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Abstract

The present research is aimed to analyse the existence of strict fixed points (SFP)

and fixed points of multi-valued generalized contractions on the platform of con-

trolled metric spaces (CMS). Wardowski type multivalued non-linear operators

and Reich type (α, F )-contractions have been introduced by means of auxiliary

functions, which modifies a new form of contractive requirements. Well-posedness

of proved fixed point results is also established. Moreover, data dependence result

for fixed point is provided. Some supporting examples are also available for better

perception. Many existing results in literature are the special case of the results

established in this dissertation.
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Chapter 1

Introduction

Functional analysis is the most interesting branch of classical mathematical analy-

sis. It was initiated in the 19th century and accepted from 1920 to 1930. Functional

analysis deals with functionals and is vital in many mathematics and applied sci-

ences fields. This branch of mathematics is a smart fusion of geometry, topology,

and analysis which has remarkable importance in various branches of mathematics

and the field of natural sciences.

The solution of non-linear problems has been an important issue in various mathe-

matics and applied sciences disciplines. Fixed point theory deals with the existence

of fixed points of certain mappings, which is, in fact, the solution to non-linear

problems. Fixed point theorems are related to finding fixed points and investigat-

ing their uniqueness.

In 1866, Poincare [1] presented some initiative work on fixed point theory. Af-

terward, in 1912, Brouwer [2] proved a fixed point theorem on the unit sphere,

confirming a fixed point’s existence. Kakutani [3] generalized Brouwer fixed point

result on set valued function. Fixed point theory is an integral part of functional

analysis, used in various applications from general science to optimization, game

theory, economics, and approximation theory.

In 1922, a prominent Polish mathematician Stefan Banach [4], did creditable work

using contraction condition instead of continuity in his famous theorem named Ba-

nach contraction principle (BCP). This theorem assures the existence of a unique

1



Introduction 2

fixed point and provides a powerful tool for finding this unique fixed point as well.

According to BCP, a self map Ω defined on complete metric space (MS) (ξ, d)

satisfying

d
(
Ω%,Ω%̄

)
≤ `d(%, %̄), for all %, %̄ ∈ ξ and ` ∈ [0, 1),

has a unique fixed point.

There are two major directions in which fixed point theory is developed. One is

the generalization of fixed point theorems in the setting of different spaces, for

example, metric spaces, Hilbert spaces, Banach spaces, topological spaces, and

even by changing the structures of spaces. The second direction is to use the

generalization of the contraction condition.

Edelstein gave the first generalization of the Banach contraction condition [5] in

1962 by taking constant ` = 1 and using distinct points from the space ξ. In the

same year, Rakotch [6] introduced a contractive condition, in which the constant `

of the contraction condition in BCP is replaced by a monotonic decreasing function

` : [0,∞) −→ [0, 1]. Kannan [7] introduced a contraction condition in 1968 that

does not imply continuity like the Banach contraction. This contraction condition

is as follows:

d
(
Ω%,Ω%̄

)
≤ `
{
d(%,Ω%) + d(%̄,Ω%̄)

}
,

for all %, %̄ ∈ ξ and 0 < ` < 1
2
.

In 1969, another extension of BCP was presented by Kannan [8] by omitting

the completeness of the space. Following the work of Kannan [7, 8], another

contraction condition was introduced by Chatterjee [9] in 1972, which is as follows:

d
(
Ω%,Ω%̄

)
≤ `
{
d(%,Ω%̄) + d(%̄,Ω%)

}
,

for all %, %̄ ∈ ξ and 0 < ` < 1.

Nadler [10] is considered the founder of set-valued contraction. He first introduced

the multi-valued contractive mappings and proved two fixed point theorems. The

first theorem is the generalization of BCP for multi-valued contractive mapping.

Edelstein’s result is generalized for compact set-valued contractions in the second

theorem. Massive research can be seen on such a generalization. For examples



Introduction 3

Reich [11], Bianchini [12] and Caristi [13]. Due to BCP’s importance and massive

application, it has become a constructive procedure for many mathematicians.

Wardowski [14] introduced another well-known contraction, namely F -contraction.

In 2013, Sagroi et al. [15] proved some fixed point results on F -contraction. In

2016, Kamran et al. [16] presented an interesting generalization of F -contraction

namely (α, F )-contraction. Hussain et al. [17] use this contraction for the multi-

valued mappings. In 2020, Anwar et al. [18] proved some fixed point results for

nonself multi-valued mappings using Wardowski type (α, F )-contractive approach.

A data dependence problem is to estimate the distance between the sets of fixed

point of two mappings. This idea is only meaningful if we have an assurance of

non-empty fixed point sets of these two operators. The data dependence problem

is mostly dealt with set-valued mappings since multivalued mappings often have

larger fixed point sets than single-valued mappings. In August 2021, Iqbal et al.

[19] introduced an interesting type of multi-valued generalized contraction and

proved some fixed point results in the domain of complete MS.

In 1906, the notion of metric space was first presented by Maurice Frechet [20],

the founder of metric space, as a generalized formulation of the Euclid distance.

On the other hand, the concept of Hausdorff distance is due to Hausdorff [21].

Metric space plays a vital role in many areas of complex, functional, and real

analysis. Due to this vital role in many fields, it is extended and generalized in

many distinct directions. In 1989, Bakhtin [22] gave the first generalization of

metric space, namely b-metric space (b-MS), by changing the triangular inequality

of MS. Later on, the concept of b-MS was further used by Czerwick [23, 24] to

establish different contraction results in b-MS. Certain literature can be seen on

the extensions of existing fixed point results using the set-valued mappings. [25]-

[27]. The study of b-MS endowed a prominent place in fixed point theory with

multiple aspects. Many mathematicians led the foundation to improve fixed point

theory in b-MS. In 1992, Matthews [28] highlighted a new idea of non-zero self

distance and introduced the domain of partial metric space. Later, Altun et al.

[29] proved some fixed point results for generalized contractive type mappings on

partial metric space. In 2014, Shukla [30] gave a unique idea by blending b-MS
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and partial metric space. He introduced a new domain of partial b-metric space.

Ameer et al. [31] introduced generalized multi-valued (α∗K , Y,Λ)-contraction and

proved some fixed point results using the platform of partial b-metric space.

In 2007, Huang et al. [32] introduced an interesting idea of cone metric space

by substituting an ordered Banach space for the set of real numbers. Afterwards,

certain fixed point results are obtained using this new approach. In 2015, Ma et al.

[33] presented a new concept of C∗-Algebra-valued b-metric spaces and established

certain fixed point results for self-maps by using contractive conditions on these

spaces. In the next year, Shehwar et al. [34] introduced the notion of partial order

and proved the existence of fixed point by using the idea of the minimal element in

C∗-Algebra-valued b-metric spaces. One can read [35–37] for more developments

in this direction.

In 2017, Kamran et al. [38] introduced a new domain of extended b-metric space

by further weakening the triangle inequality. Authors established certain fixed

point theorems endowed with extended b-metric space [39–41]. In 2018, Mlaiki

et al. [42] made another advancement by employing a control function on the

right-hand side of the b-triangle inequality. They introduced an interesting do-

main of controlled metric space (CMS) and generalized BCP for this new space.

Controlled metric spaces have become an exciting topic for researchers nowadays.

In August 2021, Iqbal et al. [19] introduced Wardowski-type multi-valued non-

linear operators which satisfy certain contractive conditions. In this article, some

fixed point results are established to prove the existence of fixed points and strict

fixed points by using a new type of multi-valued generalized contractions. Data

dependence and well-posedness of these contractions are also discussed by utiliz-

ing the platform of complete MS. Encouraged by the work of Iqbal et al. [19], we

offered an idea of generalizing these results in the domain of CMS.

The layout of the thesis is briefly shown below:

Chapter 2 focuses on some basic ideas used in subsequent chapters. The major

aim of this chapter is to review some essential definitions with suitable exam-

ples. Different types of mappings are portrayed with the help of various suitable

examples and graphs. A quick review of some generalized metric spaces is also
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presented.

Chapter 3 gives an overview of different generalizations of contraction mapping.

Certain fixed point results related to these contractions are also discussed. The

major part of this chapter is the detailed review of the work of Iqbal et al. [19].

Chapter 4 consists of a discussion about controlled metric space (CMS). Fixed

point results of [19] are generalized in the setting of CMS. A suitable example is

given to support the new results. Data dependence and the well-posedness of some

multi-valued generalized contractions are also articulated.

Chapter 5 concludes our work and unlocks further recommendations for others.



Chapter 2

Preliminaries

This chapter is devoted to discussing some basic concepts of functional analysis.

This chapter is subdivided into five sections to better understand related literature.

2.1 Metric Spaces

Metric space is the generalization of the usual distance between two points on R.

The notion of the metric was first introduced by Maurice Frechet in 1906.

Definition 2.1. Metric Space.

“Suppose that ξ is a non-empty set and that d is a real valued function on ξ × ξ

with the following three properties.

M1. d(%1, %2) ≥ 0 ∀ %1, %2 ∈ ξ and d(%1, %2) = 0 ⇐⇒ %1 = %2,

M2. d(%1, %2) = d(%2, %1) ∀ %1, %2 ∈ ξ,

M3. d(%1, %2) ≤ d(%1, %3) + d(%3, %2) ∀ %1, %2, %3 ∈ ξ (The triangle inequality).

The function d is called a metric on ξ and ξ, taken together with the metric d, is

called a metric space which we denote by (ξ, d).” [43]

6
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Example 2.1.

Let ξ denote the collection of all closed intervals in R. For each %1 = [u1, u2] and

%2 = [v1, v2] in ξ, define

d(%1, %2) = max
{
| v1 − u1 |, | v2 − u2 |

}
.

It is easy to verify that d is a metric on ξ.

Example 2.2.

Consider ξ = R ∪ {∞} ∪ {−∞}. Define h : ξ −→ R by the rule

h(%) =


%

1 + |%|
if −∞ < % <∞,

1 if % =∞,

−1 if % = −∞,

evidently, h is one-to-one and −1 ≤ h(%) ≤ 1. Define d on ξ × ξ by

d(%1, %2) = | h(%1)− h(%2) | .

It is easy to verify that d is a metric on ξ.

Example 2.3.

Let ξ be the collection of all bounded and unbounded sequences of complex num-

bers. We define a metric function d on ξ × ξ as,

d(%, %̄) =
∞∑
i=1

1

2i
| %i − %̄i |

1+ | %i − %̄i |
,

where % = {%i} and %̄ = {%̄i} .

Definition 2.2. Open and Closed Ball.

“Let (ξ, d) be a metric space. Given a point %0 ∈ ξ and a real number a > 0, an

open ball is defined as

B(%0, a) = {% ∈ ξ : d(%0, %) < a},
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and a closed ball is defined as

B(%0, a) = {% ∈ ξ : d(%0, %) ≤ a}.”[44]

Definition 2.3. Open and Closed Set.

“Let (ξ, d) be a metric space. A subset U of ξ is said to be an open set if it contains

a ball about each of its points. A subset V of a metric space (ξ, d) is said to be a

closed set if its complement in ξ is open, that is Vc = ξ − V is open.” [44]

Definition 2.4. Sequence in Metric Space.

“A sequence in a metric space ξ is a function % : N −→ ξ. We exhibit the sequence

% as {%s} where %s = %(s). Given a sequence % in a metric space, a subsequence is

the restriction of % to an infinite subset S ⊂ N.” [45]

Definition 2.5. Convergence of a Sequence.

“A sequence {%s} in a metric space (ξ, d) is said to be convergent to % ∈ ξ, if given

ε > 0, there exists N ∈ N such that for all s ≥ N, we have

%s ∈ B(%, ε),

% is called limit of {%s} and we write

lim
s−→∞

%s = % or %s −→ %.” [45]

Example 2.4.

Let ξ = R2, define metric d on ξ by,

d(%, %̄) =
√

(%1 − %2)2 + (%̄1 − %̄2)2.

Let

%s =

(
s

2s + 1
,

2s2

s2 − 2

)
,

then, as s −→∞, %s −→ (
1

2
, 2), that is,

lim
s−→∞

%s = (
1

2
, 1)
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Remark 2.6.

A sequence in a MS cannot converge to two distinct limits.

Definition 2.7. Cauchy Sequence.

“A sequence {%s} in a metric space (ξ, d) is said to be Cauchy sequence (or fun-

damental) if for every ε > 0 there is an N = N(ε), such that

d(%m, %s) < ε for every m, s ≥ N.” [44]

Example 2.5.

Let ξ = R. Define a metric d on ξ as

d(%, %̄) =| %− %̄ | .

Let {%s} ⊂ ξ be a sequence defined as

%s =
s2

s2 + 2
.

Observe that,

|%r − %s| =

∣∣∣∣∣ r2

r2 + 2
− s2

s2 + 2

∣∣∣∣∣
=

∣∣∣∣∣r2s2 + 2r2 − r2s2 − 2s2

(r2 + 2)(s2 + 2)

∣∣∣∣∣
=

∣∣∣∣∣ 2r2 − 2s2

(r2 + 2)(s2 + 2)

∣∣∣∣∣
=

∣∣∣∣∣ 2r2

(r2 + 2)(s2 + 2)
+

−2s2

(r2 + 2)(s2 + 2)

∣∣∣∣∣
≤

∣∣∣∣∣ 2r2

(r2 + 2)(s2 + 2)

∣∣∣∣∣+

∣∣∣∣∣ 2s2

(r2 + 2)(s2 + 2)

∣∣∣∣∣
<

∣∣∣∣∣ 2r2

(r2)(s2 + 2)

∣∣∣∣∣+

∣∣∣∣∣ 2s2

(r2 + 2)(s2)

∣∣∣∣∣
=

2

s2 + 2
+

2

r2 + 2

<
2

s2
+

2

r2
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<
ε

2
+
ε

2

= ε,

for each r, s >
2√
ε

and by Archimedean’s property letting N >
2√
ε
, it is concluded

that {%s} is Cauchy sequence in R.

Remark 2.8.

Every convergent sequence in a MS eventually becomes a Cauchy sequence but the

converse of this result may or may not be true. For instance , suppose ξ = (0, 1)

with metric d defined on ξ as

d(%, %̄) = |%− %̄|.

Now, the sequence {%s} in ξ given by

%s =
1

s
,

is Cauchy sequence but not convergent in ξ.

Definition 2.9. Complete Metric Space.

“A metric space (ξ, d) is said to be complete if every Cauchy sequence in ξ con-

verges to an element in ξ.” [45]

Example 2.6.

Suppose l∞ be the space of all bounded sequences of complex numbers, with the

metric defined by

d(%, %̄) = sup
s∈N
|%s − %̄s|,

where % = {%s} and %̄ = {%̄s}, then (l∞, d) is a complete metric space.

Example 2.7.

Let ξ be a of all real-valued functions which are the functions of an independent

real variable ` and are defined and continuous on a given closed interval I = [a, b] .

Choose a metric d on ξ defined by

d(%, %̄) = max
`∈I
|%(`)− %̄(`)|,
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then, (ξ, d) is a complete metric space.

Example 2.8. Let ξ = R, define a metric d on ξ by

d(%, %̄) =| arctan(%)− arctan(%̄) |,

then, d is not a complete metric on ξ.

2.2 Mappings on Metric Spaces

This section is furnished with the idea of different type of mappings on metric

spaces.

Definition 2.10. Continuous Mapping.

“Let (ξ, dξ) and (E , dE) be metric spaces, and let Ω: ξ −→ E be a function that

maps ξ into E . We say that Ω is continuous at a point %0 ∈ ξ if for every ε > 0

there exists δ > 0, such that

dξ(%, %0) < δ =⇒ dE
(
Ω%,Ω%0

)
< ε,

for all % ∈ ξ.” [46]

Theorem 2.11.

“A mapping Ω: ξ −→ E of a metric space (ξ, dξ) into a metric space (E , dE) is

continuous at a point %0 ∈ ξ if and only if

%s −→ %0 =⇒ Ω%s −→ Ω%0.” [44]

Definition 2.12. Lipschitz Maps.

“Let (ξ, d) be a metric space. A mapping Ω: ξ −→ ξ is called to be Lipschitzian

if there exists a constant β ≥ 0 with,

d(Ω%,Ω%̄) ≤ βd(%, %̄),
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for all %, %̄ ∈ ξ. The smallest β for which this condition holds is said to be the

Lipschitz constant for Ω.” [47]

Example 2.9.

Let ξ = [0,∞), define a metric d : ξ × ξ −→ R+ by

d(%1, %2) = | %1 − %2 |,

then, the mapping Ω: ξ −→ ξ defined by

Ω% = 4%− 15,

is Lipschitz map on Ω with Lipschitz constant 4.

Definition 2.13. Contraction.

“Let (ξ, d) be a metric space. A mapping Ω: ξ −→ ξ is called a contraction if and

only if there exists a positive real number 0 ≤ β < 1, independent of %1, %2 in ξ,

such that for all %1, %2 in ξ,

d (Ω%1,Ω%2) ≤ βd (%1, %2) .” [48]

Example 2.10.

Consider a metric space (R+, d) with usual metric d on R+, then the mapping

Ω: R+ −→ R+ defined by

Ω% =
5

7
%,

is a contraction on R+.

Example 2.11.

Let Ω: R −→ R be a differentiable function and suppose that | Ω
′
% |≤ β < 1 on

R. Then, the mapping Ω is a contraction on R with usual metric d on R, since the

mean value theorem gives

| Ω%− Ω%̄ |=| Ω′%∗ || %− %̄ |≤ β | %− %̄ |,

where % < %∗ < %̄.
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Definition 2.14. Contractive Mapping.

“Let (ξ, d) be a metric space. A mapping Ω: ξ −→ ξ is said to be contractive if

for every %, %̄ ∈ ξ,

d (Ω%,Ω%̄) < d (%, %̄) ,

with % 6= %̄.” [49]

Example 2.12.

Consider ξ = [1,∞] with usual metric d on ξ. Let the self map Ω on ξ is defined

as

Ω% = %+
1

%
,

then Ω is a contractive mapping. Note that Ω is not a contraction.

Definition 2.15. Non-expensive Mapping.

“Let (ξ, d) be a metric space. A mapping Ω: ξ −→ ξ is said to be non-expensive

if for every %, %̄ ∈ ξ,

d (Ω%,Ω%̄) ≤ d (%, %̄) .” [49]

Example 2.13.

Consider R with usual metric d. The self mapping Ω on R defined as

Ω% = %,

is non-expensive but not contractive.

2.3 Fixed Points of a Mapping

The aim of this section is to introduce the notion of fixed point and clarify this

concept with the help of a variety of suitable examples and graphs.

Definition 2.16. Fixed Point.

“A fixed point of a mapping Ω: ξ −→ ξ on a set ξ into itself is % ∈ ξ which is

mapped onto itself, that is Ω% = %, the image Ω% coincides with %. ”[44]



Preliminaries 14

Note that for real valued functions, fixed points are the points of intersection of

the line y = x and the curve y = Ωx .

Example 2.14.

Define a mapping Ω: [0, 1] −→ [0, 1] by

Ω% =
%

2
,

then, % = 0 is the only fixed point of Ω.

Figure 2.1: One fixed point.

Example 2.15.

Let us define a mapping Ω: R −→ R by

Ω% = 6%2 + 2%− 1,

then, the fixed points of Ω are
1

3
and −1

2
.

Example 2.16.

Consider a mapping Ω: R2 −→ R2 defined by

Ω(%, %̄) = (%, 0),

then, all points on x-axis are fixed points of this mapping. This mapping is

projection of plane on x-axis.
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Figure 2.2: Two fixed points.

Example 2.17.

Consider a translation mapping Ω: R+ −→ R+ defined by

Ω (%) = %+ 4,

then, the mapping Ω has no fixed point.

Figure 2.3: No fixed point.

Remark 2.17.

A mapping may or may not have a fixed point. Furthermore, the fixed point of a

mapping, if exists, may or may not be unique.
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2.4 Some Classical Fixed Point Theorems

A fixed point theorem is a statement that guarantees the existence of fixed points

of a mapping under suitable conditions in any space. This section provides some

important theorems, which are the milestones of the fixed point theory.

In 1912, the Brouwer theorem was presented, which assures the existence of the

fixed point but does not provide any information about its location.

Theorem 2.18.

“Every continuous mapping from a closed ball of Euclidean space into itself has a

fixed point.” [50]

An improved version of above result was provided by Schauder in 1930.

Theorem 2.19.

“Every continuous function from a convex compact subset of Euclidean space to

itself has a fixed point.” [51]

The behavior of contraction mapping in complete metric space is of crucial im-

portance. Stefan Banach (1892-1945) was a famous Polish mathematician and is

considered one of the founders of functional analysis. BCP was formulated and

proved in his PhD dissertation in 1920, which was published in 1922 [4]. In clas-

sical functional analysis, BCP is one of the pivotal results and is a source for

researchers in the field of fixed point theory.

Theorem 2.20. Banach Contraction Principle

“Let (ξ, d) be a complete metric space with a contraction mapping Ω: ξ −→ ξ,

then, Ω admits a unique fixed point in ξ.” [4]

Example 2.18.

Suppose ξ = R and d be the usual metric defined on ξ. Let us define Ω: ξ −→ ξ

as

Ω% = 7 +
%

9
,

then, all the conditions of BCP are satisfied and hence Ω has a unique fixed point.
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Proof.

d (Ω%,Ω%̄) = d
(

7 +
%

9
, 7 +

%̄

9

)
= |7 +

%

9
− 7− %̄

9
|

= |%
9
− %̄

9
|

=
1

9
|%− %̄|

=
1

9
d(%, %̄).

Here β =
1

9
∈ [0, 1), so Ω is a contraction. R is a complete metric space with usual

metric. Hence all conditions of BCP are satisfied, and % =
63

8
is the fixed point

of Ω.

Banach Contraction Principle (BCP) is furnished with the existence and unique-

ness of fixed points of specific self maps on a MS. It also defines a constructive

method to find these fixed points. Many researchers have extended the Banach

Contraction Principle with various generalized metric spaces.

2.5 Some Generalizations of Metric Space

This section is devoted to state some generalized metric spaces in the light of

suitable examples. Some important results of metric fixed point theory are also

the part of this discussion.

The generalization of metric space as b-metric space is due to Bakhtin [22] and

later on, Czerwik [23] provided more work in this space.

Definition 2.21. b-Metric Space.

“Let ξ be a non-empty set and β ≥ 1 be a given real number. A function

d : ξ × ξ −→ [0,∞) is called b-metric if it satisfies the following properties for

each %1, %2, %3 ∈ ξ :

B1 d(%1, %2) = 0 iff %1 = %2,
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B2 d(%1, %2) = d(%2, %1),

B3 d(%1, %3) ≤ β
(
d(%1, %2) + d(%2, %3)

)
.

The pair (ξ, d) is called b-metric space.” [38]

Example 2.19. Consider ξ = N ∪ {∞}. Define d : ξ × ξ −→ R as

d(%1, %2) =



0 if %1 = %2∣∣∣∣ 1

%1

− 1

%2

∣∣∣∣ if %1, %2 are even or %1, %2 =∞

5 if %1, %2 are odd and %1 6= %2

2 if else,

it can be verified by taking %1, %2, %3 ∈ ξ that

d(%1, %3) ≤ 3
[
d(%1, %2) + d(%2, %3)

]
,

showing that (ξ, d) is a b-metric space with β = 3 > 1.

Remark 2.22.

Every metric space (ξ, d) is b-metric space with β = 1, but its converse is not

always true. For example, let ξ = {0, 1, 2} and define d : ξ × ξ −→ R+ by,

d(0, 2) = d(2, 0) = w ≥ 2,

d(0, 1) = d(1, 2) = d(2, 1) = d(1, 0) = 1,

and d(0, 0) = d(1, 1) = d(2, 2) = 0,

then,

d(%1, %3) ≤ w

2

(
d(%1, %2) + d(%2, %3)

)
,

for all %1, %2, %3 ∈ ξ. Hence, (ξ, d) is a b-metric space. But for w > 2, the ordinary

triangle inequality does not hold. For instance, w = 3 implies

d(2, 1) + d(1, 0) = 1 + 1 = 2 < d(2, 0),

showing that (ξ, d) is not a metric space.
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Matthews [28] generalized the concept of a metric space and introduce Partial

metric space.

Definition 2.23. Partial Metric Space.

“Let ξ be a non-empty set. A mapping dp : ξ × ξ −→ [0,∞) is said to be partial

metric if dp satisfies following axioms for all %1, %2, %3 ∈ ξ :

P1. dp(%1, %1) = dp(%1, %2) = dp(%2, %2) if and only if %1 = %2,

P2. dp(%1, %1) ≤ dp(%1, %2),

P3. dp(%1, %2) = dp(%2, %1),

P4. dp(%1, %3) ≤ dp(%1, %2) + dp(%2, %3)− dp(%2, %2).

The pair (ξ, dp) is said to be partial metric space.” [28]

Example 2.20.

Suppose

ξ = {[%1, %2] : %1, %2 ∈ R and %1 ≤ %2} .

Define dp : ξ × ξ −→ [0,∞) by

dp

(
[%1, %3], [%2, %4]

)
= max(%3, %4)−min(%1, %2),

then dp is a partial metric over ξ.

Remark 2.24.

Every metric space is a partial metric space, but every partial metric space need

not to be a metric space. However, any partial metric space with zero self distance

becomes a metric space.

In 2014, Shukla [30] introduced a new generalization of b-metric space namely

partial b-metric space.

Definition 2.25. Partial b-Metric Space.

“A partial b-metric on a nonempty set ξ is a function d : ξ × ξ −→ R+ such that

for all %1, %2, %3 ∈ ξ :
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Pb1. %1 = %2 iff d(%1, %1) = d(%1, %2) = d(%2, %2),

Pb2. d(%1, %1) ≤ d(%1, %2),

Pb3. d(%1, %2) = d(%2, %1),

Pb4. there exists β ≥ 1 such that d(%1, %2) ≤ β
(
d(%1, %3) + d(%3, %2)

)
− d(%3, %3).

A partial b-metric space is a pair (ξ, d) such that ξ is a non-empty set and d is a

partial b-metric on ξ. The number b is called the coefficient of (ξ, d).” [30]

Example 2.21.

Let k > 1 is a constant, ξ = R+ and d : ξ × ξ −→ R+ is defined by

d(%1, %2) = [max (%1, %2)]k + | %1 − %2 |k,

for all %1, %2 ∈ ξ, then (ξ, d) is a partial b-metric space with coefficient β = 2k > 1.

but it is neither a partial metric nor a b-metric space. Since for any % > 0 we have

d(%, %) = %k 6= 0,

which implies that d is not b-metric on ξ.

Also, if %1 = 5, %2 = 1, %3 = 4, then,

d(%1, %2) = 5k + 4k.

and

d(%1, %3) + d(%3, %2)− d(%3, %3) = 5k + 1 + 4k + 3k − 4k

= 5k + 1 + 3k.

Hence,

d(%1, %2) > d(%1, %3) + d(%3, %2)− d(%3, %3) for all k > 1,

which implies that d is not partial metric on ξ.



Preliminaries 21

Remark 2.26.

If (ξ, d) is a partial metric space, then it is partial b-metric space with coefficient

β = 1 and every b-metric space is also a partial b-metric space with the same

coefficient and zero self distance. However, the converse is not true in general.

Kamran et al. [38] generalize the concept of b-metric space and introduce extended

b-metric space. The definition along with a suitable example is provided here.

Definition 2.27. Extended b-Metric Space.

“Let ξ be a non-empty set and ρ : ξ×ξ −→ [1,∞) . A function dρ : ξ×ξ −→ [0,∞)

is called an extended b-metric if for all %1, %2, %3 ∈ ξ it satisfies:

(dρ1) dρ(%1, %2) = 0 if and only if %1 = %2,

(dρ2) dρ(%1, %2) = dρ(%2, %1),

(dρ3) dρ(%1, %3) ≤ ρ(%1, %3) [dρ(%1, %2) + dρ(%2, %3)] .

The pair (ξ, dρ) is called an extended b-metric space.” [38]

Example 2.22.

Let ξ = {2, 1,−1} . Define ρ : ξ × ξ −→ [1,∞) as

ρ(%1, %2) = |%1|+ |%2|.

Also, define d : ξ × ξ −→ [0,∞) as

d(2, 2) = d(1, 1) = d(−1,−1) = 0

d(1, 2) = d(2, 1) =
1

2
,

and

d(1,−1) = d(−1, 1) = d(2,−1) = d(−1, 2) =
1

3
,

then, (ξ, dρ) is an extended b-metric space.
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Remark 2.28.

Let (ξ, dρ) be an extended b-metric space. Define ρ : ξ × ξ −→ [1,∞) as

ρ(%1, %2) = β,

where β ≥ 1. This reduces the definition of extended b-metric space to b-metric

space.

The concept of distance between two closed sets was initiated by Pompeiu [52]

(1873, 1954), and established in the general setting of a metric space by Hausdorff

since 1914.

Definition 2.29. Distance of a Point and a Set.

“The distance D(%,A) from a point % to a non-empty subset A of metric space

(ξ, d) is defined to be

D(%,A) = inf
%̄∈A

d(%, %̄).” [44]

Definition 2.30. Hausdorff Metric Space.

“Let (ξ, d) be a metric space and CB(ξ) denotes the collection of all non-empty

closed and bounded subsets of ξ. For A,B ∈ CB(ξ), define

H(A,B) = max

{
sup
%̄∈B

D(%,B), sup
%∈A

D(%̄,A)

}
,

where D(%,B) is the distance of a point % to the set B . It is known that H is a

metric on CB(ξ), called the Hausdorff metric induced by the metric d.” [53]



Chapter 3

Data Dependence and

Well-Posedness of Fixed Point

Theorems for Non-linear

Contractions

This chapter is furnished with the exhaustive debate about the work of Iqbal

et al. [19]. The article focuses on the existence of fixed points and strict fixed

points for multi-valued nonlinear contraction in the domain of complete MS. Data

dependence and well-posedness of the problems are also discussed.

3.1 Fixed Point in the Context of F -Contractions

In this section, a few ideas regarding F -contraction are recalled.

Definition 3.1. F -Mapping.

A function F : (0,∞) −→ R is called F -Mapping, if it satisfies the following

properties

(F1) F is strictly increasing,

23
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(F2) For all sequences {Ψs} ⊆ (0,∞), lim
s−→∞

Ψs = 0 iff lim
s−→∞

F (Ψs) = −∞,

(F3) There exists k ∈ (0, 1) such that lim
Ψ−→0+

ΨkF (Ψ) = 0. [14]

Example 3.1.

Define F : (0,∞) −→ R

F (%) = ln(%2 + %).

Obviously, F satisfies (F1)-(F3).

Definition 3.2. F -Contraction.

Let (ξ, d) be a MS and F : (0,∞) −→ R be an F -Mapping. A mapping Ω : ξ −→ ξ

is said to be F -contraction if there exists υ > 0 s.t d(Ω%,Ω%̄) > 0 implies

υ + F (d(Ω%,Ω%̄)) ≤ F (d(%, %̄)),

for all %, %̄ ∈ ξ. [14]

Let us denote the collection of all such functions F which satisfy (F1), (F2) and

(F3) by ∆(F). Also, assume that

∆ (O∗) =
{
F ∈ ∆(F) : F satisfeis (F4)

}
,

where

(F4) F (inf X) = inf F (X) for all X ⊂ (0,∞) with inf X > 0.

Turinici [54] replace (F2) by (F2′), where,

(F2′) lim
t−→0+

F (t) = −∞.

Denote the collection of all such functions F which satisfy (F1), (F2′), (F3) and

(F4) by ∆ (0∗) . In 2012, Wardowski proved the following result.

Theorem 3.3.

Suppose (ξ, d) is a MS and Ω : ξ −→ ξ is an F -contraction, then Ω has unique



Data Dependence and Well-Posedness 25

fixed point %> ∈ ξ. Also, for every %0 ∈ ξ, a picard sequence {Ωs%0}s∈N converges

to %>. [14]

Proposition 3.4.

Assume that F : (0,∞) −→ R∪{−∞} is a function which satisfies (F1) and (F2),

then a countable subset ðF contained in (0,∞) exists such that

lim
t−→s−

F (t) = F (t) = lim
t−→s+

F (t),

for every s ∈ (0,∞)/ðF. [54]

Lemma 3.5.

Assume that F : (0,∞) −→ R∪{−∞} is a function which satisfies (F1) and (F2),

then for each sequence {ts} ⊆ (0,∞),

F (ts)→ −∞ =⇒ ts → 0. [54]

Proof.

Suppose that F (ts) → −∞ does not implies ts → 0, there must exist some ε > 0

such that for every s, there exists s′ ≥ s, such that

ts′ > ε.

So, we obtain a subsequence {t′s} of {ts} such that

t′s > ε for all s,

=⇒ F (t′s) > F (ε) for all s,

which is a contradiction to the property F (t′s) −→ −∞.

Hence

F (ts)→ −∞ =⇒ ts → 0.

Definition 3.6. Multivalued Mapping.

Assume that ξ and η are non-empty sets, a mapping Ω : ξ −→ P (η) is called
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multi-valued mapping (MVM) if every element of ξ corresponds to any subset of

η. Here, P (η) represents the collection of subsets of η. [10]

Example 3.2.

Consider ξ = [0, 1] and M(ξ) = {η ⊆ ξ : η 6= ∅}. A mapping Ω : ξ −→ M(ξ)

defined as

Ω% = [0, %],

is a multivalued mapping. Figure 3.1 shows the graphical picture of this map.

Figure 3.1: Multivalued mapping.

Assume that CL(ξ) and K (ξ) denote the set of all non-empty closed subsets of ξ

and the set of all non-empty compact subsets of ξ respectively.

Definition 3.7. Fixed point of MVM.

Let Ω: ξ −→ P (ξ) be a MVM. An element % ∈ ξ is called fixed point of Ω if

% ∈ Ω%. The set of all fixed points of Ω is denoted as FixΩ. An element % ∈ ξ is

called strict fixed point of Ω if Ω% = {%} . The set of all strict fixed points of Ω is

denoted by SFixΩ.

Altun et at. [55] generalized the idea of F -contraction with a flavor of multivalued

mapping.

Definition 3.8. Multivalued F -Contraction.

Let (ξ, d) be a MS. A mapping Ω : ξ −→ CB(ξ) is said to be multivalued F -

contraction, if there exists υ > 0 and F ∈ ∆(F) such that

H(Ω%,Ω%̄) > 0 implies υ + F (H(Ω%,Ω%̄)) ≤ F (d(%, %̄)),



Data Dependence and Well-Posedness 27

for all %, %̄ ∈ ξ. [55]

Theorem 3.9.

Suppose that (ξ, d) is a complete MS and Ω : ξ −→ K (ξ) is a multi-valued F -

contraction, then Ω has fixed point in ξ. [55]

3.2 Fixed Point in the Setting of Non-linear F -

Contraction

Klim and Wardowski [56] generalized F -contraction mapping to non-linear F -

contraction through dynamic processes.

Definition 3.10. Dynamic Process of Mapping.

Let ξ be a non-empty set, S be the collection of non-empty subsets of ξ, and

Ω : ξ −→ S(ξ) be multi-valued mapping. Suppose %0 be an arbitrary element of ξ.

Define

D(Ω, %0) = {(%s)s∈N∪{0} : %s ∈ Ω%s−1 for all s ∈ N}.

Every element of D(Ω, %0) is known as dynamic process of Ω starting at %0. [56]

Definition 3.11. Set Valued F -contraction.

Let (ξ, d) be a MS, %0 ∈ ξ and F ∈ ∆(F). A set valued F -contraction with respect

to the dynamic process (%s)s∈N∪{0} is defined as the mapping Ω : ξ −→ S(ξ) if

there exists a function β : (0,∞) −→ (0,∞) such that

d(%s, %s+1) > 0 implies β
(
d(%s−1, %s)

)
F
(
d(%s, %s+1)

)
≤ F

(
d(%s−1, %s)

)
,

for all s ∈ N. [56]

Wardowski [57] introduced non-linear F -contraction in 2017 as follows:

Definition 3.12. Non-linear F -Contraction.

Let (ξ, d) be a MS. A mapping Ω : ξ −→ ξ is called non-linear F -contraction,

if there exists F ∈ ∆(F) and a function Ξ : (0,∞) −→ (0,∞) that fulfill the

followings,
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(H1) lim inf
s−→Ψ+

Ξ(s) > 0, ∀ Ψ > 0.

(H2) Ξ(d(%, %̄)) + F (d(Ω%,Ω%̄)) ≤ F (d(%, %̄)) ∀ %, %̄ ∈ ξ s.t Ω% 6= Ω%̄. [57]

Theorem 3.13.

Assume that (ξ, d) is a complete MS, and Ω : ξ −→ ξ is a non-linear F-contraction,

then, Ω has unique fixed point in ξ. [57]

Non-linear case of Theorem 3.9 is presented by Olgun et al. [58] as follows:

Theorem 3.14.

Assume that (ξ, d) is a complete MS and Ω : ξ −→ K (ξ) is a multi-valued F -

contraction, the mapping Ω has fixed points in ξ if F ∈ ∆(F) and ζ : (0, 1) −→

(0, 1) satisfy

lim inf
s→k+

Ω% > 0 for all k > 0,

ζ
(
d(%, %̄)

)
+ F

(
H
(
Ω%,Ω%̄

))
≤ F

(
d(%, %̄)

)
,

for all %, %̄ ∈ ξ. [58]

3.3 Fixed Point For Generalized Multivalued Non-

linear Contraction

This section is dedicated for the discussion of generalized multivalued non-linear

contraction, presented by Iqbal et al. [19]. An example is also presented for

support of the result.

Definition 3.15.

Suppose that P is the collection of all continuous mappings ρ : [0,∞)5 −→ [0,∞)

which satify the following conditions,

(p1) ρ(1, 1, 1, 2, 0) ∈ (0, 1],
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(p2) ρ is subhomogeneous, that is,

ρ(γ%1, γ%2, γ%3, γ%4, γ%5) ≤ γρ(%1, %2, %3, %4, %5),

for all (%1, %2, %3, %4, %5) ∈ [0,∞)5 and γ ≥ 0.

(p3) ρ is non-decreasing , that is, for all %, %̄ ∈ R+ we have

ρ(%1, %2, %3, %4, %5) ≤ ρ(%̄1, %̄2, %̄3, %̄4, %̄5),

where %i ≤ %̄i for i = 1, 2, 3, 4, 5.

If %i, %̄i ∈ R+ such that %i < %̄i for i = 1, 2, 3, 4, then,

ρ(%1, %2, %3, %4, 0) < ρ(%̄1, %̄2, %̄3, %̄4, 0),

and

ρ(%1, %2, %3, 0, %4) < ρ(%̄1, %̄2, %̄3, 0, %̄4).

Also, suppose that

P = {ρ ∈ P : ρ(1, 0, 0, 1, 1) ∈ (0, 1]} .

Obviously, P ⊆ P.

Example 3.3.

Let ρ1 : [0,∞)5 −→ [0,∞) is defined as

ρ1(%1, %2, %3, %4, %5) = %1 + η%5,

where η ∈ (0, 1). As

(p1) ρ1(1, 1, 1, 2, 0) = 1 + η(0) = 1 ∈ (0, 1],
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(p2) ρ1 is subhomogeneous, that is, for γ ≥ 0,

ρ1(γ%1, γ%2, γ%3, γ%4, γ%5) = γ%1 + ηγ%5

= γ
(
%1 + η%5

)
= γρ1(%1, %2, %3, %4, %5).

(p3) Clearly, ρ1 is non-decreasing.

Hence, ρ1 ∈ P. Also, since

ρ1(1, 0, 0, 1, 1) = 1 + η > 1,

so, ρ1 /∈ P .

Example 3.4.

Let ρ2 : [0,∞)5 −→ [0,∞) is defined as

ρ2(%1, %2, %3, %4, %5) = hmax

{
%1,

1

2
(%2 + %3),

1

2
(%4 + %5)

}
,

where h ∈ (0, 1). As

(p1) ρ2(1, 1, 1, 2, 0) = hmax

{
1,

1

2
(2),

1

2
(2)

}
= h ∈ (0, 1],

(p2) ρ2 is subhomogeneous, that is, for γ ≥ 0

ρ2(γ%1, γ%2, γ%3, γ%4, γ%5) = hmax

{
γ%1,

1

2
(γ%2 + γ%3),

1

2
(γ%4 + γ%5)

}
= γhmax

{
%1,

1

2
(%2 + %3),

1

2
(%4 + %5)

}
= γρ2(%1, %2, %3, %4, %5).

(p3) Clearly, ρ2 is non-decreasing.

Also,

ρ2(1, 0, 0, 1, 1) = hmax {1, 0, 1} = h ∈ (0, 1].
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Hence, ρ2 ∈ P .

Example 3.5.

Let us define ρ3 : [0,∞)5 −→ [0,∞) by

ρ3(%1, %2, %3, %4, %5) = β1%1 + β2(%2 + %3) + β3(%4 + %5),

where β1 + 2β2 + 2β3 < 1. As

(p1) ρ3(1, 1, 1, 2, 0) = β1 + 2β2 + 2β3 ∈ (0, 1],

(p2) ρ3 is subhomogeneous, that is, for γ ≥ 0

ρ3(γ%1, γ%2, γ%3, γ%4, γ%5) = β1

(
γ%1
)

+ β2

(
γ%2 + γ%3

)
+ β3

(
γ%4 + γ%5

)
= γβ1%1 + β2(%2 + %3) + β3(%4 + %5)

= γρ3(%1, %2, %3, %4, %5).

(p3) Clearly, ρ3 is non-decreasing.

Also,

ρ3(1, 0, 0, 1, 1) = β1 + 0 + 2β3 < 1.

Hence, ρ3 ∈ P .

Lemma 3.16.

Suppose ρ ∈ P and a, b ∈ [0,∞) be such that

a ≤ max {ρ(b, b, a, b + a, 0), ρ(b, b, a, 0, b + a), ρ(b, a, b, b + a, 0), ρ(b, a, b, 0, b + a)} ,

then, a ≤ b.

Proof.

With no loss of generality, assume that

a ≤ ρ(b, b, a, b + a, 0). (3.1)
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On contrary suppose that, b < a. Now consider

ρ(b, b, a, b + a, 0) < ρ(b, b, b, 2b, 0)

≤ bρ(1, 1, 1, 2, 0)

≤ a.

This implies

ρ(b, b, a, b + a, 0) < a,

which is contradiction of (3.1). Hence our supposition is wrong, so a ≤ b.

Following examples are provided to elaborate the properties (F1), (F2), (F3), (F2′)

and the continuity.

Example 3.6.

Suppose that F : (0,∞) −→ (−∞,∞) is defined by

F (%) =
−1

%
∀% ∈ (0,∞),

then, F satisfies (F1) and (F2′), but (F3) is not satisfied. Also, F is continuous.

Example 3.7.

Suppose that F : (0,∞) −→ (−∞,∞) is defined by

F (%) =


−1

%
if 0 < % < 1

0 Otherwise,

then, F fulfils (F1) and (F2′). However, F is not continuous.

Example 3.8.

Suppose that F : (0,∞) −→ (−∞,∞) is defined by

F (%) = − 1

(%+ [%])t
,

where, [%] denotes the integral part of %, and t ∈
(
0, 1

b

)
, b > 1, then, F satisfies

(F1), (F2′) and (F3). However, F is not continuous.
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It is clear from above examples that there exist functions F : (0,∞) −→ (−∞,∞)

for which (F1), (F2), (F3) and the continuity condition are not satisfied at the same

time.

Definition 3.17.

Suppose that the set of all functions χ : (0,∞) −→ (0,∞) satisfying,

lim
g−→t+

inf χ > 0 ∀ g ≥ 0, (3.2)

is denoted by Ψ.

Definition 3.18. (χF -Contraction.)

Let F1, F2 be real valued functions defined on (0,∞), ρ ∈ P and χ ∈ Ψ. The

mapping Ω is called χF -contraction if

(Ni.) F1(c) ≤ F2(c) for all c > 0,

(Nii.) H(Ω%,Ω%̄) > 0 implies

χ(d(%, %̄))+F2(H(Ω%,Ω%̄))

≤ F1

{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
,

for all %, %̄ ∈ ξ.

Theorem 3.19.

Suppose that (ξ, d, f) is a complete MS. Let Ω : ξ −→ K(ξ) be a MVM and F1, F2

are functions satisfying χF -contraction. Suppose F1 is non-decreasing and F2

satisfies the conditions (F2′) and (F3).

Then, FixΩ is non-empty.

Proof.

Consider an arbitrary point %0 ∈ ξ and %1 ∈ Ω%0. If %1 ∈ Ω%1. Then, %1 is fixed

point of Ω. So, wo assume that %1 /∈ Ω%1.

Now,

D(%1,Ω%1) > 0,
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⇒ H (Ω%0,Ω%1) > 0.

Since Ω(%1) is compact, so there exists %2 ∈ Ω(%1) such that

d(%1, %2) = D(%1,Ω%1).

From (Ni.) and (Nii.), we have

F1

(
d(%1, %2)

)
= F1

(
D(%1,Ω%1)

)
≤ F1

(
H (Ω%0,Ω%1)

)
≤ F2

(
H (Ω%0,Ω%1)

)
≤ F1

(
ρ
(
d(%0, %1), D(%0,Ω%0), D(%1,Ω%1), D(%0,Ω%1), D(%1,Ω%0)

))
− χ

(
d(%0, %1)

)
< F1

(
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), d(%1, %1)

))
= F1

(
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

))
.

⇒ F1

(
d(%1, %2)

)
< F1

(
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

))
. (3.3)

As F1 is nondecreasing, (3.3) and (p3) implies

d(%1, %2) < ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

)
≤ ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %1) + d(%1, %2), 0

)
.

⇒ d(%1, %2) < ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %1) + d(%1, %2), 0

)
. (3.4)

Using Lemma 3.16, (3.4) implies

d(%1, %2) < d(%0, %1).

In the similar way, we get %3 ∈ Ω%2, such that

d(%2, %3) = D
(
%2,Ω%2

)
,

D
(
%2,Ω%2

)
> 0,
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d(%2, %3) < d(%1, %2).

Continuing in the same way, we obtain a sequence {%s} in ξ such that %s+1 ∈ Ω%s

which satisfy

d(%s, %s+1) = D
(
%s,Ω%s

)
with D

(
%s,Ω%s

)
> 0,

and d(%s, %s+1) < d(%s−1, %s), ∀ s ∈ N.

Hence, {d(%s, %s+1)}s∈N is a decreasing sequence of real numbers. Now, using (Ni.)

and (Nii.)

χ
(
d(%s, %s+1)

)
+ F2

(
H (Ω%s,Ω%s+1)

)
≤ F1

(
ρ
(
d(%s, %s+1), D(%s,Ω%s), D(%s+1,Ω%s+1), D(%s,Ω%s+1), D(%s+1,Ω%s)

))
≤ F1

(
ρ
(
d(%s, %s+1), d(%s, %s+1), d(%s+1, %s+2), d(%s, %s+2), d(%s+1, %s+1)

))
≤ F1

(
ρ
(
d(%s, %s+1), d(%s, %s+1), d(%s+1, %s+2), d(%s, %s+1) + d(%s+1, %s+2), 0

))
≤ F1

(
ρ
(
d(%s, %s+1), d(%s, %s+1), d(%s+1, %s+2), d(%s, %s+1) + d(%s, %s+1), 0

))
≤ F1

(
ρ
(
d(%s, %s+1), d(%s, %s+1), d(%s+1, %s+2), 2d(%s, %s+1), 0

))
≤ F1

(
d(%s, %s+1)ρ

(
1, 1, 1, 2, 0

))
≤ F1

(
d(%s, %s+1)

)
= F1

(
D(%s,Ω%s)

)
≤ F1

(
H (Ω%s−1,Ω%s)

)
≤ F2

(
H (Ω%s−1,Ω%s)

)
.

=⇒ F2

(
H (Ω%s,Ω%s+1)

)
≤ F2

(
H (Ω%s−1,Ω%s)

)
− χ

(
d(%s, %s+1)

)
∀ s ∈ N.

(3.5)

As χ ∈ Ψ, so h > 0 and s0 ∈ N exist such that χ
(
d(%s, %s+1)

)
> h, ∀ s ≥ s0.

Using (3.5), we have

F2

(
H (Ω%s,Ω%s+1)

)
= F2

(
H (Ω%s−1,Ω%s)

)
− χ

(
d(%s, %s+1)

)
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= F2

(
H (Ω%s−2,Ω%s−1)

)
− χ

(
d(%s−1, %s)

)
− χ

(
d(%s, %s+1)

)
...

≤ F2

(
H (Ω%0,Ω%1)

)
−

s∑
j=1

χ
(
d(%j, %j+1)

)
= F2

(
H (Ω%0,Ω%1)

)
−

s0−1∑
j=1

χ
(
d(%j, %j+1)

)
−

s∑
j=s0

χ
(
d(%j, %j+1)

)
≤ F2

(
H (Ω%0,Ω%1)

)
− (s− s0)h ∀ s ≥ s0.

F2

(
H (Ω%s,Ω%s+1)

)
≤ F2

(
H (Ω%0,Ω%1)

)
− (s− s0)h ∀ s ≥ s0. (3.6)

Applying s −→∞ in (3.6), we obtain F2

(
H (Ω%s,Ω%s+1)

)
−→ −∞, then, by using

(F2′), we obtain

lim
s−→∞

H
(
Ω%s,Ω%s+1

)
= 0,

Now

lim
s−→∞

d(%s, %s+1) = lim
s−→∞

D
(
%s,Ω%s

)
≤ lim

s−→∞
H
(
Ω%s−1,Ω%s

)
= 0. (3.7)

Using (F3), we have k ∈ (0, 1) such that

lim
s−→∞

(
H
(
Ω%s,Ω%s+1

))k
F2

(
H
(
Ω%s,Ω%s+1

))
= 0. (3.8)

Using (3.6), we have for all s ∈ N

(
H
(
Ω%s,Ω%s+1

))k
F2

(
H
(
Ω%s,Ω%s+1

))
−
(

H
(
Ω%s,Ω%s+1

))k
F2

(
H
(
Ω%0,Ω%1

))
≤
(

H
(
Ω%s,Ω%s+1

))k(
F2

(
H (Ω%0,Ω%1)

)
− (s− s0)h

)
−
(

H
(
Ω%s,Ω%s+1

))k
F2

(
H
(
Ω%0,Ω%1

))
= −

(
H
(
Ω%s,Ω%s+1

))k
(s− s0)h ≤ 0.
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Applying lim
s−→∞

and using (3.7) and (3.8),

lim
s−→∞

s
(

H
(
Ω%s,Ω%s+1

))k
= 0,

so, there exists s1 ∈ N such that

s
(

H
(
Ω%s,Ω%s+1

))k
≤ 1 ∀ s ≥ s1,

=⇒ H
(
Ω%s,Ω%s+1

)
≤ 1

s1/k
∀ s ≥ s1,

=⇒ d(%s, %s+1) = D
(
%s,Ω%s+1

)
≤ H

(
Ω%s−1,Ω%s

)
≤ 1

s1/k
∀ s ≥ s1.

Now, we prove that {%s}s is Cauchy sequence. Let m, s ∈ N such that m > s > s1.

Consider

d(%m, %s) ≤
m−1∑
i=s

d(%i, %i+1) ≤
m−1∑
i=s

1

i1/k
≤

∞∑
i=s

1

i1/k
.

Since
∞∑
i=s

1

i1/k
is convergent series, hence, we can conclude that {%s}s is Cauchy

sequence. Since (ξ, d) is complete MS, so there exists %∗ in ξ such that

lim
s−→∞

%s = % ∗ .

Consider

F1

(
H (Ω%,Ω%̄)

)
≤ F2

(
H (Ω%,Ω%̄)

)
≤ χ

(
d(%, %̄)

)
+ F2

(
H (Ω%,Ω%̄)

)
≤ F1

(
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

))
.

Since F1 is nondecreasing function, so ∀ %, %̄ ∈ ξ, we have

H
(
Ω%,Ω%̄

)
≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
. (3.9)

Now, we prove that %∗ is fixed point of ξ. On contrary, let D(%∗,Ω%∗) > 0 and

using (3.9), we have

D(%∗,Ω%∗) = inf {d(%∗, %) : % ∈ Ω%∗}
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≤ inf {d(%∗, %s+1) + d(%s+1, %) : % ∈ Ω%∗}

= d(%∗, %s+1) + inf {d(%s+1, %) : % ∈ Ω%∗}

= d(%∗, %s+1) +D(%s+1,Ω%∗)

≤ d(%∗, %s+1) + H
(
Ω%s+1,Ω% ∗

)
≤ d(%∗, %s+1) + ρ

(
d(%s, %∗), D(%s,Ω%s), D(%∗,Ω%∗), D(%s,Ω%∗),

D(%∗,Ω%s)
)

≤ d(%∗, %s+1) + ρ
(
d(%s, %∗), d(%s, %s+1), D(%∗,Ω%∗), d(%s, %∗)+

D(%∗,Ω%∗), d(%∗, %s+1)
)
.

Hence,

D(%∗,Ω%∗) ≤ d(%∗, %s+1) + ρ
(
d(%s, %∗), d(%s, %s+1), D(%∗,Ω%∗), d(%s, %∗)

+D(%∗,Ω%∗), d(%∗, %s+1)
)
.

Applying lim
s−→∞

in above inequality,

D(%∗,Ω%∗) ≤ ρ
(
0, 0, D(%∗,Ω%∗), 0 +D(%∗,Ω%∗), 0).

Using Lemma 3.16 in above inequality,

D(%∗,Ω%∗) ≤ 0,

which is contradiction. Hence, D(%∗,Ω%∗) = 0. As Ω%∗ is closed, so %∗ ∈ Ω%∗

Hence, FixΩ is non-empty.

Remark 3.20.

If F1 = F2 = F and ρ(%1, %2, %3, %4, %5) = %1 in Theorem 3.19, it becomes Theorem

2.3 of [58]

Example 3.9.

Suppose that ξ =
{
%s = s(s+1)

2
: s ∈ N

}
. Define a matric d on ξ as

d(%, %̄) =| %− %̄ |,
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then (ξ, d) is complete MS. Define F1, F2 : (0,∞) −→ R by

F1(%) =


1

%
if % ∈ (0, 1)

% if % ∈ [1,∞),

and

F2(%) = ln(%) + % ∀ % ∈ (0,∞),

then, F1(%) ≤ F2(%) for all % > 0. Also, F1 is a non-decreasing function and F2

satisfy (F2′) and (F3).

Now, define Ω : ξ −→ K (ξ), ρ : [0,∞)5 −→ [0,∞) and χ : [0,∞) −→ [0,∞) by

Ω% =

 {%1} if % = %1

{%1, %2} if % = %s, s ≥ 2,

ρ(%1, %2, %3, %4, %5) = %1 + η%5, η ∈ (0, 1),

and

χ(t) =
1

t
∀ t ∈ (0,∞),

respectively. Clearly, χ ∈ Ψ and ρ ∈ P. Note that for m, s ∈ N, we have

H
(
Ω%m,Ωs

)
> 0 ⇐⇒ m > 2 and s = 1.

Suppose that H
(
Ω%m,Ω%s

)
> 0,m > 2 and s = 1. For m > 2, we have

2

| m2 + m− 2 |
+ ln

| m2 −m− 2 |
2

+
| m2 −m− 2 |

2
≤ | m

2 + m− 2 |
2

. (3.10)

As H
(
Ω%m,Ω%1

)
=| %m−1 − 1 | and D

(
%1,Ω%m

)
= 0, so

χ
(
d(%m, %1)

)
+ F2

(
H
(
Ω%m,Ω%1

))
=

1

| %m − %1 |
+ F2

(
| %m−1 − 1 |

)
=

2

| m2 + m− 2 |
+ ln

| m2 −m− 2 |
2

+
| m2 −m− 2 |

2



Data Dependence and Well-Posedness 40

≤ | m
2 + m− 2 |

2

= d(%m, %1) + ηD
(
%1,Ω%m

)
= F1

(
d(%m, %1)

)
+ ηD

(
%1,Ω%m

)
= F1

{
ρ
(
d(%m, %1), D(%1,Ω%1), D(%m,Ω%m),

D(%m,Ω%1), D(%1,Ω%m)
)}
.

All conditions of Theorem 3.19 are fulfilled and FixΩ = {%1, %2} .

Corollary 3.21.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ K (ξ) is multivalued mapping,

χ ∈ Ψ, F1 is real valued non-decreasing function defined on (0,∞) and F2 is real

valued function defined on (0,∞) which satisfy (F2′) and (F3) such that (Ni.)and

following condition holds:

H(Ω%,Ω%̄) > 0 implies

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
M(%, %̄)

)
∀ %, %̄ ∈ ξ,

where

M(%, %̄) = max

{
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄),

D(%,Ω%̄), D(%̄,Ω%)

2

}

Then, FixΩ is non-empty.

Proof.

Let ρ : [0,∞)5 −→ [0,∞) be defined as

ρ(%1, %2, %3, %4, %5) = max

{
%1, %2, %3,

(%4 + %5)

2

}
,

then, ρ ∈ P and result follows from Theorem 3.19.

Remark 3.22.

In Corollary 3.21, Theorem 2.4 of [59] is generalized and improved.

Corollary 3.23.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ K (ξ) is multivalued mapping,
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χ ∈ Ψ, F1 is real valued non-decreasing function defined on (0,∞) and F2 is real

valued function defined on (0,∞) which satisfy (F2′) and (F3) such that (Ni.)and

following condition holds:

H(Ω%,Ω%̄) > 0 implies

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
w(%, %̄)

)
, ∀ %, %̄ ∈ ξ,

where

w(%, %̄) = β1d(%+ %̄) + β2D(%+ Ω%) + β3D(%̄+ Ω%̄) + β4

(
D(%,Ω%̄) +D(%̄,Ω%)

)
,

with β1, β2, β3, β4 ≥ 0 and β1 + β2 + β3 + 2β4 < 1, then, FixΩ is non-empty.

Proof.

Let ρ : [0,∞)5 −→ [0,∞) be defined as

ρ(%1, %2, %3, %4, %5) = β1%1 + β2%2 + β3%3 + β4(%4 + %5),

where β1, β2, β3, β4 ≥ 0 and β1 + β2 + β3 + 2β4 < 1. Then, ρ ∈ P and result follows

from Theorem 3.19.

Next, the condition (F3) of function F2 is replaced by continuity of F1 and a new

result is obtained.

Theorem 3.24.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ K (ξ) is a multivalued mapping

and χ ∈ Ψ. Let F1 be a continuous and non-decreasing real valued function defined

on (0,∞) and F2 be a real valued function satisfying (F2′) defined on (0,∞) such

that χF -contraction is satisfied. Then, FixΩ is non-empty.

Proof.

Consider an arbitrary point %0 ∈ ξ and %1 ∈ Ω%0. Then, following the same steps

as in the proof of Theorem 3.19, we have a sequence {%s} in ξ such that %s+1 ∈ Ω%s
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which satisfy

d(%s, %s+1) = D
(
%s,Ω%s

)
with D

(
%s,Ω%s

)
> 0,

and d(%s, %s+1) < d(%s−1, %s), ∀ s ∈ N.

Also,

F2

(
H (Ω%s,Ω%s+1)

)
≤ F2

(
H (Ω%0,Ω%1)

)
− (s− s0)h, ∀ s ≥ s0. (3.11)

Applying s −→∞ in (3.11) , we obtain F2

(
H (Ω%s,Ω%s+1)

)
−→ −∞ and by using

(F2′),

lim
s−→∞

H
(
Ω%s,Ω%s+1

)
= 0.

Now,

lim
s−→∞

d(%s, %s+1) = lim
s−→∞

D
(
%s,Ω%s

)
≤ lim

s−→∞
H
(
Ω%s−1,Ω%s

)
= 0. (3.12)

Now, we prove that

lim
n,m−→∞

d(%s, %m) = 0. (3.13)

If (3.13) does not hold, then we have some δ > 0 such that ∀ r ≥ 0, there exists

mk > nk > r and

d(%s, %m) > δ.

Further, there exists r0 ∈ N such that

λr0 = d(%s−1, %s) < δ ∀ s ≥ r0.

Now, consider subsequences {%nk
} , {%mk

} of {%s} which satisfy

d(%mk
, %nk

) > δ ∀ k > 0 where r0 ≤ nk ≤ mk + 1. (3.14)

Note that

d(%mk−1, %nk
) ≤ δ ∀ k, (3.15)
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where mk is taken as minimal index for which (3.15) holds. Further, we claim that

nk + 2 ≤ mk.

If mk < nk + 2, then, (3.14) implies d(%mk
, %nk+1) > δ. Using (3.15), we have

d(%mk
, %nk+1) < d(%mk−1, %nk

) ≤ δ,

which is contradiction. Hence, nk + 2 ≤ mk for all k, which implies that

nk + 1 < mk < mk + 1 for all k.

Using (3.14), (3.15) and triangle inequality,

δ < d(%mk
, %mk−1) + d(%mk−1, %nk

) ≤ λmk
+ δ.

Applying lim
k−→∞

, we obtain

lim
k−→∞

d(%mk
, %nk

) = δ. (3.16)

Also,

lim
k−→∞

d(%mk+1
, %nk+1) = δ. (3.17)

Using (Ni.), (Nii.) and the monotonicity of F1,

χ
(
d(%mk

, %nk
)
)

+ F1

(
d(%mk+1

, %nk+1
)
)

= χ
(
d(%mk

, %nk
)
)

+ F1

(
D(%mk+1

,Ω%nk+1
)
)

≤ χ
(
d(%mk

, %nk
)
)

+ F1

(
H (Ω%mk

,Ω%nk
)
)

≤ χ
(
d(%mk

, %nk
)
)

+ F2

(
H (Ω%mk

,Ω%nk
)
)

≤ F1

(
ρ
(
d(%mk

, %nk
), D(%mk

,Ω%mk
), D(%nk

,Ω%nk
), D(%mk

,Ω%nk
), D(%nk

,Ω%mk
)
))

< F1

(
ρ
(
d(%mk

, %nk
), d(%mk

, %mk+1), d(%nk
, %nk+1), d(%nk+1, %nk

) + d(%nk
, %mk

),

d(%nk
, %nk+1) + d(%nk+1, %mk+1)

))
.
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Applying lim
k−→∞

and then using (3.16), (3.17) and the continuity of F1,

lim
k−→∞

χ
(
d(%mk

, %nk
)
)

+ F1(δ) ≤ F1

(
ρ(δ, 0, 0, δ, δ)

)
≤ F1

(
δρ(1, 0, 0, 1, 1)

)
.

As, ρ ∈ P, so 0 < ρ(1, 0, 0, 1, 1) ≤ 1;

⇒ lim
k−→∞

χ
(
d(%mk

, %nk
)
)
≤ 0.

Which contradicts (3.2). So, (3.13) holds and hence, {%s} is a Cauchy sequence.

Since (ξ, d) is complete MS so there exists %∗ in ξ such that

lim
s−→∞

%s = % ∗ .

In the same way, as in proof of Theorem 3.19, we have %∗ ∈ Ω%. Hence, the proof

is completed.

Corollary 3.25.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ K (ξ) is a multivalued mapping

and χ ∈ Ψ. Let F1 be a continuous real valued non-decreasing function defined on

(0,∞) and F2 be a real valued function satisfying (F2′) defined on (0,∞) such that

(Ni.) and the following condition is satisfied:

For all %, %̄ ∈ ξ and ρ ∈ P, H(Ω%,Ω%̄) > 0 implies

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
β1d(%, %̄) + β2D(%,Ω%) + β3D(%̄,Ω%̄) + β4D(%,Ω%̄) + β5D(%̄,Ω%)

)
,

where βi ≥ 0, β1 +β2 +β3 +2β4 = 1 and β1 +β3 +β4 ≤ 1, then, FixΩ is non-empty.

Proof.

Let ρ : [0,∞)5 −→ [0,∞) be defined as

ρ(%1, %2, %3, %4, %5) = β1%1 + β2%2 + β3%3 + β4%4 + β5%5,

where βi ≥ 0, β1 + β2 + β3 + 2β4 = 1 and β1 + β3 + β4 ≤ 1. Hence, ρ ∈ P and the

result follows from Theorem 4.5.
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Remark 3.26.

If F1 = F2 and Ω% = {ρ} for all ρ ∈ ξ in Corollary 3.25, then Theorem 1 of [60] is

obtained.

Now, we take Ω% as closed subset of ξ and obtain fixed point results.

Theorem 3.27.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ C(ξ) is a multivalued mapping and

χ ∈ Ψ. Let F1 ∈ ∆ (O∗) and F2 be a real valued function defined on (0,∞) such

that χF -contraction is satisfied. Then, FixΩ is non-empty.

Proof. Consider an arbitrary point %0 ∈ ξ and %1 ∈ Ω%0. If %1 ∈ Ω%1, then %1 is

fixed point of Ω, so, wo assume that %1 /∈ Ω%1.

Now

D(%1,Ω%1) > 0,

Using (F4), we have

F1

(
D(%1,Ω%1)

)
= inf

z∈Ω%1
F1

(
d(%1, z)

)
.

Using (Ni.) and (Nii.), we have

inf
z∈Ω%1

F1

(
d(%1, z)

)
= F1

(
D(%1,Ω%1)

)
≤ F1

(
H (Ω%0,Ω%1)

)
≤ F2

(
H (Ω%0,Ω%1)

)
≤ F1

(
ρ
(
d(%0, %1), D(%0,Ω%0), D(%1,Ω%1), D(%0,Ω%1), D(%1,Ω%0)

))
− χ

(
d(%0, %1)

)
< F1

(
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), d(%1, %1)

))
= F1

(
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

))
.

So, there exists %2 ∈ Ω%1 such that

F1

(
d(%1, %2)

)
< F1

(
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

))
.
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As F1 is nondecreasing, using (p3) we have

d(%1, %2) < ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

)
≤ ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %1) + d(%1, %2), 0

)
.

⇒ d(%1, %2) < ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %1) + d(%1, %2), 0

)
. (3.18)

Using Lemma 3.16, (3.18) implies

d(%1, %2) < d(%0, %1).

In the similar way, we get %3 ∈ Ω%2, such that

d(%2, %3) = D
(
%2,Ω%2

)
with D

(
%2,Ω%2

)
> 0,

and d(%2, %3) < d(%1, %2).

Continuing in the same way, we obtain a sequence {%s} in ξ such that %s+1 ∈ Ω%s

which satisfy

d(%s, %s+1) = D
(
%s,Ω%s

)
with D

(
%s,Ω%s

)
> 0,

and d(%s, %s+1) < d(%s−1, %s) ∀ s ∈ N.

Hence, {d(%s, %s+1)}s∈N is a decreasing sequence of real numbers. Next, Using

(Ni.) and (Nii.),

inf
z∈Ω%s

F1

(
d(%s, z)

)
= F1

(
D(%s,Ω%s)

)
≤ F1

(
H (Ω%s−1,Ω%s

)
≤ F2

(
H (Ω%s−1,Ω%s)

)
≤ F1

(
ρ
(
d(%s−1, %s), D(%s−1,Ω%s−1), D(%s,Ω%s), D(%s−1,Ω%s),

D(%s,Ω%s−1)
))
− χ

(
d(%s−1, %s)

)
≤ F1

(
ρ
(
d(%s−1, %s), d(%s−1, %s), d(%s, %s+1), d(%s−1, %s+1), d(%s, %s)

))
− χ

(
d(%s−1, %s)

)
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≤ F1

(
ρ
(
d(%s−1, %s), d(%s−1, %s), d(%s, %s+1), d(%s−1, %s) + d(%s, %s+1), 0

))
− χ

(
d(%s−1, %s)

)
≤ F1

(
ρ
(
d(%s−1, %s), d(%s−1, %s), d(%s, %s+1), d(%s−1, %s) + d(%s−1, %s), 0

))
− χ

(
d(%s−1, %s)

)
≤ F1

(
ρ
(
d(%s−1, %s), d(%s−1, %s), d(%s, %s+1), 2d(%s−1, %s), 0

))
− χ

(
d(%s−1, %s)

)
≤ F1

(
d(%s−1, %s)ρ

(
1, 1, 1, 2, 0

))
− χ

(
d(%s−1, %s)

)
≤ F1

(
d(%s−1, %s)

)
− χ

(
d(%s−1, %s)

)
.

⇒ inf
z∈Ω%s

F1

(
d(%s, z)

)
≤ F1

(
d(%s−1, %s)

)
− χ

(
d(%s−1, %s)

)
. ∀ s ∈ N

From above, it is clear that there exists %s+1 ∈ Ω%s such that

⇒ F1

(
d(%s, %s+1)

)
≤ F1

(
d(%s−1, %s)

)
− χ

(
d(%s−1, %s)

)
. (3.19)

As χ ∈ Ψ, so h > 0 and s0 ∈ N exist such that χ
(
d(%s, %s+1)

)
> h ∀ s ≥ s0. Using

(3.19), we have

F1

(
d(%s, %s+1)

)
≤ F1

(
d(%s−1, %s)

)
− χ

(
d(%s−1, %s)

)
≤ F1

(
d(%s−2, %s−1)

)
− χ

(
d(%s−2, %s−1)

)
− χ

(
d(%s−1, %s)

)
≤ F1

(
d(%0, %1)

)
−

n−1∑
j=1

χ
(
d(%s−1, %s)

)
= F1

(
d(%0, %1)

)
−

s0−1∑
j=1

χ
(
d(%s−1, %s)

)
−

n−1∑
s0

χ
(
d(%s−1, %s)

)
= F1

(
d(%0, %1)

)
− (s− s0)h, ∀ s ≥ s0.

F1

(
d(%s, %s+1)

)
≤ F1

(
d(%0, %1)

)
− (s− s0)h, ∀ s ≥ s0. (3.20)

Applying s −→ ∞, we obtain F1

(
d(%s−1, %s)

)
−→ −∞ and by using (F2′), we

obtain

lim
s−→∞

d(%s−1, %s) = 0, (3.21)
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Using (F3), we have k ∈ (0, 1) such that

lim
s−→∞

(
d
(
%s−1, %s

))k
F1

(
d(%s−1, %s)

)
= 0. (3.22)

Using (3.20), we have for all s ∈ N

(
d
(
%s−1, %s

))k
F1

(
d
(
%s−1, %s

))
−
(
d
(
%s−1, %s

))k
F1

(
d
(
%0, %1

))
≤
(
d
(
%s−1, %s

))k(
F1

(
d(%0, %1

)
− (s− s0)h

)
−
(
d
(
%s−1, %s

))k
F1

(
d
(
%0, %1

))
= −

(
d
(
%s−1, %s

))k
(s− s0)h ≤ 0.

Applying lim
s−→∞

and using (3.21) and (3.22),

lim
s−→∞

s
(
d
(
%s−1, %s

))k
= 0.

So, there exists s1 ∈ N such that

s
(
d
(
%s, %s+1

))k
≤ 1 ∀ s ≥ s1,

⇒ d
(
%s−1, %s

)
≤ 1

s1/k
∀ s ≥ s1,

Now, we prove that {%s}s is Cauchy sequence. Let m, s ∈ N such that m > s > s1.

Consider

d(%m, %s) ≤
m−1∑
i=s

d(%i, %i+1) ≤
m−1∑
i=s

1

i1/k
≤

∞∑
i=s

1

i1/k
.

Since
∞∑
i=s

1

i1/k
is convergent series, So, one we can conclude that {%s}s is Cauchy

sequence. Since (ξ, d) is complete MS so there exists %∗ in ξ such that

lim
s−→∞

%s = % ∗ .

Now consider

F1

(
H (Ω%,Ω%̄)

)
≤ F2

(
H (Ω%,Ω%̄)

)
≤ χ(d(%, %̄)) + F2

(
H (Ω%,Ω%̄)

)
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≤ F1

(
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

))
.

Since F1 is nondecreasing function so, for all %, %̄ ∈ ξ, we have

H (Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
. (3.23)

Now, we prove that %∗ is fixed point of ξ. On contrary, let D(%∗,Ω%∗) > 0 and

using (3.23), we have

D(%∗,Ω%∗) = inf {d(%∗, %) : % ∈ Ω%∗}

≤ inf {d(%∗, %s+1) + d(%s+1, %) : % ∈ Ω%∗}

= d(%∗, %s+1) + inf {d(%s+1, %) : % ∈ Ω%∗}

= d(%∗, %s+1) +D(%s+1,Ω%∗)

≤ d(%∗, %s+1) + H
(
Ω%s+1,Ω% ∗

)
≤ d(%∗, %s+1) + ρ

(
d(%s, %∗), D(%s,Ω%s), D(%∗,Ω%∗), D(%s,Ω%∗),

D(%∗,Ω%s)
)

≤ d(%∗, %s+1) + ρ
(
d(%s, %∗), d(%s, %s+1), D(%∗,Ω%∗), d(%s, %∗)+

D(%∗,Ω%∗), d(%∗, %s+1)
)
.

Hence,

D(%∗,Ω%∗) ≤ d(%∗, %s+1) + ρ
(
d(%s, %∗), d(%s, %s+1), D(%∗,Ω%∗),

d(%s, %∗) +D(%∗,Ω%∗), d(%∗, %s+1)
)
.

Applying lim
s−→∞

in above inequality, we get

D(%∗,Ω%∗) ≤ ρ
(
0, 0, D(%∗,Ω%∗), 0 +D(%∗,Ω%∗), 0).

Using Lemma 3.16 in above inequality,

D(%∗,Ω%∗) ≤ 0,
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which is contradiction. Hence, D(%∗,Ω%∗) = 0. As Ω%∗ is closed, so %∗ ∈ Ω% ∗ .

Hence, FixΩ is non-empty.

Corollary 3.28.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ C(ξ) is a multivalued mapping and

χ ∈ Ψ. Let F1 ∈ ∆ (O∗) and F2 be a real valued function defined on (0,∞) such

that (Ni.) and the following condition is satisfied:

For all %, %̄ ∈ ξ and ρ ∈ P, H(Ω%,Ω%̄) > 0 implies ,

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
β1d(%, %̄) + β2D(%,Ω%) + β3D(%̄,Ω%̄) + β4D(%,Ω%̄) + β5D(%̄,Ω%)

)
,

where βi ≥ 0, β1 + β2 + β3 + 2β4 = 1.

Then, FixΩ is non-empty.

Proof.

Let ρ : [0,∞)5 −→ [0,∞) be defined as

ρ(%1, %2, %3, %4, %5) = β1%1 + β2%2 + β3%3 + β4%4 + β5%5,

where βi ≥ 0, β1 + β2 + β3 + 2β4 = 1. Then ρ ∈ P and the result follows from

Theorem 3.27.

Corollary 3.29.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ C(ξ) is a multivalued mapping and

χ ∈ Ψ. Let F1 ∈ ∆ (O∗) and F2 be a real valued function defined on (0,∞) such

that (Ni.) and the following condition is satisfied:

For all c, %̄ ∈ ξ and ρ ∈ P, H(Ω%,Ω%̄) > 0 implies ,

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
d(%, %̄) + lD(%̄,Ω%

)
,

where l ≥ 0. Then, FixΩ is non-empty.

Proof.

Let ρ : [0,∞)5 −→ [0,∞) be defined as

ρ(%1, %2, %3, %4, %5) = %1 + l%5,
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where l ≥ 0. Then, ρ ∈ P and the result follows from Theorem 3.27.

Remark 3.30.

If F1 = F2 and χ(t) = 2τ, where τ > 0 in Corollary 3.28, then we obtain Theorem

3 of [15]. Also, if F1 = F2 and χ(t) = τ, where τ > 0 in Corollary 3.29, then we

obtain Theorem 2.4 of [61].

Theorem 3.31.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ C(ξ) is a multivalued mapping

and χ ∈ Ψ. Let F1 be a continuous and non-decreasing real valued function defined

on (0,∞) satisfying (F2′) and F2 be a real valued function defined on (0,∞) such

that χF -contraction is satisfied. Then, FixΩ is nonempty.

Proof.

Consider an arbitrary point %0 ∈ ξ and %1 ∈ Ω%0. Then, following the same steps

as in the proof of Theorem 3.27, we have a sequence {%s} in ξ such that %s+1 ∈ Ω%s

which satisfy

d(%s, %s+1) = D
(
%s,Ω%s

)
with D

(
%s,Ω%s

)
> 0,

and d(%s, %s+1) < d(%s−1, %s) ∀ s ∈ N.

also,

F1

(
d(%s−1, %s)

)
≤ F1

(
d(%0, %1)

)
− (s− s0)h,∀ s ≥ s0. (3.24)

Applying s −→ ∞ on (3.24) , we obtain F1

(
d(%s−1, %s)

)
−→ −∞ and by using

(F2′), we obtain

lim
s−→∞

d
(
%s−1, %s

)
= 0,

Now, we prove that

lim
n,m−→∞

d(%s, %m) = 0. (3.25)

If (3.25) does not hold, then we have some δ > 0 such that ∀ r ≥ 0, there exists

mk > nk > r and

d(%s, %m) > δ.
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Further, there exists r0 ∈ N such that

λr0 = d(%s−1, %s) < δ ∀ s ≥ r0

Now, consider subsequences {%nk
} , {%mk

} of {%s} , then, as in proof of Theorem

4.5, we get

lim
k−→∞

d(%mk
, %nk

) = δ. (3.26)

Also,

lim
k−→∞

d(%mk+1
, %nk+1) = δ. (3.27)

Using (Ni.), (Nii.) and the monotonicity of F1,

χ
(
d(%mk

, %nk
)
)

+ F1

(
d(%mk+1

, %nk+1
)
)

= χ
(
d(%mk

, %nk
)
)

+ F1

(
D(%mk+1

,Ω%nk+1

)
≤ χ

(
d(%mk

, %nk
)
)

+ F1

(
H (Ω%mk

,Ω%nk
)
)

≤ χ
(
d(%mk

, %nk
)
)

+ F2

(
H (Ω%mk

,Ω%nk
)
)

≤ F1

(
ρ
(
d(%mk

, %nk
), D(%mk

,Ω%mk
), D(%nk

,Ω%nk
), D(%mk

,Ω%nk
), D(%nk

,Ω%mk
)
))

< F1

(
ρ
(
d(%mk

, %nk
), d(%mk

, %mk+1), d(%nk
, %nk+1), d(%nk+1, %nk

) + d(%nk
, %mk

),

d(%nk
, %nk+1) + d(%nk+1, %mk+1)

))
.

Applying lim
k−→∞

and then using 3.26, 3.27 and the continuity of F1,

lim
k−→∞

χ
(
d(%mk

, %nk
)
)

+ F1(δ) ≤ F1

(
ρ(δ, 0, 0, δ, δ)

)
≤ F1

(
δρ(1, 0, 0, 1, 1)

)
.

As, ρ ∈ P, so 0 < ρ(1, 0, 0, 1, 1) ≤ 1;

⇒ lim
k−→∞

χ
(
d(%mk

, %nk
)
)
≤ 0,

which contradicts (3.2). So, (3.25) holds and hence, {%s} is a Cauchy sequence.

Since (ξ, d) is complete MS so there exists %∗ in ξ such that

lim
s−→∞

%s = % ∗ .
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In the same way, as in proof of Theorem 3.27, we have %∗ ∈ Ω%. Hence, the proof

is completed.

Corollary 3.32.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ C(ξ) is a multivalued mapping

and χ ∈ Ψ. Let F1 be a continuous and non-decreasing real valued function defined

on (0,∞) satisfying (F2′) and F2 be a real valued function defined on (0,∞) such

that (Ni.) and the following condition is satisfied:

For all %, %̄ ∈ ξ and ρ ∈ P, H(Ω%,Ω%̄) > 0 implies ,

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
β1d(%, %̄) + β2D(%,Ω%) + β3D(%̄,Ω%̄) + β4D(%,Ω%̄) + β5D(%̄,Ω%)

)
,

where βi ≥ 0, β1 + β2 + β3 + 2β4 = 1 and β1 + β3 + β4 ≤ 1

Then, FixΩ is non-empty.

Proof.

Let ρ : [0,∞)5 −→ [0,∞) be defined as

ρ(%1, %2, %3, %4, %5) = β1%1 + β2%2 + β3%3 + β4%4 + β5%5,

where βi ≥ 0, β1 + β2 + β3 + 2β4 = 1 and β1 + β3 + β4 ≤ 1 Then ρ ∈ P and the

result follows from Theorem 3.31.

Corollary 3.33.

Suppose that (ξ, d) is a complete MS, Ω : ξ −→ C(ξ) is a multivalued mapping

and χ ∈ Ψ. Let F1 be a continuous and non-decreasing real valued function defined

on (0,∞) satisfying (F2′) and F2 be a real valued function defined on (0,∞) such

that (Ni.) and the following condition is satisfied:

For all %, %̄ ∈ ξ and ρ ∈ P, H(Ω%,Ω%̄ > 0 implies,

χ(d(%, %̄)) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
d(%, %̄) + lD(%̄,Ω%

)
,

where l ≥ 0. Then, FixΩ is non-empty.
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3.4 Data Dependence

This section is designed for the discussion of data dependence of the generalized

multivalued contraction.

Consider a MS (ξ, d) and the mappings Ω1,Ω2 : ξ −→ P (ξ) such that the fixed

point sets FixΩ1 and FixΩ2 are non-empty. The problem of finding Pomeiu-

Hausdroff distance H between FixΩ1 and FixΩ2 undr the condition that for ` >

0, H
(
Ω1%,Ω2%

)
< `,∀ % ∈ ξ, is addressed by many authors. In 2009, G. Mot and

A. Petrusel [62] discussed certain basic problems including data dependence. Rus

et al. [63] presented an interesting abstract notion as follows.

Definition 3.34. Multivalued Weakly Picard Operator.

Let us consider a metric space (ξ, d) and a multivalued operator Ω : ξ −→ CL(ξ).

Ω is known as multivalued weakly picard operator(MWP Operator) if a sequence

{%s} exists for all % ∈ ξ and %̄ ∈ Ω% such that

(i) %0 = %, %1 = %̄,

(ii) %s+1 = Ω%s, for all s ∈ N,

(iii) The sequence {%s} is converges to the fixed point of Ω.

If {%s} satisfies only (i) and (ii) of Definition 3.34, then it is said to be a sequence

of successive approximations of Ω starting from %0.

Theorem 3.35.

Suppose that (ξ, d) is a complete MS. Ω1,Ω2 : ξ −→ K (ξ) are multivalued map-

pings and χ ∈ Ψ. Let F1 be real valued non-decreasing function defined on (0,∞)

and F2 be a real valued function satisfying (F2′) and (F3) defined on (0,∞) such

that χF -contraction is satisfied for Ωi, where i ∈ {1, 2} and there exists λ > 0 such

that H
(
Ω1(%),Ω2(%)

)
≤ λ, for all % ∈ ξ.

Then,

(a.) Fix Ωi ∈ CL(ξ) for i ∈ {1, 2} ,
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(b.) Ω1,Ω2 are MWP Operators and

H
(

Fix(Ω1),Fix(Ω2)
)
≤ λ

1−max {ρ1(1, 1, 1, 2, 0), ρ2(1, 1, 1, 2, 0)}
.

Proof.

(a.) Using Theorem 3.19, we have Fix Ωi is not empty for i ∈ {1, 2} . Now, we

prove that for i ∈ {1, 2} , the fixed point set of Ωi is closed. Consider a sequence

{%s} in fixΩi such that %s −→ % as s −→∞. Now,

F1

(
H (Ω%,Ω%̄

)
≤ F2

(
H (Ω%,Ω%̄

)
≤ χ

(
d(%, %̄) + F2

(
H (Ω%,Ω%̄

)
≤ F1

(
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

))
.

Since F1 is nondecreasing function, so for all %, %̄ ∈ ξ,

H (Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
. (3.28)

Let D(%,Ω%) > 0 and using (4.33), we have

D(%,Ω%) = inf {d(%, %̄) : %̄ ∈ Ω%}

≤ inf {d(%, %s+1) + d(%s+1, %̄) : %̄ ∈ Ω%}

= d(%, %s+1) + inf {d(%s+1, %̄) : %̄ ∈ Ω%}

= d(%, %s+1) +D(%s+1,Ω%)

≤ d(%, %s+1) + H
(
Ω(%s+1),Ω%

)
≤ d(%, %s+1) + ρ

(
d(%s, %), D(%s,Ω(%s)), D(%,Ω%), D(%s,Ω%),

D(%,Ω(%s))
)

≤ d(%, %s+1) + ρ
(
d(%s, %), d(%s, %s+1), D(%,Ω%), d(%s, %)+

D(%,Ω%), d(%, %s+1)
)
.

Hence

D(%,Ω%)

≤ d(%, %s+1) + ρ
(
d(%s, %), d(%s, %s+1), D(%,Ω%), d(%s, %) +D(%,Ω%), d(%, %s+1)

)
.
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Applying lim
s−→∞

in above inequality,

D(%,Ω%) ≤ ρ
(
0, 0, D(%,Ω%), 0 +D(%,Ω%), 0).

Using Lemma 3.16 in above inequality, we obtain

D(%,Ω%) ≤ 0,

which is contradiction. Hence, D(%,Ω%) = 0. As Ω% is closed, hence % ∈ Ω%.

(b.) Using Theorem 3.19, we get that Ω1,Ω2 are MWP Operators. So, We have to

prove that

H
(

Fix(Ω1),Fix(Ω2)
)
≤ λ

1−max {ρ1(1, 1, 1, 2, 0), ρ2(1, 1, 1, 2, 0)}
.

Suppose q > 1 and %0 ∈ Fix(Ω2), then, %1 ∈ Ω2(%0) exists such that d(%0, %1) =

D(%0,Ω2(%0) and d(%1, %2) ≤ qH (Ω1(%0),Ω2(%0). Now, %2 ∈ Ω2(%1) exists such

that d(%0, %1) = D(%0,Ω2(%0) and d(%1, %2) ≤ qH (Ω2(%0),Ω2(%1). Also, we get

d(%1, %2) ≤ d(%0, %1) and

d(%1, %2) ≤ qH (Ω2(%0),Ω2(%1))

≤ qρ
(
d(%0, %1), D(%0,Ω%0), D(%1,Ω%1), D(%0,Ω%1), D(%1,Ω%0)

)
≤ qρ

(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), d(%1, %1)

)
≤ qρ

(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %1) + d(%1, %2), 0

)
≤ qρ

(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %1) + d(%0, %1), 0

)
≤ q
(
d(%0, %1)ρ(1, 1, 1, 2, 0)

)
Hence, we will get a sequence of successive approximations of Ω starting from %0,

which satisfy the following

d(%s, %s+1) ≤
(
qρ1

(
1, 1, 1, 2, 0

))s
d(%0, %1), ∀ s ∈ N.

⇒ d(%s, %s+m) ≤

(
qρ1

(
1, 1, 1, 2, 0

))s
1− qρ1

(
1, 1, 1, 2, 0

)d(%0, %1), ∀ s ∈ N. (3.29)
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Taking lim
s−→∞

, it is concluded that {%s} is Cauchy sequence in (ξ, d) so converges

to some v ∈ ξ. Using the proof of Theorem 3.19, we have v ∈ FixΩ2. Applying

lim
m−→∞

, we get

d(%s, v) ≤

(
qρ1

(
1, 1, 1, 2, 0

))s
1− qρ1

(
1, 1, 1, 2, 0

)d(%0, %1), ∀ s ∈ N.

Choosing s = 0,

d(%0, v) ≤
1

1− qρ1

(
1, 1, 1, 2, 0

)d(%0, %1),≤
qλ

1− qρ1

(
1, 1, 1, 2, 0

) .
Now, we interchange the role of Ω1 and Ω2, then for each v0 ∈ FixΩ1 such that

J(v0, c) ≤
1

1− qρ2

(
1, 1, 1, 2, 0

)J(v0, v1) ≤ qλ

1− qρ2

(
1, 1, 1, 2, 0

) .
So,

H (FixΩ1,FixΩ2) ≤ qλ

1−max
(
qρ1

(
1, 1, 1, 2, 0

)
, qρ2

(
1, 1, 1, 2, 0

)),
and suppose q −→ 1, then the result is proved.

3.5 Strict Fixed Point and Well Posedness

The aim of this section is to introduce the notion of well-posedness of the related

fixed point results.

Definition 3.36.

Consider a MS (ξ, d), B ∈ P (ξ) and multi-valued mapping Ω: B −→ C(ξ). A fixed

point problem is said to be well posed for Ω with respect to D if

(a.) FixΩ = {%∗} ,

(b.) If %s ∈ B, s ∈ N and D(%s,Ω%s) −→ 0 as s −→∞,

then, %s −→ %∗ ∈ FixΩ as s −→∞. [64, 65]
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Definition 3.37.

Consider a MS (ξ, d), B ∈ P (ξ) and multi-valued mapping Ω: B −→ C(ξ). A fixed

point problem is said to be well posed for Ω with respect to H if

(a.) SFixΩ = {%∗} ,

(b.) If %s ∈ B, s ∈ N and H(%s,Ω%s) −→ 0 as s −→∞,

then, %s −→ %∗ ∈ SFixΩ as s −→∞. [64, 65]

Theorem 3.38.

Assume that (ξ, d, f) is a complete CMS. Let Ω : ξ −→ K(ξ) be a MVM and

F1, F2 are functions satisfying χF -contraction. Suppose F1 is non-decreasing, F2

satisfy condition (F2′) with ρ(1, 0, 0, 1, 1) ∈ (0, 1) and SFixΩ 6= ∅. Also suppose

lim
s−→∞

f(%s, %) ≤ 1. Then,

(a) FixΩ = SFixΩ = {%∗} ,

(b) The fixed point problem is well posed for MVM Ω with respect to H.

Proof.

(a) Using Theorem 4.6 , we conclude that FixΩ 6= ∅. Now, we prove that FixΩ =

{%∗} . Using (Ni.) and (Nii.), we have

F1(H(Ω%,Ω%̄)) ≤ F2(H(Ω%,Ω%̄)) ≤ χ(d(%, %̄)) + F2(H(Ω%,Ω%̄))

≤ F1

{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
Since F1 is non-decreasing function, we obtain for all %, %̄ ∈ ξ,

H(Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
.

let v ∈ FixΩ, with v 6= %∗, then, D(%∗,Ωv) > 0. Now,

D(%∗,Ωv) = H(Ω%∗,Ωv)

≤ ρ
(
d(%∗, v), D(%∗,Ω%∗), D(v,Ωv), D(%∗,Ωv), D(v,Ω%∗)

)
≤ ρ
(
d(%∗, v), 0, 0, d(%∗, v), d(v, %∗)

)
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≤ d(%∗, v)ρ(1, 0, 0, 1, 1).

As ρ(1, 0, 0, 1, 1) ∈ (0, 1), so

d(%∗, v) = D(%∗,Ωv) < d(%∗, v),

which is contradiction, hence, d(%∗, v) = 0 and %∗ = v.

(b) Let %s ∈ B, s ∈ N, such that

lim
s−→∞

D(%s,Ω%s) = 0. (3.30)

Now, we claim that lim
s−→∞

d(%s, %
∗) = 0,

where %∗ ∈ FixΩ. If the above equation is not true, then, for every s ∈ N, there

exists ε > 0 such that

d(%s, %
∗) > ε.

But (3.30) implies that there exists %ε ∈ N− {0} such that

lim
s−→∞

D(%s,Ω%s) < ε,

for each s > sε.Hence, for each s > sε, we obtain

d(%s, %
∗) = D(%s,Ω%

∗) = D(%s,Ω%s) +H(Ω%s,Ω%
∗)

< D(%s,Ω%s) + ρ
(
d(%s, %

∗), D(%s,Ω%s), D(%∗,Ω%∗),

D(%s,Ω%
∗), D(%∗,Ω%s)

)
≤ D(%s,Ω%s) + ρ

(
d(%s, %

∗), D(%s,Ω%s), d(%∗, %∗),

d(%s, %
∗), d(%∗, %s) +D(%s,Ω%s)

)
.

As lim
s−→∞

f(%s, %) ≤ 1 and ρ(1, 0, 0, 1, 1) ∈ (0, 1), so by applying limit s −→∞, we

get d(%s, %
∗) −→ 0 as s −→∞, which is contradiction. Hence, fixed point problem

is well posed for MVM Ω with respect to D. Also, FixΩ = SFixΩ, hence the fixed

point problem is well posed with respect to H.



Chapter 4

Fixed Point in the Setting of

Controlled Metric Space

This Chapter deals with fixed point results of [19] in the setting of CMS. Some

important results are discussed regerding fixed points and strict fixed points.

4.1 Fixed Points in CMS

Mlaiki et al. [42] initiated the idea of controlled metric space as generalization of

extended b-MS.

Definition 4.1.

Consider a nonempty set ξ and a function f : ξ × ξ −→ [1,∞). The mapping

d : ξ × ξ −→ [0,∞) is said to be a CMS if ∀ %1, %2, %3 ∈ ξ,

(i) d(%1, %2) = 0 ⇔ %1 = %2,

(ii) d(%1, %2) = d(%2, %1),

(iii) d(%1, %2) ≤ f(%1, %3)d(%1, %3) + f(%3, %2)d(%3, %2).

The triplet (ξ, d, f) is called CMS.[42]

60
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Example 4.1.

Assume that ξ = {1, 2, ...}. Define d : ξ × ξ −→ [0,∞) by

d(%1, %2) =



0 iff %1 = %2,

1
%1

if %1 is even and %2 is odd,

1
%2

if %2 is even and %1 is odd,

1 otherwise.

Now, take ρ : ξ × ξ −→ [1,∞) as

ρ(%1, %2) =


%1 if %1 is even and %2 is odd,

%2 if %2 is even and %1 is odd,

1 otherwise,

then (ξ, d, ρ) is a CMS.

Now, for % = 2, 3, ...

d(2%+ 1, 4%+ 1) = 1 >
1

%
= ρ(2%+ 1, 4%+ 1)

{
d(2%+ 1, 2%) + d(2%, 4%+ 1)

}
,

hence (ξ, dρ) is not an extended b-MS.

Remark 4.2.

Assume that ρ : ξ × ξ −→ [1,∞) is given as

ρ(%1, %2) = β ≥ 1,

for all %1, %2 ∈ ξ. Then, (ξ, d, ρ) is a b-MS. Hence, b-MS is always a CMS. Further-

more, a CMS is not generally an extended b-MS with same function.

Definition 4.3.

Let us define a set P of all continuous mappings, ρ : [0,∞)5 −→ [0,∞) which

satisfies the conditions:

(i) ρ(1, 1, 1, ζ + η, 0) ∈ (0, 1], where ζ, η ≥ 1,
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(ii) ρ is sub-homogeneous, that is for all (%1, %2, %3, %4, %5) ∈ (0,∞]5 and λ ≥ 0,

we have

ρ(λ%1, λ%2, λ%3, λ%4, λ%5) ≤ λρ(%1, %2, %3, %4, %5),

(iii) ρ is non-decreasing function, i.e for %i, %̄i ∈ R+, %i ≤ %̄i, i = 1, 2, 3, 4, 5,

we have ρ(%1, %2, %3, %4, %5) ≤ ρ(%̄1, %̄2, %̄3, %̄4, %̄5). If %i, %̄i ∈ R+ such that

%i < %̄i,

for i = 1, 2, 3, 4, then,

ρ(%1, %2, %3, %4, 0) < ρ(%̄1, %̄2, %̄3, %̄4, 0),

and

ρ(%1, %2, %3, 0, %4) < ρ(%̄1, %̄2, %̄3, 0, %̄4).

Also define P =
{
ρ ∈ P : ρ(1, 0, 0, ζ, η) ∈ (0, 1]

}
. Note that P ⊆ P .

Example 4.2.

Define ρ1 : [0,∞)5 −→ [0,∞) by

ρ1 (%1, %2, %3, %4, %5) = gmin
{
%1,

1

2
(%2, %3),

1

2
(%4, %5)

}
,

where g ∈ (0, 1). Then ρ1 ∈ P , as ρ1 (1, 0, 0, ζ, η) = 0 /∈ (0, 1]. Hence, ρ1 /∈ P.

Example 4.3.

Define ρ2 : [0,∞)5 −→ [0,∞) by ρ2 (%1, %2, %3, %4, %5) =
%1

2
+
%2 + %3

4
.

Then, ρ2 ∈ P.

Example 4.4.

Define ρ3 : [0,∞)5 −→ [0,∞) by ρ3 (%1, %2, %3, %4, %5) = gmin
{

1
2
(%1 + %3), 1

2
(%4 +

%5)
}

,

where g ∈ (0, 1). Then, ρ3 ∈ P.

Lemma 4.4.

If ρ ∈ P and γ, δ ∈ [0,∞) and ζ, η ∈ R such that ζ, η ≥ 1. Also,

γ ≤max
{
ρ(δ, δ, γ, ηδ + ζγ, 0), ρ(δ, δ, γ, 0, ηδ + ζγ), ρ(δ, γ, δ, ηδ + ζγ, 0),
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ρ(δ, γ, δ, 0, ηδ + ζγ)
}
,

then γ ≤ δ.

Proof. With no loss of generality, assume that

γ ≤ ρ(δ, δ, γ, ηδ + ζγ, 0). (4.1)

On contrary suppose that, δ < γ.

Now consider

ρ(δ, δ, γ, ηδ + ζγ, 0) < ρ(γ, γ, γ, ηγ + ζγ, 0)

≤ γρ(1, 1, 1, η + ζ, 0)

≤ γ(1)

ρ(δ, δ, γ, ηδ + ζγ, 0) < γ

which is contradiction to (4.1). Hence our supposition is wrong, so γ ≤ δ.

Theorem 4.5.

Suppose that (ξ, d, f) is a complete CMS. Let Ω : ξ −→ K(ξ) be a χF -contraction.

Suppose F1 is non-decreasing, and F2 satisfy conditions (F2′) and (F3) For %0 ∈ ξ,

define picard sequence {%s = Ωs%0}, so that

sup
m≥1

lim
i−→∞

f(%i+1, %i+2)f(%i+1, %m)

f(%i, %i+1)
< 1. (4.2)

Also suppose

lim
s−→∞

f(%s, %) ≤ 1 ∀ % ∈ ξ. (4.3)

Then, FixΩ is non-empty.

Proof. Let %0 ∈ ξ and %1 ∈ Ω%0. If %1 ∈ Ω%1 then, %1 ∈ FixΩ. Suppose %1 /∈ Ω%1,

it implies D(%1,Ω%1) > 0 and consequently H(Ω%0,Ω%1) > 0. As Ω%1 is compact,
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so there exists %2 ∈ Ω%1 such that d(%1, %2) = D(%1,Ω%1). Now

F1(d(%1, %2)) = F1(D(%1,Ω%1)) ≤ F1(H(Ω%0,Ω%1)) ≤ F2(H(Ω%0,Ω%1))

≤ F1

{
ρ
(
d(%0, %1), D(%0,Ω%0), D(%1,Ω%1), D(%0,Ω%1), D(%1,Ω%0)

)}
− χ(d(%0, %1)

< F1

{
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), d(%1, %1)

)}
.

As F1 is non decreasing, so

d(%1, %2) < ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

)
≤ ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), f(%0, %1))d(%0, %1) + f(%1, %2)d(%1, %2), 0

)
.

By using Lemma 4.4,

d(%1, %2) < d(%0, %1).

Similarly we get %3 ∈ Ω%2 such that d(%2, %3) = D(%2,Ω%2) with D(%2,Ω%2) > 0

and we have,

d(%2, %3) < d(%1, %2),

By induction, we get a sequence {%s}s∈N ⊂ ξ such that %s+1 ∈ Ω%s satisfying

d(%s, %s+1) = D(%s,Ω%s) with D(%s,Ω%s) > 0 and

d(%s, %s+1) < d(%s−1, %s) for all s ∈ N.

So, {d(%s, %s+1)}s∈N is a decreasing sequence of real numbers. Now

χ(d(%s, %s+1)) + F2(H(Ω%s,Ω%s+1))

≤ F1

{
ρ
(
d(%s, %s+1), D(%s,Ω%s), D(%s+1,Ω%s+1), D(%s,Ω%s+1), D(%s+1,Ω%s)

)}
= F1

{
ρ
(
d(%s, %s+1)), d(%s, %s+1), d(%s+1, %s+2), d(%s, %s+2), d(%s+1, %s+1)

)}
≤ F1

{
ρ
(
d(%s, %s+1), d(%s, %s+1), d(%s+1, %s+2), f(%s, %s+1)d(%s, %s+1)+

f(%s+1, %s+2d(%s+1, %s+2), 0
)}

< F1

{
ρ
(
d(%s, %s+1), d(%s, %s+1), d(%s, %s+1), f(%s, %s+1)d(%s, %s+1)+
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f(%s+1, %s+2d(%s, %s+1), 0
)}

≤ F1

{
d(%s, %s+1)ρ

(
1, 1, 1, f(%s, %s+1) + f(%s+1, %s+2), 0

)}
≤ F1

(
d(%s, %s+1)

)
= F1

(
D(%s,Ω%s)

)
≤ F1

(
H(Ω%s−1,Ω%s)

)
≤ F2

(
H(Ω%s−1,Ω%s)

)
.

Hence, ∀ s ∈ N, we have

F2(H(%s,Ω%s+1)) < F2(H((Ω%s−1,Ω%s))− χ(d(%s, %s+1)). (4.4)

As χ ∈ Ψ , there exists h > 0 and s0 ∈ N such that χ(d(%s, %s+1)) > h for all s ≥ s0.

Now, from (4.4)

F2(H(Ω%s,Ω%s+1)) < F2(H((Ω%s−1,Ω%s))− χ(d(%s, %s+1))

< F2(H(Ω%s−2,Ω%s−1))− χ(d(%s−1, %s))− χ(d(%s, %s+1))

...

< F2(H(Ω%0,Ω%1))−
s∑
i=1

χ(d(%i, %i+1))

= F2(H(Ω%0,Ω%1))−
s0−1∑
i=1

χ(d(%i, %i+1))−
s∑

i=s0

χ(d(%i, %i+1))

< F2(H(Ω%0,Ω%1))− (s− s0)h, s ≥ s0

=⇒ F2(H(Ω%s,Ω%s+1)) < F2(H((Ω%0,Ω%1))− (s− s0)h, ∀ s ≥ s0 (4.5)

Taking s −→∞ in (4.5), we get F2(H(Ω%s,Ω%s+1)) −→ −∞ and then by (F2′), we

have

lim
s−→∞

H(Ω%s,Ω%s+1) = 0,



Fixed Point in the Setting of Controlled Metric Space 66

which further implies that

lim
s−→∞

d(%s, %s+1) = lim
s−→∞

D(%s,Ω%s) ≤ lim
s−→∞

H(Ω%s−1,Ω%s) = 0. (4.6)

Now from (F3), there exists k ∈ (0, 1) such that

lim
s−→∞

(H(Ω%s,Ω%s+1))kF2(H(Ω%s,Ω%s+1)) = 0. (4.7)

Then from (4.5), for all s ≥ s0, we have

(H(Ω%s,Ω%s+1))kF2(H(Ω%s,Ω%s+1))− (H(Ω%s,Ω%s+1))kF2(H(Ω%0,Ω%1))

≤ (H(Ω%s,Ω%s+1))k
(
F2(H(Ω%0,Ω%1))− (s− s0)h

)
− (H(Ω%s,Ω%s+1))kF2(H(Ω%0,Ω%1))

= −(H(Ω%s,Ω%s+1))k(s− s0)h

≤ 0.

Taking limit s −→∞ and using (4.6) and (4.7)

0 ≤ lim
s−→∞

s(H(Ω%s,Ω%s+1))k ≤ 0

=⇒ lim
s−→∞

s(H(Ω%s,Ω%s+1))k = 0.

From above equation, there exists s1 ∈ N such that s(H(Ω%s,Ω%s+1))k ≤ 1, ∀ s ≥

s1. Thus for all s ≥ s1, we have H(%s,Ω%s+1) ≤ 1

s
1
k

.

Now

d(%s, %s+1) = D(%s,Ω%s) ≤ H(Ω%s−1,Ω%s) ≤
1

s
1
k

∀ s ≥ s1.

To prove that {%s}s∈N is Cauchy sequence. Consider τ, s ∈ N such that τ > s >

s1. Now

d(%s, %τ ) ≤ f(%s, %s+1)d(%s, %s+1) + f(%s+1, %τ )d(%s+1, %τ )

≤ f(%s, %s+1)d(%s, %s+1) + f(%s+1, %τ )f(%s+1, %s+2)d(%s+1, %s+2)

+ f(%s+1, %τ )f(%s+2, %τ )d(%s+2, %τ )
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≤ f(%s, %s+1)d(%s, %s+1) + f(%s+1, %τ )f(%s+1, %s+2)d(%s+1, %s+2) + f(%s+1, %τ )

f(%s+2, %τ )f(%s+2, %s+3)d(%s+2, %s+3) + f(%s+1, %τ )f(%s+2, %τ )f(%s+3, %τ )d(%s+3, %τ )

...

≤ f(%s, %s+1)d(%s, %s+1) +
τ−2∑
i=s+1

( i∏
j=s+1

f(%j, %τ )
)
f(%i, %i+1)d(%i, %i+1)

+
( τ−1∏
j=s+1

f(%i, %τ )
)
d(%τ−1, %τ )

≤ f(%s, %s+1)d(%s, %s+1) +
τ−2∑
i=s+1

( i∏
j=s+1

f(%j, %τ )
)
f(%i, %i+1)d(%i, %i+1)

+
( τ−1∏
j=s+1

f(%i, %τ )
)
f(%τ−1, %τ )d(%τ−1, %τ )

= f(%s, %s+1)d(%s, %s+1) +
τ−1∑
i=s+1

( i∏
j=s+1

f(%j, %τ )
)
f(%i, %i+1)d(%i, %i+1)

≤ f(%s, %s+1)d(%s, %s+1) +
τ−1∑
i=s+1

( i∏
j=0

f(%j, %τ )
)
f(%i, %i+1)d(%i, %i+1).

Therefore,

d(%s, %τ ) ≤ f(%s, %s+1)d(%s, %s+1) +
τ−1∑
i=s+1

( i∏
j=0

f(%j, %τ )
)
f(%i, %i+1)

1

i
1
k

. (4.8)

Now

τ−1∑
i=s+1

( i∏
j=0

f(%j, %τ )
)
f(%i, %i+1)

1

i
1
k

≤
∞∑

i=s+1

1

i
1
k

( i∏
j=0

f(%j, %τ )
)
f(%i, %i+1)

=
∞∑

i=s+1

UiVi,

where Ui =
1

i
1
k

and Vi =
( i∏
j=0

f(%j, %τ )
)
f(%i, %i+1). Since 1

k
> 0, therefore

∞∑
i=s+1

( 1

i
1
k

)
converges. Also {Vi}i is increasing and bounded above, so lim

i−→∞
{Vi}i (which is non-

zero) exists. Hence { lim
i−→∞

UiVi}s converges.

Consider the partial sum Sq =

q∑
i=0

( i∏
j=0

f(%j, %τ )
)
f(%i, %i+1)

1

i
1
k

. Now from (4.8), we
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have

d(%s, %τ ) ≤ f(%s, %s+1)d(%s, %s+1) + (Sτ−1 − Ss). (4.9)

By using ratio test and the condition (4.2), we attain that lim
s−→∞

{Ss} exists. By

applying limit s −→∞ in (4.9), we get lim
s−→∞

d(%s, %τ ) = 0. Therefore {%s} is a

Cauchy sequence and the completeness of ξ implies that there exists %∗ ∈ ξ such

that,

lim
s−→∞

%s = %∗.

Now

F1(H(Ω%,Ω%̄)) ≤ F2(H(Ω%,Ω%̄)) ≤ χ(d(%, %̄)) + F2(H(Ω%,Ω%̄))

≤ F1

{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
.

Since F1 is non-decreasing function, we obtain for all %, %̄ ∈ ξ.

H(Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
.

To prove that %∗ is fixed point of ξ. On contrary assume that D(%∗,Ω%∗) > 0.

Now, due to compactness of Ω%∗, there exists % ∈ Ω%∗ such that

D(%∗,Ω%∗) = d(%∗, %)

≤ f(%∗, %s+1)d(%∗, %s+1) + f(%s+1, %)d(%s+1, %)

= f(%∗, %s+1)d(%∗, %s+1) + f(%s+1, %)D(%s+1,Ω%
∗)

≤ f(%∗, %s+1)d(%∗, %s+1) + f(%s+1, %)H(Ω%s,Ω%
∗)

≤ f(%∗, %s+1)d(%∗, %s+1) + f(%s+1, %)ρ
(
d(%s, %

∗), D(%s,Ω%s), D(%∗,Ω%∗), D(%s,Ω%
∗),

D(%∗,Ω%s)
)

≤ f(%∗, %s+1)d(%∗, %s+1) + f(%s+1, %)ρ
(
d(%s, %

∗), d(%s, %s+1), D(%∗,Ω%∗), f(%s, %
∗)d(%s, %

∗)

+ f(%∗, %)D(%∗,Ω%∗), d(%∗, %s+1)
)
.

By applying limit s −→∞ in the above inequality and using (4.3)
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D(%∗,Ω%∗) ≤ (1)ρ
(

0, 0, D(%∗,Ω%∗), 0 + f(%∗, %̄)D(%∗,Ω%∗), 0
)
.

Using Lemma 4.4, we get D(%∗,Ω%∗) ≤ 0.

=⇒ 0 < D(%∗,Ω%∗) ≤ 0.

Hence D(%∗,Ω%∗) = 0. As Ω%∗ is closed, so %∗ ∈ Ω%∗. Hence FixΩ is non empty.

Example 4.5.

Let ξ = {0, 1
2
, 1

3
, 1

4
}. Define d : ξ × ξ −→ R+ and f : ξ × ξ −→ [1,∞) by

d(%1, %2) = (%1 − %2)2, also

f(%1, %2) =


1 if %1 = %2 = 0

1

(%1 + %2)4
if %1 6= 0 or %2 6= 0.

Then, (ξ, d, f) is complete CMS.

Define F1, F2 : (0,∞) −→ R by

F1(u) =

−
1
u

if u ∈ (0, 1)

u if u ∈ [1,∞) ,

and F2(u) = ln(u) + u, ∀ u ∈ (0,∞). Then, F1 is non-decreasing, F2 satisfies

(F2
′
) and (F3) and F1(u) ≤ F2(u) ∀ u > 0. Now, define Ω : ξ −→ K(ξ) and

ρ : [0,∞)5 −→ [0,∞) and χ : (0,∞) −→ (0,∞) by

Ω% =

{0} if % = 0

{0, 1
2
} if % 6= 0,
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ρ (%1, %2, %3, %4, %5) = %1
2

+ 28%5 and χ(t) = 1
t
, t ∈ (0,∞). Then ρ ∈ P and χ ∈ Ψ .

Since H(Ω%,Ω%̄) > 0 implies,

χ(d(%, %̄))+F2(H(Ω%,Ω%̄)) ≤ F1

{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
.

Note that lim
n−→∞

f(%n, %) ≤ 1,

hence the assumptions of Theorem 4.5 are fulfilled and FixΩ = {0, 1
2
}.

Theorem 4.6.

Assume that (ξ, d, f) is a complete CMS. Let Ω : ξ −→ K(ξ) be a MVM and

F1, F2 are functions satisfying χF -contraction. Suppose F1 is non-decreasing, and

F2 satisfy condition (F2′). Also, suppose lim
k−→∞

f(%τk , %sk) ≤ 1. Then, FixΩ is non-

empty.

Proof. Let %0 ∈ ξ and %1 ∈ Ω%0. We obtain a sequence {%s} ⊂ ξ as in proof

of Theorem 4.5 such that %s+1 ∈ Ω%s. It satisfies d(%s, %s+1) = D(%s,Ω%s) with

D(%s,Ω%s) > 0 and

d(%s, %s+1) < d(%s−1, %s) ∀ s ∈ N (4.10)

F2(H(Ω%s,Ω%s+1)) < F2(H(Ω%0,Ω%1))− (s− s0)h, ∀ s ≥ s0. (4.11)

Taking s −→∞ in (4.11), we get F2(H(Ω%s,Ω%s+1)) −→ −∞ and by (F2′),

lim
s−→∞

H(Ω%s,Ω%s+1) = 0, (4.12)

which further implies,

lim
s−→∞

d(%s, %s+1) = lim
s−→∞

D(%s,Ω%s) ≤ lim
s−→∞

H(%s−1,Ω%s) = 0.

Also, we claim that

lim
s,τ−→∞

d(%s, %τ ) = 0. (4.13)
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If (4.13) is not applicable, then there exists δ > 0 such that ∀ r ≥ 0, there exists

τk > sk > r,

d(%sk , %τk) > δ.

Moreover there exists r0 ∈ N,

λr0 = d(%s−1, %s) < δ ∀ s ≥ r0.

There exists two sub sequences {%sk} and {%τk} of {%s} which satisfies,

r0 ≤ sk ≤ τk + 1 and d(%sk , %τk) > δ ∀ k > 0. (4.14)

Note that

d(%τk−1, %sk) ≤ δ for all k, (4.15)

Also, τk is minimal index for which (4.15) is fulfilled.

Note that, sk + 2 ≤ τk ∀ k, because the case sk + 1 ≤ sk is impossible due to

equations (4.14) and (4.15). It shows

sk + 1 < τk < τk + 1 ∀ k.

By considering triangular inequality and using (4.14), (4.15), we have

δ < d(%τk , %sk) ≤ f(%τk , %τk−1)d(%τk , %τk−1) + f(%τk−1, %sk)d(%τk−1, %sk)

≤ f(%τk , %τk−1)d(%τk , %τk−1) + δf(%τk−1, %sk).

Taking limit k −→∞,

δ < lim
k−→∞

d(%τk , %sk) ≤ 0 + δ lim
k−→∞

f(%τk−1, %sk).

=⇒ δ < lim
k−→∞

d(%τk , %sk) ≤ δ lim
k−→∞

f(%τk−1, %sk) ≤ δ
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=⇒ lim
k−→∞

d(%τk , %sk) = δ (4.16)

Now, using (4.12) and (4.16), we get

lim
k−→∞

d(%τk+1, %sk+1) = δ. (4.17)

Consider

χ(d(%τk , %sk)) + F1(d(%τk+1, %sk+1)) = χ(d(%τk , %sk)) + F1(D(%τk+1,Ω%sk))

≤ χ(d(%τk , %sk)) + F1(H(Ω%τk ,Ω%sk))

≤ χ(d(%τk , %sk)) + F2(H(Ω%τk ,Ω%sk))

≤ F1

{
ρ
(
d(%τk , %sk), D(%τk ,Ω%τk), D(%sk ,Ω%sk), D(%τk ,Ω%sk), D(%sk ,Ω%τk)

)}
= F1

{
ρ
(
d(%τk , %sk), d(%τk , %τk+1

), d(%sk , %sk+1
), d(%τk , %sk+1

), d(%sk , %τk+1
)
)}

≤ F1

{
ρ
(
d(%τk , %sk), d(%τk , %τk+1

), d(%sk , %sk+1
), f(%sk+1

, %sk)d(%sk+1
, %sk)+

f(%sk , %τk)d(%sk , %τk), f(%sk , %sk+1
)d(%sk , %sk+1

) + f(%sk+1
, %τk+1

)d(%sk+1
, %τk+1

)
)}
.

As F1 is continuous, then by applying the lim
k−→∞

and using (4.16),(4.17), we obtain

lim
k−→∞

χ(d(%τk , %sk)) + F1(δ) ≤ F1

{
ρ
(
δ, 0, 0, 0 + δf(%sk , %τk), 0 + δf(%sk+1

, %τk+1
)
)}

≤ F1

(
ρ(δ, 0, 0, δf(%sk , %τk), δf(%sk+1

, %τk+1
)
)}

≤ F1

{
δρ
(

1, 0, 0, f(%sk , %τk), f(%sk+1
, %τk+1

)
)}
.

Since ρ ∈ P, so ρ
(

1, 0, 0, f(%sk , %τk), f(%sk+1
, %τk+1

)
)
∈ (0, 1].

=⇒ lim
k−→∞

χ(d(%τk , %sk)) + F1(δ) ≤ F1(δ),

=⇒ lim
k−→∞

χ(d(%τk , %sk)) ≤ 0,

=⇒ lim
S−→δ+

inf χ(S) ≤ 0,

which is a contradiction, hence (4.13) holds. Therefore {%s} is Cauchy sequence
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and there exists %∗ ∈ ξ such that lim
s−→∞

%s = %∗. The rest of the proof follows from

Theorem 4.5 and we get %∗ ∈ Ω%∗.

Theorem 4.7.

Let (ξ, d, f) be a complete CMS and Ω : ξ −→ C(ξ) be a MVM. Assume that there

exists χ ∈ Ψ, F ∈ ∆ (0∗) and a real valued function L on (0,∞) such that following

conditions hold:

(G1) F (%) ≤ L(%) ∀ % > 0,

(G2) H(Ω%,Ω%̄) > 0 implies,

χ(d(%, %̄))+L(H(Ω%,Ω%̄))

≤ F
{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
.

For all %, %̄ ∈ ξ, ρ ∈ P. Let %0 ∈ ξ, define the picard sequence {%s = Ωs%s} such

that

sup
m≥1

lim
i−→∞

f(%i+1, %i+2)f(%i+1, %m)

f(%i, %i+1)
< 1. (4.18)

Also suppose that lim
s−→∞

f(%s, %) ≤ 1 for all % ∈ ξ. Then, FixΩ is non empty.

Proof. Let %0 ∈ ξ and %1 ∈ Ω%0. If %1 ∈ Ω%1 then, %1 ∈ fixΩ. Suppose %1 /∈ Ω%1, it

implies D(%1,Ω%1) > 0 and consequently H(Ω%0,Ω%1) > 0. Due to (F4), we obtain

F (D(%1,Ω%1)) = inf
z∈Ω%1

F (d(%1, z)). (4.19)

Then, (4.19) with (G1) and (G2) gives

inf
z∈Ω%1

F (d(%1, z)) = F (D(%1,Ω%1))

≤ F (H(Ω%0,Ω%1))

≤ L(H(Ω%0,Ω%1))

≤ F
{
ρ
(
d(%0, %1), D(%0,Ω%0), D(%1,Ω%1), D(%0,Ω%1), D(%1,Ω%0)

)}
− χ(d(%0, %1)).
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=⇒ inf
z∈Ω%1

F (d(%1, z)) < F
{
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

)}
.

Hence there exists %2 ∈ Ω%1, such that

F (d(%1, %2)) < F
{
ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

)}
. (4.20)

Since F is non-decreasing function, so (4.20) with (ρ3) gives

d(%1, %2) < ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), 0

)
≤ ρ
(
d(%0, %1), d(%0, %1), d(%1, %2), f(%0, %1))d(%0, %1) + f(%1, %2)d(%1, %2), 0

)
.

By using Lemma 4.4

d(%1, %2) < d(%0, %1).

Next arguing as previous, we get %3 ∈ Ω%2 with D(%2,Ω%2) > 0. By considering

Lemma 4.4, and using (G1), (G2)

d(%2, %3) < d(%1, %2).

By induction, we have a sequence {%s} ⊂ ξ such that %s+1 ∈ Ω%s with D(%s,Ω%s) >

0 and

d(%s, %s+1) < d(%s−1, %s) for all s ∈ N. (4.21)

Now (4.21) implies that {d(%s, %s+1)}s∈N is a decreasing sequence of positive real

numbers. Hence from (F4)

inf
z∈Ω%s

F (d(%s, z)) = F (D(%s,Ω%s)) ≤ F (H(Ω%s−1,Ω%s)) ≤ L(H(Ω%s−1,Ω%s))

≤ F{ρ (d(%s−1, %s), D(%s−1,Ω%s−1), D(%s,Ω%s), D(%s−1,Ω%s), D(%s,Ω%s−1))}

− χ(d(%s−1, %s))

≤ F
{
ρ
(
d(%s−1, %s), d(%s−1, %s), d(%s, %s+1), f(%s−1, %s)d(%s−1, %s) + f(%s, %s+1)
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d(%s, %s+1), 0)
)}
− χ(d(%s−1, %s))

≤ F
{
ρ
(
d(%s−1, %s), d(%s−1, %s), d(%s−1, %s), f(%s−1, %s)d(%s−1, %s) + f(%s, %s+1)

d(%s−1, %s), 0)
)}
− χ(d(%s−1, %s))

≤ F
{
d(%s−1, %s)ρ

(
1, 1, 1, f(%s−1, %s) + f(%s, %s+1), 0)

)}
− χ(d(%s−1, %s)

≤ F (d(%s−1, %s))− χ(d(%s−1, %s)).

=⇒ inf
z∈Ω%s

F (d(%s, z)) ≤ F (d(%s−1, %s))− χ(d(%s−1, %s)) ∀ s ∈ N. (4.22)

Since ξ ∈ Ψ , there exists h > 0 and s0 ∈ N s.t χ(d(%s, %s+1)) < h, ∀ s ≥ s0.

From (4.22)

F (d(%s, %s+1)) ≤ F (d(%s−1, %s))− χ(d(%s−1, %s))

≤ F (d(%s−2, %s−1))− χ(d(%s−2, %s−1))− χ(d(%s−1, %s))

...

≤ F (d(%0, %1))−
s−1∑
i=1

χ(d(%i−1, %i))

= F (d(%0, %1))−
s0−1∑
i=1

χ(d(%i−1, %i))−
s−1∑
i=s0

χ(d(%i−1, %i))

= F (d(%0, %1))− (s− s0)h, s ≥ s0. (4.23)

Applying limit s −→∞ in (4.23), we get F (d(%s−1, %s)) −→ −∞ and from (F2′)

lim
s−→∞

d(%s−1, %s) = 0. (4.24)

Now, from (F3) there exists 0 < k < 1 such that,

lim
s−→∞

(d(%s−1, %s))
kF (d(%s−1, %s)) = 0. (4.25)
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Thus from (4.23) for all s ≥ s0, we have

(d(%s−1, %s))
kF (d(%s−1, %s))− (d(%s−1, %s))

kF (d(%0, %1))

≤ (d(%s−1, %s))
k
(
F (d(%0, %1))− (s− s0)h

)
− (d(%s−1, %s))

kF (d(%0, %1))

= −(d(%s−1, %s))
k(s− s0)h ≤ 0. (4.26)

Taking limit s −→∞ in (4.26) and using (4.24) , (4.25)

0 ≤ − lim
s−→∞

s(d(%s−1, %s))
k ≤ 0.

=⇒ lim
s−→∞

s(d(%s−1, %s))
k = 0 (4.27)

Note that by using (4.27), there exists s1 ∈ N s.t s(d(%s−1, %s))
k ≤ 1 ∀ s ≥ s1.

We get

d(%s−1, %s) ≤
1

s
1
k

∀ s ≥ s1.

Now to prove that {%s}s∈N is Cauchy sequence. Consider τ, s ∈ N such that

τ > s > s1. The rest of the proof follows from Theorem 4.5 and by using (4.18)

with ratio test, we deduce that {%s} is Cauchy sequence and there exists %∗ ∈ ξ

such that

lim
s−→∞

%s = %∗.

Now

F (H(Ω%,Ω%̄)) ≤ L(H(Ω%,Ω%̄)) ≤ χ(d(%, %̄)) + L(H(Ω%,Ω%̄))

≤ F
{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
.

Since F is non-decreasing function, therefore
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H(Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
∀ %, %̄ ∈ ξ.

Assume that %∗ is fixed point of ξ. On contrary, we have D(%∗,Ω%∗) > 0. Then

by following the proof of Theorem 4.5, D(%∗,Ω%∗) = 0. Since Ω%∗ is closed, so

%∗ ∈ Ω%∗. Hence FixΩ is non empty.

Theorem 4.8.

Let (ξ, d, f) be a complete CMS and Ω : ξ −→ C(ξ) be a MVM. Suppose there

exists χ ∈ Ψ, ρ ∈ P and a non decreasing and continuous real valued function

F : (0,∞) −→ R which satisfy (F2′). Moreover a real valued function L on (0,∞)

is such that given conditions hold:

(G1) F (%) ≤ L(%) ∀ % > 0,

(G2) H(Ω%,Ω%̄) > 0 implies

χ(d(%, %̄)) + L(H(Ω%,Ω%̄))

≤ F
{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
,

for all %, %̄ ∈ ξ.

Also

lim
s−→∞

f(%s, %) ≤ 1 for all % ∈ ξ.

Then, FixΩ is non empty.

Proof. Let %0 ∈ ξ be an arbitrary point and %1 ∈ Ω%0. As in proof of Theorem

4.5, we get a sequence {%s} ⊂ ξ, such that %s+1 ∈ Ω%s with D(%s,Ω%s+1) > 0,

d(%s, %s+1) < d(%s−1, %s),

and

F (d(%s−1, %s)) ≤ F (d(%0, %1))− (s− s0)h ∀ s ≥ s0. (4.28)
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Taking s −→∞ in (4.28), F (d(%s−1, %s)) −→ −∞ and by (F2′),

lim
s−→∞

d(%s−1, %s) = 0.

Now we claim that,

lim
s,τ−→∞

d(%s, %τ ) = 0. (4.29)

However if, (4.29) does not hold, then there exists δ > 0 such that for all r ≥ 0,

we have τk > sk > r,

d(%s, %τ ) < δ.

Also, there exists r0 ∈ N such that

λr0 = d(%s−1, %s) < δ ∀ s ≥ r0.

There exists two sub sequences {%τk} and {%sk} of {%s}, then by following the

proof of Theorem 4.6, we get lim
k−→∞

d(%τk , %sk) = δ also

lim
k−→∞

d(%τk+1
, %sk+1

) = δ. (4.30)

By monotonicity of F and using (G1), (G2), we get

χ(d(%τk , %sk)) + F (d(%τk+1
,Ω%sk+1

)) = χ(d(%τk , %sk)) + F (D(%τk+1
,Ω%sk))

≤ χ(d(%τk , %sk)) + F (H(Ω%τk ,Ω%sk))

≤ χ(d(%τk , %sk)) + L(H(Ω%τk ,Ω%sk))

≤ F
{
ρ
(
d(%τk , %sk), d(%τk , %τk+1

), d(%sk , %sk+1
), f(%sk+1

, %sk)d(%sk+1
, %sk)+

f(%sk , %τk)d(%sk , %τk), f(%sk , %sk+1
)d(%sk , %sk+1

) + f(%sk+1
, %τk+1

)d(%sk+1
, %τk+1

)
)}
.

=⇒ χ(d(%τk , %sk)) + F (d(%τk+1
,Ω%sk+1

))
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≤ f(%sk , %τk)d(%sk , %τk), f(%sk , %sk+1
)d(%sk , %sk+1

) + f(%sk+1
, %τk+1

)d(%sk+1
, %τk+1

)
)}
.

(4.31)

By continuity of F and applying the limit k −→∞ as well as using (4.30), (4.31),

we have

lim
k−→∞

χ(d(%τk , %sk)) + F (δ) ≤ F
{
ρ
(
δ, 0, 0, δ lim

k−→∞
f(%sk , %τk), δ lim

k−→∞
f(%sk+1

, %τk+1
)
)}

≤ F
{
δρ
(

1, 0, 0, δV lim
k−→∞

f(%sk , %τk), δ lim
k−→∞

f(%sk+1
, %τk+1

)
)}
.

Since ρ ∈ P, we have ρ
(

1, 0, 0, lim
k−→∞

f(%sk , %τk), lim
k−→∞

f(%sk+1
, %τk+1

)
)
∈ (0, 1]. Hence

lim
S−→δ+

inf χ(s) ≤ 0

which is a contradiction to definition of Ψ . Therefore (4.29) is fulfilled and ensures

that {%s} is Cauchy sequence. Hence there exists %∗ ∈ ξ such that,

lim
s−→∞

%s = %∗.

By following the proof of Theorem 4.7, we get %∗ ∈ Ω%∗.

4.2 Data Depenence

The aim of this section is to present a data dependence result of the established

result.

Theorem 4.9. Suppose that (ξ, d) is a CMS, Ω1,Ω2 : ξ −→ K(ξ) are multivalued

mappings and χ ∈ Ψ. Let F1 be real valued non-decreasing function defined on

(0,∞) and F2 be a real valued function satisfying (F2′) and (F3) defined on (0,∞)

such that χF -contraction is satisfied for Ωi, where i ∈ {1, 2} and there exists λ > 0

such that H
(
Ω1(%),Ω2(%)

)
≤ λ, for all % ∈ ξ. For %0 ∈ ξ, define picard sequence

{%s = Ωs%0}, so that

sup
m≥1

lim
i−→∞

f(%i+1, %i+2)f(%i+1, %m)

f(%i, %i+1)
< 1. (4.32)
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Also suppose that lim
s−→∞

f(%s, %) ≤ 1 for all % ∈ ξ. Then,

(a.) Fix Ωi ∈ CL(ξ) for i ∈ {1, 2} ,

(b.) Ω1,Ω2 are MWP Operators and

H
(

FixΩ1,FixΩ2

)
≤ λ

1−max {ρ1(1, 1, 1, ζ + η, 0), ρ2(1, 1, 1, ζ + η, 0)}
,

where ζ, η ≥ 1.

Proof. (a.) Using Theorem 4.5, we have Fix Ωi is not empty for i ∈ {1, 2} . Now,

we prove that for i ∈ {1, 2} , the fixed point set of Ωi is closed. Consider a sequence

{%s} in FixΩi such that %s −→ % as s −→∞. Now,

F1

(
H(Ω%,Ω%̄

)
≤ F2

(
H(Ω%,Ω%̄

)
≤ χ

(
d(%, %̄) + F2

(
H
(
Ω%,Ω%̄

))
≤ F1

(
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

))
.

Since F1 is non-decreasing function so, for all %, %̄ ∈ ξ

H(Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
. (4.33)

Assume that D(%̄,Ω%̄) > 0. Now, there exists % ∈ Ω%̄ such that

D(%̄,Ω%̄) = d(%̄, %)

≤ f(%̄, %s+1)d(%̄, %s+1) + f(%s+1, %)d(%s+1, %)

= f(%̄, %s+1)d(%̄, %s+1) + f(%s+1, %)D(%s+1,Ω%̄)

≤ f(%̄, %s+1)d(%̄, %s+1) + f(%s+1, %)H(Ω%s,Ω%̄)

≤ f(%̄, %s+1)d(%̄, %s+1) + f(%s+1, %)ρ
(
d(%s, %̄), D(%s,Ω%s), D(%̄,Ω%̄), D(%s,Ω%̄),

D(%̄,Ω%s)
)

≤ f(%̄, %s+1)d(%̄, %s+1) + f(%s+1, %)ρ
(
d(%s, %̄), d(%s, %s+1), D(%̄,Ω%̄), f(%s, %̄)d(%s, %̄)

+ f(%̄, %)D(%̄,Ω%̄), d(%̄, %s+1)
)
.
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By applying limit s −→∞ in the above inequality, we get

D(%̄,Ω%̄) ≤ (1)ρ
(

0, 0, D(%̄,Ω%̄), 0 + f(%̄, %1)D(%̄,Ω%̄), 0
)
.

Using Lemma 4.4, D(%̄,Ω%̄) ≤ 0.

=⇒ 0 < D(%̄,Ω%̄) ≤ 0.

Hence D(%̄,Ω%̄) = 0. As Ω%̄ is closed, so %̄ ∈ Ω%̄.

(b.) Using Theorem 4.5, we get that Ω1,Ω2 are MWP Operators. So, We have to

prove that

H
(

FixΩ1,FixΩ2

)
≤ λ

1−max {ρ1(1, 1, 1, ζ + η, 0), ρ2(1, 1, 1, ζ + η, 0)}
.

Suppose q > 1, and %0 ∈ FixΩ2. Then, %1 ∈ Ω2(%0) exists such that d(%0, %1) =

D(%0,Ω2(%0)) and d(%1, %2) ≤ qH
(
Ω1(%0),Ω2(%0)

)
. Now, %2 ∈ Ω2(%1) exists such

that d(%0, %1) = D(%0,Ω2(%0)) and d(%1, %2) ≤ qH
(
Ω2(%0),Ω2(%1)

)
. Also, we get

d(%1, %2) ≤ d(%0, %1) and

d(%1, %2) ≤ qH(Ω2(%0),Ω2(%1))

≤ qρ
(
d(%0, %1), D(%0,Ω(%0)), D(%1,Ω(%1)), D(%0,Ω(%1)), D(%1,Ω(%0))

≤ qρ
(
d(%0, %1), d(%0, %1), d(%1, %2), d(%0, %2), d(%1, %1)

)
≤ qρ

(
d(%0, %1), d(%0, %1), d(%1, %2), f(%0, %1))d(%0, %1) + f(%1, %2)

d(%1, %2), 0
)

< qρ
(
d(%0, %1), d(%0, %1), d(%0, %1), f(%0, %1))d(%0, %1) + f(%1, %2)

d(%0, %1), 0
)

≤ qd(%0, %1)ρ
(
1, 1, 1, f(%0, %1)) + f(%1, %2), 0

)
Hence, we will get a sequence of successive approximations of Ω starting from %0,

which satisfy the following

d(%s, %s+1) ≤
(
qρ1

(
1, 1, 1, ζ + η, 0

))s
d(%0, %1), ∀ s ∈ N.
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⇒ d(%s, %s+m) ≤

(
qρ1

(
1, 1, 1, ζ + η, 0

))s
1− qρ1

(
1, 1, 1, ζ + η, 0

)d(%0, %1), ∀ s ∈ N. (4.34)

Taking lim
s−→∞

, it is concluded that {%s} is Cauchy sequence in (ξ, d) so converges to

some v ∈ ξ. Using the proof of Theorem 4.5, we have v ∈ FixΩ2. Applying lim
m−→∞

,

we get

d(%s, v) ≤

(
qρ1

(
1, 1, 1, ζ + η, 0

))s
1− qρ1

(
1, 1, 1, ζ + η, 0

)d(%0, %1), ∀ s ∈ N.

Letting s = 0

d(%0, v) ≤
1

1− qρ1

(
1, 1, 1, ζ + η, 0

)d(%0, %1) ≤ qλ

1− qρ1

(
1, 1, 1, ζ + η, 0

) .
Now, we interchange the role of Ω1 and Ω2, then for each v0 ∈ FixΩ1

d(v0, c) ≤
1

1− qρ2

(
1, 1, 1, , ζ + η, 0

)d(v0, v1) ≤ qλ

1− qρ2

(
1, 1, 1, , ζ + η, 0

) .
So,

H(FixΩ1,FixΩ2) ≤ qλ

1−max
(
qρ1

(
1, 1, 1, , ζ + η, 0

)
, qρ2

(
1, 1, 1, , ζ + η, 0

)) .
By taking q −→ 1 the result is proved.

4.3 Strict Fixed Point and Well Posedness

This section is furnished with fixed point results to assure the existence of strict

fixed point and well-posedness of the multivalued generalized contractions in the

setting of CMS.

Theorem 4.10. Assume that (ξ, d, f) is a complete CMS. Let Ω : ξ −→ K(ξ) be

a MVM and F1, F2 are functions satisfying χF -contraction. Suppose F1 is non-

decreasing, F2 satisfy condition (F2′) with ρ(1, 0, 0, 1, 1) ∈ (0, 1) and SFixΩ 6= Ψ.

Also suppose lim
s−→∞

f(%s, %) ≤ 1 for all % ∈ ξ. Then,

(a) FixΩ = SFixΩ = {%∗} ,
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(b) The fixed point problem is well posed for MVM Ω with respect to H.

Proof. (a) Using Theorem 4.6 , we conclude that FixΩ 6= Ψ. Now, we prove that

FixΩ = {%∗} . Using (Ni.) and (Nii.), we have

F1(H(Ω%,Ω%̄)) ≤ F2(H(Ω%,Ω%̄)) ≤ χ(d(%, %̄)) + F2(H(Ω%,Ω%̄))

≤ F1

{
ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)}
.

Since F1 is non-decreasing function, we obtain for all %, %̄ ∈ ξ,

H(Ω%,Ω%̄) ≤ ρ
(
d(%, %̄), D(%,Ω%), D(%̄,Ω%̄), D(%,Ω%̄), D(%̄,Ω%)

)
.

Let v ∈ FixΩ, with v 6= %∗, then, D(%∗,Ωv) > 0. Now, we have

D(%∗,Ωv) = H(Ω%∗,Ωv)

≤ ρ
(
d(%∗, v), D(%∗,Ω%∗), D(v,Ωv), D(%∗,Ωv), D(v,Ω%∗)

)
≤ ρ
(
d(%∗, v), 0, 0, d(%∗, v), d(v, %∗)

)
≤ d(%∗, v)ρ(1, 0, 0, 1, 1).

As ρ(1, 0, 0, 1, 1) ∈ (0, 1), so

d(%∗, v) = D(%∗,Ωv) < d(%∗, v),

which is a contradiction, hence, d(%∗, v) = 0 and %∗ = v.

(b) Let %s ∈ B, s ∈ N, such that

lim
s−→∞

D(%s,Ω%s) = 0. (4.35)

Now, we claim that

lim
s−→∞

d(%s, %
∗) = 0,
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where %∗ ∈ FixΩ. If the above equation is not true, then, for every s ∈ N, there

exists ε > 0 such that

d(%s, %
∗) > ε.

But (4.35) implies that there exists sε ∈ N− {0} such that

lim
s−→∞

D(%s,Ω%s) < ε,

for each s > sε. Hence, for each s > sε, we obtain

d(%s, %
∗) = D(%s,Ω%

∗).

Compactness of Ω%∗ implies that there exists % ∈ Ω%∗ such that

d(%s, %
∗) = D(%s,Ω%

∗) = d(%s, %)

≤ f(%s, %s+1)d(%s, %s+1) + f(%s+1, %)d(%s+1, %)

= f(%s, %s+1)D(%s,Ω%s) + f(%s+1, %)D(%s+1,Ω%
∗)

≤ f(%s, %s+1)D(%s,Ω%s) + f(%s+1, %)H(Ω%s,Ω%
∗)

< f(%s, %s+1)D(%s,Ω%s) + f(%s+1, %)ρ
(
d(%s, %

∗), D(%s,Ω%s), D(%∗,Ω%∗),

D(%s,Ω%
∗), D(%∗,Ω%s)

)
≤ f(%s, %s+1)D(%s,Ω%s) + f(%s+1, %)ρ

(
d(%s, %

∗), D(%s,Ω%s), d(%∗, %∗),

d(%s, %
∗), f(%∗, %s)d(%∗, %s) + f(%s, %s+1)D(%s,Ω%s)

)
.

As lim
s−→∞

f(%s, %) ≤ 1 and ρ(1, 0, 0, 1, 1) ∈ (0, 1), so by applying limit s −→∞, we

get d(%s, %
∗) −→ 0 as s −→ ∞, which is a contradiction. Hence, the fixed point

problem is well posed for MVM Ω with respect to D. Also, FixΩ = SFixΩ, hence

the fixed point problem is well posed with respect to H.



Chapter 5

Conclusions

This dissertation arrives at its end in the following fashion:

• A quick history is presented for a concise discussion on the fixed point theory.

• A brief discussion of some fundamental ideas is referenced to provide a base

for upcoming results.

• Some mappings are elaborated for a better understanding of contractions.

• A quick review of F -contraction mapping and its generalizations is high-

lighted.

• A segment dealing with generalizations of metric space is articulated.

• The work of Iqbal et al. [19] is reviewed in detail. Data dependence, the

existence of fixed points, strict fixed points, and well posedness of some

multivalued generalized contractions are discussed in the setting of complete

metric space.

• Some fixed and strict fixed point results are established on controlled metric

spaces. We followed the scheme of Iqbal et al. [19] and used the platform of

CMS. We have also provided the well-posedness of the theorems. The data

dependence problem of fixed points of the considered mappings is also es-

tablished. A non-trivial example is provided for the authentication purpose.
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