging.

The need for lookahead has also been highlighted. For example, writing a pre-
dictive recognising function for P → Q|R requires code to determine in all circum-
stances whether to follow the Q route or the R route. This is done by having one or
more tokens in hand and on the basis of the identity of these tokens, the code can
decide which route to follow. Hand-written top-down parsers generally rely on just
a single token lookahead throughout the parsing process. Some parsers may use just
a single token lookahead except when recognising particular non-terminals where
greater lookahead may be temporarily required.

5.1.1 A Simple Top-Down Parsing Example

This is all best illustrated by an example (from Sect. 4.2.3).

S → Az|z
A → x A|B
B → y

Here is a complete C program to recognise strings of this language.

#include <stdio.h>
#include <stdlib.h>

int ch;

void error(char *msg) {
printf("Error - found character %c - %s\n",ch,msg);
exit(1);

}

void b() {
if (ch == ’y’) ch = getchar();
else error("y expected");

}

void a() {
if (ch == ’x’) {

ch = getchar();
a();

}
else b();

}

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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void s() {
if (ch == ’z’) ch = getchar();
else {

a();
if (ch != ’z’) error("z expected");
else ch = getchar();

}
printf("Success!\n");

}

int main(int argc, char *argv[])
{ ch = getchar();

s();
return 0;

}

Compiling and running this program gives output of the form:

$ ./simpletopdown
xyz
Success!
$ ./simpletopdown
xxxxyz
Success!
$ ./simpletopdown
xxxxz
Error - found character z - y expected
$ ./simpletopdown
z
Success!

The program includes a global declaration for a character ch. As the parser runs
this variable always contains the next character from the input—it is the lookahead.
In this simple language, all the lexical tokens are single characters and so the lexical
analyser can be replaced by the call to the standard function getchar to read the
next character from the input. Before the parsing process starts by a call to the s

function, the lookahead is initiated by calling getchar to read the first character of
the input.

The function b checks that the current token is a y. If so, it reads the next input
character, but if not, it issues an error message. Here, a function error is called
which outputs a message and then halts the execution of the parser.

The function a checks that the current token is an x. If so, it skips over it and calls
a recursively, corresponding to the grammar rule A → x A. Otherwise it calls b.

Finally, the function s checks for z and if found, it reads the next token and the
parse succeeds. Otherwise, a is called, and s checks for a z. If found, it reads the
next token and the parse succeeds again, otherwise an error is generated. There is
a minor issue in this function in that s finishes by performing a lookahead. Strictly
speaking this is not necessary but in this case, no harm is done and it emphasises the
need for consistent lookahead throughout the parsing process.
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This code can be written painlessly directly from the BNF rules. The rules needed
no modification before the parser could be written. A key issue to notice is the
management of lookahead. It works in a very similar way to the one character looka-
head already shown in the hand-coding of lexical analysers. The rule to follow is to
ensure that on entry to any of the non-terminal recognising functions, the lookahead
variable ch should already contain the first token of the non-terminal being recog-
nised. The first step in debugging a syntax analyser of this style is to check that the
lookahead is being carried out consistently. Making a mistake with the lookahead is
a very common coding error.

What is next? This piece of code is just a recogniser. It does indicate parsing
success by outputting a comforting message, but we will need to add code to handle
tree generation (see Sect. 5.3 to see how this is done). Also, a simplistic approach
to error handling has been adopted and, specifically, no attempt has been made to
do any error recovery. This issue is examined later in Sect. 5.5. But notice that this
parser can easily generate informative error messages indicating what was expected
and what was actually found.

5.1.1.1 Practicalities

Faced with a complete BNF or similar grammar the task of coding a predictive top-
down parser may seem daunting. Experience suggests that the best way of tackling
the task is as follows.

• Firstly, just check again that the lexical analyser works. Trying to debug the syntax
analyser when the problem actually lies in the lexical analyser is a miserable task.

• Write a recogniser first and do not worry at all about the generation of the tree.
Include code to output tracing messages indicating which recognising functions
are being called. It may be possible to develop the recogniser in stages by starting
off with just a subset of the grammar and gradually adding code to recognise
further non-terminals until the recogniser is complete. Do not worry about error
recovery at this stage, but error detection should comeout semi-automatically in the
recognition process. Finally, test extensively. This is somewhat tiresome because
the tracing output needs to be checked and associated with the grammar-defined
structures of the source program.

• Add code to generate the syntax tree. Write a simple function to display the tree in
a human-readable form. Do not remove the tracing code inserted in the last step.
It can just be disabled and then re-enabled if necessary to help with debugging.
Section5.3 covers tree generation.

• Consider error recovery. See Sect. 5.5.
• Program defensively throughout. For example, check for out-of-range parameters,
ensure consistency in data structures and so on. Although the code is supposed
to get this right, double checking does no real harm and can be of huge benefit
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in debugging. Some programming language implementations support an assert

facility which can be a useful debugging aid.
• Test repeatedly, effectively and intelligently.

5.1.2 Grammar Transformation for Top-Down Parsing

In Sect. 4.2.3 several potential problem areas for top-down parsers were mentioned.
While designing a predictive top-down parser from the grammar it is essential to
check that the parser stays predictive. This means that whenever there is an alter-
native in the grammar, the lookahead can unambiguously determine which of the
alternatives to follow. In some cases, factoring can resolve the problem but in other
cases, the grammar may need modification. In practice this seems to be a rare prob-
lem.

Left recursion is frequently found in programming language grammars and
dealing with it is usually a routine task. For example, a production of the form
E → E + T |T is best handled by rewriting the production in an EBNF style as
E → T {+T } and coding the recogniser as follows:

void E() {
T();
while (ch == ’+’) {

ch = getchar(); /* or call the lexical analyser
for the next token */

T();
}

}

The recursion in the original BNF production has been replaced by iteration in the
EBNF rule and implemented using a while statement. It is of course also possible
to deal with the left recursion using the standard grammar transformation described
in Sect. 4.2.3 but in practice the minor reformulation as shown above will suffice.

The problem of ambiguity has also already been mentioned. The proper solution
to this is of course to remove the ambiguity from the grammar. But it may be possible
to resolve the ambiguity within the parser in an ad hoc way.

5.2 Bottom-Up Parsing

The price paid for the potential power of bottom-up parsing is a significant increase in
software complexity, effectively making it advisable to make use of parser generator
tools, rather than coding the parser directly in a conventional programming language.
Using these specialised tools certainly simplifies the process, but it is important to
have some knowledge of what is going on in the operation of a bottom-up parser.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
http://dx.doi.org/10.1007/978-3-319-52789-5_4
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5.2.1 Shift-Reduce Parsers

There are many different approaches to bottom-up parsing but most of the practical
and widely used implementations are based on shift-reduce parsers. These parsers
perform a single left-to-right pass over the inputwithout any backtracking. The parser
itself is simple and easy to code. It is the control of the parser that ismore challenging.

The shift-reduce parser implements just four basic operations.

• The shift operation reads and stores a token from the input.
• The reduce operation matches a string of stored tokens with the right-hand side
of a production rule, replacing the stored tokens with the left-hand side of the
production rule.

• The accept operation indicates that the parse has succeeded.
• The error operation signals a parse error.

The problem, of course, is knowingwhen to shift, when to reduce, when to accept and
when to error. But before returning to this issue of control it is sensible to consider
an implementation.

The natural way of implementing a shift-reduce parser is to use a stack for the
storage of input tokens and their replacements from the left-hand sides of productions.
Let us go back to the familiar grammar for our trivial arithmetic language in Fig. 4.1,
repeated here:

<expr>→<term> | <expr> + <term>

<term>→<factor> | <term> * <factor>
<factor>→ x | y | z

and suppose we wish to parse the sentence x+y*z. In this example, we show the
contents of the stack (which starts off empty), the remaining input and the parser
action (shift, reduce, accept or error) at each stage. The base of the stack is on the
left.

Stack input action

x + y ∗ z shiftx
x +y ∗ z reduce using < factor >→ x
< factor > +y ∗ z reduce using < term >→< factor >

< term > +y ∗ z reduce using < expr >→< term >

< expr > +y ∗ z shift+
< expr > + y ∗ z shifty
< expr > +y ∗z reduce using < factor >→ y
< expr > + < factor > ∗z reduce using < term >→< factor >

< expr > + < term > ∗z shift ∗
< expr > + < term > ∗ z shiftz
< expr > + < term > ∗z reduce using < factor >→ z
< expr > + < term > ∗ < factor > reduce using < term >→< term > ∗ < factor >

< expr > + < term > reduce using < expr >→< expr > + < term >

< expr >

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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Comparing this sequence of parsing steps with the rightmost derivation of x+y*z
from Sect. 4.1.1, we see that this parser is producing the rightmost derivation in
reverse, as expected for a bottom-up parser.

This is all very well, but the choices of parser actions here have been done without
any explanation or justification. There has to be a mechanism which, given the
contents of the stack and the input remaining, tells the parser whether to shift, reduce,
accept or error. We need to be able to identify the handle—the next substring to be
reduced. Plainly, relying on the contents of the entire stack and all the input pending
will result in a parser which will be powerful but at the cost of excessive complexity.
At the other extreme, we can consider what happens if the parser is controlled by
the single token at the top of the stack and the next token of the input (the lookahead
token). We can envisage a table indexed by the identities of these two tokens and
the content of that table tells the parser what to do. This is the basis of precedence
parsing and provides a simple parsing technique for just a restricted set of grammars.
For further details, see [4].

The design of this simple precedence parser gives us the idea for a more general
approach for designing shift-reduce parsers. A table, indexed by stack tokens or a
function of stack tokens and also indexed by lookahead tokens is used to drive the
parser. It does not have to be a two-dimensional table. We can resort, for example,
to three dimensions, indexed perhaps by the token at the top of the stack and two
tokens of lookahead. But for reasons of table size and code complexity, it makes
sense to retain just two-dimensional parsing tables. There are many different parsing
techniques that can be implemented in this way and they vary in what indexes the
tables, the size of the tables, the complexity of the table generation process, the range
of grammars the parser can cope with, the difficulty of understanding the parsing
process and so on. The general LR (left-to-right, rightmost derivation) parser can
be implemented in this way, together with variants such as LALR (look-ahead LR
parser) and SLR (simple LR). In these parsers, the table is indexed by the lookahead
token and also, in effect, by a value obtained from the identity of the current left
context. Many textbooks provide the theoretical background—for example, see [5].

Setting up these tables by hand is in general a painful process, time-consuming
and error-prone. However, there are nowmany practical bottom-up parser-generating
tools which generate complete parsers made up of the code to run the shift-reduce
parser together with the controlling table. These tools make the construction of a
reliable and practical parser very much easier and it is the use of a popular member
of this set of tools that will be the basis of examples for bottom-up parsers in this
book. Compromising between table size and parsing power means that most of
these parser generators produce LALR(1) parsers, certainly adequate to parse today’s
programming languages.

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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5.2.2 Bison—A Parser Generator

There is a long history of software tools to generate parsers. Parsers were first studied
in the very early days of computer science and it became obvious that the complex
yet logically intuitive task of generating some types of parsers could be automated.
Perhaps the most famous of the early parser generators is yacc [1] developed in the
early 1970s. It generates table-driven LALR(1) parsers in C. It was incorporated
into the Unix operating system distribution and used for the development of other
Unix software tools as well as in many other projects. Yacc was not the first of such
tools—yacc is an acronym for “yet another compiler-compiler”, suggesting many
predecessors. And yacc is still in widespread use today, although many other more
recent tools have been developed to generate parsers in a range of programming lan-
guages, accepting grammar specifications in formats generally upwards compatible
with yacc. Yacc was designed to pair with lex, the lexical analyser generating tool.
Although these tools can be used independently they are often used together when
generating code for a compiler-related application.

Bison [2] was developed as the GNU Project version of yacc. It is designed to
be upwardly compatible with yacc and includes a few minor changes. It has been
distributedwidely. It too can generate table-driven LALR(1) parsers in C but includes
support for other bottom-up parsing methods. Just as yacc was transformed into
bison, lex was transformed to flex and flex and bison are often used together, with
the syntax analyser generated by bison calling the lexical analyser generated by flex
as a C function.

Why choose bison for the examples in this book? It is not a recently developed
tool, nor is it one of the most powerful parser generators available. However, it is
still very popular and in widespread use in many existing and new projects. It is
stable, capable, comparatively easy to use, its syntax and style have been adopted by
other packages, it generates C (and we are using C in this book), it has been ported
to many architectures and operating systems and there are many good examples of
its use freely available on the web. This book attempts to cover the use of flex and
bison primarily by means of examples. There are many good reference manuals
and tutorials for flex and bison available on the web, together with text books such
as [6, 7].

Before tackling the principles of developing bison grammar specifications it may
help to glance back to Sect. 3.4.1 where there is a brief description of the input
required by flex. At the highest level, the input required by bison is identical, con-
sisting of three sections, separated by %% lines.

definitions
%%
rules
%%
user code

http://dx.doi.org/10.1007/978-3-319-52789-5_3
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Furthermore, the ideas behind the rules are similar. The rules consist of a list of
patterns with corresponding C code. In the parser that is generated, when a pattern
is matched, the corresponding C code is executed. But here, the patterns are not
regular expressions. They are instead grammar production rules and these can be
taken directly from the formal definition of the language being parsed.

5.2.2.1 A Very Simple Bison Example

Let us return to a simple example, used earlier in this chapter (in Sect. 5.1.1) to
illustrate the top-down parsing of the grammar from Sect. 4.2.3. Here again is the
grammar.

S → Az|z
A → x A|B
B → y

We have already seen that parsing it using a hand-written top-down predictive parser
poses no real problems. Generating a bottom-up LALR(1) parser using bison is
straightforward too. Again, we start with a recogniser rather than a full parser.

%{
#include <stdio.h>

void yyerror(char*);
int yylex(void);
%}

%%

S:
A ’z’ { printf("S->Az, done\n"); }
| ’z’ { printf("S->z, done\n"); }

A:
’x’ A { printf("A->xA\n"); }
| B { printf("A->B\n"); }

B:
’y’ { printf("B->y\n"); }

%%
void yyerror(char *s)
{

printf("***%s\n",s);
}

int yylex() {
int ch;
ch=getchar();
while (ch==’\n’) ch=getchar();

http://dx.doi.org/10.1007/978-3-319-52789-5_4
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return ch;
}

int main()
{

if (yyparse() == 0) printf("Parsing successful\n");
else printf("Parsing failure\n");

return 0;
}

This file is passed through the bison tool and a C file is generated. This C file is
then compiled and when run produces this output:

$ ./simplebottomup
xyz
B->y
A->B
A->xA
S->Az, done
Parsing successful
$ ./simplebottomup
xxxxyz
B->y
A->B
A->xA
A->xA
A->xA
A->xA
S->Az, done
Parsing successful
$ ./simplebottomup
xxxxz
xxxxz
***syntax error
Parsing failure
$ ./simpletopdown
z
S->z, done
Parsing successful

The bison code needs some explanation.

• The three sections are clearly visible—definitions, rules, user code. The defini-
tions section contains declarations required by the bison rules, but there are none
needed in this example. See below for the use of %token declarations. It also con-
tains C code to be copied directly to bison’s output, contained between the symbols
%{ and %}. This is a good place for including header files and declarations required
by the C code in the actions in the rules section and in the user code.
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In this example, we include the function prototypes for yyerror (called by the
bison parser when a syntax error is detected) and yylex (the lexical analyser
function, returning the next lexical token from the input each time it is called).

• The rules section corresponds to the set of BNF rules defining the syntax of the
language. The syntax of the rules is reminiscent of BNF, but a colon is used to
separate the non-terminal from its definition. In the rule defining the non-terminal
S the right-hand side of the definition indicates that S is either an A followed by
the character z or a single character z. The | symbol is used as in BNF to indicate
alternatives. Because A is not enclosed in quote marks, it is taken as a non-terminal
and bison expects its definition to appear in due course. In this grammar, x, y and
z are all terminal symbols because they are enclosed by single quote marks. And
because S is the first non-terminal to be defined, it is taken as the starting symbol.

• Each rule consists of a pattern and a corresponding action. The idea is simple.
When the bison-generated parser runs, it matches these patterns with the input,
controlled by the parsing algorithm, and if a pattern matches, the corresponding
action is executed. Here, the actions are used for tracing the execution of the
parsing process. We will worry about more complex actions later, specifically the
generation of the parse tree.

• The final section of user code defines additional functions required by the parser.
Bison simply copies this section straight to its output. The yyerror function is
called by the parser when an error has been detected and here we just output a
message. We will tackle the problem of error reporting and recovery later in this
chapter. The yylex function is the lexical analyser. Here, it gets the next character
from the input, ignoring newline characters. Although the original BNF grammar
says nothing about ignoring newlines they are ignored here to result in a slightly
cleaner user interface, removing the potential confusion caused by the need for a
newline to send an input buffer to the running programwhen running interactively.
Finally the main function is defined. This calls the yyparse function which is
the bison-generated parser. If yyparse returns the value zero, the parse has been
successful.

Does the output from the parser look reasonable? If we consider just the parsing
of the xyz example, the rightmost derivation is S → Az → x Az → x Bz → xyz.
When reversed, this corresponds to the tracing generated by the parse of xyz, shown
above.

This approach is looking promising. The transformation from BNF rules to bison
rules does not seem too complicated and once the nature of the definitions and user
code sections have been understood, the preparation of the complete bison input
should be manageable. But there are some significant practical issues that have to
be considered in moving from this simple example to a parser for a more complex
programming language.

• The actions in this example are simplistic. We typically need to do a lot more.
Specifically, there has to be a mechanism for passing data from the matching rules
and the corresponding action code. For example, if we wanted to generate a node
for the parse tree in the first rule of S’s definition, the action code has to have
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access to a pointer value corresponding to the tree already generated for the A

non-terminal. Fortunately, bison has a simple syntax for specifying this, and it
will be shown in the next example.

• We have to think about error reporting and error recovery. Looking at the top-down
parser example for this grammar, it is easy to see how to add helpful messages
about expected tokens, but that seems more difficult here.

• The function yylex here is hand-written. Clearly, for more complex languages,
using flex to generate the lexical analyser would be more sensible. The integration
of flex output with bison code is fortunately very simple.

• It is important to spend some time checking that the original grammar has been
translated accurately into the bison format. Errors can easily occur and can cause
warnings referring to shift/reduce or reduce/reduce conflicts, or worse, can cause
no warnings at all and a parser for the wrong grammar is produced. These errors
can be difficult to diagnose.

At this stage it may be helpful to add a little explanation of shift/reduce and
reduce/reduce conflicts, reported by tools such as yacc and bison. The parsers gener-
ated by these tools are implementations of shift–reduce parsers. If the grammar being
processed results in a parser where it is possible that both a shift and a reduce are
valid at a particular point in the parse, then a shift/reduce conflict will be flagged. This
indicates a form of ambiguity in the grammar. Ideally it will be mended by modify-
ing the grammar appropriately. However, both yacc and bison have special directives
to permit ad hoc resolutions of this form of conflict to be made. A reduce/reduce
conflict also indicates problems with the grammar. This type of conflict occurs when
there are two or more rules that can be applied to perform a reduction on the same
sequence of input. Again, modification of the grammar is required.

Properly dealing with any such conflicts in a grammar is important. But tracing
the real cause of the problem from the yacc or bison errors and making appropriate
modifications can be difficult. An understanding of the operation of a shift–reduce
parser can help.

5.2.2.2 A More Useful Bison Example

No practical description of the flex and bison tools is complete without an example
of a numerical calculator. A conventional grammar for arithmetic expressions, based
on the example in Fig. 2.3 can be constructed as follows:

<calculation> :: = <expr> \n
<expr> :: = <term> |<expr> + <term> | <expr> - <term>

<term> :: = <factor> | <term> * <factor> | <term> / <factor>
<factor> :: = CONSTANT | (<expr>)

This grammar accepts a single expression terminated by a newline character (′\n′).
The expression uses brackets and the standard integer arithmetic operators with the
conventional precedences.

http://dx.doi.org/10.1007/978-3-319-52789-5_2
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%{
#include <stdio.h>
#include <ctype.h>

void yyerror(char*);
int yylex(void);

int ival;
%}

%token CONSTANT

%%

calculation:
expr ’\n’ { printf("%d\n", $1); }

expr:
term { $$ = $1; }
| expr ’+’ term { $$ = $1 + $3; }
| expr ’-’ term { $$ = $1 - $3; }

term:
factor { $$ = $1; }
| term ’*’ factor { $$ = $1 * $3; }
| term ’/’ factor { $$ = $1 / $3; }

factor:
CONSTANT { $$ = ival; }
| ’(’ expr ’)’ { $$ = $2; }

%%
void yyerror(char *s)
{

printf("***%s\n",s);
}

int yylex() {
int ch;
ch=getchar();
while (ch==’ ’) ch=getchar();
if (isdigit(ch)) {
ival=0;
while (isdigit(ch)) {

ival=ival*10+(int)ch-(int)’0’; /* ignore overflow */
ch=getchar();

}
ungetc(ch,stdin);
return CONSTANT;

}
else return ch;

}

int main()
{

return yyparse();
}
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This file (called calc.y) is processed by bison (bison calc.y using the Linux
command line) and a C file (calc.tab.c) is generated. This C file is then compiled
(gcc -o calc calc.tab.c) and when calc is run it produces this output:

$ ./calc
(2+3)*(9+100)
545
$ ./calc
22/7 + 10
13
$

Again, this bison code needs some explanatory notes.

• In the definitions section we define a global variable ival which contains the
value of the integer CONSTANT last read. So when the yylex lexical analyser
function returns the token type CONSTANT, the syntax analyser has the value of
the constant available in ival.

• The rules section define four non-terminal symbols—calculation, expr, term
and factor. In the action code for calculation the final value of the calculation
is printed, and this value was passed back as the value returned by the parsing of
expr. Here we see a really important feature of bison. Bison allows the return of a
value from the recognition of a symbol. In default the type of this value is an int

but we will see later that it makes sense to change this when we are dealing with
tree construction in the parser.
In this application we use this mechanism to pass back integer values from the
symbols CONSTANT, factor, term and expr. In the rule calculation, the
result is returned through expr and this value is referred to in the action using the
symbol $1—the value from the first token (token number 1) in the rule.
The next action (for the rule expr: term) passes the value obtained from the
parsing of term ($1) as the value to be returned by expr ($$). Similarly, the
action for the rule expr: expr ’+’ term adds the values obtained via expr

and term and returns the sum through expr.
In the actions for factor, the value ival is returned through CONSTANT and
note that the value returned for ’(’ expr ’)’ is $2. The pseudo-variable $1

corresponds here to the symbol ’(’.
• The lexical analyser yylex looks for space characters and ignores them. This
is not strictly necessary because spaces are not mentioned in the original BNF
grammar, but ignoring them seems like a sensible thing to do. If yylex encounters
a digit, it accumulates the value of the constant, leaving this value in the global
variable ival and returning the pre-defined terminal CONSTANT. Note the use of
ungetc(ch,stdin) to backspace over the character following the constant. This
character will be read next time yylex is called. The alternative way of managing
this situation is using a single character lookahead, but this would add a little to
the code complexity in this example. Note also that we do not deal with overflow
properly here.
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• The main program simply calls the parser.

There are some further practical issues here. This example shows an easy way
of implementing a numerical calculator program. The rules section is built directly
from the BNF specification and there are no worries about left recursion because
this is a LALR(1) parser. It would be possible to add other features, operators and
functions, floating point arithmetic and so on, but under these circumstances it would
be sensible to resort to a lexical analyser generated by flex.

One obvious shortcoming of this particular implementation is that the program
needs to be restarted for each new calculation. Mending this is easy. We can just
make the non-terminal calculation a list of expressions separated by newlines.
So calculation can be redefined in BNF as
<calculation> :: = <calculation> <expr> \n | ε

Bison can cope perfectly easily with this form of production, even with the use of an
empty alternative. The first bison rule is then replaced by:

calculation:
calculation expr ’\n’ { printf("%d\n", $2); }
| /* empty */

andmultiple expressions separated by newlines can be entered. It is especially impor-
tant to realise that in themodification of the pattern we have introduced a new symbol
calculation and thismeans that the$1 in the action has to be changed to$2. Unfor-
tunately losing the correct correspondence between symbols and the $n symbols in
the action is a common source of error in bison specifications and can result in parsers
that are difficult to debug. This is always worth double checking, preferably before
things start going wrong.

If an action is omitted, the default action of { $$ = $1; } is normally applied
automatically. However this may not be what is always needed, and so always insert-
ing an explicit action is sensible.

The power and ease of use of bison and similar tools is attractive and this approach
to the coding of bottom-up parsers has been used effectively in many compiler
projects.

5.3 Tree Generation

In the last two sections, examples of top-down and bottom-up recognisers have been
presented. But in a compiler, more is required from the syntax analysis phase. There
are some compiler-related applications where the task can be completed by simply
adding code generation code to the recognising code. For example, it may be possible
for very simple programming languages to produce target code, probably for some
form of virtual machine, directly from the recognising process. But for the majority
of compiled languages we will need a little more, and the code that has to be added
will generate the parse tree.



5.3 Tree Generation 111

Generating a parse tree turns out (at least in theory) to be simple. But before
any code can be added to the recogniser, it is vital to do some tree design first. In
Sect. 2.3.3.1, parse trees and abstract syntax trees were illustrated. Clearly, the design
of the tree produced by the syntax analyser is controlled by the formal syntax of the
language being compiled, but the details, specifically of which of the non-terminals
and/or productions should have tree nodes associated with them, have to be resolved.
In otherwords,we have to decide for each reduction performed by the syntax analyser
whether a tree node is generated and if so, what data must that node include.

This can be made clearer using an example. Return again to the simple arithmetic
expression language from Fig. 2.3.

<expr> :: = <term> | <expr> + <term> | <expr> - <term>

<term> :: = <factor> | <term> * <factor> | <term> / <factor>
<factor> :: = <integer> | (<expr>)
<integer> :: = <digit> | <integer> <digit>
<digit> :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The abstract syntax trees for this language can be made very simple, as in the
example of Fig. 2.4b. There are five different types of node in the tree, one for each
of the four arithmetic operators and the fifth to hold a constant integer value. This
implies that only the following reductions from the grammar cause actual tree nodes
to be generated:

<expr> :: = <expr> + <term>

<expr> :: = <expr> - <term>

<term> :: = <term> * <factor>
<term> :: = <term> / <factor>
<factor> :: = <integer>

We have made an obvious and reasonable simplification here by regarding an
<integer> as a lexical token, thus not requiring the structure of an integer to be
encoded into the syntax tree. Furthermore, for this example, parentheses are not
required in the tree either. These are used for syntactic grouping and their effect is
automatically included because of the way in which the tree is constructed.

The actual code required to construct the tree fortunately turns out to be simple.
We have already seen (Sect. 5.2.2.2) how a bottom-up recogniser for these arithmetic
expressions can be coded using bison. This code can be augmented as follows to
generate a tree rather than evaluating the expression on the fly:

expr:
term { $$ = $1; }
| expr ’+’ term { $$ = newnode(N_PLUS, 0, $1, $3); }
| expr ’-’ term { $$ = newnode(N_MINUS, 0, $1, $3); }

term:
factor { $$ = $1; }
| term ’*’ factor { $$ = newnode(N_MUL, 0, $1, $3); }
| term ’/’ factor { $$ = newnode(N_DIV, 0, $1, $3); }

http://dx.doi.org/10.1007/978-3-319-52789-5_2
http://dx.doi.org/10.1007/978-3-319-52789-5_2
http://dx.doi.org/10.1007/978-3-319-52789-5_2


112 5 Practicalities of Syntax Analysis

factor:
INTEGER { $$ = newnode(N_INTEGER, ival, NULL, NULL); }
| ’(’ expr ’)’ { $$ = $2; }

This code assumes the availability of a function newnode which generates a new
node for the syntax tree. Each of these nodes contains four fields. The first field
contains an integer constant (N_PLUS, N_MINUS, N_MUL, N_DIV or N_INTEGER)
indicating the type of the node. If the node has type N_INTEGER (i.e. it contains an
integer constant) the second field contains the value of the integer constant and zero
otherwise. The third and fourth fields contain links to the left and right subtrees,
respectively. For example, the syntax rule expr ’+’ term results in a node being
created with type N_PLUS, a zero second field, a third field (the left subtree) pointing
to the tree generated for the expr and a fourth field (the right subtree) pointing to
the tree generated for the term. Once the reduction of expr ’+’ term has been
completed, newnode is called and the result returned by newnode is passed back to
the calling rule.

Similarly,when anINTEGER is reduced, a newnode of typeN_INTEGER is created,
the value of that integer constant (in this case placed in the C variable ival) is placed
in the node and the link to the node is returned to the calling rule.

As the parse proceeds, the tree is constructed node by node, the linking of nodes
being driven by the order in which the reductions are performed. A full example of
this technique can be seen in Sect. 5.4.2.

A very similar approach is taken for the top-down approach. The recogniser can be
transformed into the complete parser by adding the code to generate tree nodes. Each
time a construct requiring a tree node is recognised, a call is made to a function to
allocate space for a new node, the fields are filled in appropriately and the recognising
function passes back a link to this node to its caller. For example, suppose a grammar
contains the production P → QR. The recogniser would then have the form

void P() {
Q(); R();

}

To add tree generation, it would make sense to modify these recognising functions
to return a pointer to the subtrees they generate. The code would then look like this:

astptr P() {
astptr qptr, rptr;
qptr = Q();
rptr = R();
return newnode(N_PNODE, qptr, rptr);

}

Here, the type astptr represents a pointer to a node in the tree, and we assume
that the node for this structure P has three fields, the first identifying it as representing
a structure P, the second pointing to the subtree for Q and the third pointing to the
subtree for R.
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Dealing with the recognising code generated from EBNF productions of the form
E → T {+T } is not difficult but has to be done after deciding on the structure required
for the resulting tree. Examples of tree generating code for top-down parsers is shown
in Sect. 5.4.1.

5.4 Syntax Analysis for DL

The BNF of DL is shown in the appendix. The process of transforming this grammar
into a syntax analyser, top-down or bottom-up, should be uncomplicated, especially
if the code is developed in a structured and step by step way. However, there are
inevitably some trickier aspects, and these will be highlighted in the sections below.

The aim here is to develop two syntax analysers for DL, the first using a hand-
written top-down approach and the second using bison to generate a bottom-up
parser. The syntax analysers should generate identical outputs for feeding into the
next phase of compilation. The top-down parser here has been combined with a
hand-written lexical analyser and the bottom-up parser is used with a flex-generated
lexical analyser.

5.4.1 A Top-Down Syntax Analyser for DL

DL has been designed to have a simple but not trivial syntax, without any structures
which could cause any significant difficulty to a top-downpredictive parser. However,
there is sufficient complexity to require some careful planning before coding.

Tackling the implementation of the front-end of a DL compiler raises some impor-
tant issues.

• Lexical analysis—let us assume here that the lexical analyser is complete andwell-
tested. We should also know in detail how the tokens from the lexical analyser are
structured, encoded and passed on to the syntax analyser. This issue has already
been covered in Chap.3.

• What arewe expecting the syntax analyser to produce?Traditionally the next phase
of compilation is likely to require a syntax tree and this is what will be produced
in these examples. Clearly, debugging output is required too. This should include
a trace of the execution of the parsing process together with a human-readable
version of the tree (to be checked in the testing phase) and the contents of other
front-end data structures such as the symbol table.
What should the tree look like? It is essential to produce a list of node types in the
tree and decide what data each node should contain. This should largely be driven
by the non-terminal symbols defined in the grammar of DL.

• How reliable would we like error recovery to be? Always getting it right, whatever
that means, may not be feasible. But error detection should always work.

http://dx.doi.org/10.1007/978-3-319-52789-5_3
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• How should names/symbols be handled? A symbol table is essential. What has to
be stored for each symbol? What about data structures? Do we need a hash table
or some form of binary tree, or will simple linear search be adequate? Are there
issues concerning the handling the scopes of names?
Fortunately DL’s symbol management is not too challenging. Names in the sym-
bol table refer to a function or to an array or to a variable. So there are just three
distinct types. There are a few other items of information to store for each symbol
and these will be covered later but each symbol entry can be represented by a
simple C struct. As names are declared they are inserted into the symbol table
and whenever a name is used, it is looked up in the symbol table. But there is a
slight complication here. DL allows the declaration of variables within functions
so that in code of the form:

int v1;

f();
int v1;
{ v1 = 1; /* this sets the locally defined v1 */

.

.

.
}

{ v1 = 1; /* this sets the globally defined v1 */
.
.
.

}

the variable v1 will be placed into the symbol table twice and the correct one has
to be found each time it is used. Fortunately, there is an easy way of managing this.
If the symbol table is structured as a stack, linear search starting at the top of the
stack can be used for symbol lookup. Looking up v1 within function f will find
the entry nearer the top of the stack. If another variable v2 is declared globally,
searching for v2 within the compilation of f will also succeed. This may well not
be the most efficient way of managing a symbol table, but it is certainly simple.
Maybe with such a simple language, we do not expect huge programs to be written
so the overhead of linear search is not a problem.
Symbol tables are covered in more detail in Sect. 5.6.

Tackling the top-down syntax analyser for DL should follow the steps outlined in
Sect. 5.1.1.1—check the lexical analyser,write a recogniser, add tree generation code,
add error recovery, test. During this process there will be a need to include various
other utility functions such as symbol table management, syntax tree management
(particularly printing the tree) and so on. We have already discussed the testing of
the lexical analyser and in this section we examine some of the key aspects of the
subsequent steps.
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5.4.1.1 Writing a Recogniser

A recognising function should be written for each of the non-terminals in the BNF
grammar. Fortunately there is little in the DL grammar that needs special attention
in its translation from BNF rules to recognising code and the approach presented
earlier in this chapter can be adopted. We can examine here any special issues for
the functions recognising individual non-terminal symbols.

• <program>

Looking further on in the grammar, it can be seen that a<block>must start with
a { token. This enables the correct alternative in the definition of <program> to
be selected using the single token lookahead. The global variable token contains
the current lexical token returned by the lexical analyser (the function lex()). The
function syntrace simply outputs its argument if the value of a global tracing flag
is set TRUE. This allows simple turning on or off of the tracing of the recogniser’s
execution. Here, the message is output when the recognising function is entered. It
is perfectly possible to output the message instead when the recognition has been
successfully completed.

<program> ::= <block>
| <declarations> <block>

void program()
{

syntrace("<program>");
if (token == opencurlysym) block();
else {

declarations();
block();

}
}

• <declarations>

It is clear that the BNF rule defines<declarations> to be a sequence of one or
more <declaration>. But what terminates this sequence? Looking at the
definition of <declaration>, a <declaration> must start with an int

token from <variabledeclaration> or an <identifier> from a
<functiondeclaration>. But maybe a slightly clearer approach is to
stop when the token following <declarations> is found. This is just the
token { (which starts a <block>).

<declarations> ::= <declaration>
| <declaration> <declarations>
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void declarations()
{

syntrace("<declarations>");
declaration();

while (token != opencurlysym) /* until a <block> */
declaration();

}

• <vardec>

The definition of <vardec> has two alternatives, both starting with the token
<identifier>. A factoring transformation can formalise the implementation
of a recogniser here, but it amounts to the same thing as coding the recognition of
an <identifier> and then looking for a following [ token.
In this code the function error is called, outputting the error message and then,
for now, causing the program to stop. We will worry about error recovery later.
Note the explicit calls (token=lex();) to the lexical analyser to maintain the
single token lookahead throughout.

<vardec> : := <identifier> | <identifier> [ <constant> ]

void vardec()
{

syntrace("<vardec>");
if (token != identifiersym)

error("identifier expected in vardec\n");
else {

token=lex();
if (token == opensquaresym) { /* it’s an array */

token=lex();
if (token != constantsym)

error("need array size\n");
else {

token=lex();
if (token != closesquaresym)

error("need close square bracket in array declaration\n");
else

token=lex();
}

}
}

}

• <statement>

Handling a<statement>may look challenging but it turns out to be perfectly-
manageable. Looking elsewhere in the grammar it is clear that the current looka-
head lexical token will disambiguate between the alternatives. The <empty>



5.4 Syntax Analysis for DL 117

statement is recognised if none of the other alternatives can match. In this case
control just falls through the statement() function.

<statement> : := <assignment> | <ifstatement> | <whilestatement>
| <block> | <printstatement> | <readstatement>
| <returnstatement> | <empty>

void statement()
{

syntrace("<statement>");
if (token==identifiersym) assignment();
else if (token==ifsym) ifstatement();
else if (token==whilesym) whilestatement();
else if (token==opencurlysym) block();
else if (token==printsym) printstatement();
else if (token==readsym) readstatement();
else if (token==returnsym) returnstatement();
/* else empty */

}

• <expression>

Finally we should include an example of a left-recursive production. The
<expression> rule shows that <addingop> is both a binary and unary
operator. As usual, we deal with the left recursion by replacing it by iteration.

<expression> : := <expression> <addingop> <term>
| <term> | <addingop> <term>

void expression()
{

syntrace("<expression>");
if ((token==plussym) || (token==minussym))

token=lex();

term();

while ((token==plussym) || (token==minussym)) {
token=lex();
term();

}
}

Not all the non-terminal symbols in DL’s BNF grammar need to have correspond-
ing recognising functions because sometimes the recognition can be donemore easily
and transparently where they are used in other recognising functions. For example,
there is no real need for explicit recognising functions to be written for <relop>,
<addingop> or <multop>.

The tracing of the execution of the parsing of the very simple DL program shown
in Fig. 5.1 illustrates the order in which the recognising functions are called.
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Fig. 5.1 A very simple DL
program

int a;

{

a = 2 + 3*a

}

The output from the recogniser when parsing this simple program should be
something like this:

<program>
<declarations>
<declaration>
<variabledeclaration>
<vardeflist>
<vardec>
<block>
<statementlist>
<statement>
<assignment>
<expression>
<term>
<factor>
<term>
<factor>
<factor>
****PARSE ENDED****

Checking this output by hand is plainly tiresome for anything but the most trivial of
programs. It may be better to leave more extensive testing to the next stage, once the
tree has been generated.

5.4.1.2 Tree Generation

We have already seen in Sect. 5.3 that the principles of adding tree generation to the
recognising code are easy, but there are inevitable complications. Each recognising
function has to be modified so that it returns a pointer to a tree node corresponding
to the syntactic structure it has just recognised. The linking of all these nodes takes
place as the parsing proceeds, thus ending up with a complete parse tree.

The first step here is to design the tree, specifying all the different node types
and what each node should contain. Typically, there should be one node type
for each of the non-terminals in the grammar, but in practice there is no need
for some of these non-terminals to appear in the tree since they are just not
needed for the generation of target code. Also it may be possible to simplify
the tree and hence its further processing by making minor changes to the way
in which the grammar is represented. For example, the node for the BNF rule
<expression> ::= <expression><addingop><term> could be repre-
sented as an <expression> node with three subtrees, storing the
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<expression>,<addingop> and<term>, respectively. Instead, it is proba-
bly better to associate the<addingop>with the<expression>node sowecan
use twodifferent nodes labelledwithplus andminusbothhaving<expression>

and<term> subtrees. However, remember that there is not just a single correct tree
design.

Turning now to the specific task of the design of a tree for DL, we can propose a
set of node types based on a subset of the non-terminal symbols. In this design each
tree node is made up of a fixed number of fields. This simplifies the implementation a
little and is fine for a compiler for DL. Each node contains an integer value indicating
the type of the node, an additional two integer values and three pointers to be used
to point to subnodes. The integer field astdata2 is used where needed to indicate
whether a variable has been declared locally or globally. This will be described in
detail later. A list of these node types is shown in Table5.1.

The tree nodes are declared as follows:

typedef struct tnode *astptr;

typedef struct tnode {
int asttype;
int astdata1,astdata2;
astptr p1,p2,p3;

} astnode;

To illustrate this tree structure we can return to the simple program of Fig. 5.1.
The generated tree is shown in Fig. 5.2. The parser keeps a pointer to the main block
and a separate pointer to the chain of function definitions. Here, the chain is empty
because there are no functions in the program.

Enhancing the recognising code to add tree generation is illustrated by the code for
handling <expression>. The function expression() returns a pointer of type
astptr to its caller and this returned result points to the complete tree representing
the expression.

astptr expression()
{

astptr pfirst; /* first pointer in the expr chain */
astptr term2;
int startingtoken,nodetype;

syntrace("expression");
startingtoken=plussym;
if ((token==plussym) || (token==minussym)) {

startingtoken=token;
token=lex();

}
pfirst=term();
if (startingtoken==minussym)

pfirst=newnode(N_UMINUS, 0, pfirst, NULL, NULL);
while ((token==plussym) || (token==minussym)) {

if (token==plussym) nodetype=N_PLUS; else nodetype=N_MINUS;
token=lex();
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Table 5.1 Parse tree nodes

Node type Data Pointer 1 Pointer 2 Pointer 3

N_SLIST (Statement list) – Next
statement

– –

N_ASSIGN (Assign to variable) Variable
location

Expression – –

N_PRINT (Print expression) – Expression – –

N_UMINUS (Unary minus) – Term – –

N_PLUS, N_MINUS, N_MUL,
N_DIV (Arithmetic operators)

– Term or
factor

Term or
factor

–

N_EQ, N_NE, N_LT, N_LE,
N_GT, N_GE (Relational
operators)

– Expression Expression –

N_CONST (Integer constant) Constant
value

– – –

N_ID (Variable identifier) Variable
location

– – –

N_ARRAYREF (Array reference) Array
location

Expression – –

N_ARRAYWRITE (Assign to
array element)

Array
location

Index
expression

Rhs
expression

–

N_FUNCTION (Function
definition)

Function
location

Argument list Block –

N_FNCALL (Function call) Function
location

argument list – –

N_ARG (Argument list) – Argument
expression

Next in
argument list

–

N_RETURN (Return from
function)

– Expression – –

N_READ (Read to variable) Variable
location

– – –

N_WHILE (While statement) – Bexpression Block –

N_IF (If statement) – Bexpression Then block Else block

N_FUNCTIONDEC (Function
definition chain)

– Function Next in chain –

term2=term();
pfirst=newnode(nodetype, 0, pfirst, term2, NULL);

}
return pfirst;

}

This code needs a little explanation. The BNF rule for <expression> has
been rewritten as the EBNF equivalent
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main block

N SLIST

N ASSIGN (variable 0)

N PLUS

N CONST (value 2) N MUL

N CONST (value 3) N ID (variable 0)

Fig. 5.2 Tree from the program of Fig. 5.1

expression = ["+" | "-"] term {("+" | "-") term}.

The code stores any leading sign (plus in default) and then calls term(). The tree
generated by term() is saved in pfirst and if that term was preceded by a unary
minus, a unary minus node is inserted. Then, each time an adding operator followed
by a term is found, a new node is generated containing the adding operator found,
with the expression so far as the left-hand side and the new term as the right hand side.
Note that this ensures the left-associativity of the adding operators. The newnode

function obtains memory space for a new tree node, large enough to contain the
node’s type, an integer value and three pointers to other nodes. As seen in this code,
the N_UMINUS node requires one pointer and the N_PLUS and N_MINUS nodes require
two pointers.

A similar example handles the while statement.

astptr whilestatement()
{

astptr pbexp=NULL;
astptr pwhile=NULL;

syntrace("whilestatement");
if (token != whilesym) error("while expected\n");
else {

token=lex();
if (token != openbracketsym)
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error("open bracket after while expected\n");
else {

token=lex();
pbexp=bexpression();
if (token != closebracketsym)

error("close bracket in while expected\n");
else {

token=lex();
pwhile=newnode(N_WHILE, 0, pbexp, block(), NULL);

}
}

}
return pwhile;

}

The N_WHILE node combines two subtrees, one from the <bexpression>

and the other from the target <block> of the while.
An important issue concerns the parse tree and variable declarations. InDL there is

no need to put variable declarations (<variabledeclaration>) in the parse
tree. When a variable is declared, the information about that variable is stored in
the symbol table. This information includes the text representation of the symbol,
its type (integer, array or function), its size if an array and for integer variables and
arrays the runtime location of the storage used for that variable. A reference to a
variable in the parse tree just needs its runtime storage location. After the parsing
process there is no need to know the text name of the variable. We will be looking at
runtime storage issues later in Sect. 5.6

Variable name management in the syntax analyser for DL therefore requires that:

• on declaration, insert the variable name into the symbol table, including type and
size if necessary.

• on encountering the use of a variable, look up that variable in the symbol table.
If it is not there, then an error is reported (variable not declared) and if it is there,
then the runtime storage location stored in the symbol table entry is copied to the
parse tree. A pointer to the symbol table entry could be stored in the tree instead.

5.4.1.3 Error Detection and Recovery

The error detection code is already present in these examples. It is easy and natural
to incorporate it with the recognition code as it is being written. However, error
recovery has not been specified, but an error function has already been presented
above where the action is to output the error message and then exit from the program.
We need to do better and this is discussed in Sect. 5.5.
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5.4.1.4 Utility Functions

To support the lexical analysis, the syntax analysis and the tree generation, we need
a set of utility functions to perform various general tasks such as symbol table man-
agement, space allocation and initialisation of tree nodes, tree printing and other
debugging operations such as tracing the execution of both the lexical and syntax
analysers.

Printing the tree can be a little awkward because something is required during the
debugging stages to enable the tree to be verified by eye. A simple approach is to
write code to perform a conventional pre-order traversal of the tree where the node
identity is output, followed, recursively, by the children of that node. For example,
the output for the program of Fig. 5.1 presented in this way appears as:

N_SLIST - Statement list, this statement:
| N_ASSIGN - Assign to variable at offset 0, expression is:
| | N_PLUS - plus, lhs is:
| | | N_CONST - const, value is: 2
| | N_PLUS - plus, rhs is:
| | | N_MUL - mul, lhs is:
| | | | N_CONST - const, value is: 3
| | | N_MUL - mul, rhs is:
| | | | N_ID - identifier, runtime offset 0
N_SLIST - Statement list, continued...

This is obviously not as clear as the graphical tree of Fig. 5.2 but the traversal code is
easy to write and with some practice, this format is not too difficult to comprehend.
An alternative approach is to get the compiler to generate control commands for
some text processing/graphics program which has facilities for the generation of
neatly presented trees.

The code in function printtree to generate this human-readable tree is based
on a large switch statement with a case for each of the node types. An example of
this code shows how to deal with the node for the if statement:

case N_IF:
printf("N_IF - if, condition:\n");
printtree(xx->p1, depth+1);
tabout(depth);
printf("N_IF - if, thenpart:\n");
printtree(xx->p2, depth+1);
tabout(depth);
printf("N_IF - if, elsepart:\n");
printtree(xx->p3, depth+1);
break;

The second argument to printtree is a tree depth, used to control the printing
of the leading layout characters on each output line.

Managing the symbol table implemented in the form of a stack poses no real
problems. Functions for symbol insertion and symbol lookup need to be coded, and
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a function to output the entire contents of the symbol table can be a useful debugging
aid.

5.4.1.5 Testing

The front-end code has to be systematically tested in stages. Clearly, validating the
output for a large range of test programs, including difficult examples, is essential.
It is possible to use a software tool to generate random syntactically correct DL
programs from the BNF grammar and these can all be put through the front-end. The
trees thus generated could also be verified, perhaps automatically.

Including tracing code can also help verify that all iswell. And keeping this tracing
code available throughout the compiler’s development will help debug problems
found later in the project.

Testing is not easy and perhaps the most important point is that it is essential when
scheduling a compiler project to allow sufficient time for this phase of development.
Just checking that a “Hello world!” program works is definitely not adequate.

5.4.2 A Bottom-Up Syntax Analyser for DL

Most of the issues discussed in the last section on top-down syntax analysis apply just
as well to a bottom-up approach. Our aim here is to make use of the lexical analyser
already discussed in Chap. 3, generated by flex from regular expressions defining the
syntax of DL’s lexical tokens, and then to use bison to generate the complete syntax
analyser. We hope to be able to generate an identical tree to that produced by the
top-down parser.

The task of producing a bottom-up parser follows the same steps as for the top-
down parser. Firstly, ensure that the lexical analyser is working, then code a recog-
niser, add tree generation, add error recovery and test throughout.

The lexical analyser for DL written using flex has already been developed in
Sect. 3.4.1.2. The code generated by flex will be combined with the code from
the bison-generated syntax analyser to produce the complete front-end. Many of
the design decisions have already been taken because there is much commonality
between the top-down and bottom-up parsers. For example, all the symbol table
functions, the tree manipulation code (creating and adding nodes, printing the tree)
and the execution tracing can be used without change. However, moving from a tra-
ditional top-down LL(1) parser to a much more powerful LALR(1) bottom-up parser
has some consequences, particularly in the way in which the tree is constructed. But
before any tree nodes are generated it makes good sense to develop a recogniser and
this is where the power of a syntax analyser generating tool is particularly apparent.

http://dx.doi.org/10.1007/978-3-319-52789-5_3
http://dx.doi.org/10.1007/978-3-319-52789-5_3
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5.4.2.1 Writing a Recogniser

Recall that the input to bison consists of three sections—definitions, rules and user
code, separated by %% lines. For the recogniser, the definitions section of the bison
input has to declare the named tokens returned by the lexical analyser. The complete
definitions section therefore looks like this:

%{
#include "dlrecog_defs.h"
%}

%token CONSTANT IDENTIFIER LESYM EQSYM GESYM NESYM ELSESYM IFSYM
%token INTSYM PRINTSYM READSYM RETURNSYM WHILESYM

%%

The header file dlrecog_defs.h defines any function prototypes required and
can contain #include directives for other (system) header files. The %token dec-
larations correspond to the tokens used in the lexical analyser (see Sect. 3.4.1.2).
In these examples, we are using a naming convention where terminal tokens are in
upper case and non-terminals are in lower case.

The bison rules for the recogniser are derived easily from the BNF rules defin-
ing DL. The correspondence between the two sets of rules should be very close.
For example, the BNF rules for <program>, <functiondeclaration>,
<ifstatement> and <expression> in DL are:

<program> : := <block> | <declarations> <block>

<functiondeclaration> : := <identifier> (); <functionbody>
| <identifier> ( <arglist> ); <functionbody>

<ifstatement> : := if ( <bexpression> ) <block> else <block>
| if ( <bexpression> ) <block>

<expression> : := <expression> <addingop> <term>
| <term> | <addingop> <term>

These BNF rules are translated into bison rules as follows. The syntrace function
is there to trace the execution of the syntax analysis and can be as simple as just
outputting its string argument.

program:
block

{ syntrace("program - without declarations"); }
| declarations block

{ syntrace("program - with declarations"); }

functiondeclaration:
IDENTIFIER ’(’ ’)’ ’;’ functionbody

{ syntrace("functiondeclaration - no args"); }

http://dx.doi.org/10.1007/978-3-319-52789-5_3
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| IDENTIFIER ’(’ arglist ’)’ ’;’ functionbody
{ syntrace("functiondeclaration - with args"); }

ifstatement:
IFSYM ’(’ bexpression ’)’ block ELSESYM block

{ syntrace("ifelsestatement"); }
| IFSYM ’(’ bexpression ’)’ block

{ syntrace("ifstatement"); }

expression:
expression addingop term { syntrace("expression"); }
| term { syntrace("expression - just term"); }
| addingop term { syntrace("expression - unary op"); }

Once the full set of bison rules has been produced, the section is terminated with
a %% line. The bison input file is then completed by adding the definitions of three
functions:

void syntrace(char *s)
{

if (TRACE) fprintf(stdout, "%s\n", s);
}

void yyerror(char *s)
{

printf("%s on line %d\n",s,yylineno);
}

int main(int argc, char *argv[])
{

if (yyparse() == 0) syntrace("Recogniser succeeds");
return 0;

}

The function yyerror is called if a syntax error is found. The generated parser/
recogniser is called by yyparse() in the main program.

It is important to understand how the lexical and syntax analysers are combined.
In particular, the names declared in the %token declarations in the syntax analyser
specificationmust be accessible in the lexical analyser. Taking the specific example of
this recogniser for DL, we start off with three files—the lexical analyser specification
file (dlrecog_lex.l), the syntax analyser specification file (dlrecog_syn.y) and
the header file (dlrecog_defs.h). When the file dlrecog_syn.y is processed by
bison, a new header file (dlrecog_syn.h) is generated, containing information
about the %token declarations and so on. This header file has to be included in the
code generated by flex. So the #include directives that have to be explicitly coded
are:

• dlrecog_lex.l has to contain #include dlrecog_defs.h and also it must
contain the line #include dlrecog_syn.h

• dlrecog_syn.y has to contain #include dlrecog_defs.h
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This task of generating a recogniser may turn out to be very simple, but it is
important to do it before tackling further steps such as tree generation. It forms a
good check on the correctness of the grammar and if shift/reduce or reduce/reduce
errors are reported these problems should definitely be investigated.

5.4.2.2 Tree Generation

Adding tree generation code to the recogniser canbe a little tricky for someconstructs.
The rule is, after the tracing code, to include a call to a function to generate and
initialise a new node for the tree. We have already seen how this can be done in
Sect. 5.3.

Our aim in this example is to produce the same tree as generated by the DL top-
down parser, already described. This can be done by including the functions already
developed for the top-down parser for DL for symbol table and abstract syntax tree
management and building on the rules in the bison recogniser. The additional code in
the rules has to generate and link tree nodes and it also has to access and manipulate
data in the symbol table.

One of the more significant changes in moving from a recogniser to the imple-
mentation of full tree generation is that the bison rules now have to return data
to their calling rules. Normally, the data type returned will be a pointer to a tree
node, but it is usual that other data types will be needed too. For example, a rule
to recognise an identifier may return the identifier as a string. Bison allows the user
to specify a union type to cover all the possible data types to be returned via the
terminal and non-terminal symbols. In our implementation for the parser for DL, the
specification is

%union {
int sval;
astptr psval;
char *strval;

}

and this allows integers, tree pointers and strings to be returned via rules. But to do
this, the actual single type returned by each of the terminal and non-terminal symbols
has to be specified in the bison input. Therefore, in the definitions section, terminal
symbols have to be declared (with their type) using %token and non-terminals are
given a type using the %type declaration.

%token <sval> CONSTANT
%token <sval> IDENTIFIER
%token <sval> ELSESYM
%token <sval> IFSYM
%token <sval> LESYM
.
.
%type <psval> program
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%type <psval> declarations
%type <psval> declaration
.
.
%type <sval> relop
%type <strval> identifier
%type <sval> constant

The design of the tree has already been presented in Table5.1. For many of the
non-terminal symbols, the construction of the corresponding tree nodes is easy. For
example, the rule for the conditional statement is:

ifstatement:
IFSYM ’(’ bexpression ’)’ block ELSESYM block

{ syntrace("ifelsestatement");
$$ = newnode(N_IF, 0, $3, $5, $7); }

| IFSYM ’(’ bexpression ’)’ block
{ syntrace("ifstatement");

$$ = newnode(N_IF, 0, $3, $5, NULL); }

Most of the statement types of DL are converted to their tree nodes in this general
way. Another example is the handling of expressions:

expression:
expression addingop term { syntrace("expression");

$$ = newnode($2, 0, $1, $3, NULL); }
| term { syntrace("expression"); $$ = $1; }
| addingop term

{ syntrace("expression");
if ($1 == N_MINUS)

$$ = newnode(N_UMINUS, 0, $2, NULL, NULL);
else $$ = $2; }

In this example, the first part of the rule, corresponding to the BNF rule
<expression> ::= <expression><addingop><term>

uses the value returned through addingop as the node’s type (either N_PLUS or
N_MINUS), the expression as the left subtree and the term as the right subtree.
There is no need to worry about associativity because this is handled automatically
by the parser and the way in which the grammar is phrased. For the BNF rule
<expression> ::= <term>, there is no need to create a new node. And for the
BNF rule <expression> ::= <addingop><term> a unary minus node is
created (or no new node if the addingop is N_PLUS).

Lists often appear in the designs of programming languages. For example, the
statementlist rule is

statementlist:
statement { syntrace("statementlist");

$$ = newnode(N_SLIST, 0, $1, NULL, NULL); }
| statement ’;’ statementlist {

syntrace("statementlist");
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$$ = newnode(N_SLIST, 0, $1, $3, NULL); }

Care has to be taken with such lists to ensure that the items in the list are placed in
the tree in the right order. Drawing pictures helps to get things correct.

There are some constructs wheremore complex actions are required. For example,
consider the handling of the <functiondeclaration>, defined as:

<functiondeclaration> : := <identifier> (); <functionbody>
| <identifier> ( <arglist> ); <functionbody>

To deal with this, the syntax analyser has to parse all the individual components,
place the <identifier> in the symbol table (as a function name) and then it has
to ensure that the state of the symbol table is saved before any new declarations from
the function are inserted, so that at the end of the parsing of the function, the local
variables can be removed by reinstating the symbol table. It is immediately clear that
this action of adding the function name to the symbol table cannot be done at the
end of the parsing of the <functiondeclaration> because at that stage, the
<functionbody> has been parsed. Fortunately bison has a useful feature that
resolves this problem, shown in the code and description below.

functiondeclaration:
identifier ’(’ { /* Code placing identifier into symbol table.

Save the state of the symbol table.
Save and reset a pointer to the storage of
local variables in the runtime stack. */ }

arglist ’)’ ’;’ functionbody { syntrace("functiondeclaration");
$$ = newnode(N_FUNCTION, functioncount++,

$4, $7, NULL);
/* Save storage requirements of this

function in the symbol table.
Reset local variable pointer. */ }

.

.

.

The code followingidentifier ’(’ is executed at that stage in the parsing process,
specifically before the arglist has been parsed. Since in this version of the parser,
the symbol table is organised in the form of a stack, just a single stack pointer has to
be saved at the beginning of the compilation of the function and restored at the end.
Further discussion of the issues concerning runtime storage of DL variables appear
in Sect. 5.6.

Dealing with declarations does not require new nodes to be placed into the tree.
Here, we need to be manipulating the symbol table instead:

vardeflist:
vardec { syntrace("vardeflist"); $$=NULL; }
| vardec ’,’ vardeflist { syntrace("vardeflist"); $$=NULL; }

vardec:
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identifier { syntrace("vardec"); insertid($1,S_INT,1); $$=NULL;}
| identifier ’[’ constant ’]’ { syntrace("vardec");

insertid($1,S_ARRAY,$3);
$$=NULL; }

Why is identifier rather than IDENTIFIER used in this example above?
According to the naming convention, IDENTIFIER is a terminal symbol (and indeed
is returned by the lexical analyser) and identifier should be a non-terminal. The
reason for doing this is shown in the definition of factor:

factor:
.
.
.

| identifier ’[’ expression ’]’
{ $$ = newnode(N_ARRAYREF, lookupid($1, S_ARRAY),

$3, NULL, NULL); }
.
.
.

In this simple rule and action, once the entire factor is recognised, the node for the
tree is created and returned. If IDENTIFIER had been used instead, the code of the
rule’s action would have no access to the text string corresponding to IDENTIFIER

assigned to a string variable in the lexical analyser, especially if the expression

contained other identifiers. This problem is resolved by defining identifier as a
non-terminal which returns a copy of its text representation as its result. The same
applies to the terminal token CONSTANT:

identifier:
IDENTIFIER { $$ = strdup(lexident); }

constant:
CONSTANT { $$ = lexnumval; }

Finally, the main program has to initialise global variables such as the top of the
symbol table, the first virtual location for the storage of variables, and so on, and
then call the bison-generated parser yyparse().

5.4.2.3 Error Detection and Recovery

If the bison-generated parser encounters a syntax error, the function yyerror is
called. This function is normally provided by the bison user and allows an error mes-
sage and other information to be output. The automatically generated error message
is normally “syntax error”, a message not sufficiently helpful for most applications.
yyerror returns to the parser and it tries to recover from the error if error recov-
ery has been specified, and the parsing continues. Otherwise the parsing terminates.
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Ignoring error recovery is adequate for some applications and even for initial testing
of a parser. However, the addition of some very simple error recovery may make the
parser much more useful.

An easy and possibly acceptable action on detecting an error is to skip input tokens
until a semicolon or close curly bracket is found and then regard that as the end of a
statement. Then parsing is allowed to continue. This can be done by augmenting the
set of rules for statement to include the rules

| error ’;’ { $$ = NULL; }
| error ’}’ { $$ = NULL; }

The use of the error token attempts to re-synchronise the input with the DL rules so
that parsing may continue. Plainly this will not always work perfectly, but it usually
does a good job.

5.4.2.4 Utility Functions

Theutility functions used in the bottom-upparser are largely identical to those already
described for the top-down parser. Specifically, tree generation and manipulation
need no modification at all. The use of a bison parser needs a few small functions to
be added and these have already been described.

5.4.2.5 Testing

Approaches to testing are the same as with the top-down parser. Checking that the
language’s grammar has been correctly transliterated into bison rules is a good first
step, ensuring that the pseudo-variables $1, $2, etc. are being used correctly. Bison
provides a set of tracing and verbose error reporting facilities. These may help, if
desperate.

5.4.3 Top-Down or Bottom-Up?

Choosing between a hand-written top-down predictive parser and a machine-written
bottom-up parser is not always easy. Issues to be considered include the following:

• The bottom-up approach requires the availability of an appropriate software tool
generating code in a form and in a programming language that can be integrated
with the rest of the project.

• Using parser generator tools is sometimes demanding because theremay be aspects
of the language’s grammar requiring implementation skill and maybe even syntax
modification to fit in with the constraints of the generator tool. Fortunately this
rarely seems to be an issue.
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• The use of a parser generator tool can save a great deal of time in generating parsing
code directly from a version of the language’s grammar. Implementation issues for
difficult aspects of the grammar are essentially hidden. It is therefore likely that
the parser will be somewhat more reliable than the hand-written top-down parser.

• The hand-written top-down approach makes it easier to introduce code hacks to
deal with particularly awkward aspects of the translation process, for example
dealing with some aspects of context sensitivity. Dealing with such issues in the
more formal framework imposed by a parser tool may be much harder.

• The bottom-up approach permits the use ofmore powerful grammars (for example,
LALR(1) versus LL(1)).

• Efficiency, in terms of execution time and runtime storage requirements, is unlikely
to be an issue in either approach.

• All parsing methods may require particular modifications to be applied to the
language’s grammar.

• The hand-written top-down predictive parser should be easy to write, easy to
understand and hence easy to modify and maintain. The internals of the bottom-
up parser are muchmore obscure. But there should be no real need to ever examine
the code generated by the bottom-up parser generator tool.

In the case of coding a parser for DL, there seems to be little difference in imple-
mentation efforts and time for the two approaches. The language is simple and
straightforward and causes neither implementation route much difficulty. The num-
bers of lines of source code are comparable. For larger languages the advantages
offered by the use of a parser generator may become more apparent. Furthermore,
the choice of an implementation method is made more complex because of the avail-
ability of a large number of parser-generating tools, both bottom-up and top-down,
with a wide range of different characteristics.

5.5 Error Handling

Errors are detected in all stages of compilation. We have already seen how errors
can be detected and reported by the lexical analyser. Errors detected in the syntax
analysis phase are examined in this section. And in the next chapter, semantic errors
such as type errors will be discussed. There are also, of course, errors detected when
the program generated by the compiler is run. The programmight fail with a runtime
error such as dividing by zero or it could just give wrong answers. These errors
suggest problems with the program being compiled rather than with the compiler.

Detecting an error in syntax analysis triggers the production of a message indi-
cating the nature and approximate location of the error. All parsers should be able to
produce an informative error message, but providing a precise location of the error
(rather than where it was detected) is not always possible. For example, consider the
C code:
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a = 0
b = 1;
.
.

This will probably cause a compilation error of a missing semicolon to appear when
the line b = 1; is parsed, despite the fact that the error was actually on the preceding
line. In practice, this is not a serious problem for the seasoned compiler user.

But error recovery is the key problem. The traditional batch view of compilation—
compile, get a list of all the errors, edit the source program accordingly, re-compile—
does not apply in all circumstances. In an interactive program development environ-
ment it may be much better to flag syntax errors as the source program is typed in.
There is no real need for full error recovery here. After the user corrects the error,
compilation continues (or even restarts). But in most compilers, error recovery is
required.

There are several ways in which error recovery can be tackled, but none of them
are perfect. The aim is to somehow eliminate or even correct the construct causing
the error and then continue with the parsing.

• It may be possible to augment the grammar of the language being compiled using
production rules which explicitly recognise specific syntactically incorrect con-
structs. For example, it may be possible to include an extra rule to recognise an
if...then...else construct with a missing then. An appropriate message is
output and a tailored error recovery can be achieved. If the grammar of the language
contains syntactic redundancy then this approach may be partially successful, but
the additional rules have to be designed carefully to avoid introducing ambiguity
into the grammar.

• Inserting additional tokens or making minor local modifications to the input once
an error has been detected may help, for example by inserting an additional close
parenthesis at the point where the parser was expecting a close parenthesis and
some other token was found. However this may cause further problems later in the
parsing process. This approach is difficult to get right.

• A much more structured approach involves regular checks to make sure that the
parser stays synchronised with the input at all times. For example, consider the
predictive top-downparserwith a recognising function for each syntactic construct.
Code is introduced at the beginning of each recognising function to ensure that
the current lexical token is a member of the FIRST set. This is the set of tokens
than can validly start the construct being recognised. Similarly, at the end of each
recognising function a check is made to ensure that the current lexical token is
a member of the FOLLOW set. This is the set of tokens than can validly follow
the construct being recognised. Determining the FIRST and FOLLOW sets for the
non-terminal symbols in a grammar is not difficult. For example, in DL, a simple
scan through the grammar shows that an <expression> must start with +,
−, (, a constant or an identifier. This is the FIRST set for <expression>.
The recognising function is also passed a set of tokens (TERMINATE) that the
caller of the function feels should act as additional terminators for the recognition
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process. For example, in DL, an if token could be considered to terminate an
expression. The caller of the function is responsible for recovering if a symbol in
TERMINATE is found. If the check at the start of the recognising function fails,
an error message is output and recovery is achieved by skipping until a symbol in
FIRST ∪TERMINATE is found. Similarly, if the check at the end of the recognising
function fails, an error message is output and the function recovers by skipping
until a symbol in FOLLOW ∪ TERMINATE is found. This technique is called
panic-mode error recovery and it can be very effective.

• Parser generator tools such as bison have features to help handle errors. Bison
supports the error token and this allows control to be returned to the parser so
that error recovery can be achieved. When an error has occurred, the error token
will match, allowing rules of the form statement: error’;’ to be written.
This causes tokens to be skipped (matched by the error token) until a semicolon
has been read.
This is a powerful feature, but not easy to get right. Having a large number of
rules with the error token will result in a fragile parser. Instead a small number
of error rules at a high level in the grammar is much more likely to succeed. The
bison documentation contains much useful practical advice.

Experimentation is plainly involved here, adding recovery actions until some-
thing acceptable has been produced. We all have horror stories of inappropriate error
messages or poor recovery actions in our favourite compiler. Presenting error infor-
mation in a form that is useful to the programmer is the aim—a universal and rather
unhelpful message saying “syntax error” is produced surprisingly often.

Finally, it is important to avoid the parser making attempts to correct the error. In
the history of programming language implementation, there have beenmany cases of
the compiler making a correction to the source program as the error recovery action,
issuing a warning message and the programmer ignoring the message. It may be that
the correction was not what the programmer had originally intended.

5.6 Declarations and Symbol Tables

Before leaving the topic of syntax analysis we must look at the issues of the handling
of declarations and the management of names and other symbols. DL has a very
simple view of names. In DL a declaration refers to a simple (integer) variable, a
single-dimensional integer array (with a size known at compile time) or a function
(returning a single integer value).

Designing the data structure for a compiler’s symbol table can be a difficult task.
The idea that the symbol table is a simple two-dimensional table containing the text
representation of the symbol and a small amount of other information is, unfortu-
nately, far from the truth. There are many issues to be considered, including:

• Symbol table lookup normally uses the symbol name as a key. What is an appro-
priate underlying data structure to support the lookup? Hash tables may be a good
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plan, but simple binary trees are unlikely toworkwell because of the alphabetically
clumped nature of names used in real programs.

• Is there a maximum length for names? What precisely is the character set allowed
for names? Are upper and lower case letters equivalent?

• How should type information, if any, be stored? For languages supporting a small
and fixed number of types such as DL, then a single field can be set aside in
the symbol table entry to hold an indication of the type. For languages where,
for example, types can be user-defined such as C, a more powerful approach is
required, such as using a parse tree of the type specifier. The data structures used
for storing type information must allow decisions of type compatibility and so on
to be made easily later in the compilation process.

• What are the scoping rules? In languages where variable names can be multiply
defined, for example where declarations are local to the block and blocks can be
nested, the symbol table has to support the identification of the correct instance of
the name. A declaration in an inner block can hide a variable with the same name
defined in an outer block. As we have seen, in DL, a stack-based symbol table may
help to resolve this requirement.

• Can a name be used for multiple purposes? For example, in DL, is it possible to
have declarations in the same scope for symbol x of the form int x, int x[3]

and x being defined as a function? In DL this results in no ambiguity because when
a name is used it is clear that the name refers to a variable, an array or a function.
Other languages may be more strict (and sensible!).

• The symbol table entry has to include, directly or indirectly, information on where
the storage associated with the symbol is going to be located at runtime. Fur-
thermore the storage size of the object associated with the name will be needed,
although this may be implicitly or explicitly available via the type information.
Storing some sort of target machine address is plainly inappropriate because at
this stage in compilation the code should really be target machine-independent.
Storing some form of virtual address is the right approach and this can then be
translated at a later stage of compilation into a machine-oriented way of accessing
the right symbol. This will be examined later in the context of code generation.

There are a few further DL-specific issues concerned with managing the scoping
of names. DL allows the code in a function to have access to the local variables as
well as the global variables not having duplicate names that have been declared so
far. This can be handled easily using the stack-based symbol table so that on entry to
the compilation of a new function, the current index of the top of the symbol table
is saved and the new symbols are placed in subsequent entries. When a symbol is
referenced in the compilation of the function, the stack is searched down from the
top and the correct entry for that symbol is found, be it local or global. On exit from
the compilation of that function, the top of the stack pointer is restored, effectively
removing the local variables from the symbol table.

The DL symbol table must also include a flag for each symbol to indicate whether
it is a local or a global variable. This is needed because we have to distinguish
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between the local and global variables in the intermediate code generated by the
semantic analysis phase. This is covered in Chap.6.

For symbols referring to DL functions, we have to store some value to allow the
identification of the correct function at runtime. Also a value indicating the total
number of local storage locations required by the function has to be stored because
this will be important later in code generation. Fortunately, in DL, this value is known
at compile time. Dynamic arrays are not allowed. Also the number of arguments in
the function’s definition should be stored. This will allow a check to be made that
the right number of arguments are being supplied on each call.

5.7 What Can Go Wrong?

Hopefully, when implementing the lexical and syntax analysers in a compiler for
a real programming language, no severe problems should be encountered. Today’s
programming languages are well suited to analysis using standard parsers and in
most cases a formal grammar is available which can be translated into a specification
for a parser-generating tool. It may be that coding a top-down predictive parser by
hand is difficult, requiring significant grammar rewriting, so that using a LALR(1)
bottom-up parser may be a better plan. However, it is likely that some aspects of the
implementation of the analysis phase will go wrong. It is important to be prepared
for this.

There may be problems directly attributable to the language’s grammar. Has the
grammar been designed with a more powerful parsing method in mind? Ambiguities
and other errors in the grammarmust be investigated. Relying on the parser generator
to get it right automatically in all such circumstances is a very bad idea.

It is not unusual for things to start going wrong with the management of names.
For example, the grammar of C presented in [8] defines

typedef-name: identifier
and also uses identifier in the definition of a conventional variable declaration. In
parsing C, the lexical analyser will return an identifier but the syntax analyser cannot
tell whether this identifier is a type name or a variable name. The lexical analyser
really needs context information to determine whether the identifier has already been
defined in a typedef declaration. This is messy, but something has to be done in all
C compilers to resolve this issue. Some parsing techniques can handle this kind of
ambiguity in an elegant manner, the correct parse being chosen later when the types
of names are all available.

An example of this problem is shown in the complete C program:

#include <stdio.h>

typedef char x;

void foo() {
int a=sizeof(x),x,b=sizeof(x);

http://dx.doi.org/10.1007/978-3-319-52789-5_6
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x=10;
printf("a=%d, b=%d, x=%d\n",a,b,x);

}

int main() { foo(); return 0; }

This code illustrates the context sensitivity problem, and also shows the importance
of processing lists (in this case, a list of declarations) in the right order. Here, in the
function foo(), a has to be declared, then x and finally b. Think carefully about
how lists are defined in grammars and how the corresponding actions are executed.

Many programming languages have awkward context-sensitive aspects, often
requiring hacky solutions where the syntax analyser sets a global flag that can be read
by the lexical analyser. In some cases, grammar modifications can improve the situ-
ation. For example C grammars modified to be suitable for yacc or bison are widely
available on the internet. Using parsing techniques specifically for context-sensitive
grammars is not the way to go. Expressing the context sensitivity in a grammar is
difficult and parsing efficiency will suffer too.

5.8 Conclusions and Further Reading

A good way of developing parser-writing skills is to look at the formal grammars
of a variety of languages and consider how they can be implemented using both
top-down and bottom-up approaches. The grammar for ANSI C contained in [8] is a
good starting point, and searching for modifications to this grammar to facilitate its
implementation using bison and other tools highlights some of the problems in the
original grammar.

Many C compiler projects have been written up in detail such as [9, 10]. These
books give invaluable practical advice for the construction of high-quality compilers.
Software tools such as lex, flex, yacc and bison are well-documented with examples
on the internet as well as in textbooks such as [6]. Many other tools are available
(search for compiler construction tools), specifically JavaCC andCUP for those who
program in Java. Pyparsing provides parsing facilities for the Python programmer.
There are tools to generate top-down parsers as well as top-down parsers and tools
combining lexical analyser and syntax analyser generation. These are all well-worth
investigating.

If you have to write a compiler for a real language, it is vital that you start off with
a detailed knowledge of that language. If that language is C, then [11] is an excellent
starting point.

Exercises

5.1 The rules of DL specify that names have to be declared before they can be used.
This effectively disallows mutually recursive functions. How would the design
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and implementation ofDL have to change to allowmutually recursive functions?
Implement these changes.

5.2 Use a standard grammar for arithmetic expressions and write a desk calculator
program based on a top-down grammar. It should support integer values, add,
subtract, multiply, divide and parentheses and should evaluate expressions typed
in a line at a time. Compare this implementation with the version produced in
Sect. 5.2.2.2.

5.3 Extend the calculator from Sect. 5.2.2.2 to support unary minus, floating point
arithmetic, further scientific functions (such as trigonometric functions),
hexadecimal arithmetic, etc.

5.4 It may be tempting to rewrite the example top-down parsing code in Sect. 5.3
as:

astptr P() {
return newnode(N_PNODE, Q(), R());

}

Consider whether this would be acceptable.

5.5 At themoment, the syntax of<bexpression> in DL is simple because of the
lack of boolean operators such as and, or, not and so on. Devise an appropriate
syntax and implement the syntax analysis.

5.6 This is a rather open-ended exercise, but useful if you intend to use bison seri-
ously. Sometimes things go wrong with bison grammars and shift/reduce or
reduce/reduce errors are reported. Produce simple grammars exhibiting both of
these errors and ensure that you understandwhy they occur andwhat is going on.

5.7 Look again at the C example in Sect. 5.7. Try to predict the output when that
program is run on your system. Then try compiling and running it.

5.8 Try writing a parser using a top-down parser-generating tool. Compare the expe-
riencewithwriting the sameparser using a bottom-up parser generating tool such
as bison.
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Chapter 6
Semantic Analysis and Intermediate Code

The semantic analysis phase of a compiler is the last phase directly concerned with
the analysis of the source program. The syntax analyser has produced a syntax tree
or some equivalent data structure and the next step is to deal with all those remaining
analysis tasks that are difficult or impossible to do in a conventional syntax analyser.
These tasks are principally concerned with context-sensitive analysis.

Much of the work of the semantic analyser is based around the management of
names and types. It has to deal with declarations and scopes, checking that each use
of a name corresponds to an appropriate declaration (assuming that we are dealing
with a programming language where names have to be declared). This means that
this phase has to apply the language’s scope rules and it has to check that each
use of a name is allowed according to the type rules of the language. Whenever
an operator is used to generate a new value, the type rules for that operator have
to be checked to ensure that the operands have appropriate types, the correct form
of the operator has to be selected, type transfer operations have to be inserted if
necessary, and so on. These are not processes specified by the BNF/EBNF syntax of
the language. Instead these rules are usually specified by a narrative associated with
the programming language specification. These tasks are usually more easily done
once syntax analysis is complete.

The semantic analyser may also have to change the program’s representation from
a tree to some form of intermediate language. There are good reasons for this change
of format. Flattening the tree to produce a simple, linear intermediate form should
not be difficult, but there may be good reasons for generating an intermediate form
of greater complexity, supporting code optimisation. Designing or choosing such an
intermediate representation may be more challenging.

The symbol table is the central data structure in this phase. Data is inserted when
symbols are declared and data is read whenever symbols are used. Chapter 5 has
already shown how the symbol table can be managed largely during the syntax
analysis phase but it is also possible to delay at least some of the symbol table
operations until semantic analysis is being carried out.

http://dx.doi.org/10.1007/978-3-319-52789-5_5
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Exactly what has to be done in the semantic analysis phase depends on the nature
of the language being compiled. It may be possible to do much of the type checking,
if not all, during syntax analysis. This may make sense for simple languages with a
limited set of type rules. The DL language falls into this category. Furthermore, it
may even be possible to generate target code directly from the abstract syntax tree.
Obviously this leaves little for the semantic analyser to do.But there are usually strong
reasons in anything but the simplest of compilers to have a separate semantic analysis
phase. Separating out the type management makes good software engineering sense
and the choice of an appropriate intermediate form rather than a tree simplifies the
job of generating high-quality target code.

6.1 Types and Type Checking

The concept of a data type is central to the design of programming languages. A
type system should be able to help describe the structure and behaviour of valid
programs. Support for typing can improve the programmer’s productivity, speed
up debugging and offer opportunities for target code optimisation. Strong typing
can help avoid some runtime errors. It is always preferable to move as much error
detection as possible from runtime to compile time, finding the errors at the earliest
stage possible. It is true that strong typing can sometimes get in the way, but it is
now generally agreed that the benefits outweigh the disadvantages.

Our task as compiler writers is to develop techniques for the management of type
data within the compiler, to make sure that the operations being attempted in the
source program are compatible with the language’s type rules and to make the most
of the available type information in order to generate correct and efficient target code.

6.1.1 Storing Type Information

Sometimes handling types is really simple. For example, DL allows integer variables
and integer arrays to be declared and it also supports functions. So a name used in
a DL program refers to one of these three data types. This can be represented in
the symbol table by storing an integer tag taking, for example, the values 1, 2 or 3.
DL is designed so that the syntax analyser can determine the correct type of a name
according to its syntactic context, and the data in the symbol table is checked by the
syntax analyser to ensure that the use of a name is compatible with its definition. A
language rule stating that all variables have to be declared before they are used (i.e.
earlier in the source of the program) makes the handling of variables and their type
information very much easier.

Adding further typesmay bemanaged simply by increasing the number of distinct
tag values, but as soon as user-defined types are introduced, a new approach is needed.
There is no standard way of representing this information. The design of the data
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structures used will be influenced by the range of type specifications available and
how they have to be used when checking for the correct use of names in the program.
For example, the typedef feature in C allows arbitrarily complex types to be defined
and named. Here, the type information can be represented as an abstract syntax tree
of the type specifier linked to by the type name’s entry in the symbol table.

Do not underestimate the potential complexity of representing type information.
Dealing with C structs and unions, function declarations, enumerations, arrays and
so on requires a careful plan, and tying that plan to the formal syntactic definition of
the language is doubtless a good approach.

6.1.2 Type Rules

Having dealt with type declarations, storing the type information into data structures
accessible via the symbol table or perhaps directly from nodes in the abstract syntax
tree, this information can then be used to validate the use of variables and other
structures in the program being compiled. Different programming languages have
different typemodels. The traditionalmodel, found inmany imperative programming
languages such as C, is to implement static typing where a variable is declared with
a type and that variable keeps that type throughout its existence. So, in C, if i is
declared as int i; the compiler can cause an integer-sized location in memory to
be set aside when the program runs, for the time during which i exists. If an attempt
is made to store a floating point value into i, then the compiler can issue an error
message. Note that this checking is done during compilation during syntax analysis,
or more likely during semantic analysis.

This approach is contrasted with languages supporting dynamic typing where the
type of the data stored in a variable can change during that variable’s existence. So
statement sequences of the form i=1 … i=3.14 … i="Hello" are valid. Note
that this does not imply that no type checking is required — it is just that it is now
unlikely that all type checking can take place during compilation. Instead, some or
all of the type checking has to be delayed until runtime and this implies that the
implementation of the language has to support the association of a type with each
variable at runtime so that checking code, generated by the compiler or included in
the interpreter, can ensure that the type rules are being adhered to. Clearly there is a
runtime overhead in doing this. Languages such as Perl, MATLAB and Python are
in this category.

Clearly, hybrid approaches are possible andmay be necessary for some languages.
To maintain strong typing, not all checking is possible at compile time and so at
least some runtime checking is required too. However, in this chapter we will be
concentrating on compile-time static type checking.

Most modern programming languages are designed to support strong or fairly
strong type checking. But some programming languages are untyped and then it is
up to the programmer to keep track of the nature of the data stored in each variable. In
some languages type checking is present but not very strict. For example, C’s union
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construct provides a loophole for the type checking system. If the language specifies
type checking rules, then they have, of course, to be supported by the implementation.
Separating this potentially complex type checking into a separate phase of semantic
analysis is sensible.

Knowing the type of a variable at compile time or at runtime allows simplifications
to be made to the way in which the programmer manipulates data. If variables i and
j are declared with type int and a and b are declared with type float (and note that
we are not assuming that the programming language is C in these examples), then
it is likely that we can write statements such as i = i + j and a = a + b. In the
first assignment, the addition operator is assumed to take two integer operands and
produce an integer result. In the second assignment, the operands and result are all real
numbers. The addition operator is performing two distinct tasks, implemented using
different instructions on the target machine. This has important consequences for the
compiler and it is during the semantic analysis phase in statically typed languages
that a type for the operator can be selected. In dynamically typed languages, the
operator choice may well have to be delayed until runtime.

The use of the single addition operator for both integer and real addition is an
example of operator overloading. It could get worse. Maybe the programming lan-
guage allows the addition operator to be used for further purposes such as the con-
catenation of strings and forming the union of sets. But as long as the type rules
of the language are clear, the implementation of this should be feasible. There will
also be rules forbidding certain type combinations. For example, addition of a string
and an integer may not be allowed. Again, the semantic analysis phase is a good
place to generate error messages about such disallowed operations. Another possi-
bility is shown by the example a = i + j. Here, the addition operator is an integer
add, but the assignment operator has to transform an integer value into a real value
and the semantic analyser has to tag the assignment operator accordingly. Similarly
in the case a = b + i, a type transfer has to be included to convert i into a real
value before using it as an argument to the real addition operator. These examples
obviously assume that we are working with an appropriately flexible programming
language. Similar considerations apply to the use of constant values in expressions.
For example, the assignment a = b + 2 may require a compile time (rather than
at runtime) conversion of the integer value 2 to the real value 2.0, assuming that the
language allows such mixed-mode arithmetic expressions.

Associated with the typing of operators is the notion of type equivalence. When
are two types considered to be the same? A simple assignment (p = q) requires
compatibility between the types of p and q, and we can safely assume that type
equivalence implies compatibility. The language’s rules for type equivalence are
relevant to the coding of the semantic analyser. We can distinguish between name
equivalence and structural equivalence. Types are said to have name equivalence if
they have the same name. Types have structural equivalence if they have the same
structure. For example, in Fig. 6.1 the two C structure types person1 and person2

are structurally equivalent but do not have name equivalence.
The correct algorithm for the programming language has to be used to determine

whether two types are equivalent.
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struct person1 { struct person2 {
char *name; char *surname;
int yearofbirth; int birthyear;

}}

Fig. 6.1 Structural equivalence

6.1.2.1 Type Checking

An intuitive way of managing type checking in the semantic analysis phase is to
traverse the abstract syntax tree, tagging nodes in the process. Using the variable
types from the section above, consider the source statement a = b + i. The syntax
analyser will represent this as a tree.

=

a +

b i

The semantic analyser will start at the root node containing the assignment operator
and perform a recursive post-order traversal of the tree, tagging nodes as it goes. The
first node to be tagged contains a and this is tagged with the type real, then the b node
with real and then the i node with int. The + node is then examined and a decision
has to be made whether this operator applied to a real and an int is valid and if so,
how it should be interpreted. Assuming that conventional mixed-mode arithmetic is
permitted, we have to introduce a new node to convert the int i to a real value and
tag the + node with real (it is now an addition of two real values). Finally, the top
assignment node is tagged with real. The annotated tree is shown in Fig. 6.2.

Fig. 6.2 Annotated tree =

real

a

real
+

real

b

real
convert

int to real

i

int
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This tree traversal/annotation process is driven by the type rules of the language
being compiled. Each node requiring a type will be tagged with a type derived from
the types of its children according to the type rules. And tree modifications will
be made where necessary. Separating this task from the syntax analyser makes the
compiler’s code much simpler and more maintainable.

6.1.2.2 Type Rules

Let us consider an example of another language where type rules are needed. Sup-
pose a programming language for the manipulation of dates has been devised. This
supports an int data type to represent whole numbers of days and a date data type
to represent a calendar date. Literal integers and dates are supported together with a
set of operators to manipulate these values. So, for example, a date variable could be
initialised to contain a certain date and the add operator could be used to generate
the date 100 days later. To manipulate days and dates using the operators add and
subtract, the following combinations are possible.

Expression Result
days + days days
days + date date
date + days date
date + date error
days – days days
days – date error
date – days date
date – date days

These rules obviously depend on the details defined in the language specification.
The introduction of other operators may well benefit the language, but the semantics
of operators such as multiply and divide may be more difficult to envisage when
manipulating dates.

6.2 Storage Management

Within syntax and semantic analysis, decisions have to be made concerning the run-
time representations of data and language-supported data structures. Target machine-
dependent details are better left until the code generation phase but the intermediate
code to be generated by the semantic analyser really needs some sort of data storage
model which can bemapped later to physical storage in the target machine. Provision
has to be made for the storage of data in variables, function (or procedure or method)
parameters and results, temporary variables, static data and so on according to the
design of the programming language being compiled.

The semantic analysis phase has no particular concern with C’s dynamic stor-
age allocation using system-defined functions such as malloc. These are facilities
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supported by the runtime library and space is usually allocated from a memory area
provided by the operating system. These system calls are treated as conventional
function calls. They just refer to code defined in a system library which can be linked
to the code generated from the user program by the compiler to form a complete
executable program.

6.2.1 Access to Simple Variables

At some stage in the language implementation process, variable names have to be
mapped to physical storage locations. There are clearly many ways in which this can
be done. Probably the most practical and likely approach is to think of one or more
runtime storage areas, each being a contiguous area of memory, pointed to and hence
identified by one or more target machine registers. Then, as far as the compiler is
concerned, variables can be represented by identifying a storage area and an offset
in that storage area. For particularly simple languages where all variable storage
requirements are known at compile time, a static allocation scheme can be used.
The semantic analysis phase can associate a single offset value for each variable and
these offsets can be saved in the abstract syntax tree and hence in the intermediate
representation each time a variable is used. Dealing with different memory-sized
data representations is not a problem because the type information is stored in the
symbol table and the tree and this can be translated into a memory size indication
which can then be translated into a target machine offset during code generation.
Instead, it also may be possible to perform the translation of text variable names into
offsets in the syntax analyser, allocating space as variables are declared.

6.2.2 Dealing with Scope

The simplistic view of variable declaration and use presented in the last section is
inadequate for any reasonable programming language. At the very least the concept
of local variables is required.

Suppose our programming language allows declarations of this form:

{ int i, j;

.

.

{ int j, k;

.

.

}

.

.
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{ int l, m;

.

.

}

.

.

}

Here, variables i and j are globally declared, j (another, different one) and k are
locally declared in the first inner block and l and m are locally declared in the second
inner block. The compiler has to map these six distinct variables to six storage
locations. A reasonable approach is to treat the runtime storage area as a stack. Let
us assume that we are using a storage model where each integer variable requires a
runtime location of size one unit (this can be scaled appropriately later if necessary)
and the compiler maintains a stack pointer indicating howmany stack locations have
already been allocated to variables. This is initialised to zero. Global variable i is
then assigned to the location at offset 0 and j to offset 1. When the start of the first
inner block is encountered, the current value of the stack pointer is saved (it has the
value 2). Variable j (the second one) is set to have offset 2 and k set to offset 3. At
the end of this inner block, the space used for variables j and k can be relinquished
by restoring the stack pointer to its saved value from the start of the block (2). On
entry to the second inner block, the stack pointer is again saved and variable l is set
to have offset 2 and m set to offset 3. This reusing of storage locations is possible
because the variables of the first inner block and the variables of the second inner
block cannot exist at the same time. The handling of the scoping of variables is
managed by the symbol table for example, by structuring it as a stack as well. The
use of a stack-based symbol table was mentioned in Sect. 5.6.

There may, of course, be complications here, depending on how the language is
defined. The assumption that variable space can be reused for the inner blocks fails
if the language demands that space is allocated statically. The language implementer
may also decide that the effort required to manage this form of dynamic variable
allocation is not worth it for the potential space savings. For example, it would be
reasonable for a C compiler to allocate all the space for variables in a function, even
those declared in inner blocks, in a single contiguous area.

6.2.3 Functions

The storage allocation problem is made more complicated when functions are
involved. When a function is invoked, then memory space has to be available for
the storage of local variables declared in that function and also for the storage of
the function’s arguments. In particular, when recursive function calls are permitted,
static space allocation will not be adequate since new space has to be allocated for
local variables on each recursive call and it is in general impossible to predict in

http://dx.doi.org/10.1007/978-3-319-52789-5_5
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advance the actual maximum depth of the recursion. A dynamic allocation scheme
is required. The usual way of implementing this is via a stack. Details of this imple-
mentation approach are left to Chap.8 and only the basic principles are covered here
to highlight how both local and global variables can be accessed.

Consider a simple program, written in a language following the conventional
scoping rules, with a main program declaring integer variables i and j and a function
r with local variables a and b. The function r calls itself recursively. Each time r is
entered, space for a new set of variables a and b has to be found and the addressing
environment changed so that each time the code in r references a or b it is the “new”
a or b being used. If storage for these variables is managed in a piece of contiguous
memory used as a stack then the space allocation problem is easily solved.

When themain program starts, the only variables accessible (in scope) are i and j.
The stack in which variables are stored looks like this:

... i j

sp

Here, sp is the stack pointer, pointing to the first variable of the set of local variables
in scope. At runtime, the stack pointer will be held in a machine register and indexed
addressing will be used to access the variables stored on the stack. The stack loca-
tions lower in the stack than the location for i are used for miscellaneous linkage
information. They will be described in Chap.8.

After the first call to r, space is set aside for variables a and b declared in r. A
new stack frame is created. In these diagrams, a double line is used to separate stack
frames.

... i j ... a b

sp

Variables a and b can now be accessed by direct indexing off the stack pointer (offsets
0 and 1 respectively). Then r calls itself recursively and the stack now looks like
this:

... i j ... a b ... a b

sp

The crucial point to note here is that variables a and b are still accessible via offsets 0
and 1 from the stack pointer as before, but it is the new a and b that are being accessed.

http://dx.doi.org/10.1007/978-3-319-52789-5_8
http://dx.doi.org/10.1007/978-3-319-52789-5_8
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So as far as the compiler is concerned, all it needs to do in generating intermediate
code to access local variables like a and b is to record their stack offsets, and these
should have already been stored in the symbol table.

There is, however, a slight complication. Most languages of this type (such as C)
allow the global variables i and j to be accessed in the code of r. How can access
to these variables be specified in the intermediate representation? All that needs to
be done is to explicitly record that these are global variables 0 and 1 and code can
ultimately be generated to access i and j via some global variable pointer (gp):

... i j ... a b ... a b

gp sp

Further complications arise in languages such as Pascal where function definitions
can be nested. For example, if functionf1 is defined in themain program and function
f2 is defined within f1, the language’s scope rules allow code in f2 to have access
to f2’s local variables, f1’s local variables and the global variables. Managing this
requires multiple pointers into the stack (gathered together in a data structure called
a display) or a chain of pointers running down the stack identifying the currently
active stack frames. This chain of pointers is called the static chain.

6.2.4 Arrays and Other Structures

So far we have concentrated on the storage and handling of simple variables. But
most programming languages offer data structuring facilities. The most commonly
offered structure is the array, and because arrays are central to the coding of so many
important computer applications, efficient implementations of arrays are essential.
Also, many programming languages provide an aggregate data type. This is a single
structure containing multiple elements. A C struct is an example. Unions are often
available, allowing data of different types to be stored in a single unit.Object-oriented
programming languages need implementation techniques for the storage of objects
made up of a collection of elements or fields, together with code (as methods) to
manipulate this data.

There is an issue here concerned with target machine independence. Ideally the
semantic analysis phase should be independent of the design of the targetmachine but
if this phase has the responsibility for designing the layout of these data structures,
complete target machine independence may prove to be difficult.

When an array is declared, an entry is made in the symbol table to store the array’s
name. Each element in the array is of the same type and this type has to be stored
in the symbol table too, together with a specification of the array bounds. Also, if
multi-dimensional arrays are supported by the language, the number of dimensions
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has to be stored. Some languages allow the subscript ranges to be specified while
other languages assume that each subscript starts at 0 or 1 and a maximum range
is recorded. Some languages permit non-integer types to act as subscripts. All this
information has to be stored in the symbol table too.

What should happen when the semantic analyser encounters a statement con-
taining an array reference? Clearly, the type checking process will make use of the
information stored in the symbol table to partially validate the array reference but
more may be required. An array access has to be translated during the compila-
tion process into a form appropriate for target machine implementation, requiring
the address of the array element being referenced. For example, in C, if an array is
declared as int x[5] and a reference is made to element x[i], then at runtime
(unless the compiler can predict the actual value of i) the computation

address of the first element of x + i * size of a C int

has to be performed to find the address of the indexed element. Assuming that
the abstract syntax tree makes use of nodes directly representing array access, the
semantic analyser could expand these nodes to represent this full address calculation
process. This expansion may seem unnecessary, but there are good reasons for car-
rying it out before the intermediate representation of the program is passed on to the
next phase of compilation. This is because expressing array access in this low level
form provides more machine-independent optimisation opportunities.

6.2.4.1 Multi-dimensional Arrays

When multi-dimensional arrays are used, the address calculations become a little
more complicated. For example, if an array is declared in C as int y[10][5] then
50 int locations are set aside and these locations can be individually accessed by
references of the form y[i][j]. Here, i should be in the range 0 to 9 and j in the
range 0 to 4. The address computation for this element then becomes

address of the first element of y + (i * 5 + j) * size of a C int

with the 5 in the computation coming from the second bound of the array. Similar
computations can be done for arrays of three ormore dimensions. Note the significant
computational cost for accessing array elements, particularly in multi-dimensional
arrays. As will be seen, optimisations in various circumstances may be able to reduce
this cost. Also note that there are choices to be made concerning the order in which
array elements are mapped to linear storage. Here, for two-dimensional arrays, the
C rules are followed so that the second subscript varies most rapidly. This is not the
same in all programming languages. Some languages specify that the mapping is
done so that the first subscript varies most rapidly and some others say nothing and
the storage order is implementation-dependent.
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6.2.4.2 Array Bound Checking

Should array bound checking be implemented? Should code be generated so that
each time an array is accessed, the subscript values are checked to ensure that they
lie in the permitted ranges? Some array bound checking may be done at compile time
if static analysis (see Chap. 7) can determine the actual value of an index. But runtime
array bound checking comes with a computational overhead. Also it is possible but
unusual for the rules of the language to make array bound checking inappropriate.
The addition of this checking code can be done by modifying the tree, during the
generation of the intermediate representation or later during target code generation.

6.2.4.3 Structures and Unions

The ability to group together data items into a single named structure is common
in today’s programming languages using a struct, a record, a part of an object, and so
on. The structure can be referenced as a whole while retaining access to the individ-
ual fields. Fortunately, implementation poses no real difficulties with the structure
information, field names and types and so on all being placed in the symbol table.
For example, the node type in the abstract syntax tree in Chap. 5 was defined as

typedef struct tnode {

int asttype;

int astdata1,astdata2;

astptr p1,p2,p3;

} astnode;

where a node contains three integers and three pointers. The structure can be seen as
a block of contiguous memory locations, large enough to store all the fields. All the
field names and their offsets in the storage associated with the structure are stored
in the symbol table. The sizes of the fields are either assumed at this stage or they
can be decided upon later in the code generator. Target machine constraints may
influence the order in which the fields are stored. For example, consider a structure
defined as containing two characters, an integer and then two more characters, to
be implemented on a machine where characters occupy one byte each, an integer
requires four bytes, and integers have to be stored on word boundaries in memory. In
this case, it maymake sense to pack the four characters together and follow themwith
the integer rather than retaining the original ordering, where two bytes of padding
would be required for each instance of the structure.

Unions are handled in a similar way. For example

union utype {

char xch;

int xint;

float xfloat;

} uval;

http://dx.doi.org/10.1007/978-3-319-52789-5_7
http://dx.doi.org/10.1007/978-3-319-52789-5_5
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causes all the names to be stored in the symbol table, the size of the union structure
being set to the size of the largest member of the union, and it can be regarded as a
struct with all the fields having a zero offset.

6.3 Syntax-Directed Translation

We have already seen how a formal specification of a context-free grammar can be
used to produce a syntax analyser. The natural way of progressing from the recogni-
tion of syntactic constructs to code for a complete syntax analyser is to make use of
the ideas of syntax-directed translation, where grammar productions are associated
with program fragments or some more formal rules and these program fragments
perform the translation of each syntactic construct to some new program represen-
tation. This new program representation can of course be an abstract syntax tree
and in this case the translation process has already been discussed. But it may be
possible to go further and cause the actions associated with the productions to do
more work, generating intermediate code, target machine code or even interpreting
the code directly. The translation of the source language is being driven by the syntax
analysis process.

6.3.1 Attribute Grammars

To what extent can this translation process be formalised? An attribute grammar
can extend a context-free grammar by allowing the manipulation of attributes. Each
symbol in the grammar is associated with a set of attributes and each attribute has
a value (such as an integer or a type specification). Attributes are computed at each
node in the parse tree or, equivalently, at each production rule used in a reduction.
An attribute is said to be synthesised if its value is computed from data in the node
itself and from data from that node’s children. Inherited attributes use data from or
via the node’s parents as well as from the node itself.

This approach allows context-sensitive analysis to be formalised. For example
a type attribute can be associated with symbols and type rules can be checked at
each node. The use of attributes can be taken further. Consider a language (defining
expressions and so on) for a numerical calculator. Here, an attribute for each gram-
mar symbol could be a numerical value and the attribute grammar rules actually
perform the computation specified. So, for example, the rule for an <expression>

+ <term> node could synthesise the attribute for the node by adding the attributes
from its two children.

This approach should look familiar. With tools such as bison, the actions specified
by each grammar rule correspond closely to the management and calculation of
attribute values. For example:

expression: expression ’+’ term { $$ = $1 + $3; }
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gives a clear example of the use of synthesised attributes, with the attribute associated
with expression and term being the numerical values of the expression and term.

Software tools are available to at least partially generate parsers or translators
via the use of attribute grammars, thus helping to automate the handling of semantic
information. There is a parallel here with functional programming, with the returning
of attribute values via children being similar to a function call. This approach is good
for simpler applications but implementation practicalities, particularly concerned
with the handling of inherited attributes, makes it difficult to use for more complex
grammars. Tools such as bison allow ad hoc solutions to be developed by associating
an action expressed as code with each production and the code of the action can
perform the required checking and manipulation of the attributes.

Do attribute grammars provide us with a general-purpose tool for the construction
of practical compilers? In particular, can they be used to manage the process of target
code generation by merging it into the parsing process? The answer is probably
no. The key problem is that processing a parse tree node effectively is not just
a local operation because information is required from children, from ancestors
as well as from the node itself, and managing all this non-local information via
attribute grammars is not easy. Translating each node in isolation is appropriate for
simple cases only. Instead, avoiding complexity by developing the compiler as a
series of communicating phases still seems very attractive. The tree generated by
the syntax analyser can then be annotated by the semantic analyser and intermediate
code generated, and there is no reason why a formalisation based on the attribute
grammars cannot be used here. A separate process can optimise the intermediate
code and the independent code generation process can then produce target code.

6.4 Intermediate Code

The abstract syntax tree generated by the syntax analyser and annotated by the
semantic analyser provides a mid-way representation of a program in the process of
compilation. But is this a good data structure from which to generate target machine
code? Is it a good intermediate representation?

The intermediate representation (IR) forms an interface between specific compiler
phases, typically between the front-end and the back-end of the compiler. The last
phase of the front-end is usually the semantic analyser and the back-end is responsible
for code generation. The compiler could make use of the same IR between multiple
back-end code optimisation phases. And there is no reason why a compiler cannot
be designed to use more than one IR.

The IR should be designed to facilitate the interface between the front-end and
the back-end. It should not be regarded as an interface with which the user of the
compiler is particularly concerned, but ensuring that there is a way for the compiler
writer or interested user to inspect a human-readable representation of the IR is
important. The design should be such that the generation of the IR in the front-end
should not be overly difficult and the IR should support effective code generation and
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optimisation. It may be helpful to think of the IR as the machine code for a high-level
and structured target machine. The IR should be sufficiently expressive so that all
the constructs of the source language can be encoded cleanly into IR statements or
structures. Assuming that we are thinking about a traditional compiler generating
code for a target machine, the IR should be easily translatable into target machine
code. Another important characteristic of an IR is that it should be able to support
aggressive code optimisation, thus permitting the generation of high-quality code.
In many modern compilers this is the IR’s key design aim.

The IR can play an important part in adapting the compiler to compile a different
source language or generate code for a different target machine. Here, new design
aims are appearing for the IR and issues of source language and target machine
independence become significant. Furthermore, the IR may be easily interpretable,
providing a rapid route to programming language implementation. These issues of
compiler implementation and porting are discussed in Chap.9.

Is the IR file or data structure generated by the front-end completely self-
contained? Does the back-end of the compiler require access to other data structures
such as the symbol table? This is not a critical issue, but there is some attraction
in making the IR self-contained in order to simplify the interface to the compiler’s
back-end. It may be necessary for the front-end to export all the source program
symbol information so that it can be held in the executable program generated by
the back-end, making it possible for a runtime symbolic debugger to relate storage
locations to source program variable names.

This book concentrates on the use of a linear IR but some graph-based IRs are
also described. There are advantages for the use of a linear IR. For example, it
should be easy to generate target code (not necessarily optimised) from linear code
by translating statement by statement. There are many forms of linear IR in use today
and there is no international standardisation of IRs as there often is for programming
languages. But graph-based IRs are popular too, againwith a variety of designs. Some
of these IR designs are allied to particular programming languages or language types,
some designs are good for particular types of optimisations and a few designs try to
be general purpose, appropriate for many source languages and target machines. In
this section various IR types are outlined. For DL’s implementation, a simple linear
IR will be used and this IR can illustrate a range of optimisations.

6.4.1 Linear IRs

A linear IR can be regarded as the machine code for a virtual machine. This virtual
machine should be regular and structurally simple, yet have enough expressive power
to cope with all aspects of the language being compiled. A wide range of such IRs
are used today, but it is possible to adopt existing high-level languages as the IR.
For example, C has been used in many compilers as an IR. The generation of C
from the syntax tree should be easy, and this C can be compiled by an existing C

http://dx.doi.org/10.1007/978-3-319-52789-5_9
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compiler to produce an executable program, without having to write a conventional
code generator at all.

6.4.1.1 Traditional IRs

Generating the IR from the abstract syntax tree using just a simple prefix or postfix
traversal will yield a form of linear IR. Such IRs were sometimes used in the early
days of compilers, particularly for stack-based target hardware. These representations
have advantages of simplicity but they are not so popular now because they do
not work quite so well with the powerful optimisation algorithms used in today’s
compilers. Although stack-based IRs, such as the Java Virtual Machine, are used,
being interpreted or translated into a target machine code, non-stack based linear IRs
based on instructions containing an operator, up to two arguments and a result have
become more popular. These instructions can be structured in a variety of ways [1].
A natural way of representing these instructions is by using a three-address code,
the three addresses being used for the two operands and the result. This results in a
readable IR and one that can be generated from the tree fairly easily. For example,
the statement x = y*3 + z; could be translated as:

t1 = y ∗ 3
x = t1 + z

t1 is a compiler-generated temporary variable. The instructions are written here
using symbolic references to variables (it is assumed that a symbol table is available
if necessary) and this makes the code much more readable. Some instructions (such
as x = −y or a simple copy x = y) only require one operand and so the second
operand is just omitted. A range of operators is required to match the functionality
of the source language (and hence the nodes in the abstract syntax tree) including
arithmetic operators, conditional and unconditional jumps, array access and a func-
tion call mechanism, including arguments. There are similarities in style between
three-address code instructions and the instructions of a RISC processor and those
similarities might help in the code generation process. In Sect. 6.5 a complete three-
address code IR suitable for DL is defined.

6.4.1.2 Static Single Assignment Form

Three-address code, as described above, explicitly defines the control flow of the
program. Paths through the program follow the statement order and are changed
by jump instructions and labels. But there are many potential optimisations that are
based on analysis of data values. For example, is it possible to predict using static
analysis (i.e. without executing the program) the values of particular variables after
the execution of a piece of code? This type of analysis can be facilitated by adding
data flow information to the IR.
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Static single assignment (SSA) form provides this information [2]. SSA is not an
IR. It just defines some structuring rules that can be applied to an IR such as three-
address code so that the data flow information is made explicit. In SSA form, each
variable can only be assigned to once. So if a piece of code makes an assignment to a
particular variable and then that variable is assigned to again, the second assignment
must be modified to use a new variable. For example, the code

x = a + b
y = x + 1
x = b + c
z = x + y

is transformed to

x1 = a + b
y1 = x1 + 1
x2 = b + c
z1 = x2 + y1

In the original code, x is assigned to twice and hence the introduction of x1 and
x2. This representation makes it clear that, for example, the use of x2 in line 4
corresponds to its definition in line 3. That use on line 4 has nothing to do with the
definition on line 1.

But this protocol causes a problem. Consider the code

x=1;

if (a<0) x=0;

b=x;

which can be translated into a three-address code version:

x = 1
if a >= 0 goto l1
x = 0
l1 :
b = x

But when translated into SSA form

x1 = 1
if a >= 0 goto l1
x2 = 0
l1 :
b1 =???

the value to be assigned to b1 is going to be either x1 or x2 and it is only at runtime
when the decision can be made. To resolve this issue, SSA allows us to write

x1 = 1
if a >= 0 goto l1
x2 = 0
l1 :
b1 = φ(x1,x2)
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where the φ-function is a function to indicate the meeting of control flow paths and
the result is chosen according to which variable definition (the most dominating) was
made in the control flow path most recently executed. At first sight implementing
the φ-function appears difficult. But it can be implemented during code generation
by ensuring that all variable parameters of the φ-function share the same register or
storage location or by ensuring that appropriate register copies are made.

All this additional complexity is justified by the fact that the data dependence
information embedded in SSA is necessary for the implementation of a wide range of
optimisations. For example, constant propagation is made very easy. If, say, variable
t19 is found to have the value 3, then replacing all uses of t19 by 3 and deleting the
definition of t19 is easily done.

The generation of SSA is not trivial but good algorithms are now available. For
further information see [2–4].

6.4.2 Graph-Based IRs

Although it is often convenient to have a human-readable linear IR, using more pow-
erful data structures may offer advantages. The syntax tree data structure produced
by the syntax analyser can be regarded as an IR in itself.

6.4.2.1 Trees and Directed Acyclic Graphs

The abstract syntax tree is easy to construct and can be used directly for the generation
of target code. A tree traversal based on post-order can be used for code generation,
with code being generated for the children of a node before dealingwith the operation
specified in the node. This appears to be a very attractive approach to code generation,
but there is a clear disadvantage in that it is extremely difficult to generate high-
quality code from this representation. As soon as efforts are made to optimise the
generated code, the simple tree traversal has to be abandoned. The code generation
process ceases to be local and when generating code for a particular node in the tree,
neighbours of the node (children, parents and beyond) have to be examined too.

A good example of this issue is when code-generating expressions with common
subexpressions. For example, consider the expression a ∗ a/(a ∗ a + b ∗ b). The
corresponding tree is shown in Fig. 6.3.

There is a common subexpression here (a ∗ a) and this can be detected by tra-
versing the tree looking for common sub-trees. The links in the tree can easily be
changed to reflect the fact that only one instance of this subexpression is necessary.
This is shown in Fig. 6.4.

Note that this structure is no longer a tree because the subtrees of the root node are
no longer disjoint. It has become a directed acyclic graph (DAG). This means that
traditional tree traversal algorithms will no longer be appropriate and more complex
algorithms are required to traverse and extract data from the graph.
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Fig. 6.3 Tree for
a ∗ a/(a ∗ a + b ∗ b) /
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Finding common subexpressions is a significant optimisation but using a DAG
does not automatically solve the problem. Common subexpressions need to be
detected even when they are not within the same statement or expression. Some
sort of control flow analysis is needed too, ensuring that if common subexpressions
are found there are no intervening operations that could change the computed value
of the subexpression. This issue will be examined in detail when code optimisation
is covered in Chap.7.

6.4.2.2 Control Flow Graphs

The control flow graph (CFG) [5] is a directed graphmade up of nodes and edgeswith
the edges representing possible paths of execution. Each node in the graph represents
either a single instruction or a basic block. A basic block is an instruction sequence
with a single entry point at the first instruction and an exit point at the last instruction.
Any jump (conditional or unconditional) instruction must be the last instruction in
a block. If a block ends with a conditional jump, there are two edges coming out of
the node representing that block.

For example, consider the code fragment:

t = 0;

i = 0;

while (i <= 10) {

http://dx.doi.org/10.1007/978-3-319-52789-5_7
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t = t + i;

i = i + 1;

}

x = t;

This code can be translated into three-address code:

t = 0
i = 0
l2 :
if i > 10 goto l1
t = t + i
i = i + 1
goto l2
l1 :
x = t

These instructions can be grouped into basic blocks and control flow between the
basic blocks added, as shown in Fig. 6.5.

This is the control flow graph and it is used as an IR in many compilers. It is a
good basis for code optimisation and it is not difficult to construct. There is a need
for some additional structure to represent functions and the usual approach is to have
a CFG for each function with a separate call graph to show the possible paths for
function calls.

In this example, the code in the basic blocks has been shown in three-address
code, but other representations are possible. For example, the three-address code can

Fig. 6.5 Basic blocks with
control flow t = 0

i = 0

l2 : if i > 10 goto l1

t = t+ i

i = i+ 1

goto l2

l1 : x = t
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be converted into SSA form and then the CFG can be constructed. This approach
offers further opportunities for optimisation.

6.4.2.3 Data Dependence Graphs

Graphs can also be used to show how data flows in a program. For example, in the
code:

x = a + b;

y = a + 2;

z = x * b;

there is a data dependence from the first statement to the third. The variable x is set in
the first statement and used in the third. The data dependence graph reflects this data
flow. The nodes in this graph represent operations and the edges connects definitions
with uses.

The data dependence graph for this trivial example would contain three nodes,
one for each assignment, with an edge from node 1 to node 3. This implies that the
operation in node 1 has to be completed before performing the operation in node 3.
Nothing is said about when the operation in node 2 should be performed. So this rep-
resentation is in general incomplete in that the program’s control flow is not uniquely
specified by the data dependence graph. The data dependence graph only imposes
a partial ordering on the statements or instructions. More is needed for a complete
IR. But this structure can be useful when performing various specific optimising
transforms such as parallelism detection and instruction scheduling. Whether this
data dependence information is included in the IR or whether it is computed when
needed later in the compilation process is largely a matter of opinion. Furthermore,
data dependence information is implicitly encoded in SSA-style representations and
so if an SSA-based IR is used, adding extra data dependence structures may not be
quite so useful.

To allow the IR to provide more comprehensive information, the program depen-
dence graph was proposed [6]. This structure contains both control and data flow
information, with nodes representing statements, predicate expressions or regions
(nodes with the same control dependence) and edges representing control or data
dependencies. Many further IRs have been developed in recent years, some being
designed for general-purpose optimisation and others being focused on specific types
of optimisation [7].

6.5 Practical Considerations

Syntax analysers for DL generating abstract syntax trees were developed in Chap.5.
Transforming an abstract syntax tree to a linear sequence of intermediate code instruc-
tions is based on a post-order traversal of the tree, outputting code as nodes are visited.

http://dx.doi.org/10.1007/978-3-319-52789-5_5
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However, this is not awholly routine task and this section examines some of the issues
involved in generating a three-address code intermediate representation.

6.5.1 A Three-Address Code IR

The IR chosen for this example implementation of DL is based on the three-address
code described in [1]. The instructions manipulate data held in virtual registers and
in the virtual machine defined by this IR, there is no limit on the number of registers
available. These registers are called r0, r1, r2, …. Variables declared in the DL
programs are either global variables (declared at the top level) or local variables
(defined within a function). The global variables are given the names vg0, vg1,
vg2, … and these are considered to be mapped on an appropriately sized block of
contiguous storage so that the address of register vgn is the starting address of the
block of storage + n. This allows arrays to be implemented easily. Similarly, the local
variables are given the names vl0, vl1, vl2, … and they are placed in a similar
contiguous storage area.

The instructions can also use constant values. These are expressed as conventional
decimal integers. None of the instructions can use more than three addresses (it being
a three-address code).

The instructions used are:

• Assignments with two arguments and a destination (a = b op c), with a single
argument for a unary operator and a destination (a = op b) and simple copy
assignments (a = b).

• Unconditional jumps (goto label).
• Conditional jumps (if a relop b goto label).
• Array access (a = x[i] and x[i] = a).
• Function call (call function, and arguments are passed by preceding the call with
an appropriate number of param instructions of the form param arg).

• Function return (return).
• Input and output (read a and write a).

A three-address code for a more comprehensive source language would need fur-
ther instructions including a set for pointer/reference management. The instructions
available must cover all the operations required for all the data types supported by
the source language.

The very simple example shown in Fig. 6.6 illustrates the style of this IR. The
source program is on the left and the IR generated for the four assignment operations
is shown on the right.

The IR that this front-end generates uses the convention that the program variables
are called vgn or vln where n is an integer value. Here, a is in vg0, b in vg1, c in
vg2 and d in vg3. The registers named rn are used for temporary values. It is easy to
see the correspondence between the two pieces of code. Some of the characteristics
of the generated code are examined in the next section.
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Fig. 6.6 Translation of DL
to IR

int a,b,c,d; vg0 = 1
{ vg1 = 2

a=1; vg2 = 3
b=2; r3 = vg0 * vg1
c=3; r2 = r3 * vg2
d=a*b*c + b*3 r4 = vg1 * 3

} r1 = r2 + r4
vg3 = r1

6.5.2 Translation to the IR

There are some important design decisions to be made before tackling the coding of
a translator from a tree-based representation to a three-address code. It becomes clear
very quickly that this phase of compilation is different from earlier phases because
there is no predefined “correct” output. For example, looking at the IR in Fig. 6.6,
there are infinitely many semantically correct translations that could be produced
from the abstract syntax tree. These different translations will have different costs
in terms of numbers of IR instructions. We can make some overall design proposals
and then examine the consequences.

• There is no pressing need to optimise in this phase. It is better to keep the translation
simple even though that may mean the generation of verbose code. But it does no
harm to implement some simple optimisations.

• The generated code can be profligatewith its use of temporary variables.Whenever
a new temporary variable is needed, it is perfectly acceptable to use a new variable
name rather than keeping track of variable names already used and determining
when they are no longer required. The code generator can assign these temporary
variables to target machine registers or main storage locations, as appropriate.

• It is not wrong to deal with each tree node independently. It is not essential to
examine the parent/child context of each node to generate better code. Optimisa-
tions based on context can be dealt with later. This reduces the complexity of this
phase enormously.

• There is nothing wrong in making the IR readable, making use of symbolic names
for labels and functions rather than absolute or relative addresses, aiming for an
assembler-like language rather than a machine code-like language. However, one
should ideally avoid references to the symbol table so that access to the symbol
table does not need to be carried forward into the compiler’s back-end.

• It is sensible to try to maintain target machine independence. In the case of this
compiler for DL, this is probably not too much of a problem because there is
essentially only one data type being used.

It is clear that generating IR directly from the tree will result in code that is
not optimal. For example, the code produced in the example in Fig. 6.6 contains
some redundancy both in terms of instructions as well as in terms of registers used.
Generating highly optimised code directly from a tree is difficult. It is much better to
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generate code that canbeoptimised later. These optimisation algorithms are described
in Chap.7. In this example, code is being generated for each statement independently
and when statements are juxtaposed, the code starts looking rather poor.

The formatting of the IR is of some minor significance. Ideally, to save writing a
parser for the IR as the front-end of the next phase of compilation, it makes sense
to generate the IR in a low-level binary format which can be read directly by the
optimiser or target code generator. But producing a human-readable version as well
may be very helpful, particularly when debugging the compiler.

The next step is to look at some of the details of the code to translate from tree
nodes to the IR. A recursive tree-traversal function cg is defined, having an overall
structure very similar to that of printtree, the tree printing function. It is based on
a large switch statement, each case dealing with a particular node type. For many
of the abstract syntax tree node types the actions are straightforward, but there are
some constructs needing additional explanation.

6.5.2.1 The IR Generating Function cg

Consider the problem of generating code for an arbitrary node (Fig. 6.7) containing
an operator and left and right subtrees providing two operands for the operator.

The code generator function is calledwith an argument (p) pointing to the operator
node. The function calls itself recursively with the left pointer as argument and then
with the right pointer as argument (or vice versa as the subtrees are independent),
and then code can be generated for the operator, referring to registers used to hold
the results from the left and right subtrees. Specifying this a little more carefully, cg
should return either

• a temporary register (e.g. r5), or
• a register associated with a variable (e.g. vg5 or vl2), or
• a constant value (e.g. 5), or
• nothing (because some constructs return no value at all).

Therefore cg should return a struct a3token defined as:

typedef enum {
R_REG, R_GLOBAL, R_LOCAL, R_CONST, R_NONE} regtags;

/* r5, vg5, vl5, 5, nothing returned */

/* Structure returned by the cg function */
typedef struct regstruct {

Fig. 6.7 A generalised tree
node

p operator

left right
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regtags regtype; /* R_REG, R_GLOBAL, R_LOCAL, R_CONST,
R_NONE */

int regvalue; /* which register or integer value of
constant */

} a3token;

Examples of code to handle particular DL constructs using this approach are pre-
sented below.

There are of course other ways in which the code generator can be structured but
this general approach is simple and effective. It also generates fairly good interme-
diate code. Although it has already been said that there is no need to optimise at this
stage, compiler writers inevitably like to show off their optimisation skills, even in
this phase!

Considering the code for cg itself, a switch statement can be used with a case

for each node type. This is very similar to the code used for outputting the tree.

a3token cg(astptr p)

{

int nodetype;

a3token noresult = {R_NONE, -1};

astptr left,right;

if (p==NULL) return noresult;

nodetype = p->asttype;

switch (nodetype) {

.

.

.

}

}

6.5.2.2 Variables

Before looking at the details of the translation of specific statements, the handling of
variables should be examined. The use of a stack for variable storage at runtime, as
described in Sect. 6.2.3, is appropriate for DL. The global variables are those declared
at the top level and they are all stored in the lowest frame on the stack. At runtime,
a pointer (called gp — the global pointer) is set up to point to the start of this stack
frame. The IR variables vg0, vg1, vg2, … are stored here so that at runtime, the
address of, for example, vg23 is found by adding 23 to the contents of register gp.

When functions are involved, the situation becomes a little more complex. The
code within a function can access both the local variables declared within that func-
tion, together with the argument variables. The code can also access all the global
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variables already defined so far in the program. Accessing the global variables is as
already described via the gp register. Local variables are stored further up the stack.
These variables are called vl0, vl1, vl2, … and they are accessed via offsets 0, 1,
2, … from the contents of register sp. Because sp always points to the base of the
current stack frame this plan works even if the function calls itself recursively.

This is why there are two distinct forms of variable in the IR — the global and
the local variables. The vgn variables are accessed via gp and the vln variables are
accessed via sp.

6.5.2.3 Expressions

Thehandling of arithmetic expressions provides a good example of how three-address
code can be generated. A tree of the form shown in Fig. 6.7 can be used to represent
an expression with the node containing an arithmetic operator. The general approach
to code generation presented in the last section can then be adapted to generate code
for arithmetic expressions. Given the expression 1 * 2 + 3 + 4 this algorithm
will produce three-address code of the form:

r3 = 1 * 2

r2 = r3 + 3

r1 = r2 + 4

leaving the result in r1.
The code in cg generating this output for nodes containing an operator is as

follows:

case N_PLUS:
case N_MINUS:
case N_MUL:
case N_DIV:

left=p->p1;
right=p->p2;
t=genreg();

t2=cg(left);
t3=cg(right);

opreg(t); printf("="); opreg(t2); outop(nodetype); opreg(t3);
printf("\n");

return t;

The genreg() function returns the identity (as an a3token) of the next unused
temporary register. Code is generated for the left and right subtrees of the node and
the arithmetic instruction for the node is output using the outop function, outputting
+, -, * or / according to its argument. The opreg function outputs an argument for
the machine instruction, either a temporary register, a register storing a variable or
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an integer constant. Returning t at the end of the code indicates to the caller that
the result has been placed in register t. Further optimisations are of course possible.
For example, if both subtrees refer to constant values, the computation specified by
the node can be done immediately and the computed value returned as a constant.
However, optimisations like this may be better performed later.

This code is simple and it works well. It produces fairly high-quality code because
the cg function returns a result that can be placed directly into an instruction being
generated for the current node. An alternative approach is for cg to return its results
in temporary registers so, for example, the code for 1 + 2 would take the form

r2 = 1

r3 = 2

r1 = r2 + r3

But it makes sense to code cg to make the generated code more compact. The cg

function just has to return a little more information to its caller.
The handling of boolean expressions is not an issue for DL, but clearly similar

techniques can be used to those for arithmetic expressions. As ever, the language
definition is the guide for the evaluation rules. Consider the simple example of the
evaluation of the expression a & b. Here the & operator is the boolean and. Evalu-
ating this expression can be done by evaluating a, evaluating b and then computing
a & b by code generating the appropriate target machine instruction. There is a
potential alternative. Suppose a is evaluated. If it is found to be false, then b need
not be evaluated because the value of the entire expression must be false. This
short-circuited evaluation looks like a good optimisation. But a problem arises if the
evaluation of b has side effects. The language rules have to be consulted to ensure
that the correct form of evaluation is being used.

6.5.2.4 Conditional Statements

DL’s conditional statements (if and while) are both based on a test using a
<bexpression>, a relational operator separating two expressions. Consider first
the if statement. There are two possible forms since the else-part is optional and
they are defined in BNF as follows:

<ifstatement> ::= if ( <bexpression> ) <block> else <block>

| if ( <bexpression> ) <block>

The tree node generated by the parser contains the tag N_IF, a pointer to the
condition (<bexpression>), a pointer to the then-block and a pointer to the else-
block (NULL if not present). An obvious way of generating code for this construct
is to first generate code for the <bexpression> with the assumption that this code
leaves a value in a register indicating whether the value of the condition evaluated
as true or false (say, 1 or 0 respectively). Then a conditional jump can be compiled
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to jump to the else-block or the end of the statement if the condition evaluated as
false. The then-block is then code generated, followed by a jump, if necessary, to
the end of the code for the else-block. This will work but relies on a messy double
comparison, once in the code generated for <bexpression> and once in the code
checking the condition.

A better approach is for the code generation of the if statement to deal also with
the code generation of the <bexpression>. This is shown in the code example
below where only one test is needed in each if statement.

Consider then the code generation of a statement starting if (a>0) with a then-
block but no else-block. The code should have the form:

if (a <= 0) goto l1

code for then block

l1:

and if there is an else-block the code should have the form:

if (a <= 0) goto l1

code for then block

goto l2

l1:

code for else block

l2:

Note that the sense of the relational operator has to be inverted in this code so that,
for example the operator > in the source code is translated to the operator <= in the
IR. This is the role of the function invcondition in the code below. It examines the
relational operator in the node passed as an argument and prints the inverse operator.

Generating intermediate code of this form is not difficult. For example:

case N_IF:
l1=genlab();
cnode=p->p1; /* point to the cond node */
t2=cg(cnode->p1); t3=cg(cnode->p2);
printf("if ("); opreg(t2); invcondition(cnode); opreg(t3);
printf(") goto l%d\n",l1); /* jump to else part or

end of statement*/
t=cg(p->p2); /* cg then part */
if (p->p3 != NULL) { /* else present */

l2=genlab();
printf("goto l%d\n",l2);
printf("l%d:\n",l1);
t=cg(p->p3); /* cg else part */
printf("l%d:\n",l2);

}
else /* no else present */

printf("l%d:\n",l1);

return noresult;
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An example of the IR generated by this code from the DL source code
if (a+b > a*b) c = 1 else c = 2 is:

r1 = vg0 + vg1
r2 = vg0 * vg1
if (r1<=r2) goto l1
vg2 = 1
goto l2
l1:
vg2 = 2
l2:

DL’swhile statement is treated in a similarmanner. For example, the IRgenerated
from a DL statement starting while (a>0) would have the form

l1:

if (a <= 0) goto l2

code for while block

goto l1

l2:

The code to generate this IR takes the form:

case N_WHILE:
l1=genlab();
l2=genlab();
cnode=p->p1; /* point to the cond node */
t2=cg(cnode->p1); t3=cg(cnode->p2);
printf("l%d:\nif (",l1); opreg(t2);
invcondition(cnode); opreg(t3);
printf(") goto l%d\n",l2); /* jump out of while */
t=cg(p->p2); /* cg do part */
printf("goto l%d\n",l1);
printf("l%d:\n",l2);

return noresult;

and the IR this generates from the DL source statement
while (i<=10) i = i + 1 is:

l1:

if (vg0>10) goto l2

r1 = vg0 + 1

vg0 = r1

goto l1

l2:

Although not relevant to DL, the implementation of the switch construct should
be mentioned. There are many ways in which this can be tackled. A simple approach
is to regard the switch statement as an if … then … else if … construct. For
switch statements with many cases, this may not result in high performance code, but
the logic is simple. The range and number of case values are important in deciding
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on a more efficient implementation strategy. It may be that a jump table can be used,
or even some sort of binary search algorithm.

6.5.2.5 Functions

The parser constructs a linked list of pointers to all the functions declared in the
DL program. This is a distinct structure, independent of the abstract syntax tree
generated for the main program. There is a node for each function in this separate
abstract syntax tree and in this node is an identification of the symbol table entry for
the function together with a pointer to the tree for the block defining the code for the
function. The number of arguments is placed in the symbol table so that when the
function is called, the number of arguments provided in the call can be compared
with the number of arguments in the definition. They should of course be equal.

Generating code for each function is not difficult. The code needs to start with an
identification of the function name, and this is followed by the code for the function
itself, generated in the normal way by the cg function. However there are two further
issues, one for the beginning of the function and one for the end.

Associated with every function and the main program too is the size of its stack
frame. This is the total size of all the variables declared within the function (or the
main program — the global variables). If the function or the main program calls
another function, knowledge of this size value is essential because the stack pointer
(sp) has to be incremented by this value to point to the space available for the local
variables of the function being called. This size value is normally stored in the symbol
table, but it would be convenient to have the value available at the start of the IR code
for the function. In the case of the DL compiler, the code for the function is preceded
by a line starting with a colon character followed by the name of the function being
defined, followed by the size of the local variables for that function enclosed in
parentheses. Examples of this can be seen in Sect. 6.5.3.

The other issue is concerned with the return of results to the caller of the function.
The syntax of DL shows the return <expression> construct and this is translated
into a return IR instruction. But how can a value be returned to the caller? A
convenient way of managing this is to reserve a temporary register for the entire
compilation and this register is always assumed to contain the result from the last
function call. For example, the functionreturn1 and its corresponding translation is:

return1(); :return1(0)

{ r0 = 99

return 99 return

}

Here it can be seen that the preallocated register for return values is r0. The caller
of return1 can then save the value of r0 if necessary.

But what happens with a DL function that finishes without having executed a
return instruction? Is this an error? The specification of DL should of course say
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what should happen (but it doesn’t!). So we can take an easy way out at this stage
by assuming that all functions should end with the code

r0 = 0

return

so that a value of zero is returned if control falls through the end of a function without
having executed an explicit return instruction.

Function call is easily managed. The code to generate the arguments, if any, for
the call is generated, with the arguments going into param instructions. The call is
made, a new temporary register is allocated and the value in the preallocated result
register is placed in this new register. The code in cg to do this is:

case N_FNCALL:
t=cg(p->p1); /* deal with arguments */
printf("call %s\n",symtable[p->astdata1].symname);
t=genreg(); /* may need a new register for the result */
opreg(t); printf("="); opreg(returnreg); printf("\n");
return t;

In this code, the p1 field of the structure pointed to by p is the list of arguments to
the function and the astdata1 field is the index of the symbol table entry defining
this function. To help show how this code works, consider this example and the
corresponding IR code:

int x; param 3

{ call f

x = f(3) + f(4); r5 = r0

} param 4

call f

r6 = r0

r4 = r5 + r6

vg0 = r4

6.5.3 An Example

Here is some DL code showing a few of the features that have been discussed in this
chapter. It shows how functions are represented and called, how results are returned
from functions (in r0) and how the size of the stack required for local data storage in
each function and in the main program is stated in brackets after the function name.
Note that the main program is given the name !MAIN! — an arbitrary name that is
distinct from any DL function (a function name cannot include exclamation marks).

int x;

f1();
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int x1,x[10],y;

{

x1=100;

return x1

}

int zzz;

int zzz1[100];

f2(n);

int x1,a,b,c;

{

x1=200*n + f1();

return x1

}

{

x = f1() * f2();

print(x)

}

The IR generated by the compiler is:

:f1(12)

vl0 = 100

r0 = vl0

return

r0 = 0

return

:f2(5)

r2 = 200 * vl0

call f1

r3 = r0

r1 = r2 + r3

vl1 = r1

r0 = vl1

return

r0 = 0

return

:!MAIN!(102)

call f1

r5 = r0
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call f2

r6 = r0

r4 = r5 * r6

vg0 = r4

print vg0

r0 = 0

return

Another example appears in the appendix.

6.6 Conclusions and Further Reading

DL has extremely limited support for making use of type information. It is certainly
worth looking at how type information can be stored and managed in compilers
for more powerful languages. For example [8, 9] show code for C compilers and
therefore cover the issues of user-defined types and type equivalence. There is also
a large published literature on type systems and a relevant example is [10]. Type
checking is covered well in [11]. It is instructive to find out how typing is used in a
variety of programming languages.

A great deal has also been written in the field of comparative programming lan-
guages and reading in this area gives a good insight into the huge range of program-
ming language features needing implementation. For example, Java is an important
milestone in the development of general purpose (and object-oriented) languages
and in the context of this chapter, the Java Virtual Machine (JVM) [12] has particular
significance.

This book concentrates on traditional imperative programming languages and
the worlds of object-oriented, logic programming, functional and other languages
are largely ignored. Many of the techniques described in this book have general
applicability, but more specialised approaches are required to deal with specific
language features. There is a good introduction in [13].

The design of intermediate representations for imperative languages is covered
in [7]. Intermediate representations for functional languages are discussed in [14,
15]. The LLVM compiler infrastructure project is documented in detail at http://
llvm.org and there is much there on the design of intermediate languages.

The syntax-directed translation approach to the generation of code is covered
in [1] and much more detail about attribute grammars is in [3]. Most programming
languages need to implement sophisticated storage management techniques not just
to provide storage space for variables but to provide flexible storage for objects,
dynamic heap-based data structures and so on. Storage management using garbage
collection, reference counting, etc. may well be necessary. A good summary appears
in [1] and these issues are dealt with more generally in many of the data structures
and algorithms textbooks.

http://llvm.org
http://llvm.org
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DL provides only a very simple form of boolean expression support. When eval-
uating more complex boolean expressions, it may be possible to implement some
significant optimisations. These techniques of short-circuit evaluation are covered
in [3].

The generation of high-quality code for the switch statement has been studied,
for example in [16, 17].

Exercises

6.1. The date manipulation language introduced in Sect. 6.1.2.2 is worth develop-
ing. Produce a specification for a simple but full programming language for
the manipulation of dates and code an implementation. What other features
could reasonably be added to a language like this?

6.2. Some programming languages (for example, Pascal) allow the nesting of func-
tion definitions. How valuable is this feature? Can it be added easily to DL?
If so, plan an implementation by starting with the changes necessary for the
symbol table.

6.3. What are your views on strong type checking? Does it get in the way?

6.4. Investigate some IRs used in production compilers. For example, look at
LLVM’s IR and the Java Virtual Machine.

6.5. It should be straightforward to implement a constant folding optimisation
during the traversal of the abstract syntax tree to generate the IR. Or is this
easier to do on the three-address code once it has been generated?

6.6. Many programming languages (C included) support a switch statement.
Devise an abstract syntax tree structure to support this statement and con-
sider its implementation by showing how intermediate code can be generated.
Are there extensions to the three-address code proposed in this chapter which
would be appropriate? Where would you check for the existence of duplicate
case labels? It may be helpful to consult the discussion of switch statements
in [1].

6.7. Design a three-address code for C or for any other language you know. How
general purpose can you make a three-address code?

6.8. Write an interpreter for a three-address code. Parsing the statements could be
done easily with flex/bison-style tools.

6.9. Try using C (or any other high-level language) as an intermediate representa-
tion for DL.

6.10. Is it easy to determine whether a value is being returned by a DL function?
How would you implement an acceptable checking algorithm?

6.11. The material in this chapter has shown that the syntax specification of DL
is telling just part of the language definition story. Some of the issues have
already been highlighted. There are more.
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6.12. What would be the semantic analyser consequences of introducing a new data
type (say, float) to DL?
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Chapter 7
Optimisation

The generation of high-quality code is a key objective in the development of compil-
ers. It is of course true that a usable compiler can be written with little or no provision
for optimisation, but the performance of the generated code may be disappointing.
Today’s production compilers can generate code of outstanding quality, normally
much better than even hand-written target assembly code produced by an expert.
However, producing this high-quality code using a compiler is not at all easy. The
optimisation algorithms used are often complex and costly to run, they interact with
each other in unpredictable ways and the choice of which techniques to use for best
results will be influenced by the precise structure of the code being optimised. There
is no easy solution and an approach to optimisation has to be adopted which works
well with the “average” program.

Is optimisation important? How hard should a compiler work to produce highly
optimised code? The answer depends on the nature of the program being compiled
and on the needs of the programmer. For many programs, optimisation is an irrele-
vance but performing it does no real harm. For other programs resource constraints
may mean that optimisation is essential. An argument often heard against the need
for optimisation, both by the programmer and by the compiler, is that by waiting for
processors to get fast enough the problem will disappear. As the growth in processor
speeds seems to be slowing, the wait for sufficiently fast processors may be longer
than expected. This makes it increasingly important for both the programmer and
the compiler writer to be aware of the importance of optimisation.

Before examining practical techniques, it is important to remember that the term
optimisationwhen used in the context of compiler design does not refer to the search
for the “best” code. Instead it is concerned with the generation of “better” code. We
will return to this issue later in Chap.8 when covering the topic of superoptimisa-
tion. Another related issue is the choice of criteria for code improvement. Are we
looking for fast code, small code (in terms of total memory footprint, code size, data
usage or some other criterion), code that generates the least i/o traffic, code that min-
imises power consumption, or what? Some optimisations trade speed improvements
against code size and so it is essential to know the real optimisation goal. In most
of the techniques described in this chapter, the optimisation goal is to reduce the

http://dx.doi.org/10.1007/978-3-319-52789-5_8
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instruction count. This is a reasonable target for intermediate code because it has the
effect of reducing code size and almost always reducing execution time. If specific
aims for optimisation are required in a particular compiler then each optimisation
applied should be examined in detail, both in isolation and when combined with
other optimisations, to determine its effect on the optimisation goal.

7.1 Approaches to Optimisation

Section2.4 showed where code optimisation can be placed amongst the modules of
a compiler. This chapter concentrates on target machine-independent optimisation,
operating on the intermediate representation generated by the semantic analyser.
Chapter 8 will cover the optimisation during and after the code generation phase.
This is machine-dependent optimisation. Machine-independent optimisation can be
very effective and there are many ways in which code improvements may be made at
this stage of compilation. It is helpful to think about this optimisation as a collection
of techniques applied in turn to the intermediate representation, in effect a set of
IR filters. There is no necessity for the same intermediate representation to be used
for both the input and the output of this optimisation phase, but in this chapter it
is assumed that the IRs are the same. This raises an important issue of how these
optimisation filters may be combined. It would be really convenient if the optimi-
sation process could be achieved by combining as many filters as are available or
necessary, in an arbitrary order. But these optimisation processes interact with each
other in complex ways and they may even need repeating. Therefore, optimising the
ordering of optimisation filters can be an surprisingly complex task.

7.1.1 Design Principles

In today’s production compilers, a large proportion of the compiler’s code is con-
cerned directlywith optimisation andmost of the research currently being undertaken
in the field of compiler design is now concentrated on optimisation-related issues.
But there are still limits to how far optimisation can go. For example, making signif-
icant changes to the algorithms in the source program is not generally appropriate.
For example, it is probably not the role of the compiler to recognise a source code
sequence that has been written to invert a matrix and replace it by code that uses a
faster algorithm. But it probably is appropriate for the compiler to evaluate certain
source code sequences at compile time and use the results in the generated code. This,
of course, can only be done when there is no doubt that the evaluation process will
terminate. Completely running the whole program at compile time is rarely possible
and indeed impossible if the program is expecting input during execution.

The optimisation process should not alter the program’s semantics. Optimisations
must be safe in that the results from running a programwith andwithout optimisation

http://dx.doi.org/10.1007/978-3-319-52789-5_2
http://dx.doi.org/10.1007/978-3-319-52789-5_8
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should be identical. When developing a compiler it is easy to make mistakes con-
cerned with safety. For example it is possible to make the false assumption that the
code of a loop is always executed at least once. It should be mentioned here that the
issues concerned with the preservation of program semantics may turn out to be com-
plex and unclear. Many compilers have been developed that openly make changes
to the semantics of a program on optimisation. These changes are documented so
hopefully the programmer is aware of them and they usually occur in the handling
of numerical calculation errors—maybe overflow is not detected when optimisation
is turned on. Whether or not this type of optimisation is acceptable depends on the
nature and behaviour of the program being compiled.

The optimisations should also be worthwhile in that they must produce a notice-
able benefit to whatever it is that is being optimised. For example, a loop unrolling
optimisationmight enlarge the executable code somuch that the loop no longer fits in
the processor cache, resulting in the code becoming slower. Some optimisations can
be very expensive to perform and therefore may not be worthwhile if, for example
the target program is only going to be run once.

These goals to ensure that optimisations are both safe and worthwhile may sound
obvious, but achieving them is far from automatic. Giving the user of the compiler
the ability to choose whether to include such optimisations is wise.

The compiler tries to predict what is going to happen when the target machine
program actually runs and the compiler has to use this information in its optimisation
processes. For example, it is sensible for the optimisation to be concentrated on code
that is expected to run many times. By ensuring that code within loops is as efficient
as possible, a significant improvement can be made to overall program performance.
An interesting approach is to compile the source program and then start running
the generated code, allowing feedback about performance to pass from the running
program back to the compiler. The compiler thenmakes correspondingmodifications
to the code (for example, by performing further optimisation on blocks of code that
seem to be executing frequently), the executing code is updated and continues in
execution. This is performed repeatedly. Here, the compiler can make optimisation
decisions based on real dynamic data rather on static speculation based on the source
program.

While developing optimising transformations within the compiler, it is impor-
tant to remember how the intermediate code is transformed during code generation,
machine-dependent optimisation and while actually running on the target machine.
Do not implement optimisations in the machine-independent stage that can be better
done during code generation. Furthermore, modern processors usually include pow-
erful features to perform runtime optimisation. For example, some processors support
out-of-order execution where if an executing instruction stalls because results gen-
erated by earlier instructions are not yet available, the processor can automatically
start executing other instructions that are ready. Any necessary adjustment to gener-
ated results because of the changed order of instruction execution is also performed
automatically by the hardware. Not everything has to be done in the compiler.

What sort of optimisations can be done on the intermediate representation at this
stage of compilation? Optimisations that concentrate on the removal of code that is
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unreachable, performs no useful function or is somehow redundant are particularly
important. Common subexpression elimination can be done here. It may be possible
to move code to parts of the program that are executed less frequently. For example,
loop invariant code can bemoved out of a loop. Operations on variables whose values
are known at compile time can be performed at this stage. Constants can be folded
and values propagated. If the target machine offers any form of parallel processing it
may also be possible to use dependence analysis to determine which code fragments
are independent and therefore candidates for execution in parallel.

Code optimisation is difficult. Coding an optimising compiler should not be under-
taken lightly. But today’s compilers can produce impressive code because the com-
plexity of the interactions of operations specified by the source program and the
complexity of the characteristics of the target machine can be managed effectively
by clever algorithms and the computational power used by the compiler.

A few of the many available optimisation techniques are presented below. Tech-
niques of local optimisation concentrate on basic blocks. These are comparatively
small blocks of code where the analysis is undemanding. With global optimisation
the issues of potentially complex flow of control have to be taken into account and
the complexity of analysis for optimisation greatly increases.

7.2 Local Optimisation and Basic Blocks

The stream of intermediate code generated by the front-end of the compiler may
well have a complex control structure with conditional and unconditional branches,
function calls and returns scattered through the code. However, there will be sections
of code not containing any of these transfers of control—“straight-line code”—
where control starts at the first instruction and passes through all the instructions in
the section. These sections of code are called basic blocks.

Partitioning the intermediate code into a set of basic blocks is not difficult. Con-
trol enters a basic block via the first instruction of the block. Therefore this first
instruction must either be the destination of some sort of branch instruction, the
instruction following a conditional branch or the first instruction of a function or
the main program. The last instruction of the basic block must be a conditional or
unconditional branch instruction, a return instruction or the last instruction of the
main program. Section6.4.2.2 shows how the basic block can be used as an integral
part of an intermediate representation and Fig. 6.5 gives an example of a basic block
representation of a simple program.

Another example comes from the main program of the factorial program in the
appendix and is shown in Fig. 7.1.

Producing this control flowgraph is often thefirst step in the intermediate represen-
tation optimisation process. The next step is to examine each basic block individually
and perform local optimisation. This local optimisation is completely independent
of the flow of control between basic blocks.

http://dx.doi.org/10.1007/978-3-319-52789-5_6
http://dx.doi.org/10.1007/978-3-319-52789-5_6
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7.2.1 Constant Folding and Constant Propagation

There are many simple optimisations that can be done when the values of operands
in the IR instructions are known or can be calculated. Consider the DL code:

a = 2;

b = 3 * 4;

c = a + b;

Fig. 7.1 Basic blocks of
factorial main program (see
appendix)

vg0 = 1

l3: if vg0 > 10 goto l4

param vg0

call factorial

r4 = r0

print r4

r5 = vg0 + 1

vg0 = r5

goto l3

l4: r0 = 0

return

producing the code (taken as a basic block):

vg0 = 2

r1 = 3 * 4

vg1 = r1

r2 = vg0 + vg1

vg2 = r2

A good first step is to replace all operators with explicit constant arguments by the
result of the computation. Here, 3 * 4 can be replaced by 12. The computation is
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being done at compile time rather than at runtime. But there is more that can be done
by propagating known values. Stepping through the basic block code instruction
by instruction, right-hand sides can be replaced by constant values where they are
known. We then obtain the code:

vg0 = 2

r1 = 12

vg1 = 12

r2 = 14

vg2 = 14

The two arithmetic operators have been optimised away. Clearly there is more that
can be done, and this code will be improved a little more in the examples below.

This type of analysis can be taken further. By replacing expressions in the code
having constant operands with their corresponding values the program is essentially
being run (or partially run) at compile time. Is it feasible to actually run the program
at compile time, assuming it needs no user input, and then generate a program that
outputs the results? For some simple programs this will happen as a consequence
of conventional static analysis, but in a more general case this extreme attempt at
optimisation is not wise.Withmore complex control flow the analysis becomes really
difficult and it has to be known in advance whether the program will terminate. This
is not possible in general.

7.2.2 Common Subexpressions

Common subexpression elimination is a well-known optimisation and it is a tech-
nique that has been used by programmers as well as by compilers for many years.
Some programmers, when faced with code of the form
x = (a*a-1)/(a*a+1)
will automatically rewrite it as
t = a*a; x = (t-1)/(t+1)
even when subconsciously aware that the compiler will be doing that optimisation
automatically.

Performing this type of optimisation within a basic block can be done by sequen-
tially passing through the basic block, keeping a record of the values calculated so
far. For example, suppose the source code contains two assignments to x and y.

x = a/(b*b + c*c);

y = b/(b*b + c*c + a)
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The corresponding IR together with the IR rewritten so that the vg variables are
replaced by their source program names to make the example a little clearer is shown
here.

r3 = vg3 * vg3 r3 = b * b

r4 = vg4 * vg4 r4 = c * c

r2 = r3 + r4 r2 = r3 + r4

r1 = vg2 / r2 r1 = a / r2

vg0 = r1 x = r1

r8 = vg3 * vg3 r8 = b * b

r9 = vg4 * vg4 r9 = c * c

r7 = r8 + r9 r7 = r8 + r9

r6 = r7 + vg2 r6 = r7 + a

r5 = vg3 / r6 r5 = b / r6

vg1 = r5 y = r5

The algorithm to find common subexpressions scans through the IR, maintaining a
list of computed expressions and where their results are stored. When an instruction
is foundwith a computation which has already been performed on its right-hand side,
it is replaced by an assignment to the variable/register already containing the value.
Entries in the list can be invalidated by encountering an instruction that updates the
value in a variable used in the expression. For example, the IR instructions above
can be scanned one after the other:

r3 = b * b b * b is now stored in r3
r4 = c * c c * c is now stored in r4
r2 = r3 + r4 r3 + r4 is now stored in r2
r1 = a / r2 a / r2 is now stored in r1
x = r1
r8 = b * b b * b is already stored in r3 and so this instruction

can be replaced by r8 = r3
r9 = c * c c * c is already stored in r4 and so this instruction

can be replaced by r9 = r4
r7 = r8 + r9 r8 + r9 is now stored in r7
r6 = r7 + a r7 + a is now stored in r6
r5 = b / r6 b / r6 is now stored in r5
y = r5

Making these two replacements and scanning through once again we obtain:

r3 = b * b b * b is now stored in r3
r4 = c * c c * c is now stored in r4
r2 = r3 + r4 r3 + r4 is now stored in r2
r1 = a / r2 a / r2 is now stored in r1
x = r1
r8 = r3
r9 = r4
r7 = r8 + r9 r8 + r9 is now stored in r7
r6 = r7 + a r7 + a is now stored in r6
r5 = b / r6 b / r6 is now stored in r5
y = r5
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Redundant registers can now be removed. If an instruction of the form r1 = r2
is found then subsequent uses of r1 can be replaced by r2 and the assignment
r1 = r2 can be removed. We therefore obtain:

r3 = b * b
r4 = c * c
r2 = r3 + r4
r1 = a / r2
x = r1
r7 = r3 + r4 r8 replaced by r3 because of r8 = r3 and r9 replaced

by r4 because of r9 = r4
r6 = r7 + a
r5 = b / r6
y = r5

Then again we can scan for common expressions on the right-hand sides:

r3 = b * b b * b is now stored in r3
r4 = c * c c * c is now stored in r4
r2 = r3 + r4 r3 + r4 is now stored in r2
r1 = a / r2 a / r2 is now stored in r1
x = r1
r7 = r3 + r4 r3 + r4 is already stored in r2 and so this instruc

tion can be replaced by r7 = r2
r6 = r7 + a r7 + a is now stored in r6
r5 = b / r6 b / r6 is now stored in r5
y = r5

Making the indicated replacement, removing the redundant r7 (replacing it by r2)
and scanning again, we obtain:

r3 = b * b b * b is now stored in r3
r4 = c * c c * c is now stored in r4
r2 = r3 + r4 r3 + r4 is now stored in r2
r1 = a / r2 a / r2 is now stored in r1
x = r1
r6 = r2 + a r2 + a is now stored in r6
r5 = b / r6 b / r6 is now stored in r5
y = r5

There are no remaining common subexpressions. This marks the end of this optimi-
sation. The eleven original instructions have been optimised to eight.

There is a littlemore to add to this process. The search for common subexpressions
should take into account that the value of an expression of the forma + b is the same
as b + a. Also, the expressions a + c and a + b + c may have a common
subexpression but it depends on what the language definition says. If expressions of
the form a + b + c are supposed to be evaluated from left to right, then there is
no common subexpression.

Also, care has to be taken when deleting registers/variables. In the example above,
the first register to be deleted was r8, being replaced by r3. Subsequent uses of r8
will have already been replaced by r3 in the basic block. But a check may have to be
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made to see whether r8 is used in any of the basic blocks that can follow the current
block. If so, the assignment to r8 has to stay or the code in the other basic blocks
has to be altered to use r3 instead. This issue will be examined again in Sect. 7.3.1.

Common subexpressions can be killed by assigning to a variable used in the
expression. For example, consider:

r1 = a * a

x = r1

a = 3

r2 = a * a

y = r2

After the first instruction, the list of already computed expressions will store the fact
that the value of a * a is stored in r1. But encountering the third instruction will
kill the a * a entry in the list (unless it can be guaranteed that the value of a is
already 3 when this block of code starts). The value of a has changed and so the
value of a * a is no longer stored in r1. There are no common subexpressions
here, but the second a * a can be replaced by 9.

In languages that allow the access to variables via pointers, this problem of com-
mon subexpression analysis becomes more awkward. Fortunately DL does not suffer
from this issue, but languages such as C do. Consider the code:

r1 = a * a

x = r1

*p = 3

r2 = a * a

y = r2

At first sight, it looks as though a * a is a common subexpression, but there is an
aliasing problem. What is p pointing to? Could it possibly be pointing to a? Or can
the compiler guarantee that it is not pointing to a? In general the analysis of pointers
is notoriously difficult and it is likely that the default action here is to play safe and
recalculate a * a. Similar considerations apply to function calls. A function call
can update values in variables so that relying on variables keeping their values over
a function call is not possible unless a full analysis of the effects of the function has
been done.

7.2.2.1 Arrays

The intermediate code generated for the DL source statement
a[i] = a[i]+ b[i] could have the form:

r2 = vg1[vg0]

r3 = vg11[vg0]

r1 = r2 + r3

vg1[vg0] = r1
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Here, vg0 is i, vg1 is a and vg11 is b. This code looks perfectly reasonable, but
consider the target machine code generation of the array access operations. Suppose
the target machine is byte-addressed and each element of a and b uses 4 bytes,
making the assumption that integers in DL are represented using 4 bytes. A simple
array reference then requires the computation of the index value, multiplication by
4 and adding that value to the start address of the array to obtain the address of the
selected element. In the example above, the value vg0 has to be multiplied by 4 on
three separate occasions. This is a clear example of a common subexpression. But
this common subexpression is hidden within the IR being used and a lower level IR
would allow the optimisation to be achieved with ease. Such an optimisation could
only be performed at this stage if the IR became target machine-dependent because
the use of the factor 4 depends on the architecture of the target machine. There is
no correct answer here and it is just important to ensure that this form of common
subexpression elimination is performed somewhere, because considerable gains can
be achieved by optimising code manipulating arrays.

7.2.3 Elimination of Redundant Code

Looking through examples of intermediate code generated by the DL front-end,
it is obvious that some improvements can be made even after constant analysis
and common subexpression elimination have been performed. For example, looking
again at the code before constant analysis:

vg0 = 2

r1 = 3 * 4

vg1 = r1

r2 = vg0 + vg1

vg2 = r2

it is clear that r1 and r2 are redundant so the code could be improved to read:

vg0 = 2

vg1 = 3 * 4

vg2 = vg0 + vg1

and then after constant values are calculated and propagated:

vg0 = 2

vg1 = 12

vg2 = 14

Can the removal of redundant variables/registers be done after the constant analysis?
Going back to the code we have already generated:
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vg0 = 2

r1 = 12

vg1 = 12

r2 = 14

vg2 = 14

it is then obvious that if r1 and r2 are not read in subsequent instructions we can
dispense with those two assignment instructions to r1 and r2. Finding these dead
registers or variables is important and gives the opportunity to remove redundant
code.

Removing an unnecessary assignment to register r requires us to check whether
r is ever read in another instruction reachable from the assignment. If there are no
further reads from r or if r is written to before any further reads, then the assignment
to r can be removed. Doing this wholly within the basic block is really easy because
the flow of control is from the first instruction to the last instruction. But if r is
referred to in another basic block, we have to determine whether the execution of
this other reference can follow the original assignment. This is more complicated
and the process is examined in Sect. 7.3.2.

There are other forms of redundant code which can be removed at this stage. For
example, code of the form

x = 0;

if (x > 0) { ... }

can be simplified by removing the if statement completely, assuming that there are
no jumps into the code following the if. In the case of DL there is no difficulty here,
because DL does not support labels or goto statements.

If the target of a jump instruction is another jump instruction then the first jump
can be changed to point to the destination of the second jump.

Any unlabelled instruction following an IR goto or return instruction can be
removed because they can never be executed. The example IR in the appendix shows
an example of this in the form of a return followed by a goto.

Various algebraic simplifications can also be made at this stage. For example, the
expression x + 0 can be replaced by x, x * 1 by x, x * 0 by 0 and so on.

7.3 Control and Data Flow

Section7.2 showed how to take the intermediate representation of a program and
divide it into basic blocks. A control flow graph can then be constructed (see Fig. 7.1)
to show how control can pass from one basic block to another. This structure forms
the basis for performing various non-local optimisations.
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7.3.1 Non-local Optimisation

Once each basic block has been optimised, as described above, it is time to consider
the flow of control between basic blocks. What does a basic block carry forward to
its successor?

In performing local common subexpression elimination a list of expressions and
where they are stored is maintained as the basic block is scanned. That list can be
saved when the end of the basic block is reached and tagged with the identity of that
basic block. The list can then be passed on to the next basic block in the execution
path. This is part of the technique of data flow analysis. There are two possibilities,
as shown in Fig. 7.2.

Fig. 7.2 Flow between basic
blocks

b1

b2 b3

b4 b5

b6

The list of expressions and corresponding storage locations at the end of basic
block b1 is passed directly into the analysis of basic block b2 so that b2 can make
use of any subexpressions generated by b1. The same applies to b3. In the case of
blocks b4 and b5 the situation is a little more complicated because when analysing
b6 there is no knowledge of whether the entry to b6 was via b4 or b5. Therefore,
the list of expressions and corresponding storage locations at the start of the analysis
of b6 has to be the intersection of the two sets, from b4 and b5.

Suppose, for example, that the code in b4, b5 and b6 contains these instructions:

b4:

.

.

vg2 = vg0 + vg1

b5:

.

.

vg2 = vg0 + vg1

b6:

vg5 = vg0 + vg1

.

.
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Then the common subexpression elimination can be performed.

b4:

.

.

vg2 = vg0 + vg1

b5:

.

.

vg2 = vg0 + vg1

b6:

vg5 = vg2

.

.

But if the code is slightly different so that there is a mismatch of storage locations
for the expression, as shown here:

b4:

.

.

vg2 = vg0 + vg1

b5:

.

.

vg3 = vg0 + vg1

b6:

vg5 = vg0 + vg1

.

.

Then vg5 has to be set to either vg2 or vg3. This effect can be achieved by
introducing a new temporary register as follows:

b4:

.

.

r10 = vg0 + vg1

vg2 = r10

b5:

.

.

r10 = vg0 + vg1

vg3 = r10

b6:

vg5 = r10

.

.
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7.3.2 Removing Redundant Variables

In these program transformations, the number of variables or registers being used
tends to increase. It is important to make sure in this stage of optimisation that
efforts are made to remove redundant variables. These are variables that are assigned
a value and then are not used. In the last example in the previous section, block b6
starts with an assignment (vg5 = r10). Whenever a simple assignment like this
is encountered, the code following the assignment should be checked and all uses of
the value of (in this case) vg5 should be replaced by references to r10. If all such
uses of vg5 can be removed, then the original assignment is redundant and therefore
it can be removed.

Inevitably there are some complications. In DL’s IR, there are three different types
of variable. The vg variables are tied to globally defined variables in the source
language and the r variables are used for temporary values and other compiler-
related purposes. These two sets of variables have global existence. They are present
throughout the running of the program and there is no logical difference between
the two sets. They can be treated identically. However, the vl variables are local
to functions. They come into existence when the function is entered and disappear
when the function returns. Therefore, at this stage of optimisation at the IR level, the
vl variables can be handled just like all the others except that all analysis of these
has to be restricted to the current function. Global analysis is required for vg and r
variables.

This leads on to the concept of live variable analysis. Suppose the variable x is
assigned the value 1 (x is “defined”), and then x is used later in the code:

x = 1;

...

a = x + 1;

...

The variable x is said to be live between its definition and its use. In the code:

x = 1;

...

a = x + 1;

...

x = 2;

...

the assignmentx = 2; killsx and the live range ends here.An analysis of live ranges
helps with the optimisation in that variable assignments that have no corresponding
uses can be removed. This analysis is complicated by the fact that the definition and
use do not have to be in the same basic block and so control flow between basic
blocks has to be examined. If there is a path of execution between the definition and
the use, then the definition has to stay. But in general, it is not possible to predict
actual execution paths at compile time. For example:
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x = 1;

...

if (p > q) a = x + 1;

...

Itmay be that p is never greater than q at runtime so that the assignmenta = x + 1
is never performed. But the compiler is unlikely to be able to make this assertion
and has to play safe, keeping the definition of x and the conditional statement in the
compiled code.

Data flow analysis is not easy and algorithms are influenced by the choice of inter-
mediate representation. The use of static single assignment form (see Sect. 6.4.1.2)
can simplify this analysis as can other data flow-oriented IRs. Various approaches to
many forms of flow analysis are included in the references mentioned in the further
reading section in this chapter.

7.3.3 Loop Optimisation

All the general-purpose optimisation techniques described so far can of course be
applied to the code within loops, and if the optimisations are for execution speed,
this is where to apply optimisation for most benefit. But there are some techniques
particularly related to loop optimisation that can have significant effects on execution
speed.

The first step is of course to identify the loops. This can be done using the control
flow graph and it involves finding a basic block (the loop header) through which all
paths to basic blocks in the loop pass and also finding a path from one of the loop’s
blocks back to the loop header (the back edge). The header block is said to dominate
all the nodes in the loop. It should be possible to follow a control path from any of
the nodes in the loop to any of the other nodes in the loop without passing through
a node not in the loop.

Once the loops have been identified, each can be optimised in turn.

7.3.3.1 Removing Loop-Invariant Code

If a computation is performed in a loop such that the values used in the computation
remain unchanged for each iteration of the loop, then the computation should be
performed just once before the loop starts. The loop invariant code is hoisted out of
the loop. For example in

i = 0;

while (i<n) {

a[i] = a[i] + n*n;

i = i + 1

}

http://dx.doi.org/10.1007/978-3-319-52789-5_6
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the n*n computation is done each time the loop executes but it only needs to be done
once because n is a loop invariant—it does not change as the loop is executed. The
code then becomes:

i = 0;

t = n*n;

while (i<n) {

a[i] = a[i] + t;

i = i + 1

}

This proves to be a fairly simple optimisation to apply. Finding loop invariants is
based on finding and then tagging loop invariant variables/registers and then the
corresponding loop-invariant computations.

Note that the compiler is not performing the movement of loop-invariant code
at the source code level. This transformation is being done on the IR. This means
that it is possible to apply this type of optimisation even when it could not be done
by modifying the source code. For example, there may be good opportunities for
loop-invariant code motion when using multi-dimensional arrays in loops. Consider
the C program fragment:

for (k=0; k<n; k++)

a[i][j][k] = a[i][j][k] + 1;

Finding the offset from the start of the array of element a[i][j][k] does not
need to be done from scratch on each iteration of the loop. The offset calculations
involving the subscripts i and j can be done outside the loop. Just as in Sect. 7.2.2.1,
the IR has to be designed so that this type of optimisation can be achieved.

Finally, although it is unlikely to be a problem with this type of optimisation, any
movement of loop-invariant code must take into account the possibility that the loop
is not executed at all.

7.3.3.2 Induction Variables

Loops often contain one or more variables that are incremented or decremented by
a constant value each time control passes through the loop. In other words, these
variables take values which are linear functions of the loop counter, containing the
number of times the loop has been executed since it was last entered. Consequently
a variable whose value is a linear function of induction variables must also be an
induction variable. They keep in step with each other as the loop executes. It may
then be possible to reduce the number of induction variables in a loop by replacing
induction variables by linear functions of other induction variables.
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7.3.3.3 Strength Reduction

It may be possible to save some processor cycles by replacing potentially costly
operations on induction variables by cheaper operations. For example:

i = 0;

t = 0;

while (i<n) {

t = i*3;

a[i] = a[i] + t;

i = i + 1

}

Here, t is an induction variable. The code can be rewritten:

i = 0;

t = 0;

while (i<n) {

a[i] = a[i] + t;

t = t + 3;

i = i + 1

}

The multiplication operator has been replaced by a presumably cheaper addition
operator. Clearly this optimisation is machine-dependent, but it is probably safe to
assume that most common target architectures perform faster additions than multi-
plications.

7.3.3.4 Loop Unrolling

Consider the two pieces of code:

i = 0; a[0] = 0;

while (i<4) { a[1] = 0;

a[i] = 0; a[2] = 0;

i = i + 1 a[3] = 0;

}

Many programmerswould produce the code on the left (or something like it, probably
using a for loop), but the code on the right could be more efficient, in speed and
also possibly in memory usage. The code on the right is produced by unrolling the
loop on the left and it obviously avoids the loop control variable i and the code that
has to be generated at the start and at the end of the loop.

This form of loop unrolling is only applicable when the number of iterations is
known at compile time. Loop unrolling should always reduce the total number of



194 7 Optimisation

operations performed by the target machine in executing the code. But if the number
of copies of the body of the loop is large because the total number of iterations of
the loop is large, then there may well be code space issues. There is a clear tradeoff
here of code space against execution time and an appropriate compromise has to be
reached.

As well as removing the loop control code, loop unrolling may have further
benefits by creating opportunities for other optimisations. The expanded code can
be optimised using the IR optimisation techniques already described in this chapter
and also there may be more opportunities for pipeline optimisations on the target
machine. However, depending on target machine code sizes, it could be that there
are performance penalties in unrolling because the code no longer fits in the target
machine’s instruction cache. These are complex interrelated issues requiring careful
analysis.

7.4 Parallelism

The analysis that takes place on the intermediate representation as it is being opti-
mised examines control and data flow through the program. This type of analysis
is also relevant for the search for sections of the program that can be executed in
parallel.

Parallelism has become essential for high-performance computing—high perfor-
mance now implies parallelism. Parallelism can exist at several different levels in
a modern computer system. Instruction-level parallelism can be supported by the
processor’s hardware where several instructions can be in execution at any one time.
This is the technique of pipelining. In some processors this parallelism is auto-
matic, performed directly by the hardware. In other processors, clever sequencing
of machine instructions generated by the compiler is required to make significant
improvements to performance.

Some machines support vector instructions allowing operations to be performed
on all elements of a vector (a single-dimensional array) simultaneously. Operations
such as:

for (i=0; i<N; i++)

a[i] = b[i] + c[i];

can be implemented using vector operations, and if the processor allows vectors of
size N or greater, the implementation is particularly simple, presumably resulting in
a very fast execution time.

Multicore processors are nowwidespread. These are processors that support mul-
tiple processor units (cores) sharing main memory and other hardware and these
cores can execute machine instructions simultaneously. To make the best use of such
systems the compiler has to produce multiple instruction streams, one for each core,
that can be executed simultaneously. But for this to work reliably, the instruction
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streams generated for each core must be independent. They must not interfere with
each other, for example by writing to the same memory location. There also has to
be synchronisation between the cores. Note that the cores need not have the same
architectures. It could be that one of the cores has a special purpose (for rendering
graphics, for example) and in such non-homogeneous systems, the different cores
should be given workloads appropriate to their architectures.

Other models of parallelism are possible. For example, computer systems can be
interconnected via the internet. Such loosely coupled systems can clearly execute
programs in parallel, but the cost of communication between the executing streams
is much greater than if they were executing on separate cores in the same processor.
Furthermore, the sharing of data between these processors is more complex.

These approaches to parallelism all have very different characteristics and in order
to make use of this parallelism to achieve high-performance computation, different
software development and compilation techniques have to be used. The hope thatwith
N processors the program will run N times faster is rarely realised. Furthermore,
compiler technology of today is far from being able to take an arbitrary program
written in a high-level language and compile it so that it runs at maximum efficiency
on a particular multiprocessor system. In some limited circumstances we are close
to this goal, but there is still a great deal of work to be done. This is a research issue
that has been alive for many years and although good progress has been made, there
are still many difficult questions to solve.

It is clear that parallelisation by the compiler is a hard problem. But it certainly
is a problem that is worth tackling because there are so many computer applications
that require huge amounts of computation necessitating the best performance to
be squeezed from the hardware. Many of these applications have the potential for
parallelisation, using large arrays and extensive numerical computation. There is of
course an important underlying issue in the implementation of these applications
which is whether they should be coded or recoded by the programmer to make the
parallelism explicit. There are now many programming languages supporting the
specification of parallel computation. Is the programmer, with a good knowledge of
the system design and the algorithms being used, in the best position to decide how
the parallelism should be configured? The programmer can also choose algorithms
wisely because not all algorithms to perform a particular task adapt well to parallel
execution. The alternative approach is to allow the compiler and other software tools
to partition the application appropriately. So what can be done by the compiler?

Instruction-level parallelisation has been studied extensively and effective tech-
niques are available. This area is covered inChap.8. This is a local optimisation in the
sense that comparatively small sets of machine instructions have to be examined and
rearranged at each step. Vectorisation too has received a great deal of attention and
compiler technology can now generate code making good use of the vector instruc-
tions available in many of today’s architectures. But solving the general problem of
taking existing code, detecting sections that can be executed in parallel and deter-
mining whether communication costs negate the performance benefits of particular
instances of parallel execution is hard and generating any solutions with a degree of

http://dx.doi.org/10.1007/978-3-319-52789-5_8
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optimality is even harder. Fortunately, there are many aspects of this general problem
that are well understood and some of these issues are examined here.

7.4.1 Parallel Execution

The design of the target system is central to the choice of approach to generate par-
allel code. Although it retains many machine-independent characteristics, paralleli-
sation is clearly a machine-dependent optimisation, and therefore becomes another
process that may sit awkwardly in the traditionally machine-independent optimi-
sation phase. In designing parallelisation strategies the key considerations are the
number of processors available and whether the processors have shared memory.
The style of the decomposition of the problem into sub-problems may depend crit-
ically on the number of processors available—2, 10, 1000, a million,…? Systems
without sharedmemory require explicit communication between the processor nodes
and this communication may be very slow in comparison with the processor exe-
cution speed. In the examples in this section, the assumption is that the processors
share a common architecture. These are homogeneous systems.

Consider a simple loop:

for (i=0; i<N; i++) {

a[i] = b[i] + 1; /* statement 1 */

c[i] = b[i] * d[i] /* statement 2 */

}

There is clearly scope for vectorisation here, but suppose that we are working on a
computer system with multiple processors. There are several ways in which paral-
lelism can be used to speed up the execution of this code, including:

• If there are N ormore processors, each of the loop iterations can be done in parallel
on N processors;

• If there are 2 or more processors, the first loop (the loop formed by the execution
of the first assignment instruction) can be performed on one processor while the
second loop is performed on the another processor.

• If 2 ≤ number of processors ≤ N then the N individual iterations could be
distributed fairly amongst the processors available.

It may not be possible for the compiler to guarantee that it has made the best
choice because the choice depends on information that may not all be available at
compile time. For example, the actual value of N is clearly important. But a choice
can be made.

There may be constraints on the decomposition into parallel processes. Consider
modifying the code above:
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for (i=0; i<N; i++) {

a[i] = b[i] + 1; /* statement 1 */

c[i] = a[i] * d[i] /* statement 2 */

}

Just statement 2 has been changed, replacing b by a. This immediately raises a
problem with the sequencing of statements. In any individual iteration of this loop,
statement 1 must be executed before statement 2, because the value generated by
statement 1 is used by statement 2. In this case the opportunities for parallelisation
become somewhat restricted.

7.4.2 Detecting Opportunities for Parallelism

To understand how parallelism is affected by the detail of individual statements, a
much simpler scenario should be considered where the parallel execution of individ-
ual statements is allowed. Suppose the three statements

s1: a = b + c;

s2: d = b + 1;

s3: e = b * 2;

appear in a program. When coded in a traditional programming language there is an
implicit implication that these statements are executed sequentially, s1 followed by
s2 followed by s3. Are other orderings of statements possible? In particular, would
it be possible to allocate these three statements to three processors, executing the
statements concurrently? It is easy to see here that these statements can be executed
in any order. There is no direct interaction between them. This means that the three
statements can be executed in parallel. But if small changes are made to this code,
constraints are introduced:

s1: a = b + c;

s2: d = a + 1;

s3: e = a * 2;

Here,s1 has to be executed first (and its execution has to complete so that the variable
a is set) and then s2 or s3 can execute. s2 and s3 can execute in either order (or,
indeed, simultaneously). There is said to be a true dependence from s1 to s2 and
from s1 to s3. This dependence information can be used to schedule the execution
of these statements.

If the code is changed to:

s1: a = b + c;

s2: b = c + 1;
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an ordering is enforced of s1 followed by s2. There is antidependence from s1 to
s2. This dependence can be avoided by using a new variable name:

s1: a = b + c;

s2: b1 = c + 1;

where there is now no dependence.
There is a third form of dependence. Consider:

s1: a = b + c;

...

s2: a = d * 2;

Here, there is a forced ordering on the statements because the value in a after both of
these statements have been executed depends on the order of their execution. There
is an output dependence from s1 to s2. Again, this dependence can be avoided by
using a new variable name.

A similar form of analysis can be used to determine the existence of dependence
between groups of statements and this type of analysis can determine whether blocks
of code can be executed safely in parallel. Dependence analysis is also central to the
task of instruction scheduling as will be shown in Chap.8.

7.4.3 Arrays and Parallelism

Loops are particularly important in parallelism detection. Consider the vector version
of the first piece of code in the last section.

for (i=0; i<N; i++) {

s1: a[i] = b[i] + c[i];

s2: d[i] = b[i] + 1;

s3: e[i] = b[i] * 2;

}

Where is the parallelism here? If there are N or more processors available, then each
iteration of the loop could be assigned to a different processor and s1, s2 and s3
executed sequentially on each processor. Or with three processors the loops could
be separated into three independent loops so that the loop whose target is s1 is
executed on one processor, s2 on another and s3 on a third. It is this second form
of parallelism that we should be more interested in here. The aim is to distribute the
statements or maybe groups of statements in a loop to different processors so that
the loops are executed in parallel. It is a form of vectorisation.

It is easy to see how problems can arise. Consider:

for (i=0; i<N; i++) {

s1: a[i] = b[i] + c[i];

http://dx.doi.org/10.1007/978-3-319-52789-5_8
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s2: d[i] = a[i] + 1;

s3: e[i] = a[i] * 2;

}

Here again there is a true dependence from s1 to s2 and from s1 to s3. The
implication is that the s1 loop has to be executed and then the s2 and s3 loops can
be executed in parallel. Note that we are assuming here that the s1, s2 and s3 loops
are indivisible—for example, we cannot execute a bit of s1 and then a bit of s2 and
so on.

Consider another example:

for (i=0; i<(N-1); i++) {

s1: a[i] = b[i] + c[i];

s2: d[i] = a[i+1];

}

Parallelising s1 and s2 here is not possible because there is an antidependence from
s2 to s1. This is easier to see if the loop is unrolled:

s1: a[0] = b[0] + c[0];

s2: d[0] = a[1];

s1: a[1] = b[1] + c[1];

s2: d[1] = a[2];

...

and it is clear that there is an antidependence from s2 in one iteration to s1 in the
next iteration. Hence, there is no easy parallelism here.

Obviously the subscripts matter in these array examples. Consider:

for (i=0; i<N; i++) {

s1: a[i*2] = b[i] + c[i];

s2: d[i] = a[i*2 + 1];

}

This is vaguely similar to the last example, but here there is no dependence between
s1 ands2 and so these two loopsmay be executed in parallel. There is no dependence
because the sets of values generated by i*2 and i*2 + 1 have no common values.

The more general case has the form:

for (i=L; i<=U; i++) {

s1: a[F(i)] = ...;

s2: ... = a[G(i)]];

}

F and G are functions returning integer results in the appropriate range. To determine
whether there is any dependence between s1 and s2, the set of all values of F(i)
for L ≤ i ≤ U and the set of all values of G(i) for L ≤ i ≤ U are compared and
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if there are any common values, then there is a dependence. In general, this is not a
sensible or, indeed, feasible computation. It can be very expensive (if U is very much
greater than L) and not possible if L and U are not known at compile time. So, in the
general case, a dependence has to be assumed. But if the problem can be simplified
so that F and G are linear functions of i, then there is a better chance of a solution.
Consider:

for (i=L; i<=U; i++) {

s1: a[p*i + q] = ...;

s2: ... = a[r*i + s];

}

In this code p, q, r and s are all integer constants (i.e. their values are known at
compile time). In this case, the GCD test can be applied and this states:

The greatest common divisor (GCD) of p and r must divide (q - s) with no remainder
for there to be dependence.

Consider the code:

for (i=0; i<N; i++) {

s1: a[i*4] = ...;

s2: ... = a[i*6 + 1];

}

Here, p has the value 4, q has the value 0, r has the value 6 and s has the value 1.
GCD(p,r) is 2, q - s has the value –1, the integer division –1/2 has a remainder
and so there is no dependence here.

This is a conservative algorithm in that it can claim that there is dependence when
in fact there is none. This is because the algorithm makes no use of the values L
and U. Fortunately this is the safe thing to do. If the algorithm states that there is
no dependence then the statements can be parallelised safely. If the algorithm states
that there is dependence, there is a chance that there is in fact no dependence, and
the optimisation has been lost, but the right answer from the compiled code will still
be produced.

This algorithm can be extended easily to handle multi-dimensional arrays. Other
more powerful tools have been developed to obtain better solutions of this problem,
but this algorithm is still widely used.

Once the dependences between statements have been determined, it is possible
to consider where parallelism can be used to improve performance of the loops. A
directed graph is drawn for all the statements in the loop, one node for each statements
and directed paths between the nodes to identify the dependences. There are then
standard ways of traversing the directed graph to identify which statements can be
parallelised and which have to be left as they are.
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7.5 Conclusions and Further Reading

Machine-independent optimisation is a well-studied area of compiler design. It is a
challenging area of researchwith the optimisation algorithms being influenced by the
designs of the source language, the intermediate representation, the target machine
and the user’s requirements. Furthermore the interactions between the optimisations
are really complicated and it is not possible to model the entire optimisation process
with any degree of precision. Extensive empirical studies have to be performed to
achieve reliable results which can then influence compiler design.

Because of this complexity, there is little code in this chapter illustrating optimi-
sation algorithms. Instead, the chapter has concentrated on some of the principles of
optimisation and the general techniques in widespread use in compilers of today. For-
tunately there is a large literature covering this area. Muchmore detailed information
about optimisation and practical algorithms is found in textbooks such as [1–5]. In
particular a standard reference for control and data flow is [3] and references [5–7]
cover parallelisation in detail. A classic paper on the program dependence graph
is [8]. There are survey papers too, for example [9] giving a broad view of opti-
misation and [10] covering the specific issue of generating compact code. Some
background information on programming language constructs on which optimisa-
tion can be performed is found in [11, 12].

There are many other interesting approaches to intermediate code optimisation.
For example the technique of peephole optimisation (covered in Chap.8) can be
applied to the IR [13]. This proliferation of techniques makes the problem of com-
bining and ordering very difficult and an important reference for this issue is [14].

Exercises

7.1 Have a look at the documentation of your favourite compiler and try and find
out which optimisations are supported. If they can be controlled independently,
try to assess their effect on a simple benchmark program.

7.2 Propose some guidelines for the implementation of the loop unrolling optimi-
sation. By how much is it reasonable to increase code size? Try to assess the
effectiveness of this optimisation.

7.3 Try producing some examples of IR optimisation by hand. Generate some
code, preferably involving array manipulation, and carry out local constant
propagation and common subexpression elimination. By howmuch is the code
improved?
This task can of course be partially automated by writing an emulator for DL’s
IR.

7.4 What should a compiler do when it tries to evaluate an expression such as 1/0
at compile time?

7.5 Theobvious exercise is to try implementing someof theoptimisations described
in this chapter. Produce a front-end to read DL’s IR instructions, generating
some appropriate internal representation. Then write a back-end to output this

http://dx.doi.org/10.1007/978-3-319-52789-5_8
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format in the same readable DL IR. Implement some simple optimisations first
such as constant folding, then local common subexpression elimination, and
then progress to the more complex optimisations.

7.6 Consider extending the idea of constant propagation to propagating ranges of
values. For example, after a particular statement, it may be possible to show that
variable i has a valuewhich lies in the range 1 to 10. Under what circumstances
could this form of optimisation help? What about maintaining sets of possible
values?

7.7 How much faster is addition than multiplication on your favourite machine
architecture?

7.8 An important machine-dependent optimisation concerns locality of reference.
The target machine may run code faster if the data being manipulated can all
fit in the processor’s cache. Consider the problem of multiplying two two-
dimensional arrays. How should the optimisation process try to maximise the
locality of reference? Is it a task for the machine-independent optimisation
phase?

7.9 Suggest a way in which the evaluation of a complex arithmetic expression
could be parallelised.

7.10 Suppose that a shared memory computer system was available which used one
million processor cores. How could the compiler make use of such a machine
to the benefit of the programmer so that the generated code made good use of
the hardware? What sort of software applications would benefit the most?
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Chapter 8
Code Generation

The process of code generation takes the intermediate representation generated by
the front-end of the compiler, with or without any optimisation performed by the
machine-independent optimisation phase, and generates code for the target machine.
Writing a good code generator is not easy. There is too much choice. There will
be infinitely many ways of translating a piece of intermediate code to target code
and there is no standard way of performing the translation. The translation process
can involve many different algorithms, all interacting with each other in seemingly
unpredictableways, and ensuring that the code produced is of sufficiently high quality
is something of a challenge.

However, if optimisation is not a central concern, the generation of target code
is not especially difficult. But a good knowledge of the target architecture is needed
to design, implement and test the code generation phase. And it is important to plan
carefully in advance so that the code generator can be designed to make good use of
the features available on the target machine.

8.1 Target Machines

The overwhelming concern while developing a code generator is the nature of the
target machine. What are the instructions it supports?What sort of data can it manip-
ulate? What are the memory addressing constraints? Are there caches and if so, how
big are they? Does it have registers? If so, howmany? Are there registers with special
functions? Is it a parallel machine? What is the nature of the parallelism? Does it
support multiple cores or are the processors more loosely coupled? Does it support
instruction-level parallelism? Are there any other features that could be useful for
the generated code? But not all target machines consist of real hardware. A compiler
can of course generate code for a virtual machine, implemented in software. Similar
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questions can be asked about the nature of the machine. But there may be additional
flexibility. Can the design of the virtual machine be changed? Dynamically?

There is a great deal of detail to worry about here. And there is not yet any
manageable way of using formal techniques to represent this information and use it
to specify a code generator. Before worrying about these complications, it is worth
outlining some much simpler techniques for rapid implementation.

A simple way to implement a code generator is to translate each intermediate
representation instruction, one at a time, into target code. Context can largely be
ignored and this simplifies the translation process greatly. Code generation then
becomes an operation based on pattern matching. There is a pattern for each IR
instruction and the translation into target code is modified according to the actual
arguments of the IR instruction. This results in non-optimised code because only a
limited account is taken of the interaction of individual instructions.

It may also be possible to implement the compiler by targeting a high-level lan-
guage already implemented on the target machine. For example in the early days
of C++ compilers, several C++ implementations were produced by generating C
code which was subsequently compiled using an existing C compiler. Compilation
of C++ then became a two-step process, using C as an intermediate representation.
This again is an approach that makes the implementation process somewhat simpler.

Yet another approach completely avoids thewriting of a codegenerator. Instead, an
interpreter for the intermediate representation can be coded in any language already
available on the target machine. For example, DL’s IR is very simple and developing
an interpreter for this language is a manageable software project. Many languages
have been implemented in this way. This approach will be re-visited in Chap. 9.

However, there will always be a need for compilers that directly and efficiently
target specific real or virtual machines and so it is important to examine some of the
issues in producing a code generator design.

8.1.1 Real Machines

In the early days of processor design, there was an assumption that most of the
programming would be done at the machine/assembly code level. But as the use
of high-level languages increased rapidly, the design of processors became more
appropriate for compiler-generated code. In particular, the instruction set became
more regular so that, for example, the instructions for all the arithmetic and logical
instructions shared a common format, resulting in less need for code in the code
generator to handle special cases. The compiler writer is also helped by two other
processor features. The first is the widespread use of simpler instruction sets and the
second is that modern processors often incorporate hardware features to support the
dynamic optimisation of executing code.

The processors available today vary hugely in terms of functionality, speed,
instruction set, memory, architecture, data width and so on. Writing a compiler for
some of these processors could be astonishingly difficult, whereas other processors
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are much kinder to the compiler writer. Compiling software for a tiny embedded
processor used in a doorbell-style applications is radically different to compilation
for a powerful multicore processor used in a general-purpose enterprise server. Com-
piling where there are real-time constraints poses some interesting problems too.
There is no universal solution.

Plainly, processor complexity has increased steadily since the days of the first
computers. Moore’s law (the number of transistors in an integrated circuit approx-
imately doubles every two years) implies processor speed increases too. But recent
trends have suggested that the increases in processor complexity have primarily gone
towards the support for increased parallelism in processors, specifically towards the
increase in numbers of processor cores available. This poses particular problems for
the compiler writers. The application programmers need code to exploit the new
highly parallel machines.

8.1.1.1 RISC and CISC

There is a useful classification of processors into either reduced instruction set com-
puters (RISC) or complex instruction set computers (CISC). Both types of processor
are used today.

The RISC processors have a simple instruction set and each instruction runs
fast because it can be completed in a small number of processor cycles. These are
the load/store architectures, where main memory is accessed by specific load and
store instructions (reading from memory to a register and writing to memory from a
register) and other instructions do not access main memory. Instead, the arguments
for these instructions are held in machine registers. Instruction lengths tend to be
uniform.

The CISC processors are usually based on a larger instruction set made up of
more complex instructions requiring more processor cycles for their execution. For
example, a single instruction may load two arguments from main memory, perform
some arithmetic operation on these values and store the result in main memory.
Complex addressing modes are often supported.

The dividing line between these two computer types is fuzzy. For example, a RISC
may incorporate CISC-like addressing modes. And one type is not inherently better
than the other. Performance depends on the application and the compiler far more
than on whether the code will run on a RISC or a CISC.

As far as the compiler writer is concerned, the RISC is probably the architecture of
choice because the instruction set is inherently simpler. However, CISC instruction
sets have been designed to include instructions specifically for the support of high-
level language constructs. For example, there is often support for function call and
return where the instructions automatically perform the housekeeping operations
of manipulating the stack pointer, saving registers and so on. This can simplify
code generation, but it makes it hard to implement an unconventional form of call
and return. Some instructions supported by CISCs are difficult for the compiler
to generate despite their obvious application. For example, the VAX architecture
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supported polynomial evaluation instructions using a pointer to a table containing
the polynomial coefficients and a register containing the value of the independent
variable [1]. Compiling an assignment statement evaluating a polynomial into the
compiler’s IR and then recognising in the code generator that this particular sequence
of IR instructions can be implemented by one of these machine instructions is not
easy. These polynomial instructions were doubtless directed towards the assembly
language programmer writing small library routines.

8.1.1.2 Data Types

For each of the data types supported by the language being compiled, a targetmachine
representation must be found. Hopefully, for most of these data types, the processor
provides native support. For example a C int could be mapped to a 32-bit integer on
a processor providing a full set of arithmetic instructions operating on these integers.
In many high-level languages there can be flexibility in the implementation but other
languages such as Java specify, for example that integers are 32-bit 2’s complement
quantities. Sometimes the target machine may not have direct support for the data
type. For example, consider a C implementation targeted to a small 8-bit processor.
Is it reasonable to limit a C int to 8 bits, resulting in integers in the range −128 to
+127? Or would it be better to make use of library routines to perform the arithmetic
so that 16- or 32-bit integers could be emulated? Both signed and unsigned integer
arithmetic may be required.

Similar considerations apply to floating point arithmetic. Emulation of floating
point arithmetic in software will result in slow calculations but if the hardware lacks
floating point support and the language being implemented requires floating point
support, the use of emulation is essential.

Implementation of characters and strings should be simple. Is the use of an 8-bit
character set such as ASCII sufficient or does the programming language have to
support Unicode characters? There are standard ways of representing Unicode char-
acters. Strings are usually stored in a contiguous area of storage with an associated
length value or as a sequence of characters terminated by a null or other terminating
value. The language may define how strings are to be represented or it may be an
implementation decision.

Some languages allow the manipulation of individual bits explicitly (for example,
the bit-fields of C) or implicitly (for example, if the language supports sets). Boolean
values may be implemented as single bits. Mapping these bit operations onto the
target hardware can be done by using logical operators, but some processors have
machine instructions allowing designated bits in a word to be manipulated.

Machine memory address manipulation is almost inevitably an aspect of the gen-
erated code. Do integers and address values require the same amount of storage?
How are variables requiring extended storage areas (arrays, structures, objects, etc.)
accessed both as a whole and also via their individual elements?
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8.1.1.3 Addressing

Processors support a variety of addressing modes. For a straightforward implemen-
tation of most conventional programming languages only basic addressing modes
such as direct (specify an address directly), indirect (the address is held in a register)
and indexed (the address is obtained by adding the contents of a register to an explicit
offset value) are required. Processors over the years have supported a huge variety of
addressing modes, sometimes included on the false assumption that they might be of
help to the compiler writer. Many of these fancy addressing modes are really difficult
to generate directly, and it may be better to make use of them through optimisation
phases late in the code generation process such as peephole optimisation described
in Sect. 8.5.3.

Some addressing modes are designed to support particular high-level language
operations. For example, autoincrement and autodecrement addressing are directed
towards array operations. The loop:

for (i=0; i<N; i++) a[i] = 0;

could make use of an autoincrement addressing mode by generating code before the
loop to load the address of the element a[0] into a machine register (say r1) and
then within the loop including the machine instruction clr (r1)+ which sets the
location pointed to by r1 to zero and automatically increments the value in r1 to
point to the next element of a. This is an instruction with side-effects and it may
be difficult to generate directly during code generation. Instead it is often handled if
necessary by the peephole optimiser.

CISCs usually support a large range of addressing modes, some really useful for
array access, for example, by automatically multiplying index values by the size of
each array element. Stack-based addressing is sometimes supported. This may be of
limited utility for a conventional programming language implementation.

8.1.2 Virtual Machines

Compilers do not have to generate code for real machines. Target languages can
be designed without the constraints faced by the hardware designer. Using a virtual
machine as a target can often simplify the implementation process. An interpreter
for the virtual machine may be written without great effort. Furthermore, the target
language can be another high-level language. Several compiler projects have used
C as a target language and the task is completed by using an existing C compiler to
translate the generated C to target machine code. Here, the compiler is translating
from one high-level language to another.

Awell-known virtualmachine associatedwith programming language implemen-
tation is the Java Virtual Machine [2]. This is not just an intermediate representation
between front-end and back-end—it is a representation that can be interpreted by



210 8 Code Generation

fairly simple emulator software, allowing Java programs to be run. This stack-based
virtual machine is independent of real hardware and it provides a route towards target
machine-independent compilation.

The use of virtual machines is an important aspect of programming language
implementation, providing a mechanism to investigate novel processor designs, the
possibility of dynamic modification of the characteristics of the virtual machine,
support for multi-language systems, supporting language portability and so on.

8.2 Instruction Selection

The process of instruction selection forms the core of code generation. The aim is to
take the IR generated by the front-end and replace the IR instructions by functionally
equivalent target machine instructions. This phase of compilation can be thought of
as another compiler, translating from a source language to a target language. But
this translation is inherently ambiguous. There are infinitely many ways of gener-
ating target code. Obviously we want the best code (whatever that may mean) but
guaranteeing optimality is essentially impossible. Good code may have to do.

Instruction selection can be regarded as a process of pattern matching. As already
mentioned, a simple approach to instruction selection is to replace each IR instruction
by corresponding target machine instructions. This works but generates poor target
code because contextual information is ignored.

A widely used approach to instruction selection is to first transform the IR into
a tree representation. At first sight, this seems like a retrograde step because the IR
has only recently been generated from a tree. But this tree is at a lower level than
the tree generated by the syntax analyser. The operations in the tree correspond to
the types of operations performed by target machine instructions. Also, for each
instruction of the target machine, there is a tree rewriting rule. Each rule contains a
tree pattern to be matched (essentially describing the actions of the instruction) and
a replacement (essentially specifying where the result of the instruction, if any, is
placed). Given the low-level tree generated from the IR and a set of tree rewriting
rules, one for each machine instruction, the aim is to cover or tile the IR tree with
these instruction tree patterns. Each time a pattern is matched, the pattern in the tree
is tagged with the corresponding replacement in the rewriting rule, the corresponding
machine instruction is noted and this process is repeated until all nodes in the IR tree
have been matched—it has been completely covered. Then a bottom-up tree walk
can be performed, emitting the matched machine instructions as the tree traversal is
done.

To illustrate the style of these trees, the tree rewriting rules for some simple
machine instructions can be seen inFig. 8.1. These three examples show tree rewriting
rules, indicating how the IR tree should be modified if the tree on the right-hand side
of each diagram is matched with a subtree in the IR tree. In the first instruction, a
constant value ci in the tree can be replaced by a machine register rn by emitting the
instruction li rn, ci (load immediate). Similarly, in the second instruction, the tree
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Fig. 8.1 Trees representing
machine instructions

rn ci

li rn, ci

ri +

rj rk

add ri, rj , rk

m =

ind

+

ci rk

rn

sw rn, ci(rk)

can be replaced by ri , emitting the instruction add ri , r j , rk (ri = r j + rk). And in the
third instruction, the matched tree is replaced by a memory location m, emitting the
instruction sw rn, ci (rk) (store register rn in the location whose address is found by
adding the contents of register rk to the offset value ci ). The ind node (indirection)
causes the value returned by the subtree below it to be used as an address and the
contents of that address are returned.

Clearly an algorithm is needed to control which instruction trees are used and
the order in which they should be matched in the IR tree. This process of tiling the
tree specifies the target machine instructions that will be generated and the quality
of the generated code will depend on exactly how the tree is tiled. Furthermore, the
tiling algorithm has to terminate with all the tree being consumed in the process. The
instruction patterns have to be chosen so that this is possible. If there are patterns
covering all possible single nodes then the tiling is guaranteed to terminate. An
appropriate algorithm is themaximal munch algorithm (see [3] for the details). Other
algorithms are used too [4]. These algorithms are not perfect in that they are not
guaranteed to result in the best tiling. One obvious issue is that no account is taken
at this stage of register allocation. It is assumed that there is an unlimited number
of registers (if that is what was assumed when the IR was generated) and register
allocation is assumed to be performed after instruction selection. But there is a two-
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way interaction here between register allocation and instruction selection and so
getting the code perfect is not really feasible.

The tree patterns for RISC instructions are mostly small, but the patterns tend to
be much larger for CISC instructions. For example, defining patterns for the com-
plex instructions supported by graphics processors may be challenging. Therefore
instruction selection for RISCs turns out to be somewhat simpler. But in all cases
the search space can be huge. Trying to find a good tiling of the IR tree can be a
time-consuming task and so the matching and optimisation algorithms should be
chosen and implemented carefully.

A closely related approach to instruction selection is to achieve the pattern match-
ing by running a parser on a flattened version of the IR tree produced by running
a pre-order traversal. A LR parser is used to match the patterns with the flattened
tree input and target machine code can be emitted as the matching succeeds. This
looks very much like the syntax analyser of a compiler, but the key difference is
that this matching is inherently ambiguous. The parsing/pattern matching has to be
supported by algorithms removing the ambiguity by attempting to minimise the cost
of the generated code. This form of instruction selection has been used in various
compilers with some success.

8.3 Register Allocation

It is likely that the target machine for which code is being generated has registers.
Details are processor-dependent, but registers are fundamentally important to the
process of code generation for two reasons. The first is that machine operations
using values held in registers are almost certainly much faster than if the values were
held in main memory. Second, the machine architecture design may require that the
arguments for particular instructions, such as arithmetic or logical instructions, must
be specified as registers. So the arguments must be explicitly loaded into registers
before the particular instruction is executed.

Consider the compilation of the assignment statement a = b + c (where the
variables a, b and c are held in storage locations named a, b and c) for various styles
of targetmachine. If themachine supports arithmetic instructions taking three address
arguments, one for the result and two for the two operands, then this assignment could
result in an instruction of the form:

add a,b,c

to be generated. Few machines support this form of instruction. Here, registers are
irrelevant or not very important. One is much more likely to find arithmetic instruc-
tions requiring at most one of the arguments to be in main memory and the other or
others in registers (register-memory machines).

load r1,b

add r1,c
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store r1,a

To do the computation, r1 has to be used to hold the value of b temporarily. Another
machine architecture may require that the add instruction has two arguments, both
being in registers (register–register machines).

load r1,b

load r2,c

add r1,r2

store r1,a

Here, two registers (r1 and r2) are required for the computation. These machines
may use three-operand instructions:

load r1,b

load r2,c

add r3,r1,r2

store r3,a

Here, r1 is not overwritten with the result of the addition.
Registers are a precious resource and have to be used carefully to enable concise

and efficient code to be produced. The process of register allocation is responsible
for taking the references to values in variables, temporaries, arguments and so on
in the intermediate representation and making sure that they are held in registers
wherever possible in a way that attempts to maximise the efficiency of the generated
code. The aim is to keep all the frequently accessed data in registers.

The intermediate representation being used as the input to the register allocator
could be designed so that it does not use any registers. Instead it refers to variables
and other values by using symbolic names and it is a task for the code generator
to map these variables and values to hardware registers and memory locations. It is
more likely that the program’s intermediate representation has been designed such
that it already makes use of registers called virtual registers and no limit has been
applied to the number of registers being used. This may be a low-level intermediate
representation, produced by the instruction selection phase, and the instructions will
be close in structure to the actual target machine instructions. The IR registers have
to be mapped onto the set of real hardware registers available. The set of registers
available is likely to be a subset of the actual hardware registers on the processor
because some of the registers may be dedicated to other tasks such as stack pointers,
storage of particular constant values and so on. Some registers may be dedicated
for use with specific instructions. Furthermore, it may be that the processor may
implement register classes, for example a set of registers for floating-point operations
and another set for general integer purposes.

Ideally, we would like to be able to map all virtual registers to distinct physical
registers. However it is certain, except for the simplest of source programs, that there
will be many more virtual registers than physical registers and so the use of the
physical registers will have to be shared. This can be achieved by register spilling.
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The contents of a register are saved to main memory and the register can then be
used for another purpose. The saved register contents can be returned to a register at
a later point in the execution of the program. Clearly, spilling should be avoided if
at all possible because it can be a costly operation especially if it is executed many
times in the code of a loop.

Register allocation is a complicated task, ideally needing information about the
runtime behaviour of the program so that execution counts for each instruction can
be predicted to determine the optimal allocation. This is not in general possible so
heuristic approaches have to be used.

A useful starting point is to consider register allocation within a basic block.
Consider a self-contained basic block requiring no registers for passing values into
or out of the block. There is a predefined number of hardware registers available for
use in the code in the block. One or two of these registers will be needed for the
spilling code but the remainder can be allocated to the most frequently referenced
virtual registers. If the allocation process concentrates first on those basic blocks
within nested loops (this is the code likely to be executed most often) then there is a
chance of a reasonably effective register allocation.

However, the register allocation problem for real programs ismademore awkward
by the need for dealing with programs made up of many basic blocks, with values in
registers being passed between them. To help towards a solution to this problem the
concept of liveness is introduced.

8.3.1 Live Ranges

The live range of a variable starts at its definition (i.e. when it is first initialised) and
ends with its last use. If a variable is redefined (i.e. it has a new value assigned to it)
a new live range is started.

Consider this code. There are no other references to x or y outside the live ranges
shown.

.

x = 1;
.

.

... = x;

⎤
⎥⎥⎦ live range 1

.

.

y = 2;
.

.

... = y;

⎤
⎥⎥⎦ live range 2

.

In this code example, the two live ranges do not overlap. Therefore the generated
code can use the same register for both x and y. Suppose that the references to
y in this example were changed to references to x, there would still be two live
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ranges which are non-overlapping so that again just a single register is needed. Static
single assignment (SSA) form makes this analysis a little more explicit. In SSA
form, variables can only be assigned to once, marking the start of a live range, and
the subscripting of variable names makes an explicit connection between a use of a
variable and its definition.

It is live ranges rather than variables that are central to the register allocation
problem. Finding live ranges in straight-line code is trivial, but when the control flow
is more complex the analysis becomes very much more difficult. Further information
about appropriate algorithms is contained in the references in Sect. 8.7.

8.3.2 Graph Colouring

The analysis of live ranges can be used to form the basis of register allocation. Each
virtual register in the code being analysed has to be allocated to a physical register
but there are likely to be many more virtual registers than physical registers. The
register allocation analysis requires the construction of a register interference graph,
where the nodes are the virtual registers and an edge between two nodes indicates
that the two virtual registers have overlapping live ranges where one of the virtual
registers is live at the point at which the other is defined. If live ranges overlap, the
virtual registers cannot share the same physical register.

After the interference graph has been constructed, the allocation problembecomes
one of colouring the nodes of the graph so that no two connected nodes share the same
colour. If the graph can be coloured using n different colours and there are n or more
physical registers available, the allocation problem succeeds. A colour represents
a particular physical register. This is the graph colouring problem, a well-known
problem of graph theory, arising originally from colouring maps so that countries
sharing a boundary have different colours.

A very simple example is shown in Fig. 8.2. The live ranges for the three variables
a, b and c are marked on the code on the left. Live range a overlaps with both live
ranges b and c, and there is no overlap between live ranges b and c. This information
allows the register interference graph on the right to be drawn. This graph can be
coloured using just two colours (white for node a and grey for nodes b and c). So
two physical registers are required, b and c can share a register.

Unfortunately, graph colouring is an NP-complete problem (no polynomial-time
solutions are known) and exhaustive search for minimum register solutions is not
practically feasible as the size of the interference graph increases to that found from
even average programs. Heuristic approaches have to be adopted.

8.3.2.1 A Graph Colouring Algorithm

A popular algorithm that usually does a good job to colour a register allocation graph
uses a recursive process of repeated graph simplification. This is an O(n) algorithm
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.

a = 1;

.

b = 2;

.

... = b;

⎤
⎦ b

.

.

c = 3;

.

... = c;

⎤
⎦ c

.

... = a;

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a

.

a

b c

Fig. 8.2 Live ranges and register interference graph

(n is the number of nodes), a major improvement on the exhaustive search implied
by the NP-complete problem. Suppose that there are k physical registers available.

Once the register allocation graph has been constructed, the next step is to attempt
to simplify it by repeatedly removing nodes. Suppose that there is a node X in the
graph which has fewer than k neighbour nodes. Remove X from the graph. If it is
then found that the resultant graph is colourable using k colours, then the whole
graph with X replaced must also be colourable using k colours. This is because in
the graph with X missing, X ’s neighbours must have been coloured with ≤ k − 1
colours and so there is one or more colours available to colour node X .

The algorithm therefore repeatedly removes nodes with fewer than k neighbours,
adding the identity of the node removed to a stack. At each step the graph is simplified
by the removal of a node and its connection links. If this process continues until the
last node is removed from the graph, then the graph is colourable using k colours and
the register allocation succeeds. The graph can then be reconstructed by returning
nodes one by one from the stack, each time colouring the node with a colour distinct
from any of its neighbours already replaced in the graph.

To show how this part of the algorithm works consider the register interference
graph shown in the first diagram in Fig. 8.3. Suppose that there are four physical
registers available. Is it possible to allocate these six virtual registers a, b, c, d, e
and f to r1, r2, r3 and r4 without the need for any register spilling? The graph
colouring algorithm proceeds as shown in Fig. 8.3.

At each step a node with fewer than k neighbours (k is 4 in this example) is chosen
and temporarily removed from the graph. The example here arbitrarily chooses node
e as the first to go (it has two neighbours) and e is put on the stack and the new
graph is shown in the second picture. Then, nodes f, a, b and c are removed in turn,
leaving the last node d to go at the final step, emptying the graph.
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a b

c d
e

f

Start — stack: (empty)

a b

c d

f

Step 1 — stack: e

a b

c d

Step 2 — stack: e, f

b

c d

Step 3 — stack: e, f, a

c d

Step 4 — stack: e, f, a, b

d

Step 5 — stack: e, f, a, b, c

Step 6 — stack: e, f, a, b, c, d

Fig. 8.3 Graph colouring algorithm

The graph can then be reconstructed in reverse order according to the data held
on the stack and physical registers allocated as shown in Fig. 8.4.

Node d is first replaced. At this stage d has no connections and so there are no
constraints on which physical register (colour) it can be allocated to. Allocate it to
r1. When node c is replaced it has a connection to node d and so has to be allocated
to a physical register (colour) that is not r1. Choose r2. Node b and a are returned,
allocated to r3 and r4 respectively. When node f is returned it has to be allocated
to a physical register that is not r1 or r2. Choose r3. Finally e is returned, allocated
to r2. All nodes have been coloured. The allocation process is complete.

This algorithm seems to work very well. However it must be enhanced to allow it
to deal with the situation where there are no nodes in the graphwhich have fewer than
k neighbour nodes. This implies that the algorithm has failed to find an allocation
of virtual to physical registers. For example, consider the graph in Fig. 8.3 but with
just 3 physical registers instead of 4. Both steps 1 and 2 can be performed as before,
removing nodes e and f, both having just two connections, but then nodes a, b, c
and d all have three connections and the allocation process cannot continue. In order
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d/r1

Step 1 — return node d — stack:
e, f, a, b, c

c/r2 d/r1

Step 2 — return node c — stack:
e, f, a, b

b/r3

c/r2 d/r1

Step 3 — return node b — stack:
e, f, a

a/r4 b/r3

c/r2 d/r1

Step 4 — return node a — stack:
e, f

a/r4 b/r3

c/r2 d/r1

f/r3

Step 5 — return node f — stack:
e

a/r4 b/r3

c/r2 d/r1
e/r2

f/r3

Finish — return node e — stack:
(empty)

Fig. 8.4 Graph colouring algorithm—register allocation

to resolve this problem, one or more physical registers have to be spilled. In other
words the virtual register has to be stored in main memory instead of being placed in
a physical register throughout its live range. This is modelled in the graph colouring
process by removing the node corresponding to the spilled value. This should free
up other nodes, reducing their connection count, allowing the allocation process to
continue. Choosing a virtual register to be spilled really needs information about
estimated execution frequency. Ideally only the infrequently-used values should be
considered for spilling.
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8.3.3 Complications

Achieving a high-quality register allocation is essential if well-optimised code is to
be produced by the compiler. The underlying algorithms may be clear, but there are
many irritating complications, usually introduced by particular language statements
or statement types.

For example, after a simple assignment of the form x = y both x and y are live.
But they do not necessarily need to have separate registers. It may be possible for
them to share a register because they contain the same value. This is good news
because registers are precious commodities.

Another issue concerns aliasing, illustrated well by C’s indirection operator *.
If p is declared as int *p;, then a statement of the form *p = 3; can play havoc
with register allocation. Where does p point to? If a static analysis of the code
can determine that it is definitely pointing to variable i then the storage location
associated with i can be updated to contain the value 3. If i is currently held in a
register, then that register has to be updated to contain the value 3. But it is more
likely that the compiler cannot determine where p is pointing and if so, it may then
be necessary to generate code to store 3 in the location pointed to by p and somehow
invalidate or reload all other registers containing variables. This may cause havoc
with the register allocation process and may have significant runtime costs.

8.3.4 Application to DL’s Intermediate Representation

DL’s intermediate representation (see Sect. 6.5) uses three register types. Globally
declared variables are called vg0, vg1, …, locally declared variables are called
vl0, vl1, … and temporary values are placed in virtual registers r0, r1, …. As
far as register allocation is concerned, these three types can be treated identically.
But there is one small difference in that the virtual registers r0, r1, … have no
associated main memory storage. They have no home location. So if one of these
virtual registers is stored in a physical register and that register needs to be spilled,
there is no automatically available main memory location for that register’s storage.
During code generation some runtime storage has to be set aside for the purpose.
Storage for all the vg0, vg1, …, vl0, vl1, … registers is easily allocated on a
runtime stack as described in Sect. 8.4. Space for spilling any of r0, r1, … should it
be required can be allocated there too.

8.4 Function Call and Stack Management

The approach to DL’s runtime storage allocation described in Sect. 6.2.3 can be
carried forward with little change to suit most target machine implementations. A
stack is used for variable storage, local variables being accessed via the register sp

http://dx.doi.org/10.1007/978-3-319-52789-5_6
http://dx.doi.org/10.1007/978-3-319-52789-5_6
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and global variables via gp. Addressing variables is simple. Consider a possible state
for the runtime stack for the program outlined in Sect. 6.2.3:

... vg0 vg1 ... vl0 vl1 ... vl0 vl1

gp sp

This diagram clearly shows how different types of variables can be accessed in DL.

8.4.1 DL Implementation

Generating target machine code to access the variables should be easy. For example,
if an IR instruction references vg1, the code generator produces code to access the
storage location whose address is the contents of the gp register plus 1, expressed in
target code using indexed addressing as 1(gp) or equivalent. Similarly, vg34would
be accessed as 34(gp), and so on. A reference to vl1would be expressed as 1(sp).

Function call and return also have to be implemented. This is where the design of
the contents of the linkage information stored on the stack become relevant. The key
purpose of this information is to enable the execution environment to be restored to
what it was at the point of the function call. This means that the linkage information
has to contain a return address (the address of the instruction following the call to the
function) and also the value of the old stack pointer at the point of the call. These two
values are stored by code generated with the function call and on return the old stack
pointer is reinstated and control is passed to the stored return address. These stack
pointers form a chain pointing down the stack. This is the dynamic chain, dynamic
because the chain reflects the pattern of function calls and returns as the program
executes. Recursive functions need no special treatment in this scheme.

The runtime stack, in greater detail, showing the dynamic chain, has the form:

--- --- vg0 vg1 RA osp vl0 vl1 RA osp vl0 vl1

gp sp

The old stack pointer (osp) and the return address (RA) are accessed via negative
offsets from the stack pointer. The return address and old stack pointer fields in the
global stack frame are not needed in this implementation.

DL also requires storage for the temporary variables/registers r0, r1,…. Depend-
ing on how the register allocation process performs, some of these registers will
almost certainly require storage space. These variables are all local to the function
(or the main program) and hence they can be stored on the stack beyond the other

http://dx.doi.org/10.1007/978-3-319-52789-5_6
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named local variables. The code generator has to keep track of the offsets of these
temporary variables so that their “r” names can be mapped to offsets off the current
stack pointer.

DL is a simple language where variables are either local or global and so just
two stack pointers are required to locate all variables. There are languages, Pascal
is a good example, where a more complex implementation is required. In these
languages, procedures (or functions) can be defined within procedures. For example,
if a procedure p2 is defined within a procedure p1 which in turn is defined in the
main program, p1 has access to its local variables as well as the global variables
defined in the main program. And when p2 is active, it too has access to its local
variables, p1’s local variables as well as the global variables. In this example, p1
has no access to p2’s local variables. Complexity is somewhat increased when these
procedures can call themselves recursively. At any time in the program’s execution
there is a list of procedure activations whose local variables are accessible by the
running code. This is not the dynamic chain. A separate chain is required reflecting
the static nesting of the procedure definitions. This static chain has to be updated
as calls and returns are performed to ensure that the stack frames linked together by
this chain identify the sets of accessible local variables. The static chain stored in the
stack can be considered as a chain of pointers to the stack frames containing active
variables. In other words it is a set of stack pointers. As the static depth of procedure
nesting increases the number of active stack pointer registers has to increase too.
Implementation is not difficult, but the management of the static chain introduces a
small overhead to the call and return code.

8.4.2 Call and Return Implementation

Having decided on how the stack frame mechanism should work and how variables
should be accessed, the next step is to design the details of the code to be generated
to perform the function call, to initialise the function and to perform the return to the
caller. It may be easy to decide what should happen and hence what code should be
executed on a function call, but itmaybe harder to decide how those operations should
be split between the site of the call and the start of the function. Some operations can
be performed at either location and for these it is better to perform them at the start
of the function. This is to minimise code size because repeating the code at each call
results in larger code.

Consider first what happens at a function call. What from the caller’s environment
has to be saved? Clearly a return address has to be saved on the stack so that once the
called function has completed its work, control can be transferred to the instruction
immediately following the call. The current stack pointer has to be stored too so that
it can be reinstated on return. The call also has to create a new stack frame for the
called environment. In other words, the stack pointer has to be moved up the stack to
the first free location following the current local variables. In DL the code generator
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will know the size of the current stack frame enabling this value to be added to the
stack pointer, ready for the local variables of the called function.

Function return is a little simpler. All that has to be done is to restore the stack
pointer by loading the stack pointer register from the old stack pointer value stored
on the stack and to jump to the return address, also stored on the stack.

How can all this be implemented on the target machine? Which machine instruc-
tions should be generated? This naturally depends on what’s available. Some
machines support special instructions to perform some aspects of these call and
return actions automatically, maybe a special call instruction to save the stack
pointer and return address in particular registers and then branch to the specified
destination address. The use of dedicated registers may help speed up and simplify
the call code but dedicating registers for this purpose may result in costs elsewhere.
At the very least there should be machine support for a call instruction that saves
the return address in a register. This can then be saved on the stack with the current
stack pointer using instructions with indexed addressing. There should also be some
form of return instruction to pick up a destination address stored in the stack, or
in a register loaded by another instruction, and jump to that address. Selecting these
instructions for best performance is important. Space and time efficient calls and
returns can make a large difference to overall code efficiency.

8.4.2.1 Argument Passing

On a function call, in addition to the actions described above, any arguments to the
function have to be dealt with. In the case of DL, the principle is easy.

.

.

myfunc(a,b);

{ ... }

.

.

{

.

i = myfunc(3,4);

.

}

In this example, the local variables a and b in myfunc have to be initialised during
the call with the actual parameters 3 and 4. So code has to be generated to evaluate
the actual parameters immediately before the call and store the values at offsets 0
and 1 in the new stack frame being created for myfunc. The parameters could, of
course, be passed in machine registers as well, or instead.

This formof argument passing is knownas call by value. It is the values of the argu-
ments to which the called function has access. The called function has local copies of
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the arguments. If myfunc had been called using the statement i = myfunc(p,q);

then myfunc cannot directly update the variables p and q in the caller’s environment.
Many programming languages, including C, use this form of argument passing.

Some languages support call by reference where it is the address of the actual
argument that is passed so that in the example above, the addresses of p and q are
passed into myfunc, allowing the code in myfunc full (read and write) access to the
variables p and q in the caller’s environment. This makes no sense for calls of the
form myfunc(1,2) or myfunc(p+q,p-q) and appropriate error messages should
be generated in these cases.

Other argument passing styles are occasionally used such as call by value-result
or call by name. The implementation should obviously support whatever it is that is
required.

8.5 Optimisation

Chapter7 covered techniques for code optimisation at the intermediate representation
stage of compilation, using techniques that are independent of the design of the target
machine. Optimisation within and after the code generation phase is based on target
machine-dependent techniques. This is where a detailed knowledge of the target
machine is especially important.

There is considerable scope for optimisation at this stage.Modern processor hard-
ware is often extremely complex and optimisation is no longer centred around the
minimisation of the number of instructions. In order to optimise for speed, other con-
siderations such as instruction scheduling, the use of parallel execution, the effective
use of caches and so on may be much more important. Rules for the effective use of
these machine characteristics can be coded into the code generation process. How-
ever, the complexity of this task should not be underestimated.

This section provides a brief overview of some of the issues involved in machine-
dependent optimisation. As hardware is developed, new challenges appear for the
compiler writer.

8.5.1 Instruction-Level Parallelism

Over many years of processor development, the primary source of performance
improvement has been the steady increase in clock speeds. But as physical constraints
are preventing unlimited clock speed increases, the introduction of parallelism is
becoming increasingly important. In Sect. 7.4 the high level aspects of parallelism
were introduced. But performance improvements can also come from parallelism
at a very much lower level, within the execution of individual instructions. For the
compiler writer this means that instruction order can affect execution speed. The

http://dx.doi.org/10.1007/978-3-319-52789-5_7
http://dx.doi.org/10.1007/978-3-319-52789-5_7
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compiler should schedule instructions to make best use of the instruction parallelism
offered by the hardware.

This task is handled by the instruction scheduler. It takes target machine code
as input and it produces code where the instructions are reordered to make best
use of the processor’s instruction-level parallelism. It must, of course, maintain the
semantics of the code. Instruction scheduling is not relevant to all processors. Also
superscalar processors can performout-of-order instruction execution automatically.
Here, the processor looks ahead in the instruction stream, dynamically as the program
runs, selecting multiple instructions that can be initiated simultaneously in the same
processor cycle, allowing instructions or operations within instructions to execute
in parallel. However the code for many processors can benefit from the use of an
instruction scheduling pass, performed statically by the compiler.

By duplicating hardware, processors can support simultaneous execution of mul-
tiple instruction streams. Another parallelism model makes use of an instruction
pipeline. Here, the execution of an instruction is broken down into several small steps
(e.g. instruction fetch, instruction decode, perform operation, store result) and these
steps taken frommultiple instructions can be interleaved so that multiple instructions
seem to be executing in parallel. This pipeline may not be able to run smoothly and
may stall because, for example, an instruction may want to use the result from an
immediately preceding instruction and therefore has to wait until the first instruc-
tion has completed. Jump instructions also cause problems. Therefore, instruction
scheduling is important to pipelined architectures to minimise the proportion of
instructions causing pipeline stalls.

The instruction scheduler has to examine the dependencies between instructions
and determine how many clock cycles are required to resolve each of the dependen-
cies. There are clear parallels here with the ideas of data dependence introduced in
the last chapter. For example, consider a simple pipelined machine with a two-stage
pipeline so that each instruction executes in two clock cycles. Suppose that the first
pipeline slot fetches and executes the instruction and the second slot stores the result.
Consider the simple instruction sequence:

(1) r1 = x

(2) r2 = y

(3) r3 = r1 + r2

This would be executed as follows.

• Time slot 1—instruction 1 starts.
• Time slot 2—instruction 2 starts, instruction 1 completes and r1 loaded.
• Time slot 3—instruction 3 cannot start because r2 is not yet loaded. Introduce a
delay slot and do nothing.

• Time slot 4—instruction 2 completes and r2 loaded, instruction 3 starts.
• Time slot 5—instruction 3 completes and r3 loaded.

There are dependencies from instruction 1 to instruction 3 and from instruction
2 to instruction 3. In other words, instruction 3 cannot be scheduled for execution
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until both instructions 1 and 2 have completed. There is not much that the instruction
scheduler can do in this case—changing the order of instructions 1 and 2 is possible
but would offer no benefit. The one delay slot is inevitable.

A directed acyclic graph (DAG) can be used to illustrate these dependencies. The
graph from the example above is:

1

2 3

The graph from a more interesting example is:

1

2 3

4 5

Here, an optimal schedule is 4, 1, 2, 5, 3. There are no additional delay slots needed.
TheDAGcan be generalised to dealwithmore complex delay patterns by labelling

each arc with the number of time slots before the result becomes available. In the
situation described above, all arcs would be labelled with a “1”.

Performing the scheduling is another NP-complete problem, so a heuristic
approach has to be used.Many different algorithms capable of producing good results
exist and are often based on list scheduling [4–6].

Note that there is a complex interaction between register allocation and instruction
scheduling. A simple example is shown in the compilation of the code a=1; b=2;

c=3;. The code after register allocation may have the form:

r1 = 1

a = r1

r1 = 2

b = r1

r1 = 3

c = r1

and scheduling these instructions might well involve the introduction of several
delay slots. There is a dependence from instruction 1 to instruction 2 and then an
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antidependence from instruction 2 to instruction 3. Removing this antidependence
can be done by making use of more registers:

r1 = 1

a = r1

r2 = 2

b = r2

r3 = 3

c = r3

Here, instruction scheduling will be more successful. But the use of more registers
may not always be possible. This inevitably raises difficult questions about the order
in which register allocation and instruction scheduling is performed. Unfortunately
there is no universal and guaranteed answer.

8.5.2 Other Hardware Features

There comes a time in the development of a compiler when it is sensible to examine
carefully the hardware characteristics of the processor and to ask how these features
could be used effectively by the compiler to produce high-quality code. Some of
these features will be common to a wide range of processors while others will be
very processor-specific. And these features will have to be used in such a way as to
support the aims of the compiler. Is the compiler optimising for target code speed,
or size, or power consumption, or something else, or a combination?

It may be helpful to look at a few machine features and consider how they might
be used.

8.5.2.1 Special-Purpose Instructions

The processor may support some special instructions, maybe designed for particular
applications or high-level language constructs. For example, function or subrou-
tine call and return instructions may be available and it is likely that the use of these
instructions by the compiler may result in better code. However there may be a trade-
off. Perhaps themachine instructions do not quite match the function call mechanism
already designed for the language and its compiler. Is it worth redesigning to suit
the hardware or is it better to make the use of the fancy instructions suit the design
by adding further code? Or is it better to avoid the use of the fancy instructions
completely?

At some point it is sensible to look through the whole instruction set of the
target machine to ensure that all instructions have been considered for use. Are there
instructions designed to perform some special-purpose computation that could be
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generated by the compiler? This is more likely to occur with CISC architectures. For
example, should the polynomial evaluation instruction be generated by a compiler
(see Sect. 8.1.1.1)? There is obviously no need to be able to generate all instructions
but there may be cases where the code can be improved by the sensible use of these
special-purpose instructions.

These special-purpose instructions can be generated by the code generator explic-
itly detecting the special cases. They can also be generated semi-automatically
by some of the techniques used for automated code generator construction (see
Sect. 8.6). Also a peephole optimiser (see Sect. 8.5.3) can include rules for their
generation.

Almost all modern computer systems, apart from the smallest of embedded sys-
tems, include some form of parallel execution. The ideas of parallelisation have
already been discussed as optimisation at the IR level, independent of the target
machine. Finding independent processes to schedule on homogeneous or heteroge-
neous sets of processors is something best done before code generation. But there
are code generation issues involved here too. Are there special instructions or sys-
tem calls for managing the multiple processes and processors. How is the operating
system involved?

This issue is further complicated by the fact that code may need to be generated
for more than one processor architecture. For example, it may be possible for the
compiler to generate code for the graphics processing unit (GPU) of a computer
system. The architecture of the GPU will offer highly parallel computation, maybe
with a huge number of individual parallel processing elements and it is well suited to
array manipulation [7]. Furthermore, the GPU computation may be able to proceed
in parallel with the conventional processor.

8.5.2.2 Types of Memory

Computer systems provide memory with a wide range of speeds and characteristics.
There is a memory hierarchy. Processors have a small number of very fast regis-
ters, maybe cache memory, then main memory and finally disc, external or network
storage. The average programmer will have little direct control of how the registers,
cache and main memory are used during the execution of a program but the compiler
writer has much greater control. Good register allocation can make a great deal of
difference to program efficiency. Similarly, effective use of the cache (or separate
instruction and data caches) can improve performance a great deal. Caches effec-
tively act as high-speed memories interfacing between the very fast processor and
the much slower main memory. It makes sense to attempt to keep as much of the
frequently accessed instructions and data in the cache and the compiler may have
some control over this.

A good knowledge of how the cache works on the target machine is of course
essential. Consider a short program loop. The first time this loop is executed the
code is loaded from main memory into the cache and then executed from there. The
next and subsequent times the loop is executed there is no need for the cache to be
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reloaded. Because the loop is small it fits completely in the cache and execution is
fast. Similar considerations apply to data. A block of data from contiguous locations
in main memory is loaded into the cache, making subsequent access to all that data
very fast. The compiler can have some control over program and data locality of
reference. For example, it may be possible to split a loop into two separate loops,
one executed after the other, in order to get the loop to fit in the cache. Data cache
operation is particularly relevant to array manipulation. Consider the two fragments
of C code:

total = 0; total = 0;

for (i=0; i<N; i++) for (j=0; j<N; j++)

for (j=0; j<N; j++) for (i=0; i<N; i++)

total += a[i][j]; total += a[i][j];

Because C multi-dimensional arrays are stored so that the rightmost subscript varies
most rapidly as successive storage locations are accessed, the code on the left has
greater data locality in accessing array a. More data will be found in the cache and
so the code on the left will probably run more quickly than the code on the right. The
compiler should be aware of this issue and automatically modify this sort of code.

Similar considerations may apply at a different point in the memory hierarchy, in
the interface betweenmainmemory and the virtualmemory system.The performance
of the virtual memory system may be affected by the locality of data access. For
example, large arrays too big to fit in main memory so are partially held in virtual
memory on external storage, may be accessed very much more slowly if data access
occurs at widely scattered locations. The compiler may have a role to play here too.

8.5.3 Peephole Optimisation

Code optimisation in a compiler can take place at the intermediate representation
stage and throughout the code generation. Additionally, there are some optimisa-
tions that are best applied at a late stage of compilation, once target code has been
generated. One such optimisation is called peephole optimisation, it is simple to
implement and it can be very effective [8].

This optimisation scans through the generated code looking for instances of
machine instructions that can be replaced by more efficient instructions (machine
idioms). For example, amachine instruction of the form add 1,r2 could be replaced
with the instruction inc r2 possibly saving execution time and program memory.
The patterns can cover multiple instructions too. So for example instruction pairs of
the form store r1,address immediately followed by load r1,address can be
transformed to simply store r1,address.

The action here is simple. The generated code is scanned using a set of patterns
and corresponding replacements. This optimiser examines short sequences of target
machine instructions, through a peephole. It replaces single instructions or groups of
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instructions by sequences that are shorter or execute faster. The process of passing
the peephole over the machine code is repeated until no further improvement to the
code is made.

The peephole optimiser is capable of performing a wide range of optimisations.
Redundant instructions can be removed. For example, adding zero to a register can
probably be removed, assuming that subsequent instructions are not relying on the
setting of the condition code. Expensive instructions can be replaced by cheaper
instructions, for example replacing multiplication by a power of two by a shift,
replacing jump instructions having another jump instruction as their target by a
single jump, generating a powerful CISC instruction from a sequence of simpler
instructions and so on.

Generating the set of patterns to be matched is central to the success of this tech-
nique. One can adopt an obvious hand-generation approach of examining examples
of generated code to find substitutions, add these to the table of patterns, and repeat
until satisfied. Automated approaches have been used too. Exhaustively searching all
possible single instructions, pairs of instructions and so on and determining whether
there is a better replacement is an attractive approach [9]. Separating the code for per-
forming the matching and replacement from the data defining the target architecture
patterns is a good approach [10].

More systematic approaches are possible too. It is possible to convert the input
machine code into some very low-level intermediate representation, match that with
the same formof low-level intermediate representations of the targetmachine instruc-
tions and produce an output stream of machine code. And this can form the basis of
a complete instruction selection process where the compiler’s IR is translated into
this low-level intermediate representation.

Peephole optimisation has also been used successfully on intermediate represen-
tations [11].

8.5.4 Superoptimisation

An important and interesting question is whether it is possible to determine whether
a piece of code can be optimised more. Is it the best possible according to some
pre-specified criteria? Is it possible to find the best code for a particular algorithm?
The answer is a tentative and qualified “yes”.

A tool called the superoptimizer [12] was developed to at least partially answer
these questions. A simple C function was defined and an exhaustive search for short
machine code sequences semantically equivalent to the original C code was per-
formed. Semantic equivalence was assessed by automatically testing with various
inputs and finally using hand-verification. This approach produced the “best” code
for the chosen C function and, interestingly, it is shorter than that produced by various
C compilers or by experienced assembly language programmers.

Unfortunately, because of the use of exhaustive search, this approach is not fea-
sible for code sequences of more than a handful of machine instructions. Many
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instructions and addressing modes together with other hardware complexities make
an enormous number of possibilities to try. Inevitably, there are also issues concern-
ing the definition of “best”—how are these code fragments evaluated? Measuring
execution speed is difficult, especially on architectures supporting caches, pipelines
and so on. The original work was done using the instruction count as the optimisa-
tion metric. Despite its limitations, this approach is useful in circumstances where
short code sequences have to be designed for subsequent generation by a compiler
for specific tasks such as the function call, performing 64-bit arithmetic on a 32-bit
machine, and so on.

8.6 Automating Code Generator Construction

Good code generators are large and complex pieces of software. Writing them is
hard work. Writing lexical and syntax analysers has been made much easier by
the availability of generator tools working from a formal syntax specification. Can
similar tools be developed for the construction of code generators using machine
descriptions?

Several useful code generator generator tools have been developed generally using
the same approach of performing pattern matching on intermediate representation
trees or data structures derived from trees. Use of these tools tends not to be straight-
forward mainly because of the complexity of constructing a large number of patterns
defined by the target hardware architecture. Furthermore, the inevitable ambiguity
in these patterns has to be handled appropriately so that a pattern match resulting in
near-optimal code is generated. One-off code generators are usually written by hand,
but code generator generators become particularly useful when a front-end has to be
retargeted to multiple target machines.

One way to think about the operation of a code generator generator is to con-
sider using a peephole optimiser on the intermediate representation, transforming
sequences of IR instructions into target machine instructions. Using a simple “search
and replace” pattern matcher is feasible, but the generated code will be disappoint-
ing and there is a danger that all the input will not be matched. The extreme case is
to have a set of patterns, one for each IR instruction, so that each IR instruction is
translated in isolation into a sequence of target machine instructions. This will work,
but will generate very poor code.

There are several ways in which this process of translating a sequence of inter-
mediate instructions into target machine instructions can be formalised. An early
approach, called the Graham-Glanville approach, was based on the idea of parsing
using a context-free grammar [13]. A set of context-free rules is used to perform
matching on the intermediate representation and on each match appropriate target
machine code can be output. The code generator is being implemented as an LR(1)
parser. But there are complications. There is inherent ambiguity in this process so
steps have to be taken for the parser to deal with this ambiguity.
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Other approaches use an attribute grammar approach to the specification of parsing
and code generation rules. Attributes add semantics to the rules [14–16]. Dynamic
programming can be used to resolve the ambiguity and a system called twig was
developed [17]. This system performs pattern matching on the parse tree. A simi-
lar system called BURS (Bottom-Up Rewrite Systems) was also based on dynamic
programming, improving performance by generating table-driven code generation
algorithms when the code generator is constructed rather than when the code gener-
ator runs [18]. Further developments produced the BURG tool [19].

8.7 Conclusions and Further Reading

If quality code is not required, writing a code generator is fairly easy. But writing a
good code generator can be very, very hard. The coding certainly requires an in-depth
knowledge of the target architecture so that detailed processor manuals should be at
hand. Careful planning is definitely required.

The instruction selection phase of code generation has been well studied and
effective algorithms are widely available. Appel [3] presents detailed algorithms for
tree patternmatching and introduces techniques for the use of dynamic programming.
Instruction selection is covered in depth in [20].

Register allocation is also a well-researched area. Chaitin [21] is the first work
describing register allocation by graph colouring and Chow [22] is another important
reference. Mogensen [23] provides a good overview of the process and Muchnick
[5] presents an in-depth study.

Managing function (or procedure, subprogram, subroutine or method) call needs
careful reading of the language definition. Argument passing can be troublesome.
Call by value is a traditional approach where the argument variable defined in the
called function is initialised with the value of the corresponding argument used in the
call. This is the approach adopted byCandmanyother languages and it is usually easy
to implement. Because addresses can be manipulated by C programs, functions can
update variables in the caller’s environment by forcing the passing of the address of a
variable rather than its value. Sometimes this passing of addresses is done in default
(call by reference) and the compiler may have to check that the actual parameter used
is a variable name rather than an expression, single numerical value, etc.—it has to
be something that “has an address”. Some languages offer more complex argument
passing mechanisms such as ALGOL 60’s call by name [24]. It is worth looking
at these argument passing mechanisms in books on programming language design
or comparative programming languages. For example, see [25]. Function call and
return should be implemented, if at all possible, to make the overhead really small. If
the user of the language discovers that call and return are expensive, then functions
may not be used nearly as much as they should.

Looking at the documentation of real compilers can provide an excellent insight
into what compilers and specifically code generators can do. Examining the nature of
the different code optimisation features available shows how far this aspect of com-



232 8 Code Generation

piler design has advanced. Many of these compilers allow the selective activation of
different optimisations, and it is interesting to examine the effect that these individual
optimisations have on the target code. For example, the GCC (GNU Compiler Col-
lection) project has extensive documentation, the compiler source code is available,
and it is used widely. It incorporates front-ends for several high-level languages and
has been targeted to a very wide range of machines [26].

Instruction scheduling is another well-studied topic andmuch has been published.
Detailed information is available in [5].Many studies have also beenmade concerning
the combination of code generation tasks. For example, [27] examines the effect of
register allocation combined with peephole optimisation and [6] covers instruction
selection and peephole optimisation.

Superoptimisation is not a mainstream optimisation technique, but is useful for
some specific smaller scale tasks. The GNU Superoptimizer (used for the project
described in [28]) provides a good framework for experimentationwith the technique.

Exercises

8.1 Which target machine addressing modes would you find useful when designing
a code generator for DL? Produce a short list of generic machine instructions
that would be essential for DL. Are there additional instructions that would be
useful?

8.2 Design a “dream” processor to be the target of a C (or any other language)
compiler. Don’t feel constrained too much by today’s hardware limitations.
Write an emulator for this processor.

8.3 Design a low-level tree for DL and generate a set of tree patterns for a simple
target machine. Try generating code using tree pattern matching.

8.4 Write a register allocator, operating on DL’s intermediate code.

8.5 Generate C code from DL’s intermediate representation. This should give you a
fast way of producing a complete DL compiler.

8.6 Try writing a peephole optimiser for DL’s intermediate code. Might it make
sense to use some form of SSA-based IR?

8.7 Sometimes the targetmachinewill not provide native support for somedata types
required by the source language. For example, a small target processor may have
no floating point instructions. Consider how to provide floating point operations
in the target code. The key issue here is not the code to do the operations—instead
it is the code needed to call or somehow include the floating point code.

8.8 Design function call and return instructions for a simple machine, appropriate
for use by a DL compiler. Do you need to dedicate some registers for specific
purposes?

8.9 Write a non-optimising code generator for DL targeting a real or virtual machine
of your choice. Now make it optimise using a variety of machine-dependent
techniques.
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Chapter 9
Implementation Issues

This book has concentrated on a traditional and intuitive view of a compiler as a
program to translate from a high-level source language to a low-level target machine
language, with a potentially visible intermediate representation between a front-end
and a back-end. This form of compiler is in essence specified by the source and target
languages and also by the language in which the compiler should be coded. But this
book has also stressed that the view of a compiler as a single, monolithic piece of
code is not helpful. Instead, regarding it as a collection of phases, at least by separat-
ing a front-end from a back-end, is very helpful. These issues become particularly
important when considering a strategy for a programming language implementation
project.

9.1 Implementation Strategies

Careful choice of a strategy, maybe by making use of software already avail-
able, can greatly reduce the effort required to produce a programming language
implementation.

Suppose that an implementation of a high-level language called L is required for
target machine M . The obvious way of approaching this task is to code a complete
compiler reading in programs written in L and producing M’s machine code as
output. We will worry about implementation languages and also on which machine
the compiler is to be implemented later in this chapter. We have already seen that
it makes sense to divide the task into two with a front-end and a back-end, and the
choice or design of an intermediate representation is up to the implementer.

What else does the implementer need to know? Does the generated code have to
be highly optimised? Does the compiler have to be particularly fast? Are there other
hardware or software constraints on the project? How long is the project supposed
to take? How many people are available? For complex source languages and target
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architectures, and to generate highly optimised code, the project inevitably becomes
huge, undoubtedly requiring a sizeable programming team.

Fortunately, there are many ways in which the compiler for L to M can be written
with considerably less work. It may be possible to make use of existing software.
There are many high-quality open-source compiler projects easily accessible on the
internet and these may be able to offer code or complete programs or packages to
help in the project. Also various existing software tools may help in the development
process. Consider some examples of ways in which the development process can be
simplified:

• It is obviously worth checking first whether a suitable L to M compiler already
exists. If not, is a front-end for L available, generating some form of IR? Then the
project just involves the coding of a back-end forM . Similarly, does an appropriate
back-end for M exist whose input is a suitable IR for L? Writing half a compiler
is considerably easier than writing a whole compiler.

• If highly optimised code for M is not required, then it may be possible to make
considerable simplifications to the coding of the back-end. A code generator can
translate the IR, statement-by-statement, into targetmachine code,with little regard
for context. Similarly, code may also be generated directly from the tree generated
by the syntax analyser, node by node.Writing this type of code generator is not too
difficult. The process can be further simplified by generating assembly language
rather than binary object code modules (or equivalent) and then using the system’s
assembler on M to generate binary modules.

• It may be possible to avoid completely the generation of M’s machine or assembly
code by generating target code in a high-level language already implemented on
the target machine. For example, it may be possible for the compiler for L to
generate C code and that code passed through an existing C compiler to produce
the target machine code for M . There are significant potential advantages here.
Not only is less work involved (generating C from the IR is probably much easier
than generating target machine code) but also if the C compiler optimises well,
significant optimisation efforts in generating the C may not be necessary.

• A related approach is to avoid the need of a code generator completely. The IR
can be interpreted, instruction by instruction. Writing an interpreter is likely to
be very much simpler than writing a code generator. The obvious disadvantage is
of course the difference in execution efficiency, but there are many applications
where this would not be an issue. We re-examine this issue in Sect. 9.1.3.

• It always makes sense to use the right tools. Use a sensible implementation lan-
guage (see Sect. 9.1.2) and make use of compiler-generating tools where appro-
priate (see [1] for a comprehensive summary).

An important question here is whether the development of the compiler has to
be carried out on machine M . Does M have a good range of software development
tools already available? Would it be better to develop the compiler on a completely
different machine, and then somehow transfer it to M?
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9.1.1 Cross-Compilation

ThemachineM may already provide a good software development environment with
appropriate compilers, debuggers, editors and so on, and the new language L is not
central to this development process (it has not yet been implemented). In this case,
developing the compiler on M is perfectly sensible. However, it may be that M has
limited existing software infrastructure. It could have a newly designed processor
or its system software could lack the features of a versatile operating system. Here,
developing the new compiler software on M would not be appropriate and another
existing machine, say M1, with full software support and perhaps with a different
architecture to M could be used instead.

Making thiswork is not toodifficult. The compiler for L is developedonM1. It runs
on M1 but when this compiler is given a program written in L as input, it generates
machine code formachineM . This generated code is transferred tomachineM where
it can run natively on M’s hardware. This process is called cross-compilation and it
can have a particularly important role to play in the implementation of a language
on a new machine.

This approach is usedwidely. For example,M could be a small, embedded proces-
sor, lacking in software or hardware support (no external secondary storage, restricted
main memory and so on), not sufficiently powerful to host a compiler. Note that in
this scheme two machines are being used to run programs written in L . In Sect. 9.1.2
we will see how this step of cross-compilation can be used to produce a complete
implementation of L on M but this of course may not always be the aim, particularly
when M is a machine with limited capabilities.

9.1.2 Implementation Languages

The choice of a programming language in which to implement a compiler is very
important. The implementation language should have several characteristics:

• Obviously, the language should already be available on the machine on which
the compiler is to be developed. Implementing a compiler for one’s favourite
implementation language in order to write the compiler actually required is rarely
sensible.

• Writing a compiler is a big project and so the implementation language must
support the manageable development of big software projects, probably using a
team of programmers. This rules out low-level languages.

• The language should offer good support for the types of computation performed
by the compiler such as character handling, data structure management and so on.
Pattern matching is a potentially useful feature.

• If compiler generation tools are being used they may influence or indeed force the
choice of a particular language.
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• Ideally, the language should have an efficient implementation. This will help with
the production of an efficient compiler.

• The implementer should of course be happy programming in the chosen language.

In addition, there are good reasons for coding a compiler for a language L in L
itself. At first sight this may seem odd or even impossible, but the advantages are
significant.

Consider the scenario introduced in the previous section. An implementation of
L is required on machine M , but the development of the compiler takes place on
machine M1 because M has an inadequate or inappropriate development environ-
ment. But suppose also that the aim of the project is to transfer the compiler to M
in due course so that the development of software in L can continue on M with no
further need for machine M1. A good way of achieving this aim is to follow these
steps resulting in the bootstrapping of the compiler:

1. On machine M1 write a compiler translating L into M’s machine code. Use
language L for the implementation.

2. This compiler is just a program written in L . Use the compiler just written on
machine M1 to compile the source code of the compiler into M’s machine code.
All beingwell, this will be the last timemachineM1 will be needed in this process.

3. Transfer this machine code to machine M and when this code runs on M it will
translate from L to M’s machine code. It is, after all, a compiler for language L
for machine M .

4. A sensible test is to use this compiler on M to translate the source code (in L) of
the compiler to M’s machine code and check that the generated code is the same
as that already running as the compiler on M .

This approach to compiler bootstrapping has been used many times. There is
considerable flexibility derived from dividing the compiler into two or more parts
and having a simple and well-defined intermediate representation interfacing the
parts.

Variants of this scheme are possible. If an implementation of L is required rapidly
(maybe machine M1 is only available for a short time) then this implementation plan
can be modified. Assuming that the compiler has been structured in the traditional
way with a front-end and a back-end communicating via a sensible intermediate
representation, it may be possible to follow these steps:

1. On machine M1 develop a front-end for L , written in L , generating an IR version
of L programs. Maybe this is already available as part of another implementation
of L .

2. On machine M develop an interpreter for the IR. This can be written in any lan-
guage available onM , even assembly language if the IR is simple. This interpreter
allows programs coded in the IR to be run interpretively on machine M .

3. On machine M1 produce the IR version of the front-end of the L compiler. This
can be done by passing the source code of the front-end “into itself” and it will
generate the IR version.
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4. Transfer this IR version to machine M and it can be “run” on the interpreter,
yielding an interpretive L front-end on machine M . This allows L programs to
be run interpretively on machine M . Machine M1 is no longer required.

5. If necessary, a code generator can then be written on machine M , presumably
in the language L , generating M’s machine code from the IR. By running the
compiler interpretively, a M machine code version of the complete compiler can
be produced, finally yielding a complete natively running compiler onmachineM .

In this approach to implementation the IR has a special role. In past chapters, we
have seen how the IR is used as a convenient interface between the front-end and the
back-end of the compiler and how it supports machine-independent optimisation.
Here, the IR plays a central role in the implementation and specifically in the porting
of a compiler. In compiler projects where portability is a key concern, the use of
a small and simple IR makes the development of an interpreter for the new target
machine straightforward.

9.1.3 Portability

A compiler can be made portable by writing it in a portable fashion in a portable
language. So, for example, a compiler written in C for the language L running on
machine M1 producing M1 code can probably be ported to machine M2 without too
much difficulty but it would, of course, still be generating code for M1. Porting a
compiler to a newmachine is usually taken to mean the retargeting of the compiler to
the newmachine (i.e. making it generate code for the newmachine) as well as getting
it to run on the new machine. Making this process easy helps make the language L
portable too.

We have already seen how the use of the intermediate representation can facilitate
portability and also how interpreting rather than code generating the IR can help.
It is also possible to use the same IR for multiple source languages and multiple
targetmachines. A range of compiler front-ends can be developed for different source
languages, all generating the same IR. Various compiler back-ends can be developed,
each taking as input this common IRbut generating code for differentmachines. If this
kit of front-ends and back-ends handles n source languages and m target machines,
in effect n ∗ m complete compilers have been developed at the cost of coding just
n + m “half compilers”. This is clearly a very attractive proposition and forms the
basis of many portable compiler systems. One of the earliest practical examples
was the Amsterdam Compiler Kit, using a stack-based intermediate code called EM,
generated by the front-ends,whichwas optimised and then passed on to one of a range
of target code-generating back-ends [2]. The GNU Compiler Collection is another
example where multiple front-ends generate RTL (Register Transfer Language) and
multiple back-ends generate target code from the RTL [3]. The LLVM Compiler
Infrastructure project also has multiple front-ends and back-ends interfaced via a
common intermediate representation [4].
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The idea of a common intermediate language for compilers was proposed in the
early days of computing [5]. The design of the IR has always been a central con-
cern in the development of compilers. The need for a simple IR to support compiler
portability sometimes conflicts with the requirements of an IR to support optimisa-
tion and effective code generation. Therefore, there may be a case for two distinct
intermediate representations. For example, the BCPL compiler described in [6] uses
INTCODE for bootstrapping and OCODE as the interface between front-end and
back-end.

The details of the process of porting a compiler can become quite complex because
there are so many ways in which it can be done. Many distinct steps may be involved
and systematic testing is particularly important. Ensuring that “when the compiler
compiles itself it produces itself” is a good test, but it is certainly not a guarantee of
correctness.

9.2 Additional Software

The compiler is only a part of the programming language implementation story. It is
very likely that more software is required to complete the implementation project.

Depending on the nature of the language being implemented, as well as the tar-
get machine, some form of runtime library will almost certainly be required so
that the running code from the compiler can communicate with the operating sys-
tem or in some systems, directly with the hardware. For example, the C statement
printf("Count = %d\n",i) is translated by the C compiler into a function call
with two arguments, but the compiler does not need to be concerned with the code of
the printf function. The code for all these support functions is contained in a library
or libraries, provided with the compiler implementation. It may be possible to write
at least part of this runtime library in a high-level language, thus making it portable
and independent of the target machine. But it may be necessary to implement some
aspects in assembly language, making those parts target machine-dependent.

Particularly when the target machine is a small, embedded system, maybe run-
ning without a conventional operating system, the executing program generated by
the compiler will probably need access to aspects of the bare machine such as i/o
ports, particular memory locations or special machine instructions. Depending on
the language being used, these tasks may be done most easily via function calls. A
small and specialised runtime library will be required here.

Code may also be required to perform tasks concerned with the setting up of the
execution environment, and this can be placed conveniently in the runtime library.
Memory may need to be allocated (for example, for the runtime stack), default i/o
streams opened, error handling set up. The modules making up the code of the target
program will probably be set up so that the entry point is the start of the initialisation
code in the runtime library, and once that has executed, control is transferred to the
main program in the generated code.
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The need for a runtime library implies that there has to be some mechanism for
linking separately compiled modules together to produce a single executable binary
file. A program (the linker) has this role. It is usually part of the “systems software”
on the target machine and so it may be of little direct concern to the compiler writer.
The modules produced by the compiler just have to be in a format acceptable to the
linker.

Debuggers are often provided to help the software developer remove software
errors. A symbolic debugger allows the programmer to access information about
a running program using the names that were used in the source code. Variables
can be examined and set, breakpoints can be specified, the function call stack can
be examined and so on. Symbolic information has to be output by the compiler
and placed in the object files created by the code generator. Standardised object
file formats exist and are widely used. Debuggers may have difficulty when applied
to optimised code. After the optimisation processes have been performed by the
compiler, there is no longer a direct statement-by-statement or variable-by-variable
match between the source and object codes. Statements can be reordered, modified
or even removed and making the debugger somehow reverse these transformations
in order to display useful information is a difficult problem [7–9].

Code should be left in the compiler to enable intermediate code representations,
compiler data structures and so on capable of being output if required. These may
help with the debugging of some difficult source program issues and will certainly
helpwith the debugging of the compiler itself. The compiler can also include facilities
for the optional generation of runtime checking code such as array bound checking.
Features like this can save a great deal of time in the software development process.

Program development environments combine various utility programs such as
language-aware editors, debuggers, code formatters, compilers, code cross-
referencers, testing frameworks and so on to form an easy to use, integrated tool
for constructing software.

Finally, the need for testing of the compiler cannot be understated. This issue has
been mentioned throughout the text, referring particularly to the testing of individual
compiler components but it is vital that the whole compiler is tested thoroughly too.
Thefield of software engineering gives good guidance on the development of a testing
strategy. A large, well-organised suite of test programs is required, with and without
errors, each having their expected corresponding output and they are all used each
time a new version of the compiler is produced. The test programs should include
programs designed to test specific aspects of the compiler and cover difficult aspects
of the language. These test suites are challenging and time consuming to produce but
it may be possible to make use of existing test suites which have been made publicly
available. Making the compiler compile itself is a useful but not a conclusive test for
correctness. Testing is a complex area but it cannot be avoided.
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9.3 Particular Requirements

This book covers just the basic techniques of compiler construction. These essential
techniques are generally applicable to most high-level languages but there will be
special approaches required for some implementations. There are so many issues
that could be considered here, but only a few have been selected.

The development of code for embedded systems is an important area, one where
code optimisation may be vital. The target machine may be very limited in function-
ality (e.g. a small, simple processor with limited memory, particularly in a consumer
electronics device where cost is a key factor). Optimisation may be concentrated
on code and/or data size (limited memory), on execution speed (particularly to deal
with real time constraints) or on power consumption (battery-powered devices). For
these applications, it may not matter that the compiler takes significantly longer to
run in order to implement these optimisations. The superoptimiser may have a role
to play here. It may be possible to compress the code and uncompress it as it runs in
order to save program memory (at the cost of execution speed). Note that with most
of these embedded applications, cross-compilation is used. Hosting the compiler on
the embedded system itself makes little sense.

Some high-level languages expect a particular implementation plan. For example,
some languages were designed with an interpreted implementation in mind. Java is a
good case. The traditional implementation compiles the Java source code into code
for a virtual machine (the Java Virtual Machine [10], where programs are written
in Java bytecodes) and a separate interpreter program reads this virtual machine
code, simulating its execution, hence running the Java code. One of the important
advantages offered by this approach is that it allows the implementation of dynamic
class loading where a running program can call for the execution of a different class
which may reside on the local machine or a remote machine somewhere on the
local network or on the internet. The remote class is loaded in the form of a file
containing code for the Java Virtual Machine and its execution can start using the
same interpreter.

The disadvantage of this implementation strategy is of course the execution effi-
ciency overhead introduced by the interpretation rather than the native running of the
code. Many techniques have been developed to improve the efficiency. In particular,
just-in-time compilation is now often used to translate the Java bytecodes automat-
ically into target machine code, just before the code’s execution. If the Java system
encounters bytecodes that are likely to be executed repeatedly, then it is important
that the translation to target machine code is done just once in advance. Interpreting
some of the code and running the rest natively is possible. Such systems can offer
considerable performance gains.
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9.4 The Future

In some respects programming language implementation has been a remarkably sta-
ble field of computer science. The theoretical foundations of grammars and parsing
informed the development of lexical and syntax analysers and today’s implementa-
tions of these phases are very similar in structure to those written decades ago. But
target machines and compiler back-ends as well as programming languages have
all changed a great deal. Developments in instruction selection, control and data
dependence representations, optimisation, register allocation and so on have had a
significant effect and the huge changes in processor and memory design, influenced
by the needs of the compiler writer, have all resulted in extremely efficient imple-
mentations of powerful high-level languages.

Compiler development is driven primarily by advances in programming languages
and in computer hardware. Changes in compilers tend to be incremental. Processor
speeds and capabilities will continue to increase and compilers will have to adapt
to the new functionality. In order to continue following the spirit of Moore’s Law
there has to be an increased reliance on multiprocessor architectures, and despite
many years of research, we are still not very good at the automatic parallelisation
of programs written in conventional programming languages. Whether this situation
is resolved by better parallelisation in compilers or the development and adoption
of easy to use parallel programming languages is an interesting question. Today’s
programmers have been immersed in traditional sequential programming for so long
that it is difficult to see how to move to thinking about the solution of problems in
terms of parallel algorithms.

There is no doubt that better programming languages are needed to make the
process of programming simpler and more reliable. An important driver for compiler
development will undoubtedly be these developments in programming languages.
Software reliability is a crucial goal. As more andmore life-critical devices and com-
puter applications are being developed there has to be technology for the production
of reliable software. And reliable compilers are needed too, of course, and this is an
active research area. Techniques of formal verification can be applied to compilers
and such compilers have special relevance when developing code for high-integrity
embedded systems [11].

Radically different computer architectures will evolve. Recent advances in bio-
logically inspired computing and quantum computing suggest that major changes
are on the horizon. What about compilers for these machines? That sounds like an
interesting project….

9.5 Conclusions and Further Reading

The division of a compiler into a front-end and a back-end has major effects on
the ease of implementation of the compiler on a new machine. The free availability
today on the internet of many compiler components has had a significant influence
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on the ease with which new compilers and other tools can be implemented. There
are now extremely reliable, powerful and highly optimising compilers available in
source code form, compiling a large variety of source languages to diverse target
architectures.

Many of these compilers form part of a compiler kit. They are designed in such
a way as to facilitate the addition of new front-ends for new source languages and
include support for the porting to new target machines. They usually include detailed
documentation, specifically including guidance on the addition of new front-end and
back-end components. The GCC [3] and LLVM [4] projects are good examples and
their porting documentation is helpful reading. If the machine to which the compiler
is to be ported is similar to a machine that already has an implementation, then the
task may be comparatively easy.

There are many program development environments in use throughout the soft-
ware industry today. It is easy to find information about them on the web and to
do some sort of feature comparison. They can make a big difference to the ease of
managing software projects.

Also, information about other compiler-related software tools is easy to find. A
valuable skill is an understanding of object code formats and linkers [12]. Java also
is a key aspect of programming language implementation. It is itself a good language
for the implementation of compilers [13, 14]. Just- in-time compilers are not confined
to Java implementations. They have a long history [15].

Implementation of functional and object-oriented languages has not been covered
in this book. These are huge subjects in themselves [16, 17]. And quantum computing
is a fast-moving subject. A web search will reveal a great deal.

Exercises

9.1. Write interpreters in various languages for the intermediate representation for
DL.

9.2. A good choice of a compiler implementation language is important. Try and
find out which languages are and have been popular for the coding of compilers
and make some conclusions.

9.3. Look at the LLVM andGCC documentation, particularly the information about
porting to a new machine. Estimate how long it would take to produce a “quick
and dirty” code generator and how long it would take for a high-quality opti-
mising code generator.

9.4. Does the inclusion of pattern matching features make a language better-suited
for use in compiler implementation? Discuss where in a compiler such features
would be useful.

9.5. What makes a C program non-portable? What makes a Java program non-
portable?

9.6. Howwell is Java suited to the implementation of applications on a small embed-
ded processor?
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9.7. The inevitable programming exercise: write a complete compiler for DL tar-
geted to any real or virtual machine you like.

9.8. Make some predictions about what programming languages and compiler tech-
nology will look like in ten years time. Keep them somewhere safe.

References

1. GermanNational Research Center for Information Technology (2016). The catalog of compiler
construction tools. http://catalog.compilertools.net/. Accessed 20 Oct 2016

2. Tanenbaum AS, van Staveren H, Keizer EG, Stevenson JW (1983) A practical tool kit for
making portable compilers. Commun ACM 26(9):654–660

3. Free Software Foundation (2016). GCC, the GNU compiler collection. https://gcc.gnu.org/
4. Computer Science Department at the University of Illinois at Urbana-Champaign (2016). The

LLVM compiler infrastructure. http://llvm.org/. Accessed 26 Oct 2016
5. Conway ME (1958) A proposal for an UNCOL. Commun ACM 1(10):5–8
6. Richards M, Whitby-Strevens C (1980) BCPL – the language and its compiler. Cambridge

University Press, Cambridge
7. Brooks G, Hansen GJ, Simmons S (1992) A new approach to debugging optimized code.

Proceedings of the ACM SIGPLAN ’92 conference on programming language design and
implementation. California, San Francisco, pp 1–11

8. Hennessy J (1982) Symbolic debugging of optimized code. ACM Trans Program Lang Syst
4(3):323–344

9. Hölzle U, Chambers C, Ungar D (1992) Debugging optimized code with dynamic deoptimiza-
tion. Proceedings of the ACMSIGPLAN ’92 conference on programming language design and
implementation. California, San Francisco, pp 32–43

10. Lindholm T, Yellin F (1997) The Java virtual machine specification. The Java series. Addison-
Wesley, Reading

11. Leroy X (2016) INRIA. CompCert. http://compcert.inria.fr/index.html. Accessed 01 Dec 2016
12. Levine JR (2000) Linkers & loaders. Morgan Kaufmann, Massachusetts
13. Appel AW, Palsberg J (2002) Modern compiler implementation in Java, 2nd edn. Cambridge

University Press, Cambridge
14. Watt DA, Brown DF (2000) Programming language processors in Java. Prentice Hall, Engle-

wood Cliffs
15. Aycock J (2003) A brief history of just-in-time. ACM Comput Surv 35(2):97–113
16. Craig I (2000) The interpretation of object-oriented programming languages. Springer, Hei-

delberg
17. Peyton Jones SL (1987) The implementation of functional programming languages. Prentice

Hall International Series in Computer Science. Prentice Hall, Englewood Cliffs

http://catalog.compilertools.net/
https://gcc.gnu.org/
http://llvm.org/
http://compcert.inria.fr/index.html


The DL Language

This appendix gives a description of the DL language used for many of the compiler
examples in the book.

DL is a simple high-level language, only operating on integer data, with a syntax
looking vaguely like a simple C. The syntax of DL is defined by the following BNF
grammar:

<program> ::= <block>
| <declarations> <block>

<declarations> ::= <declaration>
| <declaration> <declarations>

<declaration> ::= <variabledeclaration> | <functiondeclaration>
<variabledeclaration> ::= int <vardeflist> ;
<vardeflist> ::= <vardec> | <vardec> , <vardeflist>
<vardec> ::= <identifier> | <identifier> [ <constant> ]
<functiondeclaration> ::= <identifier> (); <functionbody>

| <identifier> ( <arglist> ); <functionbody>
<functionbody> ::= <variabledeclaration> <block> | <block>
<arglist> ::= <identifier> | <identifier> , <arglist>
<block> ::= { <statementlist> }
<statementlist> ::= <statement> | <statement> ; <statementlist>
<statement> ::= <assignment> | <ifstatement> | <whilestatement>

| <block> | <printstatement> | <readstatement>
| <returnstatement> | <empty>

<assignment> ::= <identifier> = <expression>
| <identifier> [ <expression> ] = <expression>

<ifstatement> ::= if ( <bexpression> ) <block> else <block>
| if ( <bexpression> ) <block>

<whilestatement> ::= while ( <bexpression> ) <block>
<printstatement> ::= print ( <expression> )
<readstatement> ::= read ( <identifier> )
<returnstatement> ::= return <expression>
<expression> ::= <expression> <addingop> <term>

| <term> | <addingop> <term>
<bexpression> ::= <expression> <relop> <expression>
<relop> ::= < | <= | == | >= | > | !=
<addingop> ::= + | -
<term> ::= <term> <multop> <factor> | <factor>
<multop> ::= * | /
<arguments> ::= <expression> | <expression> , <arguments>
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<factor> ::= <constant> | <identifier>
| <identifier> [ <expression>]
| ( <expression> ) | <identifier> ( <arguments> )
| <identifier> ( )

<constant> ::= <digit> | <digit> <constant>
<identifier> ::= <identifier> <letterordigit> | <letter>
<letterordigit> ::= <letter> | <digit>
<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<empty> has the obvious meaning

Names have to be declared before they are used. This implies that mutually recur-
sive functions are not allowed. All functions return a single integer result.

Comments (zero or more characters enclosed between the standard C comment
brackets /*...*/) can be inserted. DL has rudimentary support for one-dimensional
arrays. The declaration int a[3] declares an array of three elements, referenced as
a[0], a[1] and a[2]. Names are scoped in the traditional way.

A simple program written in this language is as follows:

factorial(n);

{

if (n==0) { return 1 }

else { return n*factorial(n-1) }

}

int x;

{

x=1;

while (x<=10) {

print(factorial(x));

x = x + 1

}

}

The tree generated for this program using the code outlined in this book has two
parts. The first is for the factorial function.

N_FUNCTIONDEC - function definition chain, this:
| N_FUNCTION - function def, number 0
| N_FUNCTION - function def, arglist:
| | N_PARMS - parameter, runtime offset 0
| | N_PARMS - parameter, next, index is:
| N_FUNCTION - function def, block:
| | N_SLIST - Statement list, this statement:
| | | N_IF - if, condition:
| | | | N_EQ - eq, lhs is:
| | | | | N_ID - identifier, runtime offset 0
| | | | N_EQ - eq, rhs is:
| | | | | N_CONST - const, value is: 0
| | | N_IF - if, thenpart:
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| | | | N_SLIST - Statement list, this statement:
| | | | | N_RETURN - return, value is:
| | | | | | N_CONST - const, value is: 1
| | | | N_SLIST - Statement list, continued...
| | | N_IF - if, elsepart:
| | | | N_SLIST - Statement list, this statement:
| | | | | N_RETURN - return, value is:
| | | | | | N_MUL - mul, lhs is:
| | | | | | | N_ID - identifier, runtime offset 0
| | | | | | N_MUL - mul, rhs is:
| | | | | | | N_FNCALL - function call, function 0 (factorial)
| | | | | | | N_FNCALL - function call, arguments:
| | | | | | | | N_ARG - argument list, expression:
| | | | | | | | | N_MINUS - minus, lhs is:
| | | | | | | | | | N_ID - identifier, runtime offset 0
| | | | | | | | | N_MINUS - minus, rhs is:
| | | | | | | | | | N_CONST - const, value is: 1
| | | | | | | | N_ARG - argument list, next argument:
| | | | N_SLIST - Statement list, continued...
| | N_SLIST - Statement list, continued...
N_FUNCTIONDEC - function definition chain, next:

The second is for the main program.

N_SLIST - Statement list, this statement:
| N_ASSIGN - Assign to variable at offset 0, expression is:
| | N_CONST - const, value is: 1
N_SLIST - Statement list, continued...
| N_SLIST - Statement list, this statement:
| | N_WHILE - while, condition:
| | | N_LE - le, lhs is:
| | | | N_ID - identifier, runtime offset 0
| | | N_LE - le, rhs is:
| | | | N_CONST - const, value is: 10
| | N_WHILE - while, block:
| | | N_SLIST - Statement list, this statement:
| | | | N_PRINT - print, expression is:
| | | | | N_FNCALL - function call, function 0 (factorial)
| | | | | N_FNCALL - function call, arguments:
| | | | | | N_ARG - argument list, expression:
| | | | | | | N_ID - identifier, runtime offset 0
| | | | | | N_ARG - argument list, next argument:
| | | N_SLIST - Statement list, continued...
| | | | N_SLIST - Statement list, this statement:
| | | | | N_ASSIGN - Assign to variable at offset 0, expression is:
| | | | | | N_PLUS - plus, lhs is:
| | | | | | | N_ID - identifier, runtime offset 0
| | | | | | N_PLUS - plus, rhs is:
| | | | | | | N_CONST - const, value is: 1
| | | | N_SLIST - Statement list, continued...
| N_SLIST - Statement list, continued...
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The intermediate representation generated for this program
is as follows.

factorial(1)

if (vl0!=0) goto l1

r0 = 1

return

goto l2

l1:

r2 = vl0 - 1

param r2

call factorial

r3 = r0

r1 = vl0 * r3

r0 = r1

return

l2:

r0 = 0

return

:!MAIN!(1)

vg0 = 1

l3:

if (vg0>10) goto l4

param vg0

call factorial

r4 = r0

print r4

r5 = vg0 + 1

vg0 = r5

goto l3

l4:

r0 = 0

return
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Operator overloading, 144
Operator precedence, 19
Optimisation, 32

machine-dependent, 32, 223–230
machine-independent, 31, 177–201

P
Panic-mode error recovery, 134
Parallelism, 194–200
Parse tree, 26, 30, 76–77, 110

flattening, 31
Parsing, 24, 30, 75, 77–90

bottom-up, 27, 88–89
deterministic, 84
precedence, 102
predictive, 84
recursive descent, 84
shift-reduce, 101–102
top–down, 78–88
top-down, 27

Pascal, 19, 20, 221
Peephole optimisation, 201, 227–229
Pipeline, 194, 224
PL/I, 2, 56
Portability, 239–240
Precedence, 19
Precedence parsing, 102
Predictive parser, 84, 100
Production rules, 22
Program dependence graph, 161
Program development environment, 241

R
Recursive descent parser, 84
Reduce/reduce conflict, 107
Reduced instruction set computers, seeRISC
Reduction, 25
Redundant code elimination, 186–187
Redundant variables, 190
Register allocation, 212–219
Register interference graph, 215
Register-memory machines, 212
Register-register machines, 213
Register spilling, 213
Regular expression, 24, 45, 57–61

directed graph, 58
Regular grammar, 24
Reserved words, 39, 40
Return address, 220
RISC, 6, 207
Runtime library, 240

S
Scope rules, 135
Semantic analysis, 31, 141–174
Semantics, 14

definition, 16
natural language, 21
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reference implementation, 21
specification, 21

Sentence, 23
Sentential form, 23
Shift/reduce conflict, 107
Shift-reduce parsing, 101–102
Software engineering, 7
Stack-based storage, 148
Stack frame, 149
Stack-based storage, 219
Starting symbol, 22, 106
Static chain, 221
Static single assignment form (SSA), 156–

158
Static typing, 143
Storage allocation

arrays, 150
display, 150
dynamic allocation, 149
nested functions, 150
stack, 148
static allocation, 147
static chain, 150
structures and unions, 152

Storage management, 146–153
Strength reduction, 193
Superoptimisation, 229–230
Superscalar processors, 224
Symbol table, 33, 45, 114, 122, 134–136

stack, 114
Syntax

definition, 16
Syntax analysis, 30, 75, 95–137

error recovery, 89–90, 130–131
Syntax diagrams, 20
Syntax-directed translation, 153–154
Synthesis phase, 15

T
T-diagrams, 34
Terminal symbols, 17
Testing, 241
Three-address code, 156, 162
Tokens, see lexical tokens
Top-down parsing, 27, 96–100, 113–118
Transition diagram, 59
Transition table, 60
Tree generation, 90–91, 110–113, 118–122,

127–130
Tree pattern matching, 210
Tree printing, 123
Tree tiling, 211
Two-level grammar, 20
Type checking, 145–146
Typedef declaration, 42, 136
Type equivalence, 144

name equivalence, 144
structural equivalence, 144

Types, 142, 173

U
Unrestricted grammar, 23
User-defined types, 142

V
Vector instructions, 194
Virtual machine, 7, 14–16, 209–210
Virtual registers, 162, 213

Y
yacc, 103
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