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Abstract

Automated image understanding in medical imaging plays a crucial role in alleviat-

ing the time-consuming process of manual image handling for clinicians, while also

providing a level of confidence in their diagnostic decision-making. Currently, med-

ical imaging diagnosis heavily relies on manual image handling or semi-automated

tools. However, these methods can have variations when performed by different

clinicians. This thesis proposes a multi-task application that utilizes a comprehen-

sive image dataset of axial views of lumbar spine disc magnetic resonance imaging

(MRI). The dataset contains annotated labels and radiologists’ remarks specifically

focused on lumbar spinal stenosis. To create a comprehensive and fully automated

image understanding application for lumbar spinal canal stenosis, the initial step

involves segmenting the intervertebral bodies using deep learning models. Among

these models, the Weighted Average Ensemble exhibits the highest performance

in semantic segmentation, achieving a dice similarity score (DSC) of 0.98 and an

intersection-over-union (IoU) of 0.976. Subsequently, the development of the appli-

cation includes conducting spinal cord measurements, which encompass diameter

and cross-sectional area measurements, to provide a thorough assessment of the

condition. These measurements adhere to the clinical standards widely utilized

by clinicians in practice. Moreover, an approach is introduced in this study to

automatically evaluate lumbar central canal stenosis, offering valuable support to

spinal surgeons in making objective decisions regarding necessary surgical interven-

tions. The classification model based on deep learning demonstrates an accuracy

of 98 % for lumbar central canal stenosis, whereas the machine learning-based

classification achieves an accuracy of 96 %.
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Chapter 1

Introduction

1.1 Outline

This chapter gives an idea of the challenges involved in addressing the problem

statement, along with background information. It begins by discussing the human

spine and the specific area of the spine that is most susceptible to severe degen-

erative changes. The two diagnostic examinations recommended by clinicians to

diagnose lower-back pain, computed tomography (CT) and magnetic resonance

imaging (MRI), are also discussed. User preferences are identified in terms of

safety, convenience, and suitability for each examination. The final part of the

chapter elaborates on the challenges faced by clinicians while diagnosing patients

with lower back pain, and the importance of medical image segmentation in de-

veloping an image understanding application.

1.2 Background

Lower back pain, which is a common ailment, is considered a chronic backache by

radiologists and spinal surgeons [1, 2]. Lower back pain or lumbago is caused by

an effect on the lumbar spine, which degrades the quality of life (QoL) of patients

[3]. Low back pain is commonly caused by improper weightlifting and prolonged

sitting in an incorrect posture. This type of pain is typically localized to the

1
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back and occurs following an episode of acute backache. However, proper rest

can provide relief from this condition. To relieve muscular spasms, clinicians may

recommend physiotherapy augmented with radiation therapy or ultrasonography

in some cases. Lower back pain can be caused by multiple reasons in chronic cases.

Lower back pain can occur as a result of a fracture in either the vertebral body

(VB) or vertebral arch (VA). Such fractures can lead to a reduction in the space

occupied by intervertebral discs (IVDs) situated between the vertebral bodies [4].

The imbalance in load sharing between the intervertebral discs caused by bone

fracture leads to the protrusion or herniation of the disc. Consequently, when

discs protrude or slip, they apply pressure on the central canal and nerve roots,

resulting in tingling pain in the legs. In severe cases of nerve damage, this pressure

can lead to paralysis in the lower body [5]. The compression of nerves that causes

pain radiating down one or both legs is often referred to as sciatica [6]. With

age, the vertebral body (VB) can experience end-plate deformation known as

osteophyte formation [7] [8].

Table 1.1: Category Wise Number of MRI Scans Performed in Armed Forces
Institute of Radiology (AFIRI), Rawalpindi, Pakistan from September 2022 to

November 2022.

MRI Scan Type
Months Monthly Percentage

September Octobe November Average %

Brain 646 610 620 625 45.27

Lumbar Spine 305 321 294 307 22.2

Cervical Spine 285 225 164 225 16.26

Shoulder 36 27 29 31 2.22

Sacroiliac Joint 47 40 40 42 3.06

Knee 151 162 68 75 5.41

Elbow 7 5 3 57 4.15

Hip 6 5 42 18 1.28

Wrist 2 1 3 2 0.14

Total 1485 1396 1263 1382

In this region of the vertebral body (VB), there is a possibility of impinging on

the exiting nerve roots and resulting in compression. In such cases, the patient

may be deemed suitable for a spinal surgical intervention, typically involving a
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decompression procedure. This procedure aims to alleviate the pressure exerted

on the nerves, ultimately improving the patient’s quality of life (QoL).

1.3 Diagnosis of Lower-Back-Pain

When a patient experiences back pain, especially in the lower back, healthcare

professionals commonly suggest undergoing an MRI examination of the lumbar

spine to assist with the diagnostic process. According to research conducted by

Suri et al. [5], lumbar spine MRI exams are widely recognized as standard proce-

dures for diagnosing lower back pain. In the study, 313 patients with lower back

pain complaints were analyzed, with 77% of them undergoing MRI exams. Among

those who underwent the examination, 73.8% exhibited abnormal findings that in-

dicated the presence of lumbar spine disease. A total of 183 abnormal findings

were detected out of 313 patients, which represents 58.5% of those diagnosed with

lower back pain.

Additionally, data were collected on the number of MRI exams performed at a

large radiology institute in Pakistan. Table 1.1 displays the data, which shows

that the number of MRI exams performed on the spine region is relatively higher

compared to other body regions, except the brain. Lumbar spine and cervical

exams accounted for 38.47% of the total scans, while the majority (45.27%) were

conducted to investigate brain-related diseases.

1.4 MRI Scan or CT scan - Subjects’ Preference

The two main medical imaging techniques are CT scan and MRI, with patients

generally preferring MRI as it does-not-expose them to ionizing-radiation, making

it the safest option. While CT scan has their own uses, medical researchers have

utilized CT images for spine-related tasks. The main differences between MRI and

CT scan are as follows:
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• CT scan exposes the patient to more x-ray radiation than a single-plane

x-ray scan. The reconstruction of images occurs post-scan and offers more

information in multi-planar images. The image generation principle is similar

to that of conventional x-ray images, where high-density tissues like bones

appear brighter than low-density tissues such as lungs and kidneys.

• MRI examination, Unlike CT scans, MRI does-not expose the patient to

ionizing-radiation. MRI scans take longer to perform but provide superior

details compared to CT scans [9].

• Medical consultants recommend CT scans for bone-related disease investiga-

tions, while MRI is preferred for organ/muscle-related disease investigations.

Upon assessing the efficacy of MRI scans in examining lower back pain, the stan-

dard sequences for MRI of the lumbar spine are elucidated, highlighting the spe-

cific information conveyed within the images. Additionally, the MRI scan process

relevant to the patient is detailed.

1.5 Body Planes

To understand the standard lumbar spine sequences, it is important to know about

the standard reference planes and positions used in the human body. These planes

are mainly used in medical imaging to locate and identify internal organs according

to the area of interest [10]. The human body can be divided into three two-

dimensional planes for this purpose as in Fig. 1.1

1. The sagittal plane refers to a vertical plane that divides the body into right

and left sections when viewed from the side.

2. The axial plane, also known as the transverse plane, is a horizontal plane

that divides the body into upper and lower sections, parallel to the ground.

It provides an observer with a view of the body from either the top or bottom

perspective.
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Figure 1.1: Human Body Reference Anatomical Planes [10]

3. The third is the coronal plane, which divides the body into front and back

portions when the observer is facing it from the front.

1.6 Standard MR Image Sequences for Lumbar

Spine

To understand the standard lumbar spine sequences, it’s important to know the

basics of MRI image construction. In MRI, the human body’s tissues, which

contain higher hydrogen nuclei that behave like tiny magnets, are exposed to an

external magnetic field that causes them to align with the field, a phenomenon

called precession. [11] The protons in the aligned hydrogen nuclei are then excited

by a radio frequency of a specific frequency known as the Larmor frequency, and the

protons de-excite, generating an MR signal that’s subsequently used to construct

the image using spatial encoding.
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The relaxation of protons and emittance of MR signal depends on the tissue type

and are categorized into two types: T1 relaxation and T2 relaxation.[12] Standard

practice involves generating sagittal and axial views for T1- and T2-weighted im-

ages, but in certain cases, coronal views and T2-weighted fat-saturated sagittal

slice sequences are also generated. [13] Fig. 1.2 shows a side-by-side view of both

T1- and T2-weighted images of the lumbar spine, depicting end-plate deformation

in the VB, disc bulge, and contrast difference of hydrated and dehydrated IVD.

T1-weighted images provide a bright (white) representation of fat-containing struc-

(a) (b)

Figure 1.2: (a) T1-Weighted (b) T2-Weighted

tures, while T2-weighted images provide a bright (white) representation of both

fat and fluid-based contents. T1 images are generally more suited for anatomical

depiction, while T2 images are considered for pathological evaluation. For the

purpose of this thesis, the image acquisition modes are limited to basic T1- and

T2-weighted images only, although certain variations are used specifically for the

anatomical region under study.

Table 1.2 summarizes the variation in the information presented by both T1 and

T2-weighted-images for the lumbar-spine region. The easiest way to differenti-

ate between a T1 and T2-weighted-image is to identify cerebrospinal fluid (CSF),

which gives bright intensity levels in T2-weighted images and dark intensity in T1-

weighted images. Additionally, the hydrated IVDs appear bright in T2-weighted-

images, whereas in T1-weighted-images, both hydrated and dehydrated IVDs ap-

pear dark [14–16].
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1.7 MRI Exam Sequence

As previously mentioned, MRI scans provide more detailed information compared

to CT scans, making them a better option for investigating the lumbar spine

region. A patient is recommended for an MRI examination of the lumbar spine

by a specialist consultant to determine the cause of lower-back pain or specific

complaints. The scan, which can take between 20-45 minutes depending on the

MRI machine’s magnetic strength, typically produces sagittal and axial slices.

However, for patients with scoliosis, coronal scans may also be included in the

MRI exam [17].

Table 1.2: Comparison of Information Contents in T1- and T2-Weighted Im-
ages of Lumbar Spine

Dark Bright

T1

IVDs (All) Epidural Fat

CSF Sub-cutaneous tissue fat

Muscle Mass

Spinal Cord

Blood Vessels

VB End-plates

Nerves

T2

IVDs (Dehydrated) IVDs(Hydrated)

Muscle Mass ⋆Epidural Fat

Spinal Cord ⋆Sub-cutaneous tissue fat

Blood Vessels CSF

VB End-plates

Nerves

⋆In case of non-fat saturated image

Once the scan is complete, the Digital Imaging and Communications in Medicine

(DICOM) [18] images are processed through the Picture Archiving and Communi-

cations System (PACS) [19], where a radiologist reviews and evaluates the images

to generate a report. The radiologist analyzes the MRI images without physi-

cally examining the patient, and the patient receives the report along with the

MRI scans for review by the referring consultant. A spinal surgeon then evaluates

the patient’s clinical findings and establishes a correlation between their physical
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symptoms and the MRI scan. Based on this, a decision is made on whether to

proceed with conservative treatment or an appropriate surgical intervention to

treat the condition.

1.8 Challenges in Diagnosing Lower Back Pain

Diagnosing lower back pain is frequently a subjective and time-consuming duty.

Different clinicians may evaluate the same patient differently due to variations in

their experiences and skill sets, which are further compounded by the variability

in clinical findings. To address this issue, there is a need for quantitative methods

to establish a concrete analysis of the lumbar spine region. Currently, spinal

surgeons and radiologists rely on manual or software-assisted image understanding

methods, which can be laborious, time-consuming, and subjective. These methods

can be subject to intra- and inter-medical specialty variations, such as those within

radiologists and spinal surgeons. Quantitative methods such as spinal alignment

measurements, spinal deformation attributes, and spinal balance readings can be

used to perform a more objective spinal assessment.

1.9 Significance of Lumbar Central Canal Mea-

surements

Accurate measurement of the lumbar central canal plays a crucial role in diagnos-

ing and treating various spinal conditions. The central canal, a narrow passage

within the spinal cord, accommodates the spinal cord and nerves. Any alterations

or abnormalities in its size can result in nerve compression, leading to symptoms

such as pain, numbness, or weakness in the lower extremities. Precise assessment

of the central canal is essential for diagnosing conditions such as spinal-stenosis,

herniated-discs, and degenerative disc-disease.

Additionally, central canal measurements can be used to assess the effectiveness

of treatments such as surgery or physical therapy. Therefore, lumbar central canal
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measurements are an essential component of the diagnosis and management of

spinal disorders [19].

1.10 Challenges-in Medical Image Analysis

The field of medical image analysis has undergone significant developments in

recent times to address challenges in segmentation, identification, and labeling.

The exponential growth of medical imaging data with varying characteristics such

as high volume, speed, and diversity has increased the need for dynamic and robust

techniques for extracting and evaluating image information.

However, undesired artifacts and noise, such as inhomogeneities in intensity and

motion-related noise, present in MRI scans can make it challenging for researchers

and clinicians to accurately identify diseases. To overcome these difficulties, pre-

processing and post-processing techniques are used.

MRI is generally preferred for soft-tissue imaging due to the dark appearance of

bones in MR images. However, as bony structures visible in MRI scans are a

combination of bone, fat, and water, the overlapping regions of bones and soft

tissues pose an additional challenge for segmentation using conventional methods

based on edge-based or intensity-based segmentation. Additionally, the content

of the image can vary significantly from one subject to another, adding to the

difficulty.

As previously mentioned, radiologists focus on identifying the presence of spinal

disease, while spinal surgeons evaluate patients based on their symptoms and

attempt to correlate MR images with pain symptoms. To establish this correlation,

spinal quantitative assessment is done either manually or with software-assisted

methods. Therefore, there is a need for an automated quantitative assessment

tool for the lumbar spine region to offset inter- and intra-clinician variations by

obtaining reproducible automated readings [20, 21].
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1.11 Summary

Clinicians currently rely on subjective manual assessment when evaluating pa-

tients with lumbago, which can vary depending on the skill and experience of the

clinician. There is a need to develop an automated tool to analyze MR images and

establish a quantitative correlation between perceived symptoms and spinal dis-

orders. Overcoming the challenges in MR imaging requires the implementation of

rigorous image processing methods, including image segmentation and subsequent

automated spinal measurements.



Chapter 2

Literature-Review,-Problem

Statement,-and Research

Contributions

2.1 Overview

This chapter presents a concise literature review on the development of a system to

identify the thecal sac compression by using a ground truth image dataset for lum-

bar spine disc images, methods and techniques of various researchers to segment

the region of interest, which is the Thecal sac in the lumbar spine disc region for

this thesis. Additionally, Section 2.5 discusses the methods and techniques used

for spinal canal measurements that are clinically significant before surgical inter-

vention. A brief analysis of the reviewed work is also presented to determine its

suitability for research continuity. Finally, Section 2.7 analyzes existing research

gaps and the efforts made in this thesis to address them.

11
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2.2 Segmentation of Medical Image

In this section of the research thesis, the discussion revolves around prior research

on medical image segmentation, including both traditional and machine learning-

based methods. Sub-section 2.2.1 presents conventional approaches, while Sub-

section 2.2.2 provides a review of deep learning techniques used for medical image

segmentation tasks. In Sub-section 2.3, a brief comparison is provided between

unsupervised and supervised deep learning methods for segmentation. Previous

methods for segmentation can be categorized as semi-automatic and fully auto-

matic. Semi-automatic methods involve some user intervention, such as placing

landmarks, while fully automatic methods require no user involvement. A sum-

mary of previous research is provided, although it is not exhaustive.

2.2.1 Conventional/Traditional Methods of Medical Image

Segmentation

Smyth et al. [22] utilized Active Shape Model (ASM) to quantify the VB shape on

a dataset consisting of 84 bone density scans or dual-energy X-ray absorptiometry

(DXA) images. They manually labelled the vertebrae on each image, including

10 vertebrae total, 6 thoracic from T7-T12 and 4 lumbar from L1-L4. Aslan et

al. [23] used a universal shape model for CT image segmentation. Carballido

et al. [24] employed normalized cuts for spinal MRI segmentation and sought

user input to select the vertebrae to keep, finding that the segmentation results

were reduced if the mid-sagittal slice was not precisely chosen. Generalized Hough

transform (GHT) [25] template matching was used to locate lumbar vertebrae in

X-ray images. In their research, Zhu et al. [26] employed Gabor filter banks to

identify and estimate spinal curves and intervertebral disc (IVD) features. They

further proceeded to segment the IVDs using a dataset that consisted of T2 images

from 37 patients at a hospital in China. Their findings revealed a localization

accuracy of 98.23% and a Dice Similarity Coefficient (DSC) of 0.9237 for the

segmentation process.
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Clustering-based fuzzy c-means algorithm segmentation was performed using GHT

on a dataset comprising cervical radiograph scans, with claimed accuracy of 96.88%

[27]. K-means clustering and GHT (template matching) were used in another

study [28]. Spinal canal segmentation and extraction was performed using k-

means clustering in T2-weighted images of sagittal slices in a study by Bampis et

al [29]. Glocker et al [30]. utilized classification random forests to locate (finding

centroids) based on a CT image dataset and reported an 81% identification rate

with an overall median localization error of less than 6mm.

2.2.2 Deep Learning-Based Methods for Medical Image

Segmentation

Lu et al. [31] employed the U-Net architecture to segment sagittal MR images

with an input size of 512 x 512 pixels. Their evaluation focused on accurately

detecting the number of vertebral bodies (VBs) and ensuring there was no overlap

between the detected sacrum bone and the lumbar area, in comparison to ground

truth (GT) images. Their results showed successful detection of 188 out of 200

VBs, achieving an accuracy of 94%. The dice similarity coefficient (DSC) was

measured at 0.93 with a standard deviation of 0.02. Additionally, they calculated

the mean error distance between the center of GT images and the detected center,

resulting in 0.79 mm with a standard deviation of 0.44 mm.

Janssens and Zheng [32] utilized the Fully Connected Network (FCN) to segment

lumbar spine vertebrae in CT images. Their approach involved using a localiza-

tion net based on FCN to crop the region of interest (Lumbar Spine), followed

by the Segmentation-Net (FCN) to segment the vertebrae. They achieved a dice

similarity coefficient of 0.9577 ± 0.81 and an average symmetric surface distance

of 0.37 ± 0.06 mm.

Lessmann et al. [33] employed CNN for vertebrae segmentation, attaining an av-

erage dice similarity coefficient of 94.9% across various datasets, including CT and

MRI images.

Tang et al. [34] proposed the use of the Dual Densely Connected U-Net architec-

ture for segmenting axial scans extracted from CT images. Their method achieved
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high accuracy metrics, including pixel accuracy, mean pixel accuracy, mean Inter-

section over Union, and frequency-weighted IoU. Benjdira et al. [35] employed

the U-Net architecture to perform semantic segmentation of Ultrasound Images

of the Lumbar Spine. This segmentation approach is particularly beneficial for

spinal surgeons during and after laminectomy procedures. Hassan et al. [36]

conducted a comparative analysis of different deep-learning frameworks for reti-

nal lesion segmentation. Their study revealed that RAGNet exhibited the most

promising outcomes due to its ability to retain contextual information of the lesions

during image decomposition, making it well-suited for retinal images. Siriward-

hana et al. [37] introduced the usage of the U-Net architecture to segment T2

axial MRI images, achieving an mIOU (mean Intersection over Union) of 88.62%

with this model. The dataset employed in their study consisted of 1545 patients

with lower back pain. Narasimharao Kowlagi et al. [38] use combined FPN +

ResNet34 and achieve mIOU 97.5 ± 0.1. The dataset used in this study was 1500

MRI with a resolution of 512x512. Merve Apaydin et al. [39] utilized the U-Net

architecture for Intervertebral Disc Segmentation in T2-weighted axial MRI. A

dataset of 515 patients MRI is used and analyzed the performance on different

data splits achieves 0.99 pixel accuracy and 0.92 mIoU when 90% train and 10%

test data. Abhinav shukla et al. [40] employed convolutional neural network based

2D U-Net architecture to segment intervertebral bodies in T1-weighted Axial MRI.

The dataset used in this study was 1545 MRI with a resolution of 128x128. They

achieved a mIoU of 0.714.

This thesis explores the utilization of pre-trained networks for segmentation tasks.

The focus is on training different models using fine-tuning, a highly effective trans-

fer learning technique. More information about the application of fine-tuning can

be found in Chapter 4, specifically in Section 4.3.4.

2.3 Supervised vs Unsupervised Learning

Joyce et al. proposed the use of generative adversarial networks (GAN) [41] for the

segmentation and reconstruction of cardiac images, including both CT scan and

MR images, by utilizing labels from a different dataset with the same anatomy.
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Their study suggests that supervised methods have shown promising results, as

they were able to achieve a dice similarity score of 0.84 on MR images and 0.87 on

CT scan images with the help of supervised methods using the U-Net architecture.

In contrast, unsupervised methods achieved a dice similarity coefficient of 0.66 for

MR images and 0.51 for CT scan images.

Figure 2.1: Lee Lumbar Central Canal Stenosis Grading System [42]

2.4 Commonly Used Grading Systems for Lum-

bar Central Canal Stenosis

The Lee grading system is an MRI-based classification system used to assess the

severity of central canal stenosis in the lumbar spine. Lee [42] categorized central

canal stenosis into four grades, considering the degree of compression on the dural

sac, which houses the spinal cord and nerve roots. Additionally, the system takes

into account factors such as disc herniation, facet joint osteoarthritis, and ligamen-

tum flavum hypertrophy, all contributing to the level of central canal stenosis. The

reliability between different readers was found to be almost perfect (ICC reliabil-

ity=0.730–0.953), while the intra-reader reliability was also nearly perfect (kappa
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Figure 2.2: Sahizas Lumbar Central Canal Stenosis Grading System [43]

value=0.863–0.900). On the other hand, the Schizas grading system [43] uses a

7-grade classification based on the morphology of the dural sac observed in T2

axial magnetic resonance images. This system evaluates the rootlet/cerebrospinal

fluid ratio and relates the morphological grading to digital measurements obtained

by measuring the dural sac cross-sectional area (DSCA), AP diameter, and trans-

verse distance using OSIRIX software. However, these measurements pose chal-

lenges due to their time-consuming nature and the variability in the number of

nerve roots depending on the spinal level. The average intra- and inter-observer

agreement showed substantial and moderate results, respectively (k = 0.65 and

0.44).

This part of the thesis discusses common grading methods that clinicians and

radiologists use to grade stenosis in their professional life. The Lee grading system

is a classification system used to grade the severity of central canal stenosis in the

lumbar spine based on magnetic resonance imaging (MRI) scans.

Average intra- and interobserver agreement were substantial and moderate, respec-

tively (k = 0.65 and 0.44). In the study by Yeon-jee Ko et al. [44], five experts

in the field evaluated both the Lee and Schizas grading systems. The evaluation

involved two clinical fellows, one novice radiology resident, one neurosurgeon, and

one orthopedic surgeon who were unaware of these grading systems. The analysis
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included 70 patients, with a total of 280 disc levels assessed using T2-weighted

axial MRI for grading lumbar central canal stenosis according to both the Lee and

Schizas grading systems. The inter-observer agreements revealed similar results

for both systems. ICC ranged of Schizas grading system from 0.827 to 0.983 and

Lee grading system from 0.840 to 0.983. The Miskin grading system [45] addresses

Figure 2.3: Miskin Spinal Stenosis Grading System [45]

the classification of three types of stenosis: Spinal stenosis, Foraminal Stenosis,

and Lateral Recess Stenosis. In the case of Spinal stenosis, Miskin simplifies the

classification proposed by Schizas, categorizing it as normal, mild, moderate, and

severe. Intermediate grades such as mild-moderate and moderate-severe are also

permitted, although not explicitly described. The evaluation of the grading system

was conducted using axial T2-weighted images. For spinal stenosis, the readers

demonstrated substantial agreement, with a kappa value of 0.702.

2.5 Lumbar Central Canal Measurements

This study did not review the current manual techniques used for spinal mea-

surements, which involve physical tools such as inclinometers, flexible rulers, and

spinal mice, and radiography images. Instead, we provide a thorough review of
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semi-automated measurement techniques that require human intervention via soft-

ware assistance and fully automatic methods that require no human intervention

[46].

2.5.1 Measurements Through Semi-Automated Methods

In the past and currently, DICOM viewers with integrated measurement tools have

been widely utilized by spinal surgeons and radiologists for spinal measurements.

However, certain researchers have utilized computer software for evaluating spinal

stenosis measurements and have relied on manual marking of landmarks to make

measurements [47–49]. The manual landmarks in the process involve identifying

the centroid of the intervertebral disc and thecal sac. These landmarks serve

as reference points for estimating other spinal measurements like the anterior to

posterior diameter and the cross-sectional area of the dural sac. In the study

conducted by Bharadwaj et al. [50], the MD.ai software was utilized to delineate

the boundaries of intervertebral bodies and obtain measurements such as the dural

sac and intervertebral disc diameter, as well as the cross-sectional area of the dural

sac and intervertebral disc. These measurements were then used to grade lumbar

central canal stenosis by employing a binary classifier to differentiate between

normal and stenotic cases. The proposed metrics, namely DDRDIA and DDRCA,

achieved an accuracy of 96.2% and 94.6%, respectively.

2.5.2 Measurements Through Fully Automatic Methods

Lately, efforts have been made towards creating computer-based methods for com-

prehending images that rely on both fully and semi-automated diagnosis. This

would aid clinicians in their manual diagnosis process.

Jiawei Huang et al. [51] introduced the utilization of the U-Net architecture for

segmenting the lumbar spine using 486 T2-weighted sagittal images. The segmen-

tation achieved a mean intersection-over-union of 94.7% for vertebra body and

92.6% for disc segmentation. The agreement between the vertebra and disc mea-

surements obtained through the segmentation and ImageJ was excellent, with ICC
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values ranging from 0.81 to 1.00.

Friska Natalia et al. [52] employed the Seg-Net architecture to segment T2-

weighted axial MRI images of the lumbar spine. After segmentation, nine land-

mark points were identified on the segmented image, and the software connected

these points to determine the anterior-posterior (AP) diameter and foraminal

widths. The average error of the calculated AP diameter and foraminal widths,

when compared to expert calculations, was 0.90mm and 0.28mm, respectively.

Siriwardhana et al. [37] utilized the U-Net architecture for the segmentation of

T2-weighted axial MRI images. The model achieved a dice coefficient of 99.52%

and an intersection-over-union (IOU) of 88.62%. Additionally, edge detection tech-

niques were applied to measure the minimum distance between the intervertebral

disc and the posterior element.

2.6 Classification of Lumbar Spinal Stenosis

Tackeun Kim et al. [53] proposed a transfer learning algorithm based on CNN for

classifying lumbar spinal stenosis (LSS) and normal cases. The VGG19 architec-

ture was employed as the backbone model, trained on a dataset of 12,442 images.

The algorithm achieved an accuracy of 82.8% and an AUROC of 90.0%.

Jen-Tang Lu et al. [31] developed a multi-input, multi-task, and multi-class CNN

for grading lumbar central canal and foraminal stenosis using both axial and sagit-

tal images. The study utilized a dataset consisting of 22,796 disc levels extracted

from 4,075 patients. The classification accuracy for multi-class grading was found

to be 78.6%, and the AUROC for the binary classifier was 0.97.

Dongkyu Won [54] use the CNN model for the detection of ROI and then further

train a VGG architecture-based model for four grades of lumbar spinal stenosis.

Dataset of 542 T2 weighted axial L4-L5 images. Grading agreement between ex-

perts achieves an accuracy of 77.5% and F1 score of 75%.

Upasana Upadhyay Bharadwaj et al. [50] present the use of a binary decision tree

for the classification of central canal stenosis and achieve AUROC of 0.95 Alessan-

dro Siccoli et al. [55] utilized various machine learning methods, and among them,
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the results of the XGBoost machine were promising, achieving an accuracy of 0.85,

an AUC of 0.92, a sensitivity of 0.86, and an F1 score of 0.87.

2.7 Problem Statement

Currently, diagnosing medical conditions related to the lumbar spine disc is sub-

jective and lacks quantitative assessment. As shown in the above Sections, clini-

cians depend on software-assisted methods for making measurements, which can

be time-consuming and subject to variation based on the skill and expertise of

the clinician. Therefore, there is a need to develop automated image understand-

ing tools that can facilitate decision-making and improve the diagnostic ability of

both radiologists and spinal surgeons in measuring spinal disorders and classifying

diseases.

2.8 Contributions

Addressing to bridge the gap, the following efforts have been made in this research

thesis:

1. In Section 4.3, a conventional fully automated image segmentation is sug-

gested for segmenting the intervertebral disc. Additionally, existing deep

learning methods that are currently used for segmentation related tasks are

extensively tested on the same dataset as well, as described in Section 4.2.

A quantitative comparison is made between the results obtained using the

proposed conventional method and those obtained using deep learning meth-

ods.

2. In Section 5.2, a mathematical model is presented to extract important mea-

surements of the lumbar spinal disc and thecal sac that hold clinical signifi-

cance. These measurements encompass the anterior-posterior diameters and

cross-sectional area of the disc, as well as the anterior-posterior diameters

and cross-sectional area of the dural sac.
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3. Additionally in Section 6.2, proposed a fully automated lumbar spinal steno-

sis classification on the basis of the quantitative measurements.

Figure 2.4: Proposed Framework

The proposed framework of the thesis is presented in Fig 2.4, showing the input

image being the first step followed by IVB segmentation including the identification

of the Intervertebral disc and thecal sac. The third step being the measurements

related to lumbar spinal disc geometry while the last step in which lumbar spinal

stenosis classification is performed through automated means.

2.9 Summary

Deep learning networks have shown promising outcomes in semantic segmentation,

surpassing conventional machine learning-based methods and algorithms. Creat-

ing a tool for automated measurements not only saves time in acquiring relevant

spinal measurements but also adds confidence to the readings obtained with the

aid of computer-assisted software. To develop an automated tool for a specific

anatomical site, it is critically essential to understand the clinical requirements
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and preferences of both radiologists and spinal surgeons to make the tool clini-

cally beneficial. Chapter 3 covers the clinical preferences of both radiologists and

spinal surgeons while diagnosing lower-back related diseases and disorders.



Chapter 3

Basic Lumbar Spine Anatomy

with Pathophysiology and

Clinicians’ Overview

3.1 Outline

This section presents a brief summary of the anatomical structure of the lumbar

spine and related conditions. It aims to familiarize the reader with the fundamen-

tal factors that radiologists and spinal surgeons take into account when diagnosing

individuals with lower-back pain. Towards the end of the chapter, there is a de-

scription of several spinal measurements that are essential for spinal surgeons to

determine before performing spinal intervention procedures. These measurements

are performed manually or with the assistance of software and are crucial in restor-

ing the normal curvature of the lumbar spine in individuals with excessive inward

curvature in that area.

3.2 Anatomy of Lumbar Spine

The human spine, commonly referred to as the backbone, is comprised of five main

regions: cervical, thoracic, lumbar, sacrum, and coccyx. In total, there are usually

23



Basic Lumbar Spine Anatomy with Pathophysiology and Clinicians’ Overview 24

33 vertebrae, as shown in Fig. 3.1, which presents a left view in the sagittal plane

and a subsequent section axial view on the right. This research thesis focuses only

on the lumbar spine region, which begins after the last thoracic vertebra (typically

T12) and ends at the fused sacrum bone. The lumbar spine is composed of five

vertebrae, namely L1 to L5, each consisting of a main vertebral body (VB) in

the anterior or front-side, and a vertebral arch (VA) in the posterior or back-side,

when viewed laterally or in sagittal view.

3.2.1 Main-Vertebral-Body (VB)

The primary load-bearing component of the lumbar spine is the main axial struc-

ture situated in the front region. The gaps between neighboring vertebral bodies

are occupied by intervertebral discs (IVDs), which are commonly referred to by

their respective levels, such as L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1. These

IVDs are made up of fibrocartilage and act as cushions to the vertebral column,

providing both stability by holding adjacent vertebral bodies together and allow-

ing mobility of the spine. The outer part of the IVD is called anulus fibrosus, while

the inner part is referred to as nucleus pulposus. Any change in the shape, size,

or structure of the IVDs can cause an imbalance in load sharing and functional

issues.

3.2.2 Vertebral Arch (VA)

Each vertebral arch (VA) consists of a pair of transverse and articular processes on

the left and right sides, along with a single spinous process, formed by the joining

of the laminae on both sides. The VA protects the spinal canal, which is the cavity

through which the spinal cord, along with cerebrospinal fluid (CSF), passes. It

also provides stability to the spine during excessive flexion and shear forces [56].
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3.2.3 Intervertebral Discs (IVDs)

The intervertebral discs consist of two main components: the anulus fibrosus,

which is an outer fibrous ring, and the nucleus pulposus, a gel-like substance lo-

cated inside. The anulus fibrosus plays a crucial role in enclosing the nucleus

pulposus and preserving the shape of the disc. Meanwhile, the nucleus pulposus

functions as a shock absorber, evenly distributing the load throughout the verte-

bral column. The intervertebral discs are susceptible to damage, which can lead

Figure 3.1: Sections of Human Spine [56]

to a variety of spinal conditions including herniated discs, degenerative disc dis-

ease, and spinal stenosis. For the purpose of this research thesis not consider the

posterior element but focus on thecal sac and disc because measurements related

to lumbar central canal stenosis involve these regions of IVD.

3.3 Spinal Disorders (Pathophysiology)

This section presents the issues and disorders related to the vertebral bodies (VB)

and intervertebral discs (IVD), along with the clinical features that demonstrate

the significance of these disorders.
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3.3.1 Degenerative Disc Diseases and Related VB Changes

According to [57], degenerative disc diseases are the most common ailment that

requires surgical intervention. Over 90% of spinal surgeries are performed to cor-

rect degenerative disc diseases and related issues [106]. Patients with lower back

pain often have some form of degenerative disease, either due to abnormal wear,

known as spondylosis, in VB/IVD, or reduction of cartilage covering the bones,

known as osteoarthritis [58]. These changes can result from aging or trauma. Some

Figure 3.2: Herniated Disc [14]

degenerative changes that result from aging may not cause pain [14], but they can

dehydrate the center of IVD, limiting the disc’s ability to absorb shocks and mak-

ing it more vulnerable to permanent damage. Fractures in VB can also contribute

to degenerative changes in VB and IVDs. In some cases, end-plate deformation or

VA deformation can result in the formation of bone spurs, known as osteophytes

[56], which can significantly pressure existing nerves and cause stenosis. Some of

the changes in the spine caused by degenerative diseases of IVDs are as follows:

1. Dehydration of the nucleus pulposus leads to disc narrowing [56], reducing

shock absorption, altering spinal balance, and making the discs vulnerable.

2. Annular tear refers to cracks in the outer ring of fiber, known as annulus

fibrosis [59].
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3. Disc herniation refers to the movement of disc material outside the normal

boundaries of the annulus fibrosus, while disc bulge refers to a more gener-

alized displacement of disc material in a particular direction [60]. Fig. 3.2

illustrates examples of both hydrated and dehydrated intervertebral discs.

3.3.2 Common Clinical Features

The following are the most common clinical characteristics related to the lumbar

spine and VB/IVD:

• Sciatica is a form of pain that commonly extends from the back to the lower

leg. It is frequently the result of a herniated disc exerting pressure on the

nerve root, resulting in compression.

• Spinal stenosis [61] refers to a condition in which the spinal canal is narrowed,

as shown in Fig. 3.3. This is typically caused by pressure from a protruding

disc in the front and the thickening of the yellow ligament in the back. As a

result of this pressure, people may experience a tingling pain sensation that

usually occurs after walking a certain distance and is relieved with rest.

Figure 3.3: Spinal Stenosis

• Spondylolisthesis is a condition in which a VB becomes dislocated either

towards the anterior or posterior side in relation to its counterpart with

which the VB articulates. This malalignment is caused by a fracture of the
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posterior element (VA) that allows the affected vertebra to slip. This is

shown in Fig. 3.4.

3.4 Lumbar Spinal Stenosis

Lumbar spinal stenosis is a condition characterized by the narrowing of the spinal

canal in the lumbar region, which can cause compression of the nerves and lead

to symptoms such as pain, weakness, and numbness in the lower back, buttocks,

and legs. There are three main types of lumbar spinal stenosis:

3.4.1 Lumbar-Central-Canal-Stenosis

Central canal stenosis is a form of lumbar spinal stenosis characterized by the nar-

rowing of the spinal canal in the lower back, resulting in compression of the spinal

cord or cauda equina nerves. Several factors can cause this condition, including

thickened ligaments, protruding or herniated discs, or bone spurs. Patients suffer-

ing from central stenosis may experience symptoms such as leg or buttock pain,

numbness or weakness, and difficulties with bladder or bowel control [61].

3.4.2 Lumbar Foraminal Stenosis

Foraminal stenosis is a form of lumbar spinal stenosis that specifically affects

the foramen, which are openings in the vertebrae that allow the spinal nerves to

exit the spinal cord and extend to other parts of the body. As these openings

become narrower, they can exert pressure on the nerves within the spinal canal,

causing a range of symptoms such as leg or foot pain, numbness, tingling, or muscle

weakness. The causes of foraminal stenosis usually involve degenerative changes

in the spine, such as the development of bone spurs, herniated discs, or thickening

of ligaments. In addition, it can also be caused by spinal injuries, infections, or

tumors [62].
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Figure 3.4: Spondylolisthesis and Disc Bulge in Lumbar Spine

3.4.3 Lumbar Lateral Recess Stenosis

Lateral recess stenosis is a condition that specifically impacts the lower back region

of the spine and results from the narrowing of the openings located on the sides

of the vertebrae, also called lateral recesses. As these openings get narrower,

they press on the nerve roots that pass through them, leading to pain, numbness,

or weakness in the legs or buttocks, and issues with balance or coordination.

The causes of lateral recess stenosis can include herniated discs, bone spurs, or

degenerative changes in the spine [63].

3.5 Clinical Evaluation / Analysis Perspectives

In the previous section, we discussed the basic anatomy of the lumbar spine and

common pathological conditions. The present section focuses on the evaluation

of lower back pain by radiologists and spinal surgeons to make a diagnosis. The

preferences of both professionals are discussed, providing a comprehensive under-

standing of the responsibilities of spinal surgeons who not only conduct clinical

assessments of patients but also analyze and correlate their findings with MRI
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images. While this thesis elaborates on spinal disorders related to spinal geometry

in detail, it provides a brief overview of other pathological conditions related to

the lumbar spine.

3.5.1 Radiologists’ Viewpoint

According to radiology experts, the lumbar spine is more vulnerable to degenera-

tive changes due to the impact of body weight in this area [14, 64]. They believe

that the most affected region in the lumbar spine is the last three-disc levels L3-L4,

L4-L5, and L5-S1 due to maximum load stress [56].

The examination of the lumbar spine by radiologists aims to pinpoint the spe-

cific site of spinal conditions, assisting spinal surgeons in determining the most

suitable surgical intervention, if necessary [65]. While the diagnosis and analysis

reports may vary based on individual patient scans, radiologists typically observe

the presence of degenerative disc diseases, vertebral body deformations such as

spondylosis, and osteoarthritis in the vertebral body or intervertebral discs. They

also observe vertebral endplate deformations, which may result in the formation

of bone spurs or osteophytes, a significant cause of nerve compression.

Additionally, they may identify dehydrated intervertebral discs, disc cracks, and

herniation [56, 60, 66]. In addition, the diagnosis may involve identifying clini-

cal symptoms related to sciatica, which is commonly characterized by pain that

spreads from the back to the lower leg, grading the narrowing of the spinal canal

known as spinal stenosis, and other related disorders. The diagnosis is made by

creating a three-dimensional projection of the lumbar spine using sagittal and axial

slices, and for individuals with scoliosis, a coronal scan is also included.

The comprehensive examination of the lumbar spine from multiple perspectives

enables the radiologist to enhance their knowledge of its anatomy and detect any

evident irregularities or distortions. If required, specific measurements are taken

to further assess the condition. These measurements are crucial for establish-

ing a correlation between the radiological findings and any surgical interventions

required [57, 67].
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3.5.2 Spinal Surgeons’ Viewpoint

The spinal surgeon conducts a thorough examination of the patient, carefully cor-

relating the clinical observations with the information provided by the MRI scans

and radiologist’s analysis report. Additional physical assessments are conducted

to address the specific symptoms reported by the patient. The objective of the

surgeon is to identify the surgical site relevant to the disease and propose a cor-

rective treatment that restores the patient’s quality of life [68]. The choice of

treatment, whether surgical or non-surgical, is determined by factors such as the

severity of the spinal condition, the patient’s pain tolerance, and their preference

for conservative treatments. The selection of the most suitable surgical inter-

vention procedure is based on a careful evaluation of the individual case and its

unique circumstances. The surgical interventions for Lumbar Spine are typically

categorized into two major types.

3.5.2.1 Lumbar Decompression

The primary goal of lumbar decompression surgery is to alleviate the pressure

created by the bulging intervertebral disc (IVD) and yellow ligament, leading to

spinal stenosis [69]. During the surgical procedure, the surgeon will remove the

specific portion of the disc, bone, or ligament that is responsible for the compres-

sion or constriction of the spinal canal. Microdiscectomy refers to the removal of

the portion of the slipped IVD that is causing compression on the spinal canal,

while laminectomy refers to the removal of the section of bone and yellow ligament

that results in spinal stenosis, a condition characterized by the narrowing of the

spinal canal.

3.5.2.2 Lumbar Fusion

To alleviate pressure on spinal nerves caused by stenosis in the lumbar region, a

surgeon may perform a fusion procedure by joining two adjacent vertebrae together

to restrict movement between them. This is achieved by inserting a bone graft,

which can be taken from the patient’s own hip bone or a donor, between the
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vertebrae to encourage fusion and restrict motion at the affected segment. The

approach for the surgery may vary depending on the surgeon’s preference and

the specifics of the case. It could be done using a minimally invasive technique,

where a small incision is made and specialized instruments are used to access the

affected area, or through open surgery, where a larger incision is made and the

surrounding tissue and muscle are moved aside to access the spine. The specific

surgical technique used may also differ depending on the location and severity of

the stenosis [70–72]. The following are descriptions of different types of spinal

fusion procedures:

• Posterolateral-Gutter-Fusion involves taking a bone graft, usually from

the pelvis, or using a substitute bone graft, and placing it in the posterolat-

eral area of the spine, which is a vascular area that allows for proper blood

flow to the grafted region [73]. The transverse process serves as a muscle at-

tachment site, providing tension and muscle support over the grafted bone.

The bone then grows and fuses the vertebrae, stopping segmental motion.

Pedicle screws may be used for added support.

• Posterior Lumbar Interbody Fusion (PLIF) Surgery involves making

an incision in the midline of the back and removing muscles to expose the ver-

tebral column. Laminectomy is performed to visualize the nerve roots, and

the facet joints are trimmed to create space for the nerve roots [72–74]. The

intervertebral disc (IVD) material is removed, and a bone graft is inserted

in the IVD space to fuse the superior and inferior vertebrae, restricting joint

movement. Pedicle screws and rods may be used for additional support.

• Anterior Lumbar Interbody Fusion (ALIF) Surgery involves approach-

ing the vertebral column from the front of the patient, and may be combined

with posterolateral gutter fusion for added stability. The abdominal muscles

and blood vessels are retracted, exposing the spine [73]. The IVD material

is removed and a cage implant is inserted, followed by a bone graft to fuse

adjacent vertebrae and restrict segmental motion. Pedicle screws and rods

may also be used for additional support.
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• Transforaminal Lumbar Interbody Fusion (TLIF) Surgery is similar

to PLIF, but both anterior and posterior sides are fused through a single

approach. The posterior side of the spine is fused as in PLIF, while the

anterior side is fused by placing pedicle screws, rods, and bone grafts. This

procedure avoids forceful retraction of spinal nerves to prevent nerve root

damage [72].

• Extreme Lateral Interbody Fusion (XLIF) Surgery involves approach-

ing the spine from the side and performing a fusion operation. A dilator and

retractor are placed directly above the IVD to spread the muscles and tis-

sues. A spacer (cage) is placed in the cleared space followed by a bone graft.

This procedure is minimally invasive, and pedicle screws and rods may be

used for additional reinforcement [72].

3.5.2.3 Non-Surgical-Treatments for Lower-Back Pain

When surgery is not necessary, non-surgical treatments may be prescribed to alle-

viate pain. These treatments include medication such as pain relievers and muscle

relaxants [75], along with specific exercises like the McKenzie Method. Other op-

tions include caudal epidural injection for pain management, acupuncture, spinal

manipulation by chiropractors, and heat therapy through thermography [76].

3.6 In-depth Assessment of Intervertebral Disc

Disorders

To determine the appropriate surgical intervention procedure, spinal surgeons con-

duct a thorough assessment of central canal and nerve root compression. This

assessment entails performing manual measurements on X-ray radiographs and

MRI images to determine various parameters such as the diameter from front to

back, the distance from side to side, and the cross-sectional area of the protective

covering of the spinal cord known as the dural sac. Unlike radiologists, spinal sur-

geons heavily rely on detailed and comprehensive measurements, as discussed in
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subsections 3.6.1. These measurements play a vital role in assessing the presence

and severity of stenosis, which in turn helps determine the appropriate surgical

approach for treatment.

3.6.1 Assessment of Lumbar Stenosis

Radiologists employ various measurements derived from imaging studies like MRI

or CT scans to assess the severity of lumbar spinal stenosis. These objective radi-

ologic criteria involve analyzing the size of the central canal, which accommodates

the spinal cord and nerves, and considering the presence of stenosis if the diameter

falls below a specific threshold. Another measurement examines the front-to-back

(Anterior to Posterior) diameter of the spinal canal, identifying stenosis if it is be-

low a certain threshold [77]. Radiologists also calculate the cross-sectional area of

the spinal canal to provide a more comprehensive assessment of stenosis. Moreover,

they assess the impingement of nerve roots by measuring the area of the foramina,

through which the nerve roots exit the spinal canal. Ligamentum flavum thick-

ness is also measured as it can contribute to stenosis [78]. It’s worth noting that

specific cutoff values for these measurements may vary, and quantitative criteria

alone do not determine the diagnosis. Clinical symptoms, patient history, and

physical examination findings are also crucial in making an accurate diagnosis.

Radiologists employ a combination of qualitative and quantitative assessments to

comprehensively evaluate lumbar spinal stenosis.

3.7 Summary

• Clinicians depend on software-assisted or manual measurements to assess

spinal canal disorders.

• Assessment of stenosis is dependent on the structure of the intervertebral

disc and thecal sac.

• Measurements including space between the intervertebral disc and posterior

element or dimensions of the thecal sac to assess the central canal structure.
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• Before choosing the appropriate spinal intervention procedures, a spinal sur-

geon relies on these quantitative measurements to establish a connection and

assess the effectiveness of the surgical procedure, typically spinal fusion, in

restoring alignment that causes compression of the central canal.



Chapter 4

Segmentation for Lumbar Spinal

Stenosis

4.1 Outline

This chapter provides an overview of the dataset involve in the segmentation for

lumbar spinal stenosis and a discussion about the generated ground truth images

for lumbar disc MRI images covered in Section 4.2. When conducting experiments

with deep learning techniques, different networks such as encoder-decoder archi-

tectures, scene parsing networks, and fully convolutional networks are utilized to

achieve the same objective. Furthermore, the proposed weighted average ensemble

method for segmentation is discussed in Section 4.3.5. The Python programming

language is utilized to execute these networks. The details of deep learning imple-

mentation are covered in Section 4.3 of this Chapter.

4.2 Dataset

The Sudirman Lumbar Spine Dataset [79] is utilized in this research thesis. The

dataset consists of a scientific study involving 515 patients who experienced back

pain. Additional examinations may be included in each patient’s data, involv-

ing images acquired from sagittal or axial views. Specifically, axial view images

36
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primarily capture the last three intervertebral discs (IVDs) and the separation

between the last vertebra and the sacrum. It is crucial to emphasize that this

dataset is specifically focused on examining the lumbar region of the human spine.

4.2.1 Raw Data

The dataset comprises a total of 48,545 MRI slices, averaging approximately 60-

95 slices per patient. These slices encompass Axial MRI slices of intervertebral

discs (IVDs) D3, D4, and D5, as well as sagittal MRI slices of the lumbar spine.

Both T1-weighted and T2-weighted images are included in the MRI scans, pro-

viding different tissue characteristics based on the arrangement of radiofrequency

pulses. For instance, T1-weighted images represent fat as white, whereas both fat

(a) L3-L4 Disc (b) L4-L5 Disc (c) L5-S1 Disc

Figure 4.1: T2-Weighted Axial MRI Images of D3, D4 and D5 for Patient ID
001

and water appear white on T2-weighted images. To visualize the MRI slices for

individual patients, a DICOM viewer can be employed.

4.2.2 Extracted Data

A set of 1,545 images comprising T1-weighted and T2-weighted Axial MRI slices

of D3, D4, and D5 were extracted from the raw data [79]. Each patient has

three images available. In Fig. 4.1, the T2-weighted Axial MRI images of D3,

D4, and D5 for Patient ID 001 are displayed. These Axial view MRI images are

utilized in the research for segmentation purposes, as they enable the creation of
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a ground truth where specific regions can be identified. This ground truth forms

the foundation for detecting lumbar spinal stenosis.

Figure 4.2: Regions of Interest of Lumbar Spine in Axial Planes

4.2.3 Ground Truth

The ground truth for the given dataset was generated using T1-weighted MRI

images. It comprises labeled images that indicate distinct regions. A total of four

regions have been identified.

• IVD-(Intervertebral Disc)

• PE-(Posterior Element)

• TS-(Thecal Sac)

• AAP-(Area between Anterior and Posterior Elements)

Fig. 4.2 provides a clear depiction of these mentioned regions of interest. To detect

or identify the presence of spinal stenosis, the initial step involves segmenting the

Axial MRI image within the designated regions depicted in Fig. 4.2. Fig. 4.3

displays the labeled image of the T2-weighted Axial MRI image of D3, D4, and D5
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for patient ID 001. The primary goal of the research is to segment the provided T2-

weighted MRI image into specific regions, which are classified as different classes.

CLASSs1: Inter Vertebral Disc (IVD)

CLASSs2: Posterior Element (PE)

CLASSs3: Thecal Sac (TS)

CLASSs4: Area between Anterior and Posterior Elements (AAP)

CLASSs5: Background

The objective of the study is to divide the given T2-weighted axial view MRI image

(a) L3-L4 Disc (b) L4-L5 Disc (c) L5-S1 Disc

Figure 4.3: Ground Truth Labels Images of D3, D4 and D5 for Patient ID
001

into four separate regions, as depicted in the labeled images. The segmentation

model’s effectiveness is evaluated using IoU metrics. Subsequently, the next phase

of the research expands on this work and concentrates on creating a system to

detect and identify whether a patient is suffering from spinal stenosis or not.

4.3 Segmentation Using Deep Learning Archi-

tectures

In recent years, conventional image segmentation methods have demonstrated fa-

vorable outcomes in solving computer vision challenges. However, with the advent

of deep learning and the application of neural networks in segmentation tasks, tra-

ditional approaches have been surpassed in terms of both quality and quantity.
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Extensive experimentation was performed using traditional image processing tech-

niques to address medical image segmentation. Before delving into the specifics of

implementation, it is crucial to assess the appropriateness of chosen deep learning

architectures for a particular task. The subsequent sections offer a concise sum-

mary of deep learning architectures and their desirability from a user’s standpoint.

4.3.1 Deep Network Architectures Overview

As mentioned in the literature review section, several researchers have highlighted

the efficacy of utilizing deep learning techniques for conducting segmentation tasks.

In this research thesis, the focus is on segmenting the intervertebral disc using well-

established deep learning methods such as encoder-decoder and scene parsing.

Furthermore, a comparative analysis is conducted among various popular models,

including UNet [80], ResNet [81], VGG16 [82], and InceptionNet [83]. Below is a

brief description of these models:

• UNet

The U-Net architecture [80] was developed specifically for performing scien-

tific image segmentation. This model is composed of two main components:

the first is one encoder and the second is a decoder. The encoder is respon-

sible for extracting features from the image and comprises a conventional

convolutional layer followed by a max pooling layer. On the other hand,

the decoder employs transposed convolutions, also known as the opposite

convolutions, and is designed to be symmetrical to the encoder. The U-Net

architecture is a fully convolutional network that solely consists of convolu-

tional layers without any dense layers, allowing it to handle images of any

size [80]. The structure of the classic U-Net network is depicted in Fig. 4.4,

illustrating the deep learning architecture of U-Net.

• ResNet

Deeper networks have the capability to extract more valuable information

from images, but this introduces certain challenges. As the network depth

increases, the number of parameters becomes excessively large, leading to
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Figure 4.4: UNet Architecture [80]

computational complexities. Additionally, the weights tend to approach

zero over the course of training, causing valuable information to become

indiscernible from the image. ResNet addresses these challenges through a

Figure 4.5: ResNet Architecture

straightforward approach known as skipping connections. In Fig. 4.5, the

input directly connects to the output without passing through the weight

layers, which are the convolution layers [81]. This approach employed by
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ResNet effectively resolves the issues associated with deep networks.

H(x) = F (x) + x (4.1)

In Eq. 4.1, when the value of F(x) is zero, the resulting output will also be

equal to x, which is known as the identification of a residual block. Con-

versely, if F(x) is not zero, it is categorized as a convolution block. It is

worth noting that in order for the convolution operation to be executed, the

dimensions must match. As shown in Eq. 4.2, the input x is multiplied by

a weight factor denoted as Ws [81].

H(x) = F (x) +Ws ∗ x (4.2)

• VGG16

VGG16, on the other hand, is a relatively simple network model that distin-

guishes itself by utilizing 2 or 3 convolutional layers. In the fully connected

layer, a feature vector with 7x7x512=4096 neurons is obtained. The soft-

max performance for 1000 classes is computed based on the outputs of the

two fully connected layers, utilizing approximately 138 million parameters.

Similar to other models, the height and width dimensions of the matrices

decrease from the image input to the end, while the number of channels

increases [82]. Integrating VGG16 into the UNet model is straightforward.

Figure 4.6: VGG16 Architecture

The high parameter count of VGG16 enables it to delve deeper into the im-

age and extract detailed features. In fact, the ResNet and Inception models

go even deeper. However, it’s important to note that not every model is
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suitable for every dataset, and the choice of model depends on the specific

requirements. The structure of the VGG16 network is presented in Fig. 4.6.

• InceptionNet

GoogLeNet, developed by Google, achieves increased depth while reducing

the number of network parameters. This allows for an overlap with the net-

work structure of LeNet, leading to the Inception network being referred to

as the LeNet network [83]. The initial module of GoogLeNet typically con-

sists of three different sizes of convolutional layers and a maximum pooling

layer. After the convolution process, the output of the previous layer’s chan-

nels are summed and subjected to non-linear fusion. This approach enhances

the network’s expressiveness, and adaptability to different scales, and helps

prevent overfitting. The Inception network structure is depicted in Fig. 4.7

[83].

The models were trained and tested using Intel(R) Xeon(R) Silver 4110 CPU with

64 GB RAM and NVIDIA Quadro P4000 GPU, utilizing the Tensorflow Keras

API and Python 3.9.

Figure 4.7: InceptionNet Architecture
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4.3.2 Choice of Optimizer

The significance of the optimizer should be acknowledged as it plays a crucial

role in appropriately adjusting the weights to facilitate accurate predictions for

unknown samples in the future. Together with the loss function, the model pa-

rameters are updated to refine the network’s performance. In this research, the

Adam optimizer is employed to enhance convergence by dynamically adjusting

the learning rate using a weighted exponential method. It is important to ex-

amine the weight update rule to understand why the Adam optimizer is chosen.

The Adaptive Moment Estimation (Adam) is an optimization algorithm based on

gradient descent, known for its effectiveness in dealing with large-scale problems

that involve extensive amounts of data or parameters. It offers advantages such as

reduced memory requirements and improved efficiency. Conceptually, Adam com-

bines the benefits of both the ’gradient descent with the momentum algorithm and

the ’RMSP’ algorithm.

The Adam optimizer combines two gradient descent methodologies:

• Momentum

The objective of using this algorithm is to accelerate the gradient descent

process by incorporating the concept of ”exponentially weighted averages” of

the gradients. This inclusion allows the algorithm to converge more quickly

towards the minima, enabling faster optimization.

wt+1 = wt − αmt (4.3)

where

mt = βmt−1 + (1 − β) ∗
[
∂L

∂wt

]
(4.4)

Where mt aggregate of gradients at time t (current) (initially, mt = 0),

mt−1 aggregate of gradients at time t-1 (previous), wt weights at time t

wt+1 weights at time t+1, αt learning rate at time t, ∂L
∂wt

derivative of Loss

Function with respect of wt at time t and β is the Moving average parameter

(const, 0.9)
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• Root Mean Square Propagation (RMSP)

RMSprop, also known as root mean square propagation, is an adaptive learn-

ing algorithm that aims to enhance AdaGrad. Which accumulates the sum

of squared gradients, RMSprop utilizes the concept of ”exponential moving

average” for this purpose.

wt+1 = wt −
αt

(Vt + ϵ)1/2
∗
[
∂L

∂Wt

]
(4.5)

Vt = βVt−1 + (1 − β) ∗
[
∂L

∂Wt

]2
(4.6)

Where Vt sum of square of past gradients. i.e., sum ( ∂L
∂Wt−1

) initially, Vt = 0

, ϵ is a small positive constant (10−8) The formula use for first moment and

second moment is provided as follows.

mt = β1mt−1 + (1 − β1) ∗
[
∂L

∂Wt

]
(4.7)

vt = β2Vt−1 + (1 − β2) ∗
[
∂L

∂Wt

]2
(4.8)

As both β1 and β2 approach 1, it is observed that mt and vt tend to be biased

towards 0, which can lead to issues. To address this, the Adam optimizer

calculates bias-corrected versions of mt and Vt. This correction helps in

controlling the weights and prevents excessive oscillations when approaching

the global minimum. The updated formulas for the bias-corrected weight

parameters are:

m̂t =
mt

1 − β1
t−−v̂t =

vt

1 − β1
t (4.9)

Instead of using the original weight parameters mt and vt, the bias-corrected

parameters m̂t and v̂t are used. By incorporating these bias-corrected pa-

rameters into the general equation, we ensure that the optimization process

remains controlled and unbiased throughout, hence the name Adam. Hy-

perparameters used for the Adam optimizer are outlined below.

1. ϵ a small positive constant to avoid division by 0 when (vt = 0 ). (ϵ =

10−8)
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2. β1 and β2 decay rates of average gradients in the above two methods.

(β1 = 0.9 and β2 = 0.999)

3. α is Step size parameter/learning rate (0.001)

4.3.3 Cross-Entropy Loss-Function

The cross-entropy loss function is used to measure the performance of the clas-

sification model. Simply, the loss function will increase when the predicted label

diverges from the actual class label. The expression cross-entropy loss-function is

given below.

l(θ) = −
n∑

i=1

yi logψi + (1 − yi) log(1 − ψi) (4.10)

where, θ represents the parameters of model, yi is the actual class label, ψi is the

predicted class label.

4.3.4 Application of Fine-Tuning

The widely used approach for training the model is known as Fine-Tuning, and it

is also adopted in this research. Fine-Tuning involves experimenting with various

encoder-decoder configurations by combining networks such as VGG-UNet [84],

ResNet-UNet [85], and Inception-UNet [86]. The process of Fine-Tuning can be

divided into the following these steps, as illustrated in Fig. 4.8:

• Selecting a pre-trained model from a source dataset such as ImageNet, which

we will refer to as the source model.

• Creating a model that replicates the layers and parameters of the source

model, except for the last layer, which is modified or removed.

• Introducing a new output layer with the desired number of classes specific

to the custom dataset and initializing its parameters randomly.

• Appending the newly defined layer to the model.
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Figure 4.8: Transfer Learning Through Fine Tuning Process

• Training the modified model from scratch using the custom dataset. This

involves updating the parameters of the last layers while fine-tuning the

parameters of the remaining layers.

The total number of epochs for training; using transfer learning, is 50 with a batch

size of 8 images.

4.3.5 Weighted Average Ensemble

An approach called weighted average ensemble of classifiers is utilized in machine

learning to combine the predictions made by multiple individual classifiers into

a single prediction, and it is also adopted in this research. Assign a weight to

each classifier, and the final prediction is achieved by calculating the weighted

average of the individual predictions. The process of a weighted average ensemble

of classifiers can be divided into the following these steps, as illustrated in Fig.

4.9:
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Figure 4.9: Weighted Average Ensemble

1. Train individual classifiers: Train several classifiers using different algorithms

or variations of the same algorithm on the same dataset. Each classifier

should be capable of making independent predictions.

2. Generate predictions: Once the classifiers have been trained, use each of

them to make predictions on new, unseen data. Gather the individual pre-

dictions for each instance in the dataset.

3. Assign weights: Allocate a weight to each classifier in the ensemble. These

weights reflect the significance or reliability of the predictions made by each

classifier. The weights can be assigned based on their performance on a

validation set or using other criteria like classifier accuracy or confidence

level.

4. Compute weighted average: Calculate the weighted average prediction for

each instance by summing up the individual predictions multiplied by their

corresponding weights. This can be achieved by taking the dot product of

the prediction vector and the weight vector.



Segmentation for Lumbar Spinal Stenosis 49

5. Final prediction: Apply a decision rule to convert the weighted average pre-

dictions into a final prediction. For instance, in binary classification prob-

lems, a threshold can be used to determine whether the prediction is positive

or negative.

6. Evaluate the ensemble: Assess the ensemble’s performance by comparing

its predictions to the ground truth labels. Use appropriate evaluation met-

rics such as accuracy, precision, recall, IoU, or F1-score. By employing the

weighted average ensemble, different classifiers can contribute differently to

the final prediction, assigning more significance to classifiers expected to

perform better The weights can be adjusted to optimize the ensemble’s per-

formance on a specific metric or to achieve the desired balance between

accuracy and other factors. In this research evaluating the weighted average

ensemble by using IoU metric and getting the satisfactory weights on which

higher performance.

4.4 Summary

• Amongst the tested methods, the proposed deep learning network with

ResNet as a base model and UNet as a classification network gave the best

results for segmentation.

• Transfer learning is an effective learning mode well suited and less time-

consuming.

• The weighted average ensemble also gives promising results by combining

ResNet-UNet, VGG16-UNet, and Inception-UNet.



Chapter 5

Automated Measurements of

Lumbar Intervertebral Bodies

5.1 Outline

After completing the segmentation task, automated measurements of the Interver-

tebral Bodies (IVDs) are performed. These measurements range from transverse

distance to cross-sectional area measurements. These clinically relevant measure-

ments help correlate the findings of clinicians with the symptoms observed in the

subject patient, as already established in Section 3.6. In this chapter, Initially

discuss the distance-related measurements.

5.2 Proposed Methodology

In this research thesis, completely automated measurements (without human in-

tervention) related to the lumbar intervertebral disc and thecal sac regions are per-

formed using Python 3.9. The steps for the process are presented in the flowchart

shown in Fig. 5.1.

In this research thesis, the input image consists of a T2-weighted MRI of the

L4-L5 intervertebral disc with a resolution of 320x320 pixels. Segmentation plays

a crucial role in measurements since in measurement regions, pixels are essential.
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Figure 5.1: Measurements Acquisition (Block Diagram).

If pixels are missing, the measurements are not accurate. Therefore, automated

segmentation is achieved by utilizing a weighted average ensemble approach to

extract spinal measurements and establish correlations with the reports provided

by radiologists

5.2.1 ROI by Thresholding

Initially, the process involves segmenting the region to isolate each individual com-

ponent. Identification of IVDs and thecal sac from grey scale image is performed

by making use of pixel intensity value because each region has its own intensity.

After thresholding, a binary image is obtained. The subsample that emerged is

depicted in Fig. 5.2.
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(a) Intervertebral Disc (b) Thecal Sac

Figure 5.2: Results of Thresholding

5.2.2 Computation of Diameter and Transverse Distance

After identifying the intervertebral disc and thecal sac, the next step is to find

the region properties, which include the centroid, height, and width of the whole

region. The height of the thecal sac corresponds to the AP diameter, while the

width represents the transverse distance. In Fig. 5.3 (a), the AP diameter is

denoted by the blue line in millimeters, and the transverse distance is represented

by the green line in millimeters. After calculating the diameter of the thecal sac

and intervertebral disc, the next step involves further computation of the diameter

ratio (DDRAP).

DDRAP =
Diameter−of−duralsac

Diameter−of−anterior−posterior−Disc
(5.1)

5.2.3 Cross-sectional-Area

The cross-sectional area of the thecal sac is important for determining lumbar

spinal stenosis and measuring the area of the intervertebral disc. The thecal sac

area utilizes the height and width of the region, but the cross-sectional area also

depends on the shape of the object or region. Therefore, in this research thesis,

the total number of pixels in the region is counted, and through this approach,



Automated Measurements of Lumbar Intervertebral Disc 53

the area is calculated in millimeters square for both regions.

DDRCA =

√
Area−of−duralsac

Area−of−anterior−posterior−Disc
(5.2)

After getting the area and diameter of the thecal sac and intervertebral disc, calcu-

lating the ratio of area (DDRCA) and diameter (DDRAP) through this observing

a significant change of diameter and area of the thecal sac with respect to the

intervertebral disc as shown in Fig. 5.3 (b).

(a) Diameter of IVD and Thecal Sac (b) Cross-sectional Area of IVD and Thecal Sac

Figure 5.3: Automated Measurements

5.3 Summary

• In the proposed lumbar spinal stenosis measurements acquisition method-

ology, height and width are initially automatically computed in the binary

images containing the IVD and thecal sac, followed by distance-based mea-

surements.

• These measurements are performed through an automated way to give sup-

port to the clinicians to acquire these measurements certainly conserving

time as well as giving quantitative bias to their manually performed mea-

surements.
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• All these measurements are performed to support the subsequent lumbar

central canal stenosis classification methodologies as proposed in this thesis.



Chapter 6

Classification of Lumbar Central

Canal Stenosis

6.1 Outline

After extracting the spinal cord profiles, including diameter measurements section

and cross-section area estimation, classification methodologies for lumbar central

canal stenosis i.e., the deep learning base classification and machine learning base

classification. A binary classifier that identifies the normal and abnormal stenosis

using a novel proposed method. In Section 6.2 classification methodology for

lumbar central canal stenosis is presented.

6.2 Proposed Automated Classification of Lum-

bar Central Canal Stenosis

Numerous studies in the literature review portion have highlighted the effectiveness

of utilizing deep-learning and machine techniques for accomplishing classification

tasks. In this research thesis, the focus is on the classification of lumbar central
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canal stenosis by using well-established deep learning and machine learning meth-

ods. Furthermore, a comparative analysis is conducted among various popular

models, including ResNet and SVM (support vector machine)

The training and testing of all models were conducted on an Intel(R) Xeon(R)

Silver 4110 CPU with 64 GB RAM and NVIDIA Quadro P4000 GPU, using the

Tensorflow Keras API and Python 3.9.

6.2.1 SVM-Based-Classification

Support Vector Machine (SVM) is a widely recognized and efficient algorithm used

for classification purposes. The objective of SVM-based classification is to identify

an optimal hyperplane that can successfully distinguish data points from different

classes in a high-dimensional space. The aim is to maximize the distance or margin

between the hyperplane and the closest data points belonging to each class that’s

why in this research thesis, SVM based classifier is used to predict lumbar spinal

stenosis. The following is a general outline of SVM-based classification, and Fig.

6.1 depicts a block diagram illustrating the classifier.

6.2.1.1 Feature Selection

The initial step involves gathering and preprocessing the data. It is crucial to

ensure that the data is in a suitable format, preferably numeric, as SVMs perform

best with such data. Additionally, normalizing or standardizing the data is impor-

tant to bring the features to a comparable scale. Class labels are retrieved from

the same data set that discusses in Section 4.2. The Excel sheet with that dataset

is open source in which patient id and radiologist remarks from these remarks get

the class labels (0 or 1). Furthermore, relevant features that provide the most

information for classification need to be selected. Appropriate feature selection

can enhance the performance and efficiency of the SVM model. Model train by

using the 7 features and performance is better on these input features.
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Figure 6.1: SVM-Based Classification (Block Diagram).

6.2.1.2 Data Augmentation

Data augmentation is a widely used technique to solve the data imbalance prob-

lem. If the dataset is imbalanced then model predictions will be generalized and

biased to a class in which the number of the samples is comparatively greater.

The data set used in this research thesis, samples of a normal class is less than

abnormal class because MRI performed for those patients that have the problem of

low backbone pain. The upsampling technique is used to address the class imbal-

ance in a dataset by artificially increasing the number of samples in the minority

class. This technique is particularly useful when the dataset contains significantly

more samples from one class compared to another, leading to biased training and

potentially poor performance on the minority class.

6.2.1.3 Selection of Kernel Function

SVMs employ kernel functions to transform the input data into a higher-dimensional

space, allowing for linear separation of the data points. The choice of the kernel

function depends on the characteristics of the data and the specific problem being

addressed. Common kernel functions include linear, polynomial, radial basis func-

tion (RBF), and sigmoid. In this scenario, the RBF kernel is selected for training
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the model. The RBF kernel is defined by the equation given in Eq. 6.1.

K(x, x′) = exp(−γ∥x− x′∥2) (6.1)

Where x and x′ represent input feature vectors, ||.|| denotes the Euclidean distance,

and γ is the gamma parameter.

The gamma parameter is a crucial factor in shaping the decision boundary and

determining the influence of each training example. A smaller gamma value widens

the decision boundary, resulting in a smoother model, whereas a larger gamma

value narrows the decision boundary, enabling more complex models that could

potentially overfit. Support Vector Machines (SVMs) utilizing the RBF kernel

are capable of learning intricate decision boundaries and effectively dealing with

non-linearly separable data.

6.2.1.4 Training the SVM

In this stage, the SVM model learns the optimal hyperplane by identifying sup-

port vectors. Support vectors refer to the data points that are in proximity to the

decision boundary or hyperplane. The training process involves solving an opti-

mization problem to determine the hyperplane that maximizes the margin while

minimizing classification errors.

6.2.1.5 Hyperparameter Tuning

SVMs have various hyperparameters that require tuning to achieve the best pos-

sible performance. The hyperparameters involved in the SVM model include the

regularization parameter (C), which controls the trade-off between maximizing the

margin and minimizing classification errors, along with kernel specific parameters.

Techniques like cross-validation, such as grid search, can aid in finding the best

combination of hyperparameters. It is crucial to select suitable values for the C

parameter and gamma. The selected C value is 100 and the gamma is 0.5 to

optimize the hyperplane
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6.2.1.6 Evaluation and Prediction

After training the SVM model, its effectiveness can be evaluated using a separate

validation or test dataset. Accuracy, precision, recall, and F1-score are widely

employed evaluation metrics for assessing the performance of classification tasks.

Once the model’s performance has been assessed, it can be utilized to predict the

class labels of new, unseen data points. SVM-based classification finds applica-

tions in diverse domains, including image classification, text categorization, and

bioinformatics. Its ability to handle high-dimensional data and robustness against

noise make it a popular choice for diverse classification problems.

6.2.2 ResNet-Based Classification

In this research thesis, a binary classifier is proposed by using the ResNet50 archi-

tecture. The ResNet architecture was previously discussed in Section 4.3.1. This

model gives promising results due to its residua feature. The block diagram as

shown in Fig. 6.2.

Figure 6.2: ResNet-Based Classification (Block Diagram).

6.2.2.1 Image Copping

The input of this model is a T2-weighted MRI of the L4-L5 IVD dataset previously

described in section 4.2. Then apply pre-processing in which first crop the original
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image by fixed dimensions because the region of interest (Thecal sac) does not

have too much variation this approach decreases the input size (70*70) Result

subsample comprising showcased in Fig. 6.2. and cropping operation does not cut

the area of the thecal sac.

Figure 6.3: Cropped Images

6.2.2.2 Data-Augmentation

Data-augmentation is a method employed in deep-learning to expand the train-

ing dataset by applying diverse transformations or modifications to existing data

samples. This process generates new versions of the data, aiming to enhance the

generalization and performance of deep learning models by introducing realistic

variations that resemble real-world situations. Popular techniques include altering

images, flipping or mirroring them, rotating or shearing them, scaling or zoom-

ing them, introducing noise, adjusting colors, and applying elastic deformations.

During training, data augmentation is implemented in real-time, generating aug-

mented versions of the original data to enlarge the dataset and upgrade the model’s

capacity to generalize. In this study, the dataset is imbalanced therefore data aug-

mentation for class normal is required following transformations or modifications

applied to specific class (normal) samples. Results of data augmentation as shown

in Fig. 6.4.

• Rotate the image between -10 to 10 degrees.
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Figure 6.4: Results of Data Augmentation

• Flip images vertically with a 50% probability.

• Apply Gaussian blur with sigma between 0 to 1

6.2.2.3 Data Split

In the area of deep learning, data splitting refers to the act of dividing a dataset

into distinct subsets: training, validation, and testing. The training set is em-

ployed to train the model, the validation set aids in tuning hyperparameters, and

the test set is utilized to assess the model’s performance. Ensuring that the splits

accurately represent the data and preserve class distribution is crucial. This pro-

cedure facilitates model training, hyperparameter optimization, and evaluation of

the model’s ability to generalize to unseen data. Typically, around 60-80% of the

data is allotted for training, and around 10-20% of the data is allotted for testing.

6.2.2.4 Optimizer

The importance of recognizing the optimizer cannot be overstated, as it plays a

vital role in adjusting the weights to ensure accurate predictions for future un-

known samples. Alongside the loss function, the model parameters are modified

to improve the performance of the network. In this research thesis, the Adam

optimizer is utilized to enhance convergence by dynamically adjusting the learn-

ing rate through a weighted exponential approach. It is crucial to understand the
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rationale behind choosing the Adam optimizer by examining the weight update

rule that was previously discussed in Section 4.3.2. Adaptive Moment Estimation

(Adam) is an optimization algorithm used for gradient descent, known for its ef-

fectiveness in handling large-scale problems with extensive data or parameters. It

provides several advantages, including improved efficiency and reduced memory

requirements. Essentially, Adam combines the benefits of both the momentum

algorithm and the ’RMSP’ algorithm, resulting in enhanced performance.

6.2.2.5 Binary Cross Entropy Function

A commonly employed loss function is binary cross entropy for binary classification

tasks. It assesses the disparity between predicted probabilities and actual binary

labels. The loss is computed by comparing the logarithmic difference between the

predicted probability and the true label for both positive and negative categories.

The objective is to minimize this loss during training in order to enhance the

precision of the binary classifier.

L(y, ŷ) = − (y log(ŷ) + (1 − y) log(1 − ŷ)) (6.2)

Where, y is the true binary label (either 0 or 1), ŷ is the predicted probability of

the positive class (ranging from 0 to 1).

6.2.2.6 Training Through Transfer Learning

Transfer learning is a widely used approach for training the model, and it is also

adopted in this study. In Section 4.3.4 a detailed description of transfer learning

is presented. ResNet 50 is used as a backbone model for training freeze the all

intermediate layers and the output layer is trained from scratch. The selected

input size is 70x70 due to the limited dataset, and the training hyperparameters

include a batch size of 6 and 70 epochs. The ResNet-based model outperforms the

machine learning-based model in terms of performance.



Classification of Lumbar Central Canal Stenosis 63

Furthermore, the deep learning-based model exhibits high performance on this

dataset. However, it will be tested on another dataset in the future, and the vari-

ance of that dataset may be different, compromising its performance. On the other

hand, the machine learning-based model delivers better practical performance, and

it is also more accessible to professionals.

6.3 Summary

• Traditionally as practiced by clinicians, the classification of Lumbar central

canal stenosis is performed visually without making any dedicated measure-

ments which is subjective and prone to variability.

• Deep learning base classifier performance is better than machine learning-

based but clinicians prefer machine learning methods because qualitative

data is used.

• Machine learning-based classifiers utilize all seven qualitative measurements,

with particular emphasis on the accurate and robust ratio-based metrics such

as DDRDIA and DDRCA.



Chapter 7

Results and Discussion

7.1 Outline

This chapter begins by introducing the metrics utilized to validate the performance

of automated disc and thecal sac extraction, including segmentation, automated

measurements, and lumbar central canal stenosis classification. These metrics

are widely employed in the research community. Subsequently, a thorough ex-

amination of experimental results is provided, accompanied by qualitative anal-

ysis of ground truth annotations and intervertebral bodies (IVBs) segmentation.

Additionally, this chapter explores the quantitative analysis of the implemented

segmentation techniques, automated spinal measurements, and the methodologies

utilized for classifying lumbar central canal stenosis.

7.2 Performance-Metrics

To evaluate the performance of semantic segmentation, the effectiveness is mea-

sured using mean pixel accuracy (MPA) and mean pixel precision (MPP) metrics,

as denoted by Eq. 7.1 and Eq. 7.2, respectively. The accuracy metric measures

the percentage of correctly classified pixels in the overall context of the interver-

tebral bodies (IVBs) and background, while precision evaluates the accuracy of
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classification on a global scale.

MPA =
−TP + TN−

−TP + TN + FP + FN−
(7.1)

In this context, TP represents the true positives at the-pixel-level, indicating ac-

curate extraction of intervertebral discs (IVDs). TN refers to the true negatives,

which indicates the accurate identification of pixels as background. FP represents

the false positives, indicating the incorrect labeling of background pixels as IVBs

(intervertebral bodies), while FN represents the false negatives, signifying the in-

correct labeling of IVB pixels.

MPP =
−TP

−TP + FP
(7.2)

The mean intersection-over-union (IoU) score, which is also referred to as the

Jaccard similarity coefficient, is employed to assess the level of agreement between

the segmented mask and the ground truth mask. The IoU score is calculated using

Eq. 7.3 to determine the level of similarity.

IoU =
−TP

−TP + FP + FN
(7.3)

Moreover, the dice similarity coefficient (DSC) score is calculated, which measures

the similarity between the segmented mask and the ground truth mask by taking

into account the doubling of true positives (TP ). The DSC score is determined

using Eq. 7.4, as given below.

DSC =
−2TP

−2TP + FP + FN−
(7.4)

Precision, recall, and F1-score are widely used evaluation metrics in binary classifi-

cation tasks to assess the performance of a classification model. These metrics are

based on the fundamental principles of true positives (TP), false positives (FP),

false negatives (FN), and true negatives (TN). Precision evaluates the proportion

of accurately predicted positive instances among all instances predicted as positive.

It specifically emphasizes the accuracy of positive predictions. The corresponding

expression is provided in Eq. 7.5. High precision indicates a low false positive
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rate, meaning the model is good at correctly identifying positive instances and

minimizing false positives. Recall (also known as sensitivity or true positive rate)

Precision =
TP

(TP + FP )
(7.5)

Recall assesses the ratio of accurately predicted positive instances to all actual

positive instances. It emphasizes the coverage of positive instances. which is

measured through Eq. 7.6.

Recall =
TP

(TP + FN)
(7.6)

A high recall value suggests a low rate of false negatives, indicating that the model

effectively captures most positive instances and minimizes the number of missed

positive cases. The F1-score is a metric that combines precision and recall by

calculating their harmonic mean. It offers a balanced assessment of both precision

and recall, providing a unified measure of the model’s performance in capturing

true positives and minimizing false negatives. The expression is given as Eq. 7.7.

The F1-score combines precision and recall, assigning equal importance to both

metrics. It is particularly useful in scenarios where there is an imbalance between

the positive and negative classes.

F1 − score =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(7.7)

The Area Under the Receiver Operating Characteristic Curve (AUC ROC) is a

commonly used metric to assess the effectiveness of binary classification models.

By utilizing the ROC curve, which illustrates the relationship between the true

positive rate (TPR) and the false positive rate (FPR) at different classification

thresholds, the Receiver Operating Characteristic Area Under the Curve (ROC

AUC) metric evaluates the performance of a binary classification model. The

TPR signifies the proportion of accurately predicted positive instances, while the

FPR represents the proportion of erroneously predicted positive instances. The

Area Under the Curve (AUC) offers a comprehensive evaluation of the classifier’s

performance, with larger values indicating better performance.

The ROC AUC metric is valuable in assessing the discriminatory ability of a binary
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classifier, particularly in situations involving imbalanced data or when the costs

associated with false positives and false negatives differ. It allows for comparisons

between different models to determine which one performs better in distinguishing

between positive and negative classes.

7.3 Results

For better presentation, the respective results are categorized in the same order

according to each experiment. Details are as under:

7.3.1 Segmentation of Intervertebral Bodies

Fig. 7.1 presents the qualitative results, accompanied by detailed quantitative

assessments in Table 7.2. Additionally, Table 7.1 provides a class-wise IoU metric

Table 7.1: Class-Wise Intersection Over Union (IoU) of Models

Class ResNet-UNet Inception-UNet VGG-UNet WAE

IoU IoU IoU IoU

Intervertebral Disc 0.99 0.98 0.98 0.99

Posterior Element 0.98 0.94 0.93 0.98

Thecal Sac 0.98 0.92 0.93 0.98

AAP 0.94 0.83 0.83 0.95

Background 0.99 0.99 0.99 0.99

assessment. Each row in the figure corresponds to a specific image type, with sub-

captions provided below. The comparison is depicted between the results obtained

by a weighted average ensemble and segmentation outcomes from various deep

learning networks. Each column presents the outcomes achieved using distinct

models or approaches for a specific sample. Notably, ResNet-UNet demonstrates

superior performance compared to other deep learning networks, as observed from

the presented results. Upon reviewing the quantitative data provided in Table

7.1, it is evident that the Area between Anterior Posterior Element (AAP) yields

the lowest IoU metrics. Comparing ResNet-UNet and WAE, both models exhibit

similar performance across
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(a) Input Images.

(b) Ground Truth Images.

(c) ResNet-UNet Architecture.

(d) Inception-UNet Architecture.

(e) VGG-UNet Architecture.

(f) Weighted Average Ensemble

Figure 7.1: Qualitative Comparison of IVB Segmentation Results
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Table 7.2: Comparative Quantitative Analysis of Methods/Models used for
Semantic Segmentation. Mean Pixel Accuracy (MPA), Mean Pixel Precision

(MPP), Intersection-over-Union (IoU), Dice Similarity Coefficient (DSC)

MPA MPP mIoU DSC

ResNet-UNet 99.9 98.4 0.96 0.98

Inception-UNet 99 94.1 0.89 0.94

VGG-UNet↓ 98.1 93.5 0.88 0.93

WAE↑ 99.9 98.4 0.976 0.98

most classes, except for AAP where WAE outperforms ResNet-UNet. Similarly,

Table 7.2 shows that VGG-UNet↓ achieves the lowest quantitative metrics, but

with the advantage of the shortest training time. The results of ResNet-UNet

and WAE↑ are comparable to VGG-UNet↓ in terms of IoU and DSC scores. In

Table 7.2, MPA represents mean pixel accuracy, MPP represents mean pixel preci-

sion, IoU stands for intersection over union, and DSC indicates the dice similarity

coefficient score.

Table 7.3: Comparison of Segmentation Results with Related Researchers’
Work. Image Modality (IM), Mean Pixel Accuracy (MPA), Mean Pixel Preci-
sion (MPP), Intersection-over-Union (IoU), Dice Similarity Coefficient (DSC)

Method IM MPA MPP IoU DSC

Proffered Method WAE MR 99.9 98.4 0.976 0.989

Lu et al.[31] UNet MR 94 - 0.91 0.93

Lessmann et al.[33] FCN MR/CT - - - 0.94/0.96

Huang et al.[51] UNet MR - - 0.94 -

Tang et al.[34] DDUNet CT 90.1 - 0.83 -

Benjdira et al.[35] FC-DenseNet103 USS 98.9 98.9 0.94 0.98

Siriwardhana et al.[37] CNN-UNet MR - - 0.88 -

Narasimharao Kowlagi et al.[38] FPN + ResNet34 MR - - 0.97 -

Merve Apaydin et al.[39] CNN-UNet MR 99 - 0.92 -

Abhinav shukla et al.[40] 2D UNet MR - - 0.71 -

Upasana Upadhyay Bharadwaj et al.[50] V-Net CNN MR - - - 0.93/0.94

The most favorable results are highlighted in bold, while the worst results in the

deep learning category are denoted by ↓, specifically observed with VGG-UNet. It

is important to note that MPA and MPP values range from 0 to 100, with higher

values indicating better performance. Similarly, IoU and DSC values range be-

tween 0 and 1, where values closer to 1 indicate better model/method performance.

In Table 7.3, a comparison of results obtained with the weighted average ensum-

ble (WAE) architecture used in this thesis with the results of other researchers for

segmentation task is presented. The image modality (IM) and the method or tech-

nique adopted by respective researcher is also mentioned. Bilel Benjdira et al.[35]
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segment IVD achieving a superior MPP of 98.9 making use of FC-DenseNet103

as represented in Table 7.3. Most researchers achieved good results with FCN

and UNet architectures [31, 33, 51]. Narasimharao Kowlagi et al. [38] obtained

excellent results in terms of IoU score for vertebra segmentation using the FPN +

ResNet34 architecture on a dataset consisting of 250 annotated MRI images, with

a training and testing split of 80/20. Upasana Upadhyay Bharadwaj et al.[50] use

V-Net CNN architecture for segmentation of dural sac and intervertebral disc and

achieve Dice scores of 0.93 and 0.94. In this study 200 MRI of patients randomly

selected from 30619 patients in which 75/10/15 split was used for training, val-

idation and testing purpose. Tang et al.[34] used dual densely connected UNet

(DDUNet) to achieve IoU score of 0.83.

7.3.2 Classification and Measurements of Lumbar Central

Canal Stenosis

Fig. 7.2 displays the qualitative results, and Table 7.4 provides a detailed quan-

titative assessment. According to the radiologist’s report, out of a total of 515

patients, 357 were diagnosed with thecal sac compression. The proposed SVM-

based automated disease classification system achieved an accuracy of 96%, while

the ResNet-based classification system achieved an accuracy of 98%. Sub-images

in Fig. 7.2 showcase selected results where the classification model correctly identi-

fies and labels central canal disorders, along with displaying measurements such as

’DDRDIA, DDRCA, and TSDIA’. Additionally, evaluating the quantitative met-

rics of the SVM-based classifier, it exhibits the lowest training time. The results of

the ResNet-based classifier are comparable in terms of achieved AUROC (Area un-

der the ROC Curve) and Recall scores. The best results are highlighted in bold. It

is worth noting that accuracy and AUROC values range from 0 to 100, with higher

values indicating better performance. Similarly, Recall, Precision, and F1-score

values range between 0 and 1, with values closer to 1 representing better model per-

formance. While deep learning approaches showcase excellent accuracy, machine

learning methods also perform well, particularly in terms of Precision. Health-

care professionals prefer machine learning methods due to their incorporation of
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(a) Normal (b) Abnormal

Figure 7.2: Results of LSS Classification and Measurements

Table 7.4: Comparative Quantitative Analysis of Models Used for Classifica-
tion.

Accuracy Precision Recall F1-score AUROC

SVM 96 1 0.915 0.95 95.7

ResNet 98 0.975 0.987 0.98 97.5

measurements. Consequently, this study employs a machine learning-based and

deep learning-based classifier to effectively classify cases of lumbar central canal

stenosis. The SVM model was tested on 149 previously unseen samples, including

71 actual positive cases and 78 actual negative cases. Similarly, the ResNet model

was evaluated on 131 unseen samples, consisting of 79 actual positive cases and 52

actual negative cases, as depicted in Fig 7.3. The SVM model demonstrates accu-

rate performance on negative samples, while the ResNet model excels in accurately

classifying positive cases. In Table 7.5, a comparison is presented between the re-

Table 7.5: Comparison of Classification Results with Related Researchers’
Work.

Method Accuracy Precision Recall F1-score AUROC

Proposed Method
ResNet50 98 0.975 0.987 0.98 0.975

SVM 96 1 0.915 0.95 0.957

Jen-Tang Lu et al.[31] CNN - - - - 0.97

Alessandro Siccoli et al.[55] XGBoost 85 0.86 0.87 0.92

Tackeun Kim et al.[53] VGG 82.2 - - - 0.90

Dongkyu Won [54] VGG 77.5 - - 75 -

Upasana Upadhyay Bharadwaj et al.[50] DT - - - - 0.95

sults obtained using the SVM and ResNet architectures employed in this thesis
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(a) SVM

(b) ResNet

Figure 7.3: Comparison of Confusion Matrices for Both Classifiers

and the outcomes achieved by other researchers for the classification task. Never-

theless, machine learning-based classifiers are preferred by clinicians due to their

visibility and ease of identifying abnormalities. The method or technique adopted

by the respective researcher is also mentioned. Upasana Upadhyay Bharadwaj

et al.[50] achieved a superior AUROC score for the classification of central canal

stenosis with a binary decision tree (DT) architecture and train on a dataset of

750 patients T2 axial MRI labeled by a board of neuroradiologist with 25 years of

experience. Tackeun Kim et al.[53] use VGG architecture for the classification of

central canal stenosis and achieve high accuracy with an AUROC of 90 % in this

study 12,442 MRI are used to train the model. The dataset is labeled by 4 expert

radiologists. Jen-Tang Lu et al.[31] achieved a superior AUROC by utilizing 2D

CNN and 3D CNN for the classification of lumbar spinal canal stenosis by using

both sagittal and axial MRI. For this study, a dataset of 15,957 disc images was
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utilized, employing a split of 70% for training, 15% for validation, and 15% for

testing purposes.

7.4 Summary

• Currently, clinicians employ subjective grading methods to assess the sever-

ity of stenosis. In contrast, this research introduces an innovative radio-based

metric to accurately identify the presence of this disorder.

• Clinicians diagnose lumbar central canal stenosis based on transverse and

anterior to posterior distances, which are influenced by the posterior ele-

ment’s structure. In contrast, this thesis proposes a method that utilizes the

ratios of dural sac to disc cross-sectional area and dural sac-to-disc anterior-

posterior diameters, offering improved detection of spinal cord compression.



Chapter 8

Conclusion-and-Future Work

8.1 Thesis Summary and Research Contribu-

tions

The central theme of this thesis revolved around development of automated lumbar

central canal assessment toolkit. Usefulness of such an application is gauged by

establishing its clinical relevance as discussed in Section 3.5. Quite evidently, the

effectiveness and reliability of automated assessment framework is directly linked

with the precision of intervertebral bodies segmentation which later is used for

extraction of central canal measurements. For achieving this goal, selection of

suitable dataset is most important for further analyzing the problem statement.

The available dataset containing 2D intervertebral body discs labelled masks in

axial plane is used (Section 4.2).

Extensive non-exhaustive review of related literature is carried out and the iden-

tified research gaps are further explored in order to plug the gaps. As a first

measure, a intervertebral body segmentation is proposed (Section 4.3) based on

deep learning methods. Deep learning architectures are then extensively used with

the suggested topology as reflected in the literature reviewed. The segmentation

results obtained using the deep learning networks clearly surpassed. In an effort

to improve the segmentation task, weighted average ensemble technique is used.

The most refined and less time-consuming process of transfer learning fine-tuning
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has also proved to be extremely useful once avoiding complexity of training the

deep learning models from scratch (Section 4.3.4).

After completing the segmentation task, clinically significant and highly relevant

central canal stenosis measurements are extracted from the L5-S1 disc, as outlined

in Section 5.2. Finally, effectively using the extracted measurements, classification

methodologies deep learning-based and machine learning-based (Section 6.2) for

Lumbar central canal stenosis are proposed.

8.2 Conclusion

In a nutshell, an effort was made in this research thesis, to present an automated

image understanding of lumbar spine disc images with the perspective of spinal

surgeon who is clinically evaluating the candidate patient through physical exami-

nation. The decision for most appropriate surgical intervention procedure is based

on certain disc and thecal sac measurements which are presently done through

laborious manual measurements.

Adoption of the automated measurement as proposed in this research thesis will

certainly save the valuable time of the spinal surgeon as well as provide confi-

dence to the decision for suitability of shortlisted/selected surgical intervention

procedure. Moreover, by dynamically extracting spinal disc measurements, this

approach assists clinicians in objectively evaluating the spinal pathology of pa-

tients. Additionally, this thesis presents a fully automated classification system

for lumbar central canal stenosis.

It is important to note that the purpose of this autonomous lumbar spine toolkit

is not to replace clinicians but to enhance their manual diagnosis by providing

increased confidence and reliability. With the implementation of this toolkit, clin-

icians can utilize dependable quantitative metrics, thereby enhancing precision in

the selection and planning of surgical interventions.
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8.3 Future Work

In the future, there is potential to expand the proposed framework for objective

measurement of Lumbar Foraminal stenosis and Lumbar Lateral recess stenosis

at each disc level (L3-L4, L4-L5, and L5-S1), providing a deeper understanding

of central canal disorders. Similar to other frameworks, the medical image un-

derstanding framework requires substantial amounts of data. The available data

may appear insufficient due to the novel challenges researchers face when analyzing

medical images. Supplementing the dataset with 3D volumetric scans, particularly

whole spine MRI images, would be highly advantageous.

Another avenue to explore is assessing the effectiveness of the automated spinal

toolkit in assisting spinal surgeons in choosing less invasive methods over extensive

invasive approaches.
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