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Preface

The primary intent of this book is to provide an introduction to state-of-the art

research on the modeling, testing, and application of adaptive antennas and

receivers. As such, it provides a baseline for engineers, scientists, practitioners,

and students in surveillance, communication, navigation, government service,

artificial intelligence, computer tomography, neuroscience, and security intrusion

industries. This book is based on work performed at Syracuse University and

The MITRE Corporation with sponsorship primarily by the U. S. Air Force.

At issue is the detection of target signals in a competing electromagnetic

environment which is much larger than the signal after conventional signal

processing and receiver filtering. The competing electromagnetic environment

is external system noise (herein designated as “noise”) such as clutter residue,

interference, atmospheric noise, man-made noise, jammers, external thermal

noise (optical systems), in vivo surrounding tissue (biological systems), and

surrounding material (intrusion detection systems). The environment is statis-

tically characterized by a probability density function (PDF) which may be

Gaussian, or more significantly, nonGaussian. For applications with an objective

of target detection, the signal is assumed to be from a moving target within the

surveillance volume and with a velocity greater than the minimum discernable

velocity.

In radars, which look down at the ground to detect targets, the clutter echo

power can be 60 to 80 dB larger than the target echo power before signal

processing. The target is detected by measuring the difference in returns from

one pulse to the next. This method is based on the underlying assumption that

the clutter echo power and the radar system are stable between pulses whereas the

target signal is not. The degree of stability influences the subclutter visibility

(SCV), i.e., the ratio by which the target echo power may be weaker than the

coincident clutter echo power and still be detected with specified detection

and false-alarm probabilities. The receiving systems of interest comprise an

antenna array, digital receiver, signal processor, and threshold detector.1

The electromagnetic environment is assumed to be characterized by a “noise”

voltage with a PDF that is temporally Gaussian but not necessarily spatially

Gaussian. Conventional signal detection, for a specified false alarm rate or

bit error rate, is achieved by measuring the magnitude-squared output of a linear

Gaussian receiver compared to a single threshold determined by the variance

of the noise voltage averaged over all the cells of the total surveillance volume.

v
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A linear Gaussian receiver is defined as a receiver matched to the frequency

spectrum of the signal and assumes a temporally Gaussian PDF “noise” voltage.

In conventional signal detection, the probability of signal detection within any

cell of the surveillance volume is small if the signal power is small compared

to the average noise variance of the total surveillance volume.

This book considers the more general case where the “noise” environment

may be spatially nonGaussian. The book is divided into three parts where

each part presents a different but sequentially complementary approach for

increasing the probability of signal detection within at least some of the

cells of the surveillance volume for a nonGaussian or Gaussian “noise”

environment. These approaches are: Approach A. Homogeneous Partitioning

of the Surveillance Volume; Approach B. Adaptive Antennas; and Approach C.

Adaptive Receivers.

Approach A. Homogeneous Partitioning of the Surveillance Volume. This

approach partitions the surveillance volume into homogeneous, contiguous

subdivisions. A homogeneous subdivision is one that can be subdivided into

arbitrary subgroups, each of at least 100 contiguous cells, such that all the

subgroups contain stochastic spatio-temporal “noise” sharing the same PDF.

At least 100 cells/subgroup are necessary for sufficient confidence levels (see

Section 4.3). The constant false-alarm rate (CFAR) method reduces to Approach

A if the CFAR “reference” cells are within the same homogeneous subdivision

as the target cell. When the noise environment is not known a priori, then it is

necessary to sample the environment, classify and index the homogeneous

subdivisions, and exclude those samples that are not homogeneous within a

subdivision. If this sampling is not done in a statistically correct manner, then

Approach A can yield disappointing results because the estimated PDF is not

the actual PDF. Part I Homogeneous Partitioning of the Surveillance Volume

addresses this issue.

Approach B. Adaptive Antennas. This approach, also known as space-time

adaptive processing, seeks to minimize the competing electromagnetic environ-

ment by placing nulls in its principal angle-of-arrival and Doppler frequency

(space-time) domains of the surveillance volume. This approach utilizes k ¼ NM

samples of the signals from N subarrays of the antenna over a coherent process-

ing interval containing M pulses to (1) estimate, in the space-time domain, an

NM £ NM “noise” covariance matrix of the subarray signals, (2) solve the matrix

for up to N unknown “noise” angles of arrival and M unknown “noise” Doppler

frequencies, and (3) determine appropriate weighting functions for each subarray

that will place nulls in the estimated angle-of-arrival and Doppler frequency

domains of the “noise”.

Approach B is a form of filtering in those domains. Consequently, the

receiver detector threshold can be reduced because the average “noise” voltage

variance of the surveillance volume is reduced. The locations and depths of the

nulls are determined by the relative locations and strengths of the “noise” sources

in the space-time domain and by differences in the actual and estimated “noise”

covariance matrices. The results are influenced by the finite number k of
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stochastic data samples and the computational efficiency in space-time

processing the samples. Part II Adaptive Antennas addresses these issues and

presents physical models of several applications.

Approach C. Adaptive Receivers. For each homogeneous subdivision of the

surveillance volume, this approach generally utilizes a nonlinear, nonGaussian

receiver whose detection algorithm is matched to the sampled “noise” voltage

spatial PDF of that subdivision. When the nonGaussian “noise” waveform is

spikier than Gaussian noise, the nonlinear receiver is more effective than a linear

receiver in reducing the detecton threshold for a given false alarm rate provided

that the estimated spatial PDF is an accurate representation of the actual PDF.

If the estimated spatial PDF is Gaussian, then the nonlinear receiver reduces to a

linear Gaussian receiver. At issue are (1) how to model, simulate, and identify

the random processes associated with the correlated “noise” data samples

and (2) how to determine the nonlinear receiver and its threshold that are best

matched to those data samples. Part III Adaptive Receivers addresses and

illustrates these issues with some applications.

Approach C should not be implemented until Approaches A and B have

been implemented. For a prespecified false alarm probability, Approach A or B

alone have a better probability of target detection than in their absence. The

combination of Approaches A and B has a better probability of target detection

than Approach A or B alone. The combination of Approaches A, B, and C has a

still better probability of target detection. For this reason, this book often refers

to the combination of Approaches A, B, and C as the weak signal problem,

(i.e., small signal-to-noise ratio case); the combination of Approaches A and B or

Approach A or B alone as the intermediate signal problem, (i.e., intermediate

signal-to-noise ratio case); and the absence of all three approaches as the strong

signal problem, (i.e., large signal-to-noise ratio case). Approaches A and C are

usually more difficult to implement than Approach B alone because “noise”

spatial PDF is more difficult to measure than “noise” variance. However, for the

weak signal problem, Approaches A and C can be worth the effort as is shown

in Part III. All of these approaches have benefited from orders-of-magnitude

increases in the speeds of beam scanning and data processing made possible by

recent technological advances in integrated circuits and digital computers.

However, equally important, are the recent advances in methodology which are

reported in this book.

Adaptive antennas originated in the 1950s with classified work by

S. Applebaum followed later by P. W. Howells, both of whom published

their work about 40 years ago.2,3 Practical techniques for space-time processing

of the sampled data originated with B. Widrow and colleagues approximately a

year later.4

A nonlinear nonGaussian receiver for weak signal detection, in the presence

of “noise” whose PDF is not necessarily Gaussian, originated with D. Middleton

approximately 45 years ago.5 The receiver is designated a “locally optimum

detector” (LOD) because, in a Taylor series expansion of the numerator of

the likelihood ratio (LR) about a unity operating point, only the second term
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(a linear test statistic) is retained and the first term (a constant) is combined as

part of the threshold. Thus, for small signal-to-disturbance ratio, a sensitive yet

computationally simpler test statistic is obtained, resulting in either a nonlinear

receiver for non-Gaussian disturbances or a linear matched filter for Gaussian

disturbances with deterministic signals. Unlike an adaptive receiver, Middleton’s

LOD utilized a fixed detection algorithm and threshold that were determined

a priori to the detection process.

The feasibility of an adaptive receiver was made possible less than 15 years

ago when Aydin Ozturk (Professor, Dept. of Mathematics, Syracuse University)

developed an algorithm for identifying and estimating univariate and multivariate

distributions based on sample-order statistics.6,7 At that time, my brother, Donald

D. Weiner (Professor, Dept. of Electrical and Computer Engineering, Syracuse

University), in collaboration with his doctoral student Muralidhar Rangaswamy

and A. Ozturk, conceived the idea of an adaptable receiver which (1) sampled in

real time the “noise” environment, (2) utilized the Ozturk algorithm to estimate

the “noise” PDF, and (3) utilized the Middleton LOD by matching its detection

algorithm and threshold to the estimated “noise” PDF.8,9

By 1993, with additional collaboration from Prakash Chakravarthi,

Mohamed-Adel Slamani (doctoral students of D. D. Weiner), Hong Wang

(Professor, Dept. of Electrical and Computer Engineering, Syracuse University)

and Lujing Cai (doctoral student of H. Wang), the core ideas for much of the

material in this book had been developed.10,11 With the exception of Chapters 9

and 10, all of the materials in this book are based on later refinements,

elaborations, and applications by D. D. Weiner, his students (Thomas J.

Barnard, P. Chakravarthi, Braham Himed, Andrew D. Keckler, James H.

Michels, M. Rangaswamy, Rajiv R. Shah, M. A. Slamani, Dennis L.

Stadelman), his colleagues at Syracuse University (A. Ozturk, H. Wang),

students of H. Wang (L. Cai, Michael C. Wicks), his colleagues at Rome

Laboratory (Christopher T. Capraro, Gerard T. Capraro, David Ferris, William

J. Baldygo, Vincent Vannicola), his son (William W. Weiner), and Fyzodeen

Khan (colleague of T. J. Barnard). Chapter 9 is contributed by George Ploussios

(consultant, Cambridge, MA). Chapter 10 consists of reprints of all the refereed

journal papers on adaptive antennas individually authored by Ronald L. Fante

(Fellow, The MITRE Corporation) or co-authored with colleagues Edward C.

Barile, Richard M. Davis, Thomas P. Guella, Jose A. Torres, and John J.

Vaccaro.

My interest in the core ideas of this book originated in 1993 from two

invited talks at the MITRE Sensor Center.12,13 The two talks utilized novel

mathematical tools (such as the Ozturk algorithm and spherically invariant

random vectors) for more effective implementation of homogeneous partitioning,

adaptive antennas, and adaptive receivers. Since that time, the utilization of these

tools for those purposes has been reported in the journal literature but not in a

book. In July 2003, Marcel Dekker Inc. asked me to recommend a prospective

author for a book on smart antennas. Smart antennas are nothing more than

adaptive antennas (with or without the signal processing associated with adaptive
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antennas) which are specifically tailored for the wireless mobile communication

industry. Since there were already several books on smart antennas, the publisher

agreed instead to accept a proposal from me for the present book.

All of the material for this book is in the public domain. Chapters 1, 7, 9, and

11 were written specifically for this book. The material is from the following

sources:

Chap. Source

1 Contributed by Weiner, M.M.

2 Slamani, M.A., A New Approach to Radar Detection Based on the

Partitioning and Statistical Characterization of the Surveillance

Volume, University of Massachusetts at Amherst, Final Technical

Report, Rome Laboratory, Air Force Material Command, RL-TR-95-

164, Vol. 5, Sept. 1995.

3.1 Rangaswamy, M., Michels, J.H., and Himed, B., Statistical analysis

of the nonhomogeneity detector for STAP applications, Digital Signal

Processing Journal, Vol. 14, No. 1, Jan. 2004.

3.2 Rangaswamy, M., Statistical analysis of the nonhomogeneity detector

for nongaussian interference backgrounds, IEEE Trans. Signal

Processing, Vol. 15, Jan./Feb. 2005.

4 Shah, R.R., A New Technique for Distribution Approximation of

Random Data, University of Massachusetts at Amherst, Final

Technical Report, Rome Laboratory, Air Force Material Command,

RL-TR-95-164, Vol. 2, Sept. 1995.

5.1 Ozturk, A., A New Method for Distribution Identification, J. American

Statistical Association, submitted but not accepted for publication,

1990 (revised 2004). Contributed by A. Ozturk.

5.2 Ozturk, A., A general algorithm for univariate and multivariate

goodness-of-fit tests based on graphical representation, Commun. in

Statistics, Part A—Theory and Methods, Vol. 20, No. 10,

pp. 3111–3131, 1991.

6.1 Weiner, W.W., The Ozturk Algorithm: A New Technique for

Analyzing Random Data with Applications to the Field of Neuro-

science, Math Exam Requirements for Ph.D. in Bioengineering and

Neuroscience, Syracuse University, May 9, 1996.

6.2 Slamani, M.A. and Weiner, D.D., Use of image processing to partition

a radar surveillance volume into background noise and clutter patches,

Proc. 1993 Conference on Information Sciences and Systems, Johns

Hopkins Univ., Baltimore, Md., March 24–26, 1993.

6.3 Slamani, M.A. and Weiner, D.D., Probabilistic insight into the

application of image processing to the mapping of clutter and noise

regions in a radar surveillance volume, Proc. 36th Midwest Symposium

of Circuits and Systems, Detroit, Mi., Aug. 10–18, 1993.
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6.4 Slamani, M.A., Ferris, D., and Vannicola, V., A new approach to the

analysis of IR images, Proc. 37th Midwest Symposium in Circuits and

Systems, Lafayette, LA, Aug. 3–5, 1994.

6.5 Slamani,M.A.,Weiner,D.D., andVannicola,V.,ASCAPE:Anautomated

approach to the statistical characterization and partitioning of a

surveillance volume, Proc. 6th International Conference on Signal

ProcessingApplications andTechnology, Boston,MA,Oct. 24–26, 1995.

6.6 Keckler, A.D., Stadelman, D.L., Weiner, D.D., and Slamani, M.A.,

Statistical Characterization of Nonhomogeneous and Nonstationary

Backgrounds, Aerosense 1997 Conference on Targets and Back-

grounds: Characterization and Representation III, Orlando FL, April

21–24, 1997, SPIE Proceedings, Vol. 3062, pp. 31–40, 1997.

6.7 Capraro, C.T., Capraro, G.T., Weiner, D.D., and Wicks, M.C.,
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1 Introduction

M. M. Weiner

Part I Homogeneous Partitioning of the Surveillance Volume discusses the

implementation of the first of three sequentially complementary approaches for

increasing the probability of target detection within at least some of the cells of

the surveillance volume for a spatially nonGaussian or Gaussian “noise”

environment that is temporally Gaussian. This approach, identified in the Preface

as Approach A, partitions the surveillance volume into homogeneous contiguous

subdivisions. A homogeneous subdivision is one that can be subdivided into

arbitrary subgroups, each of at least 100 contiguous cells, such that all the

subgroups contain stochastic spatio-temporal “noise” sharing the same

probability density function (PDF). At least one hundred cells per subgroup are

necessary for sufficient confidence levels (see Section 4.3). The constant false-

alarm rate (CFAR) method reduces to Approach A if the CFAR “reference” cells

are within the same homogeneous subdivision as the target cell. When the noise

environment is not known a priori, then it is necessary to sample the

environment, classify and index the homogeneous subdivisions, and exclude

samples that are not homogeneous within a subdivision. If this sampling is not

done in a statistically correct manner, then Approach A can yield disappointing

results because the estimated PDF is not the actual PDF. Part I addresses this

issue.

Chapter 2 discusses the implementation of Approach A to the radar detection

problem. In Section 2.1, the simplest but least versatile implementation is

discussed for utilization when statistical knowledge of the environment is known

a priori. Section 2.2 discusses a feedforward expert system for implementation

when the statistical environment is not known a priori but must be estimated

from data samples in real time. Section 2.3 introduces a feedback expert system

Integrated Processing and Understanding of Signals (IPUS) that augments the

feedforward system of Section 2.2 by assessing whether correct signal processing

and understanding have taken place and then performs additional data sampling

and signal processing if required. Section 2.4 discusses the application of a

feedback expert system to radar signal processing. The issues associated with

clutter-patch mapping (Section 2.5) and indexing (Section 2.6) with a

feedforward expert system are implemented by IPUS for a feedback expert

3
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system in Section 2.7. Conclusions and suggestions for future research are

presented in Section 2.8.

Chapter 3 analyzes the integrity of a nonhomogeneous detector (NHD) for

excluding nonhomogeneous samples from a candidate subdivision. The cases of

Gaussian and nonGaussian interference environments are discussed in Section 3.1

and Section 3.2, respectively.

Given a finite number of correlated samples that are realizations of a

stochastic process, as in Section 2.2 to Section 2.7 and Chapter 3, how does one

determine the best-fit approximation to the PDF of those samples? Chapter 4

discusses a new technique, the Ozturk algorithm, for achieving this difficult task.

After a review of the literature (Section 4.1), the Ozturk algorithm is summarized

(Section 4.2), and then evaluated by simulation results (Section 4.3). Conclusions

and suggestions for future work are given in Section 4.4.

A more complete discussion of the Ozturk algorithm is given in Chapter 5 by

its originator, Aydin Ozturk.

Chapter 6 presents applications of homogeneous partitioning to neuroscience

(Section 6.1), radar detection (Section 6.2, Section 6.3, Section 6.7, and Section

6.8), infra-red image processing (Section 6.4 and Section 6.5), and concealed

weapon detection (Section 6.6). Section 6.2 and Section 6.3 summarize an image

processing mapping procedure, previously discussed in Section 2.4 to Section

2.7, for distinguishing patches dominated by background noise from those

dominated by clutter. Section 6.5 presents a formalized process Automatic

Statistical Characterization and Partitioning of Environments (ASCAPE) for that

purpose. Section 6.7 and Section 6.8 utilize a priori knowledge-based terrain

maps to achieve homogeneous partitioning.
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2.0. INTRODUCTION

In signal processing applications it is common to assume a Gaussian process in

the design of optimal signal processors. However, non-Gaussian processes do

arise in many situations. For example, measurements reveal that radar clutter

may be approximated by either Weibull, K-distributed, Lognormal, or Gaussian

distributions depending upon the scenario.4–10 When the possibility of a

non-Gaussian problem is encountered, the question, as to which probability

distributions should be utilized in a specific situation for modeling the data, needs

to be answerd.

In practice, the underlying probability distributions are not known a priori.

Consequently, an assessment must be made by monitoring the environment.

Another consideration is that radar detection problems can usually be divided

into strong, intermediate, and weak signal cases. Hence, the system that monitors

a radar environment must be able to subdivide the surveillance volume into

background noise and clutter patches in addition to approximating the underlying
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probability distributions for each patch. This is in contrast to current practice

where a single robust detector, usually based on the Gaussian assumption, is

employed.

The objective of this work is to develop techniques that monitor the

environment and select appropriate detector for processing the data.

The main contributions are: (1) an image processing technique is devised

which enables partitioning of the surveillance volume into background noise

and clutter patches, (2) a new algorithm, developed by Dr. Ozturk while he was a

Visiting Professor at Syracuse University,27–29 is used to identify suitable

approximations to the probability density function for each clutter patch, and

(3) rules to be used with the expert system, Integrated Processing and Under-

standing of Signals (IPUS),20–22 are formulated for monitoring the environment

and selecting the appropriate detector for processing the data.

This dissertation is organized as follows: Section 2.1 discusses some of

the difficulties that arise in the classical radar detection problem. Their solution

is proposed in Section 2.2 which uses an expert system with feed-forward

processing. In Section 2.3 an improved solution is presented using feed-back

processing. The general radar detection problem is described in Section 2.4 and

a mapping procedure is introduced to separate between background noise and

cluter patches. In Section 2.5 an image processing technique is developed for

the mapping procedure. Next, an indexing procedure is developed in Section 2.6

to enable the invetigation of clutter subpathces and the approximation of

probability distributions for each clutter patch. Finally, expert system rules are

developed in Section 2.7 to enable the system to control both the mapping and

indexing stages. Conclusions and suggestions for future research are given in

Section 2.8.

2.1. RADAR DETECTION WITH A PRIORI STATISTICAL

KNOWLEDGE OF THE ENVIRONMENT

2.1.1. INTRODUCTION

The optimal radar detection problem consists of collecting a set of N samples

(r0, r1,…, rN21) from a given cell in space, processing the data by a Neyman–

Pearson receiver which takes the form of a likelihood ratio test (LRT)1 and

deciding for that cell whether or not a target is present. Let r denote the vector

formed by N samples, r ¼ (r0, r1,…, rN21)
T, where T denotes “transpose” and

the samples are realizations of the random variables Ro, R1· · ·RN – 1,

respectively. The LRT compares a statistic l to a fixed threshold h. The

statistic l is the ratio between the joint probability density function (PDF),

pR(rlH1), of the N samples given that a target is present and the joint PDF,

pR(rlH0) of N samples, given that no target is present. H1 and H0 denote the

hypotheses that a target is present and absent, respectively. This ratio is called

LR. The threshold h is determined by constraining the probability of false alarm

(PFA) to a specified value.
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The binary hypotheses (H1, H0) are defined in a way such that, under

hypothesis H1, the kth collected sample, rk, k ¼ 0,1,…, N 2 1, is composed of a

target signal sample, sk, plus an additive disturbance sample, dk. Under hypothesis

H0, the kth sample, rk (where k ¼ 0, 1,…, N 2 1), consists of the disturbance

sample dk. Hence,

rk ¼
sk þ dk; H1

dk; H0

k ¼ 0; 1;…; N 2 1:

(
ð2:1Þ

In general, the disturbance sample dk consists of a clutter (CL) sample ck, plus a

BN sample nk.

The LRT then takes the form

l ¼ pRððrÞlH1Þ
pRððrÞlH0Þ

H1
.

H0

, h ð2:2Þ

For l . h, H1 is decided otherwise, H0 is decided.

Assuming that the samples are statistically independent, the joint PDF

pR((r)lHi); i ¼ 0, 1, is nothing but the product of the N marginal PDFs of the

samples. Specifically,

pRððrÞlHiÞ ¼
YN21

k¼0

pRk
ðrklHiÞ; i ¼ 0; 1 ð2:3Þ

The LRT is then readily implemented provided the marginal PDFs are known.

In practice, the real data may be correlated in time, making the statistical

independence assumption invalid. Unless the joint PDFs of the correlated

samples are assumed to be Gaussian, it is not commonly known how to specify

the joint PDFs pRððrÞlHiÞ; i ¼ 0; 1:Many engineers invoke the Gaussian assump-

tion even when it is known to be not applicable. It is for this reason the most of

the radars today are Gaussian receivers (i.e., these process data using LRT based

on the joint Gaussian PDF). When the target signal, sk, cannot be filtered from

the disturbance, dk, by means of spatial or temporal processing and dk is much

larger than sk (where k ¼ 0, 1,…, N 2 1) then rk approximately equals dk under

hypotheses and high precision is needed to evaluate the LRT because pR(rlH1)

becomes approximately equal to pR(rlH0). Specifically,

l ¼ pRðrlH1Þ
pRðrlH0Þ < 1 ð2:4Þ

and the statistic l becomes insensitive to the received data.

Recent work reported by Rangaswamy et al.2 shows that, it is possible to

model N correlated nonGaussian random samples as samples, from a spherically

invariant random process (SIRP). The vector R of the N samples is said to

be a spherically invariant random vector (SIRV). More details about SIRVs are

presented in Section 2.1.2.
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In addition, the work done by Chakravarthi et al.3 shows for the nonGaussian

weak signal case (WSC) (i.e., the average power of sk is much less than that of dk,

k ¼ 0, 1,…, N 2 1) that the use of a locally optimum detector (LOD) provides

improved performance over direct application of the Gaussian LRT. LODs are

introduced in Section 2.1.3.

2.1.2. SIRV

Many investigators4–7 have reported experimental measurements for which the

CL PDF has an extended tail. The extended tail gives rise to spiky CL and

relatively large probabilities of false alarm. The Gaussian model for the CL fails

to predict this behavior. NonGaussian models for the univariate (marginal) CL

PDF have been proposed. Commonly reported marginal non-Gaussian PDFs for

the CL are Weibull,4 log-normal8,9 and K-distributed.5,6,10

Usually, radars process N pulses at a time. A complete statistical characteri-

zation of the CL requires the specification of the joint PDF of the N samples. The

theory of SIRPs provides a powerful mechanism for obtaining the joint PDF of

the N correlated non-Gaussian random variables.

2.1.2.1. Definitions

An SIRV2,11 is a random vector PDF of which is uniquely determined by the

specification of a mean vector, a covariance matrix and a characteristic first

order PDF. The PDF of a random vector is defined to be the joint PDF of the

components of the random vector.

An SIRP is a random process such that every random vector obtained by

sampling this process is an SIRV.

The work of Kingman12 and Yao13 gave rise to a representation theorem,

valid for all SIRVs which is summarized below. Let z ¼ [z1, z2,…, zN]
T denote

the realization of a real zero mean Gaussian random vector Z with covariance

matrix M. Let s denote the realization of a nonnegative random variable S with

PDF fS(s). It is assumed that S is independent of Z. The representation theorem

states that X is an SIRV if and only if it can be expressed in the form X ¼ ZS.

In particular the PDF of X is given by

fXðxÞ ¼ ð2pÞ2N=2lMl21=2
ð1

0
s2Nexp 2

XTM21X

2s2

{ !
fSðsÞds ð2:5Þ

where: lMl denotes the determinant of the covariance matrix M. Let

p ¼ XTM21X. Then Equation 2.5 can be written as

fXðxÞ ¼ ð2pÞ2N=2lMl21=2
hNð pÞ ð2:6Þ

where:

hNð pÞ ¼
ð1

0
s2Nexp 2

p

2s2

� �
fSðsÞds ð2:7Þ

Note that fS(s) is defined to be the characteristic PDF of the SIRV.
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2.1.2.2. Properties of SIRVs

Several properties of SIRVs2,14–16 are stated below:

† It has been pointed out in Ref. 15 that when fS(s) ¼ d(s 2 1), where

d(·) is the unit impulse function, the resulting hN(P) is the familiar

multivariate Gaussian PDF.

† Differentiation of Equation 2.7 with respect to the argument gives16

hNþ2ðwÞ ¼ 22
dhNðwÞ
dw

ð2:8Þ

In Equation 2.8 the argument has been replaced by w because the quadratic form

p depends on N and therefore cannot be used in the equality. Equation 2.8

provides a mechanism to relate the functional forms of the higher order PDFs

with those of the lower orders. Starting with N ¼ 1 and using Equation 2.8

repeatedly gives

h2Nþ1ðwÞ ¼ ð22ÞN dNh1ðwÞ
dwN

ð2:9Þ

Starting with N ¼ 2,

h2Nþ2ðwÞ ¼ ð22ÞN dNh2ðwÞ
dwN

ð2:10Þ

It is therefore possible to construct all higher order PDFs for odd values of N and

even values of N, starting from h1(w) and h2(w), respectively.

† The PDF of an SIRV is a function of a nonnegative quadratic form.

The PDF is uniquely determined by specification of a mean vector,

a covariance matrix and characteristic first-order PDF.

† An SIRV is invariant under a linear transformation. More precisely,

if X is an SIRV with characteristic PDF fS(s), then Y ¼ AX þ B is an

SIRV with the same characteristic PDF asX, where A is a matrix and B

is a vector.

† h1( p) is related to the marginal (first order) PDF of Xk. This can be seen

easily by letting N ¼ 1 in Equation 2.6. More precisely,

fXk
ðxkÞ ¼ 1ffiffiffiffi

2p
p

sk

h1ð pÞ; k ¼ 0; 1; 2;…;N 2 1 ð2:11Þ

where p ¼ x2k=s
2
k and s 2

k denotes the variance of Xk.

† Two of the possible techniques for obtaining the PDF of an SIRV are:

(1) If the characteristic PDF of the SIRV is readily available, then

evaluate hN ( p) directly from Equation 2.7. Complete the charac-

terization by specifying the mean vector and covariance matrix

of the SIRV.
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(2) If the characteristic PDF of the SIRV is not readily available, but

the marginal PDF is known, first obtain h1( p) from the marginal

PDF using Equation 2.11. Then obtain fS(s) by solving the integral

equation in Equation 2.7 with N ¼ 1. Next use fS(s) in Equation 2.7

for desired N to obtain hN( p). Finally, specify the mean vector and

covariance matrix of the SIRV.

In the work that follows SIRPs will be used to model correlated non-Gaussian

disturbances (i.e., CL plus noise).

2.1.3. LOCALLYOPTIMUM DETECTOR

Assume that the received target signals have a very small unknown amplitude u,
so that

Under H1 r ¼ usþ d

Under H0 r ¼ d
ð2:12Þ

A Taylor series expansion of the numerator of the LR results in17

pRðrlH1Þ
pRðrlH0Þ ¼ 1þ u

d

du
pRðrlH1Þ

����
u¼ 0

pRðrlH0Þ þ u 2

2

d2

du2
pRðrlH1Þ

�����
u¼ 0

pRðrlH0Þ þ … ð2:13Þ

The LRT consists of comparing the LR to a threshold h. For the case where u is

very small, it is assumed that the terms involving u 2, u 3, … are negligible with

high probability. Ignoring these terms, the LRT simplifies to

1þ u

d

du
pRðrlH1Þ

����
u¼ 0

pRðrlH0Þ
H1
.

H0

, h ð2:14Þ

n ¼
d

du
pRðrlH1Þ

����
u¼ 0

pRðrlH0Þ
H1
.

H0

,

h2 1

u
¼ g ð2:15Þ

The receiver which performs the above test is referred to as the LOD. Because the

probability of detection (PD) and the PFA are given by

PD ¼
ð1

g
pn ðnlH1Þdn ð2:16Þ

PFA ¼
ð1

g
pn ðnlH0Þdn ð2:17Þ

and because pn ðnlH1Þ approaches pn ðnlH0Þ as u goes to zero, it follows that

PD ¼ PFA when u ¼ 0. The power function of a receiver is defined as the curve

relating PD and u. Under a fixed PFA constraint, a typical power function curve is

shown in Figure 2.1 for an LOD.
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An alternative approach to the weak signal detection problem (i.e., up 1)

is to find that receiver which maximizes the slope of the power function at u ¼ 0.

Solution of this optimization problem results in the same ratio test as given

by Equation 2.2. Consequently, the LOD is identical to that receiver which

maximizes the slope of power function at u ¼ 0: As a result, the LOD will

maximize PD for u sufficiently small. However, other receivers may yield larger

values of PD when u becomes large. As shown in Figure 2.2, for u . uc another
receiver is shown to out-perform the LOD.

2.2. UNDERSTANDING OF SIGNAL AND DETECTION

USING A FEEDFORWARD EXPERT SYSTEM

2.2.1. INTRODUCTION

The use of SIRPs in the implementation of LRTs and LODs for radar detection

problem allows to derive algorithms for performing strong and weak signal

1

0 q

PFA = constantPD

PFA

FIGURE 2.1 Power function for a locally optimum detector.

1

PD

LOD

Other receiverPFA

0 qqc

PFA = constant

FIGURE 2.2 Illustration of non-optimality of locally optimum detector when u . uc.
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detection in a nonGaussian environment. Classical detection assumes a priori

knowledge of joint PDF underlying the received data. In practice, received data

can come from a clear region, where background noise (BN) alone is present or

from a clutter (CL) region, where returns are due to BN and reflections from such

objects as ground, sea, buildings, birds, … etc. When a desired target return is

from a clear region and the BN is sufficiently small, the signal-to-noise ratio will

be large and the strong signal detector (i.e., the LRT) should be used. However, if

a desired target return is from a CL region, two situations can exist. When the

desired target can be filtered from the CL by means of space–time processing and

the BN is sufficiently small, the signal-to-noise ratio will be large and a strong

signal detector should again be used. When the desired target cannot be filtered

from the CL by means of space–time processing and the CL return is much larger

then the desired target return, a weak signal detector (i.e., LOD) should be used.

Use of the LOD in a strong signal situation can result in a severe loss of

performance. Hence, it is necessary for the receiver to determine whether a strong

or weak signal situation exists.

All of this suggest use of an expert system in the radar detection problem for:

(1) monitoring the environment and (2) selecting the appropriate detector for

processing the data. This is in contrast to current practice where a single robust

detector, usually based on the Gaussian assumption, is employed. In addition

depending on statistical changes in the environment over time and space, the

expert system enables the receiver to adapt so as to achieve close to optimal

performance. The goal of this study is to explore how an expert system can be

used to develop an adaptive radar receiver, able to outperform traditional radars

with respect to high subCL visibility. The focus of the study deals with detection

of weak targets which cannot be filtered from the CL by means of space–time

processing. For this purpose, it is convenient to divide the problem into two steps.

The first step involves classification of the cells to be tested, while the second has

to do with determining whether or not a target is present in the test cell. The two

steps are discussed in more details in the following sections.

2.2.2. CLASSIFICATION OF THE TEST CELLS

Classification of test cells involves two steps: mapping of the space and indexing

of the cells.

2.2.2.1. Mapping of the Space

In this research, the term, space, is used in its most general context. In practice,

an effort is made to filter the desired target return from the CL to the extent

possible. This is accomplished by performing space–time processing on

received data. In particular, given N temporal samples and M spatial samples

from a single range ring, spatial and temporal spectra are generated by performing

a linear transformation on the NM samples. When random processes are modeled

as SIRPs, the space–time processing will not change the nature of random
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processes, since a linear transformation of an SIRP results in an SIRP of the

same type. For example, if the underlying samples are modeled as Weibull,

the transformed samples will also be Weibull. The spatial spectra contain angle

of arrival information while the temporal spectra contain Doppler information.

Consequently, the space of interest consists of range/angle of arrival/Doppler

cells, respectively. It is in this general context that we refer to space and cells.

The mapping of the space can be done in two different ways: first, a CL

map of entire space can be generated by assigning a scan of the radar receiver for

this purpose. The CL map will indicate a priori those locations, which are likely

to consist of clear regions (where BN alone is present) and CL patches. Another

way, is to do a real-time assessment of a test cell. In other words, the question of

whether the test cell is in a clear region or in a CL patch is determined in real-time

during the scan.

2.2.2.2. Indexing of the Cells

In the regions where CL patches are present, a sufficient number of reference

cells near the test cell must be chosen so that the number of samples from the

reference cells (approximately 100 if using Ozturk’s algorithm26,27) are adequate

for approximating the body of the joint PDF that is to be used in characterizing

the disturbance of the test cell. It should be recognized that a CL patch could

be nonhomogeneous. If so, it may be necessary to subdivide the CL patches

into subpatches. The samples from each subpatch would be approximated by a

different joint PDF.

An important point is that knowledge of the body of joint PDF describing

the disturbance is usually insufficient for determination of threshold of the radar

receiver. In this research, our focus is on the weak signal detection problem.

As pointed out earlier, the appropriate processor for this problem is the LOD.

For the LOD, Chakravathi and Weiner3,18,23 have conjectured that the body of

PDF for the disturbance may be sufficient for determining the tail of the PDF for

the LOD statistic. The body of joint PDF describing the disturbance could then

be sufficient for determining the threshold of the LOD. This is significant

because, only around 100 reference cells are needed when Ozturk’s identifica-

tion algorithm is used.

A set of descriptors need to be allocated for each cell. This allocation is

referred to as cell indexing. The first item which needs to be determined is

whether the detection problem for the test cell should be classified as strong signal

detection, weak signal detection, or an intermediate case which falls between

strong and weak signal detection. For the case of strong signal detection, the

conventional radar receiver is adequate. For weak signal detection, the LOD

should be used. For the intermediate case, it is proposed to use Wang’s

processor19 based on the generalized likelihood ratio test (GLRT).

In all the three cases, it is necessary to use reference cells to estimate

information needed for implementation of the processor. This assumes that

the disturbance is homogeneous such that the reference cells neighboring the
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test cell are representative of the test cell. However, a test cell may be near

the edge of a CL patch or subpatch. Its location relative to these edges should

be known, so that the reference cells, which are truly representative of the test

cell, are selected.

For weak signal detection, the LOD differs from one joint PDF to another.

Hence, it is necessary to know the type of random processes (e.g., Gaussian,

K-distributed, Weibull, etc.) associated with the disturbance in the region, where

the test cell is located. In practice, Ozturk’s algorithm may indicate that, several

different PDFs are suitable for approximating a particular disturbance. When this

is the case, it may be desirable to implement several LODs and fuse the results.

Hence, descriptors should be allocated to each cell for describing one or more

joint PDFs in terms of their types, scales, locations, and shape parameters.

2.2.3. TARGET DETECTION

As mentioned previously, the type of detector depends upon whether the

detection problem has been classified as a strong signal case (SSC), weak signal

case (WSC), or intermediate signal case (ISC). Once the type of detector has been

selected, parameters for the sufficient statistic of the detector are determined from

the cell descriptors. Information from the cell descriptors is used to determine the

threshold. When several detectors are employed simultaneously, as could arise in

the WSC, a fusion algorithm is used to arrive at a global decision.31
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FIGURE 2.3 Signal understanding and detection using a feedforward expert system.
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The above discussion provides the basis for signal understanding and

detection using a feed forward expert system (SUD/FFES). A block diagram of

the SUD/FFES is shown in Figure 2.3.

The preprocessor collects data, performs classical space–time processing,

and stores the resulting data. This data is then used by the mapping, indexing, and

detection blocks, which implement the two steps discussed previously. A more

detailed block diagram is shown in Figure 2.4 where each block is subdivided

into signal processing blocks and signal interpretation blocks. Because weak

signal detection will be emphasized in this study, the portion dealing with weak

signal detection, is shown using solid lines while the remaining portions are

enclosed by dashed lines. The solid line portion is referred to as weak signal

understanding and detection using a feed forward expert system (WSUD/FFES).
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FIGURE 2.4 Signal processing and interpretation blocks in a feedforward expert system.
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TABLE 2.1
Functioning of the Signal Processing and Interpretation Blocks in a

Feedforward Expert System

Preprocessing

S. P. 1 Collects data.

Performs space-time processing

for each range ring to produce

a two dimensional spectrum

describing angle of arrival and

Doppler frequency information.

Mapping

S. P. 2 Uses spectral analysis and

rank ordering or a

thresholding technique to

distinguish between CL

and background noise.

S. I. 2 Declares cells as BN

(therefore SSC) or CL cells.

Indexing

S. P. 3

Uses rank ordering or

thresholding technique

to distinguish between

WSC and ISC

S. I. 3

Declares cells as WSC or ISC

SSC WSC ISC

S. P. 10 S. P. 4 S. P. 7

For a given test cell assigns

a homogeneous distance

procedure to every pair

of cells within a specified

region of the space.

For a given test cell assigns

a homogeneous distance

procedure to every pair of

cells within a specified

region of the space.

For a given test cell assigns

a homogeneous distance

procedure to every pair

of cells within a specified

region of the space.

S. I. 10 S. I. 4 S. I. 7

Chooses the reference cells

for the test cell based

upon number of reference

cells required and the

homogeneous distance

procedure.

Chooses reference cells for the

test cell based upon number

of reference cells required

and the homogeneous

distance procedure.

Chooses reference cells for

the test cell based upon

number of reference cells

required and the homoge-

neous distance procedure.

Continued
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A more detailed discussion of each block is provided in Table 2.1, and further

more in Sections 2.4–2.7. It may be noted that, this is a feedforward system in

the because the mapping, indexing, and detection are done sequentially with no

feedback between these blocks.

Since the data collected from the environment is random, it is not possible

to carry out an exact probability distribution identification using a reasonably

small amount of data. Consequently, it is better to think about the probability

distribution identification problem as an approximation problem, where we

expect to select PDFs and their parameters, which result in good approximations

to the underlying probability distributions.

Because the expert system of Figure 2.3 is feedforward, it does not allow for

verification of the interpretations made by any of the signal interpretation blocks

of Figure 2.4. Also, reprocessing of the data is not allowed by the feedforward

configuration. The system discussed in the next chapter adds to the expert system

the ability to reprocess data, if discrepancies are found to exist at the output of

any signal interpretation block. The concept of discrepancy analysis is discussed

in the next section.

TABLE 2.1 Continued

Indexing (cont.)

S. P. 11 S. P. 5 S. P. 8

Estimates for each test cell

the variance needed to

determine threshold.

Uses Ozturk’s algorithm to

determine the PDF(s)

of the reference cells

and the associated

parameters (e.g., scale,

location, shape, variance…).

Estimates signal covariance

matrix of the test cell

using data from the

reference cells.

S. I. 11 S. I. 5 S. I. 8

Declares the cells from the

clear region as SSC,

stores the value of the

variance for each cell

(assuming white Gaussian

background noise).

Assigns one or more PDF(s)

and their parameters to

the test cell.

Models data as having a

jointly Gaussian PDF.

Target Detection

SSC WSC ISC

S. P. 12 S. P. 6 S. P. 9

Computes threshold and

processes data from

test cell using

conventional radar (LRT).

Computes threshold,

processes data using one

or more LODs, and fuses

the results.

Computes threshold and

processes data using

GLRT.

S. I. 12 S. I. 6 S. I. 9

Target present or absent. Target present or absent. Target present or absent.
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2.3. SIGNAL UNDERSTANDING AND DETECTION USING

A FEEDBACK EXPERT SYSTEM

2.3.1. INTRODUCTION

To convert the feedforward system of the previous chapter to a feedback

system, feedback is introduced within each block and to each previous block.

This is shown in Figures 2.5 and 2.6. We refer to such a system as signal under-

standing and detection using a feedback expert system (SUD/FBES). The expert

system analyzes the output of each block and makes an assessment, as to

whether correct signal processing and understanding have taken place. The

signal interpretation blocks of the feedforward system are augmented to carry

out this task. Depending upon the assessment made, additional data and signal

processing may be carried out.

The assessment procedure is indicated in Figure 2.5 by a block in the shape

of a diamond with one input and two outputs. The diamond input corresponds to

the output of the block to be evaluated. If correct signal processing and under-

standing is believed to have taken place, the block under evaluation is allowed

to communicate with the next block directly through the normal feedforward

channel. Otherwise, additional data and signal processing are carried out under

supervision of the expert system.

The feedback expert system to be used in this study, is called IPUS20

(Integrated Processing and Understanding of Signals). It is presently under

development by V. Lesser and H. Nawab21 and was successfully applied to an

acoustic recognition problem.22 In this study, it is proposed to apply the IPUS

expert system to the radar weak signal detection problem. In the following

sections, the theory of IPUS is introduced and examples for application of IPUS

to the radar weak signal detection problem are discussed.

2.3.2. IPUS ARCHITECTURE

2.3.2.1. Introduction

The IPUS architecture has evolved from research on the design of an acoustic

recognition system.22 The goal of such a system is to identify the origins of

various sound sources (such as telephones, vacuum cleaners, crying infants, etc.).

The complexity of the acoustic recognition problem arises because of two

factors:

(a) The need to process a tremendous variety of signal types due to the

situation-dependent nature of the input. For example, not only may

the input of an acoustic recognition system includes different types

of signals, such as narrow-band, impulsive, and harmonic signals, but

also may include various combinations of these signals.

(b) The need to change processing goals in a context-dependent way. For

example, the goal of a signal understanding system might be to respond
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to either the sounds of an infant or a ringing telephone and ignore other

sound sources. If an infant sound is detected, the system would then

ignore the telephone and would switch its main goal to determining

whether the infant is laughing, crying, or choking.

These two factors also arise in the radar detection problem. Specifically,

complexity is encountered because of:

(a) The need to process a tremendous variety of signal types due to the

situation-dependent nature of input. For example, the PDFs of random

received signals may be Gaussian, Weibull, K-distributed, etc., with

various values for the scales, locations, and shape parameters.

(b) The need to change processing goals in a context-dependent way.

For example, the usual operational mode of a radar involves processing

of returns from clear regions which consist of strong signals embedded

in a weak Gaussian BN. If a return from a CL region is determined, it

must be decided whether either the intermediate or weak signal case

(WSC) exists. If the WSC is applicable, one or more LODs need to

be selected.
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FIGURE 2.5 SUD/FBES.
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In discussing the IPUS expert system, concepts are illustrated with examples

taken from the radar detection problem.

In the radar detection problem considered in this research, it is assumed that,

the signal environment is unknown a priori, even though mathematical models,

for various signals that can arise, are assumed to be known. Once the environment

has been determined, application of the appropriate signal detection algorithm

(e.g., Gaussian receiver, LODs, GLRT) is straightforward. The difficult problem

addressed by the IPUS architecture deals with the use of measured data to

identify suitable mathematical models, for approximating the various signals

received from the unknown environment.
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FIGURE 2.6 Signal processing and interpretation blocks in a feedback expert system.
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The algorithms employed in the IPUS architecture to identify mathematical

models for approximating the received signals, are referred to as signal processing

algorithms (SPAs).

Because of the two factors mentioned previously, it is very difficult or

even impossible, to design a single mathematically derived SPA which can be

applied to all possible input signals to produce the desired information for

each input. To deal with such complexities, the approach taken in the IPUS

architecture is for the signal understanding system to have access to a “data-

base” of mathematically derived algorithms. For the radar detection problem,

examples are algorithms for the mean estimation, covariance matrix estimation,

goodness of fit test and the PDF approximation. This database is indexed by

the type of assumptions made about the input signal and the type of output

information desired in accordance with the current goals of the signal under-

standing system.

For example, it may be assumed that the input signal is Gaussian. A good-

ness of fit test algorithm would be applied to determine whether the data is

statistically consistent with the Gaussian assumption. If the Gaussian assumption

is not rejected, then the desired output information would be the sample mean

vector and sample covariance matrix of the data.

The IPUS architecture utilizes the fact that, signal processing theories often

supply a system designer with an SPA which has adjustable control parameters

(sampling period of data samples, number and location of reference cells, etc.).

SPA denotes a database of SPA “instances,” each instance corresponding to a

particular set of fixed values for the control parameters. The IPUS architecture

is designed to search for appropriate SPA instances to be utilized in particular

situations in order to accurately model the unknown environment.

Two basic approaches for carrying out the signal processing are:

(a) Process the incoming signal with all the SPA instances those are

potentially relevant to the entire class of possible input signals in

the application domain and then choose the output data which has the

most consistent interpretation. This approach requires vast amounts of

signal-processing output data to be examined by higher level inter-

pretation processes.

(b) Process the incoming signal with one or a small number of the possibly

relevant SPA instances, then use some mechanism to recognize whether

incorrect processing has taken place. This is followed by determination

of the nature of incorrect processing, through a diagnostic reasoning

process and finally changing the parameter settings of the SPA with

the aim of obtaining an SPA instance appropriate for the processing of

input signal. The SPA instance with the adjusted control parameter

settings is then used to reprocess the input signal.

In order to select appropriate values for SPA control parameters, the system

must consider the current system goals as well as knowledge about certain
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characteristics of the particular input signal. This leads to a paradox. Choosing

the appropriate control parameter values requires knowledge about the signal.

However, this knowledge can only be obtained by first processing the signal with

an algorithm with appropriate control parameter setting. Under this situation the

following approach is adopted.

The IPUS architecture uses an iterative technique for converging to the

appropriate control parameter values. The technique begins by using the best

available guess for the SPA control parameters values. The SPA instance output

is then analyzed through a discrepancy detection mechanism for indicating the

presence of distorted SPA output data. A diagnosis is then performed for mapping

the detected discrepancies to distortion hypotheses. A signal reprocessing phase

then proposes a new set of values for the control parameters of the SPA with the

aim of eliminating the hypothesized distortions. The SPA instance corresponding

to new control parameter values is then used to reprocess the input signal. The

output from the reprocessing once again undergoes discrepancy detection and if

necessary, is followed by diagnosis, signal reprocessing planning, and further

reprocessing of the input signal.

The signal data and the interpretation hypotheses derived from that data are

stored on a blackboard with hierarchically organized information levels. The

hypotheses on the blackboard fall into two basic categories: hypotheses posted

to explain the signal data and hypotheses posted to specify expectations about

the nature of the signal data. The inferencing on the blackboard is performed by

different knowledge sources (KSs) for tasks, such as, discrepancy detection,

diagnosis and reprocessing, and data interpretation. These tasks are presented in

the following subsections.

2.3.2.2. Discrepancy Detection

Ideally, application of an SPA instance to input data results in undistorted output

data. If the control parameters of the SPA instance are not appropriately chosen,

distorted output data may result. The key to discrepancy detection is the ability

to recognize and classify discrepancies due to distortion introduced by the SPA

instance. Three types of discrepancies are possible:

1. The first type of discrepancy is referred to as a violation. A violation

occurs when the SPA output data implies the presence of a signal which is not

a member of the allowable class of input signals. For example, disturbances

arising from cells in the clear region are always modeled in this work as

Gaussian processes, because of the expectation that BN is Gaussian. Suppose,

when output data from an SPA instance implies that the disturbance from a

cell in the clear region is non-Gaussian, a violation type of discrepancy

would result.

2. The second type of discrepancy is referred to as a conflict. A conflict

occurs when current SPA output data is inconsistent with expectations arising

from interpretations of past data. There are two types of conflicts depending on
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whether all, or only a portion, of the current SPA output data is inconsistent.

For an example of the first type of conflict, suppose previous SPA output data

arose from disturbances in the clear region while current SPA output data is

arising from disturbances in a CL patch. A conflict of the first type occurs if

all of the current SPA output data, such as an increase in variance and

nonGaussianity of the data, conflict with previous interpretations from the clear

region. For an example of the second type of conflict, suppose previous SPA

output data has resulted in the interpretation that the disturbance is from the

clear region. This might be implied by the SPA output data indicating Gaussian

statistics, zero mean and a variance level in the range of BN. A conflict of

the second type occurs when, even though Gaussian statistics are confirmed by

current SPA output data, it also reveals that the mean is no longer zero and

the variance level has increased significantly. This could happen if the

disturbance is now coming from a Gaussian CL patch where the data is highly

correlated.

3. The third type of discrepancy is referred to as a fault. A fault can arise in

two different ways. First, it occurs when two or more different SPAs, those that

are applied to the same data, result in different output interpretations. Second,

it occurs when two or more instances of a single SPA (i.e., the same SPA with

different parameter values) result in different interpretations when applied to

the same data. An example of the first kind of fault would be the situation where

SPA # 1, a power level detector, indicates a power level consistent with the

BN while SPA # 2, Ozturk’s distribution identification algorithm, indicates a

nonGaussian distribution. This is a fault because the BN is assumed to be

Gaussian. An example of the second kind of fault would be the situation where

the use of Ozturk’s algorithm based on 50 and 100 samples from the same CL

patch results in a different interpretation.

2.3.2.3. Diagnosis and Reprocessing

When the signal being monitored does not satisfy the requirements of the SPA

instance, the output of the SPA is distorted resulting in a discrepancy. Once a

discrepancy has been detected, a diagnosis procedure is used to identify the

distortion which may have led to the discrepancy. Knowing the distortion, either

the appropriate parameters of the same SPA can be adjusted or a different

SPA can be chosen to reprocess the data. In a sense, the diagnosis procedure

maps symptoms (discrepancies) to hypothesized underlying causes (distortions).

For example, assume the sample mean of a CL patch is repeatedly being

evaluated by processing 50 samples at a time. Although, the first eight trials result

in values close to zero, the ninth trial produces a large negative value for the

mean. This represents a conflict of the first kind. The diagnosis procedure may

surmise that the conflict may be due to the presence of one or more outliers.

Consequently, the reprocessing procedure concludes that the data from the ninth

trial should be reprocessed after removal of the outliers.
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2.3.2.4. Interpretation Process

The interpretation process is a search through a space of sets of interpretation

models for modeling signals. When a possible combinatorial explosion in inter-

pretation models does not exist, the interpretation process may be viewed as just a

straight-forward classification process. Otherwise, the search must be carried out

as a constructive problem solving process. The IPUS architecture employs the

constructive problem solving approach, which reduces to the classification

approach in absence of a combinatorial explosion.

Constructive problem solving techniques must be used when the set

of possible solutions is too large to be enumerated. For example, although the

set of PDF types is finite in the radar problem, there are an infinite number of

different PDFs possible because of the infinite number of values that can be

assumed by the scales, locations, and shape parameters. Consequently,

constructive problem solving is needed to approximate the underlying probability

distribution of the data.

2.3.2.5. SOU and Resolving Control Structure

At any stage in monitoring the environment, one can never be totally sure that

various interpretations are correct. Sources of uncertainty (SOU) always exist

with regards to the correct processing of data and the extent of confidence to be

placed in the interpretation. The objective of IPUS is to continue to reprocess

data, as time permits, so as to reduce the SOUs. This reprocessing is continued

until either the level of uncertainty has been reduced to some acceptable level or

until all the time allotted for reprocessing has been utilized.

The process of reducing the SOUs can be viewed as a problem solving

activity. At each stage of the IPUS architecture, it is necessary to identify SOUs

associated with a particular output and to have a strategy for reprocessing the

data, so as to efficiently reduce the SOUs associated with a particular output. The

Resolving Sources of Uncertainty (RESUN) control21 structure is used to direct

the problem-solving procedure used to gather evidence, in order to resolve

particular SOUs in the interpretation hypotheses.

The IPUS architecture and RESUN control structure presently group SOUs

into three categories: (1) violation-type discrepancies, (2) conflict-type discre-

pancies, (3) fault-type discrepancies. The basis for these categories is largely

empirical and is continually evolving. These categories are discussed below.

2.3.2.5.1. Violation-Type Discrepancies

A violation type discrepancy occurs when signal processing output data violates

a priori known characteristics of the entire class of possible input signals for the

radar problem. For example, BN is assumed to have zero mean. Assume that a

signal has been interpreted as white Gaussian and with a very small power level.

In addition, the mean has been interpreted as being nonzero. Because of the

nonzero mean, the signal cannot be classified as BN. Also, because of the small
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power level, the signal cannot be classified as CL. Clearly, a violation exists

and the zero-mean condition has been violated. There are various SOUs which

could have caused this violation. For example,

(1) there could have been one or more outliers in data,

(2) there may not have been an adequate number of samples processed,

(3) the random samples may not have been representative of the zero-mean

signal,

(4) a desired target return could be contained in one or more of the

reference cells.

For each of the above SOUs, respectively, one or more procedures exist

for their reduction. For example,

(1) extreme values could be excised from the data,

(2) the number of samples processed could be increased,

(3) an entire set of new samples could be processed,

(4) previously detected targets could be checked to determine, whether one

or more targets are likely to be present in one or more of the reference

cells. If so, these cells should be eliminated as reference cells, for the

test cell of interest.

When a violation-type discrepancy is noted, the hypothesis that a violation

exists is posted on the interpretation blackboard of the expert system. For each

condition being violation and each SOU that could have caused the violation,

an additional output data hypothesis is posted which describes the condition

being violated and the SOU that could have caused the violation. The SOUs,

which fail to produce some particular support evidence for a single input

signal or fail to result in any valid explanation for a combination of input

signals, are classified as negative evidence SOUs. The hypothesis concerning

the violation-type discrepancy and each of the additional hypotheses are then

connected by a negative evidence link and are labeled as VIOLATION-

NEGATIVE EVIDENCE SOU. Further problem solving to reduce the SOU

can then be carried out by reprocessing the underlying signal with different

SPA instances.

2.3.2.5.2. Conflict-Type Discrepancies

After processing a certain quantity of data, various expectations related to

the data to be processed arise. Conflicts occur when these expectations are not

met. If all the expectations are not met, the conflict is said to be of the first kind.

If some expectations are met while others are not, the conflict is said to be of the

second type.

An unverified expectation hypothesis exists when there is a conflict of

the first type. A NO-SUPPORT SOU label is attached to each unverified
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expectation hypothesis. For each expectation (i.e., component of the hypothesis)

not being met and for each SOU that might be responsible, an additional

hypothesis is posted on the interpretation blackboard which describes the

unsupported expectations and the corresponding SOUs. The hypothesis

concerning the conflict-type discrepancy and each of the additional hypotheses

are connected by a link labeled NO-SUPPORT SOU. Further problem solving

can then attempt to find SPA instances so as to produce output data that can

support the expectation.

When there is a conflict of the second type, a partially verified expectation

hypothesis is posted on the interpretation blackboard with a PARTIAL-

EVIDENCE SOU label. As in the previous case, each unsupported expectation

(i.e., inference or hypothesis component) is associated with a hypothesis, labeled

NO-SUPPORT SOU, which describes the unsupported expectation and the

corresponding SOU. The hypothesis labeled PARTIAL-EVIDENCE SOU can

trigger further problem solving, to find support for lower component hypotheses

labeled NO-SUPPORT SOU.

By way of example, assume that the previous ten test cells were classified

as having been in the clear. Our expectation hypothesis, therefore, is that the

11th test cell will also be in the clear. If the 11th test cell fails the Gaussian,

zero-mean, and small power level inferences, we have a conflict of the first type.

On the other hand, if the Gaussian and zero-mean inferences are found to have

support while the small power level inference is unsupported, we have a conflict

of the second type. SOUs and corresponding linked hypotheses would be

identified with each unsupported inference and additional signal processing

would be carried out to reduce the level of SOUs as time permits.

2.3.2.5.3. Fault-Type Discrepancies

Fault-type discrepancies arise when two different SPAs or instances produce

different output interpretations. In such a case, a composite hypothesis is created

which is a copy of the more reliable or the two output interpretations. A link

labeled with a NEGATIVE-EVIDENCE SOU connects the less reliable

hypothesis to the composite hypothesis. Further problem solving, attempts to

remove the negative-evidence SOU by reprocessing the signal using different

SPA instances for the less reliable SPA. Two possible outcomes are then

possible. Either the negative evidence SOU is eliminated or it is replaced by

another negative-evidence SOU. In the latter case, further problem solving can

attempt to reprocess the signal with the more reliable SPA but using different

SPA instances.

By way of example, assume that a zero-mean inference is to be supported

by a sample-mean algorithm and a median detector algorithm. Assume that,

only a small number of data samples are available. Under this assumption, the

median detector algorithm is likely to be more reliable. Suppose, the median

detector algorithm supports the zero-mean inference while the sample mean

algorithm does not. RESUN creates the composite hypothesis that the mean is
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zero. The composite hypothesis is limited to the hypothesis that the mean is not

zero by using a NEGATIVE-EVIDENCE OUTLIER label. The data samples

are then reprocessed by sample mean algorithm using SPA instances, which

delete some of the extreme data values. If the zero-mean inference is supported,

the negative evidence SOU is assumed to have been eliminated. On the

contrary, the signal is reprocessed by the median detector algorithm, where

different sets of outliers may be chosen.

2.3.3. APPLICATION OF IPUS TO RADAR SIGNAL UNDERSTANDING

The IPUS architecture is suitable when a single SPA instance cannot correctly

process all input signals which can potentially arise in a signal understanding

application. In the radar problem, the variety of probability distributions under-

lying the data, along with different tasks to be carried out in monitoring the

environment (CL mapping and cell indexing), necessitate more than one SPA

instance, rendering IPUS suitable for the radar problem.

In this research we emphasize the weak singal case (WSC). As explained

previously, the branch of Figure 2.6 corresponding to the WSC is referred to as

WSUD/FBES. From the figure, it is clear that tasks of WSUD/FBES have been

subdivided into mapping, indexing and detection. Assuming the mapping and

indexing to be done properly, application of the LOD is straightforward.

2.4. PROPOSED RADAR SIGNAL PROCESSING SYSTEM

USING A FEEDBACK EXPERT SYSTEM

2.4.1. DATA COLLECTION AND PREPROCESSING

Assume that a radar transmits a periodic signal composed of a series of predefined

RF pulses. Let T be the period of the signal and te denote pulse duration. T is

known as the pulse repetition interval (PRI). Assuming rectangular-shaped

pulses, the envelope of emitted signals is shown in Figure 2.7 where A denotes

pulse amplitude.

For ease of discussion, consider a low pulse repetition frequency (PRF) radar

for which there is no range ambiguity. During the time interval [ pT þ te,
( p þ 1)T ], of the pth PRI, p ¼ 1, 2, 3, … , the radar functions are in the receive

T

A

Transmitted signal envelope

tte

FIGURE 2.7 Envelope of the transmitted signals.
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mode and collect data, due to the pth pulse from the azimuth angle, uz, to which

the radar antenna is oriented. The collected data corresponds to returns from

different range cells as illustrated in the top view of Figure 2.8 where Du denotes
the antenna beam width.

The round trip delay, td, from a given range R is given by

td ¼ 2R

c
ð2:18Þ

where, c denotes the velocity of propagation of the electromagnetic wave. For the

pth period of the transmitted signal, the time interval [ pT þ te, ( p þ 1)T ] is

subdivided into J range bins of duration te. Each range bin corresponds to a range
cell with its range extent denoted by re. Figure 2.9 shows the different range cells

and their corresponding range bins on the time axis for a fixed azimuth angle uz.

Range cell N

Range cell 1

Top view

∆q

qz

FIGURE 2.8 Range cells in a constant azimuth beam.
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envelope
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0 t2

Rk
Top view

∆q
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FIGURE 2.9 Range cells and their corresponding time bins.
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Let Rk and Rkþ1 denote the ranges to the leading and trailing edges of the kth

range cell. Also, let tk and tkþ1 denote the corresponding round trip delay times.

Then, using Equation 2.18 it can be written

tk ¼ 2Rk

c
and tkþ1 ¼ 2Rkþ1

c
ð2:19Þ

Taking the difference and utilizing the fact that a range bin is defined to be of time

extent, te, results in

tkþ1 2 tk ¼ te ¼ 2ðRkþ1 2 RkÞ
c

ð2:20Þ

Hence, each range bin of time extent, te, corresponds to a range cell of range

extent, re, where

re ¼ Rkþ1 2 Rk ¼ c
te
2

ð2:21Þ

This process is repeated for different azimuth angles, uz. The collection of

cells corresponding to different ranges and azimuth angles can be represented

in a rectangular format, as illustrated in Figure 2.10. The collection of range

cells corresponding to a constant azimuth angle is shown in Figure 2.8. For a

fixed range, the collection of azimuth cells is as shown in Figure 2.11.

Let the range bins be indexed by kR, 1 # kR # J, and the azimuth bins be

indexed by kA, 1 # kA # K. The resolution cell corresponding to kR ¼ j and

kA ¼ k is referred to as the jkth range–azimuth (R/A) cell, as illustrated in

Figure 2.10.

Range bins
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FIGURE 2.10 Rectangular format for representative cells at different ranges and azimuth

angles.
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In practice, the antenna beam dwells on each R/A cell for a time duration,

known as the dwell time which is equal to P PRIs. Consequently, P pulse returns

from each R/A cell, spaced T seconds apart, can be processed. After decomposing

the P received pulses into a sequence of I and Q quadrature components, a

Doppler filter bank is implemented by performing a M-point fast Fourier

transform (FFT) on each of the P quadrature component samples where M $ P

depending upon whether or not zero padding is used. Let yIp( j, k) and yQp( j, k),

p ¼ 1, 2, 3, …, P, denote the I andQ components from the pth PRI of the jkth R/A

cell. Similarly, let YIm( j, k) and YQm( j, k), m ¼ 1, 2, 3, …,M, denote the mth FFT

coefficient from the jkth R/A cell. In addition to computing the temporal data

magnitudes, yp( j, k), from the I and Q quadrature components for each PRI,

the magnitude of each Fourier coefficient, Ym( j, k), is computed, as shown in

Figure 2.12, to form the FFT coefficient magnitudes.

The collection of cells corresponding to different ranges, azimuth angles, and

Doppler frequencies can be represented in a 3-D cubic format, as illustrated in

Figure 2.13. Let the Doppler bins be indexed by kD, 1 # kD # M. The resolution

cell corresponding to kR ¼ j, kA ¼ k, and kD ¼ m is referred to as the jkmth

range–azimuth–Doppler (R/A/D) cell. The total number of R/A/D cells is given

by J £ K £ M.

The temporal data magnitudes and FFT coefficient magnitudes are used by the

mapping processor to enable classification of the R/A/D cells into BN cells and

CL cells. The mapping approach is described in the next section for the general

radar problem.

2.4.2. MAPPING

The purpose of mapping is to declare a R/A/D cell, as either a BN cell or

CL cell. As shown in Figure 2.14, two types of data are formed in the

preprocessing stage. These are, temporal data magnitudes, yp( j, k), and FFT

coefficient magnitudes, Ym( j, k). The set of yp( j, k) magnitudes consists of P

data points for each R/A cell in the J £ K R/A plane, while, the set of Ym( j, k)

Azimuth bin

FIGURE 2.11 Collection of azimuth cells for a fixed range.
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magnitudes consists of one data point for each R/A/D cell in the J £ K £ M

R/A/D space.

The mapping is done in two stages. First, using yp( j, k), the R/A plane is

mapped into BN and CL (CL) R/A cells. Then, using Ym( j, k), the 3-D R/A/D

space is mapped into BN and CL R/A/D cells. The necessity for performing

mapping in two stages is explained next.

In the first mapping stage, an average P( j, k) is formed for each R/A cell in

the J £ K R/A plane by averaging the power of the P temporal data magnitudes,
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FIGURE 2.12 Block diagram of data processing stage.
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yp( j, k) as shown in Equation 2.22,

Pðj; kÞ ¼ 1

P

XP
p¼1

y2pðj; kÞ; j ¼ 1; 2;…; J

k ¼ 1; 2;…;K:
ð2:22Þ

The average powers P( j, k) are used to classify BN and CL cells in the R/A plane,

as is discussed in the next chapter.

The second stage involves the 3-D R/A/D space. In particular, each cell in the

R/A/D space needs to be classified as either BN or CL. The classification

performed in the first mapping stage is useful in reducing the effort required in

the second stage. If the jkth R/A cell is BN, then all of the jkm Doppler cells,

m ¼ 1, 2,…, M, will also be BN. However, if the jkth R/A cell is CL, then the

jkm Doppler cells, m ¼ 1, 2,…, M, may or may not be CL depending upon the

CL spectrum. Consequently, only the Doppler cells corresponding to R/A cells

that have been identified as CL in the first mapping stage need to be examined

in the second stage. This reduces considerably the amount of processing needed

for the second mapping stage.

Notice that two-way communications is required between the preproces-

sing and mapping stages. As shown in Figure 2.14, the preprocessing stage

generates the quadrature components, the FFT coefficients, and their magni-

tudes. The first mapping stage classifies the R/A cells as either BN or CL.

For those R/A cells classified as BN, the corresponding Doppler cells are also

classified as BN by the second mapping stage. For those R/A cells that are

j

J

0

m

M

k K
kA

Range
bins

jkm th R/A /D cell

Doppler
bins

kD

KR

Azimuth
bins

FIGURE 2.13 Cubic format for representing cells at different ranges, azimuth angles, and

doppler frequencies.
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classified as CL, the second mapping stage obtains the FFT coefficient

magnitudes. These are then used to classify the remaining R/A/D cells as

either BN or CL.

The major focus of this work is to demonstrate how the principles of IPUS

can be applied to the radar problem. For that purpose, procedures and rules

have been developed that utilize the IPUS capabilities to solve the various

Generation of quadrature components
and their FFTsas shown in Fig. 2.12

Temporal data
magnitudes

FFT coecient
magnitudes

First mapping
stage

Average power
computation

Mapping of R/A cells into BN and CL

No

Communicate
coordinates of
CL R/A cells

YesIs
jk th R/Acell

BN

Mapping of remaining R/A/D
cells

Combine results

Output

MappingPreprocessing

Second mapping
stage

Declare jkm,
m = 1,2,...,M
R/A/D cells BN

FIGURE 2.14 Block diagram of the preprocessing and mapping of data.
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stages of the radar problem. Throughout this work the procedures and rules have

been tested with nontrivial radar examples. The first procedure, presented in the

next section, is a mapping technique that classifies cells into BN and CL.

2.5. MAPPING PROCEDURE

In this section a mapping procedure for a surveillance volume subdivided

into R/A cells is presented along with examples. Also, extension of the mapping

procedure to R/A/D cells is discussed in the last section. General procedures are

presented without explanations of how to choose parameters. The explanations

are provided in Section 2.7.

2.5.1. INTRODUCTION

Assume that J £ K R/A cells are scanned by a radar antenna. Furthermore,

for simplicity, assume that the dwell time is equal to the PRI so that only a single

pulse is processed from each cell, i.e., P ¼ 1. In this case, an FFT is not possible

and the block diagram of the preprocessing stage reduces to that shown in

Figure 2.15. When an FFT is not possible, the block diagram of the preprocessing

and mapping stages, shown in Figure 2.14, simplifies to Figure 2.16. Only J £ K

temporal data magnitudes y( j, k) are available to the mapping stage. In this case,

only J £ K R/A cells need to be mapped into BN and CL cells and the mapping

process of Figure 2.14 reduces to the first mapping stage alone. As explained

in Section 2.4.2, an average power P( j, k) is formed for every R/A cell in

the J £ K R/A plane. For P ¼ 1, Equation 2.22 becomes

Pðj; kÞ ¼ y21ðj; kÞ; j ¼ 1; 2;…; J

k ¼ 1; 2;…;K:
ð2:23Þ
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FIGURE 2.15 Block diagram of data preprocessing stage for P ¼ 1:
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At this point, the R/A plane consists of two different types of regions that need to

be identified. These are clear regions, where BN alone is present, and CL patches,

where CL and additive BN are present. Let us, first, examine the nature of the BN

and CL in order to understand the theory behind the procedure development for

mapping.

2.5.2. OBSERVATIONS ON BN AND CL CELLS

Assuming additive BN and CL, the following observations are based on many

computer generated examples of a BN region containing CL patches where the

CL-to-noise ratio (CNR) is assumed to be greater than 0 dB. The BN envelope

is assumed to be Rayleigh while the CL envelope may be either Rayleigh,

K-distributed, Weibull, or lognormal.

2.5.2.1. Observations on BN Cells

The following observations on BN cells were noted:

– On an average, the BN data values are smaller than the CL data values.

– Large data values may exist in a BN cell that may be higher than some

data values of a CL cell.

– Large data values in the BN tend to be isolated points.

– The number of BN data significantly larger than the average is relatively

small. Figure 2.17 shows a typical BN data histogram.

Generation of quadrature components
as shown in Figure 2.15

Temporal data
magnitudes

Average power
computation

Output

Mapping of R/A cells into BN and CL

MappingPreprocessing

FIGURE 2.16 Block diagram of preprocessing and mapping stages for P ¼ 1:
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– The relatively small numbers of large BN data are distributed sparsely

throughout the surveillance volume.

2.5.2.2. Observations on CL Cells

The following observations on CL cells were noted:

– On an average, CL data values are higher than BN data values.

– A CL region contains additive CL and BN.

– Small data values may exist in a CL cell that may be smaller than some

data values of a BN cell.

– The large CL data values tend to be larger than most of the large BN data

values assuming positive CNR.

– Whereas the BN data values are distributed over the entire surveillance

volume, the CL data values are distributed only over the CL regions.

– Large data values in the CL tend to be clustered.

Figure 2.18 shows an example of the distribution of large values of BN data

denoted by ( £ ) and large values of CL data denoted by (o). Notice that the large
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FIGURE 2.17 Example of a BN histogram.
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FIGURE 2.18 Concentration of large data in a scanned volume.
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BN data values are sparsely distributed over a large area while large values of CL

are concentrated in small regions, the CL regions.

2.5.3. MAPPING PROCEDURE

Using the fact that CL patches, on an average, have stronger radar returns, the

mapping processor begins by setting a threshold which results in a specified

fraction of BN cells, as explained in Section 2.7. Image processing is then used

to establish the BN and CL patches. If the final image contains a significantly

different fraction of BN than originally established by the initial threshold, the

process is repeated with a new threshold. The mapping processor iterates until

it is satisfied that the final scene is consistent with the latest specified threshold.

Finally, CL patch edges are detected using image processing technique.

The mapping procedure consists of two steps. The first step is the identifica-

tion of CL patches within BN and second is the detection of CL patch edges and

their enhancements. These two steps are explained next.

2.5.3.1. Separation of CL Patches from Background Noise

Identification of CL patches within BN is performed by following steps: thres-

holding, quantization, correction, and assessment.

2.5.3.1.1. Thresholding and Quantization

Identification of CL patches within BN starts by setting a threshold q that results

in a specified fraction of BN cells. Then a quantized volume is formed as follows:

all R/A cells with average power less than q are given a value of zero and all

R/A cells with average power above q are given a value of one (unity). LetQ( j, k)

represent the quantized value of the jkth R/A cell. Then,

Qðj; kÞ ¼ 1

0

if Pð j; kÞ $ q

if Pð j; kÞ , q
j ¼ 1; 2;…; J and k ¼ 1; 2;…;K

"
ð2:24Þ

where P( j, k), the average power of the jkth R/A cell, is defined in Equation 2.23.

Figure 2.19 shows the computer generated CL patches and BN region which

are to be separated by mapping procedure. A, B, C, and D denote the CL patches.

Figure 2.20 shows a typical contour plot of the quantized R/A volume. Initially,

let R/A cells with a quantized value of one be declared as CL cells and R/A

cells with a quantized value of zero be declared as BN cells. By comparing

Figures 2.19 and 2.20, note that the quantized version differs from the original.

This is due to the fact that even though the average powers of BN cells are

expected to fall under the threshold typically, some BN cells have an average

power that falls above the threshold. Similarly, while the average powers of CL

cells are expected to fall above the threshold, typically, some CL cells have an

average power that falls under the threshold. Also, as explained in Section 2.7,
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the first setting of the threshold, which is somewhat arbitrary, is likely not to be

the best for identifying CL patches within BN.

2.5.3.1.2. Correction

After quantization, the next step is to correct misclassified BN and CL cells.

Consider a set of three by three R/A cells. As shown in Figure 2.21, let the center

cell be referred to as the test cell and the surrounding cells be referred to as the

neighboring cells. Assume that a CL patch cannot be formed by a single cell. In

this case, every test cell in the CL patch has at least one neighboring cell that

belongs to the same CL patch.
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FIGURE 2.19 Example of a generated range–azimuth volume that is to be separated by

the mapping procedure.
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FIGURE 2.20 Example of a quantized range–azimuth volume.
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A test cell belonging to a CL patch that has at least one neighboring BN cell

is referred to as a CL edge cell. On the other hand, a test cell that belongs to a

CL patch, for which none of the neighboring cells are in the BN, is referred to as

an inner CL cell.

The proposed correction technique consists of transforming the quantized

volume into a “corrected“ volume. The transformation consists of the following

steps:

1. As explained in Chapter 7, choose the necessary number of CL neigh-

boring cells in the quantized volume (NCQ), for a test cell in the

quantized volume to be declared as a CL cell in the corrected volume.

NCQ can take one of the following values: 5, 6, 7, 8.

2. For every test cell in the quantized volume count the number of

neighboring CL cells. If the number is greater than or equal to NCQ

declare the test cell as a CL cell in the corrected volume. Otherwise,

declare the test cell as a BN cell in the corrected volume.

When all the cells of quantized volume have been tested, a corrected volume

consisting of declared BN or CL R/A cells is obtained. Notice that a cell type is

not updated until the entire correction is done. Figure 2.22 shows an example of a

corrected volume. Notice that the latter volume has larger homogeneous regions

than the quantized one.

Because NCQ is chosen to be relatively large (i.e., NCQ ¼ 5, 6, 7, or 8),

BN cells those were incorrectly identified in the quantized volume as CL cells,

due to their large power, tend to be reclassified as BN cells. Also, inner CL cells

in the quantized volume are recognized as CL cells in the corrected volume.

Meanwhile, most of the CL edge cells in the quantized volume are recognized as

BN cells in the corrected volume. This results in an over-correction where most

Test cell

Neighboring cell

FIGURE 2.21 3 £ 3 Range–azimuth cells.
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of the CL edge cells are identified as BN. As an example, when NCQ ¼ 8, only

inner CL cells in the quantized volume are recognized as CL cells in the corrected

volume and all CL edge cells in the quantized volume are recognized as BN cells

in the corrected volume. In order to recover the edge cells, a second correction

stage is needed where the first corrected volume will be transformed into a second

corrected volume. Let the first corrected volume be referred to as the “corrected-

quantized” volume (CQV) and the second “corrected” volume be referred to

as the “corrected–corrected” volume (CCV). The following steps are used to

transform the CQV into the CCV:

1. As explained in Section 2.7, choose the necessary number of CL

neighboring cells, NCC, for a test cell in the CQV to be declared as a

CL cell in the CCV. NCC can take one of the following values: 1, 2, 3,

or 4.

2. For every test cell in the CQV count the number of neighboring

CL cells. If the number is greater than or equal to NCC declare the test

cell as a CL cell in the CCV. Otherwise, declare the test cell as a BN

cell in the CCV.

Figure 2.23 shows the CCV obtained by transforming the CQV of

Figure 2.22.

2.5.3.1.3. Assessment

Let BNQP, BNCQP, and BNCCP denote the percentage of BN cells in the

“quantized,” corrected–quantized and corrected–corrected volumes, respect-

ively. BNQP is prespecified so as to determine the threshold for the quantized

volume, whereas BNCQP and BNCCP are computed after the CQV and the CCV

are obtained.
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FIGURE 2.22 Example of a “corrected” range–azimuth volume.
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The assessment process consists of comparing BNCQP and BNCCP to

BNQP in order to determine whether or not the percentages of the BN cells after

correction are consistent with the percentage of BN cells in the quantized volume.

When there is no consistency, further quantization, correction and assessment are

performed until consistency is obtained.

The thresholding/quantization, first correction, second correction, and assess-

ment stages are used to find the best threshold to separate between BN and

CL patches. Once BNQP has been set, a threshold is computed. Then corrections

are made to try and build the BN region and CL patches. The correction stages

relabel some of the above-threshold cells as BN cells if they are likely to belong

to the BN, and some of the below-threshold cells as CL cells if they are likely

to belong to a CL patch, based on the choices for NCQ and NCC. Depending on

how good or how bad of a choice is the threshold, many or few cells are relabeled,

respectively. At the end of the procedure, BNCCP is computed and compared

to BNQP. If the values are within a certain range, few cells would have been

relabeled, the threshold is accepted and the assessment passes. Otherwise, many

cells have been relabeled and the threshold is rejected. The iterative process

then continues by setting another threshold through the choice of a new value

for BNQP.

Rules for choosing NCQ, NCC, and BNQP and for determining when

consistency of the percentages are obtained are explained in Section 2.7.

2.5.3.1.4. Smoothing

Examples have shown in many cases that when the percentages are consistent,

CL declared patches may contain isolated BN declared cells. Because small

powers can arise in a CL patch as explained in Section 2.5.2, it is most likely that

isolated BN cells in CL patches are CL cells. The smoothing process is

used to detect these isolated cells and label them adequately by transforming
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FIGURE 2.23 Example of the CCV corresponding to the CQV of Figure 2.22.
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the CCV into a smoothed volume (SV). The smoothing technique consists of the

following steps:

1. Choose the necessary number of CL neighboring cells, NS, for a BN

identified test cell in the CCV to be declared as a CL cell in the SV

where NS can take one of the following values: 5, 6, 7, or 8.

2. For every BN identified cell in the CCV count the number of neigh-

boring CL cells. If the number is greater than or equal to NS, declare the

test cell as a CL cell in the SV. Otherwise, declare the test cell as a BN

cell in the SV.

Figure 2.24 shows an example of the SV corresponding to the CCV of

Figure 2.23. Note that the CL patches are smooth and do not contain any isolated

points.

2.5.3.2. Detection of CL Patch Edges and Edge Enhancement

2.5.3.2.1. Detection of CL Patch Edges

After smoothing, each cell in the SV has been declared as either a CL or BN cell.

The next step is to determine which of the CL cells are located on the edges of the

CL patches. This is important for subsequent radar signal processing if reference

cells for estimating parameters of a test cell are to be chosen properly.

Identification of CL edge (CLE) cells is done by the use of an image

processing technique referred to in the image processing literature as unsharp

masking.24,25 It consists of the following steps:

1. A weighting filter consisting of a three by three array of cells is

constructed, as shown in Figure 2.25, where the center cell has a
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FIGURE 2.24 Example of the smoothed volume corresponding to the corrected-corrected

volume (CCV) of Figure 2.23.
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weight given by w(0, 0) ¼ 8 and the neighboring cells have weights

given by w (21, 21) ¼ w(0, 21) ¼ w(1, 21) ¼ w(21, 0) ¼ w(1, 0)

¼ w(21, 1) ¼ w(0, 1) ¼ w(1, 1) ¼ 21. The center cell is positioned

on the test cell. Notice that the weights of the filter cells sum to zero.

In particular,

X1
m¼21

X1
n¼21

wðm; nÞ ¼ 0 ð2:25Þ

2. Assume the weighting filter is centered at the jkth cell in SV. The cells

corresponding to the 3 £ 3 array of the weighting filter have quantized

values as illustrated in Figure 2.26. By definition,

SQðj; kÞ ¼ 1 if the jkth cell in SV is declared as CL

0 if the jkth cell in SV is declared as BN

"
ð2:26Þ

where j ¼ 1; 2;…; J and K ¼ 1; 2;…;K: To avoid filter cells falling

outside SV, the coordinates of the jkth cell at which the filter is

centered are constrained to j ¼ 2, 3,…, J 2 1, and k ¼ 2, 3,…, K 2 1.

3. Form the sum

S ¼
X1

m¼21

X1
n¼21

wðm; nÞSQð jþ m; k þ nÞ ð2:27Þ

– If S is equal to zero, all cells have the same assigned value. This

can arise only when the test cell is not an edge cell.

w (−1, −1) = −1

w (−1, 0) = −1

w(−1, 1) = −1

w (0, −1) = −1

w (0, 0) = 8

w (0, 1) = −1

w (1, −1)= −1

w (1, 0) = −1

w (1, 1) = −1

FIGURE 2.25 Weighting filter.
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– If S is positive, the test cell is an edge cell and is labeled as such.

– If S is negative, the test cell cannot be an edge cell. On the other

hand, one or more of the neighboring cells are guaranteed to be an

edge cell.

The three situations are illustrated in Figure 2.27, where the black and white

cells represent BN and CL cells, respectively. In Figure 2.27(a,b), S ¼ 0 because

all nine cells are in BN and CL, respectively. Observe that the test cell is not an

edge cell. In Figure 2.27(c), S ¼ 4 . 0. Note that the test cell is an edge cell.

Finally, in Figure 2.27(d), S ¼ 22 , 0 and the test cell is not an edge cell.

At the end of the edge detection procedure, each cell in the original volume has

been labeled as CL, BN or CLE cell. At this point, the mapping is done. The

final volume is referred to as the mapped volume (MV).

2.5.3.2.2. Enhancement of CL Patch Edges

The edges detected after smoothing, tend not to follow the irregular edges which

may actually exist. Consequently, the edges are further enhanced by examining

the power levels of cells, just outside and on the edge cells. If the power levels

of these cells exceed the threshold set in the quantization stage, those are declared

as edge cells, otherwise, as BN cells.

At the end of edge enhancement procedure, edges are detected and each cell

in the original volume is labeled as either CL, BN, or CLE cell.

2.5.3.3. Conclusion

As shown in Figure 2.28, the mapping procedure consists of the following

steps: thresholding or quantization, correction, assessment, smoothing, edge

SQ( j−1, k−1)

SQ( j−1, k)

SQ( j−1, k+1) SQ( j, k+1)

SQ( j, k)

SQ( j,k−1) SQ( j+1,k−1)

SQ( j+1, k)

SQ( j+1, k+1)

FIGURE 2.26 Quantized values of the 3 £ 3 array corresponding to the jkth cell.
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enhancement, and edge detection. As will be explained later on in Section 2.5.7,

the feedback loop which connects the assessment procedure to the thresholding

or quantization, first correction, and second correction blocks, is controlled

by IPUS.

2.5.4. EXAMPLES OF THE MAPPING PROCEDURE

Before presenting examples to illustrate how the mapping procedure performs a

separation between BN and CL patches, a brief review of the mapping procedure

is first given followed by three different examples of the mapping procedure. The

generated scene and the distributions of CL patch data are shown for every

example. Also, only the results corresponding to the initial and final choices of

BNQP are illustrated in each case. The in-between settings of BNQP are listed in

tables.

2.5.4.1. Introduction

The mapping procedure begins by selecting a threshold, such that, the percentage

of BN cells relative to total number of cells is equal to a specified value, denoted

(a) (b)

(c) (d)

CL cellBN cell

FIGURE 2.27 Example of unsharp masking technique. (a) S ¼ 0, (b) S ¼ 0, (c) S . 0,

(d) S , 0.
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by BNQP. Two correction stages then ensue. In the first correction stage, each

cell in the quantized volume, denoted by QV, is tested by a three by three mask

centered on the test cell. The test cell is labeled as BN, only if less than NCQ of

the eight neighboring cells are declared as CL in the QV volume, where NCQ is a

parameter specified by the user. In the following discussion it will be shown that,

the first correction stage tries to restore the right tail of BN PDF, which had

been severely distorted by the quantization. After the first correction stage, the

corrected volume is denoted by CQV. The second correction stage attempts to

correctly reclassify the edges of the CL patches. This is done by testing each cell

in CQV, using once again, a three by three mask, centered on the test cell. The

test cell is labeled as BN if less than NCC of the eight neighboring cells is

declared as CL in the CQV volume where NCC is a parameter specified by user.

Typical values for NCQ are 5, 6, 7, 8 while typical values for NCC are 1, 2, 3, 4.

In the following discussion, it will be shown that the second correction stage

attempts to restore the shapes of the BN and CL PDFs. After the second

correction stage, the corrected volume is denoted by CCV. The percentage of BN

cells relative to the total number of cells in the CCV volume is denoted by

BNCCP. BNCCP is compared to BNQP. If the difference lBNCCP 2 BNQPl is
smaller than a prespecified value, the iteration process ends and some additional

processing is done to enhance and label the edges. As explained in Section 2.7, if

the difference is not too large, additional iterations are made with new values for

NCQ and NCC. If these do not lead to convergence or if the difference is too

large, the whole process is repeated by selecting a new threshold. If the difference

Thresholding / Quantization

Correction - Quantized

Correction - Corrected

Assessment

Smoothing

Edge enhancement

Edge detection

FIGURE 2.28 Block diagram of the mapping procedure.
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is large, the new value for BNQP is chosen to be the previous BNCCP.

Otherwise, the new value of BNQP is chosen to be half way in between the

previous values of BNQP and BNCCP.

2.5.4.2. Examples

In the following examples, it is assumed that the radar scans over 1208 in the

azimuthal direction and has a beam width of 28. Hence, the azimuthal axis is

subdivided into 60 bins. Also, the length of a range cell is given by ct/2 where

c ¼ 3 £ 108 m/s is the speed of the light and t is the radar pulse width. Assuming

a pulse width of t ¼ 1 ms and a maximum range of Rmax ¼ 13.5 km, the range

axis is divided into {Rmax/[(ct)/2]} ¼ 90 bins. Consequently, this subdivision of

the entire surveillance volume yields a total of 5400 R/A cells.

In all examples presented in this dissertation CL plus noise data in a given

cell are obtained by simply adding the envelopes of the CL and BN values for that

cell. Of course, the envelope of the sum of two random processes does not equal

to the sum of the envelopes. Nevertheless, it is possible to develop the important

concepts of mapping and indexing using any set of random variables. The sum

of envelopes approach was chosen in order to simplify the many computer

simulations required by this research. Specifically, it was not necessary to

first generate random processes whose envelopes are Weibull, Lognormal, and

K-distributed.

The following three examples illustrate, respectively, the cases of three

problems, viz., easy, difficult but resolvable, difficult and not resolvable. These

examples are discussed throughout the work.

2.5.4.2.1. Example 1

Consider a surveillance volume containing four homogeneous CL patches,

denoted by A, B, C, and D. CL patches C and D are contiguous and form a single

nonhomogeneous CL patch C/D. Let CNR denote the CL to BN average power

ratio. Table 2.2 lists the parameters of each CL patch. BN, which is spread

throughout the surveillance volume, is Rayleigh-distributed.

In this example, 66.07% of the total scanned volume is occupied by BN

alone. Also, CL patch C contains the same number of cells as CL patch D.

Figures 2.29 and 2.30 show the CL patch boundaries and the 3-D envelope plot

for the surveillance volume, respectively. The PDFs and histograms of the BN

and CL patches are shown in Figure 2.31. Comparing Figure 2.31(a,b), notice that

some of the BN data are larger than some of the CL data of CL patches A and B.

The iteration process begins with the threshold set such that 10% of the

sorted data are below the threshold, i.e., BNQP ¼ 10%. Although the value of

10% is arbitrary, the initial setting of BNQP should be low. With the setting at

10%, the contour plot of the quantized volume is shown in Figure 2.32. In this

figure, the closed solid line contours surround the BN declared regions and the

rest is CL. Notice that a lot of BN cells have data exceeding the threshold
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FIGURE 2.29 Boundaries of the CL regions (Example 1).

FIGURE 2.30 3-D envelope plot of the surveillance volume (Example 1).

TABLE 2.2
CL Patch Parameters (Example 1)

CL CNR (dB) Data Distribution Shape Parameter Number of Cells

A 10 Rayleigh None 117

B 20 K-distributed 10.0 1423

C 30 Lognormal 0.01 146

D 40 Weibull 5.00 146
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because the threshold was set very low. This results in a lot of small BN

regions. For the purpose of comparison, the boundaries of the original CL

patches are shown in dotted lines. With, NCQ set to eight and NCC set to one,

the contour plots resulting from the first and second corrections, respectively,

are shown in Figures 2.33 and 2.34.

As shown in Table 2.3, when BNQP ¼ 10% and (NCQ, NCC) ¼ (8, 1),

BNCCP ¼ 22% which results in lBNQP 2 BNCCPl ¼ 12% being large. A

new threshold is then chosen so that BNQP ¼ 22% which is the previous

value obtained for BNCCP. The iterative process continues until it is

found for BNQP ¼ 63.37%, NCQ ¼ 5, and NCC ¼ 3, that lBNQP 2
BNCCPl is less than 1%. In particular, for these parameter values

lBNQP 2 BNCCPl ¼ l63.37 2 64.17l , 1%. At this stage the assessment

passes and the iterative process stops.
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FIGURE 2.31 Probability density functions and histograms of the BN and CL patches

(Example 1). (a) Rayleigh-distributed background noise, (b) Rayleigh-distributed CL

patch A, (c) K-distributed CL patch B, (d) Lognormal-distributed CL patch C, (e) Weibull-

distributed CL patch D.
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Figures 2.35–2.37 show the contour plots obtained after quantization, first

correction and second correction, respectively, when BNQP ¼ 63.37%,

NCQ ¼ 5, and NCC ¼ 3. Note first from Figure 2.35 that even with this setting

of BNQP, where the threshold is very close to its true value, some of the BN data

exceed the threshold and form very small CL patches, and some of the CL data in

every patch falls below the threshold causing holes in the CL patch. Figure 2.36

shows howmost of the erroneously declared BN and CL cells have been correctly

reclassified as CL and BN cells, respectively. Next, the edges are augmented as

shown in Figure 2.37. However, comparing the resulting edge contour to the ideal

contour shows that not all the edges have been recovered even though the CL

patches have been identified.
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FIGURE 2.32 Contour plot of the quantized volume with BNQP ¼ 10% (Example 1).
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FIGURE 2.33 Contour plot of the first correction volume with NCQ ¼ 8 (Example 1).
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Next, smoothing, edge enhancement, and edge detection are performed.

The results are shown in Figures 2.38–2.40, respectively. First, comparing

Figures 2.37 and 2.38, note that smoothing did not result in any change from the

mapped volume. This is because the regions of Figure 2.37 do not contain any

holes whereas the purpose of smoothing is to remove holes. Comparing the edge

enhanced regions in Figure 2.39 (in solid lines) to the ideal one (in dotted lines),

one can see how close the two sets of regions have become. In fact, at the end of

edge enhancement, 65.54% of the total number of cells are declared BN where as

ideally the BN percentage of the generated scene was 66.07%. Note that, only 10
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FIGURE 2.34 Contour plot of the second correction volume with NCC ¼ 1 (Example 1).

TABLE 2.3
Settings of Percentage of BN Cells in the Quantized Volume (BNQP)

(Example 1)

BNQP (%) Parameter Values

10.00 NCQ ¼ 8 BNCQP ¼ 51.56

(guess) NCC ¼ 1 BNCCP ¼ 22.00

22.00 NCQ ¼ 8 BNCQP ¼ 68.28

latest BNCCP NCC ¼ 1 BNCCP ¼ 50.39

50.39 NCQ ¼ 7 BNCQP ¼ 70.93

latest BNCCP NCC ¼ 1 BNCCP ¼ 63.37

63.37 NCQ ¼ 5 BNCQP ¼ 67.35

latest BNCCP NCC ¼ 1 BNCCP ¼ 59.72

63.37 same as NCQ ¼ 5 BNCQP ¼ 67.35

latest BNQP NCC ¼ 3 BNCCP ¼ 64.17
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CL cells were misidentified and associated with the BN. Out of these, six had

data values under the threshold (BNQP ¼ 63.37%). Also, 39 BN cells were

misidentified and associated with the CL. Of these, 21 had data values above the

threshold. These results in the ratios

misidentified CL cells below threshold

total number of CL cells
¼ 0:22% ð2:28Þ

and

misidentified BN cells below threshold

total number of BN cells
¼ 0:50% ð2:29Þ

Figure 2.40 shows the edges in the edge detected volume.
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FIGURE 2.35 Contour plot of the quantized volume with BNQP ¼ 63.37% (Example 1).
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FIGURE 2.36 Contour plot of the first correction volume with NCQ ¼ 5 (Example 1).
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An assessment of the mapping procedure results in three CL patches with

the number of cells for each patch as listed in Table 2.4. By comparing Tables 2.2

and 2.4, you can notice how close the number of cells are.

2.5.4.2.2. Example 2

Consider, a surveillance volume containing four homogeneous CL patches,

denoted by A, B, C, and D, as shown in Figure 2.41. CL patches C and D are

contiguous and form a single nonhomogeneous CL patch C/D. Table 2.5 lists

the parameters of each CL patch. In addition, the BN which is spread throughout

the surveillance volume is Rayleigh-distributed.
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FIGURE 2.37 Contour plot of the second correction volume with NCC ¼ 3 (Example 1).
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FIGURE 2.38 Contour plot of the smoothed volume with NS ¼ 7 (Example 1).
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FIGURE 2.39 Contour plot of the edge enhanced volume (Example 1).
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FIGURE 2.40 Contour plot of the edge selected volume (Example 1).

TABLE 2.4
CL Patch Parameters after Assessment (Example 1)

CL Number of Cells

A 113

C þ D 304

B 1444
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In this example, 79.80% of the total scanned volume is occupied by BN

alone. Also, CL patch C contains approximately the same number of cells as CL

patch D. Figures 2.41 and 2.42 show the CL patch boundaries and the 3-D

envelope plot for the surveillance volume, respectively. The PDFs and

histograms of the BN and CL patches are shown in Figure 2.43. In this example,

not only is the CNR for every patch low but the shape parameters of the PDFs

from which the CL data have been generated are such that the CL in patches A, B,

and C is very spiky, as shown by the long tails in Figure 2.43(b–d). The shape of

the histograms for CL patches A, B, and C is such that a lot of CL data overlap the

BN data in value making it difficult to separate between the BN and CL patches

just by setting a threshold.

The iteration process begins with the threshold, once again, arbitrarily set

such that 10% of the sorted data are below the threshold, i.e., BNQP ¼ 10%.

With this setting, the contour plot of the quantized volume is shown in

Figure 2.44. In this figure, the closed solid line contours surround the BN

declared regions and the rest is CL. Notice that a lot of BN cells have data

exceeding the threshold because the threshold was set very low. This results in
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FIGURE 2.41 Boundaries of the CL regions (Example 2).

TABLE 2.5
CL Patch Parameters (Example 2)

CL CNR (dB) Data Distribution Shape Parameter Number of Cells

A 10 K-distributed 1.5 117

B 10 Weibull 1.0 672

C 10 Lognormal 1.0 151

D 10 Rayleigh None 151
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FIGURE 2.42 3-D Envelope plot of the surveillance volume (Example 2).
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FIGURE 2.43 Probability density functions and histograms of the BN and CL patches

(Example 2). (a) Rayleigh-distributed background noise, (b) Rayleigh-distributed CL

patch A, (c) K-distributed CL patch B, (d) Lognormal-distributed CL patch C, (e) Weibull-

distributed CL patch D.
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a lot of small BN regions. For the purpose of comparison, the boundaries of the

original CL patches are shown in dotted lines. With, NCQ set to 8 and NCC set

to 1, the contour plots resulting from the first and second corrections,

respectively, are shown in Figures 2.45 and 2.46.

As shown in Table 2.6, when BNQP ¼ 10% and (NCQ, NCC) ¼ (8, 1),

BNCCP ¼ 20.59% which results in lBNQP 2 BNCCPl ¼ 10.59% being large.

A new threshold is then chosen so that BNQP ¼ 20.59% which is the

previous value obtained for BNCCP. The iterative process continues until it is

found for BNQP ¼ 75.78%, NCQ ¼ 5, and NCC ¼ 1, that lBNQP 2
BNCCPl , 1%. In particular, for these parameter values lBNQP 2 BNCCPl ¼
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FIGURE 2.44 Contour plot of the quantized volume with BNQP ¼ 10% (Example 2).
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FIGURE 2.45 Contour plot of the first correction volume with NCQ ¼ 8 (Example 2).
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l75.78 2 75.31l , 1%. At this stage the assessment passes and the iterative

process stops.

Figures 2.47–2.49 show the contour plots obtained after quantization,

first correction and second correction, respectively, when BNQP ¼ 75.78%,

NCQ ¼ 5, and NCC ¼ 1. First, note from Figure 2.47 that even with this setting

of BNQP where the threshold is very close to its true value, a lot of BN data
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FIGURE 2.46 Contour plot of the second correction volume with NCC ¼ 1 (Example 2).

TABLE 2.6
Settings of Percentage of BN Cells in the Quantized Volume (BNQP)

(Example 2)

BNQP (%) Parameter Values

10.00 NCQ ¼ 8 BNCQP ¼ 56.35

(guess) NCC ¼ 1 BNCCP ¼ 20.59

20.59 NCQ ¼ 8 BNCQP ¼ 77.43

latest BNCCP NCC ¼ 1 BNCCP ¼ 48.04

48.04 NCQ ¼ 7 BNCQP ¼ 84.11

latest BNCCP NCC ¼ 1 BNCCP ¼ 72.30

72.30 NCQ ¼ 5 BNCQP ¼ 82.17

latest BNCCP NCC ¼ 1 BNCCP ¼ 73.94

72.30 same as NCQ ¼ 5 BNCQP ¼ 82.17

latest BNQP NCC ¼ 3 BNCCP ¼ 79.26

75.78 NCQ ¼ 5 BNCQP ¼ 83.50

half way rule NCC ¼ 1 BNCCP ¼ 75.31
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exceed the threshold and form very small CL patches, and also, a lot of the CL

data in every patch falls below the threshold causing holes in the CL patch.

Figure 2.48 shows how most of the erroneously declared BN and CL cells

have been correctly reclassified as CL and BN cells, respectively. Next, the

edges are augmented as shown in Figure 2.49. Comparing the resulting edge

contour to the ideal one, it shows that not all the edges have been completely

recovered even though the CL patches have been identified. Also, notice in this

case, the CL patches are not homogeneous and contain holes in them.

Next, smoothing, edge enhancement and edge detection are performed.

The results are shown in Figures 2.50–2.52, respectively. First, on correcting
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FIGURE 2.47 Contour plot of the quantized volume with BNQP ¼ 75.78% (Example 2).
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FIGURE 2.48 Contour plot of the first correction volume with NCQ ¼ 5 (Example 2).
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Figures 2.49 and 2.50, note that the smoothing reclassified the BN declared

cells causing holes inside the CL as CL cells. Comparing the edge enhanced

regions in Figure 2.51 (in solid lines) with the ideal one (in dotted lines), one can

see how close the two sets of regions have become. In fact, at the end of edge

enhancement, 80.31% of total number of cells are declared BN where as,

ideally the BN percentage of generated scene was 79.80%. Note that, 86 CL cells

were misidentified and associated with the BN. Out of these 72 had data values

under the threshold (BNQP ¼ 79.59%). Also, 58 BN cells were misidentified

and associated with the CL. Of these, 32 had data values above the threshold.
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FIGURE 2.49 Contour plot of the second correction volume with NCC ¼ 1 (Example 2).
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FIGURE 2.50 Contour plot of the smoothed volume with NS ¼ 7 (Example 2).
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These result in

misidentified CL cells above the threshold

total number of CL cells
¼ 1:28% ð2:30Þ

misidentified BN cells below the threshold

total number of BN cells
¼ 0:60% ð2:31Þ

Figure 2.52 shows the edges of the edge detected volume.

An assessment of the mapping procedure results in three CL patches with the

number of cells for each patch as listed in Table 2.7. By comparing Tables 2.5

and 2.7, you can notice how close the number of cells are.
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FIGURE 2.51 Contour plot of the edge enhanced volume (Example 2).
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FIGURE 2.52 Contour plot of the edge detected volume (Example 2).
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2.5.4.2.3. Example 3

Consider a surveillance volume containing four homogeneous CL patches,

denoted by A, B, C, and D, as shown in Figure 2.53. CL patches C and D are

contiguous and form a single nonhomogeneous CL patch C/D. Table 2.8 lists the

parameters of each CL patch. In addition, the BN is Rayleigh-distributed.

TABLE 2.7
CL Patch Parameters after Assessment (Example 2)

CL Number of Cells

A 133

C þ D 308

B 622
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FIGURE 2.53 Boundaries of the CL regions (Example 3).

TABLE 2.8
CL Patch Parameters (Example 3)

CL CNR (dB) Data Distribution Shape Parameter Number of Cells

A 10 Rayleigh None 117

B 10 K 10.0 298

C 10 Lognormal 0.01 161

D 10 Weibull 10.0 162
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In this example, 86.33% of the total scanned volume is occupied by BN

alone. Also, CL patch C contains approximately the same number of cells as

CL patch D. Figures 2.53 and 2.54, show the CL patch boundaries and the 3-D

plots of the surveillance volume, respectively. Notice in Figure 2.54 how small

are some of the CL data compared to the BN data and how large are some of

the BN data compared to the CL data. This is due to the fact that the CNR for

each patch is low. (Assuming an SNR of 10 dB in order to obtain reasonable

detections in the absence of CL, CNR ¼ 10 dB implies equal signal and CL

powers. For values of CNR less than 10 dB, the signal would be larger than

CL and no WSC would be available.) In this example, the mapping procedure is

tested on a situation where CNR for every CL patch is low. The PDFs and

histograms of the BN and CL patches are shown in Figure 2.55. Comparing the

histograms in Figure 2.55(a–c,e), notice that, some of the BN data are higher than

some of the CL data in patches A, B, and D. Also, observe that overlaps between

histograms of the BN with CL patches A and B are noticeable.

The iteration process begins with the threshold, once again, it is set in such

a way that 10% of the sorted data are below the threshold, i.e., BNQP ¼ 10%.

With this setting, the contour plot of the quantized volume is shown in

Figure 2.56. In this figure, the closed solid line contours surround the BN

declared regions and the rest is CL. Notice that a lot of BN cells have data

that exceed the threshold because the threshold was set very low. This results in a

lot of small BN regions. For purpose of comparison, the boundaries of the

original CL patches are shown in dotted lines. With NCQ set to eight and NCC set

to one, the contour plots resulting from the first and second corrections are shown

in Figures 2.57 and 2.58, respectively.

As shown in Table 2.9, when BNQP ¼ 10% and (NCQ, NCC) ¼ (8, 1),

BNCCP ¼ 20.04% which results in lBNQP 2 BNCCPl ¼ 10.04% being large.

A new threshold is then chosen so that BNQP ¼ 20.04% which was the previous

value obtained for BNCCP. The iterative process continues until it is found

for BNQP ¼ 84.70%, NCQ ¼ 5, and NCC ¼ 3, that lBNQP 2 BNCCPl , 1%.

For these parameter values, lBNQP 2 BNCCPl ¼ l84.70 2 85.46l , 1%. At this

stage the assessment passes and the iterative process stops.

FIGURE 2.54 3-D envelope plot of the surveillance volume (Example 3).
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Figures 2.59–2.61 show the contour plots obtained after quantization, first

correction and second correction, respectively, when BNQP ¼ 84.70%,

NCQ ¼ 5, and NCC ¼ 3. First, note from Figure 2.59 that even with this setting

of BNQP, where the threshold is very close to its true value, some of the BN data

exceed the threshold and form very small CL patches and some of the CL data in

every patch falls below the threshold causing holes in the CL patch. Figure 2.60

shows howmost of the erroneously declared BN and CL cells have been correctly

reclassified as BN and CL cells, respectively. Next, the edges are augmented as

shown in Figure 2.61. Comparison of the resulting contour with the ideal one,

shows that even though the CL patches have been identified, the edges are not

completely recovered.
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FIGURE 2.55 Probability density functions and histograms of the BN and CL patches

(Example 3). (a) Rayleigh-distributed background noise, (b) Rayleigh-distributed CL

patch A, (c) K-distributed CL patch B, (d) Lognormal-distributed CL patch C, (e) Weibull-

distributed CL patch D.
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Next, smoothing, edge enhancement, and edge detection are performed.

The results are shown in Figures 2.62–2.64, respectively. First, comparing

Figures 2.61 and 2.62, note that smoothing did not result in any change from the

mapped volume. This is because the regions of Figure 2.61 do not contain any

holes whereas the purpose of smoothing is to remove holes. Comparing the edge

enhanced regions in Figure 2.63 (in solid lines) with the ideal one (in dotted

lines), one can see how close the two sets of regions have become. In fact, at the

end of edge enhancement, 85.72% of the total number of cells are declared BN

where as, ideally the BN percentage of the generated scene was 86.33%. Note

that only six CL cells were misidentified and associated with the BN. Out of

these, five had data values under the threshold (BNQP ¼ 84.70%). Also, 39 BN
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FIGURE 2.57 Contour plot of the first correction volume with NCQ ¼ 8 (Example 3).
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FIGURE 2.56 Contour plot of the quantized volume with BNQP ¼ 10% (Example 3).
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cells were misidentified and associated with the CL. Of these, 10 had data values

above the threshold. These result in

misidentified CL cells above the threshold

total number of CL cells
¼ 0:13% ð2:32Þ

TABLE 2.9
Settings of Percentage of BN Cells in the Quantized Volume (BNQP)

(Example 3)

BNQP (%) Parameter Values

10.00 NCQ ¼ 8 BNCQP ¼ 56.17

(guess) NCC ¼ 1 BNCCP ¼ 20.04

20.04 NCQ ¼ 8 BNCQP ¼ 77.98

latest BNCCP NCC ¼ 1 BNCCP ¼ 43.78

43.78 NCQ ¼ 8 BNCQP ¼ 90.78

latest BNCCP NCC ¼ 1 BNCCP ¼ 82.65

82.65 NCQ ¼ 7 BNCQP ¼ 91.17

latest BNCCP NCC ¼ 1 BNCCP ¼ 84.70

84.70 NCQ ¼ 5 BNCQP ¼ 87.61

latest BNCCP NCC ¼ 1 BNCCP ¼ 82.00

84.70 same as NCQ ¼ 5 BNCQP ¼ 87.61

latest BNQP NCC ¼ 3 BNCCP ¼ 85.46
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FIGURE 2.58 Contour plot of the second correction volume with NCC ¼ 1 (Example 3).
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and

misidentified BN cells below the threshold

total number of BN cells
¼ 0:62% ð2:33Þ

Figure 2.64 shows the edges of the edge detected volume.

An assessment of the mapping procedure results in three CL patches with the

number of cells for each patch as listed in Table 2.10. By comparing Tables 2.8

and 2.10, you can notice how close the number of cells are.
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FIGURE 2.60 Contour plot of the first correction volume with NCQ ¼ 5 (Example 3).
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FIGURE 2.59 Contour plot of the quantized volume with BNQP ¼ 84.70% (Example 3).
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2.5.5. CONVERGENCE OF THE MAPPING PROCEDURE

2.5.5.1. Introduction

Consider an image containing two regions where the PDFs for each region have

nicely separated peaks as shown in Figure 2.65(a) and the overall PDF for both

regions is as shown in Figure 2.65(b). In practice, a histogram is generated

which approximates the overall PDF. Note that the individual PDF of each

region is unknown. Because the individual PDFs are adequately separated, the

overall histogram will be bimodal and separation between the two regions is

readily obtained by placing the threshold T1 between the two peaks as shown

10

10

20

30

40

50

60

20 30 40 50 60 70 80 90

Range

A
zi

m
ut

h

FIGURE 2.62 Contour plot of the smoothed volume with NS ¼ 7 (Example 3).
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FIGURE 2.61 Contour plot of the second correction volume with NCC ¼ 3 (Example 3).

Adaptive Antennas and Receivers70

© 2006 by Taylor & Francis Group, LLC



10

10

20

30

40

50

60

20 30 40 50 60 70 80 90
Range

A
zi

m
ut

h

FIGURE 2.63 Contour plot of the edge enhanced volume (Example 3).
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FIGURE 2.64 Contour plot of the edge selected volume (Example 3).

TABLE 2.10
CL Patch Parameters after Assessment (Example 3)

CL Number of Cells

A 124

C þ D 341

B 306
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in Figure 2.65(b). Cells with data values lower than T1 are declared to belonging

to region one, while cells with data values higher than T1 are declared to belong

to region two.

Now consider the slightly overlapping PDFs as shown in Figure 2.66(a,b).

Although the overall PDF of the data regions is again bimodal, a noticeable

overlap now exists between the tails. Once again, a threshold T1 is used to

separate between the two regions. However, now a significant number of cells

will be misclassified and corrections should be made to the extent possible.

PDF of region 1

0

0T 1

PDF of region 2

Overall PDF of regions 1 & 2

(a)

(b)

FIGURE 2.65 Nonoverlapping PDFs of two distinct regions. (a) Individual PDFs for each

region. (b) Overall PDF for both regions.

PDF of region 1

0

PDF of region 2

(a)

Overall PDF of regions 1 & 2

(b) T1

FIGURE 2.66 Overlapping PDFs of two distinct regions with a small overlapping area.

(a) Individual PDFs for each region. (b) Overall PDF for both regions.
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Figure 2.67 shows a more complicated case where the two regions now have

major overlap between the tails. The overall PDF of the data from both regions is

now unimodal and it is not possible to choose a threshold which separates the two

regions without significant misclassifications.

In this section, it is shown that the mapping procedure described previously

can adaptively choose a threshold and correct misclassifications so as to obtain

good approximations to the PDFs of each region. The mapping procedure enables

the region having the smallest envelopes, on average, to be separated from the

remaining regions. By successive application of the mapping procedure, it is

possible to first separate out the region with smallest envelopes, followed by the

region with next smallest envelopes, and so forth. In the first application of the

mapping procedure to a radar surveillance volume, region one consists of the BN

while region two consists of the entire set of CL patches.

2.5.5.2. Separation between BN and CL Patches

An important observation relative to selection of the threshold, via specification

of BNQP, is made when considering a surveillance volume consisting of only

BN. The objective is to determine the range of threshold settings, for which

mapping procedure declares the entire surveillance volume as BN. For this

purpose, we consider the situation where entire scene consists of BN and the data

are generated from a Rayleigh PDF.

For the scenario under consideration, the whole scene is homogeneous BN

and the mapping, if done correctly, should identify the entire volume as a single

BN region. Table 2.11 shows the values of BNCCP obtained for different settings

of BNQP. Notice from the table that, a single region results only when threshold

PDF of region 1

0

PDF of region 2

(a)

0

Overall PDF of regions 1 & 2

(b)

FIGURE 2.67 Overlapping PDFs of two distinct regions with a big overlapping area.

(a) Individual PDFs for each region. (b) Overall PDF for both regions.
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exceeds 70% of the data. As shown in Figure 2.68, the mapping procedure

correctly reclassifies all cells corresponding to values above the threshold as long

as the same is sufficiently towards the tail of PDF. In general, it is observed that

the mapping procedure works best provided the threshold is adequately

positioned towards the tail of PDF.

Another parameter that arises in the mapping procedure is BNCQP which

denotes the percentage of BN cells after the first correction relative to the total

number of cells in the surveillance volume. To gain insight into the relationships

among BNQP, BNCQP, and BNCCP, we return to example number two,

previously discussed in Section 2.5.4.2.2, where a lot of CL patch data overlap

with the BN data in a manner similar to Figure 2.70. In Table 2.12, different

values of these parameters are tabulated as the mapping procedure converges

to the end result. If the test cell is to be declared as CL, recall that at least NCQ

and NCC neighboring cells are required to be declared as CL in the QV and CQV

during the first and second corrections, respectively.

0.5

0
0 0.5 1

70% threshold 80% threshold
90% threshold

1.5 2.5 3

1

3.52

FIGURE 2.68 PDF of the Rayleigh-distributed patch.

TABLE 2.11
BN Percentages and Threshold Values Corresponding to

the Rayleigh Distributed Background Noise

BNQP (%) Threshold Value BNCCP (%)

10 0.32 19.48

20 0.47 42.80

30 0.59 71.61

40 0.72 89.06

50 0.84 96.26

60 0.95 99.85

70 1.10 100.00

80 1.29 100.00

90 1.53 100.00
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Table 2.13 tracks the mapping procedure during the first correction

stage (denoted by QV ! CQV), during the second correction stage (denoted

by CQV ! CCV) and at the end of the two correction stages (denoted by

QV ! CCV). All percentages given are with respect to the total number of cells

in the surveillance volume. Initially, the threshold is set such that BNQP

percentage of the total number of cells is below the threshold. The first correction

stage requires that at least NCQ of the neighboring cells be above the threshold if

the test cell is to be classified as a CL cell. Under the column headed by

QV ! CQV, (CL ! BN)1 denotes the percentage of the total number of cells

in the surveillance volume that were above the threshold but are reclassified as

BN cells during the first correction stage. Similarly, (BN ! CL)1 denotes the

percentage of the total number of cells in the surveillance volume that were

below the threshold but are reclassified as CL cells after the first correction

stage. Note that the difference, (CL ! BN)1 2 (BN ! CL)1, is the net

percentage of the total number of cells in the surveillance volume that have

been reclassified from CL to BN cells after the first correction stage. Similar

statements apply for: (1) the second correction stage to (CL ! BN)2,

TABLE 2.12
BN Percentages (Example 2)

BNQP (%)
(NCQ, NCC)

BNCQP
(%)

BNCCP
(%) lBNCQP 2 BNCCPl lBNCCP 2 BNQPl

10.00 (8, 1) 56.35 20.59 35.76 10.59

20.59 (8, 1) 77.43 48.04 29.39 27.45

48.04 (7, 1) 84.11 72.30 11.81 24.26

72.30 (5, 1) 82.17 73.94 8.23 1.64

72.30 (5, 3) 82.17 79.26 2.91 6.96

75.78 (5, 1) 83.50 75.31 8.19 0.27

TABLE 2.13
CL-to-BN and BN-to-CL Transitions (Example 2)

BNQP QV! CQV CQV! CCV QV! CCV

(%)
(NCQ, NCC)

(CL! BN)1
(%)

(BN! CL)1
(%)

(CL! BN)2
(%)

(BN! CL)2
(%)

(CL! BN)
(%)

(BN! CL)
(%)

10.00 (8, 1) 49.83 3.46 3.70 39.46 10.61 0.00

20.59 (8, 1) 59.35 2.48 2.96 32.35 27.48 0.00

48.04 (7, 1) 38.07 1.98 0.61 12.43 27.48 3.20

72.30 (5, 1) 13.93 4.04 0.09 8.31 9.63 7.96

72.30 (5, 3) 13.93 4.04 0.65 3.56 11.31 4.33

75.78 (5, 1) 11.85 4.11 0.04 8.22 7.59 8.04

A New Approach to Radar Detection 75

© 2006 by Taylor & Francis Group, LLC



(BN ! CL)2, and (CL ! BN)2 2 (BN ! CL)2 under the column headed by

CQV ! CCV and (2) for the combined results of the two correction stages to

(CL ! BN), (BN ! CL), and (CL ! BN) 2 (BN ! CL) under the column

headed by QV ! CCV. Note that

ðCL! BNÞ2 ðBN! CLÞ ¼2 ½ðCL! BNÞ1 2 ðBN! CLÞ1	
þ ½ðCL! BNÞ2 2 ðBN! CLÞ2	:

ð2:34Þ

Also,

BNCQP2 BNQP ¼ ðCL! BNÞ1 2 ðBN! CLÞ1
BNCCP2 BNCQP ¼ ðCL! BNÞ2 2 ðBN! CLÞ2
BNCCP2 BNQP ¼ ðCL! BNÞ2 ðBN! CLÞ

¼ ½BNCQP2 BNQP	 þ ½BNCCP2 BNCQP	

ð2:35Þ

The mapping procedure involves iterations which continue until the difference

BNCCP 2 BNQP is sufficiently small. From Equation 2.35 it is seen that

convergence results when

ðCL! BNÞ < ðBN! CLÞ ð2:36Þ
Consequently, near convergence, the combined effect of the two correction

stages should result in the percentage of CL cells reclassified as BN cells being

approximately equal to the percentage of BN cells reclassified as CL cells.

Alternatively, from Equation 2.35 convergence results when

½BNCQP2 BNQP	 < 2½BNCCP2 BNCQP	 ð2:37Þ
or equivalently, when

½ðCL! BNÞ1 2 ðBN! CLÞ1	 < 2½ðCL! BNÞ2 2 ðBN! CLÞ2	 ð2:38Þ
Thus, near convergence, the net percentage of cells which have been reclassified

from CL to BN cells during the first correction stage should approximately

equal the negative of the net percentage of cells which have been reclassified

from CL to BN cells during the second correction stage. These observations are

helpful in coming up with rules for determining the next setting of the parameters

in the iteration process.

By way of example, when BNQP ¼ 10%, the threshold is such that 10%

of total number of cells in surveillance volume fall below the threshold while

90% fall above. The situation is pictured in Figure 2.69(b). With reference to

Table 2.13, when NCQ ¼ 8, 49.83% of the total cells in the surveillance volume

which were classified as CL cells for being above threshold, are reclassified

as BN cells after the first correction stage, whereas 3.46% of the total cells,

which were classified as BN cells because they were below the threshold, are

reclassified as CL cells. The net percentage of the cells reclassified as BN is

49.83% 2 3.46% ¼ 46.37%. For the second correction stage, with NCC ¼ 1,
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3.70% of the total cells in the CQV surveillance volume, which were classified as

CL cells after the first correction stage, are reclassified as BN cells because these

do not have at least one neighboring CL cell. Similarly, 39.46% of the total cells

in the CQV surveillance volume, which were classified as BN cells, are

reclassified as CL cells because these have one or more neighboring CL cells. The

last row of Table 2.13 corresponds to a situation close to convergence. When

the threshold is set such that 75.78% of the total number of cells in the

surveillance volume are below threshold, the combined effect of the two

correction stages results in

ðCL! BNÞ ¼ 7:59% < ðBN! CLÞ ¼ 8:04% ð2:39Þ
Similarly,

½ðCL! BNÞ1 2 ðBN! CLÞ1	 ¼ 8:74% < 2½ðCL! BNÞ2 2 ðBN! CLÞ2	
¼ 8:18%: ð2:40Þ

Equivalently, from Table 2.12 for BNQP ¼ 75.78%,

½BNCQP2 BNQP	 ¼ 7:72% < 2½BNCCP2 BNCQP	 ¼ 8:19% ð2:41Þ
Insight into the manner by which the PDFs of BN and CL are modified during the

correction stages, is obtained by examining pertinent amplitude histograms for

various surveillance volumes QV, CQV, and CCV. The overall amplitude

histogram for the generated data of the QV volume is shown in Figure 2.70(a).

Note that the histogram is unimodal and it is not possible to distinguish between

the BN and the CL cells. In fact, by just looking at the histogram one would

not suspect that more than one region exists. When the threshold is set at 0.37

such that BNQP ¼ 10%, many of the BN cells are classified as CL due to the low

0

PDF of CL patches

10% threshold

PDF of BN region

(b)

0(a)

Overall PDF of BN regions and CL patches

FIGURE 2.69 Overlapping PDFs of BN region and CL patches. (a) Individual PDFs for

each region. (b) Overall PDF for both regions.
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FIGURE 2.70 Region histograms corresponding to BNQP ¼ 10%, NCQ ¼ 8, and

NCC ¼ 1. (a) Overall histogram of the generated data. (b) BN histogram at the

quantization stage. (c) CL histogram at the quantization stage. (d) BN at the first correction

stage. (e) CL histogram at the first correction stage. (f) BN histogram at the second

correction stage. (g) CL histogram at the second correction stage.
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threshold. The amplitude histograms for the BN and CL cells in the QV volume

are shown in Figure 2.70(b,c), respectively. Note that the BN histogram is

truncated to a cell amplitude of 0.35.

The amplitude histograms for the CQV volume resulting from the first

correction stage are shown in Figure 2.70(d,e). Comparing Figure 2.70(d) with (b),

it is seen that many cells with amplitudes above the threshold value of 0.35 have

been reclassified as BN. The amplitude histograms for the CCV volume resulting

from the second correction stage are shown in Figure 2.56(f,g). Note the further

enhancement of the right tail of the BN amplitude histogram. This enhancement

is due to the image processing and is in spite of the low threshold value.

During the iteration process the threshold is gradually increased and

converges to a value in the vicinity of 1.51 for which BNQP ¼ 75.78%. In

Figure 2.71(a), this threshold is shown in the overall histogram for the QV

volume. The amplitude histograms for the BN and CL cells in the QV volume are

shown in Figure 2.71(b,c), respectively. Note that the amplitudes of the BN cells

fall below 1.51 whereas those of the CL cells fall above 1.51. The results of the

first and second correction stages and the edge enhancement stage are shown in

Figure 2.71(d–i), respectively. To provide a basis for comparison, the actual

BN and CL amplitude histograms are shown in Figure 2.71(j,k). The strong

similarity between the amplitude histograms of Figure 2.71(h,i) and those of

Figure 2.71(j,k) indicates that the mapping procedure has converged satisfac-

torily. Note how nicely the final histograms of Figure 2.71(h,i) have evolved from

the original histograms of Figure 2.70(b,c).

In general, the first correction stage begins to establish the right tail of the BN

amplitude histogram and reshapes the CL amplitude histogram by reclassifying

mislabeled BN cells. The second correction stage reshapes the bodies and the

tails of the BN and CL histograms by recovering the CL edges.

2.5.6. EXTENSION OF THE MAPPING PROCEDURE

TO RANGE–AZIMUTH–DOPPLER CELLS

Assume that the dwell time is P ¼ M . 1: In this case, an FFT is possible and

the block diagram of the preprocessing and mapping of data is as shown in Figure

2.14. As explained in Section 2.4.2, the mapping consists of two stages. The first

mapping stage operates on R/A cells while the second one operates on R/A/D cells.

Once the R/A surveillance volume has been mapped into BN and CL cells, as

explained in Section 2.5.3, the second mapping stage starts by declaring as BN

cells as R/A/D cells corresponding to R/A cells which were previously declared

as BN in the first mapping stage. Meanwhile, the FFT magnitudes of R/A cells

which were previously declared as CL in the first mapping stage, are obtained

from the preprocessing blocks to enable classification of the remaining R/A/D

cells as either BN or CL cells.

Note that a row of range cells, having a fixed azimuth, in the R/A volume

corresponds to a R/D plane in the R/A/D volume. Also, a row of azimuth cells,

having a fixed range in the R/A volume corresponds to an A/D plane in the R/A/D
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FIGURE 2.71 Region histograms corresponding to BNQP ¼ 75.78%, NCQ ¼ 5, and

NCC ¼ 1. (a) Overall histogram of the generated data. (b) BN histogram at the quanti-

zation stage. (c) CL histogram at the quantization stage. (d) BN at the first correction stage.

(e) CL histogram at the first correction stage. (f) BN histogram at the second correc-

tion stage. (g) CL histogram at the second correction stage. (h) BN histogram at the MV.

(i) CL histogram at the MV. (j) Actual BN histogram of the generated data. (k) Actual CL

histogram at the generated data.
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volume. These are illustrated in Figure 2.72(a,b), respectively. Hence, range and

azimuth rows of BN declared cells in the R/A volume correspond to R/D

and A/D planes, respectively, of BN declared cells in the R/A/D volume and no

additional processing is needed for such a plane.

Mapping of the R/A/D volume is done on a plane-by-plane basis. Either a

R/A plane (with parameterized azimuth) or an A/D plane (with parameterized

range) can be considered. The best choice is one which would involve the least

processing. For example, if there are more R/D BN declared planes than A/D

BN declared planes in the R/A/D volume, the best choice in this case would be

to process R/D planes, and vice versa.

Assume that R/D plane-by-plane processing has been chosen. The mapping

procedure becomes a two dimensional problem, and, thresholding/quantization,

first correction, second correction, smoothing, edge-enhancement, and edge

detection are performed as explained in Section 2.5.3.

When the second mapping stage is done, the R/A/D volume will consist of

a R/A/D BN region and R/A/D CL patches in the form of 3-D objects.

2.5.7. CONCLUSION

In summary, a mapping procedure was presented in Section 2.5 which allowed

for distinguishing between BN and CL patches. The procedure was illustrated

with examples which showed how the mapping procedure works, even under hard

conditions as in the example of Section 2.5.4.2.2, where the histograms of the CL

FIGURE 2.71 Continued.
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patches and BN region overlapped to render the total histogram unimodal such

that one would not suspect the presence of more than one distribution.

It is to be noticed that there was no discussion in this chapter about the rules

which govern the choiceof parameters viz., BNQP,NCQ,andNCC.These ruleswill

be introduced later in Section 2.7 along with the role of IPUS inmapping procedure.

2.6. INDEXING PROCEDURE

2.6.1. INTRODUCTION

As explained in Table 2.1, and shown in examples of Section 2.5.4.2, the

mapping procedure subdivides the surveillance volume into BN regions and CL

patches labeling the cells in surveillance volume as either BN or CL cells.
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FIGURE 2.72 BN declared rows and their corresponding BN declared planes: (a) BN row

of range cells and their BN range–Doppler plane (b) BN row of azimuth cells and BN

azimuth–Doppler plane.
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In this research it is assumed that BN is white and sufficiently weaker than a

desired target return so that the SSC is applicable and detections can be obtained

using the conventional Gaussian receiver with little degradation in performance.

Consequently, no additional indexing is needed for BN cells.

On the other hand, more processing is needed on CL cells before the detection

process can begin. This is because (1) CL patches may be nonhomogeneous

containing two or more CL subpatches, (2) in each CL patch, or CL subpatch

if it exists, either the SSC, WSC, or ISC will apply, (3) for each WSC CL patch or

subpatch, its PDFmust be approximated. Also, for each ISCCL patch or subpatch,

its covariance matrix must be approximated. All these steps need to be

implemented during the indexing stage and are explained in this chapter.

The indexing procedure starts with an assessment stage by which (1) CL

patches and the BN region are identified by assigning a unique identification

number to all cells within a CL patch or BN region, and (2) CNR and number of

cells in each CL patch are determined. The next stage, called the subpatch

investigation stage, consists of determining the existence of CL subpatches. If

CL subpatches are found, the assessment stage is then carried out, once again, for

the entire surveillance volume. The final stage of the indexing procedure is the

PDF approximation stage where the PDF for each WSC CL patch is approxi-

mated. The assessment, CL subpatch investigation, and PDF approximation

stages are explained next.

2.6.2. ASSESSMENT STAGE

As explained above, assessment is carried out: (1) to assign a unique number

to the BN region and each CL patch, (2) to estimate the CNR for each CL patch,

and (3) to classify CL patches as either SSC, WSC or ISC regions.

2.6.2.1. Identification of the BN and CL Patches

When the mapping is completed, recall that the mapped volume has a value of

zero assigned to BN cells and a value of one assigned to the CL cells. Therefore,

nothing more needs to be done for the BN region as all of its cells are already

indexed by the number zero. On the other hand, all cells in each of the CL patches

are assigned a value of one. Thus, a numbering procedure has to be implemented

to enable the computer to distinguish between the various CL patches. The

approach taken in this work is to assign every cell in the first patch investigated

the number one, every cell in the second patch investigated the number two, and

so on until all patches have been indexed with consecutive integers. In this way,

all cells in each CL patch are assigned a unique number.

If a cell belongs to a new CL patch, the key to the numbering is the ability to

recognize this fact. This is done by considering a mask of five cells as shown in

Figure 2.73 where the white cells represent neighboring cells and the shaded one

is the test cell to be numbered. Since the surveillance volume has previously been

augmented by adding rows of BN to its left, top right, and bottom edges, there is
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no problem positioning this mask for each test cell in the original unaugmented

surveillance volume.

Let M(i, j) be the value assigned to the ijth cell in the MV where,

Mði; jÞ ¼ 0 if ijth cell is declared as BN

1 if ijth cell is declared as CL:

"
ð2:42Þ

Assuming that the test cell to be numbered is the jkth cell in the original

unaugmented surveillance volume, let the assigned number be denoted by N( j, k).

Also, let G denote the unique number assigned to the CL patch previously

investigated and H the minimum positive number assigned to neighboring cells.

Then, by definition, we have

Nðj;kÞ ¼
0 ifMðj;kÞ ¼ 0

ðGþ 1Þ if all neighboring cells are numbered 0

H if at least one of the neighboring cells is numbered nonzero:

264
ð2:43Þ

The number G is incremented by unity whenever a new CL patch is detected.

Because a CL patch boundarymay be sharply shaped, as shown in the example

of Figure 2.74, the numbering procedure may end up by assigning two different

numbers for different cells of the same CL patch. This anomaly is avoided by

further testing the neighboring cells of the cell to be numbered as follows:

1. For the given cell to be numbered, look up the numbers assigned to the

set of neighboring cells ( j 2 1, k 2 1), ( j, k 2 1), ( j þ 1, k 2 1), and

( j 2 1, k),

2. Take the minimum nonzero number of those in step one,

3. Reassign all nonzero numbered neighboring cells the minimum

nonzero number from step two,

N( j−1, k−1)

N( j−1, k)

Neighboring cell

Test cell

N( j, k−1) N( j+1, k−1)

N( j, k)

FIGURE 2.73 Mask used in numbering.
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4. Revisit all the cells in the surveillance volume that have previously

been numbered. If any cell is assigned a nonzero number identical to one

of those in step one, reassign that cell the minimum nonzero number of

step two.

For example, with respect to Figure 2.74, the above steps have the effect of

assigning a value of one to all cells of the CL patch shown.

Once numbering is completed, the BN cells are assigned a value of zero, and

every CL patch is assigned a unique positive number.

2.6.2.2. Computation of CL-to-Noise Ratios

The CNR for CL patch k is given by ½ð
dk 2 
nÞ=
n	2; expressed in dB, where 
dk is

the sample average of the CL plus BN values distributed over CL patch k and 
n is

the sample average of the BN values distributed over the BN region.

2.6.2.3. Classification of CL Patches

Throughout this work the minimum target SNR is assumed to be 10 dB so that

targets are readily detected when they appear in the BN region. The classification

of a CL patch as an SSC, WSC, or ISC then depends on its CNR. Ranges of the

CNR for the strong, weak, and intermediate signal cases are given in Table 2.14.

The bounds for this work were chosen based on experience gained through

computer simulations. For example, when CNR ¼ 8 dB, the average signal

power is 2 dB larger than the average CL power. Nevertheless, non-Gaussian CL

tends to be spiky. Consequently, even when CNR ¼ 8 dB, there are regions

where the CL is much larger than the signal. Consequently, 8 dB is chosen as the

lower bound on CNR for WSC. Also, when CNR ¼ 5 dB, the average signal

power is 5 dB larger than the average CL power. At this level, the CL typically

dominates the signal at only a few isolated points. Thus, 5 dB is chosen as the

upper bound on CNR for SSC. ISC is defined to fall between the two bounds.
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FIGURE 2.74 Example of a sharply-shaped boundary.
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When a CL patch is classified as SSC, the returns from this patch are

processed by the same detector as that used for the BN region. Only the

threshold needs to be adjusted properly. When a CL patch is classified as ISC,

the GLRT19 is used to process the associated returns. Finally, when a CL patch

is classified as WSC, it is necessary to determine the associated PDF so that the

appropriate processor can be selected from the library of weak signal detectors.

2.6.3. CL SUBPATCH INVESTIGATION STAGE

Recall that mapping consists of appropriately selecting a threshold to distinguish

between BN and CL patches using only the assumption that the BN power, on

average, is smaller than the CL power. This same approach may be used, once

again to extract that CL subpatch with the lowest average power from a set

of contiguous CL subpatches of higher average powers in a given CL patch.

In this case, the CL patch containing CL subpatches will be viewed as a volume

containing a CL subpatch region with low average power and a set of subpatches

with higher average powers occupying the rest of the CL patch area as shown in

Figure 2.75.

The mapping procedure, therefore, is used to extract the CL subpatch with

the lowest average power from among the remaining CL subpatches in a given

CL patch. Because numbering has already labeled each patch with a unique

number, it is straightforward for the computer program to select a patch and

check for the presence of subpatches in it.

TABLE 2.14
Classification of a CL Patch

Classification CNR

SSC CNR , 5 dB

ISC 5 dB # CNR # 8 dB

WSC CNR . 8 dB

Other CL
subpatches

CL subpatch
with lowest power

FIGURE 2.75 Example of a CL patch containing CL subpatches.
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For each CL patch, the mapping procedure is performed iteratively until it

is hypothesized, that every subpatch in a given CL patch is homogeneous and

cannot be partitioned further. After all CL subpatches have been extracted, the

surveillance volume consists of a BN region and CL patches that may or may

not be contiguous. Notice that every CL subpatch is now referred to as a CL

patch.

If CL subpatches are found to exist, assessment is performed once again

to (1) allocate, or reallocate, a number for every CL patch in the surveillance

volume, (2) compute the CNR for every patch, and (3) classify the CL patches as

SSC, WSC, or ISC regions. Assessment and subpatch investigation are described

by the flow charts of Figures 2.76 and 2.77. Figure 2.78 shows the order in which

assessment and CL subpatch investigation are performed.

OnceWSC regions have been identified and numbered, their respective PDFs

are approximated as explained in the next section.

2.6.4. PDF APPROXIMATION OF WSC CL PATCHES

The PDF approximation of WSC CL patches follows two steps. During the first

step, which is also referred to as test cell selection, a WSC CL patch is selected

from among the WSC declared CL patches, a set of test cells is chosen in that

CL patch, and reference cells are identified for each test cell which belong to the

selected CL patch and are the closest to the test cell. In the second step, referred

to as PDF approximation, the data of the reference cells are processed by the

Ozturk algorithm so that the PDF of the test cell can be approximated. The

process iterates for next WSC CL patch until each WSC CL patch in the

surveillance volume has its PDF approximated. Test cell selection, PDF

approximation, outlier definition and a PDF approximation strategy are

introduced next.

1- Compute CNR for every CL patch

2- Classify CL patches as SSC
WSC or ISC regions

1- Label BN cells with 0

2- Label CL patches each with
a unique positive number

FIGURE 2.76 Assessment stage.
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2.6.4.1. Test Cell Selection

As explained above, test cell selection involves three steps:

(i) AWSCCL patch is chosen from among theWSC declared CL patches.

This can be done automatically by the computer program since at this

stage every CL patch has been labeled with a unique number.

(ii) A set of NT test cells is then chosen in the WSC CL patch being

processed where the value of NT depends upon the extent to which the

patch needs to be characterized. Note that any cell in the CL patch can

be a test cell. A possible choice for the test cells is equally spaced test

cells that cover the entire area of the CL patch.

(iii) Finally, for each test cell, a set of reference cells is selected. The

reference cells must be in the same CL patch as the test cell and should

be closest in distance to it to comply with the assumption that the

reference cells are representative of the test cells.

In order to select the reference cells for a given test cell, the program starts by

centering a three by three mask around the test cell and choosing as reference cells

Select a patch

CL patches

Map the patch

Yes

Yes

No

No
Are

all subpatches
homogenuous

?

Are
all CL patches
processed

?

FIGURE 2.77 CL Subpatch investigation stage.
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those neighboring cells within the mask that are declared to be in the same CL

patch as the test cell. If the desired number of reference cells are not obtained, the

program increases the size of mask by adding one row and one column to each

boundary of the three by three mask. This results in a five by five mask where only

the cells in augmented rows and columns need to be examined. The process of

adding one row and one column to each boundary of the previous mask continues

until desired number of reference cells have been obtained.

2.6.4.2. PDF Approximation

Approximation of the PDF underlying a test cell consists of processing the data in

the reference cells. The PDF approximation is performed by the Ozturk algorithm

which consists of two modes, which is also referred to as the goodness of fit test

mode and the approximation chart mode. These two modes are discussed in the

following sections.

Proceed as shown in
Table 2.1 for SSC

Proceed as shown in
Table 2.1 for ISC

Assessment

Data information coming out of the
mapping procedure

CL subpatch investigation

Do
subpatches

exist
?

No

Yes

Assessment

To PDF approximation

SSC CL patches

ISC CL patches WSC CL patches

CL patchesBN regions

FIGURE 2.78 Assessment and CL subpatch investigation.
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2.6.4.2.1. Introduction to Ozturk Algorithm

The Ozturk algorithm26 is a recent algorithm based on sample order statistics

which has been developed27–29 and reported30 for univariate distribution

approximation. This algorithm has two modes of operation. In the first mode,

the algorithm performs a goodness of fit test. The test determines, to a desired

confidence level, whether the random data is statistically consistent with a

specified probability distribution. In the second mode of operation, the algorithm

approximates the PDF underlying the random data. In particular, by analyzing the

random data and without any a priori knowledge, the algorithm identifies the

density function which best approximates the data from a stored library of PDFs.

Estimates of the location, scale, and shape parameters of the PDF are provided by

the algorithm. The algorithm has been found to work reasonably well for

observation sizes as small as 75 to 100. Throughout this work, a number of 100

reference cells are selected for each test cell.

2.6.4.2.2. Goodness of Fit Test

The goodness of fit determines whether or not the set of data samples provided

to the algorithm is statistically consistent with a specified distribution, referred

to as the null hypothesis. Let NR denote the number of reference cells.

For the null hypothesis, the program utilizes a Monte Carlo simulation of 2000

trials to generate an averaged set of NR linked vectors in the uv plane, as shown in

Figure 2.79. Using the standardized sample order statistics of the data, the

program then creates a second system of NR linked vectors in the uv plane, as

shown in Figure 2.79(a). The terminal points of the linked vectors, as well as

Linked
vectors

Accept

Sample data
Null hypothesis

Reject

Reference
PDF

0.99
0.95
0.90

Confidence
ellipses

v

u
(a) (b)

0 u

v

FIGURE 2.79 Goodness of fit test: (a) linked vectors; (b) confidence ellipses.
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the shapes of their trajectories, are used in determining whether or not to accept

the null hypothesis. The null hypothesis is the distribution against which the

sample data is to be tested.

The algorithm provides quantitative information as to how consistent the

sample data set is with the null hypothesis distribution by use of confidence

contours. In confidence contours, each contour is derived from a specified

probability so that the end point falls within the contour, given that the data

comes from the null distribution. An example of these contours is shown in

Figure 2.79(b) for probabilities of .9, .95, and .99. If the end point of the sample

data linked vector locus falls within a contour, then the sample data set is said to

be statistically consistent with the null hypothesis at a confidence level based on

the probability specified for that contour. If the sample data set is truly consistent

with the null hypothesis, the system of sample linked vectors is likely to closely

follow that for the system of null linked vectors.

2.6.4.2.3. Approximation Chart Mode

The approximation chart mode is simply an extension of the goodness of fit

test mode. Following a similar approach as outlined in the section for the

goodness of fit mode, random samples are generated from a library of different

univariate probability distributions. In the goodness of fit test mode, the locus

of end point was obtained for the null hypothesis and sample size, NR. For the

approximation chart mode we go one step further by obtaining the locus of end

point for each distribution from the library of distributions for the given sample

size, NR, and for various choices of the shape parameter(s). Thus, depending on

whether it has a shape parameter or not, each distribution is represented by a

trajectory or point in the two dimensional uv plane. The distributions which are

plotted on the distribution approximation chart are: (1) Gaussian, (2) Uniform,

(3) Exponential, (4) Laplace, (5) Logistic, (6) Cauchy, (7) Extreme Value, (8)

Gumbel type-2, (9) Gamma, (10) Pareto, (11) Weibull, (12) Lognormal, (13)

Student-T, (14) K-distributed, (15) Beta, and (16) Su-Johnson. Figure 2.80

shows an example of the approximation chart. Note that every point in the

approximation chart corresponds to a specific distribution. That point closest to

the sample data locus end point is chosen as the best approximation to the PDF

underlying the random data. This closest point is determined by projecting the

sample locus end point to all points on the approximation chart and selecting

that point whose perpendicular distance from the sample point is the smallest.

Once the PDF underlying the sample data is selected, the shape, location and

scale parameters are then approximated.

2.6.4.3. PDF Approximation Metric

In the goodness of fit test, it is hypothesized that whenever the end point of the

sample data locus falls within the .99 probability confidence contour of the null

distribution, the PDF underlying the data can be approximated by the null
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distribution. Because the confidence contours are neither circular nor exactly

elliptical, analytically determining whether the locus end point falls within the

contour is a difficult computational problem. Thus, by definition, the sample

data is declared to be from the null distribution provided the locus end point

of the sample linked vectors is within the locus end point of the null distribution

by a distance that is less than half the length of the minor axis of the .99

confidence contour.

Although the approximation chart can accommodate a wide variety of PDFs,

most experimentally measured data for radar CL envelopes are approximated

as arising from either Rayleigh, Weibull, Lognormal, or K-distributed PDFs,

as noted in Section 2.1.2. Hence, for ease of implementation, it is assumed

throughout this work that random data in a homogeneous region are generated

from and approximated by one of the cited PDFs. Note that because the Weibull

PDF becomes the Rayleigh PDF when its shape parameter equals two, only

Weibull, Lognormal, or K distributions are used. The half-length of the minor

axis of the .99 confidence contour is listed in Table 2.15 for the Rayleigh,

Weibull, Lognormal, and K-distributed PDFs for various values of the shape

parameters when NR ¼ 100. For a shape parameter that is not listed in the table,

the half-length of the minor axis of the .99 confidence contour is approximated

by that of the closest shape parameter for the particular PDF. Because the

smallest PDF approximation metric that appears in Table 2.15 is dmin ¼
0:13 £ 1021; the null distribution is declared as the approximating distribution

without the need to refer to the table whenever the distance between the end

points of the sample and null distribution linked vectors is less than dmin.
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FIGURE 2.80 Approximation chart: N ¼ normal, U ¼ uniform, E ¼ negative exponen-

tial, A ¼ Laplace, S ¼ logistic, C ¼ Cauchy, V ¼ extreme value, T ¼ gumbel type-2,

G ¼ gamma, P ¼ pareto, W ¼ Weibull, L ¼ lognormal, K ¼ K-distributed, B ¼ beta,

SU ¼ Su-Johnson. Sample data locus end point † is shown with 0.99, 0.95, 0.90
confidence contours and candidate PDFs.
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2.6.4.4. Outliers

Even though the mapping procedure does a good job in separating the BN and CL

regions one or more outliers may exist in a set of reference cells. For example,

outliers may arise due to (1) misidentified BN cells in a CL patch or misidentified

CL cells in the BN, (2) cells having data values of low probability of occurrence,

and (3) cells containing signals from strong targets.

In correctly approximating the PDF underlying a set of data, outliers can

cause a problem by significantly altering the set of linked vectors generated by

the Ozturk algorithm. To illustrate this, a set of NR ¼ 100 reference data, referred

to as set A, are generated from the Lognormal distribution with shape parameter

0.01. The histogram of this set is plotted in Figure 2.81. Also, another set, referred

TABLE 2.15
PDF Approximation Metric for Different PDFs, NR 5 100

PDF Shape Parameter
Half-length of the

Minor Axis ( 3 1021)

Rayleigh — 0.47

Weibull 0.1 0.25

0.5 0.41

1.0 0.41

2.0 0.47

3.0 0.47

4.0 0.45

5.0 0.44

10.0 0.44

Lognormal 0.01 0.48

0.05 0.45

0.1 0.43

0.2 0.42

0.3 0.42

0.4 0.46

1.0 0.41

5.0 0.28

10.0 0.13

K-distribution 0.01 0.13

0.1 0.37

1.0 0.29

5.0 0.47

10.0 0.47

20.0 0.49

40.0 0.49

50.0 0.49
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to as set B, is formed which contains 97 data points from set A and three data

points with very small values to constitute the outliers in the set. Figure 2.82

shows the histogram of this second set. Note from the histogram that the three

data points have resulted in an isolated bar. The two sets are processed by the

Ozturk algorithm and have their locus end points plotted in approximation charts

of Figures 2.83 and 2.84. Note how the end point in Figure 2.84 for the set

containing outliers (set B) is far removed from the Lognormal PDF from which

97 out of the 100 data points of set B were generated. To understand the cause,

Figures 2.85 and 2.86 show the plots of the goodness of fit test for set A and set B,

respectively, where the null hypothesis is the Lognormal PDF with shape

parameter 0.01. Comparing the two figures, it is noted that the linked vectors in

set B are smaller than those of set A, causing the locus end point for set B to fall
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FIGURE 2.81 Histogram of set A.
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FIGURE 2.82 Histogram of set B.

Adaptive Antennas and Receivers94

© 2006 by Taylor & Francis Group, LLC



way below the end point for set A and, therefore, outside the confidence ellipses.

This is due to the fact that, the amplitudes of linked vectors are proportional to

the magnitude of standardized data, which depend on the mean and standard

deviation of the set. The three outliers do not significantly affect the mean of

the set but do increase the variance tremendously causing the standardized

data and, therefore, the amplitudes of the linked vectors to become smaller. In

this example, the mean and standard deviation for set A are equal to 32.54 and

4.69, respectively, while the mean and standard deviation for set B are equal to

31.63 and 18.08, respectively. This example illustrates what can happen when

three BN cells with small data values are misidentified and associated with a set

of CL cells.
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One way to identify outliers within a region is to compute the mean m

and standard deviation s within that region and call any cell whose data value

falls outside the interval [m 2 2s, m þ 2s ] as an outlier. This method is used

to identify outliers within a set of selected reference cells. When this method is

applied to set B, whose histogram is shown in Figure 2.82, the three outliers are

identified and removed from the set.

2.6.4.5. PDF Approximation Strategy

As mentioned in Section 2.6.4.3, CL data are generated in this work from

either the Weibull, Lognormal, or K-distributed distributions. Consequently,
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FIGURE 2.85 Goodness of fit test for set A.
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FIGURE 2.86 Goodness of fit test for set B.
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the strategy for approximating the PDF underlying a CL patch consists of the

following steps:

1. Select a total of NT test cells that are evenly spread throughout the

CL patch.

2. For each test cell, choose its closest NR ¼ 100 reference cells as

described in Section 2.6.4.1.

3. Using the Ozturk algorithm, determine the distance between the locus

end point of the data linked vectors and its projection onto the Weibull,

Lognormal, and K-distributed trajectories.

4. Discard those PDFs for which the distances in step 3 exceed the

corresponding distances obtained from Table 2.15.

5. If all possible PDFs are discarded in step 4, excise any outliers that may

exist from the data and proceed to step 3.

6. Use IPUS, as discussed in the next chapter, to determine the best

PDF(s) to approximate the data.

Steps 1–5 are now illustrated through examples.

2.6.5. EXAMPLES

In this section, indexing is performed on the same examples considered in

Section 2.5.4 where mapping procedure was carried out. Discussion of each

example ends with a table indicating the approximations to be used for the PDFs

underlying selected test cells in the CL patches. The quality of the

approximations is discussed in Section 2.7 for each of the examples.

2.6.5.1. Example 1

Consider the example of Section 2.5.4.2.1 where the parameters of the generated

scene are given in Table 2.2.

2.6.5.1.1. Assessment

The indexing procedure starts by first assessing the mapped volume. This consists

of labeling the CL patches, estimating CNR for each patch, and counting the

number of cells in each patch. The results are presented in Table 2.16. CL patches

labeled one, two and three, are shown in Figure 2.87. By comparing Table 2.2

with Table 2.16, it is seen that reasonable results are obtained for the CNRs and

numbers of cells. Because the CL patch labeled as two consists of C þ D, its

CNR and number of cells, respectively, are approximated by the average of the

CNRs and the sum of the number of cells for C and D.

2.6.5.1.2. CL Subpatch Investigation

The next step in the indexing procedure consists of identifying subCL patches

within a CL patch. This is done by selecting a CL patch and applying the mapping
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procedure to it. If one or more subpatches exist, the procedure attempts to first

identify the subpatch having the lowest average power. If a subpatch does not

exist, the procedure attempts to recognize this situation.

Let PLQP, PLCQP, and PLCCP represent the percentage number of cells of

the subpatch with the lowest power among the possible subpatches of a CL patch

in the quantized, first-corrected and second-corrected stages, respectively.

Tables 2.17–2.19 show the results of themapping procedure applied, respectively,

to CL patches one, two, and three. For CL patches one and three, the mapping

procedure results with PLCCP being equal to 100%, reflecting the conclusion that

the subpatches with the lowest average power in CL patches one and three occupy

100% of the area in each patch. Therefore, it is concluded that CL patches one and

three are homogeneous and do not contain any subpatches. On the other hand,

mapping of CL patch two results with PLCCP ¼ 48.75%. This indicates that CL

patch two contains at least two subpatches and the subpatch with the lowest

power occupies 48.75% of the total area of patch two. This is consistent with the

generated surveillance volume, where CL patch C has a smaller power than CL

patch, D and C occupies 50% of the total area of CL patch two.

TABLE 2.16
Assessment Parameters (Example 1)

CL Patch CL Patch Label CNR (dB) Number of Cells

A 1 9.04 113

C þ D 2 36.66 304

B 3 23.31 1444
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FIGURE 2.87 Contour plot of the mapped volume after numbering (Example 1).
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TABLE 2.18
Mapping Procedure Applied to CL Patch 2 (Example 1)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 39.38

(guess) NCC ¼ 1 PLCCP ¼ 7.50

20.00 NCQ ¼ 8 PLCQP ¼ 59.38

previous PLCCP NCC ¼ 1 PLCCP ¼ 43.12

43.12 NCQ ¼ 7 PLCQP ¼ 55.00

previous PLCCP NCC ¼ 1 PLCCP ¼ 49.38

49.38 NCQ ¼ 5 PLCQP ¼ 50.62

previous PLCCP NCC ¼ 1 PLCCP ¼ 46.25

49.38 NCQ ¼ 5 PLCQP ¼ 50.62

previous PLCCP NCC ¼ 3 PLCCP ¼ 48.75

TABLE 2.17
Mapping Procedure Applied to CL Patch 1 (Example 1)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 70.59

(guess) NCC ¼ 1 PLCCP ¼ 20.59

20.59 NCQ ¼ 8 PLCQP ¼ 94.12

previous PLCCP NCC ¼ 1 PLCCP ¼ 82.35

82.35 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0

TABLE 2.19
Mapping Procedure Applied to CL Patch 3 (Example 1)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 50.25

(guess) NCC ¼ 1 PLCCP ¼ 12.19

12.19 NCQ ¼ 8 PLCQP ¼ 58.51

previous PLCCP NCC ¼ 1 PLCCP ¼ 16.61

16.61 NCQ ¼ 8 PLCQP ¼ 73.62

previous PLCCP NCC ¼ 1 PLCCP ¼ 28.80

28.80 NCQ ¼ 8 PLCQP ¼ 92.57

(guess) NCC ¼ 1 PLCCP ¼ 66.19

66.19 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0
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2.6.5.1.3. Reassessment

Finally, mapping was applied to CL patches two and four with the result that both

patches were judged to be homogeneous.

Treating each identified subpatch as a patch, assessment is done once more

to relabel all subpatches in the surveillance volume. Results of the assessment

are tabulated in Table 2.20. Now the surveillance volume is identified to include

four CL patches where CL patches one, two, three, and four coincide with

CL patches A, C, B, and D, respectively, of the original scene. Note how close

are the number of cells and CNR for every patch when comparing Tables 2.2

and 2.20. Note also that using the values of Table 2.14, every CL patch in

the surveillance volume has been identified as a WSC region. Also, using the

ranges of the CNR for the strong, weak, and intermediate signal cases, as given

in Table 2.14, classification of the CL patches is shown in column five of

Table 2.20. Figure 2.88 shows the result of the numbering of the new mapped

volume.

TABLE 2.20
Reassessment Parameters (Example 1)

CL Patch CL Patch Label CNR (dB) Number of Cells Classification

A 1 9.04 113 WSC

B 2 30.63 151 WSC

C 3 23.31 1444 WSC

D 4 40.54 146 WSC
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FIGURE 2.88 Contour plot of the MV after renumbering (Example 1).
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2.6.5.1.4. Steps 1–5 of the PDF Approximation Strategy

As detailed in Section 2.6.4.5, the first step in the PDF approximation strategy is

to select a total of NT test cells that are evenly spread throughout the CL patch.

For each of the four CL patches listed in Table 2.20, let NT ¼ 5. Assume each CL

patch is scanned from left to right and from top to bottom. In each CL patch let

the first cell scanned be numbered as one. The last cell scanned in each patch is

assigned a number equal to the total number of cells in that patch. The test cells

selected for CL patches one, two, three, and four are listed in the first column

of Tables 2.21–2.24, respectively. Note that the test cells are evenly spread

throughout each CL patch.

The second step in the PDF approximation strategy is to choose for each test

cell the closest NR ¼ 100 reference cells as detailed in Section 2.6.4.1.

Using the Ozturk algorithm, the third step is to determine the distance

between the locus end point of the data linked vectors and its projection onto

the Weibull, Lognormal, and K-distributed trajectories. The distance, shape,

scale, and location parameters for the approximating PDFs are tabulated in

columns four, five, six, and seven, respectively, of Tables 2.21–2.24. The (u, v)

coordinates of the data locus end point are listed in column eight of the tables.

Finally, column three provides a ranking based on the smallest distance between

the approximating PDF and the data locus end point.

TABLE 2.21
PDF Approximation for CL Patch 1 (Example 1)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

W 1 0.72 £ 1022 T 2.12 3.20 0.58 (20.0298, 0.3503)

1 L 5 0.22 £ 1021 T 0.18 7.48 24.18

K 3 0.17 £ 1021 T 50.0 0.43 0.77

W 2 0.90 £ 1022 T 2.14 3.26 0.54 (20.0293, 0.3320)

28 L 5 0.24 £ 1021 T 0.18 7.76 24.47

K 3 0.18 £ 1021 T 50.0 0.43 0.75

W 1 0.74 £ 1022 T 1.94 3.01 0.74 (20.0376, 0.3500)

57 L 5 0.24 £ 1021 T 0.21 6.74 23.50

K 3 0.13 £ 1021 T 50.0 0.43 0.69

W 2 0.13 £ 1021 T 2.06 3.16 0.63 (20.0313, 0.3561)

85 L 6 0.28 £ 1021 T 0.19 7.38 24.10

K 3 0.21 £ 1021 T 50.0 0.43 0.73

W 1 0.23 £ 1022 T 2.01 3.09 0.69 (20.0330, 0.3455)

113 L 5 0.18 £ 1021 T 0.20 7.02 23.75

K 2 0.11 £ 1021 T 50.0 0.43 0.73
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Step 4 is to discard those PDFs for which the distances in step 3 exceed

the corresponding distances obtained from Table 2.15. In Tables 2.21–2.24, the

results are indicated by either C or T, respectively, depending upon whether

the PDFs are discarded or not.

TABLE 2.22
PDF Approximation for CL Patch 2 (Example 1)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 17 0.24 £ 1020 C 5.00 9.00 24.12 (20.0952, 0.1143)

L 19 0.25 £ 1020 C 0.76 1.97 30.20

K 20 0.26 £ 1020 C 32.0 0.72 28.99

1 W 2 0.87 £ 1022 T 2.60 1.39 31.30 (20.0177, 0.3512)

w/o 3 L 4 0.21 £ 1021 T 0.10 5.02 27.50

Outliers K 6 0.27 £ 1021 T 50.0 0.16 31.58

38 W 23 0.29 £ 1020 C 0.73 1.81 30.84 (0.1281, 0.1361)

L 21 0.27 £ 1020 C 0.81 2.27 29.80

K 20 0.26 £ 1020 C 50.0 0.72 28.09

38 W 1 0.63 £ 1022 T 2.82 1.46 31.30 (20.0122, 0.3486)

w/o 4 L 4 0.18 £ 1021 T 0.06 7.81 24.77

Outliers K 14 0.31 £ 1021 T 50.0 0.15 31.67

76 W 24 0.30 £ 1020 C 0.74 1.81 30.79 (0.1310, 0.1360)

L 21 0.27 £ 1020 C 1.10 1.29 30.67

K 20 0.26 £ 1020 C 50.0 0.71 28.09

76 W 1 0.20 £ 1022 T 2.52 1.25 31.43 (20.0202, 0.3406)

w/o 4 L 3 0.11 £ 1021 T 0.13 3.62 28.89

Outliers K 5 0.21 £ 1021 T 50.0 0.14 31.66

114 W 26 0.31 £ 1020 C 0.52 1.19 31.02 (0.1581, 0.1563)

L 23 0.29 £ 1020 C 1.84 0.37 31.41

K 21 0.27 £ 1020 C 50.0 0.84 27.16

114 W 12 0.28 £ 1021 T 2.45 1.19 31.41 (20.0235, 0.3143)

w/o 5 L 3 0.14 £ 1021 T 0.18 2.57 29.86

Outliers K 11 0.28 £ 1021 T 50.0 0.14 31.60

151 W 26 0.31 £ 1020 C 0.52 1.19 31.02 (0.1581, 0.1563)

L 23 0.29 £ 1020 C 1.85 0.38 31.41

K 21 0.27 £ 1020 C 50.0 0.84 27.16

151 W 10 0.28 £ 1021 T 2.44 1.19 31.48 (20.0235, 0.3147)

w/o 5 L 3 0.14 £ 1021 T 0.18 2.58 29.85

Outlier K 11 0.28 £ 1021 T 50.0 0.14 31.60
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TABLE 2.23
PDF Approximation for CL Patch 3 (Example 1)

Test
Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 5 0.17 £ 1021 T 1.62 13.1 0.82 (20.0476, 0.3235)

L 1 0.25 £ 1022 T 0.34 20.4 29.04

K 3 0.75 £ 1022 T 15.6 3.90 21.19

361 W 6 0.24 £ 1021 T 1.67 13.7 1.65 (20.0438, 0.3171)

L 1 0.49 £ 1022 T 0.33 21.4 28.75

K 4 0.15 £ 1021 T 15.8 3.94 20.01

722 W 3 0.19 £ 1021 T 2.67 22.1 24.93 (20.0154, 0.3620)

L 5 0.32 £ 1021 T 0.07 1.15 2101.14

K 7 0.35 £ 1021 T 50.0 2.43 20.14

1083 W 1 0.33 £ 1022 T 1.63 11.8 3.41 (20.0508, 0.3433)

L 5 0.22 £ 1021 T 0.31 19.8 26.95

K 2 0.11 £ 1021 T 35.0 2.34 1.51

1444 W 1 0.36 £ 1022 T 2.2 16.9 21.17 (20.0285, 0.3393)

L 3 0.11 £ 1021 T 0.19 37.7 224.57

K 4 0.12 £ 1021 T 50.0 2.18 0.26

TABLE 2.24
PDF Approximation for CL Patch 4 (Example 1)

Test
Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 5 0.44 £ 1021 T 4.30 86.9 16.66 (0.0165, 0.3811)

L 6 0.52 £ 1021 C 0.01 2625 22529.01

K 20 0.72 £ 1021 C 50.0 6.34 57.92

37 W 5 0.36 £ 1021 T 3.88 79.5 23.66 (0.0102, 0.3751)

L 6 0.44 £ 1021 T 0.01 2628 22532.56

K 18 0.63 £ 1021 C 50.0 6.35 57.54

73 W 2 0.78 £ 1022 T 5.00 96.2 17.69 (0.0119, 0.3630)

L 5 0.23 £ 1021 T 0.01 2547 22508.77

K 19 0.60 £ 1021 C 50.0 6.16 58.36

110 W 1 0.52 £ 1022 T 5.00 99.3 5.24 (0.0153, 0.3317)

L 5 0.16 £ 1021 T 0.01 2616 22520.22

K 18 0.56 £ 1021 C 50.0 6.32 58.84

146 W 1 0.47 £ 1022 T 4.37 92.2 11.62 (0.0080, 0.3430)

L 3 0.14 £ 1021 T 0.01 2736 22640.34

K 18 0.48 £ 1021 T 50.0 6.61 56.10
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In the shaded background rows of Table 2.22, related to CL patch 2, note

that all possible PDFs are discarded. Consequently, step 5 is implemented where

outliers that exist are excised from each set of reference cells. Steps 3 and 4 are

then repeated and the results presented with a white background in Table 2.22.

With the outliers removed, note that the distance measure for one or more of the

approximating PDFs has become significantly smaller.

2.6.5.2. Example 2

Consider now the example of Section 2.5.4.2.2 where the parameters of the

generated scene are given in Table 2.5.

2.6.5.2.1. Assessment

Following the same strategy discussed in Section 2.6.5.1, results of the assess-

ment stage are presented in Table 2.25. CL patches 1, 2 and 3, are shown in

Figure 2.88. Comparison of Tables 2.5 and 2.25 shows that reasonable results are

obtained for the CNRs and number of cells.

2.6.5.2.2. CL Subpatches Investigation

Tables 2.26–2.28, show the results of the mapping procedure applied, respec-

tively to CL patches one, two, and three. For CL patches one, two, and three,

TABLE 2.25
Assessment Parameters (Example 2)

CL Patch CL Patch Label CNR (dB) Number of Cells

A 1 12.03 133

C þ D 2 8.22 308

B 3 8.65 622

TABLE 2.26
Mapping Procedure Applied to CL Patch 1 (Example 2)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 36.73

(guess) NCC ¼ 1 PLCCP ¼ 8.16

20.00 NCQ ¼ 8 PLCQP ¼ 71.43

modified PLQP NCC ¼ 1 PLCCP ¼ 28.57

28.57 NCQ ¼ 8 PLCQP ¼ 87.76

previous PLCCP NCC ¼ 1 PLCCP ¼ 55.10

55.10 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0
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the mapping procedure results with PLCCP being equal to 100% reflecting

the conclusion that the subpatches with the lowest power in CL patches one, two,

and three occupy 100% of the area in each patch. Therefore, it is concluded that

all of these CL patches are homogeneous and do not contain any subpatches.

In fact, CL patch two consists of subpatches C and D. By using expert system

rules, it is shown in Section 2.7 that CL patch two can be further separated.

2.6.5.2.3. Reassessment

Because the CL subpatch identification does not result in finding any subpatches

within CL patches one, two and three, the mapped volume is not changed and

assessment is not necessary.

2.6.5.2.4. Steps 1–5 of the PDF Approximation Strategy

Tables 2.29 to 2.31 list the results of steps 1–5 of the PDF approximation strategy

applied to CL patches one, two, and three, respectively.

TABLE 2.27
Mapping Procedure Applied to CL Patch 2 (Example 2)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 60.38

(guess) NCC ¼ 1 PLCCP ¼ 19.50

19.50 NCQ ¼ 8 PLCQP ¼ 81.76

previous PLCCP NCC ¼ 1 PLCCP ¼ 49.06

49.06 NCQ ¼ 8 PLCQP ¼ 94.97

previous PLCCP NCC ¼ 1 PLCCP ¼ 81.76

81.76 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0

TABLE 2.28
Mapping Procedure Applied to CL Patch three (Example 2)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 63.36

(guess) NCC ¼ 1 PLCCP ¼ 22.12

22.12 NCQ ¼ 8 PLCQP ¼ 89.63

previous PLCCP NCC ¼ 1 PLCCP ¼ 62.90

62.90 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0
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2.6.5.3. Example 3

Finally, consider the example of Section 2.5.4.2.3 where the parameters of the

generated scene are given in Table 2.8.

2.6.5.3.1. Assessment

Following the same strategy discussed in Section 2.6.5.1, results of the

assessment stage are presented in Table 2.32. CL patches one, two and three,

are shown in Figure 2.89. Comparison of Tables 2.8 and 2.32 shows that

reasonable results are obtained for the CNRs and number of cells.

2.6.5.3.2. CL Subpatch Investigation

Tables 2.33–2.35 show the results of the mapping procedure applied,

respectively, to CL patches one, two, and three. For CL patches one, two, and

three, the mapping procedure results with PLCCP being equal to 100% reflecting

the conclusion that the subpatches with the lowest power in CL patches one,

two, and three occupy 100% of the area in each patch. Therefore, it is concluded

that all CL patches are homogeneous and do not contain any subpatches.

TABLE 2.29
PDF Approximation for CL Patch 1 (Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 5 0.16 £ 1021T 1.40 4.54 0.20 (20.0566, 0.3207)

L 1 0.31 £ 1022 C 0.40 6.67 22.93

K 2 0.57 £ 1022 C 9.93 1.90 21.00

33 W 5 0.13 £ 1021T 1.37 4.57 0.23 (20.0604, 0.3232)

L 3 0.73 £ 1022 T 0.41 6.63 22.80

K 1 0.17 £ 1022 T 8.61 2.09 21.10

66 W 6 0.44 £ 1021 C 0.86 2.93 1.48 (20.0802, 0.2751)

L 2 0.16 £ 1021 C 0.77 3.14 0.37

K 5 0.35 £ 1021 C 1.71 4.36 20.36

66 W 4 0.13 £ 1021 T 1.30 3.82 0.68 (20.0651, 0.32116)

w/o 3 L 3 0.82 £ 1022 T 0.45 5.26 21.64

outliers K 1 0.16 £ 1022 T 6.96 2.03 20.58

99 W 5 0.23 £ 1021 T 1.27 4.11 0.62 (20.0636, 0.3113)

L 1 0.65 £ 1023 T 0.48 5.35 21.59

K 3 0.11 £ 1021 T 6.23 2.35 20.79

133 W 7 0.56 £ 1021 C 0.73 2.39 2.05 (20.0732, 0.2641)

L 3 0.29 £ 1021 C 0.83 2.82 20.85

K 6 0.48 £ 1021 C 1.73 4.93 20.23

133 W 5 0.18 £ 1021T 1.36 4.08 0.55 (20.0586, 0.3181)

w/o 4 L 1 0.21 £ 1022 T 0.42 5.77 22.06

outliers K 2 0.71 £ 1022 T 8.80 1.93 20.62
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TABLE 2.30
PDF Approximation for CL Patch 2 (Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v )

1 W 8 0.57 £ 1021 C 0.73 1.08 1.47 (20.0725, 0.2622)

L 3 0.30 £ 1021 T 0.84 1.27 0.93

K 6 0.50 £ 1021 C 1.71 2.02 0.41

77 W 7 0.85 £ 1021 C 0.72 1.09 1.53 (20.0813, 0.2659)

L 2 0.21 £ 1021 T 0.85 1.27 0.99

K 5 0.41 £ 1021 C 1.47 2.19 0.51

154 W 2 0.18 £ 1021 T 1.34 2.56 0.91 (20.0740, 0.3510)

L 7 0.37 £ 1021 T 0.40 3.98 21.07

K 4 0.29 £ 1021 T 1.92 1.16 0.08

231 W 3 0.93 £ 1022 T 2.08 4.06 0.24 (20.0316, 0.3338)

L 2 0.67 £ 1022 T 0.21 8.63 24.97

K 4 0.93 £ 1022 T 50.0 0.55 0.42

308 W 1 0.01 £ 1023 T 1.99 3.99 0.25 (20.0335, 0.3435)

L 4 0.16 £ 1021 T 0.20 9.10 25.52

K 2 0.94 £ 1022 T 50.0 0.56 0.29

TABLE 2.31
PDF Approximation for CL Patch 3 (Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v )

1 W 3 0.69 £ 1022 T 0.90 2.06 0.87 (20.0997, 0.3072)

L 6 0.19 £ 1021 T 0.69 2.45 20.12

K 1 0.26 £ 1022 T 1.69 2.94 20.30

156 W 1 0.13 £ 1022 T 1.13 2.66 0.52 (20.0830, 0.2397)

L 5 0.25 £ 1021 T 0.52 3.51 21.02

K 4 0.13 £ 1021 T 4.00 2.08 20.65

311 W 4 0.13 £ 1021 T 1.17 2.50 0.88 (20.0743, 0.3181)

L 3 0.11 £ 1021 T 0.52 3.21 20.45

K 1 0.48 £ 1023 T 4.47 1.78 20.12

466 W 4 0.13 £ 1021 T 1.17 3.12 0.81 (20.0743, 0.3174)

L 3 0.11 £ 1021 T 0.52 3.99 20.84

K 1 0.11 £ 1022 T 4.41 2.25 20.45

622 W 5 0.24 £ 1021 T 0.76 2.13 1.43 (20.0965, 0.2867)

L 1 0.33 £ 1022 T 0.79 2.57 0.31

K 3 0.16 £ 1021 T 1.36 4.03 20.19
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TABLE 2.32
Assessment Parameters (Example 3)

CL Patch CL Patch Label CNR (dB) Number of Cells

A 1 9.34 124

C þ D 2 10.63 341

B 3 13.47 306
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FIGURE 2.89 Contour plot of the mapped volume after numbering (Example 2).

TABLE 2.33
Mapping Procedure Applied to CL Patch 1 (Example 3)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 48.94

(guess) NCC ¼ 1 PLCCP ¼ 8.51

20.00 NCQ ¼ 8 PLCQP ¼ 82.98

modified PLQP NCC ¼ 1 PLCCP ¼ 51.06

51.06 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0
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As in example 2, CL patch two consists of subpatches C and D. In Chapter 7

it is shown that expert system rules are unable, in this case, to further subdivide

the CL patch. However, it is also shown that the PDFs of subpatches C and D are

very similar with identical power levels. Consequently, the inability to subdivide

CL patch two is not a serious problem.

2.6.5.3.3. Reassessment

Because the CL subpatch identification does not result in finding any subpatches

within CL patches one, two, and three, the mapped volume is not changed and

assessment is not necessary (see Figure 2.90).

TABLE 2.35
Mapping Procedure Applied to CL Patch 3 (Example 3)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 46.53

(guess) NCC ¼ 1 PLCCP ¼ 14.36

14.36 NCQ ¼ 8 PLCQP ¼ 70.30

previous PLCCP NCC ¼ 1 PLCCP ¼ 26.24

26.24 NCQ ¼ 8 PLCQP ¼ 92.08

previous PLCCP NCC ¼ 1 PLCCP ¼ 66.83

66.83 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0

TABLE 2.34
Mapping Procedure Applied to CL Patch 2 (Example 3)

PLQP (%) Parameter Values

10.00 NCQ ¼ 8 PLCQP ¼ 42.93

(guess) NCC ¼ 1 PLCCP ¼ 11.62

11.62 NCQ ¼ 8 PLCQP ¼ 53.54

previous PLCCP NCC ¼ 1 PLCCP ¼ 13.64

13.64 NCQ ¼ 8 PLCQP ¼ 64.14

previous PLCCP NCC ¼ 1 PLCCP ¼ 18.69

18.69 NCQ ¼ 8 PLCQP ¼ 77.27

previous PLCCP NCC ¼ 1 PLCCP ¼ 32.32

32.32 NCQ ¼ 8 PLCQP ¼ 94.44

previous PLCCP NCC ¼ 1 PLCCP ¼ 69.70

69.70 NCQ ¼ 8 PLCQP ¼ 100.0

previous PLCCP NCC ¼ 1 PLCCP ¼ 100.0
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2.6.5.3.4. Steps 1–5 of the PDF Approximation Strategy

Tables 2.36–2.38 list the results of steps 1–5 of the PDF approximation strategy

applied to CL patches one, two, and three, respectively.
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FIGURE 2.90 Contour plot of the mapped volume after numbering (Example 3).

TABLE 2.36
PDF Approximation for CL Patch 1 (Example 3)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v )

1 W 3 0.30 £ 1021 T 2.20 3.90 20.01 (20.0250, 0.3733)

L 7 0.44 £ 1021 C 0.13 12.4 29.01

K 5 0.39 £ 1021 T 50.0 0.49 0.40

31 W 3 0.27 £ 1021 T 2.32 3.98 20.07 (20.0233, 0.3702)

L 7 0.41 £ 1021 T 0.12 12.9 29.60

K 4 0.36 £ 1021 T 50.0 0.49 0.42

62 W 2 0.97 £ 1022 T 2.00 3.69 20.32 (20.0342, 0.3529)

L 5 0.25 £ 1021 T 0.20 8.41 25.00

K 3 0.17 £ 1021 T 50.0 0.51 0.54

93 W 3 0.28 £ 1021 T 2.32 3.98 20.07 (20.0238, 0.3709)

L 7 0.41 £ 1021 T 0.12 13.0 29.60

K 4 0.37 £ 1021 T 50.0 0.49 0.41

124 W 3 0.28 £ 1021 T 2.10 3.77 0.12 (20.0276, 0.3727)

L 7 0.41 £ 1021 T 0.15 10.8 27.53

K 4 0.36 £ 1021 T 50.0 0.49 0.39
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2.6.6. EXTENSION OF THE INDEXING PROCEDURE

TO RANGE–AZIMUTH–DOPPLER CELLS

It is possible to extend the indexing procedure to the 3-D R/A/D plane. The same

steps used in indexing the R/A plane are followed. Namely, (1) an assessment

stage is utilized to assign a unique number to the BN region and each 3-D

TABLE 2.37
PDF Approximation for CL Patch 2 (Example 3)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 15 0.94 £ 1021 C 5.00 3.06 1.24 (0.0308, 0.2437)

L 14 0.94 £ 1021 C 0.01 81.0 276.96

K 20 0.11 £ 1020 C 50.0 0.19 2.89

1 W 2 0.13 £ 1021 T 2.39 1.20 3.07 (20.0227, 0.3554)

w/o 5 L 6 0.26 £ 1021 T 0.13 3.58 0.52

Outliers K 4 0.25 £ 1021 T 50.0 0.14 3.24

85 W 15 0.11 £ 1020 C 5.00 3.04 1.19 (0.0282, 0.2214)

L 14 0.11 £ 1020 C 0.01 80.5 276.56

K 18 0.13 £ 1020 C 36.5 0.22 2.84

85 W 1 0.79 £ 1022 T 2.19 1.03 3.14 (20.0281, 0.3509)

w/o 6 L 5 0.23 £ 1021 T 0.17 2.51 1.51

Outliers K 3 0.18 £ 1021 T 50.0 0.13 3.23

171 W 22 0.18 £ 1020 C 0.49 0.24 3.68 (0.0365, 0.2186)

L 14 0.12 £ 1020 C 0.01 80.0 276.24

K 18 0.14 £ 1020 C 50.0 0.19 2.78

171 W 12 0.32 £ 1021 T 2.35 1.16 2.97 (20.0258, 0.3105)

w/o 5 L 3 0.17 £ 1021 T 0.22 2.05 1.91

Outliers K 11 0.30 £ 1021 T 43.8 0.15 3.13

256 W 15 0.47 £ 1021 C 4.70 2.45 1.71 (20.0005, 0.2915)

L 12 0.40 £ 1021 C 0.05 9.86 25.89

K 18 0.55 £ 1021 C 50.0 0.16 2.98

256 W 1 0.39 £ 1022 T 2.29 1.14 2.98 (20.0256, 0.3468)

w/o 3 L 5 0.18 £ 1021 T 0.16 2.88 1.07

Outliers K 4 0.17 £ 1021 T 50.0 0.14 3.11

341 W 23 0.19 £ 1020 C 0.39 0.16 3.72 (0.0469, 0.2188)

L 14 0.12 £ 1020 C 0.01 94.1 290.21

K 19 0.14 £ 1020 C 50.0 0.22 2.57

341 W 8 0.24 £ 1021 T 2.36 1.21 2.95 (20.0253, 0.3186)

w/o 7 L 1 0.94 £ 1022 T 0.18 2.56 1.42

Outlier K 7 0.24 £ 1021 T 50.0 0.14 3.12
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CL patch, compute the CNR for each CL patch, and classify CL patches as to

whether they are SSC, WSC, or ISC regions, (2) a CL subpatch investigation

stage is utilized to subdivide nonhomogeneous CL patches into contiguous CL

subpatches, and (3) a random data analysis stage is utilized to obtain a PDF

approximation of WSC CL patches stage.

Even though the indexing procedure for the R/A/D volume follows the same

steps as those shown in Figures 2.76–2.78 for the R/A plane, some changes are

needed to apply the indexing algorithms of the R/A plane to the R/A/D volume.

These changes are:

(i) The mask used in the numbering procedure and shown in Figure 2.73

becomes a 3-D mask which consists of the 13 previously numbered

neighboring cells to the test cell. This is illustrated in Figure 2.91 for

the ijkth test cell.

(ii) For the choice of the reference cells, a three by three by three mask

of neighboring cells is initially centered around the test cell instead

TABLE 2.38
PDF Approximation for CL Patch 3 (Example 3)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 14 0.73 £ 1021 C 0.96 2.90 2.39 (20.0530, 0.2596)

L 6 0.47 £ 1021 C 0.72 3.07 1.41

K 10 0.62 £ 1021 C 3.03 3.06 0.29

1 W 12 0.33 £ 1021 T 2.23 5.36 0.03 (20.0291, 0.3098)

w/o 3 L 3 0.16 £ 1021 T 0.24 8.91 24.35

Outliers K 10 0.29 £ 1021 T 35.3 0.81 0.54

76 W 14 0.71 £ 1021 C 0.98 3.00 2.39 (20.0519, 0.2632)

L 6 0.45 £ 1021 C 0.69 3.26 1.3

K 10 0.59 £ 1021 C 3.33 2.97 0.58

76 W 10 0.29 £ 1021 T 2.18 5.39 0.05 (20.0300, 0.3135)

w/o 3 L 2 0.13 £ 1021 T 0.24 9.20 24.61

Outliers K 7 0.25 £ 1021 T 38.6 0.79 0.48

153 W 5 0.17 £ 1021 T 1.31 3.49 1.61 (20.0626, 0.3176)

L 1 0.39 £ 1022 T 0.45 4.78 20.48

K 2 0.58 £ 1022 T 7.51 1.81 0.49

229 W 3 0.36 £ 1021 T 1.50 4.20 1.29 (20.0673, 0.3742)

L 7 0.57 £ 1021 C 0.35 6.70 22.14

K 4 0.45 £ 1021 T 42.9 0.82 0.24

306 W 3 0.25 £ 1021 T 1.50 4.22 1.23 (20.0645, 0.3623)

L 6 0.44 £ 1021 T 0.36 6.59 22.02

K 4 0.33 £ 10
2

1 T 31.5 0.95 0.18
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of the three by three one used for the R/A plane. Then, the mask is

augmented by one plane at each of its boundaries resulting in a five by

five by five mask. As was done for the R/A case, the process of adding

one row and one column to each boundary of the previous mask

continues until the desired number of reference cells have been

obtained. Note that the process of choosing a specified number of

reference cells in the R/A/D volume results in the cells being closer to

the test cell than for the R/A plane. For example, in order to choose

100 reference cells in a homogeneous region, a mask of dimension

11 £ 11 is needed in the R/A plane whereas a mask of dimension five

by five by five suffices in the R /A/D volume. Thus, the reference cells

are a distance of up to five cells away from the test cell in the R/A

plane, whereas the distance is only up to two cells away from the test

cell in the R/A/D plane.

2.6.7. CONCLUSION

In summary, an indexing procedure has been presented that allows for

numbering each of the BN region and CL patches with a unique number,

extracting CL subpatches, and approximating the PDF of the test cells in the CL

Neighboring cell Test cell

k

j

i

N(i−1, j−1, k−1)
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N(i, j−1, k−1)

N(i, j−1, k)

N(i, j,k−1) N(i, j+1,k−1)
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FIGURE 2.91 Mask used in numbering the range–azimuth–Doppler volume.
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patches. The procedure was illustrated with examples that show how the

indexing procedure works.

With respect to the indexing procedure presented in Table 2.1, every step of

the WSC has been discussed in this chapter. It should be pointed out that the

procedures used for choosing test and reference cells in SSC and ISC are same as

those used for WSC.

Note that detection is not handled in this work because it is assumed that the

appropriate detection algorithms to be used are known once the mapping and

indexing are handled correctly.

Up to this point, only the SUD/FFES has been presented. Rules are presented

in the next chapter to enable SUD/FBES.

2.7. APPLICATION OF IPUS TO THE RADAR

DETECTION PROBLEM

Various aspects of the radar detection problem were illustrated in Figure 2.5.

The IPUS architecture decides whether or not a weak signal situation exists by

classifying the data to be processed into either SSC, ISC, or WSC. As explained

in Table 2.1, the SSC uses the LRT, the ISC uses the GLRT, and the WSC uses

the LOD.

Thus far, the mapping and indexing stages for the FFES, shown in Figure 2.4,

have been detailed. In this chapter, rules are developed which allow IPUS to

supervise (1) the convergence process in the mapping procedure, and (2) the

interpretation of the indexing procedure.

Section 2.7.1 summarizes IPUS concepts. In Sections 2.7.2 and 2.7.4, rules

are developed for the mapping and indexing procedures, respectively, along with

examples which illustrate application of the rules.

2.7.1. SUMMARY OF IPUS CONCEPTS

The following items summarize the concepts upon which IPUS is based:

– Signal processing algorithm (SPA): one or more SPAs and the

corresponding control parameters need to be defined. The set of values

assigned to the control parameters at a given instance is referred to as an

SPA instance.

– Discrepancy detection: when the signal being monitored by the SPA

does not satisfy the requirements of the SPA instance, the output of the

SPA is distorted. Recognition of the fact that SPA instance is not

properly chosen for the input data stream is referred to as discrepancy

detection.

– Diagnosis procedure: once a discrepancy has been detected, a diagnosis

procedure is used to identify the source of the distortion which may have

led to the discrepancy.
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– Reprocessing procedure: knowing the source of distortion, either the

parameters of the same SPA can be readjusted or a different SPA can be

chosen to reprocess the data.

In the following sections, (1) SPAs are identified along with their sets of

control parameters, (2) rules are developed which enable the detection of

discrepancies and identification of sources of distortion, and (3) examples are

presented to illustrate the result of reprocessing.

2.7.2. ROLE OF IPUS IN THEMAPPING PROCEDURE

In this section, control by IPUS of the convergence process in the mapping

procedure is described.

2.7.2.1. IPUS Stages Included in the Mapping Procedure

2.7.2.1.1. SPA and SPA Instance

It has been shown in the block diagram of Figure 2.28 that part of the mapping

procedure consists of a set of four blocks linked by feed-forward and feed-back

loops. These blocks are: thresholding or quantization, correction-quantized,

correction-corrected, and assessment. Recall that these blocks are used to find the

best threshold to separate between BN and CL patches.

The parameters associated with the first three blocks are BNQP, NCQ, and

NCC, respectively. The assessment block defines whether or not reprocessing

through the feedback loops is needed and, if so, which control parameters should

be changed and what values should be assigned to the control parameters. The

assessment stage computes BNCQP and BNCCP and compares them to BNQP.

In this application IPUS treats all four blocks as a single SPA. The SPA

control parameters are BNQP, NCQ, and NCC. Any one set of the control

parameter values is referred to as an SPA instance.

2.7.2.1.2. Observations on Setting of the Control Parameters

In this section, different effects of the control parameters are discussed. Note first

that the intervals for the allowable values of the control parameters are given in

Section 2.5 and are equal to

0% # BNQP # 100%

5 # NCQ # 8

1 # NCC # 4:

ð2:44Þ

Recall the BNQP represents the fraction of BN cells in the quantized volume. It is

used to determine the threshold q for which all cells with data amplitudes below q

are identified as BN and above q are identified as CL in the quantized volume.
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Also, NCQ is the minimum number of neighboring cells in the quantized

volume required to be identified as CL cells, for a test cell to be declared as a CL

cell in the first-corrected volume. Finally, NCC is the minimum number of

neighboring cells in the first-corrected volume required to be identified as CL

cells, for a test cell to be declared as a CL cell in the second-corrected volume.

BNCQP and BNCCP are computed parameters which represent the BN

percentages in the first and second-corrected volumes, respectively.

Define BNQPt to be the true value for the fraction of BN cells in the generated

scene.

As explained in Section 2.5.3, the mapping processor begins by setting a

threshold that results in a specified fraction of BN cells equal to BNQP.

The mapping processor iterates until the latest scene is consistent with the last

specified value of BNQP. When the iteration process ends, it is assumed that

BNQP ø BNQPt ð2:45Þ
2.7.2.1.2.1. Observations on the Setting of BNQP

1. Setting BNQP much smaller than BNQPt: many cells have data

amplitudes larger than the threshold resulting in a large number of BN

cells being declared as CL cells in the quantized volume.

2. Setting BNQP much larger than BNQPt: CL patch cells may be

misclassified due to the fact that some CL patches have data amplitude

values below the threshold. This results in many CL cells, being

identified as BN cells in the quantized volume.

Conclusion: because (1) the objective of the mapping procedure is to separate

between BN and CL patches, (2) the average power of the BN is the lowest

among all regions, and (3) the threshold is set adaptively by the assessment stage,

the threshold is always set very low at the beginning so that BN information is

gained as the process iterates. The threshold, controlled by the assessment stage,

is raised adaptively until BNQP ø BNQPt.

2.7.2.1.2.2. Observations on the Setting of NCQ. Recall that NCQ controls which
test cells in the first-corrected volume are to be declared as CL. NCQ is said to be
large when its value approaches eight and small when its value approaches five.
The following observations relative to NCQ take into consideration that in the
initial setting the BNQP is low and then is increased until BNQP approximates
the true value BNQPt. Depending on the setting of BNQP with respect to BNQPt,
four cases exist:

1. BNQP much smaller than BNQPt:

(a) Setting NCQ small: in this case, because many CL declared cells

exist in the quantized volume due to the low threshold, small NCQ

results in the building of a multitude of CL patches which are

likely to be so close that they form a single big CL patch in the

first-corrected volume.
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(b) Setting NCQ high: here, even though many CL declared cells

exist in the quantized volume due to the low threshold, high NCQ

results in the building of fewer CL patches than when NCQ is

small. This is due to the fact that there must be at least NCQ CL

cells neighboring the test cell in the quantized volume, where

NCQ is large, in order for the test cell to be declared as a CL cell

in the first-corrected volume. In this case, corrections are made

and some of the cells previously declared as CL cells in the

quantized volume are now declared as BN cells in the first-

corrected volume.

2. BNQP close to BNQPt: when BNQP is close to its true value, the

threshold is high enough to separate between the BN region and CL

patches. With either small or large values for NCQ, the CL regions are

well approximated. In this case, the choice of NCQ affects the

classification of the inner cells of the CL regions. This is because, even

though the data amplitudes of CL cells are higher than those of the BN

cells, in general, some CL cells with data amplitudes lower than those

of the highest BN data values exist and may be lower than the

threshold.

(a) Setting NCQ small: all test cells in the quantized volume which

have at least NCQ neighboring cells are declared as CL cells in the

first-corrected volume. Small NCQ helps to correctly classify the

inner CL cells. However, note that small NCQ also results in

misclassifying BN cells that are surrounded by at least NCQ

declared CL cells.

(b) Setting NCQ high: every test cell must have a large number of

neighboring CL declared cells in the quantized volume for it to be

declared as a CL cell in the first-corrected volume. This causes the

procedure to misclassify some of the inner CL cells when too

many of the neighboring cells have their data amplitudes falling

below the threshold. In this case, the identified CL regions are not

homogeneous and contain BN declared “holes.”

Conclusion: The value of NCQ should be chosen as large as possible at the

beginning of the iterative process when the threshold is set very low, to correctly

reclassify the maximum number of BN cells misidentified at the thresholding/

quantization stage. When the threshold reaches a level, close to its convergence

value, NCQ should then be chosen as small to avoid nonhomogeneous CL

regions.

2.7.2.2. Observations on the Setting of NCC

Because NCQ truncates the boundaries of the CL regions, NCC is used to

augment the edges of the CL declared regions. NCC is said to be large when its

value approaches four and small when its value approaches one. In the following
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discussion it is assumed that the conclusions previously reached on the settings of

BNQP and NCQ are taken into consideration so that BNQP is initially set low to

be increased until it approaches its true value BNQPt, while NCQ is initially set to

a large value, to be decreased as BNQP approaches its true value. Four cases are

then identified:

1. BNQP much smaller then BNQPt and NCQ large: because NCQ is

set large, many CL edge cells are misclassified and associated with the

BN region.

(a) Setting NCC small: when NCC is set small, many of the edge cells

are correctly reclassified from BN cells to CL cells in the second-

corrected volume.

(b) Setting NCC large: in this case, only a few misclassified CL edge

cells are correctly reclassified in the second-corrected volume.

2. BNQP close to BNQPt and NCQ small: because NCQ is small, only

a few CL edge cells are associated with the BN.

(a) Setting NCC small: small NCC causes not only CL edge cells to be

recovered but also BN cells to be misclassified in the second-

corrected volume.

(b) Setting NCC large: in this case, most of the CL edge cells are

correctly classified in the second-corrected volume and only few

BN cells are misclassified as CL cells.

Conclusion: NCC results in the recovery of CL edge cells and the mis-

classification of some BN cells close to the CL edge cells. In order to maximize

recovery of the CL edge cells and minimize the misclassification of BN cells,

NCC should be set small when NCQ is set large in order to recover a lot of CL

edge cells that were lost in the first correction. On the other hand, NCC should be

set large when NCQ is set small because, in this case, only a few CL edge cells

need to be recovered.

2.7.2.2.1. Discrepancy Detection

In this section, rules are developed to enable the detection of discrepancies. The

assessment stage of the mapping procedure consists of comparing at each step of

the iteration the value for BNCCP with the corresponding BNQP. When BNCCP

is not sufficiently close to BNQP, the assessment stage is said to fail. This initiates

the discrepancy detection stage. Diagnosis identifies the distortion that may

have caused the discrepancy and adjusts one or more of the mapping control

parameters for reprocessing of the data.

The strategy behind the iterative process of mapping procedure employs

two stages. In the first stage, referred to as the threshold approximation stage,

BNQP is varied iteratively by the mapping processor until, as explained later, it

is expected that BNQP is within 10% of its true value BNQPt. The second stage,

referred to as threshold fine-tuning stage, consists of iteratively varying BNQP
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until it converges to within 1% of the last computed value for BNCCP. The two

stages are now discussed in detail.

(a) Threshold approximation stage: during this stage, two sets of SPA

instances are used on the same data of the surveillance volume. For sets BNQP

and NCC are the same whereas NCQ is equal to seven for one set and eight

for other.

Recall that NCQ is used to recognize the CL patches in the surveillance

volume. First consider the situation where BNQP approximately equals BNQPt.

Here the threshold is such that it is possible to do a good job of separating

between the BN region and CL patches. Steps are then taken to correct

misclassified BN and CL data. Note that misclassifications are due to large BN

data exceeding the threshold and small CL data falling below the threshold. At

this point, setting NCQ to seven and eight, respectively, results in very close

values for BNCQP and BNCCP due to the facts that (1) the two masks are

very similar (NCQ ¼ 8 requires that eight neighboring cells be declared CL in the

quantized volume for a test cell in the first-corrected volume to be declared CL

whereas NCQ ¼ 7 requires that seven neighboring cells be declared CL in the

quantized volume for a test cell in the first-corrected volume to be declared CL)

and (2) only a few cells are misclassified in the quantized volume.

Now consider that BNQP is significantly smaller than BNQPt. In this case

many BN cells are misclassified after quantization. Even though masks with

NCQ equal to seven and eight are similar, they result in BNCQP and BNCCP

being considerably different due to the fact that the large number of misclassified

BN cells are so many that they tend to group together. Consequently, changing

NCQ from eight to seven simply results in additional BN cells grouping together

to form additional CL regions and more edges. Because of this

½BNCQP	NCQ¼7 , ½BNCQP	NCQ¼8

ð2:46Þ
and

½BNCCP	NCQ¼7 , ½BNCCP	NCQ¼8

Because the second-corrected volume represents the scene where CL patches

and their edges are assumed to be properly recovered had the threshold BNQP

been chosen properly, BNCCP tries to converge to BNQPt. Thus, it is logical

to begin each iteration by assigning to BNQP the latest computed value of

[BNCCP]NCQ¼8. The very first value assigned to BNQP is simply a guess. This

value should be such that the threshold is low. In all of our examples, the first

value of BNQP is chosen equal to 10%.

Using different scenes with different values for BNQPt, it has been deter-

mined near convergence that whenever the difference between BNCCPlNCQ¼7

and [BNCCP]NCQ¼8 is within 10%, then BNQP is likely to be within 10% of

its true value. This is confirmed in Figure 2.92 where plots of the quantities
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[BNCCP]NCQ ¼ 8 2 [BNCCP]NCQ ¼ 7 vs. BNQP 2 BNQPt are shown for

different values of BNQPt. Note that

(i) for different values of BNQPt, all plots are such that near convergence

the difference [BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7 approaches to 0

when BNQP 2 BNQPt also approaches 0,

(ii) for different values of BNQPt, when BNQP 2 BNQPt . 210%, the

difference [BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7 , 10%.

As a result of the above, the threshold approximation stage iterates until it is

satisfied that

½BNCCP	NCQ¼8 2 ½BNCCP	NCQ¼7 , 10% ð2:47Þ

In summary, as shown in the flow chart of Figure 2.93, a guess for the initial value

of BNQP is followed by the execution of the mapping procedure using two

different SPA instances. The outputs of the two SPA instances are compared by

means of the computed values of BNCCP. If [BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7

is more than 10%, a discrepancy is detected and it is concluded that the value

of BNQP differs from its true value by more than 10%. BNQP is then increased

to the latest computed value of [BNCQP]NCQ¼8. BNQP is varied from one

iteration to the next while NCC is kept equal to one. This choice for NCC agrees

with the observations made previously where it was concluded that NCC should

be set small when NCQ is set large. In this case NCQ has a large value equal to

either seven or eight.

The discrepancies that may arise in the threshold approximation stage are due

to the fact that two instances of the same SPA result in different interpretations
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different values of BNQPt.
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when applied to the same data. As defined in Section 2.3.2.2, such a discrepancy

is typified as a fault.

Two fault-type discrepancies are readily identified in the threshold approx-

imation stage. These are as follows:

1. [BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7 . 10%: as discussed above, the

goal of the threshold approximation stage is to obtain a threshold

BNQP that is within 10% of its true value. As shown in Figure 2.92, this

is likely only when [BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7 , 10%. When

the difference between the computed thresholds [BNCCP]NCQ¼8 2

[BNCCP]NCQ¼7 is more than 10%, a fault type of discrepancy is detected

during the assessment stage. The diagnosis process identifies the fact

that BNQP 2 BNQPt , (2 )10% as the source for the distortion causing

the discrepancy. The remedy, in this case, is to increase the value of

BNQP during the reprocessing stage to the latest computed value for

[BNCCP]NCQ¼8.

2. Initial BNQP set too low: in some cases, when the initial guess for BNQP

is too small, the number of BN cells with data exceeding the threshold

is so large that when corrections are made, the second-corrected volume

results in many CL declared patches or, in the worst case, a single

big CL patch. This results in the values of either [BNCCP]NCQ¼8 or

1 - Quantization

2 - Correction-Quantized

3 - Correction-Corrected

BNCCPlNCQ=8

Assessment

Initial guess for BNQP

Satisfactory BNQP

Update BNQP

BNCCPlNCQ=7

NCQ = 8

NCC = 1

1 - Quantization

2 - Correction-Quantized

3 - Correction-Corrected

NCQ = 7

NCC = 1

FIGURE 2.93 Threshold approximation stage, discrepancy reduction.
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[BNCCP]NCQ¼7 being even smaller than BNQP. In this case, it is

possible to obtain a value for the difference [BNCCP]NCQ¼82
[BNCCP]NCQ¼7 that is smaller than 10%. The IPUS control must be

suspicious of such a case and declare BNQP-set-too-low as the source

for the distortion causing the discrepancy. The remedy, in this case, is to

increase the initial value of BNQP during the reprocessing stage. In our

examples, we choose to increase BNQP by 10% every time an initial-

BNQP-set-too-low fault is obtained.

Table 2.39 summarizes the discrepancies that may occur during the threshold

approximation stage.

(b) Threshold fine-tuning stage: at the end of the threshold approximation

stage BNQP is likely to be within 10% of its true value BNQPt. During the

threshold fine-tuning stage, BNQP is varied until BNCCP is within 1% of the

corresponding value of BNQP.

During the threshold fine-tuning stage, NCQ is lowered to avoid holes in

the CL patches caused by misclassified CL cells whose data values are lower

than the threshold. For the same reason BNQP is assigned the latest value of

[BNCCP]NCQ¼7 rather than the latest value of [BNCCP]NCQ¼8. In addition, the

value of NCC is raised to avoid misclassification of BN cells close to the CL

edges. These choices for NCQ and NCC agree with observations mentioned in

Section 2.7.2.1.2.

The following observations on BNQP, NCQ, and NCC are necessary to

understand how these parameters should be automatically set in order for BNCCP

to converge to within 1% of BNQP.

1. When BNQP is increased while NCQ and NCC are kept constant,

the number of BN cells in the quantized volume is increased and,

therefore, BNCQP and BNCCP are likely to increase.

2. When NCQ is increased while BNQP and NCC are kept constant, the

requirement on a test cell to be declared as a CL cell in the first-

corrected volume becomes more stringent and, therefore, the number

TABLE 2.39
Fault-Type Discrepancies in the Threshold Approximation Stage

Discrepancy
(Fault Type)

Diagnosis
(Source of Distortion) Reprocessing

[BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7

is more than 10%

BNQP 2 BNQPt . (2) 10% Assign to BNQP the latest

value of [BNCCP]NCQ¼8

[BNCCP]NCQ¼8 2 [BNCCP]NCQ¼7

is less than 10% in the early

stages of iteration

Initial value of BNQP is

too low

Increase BNQP by 10%

from its initial value
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of CL cells in both corrected volumes are likely to decrease. This tends

to increase the number of BN cells causing BNCQP and BNCCP to

increase.

3. When NCC is increased while BNQP and NCQ are kept constant, the

requirement on a test cell to be declared as a CL cell in the second-

corrected volume becomes more stringent and, therefore, the number of

CL cells in this volume is decreased. Thus, the number of BN cells in the

second-corrected volume increases and, consequently, BNCCP

increases.

Using the above observations, the following strategy is used by the

assessment stage to control the threshold fine-tuning stage,

1. Because BNQP is within 10% of its true value at the beginning of the

threshold fine-tuning stage, the threshold is likely to be relatively high.

Thus, NCQ should be set to its smallest value of five while, as needed,

NCC should be incremented iteratively from its minimum value of one

up to its maximum value of four.

2. When the inequality in Equation 2.47 is not satisfied, BNQP should be

increased in small steps. Otherwise, the iterative process diverges

when the same rule from the threshold approximation stage is used.

The approach taken in this work during the threshold fine-tuning stage

consists of assigning a value to BNQP that is half way between its

latest value and the latest value of BNCCP, i.e.,

BNQP ¼ ½BNQP	latest þ ½BNCCP	latest
2

ð2:48Þ

3. The condition set forward for ending the threshold fine-tuning stage

is given by

lBNQP2 BNCCPl , 1% ð2:49Þ
Two cases are possible when the inequality in Equation 2.49 is not

satisfied: either BNQP , BNCCP or BNQP . BNCCP.

4. When the inequality in Equation 2.49 is not satisfied and BNQP ,
BNCCP, the control parameters should be varied by the diagnosis

procedure such that BNCCP is decreased. In this case, NCQ should be

made smaller. If none of the allowable values for NCQ result in the

inequality in Equation 2.49 being satisfied, then BNQP is varied

according to Equation 2.48.

5. When the inequality in Equation 2.49 is not satisfied and BNQP .
BNCCP, the control parameters should be varied by the diagnosis

procedure such that BNCCP is increased. In this case, NCC should be

made larger. If none of the allowable values for NCC result in the

inequality in Equation 2.49 being satisfied, then BNQP is varied

according to Equation 2.48.
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During the threshold approximation stage note that only BNQP was varied.

On the other hand, in the threshold fine-tuning stage, any of the parameters

BNQP, NCQ, and NCC may be varied.

In summary, as shown in the flow chart of Figure 2.94, the threshold fine-

tuning stage begins by assigning to BNQP the latest value of BNCCPlNCQ¼7.

Once quantization, first correction, and second correction stages are completed

with preselected values for NCQ and NCC, the assessment stage diagnoses the

results according to the strategy discussed above, and, depending on the outcome,

decides either that reprocessing is necessary with adjusted values for any of

the BNQP, NCQ, and NCC parameters, or the threshold fine-tuning stage is

completed.

At the end of each iteration of the threshold fine-tuning stage it is expected

that the computed value of BNCCP will be within 1% of BNQP. When the

inequality in Equation 2.49 is not satisfied, a conflict type of discrepancy is

detected based on the inconsistency in the expectation that BNCCP will be within

1% of BNQP. Table 2.40 summarizes the discrepancies that may occur during the

threshold fine-tuning stage.

It has been determined through examples that the initial setting of NCQ ¼ 5

is adequate for the threshold fine-tuning stage to converge (i.e., in the examples

studied it was never necessary to decrease NCQ).

In the following section, examples are presented which illustrate use of

the rules developed for the threshold approximation and threshold fine-tuning

stages.

Update BNQP
BNQP = [BNCCP]NCQ=7

Quantization
Change NCQ

Change NCC

Decision

NCQ
Correction-Quantized

Assessment

Satisfactory result

NCC
Correction-Corrected

FIGURE 2.94 Threshold fine-tuning stage, discrepancy reduction.
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2.7.3. EXAMPLES OF MAPPING

In this section, tables describing previous results from the mapping procedure of

examples one, two and three in Section 2.5 are modified to demonstrate operation

of the rules developed in this chapter for the threshold approximation and

threshold fine-tuning stages. In the following examples, define

D1 ¼ ½BNCCP	NCQ¼8 2 ½BNCCP	NCQ¼7 ð2:50Þ
and

D2 ¼ lBNQP2 BNCCPl ð2:51Þ

2.7.3.1. Example 1

First, consider the example presented in Section 2.5.4.2.1. Table 2.41 is an

expanded version of Table 2.3 in order to include information about the

procedures for the threshold approximation and threshold fine-tuning stages.

In the first step of the threshold fine-tuning stage note that D2 . 1% and

BNCCP , BNQP. Using the decision rules in Table 2.40, NCC is increased in the

next steps.

2.7.3.2. Example 2

Consider now the example presented in Section 2.5.4.2.2. Tables 2.42 is an

expanded version of Table 2.3 in order to include information about the

procedures for the threshold approximation and threshold fine-tuning stages. In

the first step of the threshold fine-tuning stage note that D2 . 1% and

BNCCP . BNQP. Using the decision rules in Table 2.40, BNQP is increased

using the half way rule of Equation 2.48.

2.7.3.3. Example 3

Consider now the example presented in Section 2.5.4.2.3. Table 2.43 is an

expanded version of Table 2.9 in order to include information about the

procedures for the threshold approximation and threshold fine-tuning stages.

TABLE 2.40
Fault-Type Discrepancies in the Threshold Fine-Tuning Stages

Discrepancy
(Conflict Type)

Diagnosis
(Source of Distortion) Reprocessing

lBNQP 2 BNCCPl . 1% and

BNQP , BNCCP

Either NCQ or BNQP

are not well adjusted

Decrease NCQ, otherwise

update BNQP

lBNQP 2 BNCCPl . 1% and

BNQP . BNCCP

Either NCC or BNQP

are not well adjusted

Increase NCC, otherwise

update BNQP
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As was the case in example one, note that D2 . 1% in the first step of the

threshold fine-tuning stage and BNCCP , BNQP. Once again, using the decision

rules in Table 2.40, NCC is increased.

2.7.4. ROLE OF IPUS IN THE INDEXING PROCEDURE

In this section, control of the indexing procedure by IPUS is described. Recall

that the indexing procedure consists of the assessment, CL subpatch investigation

and PDF approximation stages. Control by IPUS of these different stages is

discussed next.

TABLE 2.41
Setting of BNQP in the Threshold Approximation and Threshold

Fine-Tuning Stages (Example 1)

BNQP (%) Parameter Values Di

Threshold Approximation Stage

10.00 (guess) NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

NCC ¼ 1 NCC ¼ 1

BNCQP ¼ 51.56 BNCQP ¼ 25.78

BNCCP ¼ 22.00 BNCCP ¼ 7.09

22.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 68.28 BNCQP ¼ 54.06

BNCCP ¼ 50.39 BNCCP ¼ 25.74

50.39 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 75.56 BNCQP ¼ 70.93

BNCCP ¼ 68.46 BNCCP ¼ 63.37

Threshold Fine-Tuning Stage

63.37 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 1

BNCCP BNCQP ¼ 67.35

BNCCP ¼ 59.72 , BNQP

63.37 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 2

BNCCP BNCQP ¼ 67.35

BNCCP ¼ 62.26 , BNQP

63.37 NCQ ¼ 5 D2 , 1%

Same as latest NCC ¼ 3

BNQP BNCQP ¼ 67.35

BNCCP ¼ 64.17
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2.7.4.1. IPUS Stages Included in the Assessment Stage

As explained in Section 2.7.2, the assessment stage consists of (1) assigning

a unique number to the BN region and each CL patch (2) computing the CNR

for each CL patch, and (3) classifying CL patches as either SSC, WSC, or ISC

regions. Due to the straightforward implementation of these steps, any control

by IPUS of the assessment stage is not discussed further.

2.7.4.2. IPUS Stages Included in the CL Subpatch Investigation Stage

The approach used to extract a CL subpatch from a set of contiguous CL subpatches

is the same as that used in themapping procedure to extract theBN fromCLpatches.

Therefore, control by IPUS is needed in the CL subpatch investigation stage.

TABLE 2.42
Setting BNQP in the Threshold Approximation and Threshold

Fine-Tuning Stages (Example 2)

BNQP (%) Parameter Values Di

Threshold Approximation Stage

10.00 (guess) NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

NCC ¼ 1 NCC ¼ 1

BNCQP ¼ 56.35 BNCQP ¼ 23.94

BNCCP ¼ 20.59 BNCCP ¼ 6.33

20.59 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 77.43 BNCQP ¼ 53.30

BNCCP ¼ 48.04 BNCCP ¼ 16.94

48.04 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 91.83 BNCQP ¼ 84.11

BNCCP ¼ 81.70 BNCCP ¼ 72.30

Threshold Fine-Tuning Stage

72.30 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 1

BNCCP BNCQP ¼ 82.17

BNCCP ¼ 79.26 . BNQP

75.78 NCQ ¼ 5 D2 , 1%

Half way NCC ¼ 1

BNCQP ¼ 83.50

BNCCP ¼ 75.31
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2.7.4.2.1. SPA and SPA Instance

Recall that the CL subpatch investigation stage attempts to extract first, if it exists,

the CL subpatch having the lowest average power. This part of the CL subpatch

investigation stage consists of a set of four blocks linked by feedforward and

feedback loops. These blocks are: thresholding or quantization, correction–

quantized, correction–corrected, and assessment.

TABLE 2.43
Setting of BNQP in the Threshold Approximation and Threshold

Fine-Tuning Stages (Example 3)

BNQP (%) Parameter Values Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7

(guess) NCC ¼ 1 NCC ¼ 1

BNCQP ¼ 56.17 BNCQP ¼ 24.24 D1 . 10%

BNCCP ¼ 20.04 BNCCP ¼ 6.09

20.04 NCQ ¼ 8 NCQ ¼ 7

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 77.98 BNCQP ¼ 51.22 D1 . 10%

BNCCP ¼ 43.78 BNCCP ¼ 14.83

43.78 NCQ ¼ 8 NCQ ¼ 7

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 90.78 BNCQP ¼ 84.78 D1 . 10%

BNCCP ¼ 82.65 BNCCP ¼ 66.09

82.65 NCQ ¼ 8 NCQ ¼ 7

Latest NCC ¼ 1 NCC ¼ 1

BNCCP BNCQP ¼ 93.43 BNCQP ¼ 91.17 D1 , 10%

BNCCP ¼ 89.39 BNCCP ¼ 84.70

Threshold Fine-Tuning Stage

84.7 NCQ ¼ 5

Latest NCC ¼ 1

BNCCP BNCQP ¼ 87.61 D2 . 1%

BNCCP ¼ 82.00 , BNQP

84.70 NCQ ¼ 5

Latest NCC ¼ 2

BNCCP BNCQP ¼ 87.61 D2 . 1%

BNCCP ¼ 83.65 , BNQP

84.70 NCQ ¼ 5

Same as latest NCC ¼ 3 D2 , 1%

BNQP BNCQP ¼ 87.61

BNCCP ¼ 85.46
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The parameters associated with first three blocks are PLQP, NCQ, and NCC,

respectively. The assessment stage computes PLCQP and PLCCP and compares

them to PLQP. IPUS treats all four blocks as a single SPA. The control parameters

for the SPA are PLQP, NCQ, and NCC. Any single set of the control parameter

values is referred to as an SPA instance.

2.7.4.2.2. Observations on the Setting of the Control Parameters

The observations previously made for the mapping procedure parameters

(i.e., BNQP, NCQ, and NCC) also hold for the CL subpatch investigation

parameters (i.e., PLQP, NCQ, and NCC).

2.7.4.2.3. Resolution of Discrepancies

As was the case for the mapping procedure, threshold approximation and

threshold fine-tuning stages are used in the CL subpatch investigation stage to

enable resolution of discrepancies. Because the procedure for extracting a CL

subpatch is the same as that used for separating BN and CL patches, discrepancy

detection rules for both procedures are the same. The threshold approximation

stage block diagram of Figure 2.93 becomes that of Figure 2.95 where BNQP

and BNCCP have been replaced by PLQP and PLCCP, respectively. Let PLQPt
represent the true value for PLQP, the threshold approximation stage iterates until

it is satisfied that PLQP is within 10% of its true value PLQPt. This is satisfied

when

½PLCCP	NCQ¼8 2 ½PLCCP	NCQ¼7 , 10% ð2:52Þ

1- Quantization

2-Correction-Quantized

3-Correction-Corrected

[PLCCP]NCQ=8 [PLCCP]NCQ=7

Assessment

Initial guess for PLQP

Satisfactory PLQP

Update PLQP

NCQ = 8

NCC = 1

1-Quantization

2-Correction-Quantized

3-Correction-Corrected

NCQ = 7

NCC = 1

FIGURE 2.95 Threshold approximation stage, resolution of discrepancies.
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The threshold fine-tuning stage converges when

lPLQP2 PLCCPl , 1% ð2:53Þ
Figure 2.96 shows the block diagram of the threshold fine-tuning stage.

In addition to the discrepancy rules described in Section 2.7.2.1.3 for the

threshold approximation and fine-tuning stages and summarized in Tables 2.39

and 2.40, additional rules are introduced next as a result of somemore observations

on the behavior of PLQP for the case where a CL patch is homogeneous and

does not contain subpatches. These are,

1. It is noted that during the threshold approximation stage it is

possible that the inequality in Equation 2.52 will be satisfied with

[PLCCP]NCQ¼7 or 8 ¼ 100%. This means that the subpatch with the

smallest average power occupies 100% of the CL patch area.

Consequently, the CL patch is homogeneous.

2. When the inequality in Equation 2.52 is met with [PLCCP]NCQ¼7¼
100%, there is no need for the threshold fine-tuning stage. This is

because the initial value of PLQP in the threshold fine-tuning stage

would be equal to 100% and any more processing would also result in

PLCCP ¼ 100% regardless of the values chosen for NCQ and NCC.

3. If the threshold fine-tuning stage results in PLCCP ¼ 100% at any

iteration, the threshold fine-tuning stage should end because, as in

observation 2, any more processing will end with PLCCP ¼ 100%

regardless of the values chosen for NCQ and NCC. This, in turn, will

make PLQP equal to 100%.

Update PLQP
PLQP = [PLCCP]NCQ=7

Quantization
Change NCQ

Change NCC

Decision

NCQ
Correction-Quantized

Assessment

Satisfactory result

NCC
Correction-Corrected

FIGURE 2.96 Threshold fine-tuning stage, resolution of discrepancies.
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Tables 2.44 and 2.45 summarize the discrepancies that may occur during the

threshold approximation and fine-tuning stages for the CL subpatch investigation.

Examples are next presented to illustrate the control by IPUS of the CL

subpatch investigation.

2.7.4.3. Examples

In this section, tables describing the CL subpatch investigation of examples

one, two and three in Section 2.6 are modified to include the rules developed

in this chapter for the threshold approximation and threshold fine-tuning stages.

In the following examples, define D1 ¼ ½PLCCP	NCQ¼8 2 ½PLCCP	NCQ¼7 and

D2 ¼ lPLQP2 PLCCPl:

2.7.4.3.1. Example 1

First consider the example of Section 2.6.5.1. Tables 2.46–2.48 are expanded

versions of Tables 2.17–2.19 to include information about the procedures for

TABLE 2.44
Conflict-Type Discrepancies in the Threshold Approximation Stage

Discrepancy (Conflict Type)
Diagnosis

(Source of Distortion) Reprocessing

[PLCCP]NCQ¼8 2 [PLCCP]NCQ¼7

is more than 10%

PLQP 2 PLQPt . 210% Assign to PLQP the latest

value of [PLCCP]NCQ¼8

[PLCCP]NCQ¼8 2 [PLCCP]NCQ¼7

is less than 10% in the early

stages of iteration

Initial value of PLQP is too

low

Increase PLQP by 10% from

its initial value

[PLCCP]NCQ¼8 2 [PLCCP]NCQ¼7

is less than 10% and

PLCCPlNCQ¼7or8 ¼ 100%

CL patch homogeneous No threshold fine-tuning

is needed

TABLE 2.45
Conflict-Type Discrepancies in the Threshold Fine-Tuning Stage

Discrepancy
(Conflict Type)

Diagnosis
(Source of Distortion) Reprocessing

lPLQP 2 PLCCPl . 1% and

PLQP , PLCCP

Either NCQ or PLQP are not well

adjusted

Decrease NCQ, otherwise

update PLQP

lPLQP 2 PLCCPl . 1% and

PLQP . PLCCP

Either NCC or PLQP are not

well adjusted

Increase NCC, otherwise

update PLQP

lPLQP 2 PLCCPl . 1% and

PLCCP ¼ 100%

CL patch homogeneous Stop threshold fine-tuning
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the threshold approximation and threshold fine-tuning stages. Note in Table 2.46

no threshold fine-tuning is needed for CL patch 1. This is due to the fact that

CL patch 1 is homogeneous and does not contain subpatches. Also in Table 2.48

note that the threshold fine-tuning stage needs not be carried out as

PLCCP ¼ 100% in the last row before of the threshold approximation stage.

However, when the fine-tuning stage is carried out, PLQP converges to 99.33%.

2.7.4.3.2. Example 2

Consider the example of Section 2.6.5.2. Tables 2.49–2.51 are expanded

versions of Tables 2.52–2.54 to include information about the procedures for

the threshold approximation and threshold fine-tuning stages. In Table 2.50 note

that the threshold fine-tuning steps, presented in the shaded rows, need not be

carried out.

2.7.4.3.3. Example 3

Finally, consider the example of Section 2.6.5.3. Tables 2.52–2.54 are expanded

versions of Tables 2.33–2.35 to include information about the procedures

for the threshold approximation and threshold fine-tuning stages. Note from

Tables 2.26–2.28 that no threshold fine-tuning is needed for CL patches one, two,

and three. Also, note that that the last four shaded rows of Table 2.54 need not be

carried out.

TABLE 2.46
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 1 (Example 1)

CL Patch 1
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 70.59 PLCQP ¼ 23.53

PLCCP ¼ 20.59 PLCCP ¼ 2.94

20.59 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 94.12 PLCQP ¼ 79.41

PLCCP ¼ 82.35 PLCCP ¼ 38.24

82.35 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 100.0

PLCCP ¼ 100.0 PLCCP ¼ 100.0
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2.7.4.4. IPUS Stages Included in the PDF Approximation Stage

Recall that the objective of the PDF approximation stage is to approximate

the PDF underlying a particular CL patch region. A six-step strategy for PDF

approximation was presented in Section 2.6.4.5. The first five steps consisted of

(1) selecting a total of NT test cells that are evenly spread throughout the CL

patch, (2) choosing for each test cell the closest NR ¼ 100 reference cells,

as described in Section 2.6.4.1, (3) Using the Ozturk algorithm to determine

TABLE 2.47
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 2 (Example 1)

CL Patch 2
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 39.38 PLCQP ¼ 9.37

PLCCP ¼ 7.50 PLCCP ¼ 0.00

20.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(new guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 59.38 PLCQP ¼ 38.12

PLCCP ¼ 43.12 PLCCP ¼ 8.75

43.12 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 61.88 PLCQP ¼ 55.00

PLCCP ¼ 51.25 PLCCP ¼ 49.38

Threshold Fine-Tuning Stage

49.38 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 1

PLCCP PLCQP ¼ 50.62

PLCCP ¼ 46.25

49.38 NCQ ¼ 5 D2 . 1%

Same as latest NCC ¼ 2

PLQP PLCQP ¼ 50.62

PLCCP ¼ 46.88

49.38 NCQ ¼ 5 D2 , 1%

Same as latest NCC ¼ 3

PLQP PLCQP ¼ 50.62

PLCCP ¼ 48.75
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the distance between the locus end point of the data linked vectors and its

projection onto the Weibull, Lognormal, and K-distributed trajectories, (4)

Discarding those PDFs for which the distances in step 3 exceed the corresponding

half length of the minor axis obtained from Table 2.15, and (5) Excising any

TABLE 2.48
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 3 (Example 1)

CL Patch 3
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 50.25 PLCQP ¼ 14.61

PLCCP ¼ 12.19 PLCCP ¼ 0.33

12.19 NCQ ¼ 8 NCQ ¼ 7

Latest NCC ¼ 1 NCC ¼ 1 D1 . 10%

PLCCP PLCQP ¼ 58.51 PLCQP ¼ 20.28

PLCCP ¼ 16.61 PLCCP ¼ 0.83

16.61 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 73.62 PLCQP ¼ 33.97

PLCCP ¼ 28.80 PLCCP ¼ 2.42

28.80 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 92.57 PLCQP ¼ 70.03

PLCCP ¼ 66.19 PLCCP ¼ 22.79

66.19 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 99.83

PLCCP ¼ 100.0 PLCCP ¼ 98.66

Threshold Fine-Tuning Stage

98.66 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 1

PLCCP PLCQP ¼ 100.0

PLCCP ¼ 100.0

99.33 NCQ ¼ 5

Half way NCC ¼ 1 D2 , 1%

Rule PLCQP ¼ 100.0

PLCCP ¼ 100.0
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outliers that may exist from the data and proceeding to step 3 when all possible

PDFs are discarded in step 4. These steps were illustrated through examples in

Section 2.6.5. Step 6 consists of the use of IPUS to determine one or more PDFs

to approximate the data in a particular CL patch. Thus, IPUS is needed to

complete the PDF approximation stage of the indexing procedure.

In order to be able to identify the SPA, SPA instance, and discrepancies

associated with the PDF approximation stage, step 6 of the PDF approximation

strategy has to be formulated.

2.7.4.4.1. Step 6 of the PDF Approximation Strategy

When the five first steps of the PDF approximation strategy are completed, the

information available to step 6 consists of (1) identification numbers of the test

cells, (2) best PDF(s) to approximate the data of the reference cells in every test

cell along with their shape, scale, and location parameters, (3) distance from

TABLE 2.49
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 1 (Example 2)

CL Patch 1
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 36.73 PLCQP ¼ 8.16

PLCCP ¼ 8.16 PLCCP ¼ 2.04 D1 . 10%

20.00 NCQ ¼ 8 NCQ ¼ 7

(new guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 71.43 PLCQP ¼ 55.10

PLCCP ¼ 28.57 PLCCP ¼ 10.20

28.57 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 87.76 PLCQP ¼ 55.10

PLCCP ¼ 55.10 PLCCP ¼ 10.20

55.10 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 95.92

PLCCP ¼ 100.0 PLCCP ¼ 79.59

79.59 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 100.0

PLCCP ¼ 100.0 PLCCP ¼ 100.0
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TABLE 2.50
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 2 (Example 2)

CL Patch 2
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 60.38 PLCQP ¼ 16.35

PLCCP ¼ 19.50 PLCCP ¼ 0.00

19.50 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 81.76 PLCQP ¼ 46.54

PLCCP ¼ 49.06 PLCCP ¼ 8.80

49.06 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 94.97 PLCQP ¼ 81.76

PLCCP ¼ 81.76 PLCCP ¼ 57.23

81.76 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 99.37

PLCCP ¼ 100.0 PLCCP ¼ 94.97

Threshold Fine-Tuning Stage

94.97 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 1

PLCCP PLCQP ¼ 100.0

PLCCP ¼ 100.0

97.47 NCQ ¼ 5 D2 . 1%

Half way NCC ¼ 1

Rule PLCQP ¼ 100.0

PLCCP ¼ 100.0

98.73 NCQ ¼ 5 D2 . 1%

Half way NCC ¼ 1

rule PLCQP ¼ 100.0

PLCCP ¼ 100.0

99.36 NCQ ¼ 5 D2 , 1%

Half way NCC ¼ 1

rule PLCQP ¼ 100.0

PLCCP ¼ 100.0
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the locus end point of every test cell to the approximating PDF(s), and (4) (u, v)

coordinates of the locus end point for every test cell. This information has been

tabulated for the selected examples of Sections 2.6.5.1–2.6.5.3.

The following strategy is used in step 6:

6.1. Only those kinds of PDFs among the Weibull, Lognormal and

K distributions, denoted by W, L, and K, respectively, that pass step 4

to all of the test cells in the patch are considered as possible

approximating kind of PDF(s) for the CL patch. A violation type of

discrepancy occurs when none of the distributions pass step 4 for all of

the test cells in the patch. This situation initiates a search for

subpatches within the patch.

6.2. The ranking of each possible approximating type of PDF is summed

over all of the test cells in the CL patch. That distribution having the

lowest sum is chosen as the best approximation kind, for underlying CL

patch distribution. For example, consider Table 2.23 which contains

the distribution rankings for each test cell. The sum of rankings for W,

L, and K are 16, 15, and 20, respectively. Consequently, L is chosen as

the best approximating kind.

6.3. A check is made to determine whether, the patch under consideration

is homogeneous. If it is, numerical values are determined for the best

approximating kind of PDF. If it is not, a fault type of discrepancy

TABLE 2.51
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 3 (Example 2)

CL Patch 3
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 63.36 PLCQP ¼ 17.97

PLCCP ¼ 22.12 PLCCP ¼ 0.69

22.12 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 89.63 PLCQP ¼ 63.82

PLCCP ¼ 62.90 PLCCP ¼ 19.12

62.90 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 99.08

PLCCP ¼ 100.0 PLCCP ¼ 94.70
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occurs and a subpatch search is initiated. The check for homogeneity

proceeds by determining whether all of the test cells in the patch

fall within the .99 confidence contour of the approximating PDF for

each test cell. However, in contrast to Section 2.6.4.3, the length of

the minor axis is used as opposed to the half length. The lengths of the

minor axes are tabulated in Table 2.55 for NR ¼ 100 and various shape

parameters. The procedure is carried out as follows:

6.3.a. Select the first test cell in the CL patch.

6.3.b. Using the best approximating kind of PDF found in step 6.2,

and the shape, parameter associated with the selected test cell,

determine the length of the minor axis from Table 2.55.

6.3.c. Using the (u, v) coordinates for the locus end points, compute

the distances between the (u, v) coordinates of the selected test

cell and every other test cell.

6.3.d. Check the distances computed in 6.3.c. against the minor axis

length obtained in 6.3.b. Those test cells within the minor axis

length from the selected test cell pass and are indicated by a

T. The remaining cells are indicated by an C.

TABLE 2.52
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 1 (Example 3)

CL Patch 1
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 48.94 PLCQP ¼ 6.38

PLCCP ¼ 8.51 PLCCP ¼ 0.00

20.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(new guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 82.98 PLCQP ¼ 46.81

PLCCP ¼ 51.06 PLCCP ¼ 10.64

51.06 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 95.74

PLCCP ¼ 100.0 PLCCP ¼ 78.72

Latest NCQ ¼ 8 NCQ ¼ 7

PLCCP NCC ¼ 1 NCC ¼ 1 D1 , 10%

PLCQP ¼ 100.0 PLCQP ¼ 100.0

PLCCP ¼ 100.0 PLCCP ¼ 100.0
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6.3.e. Select the second test cell in the CL patch and repeat 6.3.b.

through 6.3.d.

6.3.f. Continue this process until all test cells have been selected.

6.3.g. Record the results in a table referred to as the exclusion table.

The CL patch is assumed to be homogeneous only if no Cs

appear in the exclusion table.

6.3.h. When only Ts appear in the exclusion table, the CL patch

is considered to be homogeneous. An approximating PDF is

obtained by averaging over all of the test cells the shape, scale,

TABLE 2.53
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 2 (Example 3)

CL Patch 2
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 42.93 PLCQP ¼ 16.67

PLCCP ¼ 11.62 PLCCP ¼ 1.51

11.62 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 53.54 PLCQP ¼ 19.19

PLCCP ¼ 13.64 PLCCP ¼ 1.51

13.64 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 64.14 PLCQP ¼ 24.24

PLCCP ¼ 18.69 PLCCP ¼ 2.52

18.69 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 77.27 PLCQP ¼ 44.95

PLCCP ¼ 32.32 PLCCP ¼ 7.57

32.32 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 94.44 PLCQP ¼ 78.79

PLCCP ¼ 69.70 PLCCP ¼ 37.37

69.70 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 100.0

PLCCP ¼ 100.0 PLCCP ¼ 100.0
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TABLE 2.54
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 3 (Example 3)

CL Patch 3
PLQP (%) Di

Threshold Approximation Stage

10.00 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

(guess) NCC ¼ 1 NCC ¼ 1

PLCQP ¼ 46.53 PLCQP ¼ 11.39

PLCCP ¼ 14.36 PLCCP ¼ 1.98

14.36 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 70.30 PLCQP ¼ 31.68

PLCCP ¼ 26.24 PLCCP ¼ 5.44

26.24 NCQ ¼ 8 NCQ ¼ 7 D1 . 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 92.08 PLCQP ¼ 68.81

PLCCP ¼ 66.83 PLCCP ¼ 24.75

66.83 NCQ ¼ 8 NCQ ¼ 7 D1 , 10%

Latest NCC ¼ 1 NCC ¼ 1

PLCCP PLCQP ¼ 100.0 PLCQP ¼ 99.01

PLCCP ¼ 100.0 PLCCP ¼ 93.07

Threshold Fine-Tuning Stage

93.07 NCQ ¼ 5 D2 . 1%

Latest NCC ¼ 1

PLCCP PLCQP ¼ 100.0

PLCCP ¼ 100.0

96.53 NCQ ¼ 5 D2 . 1%

Half way NCC ¼ 1

Rule PLCQP ¼ 100.0

PLCCP ¼ 100.0

98.26 NCQ ¼ 5 D2 . 1%

Half way NCC ¼ 1

Rule PLCQP ¼ 100.0

PLCCP ¼ 100.0

99.13 NCQ ¼ 8 D2 , 1%

Half way NCC ¼ 1

Rule PLCQP ¼ 100.0

PLCCP ¼ 100.0
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and location parameters of the best approximating kind of PDF

obtained in 6.2.

6.3.i. When Cs appear in the exclusion table, a fault type of dis-

crepancy occurs. This is discussed in a later section dealing with

discrepancies.

Steps 6.3.a.–6.3.h. are now illustrated using the data in Table 2.23. As noted

in step 6.2., Lognormal is the best PDF approximating kind for the CL patch

under consideration. Therefore, using Table 2.55, the lengths of the minor axes

corresponding to the shape parameter values of the Lognormal PDF found in

Table 2.23 are listed in Table 2.56 for the different test cells. The second column

and first row of Table 2.56 indicate the assigned numbers of the test cells.

TABLE 2.55
Minor Axis Length for Different PDFs, NR 5 100

PDF Shape Parameter Length of the Minor Axis ( 3 1021)

Rayleigh — 0.94

Weibull 0.1 0.50

0.5 0.82

1.0 0.82

2.0 0.94

3.0 0.94

4.0 0.90

5.0 0.88

10.0 0.88

Lognormal 0.01 0.96

0.05 0.90

0.1 0.86

0.2 0.84

0.3 0.84

0.4 0.92

1.0 0.82

5.0 0.56

10.0 0.26

K-distribution 0.01 0.26

0.1 0.74

1.0 0.58

5.0 0.97

10.0 0.94

20.0 0.98

40.0 0.98

50.0 0.98
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The remaining entries in the table represent the distance between the locus end

points of the tabulated pairs of test cells.

The exclusion table corresponding to Table 2.56 is shown in Table 2.57 and

consists Ts and Cs depending on whether or not the distances in every row of

Table 2.56 are smaller of larger than the length shown in the first column of the

same row. For this example, note that the entries are all Ts indicating that all test

cells are within the length of the minor axes for the appropriate lognormal

distribution. It is concluded that the patch under investigation is homogeneous.

This example is completed in Section 2.7.5.1.

2.7.4.4.2. SPA and SPA Instance

Steps 1–6 of the PDF approximation stage involve the choice of NT test cells,

the selection of NR reference cells for each test cell, use of the Ozturk algorithm

to find the best approximating PDF(s) for each test cell, and determination of an

approximating PDF when the CL patch is homogeneous or implementation of a

subpatch search procedure when the CL patch is nonhomogeneous. These steps,

which are diagrammed in Figure 2.97, constitute the SPA. A particular setting

of the parameters NT, and NR constitutes an SPA instance.

TABLE 2.56
Distance Between All Pairs of Test Cells for the Example of Table 2.19

Length from Table 2.55 Cell No. 1 361 722 1083 1444

0.084 1 0 0.007 0.050 0.020 0.025

0.084 361 0.007 0 0.053 0.027 0.027

0.084 722 0.050 0.053 0 0.040 0.026

0.084 1083 0.020 0.027 0.040 0 0.023

0.090 1444 0.025 0.027 0.026 0.023 0

TABLE 2.57
Exclusion Table for the Example of Table 2.19

Cell No. 1 361 722 1083 722

1 T T T T T

361 T T T T T

722 T T T T T

1083 T T T T T

1444 T T T T T
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2.7.4.4.3. Resolution of Discrepancies

In this section, rules are developed to enable resolution of discrepancies that

may occur during the PDF approximation stage. Discrepancies may arise during

two different phases of this stage: (1) during the PDF approximation for each

test cell and (2) during PDF approximation for a homogeneous CL patch or

subpatch search for a nonhomogeneous CL patch. These phases are viewed as

two substages and are investigated next.

(1) PDF approximation for each test cell: in order to approximate the PDF(s)

of a test cell, steps 1–5 of the PDF approximation stage are implemented,

as presented in Section 2.6.4.5. As shown in the examples of Section 6.5, the

outcome of the Ozturk algorithm phase is rejected whenever none of the

allowable distributions (i.e., W, L, K) is found to be a suitable approximation.

This decision is based on the fact that the data are known to be generated from

either W, L, or K. When the data cannot be approximated by one of the allowable

PDFs, a violation type of discrepancy is detected. At this point, the diagnosis

process hypothesizes that the presence of outliers may be the source for the

distortion causing the discrepancy. The first row of Table 2.58 summarizes

resolution of the discrepancy that may occur in the PDF approximation of a

test cell.

Even though the data are known to be generated from the W, L, and K

distributions, these may not be representative. As a result, the allowable

distributions may not provide suitable approximations even after removal of

the outliers. Because the data have been identified to be belonging to WSC,

the Gaussian receiver is likely to produce false alarms. Consequently, the

discrepancy is resolved by discarding the data. The second row of Table 2.58

summarizes resolution of this discrepancy.

PDF approximation for a homogeneous CL patch
or subpatch search for a nonhomogeneous

CL patch

Choice of NT test cells

Ozturk algorithm

PDF approximation for
each test cell

Choice of NR reference cells
for each test cell

FIGURE 2.97 PDF approximation stage.
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(2) PDF approximation for a CL patch: in order to approximate the PDF

of a CL patch, step 6 of the PDF approximation stage is implemented. As

discussed in Section 2.7.4.4.1, the decision about existence of a suitable

approximating PDF for a CL patch is based on the outcome of the exclusion

table. As stated previously, a discrepancy is detected when one or more Cs

occur in the exclusion table.

When this happens, two cases are possible:

(2a) The CL patch is homogeneous. In this case, the discrepancy is of the

conflict type because the expectation that only Ts should be encountered in the

exclusion table has not materialized. However, the full length minor axis

criterion has yet to be applied to the PDF which would be obtained by averaging

over the parameters of all test cells for the best approximating PDF kind. This is

necessary because an C which appears in the exclusion table due to two test

cells having widely separated (u, v) coordinates may disappear when the (u, v)

coordinates of each test cell are compared to those of the average PDF. Should

this fail, an exclusion table is generated for the next best ranked PDF kind. If

only Ts appear in the exclusion table, the parameters of this PDF kind are

averaged over all the test cells and the average PDF is used to approximate the

homogeneous CL patch. If one or more Cs appear in the exclusion table, phase

(2a) is repeated until all possible PDF kinds have been exhausted. Should all

possibilities fail, it is assumed that the CL patch is not homogeneous and the

process initiates phase (2b).

(2b) The CL patch is not homogeneous. In this case, the discrepancy is of

the violation type because none of the allowable PDF kinds is able to model the

entire CL patch. Therefore, it should be modeled by two or more approximating

PDFs. By using the exclusion table to identify groupings and by introducing

new test cells between the groupings to generate even larger exclusion tables,

the system attempts to determine a suitable number of PDFs for modeling the

nonhomogeneous CL patch. This is achieved by examining the patterns of Cs

and Ts which appear, as discussed below.

TABLE 2.58
Discrepancies in the PDF Approximation of a Test Cell Stage

Discrepancy (Violation Type) Diagnosis (Source of Distortion) Reprocessing

None of the allowable distributions is

found to be a suitable approximation

for the test cell

Presence of outliers Remove outliers

After removal of outliers none of

the allowable distributions is found to

be a suitable approximation for the

test cell

Data is not representative Discard data
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For example, five test cells numbered a, b, c, d, and e might yield the

exclusion table shown in Table 2.59, By interchanging rows b and c and columns

b and c, Table 2.60 results. From this table, there are seen to be two groupings:

cells a, c and cells b, d, e. To determine whether the CL patch may consist of more

than two groupings, new test cells, numbered f, g, h, which are located between

the groupings are introduced. After rearranging rows and columns, the exclusion

table given by Table 2.61 may result. By inspection, it is concluded that cells

f, g, h are not common to the previous two groupings. It is concluded that the

CL patch is likely to be composed of at least three groupings. On the other hand,

the introduction of cells f, g, h might result in the exclusion table shown in

Table 2.62. Here, cells f, g, and h are seen to be common to both of the original

groupings. Cells f, g, and h can be classified as “border” test cells (i.e., cells

having reference cells extending into more than one homogeneous subregion

of the CL patch). It is concluded that two subregions are likely to exist within

the CL patch. Further refinements can be made by introducing additional new test

cells and studying the resulting exclusion tables.

In general, additional groupings are identified when new test cells cannot

be associated with existing groupings. Otherwise, new test cells will either be

associated with existing groupings or be classified as border cells. When all cells

of the CL patch have been used as either test cells or reference cells and when

TABLE 2.59
Exclusion Table for Cells a, b, c, d, and e

Cell No. a b c d e

a T C T C C

b C T C T T

c T C T C C

d C T C T T

e C T C T T

TABLE 2.60
Exclusion Table when Cells b and c are Interchanged

Cell No. a b c d e

a T T C C C

c T T C C C

b C C T T T

d C C T T T

e C C T T T
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new test cells result only in border cells, the refinement procedure stops and the

system assumes that additional groupings do not exist.

(2c) The next step in the procedure is to identify those cells in the various

homogeneous subregions of the CL patch. In general, each test cell in a grouping

has associated with it NR reference cells. It is assumed that all NR reference

cells belong to the same subregion as the corresponding test cell. All the cells

identified for a particular subregion are assigned the same number. For example,

all the cells in the kth subregion are assigned the number k. At this point each cell

in the CL patch will have one or more numbers assigned to it. Those cells with a

single assigned number are assumed to belong to the numbered subregion. Those

cells with more than one assigned number are assumed to belong to a border

region bordering the numbered subregions. For example, a cell with the assigned

numbers j and k is assumed to be in a border region bordering the jth and kth

subregions. Similarly, a cell with the assigned numbers j, k, and m is assumed to

be in a border region bordering the jth, kth, and mth subregions.

TABLE 2.62
Exclusion Table with Additional Cells f, g, and h Common to Other Cells

Cell No. a c f g h b d e

a T T T T T C C C

c T T T T T C C C

f T T T T T T T T

g T T T T T T T T

h T T T T T T T T

b C C T T T T T T

d C C T T T T T T

e C C T T T T T T

TABLE 2.61
Exclusion Table with Additional Cells f, g, and h Not Common to

Other Cells

Cell No. a c f g h b d e

a T T C C C C C C

c T T C C C C C C

f C C T T T C C C

g C C T T T C C C

h C C T T T C C C

b C C C C C T T T

d C C C C C T T T

e C C C C C T T T
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(2d) Once the subregions have been identified, the PDF associated with each

subregion is approximated. This is accomplished by following the procedure

previously outlined in substeps 6.1–6.3 of step 6 for the PDF approximation

strategy. Depending upon the application, the data from the border regions

can either be discarded or approximated by one of the PDFs from the bordering

subregions.

In summary, two types of discrepancies can arise during the PDF approxima-

tion of a CL patch, as shown in Table 2.63. When the CL patch may be homo-

geneous but cannot be approximated by the best average PDF, a conflict type of

discrepancy is noted and the diagnosis suggests that the next best average PDF

be tried. On the other hand, when it is concluded from the exclusion table not all

cells in a CL patch can be approximated by the same PDF, a violation type of

discrepancy is detected indicating that the CL patch is not homogeneous. The

diagnosis recommends that the CL patch data should be reprocessed to search for

subpatches within the CL patch. Once the subregions have been identified, their

PDFs are approximated.

2.7.5. EXAMPLES OF INDEXING

The IPUS concepts presented in Section 2.7.4 are now illustrated by continuing

the examples treated previously in Sections 2.6.5.1–2.6.5.3. In this section, the

possible kinds of approximating PDFs are ranked as explained in Section 2.7.4.4.

For each approximating kind of PDF, the corresponding exclusion table is then

built. Conclusions from examination of the exclusion tables are indicated with

either an “All pass” or a “Not all pass” label. A not all pass label indicates that the

corresponding exclusion table includes at least one C and that the full length

minor axis criterion fails with the average PDF for one or more test cells. On the

other hand, an All pass label indicates that the corresponding exclusion table does

not include any Cs. Hence, all test cells may be approximated by the

corresponding kind of PDF. For the kinds of PDFs that can approximate

TABLE 2.63
Discrepancies in the PDF Approximation of a CL Patch

Discrepancy Diagnosis (Source of Distortion) Reprocessing

Not all test cells

can be approximated by

the best average PDF

(conflict type)

CL patch may be

homogeneous but cannot be

approximated by the best

average PDF

Try the next best

average PDF

Not all test cells

can be approximated by

any of the average

PDF(s) (violation type)

CL patch is not

homogeneous

Separate subpatches and

approximate their

corresponding PDF(s)
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the distribution of the CL patch the scale, shape, and location parameters are

averaged over all of the test cells in the CL patch to obtain an average PDF. PDFs

that cannot approximate a particular CL patch either because of failure to pass the

half length criterion or a not all pass label are labeled N/A to indicate not

applicable.

In order to evaluate the effectiveness of the proposed approach for the

partitioning of the surveillance volume, results obtained for the number of CL

patches, number of cells in each CL patch, and estimated CNR for each CL patch

are compared to the generated ones. On the other hand, because the CL patch

cells contain additive BN data, the PDF underlying a CL patch is not the PDF of

the generated CL data alone. In general, analytical expressions for the PDF of the

sum of BN and CL data are difficult to obtain. However, by using the Ozturk

algorithm on 1000 BN plus CL data points, a very accurate approximation is

obtained for the underlying PDF of the CL patch. Examples are now presented to

illustrate control by IPUS of the PDF approximation stage.

2.7.5.1. Example 1

Consider Tables 2.21–2.24 which summarize the results of steps one through five

of the PDF approximation strategy for the example of Section 2.6.5.1. Note that

CL patches one, two, and three can be approximated by any one of the three PDF

kinds, whereas, as indicated in Table 2.24, CL patch four can be approximated

only by the Weibull PDF. Tables 2.64–2.67 summarize the results for step 6

of the PDF approximation strategy for the four CL patches identified thus far.

An exclusion table was generated for the allowable PDF kinds in each CL patch.

As shown in Tables 2.64–2.67, all of the PDF kinds are labeled All pass

indicating that none of the exclusion tables contained an C mark. Consequently,

average values for the parameters of all the allowable PDF kinds are also

tabulated in Tables 2.64–2.67.

Table 2.68 uses the results presented in Tables 2.20 and 2.64–2.67 to list

the best average PDF for each CL patch. Comparing the results in Tables 2.14

and 2.68, note that (1) regions for all four of the CL patches have been estimated,

(2) the sample CNRs for CL patches A, C, and D, as evaluated according to

Section 2.6.2.2, are within 1 dB of the generated values while that for CL patch B

is within 3.31 dB, (3) the number of cells included in CL patches A, B, C, and D

TABLE 2.64
Average PDFs for CL Patch 1 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location

W 1 All pass 2.05 3.14 0.64

L 3 All pass 0.19 7.27 24.00

K 2 All pass 50.0 0.43 0.73
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TABLE 2.67
Average PDFs for CL Patch 4 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location

W 1 All pass 4.51 90.82 14.97

L N/A

K N/A

TABLE 2.68
Assessment Parameters of the Mapping and Indexing Stages (Example 1)

CL
Patch (No.) CNR (dB)

Number
of Cells

PDF
(Best)

Shape
Parameter

Scale
Parameter

Location
Parameter

A (1) 9.04 113 W 2.05 3.14 0.64

B (3) 23.31 1444 L 0.25 20.09 230.09

C (2) 30.63 151 L 0.13 4.32 28.17

D (4) 40.56 146 W 4.51 90.82 14.97

TABLE 2.65
Average PDFs for CL Patch 2 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location

W 2 All pass 2.56 1.29 31.38

L 1 All pass 0.13 4.32 28.17

K 3 All pass 50.0 0.15 31.62

TABLE 2.66
Average PDFs for CL Patch 3 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location

W 2 All pass 1.96 15.52 20.04

L 1 All pass 0.25 20.09 230.09

K 3 All pass 33.28 2.96 0.08
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are close to the number of cells generated. In fact, a separate evaluation indicates

that 96.5, 98.3, 97.2, and 99.3% of the generated cells have been correctly

classified for CL patches A, B, C, and D, respectively.

With regard to the goodness of the PDF approximations, Figures 2.98,

2.100, 2.101, and 2.103 show the location in the approximation chart, indicated

by o, for the accurate approximation of the underlying CL patch PDF (i.e., PDF

corresponding to the sum of CL and BN in the patch) (Figure 2.104). These

were obtained by generating 1000 points for each CL patch. The results are

summarized in Table 2.69. Figures 2.99, 2.101, 2.103, and 2.105 show the PDFs

from Table 2.68 (solid lines) obtained by the mapping and indexing stages,

superimposed on the corresponding PDFs from Table 2.69 (dashed lines).

The comparison for CL patch A is given in Figure 2.99. Although the

best approximating PDF is Weibull while the underlying PDF is Lognormal,

the curves are reasonably close except for a small offset in their location.

Figure 2.101 shows the comparison for CL patch B. Here the best approximating

and underlying PDFs are Lognormal with shape parameters 0.25 and 0.27,

respectively. However, the scale and location parameters are not as closely
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FIGURE 2.98 Location of the locus end point for CL patch A (Example 1).

TABLE 2.69
Accurate Approximation of Underlying CL Patch PDFs (Example 1)

CL Patch PDF Distance Shape Scale Location (u, v )

A L 0.61 £ 1022 0.16 9.33 25.65 (20.0213, 0.3225)

B L 0.35 £ 1022 0.27 26.25 213.43 (20.0416, 0.3282)

C W 0.22 £ 1022 2.17 0.87 31.56 (20.0296, 0.3382)

D SU–Johnson 0.79 £ 1022 (40.0, 40.0) 54.19 164.51 (0.0223, 0.3379)
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matched. This accounts for the discrepancy between the two curves. The results

for CL patch C are shown in Figure 2.103. As with CL patch A, the best

approximating PDF is Weibull while the underlying PDF is Lognormal. In this

case, the two curves differ substantially and a poor approximation has been made.

Finally, the comparison for CL patch D is shown in Figure 2.105. Although the

best approximating PDF is Weibull while the underlying PDF is SU-Johnson,

note that the curves are reasonably close except for a small offset in their height

and location.

The best approximating PDFs from Table 2.68 are superimposed on the

histograms for CL patches A, B, C, and D in Figures 2.106–2.109, respectively.

Whether or not the best approximating PDFs are close to the underlying PDFs, note

that the best approximating PDFs nicely overlay the corresponding histograms.
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Relative to CL patch C, it is seen that the large amount of data with values above

33 are not representative of the underlying PDF shown in Figure 2.102. This

may be due to the inclusion in CL patch C of cells originating in CL patch D.

2.7.5.2. Example 2

Consider now Tables 2.29–2.31 which summarize the results of steps 1–5 of the

PDF approximation strategy for the example of Section 2.6.5.2. Note that CL

patches one and three can be approximated by any one of the three PDF kinds,

whereas, as indicated in Table 2.30, CL patch two can be approximated only

by the Lognormal PDF. Tables 2.70–2.72 summarize the results for step 6 of

the PDF approximation strategy for the three CL patches identified thus far.
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An exclusion table was generated for the allowable PDF kinds in each CL patch.

As shown in Tables 2.71 and 2.72, the Lognormal and K PDF kinds are labeled

not all pass for CL patches 2 and 3, respectively, indicating that the corres-

ponding exclusion tables contained one or moreCs and that the full length minor

axis criterion has failed when applied to the average PDFs obtained by averaging

over the parameters of all the test cells for the corresponding PDF kinds.

Consequently, a N/A label is posted for each of the Lognormal and K PDF

kinds in Tables 2.71 and 2.72, respectively. Average values for the parameters

of all the allowable PDF kinds labeled with an all pass are also tabulated in

Tables 2.70–2.72.

The exclusion table, corresponding to the lognormal entries in Table 2.30 for

CL patch 2, is shown in Table 2.73. The patterns ofCs and Ts in the table clearly
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defines two different regions. One region consists of test cells numbered one and

77. The other region consists of the remaining test cells numbered 154, 231, and

308. This suggests the presence of at least two homogeneous subpatches in CL

patch two. In order to investigate whether more than two subpatches exist, three

more test cells are considered which are located in between the two cited regions.

The additional test cells are numbered 96, 115, and 134. Steps 1–5 of the PDF

approximation strategy for these cells are summarized in Table 2.74. The new

exclusion table, shown in Table 2.75 suggests that only two subpatches exist in

the CL patch. The overlapping that exists between the two regions is due to the

test cells located near the edges separating the two subpatches and whose

reference cells extend to both regions. The conclusion that CL patch two consists

of two subpatches is recognized by the IPUS program as a discrepancy.
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Having detected the discrepancy, the diagnosis process in the IPUS control

initiates a search for the subpatches. Specifically, (1) test cells numbered one and

77 have their reference cells numbered one, while test cells numbered 154, 231,

308 have their reference cells numbered two, (2) all reference cells numbered

with one and two at the same time are declared as cells close to the boundary

separating the CL subpatches. Their reference cells defines the boundary region

where a test cell in one region has some of its reference cells extending to the

other region. When this step is completed, the subpatches and the boundary

region are defined as shown in Figure 2.110. Note that the CL patch now consists

of three different regions. The lower portion of the CL patch includes part of
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TABLE 2.71
Average PDFs for CL Patch 2 (Example 2)

Average PDF Rank Exclusion Table Shape Scale Location

W N/A N/A N/A N/A N/A

L 1 Not all pass N/A N/A N/A

K N/A N/A N/A N/A N/A

TABLE 2.70
Average PDFs for CL Patch 1 (Example 2)

Average PDF Rank Exclusion Table Shape Scale Location

W 3 All pass 1.34 4.22 0.46

L 1 All pass 0.43 5.94 22.20

K 1 All pass 8.11 2.06 20.82

TABLE 2.72
Average PDFs for CL Patch 3 (Example 2)

Average PDF Rank Exclusion Table Shape Scale Location

W 2 All pass 1.03 2.49 0.90

L 3 All pass 0.61 3.15 20.42

K 1 Not all pass N/A N/A N/A
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TABLE 2.75
Exclusion Table for the Example of Tables 2.30 and 2.74 (Example 2)

Cell No. 1 77 96 115 134 154 231 308

1 T T T T T C C C

77 T T T T T C C C

96 T T T T T T T T

115 T T T T T T T T

134 T T T T T T T T

154 C C T T T T T T

231 C C T T T T T T

308 C C T T T T T T

TABLE 2.74
PDF Approximation for Test cells No. 96, 115, and 134, CL Patch 2

(Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v )

96 W 2 0.57 £ 1022 T 0.91 1.56 1.29 (20.0992, 0.3091)

L 6 0.21 £ 1021 T 0.68 1.87 0.52

K 1 0.41 £ 1022 T 1.75 2.15 0.42

115 W 3 0.16 £ 1021 T 1.00 1.83 1.25 (20.1045, 0.3327)

L 7 0.40 £ 1021 T 0.60 2.34 0.24

K 5 0.27 £ 1021 T 2.17 2.10 0.37

134 W 2 0.16 £ 1022 T 1.04 1.97 1.28 (20.0888, 0.3224)

L 5 0.23 £ 1021 T 0.59 2.45 0.27

K 4 0.10 £ 1021 T 3.08 1.86 0.31

TABLE 2.73
Exclusion Table for the Example of Table 2.30

Cell No. 1 77 154 231 308

1 T T C C C

77 T T C C C

154 C C T T T

231 C C T T T

308 C C T T T
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generated CL patch C while the upper portion includes part of generated CL

patch D. The in-between region contains cells from CL patches C and D. The

subpatches are relabeled two and four, as shown in Figure 2.110. It is found

that CL patch two contains 99 cells, CL patch four contains 183 cells, and the

boundary region contains 26 cells. Also, based on the 99 cells of CL patch two

and the 183 cells of CL patch four, the CNRs for CL patches two and four are

equal to 10.10 and 8.47 dB, respectively.

The PDF(s) of the CL subpatch regions are next approximated by considering

the average PDF(s) in test cells 1 and 77 for CL patch two and in test calls 154,

231, and 308 for CL patch four. In absence of additional information, the test

cells located in the boundary region are approximated either by the PDF of CL

patch two or the PDF of CL patch four. Tables 2.76 and 2.77 summarize the

results for step six of the PDF approximation for the subpatches numbered two

and four.
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FIGURE 2.110 Boundaries of the scene resulting from step 6 of the PDF approximation

stage (Example 2).

TABLE 2.76
Average PDFs for CL Patch 2 Using Test Cells Numbered 1 and 77

(Example 2)

Average PDF Rank Exclusion Table Shape Scale Location

W N/A N/A N/A N/A N/A

L 1 All pass 0.84 1.27 0.96

K N/A N/A N/A N/A N/A
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Table 2.78 uses the results presented in Tables 2.25, 2.70, 2.72, 2.76, and 2.77

to list the best average PDF for each CL patch. Note that the L and K distributions

are listed as the best approximating PDFs for CL patch A because their rankings

were identical. Comparing the results in Tables 2.5 and 2.78 note that (1) regions

for all four of the CL patches have been estimated, (2) the sample CNRs for CL

patches B, C, and D, as evaluated according to Section 2.6.2.2, are within 1.5 dB

of the generated values while that for CL patch A is within 2.03 dB, (3) the

number of cells included in CL patches A and B are close to the number of

cells generated. In fact, a separate evaluation indicates that 98.7%, and 92.5%

of the generated cells have been correctly classified for CL patches A, and B,

respectively. Also, 63.3% and 99.1% of the generated cells have been correctly

classified for CL patches C, and D, respectively.

With regard to the goodness of the PDF approximations, Figures 2.111,

2.113, 2.115, and 2.117 show the location in the approximation chart, indicated

by o, for the accurate approximation of the underlying CL patch PDF

(i.e., PDF corresponding to the sum of CL and BN in the patch). These were

obtained by generating 1000 points for each CL patch. The results are

summarized in Table 2.79. Figures 2.112, 2.114, 2.116, and 2.118 show the

PDFs from Table 2.78 (solid lines) obtained by the mapping and indexing stages,

super-imposed on the corresponding PDFs from Table 2.79 (dashed lines).

TABLE 2.78
Assessment Parameters of the Mapping and Indexing Stages (Example 2)

CL
Patch (No.) CNR (dB)

Number
of Cells

PDF
(Best)

Shape
Parameter

Scale
Parameter

Location
Parameter

A (1) 12.03 133 L 0.43 5.94 22.20

K 8.11 2.06 20.82

B (3) 8.65 622 W 1.03 2.49 0.90

C (2) 10.10 99 L 0.84 1.27 0.96

D (4) 8.47 183 W 1.80 3.54 0.47

TABLE 2.77
Average PDFs for CL Patch 4 Using Cells Numbered 154, 231, and 308

(Example 2)

Average PDF Rank Exclusion Table Shape Scale Location

W 1 All pass 1.80 3.54 0.47

L 3 All pass 0.27 7.24 23.85

K 2 All pass 33.97 0.76 0.26
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FIGURE 2.111 Location of the locus end point for CL patch A (Example 2).

TABLE 2.79
Accurate Approximation of Underlying CL Patch PDFs (Example 2)

CL Patch PDF Distance Shape Scale Location (u, v )

A W 0.73 £ 1022 1.31 3.98 1.12 (20.0733, 0.3364)

B L 0.30 £ 1021 0.49 3.67 21.13 (20.0840, 0.3297)

C SU-Johnson 0.11 £ 1023 (1.31, 20.7) 0.69 2.94 (20.0555, 0.2590)

D W 0.33 £ 1022 2.24 3.43 2.48 (20.0278, 0.3345)
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The comparison for CL patch A is given in Figure 2.112. Although the best

approximating PDF is Lognormal while the underlying PDF is Weibull, the

curves are reasonably close except for a difference in their heights. Figure 2.114

shows the comparison for CL patch B. In contrast to CL patch A, the best

approximating PDF is Weibull while the underlying PDF is Lognormal. Note that

the curves are reasonably close. However, a small offset in location is used to

compensate for a slight mismatch in shape. The results for CL patch C are shown

in Figure 2.116. The best approximating PDF is Lognormal while the underlying

PDF is SU-Johnson. In this case, the two curves differ substantially and a poor

approximation has been made. Had the SU-Johnson been included in the library

of allowable PDF kinds, a better approximating PDF would have been obtained.

Finally, the comparison for CL patch D is shown in Figure 2.118. Here the best
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approximating and underlying PDFs are Weibull with scale parameters 3.54

and 3.43, respectively. However, the shape and location parameters are not close.

This accounts for the discrepancy between the two curves.

The best approximating PDFs from Table 2.78 are superimposed on the

histograms for CL patches A, B, C, and D in Figures 2.119–2.122, respectively.

Whether or not the best approximating PDFs are close to the underlying PDFs,

note that the best approximating PDFs nicely overlay the corresponding histo-

grams. Relative to CL patch D, it is seen that the large amount of data with values

below 2.5 are not representative of the underlying PDF shown in Figure 2.118.

This may be due to inclusion in CL patch D of cells originating in CL patch C,

as seen in Figure 2.110.
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2.7.5.3. Example 3

Finally, consider Tables 2.29–2.31 which summarize the results of steps 1–5

of the PDF approximation strategy for the example of Section 2.6.5.3. Note that

CL patch 2 can be approximated by any one of the three PDF kinds, whereas, as

indicated in Tables 2.29 and 2.31, CL patches one and three can be approximated

only by the Weibull and K PDFs. Tables 2.80–2.82 summarize the results for

step six of the PDF approximation strategy for the three CL patches identified

thus far. An exclusion table was generated for the allowable PDF kinds in each

CL patch. As Shown in Tables 2.80–2.82, all of the PDF kinds are labeled All

pass indicating that none of the exclusion tables contained an C mark.

Consequently, average values for the parameters of all the allowable PDF kinds

are also tabulated in Tables 2.80–2.82.

0.5

0.4

0.3

0.2

G
K
K
K K

K K K
KK

G
G G

W L

P CPP
P

P

P

P

F

P
P
P

T

T

T

T

T
A

S

U

N

L

L
L

L
L L

LW

W
W

W W W W W
V

0.1

−0.2 −0.15 −0.1 −0.05 0
u

v

0.05 0.1 0.15

FIGURE 2.117 Location of the locus end point for CL patch D (Example 2).

0.3

0.25

0.2

0.15

0.1

0.05

0
0 10987654321

accurate
approximation (Table 2.79)

assessment
(Table 2.78)

x

f X
(x

)

FIGURE 2.118 PDF comparison for CL patch D (Example 2).

A New Approach to Radar Detection 163

© 2006 by Taylor & Francis Group, LLC



Table 2.83 uses the results presented in Tables 2.32 and 2.80–2.82 to list the

best average PDF for each CL patch. Comparing the results in Tables 2.8 and 2.83

note that (1) regions for CL patches A and B have been estimated, whereas the

regions for the contiguous CL patches C and D have been approximated as a

single region, (2) the sample CNRs for CL patch A, as evaluated according to

Section 2.6.2.2, is within 1 dB of the generated values while that for CL patch B

is within 3.47 dB, (3) the number of cells included in CL patches A and B are

close to the number of cells generated. In fact, a separate evaluation indicates that

97.8% and 98.3% of the generated cells have been correctly classified for CL

patches A and B, respectively.

For this particular example, the PDF approximation strategy is not able to

recognize that more than one subpatch exists in CL patch 2. In order to evaluate

the severity of this result, we analyze the PDFs of CL patches C and D. As shown
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in Figure 2.54(d,e), even though the data amplitude histograms of CL patches

C and D are different (CL patch C data amplitudes extend only from 3.1 to 3.25

whereas CL patch D data amplitudes extend from 2 to 3.75), they have the same

maximum located around 3.15. When BN is added to CL patches C and D, their

histograms become as shown in Figure 2.123(a,b), respectively. When BN data is

added, the data amplitudes of CL patches C and D extend over longer intervals

ranging from 3.1 to 5.4. Note, also, that the shapes of both histograms are very

similar. Thus, when BN data is added CL patches C and D can be approximated

by the same PDF. It is, therefore, concluded for this example that it is reasonable

to approximate CL patches C and D as a single CL patch (numbered 2).

With regard to the goodness of the PDF approximations, Figures 2.124,

2.126, 2.128, and 2.130 show the location in the approximation chart, indicated
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TABLE 2.80
Average PDFs for CL Patch 1 (Example 3)

Average PDF Rank Exclusion Table Shape Scale Location

W 1 All pass 2.16 3.86 20.07

L N/A N/A N/A N/A N/A

K 2 All pass 50.0 0.49 0.43

TABLE 2.83
Assessment Parameters of the Mapping and Indexing Stages (Example 3)

CL Patch
(No.)

CNR
(dB)

Number
of Cells

PDF
(Best)

Shape
Parameter

Scale
Parameter

Location
Parameter

A (1) 9.34 124 W 2.16 3.86 20.07

B (3) 13.47 306 K 31.16 1.03 0.39

C þ D (2) 10.63 341 L 0.17 2.72 1.29

TABLE 2.81
Average PDFs for CL Patch 2 (Example 3)

Average PDF Rank Exclusion Table Shape Scale Location

W 2 All pass 2.32 1.15 3.02

L 1 All pass 0.17 2.72 1.29

K 3 All pass 48.76 0.14 3.17

TABLE 2.82
Average PDFs for CL Patch 3 (Example 3)

Average PDF Rank Exclusion Table Shape Scale Location

W 2 All pass 1.74 4.53 0.84

L N/A N/A N/A N/A N/A

K 1 All pass 31.16 1.03 0.39
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by o, for the accurate approximation of the underlying CL patch PDF (i.e., PDF

corresponding to the sum of CL and BN in the patch). These were obtained

by generating 1000 points for each CL patch. The results are summarized in

Table 2.84. Figures 2.125, 2.127, 2.129, and 2.131 show the PDFs from
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FIGURE 2.123 Data amplitude histograms including additive BN data (Example 3).

(a) CL patch C; (b) CL patch D.

TABLE 2.84
Accurate Approximation of Underlying CL Patch PDFs (Example 3)

CL Patch PDF
Distance
( 3 1022) Shape Scale Location (u, v )

A W 0.33 2.24 3.43 2.48 (20.0278, 0.3345)

B W 0.80 2.0 5.11 0.53 (20.0353, 0.3485)

C W 0.19 2.18 1.02 2.93 (20.0292, 0.3384)

D SU–Johnson 0.17 (2.97, 20.0094) 1.53 5.74 (20.0098, 0.3156)
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Table 2.83 (solid lines) obtained by the mapping and indexing stages,

superimposed on the corresponding PDFs from Table 2.84 (dashed lines).

The comparison for CL patch A is given in Figure 2.125. Here the best

approximating and underlying PDFs are Weibull with shape parameters 2.16

and 2.24 and scale parameters 3.86 and 3.43, respectively. However, location

parameters are not as closely matched. This accounts for the discrepancy between

the two curves. Figure 2.127 shows the comparison for CL patch B. Although

the best approximating PDF is K while the underlying PDF is Weibull, the curves

are reasonably close. The results for CL patch C, defined as part of CL patch 2,

are shown in Figure 2.129. The best approximating PDF is Lognormal while
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the underlying PDF is Weibull. In this case, the two curves are reasonably close

except for a small offset in their location and height. Finally, the comparison for

CL patch D, defined as part of CL patch 2, is shown in Figure 2.131. The best

approximating PDF is Lognormal while the underlying PDF is SU-Johnson. The

two curves differ substantially and a poor approximation has been made. As

was the case in Example 2, had the SU-Johnson been included in the library of

allowable PDF kinds, a better approximating PDF would have been obtained.

The best approximating PDFs from Table 2.83 are superimposed on the

histograms for CL patches A, B, C, and D in Figures 2.132–2.135, respectively.

Whether or not the best approximating PDFs are close to the underlying

PDFs, note that the best approximating PDFs nicely overlay the corresponding

histograms.
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2.7.6. CONCLUSION

In this chapter, expert system rules were developed to control the decisions

needed for operation of the mapping and indexing stages. Discrepancies were

determined which enable identification of the sources of distortions which in turn

enables reprocessing.

Using the results developed in this chapter the three examples begun in

Section 2.5.4 were completed. For Example one, in which the CNRs for CL

patches A, B, C, and D were 10, 20, 30, and 40 dB, respectively, it was possible

to identify and approximate all four CL regions. This was possible because of

the significant difference in amplitudes between the CL patches and the BN.
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Example two had added complexity because the CNRs of the contiguous

CL patches C and D were identical. Even so, the indexing procedure was able

to recognize that CL patch two consisted of two CL subpatches. In addition,

the poor PDF approximation that can result with a limited library of PDFs

was demonstrated. Finally, Example three investigated the situation where, even

though the underlying PDFs of CL patches C and D were noticeably different,

the addition of BN resulted in similar histograms. As a result, CL patches C and

D were modeled as a single homogeneous CL patch. This example illustrates one

of the pitfalls that can arise with small amounts of random data.
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2.8. CONCLUSION AND FUTURE RESEARCH

2.8.1. CONCLUSION

Current radars are typically designed on the assumption that the CL and BN are

Gaussian random processes. Such receivers are matched filters which maximize

signal-to-noise ratio by filtering to the extent possible the desired target returns

from the disturbance. When it is not possible to separate the CL from the target

by means of spatial or temporal filtering, the optimal Gaussian receiver performs

poorly.

However, it is known that an optimal nonGaussian receiver in a non

Gaussian environment can perform significantly better than the Gaussian receiver
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in situations where the disturbance and target spectra completely overlap. The

major problem is that there are an infinite different nonGaussian probability

distributions and, in a practical situation, the environment is unknown.

This dissertation demonstrates, in conjuncture with an expert system, that

it is possible to partition a surveillance volume into CL and BN regions and to

approximate the underlying probability distribution of each region. This is highly

significant because real data is likely to be nonhomogeneous and nonstationary.

It is for this reason that optimal processors may not work well on real data.

The results obtained in this research provide an innovative approach to analyzing

and characterizing real data. Several computer generated examples are used to

demonstrate the proposed methods.

2.8.2. FUTURE RESEARCH

In this dissertation it was shown that the mapping and indexing stages have

potential for being able to successfully monitor a random environment. The

following problems were suggested by this research and remain to be addressed

to in the future:

† Measures should be developed to enable a qualitative performance

analysis of the proposed mapping and indexing procedures and the

rules to be used by IPUS.

† Criteria to guarantee convergence of the iteration process in the

mapping procedure should be developed.

† The IPUS control should be able not only to control individually the

mapping and indexing stages but also to interact backward between

these stages. Recall from Section 2.6.4.4 that outliers may exist in a

set of reference cells that may arise due to (1) misclassified BN cells

in a CL patch or misclassified CL cells in the BN, (2) cells having data
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values of low probability of occurrence, and (3) cells containing signals

from strong targets. Feedback between the indexing and mapping

stages should be introduced to account and correct for outliers.

† A strategy should be developed to enable handling of the next set

of data from the same environment to update the information of the

mapping and indexing stages without processing all the data but rather

by doing a series of checks.

† A detection strategy and expert system rules need to be developed for

the target detection stage presented in Section 2.2.

† Following the detection stage, a target tracking strategy needs to be

developed. Note, for example, that when a target is present in a given

cell, its presence in subsequent cells should be consistent with a

reasonable track.

† Environmental models based on collected real data and physical

considerations should be verified using the Ozturk algorithm in order

to gain confidence in these models.

† The Ozturk algorithm currently analyzes univariate random data. It is

proposed to extend the Ozturk algorithm to the multivariate random

data case.

† The trade off in computational complexity, for generating an average

approximating PDF for each CL patch or subpatch vs. using the Ozturk

algorithm once for all cells in a region, should be investigated.

† The effectiveness of using various image processing procedures found

in the literature24,25 for the mapping and indexing procedures should be

investigated.
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3.1. GAUSSIAN INTERFERENCE BACKGROUNDS

(M. RANGASWAMY, J. H. MICHELS, AND B. HIMED)

3.1.1. INTRODUCTION

An important issue in space–time adaptive processing (STAP) for radar target

detection is the formation and inversion of the covariance matrix underlying the

clutter and interference. Typically, the unknown interference covariance matrix

is estimated from a set of independent identically distributed (iid) target-free

training data that is representative of the interference statistics in a cell under test.

Frequently, the training data is subject to contamination by discrete scatterers or

interfering targets. In either event, the training data becomes nonhomogeneous.

Consequently, it is not representative of the interference in the test cell. Estimates

of the covariance matrix from nonhomogeneous training data result in severely

undernulled clutter. Consequently, CFAR and detection performance suffer.

Significant performance improvement can be achieved by employing preproces-

sing to select representative training data.

Consideration has previously been given to the problem of target detection

using improved training strategies1–4 and to the impact of nonhomogeneity on

STAP performance.5–8 The distribution information of a class of multivariate

probability density functions (PDF) is succinctly determined through an

equivalent univariate PDF of a quadratic form.9 An application of this result is

the nonhomogeneity detector (NHD) based on the generalized inner product

(GIP).1–5

Nonhomogeneity of the training data arises from a number of factors such as

contaminating targets, presence of strong discretes, and nonstationary reflectivity

properties of the scattering surface. In these scenarios, the test cell disturbance

covariance matrix, RT, differs significantly from the estimated covariance matrix,

R̂ formed using target-free disturbance realizations from adjacent reference cells.

If a large number of test cell data realizations are available, the underlying

nonhomogeneity is characterized via the eigenvalues of R̂21RT:
10 However,

in radar applications, only a single realization of test cell data is usually available.

Consequently, the resulting estimate of RT is singular. Hence, the empirically

formed GIP has been compared with a theoretical mean corresponding to

a “known” covariance matrix.1–5 Large deviations of the GIP mean from the

theoretical mean have been ascribed to nonhomogeneity of the training data. Such

an approach provides meaningful results in the limit of large training data size. In

practice, the amount of training data available for a given application is limited by

system considerations such as bandwidth and fast scanning arrays. Furthermore,

the inherent temporal and spatial nonstationarity of the interference precludes
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the collection of large amounts of training data. Consequently, the approach

of Refs.1–5 can be misleading since it ignores finite data effects and the resulting

variability in the covariance matrix estimate.11 Specifically, we note that the

empirical GIP mean using an estimated covariance matrix with finite data can be

twice as large as the corresponding GIP mean for a known covariance matrix in

some instances. Consequently, such a scenario can easily lead to incorrect

classification of training data.

The normalized GIP, P 0; admits a remarkably simple stochastic represen-

tation as the ratio of two statistically independent chi-square distributed

random variables.11 Consequently, the normalized GIP follows a central-F

distribution.20–22 The main result of this paper lies in exploiting these facts to

construct a formal goodness-of-fit test for selecting homogeneous training data

and its application to the performance of the adaptive matched filter (AMF)

test.12–14 Other applications of the F-distribution can be found in Refs. 23–25.

Section 3.1.2 briefly reviews the GIP statistics for the case of a known

covariance matrix. In Section 3.1.3 we discuss the GIP statistics for the case of an

unknown covariance matrix. Section 3.1.4 introduces the NHD and derives

formal goodness-of-fit tests based on the GIP statistics described in Section 3.1.3.

The AMF test performance with and without training data contamination using

simulated and measured data is presented in Section 3.1.5. The AMF

performance is shown to degrade with contaminated training data. It is further

shown in Section 3.1.5 that the use of NHD preprocessing enables selection of

representative training data. Consequently, use of NHD preprocessing restores

the AMF test performance to case where there is no training data contamination.

3.1.2. GENERALIZED INNER PRODUCT STATISTICS: KNOWN

COVARIANCEMATRIX

Let X ¼ ½X1;X2;…;XM	T denote a complex random vector with zero mean and

known positive definite Hermitian covariance matrix R where T denotes

transpose. The quadratic form given by

Q ¼ XHR21X ð3:1Þ

has the important property11

EðQÞ ¼ M ð3:2Þ

where E denotes mean expected value.

This result is important in that it is independent of the PDF underlying X and

is only a function of the dimension of the random vector. If the PDF of X is

known, the corresponding PDF of Q can be readily derived. For Gaussian

distributed X, i.e., X,CN(0, R), the PDF of Q is a chi-squared distribution with
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M complex degrees of freedom. More precisely the PDF of Q is given by

fQðqÞ ¼
qM21

GðMÞ expð2qÞ q $ 0

0 Otherwise

8><>: ð3:3Þ

where Gð·Þ is the Eulero–Gamma function.

The GIP based NHD calculates the quadratic form Q using an estimated

covariance matrix (formed from iid target free training data) and compares

its mean with M: Deviations from M have been attributed to nonhomogeneities

in the training data.1–5 In practice, the interference covariance matrix is formed

from a finite amount of training data. The statistical variability associated with

the data could introduce additional errors and thus, deviations of the GIP fromM

cannot entirely be ascribed to the presence of nonhomogeneities. Consequently,

it is useful to work with the statistics of Q formed with an estimated covariance

matrix with finite sample support. The GIP PDF and moments are quite different

from those of Equation 3.2 and Equation 3.3 for the finite sample support

problem.

3.1.3. GENERALIZED INNER PRODUCT STATISTICS: UNKNOWN

COVARIANCEMATRIX

LetX,CNð0;RTÞ denote the random test data vector andZ denote a random data

matrix,whose columnsZk; k ¼ 1; 2;…;K are iidCNð0;RÞ target-free training data
vectors. For homogeneous (representative) training data, RT ¼ R: The sample

covariancematrix given by R̂ ¼ ð1=KÞZZH is themaximum likelihood estimate of

the covariance matrix. Let

P ¼ XHR̂21X ð3:4Þ
Wederive a canonical stochastic representation for the normalizedGIP,P0 ¼ P=K;
in terms of two statistically independent chi-squared distributed random variables

in Appendix A. Consequently, we have

P ¼ R1

R2=K
ð3:5Þ

where R1 and R2 are statistically independent chi-squared distributed random

variables with PDFs given by

fR1
ðr1Þ ¼

rM21
1

GðMÞ expð2r1Þ r1 $ 0

0 Otherwise

8><>: ð3:6Þ

fR2
ðr2Þ ¼

rK2M
2

GðK 2M þ 1Þ expð2r2Þ r1 $ 0

0 Otherwise

8><>: ð3:7Þ
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respectively. Consequently, P0 follows a central-F distribution20–22 given by

fp0 ðp0Þ ¼
ðp0ÞM21

bðM; LÞð1þ p0ÞLþM p0 $ 0

0 Otherwise

8><>: ð3:8Þ

where bðM; LÞ ¼ Ð1
0 6

M21ð12 6ÞL21 d6 and L ¼ K 2M þ 1:
The statistical equivalence of P0 to the ratio of two independent chi-squared

distributed random variables is fascinating in that it permits rapid calculation

of the moments of P: More importantly, it is extremely useful in Monte Carlo

studies involving computer generation of P: For homogeneous training data, the

use of Equation 3.5 circumvents the need to explicitly generate the test data

vector X and the training data vectors used for covariance estimation. For largeM

and perforce K; significant computational savings can be realized from the

method of Equation 3.5. It can be readily shown that

EðPÞ ¼ M

12
M

K

� � ð3:9Þ

VarðPÞ ¼ s2
P ¼ M

12
M

K

� �2
12

ðM þ 1Þ
K

� � ð3:10Þ

where EðPÞ and VarðPÞ denote the mean and variance of P; respectively. Observe
that the moments of P formed from an estimated covariance matrix (sample

covariance matrix) with finite sample support deviate significantly from the

corresponding moments for the case of a known covariance matrix given by

Equation 3.1 and Equation 3.2. For example, with K ¼ 2M; there is a 100%

deviation of the mean of Equation 3.9 from that of Equation 3.1. Therefore,

comparison of an empirically formed GIP with the theoretical mean of

Equation 3.1 provides misleading results in that a finite data effect is ascribed

to training data nonhomogeneity.

We then study the representation of Equation 3.5 in the limit of large K:
For this purpose, we consider the characteristic function of R2=K given by

f R2

K

ð jvÞ ¼ E exp 2jv
r2
K

� �� �
¼ 1

1þ jv

K

� �K2Mþ1
ð3:11Þ

For K !1; limK!1 f R2

K

ð jvÞ ¼ expð2jvÞ: Taking the inverse Fourier

Transform, we have

lim
K!1 f R2

K

ðrÞ ¼ dðr 2 1Þ ð3:12Þ
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Hence, for K !1; R2=K becomes unity with probability one. Thus, the GIP

for this case is simply R1 and hence, follows a Chi-squared distribution with

M complex degrees of freedom. Consequently, for K !1; EðPÞ ¼ s2
P ¼ M

corresponding to the known covariance matrix results. Consequently, the GIP

statistical representation given by Equation 3.5 provides additional insights on

the NHD. The numerator random variable corresponds to the GIP statistics for

known covariance matrix. The denominator random variable succinctly embeds

the deleterious effects of estimating the covariance matrix with finite sample

support. Deviation of the normalized GIP statistics from the PDF of Equation 3.8

can then be attributed to nonhomogeneity of the training data.

Figure 3.1 shows the PDF of P0 for several values of K with M ¼ 8 for

Gaussian interference statistics. Observe that the variance of P0 decreases with
increasing K: This is anticipated since R̂! R with probability one as K !1:
Consequently, the statistics of P0 incur a dependence on K resulting from the use

of finite sample support in estimating the covariance matrix.
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The results presented in Figure 3.2 correspond to the case of homogeneous

training data. They show a comparison of the histogram of P0 obtained from

Monte Carlo realizations using simulated data with the theoretically predicted

PDF of P0 obtained from Equation 3.8. The results reveal good agreement

between the theoretical prediction and the empirically generated values.

The mean value of P; 15.957, obtained via 50,000 Monte Carlo realizations

compares well with the theoretical predicted value of 16.

3.1.4. NONHOMOGENEITY DETECTOR

We now present two methods for selecting homogeneous data from a set of

training data. The first method exploits the central-F distribution of P0 given by

Equation 3.8 to construct a formal goodness-of-fit test, while the second method

relies upon a comparison of empirically formed P0 with the theoretical mean

predicted by Equation 3.9 and discarding those realizations for which P0 deviates
significantly from the theoretical mean. More precisely, the difference between

the empirical realizations of P0 and the theoretically calculated mean value is

calculated for each realization of P0: This difference is then rank ordered and the

training data realizations corresponding to the least deviation from the theoretical

mean are retained for subsequent use in STAP algorithms. The cumulative

distribution function of P0 is given by

PrðP0 # rÞ ¼ 12 betainc
1

r þ 1
;M; L

� �
ð3:13aÞ

where betainc (x, m, n) is the incomplete beta function defined by

betaincðx;m; nÞ ¼ 1

bðm; nÞ
ðx

0
wm21ð12 wÞn21dw ð3:13bÞ

The goodness-of-fit test consists of determining whether realizations of P0 formed

from a given set of training data are statistically consistent with the PDF of

Equation 3.1. For this purpose a suitable type-I error, a, is chosen. More

precisely, a is simply the probability of incorrectly rejecting the hypothesis that

a given realization of P0 is statistically consistent with the PDF of Equation 3.8.

Specifically, we seek a threshold, l such that

a ¼ PrðP 0 . lÞ ¼ 12 PrðP 0 # lÞ ¼ betainc
1

lþ 1
;M; L

� �
ð3:14Þ

l is determined from a numerical inversion of Equation 3.14. The goodness-of-

fit test consists of forming realizations of P0 from a set of training data and

rejecting those training data vectors for which P0 exceeds l: The second method

is based on comparing the realizations of P with the theoretically predicted

mean of P given by Equation 3.9 and retaining those realizations exhibiting

least deviation from the theoretically predicted mean of Equation 3.9. Examples
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that illustrate the two approaches are presented. For a given training data set, a

moving window approach is used to form realizations of P0: This approach is

suboptimal because it does not guarantee statistical independence of the

realizations of P0: However, we adopt this approach due to the limited training

data support. For the examples presented here, data from the MCARM

program15 corresponding to 16 pulses and 8 channels from acquisition “220” on

Flight 5, cycle “e” is used.

Figure 3.3 plots the type-I error (a) versus threshold for M ¼ 64: Here
different values of K are chosen to illustrate the threshold behaviour. For each

value of a; l is determined from a numerical inversion of Equation 3.14 and

we observe an increase in l for a given K:
The plot in Figure 3.4 shows P 0 and l corresponding to a ¼ 0:1 as a

function of range. A moving window approach is used to obtain P 0 for each
range cell considered. Nonhomogeneity of the training data is seen in those
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range cells for which P 0 exceeds l. Figure 3.5 plots the normalized GIP as a

function of range. The normalized GIP theoretical mean obtained from

Equation 3.9 with a simple normalization is also shown. Values of the

normalized GIP exceeding the theoretical mean correspond to nonhomogeneous

training data realizations.

3.1.5. PERFORMANCE ANALYSIS OF THE ADAPTIVE

MATCHED FILTER TEST

In this section, we consider the performance analysis of the AMF test12–14 in

nonhomogeneous training data. The AMF test is given by

L ¼ lSHR̂21Xl2

lSHR̂21Sl
_ lAMF ð3:15Þ

where S is the random spatio-temporal steering vector, X is the received random

data vector, R̂ is the sample covariance matrix given by R̂ ¼ ð1/KÞPK
i ZiZ

H
i with

Z i denoting independent identically distributed training data and lAMF is a

threshold selected to obtain a desired probability of false alarm.

For the case of homogeneous training data, analytical expressions for the

probability of false alarm and probability of detection are given by Ref. 13

Pfa ¼
ð1

0

frðrÞdr
ð1þ lAMFrÞL ð3:16Þ

Pd ¼ 12
ð1

0

XL
k¼1

L

k

� �
rklkAMFGk

rb

ð1þ rlAMFÞ
� �

frðrÞdr
ð1þ rlAMFÞL ð3:17Þ
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where

frðrÞ ¼ ð12 rÞM22rL

bðM2 1;Lþ 1Þ L¼K2Mþ 1 ð3:18Þ

GkðxÞ ¼ expð2xÞ
Xk21

n¼0

xn

n!
ð3:19Þ

and “b” is related to the output signal-to-noise ratio (SNR). For K!1;
the sample covariance matrix tends to the true clutter covariance matrix, R.
Consequently, the AMF test converges to the matched filter (optimal receiver in

Gaussian disturbance) for large K: The expressions for the matched filter Pfa and

Pd are given by13

Pfa ¼ expð2lMFÞ ð3:20Þ
Pd ¼ expð2AÞ

X1
k¼0

Ak

k!
½12GkðlMFÞ	 ð3:21Þ

where A is related to the output SNR and lMF is the matched filter threshold.

Figure 3.6 presents Pd versus output signal-to-interference plus noise ratio

(SINR). Relevant test parameters are reported in the plot. The matched filter (MF)

curve obtained from Equation 3.21 corresponds to the optimal performance in

Gaussian clutter. The Pd curve for the AMF operating in homogeneous Gaussian

clutter follows from Equation 3.17 and exhibits performance to within 3 dB of the

MF. The AMF performance operating in nonhomogeneous training data with and

without NHD preprocessing is carried out by Monte Carlo simulation. For this

example, the training data contained 30 high-amplitude, mainbeam discrete

targets located at various range cells and Doppler frequencies. Initial sample

support for NHD preprocessing is 6M:A slidingwindow approach is used to select
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a subset consisting of 4M training data realizations. Each GIP value obtained at

a specific range cell is computed using R̂ formed from 2M adjacent training data

vectors. Previously, we noted the suboptimality of this scheme. In practice, its use

is dictated by training data size limitations. In this manner 4M GIP values are

obtained. The NHD preprocessing used in this example is based on a comparison

of the empirical GIP with its theoretical mean value given by Equation 3.9. The

training data used in forming R̂ after NHD processing is obtained by sorting the

GIP values and retaining K ¼ 2M realizations corresponding to the smallest GIP

deviation from the theoretical mean of Equation 3.9. Observe that the AMF

performance in nonhomogenous clutter degrades severely. Also note that, for this

case, NHD preprocessing restores the AMF performance to its analytical value.

Figure 3.7 shows a plot of the GIP versus range prior to NHD preprocessing

for the simulated data used in carrying out the performance analysis of Figure 3.6.

Figure 3.8 shows a plot of the sorted absolute value of the difference between
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the GIP and its theoretical mean versus range after NHD preprocessing for the

example in Figure 3.6. Observe the absence of discretes in the first K ¼ 2M

range cells.

Figure 3.9 depicts performance using measured data from the MCARM

program.15 For this case, it is not possible to present performance in terms of

detection probability versus SINR. This is due to the fact that only one realization

of target present data is available. Hence, we present a plot of the detection test

statistic versus range. Since the AMF test statistic is an ad hoc estimate of

the output SINR, and since the probability of detection is a monotonically

increasing function of the output SINR, this is an acceptable performance metric.

Performance of the AMF without NHD processing degrades significantly in

nonhomogeneous clutter. Performance improvement is noted when the AMF is

employed in nonhomogeneous data with NHD preprocessing. Consequently, the

use of NHD affords moderate performance improvement of the AMF test in

nonhomogeneous clutter. The performance with measured data is characterized

by the ratioC1; of the test statistic at the test cell to the mean of the test statistics

formed from adjacent cells, and also by the ratioC2; of the test statistic at the test
cell to the highest test statistic formed from adjacent cells. Table 3.1 shows these

values for the AMF test with and without NHD preprocessing.
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TABLE 3.1
Adaptive Matched Filter Performance with Measured Data

Algorithm c1 (dB) c2 (dB)

AMF with NHD 13.25 5.68

AMF 11.83 3.38
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3.1.6. CONCLUSIONS

Section 3.1 has made several significant contributions. First, we provided

a statistical characterization of the GIP based NHD developed in Refs. 1–5.

We showed that the underlying GIP statistics deviate significantly when the

unknown covariance matrix is estimated using finite sample support. A canonical

representation for the GIP in terms of two statistically independent Chi-Square

distributed random variables and the resulting central-F distribution for

the normalized GIP were then used to construct goodness-of-fit tests, whose

performance is presented using both simulated and measured data. Application

of this method as a preprocessing method for training data selection in the AMF

algorithm was presented. Performance of the AMF in contaminated training data

degrades significantly. The use of our preprocessing method for training data

selection restores the AMF performance to within 3 dB of the optimal MF

performance. This fact is illustrated with simulated as well as measured data from

the MCARM program. Future work will undertake extensive performance

comparisons between covariance based STAP methods such as the AMF and the

normalized adaptive matched filter (NAMF)16 (with NHD preprocessing) and

model-based parametric STAP tests such as the parametric adaptive matched

filter (PAMF) 17, normalized parametric adaptive matched filter (N-PAMF)18 and

fast adaptive processors19 in nonhomogeneous interference backgrounds.

3.2. NONGAUSSIAN INTERFERENCE BACKGROUNDS

(M. RANGASWAMY)

3.2.1. INTRODUCTION

An important issue in space–time adaptive processing (STAP) for radar target

detection is the formation and inversion of the covariance matrix underlying the

disturbance. In practice, the unknown interference covariance matrix is estimated

from a set of iid target-free training data that is assumed to be representative of

the interference statistics in a cell under test. Frequently, the training data is

subject to contamination by discrete scatterers or interfering targets. In either

event, the training data becomes nonhomogeneous. As a result, it is not

representative of the interference in the test cell. Hence, standard estimates of the

covariance matrix from nonhomogeneous training data result in severely

undernulled clutter. Consequently, CFAR and detection performance suffer.

Significant performance improvement can be achieved by employing preproces-

sing to select representative training data.

Consideration has previously been given to the problem of target detection

using improved training strategies1–5 and to the impact of nonhomogeneity on

STAP performance.5–8 Use of the nonhomogeneity detector (NHD) based on

the generalized inner product (GIP) measure for STAP problems involving

Gaussian interference scenarios has been addressed1 – 4,8,9 and extended

significantly to include the effects of finite sample support used for covariance
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matrix estimation.10,11 However, the corresponding problem for nonGaussian

interference scenarios has received limited attention. This is due to the fact that

tractable models for correlated nonGaussian interference have become available

only in recent works.12–14

Nonhomogeneity of training data can occur due to environmental factors,

such as, the presence of strong discrete scatterers, dense target environments,

nonstationary reflectivity properties of the scanned area, and radar system

configurations like conformal arrays and bistatic geometries. A variety of robust

adaptive signal processing methods to combat specific types of nonhomogene-

ities have been developed.15–19

In Section 3.2, we concern ourselves with the problem of training data

nonhomogeneity caused by dense target environments and present the NHD for

nonGaussian interference scenarios. More specifically, two p-tuple random

vectorsX t andX s having covariance matricesR t andR s, respectively, are defined

to be nonhomogeneous if R s
21 R t – v I, where I denotes the p £ p identity matrix

and v is an arbitrary positive scale factor. In other words, the random vectors

are defined to be nonhomogeneous if they do not share the same covariance

structure.

In Section 3.2, we derive the NHD for nonGaussian interference scenarios,

which can be modeled by spherically invariant random processes (SIRP), and

present a statistical analysis of the resultant NHD test. Section 3.2.2 presents the

relevant mathematical preliminaries. In Section 3.2.3 we discuss the issues of

covariance matrix estimation using finite data as well as the use of a maximally

invariant test statistic for the NHD. Furthermore, we present a statistical analysis

of the NHD and show that a formal goodness-of-fit test can be constructed

for selecting homogeneous training data. The basis of our NHD strategy is

a characterization of the statistics pertaining to homogeneous SIRP clutter

scenarios and rejecting realizations departing from these statistics. Performance

analysis is discussed in Section 3.2.4. Also included therein is a performance

comparison with existing NHD tests. Conclusions and future research directions

are outlined in Section 3.2.5.

In general, the problem of nonhomogeneity detection for SIRPs is

complicated by the fact that the underlying SIRP covariance matrix and

characteristic PDF are unknown. Knowledge of the SIRP characteristic PDF

is assumed in this chapter as a first step towards addressing the problem. This

information can be gained from estimates of the first order PDF obtained from

experimental data using histogram or moment techniques.20 Significant

performance penalty is incurred if this information is unavailable. This fact

is illustrated through an example in Section 3.2.4.

The main contributions of this paper are summarized below:

1. Reduce the NHD problem for SIRP interference scenarios to one of

testing whether two data sets share a common covariance structure but

have different levels by proper use of the maximum likelihood estimate

of the covariance matrix.
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2. Provide a formal goodness-of-fit test using a scale invariant test

statistic.

3. Analytical expressions for the NHD PDF, which enable calculation

of the threshold setting for the NHD test.

4. Performance analysis of the NHD test using simulated and measured

radar data.

5. Performance comparison with existing NHD tests demonstrating

superior performance in both SIRP as well as Gaussian scenarios.

3.2.2. PRELIMINARIES

Let X ¼ ½X1X2…Xm	T denote a complex spherically invariant random vector

(SIRV) having zero mean, positive definite Hermitian covariance matrix R and

characteristic PDF f V ðvÞ: The PDF of X is given by21

fXðxÞ ¼ p2M lRl21
h2MðqÞ ð3:22Þ

where l·l denotes determinant and

q ¼ XHR21X; h2MðwÞ ¼
ð1

0
v22Mexp 2

w

v2

� �
fV ðvÞdv ð3:23Þ

Every SIRV admits a representation of the form X ¼ ZV;22 where Z has

a complex-Gaussian PDF, CNð0;RÞ; and V is a statistically independent random

variable with PDF f V ðvÞ: Consequently, the covariance matrix of X is given by

RX ¼ REðV2Þ: In practice, R and f V ðvÞ are unknown. For the purpose of this

paper, we assume knowledge of f V ðvÞ and treat the problem of nonhomogeneity

detection with respect to unknown R. Validity of the SIRP model for clutter

encountered in STAP applications has been extensively discussed.23

Previous works1–4,8–11,24 employed the GIP based NHD for Gaussian

interference scenarios. The GIP based method relies on the statistics of a quadratic

form given by Q̂ ¼ X̂HR̂21Xwhere ^ denotes estimate and H denotes Hermitian.

This method can be used as an NHD test statistic in SIRV interference if a perfect

estimate of the covariance matrix can be obtained, which calls for an extremely

large sample support size (infinite sample support). However, in practice the

training data available in a given application is limited by system considerations

such as, the bandwidth, fast scanning arrays, and more fundamentally the

underlying spatio-temporal nonstationarity of the scenario. Thus, one is almost

always forced to work with finite sample support. Consequently, the covariance

matrix estimate for this problem can be obtained to within a constant of the sample

covariance matrix, which is the maximum likelihood estimate of the covariance

matrix underlying the Gaussian component of the SIRV. Typically, this constant

is unknown in practice. Hence, proposed goodness-of-fit tests3,4,9,10 cannot be

properly implemented for this problem. On the other hand, proposed implemen-

tations of theNHD tests using the sample covariancematrix estimate for R̂ in SIRV

scenarios3,4,9–11,24 lead to incorrect declaration of data nonhomogeneity. This fact
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is illustrated in the examples presented in Section 3.2.4. Therefore, we seek a scale

invariant test statistic for this problem.

3.2.3. NONHOMOGENEITY DETECTOR FOR NONGAUSSIAN

INTERFERENCE SCENARIOS

Let X , SIRV½0;R; fV ðvÞ	 denote the complex SIRV test data vector where R is

unknown. Further, let Xi; i ¼ 1; 2;…K; denote iid complex SIRV½0;R; fV ðvÞ	
training data. The first step in deriving the NHD for SIRVs involves obtaining the

maximum likelihood estimate of the underlying covariance matrix.

This estimate is then used in a test statistic that exhibits maximal invariance

with respect to the unknown scaling of the estimated covariance matrix.

The resulting test statistic takes the form of a NAMF, that has been extensively

analyzed in Ref. 25–27 and references therein. As noted previously, the basis

of our strategy to detect nonhomogeneity in the data is to first characterize the

NHD PDF in homogeneous SIRP clutter scenarios and use this information to

construct a formal goodness-of-fit test to reject data realizations that depart from

the said PDF.

3.2.3.1. Covariance Matrix Estimation

The unknown covariance matrix is estimated from representative SIRV training

data sharing the covariance structure of that of the test cell. Maximum likelihood

(ML) estimation of the covariance matrix for SIRVs was first considered in

Ref. 28. The work of Ref. 28 showed that covariance matrix estimation for SIRVs

can be treated in the framework of a complete–incomplete data problem and

pointed out that the maximum likelihood estimate of the covariance matrix is

a weighted sample matrix. Since the covariance matrix estimate cannot be

obtained in closed form, Refs. 28 and 29 use an iterative method known as the

expectation–maximization (EM) algorithm.More precisely, let xi; i ¼ 1; 2;…;K,
denote the realizations a given set of independent identically distributed training

data sharing the covariance matrix of the random variable test data vector X.

Refs. 28 and 29 show that the ML estimate of the covariance matrix is given by

R̂ ¼ 1

K

XK
i¼1

cixix
H
i ð3:24Þ

where

ci ¼ 2
h02MðqiÞ
h2MðqiÞ ; h 0

2MðwÞ ¼ ›h2MðwÞ
›w

¼ 2h2Mþ2ðwÞ ð3:25Þ

and qi ¼ xHi R̂
21xi; i ¼ 1; 2;…K: Since both sides of Equation 3.24 involve R̂

(the right hand side implicitly through ci), it is not possible to obtain the estimate

in closed form. Consequently, Ref. 28 used the EM algorithm to obtain an

iterative solution to the problem. We adopt the approach of Ref. 28 for obtaining
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the covariance matrix estimate in this work. A derivation of the covariance matrix

estimate is contained in Appendix B. We note therein that the EM algorithm

yields an estimate that is to within a multiplicative constant of the sample

covariance matrix, which is the ML estimate of the covariance matrix underlying

the Gaussian component of the SIRV. This fact was verified for all the simulated

data examples presented in Section 3.2.4 by examining the eigenvalues of the

estimated covariance matrix obtained at the convergence of the EM algorithm.

Details pertaining to the initial start and convergence properties of the EM

algorithm can be found in Ref. 28. The next step is to use this estimate in

a maximally invariant decision statistic for nonhomogeneity detection.

Recognizing the need to know the characteristic SIRV PDF, which may be

hard to obtain in some practical applications, the works of Refs. 30 and 31 propose

recursive covariance matrix estimators for the class of nonGaussian processes

where the random variable V of the SIRP model is treated as a deterministic but

unknown parameter. Strictly speaking, the nonGaussian model used in Refs. 30

and 31 departs from the SIRPmodel due to the treatment ofV as a deterministic but

unknown scale factor. However, it serves a useful alternative model in some

instances.

3.2.3.2. Maximally Invariant NHD Test Statistic

The maximal invariant statistic for different scaling of test and training data

is given by25

LNAMF ¼ lsHR̂21Xl2

½sHR̂21s	½XHR̂21X	 ð3:26Þ

where s ¼ ð1 / ffiffiffi
M

p Þ½ 1 1…1 	T: For convenience, we use a simple choice for s by

designating it to be the first column of a normalized discrete Fourier transform

(DFT) matrix. However, in most STAP applications, the spatio-temporal steering

vector is a function of azimuthal angle and Doppler. Bearing in mind that we are

concerned about training data containing contaminating targets, which share the

same angle Doppler information as that of a desired target, the spatio-temporal

steering vector provides a logical choice for s.

The test statistic of Equation 3.26 has also been proposed as a suboptimal

method for adaptive radar target detection in compound-Gaussian clutter.32

Invariance properties of the test statistic of Equation 3.26 and its geometrical

representation have been studied in Ref. 25 and references therein for the case

of Gaussian interference statistics using a sample covariance matrix estimate.

In SIRP interference, however, each training data vector realization is scaled by

a different realization of V : Consequently, maximal invariance of the test statistic

of Equation 3.26 afforded by the sample covariance matrix estimate no longer

applies. This is due to the fact that the sample covariance matrix is no longer the

maximum likelihood estimate of the covariance matrix for SIRV scenarios.33

However, use of an estimated covariance matrix of the form of Equation 3.24
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restores the maximal invariance property of the test statistic of Equation 3.26.

The reason is that the resultant covariance matrix estimate is to within

a multiplicative constant of the sample covariance matrix. This behavior has been

verified for all the simulated data example presented in Section 3.2.4.

Consequently, we now have a case where the covariance matrix of the test and

training data share the same structure but have different unknown scaling. It has

been established in Ref. 25 that LNAMF is the invariant test statistic for this

problem. Hence, the canonical representation for LNAMF in terms of five random

variables derived in Ref. 25 applies to this problem in a straightforward manner.

However, we emphasize that it is important to properly estimate the SIRV

covariance matrix in order to reduce the NHD problem to the case where test

and training data covariance matrices differ by an unknown scale factor. This calls

for knowledge of the first order SIRV characteristic PDF.

3.2.3.3. PDF and Moments of the NonGaussian NHD Test Statistic

Our comments in the concluding paragraph of Section 3.2.3.2 allow us to use the

canonical representation for LNAMF contained in Ref. 25 for Gaussian

interference scenarios. Consequently, the PDF of the NHD test statistic is

readily determined in terms of an equivalent random variable defined by

Leq ¼ LNAMF

12 LNAMF

ð3:27Þ

It has been shown in Refs. 25, 27 and 34 for Gaussian interference statistics that

Leq admits a representation in terms of an F-distributed random variable, P; and
a beta-distributed loss factor, G: Because of the fact that the NHD problem in

SIRV interference has been reduced to that of testing whether two data sets share

the same covariance structure with differing scale, the results of Refs. 25, 27 and

34 readily extend to the SIRV problem. More precisely, for the case where no

target is present in x, Leq admits a representation of the form

Leq ¼ P

12 G
ð3:28Þ

The PDFs of P and G are given by

fPð pÞ ¼ L

ð1þ pÞLþ1
; fGðgÞ ¼ 1

bðLþ 1;M 2 1Þ g
Lð12 gÞM22 ð3:29Þ

where L ¼ K–M þ 1; and

bðm; nÞ ¼
ð1

0
xm21ð12 xÞn21dx ð3:30Þ
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After a little bit of algebra, it follows that the PDF of LNAMF with no target

present in x is given by

fLNAMF
ðrÞ ¼

ð1

0

Lð12 gÞfGðgÞð12 rÞL21dg

½12 gr	Lþ1
ð3:31Þ

The mean of LNAMF is difficult to calculate analytically. Consequently, we work

with the mean of Leq given by

EðLeqÞ ¼ K

ðK 2MÞðM 2 2Þ ð3:32Þ

to study the convergence properties in the limit of large K: The statistical

equivalence, of Leq to the ratio of an F-distributed random variable and a beta-

distributed loss factor, permits rapid calculation of the moments of Leq: Also, it
is extremely useful in Monte Carlo studies involving simulation of LNAMF:
For homogeneous training data, the use of Equation 3.28 circumvents the need to

explicitly generate the test data vector X and the training data vectors used for

covariance estimation. For large M and hence large K; significant computational

savings can be realized from the method of Equation 3.28. It is instructive to note

that the PDF of LNAMF depends only onM and K; which are under the control of

a system designer, and not on nuisance parameters such as the true covariance

matrix underlying the interference scenario. Furthermore, for K !1 the

mean of Equation 3.32 converges to EðLeqÞ ¼ ð1/ðM 2 2ÞÞ; corresponding to

the mean of an F-distributed random variable. This is due to the fact that as

K !1; the estimated covariance matrix approaches the true covariance matrix

with probability one and thus the loss factor takes on the value zero with

probability one.

3.2.3.4. Goodness-of-Fit Test

Since the PDF and mean of LNAMF are known, a formal goodness-of-fit test can

be used for nonhomogeneity detection in nonGaussian interference scenarios.

The goodness-of-fit test can be formally cast in the form of the following

statistical hypothesis test:

H0: LNAMF is statistically consistent with the PDF of Equation 3.31

H1: LNAMF is not statistically consistent with the PDF of Equation 3.31

For this purpose, we need to determine the type-I error given by

Pe ¼ PðLNAMF . hlH0Þ ¼ P Leq .
h

ð12 hÞ lH0

� �
ð3:33Þ
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Using Equations 3.27 and 3.29, it follows that the probability of error conditioned

on G is given by

PelG ¼ 1

½1þ ð12 gÞhp	L ð3:34Þ

where hp ¼ h=ð12 hÞ: The unconditional type-I error probability is obtained by
taking the expectation of Equation 3.34 over G and is given by

Pe

ð1

0

fGðgÞ
½1þ ð12 gÞhp	L dg ð3:35Þ

In Section 3.2.4 the type-I error is chosen to be 0.01. The threshold, hp;
is determined by a numerical inversion of Equation 3.35. The value of h follows

from the relationship h ¼ hp=ð1þ hpÞ: We then form empirical realizations

of LNAMF from each training data realization using a sliding window approach.

In this approach each training data vector is treated as a test cell data vector,

whose covariance matrix is estimated from neighboring cell data according

to Equation 3.24. We then test for statistical consistency of these realizations

of LNAMF with the PDF of Equation 3.31. Realizations of LNAMF exceeding

h correspond to nonhomogeneous training data. A desirable feature of Pe is that it

depends only upon K and M and not on nuisance parameters such as the true

covariance matrix underlying the interference. Performance analysis of the NHD

method is presented in the next section.

3.2.4. PERFORMANCE ANALYSIS

Performance of the goodness-of-fit test with simulated and measured data

is presented here. Figure 3.10 shows the plot of the PDF of LNAMF with K as

a parameter. Observe that the variance of LNAMF decreases with increasing K;
as increase of K provides better estimates of the covariance matrix estimate, and

when K !1; the estimated covariance matrix approaches the true covariance

matrix to within a scale factor with probability one.

Figure 3.11 shows a plot of the Type-I error versus the threshold, h;with K as

a parameter. For a given type-I error, the threshold decreases with increasing K;
in conformance with the results of Figure 3.10.

For convenience of analysis simulated data examples contained herein use

the K-distributed amplitude PDF given by12,13,21

fRðrÞ ¼ baþ1ra

2a21GðaÞ Ka21ðbrÞ r $ 0; b;a . 0 ð3:36Þ

where b and a are the distribution scale and shape parameters, respectively, Knð·Þ
is the modified Bessel function of the second kind of order v and Gð·Þ is the

Eulero–Gamma function. The K-distribution, which is a member of the class

of SIRPs,12 has been proposed as a model for impulsive clutter resulting from
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terrain and sea scatter.35,36 Small values of a result in heavy-tails for the

PDF of Equation 3.36. The corresponding fvðnÞ and h2Mð·Þ are given by

fvðnÞ ¼ 2b

GðaÞ ðbvÞ
2a21expð2b2v2Þ 0 # v # 1

h2MðwÞ ¼ 2b2M

GðaÞ ðb
ffiffi
w

p Þa2MKa2Mð2b
ffiffi
w

p Þ
ð3:37Þ

We generate 1024 realizations of a 64-tuple vector from the K-distributed SIRP

with a ¼ 0:5 having a prescribed covariance matrix according to the physical

model described in Ref. 37 using the approach of Ref. 13. No targets are added to

this data set. Starting from the midpoint (range bin 512), the data set is processed

symmetrically on either side using a sliding window. Each cell is treated as a test

cell (which may or may not contain contaminating targets). Two guard cells are

provided (one on each side of the test cell). One hundred and twenty-eight

training data realizations are collected by moving symmetrically on either side

of the guard cells for use in covariance matrix estimation. The covariance matrix

estimate is obtained using Equation 3.24. LNAMF given by Equation 3.26 is then

calculated for each test cell using the estimated covariance matrix and compared

to a threshold determined from Equation 3.35 for Pe ¼ 0:01: Relevant test

parameters are reported in the plots.

Figure 3.12 shows the performance of the goodness-of-fit test for simulated

homogeneous data from the K-distribution21 with shape parameter 0.5 using
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FIGURE 3.12 LNAMF versus range bin number for homogeneous K-distributed SIRV with

a ¼ 0:5; M ¼ 64; K ¼ 128:
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the covariance estimate of Equation 3.24. The figure shows a plot of LNAMF as

a function of range. No realization of LNAMF exceeds h; reflecting homogeneity

of the data. The experiment was repeated 1000 times and in all cases LNAMF

did not exceed h confirming the homogeneity of the data.

Figure 3.13 shows the performance of the NHD test proposed in Refs. 10,11

and 24 based on comparing the normalized GIP, xHS21x=K; with the

threshold setting determined according to Equation 3.25 in Ref. 24. Here S ¼
ð1/KÞPK

i¼1 xix
H
i is simply the sample covariance matrix. The data set used here is

the same as the data set used for the example in Figure 3.12. The normalized GIP

is formed using sliding window processing as described in Refs. 10, 11 and 24.

Figure 3.13 shows a plot of the normalized GIP as a function of range. Also

plotted is the threshold setting. From the plot it is evident that for almost all range

bins the normalized GIP exceeds the threshold, leading to the declaration of

nonhomogeneity, when in fact the data is homogeneous.

Figure 3.14 shows the performance of a second goodness-of-fit test proposed

in Refs. 10, 11 and 24, which compares the normalized GIP, xHS21x=K to

a theoretically calculated mean value obtained from Equation 3.6 of Ref. 24. The

data used for this example is the same as that used in the example of Figure 3.12.

Figure 3.14 shows a plot of the normalized GIP as a function of range. Also shown

is the theoretically calculated mean value. Again, we see that for almost all range

bins the normalized GIP exceeds the mean value causing an incorrect declaration

of data nonhomogeneity.
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FIGURE 3.13 Normalized GIP ðxHS21x=KÞ versus range bin number for homogeneous

K-distributed SIRV with a ¼ 0:5; M ¼ 64; K ¼ 128 and threshold ¼ 1.274.
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Figure 3.15 shows the performance of the NHD test proposed in Refs. 3, 4

and 9, which compares the GIP, xHS21x: to a theoretically specified mean value

of M: The data used for this example is the same as that used in the example

of Figure 3.12. Figure 3.15 shows a plot of the GIP as a function of range.

Also shown is the theoretically specified mean value. Again, we see that for

almost all range bins the GIP exceeds the mean value causing an incorrect

declaration of data nonhomogeneity. The incorrect declaration of nonhomo-

geneity is due to the fact that S is no longer the ML estimate of the covariance

matrix for SIRV interference scenarios. Similar results showing an even more

severe performance degradation in K-distributed clutter with a ¼ 0:1 were

obtained. However, these results are not reported here for avoiding tediousness

of exposition. The experiments pertaining to Figure 3.13 to Figure 3.15 were

repeated 1000 times and all the trials exhibited performance consistent with that

reported in those figures.

Figure 3.16 shows the performance of the goodness-of-fit test developed

in this paper in K-distributed clutter with shape parameter 0.5. Synthetic targets

were injected at range bins 479 and 510 to cause the nonhomogeneity. Non-

homogeneity of the data is evident in those range bins where LNAMF exceeds h:
Figure 3.17 shows the performance of the goodness-of-fit test inK-distributed

clutter with a ¼ 0:1: Synthetic targets were injected at range bins 510 and 552

to cause the nonhomogeneity. Clearly LNAMF exceeds h for both of these range

bins and thus they are declared to be nonhomogeneous data sets.
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FIGURE 3.14 Normalized GIP ðxHS21x=KÞ versus range bin number for homogeneous

K-distributed SIRV with a ¼ 0:5; M ¼ 64; K ¼ 128 and normalized GIP mean ¼ 1.
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Figure 3.18 shows the results of the goodness-of-fit test using the covariance

matrix estimator proposed in Refs. 30 and 31. This estimator does not require

knowledge of the first order characteristic PDF of the SIRV and therefore

converges faster than the estimator of Equation 3.24, especially for small values

of a: The data set used for this example is the same as that used for the example in

Figure 3.13. Although a peak in the test statistic is seen at range bin 479, it does

not exceed the threshold, while the peak is not seen for range bin 510. Therefore,

contaminating targets in range bins 479 and 510 are not detected. Furthermore,

the method erroneously reports the presence of a contaminating target at range

bin 573. This illustrates the importance of knowing the underlying characteristic

PDF to properly estimate the covariance matrix and use it in the NHD statistic.

The results contained in Figure 3.16 to Figure 3.18 were further validated

by using 1000 realizations of the experiment and averaging the results over

50 independent trials. In 997 out of the 1000 trials the NHD realizations

corresponding to bins 479 and 510 of Figure 3.16 exceeded the threshold.

For Figure 3.17, 984 times out of 1000 trials, the realizations corresponding to

range bins 510 and 552 exceeded the threshold. The corresponding number for

Figure 3.18 was 971. These findings are summarized in Table 3.2.

The examples reported in Figure 3.19 to Figure 3.21make use of theMCARM

data of Ref. 3. The MCARM data consists of measured L-band radar data using

a Westinghouse radar mounted on the port-side of a BAC1-11 aircraft. The

relevant system parameters are summarized in Table 3.3. The MCARM data is a

common test bed for performance analysis and bench-marking of STAP
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FIGURE 3.17 LNAMF versus range bin number for nonhomogeneous K-distributed SIRV

with a ¼ 0:1; M ¼ 64; K ¼ 128:
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algorithms and is therefore considered in this paper. Further details pertaining to

the MCARM data can be found in Ref. 38. Figure 3.19 shows the results of the

goodness-of-fit test for the MCARM data using acquisition 220 on Flight 5, cycle

“e” for 8 channels and 16 pulses. The results of Refs. 3, 39 and 40 using the

MCARM tend to confirm that theMCARMdata is homogeneous for themost part.

Statistical analysis of the data indicates that the data is well-approximated by the

Gaussian distribution.3 As a consequence, ci ¼ ð2h02MðqiÞÞ/ðh2MðqiÞÞ ¼ 1 for this

case. Hence, the maximum likelihood estimate of the covariance matrix is simply

the sample covariance matrix. The test statistic, LNAMF; and the threshold, h; are
plotted as a function of range. Nonhomogeneity of the data is evident in those bins

for which LNAMF exceeds h: For the sake of comparison, Figure 3.20 and

Figure 3.21 show the performance of the NHD methods of Refs. 10, 11, 24 and
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FIGURE 3.18 LNAMF versus range bin number for nonhomogeneous K-distributed SIRV

with a ¼ 0:5; M ¼ 64; K ¼ 128 and covariance matrix estimate of Refs. 30 and 31.

TABLE 3.2
Nonhomogeneity Detector Performance Summary

Figure Number Range Bin Number Number of Realizations Number of Exceedences

3.16 510 1000 997

3.16 479 1000 997

3.17 510 1000 984

3.17 552 1000 984

3.18 573 1000 971
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Refs. 3, 4, 9, respectively, using the sameMCARMdata set used in the example of

Figure 3.19. Figure 3.20 shows the results of the NHD test proposed in Refs. 10,11

and 24 based on comparing the normalized GIP, ðxHS21x=KÞ with the threshold

setting determined according to Equation 4.2 in Ref. 24. The MCARM data set is

processed in the same manner as described in the example of Figure 3.13.

TABLE 3.3
MCARM Data Parameters

Parameter Value

Transmit frequency 1240 MHz

Transmit beamwidth 6.78 Az., 10.48 El

Waveform 50.4 ms LFM

Peak transmit power 20 kw

Pulse compression ratio 63

Platform altitude 10,000 ft

Platform velocity 100 m/s

Array configuration 11 £ 11 planar array

Number of pulses 128

Pulse repetition frequency 2 kHz

Number of unambiguous range bins 630
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FIGURE 3.21 GIP ðxHS21xÞ versus range bin number using MCARM data: M ¼ 128;
K ¼ 256:
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Figure 3.21 shows the performance of the NHD test proposed in Refs. 3, 4 and 9,

which compares the GIP, xHS21x; to a theoretically specified mean value of M

using the MCARM data. The MCARM data set is processed in the same

manner as described in the example of Figure 3.15. It is seen from Figure 3.20 and

Figure 3.21 that a lot more declarations of nonhomogeneity result from the NHD

methods of Refs. 10, 11, 24 and Refs. 3, 4, 9, when in fact the MCARM data is

homogeneous. However, it may also be noted that the NHDmethod of Refs.10,11

and 24 outperforms the GIP based method of Refs. 3, 4 and 9. Thus, the NHD

method of this paper outperforms competing techniques for Gaussian interference

scenarios as well.

3.2.5. CONCLUSION

This paper provides a statistical characterization of the NHD for nonGaussian

interference scenarios, which can be modeled as a spherically invariant random

process. A formal goodness-of-fit test based is derived. Performance analysis

of the method is considered in some detail using simulated as well as measured

data from the MCARM program. Performance comparison of the method with

other NHD techniques is also undertaken. The illustrative examples validate the

approach taken and confirm the superior performance of the technique of this

paper in both Gaussian and nonGaussian interference scenarios. Future work

would include extensive performance analysis using simulated and measured

data showing the resulting impact on STAP performance. The performance

of several STAP algorithms in Gaussian and nonGaussian interference scenarios

has been considered in Ref. 26. Future work will address performance of the

methods treated in Ref. 26 in conjunction with NHD processing described herein

to combat heterogeneous interference scenarios. Preliminary work (not reported

here) in this direction reveals that the estimator of Equation 3.24 is rather slow

to converge even for moderate system dimension. A related research direction

is the performance comparison of model-based parametric STAP methods

(which do not require NHD preprocessing) with sample covariance based STAP

methods employing NHD preprocessing in dense target environments. Analysis

in this direction is undertaken in Ref. 41.
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4.1. LITERATURE REVIEW

4.1.1. INTRODUCTION

In the analysis of random data, we encounter situations to check various

statistical models or “hypotheses” against the data. The usual situation is to test

or check a particular probability distribution for consistency in representing data

from a certain experiment. The hypothesis that this distribution is the right one is

called null hypothesis, often denoted by H0: This hypothesis may have emerged

from long experience associated with an experiment and it is necessary to see

whether the hypothesis is still correct when there has been some changes in

circumstances which call it into question. Alternatively, the hypothesis may be the

result of a theoretical analysis or a logical argument and the theory needs to be

verified.

A null hypothesis is ordinarily taken to be quite specific. In particular,

location, scale, and shape parameters associated with probability density function

(PDF) are specified along with the type of distribution. For example, the PDF

of the Weibull distribution changes as its shape parameter is changed. Therefore,

Weibull distribution having a different shape parameter from the Weibull distri-

bution of the null hypothesis is assumed to be different. All the other distributions,

taken together, define what is referred to as alternative hypothesis, denoted byH1:
Therefore, a question that arises in the analysis of random data is: “If the null

hypothesis is not true, what are the suitable approximations to the underlying

distribution of the data?”

To answer this question, several tests have been proposed and used, with each

of these tests having their own strengths and weaknesses. Some may work well

for a particular set of density functions, but poorly for others. We focus our

attention on four of the most frequently used tests for analyzing random data.

Detailed discussions of these tests follow.

4.1.2. THE KOLMOGOROV–SMIRNOV TEST

This test is based on the idea of a “sample distribution function” — a statistic that

is the sample version of population distribution function.

Given a sample ðx1; x2;…; xnÞ of size n; the sample distribution function FnðxÞ
is the cumulative distribution function (CDF) of a discrete PDF where the random

variable X assumes the values x1; x2;…; xn with probability of 1=n: Consequently,
the CDF increases in steps of size 1=n at each sample value, rising from zero to

the left of the smallest xi to one at the largest xi:
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4.1.2.1. Example 1

Consider a sample13 of the following five observations.

2:22;20:83; 0:18; 1:18; 2:05

The sample distribution function is easily constructed after the sample values are

marked on the x-axis: starting at height zero for the values less than 20.83, the

CDF is increased successively by steps of height 1/5 at the ordered sample values

2 0.83, 0.18, 1.18, 2.05, and 2.22. The result is shown in Figure 4.1.

The Kolmogorov–Smirnov test statistic is defined as the maximum absolute

vertical deviation Dn; of sample distribution function, FnðxÞ; from the CDF,

F0ðxÞ; specified by the null hypothesisH0: If the fit is good,Dn is expected to have

a small value. On the other hand, if the underlying distribution has a CDF

significantly different from F0ðxÞ; it is expected that the fit will be poor and Dn

will be large. Consequently, if values of Dn exceed a prespecified value, called

the acceptance limit, H0 is rejected. Fortunately, the distribution of statistic Dn

depends only on the sample size and not on the shape of the distribution being

tested. The distribution of Dn has been computed under the assumption that the

null hypothesis holds. Results of acceptance limits are given in Table 4.112,13 for

different sample sizes and for various preselected value of

a ¼ Prðreject H0lH0 trueÞ ð4:1Þ

where a is called the significance level. For large values of n; asymptotic

formulae are given for acceptance limits. The test consists of the following steps:

F
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x
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FIGURE 4.1 Sample distribution function (Example 1).
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(1) Plot FnðxÞ and F0ðxÞ in the coordinate axes.

(2) By inspection, determine the maximum vertical absolute deviation,

given by,

Dn ¼ x
max lFnðxÞ2 F0ðxÞl ð4:2Þ

TABLE 4.1
Acceptance Limits for the Kolmogorov–Smirnov Test

Sample Size (n)

Significance Level

0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.829

4 0.494 0.525 0.564 0.624 0.734

5 0.446 0.474 0.510 0.563 0.669

6 0.410 0.436 0.470 0.521 0.618

7 0.381 0.405 0.438 0.486 0.577

8 0.358 0.381 0.411 0.457 0.543

9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.409 0.486

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.433

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.375

16 0.258 0.274 0.295 0.328 0.391

17 0.250 0.266 0.286 0.318 0.380

18 0.244 0.259 0.278 0.309 0.270

19 0.237 0.252 0.272 0.301 0.361

20 0.231 0.246 0.264 0.294 0.352

25 0.21 0.22 0.24 0.264 0.32

30 0.19 0.20 0.22 0.242 0.29

35 0.18 0.19 0.21 0.23 0.27

40 — — — 0.21 0.25

50 — — — 0.19 0.23

60 — — — 0.17 0.21

70 — — — 0.16 0.19

80 — — — 0.15 0.18

90 — — — 0.14 —

100 — — — 0.14 —

Asymptotic formula:
1:07ffiffi
n

p 1:14ffiffi
n

p 1:22ffiffi
n

p 1:36ffiffi
n

p 1:63ffiffi
n

p
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(3) Select a significance level

a ¼ Prðreject H0lH0 trueÞ ð4:3Þ
(4) Accept H0 if Dn # K and reject otherwise.

Note that

12 a ¼ Prðaccept H0lH0 trueÞ ð4:4Þ

Let the CDF of Dn be denoted by FDn
ðxlH0Þ: It follows that

PrðDn . KlH0Þ ¼ 12 FDn
ðKlH0Þ ¼ a ð4:5Þ

Consequently, K is the 100ð12 aÞ percentile of FDn
ðxlH0Þ:

4.1.2.2. Example 2

Let the null hypothesis F0ðxÞ be Gaussian with mean ¼ 32 and standard

deviation ¼ 1.8. Consider the following ten observations13: 31.0, 31.4, 33.3,

33.4, 33.4, 33.5, 33.7, 34.4, 34.9, 36.2. The corresponding sample distribution

function FnðxÞ; is sketched in Figure 4.2 along with the normal distribution whose

mean is 32 and whose standard deviation is 1.8. Assume the significance level

is chosen to be a ¼ :05: From Figure 4.2 it is determined that the maximum

deviation Dn; between the two curves is 0.56. From Table 4.1 the acceptance

limit is K ¼ :409: Because Dn . K; H0 is rejected.

Although the Kolmogorov–Smirnov test is found to perform quite well even

for small sample sizes, it has two principal disadvantages.
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FIGURE 4.2 Sample distribution function (Example 2).
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1. To perform the test it is necessary to have a priori knowledge about the

data in order to be able to specify meaningful null hypotheses.

2. When the null distribution is rejected, no information is provided about

which distributions are suitable for approximating the underlying

distribution of the data.

4.1.3. THE CHI-SQUARE TEST

The chi-square (x2) test was originally developed for discrete random variables.

It is applied to the case of continuous random variables by making a discrete

approximation to the continuous probability density function. Because the

distribution of the statistic used becomes tractable only as the sample size

becomes infinite, the chi-square test should be employed only for large sample

sizes.

Consider a null hypothesis with PDF f0ðxÞ and distribution function F0ðxÞ; as
shown in Figure 4.3. Divide the x-axis into k contiguous intervals E1;E2;…;Ek
from left to right. Note that the ith interval, Ei; consists of the set of points such
that

ai21 # x # ai

f 0
(x

)

F
0(

x
)

F0 (a5)
1

F0 (a4)

F0 (a3)

F0 (a2)

F0 (a1)

E1 E2
a1 a2 a3 a4 a5

E3 E4 E5 E6

x(a)

(b)

E1 E2
a1 a2 a3 a4 a5

E3 E4 E5 E6

x

FIGURE 4.3 PDF and distribution function divided into intervals; (a) PDF,

(b) distribution function.

Adaptive Antennas and Receivers210

© 2006 by Taylor & Francis Group, LLC



where a0 ¼ 21 and ak ¼ þ1: Consequently, ai21 and ai are the end points

of the ith interval, Ei:
Define the probabilities

pi ¼ PrðX [ EiÞ
¼ Prðai21 # X # ai21Þ
¼ ðF0ðaiÞ2 F0ðai21ÞÞ; i ¼ 1; 2;…; k

ð4:6Þ

Observe that pi is the area under f0ðxÞ between x ¼ ai21 and x ¼ ai: Also,

Xk
i¼1

pi ¼ 1 ð4:7Þ

Now consider a random experiment consisting of n independent trials. Define

fi ¼ ðnumber of outcomes in EiÞ
According to the relative frequency concept,

pi ¼ lim
n!1

fi
n

ð4:8Þ

Note that

Xk
i¼1

fi ¼ n ð4:9Þ

To test whether the null hypothesis is statistically consistent with the data, the

statistic

x 2 ¼
Xk
i¼1

ð fi 2 npiÞ2
npi

ð4:10Þ

is evaluated. The null hypothesis is rejected when x 2 exceeds a critical level M:
To determine M; the significance level

a ¼ Prðreject H0lH0 trueÞ ð4:11Þ
is specified. Observe that

a ¼ Prðx 2 . MlH0Þ ¼ ð12 Fx 2 ðMÞÞ ð4:12Þ

where Fx 2ð·Þ denotes the distribution function of the x 2 statistic. Since

Fx 2 ðMÞ ¼ 12 a ð4:13Þ
M is the 100ð12 aÞ percentile of the x 2 statistic. M is also referred to as the

rejection limit. Values of M are tabulated in Table 4.2.12,13
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TABLE 4.2
Percentiles of the Chi-Squared Distribution

Degrees of Freedom

p

.01 .025 .05 .10 .70 .80 .90 .95 .975 .99

1 .000 .001 .004 .016 1.07 1.64 2.71 3.84 5.02 6.63

2 .020 .051 .103 .211 2.41 3.22 4.61 5.99 7.38 9.21

3 .115 .216 .352 .584 3.66 4.64 6.25 7.81 9.35 11.3

4 .297 .484 .711 1.06 4.88 5.99 7.78 9.49 11.1 13.3

5 .554 .831 1.15 1.61 6.06 7.29 9.24 11.1 12.8 15.1

6 .872 1.24 1.64 2.20 7.23 8.56 10.6 12.6 14.4 16.8

7 1.24 1.69 2.17 2.83 8.38 9.80 12.0 14.1 16.0 18.5

8 1.65 2.18 2.73 3.49 9.52 11.0 13.4 15.5 17.5 20.1

9 2.09 2.70 3.33 4.17 10.7 12.2 14.7 16.9 19.0 21.7

10 2.56 3.25 3.94 4.87 11.8 13.4 16.0 18.3 20.5 23.2

11 3.05 3.82 4.57 5.58 12.9 14.6 17.3 19.7 21.9 24.7

12 3.57 4.40 5.23 6.30 14.0 15.8 18.5 21.0 23.3 26.2

13 4.11 5.01 5.89 7.04 15.1 17.0 19.8 22.4 24.7 27.7

14 4.66 5.63 6.57 7.79 16.2 18.2 21.1 23.7 26.1 29.1

15 5.23 6.26 7.26 8.55 17.3 19.3 22.3 25.0 27.5 30.6

16 5.81 6.91 7.96 9.31 18.4 20.5 23.5 26.3 28.8 32.0
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17 6.41 7.56 8.67 10.1 19.5 21.6 24.8 27.6 30.2 33.4

18 7.01 8.23 9.39 10.9 20.6 22.8 26.0 28.9 31.5 34.8

19 7.63 8.91 10.1 11.7 21.7 23.9 27.2 30.1 32.9 36.2

20 8.26 9.59 10.9 12.4 22.8 25.0 28.4 31.4 34.2 37.6

21 8.90 10.3 11.6 13.2 23.9 26.2 29.6 32.7 35.5 38.9

22 9.54 11.0 12.3 14.0 24.9 27.3 30.8 33.9 36.8 40.3

23 10.2 11.7 13.1 14.8 26.0 28.4 32.0 35.2 38.1 41.6

24 10.9 12.4 13.8 15.7 27.1 29.6 33.2 36.4 39.4 43.0

25 11.5 13.1 14.6 16.5 28.2 30.7 34.4 37.7 40.6 44.3

26 12.2 13.8 15.4 17.3 29.2 31.8 35.6 38.9 41.9 45.6

27 12.9 14.6 16.2 18.1 30.3 32.9 36.7 40.1 43.2 47.0

28 13.6 15.3 16.9 18.9 31.4 34.0 37.9 41.3 44.5 48.3

29 14.3 16.0 17.7 19.8 32.5 35.1 39.1 42.6 45.7 49.6

30 15.0 16.8 18.5 20.6 33.5 36.2 40.3 43.8 47.0 50.9

40 22.1 24.4 26.5 29.0 44.2 47.3 51.8 55.8 59.3 63.7

50 29.7 32.3 34.8 37.7 54.7 58.2 63.2 67.5 71.4 76.2

60 37.5 40.5 43.2 46.5 65.2 69.0 74.4 79.1 83.3 88.4
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The exact distribution of the statistic x 2 is not simple and depends on the pi’s

in the null distribution ðH0Þ and the distribution under test. It was found that these
difficulties markedly disappear as the sample size n becomes large.12 The

distribution of x 2 under H0 for large n is approximately one of the family of chi-

square distributions, depending on the number of intervals, k, but not on the

distribution under test. This family of distributions is characterized by the number

of degrees of freedom, defined to be k2 1: Various percentiles of the chi-square
distribution, for selected numbers of degrees of freedom, are given in Table 4.2.

4.1.3.1. Example 3

Table 4.313 gives 200 measurements of viscosity. The table gives frequencies fi
corresponding to the ten intervals. Data given in the table can be used to test the

hypothesis that the PDF from which they come is normal with mean 32 and

standard deviation 1.8. We select the significance level a to be 0.05, so that M

equals the 95th percentile of the x 2 distribution. Table 4.3 shows that k; the
number of intervals, is ten. Consequently, the number of degrees of freedom given

by k2 1 equals nine. By extracting the 95th percentile of the x 2 distribution with

nine degrees of freedom from Table 4.2 it is seen that M ¼ 16:9:
To illustrate the computations in Table 4.3, the entry for p4 is obtained from

the normal distribution function by means of Equation 4.6. Hence,

Pr ð30:05,X,31:15Þ¼F
31:15232

1:8

� �
2F

30:05232

1:8

� �
¼0:1791 ð4:14Þ

where F0ðxÞ¼F ½ðx232Þ=1:8	 and

F ðxÞ¼
ðx

21
1ffiffiffiffi
2p

p e2u 2=2 du¼Pr ðX#xÞ ð4:15Þ

TABLE 4.3
Measurements of Viscosity (Example 3)

i Interval pi 200pi fi (fi 2 200pi )
2 5 zi zi /(200pi)

1 ,27.85 0.0105 2.10 3 0.81 0.3857

2 27.85–28.95 0.0346 6.92 7 0.0064 0.0009

3 28.95–30.05 0.0943 18.86 25 37.65 1.1996

4 30.05–31.15 0.1791 35.82 42 38.10 1.06

5 31.15–32.25 0.2388 47.76 56 67.90 1.422

6 32.25–33.35 0.2161 43.22 30 174.50 4.037

7 33.35–34.45 0.1399 27.98 22 35.80 1.279

8 34.45–35.55 0.0624 12.48 11 2.19 0.175

9 35.55–36.65 0.0195 3.90 3 0.81 0.208

10 .36.65 0.0048 0.96 1 0.0016 0.0017
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Values of F ðxÞ are obtained from a table for the standard normal distribution

function.

The statistic x 2 is obtained by summing the entries in the last column with the

result x 2 ¼ 10:16: This does not exceed the 95th percentile of the chi-square

distribution with nine “degrees of freedom”, i.e., x 2 , M: The chi-square test,

therefore, calls for accepting the null distribution on the basis of given data.

Notice that the chi-square test does not test F0ðxÞ but only the pi’s. In

particular, the natural order of the intervals does not enter the test. Moreover, F0

is not the only distribution function having the pi’s obtained from F0: Despite
these minor objections, the chi-square test is frequently used in testing a

continuous distribution.

Like the Kolmogorov–Smirnov test, the chi-square test suffers from the same

disadvantages as mentioned earlier. In addition, it has one more disadvantage,

viz., it requires a large sample size to give accurate results.

4.1.4. QUANTILE–QUANTILE PLOT

A quantile–quantile (Q–Q) plot is a special plot or graphical technique which

can be performed to assess the marginal distribution of sample observations.

Consider a set of data of size n given by x1; x2;…; xn: Let the data be rank-ordered
such that xð1Þ # xð2Þ # … # xðnÞ: For the jth ordered sample xðjÞ; define

pð jÞ ¼ j2 1=2

n
ð4:16Þ

where the 1/2 is introduced as a “continuity correction”.14 Let FXðxÞ denote the

CDF of data. For large enough sample values of n, it then follows that

FXðxð j ÞÞ ¼ PrðX # xð j ÞÞ < pð j Þ ð4:17Þ

Denote the CDF of the null distribution by F0ðzÞ: The quantile of F0ðzÞ; denoted
by qðjÞ; is related to pðjÞ by

F0ðqð j ÞÞ ¼ PrðZ # qð j ÞÞ ¼ pð j Þ ð4:18Þ

If the data comes from the same distribution as the null distribution, then

xð j Þ < qð j Þ ð4:19Þ

and xð j Þ can be interpreted as an estimate of the sample quantile.

A Q–Q plot is generated using the following steps:

(1) Collect n data points x1; x2;…; xn:
(2) Rank-order the data such that xð1Þ # xð2Þ # … # xðnÞ:
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(3) Define

pð j Þ ¼ j2 1=2

n
; j ¼ 1; 2;…; n

(4) Evaluate the quantile qð j Þ defined by

F0ðqð j ÞÞ ¼ pð j Þ; j ¼ 1; 2;…; n

(5) Plot the pair of points

ðqð j Þ; xð j ÞÞ; j ¼ 1; 2;…; n

When the data comes from the null distribution, the Q–Q plot is likely

to approximate a straight line through the origin at 458.

4.1.4.1. Example 4

A sample14 of n ¼ 10 observations gives the values tabulated in the 2nd column

of the Table 4.4. The sample mean and the sample variance are m̂ ¼ :77 and

ŝ 2 ¼ :9414 respectively. The values of pð jÞ are computed in the 3rd column.

Taking the normal distribution with mean m̂ and variance ŝ 2 as the null

distribution, the corresponding quantiles qð jÞ are evaluated in the 4th column.

For example, corresponding to pð9Þ ¼ :85

F0ðqð9ÞÞ ¼ PrðZ# 1:775Þ ¼
ð1:775

21
1ffiffiffiffiffiffiffi

2ps 2
p e2ðz20:77Þ2=1:8828dz¼ 0:85 ð4:20Þ

Consequently, qð9Þ ¼ 1:775:

TABLE 4.4
Observation Table (Example 4)

j
Ordered Observations

x(j)

Probability Levels
p( j ) 5 (j 2 1/2)/n

Standard Normal
Quantiles q(j)

1 21.00 0.05 20.826

2 20.10 0.15 20.235

3 0.16 0.25 0.116

4 0.41 0.35 0.396

5 0.62 0.45 0.649

6 0.80 0.55 0.891

7 1.26 0.65 1.144

8 1.54 0.75 1.424

9 1.71 0.85 1.755

10 2.30 0.95 2.366
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The Q–Q plot for the above data, which is a plot of the ordered data xð j Þ
against the normal quantiles qð j Þ; is shown in Figure 4.4. The pair of points

ðqð j Þ; xð j ÞÞ lie very nearly along a straight line at 458 and it is accepted that these

are normally distributed with mean ¼ .77 and variance ¼ .9414.
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FIGURE 4.4 Q–Q plot (Example 4).

TABLE 4.5
Critical Points for the Q–Q Plot Correlation Coefficient Test for Normality

Sample Size (n)

Significance Levels (a)

0.01 0.05 0.10

5 0.8299 0.8788 0.9032

10 0.8801 0.9198 0.9351

15 0.9126 0.9389 0.9503

20 0.9269 0.9508 0.9604

25 0.9410 0.9591 0.9665

30 0.9479 0.9652 0.9715

35 0.9538 0.9682 0.9740

40 0.9599 0.9726 0.9771

45 0.9632 0.9749 0.9792

50 0.9671 0.9768 0.9809

55 0.9695 0.9787 0.9822

60 0.9720 0.9801 0.9836

75 0.9771 0.9838 0.9866

100 0.9822 0.9873 0.9895

150 0.9879 0.9913 0.9928

200 0.9905 0.9931 0.9942

300 0.9935 0.9953 0.9960
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The straightness of the Q–Q plot can be evaluated by calculating the

correlation coefficient of the points in the plot. The correlation coefficient

for the Q–Q plot is approximated by

r̂Q ¼

Xn
j¼1

ðxð j Þ 2 m̂Þðqð j Þ 2 q̂ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðxð j Þ 2 m̂Þ2
vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ðqð j Þ 2 q̂Þ2
vuut ð4:21Þ

where q̂ is the sample mean of the quantiles qð j Þ; j ¼ 1; 2;…; n: Formally,

we select the null hypothesis at a significance level a if r̂Q exceeds a critical

value denoted by M:14 The values of M have been evaluated for the normal

distribution and tabulated in Table 4.514 for different sample sizes and

significance levels.

For the above example we select a ¼ :10: Also, using the information from

Table 4.4, it is found that the mean of sample quantiles and standard normal

quantiles are, respectively, m̂ ¼ :77 and q̂ ¼ :768: Using Equation 4.21, we

find that the correlation coefficient, r̂Q; is found to be 0.9943. Referring to

Table 4.5, we find that corresponding to n ¼ 10 and a ¼ :10; the critical pointM
for the Q–Q plot correlation coefficient test for normality is 0.9351. Because

r̂Q . :9351; the hypothesis of normality is accepted.

4.1.5. PROBABILITY–PROBABILITY PLOT

The probability–probability (P–P) plot is another graphical technique that

is performed for random data analysis. Just as with the Q–Q plot we consider a

set of data of size n given by x1; x2;…; xn: The data is rank-ordered such that

xð1Þ # xð2Þ # … # xðnÞ: Proceeding in line with the Q–Q plot, define for the

jth ordered sample, xð j Þ;

pð j Þ ¼ j2 1=2

n
ð4:22Þ

where the 1/2 is introduced as a “continuity correction”.14 Let FXðxÞ denotes the
CDF of the data. From the Q–Q plot we know that the rðjÞ’s are the sample

quantiles. Denote the CDF of the null distribution by F0ðzÞ: Then pxð j Þ is defined
to be the probability such that

F0ðxð j ÞÞ ¼ PrðZ # xð j ÞÞ ¼ pxðjÞ ð4:23Þ

If the data comes from the same distribution as the null distribution, it is

likely that

pxð j Þ < pð j Þ ð4:24Þ

and pðjÞ can be interpreted as an estimate of the probability pxðjÞ :
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A P–P plot is generated using the following steps:

(1) Collect n data points x1; x2;…; xn21; xn:
(2) Rank-order the data such that xð1Þ # xð2Þ # … # xðnÞ:
(3) Define

pð j Þ ¼ j2 1=2

n
; j ¼ 1; 2;…; n

(4) Evaluate the probability pxðjÞ defined by

F0ðxð j ÞÞ ¼ pxð j Þ ; j ¼ 1; 2;…; n

(5) Plot the pair of points

ðpxð j Þ ; pð j ÞÞ; j ¼ 1; 2;…; n

When the data comes from the null distribution, the P–P plot is likely

to approximate a straight line through the origin at 458.

4.1.5.1. Example 5

We take the example used with the Q–Q plot and find the P–P plot of the given

data. The observations are tabulated in the 2nd column of Table 4.6. Values of pðjÞ
are computed in the 2nd column. The sample mean and the sample variance are

m̂ ¼ :77 and ŝ 2 ¼ :9414: Finally, taking the normal distribution with mean m̂

and variance ŝ 2 as the null distribution, the corresponding probabilities pxðjÞ are

TABLE 4.6
Observation Table (Example 5)

j
Ordered Observations

x( j)

Probability Levels
p( j ) 5 (j 2 1/2)/n

Standard Normal
Quantiles px( j )

1 21.00 0.05 0.0342

2 20.10 0.15 0.1853

3 0.16 0.25 0.2647

4 0.41 0.35 0.3553

5 0.62 0.45 0.4384

6 0.80 0.55 0.5124

7 1.26 0.65 0.6932

8 1.54 0.75 0.7864

9 1.71 0.85 0.8336

10 2.30 0.95 0.9424
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evaluated in the 4th column. For example, corresponding to xð7Þ ¼ 1:26

F0ðxð7ÞÞ ¼ PrðZ # 1:26Þ ¼
ð1:26

21
1ffiffiffiffiffiffiffi
2ps2

p e2ðz20:77Þ2=1:8828dz ¼ 0:6932 ð4:25Þ

Consequently, pxð7Þ ¼ :6932
The P–P for the above data, which is a plot of values pðjÞ against the normal

probabilities pxðjÞ, is shown in Figure 4.5. The pair of points ðpðjÞ; pxðjÞ Þ lies very
nearly along a straight line at 458 and we accept the notion that these are normally

distributed with mean ¼ .77 and variance ¼ .9414.

The straightness of the P–P plot can be evaluated by approximating the

correlation coefficient

r̂P ¼

Xn
j¼1

ðpð j Þ 2 p̂Þðpxð j Þ 2 p̂xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðpð j Þ 2 p̂Þ2
vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ðpxð j Þ 2 p̂xÞ2
vuut ð4:26Þ

where p̂ and p̂x are the sample means of pð j Þ and pxð j Þ ; respectively, with

j ¼ 1; 2;…; n: Unfortunately, a table for the critical value M for different values

of the significance level a, was not found in the literature. If r̂P is close to unity,

pðjÞ and pxðjÞ are highly correlated and although a significance level cannot be

specified, it is likely that the data can be approximately with null distribution.

For this example,

r̂P ¼ 0:9960 ð4:27Þ
Because r̂P < 1; it is concluded that the data is statistically consistent with the

normal distribution having mean m̂ ¼ :77 and variance ŝ 2 ¼ :9414:
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FIGURE 4.5 P–P plot (Example 5).
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An attractive property of the Q–Q plot is that it is invariant to a linear

transformation. Specifically, the Q–Q plot of a linear function of xðjÞ is again

a straight line at 458. However, this time the line need not pass through the origin.

P–P plots do not have this property. The main drawback of these plots is their

weak performances for small and moderate sample sizes. Also, generalization of

the Q–Q plot to multivariate distributions is not straightforward. On the other

hand P–P plots can be applied to the multivariate situation. Although a statistic

exists for evaluating the straightness of the Q–Q plot when the null distribution is

standard normal, this statistic is not readily available for other distributions.

Consequently, the Q–Q and P–P plots do not readily offer a quantitative

goodness of fit test and the decision is mostly made on a subjective basis.

4.2. THE OZTURK ALGORITHM

4.2.1. INTRODUCTION

In testing a null hypothesis for a distributional assumption against an unspecified

alternative, no uniformly most powerful or optimal test2 exists. Because of this,

various test procedures have been developed to assess these distributional

assumptions. Under certain conditions, (i.e., for a specified null hypothesis,

a specified sample size, and a predetermined level of significance) one test

procedure may be shown to be more powerful than the other existing procedures.

Besides, the power consideration of a given test, computational simplicity,

desirable distributional properties of the test statistic and the generality of test

procedure are some of the important properties to be considered.

Section 4.1 provided a brief overview of some of these tests. The x 2 test has

been widely used for assessing the distributional assumptions because of its

generality and computational simplicity.2 However, the choice of class intervals

for computing the test statistic is arbitrary and the procedure can be used only for

large sample sizes. Q–Q plots and P–P plots are among the most widely used

graphical procedures for making assessment about the random data. But their

performances are weak for small and moderate sample sizes. Also, generaliz-

ations of Q–Q plots to the multivariate distributions are not simple.5,6

As described in Refs. 9, 12, 13, and 17, the Kolmogorov–Smrinov test, which

is based on the empirical distribution function of the sample and the null

distribution, is also widely used. In fact, comparative studies have shown that, the

Kolmogorov–Smirnov statistic has higher power than the x 2 statistic for many

alternatives.2 There are many other tests such as W test (by Shapiro and Wilk),

Anderson’s A test,2 Filliben’s correlation coefficient test,8 etc.

All these tests are goodness of fit tests. Within a certain confidence level,

these tests provide information whether a set of random data is statistically

consistent with a specified null distribution. However, if the specified distribution

is rejected, these tests give no clue about the alternative underlying distribution

of data. Thus, we need to have a priori knowledge about the random data to be

able to use these tests. In practice, a lot of times we have no a priori knowledge
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about the random signals. For example, the clutter PDF encountered in radar

signal processing, is not known a priori. Moreover, a lot of these tests require

a large number of observations to give accurate results. Obtaining many

observations may prove costly in a real-world situation. Consequently, a scheme

is necessary, that not only performs the Goodness of Fit test but also

approximates the PDF for small number of observations.

A new algorithm based on sample order statistics has been developed in

Refs. 1–3 and has been reported in Ref. 10 for univariate distribution

approximation. This algorithm has two modes of operation. In the 1st mode,

the algorithm performs a goodness of fit test. Specifically, the test determines, to a

desired confidence level, whether random data is statistically consistent with a

specified probability distribution. In the 2nd mode of operation, the algorithm

approximates the PDF underlying random data. In particular, by analyzing the

random data and without any a priori knowledge, the algorithm identifies, from a

stored library of PDFs, the density function which best approximates the data.

Estimates of location, scale, and shape parameters of the PDF are provided by the

algorithm. The algorithm is typically found to work well for observation sizes of

the order of 75 to 100.

In this chapter we present the Ozturk algorithm. It will be demonstrated

through examples that the algorithm can be used to test for any distributional

assumption (not limited to location-scale family) including univariate and

multivariate random variables.

4.2.2. DEFINITIONS

Let FY ðy Þ denote the PDF of a random variable Y :Consider the linear transforma-

tion defined by

x ¼ byþ a ð4:28Þ
The PDF of X is given by

fXðxÞ ¼ 1

lbl
fY

x2 a

b

� �
ð4:29Þ

where a and b are defined to be the location and scale parameters of fXðxÞ;
respectively. The mean mx and the variance s

2
x of the random variable x are given

by

mx ¼ E½x	; s 2
x ¼ E½ðx2 mxÞ2	 ð4:30Þ

where E is the expectation operator.

Although the mean and the variance are related to the location and scale

parameters, it may be noted that the location parameter is not the mean value and

the scale parameter is not the square root of the variance in general. However, for

a standard Gaussian PDF fY ðy Þ; for which the mean is zero and variance is unity,

the location parameter is the mean of X and the scale parameter is the standard

deviation (square root of the variance) of X:
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The coefficient of skewness a3; and the coefficient of kurtosis a4; of X are

defined to be

a3 ¼ E½ðx2 mxÞ3	
s3
x

; a4 ¼ E½ðx2 mxÞ4	
s4
x

ð4:31Þ
It is readily shown that a3 and a4 are invariant to the values of mx and sx: For a
PDF that is symmetric about the mean, a3 ¼ 0: For the case of the Gaussian

distribution, a3 ¼ 0 and a4 ¼ 3:

4.2.3. THE OZTURK ALGORITHM

Any distribution or a family of distributions can be represented by a single point

or by a region on an a3 –a4 plane, respectively, where a3 is the coefficient of

skewness and a4 is the coefficient of kurtosis (see for example Ref. 15, p. 14). A

set of random data can also be represented by a point whose coordinates are given

by the sample estimates of a3 and a4: Then the best candidate for the underlying
true distribution can be identified to be the nearest neighbor distribution on the

chart. Although such a chart, based on the coefficient of skewness and kurtosis,

provides a useful method of characterizing the distributions, its use is limited

because the moments of some distributions do not exist. Other drawbacks of this

approach are

1. Estimates of a3 and a4 are highly sensitive to extreme observations.

2. Estimates of these moments are highly biased for small sample sizes.4

3. The moment estimators are greatly affected by outliers.

This chapter introduces the Ozturk Algorithm which is a general graphical

technique that works in two specific modes:

1. In the first mode it performs a formal goodness of fit test for a specified

null distribution.

2. In its second mode it provides a graphical representation that gives

insight to the distribution which best approximates the data set and

provides a way of characterizing the data.

4.2.3.1. Goodness of Fit Test

The goodness of fit test is a complex algorithm that determines whether or not the

set of data samples provided to the algorithm are statistically consistent with

a specified distribution (the null hypothesis). Using the standard normal

distribution with zero mean and unit variance as the reference distribution, the

standardized sample order statistics are represented by a system of linked vectors.

The terminal point of the linked vectors, as well as the shape of their trajectories,

are used in determining whether or not to accept the null hypothesis. In its present

form the algorithm uses the standard Gaussian distribution as the reference

distribution. However, any other distribution could be used as the reference
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distribution. The null hypothesis is the distribution against which the sample data

is to be tested. Note that the reference distribution need not be the same as the null

distribution.

We begin by introducing several sample order statistics used in the algorithm

and thereafter proceed to explain the goodness of fit test procedure

Consider the following three sets of data size n where each corresponding

entry in sequential data sets is treated as a random variable:

1. A sample data set

X1;X2;X3;…;Xn

with mean and standard deviation given by mx and sx:
2. A null hypothesis data set

Z1; Z2; Z3;…; Zn

is generated from any available distribution against which the sample

set will be tested. The mean and standard deviation of this data set are

defined to be mz and sz; respectively.
3. A reference distribution data set

W1;W2;W3;…;Wn

is generated from the standardized Gaussian distribution.

Let X1:n # X2:n # … # Xn:n denote the ordered set of samples obtained by

ordering Xi; i ¼ 1; 2;…; n; where X1:n is the smallest data sample. Similarly, the

other two data sets are ordered resulting in the three ordered data sets

X1:n;X2:n;X3:n;…;Xn:n

Z1:n; Z2:n; Z3:n;…; Zn:n

W1:n;W2:n;W3:n;…;Wn:n

ð4:32Þ

Define

Yi:n ¼ Xi:n 2 m̂x

ŝx
; i ¼ 1; 2;…; n ð4:33Þ

where m̂x ¼
P
Xi=n is the sample mean and ŝx ¼

P½ðXi 2 mxÞ2=ðn2 1Þ	1=2 is the
sample standard deviation. These are the standardized order statistics of the

sample data. For the null hypothesis, a Monte Carlo simulation consisting of 2000

trials is utilized. The estimate of the expected values of the standardized ith order

statistic is defined as

T̂i:n ¼ 1

2000

X2000
k¼1

ðZi:nÞk 2 m̂z

ŝz
; i ¼ 1; 2;…; n ð4:34Þ

where ðZi:nÞk denotes the ith order statistic from the kth Monte Carlo trial, and m̂z

and ŝz denote the sample mean and sample standard deviation. Also, m̂i:n is

defined as the estimate of the expected value of the ith order statistic of
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the reference distribution, the standardized Gaussian. Using 2000 Monte Carlo

trials.

m̂i:n ¼ 1

2000

X2000
k¼1

ðWi:nÞk; i ¼ 1; 2;…; n ð4:35Þ

where ðWi:nÞk denotes the ith order statistic from the kth Monte Carlo trial of the

reference distribution. When the null hypothesis is the reference distribution,

the standardized Gaussian, then

T̂i:n < m̂i:n ð4:36Þ
The goodness of fit test proceeds by joining together two sets of n linked vectors,

one for the sample data and one for the null hypothesis. The ith linked vector

in each set is characterized by its length and orientation with respect to the

horizontal axis. For the sample data, the length of the ith vector ai; is obtained
from the magnitude of the ith standardized order statistic of the data, while its

angle or orientation, ui is related to m̂i:n: More specifically, for the sample data

ai ¼ lYi:nl
n

; ui ¼ puðm̂i:nÞ; fðxÞ ¼ 1ffiffiffiffi
2p

p
ðx

21
exp 2

t2

2

{ !
dt ð4:37Þ

fx is the cumulative distribution of the standard Gaussian distribution. We define

the sample points Qk in a two dimensional plane ðU;VÞ by

Qk ¼ ðUk;VkÞ; k ¼ 1; 2;…; n ð4:38Þ
where U0 ¼ V0 ¼ 0 and

Uk ¼ 1

k

Xk
i¼1

lYi:nlcosðuiÞ; Vk ¼ 1

k

Xk
i¼1

lYi:nlsinðuiÞ; k ¼ 1; 2;…; n ð4:39Þ

Similarly, for the null hypothesis the length of the ith vector, bi; is obtained

from the magnitude of the ith standardized order statistic of the null data set.

Specifically, for the null data

bi ¼ lT̂i:nl
n

; ui ¼ pfðmi:nÞ ð4:40Þ
Using the same two dimensional plane, we plot the sample points for the null

distribution defined by

Q0k ¼ ðU0k;V0kÞ; k ¼ 1; 2;…; n ð4:41Þ
where U00 ¼ V00 ¼ 0 and

U0k ¼ 1

k

Xk
i¼1

lT̂i:nlcosðuiÞ; V0k ¼ 1

k

Xk
i¼1

lT̂i:nlsinðuiÞ; k ¼ 1; 2;…; n ð4:42Þ
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Note that the angle u remains the same for both sets of linked vectors. However,

the magnitude of the linked vector for the sample data is ai whereas, it is bi for the

null distribution. The angle ui is solely dependent on the reference distribution

while the magnitude lYi:nl and lT̂i:nl are solely dependent on sample data and null

data sets, respectively. In particular, for the ith sample-linked vector, ai is

dependent on the standardized ith order statistic of the sample data set whereas,

for the ith-linked vector of null hypothesis, bi is dependent on the estimate of the

expected value of the ith standardized order statistic of the Monte Carlo

simulation of null distribution.

Although Yi:n and T̂i:n are ordered statistics from the smallest to the largest, it

may be noted that the magnitude of Yi:n and T̂i:n are not. In fact, with increasing i;
lYi:nl and lT̂i:nl begin large, decrease to approximately zero, and then increase

again.

The ith sample and null-linked vectors, respectively, are drawn by joining the

points ðQi;Qi21Þ and ðQ0i;Q0ði21ÞÞ: It should be noted that the Qn and Q0n, given

in Equation 4.38 and Equation 4.41 represent the terminal points respectively, of

the linked vectors defined above. Figure 4.6 shows the two sets of linked vectors

obtained when the sample and null data sets are obtained from the Gaussian

distribution with n ¼ 6 and n ¼ 50: The solid curves in Figure 4.6 show the

linked vector for the sample distribution while the dashed curves show the ideal

linked vector for the null distribution. When the length n of the data set is large

(of the order of 50 points), the linked vector is a smooth arc, as seen in Figure 4.6.

For a typical set of ordered data samples, drawn from null distribution, it is

reasonable to expect that the sample-linked vectors would follow the null-linked

vectors closely. If the ordered set of samples is not from the null distribution, then

the sample-linked vectors are not expected to follow the path of the null-linked

vectors closely. Hence, the procedure provides visual information about how well

the ordered set of data fit the null distribution. However this is not an ad hoc

statistical procedure. As shall be seen later on, we do construct test statistics to

present a formal way of performing the goodness of fit test to determine whether

the data set is statistically consistent with the null hypothesis.

4.2.3.1.1. Properties of the Test Statistic Q0n

An important property of the Q0n statistic is that it is invariant under linear

transformation. In particular, we consider the standardization used in Equation

4.33. Let Si ¼ cXi þ d where c and d are constants. Let ms and ss denote the

mean and standard deviation of the samples, Si; respectively. Then, it is readily
shown that

Xi 2 mx

sx

���� ���� ¼ Si 2 ms

ss

���� ����
The invariance property follows as a consequence. The advantage of this property

is that the PDF of Q0n ¼ ðU0n;V0nÞ for a given sample set and reference

distribution depends only on the sample size n and is unaffected by the location
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and scale parameters. The distributional properties of this statistic for testing

normality is studied by Ozturk and Dudewicz in Ref. 3.

The exact sampling distribution ofQ0n is usually difficult to obtain. However,

the empirical distribution of the test statistic Q0n was obtained via Monte Carlo

experimentation by Ozturk and Dudewicz in Ref. 3. Using the means, variances,

and coefficients of skewness and kurtosis ofU0n and V0n based on 50,000 samples

for values of n from 3 till 100, they found that the distributions of U0n and V0n

approach the normal distribution even for moderate sample sizes. The

distributional properties of the statistic Q0n ¼ ðU0n;V0nÞ for testing normality
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FIGURE 4.6 Linked vectors QK ¼ ðUk;VkÞ; (a) sampled data (solid line) and null

hypothesis (dashed line); (b) confidence ellipses.
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is studied by Ozturk and Dudewicz in Ref. 3. Some of the empirical results

obtained by them for the statistic Q0n for standard normal distribution for

3 # n # 100 are given below.

EðU0nÞ ¼ 0

EðV0nÞ ¼ mv < 0:326601þ 0:412921

n

EðU0nV0nÞ < 0

ð4:43Þ

VarðU0nÞ ¼ s 2
u <

0:02123

n
þ 0:01765

n2

VarðV0nÞ ¼ s 2
v <

0:04427

n
2

0:0951

n2

ð4:44Þ

Also, it was found empirically, for n . 10; that, U0n and V0n are approximately

bivariate normal.

An interesting property of this algorithm is that any one of the points Q0k;

k ¼ 1; 2;…; n; or a selected group of these points can be used as a test statistic to

establish a formal test. The algorithm in its present form proposes the general

statistic Q0n as the test statistic for testing the null hypothesis.

4.2.3.1.2. Basic Concept of the Confidence Contours

The algorithm provides quantitative information as to how consistent the sample

data set is with the null hypothesis distribution by the use of the confidence

contours. An example of these contours is shown in Figure 4.6. If the end point

of the sample data linked vector curve falls within one or more of these contours,

then the sample data set is said to be statistically consistent with the null

hypothesis at a confidence level based on the confidence contours. If the sample

data set is truly consistent with the null hypothesis, note that the sample-linked

vector is likely to closely follow the null-linked vector.

Now, consider the linked vector for the null hypothesis which is based on

the standardized expected values of order statistics, Z, for 2000 Monte Carlo

simulations. The test statistic Q0n; found by computing the expected value of

2000 end points of the 2000 linked vectors provided by the Monte Carlo

simulation, is random. The coordinates of Q0n; U0n; and V0n; may or may not be

bivariate Gaussian.

When U0n and V0n are bivariate Gaussian, the confidence contours of null

hypothesis are readily determined. A three dimensional bell shaped bivariate

Gaussian curve is fitted to the 2000 end points arising from the Monte Carlo

simulation. The elliptical contours of this distribution are plotted for various

parameters of the significance level a (e.g., 0.01, 0.05, 0.1) where a is defined as

the conditional probability that Q0n falls outside the specified ellipse, given that

the data comes from the null distribution. ð12 aÞ is called the confidence level

and the corresponding contour is called the 100ð12 aÞ% confidence contour.
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Note that ð12 aÞ is the conditional probability that the Q0n falls inside

the specified ellipse, given that the data comes from null distribution.

This could be done for any of the n points of the ordered statistic, Z, along the

null-linked vector. Thus, more than one set of confidence contours could be

created if there is more than one test statistic. Then, if the sample data is truly

consistent with null hypothesis, the sample data-linked vector is likely to pass

through a series of confidence contours, determined from the distributions of the

test statistics. However, it was found to be unnecessary to clutter-up the graphics

with so many contours since it can always be visually detected whether or not the

linked vectors are closely following the same trajectory. The option of using

more than one test statistic is provided in the algorithm.

Note that the average value of the test statistic, Q0n; of null distribution is at

the center of the contours. Thus, the closer the end point of the sample data

linked-vector is to the center of confidence contour, the more likely it is that the

sample data is coming from null hypothesis. As the significance level decreases,

the confidence level increases and the probability that Q0n will fall within the

corresponding ellipse will also increase. This results in the fact that the size of the

confidence contours increases as the confidence level increases.

For a given sample size, n; the ith angle of any linked vector depends solely on
the reference distribution which remains unchanged throughout. Consequently,

for a given value of sample size, n; and for a given null hypothesis, values for the
magnitude and angle of the points ðU0k;V0kÞ on the null-linked vector,

k ¼ 1; 2;…; n; may be tabulated. This table, which is dependent on n and the

null hypothesis, could be stored and recalled when desired. This can significantly

reduce the computational requirements.

4.2.3.1.3. Determining Confidence Contours

As described earlier, the confidence contours are contours from the bivariate

PDF of the end point coordinates used to determine the test statistic Q0n: These
2000 end points are obtained from the Monte Carlo simulation. Plotting

confidence contours is usually not easy when the joint distribution is not

bivariate normal. Further, in order to analytically determine the confidence

contours, the joint PDF of U0n and V0n must be known.4 However, it is difficult

to analytically determine this joint PDF. Consequently, a normality transform-

ation is made on the end point coordinates U0n and V0n to obtain statistics

r0u ¼ c1ðU0nÞ and r0v ¼ c2ðV0nÞ where c1ð·Þ and c2ð·Þ are functions operating on
U0n and V0n; respectively. A family of distributions called the Johnson System is

used to perform the transformation on U0n and V0n to obtain a bivariate normal

distribution.

The Johnson system of distributions is a flexible family of distributions

having four parameters. This system is used to summarize a set of data by

means of a mathematical function that will fit the data. The system proposed

by Johnson contains three families of distributions which are obtained by
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transformations of the form

R ¼ gþ h fiðG;l; eÞ; i ¼ 1; 2; 3 ð4:45Þ
where R is a standard normal variable and G is the random variable on which the

transformation is performed. g;h; l; and e are four parameters of the Johnson

system of distributions. In particular, let

R0u¼g1þh1fiðU0n;l1;e1Þ R0v¼g2þh2fiðV0n;l2;e2Þ; i¼1;2;3 ð4:46Þ
where fi; i¼1;2;3 represent the following three functions suggested by Johnson:

f1ðg;l;eÞ¼ sinh21 g2e

l

� �
ð4:47Þ

denotes the SU distribution.

f2ðg;l;eÞ¼ ln
g2e

lþe2g

� �
; e#g# eþl ð4:48Þ

denotes the SB distribution, and

f3ðg;l;eÞ¼ ln
g2e

l

� �
; g. e ð4:49Þ

denotes the SL distribution.

Note that fiðg;l; eÞ; i ¼ 1; 2;…; 3; are single-valued monotonically

increasing functions for the allowed ranges of g: SL is, in essence,

a three parameter distribution since the parameter l can be eliminated by

letting gp ¼ g2 h ln l so that r ¼ gp þ h lnðg2 eÞ: SB is a distribution

bounded on ðe ; e þ lÞ and the SU is an unbounded distribution. In a plot of

the 3rd and 4th order standardized moments where
ffiffiffiffi
a3

p
is plotted vs. a4; the

chosen functions are such that the SL distributions form a curve dividing the

ð ffiffiffiffi
a3

p
;a4Þ plane in two regions. The SB distributions lie in one of the regions and

the SU lie in the other.

While using this system of transformations, the first step is to determine

which of the three families should be used for performing the normality

transformation. A possible procedure is to compute the sample estimate of the

standardized moments, viz., the coefficients of skewness and kurtosis and choose

the distribution depending on which of the two regions contains the computed

point. However, as described at the beginning of the chapter, this method has

major drawback. Consequently, another procedure is used to determine the

family of distributions and perform transformations. It is a simple selection rule,

which is a function of four percentiles to select one of the three families and to

give estimates of the parameters for all the families. It was developed by Slifker J.

and Shapiro S. in Ref. 4.

The idea of the selection rule is to try and find a property of the

transformation given in Equation 4.45 and use it to select an appropriate member

of the Johnson family to approximate a set of data. According to Slifker J. and
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Shapiro S., heuristically there must be some relationship concerning the distances

in the tails vs. distances in the central portion of the distribution, which could be

used to distinguish between bounded and unbounded cases. This led to the

following formalization.

Consider any one of the transformations described by Equation 4.45. Choose

any fixed value of r . 0 of a standard normal variate. Then the points ^r and

^3r divide a horizontal axis into three intervals of equal length given by

ð23r;2rÞ; ð2r; rÞ; ðr; 3rÞ: Let g3r; gr; g2r; and g23r be the values corresponding

to 3r; r; 2r and 23r; under the transformation given in Equation 4.45,

respectively. Let

m ¼ g3r 2 gr l ¼ g2r 2 g23r p ¼ gr 2 g2r ð4:50Þ

Because fiðg; l; eÞ; i ¼ 1; 2;…3; are single-valued monotonically increasing

functions for the allowed ranges of g; it is readily seen that m; l; and p are all

greater than zero. For a bounded symmetrical Johnson distribution, it was

hypothesized that the distancesm and l between each of the outer and inner points

would be smaller than the distance p between the two inner points. The converse

would be true for the unbounded case. This led to the following more general

results:

ðiÞ ml
p2

. 1 for any SU distribution;

ðiiÞ ml
p2

, 1 for any SB distribution;

ðiiiÞ ml
p2

¼ 1 for any SL distribution:

ð4:51Þ

These properties are proven in Appendix C and can be used to discriminate

among the three families.
4.2.3.1.3.1. Selection Procedure. The selection procedure consists of the
following steps:

1. Choose a fixed value of r . 0: This choice should be motivated by

the number of data points. In general, for moderate sized data sets,

a value of r less than one should be chosen.4 Any choice of r greater

than one would make it difficult to estimate the percentile of ^3r:
A typical choice is to use a value of r close to 0.5 such as 0.524. This

would make 3r ¼ 1:572 and these points correspond to the 70th and

the 94.2th percentiles of the standard normal distribution, respectively.

However, the larger the number of data points, the larger the value of r

that can be selected. In the Ozturk algorithm r is chosen to be

0.775449.
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2. Determine from a table for the normal distribution the probability

Pa ¼ PrðR # aÞ; where a is taken to be either 3r; r; 2r or 23r:
For example, if r ¼ 0:5 then P0:5 ¼ PrðR # 0:5Þ ¼ 0:6915:

3. Determine integer values of ka such that

Pa <
ka 2

1

2
n

ð4:52Þ

where

ka ¼ nPa þ 1

2

� �
ð4:53Þ

[·] denotes the closest integer, and a ¼ 3r; r; 2r; 23r:
4. Obtain n observations of the random variable G, where G is related to

the random variable R through Equation 4.45. Order these observations

from the smallest to the largest and denote the kth ordered observation

by gk:
5. Let

ga ¼ gka ð4:54Þ

where a ¼ 3r; r;2r;23r: The connections between ga; ka; and Pa are
explained in Appendix D.

6. From the values of ga obtained in step 5, compute the distances m; l;
and p according to Equation 4.50.

7. Use the criteria in Equation 4.51 to select the appropriate member of

the family of distributions.

Because the gi ’s are continuous random variables, the probability is zero that

ðml=p2Þ ¼ 1: Thus, choice of the SL distribution requires that ml=p2 fall within

some small prespecified tolerance interval around one.

After completion of the selection process, the next step is to estimate

parameters of the distribution selected. Estimation of the parameters is

accomplished by using formulae given. These allow the estimates to be simply

calculated by means of a scientific hand calculator. The formulae for the

estimates are given, in terms of the chosen values of r and the computed values of

m, l, and p. Derivations of these formulae are provided in Appendix C.

Note that the following formulae express the parameter values as functions of

m, l, and p which in turn are functions of g3r; gr; g2r; and g23r: In practice, the

corresponding parameter estimates are computed based on the ordered sample

values, gka ; a ¼ 3r; r;2r;23r:

(i) Johnson SU distribution

r ¼ gþ h sinh21 q2 e

l

� �
ð4:55Þ
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Parameter estimates for Johnson SU distribution

h ¼ 2r

cosh21
1

2

m

p
þ l

p

� �� � ; ðh . 0Þ

g ¼ h sinh21

l

p
2

m

p

2
m

p

l

p
2 1

� �1=2
26664

37775;

l ¼
2p

m

p

l

p
2 1

� �1=2
m

p
þ l

p
2 2

� �
m

p

l

p
þ 2

� �1=2 ; ðl . 0Þ

e ¼ gr þ g2r

2
þ

p
l

p
2

m

p

� �
2

m

p
þ l

p

� �
2 2

ð4:56Þ

(ii) Johnson SB distribution

r ¼ gþ h ln
g2 e

lþ e 2 g

� �
ð4:57Þ

Parameter estimates for Johnson SB distribution

h ¼ r

cosh21
1

2
1þ p

m

� �
1þ p

l

� �� �1=2{ ! ; ðh . 0Þ

g ¼ h sinh21

p

l
2

p

m

� �
1þ p

m

� �
1þ p

l

� �
2 4

� �1=2
2

p

m

p

l
2 1

� �
26664

37775;

l ¼
p 1þ p

m

� �
1þ p

l

� �
2 2

� �2
24

" #1=2

p

m

p

l
2 1

; ðh . 0Þ

e ¼ gr 2 g2r

2
2

l

2
þ

p
p

l
2

p

m

� �
2

p

m

p

l
2 1

� �

ð4:58Þ
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(iii) Johnson SL distribution

r ¼ gp þ h lnðg2 eÞ ð4:59Þ

Parameter estimates for Johnson SL distribution

h ¼ 2r

ln
m

p

gp ¼ h ln

m

p
2 1

p
m

p

� �1=2
26664

37775

e ¼ gr þ g2r

2
2

p

2

m

p
þ 1

m

p
2 1

ð4:60Þ

Note that the values of the parameters above are presented in such a way as to

emphasize their dependences on the ratiosm=p and l=p for the SU distribution and

on p=m and p=l for the SB distribution. For the SL distribution, we see from

Equation 4.51 that ðl=pÞ ¼ ðm=pÞ21: Thus, the formulae for the SL distribution

parameters are given solely in terms of the single ratio m=p:

Example. We consider a set of data representing the resistor values in a very

large-scale integrated (VLSI) circuit. The data and the observed frequencies are

shown in Table 4.7. We choose the value of r to be one. Thus, the four values

assumed by a are þ3, 1,21, and23. From the table for the normal distribution,

the probabilities, Pa ¼ PrðR # aÞ; for a ¼ 3, 1, 21, and 23 are found to be

0.9986, 0.8413, 0.1587, and 0.0014, respectively.

First, consider a ¼ 3; for which P3 ¼ :9986: The value of the order number

k3 is given by

k3 ¼ nP3 þ 1

2

� �
¼ ½ð9440Þð0:9986Þ þ 0:5	 ¼ 9427 ð4:61Þ

where [·] denotes the closest integer value. If the raw data were available, we

would simply let g3 equal to the 9427th ordered sample, g 9427. However, because

the raw data has been grouped into the intervals tabulated in Table 4.7, the value

of g 9427 is unknown. Consequently, interpolation is used to estimate a value for

g 9427.

Note that the 9427th ordered observation falls in the interval (16.25, 16.75).

The probabilities that the resistor values are less than or equal to 16.25 and
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16.75 kV, respectively, are given by

PrðG # 16:25Þ ¼ 94402 62 55

9440
¼ 0:9935

PrðG # 16:75Þ ¼ 94402 6

9440
¼ 0:9994

ð4:62Þ

Thus, by the method of interpolation,

16:752 16:25

0:99942 0:9935
¼ g9427 2 16:25

0:99862 0:9935
ð4:63Þ

The value of g 9427 is found to be 16.25 þ 0.439 ¼ 16.689. Setting g3 equal to

g 9427, it follows that g3 ¼ 16:689: Values of g1; g21; and g23 are found in a

similar manner. In summary,

g3 ¼ 16:689; g1 ¼ 15:242; g21 ¼ 13:581; g23 ¼ 10:409 ð4:64Þ

TABLE 4.7
Resistor Values

Resistor Interval (in kV) Observed Frequencies

,9.25 —

9.25–9.75 1

9.75–10.25 7

10.25–10.75 18

10.75–11.25 36

11.25–12.25 70

11.75–12.25 115

12.25–12.75 199

12.75–13.25 437

13.25–13.75 929

13.75–14.25 1787

14.25–14.75 2294

14.75–15.25 2082

15.25–15.75 1129

15.75–16.25 275

16.25–16.75 55

16.75–17.25 6

.17.25 —

Total 9440
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Consequently,

p¼ g12 g21 ¼ 1:661

m¼ g32 g1 ¼ 1:447

l¼ g212 g23 ¼ 3:172

ð4:65Þ

yielding

ml

p2
¼ 1:664 ð4:66Þ

Because the value of ðml=p2Þ is found to be significantly greater than 1, it is

decided from Equation 4.51 that an SU distribution is appropriate for

transformation. The formulae given in Equation 4.56 are used to obtain the

parameter values. Thus,

h¼ 2ð1Þ
cosh21 1

2
ð0:871þ 1:910Þ

h i ¼ 2:333

g¼ 2:333sinh21 1:9102 0:871

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:910ð0:871Þ2 1

p
� �

¼ 1:402

l¼ 2ð1:661Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1:910Þð0:871Þ2 1
p

ð0:871þ 1:9102 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:871þ 1:910þ 2

p ¼ 1:585

e ¼ 15:242þ 13:581

2
þ 1:661ð1:9102 0:871Þ

2ð1:910þ 0:8712 2Þ ¼ 15:516

ð4:67Þ

The transformation equation, therefore, becomes

r¼ 1:402þ 2:333 sinh21 g2 15:516

1:585

� �
ð4:68Þ

where r is a standard normal variable and g is a random variable corresponding

to the resistors values.

Once the transformation equations have been obtained for the end point

coordinates U0n and V0n; they are applied to the end point data arising from the

2000 Monte Carlo simulations to generate the standard bivariate normal random

variables R0u and R0v; respectively. If a type j transformation, j ¼ 1; 2; 3; is used,
the original data is said to have a Johnson type j-distribution. In practice, U0n and

V0n need not have the same distributions (i.e., U0n may be of type i whereas V0n

may be of type j and i – j). An estimate of the correlation coefficient between

R0u and R0v is given by

r̂ ¼ 1

1999

X2000
i¼1

ðR0ui
2 m̂r0u

ÞðR0vi
2 m̂r0v

Þ
ŝr0u ŝr0v

" #
ð4:69Þ
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where m̂r0u
; m̂r0v

; and ŝr0u ; ŝr0v are the sample means and variances of the 2000

transformed statistics R0u and R0v; respectively.
Because R0u and R0v are bivariate standard normal random variables, their

joint PDF can be written as

fR0u;R0v
ðr0u; r0vÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffi
12 r̂2

p exp 2
t

2

� �
ð4:70Þ

where

t ¼ 1

12 r̂2
ðr20u þ r20v 2 2r̂r0ur0vÞ ð4:71Þ

Let t ¼ t0: Then the equation

t0 ¼ 1

12 r̂2
ðr20u þ r20v 2 2r̂r0ur0vÞ ð4:72Þ

is that of an ellipse in the r0u; r0v plane for which

fR0u;R0v
ðr0u; r0vÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffi
12 r̂2

p exp 2
t0
2

� �
ð4:73Þ

Points that fall within the ellipse correspond to those points in the r0u; r0v plane
for which

fR0u;R0v
ðr0u; r0vÞ . 1

2p
ffiffiffiffiffiffiffiffiffi
12 r̂2

p exp 2
t0
2

� �
ð4:74Þ

Let a be defined as the probability that r0u and r0v fall outside the ellipse given

that the data comes from the null hypothesis. It follows that

a ¼ PrðT . t0Þ ð4:75Þ
Note that the bivariate normal distribution is a special case of the spherically

invariant random vector (SIRV) where the characteristic PDF is given by

Ref. 11.

fSðsÞ ¼ dðs2 1Þ ð4:76Þ

The PDF of an N dimensional SIRV involves the same quadratic form t that

arises in the N dimensional multivariate Gaussian PDF. For an SIRV,

Rangaswamy11 shows that the PDF of t is

fTðtÞ ¼ 1

2N=2G
N

2

� � t½ðN=2Þ21	hNðtÞ; 0 # t # 1 ð4:77Þ
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where hNðtÞ is a monotonically decreasing function given by

hNðtÞ ¼
ð1

0
s2Nexp 2

t

2s2

� �
fSðsÞds ð4:78Þ

Substituting Equation 4.76 into Equation 4.78 results in

hNðtÞ ¼
ð1

0
s2Nexp 2

t

2s2

� �
d ðs2 1Þds ¼ exp 2

t

2

� �
ð4:79Þ

For the bivariate case, N ¼ 2: Consequently, Equation 4.77 reduces to

fTðtÞ ¼ 1

2
exp 2

t

2

� �
; 0 # t # 1 ð4:80Þ

Hence,

a ¼ PrðT . t0Þ ¼
ð1

t0

1

2
exp 2

t

2

� �
dt ¼ exp 2

t0
2

� �
ð4:81Þ

Consequently, t0 ¼ 22 lnðaÞ: Thus Equation 4.72 becomes

1

12 r̂2
ðr20u þ r20v 2 2r̂r0ur0vÞ ¼ 22 lnðaÞ ð4:82Þ

The contour equation

r20u 2 2r̂r0ur0v þ r20v ¼ 22ð12 r̂2ÞlnðaÞ ð4:83Þ
which is the equation of an ellipse, and is used to determine the 100ð12 aÞ%
confidence contour. This is also shown in Refs. 15 and 16. When the statistics

R0u and R0v are uncorrelated, the correlation coefficient is zero and Equation

4.83 becomes

r20u þ r20v ¼ 22 lnðaÞ ð4:84Þ
which is the equation of a circle. Also Equation 4.83 degenerates into a line as

the correlation coefficient approaches ^1.

In the Ozturk Algorithm, an inverse Johnson Transformation is applied to the

points for the confidence ellipses. The locus of resulting points obtained, is then

plotted to obtain the corresponding confidence contours in the U–V plane.

Consequently, these confidence contours are not necessarily ellipsoidal.

The confidence contours are plotted for a given sample size n. These are then

used to make a visual as well as computational test of the null hypothesis. If the

terminal point,Qn; of the sample data, falls inside the contour, the data is declared

as being consistent with the null hypothesis with confidence level ð12 aÞ:
Otherwise the null hypothesis is rejected with a significance level a: Figure 4.7
shows the linked vectors and the confidence contours when the null distribution

is standard normal and the sample data size is 100. From the figure it is seen that

the sample data is statistically consistent with the null hypothesis at confidence
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level of 90%. Figure 4.8 shows a case where the sample data is not consistent

with the null hypothesis at a significance level of 1%.

4.2.3.2. Distribution Approximation

The distribution approximation procedure is simply an extension of the goodness

of fit test. Following a similar approach to that outlined in the section for

v

0.35

Goodness of Fit Chart

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.05−0.05 0.1−0.1 0.15

u
0.2 0.25 0.3

FIGURE 4.8 Goodness of fit chart. Sample data (dashed line) not consistent with null

hypothesis (dotted line). (90, 95, 99% confidence contours from the innermost to the

outermost, respectively.)

v

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.05 0.1 0.15

u
0.2 0.25 0.3

FIGURE 4.7 Goodness of fit chart. Sample data (dashed line) consistent with null

hypothesis (dotted line). (90, 95, 99% confidence contours from the innermost to the

outermost, respectively.)
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the goodness of fit test, random samples are generated from a library of different

univariate probability distributions. In the goodness of fit test, the statistic

Q0n ¼ ðU0n;V0nÞ, given by Equation 4.42 was obtained for the null hypothesis

and for a specified n. For the distribution approximation we go one step further

and for each distribution taken from a library of distributions, we obtain the end

point statistic Qn from Equation 4.39 for a given n and for various choices of the

shape parameter. Thus, depending on whether it has a shape parameter or not,

each distribution is represented by a point or a trajectory in a two dimensional

plane whose coordinates are Un and Vn: Figure 4.9 shows an example of such a

representation. The distributions which are plotted on the distribution

approximation chart are (1) Gaussian, (2) Uniform, (3) Exponential, (4) Laplace,

(5) Logistic, (6) Cauchy, (7) Extreme Value, (8) Gumbel type 2, (9) Gamma, (10)

Pareto, (11) Weibull, (12) Lognormal, (13) Student T, (14) K distributed, (15)

Beta, and (16) SU Johnson. Tables 4.8 and 4.9 give the standard and the general

form respectively, of these distributions.

As mentioned before, the points on the linked vectors for various

distributions are computed using Equation 4.39. The magnitude for each point

on the linked vectors is computed from values averaged over 2000 Monte Carlo

simulations of the ordered statistic, Yi:n; obtained from Equation 4.33 while the

angles are computed from the reference distribution (standard Gaussian). The

confidence ellipses are computed only for null hypothesis used in the prior

goodness of fit test. Only the end point coordinates Qn of the linked vectors are

provided in the approximation chart. This is due to the fact that the plot would

become too cluttered to properly interpret the data if all the lined vectors for these

various distributions were provided in the graphics. Also, meaningful

information from the linked vectors is contained in the location of their end
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FIGURE 4.9 Distribution approximation chart: N ¼ Normal, U ¼ Uniform, C ¼ Cauchy,

L ¼ Lognormal, S ¼ Logistic, A ¼ Laplace, V ¼ Extreme Value, T ¼ T2 Gumbel,

G ¼ Gamma, E ¼ Negative Exponential, P ¼ Pareto, K ¼ K-Distributed, W ¼ Weibull,

B ¼ Beta, SU ¼ SU Johnson.
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points. Therefore, only the end points of all the linked vectors are provided in the

approximation chart, along with the confidence ellipse for the selected null

distribution.

For each distribution, such as Gaussian, which is uniquely specified by its

mean and variance (no shape parameters), there exists a single end point on the

approximation chart corresponding to the single unique-linked vector.

For distributions dependent on a single shape parameter, such as Weibull, the

end point of the of the linked vector will also be dependent on the shape

parameter. Therefore, a sequence of linked vectors must be computed in order to

obtain the trajectory on which the end point travels for varying shape parameter.

In a sense, the trajectory represents a family of PDFs, having the same

distribution but with different shape parameter values. For example, the trajectory

for the Weibull distribution is obtained by joining the end points for which the

shape parameters are 0.3, 0.4, 0.5, 0.6, 0.8, 1.1, 1.5, 2.0, 3.0, 5.0. As the shape

TABLE 4.8
Standard Forms of the PDF’s Used in the Approximation Chart

Distribution Standard Form fY (y)

Gaussian ð ffiffiffiffi
2p

p
bÞ21exp 2

y2

2

{ !
21 , y , 1

Uniform 1 0 , y , 1

Exponential expð2yÞ 0 , y , 1
Laplace 0:5 expð2lylÞ 21 , y , 1
Logistic expð2yÞ½1þ expð2yÞ	22 21 , y , 1
Cauchy

1

pð1þ y2Þ 21 , y , 1
Extreme Value (Type 1) expð2yÞexp½2expð2yÞ	 21 , y , 1
Gumbel (Type 2) g y2g21expð2y2gÞ 21 , y , 1
Gamma

1

GðaÞ expð2yÞyg21 a , y , 1

Pareto
g

ygþ1
y . 1; g . 0

Weibull g yg21expð2ygÞ y . 0

Lognormal gffiffiffiffiffi
2xy

p exp 2
{g logðyÞ}2

2

" #
y . 0

K-Distribution
2

GðgÞ
y

2

� �g
Kg21y y . 0

Beta
1

Bðg; dÞ y
g21ð12 yÞd21 0 , y , 1

Johnson SU exp
ðsinh21ðyÞ2 gÞ2

2d2

{ !
ffiffiffiffiffiffi
2pd

p ffiffiffiffiffiffiffiffi
1þ y2

p 21 , y , 1
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TABLE 4.9
General Forms of the PDF’s Used in the Approximation Chart

Distribution General Form fX(x)

Gaussian ð ffiffiffiffi
2p

p
bÞ21exp 2

ðx2 aÞ2
2b2

{ !
21 , x , 1

Uniform 1

b
a , x , a þ b

Exponential 1

b
exp 2

ðx2 aÞ
b

� �
a , x , 1

Laplace 0:5

b
exp

"
2

ðx2 aÞ
b

���� ����
#

21 , x , 1

Logistic
1

b
exp

"
2

ðx2 aÞ
b

# "
1þ exp

{
2

ðx2 aÞ
b

!#22

21 , x , 1

Cauchy 1

pb 1þ ðx2 aÞ2
b2

" # 21 , x , 1

Extreme Value (Type 1) 1

b
exp 2

ðx2 aÞ
b

� �
exp 2exp 2

ðx2 aÞ
b

� �� �
21 , x , 1

Gumbel (Type 2) ðg=bÞ½ðx2aÞ=b	2g21exp 2
ðx2aÞ2g

bg

� �
a , x , 1; b . 0; g . 0

Gamma 1

bGðaÞ exp 2
ðx2 aÞ
b

� � ðx2 aÞ
b

� �g21

a , x , 1

Pareto g

b

1

x2 a

b

� �gþ1 x . aþ b; g . 0

Weibull g

b

x2 a

b

� �g21

exp 2
x2 a

b

� �g� �
x . a

Lognormal
gffiffiffiffi

2p
p

b
x2 a

b

� � exp 2

g log
x2 a

b

� �� �2
2

26664
37775 x . a

K-Distribution 2

bGðgÞ
x2 a

2b

� �g
Kg21

x2 a

b

� �
x . a

Beta 1

bBðg; dÞ
x2 a

b

� �g21

12
x2 a

b

� �� �d21

a , x , aþ b

Johnson SU

1

b

exp

sinh21 x2 a

b

� �
2 g

� �2
2b2

0BBB@
1CCCA

ffiffiffiffi
2p

p
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx2 aÞ

b

� �2s 21 , x , 1
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parameter increases, note that the Weibull distribution approaches the Gaussian

distribution. This is shown in Figure 4.9. The representation of Figure 4.9 is

called an approximation chart.

Similarly, for a distribution dependent on two shape parameters, such as

Beta, a sequence of linked vectors must be computed in order to plot the

trajectories on which the end point travels for varying shape parameters. This is

performed by holding the 1st shape parameter constant and varying the 2nd shape

parameter to generate a trajectory, then changing the 1st shape parameter and

again holding it constant while varying the 2nd shape parameter, etc. until

a family of trajectories is produced which characterizes the distribution.

Thus, an approximation chart as that in Figure 4.9 can be produced. It is

apparent that this approximation chart provides a one-to-one graphical

representation for each PDF for a given n. Therefore, every point in the

approximation chart corresponds to a specific distribution. Thus, if the null

hypothesis in the goodness of fit test is rejected, then the distribution which

approximates the underlying PDF of the set of random data can be obtained by

comparingQn, obtained for the samples, with the existing trajectories in the chart.

The end point or trajectory closest to the Qn of the sample data is chosen as an

approximation to the PDF underlying the random data. This closest point or

trajectory is determined by projecting the sample point Qn to neighboring points

or trajectories on the chart and selecting that point or trajectory whose

perpendicular distance from the sample point is the smallest. For example,

consider the situation of Figure 4.10. Let Qn ¼ ðun; vnÞ denote the coordinates

of the sample point. Let ðx1; y1Þ and ðx2; y2Þ denote the coordinates of the points
A and B on the trajectory shown in Figure 4.10. The segment of the trajectory

between points A and B is assumed to be linear. Let ðx0; y0Þ denote the coordinates
of the point of intersection of the straight line between A and B and the projection

of Qn ¼ ðun; vnÞ onto this straight line. The equation of the straight line between

v

A

Qn = (un, vn)

D

B

u

y2

y0

y1

x1 x0 x2

FIGURE 4.10 Computation of distance between sample point and candidate distribution.
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the points A and B can be written as

y2 y1 ¼ mðx2 x1Þ ð4:85Þ
where

m ¼ y2 2 y1
x2 2 x1

and ðx; yÞ is a point on the line. Also, the equation of the straight line joining

ðx0; y0Þ and ðun; vnÞ is

y2 vn ¼ 2
1

m
ðx2 unÞ ð4:86Þ

where ðx; yÞ is a point on the perpendicular. The coordinates ðx0; y0Þ result from
letting x ¼ x0 and y ¼ y0 in Equation 4.85 and Equation 4.86. Their solution

yields

x0 ¼ 1

m2 þ 1
½m2 2 my1 þ un þ mvn	

y0 ¼ 1

m2 þ 1
½y1 2 mx1 þ m2vn þ mun	

ð4:87Þ

Finally, the perpendicular distance from the sample point onto the trajectory

between points A and B is

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m2 þ 1
½m2c2

1 2 2mc1c2 þ c2
2	

s
ð4:88Þ

where

c1 ¼ un 2 x1; c2 ¼ vn 2 y1 ð4:89Þ
The complete distribution approximation algorithm is summarized as follows.

1. Sort the samples X1;X2;…;Xn in increasing order.

2. Obtain the standardized order statistic Yi:n:
3. Compute Un and Vn from Equation 4.39 for the library of PDFs

mentioned.

4. Obtain an approximation chart based on the sample size n and plot the

sample point Qn on this chart.

5. Compute the distance, D between the sample point Qn and each of the

end points on the chart. Choose the PDF corresponding to the point or

trajectory which results in the smallest value forD as an approximation

to the PDF of the samples.

The approximation to the underlying PDF of the set of random data can be

improved by including as many distributions as possible in the approximation
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chart so as to fill as much of the space as possible with candidate distributions. It is

emphasized, however, that this procedure does not identify the underlying PDF.

It merely gives the best approximation to the distribution underlying the PDF of

the data from those available in the chart.

4.2.3.3. Parameter Estimation

Once the probability distribution of the samples is approximated, the next step is

to estimate its parameters. The method of distribution approximation discussed in

Section 4.2.3.2 lends itself for estimating the parameters of the approximated

distribution. We present the estimation procedure for the location, scale, and

shape parameters in this section.

4.2.3.3.1. Estimation of Location and Scale Parameters

Let f ðx:a;bÞ denote a known distribution which approximates the PDF of the set

of random data, where a and b are the location parameter and scale parameter,

respectively, of the approximating PDF. Let Xi:n denote the ordered statistics of

X from a sample of size n. Let Si:n be defined by

Si:n ¼ Xi:n 2 a

b
ð4:90Þ

Also, let

mi:n ¼ E½Si:n	 ð4:91Þ
Then

E½Xi:n	 ¼ bmi:n þ a ð4:92Þ
We consider the following statistics

T1 ¼
Xn
i¼1

cosðuiÞXi:n; T2 ¼
Xn
i¼1

sinðuiÞXi:n ð4:93Þ

where ui is the angle defined in Equation 4.37. The expected values of T1 and T2
are

E½T1	 ¼
Xn
i¼1

cosðuiÞ½bmi:n þ a	; E½T2	 ¼
Xn
i¼1

sinðuiÞ½bmi:n þ a	 ð4:94Þ

These can be written as

E½T1	 ¼ aaþ bb; E½T2	 ¼ caþ db ð4:95Þ
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where

a ¼
Xn
i¼1

cosðuiÞ b ¼
Xn
i¼1

mi:ncosðuiÞ

c ¼
Xn
i¼1

sinðuiÞ d ¼
Xn
i¼1

mi:nsinðuiÞ
ð4:96Þ

Because the standardized Gaussian distribution is used as the reference

distribution for ui; it can be shown that a ¼ 0:1 The estimates for b and a are

then given by

b̂ ¼
dE½T1	E½T1	
b̂

; â ¼
dE½T2	E½T2	2 d̂b̂

ĉ
ð4:97Þ

For sufficiently large n (i.e., n . 50), suitable estimates for E½T1	 and E½T2	 aredE½T1	E½T1	 < T1; dE½T2	E½T2	 < T2 ð4:98Þ
Estimates for b and d rely upon an estimates of mi:nm̂i:n obtained from a Monte

Carlo simulation of Si:n where Si:n is generated from the known approximating

distribution f ðx; 0; 1Þ having zero location and unity scale parameters. m̂i:n is the

sample mean of Si:n based upon 2000 Monte Carlo trials. Having m̂i:n; the

estimates for b and d are given by

b̂ ¼
Xn
i¼1

m̂i:ncosðuiÞ; d̂ ¼
Xn
i¼1

m̂i:nsinðuiÞ ð4:99Þ

The scale and location parameters are then estimated by application of

Equation 4.97 and Equation 4.98.

4.2.3.3.2. Shape Parameter Estimation

In this section we present the approximate method used for estimating the shape

parameter of the approximating PDF. We first consider distributions with only

one shape parameter. Let g denote the shape parameter of the approximating

PDF. Since Un and Vn are location and scale invariant, the point Qn depends only

on the sample size n and the shape parameter g.
Recall that a point on the trajectories of the approximation chart is obtained

by averaging for a specified value of the shape parameter the results from a large

number of trials for Un and Vn. Consequently, for given values of n and g the

coordinates of the corresponding points along the trajectory for a specified

distribution, can be characterized by

EðUnÞ ¼ f1ðn; gÞ; EðVnÞ ¼ f2ðn; gÞ ð4:100Þ

where the complete trajectory is obtained by repeating large number of trials for

Un and Vn over a suitable range of g: On a given trial involving the random data,
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it is likely that the coordinates Un and Vn obtained for the samples will not

coincide with any of the trajectories on the chart. The PDF underlying the random

data is approximated by selecting the distribution, corresponding to the point in

the trajectory, that falls closest to the sample point Qn: The situation is illustrated
in Figure 4.11. Qn appears in the figure with coordinates ðUn;VnÞ: The straight

line T̂r denotes an approximation to a segment of the nearest trajectory which, in

general, is a curved segment between points A and B. A is that point on the actual

trajectory corresponding to the shape parameter gA: Its coordinates are ðuA; vAÞ:
Similarly, B is the point on the actual trajectory corresponding to the shape

parameter gB: Its coordinates are ðuB; vBÞ: The slope of the straight line between
points A and B is

m ¼ vB 2 vA
uB 2 uA

ð4:101Þ

The equation for the straight line T̂r is

v ¼ vA þ mðu2 uAÞ ð4:102Þ

Point C, with coordinates ðuC; vCÞ; is the perpendicular projection of Qn onto T̂r:
The straight line linking Qn and C has a slope equal to 21=m and an equation of

the form

v ¼ Vn 2
1

m
ðu2 UnÞ ð4:103Þ

Since C is a point common to both straight lines, it follows from Equation 4.102

and Equation 4.103 that

uA þ mðuC 2 uAÞ ¼ Vn 2
1

m
ðuC 2 UnÞ ð4:104Þ

v

u

A = (uA, vA, gA)

C = (uC, vC, gC)

Qn = (Un, Vn)

B = (uB, vB, gB)

TrTr

FIGURE 4.11 Shape parameter estimation.
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Solution for uC results in

uC ¼ mðVn 2 vAÞ þ muA þ Un

m2 þ 1
ð4:105Þ

Let gC denote the shape parameter corresponding to the point on the actual

trajectory closest to Qn: An approximation to gC is then obtained by linear

interpolation on T̂r: The result is

ĝC ¼ gA þ ðgB 2 gAÞðuC 2 uAÞ
ðuB 2 uAÞ ð4:106Þ

The accuracy of the procedure can be improved by employing a nonlinear

interpolation method. It must be emphasized that the location, scale, and shape

parameter estimation procedures presented in this section are approximate

methods.

The proposed estimation procedure can also be extended to the two shape

parameter case. In this case one needs to choose at least three points ðu1; v1Þ;
ðu2; v2Þ; and ðu3; v3Þ and let the shape parameter values corresponding to these

three points be g1; g2; and g3; respectively. The points are chosen in such a way

that they form the three vertices of a triangle inside which falls the sample point

Qn:
1 Again, by using a linear interpolation in the plane, an approximate solution

can be obtained for the parameter estimates.

4.3. SIMULATION RESULTS OF THE OZTURK ALGORITHM

For univariate cases, the power of the Ozturk Algorithm has been studied for

various distributions in Refs. 1–3. It was noted in Refs. 1–3 that the power of the

algorithm depends on the sample size n, type of the standardized statistic and the

null distribution. This algorithm has been found to compare favorably against all

the well known tests. Also, the algorithm has been put to use to test its

performance against different known distributions. Random data were generated

using computer simulations as given in Refs. 18,19. The goodness of fit as well

as the distribution approximation test was performed on these data using this

algorithm. In this chapter, a brief summary of some of the results obtained is

presented.

Data was generated from four different null distributions, viz.,

† Univariate Gaussian

† Weibull (Shape Parameter 1)

† Gamma (Shape Parameter 1)

† Lognormal (Shape Parameter 1)

The goodness of fit test results are tabulated and presented first. The results of

the distribution approximation are not easy to tabulate. We shall, therefore,

present the result of a single case for the purpose of illustration.
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4.3.1. GOODNESS oF FIT TEST RESULTS

4.3.1.1. The Univariate Gaussian Case

Data was generated from a Gaussian pseudo random number generator using

computer simulations. The data set represented a zero mean and unit variance

normal PDF. The following observations were noted.

† It was observed that a sample size of less than 40 is not advisable for

the goodness of fit test as it almost always shows that the data is

statistically consistent with any null. This is due to the fact that such a

small sample size could be used to represent any PDF.

† A sample size between 75 and 100 is found to be good enough to

accurately perform the goodness of fit test.

† For a sample size greater than 75 and when the null specified was

Gaussian, the goodness of fit test showed that the data was statistically

consistent with the null in almost all the cases. For other null

hypotheses which are not close to Gaussian in the approximation chart,

the goodness of fit test always showed that the data was statistically

inconsistent with the nulls. But for null hypotheses which are close to

Gaussian in the approximation chart, such as logistic, the goodness of

fit test comes up with statistical consistency almost always. This

vindicates the fact that the logistic PDF curve is very similar to the

Gaussian PDF curve.

Table 4.9 shows the results obtained for this case.

4.3.1.2. The Weibull Case

Data was generated from the Weibull PDF with shape parameter one and

the goodness of fit test was performed on it. The following observations were

noted.

† The goodness of fit test worked well for a sample size between 75 and

100. For a smaller sample size, the goodness of fit test is not advisable

since the results obtained were not accurate.

† When the null specified was Weibull with shape parameter two, the

goodness of fit test showed that the data was statistically inconsistent

with the null for a sample size greater than 75 in all the cases. This is

due to the fact that Weibull (Shape Parameter 1) is far away from

Weibull (Shape Parameter two) on the approximation chart.

Table 4.10 shows the results obtained for this case.
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4.3.1.3. The Gamma Case

Data was generated from the Gamma PDF with shape parameter one and the

goodness of fit test was performed on it. Observations noted were almost the same

as those for the Weibull case. Again a sample size between 75 and 100 was

observed to have performed well in this case. The results for this case are

tabulated in Table 4.11.

4.3.1.4. The Lognormal Case

A Lognormal pseudo random number generator was used to generate random

data representing the Lognormal PDF with a shape parameter of one.

Observations noted for the goodness of fit test performance on this data were

noted.

TABLE 4.10
Result of the Ozturk Algorithm when Data Generated was Gaussian

Sample Size (n) Data Generated From Null Distribution
Number of Cases of SC/
Total Number of Cases

5 Gaussian Gaussian 3/3

25 — — 3/3

40 — — 4/7

50 — — 4/7

75 — — 7/7

100 — — 7/8

125 — — 8/8

150 — — 8/8

25 — Uniform 2/5

40 — — 2/5

50 — — 1/5

75 — — 0/5

100 — — 0/5

150 — — 0/5

75 — Exponential 0/8

100 — — 0/8

150 — — 0/8

75 — Laplace 4/8

100 — — 2/8

150 — — 1/8

75 — Logistic 7/8

100 — — 7/8

SC, Statistical Consistency.
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TABLE 4.11
Ozturk Algorithm Results when Data Generated was Weibull

with Shape Parameter One

Sample Size (n) Data Generated From Null Distribution
Number of Cases of SC/
Total Number of Cases

5 Weibull (Sh. 1) Weibull (Sh. 1) 7/8

25 — — 7/9

40 — — 4/8

50 — — 5/8

75 — — 6/8

100 — — 8/8

150 — — 8/8

5 Weibull (Sh. 1) Weibull (Sh. 2) 7/8

25 — — 3/8

40 — — 2/8

50 — — 0/8

75 — — 0/9

100 — — 0/8

150 — — 0/8

SC, Statistical Consistency; Sh., Shape Parameter.

TABLE 4.12
Ozturk Algorithm Results when Data Generated was Gamma

with Shape Parameter One

Sample Size (n) Data generated From Null Distribution
Number of Cases of SC/
Total Number of Cases

40 Gamma (Sh. 1) Gamma (Sh. 1) 5/7

50 — — 7/8

75 — — 7/9

100 — — 7/8

150 — — 8/8

50 Gamma (Sh. 1) Gamma (Sh. 5) 1/8

75 — — 0/8

100 — — 1/8

SC, Statistical Consistency; Sh., Shape Parameter.
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† A sample size between 50 and 75 was found to be sufficient to perform

the goodness of fit test accurately.

† This sample size gave very good results as far as the distribution

approximation was concerned. About 30 times out of 40 the Lognormal

PDF showed up in the five closest distributions that could be

approximated.

Table 4.12 shows the results of the goodness of fit test for this case.

In general, the goodness of fit test seemed to perform well for a sample size of

100. The confidence contours grow smaller when the sample size is increased. In

effect, we could hypothesize that for an infinite sample size the contours would

become a point in the two dimensional ðU;VÞ plane. This is intuitively satisfying.

4.3.2. DISTRIBUTION APPROXIMATION TEST RESULTS

The distribution approximation test was performed for a number of cases. In fact,

it was performed for all the cases in which the goodness of fit test was performed.

As mentioned previously, since it is not very easy to tabulate the results of the

distribution approximation test for all these cases, results for a single test case are

presented below.

Data was generated from standard Gaussian distribution using a Gaussian

random number generator. A single test case consisting of 100 data points was

considered. Using standard Gaussian as the null distribution, the distribution

approximation test was performed on the data set. The 1st results of this test gave

the five closest PDF’s which the data could approximate. This result is shown in

Table 4.13.

TABLE 4.13
Ozturk Algorithm Results when Data Generated was Lognormal with Shape

Parameter One

Sample Size (n) Data generated From Null Distribution
Number of Cases of SC/
Total Number of Cases

40 Lognormal (Sh. 1) Lognormal (Sh. 1) 5/8

50 — — 7/8

75 — — 8/8

100 — — 8/8

150 — — 8/8

40 Lognormal (Sh. 1) Lognormal (Sh. 0.5) 0/9

50 — — 0/8

75 — — 0/8

100 — — 0/8

SC, Statistical Consistency; Sh., Shape Parameter.
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Distributions 20, 21, 22, and 23 are all SU-Johnson distributions with different

shape parameters, whereas distribution number five is a logistic distribution. Note

that the standard Gaussian was the 11th ranked PDF with a distance of

0.47879 £ 10203. Estimates of the location, scale, and the shape parameters

given by the distribution approximation test for these distributions are given in

Table 4.14.

The approximation chart for this test case is shown in Figure 4.12. It is

obvious from the approximation chart that the PDF’s identified for this case are

very close to the Gaussian PDF. It is therefore concluded that even though this

data set has passed the goodness of fit test with standard Gaussian as the null,

they could also be approximated by the set of 5 PDF’s identified in Table 4.15.
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FIGURE 4.12 Distribution approximation chart for a standard Gaussian data set: end

point of linked vectors for a standard Gaussian data set, N ¼ Normal, U ¼ Uniform,

C ¼ Cauchy, L ¼ Lognormal, S ¼ Logistic, A ¼ Laplace, V ¼ Extreme Value, T ¼ T2

Gumbel, G ¼ Gamma, E ¼ Negative Exponential, P ¼ Pareto, K ¼ K-Distributed,

W ¼ Weibull, B ¼ Beta, SU ¼ SU Johnson.

TABLE 4.14
Five Closest PDF’s Given by Distribution Approximation

Test for a Standard Gaussian Data Set

Distribution Number Distance Rank

21 0.23728 £ 10207 1

22 0.89802 £ 10205 2

20 0.23473 £ 10204 3

23 0.28047 £ 10204 4

5 0.47542 £ 10204 5
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TABLE 4.15
Estimates of the Parameters of the Five Closest Distributions Chosen by the

Distribution Approximation Test for a Standard Gaussian Data Set

Distribution Number Location Parameter Scale Parameter
Shape (1)
Parameter

Shape (2)
Parameter

21 20.23435 1.9774 2.4099 20.2

22 20.14976 1.9392 2.3697 20.1

20 20.39697 1.9747 2.4310 20.4

23 20.058871 1.9437 2.3717 0.0

5 20.06215 0.49795 0.0 0.0
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FIGURE 4.13 Histogram fitting (solid line is histogram plotted for the data; dotted line is

standard Gaussian); (a) dashed line is PDF number 21 of Table 4.15; (b) dashed line is PDF

number 22 of Table 4.15.
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In fact these are better approximations than standard Gaussian. This is shown by

histogram plots shown in Figures 4.13–4.15. In these plots the histogram of the

data is plotted along with the null hypothesis, which is the standard Gaussian, and

one of the five distributions, given by the distribution approximation test, on the

same coordinate axes. As is obvious from the figures there is very little to choose

amongst the five PDF’s approximated.

4.4. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

4.4.1. CONCLUSIONS

This thesis has discussed various techniques for analyzing random data. Two

areas were considered. The first area dealt with goodness of fit tests to determine
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FIGURE 4.14 Histogram fitting (solid line is histogram plotted for the data; dotted line is

standard Gaussian); (a) dashed line is PDF number 20 of Table 4.15, (b) dashed line is PDF

number 23 of Table 4.15.
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whether or not a set of random data is statistically consistent with a prespecified

probability distribution. After reviewing the Kolmogorov–Smirnov test, chi-

square test, Q–Q plots and P–P plots, a new test, called the Ozturk Algorithm,

was introduced. This test has an easily understood graphically presentation and

works well for sample sizes as small as 100. The second area dealt with

approximation of the underlying PDF of random data. Although the other tests

were not applicable to this second area, the goodness of fit test of the Ozturk

Algorithm was shown to lend itself to generation of a distribution approximation

chart from which approximations to the underlying PDF of the random data can

be obtained. Again, good results were observed for sample sizes as small as 100.

An analysis was provided for generating confidence contours when the random

data was nonGaussian. Simulated data was used to evaluate performance of the

Ozturk Algorithm and some of the results were presented.

4.4.2. SUGGESTIONS FOR FUTUREWORK

Several problems remain to be explored with the Ozturk Algorithm:

1. The Ozturk Algorithm works well for continuous probability density

functions. Generalizations of the Ozturk Algorithm to discrete case

should be explored.

2. Extension of the Ozturk Algorithm from univariate to multivariate

PDF’s should be considered. One possibility involves utilization of

quadratic forms of the data.7,11

3. Rangaswamy11 demonstrated that multivariate spherically invariant

random processes (SIRPs) can be approximated by means of their

quadratic forms. However, a probability distribution approximation
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FIGURE 4.15 Histogram fitting (solid line is histogram plotted for the data; dotted line is

standard Gaussian; dashed line is PDF number five of Table 4.15).
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chart for SIRPs which could be utilized by the Ozturk Algorithm

remains to be generated.

4. The univariate PDF’s currently included in the approximation chart are

unimodal. Extension to multimodal PDF’s should be explored.

5. When the number of data point is much greater than 100, the Ozturk

Algorithm requires considerable time to process the data. Ways should

be examined for making the algorithm more efficient. This includes

parallelization of the algorithm as well as processing the data in groups

of 100 and averaging the results.

6. Reduction of the Ozturk Algorithm to chip form should be investigated

for real-time applications.
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5.1. A NEW METHOD FOR DISTRIBUTION APPROXIMATION

5.1.1. INTRODUCTION

Assessing the distributional assumptions about univariate and multivariate data is

a basic concern in statistical applications. A common approach to the problem is to

hypothesize a certain probability model and perform an appropriate goodness-of-

fit test. Various test procedures, some of which are in graphical nature, have been

developed for assessing the distributional assumptions of a sample. For example,

probability plots, in particular, quantile–quantile (Q–Q) plots are among themost

widely used graphical procedures for making assessments about the sample.

A second and perhaps more important aspect of assessing the distributional

assumptions of the sample, is to diagnose the true distribution if the null

hypothesis is rejected. Most test procedures do not have this diagnostic feature. In

Q–Q plots any member of location and scale family of distributions can be

displayed and represented by a single curve. Thus by comparing the sample Q–Q

plots with theoretical plots, one can obtain some information about the true

distribution. However, the Q–Q plots do not offer a formal test. Identification is

made on a subjective basis. Also, generalizations of this graphical procedure for

diagnosing true distributions are not straightforward when applied to the non

location-scale family of distributions and to the multivariate distributions. For a

comprehensive review and interpretation of univariate Q–Q plots we refer to

Wilk and Gnanedesikan1 and for the multivariate generalization of Q–Q plots to

Easton and McCulloch.2

It is well-known that the probability distributions for which the first four

moments exist, can be characterized by their coefficients of skewness (a3) and
kurtosis (a4). Any distribution or family of distributions, can be represented by

a single point or by a region on an a3–a4 plane, respectively (see for example

Johnson and Kotz,3 p. 14). A sample can also be represented by a point whose

coordinates are given by the sample estimates of a3 and a4: Then the best

candidate for the underlying true distribution can be identified to be the nearest

neighbor distribution on the chart. Although such a chart based on the coefficients

of skewness and kurtosis provide a useful way of characterizing the distributions,

its use is limited by the fact that the moments of some distributions do not exist.

Another drawback of this approach is that the estimates of a3 and a4 are highly
sensitive to extreme observations.

In this paper, we introduce a general graphical method for characterizing the

univariate and multivariate distributions. The proposed method not only provides

a formal goodness-of-fit test based on graphical representation, but also a good

basis for displaying the distributions in a two dimensional space. Using normal

distribution as a reference distribution, the standardized sample order statistics

are represented by a system of linked vectors. The terminal point of these linked

vectors is used to approximate the true distribution, from which the sample is

drawn. A chart is developed for this purpose and it is shown that it can also be

used to estimate the parameters of the identified distribution.
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The approximation procedure is explained in Section 5.1.2. The performance

of the proposed method is discussed in Section 5.1.3. Extension of the proposed

procedure to multivariate distributions is discussed in Section 5.1.4. Estimation

of the location, scale and the shape parameters are given in Section 5.1.5.

Approximation of the mixtures of distributions is explained in Section 5.1.6.

Some examples are given in Section 5.1.7 to illustrate the proposed method.

5.1.2. APPROXIMATION PROCEDURE

This study was motivated by an attempt to develop a general algorithm for

univariate and multivariate goodness-of-fit tests, based on graphical represen-

tation. The development of the test procedure for assessing the distributional

assumptions is explained in a series of papers by Ozturk4 and Ozturk and

Dudewicz.5 In this section we first give a brief description of the corresponding

test statistic and then explain the distribution approximation procedure.

For illustration we will assume that the null distribution is normal. The proposed

procedure can be modified by using any member of location-scale family

of distributions as a reference distribution.

Let X1:n # X2:n # · · · # Xn:n be an ordered sample from a normal distribution

with mean m and variance s 2: Let m1:n;m2:n;…;mn:n denote the expected values

of the standard normal order statistics. Also let

ui ¼ pFðmi:nÞ ð5:1Þ
where Fð·Þ is the distribution function of the standard normal distribution and

p ¼ 3:1415… We define the sample point QðkÞ
n in a two dimensional plane by

QðkÞ
n ¼ ðUðkÞ

n ;V ðkÞ
n Þ ð5:2Þ

where

UðkÞ
n ¼ 1

n

Xn
i¼1

{cosðuiÞ}Y ðkÞ
i:n ð5:3Þ

V ðkÞ
n ¼ 1

n

Xn
i¼1

{sinðuiÞ}Y ðkÞ
i:n ð5:4Þ

and Y ðkÞ
i:n is the standardized ith sample order statistic and k stands for type

of standardization. Ozturk4 considered various types of standardized sample

order statistics to construct the test statistic QðkÞ
n : In this study the following

standardized statistic will be considered.

Y ð1Þ
i:n ¼ lXi:n 2 
Xl

S
; i ¼ 1; 2;…; n ð5:5Þ

where 
X ¼ P
Xi:n=n and S ¼ #PðXi:n 2 
XÞ2=ðn2 1Þ$1=2: It should be noted that

the statistic QðkÞ
n given in Equation 5.2 represents the terminal point of the linked

vectors with each having a length lY ðkÞ
i:n l and angle with the horizontal axis ui:
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Under null hypothesis the statistic QðkÞ
n ¼ ðUðkÞ

n ;V ðkÞ
n Þ has a bivariate

distribution with mean EðQðkÞ
n Þ ¼ {EðUðkÞ

n Þ;EðV ðkÞ
n Þ}: If the distribution of QðkÞ

n

was known, then a 100ð12 aÞ% confidence contour of the point EðQðkÞ
n Þ could be

obtained to perform a test of hypothesis that the sample comes from a normal

distribution. A general algorithm was developed to obtain the empirical

distribution of QðkÞ
n under null hypothesis.4

For a given sample size n; the bivariate distribution of QðkÞ
n is approximated

by the corresponding empirical distribution.

Following a similar approach, one can also generate random samples from

other distributions and obtain the corresponding empirical distribution of the

statistic QðkÞ
n : Thus for each specified alternative distribution and for fixed

sample size n; the expected values of the statistic QðkÞ
n based on Equation 5.3 and

Equation 5.4 can be obtained. It is clear that all the probability distributions for

which the statisticQðkÞ
n is definable, can be represented on a two dimensional plane

by using the standard normal distribution as a reference distribution. An example

of such representation based on the statistic in Equation 5.5 for which k ¼ 1 is

given in Figure 5.1. Twelve distributions, namely normal (1), uniform (2),

exponential (3), Laplace (4), Logistic (5), Cauchy (6), Extreme value (7), Gumbel-

type 2 (8), Gamma (9), Pareto (10),Weibull (11) and Lognormal (12) distributions

are considered. Coordinates of the points representing each distribution are

obtained throughMonte Carlo experiments. By using the IMSL subroutines, 1000

samples of size 50 are generated for each distribution. It can be seen that the

location and scale of the family of distributions such as normal, uniform, negative

exponential etc., are each represented by a single point since the QðkÞ
n statistic, is

a location and scale invariant statistic. For a given value of the shape parameter

of a distribution, the corresponding point EðQðkÞ
n Þ can be obtained similarly.

Thus, a curve obtained by joining such points represents the corresponding
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FIGURE 5.1 Identification chart for univariate distributions based on 1000 samples

ðn ¼ 50Þ.
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distribution family having one shape parameter. For example the curve for

Gamma distribution in Figure 5.1 is obtained by joining the points for which the

selected values of the shape parameter were g ¼ 0:2; 0.3, 0.5, 0.7, 1.0, 2.0, 3.0,
4.0, 6.0, 10.0. Note that as g increases the Gamma distribution approaches to the

normal distribution.

The chart given in Figure 5.1 provides a useful characterization of various

distributions via normal distribution. The relationship between the distributions

can be clearly observed.

For a given sample of size n; the point QðkÞ
n ; as an estimate of the true point

EðQðkÞ
n Þ, can be plotted on the chart in Figure 5.1. The statistic QðkÞ

n is a function

of the linear combinations of the standardized sample order statistics. Hence, it is

expected to provide a more consistent estimate of the true point EðQðkÞ
n Þ than that

of moment estimates.

It may be argued that a given distribution can be represented in a ðUðkÞ
n ;V ðkÞ

n Þ
plane by a single point. Conversely, a given point in ðUðkÞ

n ;V ðkÞ
n Þ region corres-

ponds to a distribution. Thus, if the null hypothesis that the random sample

X1;X2;…;Xn comes from a normal distribution is rejected, then the underlying

true distribution can be diagnosed by comparing the point QðkÞ
n ¼ ðUðkÞ

n ;V ðkÞ
n Þ with

the existing distributions in the chart. Therefore the nearest neighboring

distribution can be identified to be the best candidate for true distribution.

The proposed algorithm for distribution identification is summarized

as follows

(1) Sort the sample observations X1;X2;…;Xn in increasing order.

(2) Obtain the standardized order statistic Y ðkÞ
i:n :

(3) Compute the coordinates UðkÞ
n ;V ðkÞ

n of the point QðkÞ
n from Equation 5.3

and Equation 5.4.

(4) Obtain an identification chart based on the sample of size n and plot the

sample point QðkÞ
n on this chart.

(5) Compare the point QðkÞ
n with the existing distributions in the chart.

Identify the nearest neighboring distribution as the best candidate for

the true distribution.

It is clear that the accuracy of such procedure may be increased by including

as many distributions as possible. Furthermore, confidence ellipses of a point for

a given distribution can be obtained empirically. The use of such contours will

lead to a decision on the probabilistic basis.

5.1.3. PERFORMANCE OF THE APPROXIMATION PROCEDURE

In this section we investigate the performance of the proposed identification

procedure. It is clear that for identification procedure to be useful, some idea

of sampling variation of the statistics UðkÞ
n and V ðkÞ

n is needed. If the sampling

variation of the statistics is too large then the performance of the underlying

procedure will be poor.
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One way of getting some idea about the sampling variation of theQðkÞ
n statistic

is to obtain the corresponding confidence ellipses. For k ¼ 1 and n % 100;Ozturk
and Dudewicz5 obtained the following approximations to the means and the

variances of the statistics Qð1Þ
n and V ð1Þ

n under the normality assumption

of the sample

E{Uð1Þ
n } ¼ 0

E{V ð1Þ
n } ¼ 0:3266þ 0:4129=n

Var{Uð1Þ
n } ¼ 0:02123=nþ 0:01765=n2

Var{V ð1Þ
n } ¼ 0:04427=n2 0:0951=n2

It was also shown empirically that the covariance Cov{Uð1Þ
n ;V ð1Þ

n } ¼ 0 and the

joint distribution of Uð1Þ
n and V ð1Þ

n is approximately bivariate normal for n . 10:
Based on the above approximations, one can obtain approximate confidence

ellipses for various sample sizes.

In a later study, Ozturk4 used the Johnson system of distributions to obtain

approximate confidence ellipses for any point in the identification chart.

Examples of such confidence ellipses for sample sizes n ¼ 50; 100, and 500

from normal distribution are presented in Figure 5.2. Three confidence ellipses

namely 90, 95 and 99% are given for each case. The effect of the sample size

on the confidence ellipses can be clearly observed from these figures.

To get a better feeling about the power of the proposed procedure, we need to

compare the performance of underlying procedure with those of the Q–Q and

moments procedures. However, we did not include the Q–Q procedure in the

comparison, since it has a subjective basis. To compare the proposed method with

the method of moments, we started with a chart of 19 distributions. A simulation

experiment was designed to generate 1000 samples of size n ¼ 15; 25, 50, 100
and 500. Then the number, of correct identifications when using each method, is

counted for a given distribution and sample size. The corresponding results

are given in Table 5.1. It is interesting to see that the proposed method has

outperformed the method of moments in most of the cases. The performance

of proposed method was no better than its competitor for the normal and uniform

distribution when the sample is small.

5.1.4. APPROXIMATION OF MULTIVARIATE DISTRIBUTIONS

The proposed method of distribution identification for univariate distributions

also can be generalized to identify the multivariate distributions. It should be

noted that in many multivariate distributions the marginal distributions are either

identical or common, up to location and scale parameters.6 In such cases the first

step would be to assess the assumption that all marginal distributions are

common. A simple approach to this problem is to ignore the multivariate nature

of data and use univariate procedures to assess the distributional assumptions

which may lead to identifying the corresponding multivariate distribution.
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However, there is a need for a test which takes into account the general

multivariate nature of the observations also.

Let X0 ¼ ðX1;X2;…;XnÞ be a random vector having a multivariate normal

distribution with mean m and covariance S: A number of methods which utilize

the squared radii

Z2
i ¼ ðXi 2 
XÞiS21ðXi 2 
XÞ ð5:6Þ

where 
X and S are sample estimates of m and S, respectively, have been suggested
to test for multivariate normality.4,7,8

FIGURE 5.2 90, 95, and 99% confidence ellipses of E{Q ðkÞ
n } based on a sample of size n

from normal distribution: (a) n ¼ 50; (b) n ¼ 100; (c) n ¼ 500:
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FIGURE 5.2 Continued.
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TABLE 5.1
Performance of the Proposed (Q) and Moment (M) Procedures in Terms of

Correctly Identified Samples out of 1000 Samples

n 5 15 n 5 25 n 5 50 n 5 100 n 5 500

Q M Q M Q M Q M Q M

Normal 121 371 217 496 414 652 630 817 905 983

Uniform 609 905 728 941 862 990 956 1000 1000 1000

Exponential 119 49 158 91 270 120 396 175 769 339

Laplace 205 12 420 41 664 99 811 199 983 573

Logistic 60 61 160 91 307 172 515 257 897 680

Cauchy 591 — 716 — 874 — 962 — 1000 —

Extreme value 492 158 592 218 762 286 899 363 1000 617

Gamma (.2) 291 0 364 0 484 101 627 140 928 310

Gamma (.5) 167 0 214 19 297 27 369 37 665 80

Gamma (.7) 130 31 128 37 204 72 256 101 518 178

Gamma (3.) 13 55 33 77 79 90 161 148 412 289

Weibull (.4) 520 0 575 0 590 0 645 0 868 16

Weibull (.6) 69 0 85 0 190 11 285 61 672 160

Weibull (.8) 13 0 30 25 61 85 123 108 455 204

Weibull (1.5) 169 78 258 102 422 132 531 186 642 405

Lognormal (.2) 90 143 128 185 168 260 218 364 224 669

Lognormal (.4) 86 42 125 74 161 104 170 143 72 295

Lognormal (.6) 106 0 142 6 194 32 233 31 130 64

Lognormal (1.) 205 0 257 0 299 0 329 6 447 59

— Moments do not exist.
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It is shown that Z2
i has a Beta {p=2; ðn2 p2 1Þ=2} distribution.9 The squared

radii are location scale and correlation invariant (i.e., the corresponding

distribution depends on the number of variables p; and sample size n only).

Thus, it is reasonable to develop a procedure of distribution identification on the

basis of the squared radii Z2
i : If the true distribution is a multivariate normal, then

the corresponding problem is reduced to identifying the univariate Beta

distribution with parameters p/2 and ðn2 p2 1Þ=2; for a given multivariate

sample of size n: In this case the univariate QðkÞ
n procedure can be used to test the

null hypothesis that the underlying distribution comes from a multivariate normal

distribution.

If the true distribution is not a multivariate normal, again we propose to

utilize the statistic Z2
i for distribution identification problems. As in the univariate

case the transformed observations Z2
i ði ¼ 1; 2;…; nÞ are used to obtain the

statistic QðkÞ
n : For a given set of p and n values an identification chart similar

to ones in Figure 5.1 can be obtained by determining the expected points

corresponding to various distributions. Thus the identification procedure would

consist of comparing the sample point QðkÞ
n based on the squared radii with the

expected points, and finding the nearest neighboring point of a distribution to

estimate the true distribution.

A chart for identifying multivariate distributions is given in Figure 5.3

for n ¼ 50; k ¼ 1, and p ¼ 2: The same set of univariate distributions are used in

univariate distribution identification (see Figure 5.1) are also used to generate

bivariate samples. Because the QðkÞ
n procedure is a location, scale and covariance

invariant procedure, the bivariate samples were obtained from the corresponding

marginal distributions. For example the bivariate exponential sample is formed

by generating two independent samples from the univariate exponential
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FIGURE 5.3 Identification chart for bivariate distributions based on 1000 samples

ðn ¼ 50Þ:
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distribution. For larger dimensions the same procedure can also be applied to

generate multivariate samples. The only difficulty of employing such an

algorithm to generate multivariate samples is to determine the joint probability

density function for a given covariance structure. However, there are various

classes of multivariate distributions whose distribution functions are known and

random samples may be generated from these distributions without facing any

serious difficulty. For example elliptically contoured distributions have been used

widely in Monte Carlo work since they are easy to generate and cover a wide

range of distributions.10

It is seen that Figure 5.3 displays a useful characterization of the bivariate

distributions. For a given sample of size n; one could obtain the transformed

values Z2
1 ; Z

2
2 ;…; Z2

n and compute the corresponding QðkÞ
n statistic. The next step

for identifying the true distribution will be to plot the point QðkÞ
n on the

identification chart in Figure 5.3 and determine the nearest neighboring

distribution.

It should be pointed out that our proposed distribution approximation

procedure for multivariate distributions can be more conveniently used for the

distributions for which the joint probability density function is a function of

the quadratic form ðX2 mÞTV21ðX2 mÞ where m and V are the mean vector and

covariance matrix, respectively, and T denotes transpose. The elliptically

contoured distributions including the multivariate normal distribution are

examples of this class of distributions. For these distributions there is a one-to

one correspondence between the point QðkÞ
n on the identification chart and the

corresponding distribution.

5.1.5. PARAMETER ESTIMATION

Once the true distribution is identified, the next step is to estimate parameters

of the underlying distribution by using one of the standard methods of estimation.

However, the proposed method of distribution identification lends itself to

develop a simple method of estimation for the parameters of the identified

distribution. In this section we discuss the estimation of the location and scale

parameters based on theQðkÞ
n statistic for univariate distributions. An approximate

method for estimating the shape parameters will also be explained in this section.

5.1.5.1. Estimating the Location and Scale Parameters

Suppose that the random sample X1;X2;…;Xn comes from the distribution

function Fðx;a;bÞ where a and b are the location and scale parameters

respectively. Let m1:n;m2:n;…;mn:n denote the expected values of order statistics

from the standard distribution F0{ðx2 aÞ=b}: Also let ui ¼ pFðmi:nÞ as defined
in Equation 5.1 and u 0

i ¼ pF0ðmi:nÞ; i ¼ 1; 2;…; n: We consider the following

statistics

T1 ¼
X

ðcos uiÞXi:n ð5:7Þ
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T2 ¼
X

ðsin uiÞXi:n ð5:8Þ
The statistics T1 and T2 are linear combinations of the sample order statistics and

their expected values may be written as

EðT1Þ ¼ aaþ bb ð5:9Þ
EðT2Þ ¼ caþ db ð5:10Þ

where a ¼ P
cos ui; b ¼ P

mi:ncos ui; c ¼ P
sin ui; d ¼ P

mi:nsin ui: For the

normal distribution, it can be shown that a ¼ 0: Thus, the statistics

â ¼ ðT2 2 db̂Þ=c ð5:11Þ
b̂ ¼ T1=b ð5:12Þ

are unbiased estimators of the parameters a and b, respectively. For symmetric

distributions (i.e., distributions for which mi:n ¼ 2mn2iþ1 ði ¼ 1; 2;…; nÞ) it can
be shown that d ¼ 0: This result can be applied to Equation 5.11 and

Equation 5.12 to give

â ¼
X

ðsin uiÞXi:n=c ¼ T2=c ð5:13Þ
b̂ ¼

X
ðcos uiÞXi:n=b ¼ T1=b ð5:14Þ

For this special case, it is interesting to note that, up to a constant, the statistic T1
estimates the location parameter and T2 estimates the scale parameter.

In this estimation procedure, we used the standard normal distribution as

a reference distribution. One could also consider using any other member

of location-scale family of distributions as a reference distribution. In this case

the underlying procedure could be modified by substituting u
0
i ¼ ui in the

corresponding equations.

We now illustrate the proposed method for estimating the parameters of the

normal distribution. The sample mean 
X is the minimum variance unbiased

estimator of the location parameter m: Estimation of the scale parameter s has

been studied extensively and various estimators have been proposed for this

purpose. A review of the underlying estimators are given by Johnson and Kotz.3

For the normal distribution mi:n ¼ 2mi:n where mi:n; ði ¼ 1; 2;…; nÞ are

expected standard normal scores. Also, b ¼ P
mi:ncos ui and c ¼ P

sin ui:
Substituting these quantities in Equation 5.13 and Equation 5.14 yields

m̂ ¼
X

ðsin uiÞXi:n=c ¼ T2=c ð5:15Þ
ŝ ¼

X
ðcos uiÞXi:n=b ¼ T1=b ð5:16Þ

where m̂ and ŝ are unbiased estimators of m and s: For large n it is well-known

that Fðmi:nÞ . i=ðnþ 1Þ and this result can be used to simplify the above
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expressions. It follows from Equation 5.15 and Equation 5.16 that the variances

of m̂ and ŝ are

Vðm̂Þ ¼ s 2k0Vk=c2 ð5:17Þ
VðŝÞ ¼ s 2l0Vl=c2 ð5:18Þ

where k0 ¼ ðsin u1;…; sin unÞ and l0 ¼ ðcos u1;…; cos unÞ andV is the covariance

matrix of the standard normal order statistics.

Relative efficiencies of m̂ and ŝ compared with the corresponding best linear

unbiased estimators for n ¼ 2, 3,…10 are shown in Table 5.2. From this table it

can be seen that both estimators have quite high (over 95%) efficiencies relative

to the best linear estimators. Furthermore, estimator of the scale parameter is

always more efficient than those based on mean deviation and range (see Johnson

and Kotz3 for efficiencies of the underlying estimators). In view of the accuracy

obtainable with best linear unbiased estimators, it may not be reasonable

to consider use of proposed estimators. However the linear coefficients used to

compute the best linear unbiased estimator of s are difficult to obtain. On the

other hand if a QðkÞ
n test is performed to identify the true distribution, the statistics

T1 and T2 will already be available. Thus the estimators m̂ and ŝ can easily be

computed from Equation 5.15 and Equation 5.16.

5.1.5.2. Estimating the Shape Parameters

The QðkÞ
n procedure can also be used to estimate the shape parameters of a given

distribution. Let g and l denote shape parameters of a distribution. Since

the statisticsUðkÞ
n andV ðkÞ

n are location and scale invariant, the expected value of the

pointQðkÞ
n will be some function of sample size n and the shape parameters g and l:

As explained in previous sections, given any distribution with a given set of

parameter values g0 and l0; one can determine its location on a ðUðkÞ
n ;V ðkÞ

n Þ plane.
We first consider the distributions with one shape parameter (say g) only.

Suppose that the statistics UðkÞ
n and V ðkÞ

n are based on the random sample

X1;X2;…;Xn from a distribution Fðx;a;b; gÞ;where, a and b are the location and

scale parameters, respectively, and g is the shape parameter. The expected values

of UðkÞ
n and V ðkÞ

n can be expressed as

EðUðkÞ
n Þ ¼ w1ðn; gÞ ð5:19Þ

TABLE 5.2
Efficiencies of m̂ and ŝ Relative to the Least Squares Estimates

n 2 3 4 5 6 7 8 9 10

m̂ 100.0 98.7 97.8 97.1 96.6 96.2 96.0 96.0 95.5

ŝ 100.0 100.0 99.5 99.0 98.6 98.3 98.0 96.3 97.6
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EðV ðkÞ
n Þ ¼ w2ðn; gÞ ð5:20Þ

where w1 and w2 are some functions of n and g: For a given sample size n and

shape parameter g ¼ g0 the corresponding expected point EQðkÞ
n ðg0Þ ¼

{w1ðn; g0Þ;w2ðn; g0Þ} can be determined approximately in the {UðkÞ
n ;V ðkÞ

n } plane

(see Figure 5.1).

Our proposed method of estimation of the shape parameter g is based

on finding a point E{QðkÞ
n ðgÞ} such that

UðkÞ
n ¼ w1ðn; ĝÞ ð5:21Þ

V ðkÞ
n ¼ w2ðn; ĝÞ ð5:22Þ

where ĝ is the sample estimator of g: However, in a typical situation the sample

point may not fall exactly on the curve of one of the distribution families

(with one shape parameter). Let the points E{QðkÞ
1n ðg1Þ} ¼ ðu1; v1Þ and

E{QðkÞ
2n ðg2Þ} ¼ ðu2; v2Þ denote the expected points based on g ¼ g1 and g ¼ g2

values, respectively. The sample point QðkÞ
n ¼ {UðkÞ

n ;V ðkÞ
n } lies either on, above or

below the curve of the identified distribution. Assuming that the a linear

interpolation provides a satisfactory approximation, we proceed to estimate g
approximately by

ĝ . g1 þ ðg2 2 g1Þðx0 2 u1Þ=ðu2 2 u1Þ ð5:23Þ
where

x0 ¼ AðV ðkÞ
n 2 v1Þ þ A2u1 þ UðkÞ

n

A2 þ 1
ð5:24Þ

and

A ¼ v2 2 v1
u2 2 u1

ð5:25Þ

The accuracy of the estimator ĝ is closely related to the distance of the

sample point QðkÞ
n to the curve of the identified true distribution. However,

more accurate results may be obtained by employing a nonlinear interpolation.

The proposed estimation procedure can be extended to the two-shape

parameter case also. In this case one needs to choose at least three

points E{QðkÞ
1n ðg1; l1Þ}; E{QðkÞ

2n ðg2; l2Þ}; and E{QðkÞ
3n ðg3; l3Þ} in such a way

that the sample point QðkÞ
n falls inside a triangle whose vertices are

determined by the underlying expected points. Again by using a linear

interpolation in the plane, an approximate solution can be obtained for the

parameter estimates.
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5.1.6. DISTRIBUTION APPROXIMATION FOR MIXTURES OF

DISTRIBUTIONS

In this section we discuss the possibility, under certain assumptions, of using the

proposed procedure to estimate both the distribution and its parameters for

mixtures of distributions.

Let Fðx;a;bÞ denote the distribution function of a random variable X and

a and b are the location and scale parameters respectively. The contaminated

(mixed) distribution is defined by

pFðx;a;bÞ þ ð12 pÞFðx;aþ d; kbÞ ð5:26Þ
where p is the mixing parameter ð0 # p # 1Þ: The distribution is location

contaminated for d – 0; k ¼ 1; scale contaminated for d ¼ 0; k – 1 and

location and scale contaminated for d – 0; k – 1:
The distribution function in Equation 5.26 has five unknown parameters.

It can be shown for this distribution that the expected values of the statistics UðkÞ
n

and V ðkÞ
n depend on the parameters p; k, and f ¼ d=b: A point on the

identification chart usually does not represent a distribution uniquely. Therefore

the proposed approximation procedure cannot be used for this general case.

However if one of these parameters is known or could be estimated

independently then an identification chart based on UðkÞ
n and V ðkÞ

n statistics

could be obtained and the parameters of the identified distribution could be

estimated by following a similar procedure as explained in the previous sections.

As an example, consider the location contaminated normal distribution. In

this case we assume that two components of mixture of normal distributions have

equal variances ðs 2
1 ¼ s 2

2 ¼ s 2Þ: The corresponding distribution function may

be written as

Fðx;m;s; p; dÞ2 pF ðx;m;sÞ þ ð12 pÞF ðx;mþ d;sÞ ð5:27Þ

where Fð·Þ is the distribution function of normal distribution. The mean and

the variance of this distribution are

EðXÞ ¼ mþ ð12 pÞd ð5:28Þ
VarðXÞ ¼ s2 þ pð12 pÞd2 ð5:29Þ

Preston11 used the sample skewness and kurtosis coefficients to estimate p and

f ¼ d /s: He showed further that one could back-track with given sample mean

and variance to obtain the estimates of m; s; d and p: It is obvious for this case
that the distribution of the statistics UðkÞ

n and V ðkÞ
n depends on the parameters p and

f: By following a similar approach, one could obtain the estimates of these

parameters by using the UðkÞ
n and V ðkÞ

n statistics. An example of the chart based on

location contaminated normal distributions (for n ¼ 50 and k ¼ 1) is given

in Figure 5.4. The charts in Figure 5.4 shows system of contours each of which is
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obtained by joining the points based on various p values ð p ¼ 0:05; 0:10;…0:95Þ
and f ¼ d=s values (f ¼ 1; 2, 3, 4, 5, 6, 7, 8, 9).

For a given sample of size n; the corresponding point Q ðkÞ
n in the {U ðkÞ

n ;V ðkÞ
n }

plane can be plotted and the estimates of p and f can be obtained approximately

by a linear interpolation. Given the estimates p̂ and f̂ ¼ d̂=ŝ and the moment

estimates of the quantities in Equation 5.28 and Equation 5.29, the estimates of

the parameters can be determined as

ŝ ¼ s={1þ p̂ð12 p̂Þf̂2}1=2 ð5:30Þ
m̂ ¼ 
X2 ð12 p̂Þf̂ŝ ð5:31Þ

d̂ ¼ f̂ŝ ð5:32Þ
where 
X and S are the sample mean and standard deviation, respectively.

5.1.7. EXAMPLES

Example 1. Consider the following hypothetical sample of 50 observations

which were generated from the standard gamma distribution with shape

parameter g ¼ 0:5:

0:507 0:175 0:388 1:135 1:958 0:156 1:131 0:001 0:229 0:550 0:138 1:571

3:571 0:152 0:276 0:570 0:323 0:009 0:362 0:001 0:220 0:181 0:452 1:640

0:001 0:559 0:230 0:350 0:037 0:275 0:062 1:499 0:048 0:818 0:110 0:010
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FIGURE 5.4 Identification chart for location contaminated normal distributions ðn ¼ 50Þ:
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We use the chart in Figure 5.1 to illustrate the identification and parameter

estimation procedure. The computed statistics for this sample are Uð1Þ
50 ¼20:1321

and V ð1Þ
50 ¼0:3063: Plotting this point on the identification chart, we see that the

nearest neighbor distribution is the gamma distribution.

The coordinates of the nearest points and the corresponding g values on the

gamma curve are

Q0
1 ¼ ðU 0

1;V
0
1Þ ¼ ð20:1513; 0:2987Þ; g1 ¼ 0:3

Q0
2 ¼ ðU 0

2;V
0
1Þ ¼ ð20:1268; 0:3143Þ; g1 ¼ 0:5

From Equation 5.24 and Equation 5.25 we find that A ¼ ð0:31432
0:2987Þ=ð20:1268þ 0:1513Þ ¼ 0:6367; and x0 ¼ 20:1342: Substituting these

values in Equation 5.23 gives ĝ ¼ 0:3þ ð0:2Þð20:1342þ 0:1513Þ=ð20:1268þ
0:1513Þ ¼ 0:4397: Note that the shape parameter is estimated independently

from the scale parameter b: To estimate b for this particular case, we use the

well-known relationship between the parameters, i.e., gb ¼ m where m is the

mean of the distribution. If we use the sample mean 
X ¼ P
Xi=n as an estimate of

m then the scale parameter b may be estimated as b̂ ¼ 
X=ĝ ¼ 1:229: The

moment and the maximum likelihood estimate (MLE) of g and b are found to be

as follows

Moment estimates ~g ¼ 0:6005 ~b ¼ 0:9183

MLE estimates ĝp ¼ 0:5288 b̂p ¼ 1:0219

If the underlying distribution is assumed to be a three-parameter gamma

distribution, then the chart in Figure 5.1 and Equations 5.11 and 5.12 could be

used to estimate the location and scale parameters. An obvious advantage of the

proposed method of estimation over the method of maximum likelihood is that,

the shape parameter is estimated independently and estimation of location and

scale parameters do not require iterative computation, which in many cases

causes some difficulties.12

Example 2. In this example we consider well-known iris data of Fisher.13

Four measurements namely sepal length, sepal width, petal length and petal

width were taken on each of 50 plants from three varieties (Iris setosa,

I. versicolor and I. virginica). This data set has been examined by a number of

authors including Ozturk,4 Royston,14 Koziol8 and Small15 who demonstrated

their goodness-of-fit test for multivariate normality. Our objective here is not

to perform a formal multivariate normality test but to demonstrate our

multivariate distribution identification procedure. However the underlying

procedure could be modified by providing a 100ð12 aÞ% confidence ellipse to

test the null hypothesis that each sample comes from a multivariate normal

distribution.
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For each variety the following statistics (based on type 1 standardization) were

computed

Iris setosa Uð1Þ
50 ¼ 20:0999, V ð1Þ

50 ¼ 0:3520

Iris versicolor Uð1Þ
50 ¼ 20:0453, V ð1Þ

50 ¼ 0:3407

Iris virginica Uð1Þ
50 ¼ 20:0878, V ð1Þ

50 ¼ 0:3136

Plots of points corresponding to each variate are shown on the identification chart

in Figure 5.5. It is seen from the chart that the points representing I. versicolor

and I. virginica are close to the point of multivariate normal distribution (with

p ¼ 4 and n ¼ 50) whereas the point representing I. setosa data departs slightly

from the underlying point. Evidence for a departure from multivariate normality

with I. setosa data was reported by Small (1980) at P ¼ 0:03 and Ozturk (1991) at
P ¼ 0:07 while many other procedures did not provide evidence to reject the

multivariate normality assumption.

5.1.8. CONCLUSIONS

This paper has presented a procedure of distribution approximation for univariate

and multivariate distributions through Monte Carlo experiments. In addition, a

technique is given for the estimation of parameters of the univariate distributions.

Based on the empirical results it is shown that the proposed procedure provides a

good basis for approximating the distributions in a nonparametric sense.

However, the accuracy of the proposed method among the other factors depends

on the number of samples used in Monte Carlo experiments. Therefore there is
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FIGURE 5.5 Identification chart for Iris data ð p ¼ 4; n ¼ 50Þ:
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a trade-off between the accuracy and the computational time; the accuracy can be

increased at the expense of increasing the computational time and vice versa.

5.2. A GENERAL ALGORITHM FOR UNIVARIATE AND

MULTIVARIATE GOODNESS-OF-FIT TESTS BASED ON

GRAPHICAL REPRESENTATION

5.2.1. INTRODUCTION

This paper develops a general algorithm for univariate and multivariate

goodness-of-fit tests based on graphical representation, using the same principle

as explained in a recent report.1 The derivation of the test statistic Qn for testing

whether a complete sample comes from a specified univariate location-scale

family of distributions, is explained in the above reference. Using the normal

distribution as an example, it is shown that the proposed procedure provides not

only a powerful test for one or more independent complete samples but also an

interesting graphical display for identifying the true distribution.

In testing a null hypothesis about a distributional assumption against an

unspecified alternative there is generally no uniformly most powerful nor optimal

test.2 Because of this, various test procedures have been developed for assessing

the distributional assumptions. Under certain conditions (i.e., for a specified null

hypothesis, a specified sample size, and a predetermined level of significance)

one test procedure may be shown to be more powerful than the other existing

procedures. Besides the power of a given test, computational simplicity, desirable

distributional properties of the test statistic and the generality of the test

procedure are among the important points to be considered.

The x 2 goodness-of-fit test has been widely used for assessing the

distributional assumptions because of its generality and its computational

simplicity. However, the choice of the class intervals for computing the test

statistic is arbitrary and the procedure can only be used for moderate or large

samples. Tests based on the probability integral transformation have also been

widely used to test the null hypothesis for a completely specified distribution. A

number of test statistics, including the Kolmogorov–Smirnov D and Anderson–

Darling A2 statistics which are based on the discrepancy between the empirical

distribution function of the sample and the null distribution function, have been

developed. In the case when the parameters of the null distribution are estimated

from the sample, the above procedures are modified to obtain more general tests

(for example see Lilliefors3). Comparative studies showed that the D statistic has

higher power than that of the x 2 test for many alternatives.4,5

The use of probability plotting as a quick means of checking on a

hypothesized distribution provides a most valuable aid. For a given random

sample, using this informal approach one can visually assess the distributional

assumptions.6 Probability plotting has been used as a basis for developing some

formal tests of goodness-of-fit. The W test for normality, suggested by Shapiro
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and Wilk7, has stimulated fresh interest in the subject. Power comparisons based

on Monte Carlo studies have shown that the W test provides an omnibus test for

normality.8 A number of modifications of the underlying procedure based on the

same principles have been introduced for testing various null distributions.9,10

Extensions of the W test to other null distributions have not been as successful

as in the normal case.11,12 Stephens13,14 gave an excellent review of the tests

based on the W statistic and the empirical distribution function statistics.

There has been an increasing research movement in developing graphical

goodness-of-fit tests. A major force behind this development has been the

rapid changes in computer technology. High speed computers having graphical

facilities are becoming available to many statisticians. The current state of the

computer technology reduced the computational limitations and provided a

convenient environment for the development of inventive methods.

In this paper we aim to present a general algorithm based on Monte Carlo

simulations for testing the distributional assumptions. The underlying method

uses the sample order statistics to display sample patterns graphically. It will

be demonstrated through examples that the proposed algorithm can be used to

test any distributional assumptions (not limited to the location-scale family) for

the univariate–multivariate, one sample and several sample cases.

In the following sections, details of the proposed algorithm are explained.

Section 5.2.2 introduces basic notation. Section 5.2.3 presents general

properties of the test statistics and Section 5.2.4 explains extensions of the

test. Section 5.2.5 is devoted to some examples to illustrate the test procedure

for various cases. Section 5.2.6 explains the empirical power of the test and

Section 5.2.7 summarizes the general algorithm for the test procedure. Finally,

Section 5.2.8 discusses some advantages of the proposed procedure over

probability plotting.

5.2.2. THE TEST PROCEDURE

Let X1:n # X2:n # · · · # Xn:n be an ordered sample from the distribution function

F and suppose that the location-scale distribution F0{ðx2 mÞ=s} is proposed as

the null distribution. In this section we develop a general algorithm for testing the

null hypothesis that the sample comes from the hypothesized distribution

F0{ðx2 mÞ=s}: The extensions of the procedure to testing for the distributions

having unknown shape parameters, and multivariate normal distributions will be

given in Section 5.2.4.

A number of procedures used for testing distributional assumptions are based

on linear combinations of the standardized sample order statistics. For example,

the Shapiro–Wilk W statistic can be written in the following form

W1=2 ¼
Xn
i¼1

aiYi:n ð5:33Þ
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where Yi:n is the standardized ith sample order statistic, i.e.,

Yi:n ¼ ðXi:n 2 
XÞ=S ð5:34Þ

X and S are the sample mean and standard deviation, respectively, and ai ði ¼
1; 2;…nÞ are the normalized coefficients of the best linear unbiased estimator

of s: A number of modifications of the W statistic have been introduced by

using different sets of coefficients ai:
15–20 Some other modifications of W are

introduced on replacing S; the sample estimate of s by some other linear

estimates.21

A number of standardized sample order statistics which can be used to

construct test statistics, are given in Table 5.3. Some other location-scale

invariant statistics could also be added to the list in the table. The first statistic in

the table is the standardized absolute deviation from the sample mean and was

used by Ozturk and Dudewicz.1 The Type 2 statistic is a well-known statistic and

has been used widely.9 Type 3 and Type 4 statistics are obtained by replacing the

sample mean by the sample median in Type 1 and Type 2 statistics, respectively.

The sample range D ¼ Xn:n 2 Xi:n is also considered as an alternative measure of

dispersion. Type 5 through Type 8 statistics are obtained from the first four

statistics by replacing S by D in the corresponding expressions respectively. The

Type 9 statistic also provides a simple standardization and may be useful for

assessing some distributional assumptions. Note that all the statistics listed in

Table 5.3 are location and scale invariant.

We define our statistic, for testing the null hypothesis that the random sample

is drawn from a specified location-scale distribution (location and scale

parameters are unknown), as follows. Let Y ðkÞ
j:n denote the jth standardized

sample order statistic based on the Type k ðk ¼ 1; 2;…; 9Þ standardization as

defined in Table 5.3. Also let mi:n denote the expected value of the ith sample

order statistic from the distribution function F0: The ith point ði ¼ 1; 2;…; nÞ on a
two dimensional plane is defined by

QðkÞ
i ¼ ðUðkÞ

i ;V ðkÞ
i Þ ð5:35Þ

TABLE 5.3
Various Standardized Sample Order Statistics

Number Expression Number Expression

1 lXi:n 2 
Xl=S 2 ðXi:n 2 
XÞ=S
3 lXi:n 2 ~Xl=S 4 ðXi:n 2 ~XÞ=S
5 lXi:n 2 
Xl=D 6 ðXi:n 2 
XÞ=D
7 lXi:n 2 ~Xl=D 8 ðXi:n 2 ~XÞ=D
9 ðXi:n 2 Xi:nÞ=D — —
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where

UðkÞ
i ¼ 1

n

Xi
j¼1

cos{pF0ðmj:nÞ}Y ðkÞ
j:n ð5:36Þ

V ðkÞ
i ¼ 1

n

Xi
j¼1

sin{pF0ðmj:nÞ}Y ðkÞ
j:n ð5:37Þ

For a given set of order statistics X1:n;X2:n;…;Xn:n, one can plot the

corresponding points Q1;Q2;…;Qn on a plane in two dimensions. Furthermore,

these points can be joined to obtain linked vectors. These linked vectors are based

on the sample order statistics and they reflect a certain pattern under the null

hypothesis. Following the same procedure, one can also obtain linked vectors

using the expected values of UðkÞ
i and V ðkÞ

i in place of their sample values.

The proposed test is based on the comparison of the sample and the expected

linked vectors. If the null hypothesis is true, we expect that the sample linked

vectors follow a pattern which is uniformly close to the null pattern.

Note that the procedure explained above provides a graphical goodness-of-fit

test. An interesting property of such a test procedure is that any one of the points

QðkÞ
i ; ði ¼ 1; 2;…; nÞ; or a selected group of these points can be used as a test

statistic to establish a formal test. In this study we propose the following general

statistic

QðkÞ
n ¼ {UðkÞ

n ;V ðkÞ
n } ð5:38Þ

for testing the null hypothesis. A 100ð12 aÞ% confidence contour for the point

EðQðkÞ
n Þ ¼ {EðUðkÞ

n Þ;EðV ðkÞ
n Þ} can also be constructed. Thus, for a specified k; the

above statistic together with a linked vectors chart, is expected to provide a useful

test procedure.

The test algorithm may be summarized as follows:

(1) Sort the sample observations in increasing order,

(2) Choose the appropriate type of standardization from Table 5.3 and

obtain the sample order statistics,

(3) Obtain the sample and the null-linked vectors,

(4) Construct a 100ð12 aÞ% confidence ellipse for the point E{QðkÞ
n }:

(5) If the sample point QðkÞ
n does not fall inside the ellipse then reject the

null hypothesis.

5.2.3. PROPERTIES OF THE TEST STATISTICS

In general, the test statistic QðkÞ
n is a location and scale invariant statistic.

Therefore, it could be used to test a composite null hypothesis that the random

sample X1;X2;…;Xn comes from a specified distribution. The statistics UðkÞ
n and

V ðkÞ
n are both the linear combinations of standardized sample order statistics Y ðkÞ

i:n ;
ði ¼ 1; 2;…; nÞ: It is clear that the joint distributions of UðkÞ

n and V ðkÞ
n depend on
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the null distribution, the type of the standardized statistic k and the sample size n:
For a given null distribution, type of statistic, and sample size, the joint

distribution of UðkÞ
n and V ðkÞ

n must be obtained in order to perform a formal test of

hypothesis.

The distributional properties of the statistic Qð1Þ
n ¼ ðUð1Þ

n ;V ð1Þ
n Þ for testing

normality have been studied by Ozturk and Dudewicz.1 Based on empirical

comparisons, they showed that the joint distribution of the underlying statistics

converge rapidly to the bivariate normal distribution and that an approximate

100ð12 aÞ% confidence ellipse for the point E{Qð1Þ
n } could be obtained for

n . 10:
The exact sampling distribution ofQðkÞ

n is usually difficult to obtain. However,

using the special properties of some of the null distributions, explicit expressions

could be obtained for the means, variances and covariances of UðkÞ
n and V ðkÞ

n : On
the other hand, asymptotic joint normality of these statistics could be established

for some of the standardized statistics and null distributions.

In this study, we use the empirical distribution of the statistic QðkÞ
n in order to

construct a general algorithm for testing the distributional assumptions. Means,

variances and covariances of the statistics UðkÞ
n and V ðkÞ

n can be obtained by Monte

Carlo experiments. Empirical joint distributions of the underlying statistics could

also be obtained by plotting the equi-probability contours.

Examples of the empirical distributions of the statistics UðkÞ
n and V ðkÞ

n for

k ¼ 1; 2;…; 9 are given in Figure 5.6. Each distribution is obtained by generating
100,000 random samples of size 50 from the normal distribution. Subroutine

DRNNOA in the IMSL (International Mathematical and Statistical Libraries) is

used to generate the random samples. It is seen from the figure that the joint

distribution of the statistics, UðkÞ
n and V ðkÞ

n ; can be approximated by a bivariate

normal distribution for k ¼ 1; 3 and 6. For k ¼ 2; 4, 5, 7, 8 and 9 at least one of

the corresponding marginal distributions are symmetric.

Plotting confidence contours is usually not easy when the joint distribution is

not bivariate normal. However, if a normality transformation could be made to

obtain statistics ZU ¼ c1ðUðkÞ
n Þ and ZV ¼ c2ðV ðkÞ

n Þ then the corresponding

confidence contours could be constructed. In this study we utilize the Johnson

system of distributions to transform the distribution of QðkÞ
n into a standard

bivariate normal distribution.

Let

ZU ¼ g1 þ d1fi{ðUðkÞ
n 2 j1Þ=l1} ð5:39Þ

ZV ¼ g2 þ d2 fi{ðV ðkÞ
n 2 j2Þ=l2} ð5:40Þ

where f1ð yÞ ¼ logð yÞ; f2ð yÞ ¼ log{y=ð12 yÞ}; f3ð yÞ ¼ sinh21ð yÞ and f4ð yÞ ¼ y:
If UðkÞ

n has a Johnson Type i distribution, and V ðkÞ
n has a Johnson Type j

distribution, then the standardized variables ZU and ZV have a joint standard

bivariate normal distribution with correlation coefficient r: Thus the confidence
contour, within which 100ð12 aÞ% of the distribution lies, could be constructed.
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The corresponding contour has the equation31

Z2
U 2 2rZUZV þ Z2

V ¼ 22ð12 r2ÞlogðaÞ ð5:41Þ

When the statistics UðkÞ
n and V ðkÞ

n are uncorrelated, the above equation will have a

simpler form. By plotting the contours of equal density of the joint distribution of

UðkÞ
n and V ðkÞ

n , 100ð12 aÞ% confidence contours can be obtained.

It is clear that the confidence contours of the statistics UðkÞ
n and V ðkÞ

n can be

obtained if the parameters r; gi; di; ji and li ði ¼ 1; 2Þ are known. However, these
parameters usually are not known and they must be determined for every null

distribution, sample size (n) and type of standardization (k). In this study, we

proceed to determine the corresponding parameter values empirically. For

this purpose, a number of random samples of size n are generated from the

hypothesized distribution. The corresponding UðkÞ
n and V ðkÞ

n statistics are then

computed. Parameters of the distributions in Equation 5.39 and Equation 5.40 are

determined by using the estimation method suggested by Slifker and Shapiro.22

The correlation coefficient r is determined from the transformed values ZU and ZV
of each sample.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5.6 Empirical distribution of the statistic QðkÞ
n for n ¼ 50: (a) Type 1, (b) Type 2,

(c) Type 3, (d) Type 4, (e) Type 5, (f) Type 6, (g) Type 7, (h) Type 8, (i) Type 9.
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5.2.4. EXTENSIONS OF THE TEST

The proposed procedure is developed to test the composite hypothesis that a

sample comes from a univariate location scale distribution. In this section we

explain some extensions of the underlying procedure for more general cases.

Examples for each of the corresponding extensions will be given in the next

section.

(1) Testing two or more independent samples: The generalization of the

QðkÞ
n test to more than one independent sample is explained by Ozturk

and Dudewicz1 and will be summarized here for completeness. For this

case, one constructs the null-linked vectors and the sample linked

vectors for each sample. If the level of significance for testing

one sample is a then the corresponding overall level for significance

a0 for testing r independent samples would be 12 ð12 rÞr: Thus

100 ð12 a0Þ% confidence ellipses must be obtained. The null

hypothesis is rejected if at least one of the points QðkÞ
n for each sample

falls outside the corresponding confidence ellipse.

(2) Testing for distributions with unknown shape parameters: Testing for

distributions with shape parameters is conceptually different than testing

for distributions without shape parameters. In the first case the shape of

the distribution depends on the corresponding values of the shape para-

meter(s) while in the second case the null distribution is transformed to

a single form.

If the null distribution has shape parameter(s) then we extend the

proposed procedure by using the sample estimates of the underlying

parameters. In this case the null and the sample linked vectors, and the

corresponding confidence ellipse could be constructed following the

same procedure as explained in Section 5.2.2. Then the distribution of

the QðkÞ
n statistic can be obtained empirically based on the null dis-

tribution for which the shape parameter is estimated from the sample.

(3) Testing for multivariate normality: A number of test procedures for

multivariate normality have been proposed in the literature (see Cox

and Small23). A common approach for detecting the presence of joint

nonnormality has been to perform separate tests of univariate normality

on the marginal distributions. For this purpose, our proposed graphical

goodness-of-fit procedure could be used to test the marginal normality

of the observations on each variable. Distributional assumptions for

the other multivariate distributions could also be tested using the same

QðkÞ
n procedure. However, the derivation of the true significance level

for such test procedures is a multivariate problem and usually will be

unknown.

Another approach for testing multivariate normality is to develop test

statistics which explicitly exploit the multivariate nature of the data.24 The test
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procedures in this category concentrate, either on combinations of univariate

normality tests or on the invariant graphical procedures, based on the distribution

of the squared radii r2i :
In this section we demonstrate the use of the QðkÞ

n procedure for testing

multivariate normality on the basis of the distribution of the ordered r2i values of

the observations.

Let X1;X2;…;Xn be n independent p £ 1 vectors of observations. Then the

squared radius for the ith observation is

r2i ¼ ðXi 2 
XÞTS21ðXi 2 
XÞ ð5:42Þ
where 
X is the mean vector, S is the estimated covariance matrix, and T denotes

transpose. Under the null hypothesis that the random sample is drawn from a

multivariate normal distribution, the distribution of the r2i is a constant multiple

of a Beta distribution with parameters 1
2
p and 1

2
ðn2 p2 1Þ.25 Apparently r2i ¼

ði ¼ 1; 2;…; nÞ are not uncorrelated. However, for large samples the correlation

between the r2i may be ignored.26 In this case the problem of testing the random

sample for multivariate normality is reduced to testing the transformed sample

r21 ; r
2
2 ;…; r2n for the Beta {

1
2
p; 1

2
ðn2 p2 1Þ} distribution. Note that the QðkÞ

n test

not only provides a graphical procedure but also a significance test for

multivariate normality.

A widely used graphical procedure for assessing joint normality based on

radius and angles representation,27 also provides a useful informal graphical

procedure. Following a similar procedure, one can obtain the probability integral

transformation of r2i ; values given in Equation 5.42 and p2 1 normalized angles

uijði ¼ 1; 2;…; n; j ¼ 1; 2;…; p2 1Þ: The random variables will be approxi-

mately independent and uniformly distributed over (0,1). Thus a formal test for

multivariate normality could also be constructed by using the QðkÞ
n procedure. For

this case, the corresponding problem consists of testing p independent samples

for uniformity.

5.2.5. EXAMPLES

We consider the well-known iris data, first used by Fisher.28 Four variates namely

sepal length, sepal width, petal length and petal width were measured on 50

plants from each variety Iris setosa, I. versicolor and I. virginica. The complete

data set is given by Kendall.29 In this study, we use the data for I. setosa only as

the data for I. versicolor and I. virginica are less interesting.

Example 1. We illustrate the univariate QðkÞ
n procedure on the variety I. setosa

first with k ¼ 1: Our objective is to perform normality tests for each variety

separately. The null and sample linked vectors with 90, 95 and 99% confidence

contours are given in Figure 5.7(a). To construct these contours, 2000 random

samples of size 50 were generated from the standard normal distribution and the

statistics Uð1Þ
n and V ð1Þ

n were computed for each sample. The Johnson system of

distributions were fitted to the data sets each of which is based on the statistics
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Uð1Þ
n and V ð1Þ

n : Parameters of the Johnson distributions were determined by using

the estimation method suggested by Slifker and Shapiro.22 Linked vector charts

for the variates sepal length, sepal width, petal length and petal width are shown

in the same figure. The P values corresponding to the Qð1Þ
n statistics for the

variates sepal length, sepal width, petal length and petal width are found to be

P1 ¼ 0:58; P2 ¼ 0:46, P3 ¼ 0:62; P4 ¼ 0:00, respectively. A P value obtained

from Equation 5.41 is the probability that the point Qð1Þ
n ¼ {Uð1Þ

n ;V ð1Þ
n } falls

outside of the 100ð12 PÞ%confidence contour of the distribution. A smallP value

indicates that the null hypothesis can be rejected at some level of significance.

If the null distribution were exponential the corresponding linked vectors

chart could be obtained similarly [Figure 5.7(b)]. For this case the P values of the

four variates are found to be P1 ¼ 0:00; P2 ¼ 0:00; P3 ¼ 0:00 and P4 ¼ 0:02:
The above tests could be performed also by utilizing the other statistics which

are given in Table 5.3. Some examples based on testing the sepal length of I. setosa

for normality are given in Figure 5.8 for k ¼ 2ð1Þ 9. The corresponding P values

(following the same order in Table 5.3) are found to be P2 ¼ 0:95; P3 ¼ 0:63;
P4 ¼ 0:98;P5 ¼ 0:97;P6 ¼ 0:88;P7 ¼ 0:97;P8 ¼ 0:91;P9 ¼ 0:81, respectively.

Example 2. In this example we illustrate the QðkÞ
n procedure for testing the petal

width of I. setosa for a gamma distribution with unknown scale and shape

parameters. The probability density function of the two parameter gamma

distribution is given by

f ðx; g;bÞ ¼ 1

bgGðgÞ x
g21e2x=b ð5:43Þ

For a given random sample X1;X2;…;Xn the maximum likelihood estimates of

the parameters can be obtained. For our data set the maximum likelihood

−0.2 0.0

0.6

0.4

(petal width)

null hypothesis
sample data

v

0.2

0.0

u(a)
0.2 0.4

(petal width)

−0.2 0.0

0.6

0.4

v

0.2

0.0

u(b)
0.2 0.4

FIGURE 5.7 The Qð1Þ
n test for Iris setosa data: (a) testing for normality, (b) testing for

exponentiality.
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estimates of g and b are found to be ĝ ¼ 6:246 and b̂ ¼ 0:394 (see Johnson

and Kotz30,31 for the estimation procedure). Since the QðkÞ
n procedure is

scale invariant, we need to consider the shape parameter only. To establish a

100 ð12 aÞ% confidence contour, we obtain the empirical joint distribution of

QðkÞ
n based on the standard gamma distribution (i.e., gamma distribution with

b ¼ 1 and g ¼ 6:246) by following the same procedure as explained in Section

5.2.3. The linked vectors chart for k ¼ 1 is given in Figure 5.8(i). The

corresponding P value is found to be 0.00.

Example 3. In this example we examine the I. setosa data for testing

multivariate normality. Using the values of four variates we first compute r21 ði ¼
1; 2;…; nÞ: Testing the null hypothesis of multivariate normality reduces to

testing the null hypothesis that the transformed sample r21 ; r
2
2;…; r250 comes from a

Beta(2, 22.5) distribution. The corresponding linked vector chart is given in

v v v

v v v

v v v
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FIGURE 5.8 Various QðkÞ
n based on Iris setosa data where (a) through (h) is testing for

normality and (i) is testing for gamma distribution. (a) Type 2, (b) Type 3, (c) Type 4,

(d) Type 5, (e) Type 6, (f) Type 7, (g) Type 8, (h) Type 9 (i) Type 1.
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Figure 5.9. The P value is found to be 0.08. This data set was also examined by

Koziol,32 Small,33 and Royston.34 The respective P values are given to be 0.20,

0.01 and 0.001. From example 1, it is clear that the source of nonnormality is the

highly skewed fourth variate ( petal width).

5.2.6. EMPIRICAL POWER

For k ¼ 1; Ozturk and Dudewicz1 have studied the power of the QðkÞ
n procedure

for testing normality. Using a wide range of alternative distributions, it is shown

that the power of the Qð1Þ
n test is comparable with that of the Shapiro–Wilk test.

It is clear that the power of the QðkÞ
n test depends on the sample size ðnÞ; type

of the standardized statistic (k) and the null distribution. To make a general

comparison of power, one needs to consider a wide range of alternative

distributions and various significance levels. Such a comparison would require an

extensive study and will be pursued in future work.

In this study, we perform a limited comparison in order to have some feeling

about the power of the QðkÞ
n procedure. Seven distributions, namely normal,

uniform, exponential, Laplace, logistic, Cauchy and extreme value were chosen

for the comparison of power. From each alternative distribution, 2000 samples of

size 25 were generated and the 10% empirical powers were obtained by

computing the number of cases that the P valuewas less than 0.10. The results are

given in Table 5.4. Alternative distributions are given in the columns and null

distributions are given in the rows. The results are obtained for all types of

standardizations. For example using the Type 1 statistic ðk ¼ 1Þ; the empirical

power of the Qð1Þ
n procedure for testing normality is 0.38 when the alternative

−0.2 0.0

0.6

0.4
v

0.2

0.0

u
0.2 0.4

sample data
null hypothesis

FIGURE 5.9 The QðkÞ
n test for multivariate normality ðk ¼ 1Þ:
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TABLE 5.4
10% Power of the Qn

(k) Test Based on 2000 Samples of Size 25

Null
Distribution k Normal Uniform Exponential Laplace Logistic Cauchy Extreme

Normal 1 0.10 0.38 0.87 0.41 0.16 0.95 0.40

Uniform 1 0.35 0.10 0.89 0.84 0.57 1.00 0.62

Exponential 1 0.84 0.88 0.10 0.86 0.85 0.96 0.99

Laplace 1 0.21 0.77 0.85 0.11 0.14 0.81 0.36

Logistic 1 0.08 0.49 0.86 0.22 0.08 0.90 0.31

Cauchy 1 0.76 0.98 0.82 0.28 0.57 0.11 0.70

Extreme v 1 0.32 0.53 0.99 0.56 0.40 0.94 0.10

Normal 2 0.09 0.39 0.90 0.40 0.21 0.96 0.45

Uniform 2 0.38 0.09 0.95 0.83 0.58 0.99 0.72

Exponential 2 0.91 0.91 0.10 0.91 0.89 0.97 0.99

Laplace 2 0.17 0.83 0.81 0.09 0.11 0.80 0.30

Logistic 2 0.07 0.53 0.86 0.22 0.09 0.90 0.37

Cauchy 2 0.79 0.99 0.34 0.28 0.55 0.09 0.54

Extreme v 2 0.41 0.56 1.00 0.59 0.46 0.93 0.08

Normal 3 0.09 0.39 0.76 0.40 0.14 0.95 0.31

Uniform 3 0.34 0.11 0.82 0.81 0.54 0.99 0.56

Exponential 3 0.63 0.78 0.10 0.68 0.62 0.92 0.94

Laplace 3 0.25 0.80 0.74 0.10 0.16 0.78 0.36

Logistic 3 0.11 0.54 0.74 0.19 0.10 0.89 0.30

Cauchy 3 0.82 0.99 0.82 0.33 0.65 0.09 0.74

Extreme v 3 0.24 0.46 0.95 0.48 0.30 0.93 0.10

Normal 4 0.09 0.51 0.65 0.37 0.17 0.94 0.30

Uniform 4 0.37 0.10 0.89 0.82 0.57 0.99 0.63

Exponential 4 0.47 0.89 0.09 0.23 0.35 0.69 0.59

Laplace 4 0.35 0.88 0.45 0.10 0.21 0.73 0.31

Logistic 4 0.13 0.65 0.50 0.14 0.10 0.86 0.19

Cauchy 4 0.93 1.00 0.70 0.60 0.82 0.10 0.79

Extreme v 4 0.11 0.25 0.73 0.13 0.09 0.82 0.09

Normal 5 0.09 0.60 0.89 0.37 0.16 0.95 0.38

Uniform 5 0.54 0.09 0.88 0.91 0.74 1.00 0.70

Exponential 5 0.85 0.91 0.10 0.84 0.83 0.94 0.99

Laplace 5 0.22 0.88 0.83 0.09 0.13 0.78 0.39

Logistic 5 0.11 0.69 0.87 0.18 0.10 0.89 0.33

Cauchy 5 0.74 0.99 0.83 0.26 0.52 0.10 0.69

Extreme v 5 0.36 0.72 0.99 0.59 0.42 0.94 0.11

Normal 6 0.09 0.62 0.93 0.37 0.20 0.94 0.46

Uniform 6 0.63 0.10 0.93 0.92 0.79 1.00 0.79

Exponential 6 0.90 0.95 0.09 0.87 0.88 0.93 1.00

Continued

Probability Density Distribution Approximation 287

© 2006 by Taylor & Francis Group, LLC



distribution is uniform. Note that when the alternative distribution for testing

normality is also normal then the corresponding empirical power is 0.10.

It is interesting to see that among the other factors the type of the

standardization has strong influence on the power of the test. For example, when

the null distribution is normal and the alternative distribution is uniform, the

corresponding powers are 0.38 for k ¼ 1 and 0.63 for k ¼ 8: Similar results can

be observed for many other cases. This suggests that if the alternative distribution

can be specified, then the power of the test can be improved by choosing the

appropriate type of standardization.

The power of the QðkÞ
n test (with k ¼ 9) is also compared with that of the

Shapiro–Wilk W test. The W test is known to be an omnibus test and it is

developed particularly for testing normality. Three sample sizes (n ¼ 15; 35
and 50) and 35 alternative distributions are used in the power comparison and

TABLE 5.4 Continued

Null
Distribution k Normal Uniform Exponential Laplace Logistic Cauchy Extreme

Laplace 6 0.17 0.88 0.88 0.10 0.09 0.78 0.36

Logistic 6 0.09 0.72 0.93 0.17 0.09 0.87 0.38

Cauchy 6 0.58 1.00 0.73 0.22 0.38 0.08 0.53

Extreme v 6 0.43 0.78 1.00 0.61 0.49 0.93 0.12

Normal 7 0.10 0.58 0.74 0.37 0.16 0.94 0.28

Uniform 7 0.55 0.11 0.81 0.92 0.72 0.99 0.68

Exponential 7 0.63 0.84 0.10 0.66 0.61 0.92 0.94

Laplace 7 0.27 0.91 0.77 0.10 0.16 0.77 0.38

Logistic 7 0.12 0.73 0.74 0.18 0.08 0.88 0.28

Cauchy 7 0.79 1.00 0.87 0.32 0.59 0.09 0.77

Extreme v 7 0.28 0.65 0.95 0.47 0.32 0.92 0.10

Normal 8 0.09 0.63 0.37 0.28 0.14 0.90 0.17

Uniform 8 0.58 0.08 0.74 0.90 0.74 1.00 0.67

Exponential 8 0.25 0.71 0.09 0.17 0.19 0.73 0.43

Laplace 8 0.30 0.93 0.45 0.08 0.17 0.66 0.28

Logistic 8 0.15 0.79 0.37 0.12 0.10 0.77 0.17

Cauchy 8 0.87 1.00 0.84 0.51 0.73 0.12 0.81

Extreme v 8 0.14 0.62 0.74 0.22 0.14 0.85 0.08

Normal 9 0.12 0.58 0.96 0.43 0.26 0.93 0.44

Uniform 9 0.63 0.10 0.97 0.91 0.80 0.99 0.78

Exponential 9 0.98 0.96 0.10 0.98 0.98 0.98 1.00

Laplace 9 0.19 0.89 0.95 0.10 0.11 0.75 0.20

Logistic 9 0.07 0.69 0.92 0.20 0.10 0.86 0.30

Cauchy 9 0.69 1.00 0.57 0.24 0.46 0.12 0.57

Extreme v 9 0.40 0.71 1.00 0.62 0.48 0.95 0.09
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the corresponding results based on 5000 samples are given in Table 5.5. It is

noted that the power of the Qð9Þ
n procedure is uniformly similar to (and in some

cases higher than) that of theW test for the alternative distributions considered in

the comparison.

TABLE 5.5
10% Power of theQn

(9) andW Tests (for Normality) Based on 5000 Samples

n 5 15 n 5 35 n 5 50

Null Distribution W Qn
(9) W Qn

(9) W Qn
(9)

Uniform 0.26 0.27 0.74 0.80 0.95 0.96

Beta(3, 3) 0.08 0.08 0.13 0.12 0.22 0.16

Beta(4, 4) 0.08 0.07 0.10 0.10 0.15 0.11

Beta(5, 5) 0.08 0.08 0.10 0.08 0.12 0.09

Student tð1Þ 0.79 0.81 0.98 0.97 0.99 0.99

Student tð2Þ 0.52 0.52 0.74 0.78 0.82 0.87

Student tð3Þ 0.32 0.38 0.54 0.58 0.60 0.70

Student tð5Þ 0.21 0.25 0.30 0.40 0.32 0.45

Student tð10Þ 0.13 0.16 0.17 0.21 0.16 0.24

Student tð25Þ 0.12 0.12 0.12 0.13 0.11 0.14

Lambda(.46, .46) 0.10 0.10 0.25 0.25 0.43 0.38

Lambda(.85, .85) 0.20 0.23 0.67 0.72 0.90 0.92

Lambda(.98, .98) 0.25 0.25 0.72 0.80 0.95 0.96

Cauchy 0.80 0.82 0.97 0.97 0.99 0.99

Logistic 0.16 0.17 0.18 0.24 0.20 0.29

Johnson Sb(0, 1.5) 0.08 0.07 0.11 0.09 0.14 0.13

Johnson Sb(0, 2.0) 0.08 0.08 0.09 0.07 0.12 0.08

Johnson Sb(0, 2.5) 0.09 0.09 0.09 0.07 0.10 0.08

Exponential 0.79 0.75 0.99 1.00 1.00 1.00

Triangular 0.07 0.07 0.10 0.10 0.17 0.13

Lognormal 0.88 0.87 0.99 0.99 0.99 1.00

Chi-square(1) 0.97 0.97 1.00 1.00 0.99 1.00

Chi-square(3) 0.62 0.58 0.95 0.96 1.00 0.99

Chi-square(5) 0.44 0.40 0.81 0.76 0.93 0.92

Beta(3, 2) 0.13 0.11 0.26 0.23 0.41 0.33

Beta(5, 1) 0.60 0.58 0.97 0.98 0.99 1.00

Weibull(3) 0.08 0.09 0.10 0.10 0.12 0.11

Weibull(4) 0.09 0.08 0.09 0.08 0.10 0.07

Von Mises(2) 0.15 0.19 0.19 0.24 0.18 0.28

Extreme value 0.32 0.28 0.62 0.55 0.76 0.69

Lambda(.20, .15) 0.10 0.09 0.09 0.08 0.10 0.08

Lambda(.05, .10) 0.15 0.16 0.25 0.22 0.28 0.27

Lambda(.07, .10) 0.13 0.13 0.13 0.15 0.14 0.17

Johnson Sb(1, 2) 0.11 0.09 0.14 0.12 0.20 0.15

Johnson Sb(1, 3) 0.09 0.10 0.10 0.09 0.11 0.10
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Another possibility of improving the power for the test is to obtain a second

confidence contour at the point E{QðkÞ
½n=2	}: An example of such confidence

contours is given in Figure 5.10. The sample linked vectors are obtained by using

the Iris data (sepal length). A major difficulty of such an approach is that the level

of significance is not determinable because of the strong dependence between the

statistics QðkÞ
n and QðkÞ

½n=2	:
However, for a given level of overall significance a; the individual level of

significance less than a could be determined empirically for each point. In many

cases, the use of the second confidence contour is important since the point QðkÞ
n

can be reached through various patterns in the linked vectors. Therefore, the

construction of such a contour and determination of the empirical level of

significance is included in the present algorithm.

5.2.7. THE TEST ALGORITHM

It is noted that the QðkÞ
n procedure provides a general algorithm for testing the

distributional assumptions. In this section, we will describe this algorithm. The

input to the procedure consists of n £ 1 dimensional observations Xi ði ¼
1; 2;…; nÞ:

At the first stage of the procedure the null hypothesis is specified. If the null

distribution has an unknown shape parameter, then this parameter is estimated

using an appropriate method (i.e., method of maximum likelihood, least

squares, etc.).

The second stage consists of checking whether the random sample is

univariate or not. If the sample is from a multivariate distribution then the

corresponding squared radii r2i values are computed. In this case there will only
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FIGURE 5.10 Linked vector chart with confidence contours at two points.
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be one transformed sample consisting of squared radii. Another option at this

stage is to make a linear transformation to obtain p (approximately) independent

samples as explained in Section 5.2.4.

The third stage of the process is the sorting of the observations in the samples.

Note that, in the multivariate case sorting is only done for the transformed

samples.

At the next stage the overall level of significance is determined. If there is

only one sample the corresponding significance level is a: If there are several

independent samples (including the one sample multivariate case) then the

overall level of significance a 0 is obtained.

Start

Specify the null hypothesis

Enter the sample

yes

yes

no

yes

no

no

yes

Null
dist. has shape

parameter
?

Uni-
variate
sample

?
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Obtain overall significance level

Obtain overall significance level
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One
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FIGURE 5.11 Flowchart of the test algorithm.
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The type of standardization is determined at the fifth stage. If no choice is

made the Type 1 statistic is used as default. Once the type of statistic is decided

then the corresponding quantities mi:n and E{Y
ðkÞ
i:n } are obtained empirically. The

empirical distribution of the statistic QðkÞ
n is also determined at this stage.

The final stage of the process is to plot the confidence contours, null and

sample linked vectors. If a second confidence contour is required then the

corresponding overall level of significance is determined empirically.

A summary flowchart of the steps involved in computer implementation is

given in Figure 5.11. A FORTRAN program based on this algorithm has been

developed and the resulting graphics are obtained using the corresponding SAS

procedures.

5.2.8. DISCUSSION

The aim of this paper has been to develop a general algorithm based on QðkÞ
n

procedure for testing the distributional assumptions of a random sample. The

underlying algorithm provides not only a general algorithm but also a graphical

procedure for testing a single sample or several independent samples for specified

univariate or multivariate distributions.

An in-depth study of the general power properties of the proposed test has not

been attempted but preliminary power comparisons have indicated that it has

good power properties. The power of the test may be increased by using a second

confidence contour. However much further work is required to establish some

criteria for the optimal choice of k for a specified null distribution.

It is evident that both the QðkÞ
n procedure and Q–Q type of plots are based on

similar principles, that is, comparing the sample order statistics with their

expected values. In Q–Q plots the sample order statistics are plotted against the

expected order statistics and the resulting plots are compared with a straight line.

In the QðkÞ
n procedure the sample standardized linked vectors are compared with

their expected linked vectors. The length of the sample and the expected vectors

are determined by the sample and the expected value of the corresponding

standardized order statistics respectively, and the direction (the angle between the

ith vector and the horizontal axis) of the vectors are determined by using the null

distribution function.

Some advantages of the QðkÞ
n procedure over Q–Q plots are summarized as

follows

(1) The Q–Q plots do not provide a formal test. Linearity of the plots is

justified on a subjective basis. The QðkÞ
n procedure displays the sample

observations in such a way that the sample vector patterns are compared

with the expected patterns. Furthermore a confidence contour for the

terminal point of the expected linked vectors (or if required a second

confidence contour) is provided so that a formal test can be performed.

(2) It is not easy to appreciate the linearity of the Q–Q plots when the

sample is small. For example,Aly andOzturk19,20 attempted toovercome
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this difficulty by introducing Hodges–Lehmann Q–Q plots. However,

the use of Q–Q plots for small samples is still not straightforward. This

situation does not create any serious problems for the QðkÞ
n procedure.

(3) An attractive property of the QðkÞ
n procedure is that if the null hypothesis

is rejected then one can estimate the skewness and kurtosis of the true

distribution. This means that if the null hypothesis is rejected then the

QðkÞ
n procedure can be used to identify the true distribution. The Q–Q

plots also can be used to characterize the distributions.35,36 However,

identification of a distribution by using the Q–Q plots, is made on the

subjective basis only (our research is being continued along this line).

(4) The QðkÞ
n procedure provides a general algorithm to test the distri-

butional assumptions for one or several samples from univariate or

multivariate distributions. Extensions of Q–Q plots to multivariate

cases is not easy. Furthermore the QðkÞ
n procedure may be used to assess

the distributional assumptions for the non location-scale family of

distributions.

(5) The algorithm proposed in this paper does not require knowledge of the

expected values mi:n or m
0
i:n: These quantities are obtained empirically.

Clearly the accuracy of such an approximation depends on the number

of Monte-Carlo samples. Our experience has shown that 1000 samples

for a moderate size of sample would provide satisfactory approxi-

mations to bothmi:n andm
0
i:n ði ¼ 1; 2;…; nÞ: Thus, determination of the

optimal number of Monte Carlo samples will be a trade off between the

accuracy of the underlying approximations and the computational time.

Besides the generality and good power properties, the proposed test is

graphical in nature. Not only can it be used to enhance scientific work, but also it

has a potential use in teaching and research.
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6.1. THE OZTURK ALGORITHM: A NEW TECHNIQUE

FOR ANALYZING RANDOM DATA WITH APPLICATIONS

TO THE FIELD OF NEUROSCIENCE

(W. W. WEINER)

6.1.1. INTRODUCTION TO THE OZTURK ALGORITHM

The purpose of this project is to introduce a new algorithm for analyzing random

data. This algorithm is now referred to as the Ozturk Algorithm, named after

the person who invented it (Ozturk1). In addition to describing this algorithm,

this chapter will also present three detailed applications that illustrate the power

of this algorithm. In the first part of this chapter, a brief description of the Ozturk

Algorithm and its advantages over classical techniques will be discussed. The

reader will also be introduced to the basic operation of this algorithm. In the

next section of this chapter, a detailed description of how the Ozturk Algorithm

works will be given. For those readers who are only interested in applications of

the Ozturk Algorithm and not in the mathematical specifics of its operation,
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this section may be omitted. The next three sections of this chapter will discuss

three applications of the Ozturk Algorithm:

1) Analysis of auditory nerve activity in the chinchilla

2) Analysis of efferent optic nerve activity in the horseshoe crab

3) Analysis of the visual field of the horseshoe crab.

Finally, the last section of this chapter will discuss potential applications of

the Ozturk Algorithm in neuroscience.

6.1.1.1. Overview

The Ozturk Algorithm provides a very powerful tool for describing and analyzing

data. The algorithm provides two primary modes of operation: it can be used to

describe the probability density function (PDF) (from a prespecified library) that

best fits a set of data through the use of a graphical solution, or it can be used

to perform a goodness-of-fit test between a set of data and a specified density

function (null distribution). The technique this algorithm employs also provides

the user with considerable flexibility. The library of density functions, which the

algorithm uses can be modified or expanded.

The primary advantages of the Ozturk Algorithm are that very few sample

points are required to run this algorithm, and that unlike classical statistical

techniques, no assumptions about the null hypothesis are required for fitting data.

Classical goodness-of-fit tests such as the chi-square test and Q–Q plots require

large sample sizes to give accurate results. In contrast, the Ozturk algorithm

performs extremely well with as few as 50 to 75 data points. In fact, empirical

testing of this algorithm has found that 100 to 150 data points works as well

as much larger sample sizes for most applications (Shah2). The other main

advantage of the Ozturk Algorithm is its ability to fit data without specifying a

null hypothesis. Classical tests such as the Kolmogorov–Smirnov test require the

user to assume a null distribution. Furthermore, with these classical techniques,

should the null distribution be rejected, no insight is gained about which

distribution provides a suitable fit to the data.

When using the Ozturk Algorithm, it is important to make sure that one

correctly interprets the information provided by the algorithm. The algorithm

generates a list of the PDFs which best fit the data. It also gives the value of the

parameters for each of these PDFs. One must keep in mind that the critical issue is

NOT which distribution the algorithm determines best fits the data, but the fact

that an equation is obtained for using to describe the data. In fact, if one plots

several of the PDFs that best fit the data, one will find that each of these PDFs

looks very similar, regardless of the type of function. As a result, a number of

PDFs may accurately describe the data.

Once the Ozturk algorithm determines which PDF best approximates the

data, a considerable amount of information about the data set can be calculated.

Since all of the density functions in the algorithm’s library are well characterized,
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information such as mean and variance can be computed. In addition, one can use

the PDF to generate a cumulative distribution function or a Fourier Transform.

This enables probability and frequency information to be extracted. Furthermore,

if one is attempting to model data, the Ozturk Algorithm can be used to provide

an appropriate expression for describing a phenomenon.

The Ozturk Algorithm may also be used to run a goodness-of-fit test. In this

mode, a null distribution is specified (including shape parameters), and the

algorithm provides a graphical solution describing the goodness-of-fit. Three

confidence ellipses are plotted, corresponding to confidence levels of 90, 95, and

99%. If a data set falls within one or more of these ellipses, the sample data is said

to be statistically consistent with the null hypothesis at a confidence level based

on the confidence ellipses. Each confidence ellipse describes the conditional

probability that given the null hypothesis is true, the data set should fall within the

ellipse with a probability corresponding to the percent of the confidence ellipse.

In other words, for the confidence ellipse corresponding to a confidence level of

99% the sample data, if consistent with the null hypothesis, will fall within this

ellipse 99% of the time. It should be noted that the size of the confidence ellipses

depends on the number of points in the sample data: the greater the number of

points, the smaller the ellipses. More will be said about the confidence ellipses in

the next section of this chapter.

6.1.1.2. Sample Simulation

The best way to gain an appreciation for the Ozturk Algorithm is to consider a

sample simulation. The purpose of this example is to familiarize the reader with

the output of the algorithm and to demonstrate how to interpret a goodness-of-fit

test and a best-fit test using this algorithm. In this example, a data set consisting of

500 points was analyzed. For the purpose of this example, the nature of the data is

unimportant. Also, as will be shown in later sections, this data set is much larger

than necessary for generating accurate results with this algorithm.

Before running the algorithm, the number of points in the data set must be

entered (in this case 500). Next, the density function that will be used as

the null distribution must be specified. If no density function is entered, the

normal distribution is used as the null distribution. The algorithm will then list

the five density functions that best fit the data. In this particular example,

the density functions listed were: (1) Weibull, (2) Gamma, (3) K distribution,

(4) Lognormal, and (5) Gumbel (type-2). After this, the algorithm will then

calculate the parameters of best fit for a specified density function. As an

example, for these data, the respective equations for the best-fit Weibull and

Gamma functions were specified as follows:

f ðxÞ ¼ g

b

x2 a

b

� �g21

e
2

x2a
b

h ig

ð6:1Þ

Applications 299

© 2006 by Taylor & Francis Group, LLC



where a ¼ 20:36E2 3, b ¼ 0:29E2 1, g ¼ 1.32 and

gðxÞ ¼ 1

bG ðgÞ e
2

ðx2aÞ
b

x2 a

b

� �g21

ð6:2Þ

where a ¼ 20.28E 22, b ¼ 0.15E 2 1, g ¼ 2.0, and G(x) ¼ gamma function.

After the Ozturk Algorithm has generated the above information, a graphical

solution for the best-fit and goodness-of-fit tests may be obtained. The inter-

pretation of these graphical solutions will be discussed next.

Tables 4.8 and 4.9 of Section 4.2.3 list the PDFs that the Ozturk Algorithm

currently uses. These functions are listed both in standard form and general form,

the difference between the two is that the general form incorporates the

transformation y ¼ ðx2 aÞ=b: Therefore, as indicated in Tables 4.8 and 4.9, the

relationship between the standard form and the general form of the PDFs is

gðxÞ ¼ f ðyÞ dy
dx y¼ x2a

b

���� ¼ 1

b
f

x2 a

b

� �
In the general form of the density function, a and b are referred to as the

location and scale parameters, respectively. These parameters are similar but not

equivalent to the mean and standard deviation (except in the case of the normal

distribution). Many of the density functions listed in the appendix also contain

one or two shape parameters (g and d). The shape parameters, as the name

implies, determine the shape of the distribution function within a family of

shapes associated with a specified variate. A more detailed description of the

location, scale, and shape parameters may be found in (Hastings and Peacock3).

To help get a feel for how the location, scale and shape parameters affect a

density function, the parameters are modified one at a time for the Weibull

function described above. These results are illustrated in Figure 6.1. Notice that

only the shape parameter alters the general shape of the function.

In Figure 6.1, the bolded line (filled circles) in each plot corresponds to the

best-fit Weibull distribution, as specified in the text. In each plot only one

variable is changed. The other two variables are kept constant at the value

specified for the best Weibull distribution. The value assigned to the modified

parameter is given in the legends for each graph (a ¼ location parameter,

b ¼ scale parameter, and g ¼ shape parameter).

The Ozturk Algorithm uses a graphical solution to perform the best-fit test.

This solution involves mapping each of the distributions that are listed in

Tables 4.8 and 4.9 into a plane (defined as the U-V plane). The details of this

mapping will be discussed in the next section. The sample data is also mapped

into this U-V plane. The algorithm then determines which distribution in the

U-V plane is closest to the mapped sample data, and this distribution is specified

as the best-fit distribution for the sample data. For the example discussed above,

the graphical solution to the best-fit test is shown in Figure 6.2.

This figure shows the mapping of all the distributions in Tables 4.8 and 4.9,

as well as the 500 sample data point into the U-V plane. The location of the

mapping of the data sample is represented in the U-V plane by a filled circle.
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Notice that the five distributions that are closest to the mapped data point

are the Weibull, Gamma, K distribution, Lognormal, and Gumbel (type-2).

[N ¼ Normal, U ¼ Uniform, E ¼ Exponential, A ¼ Laplace, L ¼ Logistic,

C ¼ Cauchy, V ¼ Extreme Value (type-1), T ¼ Gumbel (type-2), G ¼ Gamma,

P ¼ Pareto, W ¼ Weibull, L ¼ Lognormal, K ¼ K-distribution. The upper five

dashed lines represent Beta, and the lower nine dashed lines represent SU

Johnson.]

Normally, the Ozturk Algorithm uses different colors to represent the distri-

butions in these graphs. Unfortunately, when printing these graphs using a gray-

scale printer, the resulting printout becomes much more cluttered looking and

difficult to interpret. I apologize for this difficulty, and ask the reader to keep

in mind that the actual display of the graphical solution is easier to interpret when

in color and on a full-size computer screen.

A few comments about this mapping are necessary. As will be seen in the

next section, the density functions that lack any shape parameters (g and d) get

0.2

50

40

30

f(
x)

20

10

0
0 0.1

(a)
0.05 0.15

Variate (x)

a =–3.6E-04
a =–7.2E-03
a =–3.6E-2

0.2

50

40

30

f(
x)

20

10

0
0 0.1

(b)
0.05 0.15

Variate (x)

b = 0.029
b = 0.058
b = 0.0154

0.2

50

40

30

f(
x)

20

10

0
0 0.1

(c)
0.05 0.15

Variate (x)

g = 1.3
g = 1.8
g = 0.8

FIGURE 6.1 Effect of location, scale, and shape parameters on Weibull PDF. (a)

Variation of location parameter a. (b) Variation of scale parameter b. (c) Variation of

shape parameter g.
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mapped as points in the U-V plane. Examples of these density functions include:

Normal, Uniform, Exponential, Laplace, Logistic, Cauchy, and Extreme Value

(type-1). The density functions that contain a single shape parameter get mapped

as lines in the U-V plane. Each point on the line corresponds to a specific value

of the shape parameter. Examples of these density functions include: Gumbel

(type-2), Gamma, Pareto, Weibull, Lognormal, and K-distribution. Finally, the

density functions that contain two shape parameters get mapped as multiple lines

in the U-V plane. Each line corresponds to a fixed value of one shape parameter,

with the points on this line corresponding to specific values of the second

shape parameter. Examples of these density functions include the Beta and

SU Johnson. The sample data set gets mapped as a single point in the U-V plane,

and as stated earlier, the distributions that best fit the sample data are the ones

located closest to this mapped point. As will be seen in the next section, the exact

location of the mapping of distributions into the U-V plane depends upon the

number of points in the data sample.

The best way to ensure that a best-fit solution is accurately determined for

any data set is to make sure that the U-V plane is filled with known distributions.

By so doing, regardless of where in the plane the sample data gets mapped,

one is assured that a known distribution will lie close to this point. In fact, it is for

this reason that the distributions listed in Table 4.8 and Table 4.9 are used by the

Ozturk Algorithm. Examination of Figure 6.2 demonstrates that almost the entire

U-V plane is filled with known distributions. The algorithm could be made even

more rigorous by adding distributions that cover other locations in the U-V plane.

The graphical solution also enables one to get a feel for how precise the best-

fit test is. In this example, the sample data gets mapped right on top of the curve
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FIGURE 6.2 Distribution approximation chart for graphical solution of the Ozturk

algorithm to the best-fit test. † mapped end point of 500 sample data set.
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corresponding to the Weibull distribution. Therefore, the Weibull distribution

provides a perfect fit to the data and is thus the most accurate density function for

describing the data. Nevertheless, any of the five best-fit distributions provide a

good fit for the data. In fact, these density functions when plotted together all

look very similar (Figure 6.3). Therefore, any of the five density functions that

the algorithm states best fit the data would very accurately describe the data.

With experience, one will find that all of the density functions within a given

region of the U-V plane look very similar when plotted. In this respect, one has

some flexibility when choosing which best-fit density function to use for

modeling data. In Figure 6.3, the K distribution has been omitted due to the

complexity of this function. The parameters used to plot these functions were

determined by the Ozturk algorithm. The equations describing these functions

are listed in Tables 4.8 and 4.9. [Weibull: a ¼ 0.36E 23, b ¼ 0.029, g ¼ 1.3;

Gamma: a ¼ 0.28E 2 2, b ¼ 0.015, g ¼ 2.0; Gamma: a ¼ 0.28E 2 2,

b ¼ 0.015, g ¼ 2.0; Lognormal: a ¼ 0.022, b ¼ 0.044, g ¼ 0.41; Gumbel

(type-2): a ¼ 0.64, b ¼ 0.66, g ¼ 40.]

A goodness-of-fit test was also performed on these data. When doing a

goodness-of-fit test, the sample data are compared with a specified distribution

(the null distribution). After selecting a density function for the null distribution,

values for the shape parameters must be given (if applicable). Two different null

distributions were used for the goodness-of-fit test: Normal and Weibull. Since

the Normal distribution lacks any shape parameters, none were specified. For

the Weibull distribution, the shape parameter used for the goodness-of-fit test

was 1.3 (the one found from the best-fit test). The results of these goodness-of-

fit tests are shown in Figure 6.4. In this test the sample data and null hypothesis

distribution get mapped as trajectories in the U-V plane. Based on these tests, a

Normal distribution for the sample data can be rejected with 99% confidence

level while a Weibull distribution can be accepted with 99% confidence level.
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FIGURE 6.3 Four of the five best-fit density functions to the text data set.
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The outer ellipse corresponds to a 99% confidence level, middle ellipse to a 95%

confidence level, and inner ellipse to a 90% confidence level. The larger the

ellipse, the more likely the sample distribution will pass through the ellipse.

The details of the goodness-of-fit test will be discussed in the following

section. However, the basic premise of the graphical solution is that the sample

data and the null distribution get mapped as trajectories in the U-V plane. To

create these trajectories, the Ozturk Algorithm first generates the same number

of samples from the null distribution as are present in the sample data. Next,

both the sample data and the null data are ordered sequentially in ascending

order. (It is for this reason that independent random data samples must be used.)

Finally, each data point from the sample and null data set is converted to

an ordered statistic and mapped in the U-V plane. These mapped points are

connected to form the resulting trajectories, as illustrated in Figure 6.4. If the

data are completely consistent with the null distribution, these two trajectories

will overlap everywhere. On the other hand, if the data are not consistent with

the null distribution, these two trajectories will differ considerably.

As can be seen in Figure 6.4, the mapped trajectory of the data and the

Normal distribution differ markedly, whereas the trajectory of the data and the

Weibull distribution (for a shape parameter of 1.3) almost completely overlap.

Therefore, these trajectories provide one with qualitative information regarding

the goodness-of-fit test: the more identical the trajectories, the more similar

are the data and the null distribution. It is important to remember, however, that

for those distributions described by shape parameters, every value of the shape

parameter will lead to a differently mapped trajectory.

The graphical solution to the goodness-of-fit test also provides quantitative

information. Confidence ellipses are plotted for the end point of the null distri-

bution trajectory. Therefore, the center of the confidence ellipses corresponds

to the end point of the mapped null distribution trajectory. Three confidence

ellipses are plotted. The largest ellipse corresponds to a confidence level of

99% (0.01 level of significance), the middle ellipse to a confidence level of 95%
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FIGURE 6.4 Comparison of two goodness-of-fit tests for the same sample data. (a) Null

hypothesis distribution is normal. (b) Null hypothesis distribution is Weibull.
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(0.05 level of significance), and the smallest ellipse to a confidence level of

90% (0.10 level of significance). The confidence ellipses describe the probability

that the end point of the mapped trajectory from the sample data will lie within the

ellipses given that the null distribution is true. In other words, given that the null

hypothesis is true, the end point of the trajectory from the sample data will be

located inside the largest ellipse 99% of the time, the middle ellipse 95% of the

time, and the smallest ellipse 90% of the time. Put in another way, if the end point

of the mapped trajectory from the sample data lies outside of the large ellipse,

the null hypothesis can be rejected with 99% confidence (or a 0.01 level of

significance). The level of significance refers to the probability that the null

hypothesis is rejected given that it is true. Therefore if the mapped end point from

the sample data lies outside of all the confidence ellipses, we can reject the null

hypothesis with a level of significance greater than 0.01. This means that we

will be wrong in rejecting the null hypothesis less than one percent of the time. In

this particular example, it is evident that the Normal distribution can be rejected

as the null hypothesis with 99% confidence and that the Weibull distribution is

consistent with the null hypothesis with 99% confidence.

It is important to point out that the size of the confidence ellipses is

completely determined by the choice of the null distribution and the number of

points in the sample data set. This statement is intuitively satisfying. The fewer

the number of points, the larger the confidence ellipses will be. When few data

points are present, the confidence ellipses will cover a large portion of the U-V

plane, and almost all data sets will map inside these ellipses. This fact makes

sense because if only a few samples (say, 10 to 20) are used, it is almost

impossible to reject the idea that these data are from a specific density function.

On the other hand, as the number of data points increases, the confidence ellipses

eventually converge to a single point in the U-V plane. Therefore, in theory, a

data set with an infinite number of points will be consistent with only one PDF.

Similarly, the variability of the null distribution affects the size of the confidence

ellipses: the greater the variability of the null distribution, the larger the con-

fidence ellipses.

One last point concerning the confidence ellipses merits mentioning. When

the Ozturk Algorithm implements the graphical solution to the best-fit test, the

confidence ellipses are also plotted on the distribution approximation chart. This

can be seen in Figure 6.4 where the Normal distribution was specified as the

null distribution. Notice that the three confidence ellipses are plotted as dotted

circles around the “N” in this figure. Also notice that the U-V coordinates for

the confidence ellipses in Figures 6.2 and 6.4 agree. Thus, even when doing a

best-fit test, information about the goodness-of-fit test is provided by the Ozturk

Algorithm.

Now that a basic understanding of the Ozturk Algorithm has been presented,

a detailed discussion of the best-fit test and goodness-of-fit test will be provided

in the next section. Those readers who are only interested in the applications of

the Ozturk Algorithm and not in the mathematical specifics of its operation may

omit this section.

Applications 305

© 2006 by Taylor & Francis Group, LLC



6.1.2. DETAILED DESCRIPTION OF THE OZTURK ALGORITHM

In this section, a detailed explanation of how the Ozturk Algorithm performs

the best-fit test and goodness-of-fit test will be given. Initially, the concept of a

standardized order statistic will be discussed. Then, the technique used by the

Ozturk Algorithm to perform the goodness-of-fit test will be described. This

discussion will include how the sample data and null distribution get mapped

as trajectories in the U-V plane and how the confidence ellipses are calculated.

Finally, the technique used by the algorithm to perform the best-fit test will be

discussed. A description of how the parameters in a best-fit test for a particular

distribution are calculated will be given. The theoretical information in this

section describing the operation of the Ozturk Algorithm has been taken from

several sources (Shah,2 Ozturk,1 and Ozturk and Dudewicz4).

6.1.2.1. The Standardized Order Statistic

The Ozturk Algorithm is appropriate for analyzing any unimodal random data

set. Currently, the algorithm is in the process of being expanded to multivariate

and multimodal distributions (personal communication). The one assumption

the algorithm makes is that the random data are from independent trials, and thus,

the order of the data does not matter. Data for which this assumption is not valid

should not be used by the algorithm.

The Ozturk Algorithm organizes the data samples in sequential order: X1, X2,

X3, …, Xn, such that X1 , X2 , X3, …,,Xn. The standardized i th order statistic

ðYiÞ for each sample is defined as Yi ¼ Xi 2 mx=sx; i ¼ 1; 2; 3;…; n where

mx ¼
Xn
1

Xi

n

is the sample mean and

sx ¼
Xn
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi 2 mxÞ2
n2 1

s

is the sample standard deviation. One of the major advantages of the standardized

order statistic is that it is invariant under linear transformation. The usefulness of

this property will become evident shortly.

Table 4.8 and Table 4.9 list all of the PDFs that theOzturkAlgorithm currently

uses. These functions are listed both in standard form and general form, where the

difference between the two is that the general form incorporates the transformation

y ¼ ðx2 aÞ=b: Therefore, as indicated in the tables, the relationship between the
standard form and the general form of the PDFs is

gðxÞ ¼ f ðyÞ dy
dx y¼ x2a

b
¼ 1

b
f

x2 a

b

� �����
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In the general form of the density function, a and b are referred to as

the location and scale parameters, respectively. The advantage of using stand-

ardized order statistics is that given the linear transformation described above,

the standard order statistics of the random variable X and Y are equal. That is

Yi 2 my

sy

¼ Xi 2 mx

sx

where mx, my, sx, and sy, are the sample means and sample standard deviations as

defined previously. The above statement can easily be proven by noting that

my ¼ E½X	
sx

2
mx

sx

¼ 0

and

sy ¼
ffiffiffiffiffiffiffiffiffiffi
Var½X	
s2
x

s
¼ 1

This property enables theOzturkAlgorithm to perform the goodness-of-fit test

and best-fit test using the standard form of the PDFs (a simpler form than the

general one). As a result, in these calculations, the location and scale parameters

are irrelevant since they do not affect the standardized order statistics. Put in

another way, by using the standardized order statistics, the algorithm normalizes

the data for any location and scale parameter. The end result is that only the shape

parameters and type of density function affect the standardized order statistics. It is

for this reason — as will be seen later in this section— that density functions that

lack any shape parameters map as points in the U-V plane, whereas those density

functions that have either one or two shape parameters map as a line or a series of

lines in the U-V plane.

6.1.2.2. The Goodness-of-Fit Test

The Ozturk Algorithm has two modes of operation: a goodness-of-fit mode and a

best-fit mode. A detailed description of the goodness-of-fit test will be provided

first because once the procedure for this test has been explained, it will be easier

to understand the best-fit test.

To perform the goodness-of-fit test, the Ozturk Algorithm uses three sets

of data: a reference distribution, a null distribution, and a sample data set. For

convenience, in this algorithm, the standard normal distribution is used as

the reference distribution. However, there is no reason that another distribution

could not be used. Similarly, the null distribution may be any density function

that is listed in Tables 4.8 and 4.10. Nevertheless, one should keep in mind

that additional distributions could be used as the null distribution if they were

programmed into the Ozturk Algorithm. In addition to specifying that density

function to use as the null distribution, it is also necessary to define all values
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of the shape parameters (if applicable) for that density function. Finally,

the sample data may describe any univariate random variable whose samples

are independent events. The number of samples in the data set may range from

1 to 9000; however, it is recommended that one use at least 50 data points to

obtain accurate results. The number of data points calculated for the reference

distribution and the null distribution is the same as the number of data points in

the sample data set.

The idea behind the goodness-of-fit test is that all of the points in the sample

data set and null distribution are ordered sequentially, and then standardized

order statistics are calculated for each point. The algorithm then transforms

these statistics into linked vectors, one vector for each point. The magnitude of

the vectors is determined by the sample data and null distribution while the

angle of the vector is determined solely from the reference distribution. The

sum of these vectors leads to the mapped trajectories in the U-V plane: one for

the sample data and one for the null distribution (see Figure 6.4). Confidence

ellipses are then calculated for the end point of the mapped trajectory of the null

distribution.

6.1.2.3. Calculation of Linked Vectors in the U-V Plane

In this section the random variable X will be used when describing the sample

data set, the random variable Nwill be used when describing the null distribution,

and the random variable R will be used when describing the reference distribu-

tion. The following paragraphs explain the procedure used by the Ozturk

Algorithm for computing the linked vectors.

The sample data from which the standardized order statistics are calculated

is entered into the algorithm as a text file. In contrast, the average of 2000 Monte

Carlo simulations is used to generate data for the reference and null distribution.

The number of points generated with each Monte Carlo simulation is the same as

the number of samples in the data set to be analyzed. The first calculation made

by the algorithm is to order each of the samples as described below:

X1;X2;X3;…;Xn N1;k;N2;k;N3;k;…;Nn;k R1;k;R2;k;R3;k;…;Rn;k

ð6:3Þ
such that

X1 , X2 , X3 , · · · , Xn

N1;k , N2;k , N3;k , · · · , Nn;k

R1;k , R2;k , R3;k , · · · , Rn;k

ð6:4Þ

where Ni;k refers to the i th order statistic from the k th Monte Carlo trial for the

null distribution and Ri;k refers to the i th order statistic from the k th Monte Carlo

trial for the reference distribution. Once this ordering has been performed, the

Ozturk Algorithm calculates standardized order statistics for each distribution.
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The equations describing this process are listed below:

Yi ¼ Xi 2 mx

sx

; i ¼ 1; 2; 3;…; n ð6:5Þ

Mi ¼ 1

2000

X2000
k¼1

ðNiÞk 2 mn;k

sn;k

; i ¼ 1; 2; 3;…; n ð6:6Þ

Si ¼ 1

2000

X2000
k¼1

ðRiÞk; i ¼ 1; 2; 3;…; n ð6:7Þ

where mx and sx correspond to the sample mean and sample standard deviation

for the sample data set and mn;k and sn;k correspond to the sample mean and

sample standard deviation for the k th Monte Carlo simulation for the null

distribution. Since the reference distribution used by the Ozturk Algorithm is

the Standard Normal, mr;k ¼ 0 and sr;k ¼ 1: It is for this reason that these

parameters are omitted in the calculation of Si. Essentially, the equations listed

above indicate that the i th standardized order statistics for the null distribution

and reference distribution are calculated by taking the average of 2000 i th

standardized order statistics that are generated from Monte Carlo simulations.

Once the above calculations have been made, the Ozturk Algorithm

computes the length and orientation of each linked vector. Two sets of linked

vectors are calculated: one for the sample data and one for the null distribution.

The i th linked vector in each set corresponds to the i th ordered sample in the data

set. The following equations describe how the magnitude and angle of these

linked vectors are determined:

ai ¼ lYil
n

ð6:8Þ

bi ¼ lMil
n

ð6:9Þ

ui ¼ puðSiÞ; uðSiÞ ¼ 1ffiffiffiffi
2p

p
ðSi

21
e

2t2

2


 �
dt ð6:10Þ

where ai represents the lengths of the i th linked vector for the sample data,

bi represents the length of the i th linked vector for the null distribution, and ui
represents the orientation (measured from the horizontal axis) of the i th linked

vector for both the sample data and the null distribution. Notice from these

equations that only the reference distribution determines the angle of the i th

linked vector, and that this angle is the same for both the sample data and the null

distribution. Similarly, it is the magnitude of the i th standardized order statistic

that determines the length of the i th linked vector.

Now that the formulas used to calculate the linked vectors have been given,

it is possible to define a U-V plane where the ordered pair Qk ¼ ðUk;VkÞ is
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specified as follows:

U0 ¼ V0 ¼ 0 ð6:11Þ

Uk ¼ 1

n

Xk
i¼1

lYilcosðuiÞ; k ¼ 1; 2; 3;…; n ð6:12Þ

Vk ¼ 1

n

Xk
i¼1

lYilsinðuiÞ; k ¼ 1; 2; 3;…; n ð6:13Þ

A similar ordered pair, Pk ¼ ðU0k;V0kÞ, is likewise defined below:

U00 ¼ V00 ¼ 0 ð6:14Þ

U0k ¼ 1

n

Xk
i¼1

lMilcosðuiÞ; k ¼ 1; 2; 3;…; n ð6:15Þ

V0k ¼ 1

n

Xk
i¼1

lMilsinðuiÞ; k ¼ 1; 2; 3;…; n ð6:16Þ

The first set of equations defines the trajectory of linked vectors associated

with the sample data, while the second set of equations defines the trajectory of

linked vectors associated with the null distribution. The Ozturk Algorithm graphs

the mapped trajectories found in the goodness-of-fit test by connecting the set of

points described by Qk and Pk for k ¼ 1; 2; 3;…; n:
A few general comments about the above equations are worth mentioning.

One important thing is to remember that the angle of the i th linked vector is

purely determined by the reference distribution is the same for both the sample

data and the null distribution, and based on how it is defined, starts at 0 and

increases to a maximum of 180 degrees (as measured from the horizontal axis).

For this reason the general shape of all of the trajectories in the goodness-of-fit

test are similar (Figure 6.4). In addition, due to the definition of the stand-

ardized order statistic, the magnitude of the i th linked vector for the sample

data and null distribution start out large, then decrease to almost zero, and then

become large again. The length of these vectors reach a minimum around an

angle of 908. It can also be seen from the above equations that Qn and Pn

represent the endpoint of the linked vectors for the sample data and null

distribution, respectively. Finally, the trajectories defined by Qk and Pk for

k ¼ 1; 2; 3;…; n become smoother as the number of samples (n) increases.

Although the Ozturk Algorithm only generates confidence ellipses for the

end point of the null distribution trajectory, qualitative information about

the goodness-of-fit test is provided by comparing the path of the trajectory

for the sample data with that for the null distribution. It is reasonable to expect

that the linked vectors from the sample data will closely follow the linked vectors

from the null distribution if the sample data are consistent with the null
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distribution. As a result, the goodness-of-fit test provides visual information

about how well the ordered set of data fit the null distribution (Figure 6.4).

Nevertheless, the Ozturk Algorithm also uses statistical procedures for quanti-

fying the goodness-of-fit test through the calculation of confidence ellipses. This

procedure is described next.

6.1.2.4. Calculation of Confidence Ellipses

The confidence ellipses provide a quantitative statistical description of how

consistent the sample data are with the null distribution. As discussed earlier, if the

end point of the trajectory for the sample data ðQnÞ falls within one or more of the

ellipses, the sample data set is said to be statistically consistent with the null

hypothesis at a confidence level based on the confidence ellipses. Each confidence

contour is directly associated with a significance level and is defined as the

conditional probability that the end point of the trajectory for the sample data ðQnÞ
falls inside the specified ellipse given that the data comes from the null distribution.

Therefore, the 99% confidence ellipse corresponds to a 0.01 level of significance,

the 95%confidence ellipse corresponds to a 0.05 level of significance, and the 90%

confidence ellipse corresponds to a 0.10 level of significance.

To understand how the Ozturk Algorithm calculates the confidence ellipses,

one must remember that the algorithm performs 2000 Monte Carlo simulations of

sample size n for the null distribution. Therefore, 2000 end points are calculated,

and the average of these values is used as the actual value of the end point ðQnÞ:
As a result, the endpoint ðQnÞ corresponds to the ordered pair ðU0n;V0nÞ where
both U0n and V0n are random variables consisting of 2000 samples. It is from

these random variables that the confidence ellipses are calculated.

The actual nature of the underlying distribution for the random variables

U0n and V0n is unknown. However, if these variables were described by a bivariate

Gaussian distribution, the calculation of the confidence ellipses would be straight-

forward. A three dimensional bell shaped Gaussian curve could be fit to the

2000 end points calculated by the Monte Carlo simulation and the corresponding

confidence ellipses plotted for the desired significance levels. If a correlation

existed between the random variables U0n and V0n the confidence contours would

be ellipses, but if no correlation existed, the confidence contours would be circles.

Unfortunately, however, as just mentioned, the underlying distributions of

U0n and V0n are not known. Therefore, the Ozturk Algorithm uses a complicated

procedure to transform the random variables U0n and V0n into a single random

variable that is bivariate Gaussian. After this transformation is made, the

confidence ellipses are calculated. Finally, the actual confidence contours are

obtained by taking the inverse transform of the confidence ellipses obtained

from the bivariate Gaussian random variable. A family of distributions called

the Johnson System is used to perform the transformation on U0n and V0n in order

to obtain a bivariate Gaussian distribution. The details of this transformation

are tedious and beyond the scope of this chapter. A complete description of this

process can be found in (Shah2).

Applications 311

© 2006 by Taylor & Francis Group, LLC



Two comments about the confidence ellipses are worth mentioning. For

one thing, the confidence contours will only be ellipses if U0n and V0n can be

described by a bivariate Gaussian distribution without undergoing any

transformation. In all other cases, these confidence contours may not look like

ellipses due to the transformation process. Hence, the phrase “confidence ellipses”

is used loosely in this chapter since many of these contours are not actually

ellipses. In addition, the size of the confidence ellipses depends on the sample

size ðnÞ and the selection of the null distribution. As the sample size decreases, the

variability in Pn increases, and the confidence ellipses become larger. Similarly,

if a null distribution is selected that has a high degree of variability, the variability

of Pn will also be high, and the confidence ellipses will be relatively larger (for

a given sample size). If the sample size used is too small (less than 50 samples),

the confidence ellipses become so large that the goodness-of-fit test becomes

meaningless; almost any sample data will be consistent with the null hypothesis.

Nevertheless, an inspection of the mapped trajectories between the sample data

and the null distribution provides a qualitative indicator of how consistent the

data and the null distribution are.

6.1.2.5. The Best-Fit Test

The best-fit test uses a distribution approximation technique and is simply an

extension of the goodness-of-fit test. A detailed discussion of this procedure

can be found in Shah2 and Ozturk.1

In the goodness-of-fit test, it was explained how trajectories for the sample

data and null distribution get mapped into the U-V plane. The ordered pairs,

Qn and Pn, correspond to the end points of these trajectories. In the best-fit test,

this procedure is extended one step further; the end point for every distribution is

calculated and plotted in the U-V plane. In addition, since the end point for a

particular distribution depends on the value of the shape parameters, for those

distributions where shape parameters exist, end points for several values of these

shape parameters are computed, and these end points are mapped as trajectories

in the U-V plane. In other words, only one end point is calculated for those

distributions that lack any shape parameters (Normal, Uniform, Exponential,

Laplace, Logistic, Cauchy, and Extreme Value [type-1], and this end point

maps as a point in the U-V plane; several end points are calculated for those

distributions containing one shape parameter [Gumbel (type-2)], Gamma, Pareto,

Weibull, Lognormal, and K-distribution), and these end points map as a line in

the U-V plane; and even more end points are calculated for those distributions

containing two shape parameters (Beta and SU Johnson), and these end points

map as a series of lines in the U-V plane. As an example, the Ozturk Algorithm

calculates end points for the Weibull distribution for the following values of the

shape parameter: 0.3, 0.4, 0.5, 0.6, 0.8, 1.1, 1.5, 2.0, 3.0, and 5.0. These end points

are then mapped in the U-V plane, connected and correspond to the line labeled

Weibull in the distribution approximation chart (Figure 6.2). When a distribution

contains two shape parameters, then the first shape parameter is held constant
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at some value while the second shape parameter is varied, and then this process

is repeated for different values of the first shape parameter. It is important to keep

in mind that each end point is computed from 2000 Monte Carlo simulations

where the number of samples used in the simulation ðnÞ matches the number of

points in the sample data set. Therefore, the appearance of the U-V plane for

the best-fit test (Figure 6.2) is dependent upon the number of samples in the data

set being analyzed.

Although the above process may seem very tedious and time consuming,

the Ozturk Algorithm speeds up this process considerably by tabulating data.

In other words, the coordinates of the end points for specific values of the

shape parameters and a specific distribution are stored in a data table as a

function of sample size. Using this technique, it becomes unnecessary to

recalculate these end points with each simulation, which would greatly slow

down the processing time. In addition, for those distributions that contain shape

parameters, the Ozturk Algorithm only calculates (stores) end points for a fixed

number of values for these shape parameters. These points are then connected

together to form the lines in the U-V plane found in the distribution approxi-

mation chart.

Once a distribution approximation chart is generated for all of the distri-

butions stored in the algorithm’s library and for the particular sample size of the

data set, the sample data is mapped in the U-V plane. Recall that the coordinates

of the end point for the sample data correspond to the point, Qn: This graphical
solution to the best-fit test is referred to by the Ozturk Algorithm as the

Distribution Approximation Chart (Figure 6.2). Inspection of this plot allows

one to determine which distributions most closely fit the data; those

distributions that lie closest to the mapped data point ðQnÞ provide the best

fit. In addition to this graphical solution, the Ozturk Algorithm also determines

which five distributions best fit the data. The algorithm determines the closest

point or trajectory by projecting the mapped data point to neighboring points or

trajectories on the chart, and selecting the point or trajectory whose

perpendicular distance from the sample point is the smallest. If the identified

density functions contain shape parameters, the values of these parameters are

determined through interpolation. One must remember that the distributions are

mapped in the U-V plane by connecting the end points corresponding to

selected values of the shape parameters. It should also be noted that the library

of density functions has been carefully chosen such that most of the U-V plane

is filled with mapped end points or trajectories of end points. In so doing, the

algorithm ensures that regardless of where the end point of the sample data is

mapped in the U-V plane, there will be a mapped distribution located close to

this end point.

After the algorithm identifies the five density functions which best fit the

sample data and interpolates the value of the shape parameters (if applicable),

then the standard form of the density function is completely characterized

(as indicated in Tables 4.8 and 4.9). However the location (a) and scale (b)
parameters still need to be computed. Recall that the Ozturk Algorithmmakes use

Applications 313

© 2006 by Taylor & Francis Group, LLC



of standardized order statistics that are independent of linear transformations

such as the location and scale parameters. Therefore, to compute the location and

scale parameters, the process of taking standardized order statistics must be

reversed. The process used by the algorithm to compute the value of the location

and scale parameters is described next.

6.1.2.6. Estimation of Location and Scale Parameters

The Ozturk Algorithm calculates the value of the location (a) and scale (b)
parameters by inverting the procedure used to generate the standardized order

statistics. Recall that the random variable X corresponds to the sampled order data

while the random variable Y corresponds to the standardized order statistics for

the sample data. The relationship between these two variables is that Yi ¼
ðXi 2 aÞ=b where Yi represents the i th standardized order statistic and Xi

represents the i th sampled order data. Once the Ozturk Algorithm specifies the

distributions that best fit the data along with the corresponding value of the shape

parameters (if applicable), then the random variable Y is completely described

according to the standard form of the density functions listed in Tables 4.8 and

4.9. In order to obtain a complete description of the random variable X, the

location and scale parameters must be computed. To calculate the value of these

two parameters, the algorithm defines two new variables as follows:

C1 ¼
Xn
i¼1

cosðuiÞXi ð6:17Þ

C2 ¼
Xn
i¼1

sinðuiÞXi ð6:18Þ

where ui corresponds to the angle defined by Equation 6.10, Xi refers to the

random variable describing the i th ordered sample from the data set, and n

corresponds to the number of samples in the data set. Based on the definition of

the above two variables and making use of the substitution E½Xi	 ¼ bmi þ a,
the expected values of C1 and C2 are equal to:

E½C1	 ¼
Xn
i¼1

cosðuiÞðbmi þ aÞ ð6:19Þ

E½C2	 ¼
Xn
i¼1

sinðuiÞðbmi þ aÞ ð6:20Þ

where mi represents the sample mean of Yi: The value of mi is calculated by

the Ozturk Algorithm by running 2000 Monte Carlo simulations for the standard

formof the best-fit density function described byYi and averaging themeans of these

simulations. In other words, the algorithm uses the standard form of the selected

best-fit distribution (as described in Tables 4.8 and 4.9) to generate n samples
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from this density function, and takes the average of these samples. This process

is repeated for 2000 simulations, and the average of all of these simulations is

the value used for mi:
The equations describing the expected values of C1 and C2 can be rewritten

as:

E½T1	 ¼ aaþ bb ð6:21Þ
E½T2	 ¼ caþ db ð6:22Þ

where

a ¼
Xn
i¼1

cosðuiÞ ð6:23Þ

b ¼
Xn
i¼1

micosðuiÞ ð6:24Þ

c ¼
Xn
i¼1

sinðuiÞ ð6:25Þ

d ¼
Xn
i¼1

misinðuiÞ ð6:26Þ

Since the standardized Gaussian distribution is used by the Ozturk Algorithm

as the reference distribution, ui starts at 0 ði ¼ 1Þ and ends up at p ði ¼ nÞ:
Therefore, a ¼ 0, as defined above. Rearranging the preceding equations and

letting a ¼ 0, it can be shown that:

a ¼ E½T2	2 db

c
ð6:27Þ

b ¼ E½T1	
b

ð6:28Þ

If the sample size is sufficiently large (i.e., n . 50), it can be shown that

E[T1] ¼ T1 and E[T2] ¼ T2 (Shah2). In addition, since the algorithm computes

the value of mi, as described above, and the value of ui is also calculated,

values for the variables b; c and d are easily obtained. Using these values, the

algorithm computes the value of the location and scale parameters. Once these

two parameters are calculated, the general form of the density function des-

cribing the random variable X is completely defined (as indicated in Tables 4.8

and 4.9).

In this section of the chapter, a detailed description of the technique used by

the Ozturk Algorithm to perform a goodness-of-fit test and best-fit test was

provided. In the next three sections, three applications of the Ozturk Algorithm in

the field of neuroscience will be presented.
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6.1.3. ANALYSIS OF SPONTANEOUS AUDITORY NERVE

ACTIVITY OF CHINCHILLAS

The usefulness of the Ozturk Algorithm for analyzing data will first be

demonstrated using data from the auditory nerve. All of the data analyzed in

this section was provided by Evan Relkin and was recorded from chinchillas. One

of the major limitations when recording from a single unit is the ability to

maintain a stable recording from an auditory fiber for an extended period of

time. Nevertheless, one must make sure that enough data are collected so that an

accurate analysis of these data can occur. It would be of considerable advantage

to the investigator if spike trains could be recorded for a shorter amount of

time for each stimulating condition without compromising the information gained

from these data. In this section, it will be shown how the Ozturk Algorithm can be

used to gather data more efficiently.

In the first part of this study, spontaneous nerve activity was analyzed. The

random variable inputted into the algorithm was the time between successive

spikes (i.e., interspike intervals). Since these spike trains are undriven, they are

not subjected to adaptation, and hence, they represent random, independent

events. One must recall that the Ozturk Algorithm assumes the data set to consist

of independent trials. For this reason, driven spike trains are not considered. Two

different fibers were analyzed, one with a spontaneous activity of 38 spikes/sec

(fiber #1) and one with a spontaneous activity of 74 spikes/sec (fiber #2).

According to Liberman,5 both of these fibers would be classified as high spon-

taneous rate (SR) fibers. (Liberman classifies those fibers having an SR greater

than 17.5 spikes/sec as high SR, between 0.5 and 17.5 spikes/sec as medium SR,

and below 0.5 spikes/sec as low SR.) The purpose of this portion of the study was

to determine the minimum number of interspike intervals necessary to accurately

characterize the interspike interval histogram. In addition, the Ozturk Algorithm

was used to determine how the best-fit distributions, for fibers of two different

spontaneous activities, compare.

For the fiber with a spontaneous activity of 38 spikes/sec (fiber #1),

2198 different interspike intervals were obtained while for the fiber with a

spontaneous activity of 74 spikes/sec (fiber #2) a total of 7053 interspike

intervals were collected. All of these intervals were inputted into the Ozturk

Algorithm and the five best-fit distributions for each fiber were computed.

Tables 6.1 and 6.2 summarize the five best-fit density functions for each fiber,

respectively. For both fibers, the K-distribution provides the best fit to the

data while the Gamma distribution provides the second best fit. Due to the

complexity of the K-distribution (this density function involves a form of

the Bessel function that is described by a series) the Gamma distribution will be

used as the best-fit approximation for the interspike interval histograms of

these fibers. Figure 6.5 shows the graphical solution to the best-fit test for each

fiber. From this figure, it can be seen that the Gamma function, with an appro-

priate value for the shape parameter, provides an excellent fit to both sets of

data. Thus, the Gamma distributions as described in Tables 6.1 and 6.2 will be
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assumed to provide the best characterization of the interspike interval

histograms for the two fibers.

In Figure 6.5, the location of the mapped data set is represented in the U-V

plane by a filled circle. For fiber #1 the five distributions that are located closest

to the mapped data point are the K-distribution, Gamma, Weibull, Lognormal,

and Exponential. For fiber #2, the five distributions that are closest to the

mapped data point are the K-distribution, Gamma, Exponential, Weibull, and

Lognormal. [N ¼ Normal, U ¼ Uniform, E ¼ Exponential, A ¼ Laplace, L ¼
Logistic, C ¼ Cauchy, V ¼ Extreme Value (type-1), T ¼ Gumbel (type-2),

G ¼ Gamma, P ¼ Pareto, W ¼ Weibull, L ¼ Lognormal, K ¼ K-distribution.

The upper five dashed lines represent Beta, and the lower nine dashed lines

represent SU Johnson.]

In the next portion of this analysis, subsets of points from the sample data

were inputted into the algorithm to determine the minimum number of points

necessary to accurately characterize the data. For fiber #1, subsets of interspike

TABLE 6.1
Parameters of Five Best-Fit Distributions, Listed in Order of Best Fit, for all

2198 Samples of Interspike Intervals of Chinchilla Auditory Nerve Activity

Collected from Fiber #1

Best Fit
Distributions

Location
Parameter (a)

Scale
Parameter ðbÞ

Shape 1
Parameter ðgÞ

Shape 2
Parameter ðdÞ

K-distribution 20.95241E-02 0.18754E-01 0.45784E-01 —

Gamma 20.13320E-02 0.16496E-01 0.16635E-01 —

Weibull 20.13467E-02 0.26395E-01 0.11726E-01 —

Lognormal 20.14145E-01 0.35292E-01 0.50601E-00 —

Exponential 20.46305E-02 0.22387E-01 — —

TABLE 6.2
Parameters of Five Best-Fit Distributions, Listed in Order of Best Fit, for all

7053 Samples of Interspike Intervals of Chinchilla Auditory Nerve Activity

Collected from Fiber #2

Best fit
Distributions

Location
Parameter ðaÞ

Scale
Parameter ðbÞ

Shape 1
Parameter ðgÞ

Shape 2
Parameter ðdÞ

K-Distribution 20.49604E-02 0.10898E-01 0.41161E-01 —

Gamma 20.33691E-03 0.93693E-02 0.15965E-01 —

Exponential 0.26819E-02 0.12407E-01 — —

Weibull 0.10954E-02 0.14334E-01 0.11495E-01 —

Lognormal 20.72029E-02 0.19000E-01 0.51858E-00 —

Applications 317

© 2006 by Taylor & Francis Group, LLC



intervals containing either 500, 150, 100, 75 or 50 data points were also analyzed

by the algorithm. For each of these subsets, four different sets of data were used

(i.e., four sets of 500 points, four sets of 150 points, etc.). These four sets were

selected such that none of the data points appeared in more than one of the four

subsets. The Ozturk Algorithm was then used to determine the best-fit Gamma

distribution for each of these groups. (Recall that using all of the data, the best-fit

density function for both fibers was the Gamma distribution.)

Figure 6.6 summarizs these results. The graphs on the left show plots of

the best-fit Gamma distributions for each of the four subsets of points; the

bolded line in each plot represents the best-fit Gamma distribution for all of

the data points collected from fiber #1. The graphs on the right show a

portion of the graphical solution to the best-fit test as determined by the

Ozturk Algorithm. These graphs show where in the U-V plane each of the

four subsets of data is mapped. The filled circle in these plots represents

the location of the mapped end point for the entire data set. In other words,

the graphs on the right show the U-V plane for the distribution approximation

chart (see Figure 6.5) without actually showing where each of the distributions

listed in Tables 4.8 and 4.9 gets mapped in this plane; only the location of the

mapped data point for each of the four subsets, along with the location of the

mapped data point for the entire data set are shown. (Recall that the mapped

end point for each set of sample data corresponds to the point Qn, as defined

in the previous section.)

In Figure 6.6, the bolded line represents the best-fit Gamma distribution for the

entire data set and the symbol “x” represents the corresponding mapped end point

in the U-V plane. The parameter values were determined by theOzturk Algorithm.

Figure 6.6(a): open circles, a ¼ 20:0028, b ¼ 0:015, g ¼ 2:0; filled circles,

a ¼ 0:00024, b ¼ 0:016, g ¼ 1:8; open squares, a ¼ 20:0017, b ¼ 0:016,
g ¼ 1:6; filled squares, a ¼ 20:0012, b ¼ 0:018, g ¼ 1:6: Figure 6.6(b): open

circles, a ¼ 20:0033, b ¼ 0:016, g ¼ 1:8; filled circles, a ¼ 20:00055,
b ¼ 0:013, g ¼ 1:9; open squares, a ¼ 20:0019, b ¼ 0:012, g ¼ 1:9; filled

squares, a ¼ 20:0029, b ¼ 0:019, g ¼ 1:7: Figure 6.6(c): open circles,
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FIGURE 6.5 Distribution approximation charts for two data sets. (a) fiber #1 data set.

(b) fiber #2 data set. † mapped end point of entire data set.
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FIGURE 6.6 Best-fit gamma distributions and mapped end points for fiber #1 interspike

intervals. Distributions are shown for entire data set of 2198 samples and also for four

subsets. (a) 500 samples in subset. (b) 150 samples in subset. (c) 100 samples in subset.

(d) 75 samples in subset. (e) 50 samples in subset.
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a ¼ 20:003329,b ¼ 0:0155, g ¼ 2:0;filled circles,a ¼ 0:0011,b ¼ 0:017,g ¼
1:4; open squares, a ¼ 20:0021, b ¼ 0:017, g ¼ 1:8; filled squares, a ¼ 0:0050,
b ¼ 0:030, g ¼ 0:79: Figure 6.6(d): open circles, a ¼ 20:0017, b ¼ 0:014, g ¼
1:9; filled circles, a ¼ 20:0070, b ¼ 0:0090, g ¼ 3:4; open squares, a ¼ 0:0012,
b ¼ 0:018, g ¼ 1:6; filled squares, a ¼ 20:0032, b ¼ 0:014, g ¼ 2:2: Figure
6.6(e): open circles, a ¼ 20:0013, b ¼ 0:014, g ¼ 2:0; filled circles,

a ¼ 20:0043, b ¼ 0:021, g ¼ 0:80; open squares, a ¼ 0:0019, b ¼ 0:021, g ¼
1:3; filled squares, a ¼ 20:0025, b ¼ 0:015, g ¼ 1:9:

Inspection of Figure 6.6 qualitatively reveals that the Ozturk Algorithm

does a reasonable job approximating the interspike interval histograms with

as few as 50 samples. The plots of the mapped end points indicate that the

variability in the location of the mapped data point when 150 samples or more

are used is extremely small. However, even when as few as 50 samples are

used, the location of the mapped subsets are all scattered close to the location of

the mapped end point for the entire data set. The graphs of the best-fit Gamma

FIGURE 6.6 Continued.
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distributions are even more compelling. For all but two of the data sets

(filled squares with 100 samples and filled circles with 50 samples) the best-fit

Gamma distributions almost overlay exactly with the best-fit Gamma

distribution for the entire data set, and even the two data sets that deviate the

most only differ in a small portion of the function; the tails of these distributions

all overlap. Therefore, even without any quantitative analysis, these figures

indicate that 50 to 100 samples are sufficient for characterizing interspike

interval histograms. Nevertheless, a goodness-of-fit test was also performed

with the Ozturk Algorithm for each subset of data using the best-fit Gamma

distribution for the entire data set as the null distribution, and in every case

the subset of points was statistically consistent with the null distribution with

a 99% confidence level. Figure 6.7 shows the graphical solution for four of

these goodness-of-fit tests, two using 500 points and two using 100 points. In

all four cases, the trajectory for the sample data closely follows the trajectory

for the null distribution. Also notice, as explained in the previous section, that

the confidence ellipses are larger when fewer samples are used.

A similar analysis was also done for fiber #2; however, since this data set

consists of more than 7000 interspike intervals, subsets containing 1000, 500,
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FIGURE 6.7 Goodness-of-fit tests for fiber #1 interspike intervals. Null hypothesis is best-

fit gamma distribution for entire data set (i.e., g ¼ 1.66). Outer, middle, and inner ellipses

correspond to confidence Levels of 99%, 95%, and 90%, respectively. (a) Two subsets of

500 samples. (b) Two subsets of 100 samples.
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150, 100, 75 and 50 samples were used. As before, four groups of randomly

selected interspike intervals for each sample size were analyzed, except for

the 1000 point case where seven data sets were used. The results of these

simulations by the Ozturk Algorithm are summarized in Figure 6.8(a) to (f) and

are very similar to the results from the first fiber. Once again, these graphs

indicate that 50 to 100 interspike intervals are sufficient for characterizing the

interspike interval histogram. The Ozturk Algorithm was also used to perform

a goodness-of-fit test for each subset where the best-fit Gamma distribution for

the entire data set was used as the null distribution, and once again, every

subset of data was statistically consistent with the null hypothesis with a 99%

confidence level.

In Figure 6.8, the bolded line represents the best-fit Gamma distribution

for the entire data set and the symbol “x” represents the corresponding mapped

end point in the U-V plane. The parameter values were determined by the Ozturk

Algorithm. Figure 6.8(a): open circles, a ¼ 20.00065, b ¼ 0.0091, g ¼ 1.7;

filled circles, a ¼ 20.00021, b ¼ 0.0088, g ¼ 1.5; open squares, a ¼ 0.000079,

b ¼ 0.0087, g ¼ 1.6; filled squares, a ¼ 0.00046, b ¼ 0.0085, g ¼ 1.5; open

triangles, a ¼ 0.00023, b ¼ 0.0086, g ¼ 1.4; filled triangles, a ¼ 20.00068,

b ¼ 0.0086, g ¼ 1.7; open diamonds, a ¼ 20.00073, b ¼ 0.0077, g ¼ 1.8;

Figure 6.8(b): open circles, a ¼ 20.0091, b ¼ 0.0079, g ¼ 1.8; filled circles,

a ¼ 20.00029, b ¼ 0.0072, g ¼ 1.8; open squares, a ¼ 20.00046,

b ¼ 0.0074, g ¼ 1.7; filled squares, a ¼ 20.00034, b ¼ 0.0068, g ¼ 1.8.

Figure 6.8(c): open circles, a ¼ 20.0070, b ¼ 0.0057, g ¼ 3.8; filled circles,

a ¼ 0.0011, b ¼ 0.017, g ¼ 1.4; open squares, a ¼ 20.0021, b ¼ 0.017,

g ¼ 1.8; filled squares, a ¼ 0.0050, b ¼ 0.030, g ¼ 0.79. Figure 6.8(d): open

circles, a ¼ 20.0011, b ¼ 0.0087, g ¼ 1.3; filled circles, a ¼ 0.0039,

b ¼ 0.013, g ¼ 0.75; open squares, a ¼ 0.0015, b ¼ 0.010, g ¼ 1.3; filled

squares a ¼ 0.0019, b ¼ 0.0073, g ¼ 2.3. Figure 6.8(e): open circles,

a ¼ 0.0036, b ¼ 0.015, g ¼ 0.77; filled circles, a ¼ 0.0028, b ¼ 0.018,

g ¼ 0.88; open squares, a ¼ 0.00048, b ¼ 0.0072, g ¼ 1.5; filled squares,

a ¼ 20.00088, b ¼ 0.0050, g ¼ 2.5. Figure 6.8(f): open circles, a ¼ 20.019,

b ¼ 0.0019, g ¼ 16; filled circles, a ¼ 20.0033, b ¼ 0.0062, g ¼ 2.8; open

squares, a ¼ 0.0048, b ¼ 0.0089, g ¼ 0.37; filled squares, a ¼ 20.0017,

b ¼ 0.0039, g ¼ 3.4.

In this portion of the study, the question addressed was how many samples

are required to adequately produce an interspike interval histogram. The above

results indicate that 50 to 100 interspike intervals are sufficient for characterizing

the histogram. Furthermore, one should keep in mind that once the best-fit density

function is determined, a great deal of additional information (e.g., mean and

variance) also becomes available. In the next portion of this study, the Ozturk

Algorithm was used to compare the best-fit density function for these two fibers.

Since the spontaneous activity of these fibers differs by a factor of 2 (38 spikes/s

for fiber #1 and 74 spikes/s for fiber #2) it will be interesting to see whether a

single family of distributions with specific shape parameters can describe the

interspike interval histogram for both fibers.
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FIGURE 6.8 Best-fit gamma distributions and mapped end points for fiber #2 interspike

intervals. Distributions are shown for entire data set of 7053 samples and four subsets.

(a) 1000 samples in subset. (b) 500 samples in subset. (c) 150 samples in subset. (d) 100

samples in subset. (e) 75 samples in subset. (f) 50 samples in subset.
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FIGURE 6.8 Continued.
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6.1.3.1. Analysis of Two Fibers with Different Spontaneous Rates

In the first part of this study, it was shown that 50 to 100 samples are sufficient

for characterizing an interspike interval histogram, and that the best-fit density

function is the Gamma distribution. The bottom-right graph in Figure 6.9

demonstrates how well the best-fit Gamma distribution describes binned data for

1000 interspike intervals from fiber #2. However, one interesting finding from

this study was that the best-fit density function for both fibers #1 and #2 was the

Gamma distribution despite the fact that the spontaneous activity of these fibers

differs considerably (38 spikes/s as compared to 74 spikes/s). Therefore,

one question that arises is whether a single type of density function with fixed
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FIGURE 6.9 Comparison of best-fit tests of sampled interspike intervals for two fibers

with different spontaneous activity rates. (a) Best-fit gamma distributions for fiber #1

(filled circles) and fiber #2 (open circles). (b) Overlapping mapped end points for fiber #1

(filled circles) and fiber #2 (open circle). (c) Goodness-of-fit test for best-fit gamma

distribution of fiber #1. Null hypothesis is best-fit gamma distribution of fiber #2. (d) Best-

fit gamma distribution and histogram for 1000 data samples of fiber #2.
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shape parameter values can describe the spontaneous activity of any auditory

nerve fiber. Using the Ozturk Algorithm, it is possible to address this question.

Figure 6.9 provides some compelling evidence suggesting that the sponta-

neous activity for these two auditory nerve fibers is well described by a Gamma

distribution with a shape parameter of approximately 1.63; the two high-SR

fibers only differ in their values of the location ðaÞ and scale parameters ðbÞ:
Figure 6.9(a) shows a plot of the best-fit Gamma distribution, as listed in

Tables 6.1 and 6.2, for fiber #1 (filled circles) and fiber #2 (open circles). The

difference between these two functions reflects the fact that fiber #2 has a

spontaneous rate approximately twice that of fiber #1. However, Figure 6.9(b)

shows that the data set for both of these fibers gets mapped in the same location of

the U-V plane. Therefore, even though the spontaneous activity of these two

fibers is different, the same type of Gamma distribution provides the best fit for

both sets of data; only the values of the location and scale parameters differ. In

addition, when a goodness-of-fit test is performed using the best-fit Gamma

distribution for fiber #2 as the null distribution and the interspike intervals for

fiber #1 as the sample data, the results indicate that the two sets of data agree

almost perfectly. Figure 6.9(c) shows the graphical solution of this goodness-of-

fit test; the sample data are statistically consistent with the null hypothesis at a

99% confidence level, and even more remarkably, the two mapped trajectories

overlay almost entirely. This result provides strong evidence that, at least for these

two fibers, a Gamma distribution with a shape parameter of 1.63 characterizes the

interspike intervals of spontaneous auditory nerve activity.

To more rigorously test this idea, an additional simulation was performed.

Generally, the mathematical function thought to describe spontaneous spike

generation in the auditory nerve is a Poisson process with recovery time.

Therefore, a computer program was made to simulate spike generation from this

process. The computer program was provided by Evan Relkin, and the recovery

function used is one that was described by Gaumond et al.6,7 The simulation

was run for 50 seconds using a spontaneous activity rate of 45 spikes/sec

(also corresponding to a high spontaneous rate fiber). From this simulation, 2129

interspike intervals were generated. These data were analyzed by the Ozturk

Algorithm, and the best-fit density function was determined to be a Gamma

distribution. More remarkably, however, was the fact that the location of the

mapped end point in the U-V plane was extremely similar to that for the other two

fibers. In addition, when a goodness-of-fit test was performed on these data using

the best-fit Gamma distribution for fiber #2 as the null distribution, the two

mapped trajectories for the sample data and null data matched almost perfectly;

the simulated data were statistically consistent with the null distribution at a 99%

confidence level. A summary of these results is given in Figure 6.10.

Although the spontaneous activity from different classifications of several

more auditory nerve fibers and simulations (i.e., medium and low SR fibers)

needs to be tested before definitive conclusions may be reached, the above

examples demonstrate the usefulness of the Ozturk Algorithm. For one thing, the

algorithm determined that a Gamma distribution with a shape parameter of
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approximately 1.63 provides an excellent fit to interspike interval histograms for

high-SR fibers. Secondly, the algorithm provides a method for testing the

hypothesis that the spontaneous activity of all auditory nerve fibers can be

described by this function. Thirdly, the Ozturk Algorithm allows a statistical

verification of Gaumond’s prediction that spontaneous activity in auditory fibers

can be simulated using a Poisson process with a Gaumond recovery function.

Based on the above simulation, his prediction appears to be an accurate one. And

lastly, the algorithm enables an even more general test of spontaneous activity to

be performed. Perhaps the spontaneous rate of all types of neurons can be

characterized by the same function. A similar analysis to the above one

performed on different classes of neurons would provide a method for addressing

this question.

6.1.3.2. Analysis of Pulse-Number Distributions

The last part of the analysis in this section was done at the request of Evan Relkin.

One method for analyzing spikes is to generate pulse-number distributions. In

this analysis, the number of events (in this case spikes) are counted for a specific

time interval, and these counts are binned for successive sweeps of the same

stimulating condition (e.g., Relkin and Pelli8).

Dr. Relkin is currently analyzing some data using this technique (personal

communication). In his study, a 25 msec interval is used for generating the pulse-

number distributions. From these data, means and variances are computed. One

problem arising with these calculations is that many more samples are required to

accurately compute the variance than the mean; experimental evidence suggests

that approximately the square number of samples are needed to compute the

0.2

v
0.6

0.5

0.4

0.3

0.2

0.1

0
0−0.2 −0.1 0.1

u
(a) (b)

0.35

0.3

0.25

0.2

v

0.15

0.1

0.05

0
−0.1 0.1 0.2 0.30.25−0.05 0.05 0.15

u
0

Fiber #1
Fiber #2
Simulation

FIGURE 6.10 Computer simulation of 2129 interspike intervals from a poisson process

with a Gaumond recovery function. (a) Mapped end points of simulation data and entire

data sets of fibers #1 and #2. (b) Goodness-of-fit test for computer simulation. Null

hypothesis is fiber #2 best-fit Gamma distribution with parameters a ¼ 0.0013, b ¼ 0:016,
g ¼ 1:5:
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variance with the same accuracy as the mean. To circumvent this difficulty,

Dr. Relkin has generated an equation that relates mean and standard deviation for

25 msec intervals: s ¼ 0.18m 0.36 where s corresponds to the standard deviation

and m corresponds to the mean. Since the Ozturk Algorithm determines the

distribution of best-fit for a set of data, and the mean and variance of these

distributions are known (see Table 6.320–24), it was believed that the algorithm

might provide a more efficient method for determining the variance of the pulse-

number distributions.

The same two fibers were used in this study, and, as before, the data were

provided by Evan Relkin. The stimulus paradigm was such that each stimulus

condition contained 20 sweeps, and each sweep consisted of 200 ms of

spontaneous activity. Pulse-number distributions were generated by counting the

number of spontaneous spikes occurring in a 25 ms period. Therefore, one

stimulus condition, consisting of 20 sweeps, contains 160 intervals of 25 ms.

The number of 25 ms intervals used to bin the data was either 960, 500, 250, 200,

150, 100, 75, 50, or 25. For the case where 960 intervals were used, exactly

six stimulus conditions of 20 sweeps were required.

The Ozturk Algorithm was used to analyze these data. The random variable

inputted into the algorithm was the number of spikes occurring in 25 ms interval.

In other words, if 250 intervals were used, then a data set containing 250 samples

was entered into the algorithm, the value of each sample representing the number

of spikes that occurred in a particular 25 ms interval. It is important to point out

that this random variable is discrete. Nevertheless, since the algorithm is being

used to predict means and variances, as opposed to curve fitting the data, a

discrete random variable is acceptable.

For both fibers, nine different sets of data, each generated from a different

number of samples, were analyzed. The Ozturk Algorithm was used to determine

the best-fit density function for each data set. The means and variances for these

distributions were computed. The formulas used for these calculations are listed

in Table 6.3 and correspond to the general form of the density functions in Tables

4.8 and 4.9. One should remember that the actual class of the best-fit distribution

is unimportant; it is only used to compute the means and variances. Tables 6.4

and 6.5 summarize the results obtained for fibers #1 and #2, respectively. The

standard deviations were calculated by taking the square root of the variance.

When the means and standard deviations generated from the Ozturk

Algorithm are compared to the best-fit equation determined by Dr. Relkin, the

results are impressive.

Figure 6.11(a) shows these results. Although the variability around the curve

is greater for the second fiber than the first one, this finding is not unusual.

Dr. Relkin noticed when he was generating his curve fit that the variability around

this curve increased considerably as the spontaneous rate of the fiber increased

(personal communication). In fact, Dr. Relkin commented that the variability of

the data from the Ozturk Algorithm was much less than the variability he

normally observes.
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TABLE 6.3
Mean and Variance of Standard and General Forms of PDFs in Tables 4.8

and 4.9

Distribution Mean Variance

1. Normal
a b2

2. Uniform
2aþ b

2
b2

12

3. Exponential
aþ b b2

4. Laplace
a 2b2

5. Logistic
a ðbpÞ2

3

6. Cauchy not defined not defined

7. Extreme

Value (type-1)

aþ bG 0ð1Þ where G 0ð1Þ ¼ 20:57721 ðbpÞ2
6

8. Gumbel (type-2)
G ð12 g2 1Þ þ a b2Gð12 2g2 1Þ þ 2aðb2 1ÞG ð12 g21Þ

2 G 2ð12 g21Þ

9. Gamma
bG þ a b2g

10. Pareto
bg

g2 1
þ ag . 1 b2 g

g2 2
2

g

g2 1

� �2" #
, g . 2

11. Weibull bG
gþ 1

g

� �
þ a b2 G

gþ 2

g

� �
2 G

gþ 1

g

� �� �2" #

12. Lognormal b exp
g2

2


 �
þ a

b2 expðg
2Þðexpðg2Þ 2 1Þ

13. K-Distribution
1:77bG ðgþ 0:5Þ

GðgÞ þ a b2 4g2 3:14
Gðgþ 0:5Þ

GðgÞ
� �2" #

14. Beta
bg

gþ d
þ a b2gd

ðgþ dÞ2ðgþ dþ 1Þ

15. Johnson SU
�
b exp

�
1
2g2

�
sin hðdÞ�þ a

b2

2

�
exp

�
1
g2

�
2 1

��
exp

�
1
g2

�
cos hð2dÞ þ 1

�
Note:Themeans and variances listed above correspond to the general formof the PDFs listed inTable 4.9.
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TABLE 6.4
Parameters of Best-Fit Distributions for Nine Sets of 25 msec Samples of Interspike Intervals of Chinchilla Auditory Nerve

Activity Collected from Fiber #1

Best-Fit
Distribution

Number of
Samples

Location
Parameter ðaÞ

Scale
Parameter ðbÞ

Shape 1
Parameter ðgÞ

Shape 2
Parameter ðdÞ

Distribution
Mean

Distribution
Std. Deviation

Beta 960 20.71743E þ 00 0.29501E þ 01 0.15966E þ 01 0.16E þ 01 0.75605 0.72004

Beta 500 20.64751E þ 00 0.28556E þ 01 0.14932E þ 01 0.16E þ 01 0.73099 0.70530

Weibull 250 20.21597E þ 01 0.32E þ 01 0.47862E þ 01 — 0.77016 0.70162

Weibull 200 20.11257E þ 01 0.21774E þ 01 0.26765E þ 01 — 0.81068 0.77958

Weibull 150 20.16792E þ 01 0.27022E þ 01 0.3746E þ 01 — 0.75954 0.73041

Beta 100 20.28112E þ 00 0.21496E þ 01 0.66257E þ 00 0.8E þ 00 0.69269 0.68188

Weibull 75 20.2314E þ 01 0.33584E þ 01 0.5E þ 01 — 0.76958 0.70625

Johnson S.U. 50 0.89717E þ 00 0.75416E þ 00 0.12942E þ 01 0 0.89717 0.80883

Beta 25 20.63365E þ 00 0.21895E þ 01 0.11252E þ 01 0.8E þ 00 0.64602 0.63089
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TABLE 6.5
Parameters of Best-Fit Distributions for Nine Sets of 25 msec Samples of Interspike Intervals of Chinchilla Auditory Nerve

Activity Collected from Fiber #2

Best-Fit
Distribution

Number of
Samples

Location
Parameter ðaÞ

Scale
Parameter ðbÞ

Shape 1
Parameter ðgÞ

Shape 2
Parameter ðdÞ

Distribution
Mean

Distribution
Std. Deviation

Beta 960 20.70106E þ 00 0.53329E þ 01 0.25861E þ 01 0.32E þ 01 1.6825 1.0178

Beta 500 20.69648E þ 01 0.37508E þ 01 0.13357E þ 01 0.16E þ 01 1.6369 0.94149

Beta 250 0.80749E þ 01 0.37225E þ 01 0.10714E þ 01 0.16E þ 01 1.5737 0.95217

Lognormal 200 20.20146E þ 02 0.21955E þ 02 0.53507E þ 01 — 1.8405 1.1773

Beta 150 0.28177E þ 00 0.36410E þ 01 0.92656E þ 00 0.16E þ 01 1.6170 0.93436

Beta 100 0.42671E þ 00 0.29290E þ 01 0.57095E þ 00 0.8E þ 00 1.6465 0.93774

Beta 75 0.61713E þ 00 0.27104E þ 01 0.44209E þ 00 0.8E þ 00 1.5818 0.86667

Beta 50 20.22230E þ 01 0.65131E þ 01 0.47614E þ 01 0.32E þ 01 1.6722 1.0667

Beta 25 20.25382E þ 00 0.54295E þ 01 0.17489E þ 01 0.32E þ 01 1.6649 1.0641
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The application, Kaleidagraph, was also used to calculate sample means and

standard deviations for all of the data inputted into the Ozturk Algorithm. These

data are shown in Figure 6.11(b). It is interesting to note that unlike the statistics

generated from the Ozturk Algorithm, all of the sample statistics fall on one side

of the curve (with the exception of one data point from fiber #2). In fact, when

calculating the deviation of the Ozturk statistics and Kaleidagraph statistics from

Evan Relkin’s curve fit, it was found that the mean-square deviation of the Ozturk

statistics was 9% less for fiber #1 and 18% less for fiber #2 than the deviation for

the corresponding Kaleidagraph statistics.

Another way to compare the two methods for calculating statistics is to plot

the Ozturk mean and variance versus the sample mean and variance for each set of

data.† Figure 6.11(c) and (d) shows this comparison. The line drawn in these
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FIGURE 6.11 Comparison of the Ozturk statistics and the sample statistics generated

by Kaleidagraph application. (a) Ozturk statistics vs. curve fit determined by Evan

Relkin. (b) Kaleidagraph statistics vs. curve fit determined by Evan Relkin. (c) Ozturk

statistics vs. Kaleidagraph statistics for fiber #1. The line in this graph passes through the

origin and has a slope of one. (d) Ozturk statistics vs. Kaleidagraph statistics for fiber #2.

The line in this graph passes through the origin and has a slope of one.

† The variance has been plotted instead of the standard deviation since the mean and standard

deviation for fiber #1 are similar, and thus, the data points would overlay in this plot.
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graphs passes through the origin and has unity slope. If the statistics from both

methods matched perfectly, one would predict that the data would fall on this line.

As can be seen from these graphs, for fiber #1, the Kaleidagraph statistics for both

mean and variance are consistently greater than those of the Ozturk statistics; for

fiber #2, although the sample mean and Ozturk mean agree well, the sample

variance is consistently greater than the Ozturk variance. Therefore, by using the

Ozturk Algorithm to determine the distribution of best-fit and calculating the

mean and variance of this distribution, one obtains a more accurate prediction of

these statistics than by using the sample statistics. In addition, it is important to

keep in mind that the Ozturk Algorithm can generate an excellent estimate of the

pulse-number distribution’s mean and variance with as few as 25 samples.

6.1.4. ANALYSIS oF EFFERENTOPTIC-NERVE ACTIVITY IN THE

HORSESHOE CRAB

The second application of the Ozturk Algorithm was analyzing efferent optic

nerve activity in the horseshoe crab. Numerous studies have been carried out to

demonstrate the effects of the efferent activity on visual sensitivity. Some of these

studies include Barlow et al.9, Kass and Barlow10, Chamberlain and Barlow11,12,

Barlow et al.13, and Kier and Chamberlain.14 Two additional studies provide a

detailed description of the organization of the efferent activity (Barlow15 and

Kass and Barlow16).

Some of the conclusions from these two studies include:

1. Each lateral optic nerve contains a small but separate group of efferent

fibers (approximately 10 to 20).

2. Efferent fibers fire in bursts at rates up to two bursts per second.

3. Each efferent fiber fires one spike in a burst.

4. Bursts occur synchronously in the lateral optic nerves.

5. Efferent activity undergoes a circadian rhythm.

6. Coupling among efferent neurons changes during the circadian cycle.

Although several effects of the efferent activity on visual sensitivity are

known and some general properties about the organization of this activity have

been made, a detailed study of the structure of this information was lacking. For

example, Barlow15 comments, “The repetitive bursts of impulses indicate that the

efferent cell bodies in the brain are either coupled together or receive nearly

synchronous inputs from the circadian clock. The bursts become less distinct in

the early morning hours, suggesting that the synchrony changes during the

circadian cycle.” In other words, Barlow observed that the efferent activity

occurred in bursts, with each fiber firing once per burst, and that these bursts

slowed down at dusk (onset of activity) and dawn (offset of activity) and were

most rapid in the middle of the night.

To further explore the organization of the efferent activity, Chris Passaglia and

I performed an additional study (Passaglia et al.17). In this study, we found a
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patterned structure to the activity; bursts of spikes occur in clusters, and these

clusters of bursts occur in packets. In general, the time between bursts is less than

ten seconds, the time between clusters is around ten seconds, and the time between

packets is on the order of minutes. Figure 6.12 illustrates these concepts by

showing several minutes of efferent activity throughout the night. Each “spike” in

these traces correspond to a burst of action potentials. We also observed in our

study that the efferent activity was highest in the middle of the night, and that the

time between bursts, clusters, and packets all increased at the onset and offset of

activity. In other words, the efferent activity started off slowly (long time between

bursts, clusters, and packets) increased to its fastest rate during the middle of the

night, and then gradually slowed down again toward morning. During the day

there is no efferent activity. Figure 6.12 also illustrates this phenomenon. To help

learn about the structure of the efferent activity, the Ozturk Algorithm was used to

analyze the best-fit distributions for the interburst intervals.

In Figure 6.12, there was no activity recorded before 6 p.m. or after 6 a.m. in

this animal, and the activity was most rapid between 11 p.m. and 1 a.m. Each

spike in these traces corresponds to a burst of action potentials, and each efferent

fiber fires one action potential per burst. The upper-left inset shows an expanded

time scale where approximately seven action potentials can be resolved.

6 pm

7 pm

9 pm Cluster

Burst

Packet11 pm

1 am

3 am

5 am

6 am 10 sec

0.2 sec

FIGURE 6.12 Eight 3-min traces of horseshoe crab efferent optic nerve activity recorded

throughout the night.
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The number of action potentials occurring in each burst stays constant throughout

an experiment.

6.1.4.1. Characterization of Interburst Intervals

Given the observation that the rate of the efferent activity is modulated throughout

the night, an interesting question that arises is whether a single distribution can

provide a good fit to the data regardless of the time of the activity. In other words,

as the efferent activity is modulated, does the type of distribution which best fits

the data change, or rather does the best-fit distribution remain the same and the

parameters of this distribution change? Since the Ozturk Algorithm assumes

independent samples, only interburst intervals, and not the time between clusters

and packets, were analyzed. In addition, data samples were only analyzed over a

maximum duration of a one hour interval, the assumption being that the efferent

spike trains remain relatively stationary over this interval, and hence, the

assumption of independent trials remains valid. Qualitative inspection of

the efferent spike trains over one hour intervals supports this assumption.

The efferent spike trains that were recorded from these intervals included the time

of occurrence of all of the spikes. The data were transformed into interspike

intervals by calculating the time between successive spikes. Intervals corres-

ponding to times between clusters and packets were subjectively identified and

deleted. Three experiments, done on three different animals, were analyzed. For

each of these experiments, the interburst data for successive one hour intervals

were analyzed.

For all three experiments, the Ozturk Algorithm was used to determine the

best-fit distribution of the interburst intervals for each one hour interval. For each

experiment, the coordinates of the mapped end points from the one hour intervals

were averaged, and this averaged end point was inputted into the Ozturk

Algorithm to determine the best-fit distribution for the averaged data.

Interestingly, in all three experiments, the best-fit distribution for the averaged

data was the Lognormal distribution. Even more remarkably, the shape parameter

value was almost identical in each experiment. Figure 6.13(a) shows the location

of the averaged end point in the U-V plane for each experiment. Figure 6.13(b)

shows the corresponding plots of the best-fit Lognormal distribution. Notice how

similar the three distributions are despite the fact that these experiments were

done on three different animals. In Figure 6.13, the parameter values for these

distributions are given in Table 6.6.

As mentioned earlier, the rate of efferent activity is modulated throughout the

night. Thus, best-fit Lognormal distributions were also obtained for each one hour

interval. The best-fit Lognormal distribution of the averaged data was used as the

null distribution when performing goodness-of-fit tests. Table 6.6 provides a

summary of the number of samples used and the parameter values obtained for

the best-fit Lognormal distribution for every condition, which was analyzed by

the Ozturk Algorithm. Notice how similar the shape parameter value is for the

averaged data in all three experiments.
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The results in Table 6.6 indicate that efferent activity was recorded from

8 p.m. to 4 a.m. in experiment 1, from midnight to 6 a.m. in experiment 2, and

from midnight to 7 a.m. in experiment 3. The reason that this activity was not

monitored throughout an entire night is due to the complexity of the recording.

Remembering that the efferent activity does not begin until dusk, it is futile to

begin the surgery until after the clock has turned on the activity. In addition, it can

take several hours until efferent activity is isolated — especially given the ratio of

afferents to efferents within the optic nerve. Thus, the only way to obtain a

recording for an entire night is if the recording is maintained in excess of

24 h. That is, the recording of the entire night is obtained during the second night

of activity since the onset of activity will be recorded for the second night.
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FIGURE 6.13 Mapped end points and corresponding best-fit lognormal distributions for

interburst intervals of efferent optic nerve activity in the horseshoe crab. (a) Mapped end

points averaged over all hourly intervals for each of three experiments. (b) Lognormal

distributions averaged over all hourly intervals for each of three experiments. (c) Mapped

end points for each one-hour interval analyzed in experiment 1. (d) Lognormal

distributions for each one hour interval analyzed in experiment 1.
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Keeping in mind that the amount of efferent activity begins slowly, increases to a

maximum in the middle of the night, and then slows down again, inspection of

the number of samples listed in Table 6.6 indicates that only the last half of

the efferent activity was recorded for experiments 2 and 3. Nevertheless, there

are still enough one hour intervals included in these experiments to study

the relationship between the modulation of efferent activity and the best-fit

distribution of this activity.

Figure 6.13(c) and (d) show the location of the mapped end points in the U-V

plane and the corresponding best-fit Lognormal distributions for each one hour

interval from experiment 1. Figure 6.14 shows these same plots for experiments 2

and 3. The average data for each experiment is represented by an “x” in the U-V

plane and a bolded line in the Lognormal plots. As mentioned before, the average

TABLE 6.6
Parameters of Best-Fit Lognormal Distributions, for Each One-Hour

Intervals, and for the Average of All One-Hour Intervals, in Three Different

Experiments of Efferent Optic Nerve Activity in the Horseshoe Crab

Time Interval
Number
of Samples

Location
Parameter

Scale
Parameter

Shape
Parameter

Experiment 1 Average 277 20.29873E 2 01 0.16047E þ 01 0.65588E þ 00

2000 –2059 98 20.17282E þ 01 0.40188E þ 01 0.50696E þ 00

2100 –2159 257 0.88015E þ 00 0.12853E þ 01 0.10285E þ 01

2200 –2259 297 20.32991E 2 01 0.21864E þ 01 0.58224E þ 00

2300 –2359 381 20.12828E þ 01 0.33888E þ 01 0.40119E þ 00

0000 –0059 422 0.23578E þ 00 0.14394E þ 01 0.81168E þ 00

0100 –0159 372 20.27404E þ 00 0.19148E þ 01 0.6E 2 00

0200 –0259 245 20.26715E þ 00 0.27248E þ 01 0.67234E þ 00

0300 –0359 145 20.99534E 2 01 0.30335E þ 01 0.82254E þ 00

Experiment 2 Average 480 20.22409E 2 01 0.16548E þ 01 0.64258E þ 00

0000 –0059 901 0.20427E þ 00 0.64307E þ 00 0.68058E þ 00

0100 –0159 619 0.31337E þ 01 0.10708E þ 01 0.57936E þ 00

0200 –0259 571 0.17248E þ 00 0.87607E þ 00 0.69301E þ 00

0300 –0359 443 0.93756E 2 01 0.11927E þ 01 0.67886E þ 00

0400 –0459 206 20.98192E þ 00 0.29723E þ 01 0.63250E þ 00

0500 –0559 141 20.27794E þ 00 0.25508E þ 01 0.67267E þ 00

Experiment 3 Average 741 0.30030E þ 00 0.16864E þ 01 0.52238E þ 00

0000 –0059 1114 0.62426E þ 00 0.13595E þ 01 0.63071E þ 00

0100 –0159 1047 0.59993E þ 00 0.15211E þ 01 0.55657E þ 00

0200 –0259 946 0.80420E þ 00 0.15346E þ 01 0.68594E þ 00

0300 –0359 877 20.19083E þ 01 0.44820E þ 01 0.30436E þ 00

0400  –0459 659 20.12900E þ 01 0.41819E þ 01 0.42255E þ 00

0500 –0559 302 0.73848E þ 00 0.38726E þ 01 0.65947E þ 00

0600 –0659 243 20.38711E þ 01 0.70872E þ 01 0.44340E þ 00
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data were generated by averaging the location of all of the one hour mapped end

points in the U-V plane and averaging the number of samples used in each one

hour interval. These results were inputted into the Ozturk Algorithm, and the

location of the mapped end point and parameter values for the best-fit Lognormal

distribution were determined.

Goodness-of-fit: tests were performed on each one hour interval using the

average data of the appropriate experiment as the null distribution. In every case,

the sample data for the one hour intervals were statistically consistent with the

null hypothesis at a 99% confidence level (results not shown). This fact indicates

that a single Lognormal distribution can sufficiently characterize the interburst
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FIGURE 6.14 Mapped end points and corresponding best-fit lognormal distributions for

each hourly interburst intervals of efferent optic nerve activity in the horseshoe crab.
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(Scales of axes differ for each hourly interval.) (c) Mapped end points for experiment 3.

(d) Lognormal distributions for experiment 3. (Scales of axes differ for each hourly
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intervals of the efferent activity regardless of the time of night of the activity.

Coupled with the fact that the best-fit Lognormal distribution was approximately

the same for all three experiments, it appears that interburst intervals of efferent

activity can be described with a single Lognormal density function independent

of the time of activity or the animal from which the activity was recorded.

Figures 6.13 and 6.14 help to illustrate these points. The location of the mapped

end points for each one hour interval contain some variability; however, this

variability is centered around the average data. Similarly, although the overall

amount of activity is modulated throughout the night as indicated in the

Lognormal plots, the fact that all of the end points from each one hour interval

tend to cluster in one location of the U-V plane indicates that a single distribution

function with a relatively constant shape parameter still provides the best fit to

these interburst intervals. It is also interesting to note that the variability in the

location of the mapped end points is greater between one hour intervals from the

same animal than between the location of the mapped end points for the average

data from different animals [Figures 6.13(a,c) and 6.14(a,c)]. The fact that the

plots of the best-fit density functions for each one hour interval change

throughout the night despite the relative constancy of the shape parameter

indicates that the location and scale parameters are what encode the modulation

of the efferent activity, and not the type of density function. These graphs

demonstrate that as the rate of the efferent activity slows down, the best-fit

density functions become flatter and more spread out. This flattening can be

attributed to a decoupling in the organization of the efferent activity (Figure 6.12).

That is, just as the action potentials of each fiber within a burst tend to

decouple at the onset and offset of activity, it also appears that the general

organization of the bursts, clusters, and packets also reflects this decoupling; the

time between bursts, clusters, and packets all becomemore variable. In Figure 6.14

the parameter values for the Lognormal distributions are given in Table 6.6.

6.1.4.2. Trends in the Shape Parameter

In the previous section, it was shown that a Lognormal distribution with a single

shape parameter adequately describes the interburst intervals of the efferent optic

nerve activity. In addition, although there is some variability in the value of this

shape parameter, all of the interburst intervals can fit into a single Lognormal

density function at a 99% confidence level.

One question that still arises, however, is whether any trends exist in the

value of the shape parameter. Put another way, does any correlation exist between

the value of the shape parameter and the time of night of the efferent activity? To

help address this question, the value of the shape parameter was plotted for

successive one hour intervals for all three experiments. These results are

summarized in Figure 6.15. In each case, a linear curve fit has been used on the

data. In all three cases, the slope of this curve fit is close to zero (experiment

1 ¼ 0.011; experiment 2 ¼ 0.0030; and experiment 3 ¼ 20.22). The standard

error has been plotted as error bars in all three graphs. These results indicate a
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lack of any trend in the shape parameter as a function of efferent modulation: in

experiment 1 the shape parameter tends to increase slightly towards morning,

while in experiment 2 the shape parameter remains relatively constant, and in

experiment 3 the shape parameter tends to decrease slightly toward morning.

Therefore, although the shape parameter does contain some degree of variability,

no apparent trends in this variability exist. In Figure 6.15, the successive time

intervals and shape parameter values are listed in Table 6.6. Lastly, it is important

to consider the significance of these results. For one thing, these results indicate

that a Lognormal distribution with a shape parameter around 0.61 should be used

to model the interburst intervals of the efferent activity; the value of the location

and scale parameters are what reflect the modulation of this activity. In addition,

one could perform a similar analysis on the time between clusters and packets. It

would be very interesting to see whether these best-fit distributions would also be

Lognormal density functions with similar shape parameter values. Thirdly, the

fact that a single density function appears to characterize the interburst intervals
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despite the modulation of this activity suggests that a single process is involved in

generating this activity, and that the modulation of this process leads to the

pattern of efferent activity occurring throughout the night. Finally, it is interesting

to consider the significance of the Lognormal distribution providing the best fit

for the efferent activity. Is it coincidental that this well described density function

is the one that happens to best fit the interburst intervals? One particularly

noteworthy observation is the relationship between the Lognormal distribution

and the central limit theorem (Papoulis18). The central limit theorem states that

given n independent positive random variables, as n becomes large, the

distribution of the product of these random variables will be Lognormal. Whether

any relationship exists between this mathematical statement and the physiology

remains to be determined. Nevertheless, it is interesting to postulate whether the

clock of the horseshoe crab generates efferent activity through a multiplicative

operation involving a large number of random variables. Regardless of the

answer to this question, the usefulness of the Ozturk Algorithm for analyzing data

is apparent from this example.

6.1.5. ANALYSIS OF THE VISUAL FIELD OF THE HORSESHOE CRAB

The last application of the Ozturk Algorithm was analyzing the visual field

of horseshoe crabs. In a recent study of mine (Weiner and Chamberlain19),

I measured the extent and resolution of the visual field of these animals. I found

that two different eye shapes exist and have named the animals possessing these

two eye shapes as “morlocks” and “eloi” (after H. G. Wells’ two varieties of

humans in his book The Time Machine 24). Morlocks have a relatively smaller

and flatter eye with maximum resolution in the anteroventral quadrant of their

visual field. In contrast, the lateral eye of eloi is relatively larger and bulgier;

these animals have much more uniform resolution in their visual field.

Figures 6.16 and 6.17 summarize these findings for morlocks and eloi, respect-

ively. In these figures, contour plots show the distribution of interommatidial

angles — the angle formed by the intersection of the optic axes of adjacent

ommatidia — across the eye in both the horizontal and vertical direction.

In Figures 6.16(a,b) and 6.17(a,b), the contour lines are labelled in degrees. In

Figures 6.16(c) and 6.17(c), the lengths of the vertical and horizontal axes of the

ellipse correspond to the magnitude of the respective interommatidial angles. The

size of each ellipse provides information about the resolution of the eye. The

eccentricity of each ellipse provides information about the relationship between

vertical and horizontal interommatidial angles. The “acute zone” in the

anteroventral portion of the morlock eyes is clearly visible as the region of

small ellipses. In all three maps, anterior is to the left and dorsal is toward the top.

The length of the eye along the horizontal axis is slightly exaggerated.

Figures 6.16 and 6.17 are based on 82 samples from Weiner and Chamberlain.19

In this section of the chapter, the Ozturk Algorithm was used to statistically

investigate the differences in distribution of interommatidial angles in the eyes of
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morlocks and eloi. The random variable used in this analysis was the

interommatidial angle. It is important to remember that the Ozturk Algorithm

assumes that the random variable represents independent samples. For this

particular case, this assumption is not valid since the value of the interommatidial

angle is a function of the location in the eye. To help reduce this error,
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FIGURE 6.16 Distribution of interommatidial angles across the morlock eye of a

horseshoe crab. (a) Contour map in the horizontal direction. (b) Contour map in the

vertical direction. (c) Elliptical plots.
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interommatidial angles were taken from samples uniformly distributed through-

out the eye. By so doing, every portion of the eye was sampled equally. In

addition, in my previous study it was found that the distribution of

interommatidial angles is approximately the same for all animals of a particular

eye shape. Therefore, in this analysis only the eyes from two animals were
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(c) Elliptical plots.
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analyzed: one morlock and one eloi. The two animals selected had approximately

the same interocular distance.

Throughout this section, three interommatidial angles will be referred to:

horizontal, vertical, and total. The horizontal and vertical angles refer to the

interommatidial angle in the anterior-posterior and dorsal–ventral directions,

respectively. The total angle refers to the overall interommatidial angle found by

combining the horizontal and vertical angles into a single solid angle.

6.1.5.1. Total Interommatidial Angles

In the first portion of this study, the distribution of total interommatidial angles

was analyzed using 145 samples. The best-fit distribution for a morlock eye and

an eloi eye was determined. Figure 6.18(c,d) shows a histogram of these

interommatidial angles with the best-fit density function plotted on the same

graph (c): morlock, (d): eloi. These histograms indicate that the total

interommatidial angles result in a much more uniform visual field in eloi than
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in morlock. After all, if the visual field had completely uniform resolution, the

interommatidial angles would be the same everywhere and a histogram plot of

interommatidial angles would show a single bar at this value. From Figure

6.18(d), it can be seen that most of the interommatidial angles in eloi occur in the

range from 4.75 to 7.5 degrees. In contrast, Figure 6.18(c) reveals that morlock

eyes have interommatidial angles almost uniformly distributed between 4.75 and

10.25 degrees. Occurrence of a peak in this histogram plot around 5 degrees

reflects the presence of an area in the eye where maximum resolution exists. The

contour plots of Figure 6.16 indicate that this area corresponds to the antero-

ventral quadrant of the visual field. The fact that morlock eyes have a more

uniform distribution of total interommatidial angles over a wider range of values

than eloi eyes is consistent with the finding that eloi have more uniform

resolution in their visual field.

Another way of showing that eloi eyes have a more uniform visual field than

morlock eyes is by comparing the variance of the total interommatidial angles.

Using the parameters of the best-fit density function, the variance can easily be

calculated from the formulas listed in Table 6.3. The best-fit density function and

parameter values in Figure 6.18 for each eye are given below. From these values,

the variance in total interommatidial angles is 3.65 degrees for the morlock eye

and 1.33 degrees for the eloi eye.

In Figure 6.18(a), the location of the mapped sample data in the U-V plane is

indicated by a filled circle. In this figure: N ¼ Normal, U ¼ Uniform,

E ¼ Exponential, A ¼ Laplace, L ¼ Logistic, C ¼ Cauchy, V ¼ Extreme

Value (type-1), T ¼ Gumbel (type-2), G ¼ Gamma, P ¼ Pareto, W ¼ Weibull,

L ¼ Lognormal, K ¼ K-Distribution. The upper five dashed lines represent Beta

and the lower nine dashed lines represent SU Johnson. In Figure 6.18(b), the

ellipses correspond to the confidence ellipses for the goodness-of-fit test where

the best-fit density function for the eloi eye was used as the null hypothesis

distribution. The total interommatidial angles from the morlock eye were used as

the sample data. In Figure 6.18(c), the data were generated from 145 samples.

The best-fit distribution is a Beta: a ¼ 4.6, b ¼ 6.0, g ¼ 0.58, d ¼ 0.8. In Figure

6.18(d), the data were generated from 145 samples. The best-fit distribution is

Beta: a ¼ 4.4, b ¼ 5.9, g ¼ 1.6, d ¼ 3.2.

The Ozturk Algorithm was also used to determine whether the distribution of

total interommatidial angles were statistically consistent for morlock and eloi

eyes. In this analysis, a goodness-of-fit test was performed using the distribution

of total interommatidial angles for a morlock eye as the sample data and the best-

fit density function for the corresponding angles of an eloi eye as the null

distribution. The results of this test are shown in the top-right graph of Figure

6.18(b). This test clearly indicates that the two sets of data are statistically

inconsistent at a confidence level greater than 99%. This figure also indicates that

the mapped trajectory in the U-V plane for the two data sets are very different.

Thus, the Ozturk Algorithm provides statistical verification that the visual fields

of morlocks and eloi are different.
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6.1.5.2. Horizontal and Vertical Interommatidial Angles

In the next portion of this study, the Ozturk Algorithm was used to analyze the

statistical distribution of interommatidial angles in the horizontal and vertical

directions. The data from the same two eyes, which were used above were also

used in this study. Histograms of horizontal and vertical interommatidial angles

are plotted for both eyes in Figure 6.19. Inspection of these histograms reveals

that the horizontal and vertical interommatidial angles are between 2 and 8.25 in

every case except for the vertical direction of morlocks. This fact suggests that it

is the wide range of vertical interommatidial angles in morlocks, which

contributes to the larger amount of variability in the total interommatidial angles.

As mentioned earlier, morlock eyes tend to be flatter and slightly smaller. In fact,

an eloi animal with the same interocular distance as a morlock animal will have

about 15% more ommatidia in its lateral eye (Weiner and Chamberlain19), and

most of these additional ommatidia are located in the dorsal–ventral dimension

(i.e., the two eyes have approximately the same length in the anterior–posterior
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direction). Therefore, eloi have bulgier eyes with more ommatidia, and it appears

that these additional ommatidia improve the resolution of the eye in the dorsal–

ventral direction, as compared to morlocks. In contrast, morlocks have poorer

resolution in the dorsal–ventral direction; however, they have an area of maximal

resolution in the anteroventral quadrant of their eye. Hence, a trade-off between

uniform resolution and an acute zone exists.

The Ozturk algorithm was used to determine the best-fit density function for

the distribution of horizontal and vertical interommatidial angles in the morlock

and eloi eyes; 82 samples were used for the morlock eye while 102 samples were

used for the eloi eye. Then, the algorithm was used to perform two goodness-of-fit

tests: one for the horizontal angles, and one for the vertical angles. In each test, the

interommatidial angles from the morlock eye were used as the sample data while

the best-fit density function for the eloi eye was used as the null distribution. The

graphical solutions from these tests are shown in Figure 6.20(a) for horizontal

angles and Figure 6.20(b) for vertical angles. These tests indicate that the

distribution of horizontal and vertical interommatidial angles in morlocks and eloi

are statistically inconsistent at a confidence level greater than 99%. The goodness-

of-fit tests provide statistical support to the claim that two different eye shapes exist

in horseshoe crabs. In my 1994 study, I reached the same conclusion; however, the

Ozturk Algorithm provides a statistical tool for quantifying this conclusion.

Finally, one might legitimately point out that the assumption of independent

samples, as required by the Ozturk Algorithm, was invalid in this problem. To

help alleviate this error, samples were taken, which were uniformly distributed

throughout an eye. Nevertheless, the value of these samples is still dependent on

where in the eye these samples were located. The significance of this last point

comes from the interpretation of the goodness-of-fit test. Should the data from the

two eyes have been statistically consistent, the only valid conclusion could have

been that the distribution of the interommatidial angles in the two eyes is
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statistically consistent, NOT that the two eyes have the same visual field.

Conversely, the fact that the horizontal and vertical interommatidial angles were

statistically inconsistent in the two eyes, given that samples were uniformly

distributed throughout each eye, ensures that the visual field of the two eyes is

different. Therefore, even when the assumption of independent samples is not

completely valid, the Ozturk Algorithm can still be effectively used to extract

statistical information.

In Figure 6.20, the outer ellipse corresponds to a 99% confidence level and

the middle ellipse to a 90% confidence level. The best-fit distributions for the

morlock eye are for the horizontal angles, Beta: a ¼ 3.7, b ¼ 7.0, g ¼ 0.80,

d ¼ 3.3 and for the vertical angles, Beta: a ¼ 2.7, b ¼ 10.2, g ¼ 0.96, d ¼ 1.6.

The best-fit distributions for the eloi eye are for the horizontal angles, K-

distribution: a ¼ 2.4, b ¼ 0.38, g ¼ 24.8 and for the vertical angles, Weibull:

a ¼ 3.4, b ¼ 1.8, g ¼ 1.5.

6.1.6. APPLICATIONS OF THE OZTURK ALGORITHM IN NEUROSCIENCE

In the first section of this chapter, a brief description of the Ozturk Algorithm was

given and its advantages over classical techniques were discussed. Then, in the

next section of this chapter, a detailed description of the algorithm was provided.

Finally, in the last three sections of this chapter, three applications of the Ozturk

Algorithm were presented. The three applications that were described were

selected for a number of reasons. First, these examples demonstrate how the

algorithm can be used to provide statistical information for a wide variety of

problems. In addition, the examples discussed represent multiple modalities, as

well as both anatomical and physiological processes. Finally, the last two

examples were selected because I performed most of the experiments necessary

to collect these data. In the final section of this chapter, I will point out several

other applications of the Ozturk Algorithm in the field of neuroscience.

The Ozturk Algorithm is appropriate for analyzing data whether one is

studying anatomy, physiology, or psychophysics. In the case of anatomy, the

algorithm can be used to determine the distribution of a measured dimension for a

particular structure. As an example, one could use the algorithm to find the best-fit

density function for the diameter of a class of axons. One could also use the

algorithm to determine whether this best-fit function is statistically consistent with

the distribution of a second class of axons. This type of analysis could be performed

on any structure, and the advantage of using the Ozturk Algorithm is that very few

samples need to be collected and measured to produce reliable results.

Several applications of the Ozturk Algorithm exist for physiology as well.

The algorithm can be used to analyze spike trains and to determine whether two

such trains are best fit by the same density function. In addition, membrane

potentials can be analyzed and the best-fit density function used to generate a

cumulative distribution function. By so doing, the probability of a specified

threshold being exceeded could be calculated. In addition, since the algorithm

requires so few points to accurately fit data, the amount of sweeps necessary to
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collect data might be reduced. This provides an enormous advantage in the cases

where stable recordings are problematic.

Even in psychophysics, applications of the Ozturk Algorithm exist. Perhaps

the algorithm could be used to more efficiently track the thresholds of subjects.

After all, once a density function for an experiment is obtained, the cumulative

distribution function can be calculated and any arbitrarily defined threshold

determined. It would be very interesting to see whether using the Ozturk

Algorithm reduced the amount of trials required when tracking a subject’s

threshold. This would greatly reduce the time required to perform psychophysical

experiments. In addition, the Ozturk Algorithm seems especially useful when one

is modeling data; the algorithm can easily be implemented to provide the exact

equation of a best-fit density function for a particular process or set of data. Once

this equation is determined a wealth of information is available to the researcher

such as: mean, variance, frequency content and probabilities.

Undoubtedly, many other applications of the Ozturk Algorithm in the field of

neuroscience exist. The purpose of this chapter was to provided a detailed

description of the algorithm and present some of its potential uses. Hopefully, as

exposure to the Ozturk Algorithm increases, many people will begin to use and

benefit from this innovative statistical tool.

6.2. USE OF IMAGE PROCESSING TO PARTITION A RADAR

SURVEILLANCE VOLUME INTO BACKGROUND NOISE AND

CLUTTER PATCHES

(M. A. SLAMANI AND D. D. WEINER)

6.2.1. INTRODUCTION

The use of spherically invariant random processes (SIRPs)1 in the implemen-

tation of likelihood ratio tests (LRTs) and locally optimum detectors (LODs)2 for

the radar problem allows us to derive algorithms for performing both strong and

weak signal detection in a nonGaussian environment. Classical detection

assumes a priori knowledge of the joint PDF underlying the received data. In

practice, received data can come from a clear region, where background noise

alone is present, or from a clutter region, where returns are due to reflections from

such objects as ground, sea, buildings, birds,… etc. When a desired target return

is from a clear region and the background noise is sufficiently small, the signal-to-

noise ratio will be larger and the strong signal detector (i.e., the LRT) should be

used. However, if a desired target return is from a clutter region, two situations

can exist. When the desired target can be separated from the clutter by means of

space–time processing and the background noise is sufficiently small, the signal

to noise ratio will be large and a strong signal detector should again be used.

When the desired target cannot be separated from the clutter by means of space–

time processing and the clutter return is much larger then the desired target
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return, then a weak signal detector (i.e., LOD) should be used. Use of the LRT

(LOD) in a weak (strong) signal situation can result in a severe loss in

performance. Hence, it is necessary for the receiver to determine whether a strong

or weak signal situation exists.

All of these suggest use of image processing along with an expert system in

the radar detection problem for (1) monitoring the environment and (2) selecting

the appropriate detector for processing the data. This is in contrast to current

practice where a single robust detector, usually based on the Gaussian

assumption, is employed. In addition, depending on statistical changes in the

environment over time and space, the expert system enables the receiver to adapt

so as to achieve close to optimal performance. The goal of this study is to explore

how image processing along with an expert system can be used to develop an

adaptive radar receiver that is able to outperform traditional radars with respect to

high subclutter visibility. The focus of this chapter deals with the partitionning of

a radar surveillance volume into background noise and clutter patches. We refer

to this as mapping of the surveillance volume.

Assume that J £ K range/azimuth (R/A) cells are scanned by a radar antenna

and that the dwell time is equal to the pulse repitition interval (PRI) so that only a

single pulse is processed from each cell. The block diagram of the preprocessing

stage is shown in Figure 6.21. An average power Pðj; kÞ is formed for every R/A

cell in the J £ K R/A plane. In particular,

Pð j; kÞ ¼ y21ð j; kÞ; j ¼ 1; 2;…; J k ¼ 1; 2;…;K ð6:29Þ
where y1ðj; kÞ represents the temporal data magnitude of the jkth R/A cell.

At this point, the R/A plane consists of two different types of regions that need

to be identified. There are clear regions, where background noise (BN) alone is

present, and clutter patches, where both clutter (CL) and additive BN are present.

6.2.2. OBSERVATIONS ABOUT BN AND CL

The following observations are based on computer generated examples of BN

and CL data where the clutter-to-noise ratio (CNR) is assumed to be greater than
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FIGURE 6.21 Block diagram of data preprocessing stage.
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0 dB. The BN envelope is assumed to be Rayleigh while the CL envelope may be

either Rayleigh, K-distributed, Weibull or Lognormal.3

6.2.2.1. Observations about BN

(1) On average, the BN data values are smaller than the CL data values.

(2) Large data values exist in a BN that may be higher than some data

values of the CL.

(3) Large data values in the BN tend to be isolated points.

(4) The number of BN data significantly larger than the average is

relatively small.

(5) The relatively small number of large BN data is distributed evenly

throughout the surveillance volume.

6.2.2.2. Observations about CL

(1) On average, CL data values are higher than BN data values.

(2) A CL region contains additive CL and BN.

(3) Small data values exist in the CL that may be larger than some data

values of the BN.

(4) The large CL data values are larger than the largest BN data values

assuming positive CNR.

(5) Whereas the BN data values are distributed over the entire surveillance

volume, the CL data values are distributed only over the clutter regions.

(6) Small CL data values exist and may be smaller than the large BN data

values.

(7) Large data values in the CL tend to be clustered.

6.2.3. MAPPING PROCEDURE

Using the fact that clutter patches, on average, have stronger radar returns, the

mapping processor begins by setting a threshold that results in a specified fraction

of BN cells. Image processing is then used to establish the background noise and

clutter patches. If the final image contains a significantly different fraction of BN

cells than originally established by the initial threshold, the process is repeated

with a new threshold. The mapping processor iterates until it is satisfied that the

final scene is consistent with the latest specified threshold. Finally, clutter patch

edges are detected using an image processing technique.

The mapping procedure consists of two steps. The first step is the

identification of CL patches within BN. The second is the detection of clutter

patch edges. These two steps are explained next.

6.2.3.1. Separation of CL Patches from BN

Identification of CL patches within BN is performed by the following steps:

thresholding, quantization, correction, and assessment.
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6.2.3.1.1. Thresholding and Quantization

Identification of CL patches within BN starts by setting a threshold q that results

in a specified fraction of BN cells. Then a quantized volume is formed as follows:

all R/A cells with average power less than q are given a value of zero and all R/A

cells with average power above q are given a value of one. Let Q( j,k) represent

the quantized value of the jkth R/A cell. Then,

Qðj; kÞ ¼
1 if Pð j; kÞ $ q

0 if Pð j; kÞ , q

"
j ¼ 1; 2;…; J k ¼ 1; 2;…;K ð6:30Þ

where Pð j; kÞ, the average power of the jkth R/A cell, is defined in Equation 6.29.

In general, the quantized version differs from the original. This is due to the

fact that even though the average powers of BN cells are expected to fall under

the threshold, while the average powers of CL cells are expected to fall above the

threshold, on average, some BN cells have an average power that falls above the

threshold and some CL cells have an average power that falls under the threshold.

Also, the first setting of the threshold, which is somewhat arbitrary, is likely not to

be the best for identifying CL patches within BN.

6.2.3.1.2. Correction

Consider a set of 3 £ 3 R/A cells. Let the center cell be referred to as the test cell

and the surrounding cells be referred to as the neighboring cells. Assume that a

clutter patch cannot be formed by a single cell. In this case, every test cell in the

clutter patch has at least one neighboring cell that belongs to the same clutter

patch.

A test cell belonging to a clutter patch that has at least one neighboring BN

cell is referred to as a CL edge cell. On the other hand, a test cell belonging to a

CL patch for which none of the neighboring cells are in the BN is referred to as an

inner CL cell.

The proposed correction technique consists of transforming the quantized

volume into a “corrected” volume. The transformation consists of the following

steps:

1. Choose the necessary number of CL neighboring cells, NCQ, for a test

cell in the quantized volume to be declared as a CL cell in the corrected

volume. NCQ can take one of the following values: 5, 6, 7, 8.

2. For every test cell in the quantized volume count the number of

neighboring CL cells. If the number is greater than or equal to NCQ

declare the test cell as a CL cell in the corrected volume. Otherwise,

declare the test cell as a BN cell in the corrected volume.

When all the cells of the quantized volume have been tested, a “corrected”

volume consisting of declared BN or CL R/A cells is obtained.

Because NCQ is chosen to be relatively large (i.e., NCQ ¼ 5, 6, 7 or 8), BN

cells that were incorrectly identified in the quantized volume as CL cells due to
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their large power tend to be reclassified as BN cells. Also, inner CL cells in the

quantized volume are recognized as CL cells in the “corrected” volume.

Meanwhile, most of the CL edge cells in the quantized volume are recognized as

BN cells in the “corrected” volume. This results in an overcorrection if most of

the CL edge cells are identified as BN. As an example, when NCQ ¼ 8, only

inner CL cells in the quantized volume are recognized as CL cells in the

“corrected” volume and all CL edge cells in the quantized volume are recognized

as BN cells in the “corrected” volume. In order to recover the edge cells, a second

correction stage is needed where the first “corrected” volume will be transformed

into a second “corrected” volume. Let the first “corrected” volume be referred to

as the “corrected-quantized” volume (CQV) and the second “corrected” volume

be referred to as the “corrected-corrected” volume (CCV). The following steps

are used to transform the CQV into the CCV:

1. Choose the necessary number of CL neighboring cells, NCC, for a test

cell in the CQV to be declared as a CL cell in the CCV. NCC can take

one of the following values: 1, 2, 3 or 4.

2. For every test cell in the CQV count the number of neighboring CL cells.

If the number is greater than or equal to NCC declare the test cell as a CL

cell in the CCV. Otherwise declare the test cell as a BN in the CCV.

6.2.3.1.3. Assessment

Let BNQP, BNCQP and BNCCP denote the percentage of BN cells in the

quantized, “corrected-quantized” and “corrected-corrected” volumes, respect-

ively. BNQP is prespecified so as to determine the threshold for the quantized

volume, whereas BNCQP and BNCCP are computed after the CQV and the CCV

are obtained.

The assessment process consists of comparing BNCQP and BNCCP to

BNQP in order to determine whether or not the percentages of the BN cells after

correction are consistent with the percentage of BN cells in the quantized volume.

When there is no consistency, further quantization, correction and assessment are

performed until consistency is obtained.

6.2.3.1.4. Smoothing

Examples have shown that when the percentages are consistent, clutter declared

patches may contain isolated BN declared cells. Because small BN powers can

arise in a CL patch as explained in Section 6.2.2.1, it is most likely that the

BN isolated cells in the CL patches are CL cells. The smoothing process is used

to detect these isolated cells and label them adequately by transforming

the CCV into a smoothed volume (SV). The smoothing technique consists of

the following steps:

1. Choose the necessary number of CL neighboring cells NS for a BN

identified test cell in the CCV to be declared as a CL cell in the SV

where NS can take one of the following values: 5, 6 ,7 or 8.
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2. For every BN identified cell in the CCV count the number of neigh-

boring CL cells. If the number is greater than or equal to NS, declare the

test cell as a CL cell in the SV. Otherwise declare the test cell as a BN

cell in the SV.

6.2.3.2. Detection of Clutter Patch Edges

After smoothing, each cell in the SV has been declared as either a CL or BN cell.

The next step is to determine which of the CL cells are located on the edges of the

CL patches. This is important for subsequent radar signal processing if reference

cells for estimating parameters of a test cell are to be chosen properly.

Identification of CL edge (CLE) cells in done by the use of an image

processing technique referred to in the image processing literature as unsharp

masking.4,5 It consists of the following steps:

1. A weighting filter consisting of a 3 £ 3 array of cells is constructed such

that the center cell has a weight given by wð0; 0Þ ¼ 8 and the

neighboring cells have weights given by wð21;21Þ ¼ wð0;21Þ ¼
wð1;21Þ ¼ wð21; 0Þ ¼ wð1; 0Þ ¼ wð1; 1Þ ¼ wð0; 1Þ ¼ wð1; 1Þ ¼ 21:
The center cell is positioned on the test cell. Notice that the weights of

the filter cells sum to zero. In particular,X1
m¼21

X1
n¼21

wðm; nÞ ¼ 0 ð6:31Þ

2. Assume the weighting filter is centered at the jkth cell in SV. The cells

corresponding to the 3 £ 3 array of the weighting filter have quantized

values as illustrated in Figure 6.22. By definition,

SQð j; kÞ ¼
1 if the jkth cell in SV is declared as CL

0 if the jkth cell in SV is declared as BN

"
ð6:32Þ

where

j ¼ 1; 2;…; J and k ¼ 1; 2;…;K

SQ( j–1,k–1)

SQ( j–1,k )

SQ ( j–1,k+1)

SQ( j ,k–1)

SQ ( j ,k)

SQ( j ,k+1)

SQ ( j+1,k–1)

SQ ( j+1,k)

SQ( j+1,k+1)

FIGURE 6.22 Quantized values of the 3 £ 3 array corresponding to the jkth cell.
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To avoid filter cells falling outside SV, the coordinates of the jkth cell

where the filter is centered are constrained to j ¼ 2; 3;…; J 2 1, and

k ¼ 2, 3, …, K 2 1.

3. Form the sum

S ¼
X1

m¼21

X1
n¼21

wðm; nÞSQð jþ m; k þ nÞ ð6:33Þ

(1) If S is equal to zero, all cells have the same assigned value. This can arise

only when the test cell is not an edge cell. (2) If S is positive, the test cell is

an edge cell and is labeled as such. (3) If S is negative, the test cell cannot be

an edge cell. On the other hand, one or more of the neighboring cells are

guaranteed to be an edge cell.

6.2.3.3. Enhancement of Clutter Patch Edges

The edges deducted after smoothing tend not to follow the irregular edges that

may actually exist. Consequently, the edges are further enhanced by examining

the power levels of cells just outside the edge cells and the edge cells. If the power

levels of these cells exceed the threshold, they are declared as edge cells

otherwise they are declared as BN cells.

At the end of the edge enhancement procedure, edges are detected and each

cell in the original volume is labeled as either CL, BN or CLE cell. At this point,

the mapping is done.

6.2.4. EXAMPLE

Consider a scanned volume containing four homogeneous clutter patches,

denoted by A, B, C, D. Clutter patches C and D are contiguous and form a single

nonhomogeneous clutter patch C/D as shown in Figure 6.23. The PDFs and

histograms of the background noise and clutter patches are shown in Figure 6.24.

The clutter-to-noise ratio for all clutter patches is 10 dB. A 3D-data plot of the

scanned volume is shown in Figure 6.25. 86.33% of the total number of cells

belong to the background noise. The iteration process began with the threshold

arbitrarily being set such that 10% of the returns are below the threshold. After

seven iterations, the process converged to a threshold so that 82.31% of the

returns are below the threshold. The resulting quantized volume is shown in

Figure 6.26. The corrected and smoothed volumes are shown in Figures 6.27

and 6.28, respectively. The edge-enhanced volume is shown in Figure 6.29.

Finally, those cells determined to be on the edges of the clutter regions are shown

in Figure 6.30. At the end of this process, only 1 CL cell was misidentified and

associated with the BN. It was below the threshold. Also, 25 BN cells were

misidentified and associated with CL. Of these 15 were above the threshold.
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FIGURE 6.23 Contour plot of the ideal volume.
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FIGURE 6.24 PDFs and histograms of the background noise and clutter patches. (a)

Rayleigh distributed background noise. (b) Rayleigh distributed clutter A. (c) K-distributed

clutter B with shape parameter r ¼ 10. (d) Lognormal distributed clutter C with shape

parameter r ¼ 0.01. (e) Weibull distributed clutter D with shape parameter r ¼ 10.
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FIGURE 6.25 3D-data plot of the scanned volume.
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FIGURE 6.26 Contour plot of the quantized volume with threshold set so that 82.31% of

the returns are below the threshold.
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FIGURE 6.27 Contour plot of the corrected volume with NCC ¼ 5.
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FIGURE 6.28 Contour plot of the smoothed volume with NS ¼ 7.
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FIGURE 6.29 Contour plot of the edge enhanced volume.
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FIGURE 6.30 Contour plot of the CL edge cells.
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6.3. PROBABILISTIC INSIGHT INTO THE APPLICATION OF

IMAGE PROCESSING TO THE MAPPING OF CLUTTER AND

NOISE REGIONS IN A RADAR SURVEILLANCE VOLUME

(M. A. SLAMANI AND D. D. WEINER)

6.3.1. INTRODUCTION

In a nonGaussian radar detection problem the choice of a signal processing

algorithm depends upon whether the target is imbedded in weak background

noise (a strong signal problem) or strong clutter (a weak signal problem).1 This

section gives probabilistic insight into the use of image processing for partitioning

a radar surveillance volume into clutter and noise regions. An example is

also given to support this insight. The mapping procedure involving quantization,

correction, assessment, and smoothing has been previously described.2

Consider an image containing two regions where the envelope PDFs for each

region are nicely separated as shown in Figure 6.31(a) and the overall PDF for

both regions is as shown in Figure 6.31(b). In practice, given the image to

analyze, a histogram that approximates the overall PDF is generated. Note that

the individual PDF of each region is unknown. However, because the individual

PDFs are adequately separated, the overall histogram will be bimodal and

separation between the two regions is readily obtained by placing the threshold

T1 between the two peaks as shown in Figure 6.31(b). Cells with data values

lower than T1 are declared as belonging to region 1, while cells with data values

higher than T1 are declared as belonging to region 2.

Now consider the slightly overlapping PDFs as shown in Figure 6.32(a)

and (b). Although the overall PDF of the data regions is again bimodal, there is

now noticeable overlap between the tails. Once again, a threshold T1 is used to

separate between the two regions. However, now a significant number of cells

will be misclassified and corrections should be made to the extent possible.

Figure 6.33 shows a more complicated case where the two regions now have

major overlap between the tails. The overall PDF of the data from both regions is

0

PDF of region 2PDF of region 1

(a)

(b) 0

Overall PDF of regions 1 & 2

T1

FIGURE 6.31 Nonoverlapping PDFs of two distinct regions. (a) Individual PDFs for each

region. (b) Overall PDF for both regions.
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now unimodal and it is not possible to choose a threshold that separates the two

regions without significant misclassifications.

In this chapter, it is shown that the mapping procedure described in Ref. 2 can

adaptively choose a threshold and correct misclassifications so as to obtain good

representations for the PDFs of each region. The mapping procedure enables the

regionhaving the smallest envelopes, on average, to be separated from the remaining

regions. By successive application of the mapping procedure, it is possible to first

separate out the region with the smallest envelope, followed by the region with the

next smallest envelope, and so forth. In the first application of the mapping

procedure to a radar surveillance volume, region 1 consists of the background noise

(BN) while region 2 consists of the entire set of clutter (CL) patches.

6.3.2. SEPARATION BETWEEN BN AND CL PATCHES

Before discussing the separation between BN and CL patches, a brief review of

the mapping procedure presented in Ref. 2 is first given. The mapping procedure

begins by selecting a threshold such that the percentage of BN cells relative to the

0

PDF of region 2PDF of region 1

0 T1

Overall PDF of regions 1 & 2

(a)

(b)

FIGURE 6.32 Overlapping PDFs of two distinct regions with a small overlapping area.

(a) Individual PDFs for each region. (b) Overall PDF for both regions.

0

PDF of region 2
PDF of region 1

(a)

(b)
0

PDF of region 1

Overall PDF of regions 1 & 2

FIGURE 6.33 Overlapping PDFs of two distinct regions with a big overlapping area. (a)

Individual PDFs for each region. (b) Overall PDF for both regions.
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total number of cells is equal to a specified value, denoted by BNQP. Two

correction stages then ensue. In the first correction stage, each cell in the

quantized volume, denoted by QV, is tested by a 3 £ 3 mask centered on the test

cell. The test cell is labeled as BN only if less than NCQ of the eight neighboring

cells were declared as CL in the QV volume where NCQ is a parameter specified

by the user. In the following discussion it will be shown that the first correction

stage tries to restore the right tail of the BN PDF, which had been severely

distorted by the quantization. After the first correction stage, the corrected

volume is denoted by CQV. The second correction stage attempts to correctly

reclassify the edges of the CL patches. This is done by testing each cell in CQV

using, once again, a 3 £ 3 mask centered on the test cell. The test cell is labeled as

BN if less than NCC of the eight neighboring cells were declared as CL in the

CQV volume where NCC is a parameter specified by the user. Typical values

for NCQ are 5, 6, 7, and 8 while typical values for NCC are 1, 2, 3, and 4. In the

following discussion it will be shown that the second correction stage attempts to

restore the shapes of both the BN and CL PDFs. After the second correction

stage, the corrected volume is denoted by CCV. The percentage of BN cells

relative to the total number of cells in the CCV volume is denoted by BNCCP.

BNCCP is compared to BNQP. If the difference BNCCP 2 BNQP is smaller

than a prespecified value, the process ends. If the difference is not too large,

additional iterations are made with new values for NCQ and NCC. If these do not

lead to convergence or if the difference is too large, the whole process is repeated

by selecting a new threshold. If the difference is large, the new value for BNQP is

chosen to be the previous BNCCP. Otherwise, the new value of BNQP is chosen

to be half way in between the previous values of BNQP and BNCCP.

Another parameter that arises in the mapping procedure is BNCQP denoting

the percentage of background noise cells after the first correction relative to the

total number of cells in the surveillance volume. To gain insight into the

relationship between BNQP, BNCQP, and BNCCP, we return to the example

discussed in Ref. 2 where some of the cells are BN and the remainders are CL.

TABLE 6.7
Background Noise (BN) Percentages in the Example of Ref. 2

BNQP (%) (NCQ, NCC) BNCQP (%) BNCCP (%) BNCQP 2 BNCCP BNCCP 2 BNQP

10.00 (8,1) 56.17 20.04 36.13 10.04

20.04 (8,1) 77.98 43.78 34.20 23.74

43.78 (8,1) 90.78 82.65 8.13 38.87

82.65 (7,1) 91.17 86.13 5.04 3.48

84.39 (7,1) 91.30 86.26 5.04 1.87

84.39 (5,1) 87.59 81.98 5.61 2.41

84.39 (5,2) 87.59 83.98 3.61 0.41
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In Table 6.7, different values of these parameters are tabulated as the mapping

procedure converges to the end result. If the test cell is to be declared as CL,

recall that NCQ and NCC refer to the minimum number of neighboring cells

required to be declared as CL in the QV and CQV during the first and second

corrections, respectively. Table 6.8 tracks the mapping procedure during the first

correction stage (denoted by QV ! CQV), during the second correction stage

(denoted by CQV ! CCV) and at the end of the two correction stages (denoted

by QV ! CCV). All percentages given are with respect to the total number of

cells in the surveillance volume. Initially, the threshold is set such that BNQP

percent of the total number of cells is below the threshold. The first correction

stage requires that at least NCQ of the neighboring cells be above the threshold if

the test cell is to be classified as a CL cell. Under the column headed by

QV ! CQV, (CL ! BN)1 denotes the percentage of the total number of cells

in the surveillance volume that were above the threshold but are reclassified as

BN cells during the first correction stage.

Similarly, (BN ! CL)1 denotes the percentage of the total number of cells

in the surveillance volume below the threshold but are reclassified as CL cells

after the first correction stage. Note that the difference, (CL ! BN)1 2
(BN ! CL)1, is the net percentage of the total number of cells in the

surveillance volume, which have been reclassified from CL to BN cells after the

first correction stage. Similar statements apply for (1) the second correction stage

to (CL ! BN)2, (BN ! CL)2, and (CL ! BN)2 2 (BN ! CL)2 under the

column headed by CQV ! CCV and (2) for the combined results of the two

correction stages to (CL ! BN), (BN ! CL), and (CL ! BN) 2 (BN ! CL)

under the column headed by QV ! CCV. Note that

ðCL ! BNÞ2 ðBN ! CLÞ ¼ ½ðCL ! BNÞ1 2 ðBN ! CLÞ1	
þ ½ðCL ! BNÞ2 2 ðBN ! CLÞ2	 ð6:34Þ

TABLE 6.8
CL-to-BN and BN-to-CL Transitions in the Example of [2]

QV ! CQV CQV ! CCV QV ! CCV

BNQP (%)
(NCQ, NCC)

(CL ! BN)1
(%)

(BN ! CL)1
(%)

(CL ! BN)2
(%)

(BN ! CL)2
(%)

(CL ! BN)
(%)

(BN ! CL)
(%)

10.00 (8,1) 49.61 3.43 3.63 39.76 10.06 0.00

20.04 (8,1) 60.74 2.78 3.22 37.43 23.76 0.00

43.78 (8,1) 47.44 0.42 0.61 8.741 38.89 0.00

82.65 (7,1) 8.94 0.41 0.04 5.07 4.89 1.38

84.39 (7,1) 7.31 0.39 0.05 5.09 3.24 1.35

84.39 (5,1) 4.61 1.39 0.02 5.63 2.24 4.63

84.39 (5,2) 4.61 1.39 0.05 3.67 2.59 2.96
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Also,

BNCQP2 BNQP ¼ ðCL ! BNÞ1 2 ðBN ! CLÞ1
BNCCP2 BNCQP ¼ ðCL ! BNÞ2 2 ðBN ! CLÞ2
BNCCP2 BNQP ¼ ðCL ! BNÞ2 ðBN ! CLÞ

¼ ½BNCQP2 BNQP	 þ ½BNCCP2 BNCQP	

ð6:35Þ

The mapping procedure involves iterations that continue until the difference

BNCCP 2 BNQP is sufficiently small. From Equation 6.35, it is seen that

convergence results when

ðCL ! BNÞ < ðBN ! CLÞ ð6:36Þ
Consequently, near convergence, the combined effect of the two correction

stages should result in the percentage of CL cells reclassified as BN cells being

approximately equal to the percentage of BN cells reclassified as CL cells.

Alternatively, from Equation 6.35, convergence results when

½BNCQP2 BNQP	 < 2½BNCCP2 BNCQP	 ð6:37Þ

or equivalently, when

½ðCL ! BNÞ1 2 ðBN ! CLÞ1	 < 2½ðCL ! BNÞ2 2 ðBN ! CLÞ2	 ð6:38Þ

Thus, near convergence, the net percentage of cells that have been reclassified

from CL to BN cells during the first correction stage should approximately equal

the negative of the net percentage of cells that have been reclassified from CL to

BN cells during the second correction stage. These observations are helpful in

coming up with rules for determining the next setting of the parameters in the

iteration process.

By way of example, when BNQP ¼ 10%, the threshold is such that 10% of

the total number of cells in the surveillance volume fall below the threshold while

90% fall above. The situation is pictured in Figure 6.34(b). With reference to

Table 6.8, when NCQ ¼ 8, 49.61% of the total cells in the surveillance volume,

classified as CL cells because they were above the threshold, are reclassified as

BN cells after the first correction stage whereas 3.43%, classified as BN cells

because they were below the threshold, are reclassified as CL cells. The net

percentage of cells reclassified as BN is 49.61% 23.42% ¼ 46.18%. For the

second correction stage, with NCC ¼ 1, 3.63% of the total cells in the CQV

surveillance volume, classified as CL cells after the first correction stage, are

reclassified as BN cells because they do not have at least one neighboring CL cell.

Similarly, 39.76% of the total cells in the CQV surveillance volume classified as

BN cells are reclassified as CL cells because they have one or more neighboring

CL cells. The last row of Table 6.8 corresponds to a situation close to

convergence. With the threshold set such that 84.39% of the total number of cells

in the surveillance volume are below the threshold, note that the combined effect
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of the two correction stages has resulted in

ðCL ! BNÞ ¼ 2:59% < ðBN ! CLÞ ¼ 2:98% ð6:39Þ

Similarly,

½ðCL ! BNÞ1 2 ðBN ! CLÞ1	 ¼ 3:22%

< 2½ðCL ! BNÞ2 2 ðBN ! CLÞ2	 ¼ 3:62%
ð6:40Þ

Equivalently from Table 6.7,

½BNCQP2 BNQP	 ¼ 3:20% < 2½BNCCP2 BNCQP	 ¼ 3:61% ð6:41Þ

Insight into the manner by which the PDFs of BN and CL are modified during

the correction stages is obtained by examining pertinent amplitude histograms for

the various surveillance volumes QV, CQV, and CCV. The overall amplitude

histogram for the generated data of the QV volume is shown in Figure 6.35(a).

Roughly speaking, the amplitude of the BN cells appears to extend from 0 to 2.5

while those of the CL cells appear to extend from 2.5 to 34. When the threshold is

set at 0.35 such that BNQP ¼ 10%, many of the BN cells are classified as CL due

to the low threshold. The amplitude histograms for the BN and CL cells in the QV

volume are shown in Figure 6.35(b) and (c), respectively. Note that the BN

histogram is truncated to an amplitude of 0.35. Also, note that many cells with

amplitude below 2.5 are misclassified as CL and are included in the first bar of the

CL histogram.

The amplitude histograms for the CQV volume resulting from the first

correction stage are shown in Figure 6.35(d) and (e). Comparing Figure 6.35(d)

with (b), it is seen that many cells with amplitudes above the threshold value of

0.35 have been reclassified as BN. Also, by comparing Figure 6.35(e) with (c), we

can see that the height of the first bar has been reduced from 0.26 to 0.225

indicating that many of the CL cells reclassified as BN came from this bin.

0

PDF of combined CL patches
PDF of BN

(a)

(b)

0

10% threshold

Overall PDF of BN and CL patches

FIGURE 6.34 Overlapping PDFs of background noise (BN) and clutter (CL) regions. (a)

Individual PDFs for each region. (b) Overall PDF for both regions.
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FIGURE 6.35 Regions histograms corresponding to BNQP ¼ 10%, NCQ ¼ 8, and

NCC ¼ 1. (a) Overall histogram of the generated data. (b) BN histogram at the

quantization stage. (c) CL histogram at the quantization stage. (d) BN histogram at the first

correction stage. (e) CL histogram at the first correction stage. (f) BN histogram at the

second correction stage. (g) CL histogram at the second correction stage.
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FIGURE 6.36 Regions Histograms Corresponding to BNQP ¼ 84.39%, NCQ ¼ 5, and

NCC ¼ 2. (a) Overall histogram of the generated data. (b) BN histogram at the

quantization stage. (c) CL histogram at the quantization stage. (d) BN histogram at the first

correction stage. (e) CL histogram at the first correction stage. (f) BN histogram at the

second correction stage. (g) CL histogram at the second correction stage. (h) BN histogram

at the mapped volume. (i) CL histogram at the mapped volume. (j) Actual BN histogram of

the generated data. (k) Actual CL histogram of the generated data.
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FIGURE 6.36 Continued.
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Observe the reconstruction of the right tail of the BN amplitude histogram.

The amplitude histograms for the CCV volume resulting from the second

correction stage are shown in Figure 6.35(f) and (g). Note the further

enhancement of the right tail of the BN amplitude histogram. This enhancement

is due to the image processing and is in spite of the low threshold value.

During the iteration process the threshold is gradually increased and

converges to a value in the vicinity of 1.91 for which BNQP ¼ 84.39%. In Figure

6.36(a), this threshold is shown in the overall histogram for the QV volume. The

amplitude histograms for the BN and CL cells in the QV volume are shown in

Figure 6.36(b) and (c), respectively. Note that the amplitude of the BN cells fall

below 1.9 whereas those of the CL cells fall above 1.9. The results of the first and

second correction stages and the edge enhancement stage are shown in Figures

6.36(d) and (e), Figure 6.36(f) and (g), and Figure 6.36(h) and (i), respectively.

To provide a basis for comparison, the actual BN and CL amplitude histograms

are shown in Figure 6.36(j) and (k). The strong similarity between the amplitude

histograms of Figure 6.36 (h) and (i) and those of Figure 6.36(j) and (k) indicates

that the mapping procedure has converged satisfactorily. Note how nicely the

final histograms of Figure 6.36(h) and (i) have evolved from the original

histograms of Figure 6.35(b) and (c).

In general, the first correction stage begins to establish the right tail of the BN

amplitude histogram and reshape the CL amplitude histogram by reclassifying

mislabeled BN cells. The second correction stage reshapes both the bodies and

the tails of the BN and CL histograms by recovering the CL edges.

6.3.3. SUMMARY

In previous paper, techniques were presented for treating the weak signal

problem1 and for partitioning a radar surveillance volume into BN and CL

patches.2 This section has provided a probabilistic insight into the technique that

helps to explain its success.

6.4. A NEW APPROACH TO THE ANALYSIS OF IR IMAGES

(M. A. SLAMANI, D. FERRIS, AND V. VANNICOLA)

6.4.1. INTRODUCTION

In signal processing applications it is common to assume a Gaussian problem in

the design of optimal signal processors. However, nonGaussian processes do

arise in many situations. For example, measurements reveal that clutter can be

approximated by either Weibull, K-distributed, Lognormal, or Gaussian

distributions depending upon the scenario.1 When the possibility of a

nonGaussian problem is encountered, the question as to which probability

distributions should be utilized in a specific situation for modeling the data needs

to be answered. In practice, the underlying probability distributions are not
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known a priori. Consequently, an assessment must be made by monitoring the

environment to subdivide the surveillance volume into homogeneous patches in

addition to approximating the underlying probability distributions for each patch.

The assessment of the environment is performed by an automatic statistical

characterization and partitioning of environments (ASCAPE) process, previously

used on simulated data.2,3 ASCAPE uses two separate procedures to determine

all homogeneous patches and subpatches in the IR image. The first procedure,

referred to as the mapping procedure, is used to separate contiguous

homogeneous regions by segregating between their power levels. The second

procedure, referred to as the statistical procedure, separates contiguous

homogeneous patches by segregating between their probabilistic data distri-

butions. The statistical procedure uses the Ozturk algorithm, a newly developed

algorithm for analyzing random data.4 Furthermore, the statistical procedure

identifies suitable approximations to the PDF for each homogeneous patch and

determines the location of outliers. Convergence of the procedures is controlled

by an expert system shell.

In this work, ASCAPE is introduced in Section 6.4.2. The mapping and

statistical procedures are presented in Sections 6.4.3 and 6.4.4, respectively. The

expert system shell is discussed in Section 6.4.5. Finally, an example illustrating

the different stages of ASCAPE when applied to real data of an IR image is given

in Section 6.4.6.

6.4.2. ASCAPE

The ASCAPE process, shown in Figure 6.37, consists of four interactive blocks.

The first block is a preprocessing block that performs classical space–time

processing on the collected data. Then, based on the mapping procedure, the

second block separates contiguous homogeneous patches and subpatches by

segregating between their average power level. The next block goes one step

further and separates contiguous homogeneous subpatches by segregating

between their probabilistic data distributions. This block also approximates the

PDF of each homogeneous subpatch and determines the location of outliers in the

scene. The final block indexes the scene under investigation by assigning a set of

descriptors to every cell in the scene. For each cell, the indexing is used to

indicate to which homogeneous patch the cell belongs, whether it is an edge cell

or an outlier, which cells can be chosen as reference cells if the cell is to be tested;

and which PDF best approximates the data in the cell. Note that the reference

cells are cells from the same homogeneous patch and closest to the cell to be

tested.

The forward and backward interactions between the different blocks are

controlled by an expert system shell referred to as Integrated Processing and

Understanding of Signals (IPUS) developed jointly by the University of

Massachusetts and Boston University.5

When ASCAPE is followed by a detection stage (e.g., target detection in

Radar), all information needed by the detector is available for every cell in the
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FIGURE 6.37 ASCAPE’s Block Diagram.
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FIGURE 6.38 Mapping Procedure.
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scene. Furthermore, given the PDF that can approximate the patch where the test

cell is located, the appropriate detector is readily selected. This is in contrast to

classical detection approach where a single detector (usually the Gaussian

detector) is used in processing the entire scene.

6.4.3. MAPPING PROCEDURE

As shown in Figure 6.38 and explained in detail in Refs. 2 and 6. The mapping

procedure consists of two stages. In the first stage, the patch with the lowest

average power, referred to as the lowest patch (LP), among all remaining patches

(RPs) is identified. In the second stage, edges of the LP are enhanced and

detected.

These two stages are repeated to identify the next LP and so on. The mapping

procedure is repeated continuously until it is not possible to separate anymore

between patches, and all patches are declared to be homogeneous. Once it

becomes impossible to find any more patches, every patch is processed by the

mapping procedure, as discussed above, for detection of subpatches.

The two stages are explained next.

6.4.3.1. Identification of Lowest Average Power Level (LP)

This stage consists of an iterative process for automatically setting a threshold to

separate between the patch with the lowest average power level (LP) and the

remaining patches (RPs). It is composed of the blocks labeled Quantization and

Thresholding, First Correction, Second Correction, and Assessment, as shown in

Figure 6.38. Using the fact that the LP, on average, has smaller magnitudes than

the RPs, identification of LP within the RPs starts by setting a threshold q that

results in a specified fraction of LP cells. Then a quantized volume is formed as

follows: all cells with magnitude less than q are given a value of zero and all cells

with magnitude above q are given a value of one. Masking techniques are then

used in the First Correction and Second Correction blocks, as described in Refs. 3

and 6 to establish the LP and the RPs. If the final scene contains a significantly

different fraction of LP cells than originally established by the initial threshold,

the Assessment block decides that the process is to be repeated with a new

threshold. The mapping processor iterates until the final scene is consistent with

the latest specified threshold. It is to be noted that most of the thresholding

techniques found in the literature assume that the histogram of the scene data is at

least bimodal.7–9 In practice, data collected from different regions may result in a

unimodal histogram making it difficult to select a threshold. The mapping

procedure has been shown to be powerful enough to separate between regions

even when their histograms overlap significantly.2,6

6.4.3.2. Detection of Patch Edges

This stage consists of an edge enhancement and detection process to enable the

detection of the edges for the different patches. It is composed of the blocks
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labeled Smoothing, Edge Enhancement, and Edge Detection. The smoothing

block uses a masking technique to detect isolated cells in the LP and RPs patches

and label them adequately. The isolated cells are due to RPs declared cells in LP

and LP declared cells in RPs. These originate from cells with large magnitudes in

LP and cells with small magnitudes in RPs. The edges obtained after smoothing

tend not to follow the irregular edges that may actually exist. Consequently, the

edges are further enhanced in the edge enhancement block by examining the

magnitudes of the edge cells and cells just outside the edge cells. If the

magnitudes of these cells fall below the latest threshold q, they are declared as LP

edge cells (LPE). Otherwise they are declared as RPs edge cells (RPsE). At the

end of the edge enhancement procedure, edges are detected in the edge detection

block using the unsharp masking technique.8 This is important for subsequent

signal processing if reference cells for estimating parameters of a test cell are to

be chosen properly.

6.4.4. STATISTICAL PROCEDURE

When no more patches (subpatches) can be found, the mapping procedure ends

and is followed by the statistical procedure that is applied to every patch and

subpatch declared to be homogeneous by the mapping procedure in order to (1)

further separate nonhomogeneous subpatches having very similar power levels

but different statistical distributions, (2) locate outliers in the scene, and (3)

approximate the PDF of each homogeneous patch and subpatch.

The Ozturk algorithm is used by the statistical procedure to approximate the

PDF of each patch and is presented next followed by the definition of outliers and

the strategy used in the statistical procedure.

6.4.4.1. Introduction to Ozturk Algorithm

The Ozturk algorithm is based on sample order statistics and is used for

univariate distribution approximation.4,6 This algorithm has two modes of

operation. In the first mode, the algorithm performs a goodness-of-fit test. The

test determines, to a desired confidence level, whether the random data is

statistically consistent with a specified probability distribution. The program

utilizes a Monte Carlo simulation of 2000 trials to generate an averaged set of

NR linked vectors in the u-v plane, as shown in Figure 6.39(a). Using the

standardized sample order statistics of the data, the program then creates a second

system of NR linked vectors in the u-v plane. The terminal points of the linked

vectors, as well as the shapes of their trajectories, are used in determining

whether or not to accept the null hypothesis. The null hypothesis is the

distribution against that the sample data is to be tested. The algorithm provides

quantitative information as to how consistent the sample data set is with the null

hypothesis distribution by use of confidence ellipses where each ellipse is derived

from a specified probability that the end point falls within the ellipse, given that

the data comes from the null distribution. An example of these ellipses is also

Adaptive Antennas and Receivers372

© 2006 by Taylor & Francis Group, LLC



shown in Figure 6.39(a) for probabilities of 0.90, 0.95, and 0.99. If the end point

of the sample data linked vector locus falls within an ellipse, then the sample data

set is said to be statistically consistent with the null hypothesis. The confidence

level is the probability specified for that ellipse. If the sample data set is truly

consistent with the null hypothesis, the system of sample linked vectors is likely

to closely follow that for the system of null linked vectors. This mode is referred

to as the goodness-of-fit mode.

In the second mode of operation, referred to as the approximation chart

mode, and following a similar approach to that outlined in the goodness-of-fit

mode, random samples are generated from a library of different univariate

probability distributions. In the goodness-of-fit test mode, the locus end point was

obtained for the null hypothesis and sample size, NR. For the approximation chart

mode we go one step further by obtaining the locus end point for each distribution

from the library of distributions for the given sample size, NR, and for various

choices of the shape parameters. Thus, depending on whether it has a shape

parameter or not, each distribution is represented by a trajectory or point in the

two dimensional u-v plane. Figure 6.39(b) shows an example of the approxi-

mation chart. Note that every point in the approximation chart corresponds to a

specific distribution. The point closest to the sample data locus end point is

chosen as the best approximation to the PDF underlying the random data. This

closest point is determined by projecting the sample locus end point to all points

on the approximation chart and selecting that point whose perpendicular distance

from the sample point is the smallest. Once the PDF underlying the sample data is

selected, the shape, location, and scale parameters are then approximated. The

algorithm has been found to work reasonably well for observation sizes as small

as 100. Throughout this work, 100 reference cells are selected for approximating

the PDF of each test cell.
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FIGURE 6.39 Ozturk algorithm. (a) Goodness-of-fit test. (b) Approximation chart.
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6.4.4.2. Outliers

Outliers that may exist in a set of reference cells can alter the statistical

distribution of the set of data under examination. Outliers may be due to

(1) misidentified LP cells in the RPs or vise-versa, (2) cells having data values

of very low probability of occurrence, (3) cells with nonrepresentative data,

and (4) cells containing signals from strong targets. One way to identify outliers

within a region composed of a set of 100 reference cells is to compute the meanm

and the standard deviation s within that region and call as an outlier any cell

whose data value falls outside the interval [m 2 ks, m þ ks] where k is an

empirical parameter (usually between 1.5 and 3) to be set by the user. In our case

k has been set equal to two.

6.4.4.3. Strategy to SubPatch Investigation Using
the Statistical Procedure

The statistical procedure is applied to every patch and subpatch that has been

declared as being homogeneous by the mapping procedure. For each patch and

subpatch, a set of test cells evenly spread throughout the patch or subpatch, and

their 100 closest reference cells are first selected. Let each set of 100 cells be

referred to as a tile. Note that the sets of 100 reference cells are chosen to be

disjoint, the closest to and belonging to the same patch as their respective test

cells. This results in (1) the sets being shaped as 10 £ 10 square tiles inside a

patch and (2) tiles tracking the shape of the edges near the boundary of the patch.

As shown in the block diagram of Figure 6.40, the statistical procedure consists of

four steps that are performed as follows:

(1) Using the goodness-of-fit mode of the Ozturk algorithm, a First

Gaussianity check is performed by the first block on every tile to ensure

whether the data in the tile are Gaussian or not. This results in every

patch having its tiles labeled as either Gaussian or nonGaussian.

(2) Existing outliers are located in those tiles declared as nonGaussian in

(1). This step is performed by the second block.

(3) For every nonGaussian declared tile, cells with outliers are excised

from the tile and replaced with the closest cells to the tile whose data are

not outliers, and, the Gaussianity check is performed once again as in

step (1).

(4) The last block, labeled PDF Approximation and Detection of

Subpatches, consists of the following substeps:

(i) Every set of contiguous nonGaussian tiles is declared as a

subpatch.

(ii) Using the Ozturk Algorithm, the (u,v) coordinates of the locus end

point is obtained for every tile declared as nonGaussian in step (3).

(iii) For every nonGaussian subpatch, as declared in (i), a check is

made to ensure whether or not the data of the set of tiles that
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constitutes a subpatch can fit within a unique confidence ellipse

and therefore be approximated by a unique PDF. This is done by

computing the average (uav, vav) coordinates from the (u,v)

coordinates of all tiles of the same subpatch and obtaining the best

approximating PDF and its corresponding confidence ellipse,

as described in Section 6.4.4.1. A check is then made to verify

whether all (u,v) coordinates of the tiles of the same subpatch are

within the confidence ellipse. If not, the tiles are regrouped so that

all (u,v) coordinates for each group of tiles can fit within the same

ellipse. Each group forms then a subpatch with best approximating

PDF defined by the center of the confidence ellipse.

When the statistical procedure ends, each cell in every patch is declared

as either Gaussian, nonGaussian, or outlier. In addition, PDFs are approximated

for each nonGaussian cell, and existing subpatches, formed by the sets of

contiguous tiles whose (u,v) coordinates fit under the same confidence ellipse,

are identified.

6.4.5. EXPERT SYSTEM SHELL IPUS

The expert system shell used to control the different stages of the mapping

and indexing procedures is known as Integrated Processing and Understanding

First Gaussianity Check

Outliers Location

Second Gaussianity
Check

with
Excised Outliers

PDF Approximation
and

Detection of Subpatches

FIGURE 6.40 Statistical procedure.
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of Signals (IPUS) and was developed jointly by University of Massachusetts

and Boston University.5 The IPUS architecture utilizes the fact that signal

processing theories supply the system designer with a signal processing

algorithm (SPA) that has adjustable control parameters. Each instance,

corresponding to a particular set of fixed values for the control parameters, is

referred to as an SPA instance. The IPUS architecture is designed to search for

appropriate SPA instances to be used in order to accurately model the unknown

environment. The search is initiated by detection of a discrepancy at the output

of a given SPA due to the fact that the signal being monitored by the SPA does

not satisfy the requirements of the SPA instance. Once a discrepancy has been

detected, a diagnosis procedure is used to identify the source of the distortion

that may have led to the discrepancy. Then, either parameters of the same SPA

are readjusted, or a different SPA is chosen to reprocess the data.

In our case of interest, each block in the different stages and substages of the

ASCAPE processor consists of an SPA and SPA instances. Rules have been

developed enabling the detection of discrepancies at the output of the SPAs, and

identification of different possible distortion sources that would cause the

discrepancies.6 In Figures 6.37, 6.38 and 6.40 note that the arrows connecting

different blocks are double headed. This is to allow for ASCAPE, controlled by

IPUS, to assess its decisions, correct any discrepancies, and adapt to any changes

in the environment being monitored.

6.4.6. EXAMPLE: APPLICATION OF ASCAPE TO REAL IR DATA

Consider an IR image of real data collected over lake Michigan. As shown in

Figure 6.41, the scene consists of two major regions: lake and land. Furthermore,

the three dimensional plot of the data magnitudes in Figure 6.42 shows that

the data in the lake region are regular, whereas the data in the land region are

irregular and contain large discretes near the boundary close to the lake.
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FIGURE 6.41 Original scene (over Lake Michigan).
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ASCAPE is applied to the IR scene. First, the preprocessing block identifies

the data in the scene, which is uncorrelated as required by the Ozturk algorithm

for the univariate PDF approximation. Then, application of the mapping

procedure results in the segmentation of the scene into three different patches and

their respective boundaries, as shown in Figure 6.43. Parameters of each patch are

summarized in Table 6.9. Note that In addition to regions 1 and 2, corresponding

to land and lake, respectively, the mapping procedure detects a third region,

labeled 3. This region can be sighted in the original scene of Figure 6.41 and is

not large in size. In fact, Table 6.9 shows that patch 3 contains only 15 cells as

opposed to patches 1 and 2, which contain 6680 and 5337 cells, respectively.

Furthermore, the values in Table 6.9 of the variance, mean, an average power of

patch 3 are closer to those of the lake than those of the land. This indicates that

patch 3 may be a very small body of water. Edges of the different patches are also
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FIGURE 6.42 Three-Dimensional magnitude plot of the original scene.
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detected as shown in Figure 6.44. Next, the mapping procedure is used again to

investigate the presence of any subpatches in every previously detected patch

(i.e., patches labeled 1, 2, and 3). In this case, no subpatches are detected and all

three patches are declared to be homogeneous. At this point, it is not possible to

separate anymore between existing contiguous homogeneous subpatches by

segregating between their power levels.

Next, the statistical procedure is applied to every previously declared

homogeneous patch in order to separate further between any existing contiguous

subpatches that may have similar power levels but different data distributions.

The procedure proceeds as follows for every patch:

(1) Test cells and their respective tiles (sets of 100 reference cells) are

selected, spread throughout the patch. Recall that the sets of 100 cells

are chosen to be disjoint, the closest to and belonging to the same patch

as their respective test cells. This results in sets being shaped as 10 £ 10

square tiles inside the patch and in tiles tracking the shape of

the boundary near the boundary of the patch. The tiles are then tested

TABLE 6.9
Mapping Assessment

Patch 1 Patch 2 Patch 3

Number of cells 6680 5337 15

Mean 87.61 49.47 34.4

Variance 420.20 4.13 7.41

Average Power (dB) 39.08 33.89 34.40
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for Gaussianity using the goodness-of-fit test of the Ozturk Algorithm.

The result of this step is shown in Figure 6.45. Note that a lot of

nonGaussian tiles, represented by the white regions, exist in patches

1 and 2. Note also that patch 3 is not processed by the statistical

procedure due to the fact that it has only 15 cells while a minimum of

100 cells are required for the Ozturk algorithm to result in a meaningful

approximation for the distribution of the data.

(2) Once the Gaussian and nonGaussian tiles are determined in each patch,

cells with outliers are located in the nonGaussian declared tiles and

excised.

(3) The nonGaussian previously declared tiles with excised outliers are

tested again for Gaussianity. The results are shown in Figure 6.46 where

the gray and white regions represent the Gaussian and NonGaussian

tiles, respectively, whereas the black pixels represent the location of

outliers. The quantitative results are summarized in Table 6.10. Note

that:

(i) The area occupied by the nonGaussian tiles has been reduced from

38.19% to 15.94% of the total area of the scene when outliers are

excised.

(ii) Even when outliers are excised, nonGaussian tiles exist and thus

the nonGaussian problem is important to be considered.

(iii) By comparing Figures 6.41 and 6.46, note that the trajectories of

the outliers located in the land region (patch 1) follow paths that

can be distinguished in the original scene. These paths may

represent highways or roads. Therefore outliers may represent

regions in the scene that cannot be considered as patches due to the

fact that they do not obey the rules set forward for a patch to be

composed of inner cells and edge cells.
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(4) Following the instructions presented in step (4) of Section 6.4.4.3,

nonGaussian subpatches are determined and numbered. As shown

in Figure 6.46, twelve nonGaussian subpatches exist in the scene, six in

the lake region and six in the land region. Also, the PDFs of these

nonGaussian subpatches are approximated and the results are posted in

Table 6.11. Note that the statistical procedure was able to detect more

subpatches and therefore subdivide further the regions due to the fact

that even though the different regions in each patch have very similar

average power, the distribution of the data within each patch differs

from one region to another. This is clearly seen in the magnitude plot of

the land region in Figure 6.42.

At the end of step (4), processing of the image results in three main patches

(labeled 1, 2, and 3) and their respective edges as shown in Figure 6.44. Also,

outliers are located in patches 1 and 2. In addition, nonGaussian subpatches and

their approximating PDFs are determined within every one of patches 1 and 2.

TABLE 6.10
Percentages of Gaussian, NonGaussian, and Outlier Cells

Percentage
of Gaussian
Cells (%)

Percentage
of NonGaussian
Cells (%)

Percentage
of Outliers

(%)

Tiles with present

outliers, step (1)

61.81 38.19 —

Tiles with excised

outliers, step (3)

82.43 15.94 1.63
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FIGURE 6.46 Scene after the statistical procedure.
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The statistical procedure is followed by the indexing stage in which every cell

in the scene is assigned a set of descriptors to indicate, for each cell: the

homogenous patch to which it belongs, whether it is an edge cell or an outlier,

which cells can be chosen as reference cells if the cell is to be tested, and which

PDF best approximates the data in the cell.

6.4.7. CONCLUSION

NonGaussian detectors should be utilized in cases that cannot be handled by the

classical Gaussian detector (e.g., the nonGaussian regions where the clutter

returns are much stronger than those of the targets). In such cases, the appropriate

detector must be selected. This is done by monitoring the environment under

investigation to (1) segment the scene into homogeneous regions, and (2)

approximate the PDFs of each region.

This work has presented: (1) a new adaptive image processing procedure

which segments contiguous homogeneous regions with different power levels, (2)

a statistical procedure to segment contiguous homogeneous regions with similar

power levels but different data distributions, (3) detection and excision of outliers

and its significance, and (4) determination of the PDFs of nonGaussian regions.

These procedures are part of the new process for the automatic statistical

characterization and partitioning of environments (ASCAPE).

Work under investigation and future work include: (1) tailoring/tuning of the

edges for the subpatches detected by the statistical procedure, limited thus far by

the requirement of 100 reference cells so that the Ozturk Algorithm leads to

meaningful results, (2) a performance study of the nonGaussian detectors vs. the

Gaussian detector, in different types of environments and under different

circumstances, (3) development of more expert system rules to enable ASCAPE

to be applied to different types of data (e.g., radar, IR, sonar, medical imaging,

etc.), and (4) application of ASCAPE to medical imaging (e.g., detection of

tumors in lung) and to other areas.

TABLE 6.11
PDF Types and Parameters of the NonGaussian Subpatches

Sub patch 1 2 3 4 5 6

PDF Type Beta Beta SU-Johnson Beta Beta Beta

Shape 1 6.0 1.0 1.2 1.0 1.0 1.0

Shape 2 1.6 3.2 20.2 3.2 1.6 3.2

7 8 9 10 11 12

PDF Type Beta Beta Beta Beta SU-Johnson Beta

Shape 1 1.0 2.0 2.0 2.0 1.2 1.0

Shape 2 0.8 0.8 1.6 1.6 20.2 1.6
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6.5. AUTOMATIC STATISTICAL CHARACTERIZATION AND

PARTITIONING OF ENVIRONMENTS (ASCAPE)

(M. A. SLAMANI, D. D. WEINER, AND V. VANNICOLA)

6.5.1. PROBLEM STATEMENT

In signal processing applications it is common to assume a Gaussian problem

in the design of optimal signal processors. However, studies have shown that

the Gaussian receiver performs very poorly in strong interference whenever

the interference and signal spectra cannot be separated by filtering. For example,

consider the spectra shown in Figure 6.47 consisting of 24 Doppler bins with

uniformly spaced targets indicated by the small arrows, embedded in background

noise and a bell shaped Gaussian interference. The optimal Gaussian based

detector (referred to as the joint-domain localized generalized likelihood ratio

receiver) is applied to each Doppler bin. The performance of the receiver,1 shown

in Figure 6.48, reveals that the probability of detection (PD) of the receiver

is close to unity everywhere except for Doppler bins 11, 12, and 13, in which

a strong Gaussian interference-to-noise ratio (INR) of 50 dB exists and PD falls

rapidly to the probability of false alarm (PFA).

A question that arises is “Could improved detection have been obtained in

bins 11 to 13 had the disturbance been nonGaussian?” the answer is “It is

possible to achieve significant improvement in detection performance when the

disturbance is nonGaussian”. Table 6.12 presents the results for a weak target

in K-distributed clutter where the target and clutter spectra are coincident

(i.e., not separable).2 Note that the K-distributed based detector provides

significantly improved performance even when the PD of the Gaussian detector

approaches the PFA. For example, with a signal-to-clutter ratio (SCR) of

SCR ¼ 0 dB and PFA ¼ 1025, PD equals 0.3 for the K-distributed detector and

1025 for the Gaussian detector. This means that the K-distributed based detector

can detect three out of ten targets, whereas the Gaussian detector can detect only

Interference

Background
Noise

Target

1 4 8 12

Doppler Bin No.

16 20 24

FIGURE 6.47 Targets in NonGaussian interference.
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one in 100,000 targets on the average. The important point is that detections can

be made in a nonGaussian environment using a nonGaussian detector even when

such performance is not possible with the Gaussian detector.Unfortunately, there

are problems associated with the utilization of nonGaussian distributions:

(1) There are a multitude of nonGaussian distributions.

(2) Some nonGaussian distributions have shape parameters that result in

different shaped PDFs.

(3) For a given set of data, it is difficult to determine which PDF can

approximate the data.

Figure 6.49 summarizes the different cases that may arise depending on

whether the target is embedded in background noise or in background noise plus

0.8
Optimal
Receiver

1.0

P
D

0.6

0.4

0.2

0.0
1 5 10

Doppler Bin Number

15 20 24

Center of
interference

SNR = 0 dB

INR = 50 dB

PFA = 10–5

FIGURE 6.48 Performance of the optimal receiver.

TABLE 6.12
Comparison of NonGaussian and Gaussian Based Detectors

SCR (dB) PFA PD K-Distributed Detector PD Gaussian Detector

0 1022 0.50 0.06

210 1022 0.40 0.02

220 1022 0.22 0.01

0 1025 0.30 1025

210 1025 0.25 1025

220 1025 0.10 1025
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disturbance noise such as clutter. This can result either in a strong signal case

with a large signal-to-disturbance ratio (SDR), intermediate signal case with a

large signal-to-disturbance ratio (SDR), or a weak signal case. Note that the

Gaussian assumption is used for the cases where the likelihood-ratio-test (LRT)

and generalized likelihood-ratio-test (GLRT)1 detectors are utilized. For the

weak signal case, the PDF of the region has to be approximated in order to enable

the use of the appropriate LRT or the suboptimal locally-optimum-detector

(LOD).1 All of this suggests the necessity for continuously monitoring the

environment and subdividing the surveillance volume into homogeneous patches

in addition to approximating the underlying probability distributions for each

patch. This is achieved by the process referred to as the Automated

Statistical Characterization And Partitioning of Environments (ASCAPE)3–5

presented next.

Returns

Clear Region Clutter Region

Large SDR

LRT LRT/LODGLRT

Desired Target
Return

Strong
Signal Case

Intermediate
Signal Case

Intermediate SDR Weak SDR

Weak
Signal Case

Gaussian
Assumption

Gaussian
Assumption

Region PDF
Approximation

FIGURE 6.49 Different target cases.
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6.5.2. ASCAPE PROCESS

The ASCAPE process, shown in Figure 6.37 of Section 6.4.2, consists of four

interactive blocks. The first block is a preprocessing block that performs classical

space–time processing on the collected data. Then, based on the mapping

procedure, described in Refs. 3 and 4 the second block separates contiguous

homogeneous patches and subpatches by segregating between their average

power levels. Using the statistical procedure explained in Refs. 4 and 5 the next

block goes one step further and separates homogeneous subpatches by segregating

between their probabilistic data distributions. Furthermore, this block identifies

suitable approximations to the PDF of each homogeneous patch and determines

the location of outliers in the scene.4,5 The statistical procedure uses the Ozturk

algorithm, a newly developed algorithm for analyzing random data.6 The final

block indexes the scene under investigation by assigning a set of descriptors to

every cell in the scene. For each cell, the indexing is used to indicate to which

homogeneous patch the cell belongs, whether it is an edge cell or an outlier, which

cells can be chosen as reference cells if the cell is to be tested, and which PDF best

approximates the data in the cell. Note that the reference cells are cells that belong

to the same homogeneous patch and are closest to the cell to be tested.

The forward and backward interactions between the different blocks are

controlled through rules of an expert system shell referred to as Integrated

Processing and Understanding of Signals (IPUS) developed jointly by the

University of Maussachusetts and Boston University.7

When ASCAPE is followed by a detection stage (e.g., target detection in

Radar), all information needed by the detector is available for every cell in the

scene. Furthermore, given the PDF that can approximate the patch in which the

test cell is located, the appropriate detector is readily selected. This is in contrast

to the classical detection approach where a single detector (usually the Gaussian

detector) is used in processing the entire scene.

6.5.3. APPLICATION OF ASCAPE TO REAL IR DATA

Consider an image of real IR data collected over lake Michigan. As shown in

Figure 6.41 in Section 6.4.6, the scene consists of two major regions: lake and

land. Furthermore, the three dimensional plot of the data magnitudes shown in

Figure 6.42 indicates that the data in the lake region are regular, whereas the data

in the land region are irregular and contain large discretes especially near the

boundary close to the lake.

ASCAPE is applied to the IR scene. First, the preprocessing block identifies

that the data in the scene is uncorrelated as required by the Ozturk algorithm for

the univariate PDF approximation. Then, application of the mapping procedure

results in the segmentation of the scene into three different patches and their

respective boundaries, as shown in Figure 6.44. Note that in addition to regions

1 and 2, corresponding, respectively, to land and lake, the mapping procedure

detects a third region, labeled 3. This region can be observed in the original scene
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of Figure 6.41 and is not large in size. Comparison of the mean, variance, and the

power of the different regions reveals that patch 3 may be a very small body of

water. Edges of the different patches are also detected.

Next, the statistical procedure is applied to every previously declared

homogeneous patch in order to separate further between any existing contiguous

subpatches that may have similar power levels but different data distributions. As

shown in Figure 6.46, the procedure results in the determination of nonGaussian

subpatches within each previously declared homogeneous patch and the location

of outliers. In addition, for the nonGaussian subpatches, approximate PDFs

are determined. Comparing Figures 6.46 and 6.41, note that outliers tend to have a

physical significance and might represent string-like patches such as roadways.

The statistical procedure is followed by the indexing stage when every cell in

the scene is assigned a set of descriptors to indicate, for each cell, the

homogeneous patch to which it belongs, whether it is an edge cell or an outlier,

which cells can be chosen as reference cells when parameters in the cell are to be

estimated, and which PDF best approximates the data in the cell.

6.5.4. CONCLUSION

NonGaussian detectors should be utilized in cases that cannot be handled by the

classical Gaussian detector (e.g., nonGaussian regions where the clutter and

target spectra cannot be separated). In such cases, the appropriate detector must

be selected. This is done by using ASCAPE that (1) monitors the environment

under investigation, (2) segments the scene into homogeneous patches, and (3)

approximates the PDFs of each patch.

Work under investigation and future work include: (1) tailoring/tuning of the

edges for subpatches detected by the statistical procedure that is limited by the

requirement of 100 reference cells for the Ozturk algorithm, (2) performance

improvement of the nonGaussian detectors over the Gaussian detector in different

types of environments and under different circumstances, (3) development ofmore

expert system rules to enableASCAPE to be applied to different types of data (e.g.,

radar, IR, sonar, medical imaging, etc.), and (4) Application of ASCAPE to

medical imaging (e.g., detection of tumors in lung) and to other areas.

6.6. STATISTICAL CHARACTERIZATION OF

NONHOMOGENEOUS AND NONSTATIONARY

BACKGROUNDS

(A. D. KECKLER, D. L. STADELMAN, D. D. WEINER,

AND M. A. SLAMANI)

6.6.1. INTRODUCTION

If detection and estimation theory is to be successfully applied to weak signal

problems, an adequate statistical characterization of the random background
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noise and clutter is required. Backgrounds are commonly assumed to be Gaussian

and the literature is replete with detection and estimation algorithms based upon

this assumption. Unfortunately, backgrounds encountered in real applications,

such as those occurring with tumors embedded in lung tissue, weapons concealed

under clothing, and tanks hidden in forests, are likely to be nonhomogeneous,

nonstationary, and nonGaussian. Inadequate characterization of the background

can lead to severely degraded performance for the weak target problem.

This chapter addresses real-world environments where backgrounds are too

complex and unpredictable to be modeled a priori. The strategy employed here is

to monitor the environment and process the data so as to produce homogeneous

partitions, which are statistically characterized in terms of PDFs. For this

purpose, a procedure known as ASCAPE (Automated Statistical Characterization

and Partitioning of Environments) has been developed.1,2 ASCAPE identifies

partitions in two steps. First, image processing and expert system techniques are

used to identify partitions within a scene that can be separated based upon

differences in their average intensity levels. Then the Ozturk algorithm,3 a newly

developed algorithm for analyzing random data, is used to divide the partitions

into subpatches that can be separated based upon differences in their underlying

probability distributions. The ASCAPE procedure is illustrated in Section 6.6.2

in the context of concealed weapon detection.

The Ozturk algorithm, as originally designed, can only approximate the PDF

of univariate random data. However, in many applications, such as a coherent

radar that jointly processes N looks at a target, it is necessary to characterize the

random background in terms of an N-dimensional PDF. Spherically invariant

random vectors (SIRVs) are introduced in Section 6.6.3 as a useful approach for

modeling correlated, nonGaussian multivariate data. Section 6.6.4 describes the

univariate Ozturk algorithm. In Section 6.6.5, the Ozturk algorithm is extended to

handle correlated, multivariate random variables classified as SIRVs. Finally,

application of the multivariate Ozturk algorithm to a weak signal nonGaussian

detection problem is discussed in Section 6.6.6.

6.6.2. APPLICATION oF ASCAPE TO CONCEALEDWEAPON DETECTION

The capabilities of ASCAPE are demonstrated in this section. Consider the scene

of Figure 6.50, which shows a person carrying a concealed weapon located on the

right rib cage. The scene consists of real millimeter wave data collected from a

Millitech Corporation MMW sensor. Figure 6.51 shows the result when the Sobel

operator, a well known edge detection algorithm, is applied to the scene in an

attempt to detect the weapon. Clearly, the Sobel operator is unable to detect the

weapon’s edges. This approach fails because the average intensity of the region

surrounding the weapon differs only slightly from that of the region where the

weapon is located. The image processing and expert system techniques of

ASCAPE are then applied to the data of Figure 6.50. The ASCAPE result is

shown in Figure 6.52. Even though the differences in average intensities are
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50

100

150

200

250

300

50 100 150 200

FIGURE 6.52 Composite image.
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small, ASCAPE is still able to detect the concealed weapon based on relative

average intensities.

Use of the Ozturk algorithm for dividing a partition into subpatches is now

illustrated with simulated data. The simulated scene is shown in Figure 6.53

consisting of two regions, denoted as A and B. Region A represents the back-

ground and contains 10,000 data samples generated from a Weibull probability

distribution with zero mean, unit variance, and a shape parameter value of 0.6.

Region B represents a handgun and contains 10,000 data samples generated from

a Gaussian distribution with zero mean and unit variance. As a result, regions A

and B have the same average intensity. Thus, the complete scene of Figure 6.53

simulates a partition as would be obtained by the first stage of ASCAPE. The

histograms of regions A and B are shown in Figure 6.55, along with the combined
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histogram of the entire scene. Examination of the combined histogram in no way

suggests the presence of two regions in Figure 6.53.

The Ozturk algorithm is then applied to the data in Figure 6.53. The

algorithm uses 100 pixels at a time to statistically characterize the data in

terms of PDF approximations. The image is then partitioned into a number of

subpatches determined by differences in their probability distributions. The result

is shown in Figure 6.54 and clearly indicates that the Ozturk algorithm identifies

three regions:

(1) Region A, the background

(2) Region B, the gun

(3) Region C, the edges of the gun.

Additional details concerning the Ozturk algorithm are presented in

Section 6.6.4.

6.6.3. THE SIRV RADAR CLUTTERMODEL

Conventional radar receivers are based on the assumption of Gaussian distributed

clutter. However, the Weibull and K-distribution are shown to approximate

the envelope of some experimentally measured nonGaussian clutter data.4–8

The detection performance of the Gaussian receiver in this environment is

significantly below that of the optimum nonGaussian receiver, especially for weak

target returns.

NonGaussian clutter is often observed to be “spiky,” as illustrated in

Figure 6.56. In such cases, the threshold of the conventional Gaussian receiver

must be raised in order to maintain the desired false alarm rate. This results in

a reduction of the probability of detection. In contrast, nonGaussian receivers

contain nonlinearities that limit large clutter spikes and allow a lower threshold

to be used, which improves performance for targets with a low signal-to-clutter
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ratio (SCR). Determination of these nonGaussian receivers requires specification

of suitable PDFs for the clutter.

The nonhomogeneous and nonstationary clutter environment must be

monitored to adapt detection algorithms over the surveillance volume. This is

complicated by the need for an efficient technique to accurately approximate a

joint clutter PDF that incorporates the pulse-to-pulse correlation. Spherically

invariant random vectors (SIRVs), which are used in this chapter, have been

shown to be useful for modeling correlated nonGaussian clutter.9 The class

includes many distributions of interest, such as the Gaussian, Weibull, Rician,

and K-distributed, among others.9–12

A random vector Y of dimension N and realization y is defined to be an SIRV

if and only if its PDF has the form,

fYðyÞ ¼ ð2pÞ2 N
2 lSl2

1
2 hNðqðyÞÞ ð6:42Þ

where S is an N £ N nonnegative definite matrix, q(y) is the quadratic form

defined by

q ¼ qðyÞ ¼ ðy2 bÞTS21ðy2 bÞ ð6:43Þ
b is the N £ 1 mean vector, and hN(·) is a positive, monotonic decreasing

function for all N.13 Equivalently, an SIRV Y can be represented by the linear

transformation,

Y ¼ AXþ b ð6:44Þ
where X is a zero-mean SIRV with uncorrelated components represented by

X ¼ SZ ð6:45Þ
Z is zero-mean Gaussian random vector with independent components, and S is

a nonnegative random variable independent of Z. The PDF fS(s) uniquely

determines the type of SIRV and is known as the characteristic PDF of Y.

10
8
6
4
2
0

−2
−4
−6
−8

−10
3000 50 100 150 200 250

n(a)

C
lu

tte
r

sa
m

pl
e

va
lu

e
10
8
6
4
2
0

−2
−4
−6
−8

−10
3000 50 100 150 200 250

n(b)

C
lu

tte
r

sa
m

pl
e

va
lu

e

FIGURE 6.56 Comparison of Gaussian data with NonGaussian data of equal variance.

(a) Gaussian example. (b) NonGaussian example.
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Since the matrix A is specified independenty of fS(s), an arbitrary covariance

matrix, S ¼ AA T, can be introduced without altering the type of SIRV.

This representation is used to obtain

hNðqÞ ¼
ð1

0
s2Ne

2
q

2s2 fsðs Þds ð6:46Þ

and subsequently, the PDF of the quadratic form is

fQðqÞ ¼ 1

2
N
2 G N

2


 � q N
2
21hNðqÞ ð6:47Þ

Since hN(q) uniquely determines each type of SIRV, Equation 6.47 indicates

that the multivariate approximation problem is reduced to an equivalent uni-

variate problem.

It is not always possible to obtain the characteristic PDF, fS(s), in closed form.

However, an N-dimensional SIRV with uncorrelated elements can be expressed

in random variable generalized spherical coordinates R,u, and fk for

k ¼ 1;…;N 2 2, where the PDF of R is given by

fRðrÞ ¼ rN21

2
N
2
21G N

2


 � hNðr2ÞuðrÞ ð6:48Þ

The angles u and fk are statistically independent of the envelope R and do not

vary with the type of SIRV. When fS(s ) is unknown, Equation 6.48 is used both to

generate SIRVs and to determine hN(q).
9

It is desirable to develop a library of SIRVs for use in approximating

unknown clutter returns. Table 6.13 contains the characteristic PDFs and hN(q)s

of some SIRVs for which analytical expressions are known. For simplicity, the

results presented for the Weibull and Chi SIRV are valid only for even N.

Additional SIRVs, such as the generalized Rayleigh, generalized Gamma, and

Rician, are developed in Ref. 9.

The discrete Gaussian mixture SIRV in Table 6.13 is of special interest.

Its PDF is a simple finite weighted sum of Gaussian PDFs. This is useful for

approximating many other SIRVs, as well as generating unique distributions.

6.6.4. DISTRIBUTION APPROXIMATION USING

THE OZTURK ALGORITHM

It is important to suitably model the clutter PDF to obtain improved detection

performance of weak signals in nonGaussian clutter. Ozturk developed a general

graphical method for testing whether random samples are statistically consistent

with a specified univariate distribution.3 The Ozturk algorithm is based upon

sample order statistics and has two modes of operation. The first mode consists

of the goodness-of-fit test. The second mode of the algorithm approximates

the PDF of the underlying data by using a test statistic generated from the

goodness-of-fit test to select from a library of known PDFs.
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TABLE 6.13
Characteristic PDFs and hN(Q) Functions for Known SIRVs
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The goodness-of-fit test is illustrated in Figure 6.57. The solid curve denotes

the ideal locus of the null distribution obtained by averaging 1000 Monte Carlo

simulations of 100 data samples, where the Gaussian distribution is chosen as the

null distribution. The 90%, 95%, and 99% confidence contours are shown. The
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0
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n = 100, M = 1000

Goodness of fit test
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FIGURE 6.57 Linked vectors and 90%, 95%, and 99% confidence intervals for the

standard Gaussian distribution.
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FIGURE 6.58 Ozturk approximation chart for univariate distributions (B ¼ Beta,

G ¼ Gamma, K ¼ K-distribution, P ¼ Pareto, L ¼ Lognormal, T ¼ Gumbel, E ¼
Exponential, V ¼ Extreme Value, A ¼ Laplace, S ¼ Logistic, U ¼ Uniform, N ¼
Normal, W ¼ Weibull, C ¼ Cauchy, J ¼ SU Johnson). † End point of 100 data samples

corresponding to that of Figure 6.57.
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dashed curve shows the locus of test data, which is accepted as being Gaussian

distributed with significance 0.1.

An approximation to an unknown distribution is obtained by examining

the location of the end point coordinate. An approximation chart is constructed

for a library of PDFs by plotting the end point coordinates for each density in

the library. A distribution that does not depend upon a shape parameter will

appear as a single point on the approximation chart. Distributions that have a

single shape parameter, such as the Weibull or K-distributions, will appear as

trajectories. Distributions with more than one shape parameter are represented

by a family of trajectories. A sample approximation chart for univariate

distributions is shown in Figure 6.58 for 100 data samples and 1000 Monte

Carlo simulations.

6.6.5. APPROXIMATION OF SIRVs

The distribution approximation technique described above applies to univariate

distributions. It is seen from Equation 6.42 and Equation 6.46 that the charac-

teristic PDF of an SIRV is invariant with respect to the vector dimension N and

uniquely determines the SIRV. If the data can be appropriately modeled as an

SIRV, then the marginal distribution can be used to uniquely distinguish it

from all other SIRVs. Since the marginal distribution of an SIRV is univariate,

the procedure discussed in Section 6.6.4 can be applied directly. However,

knowledge of the marginal distribution is insufficient to ensure that multivariate

data can be modeled as an SIRV.

Multivariate sample data can be rejected as having a particular type of SIRV

density if the envelope distribution is not supported by the Ozturk algorithm. In

addition, the angle distributions must be checked for consistency. However, the

angle distributions are independent of the type of SIRV considered and are useful

only for verifying that sample data is not SIRV distributed.

The approximation problem is further complicated since the covariance

matrix of the underlying SIRV distribution is usually unknown. The maximum

likelihood (ML) estimate of the covariance matrix for a known zero-mean SIRV

is given by

X̂
y ¼ 1

K

XK
k¼1

hNþ2 yTk Ŝyyk


 �
hNðyTk ŜyykÞ

yky
T
k ð6:49Þ

since Equation 6.49 depends upon hN(q), the ML estimate of the covariance

matrix cannot be used in the approximation problem. Alternatively, a statistic

formed using the well known sample covariance matrix is used in this chapter to

select the appropriate approximation for the clutter distribution. This statistic is

given by

r̂ ¼ ½ðy2 b̂yÞTŝ21
y ðy2 b̂yÞ	

1
2 ð6:50Þ
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where ŝy is the sample covariance matrix, given by

ŝy ¼ 1

n2 1

Xn
k¼1

ðyk 2 b̂yÞðyk 2 b̂yÞT ð6:51Þ

and b̂y is the sample mean. Approximation charts using the envelope statistic R̂ of

Equation 6.50 are shown in Figures 6.59 and 6.60 for vector dimensionsN ¼ 2 and
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FIGURE 6.59 Approximation chart for SIRV envelope statistic, N ¼ 4 (C ¼ Cauchy,

X ¼ Chi envelope, E ¼ Exponential envelope, K ¼ K-distributed envelope, M ¼
Discrete Gaussian Mixture, N ¼ Normal, S ¼ Student-t, W ¼ Weibull, L ¼ Laplace).
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N ¼ 4, respectively. The 90% confidence contours for the K-distribution with

shape parameter ak ¼ 0.4 are shown on the charts. Surprisingly, the size of the

confidence intervals does not significantly increase as the dimension of the SIRV

increases. While the sample covariance matrix of Equation 6.51 may be a poor

estimate of the actualmatrix, the statistic of Equation 6.50 appears to be insensitive

to this estimation. Figure 6.61 shows the scatter of locus end points for 1000

simulations of K-distributed data. Each end point is obtained from 100 vectors of

four components.

As seen in Figures 6.59 and 6.60, the confidence contours overlap several

trajectories on the approximation charts. Therefore, it is possible that any one of
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FIGURE 6.61 The 50, 70, 80, and 90% confidence contours for the K-distributed SIRV
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several different types of SIRV distributions may be selected by the Ozturk

algorithm to approximate an SIRV distributed sample. Figure 6.62 compares the

quadratic from PDF for two distributions that fall within the confidence contour

shown in Figure 6.59. The locus end point of a K-distributed SIRV with shape

parameter ak ¼ 0.4 is marked with a “1” in Figure 6.59. The locus end point of a

Weibull SIRV with shape parameter aw ¼ 0.8 is labeled with a “2”. The close

fit between these PDFs, even when their locus end points are separated within

the confidence contour, suggests similar distributions fall within a particular

localized region of the Ozturk chart. Consequently, distributions whose locus end

points are contained within a confidence contour are expected to be suitable

approximations.

6.6.6. NONGAUSSIAN RECEIVER PERFORMANCE

The performance of an adaptive detection scheme using the Ozturk PDF

approximation algorithm to regularly update the choice of receiver is evaluated

by simulating SIRV clutter. The clutter power is assumed to be much greater than

the background noise power for the weak signal problem. Consequently, only the

clutter PDF is used to model the total disturbance. The clutter is also assumed to

have zero mean and a known covariance matrix, S. The amplitude of the desired

signal is modeled as an unknown complex random variable, which is constant

over each P-pulse coherent processing interval. The phase of the complex

amplitude is assumed to have a U(0, 2p) PDF. Thus, the form of the ML estimate

for the complex amplitude is the same for all SIRVs, and the generalized

likelihood ratio test (GLRT) is11

TGLRTð~rÞ ¼
h2P 2 ~rH ~S21 ~r2

l~sH ~S21 ~rl2

~sH ~S21~s

{ !{ !
h2Pð2~rH ~S21 ~rÞ

H1
.

H0

, h ð6:52Þ

where examples of h2P (·) are listed in Table 6.13. The GLRT of Equation 6.52

is formulated in terms of the complex lowpass elopes of the receive data, ~r, and

known signal pattern, ~s: Previous investigation has shown there is little or no

degradation in performance of the GLRT for the known covariance problem,

when compared to the Neyman–Pearson test.8,14

Figure 6.63 compares the two-pulse detection performance of the adaptive

Ozturk-based receiver to several other receivers in K-distributed clutter. The

magnitude of the complex target amplitude is assumed to be Swerling I. The

shape parameter of the clutter is chosen as ak ¼ 0.4, which is within the range of

values measured for real data.4 The performance is evaluated for an identity

covariance matrix, and may be interpreted as a function of the SCR at the output

of a prewhitening filter when the clutter samples are correlated. Detection results

are obtained by processing 100,000 vector samples of K-distributed clutter. The

solid curve shows the baseline detection performance of the K-distributed GLRT

designed for 0.001 probability of false alarm (PFA). The adaptive receiver
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performance, also indicated in Figure 6.63, is obtained by partitioning the data

into 50 intervals of 2000 samples each. The first 100 samples of each interval are

processed with the Ozturk algorithm to obtain the data end points marked with

a “þ” in Figure 6.64. For each data end point, the corresponding 2000 sample

interval is processed by a GLRT designed from the PDF associated with the

closest library end point. While the known covariance matrix is used in the GLRT

implementation, the sample covariance matrix for each 100 samples is used in the

Ozturk algorithm, as described in Sections 6.6.4 and 6.6.5.
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Performance of the adaptive receiver closely matches the baseline

performance and shows significant improvement over the Gaussian receiver for

SCR values below 10 dB. The measured PFA for the adaptive receiver is 0.00163,

which is slightly above the design value. This explains why the probability of

detection (PD) for the adaptive receiver exceeds that of the baseline receiver at

large SCR values. Baseline K-distributed receiver performance for this higher

measured PFA is also included in Figure 6.63 for comparison.

The adaptive receiver processed data associated with all the end points is

shown in the scatter diagram of Figure 6.64, including those that fell outside the

90% confidence contour. Nonetheless, the localized PD for each interval did not

vary significantly from the average value reported in Figure 6.63 for a given SCR.

6.6.7. CONCLUDING REMARKS

This work provides significant contributions to the partitioning and statistical

characterization of complex real-world environments. ASCAPE is shown to be

an effective tool for this purpose. New results are presented that allow the Ozturk

algorithm to adequately approximate multivariate SIRV PDFs from only 100

sample clutter vectors. A simple radar example is presented for K-distributed

clutter with known covariance matrix and 0.001 probability of false alarm.

A receiver that adaptively processes the data based on the Ozturk PDF

approximation has near optimum performance for this example, thus,

demonstrating the successful application of the Ozturk algorithm to weak signal

detection. Furthermore, the adaptive receiver has significantly better detection

performance than the Gaussian receiver at low SCRs, with only a slight increase

in the PFA.

6.7. KNOWLEDGE-BASED MAP SPACE TIME ADAPTIVE

PROCESSING (KBMapSTAP)

(C. T. CAPRARO, G. T. CAPRARO, D. D. WEINER,

AND M. C. WICKS)

6.7.1. INTRODUCTION

Space-time adaptive processing (STAP) is viewed as a potentially effective

means for suppressing ground clutter received by an airborne radar. However, a

serious problem with any STAP approach involves the accurate estimation of

unknown clutter statistics. This problem is further complicated by the fact that

airborne radars are likely to encounter nonhomogeneous clutter environments.

Previous efforts1,2 have recognized this problem and have shown the benefits of

using a priori data to increase performance in nonhomogeneous clutter

environments for Constant False Alarm Rate (CFAR) processing and preadaptive

filtering with STAP.
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This work documents the results of our effort to develop, implement, and test

a computer-based algorithm to utilize a priori terrain data in order to improve

target detection. Our approach was to leverage existing terrain datasets to help

selectively choose secondary data for estimating the clutter covariance matrix

needed for post-Doppler radar processing. In so doing we will show that

performance can be improved. This use of terrain data provides insight into how

to build one aspect of the next generation signal processing algorithm and to

possibly extend its use to other areas such as tracking and identification.

Section 6.7.2 of the work provides a description of our clutter model. Section

6.7.3 discusses the difficulty in choosing secondary data for the estimation of a

clutter covariance matrix in a nonhomogeneous environment and an approach for

easing this difficulty with adaptive post-Doppler processing. Section 6.7.4 departs

from theory-based discussion and presents a brief description of an airborne radar

measurement program used in testing our methodology. Section 6.7.5 describes

our a priori data approach to estimate the clutter covariance matrix in

nonhomogeneous environments. Section 6.7.6 presents our results and Section

6.7.7 presents our conclusions and recommended future work.

6.7.2. CLUTTERMODEL

Ward’s clutter model3 is employed to determine whether or not available

secondary data may be useful in estimating the clutter covariance matrix of a test

cell. Ward approximates a continuous field of clutter by modeling the clutter

return from each range ring as the superposition of a large number of independent

point scatters or clutter patches evenly distributed in azimuth about the radar. For

simplicity, we assume unambiguous range. Then the clutter return at any instant

is from a single range ring.

If we divide the range ring into a total of Nc clutter patches, each patch has an

angular extent given by Du ¼ 2p/Nc. The response in the nth channel, due to the

mth pulse, in the lth range ring, after summing over all k patches is

Xnm‘ ¼
XNc

k¼1

a‘ke
j2p ðm 
v ‘kþnn‘kÞ ð6:53Þ

where: 
v‘k is the normalized Doppler frequency, n‘k is the normalized spatial

frequency, and a‘k is the complex received signal amplitude. From this equation

the clutter covariance matrix for the lth range ring can be expressed as

M‘ ¼
XNc

k¼1

E½la‘kl
2	v‘kvH‘k ð6:54Þ

where E½la‘kl
2	 is the estimation of the mean-square value of the complex

amplitude magnitude for each of the Nc clutter patches in the range ring and v‘k
is the space–time steering vector. Since the space–time steering vector can be
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specified a priori the estimation of the clutter covariance matrix reduces to the

estimation of E½la‘kl
2	: Therefore, it is important to have a good method for

estimating this value by properly choosing representative clutter data.

6.7.3. REPRESENTATIVE SECONDARY CLUTTER

Assume the test cell where a target is to be detected is located in the lth range

ring. Since M1, the clutter covariance matrix of the lth range ring is unknown, the

objective is to select secondary data from other range rings in order to estimate

M1. Suppose attention is focused on the (l0)th range ring where l0 – 1. The

question that arises is, “Is the clutter in the (l0)th range ring representative of

the clutter in the lth range ring?”

This is true provided each clutter patch in the lth range ring having a specific

mean-square complex amplitude magnitude and a specific pair of normalized

Doppler and spatial frequencies has a corresponding clutter patch in the (l0)th
range ring having approximately the same mean-square complex amplitude and

approximately the same normalized Doppler and spatial frequencies.

Even though the pairs of normalized Doppler and spatial frequencies remain

invariant from one range ring to another, it is unlikely in a nonhomogeneous

clutter environment that E[lal0k0l2] ¼ E[lalkl2] for all Nc pairs of clutter patches in

the two range rings. In fact, unless the clutter is entirely homogeneous throughout

both range rings, it is unlikely that the clutter in the (l0)th range ring will be

representative of the clutter in the lth range ring over the entire clutter ridge.

However, the concept of representative secondary clutter data may be

meaningful on a selective basis. For example, consider postDoppler adaptive

beamforming where nonadaptive Doppler filtering is first performed separately on

theMpulses from each array element. In effect, this produces at each array element

the output of M Doppler filters that subdivide the normalized Doppler frequency

interval into M contiguous Doppler bins. The basic idea is that a Doppler filter,

with the capability for very low Doppler sidelobes, rejects the clutter whose

Doppler frequencies fall outside of its passband. In this way, the residual clutter

along the clutter ridge is localized in terms of its normalized spatial frequencies.

Adaptive spatial filtering is subsequently performed to reduce the residual clutter.

This is repeated for each of the M Doppler filters. Because the residual clutter in

normalized Doppler and spatial frequencies is confined to a localized region along

the clutter ridge, it is no longer necessary that the range ring fromwhere secondary

data is being collected be equivalent in its entirely to the range ring inwhich the test

cell is located. Now the clutter in only a few patches of each range ring need be

equivalent, i.e., those that lie along the same iso-Doppler ridge.

6.7.4. AIRBORNE RADAR DATA

To assist us in building and testing our methodology for selecting equivalent

range rings we used data gathered under a U.S. Air Force program. The AFRL

Sensors Directorate Multichannel Airborne Radar Measurements (MCARM)
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program was designed to collect multichannel clutter data from an airborne

platform with a side looking radar.4 Northrop Grumman collected MCARM data

during flights over the Delmarva Peninsula and the east coast of the United States.

A Northrop Grumman owned BAC 1-11 was used as a platform for the L-Band

radar data collection system. The radar consisted of 32 subapertures combined

into 22 adaptive channel elements. The elements were arranged in a 2 £ 11 array.

Data was collected at a variety of pulse repetition frequencies (PRFs) over

various terrain including mountains, rural, urban, and land/sea interfaces. There

were a total of eleven flights with more than 50 Gb of data collected and

additional flights planned. We chose this data because of its varied and

heterogeneous clutter environment.

6.7.5. A PRIORI DATA

Digital terrain data was obtained from the United States Geological Survey

(USGS) to classify the ground environment that the MCARM radar was

irradiating. Since the Delmarva Peninsula has little variation in elevation we

decided not to incorporate digital elevation data that would provide a measure of

the angular reflection back to the antenna. Instead, we chose Land Use and Land

Cover (LULC) data that classifies terrain using a grid of 200 by 200 meter cells,

and codes that describe the terrain in each cell. There are nine major codes and

38 minor codes that have a more detailed description. The LULC data provides

a measure of the amount of radar reflection and absorption from the ground. In

order to simplify our approach we only used the major codes and, if deemed

necessary, planned on using the minor codes later. An example of LULC major

codes are: Urban Areas, Agricultural Land, Water, etc.

6.7.6. RESEARCH PROBLEM, HYPOTHESIS,

AND PRELIMINARY FINDINGS

Can postDoppler STAP performance be improved by choosing secondary data

based upon a priori map data? To determine the answer to this question we

compared our results with what we call the standard algorithm or sliding window

algorithm. The sliding window algorithm chooses N=2 range rings above and

below the test ring minus two guard rings, where N is twice the number of

independent channels of the MCARM radar, which is 22 (see Figure 6.65). The

sliding window algorithm has an implicit assumption that the range rings near the

test ring are homogeneous and are representative of the test ring. Our algorithm

chooses secondary data by comparing the LULC codes of the Doppler patch that

interferes with the test patch in the same range ring and all of the patches that lie

on the same iso-Doppler curve of interest. Our assumption is that the major

interferer after range and Doppler filtering will be the clutter due to the ground

within the same range ring as the test cell.

Applications 403

© 2006 by Taylor & Francis Group, LLC



It was our hypothesis that our algorithm (KBMapSTAP) would do as

good as the sliding window algorithm where the test and surrounding area are

homogeneous and KBMapSTAP would do better than the sliding window

algorithm for areas where the ground is heterogeneous. To test our hypothesis we

injected a target at different range rings with the same radial velocity and power.

The only difference in the implementation of the two algorithms was the choice

of the secondary range rings. After Doppler processing, we calculated a Modified
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FIGURE 6.65 Sliding window and KBMapSTAP secondary data selection.
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FIGURE 6.66 Sliding window — no injected target (mean MSMI ¼ 12.9, variance

MSMI ¼ 28.9).
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Sample Matrix Inversion (MSMI) statistic for each range ring of interest.1,5

MSMIi ¼ lsHR̂21xil
2

sHR̂21s
ð6:55Þ

where s is the space–time steering vector, R̂ is the estimate of the clutter

covariance matrix, and xi is the radar return vector for the ith range ring. It can

be seen that the MSMI has a thresholding or detection quality similar to a constant

false alarm rate (CFAR) property. That is, a MSMI threshold can be chosen y such

that those radar returns, xi, having an MSMI that exceeds y may be considered as

potential targets.
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FIGURE 6.67 KBMapSTAP — no injected target (mean MSMI ¼ 11.7, variance

MSMI ¼ 26.6).
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FIGURE 6.68 Sliding window — target injected at range bin 296 (mean MSMI ¼ 12.7,

variance MSMI ¼ 28.3).
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Figures 6.66 and 6.67 represent the MSMI results for the two algorithms

without an injected target. The mean and variance of the results are slightly

smaller for KBMapSTAP than for the sliding window algorithm. If a threshold of

20 dB were chosen, then the KBMapSTAP would detect fewer false alarms than

the sliding window algorithm.

In heterogeneous environments, KBMapSTAP did consistently better than

the sliding window algorithm. For example, Figures 6.68 and 6.69 have a target

injected at the same power at range bin 296 and show the MSMI output from each

algorithm. If a threshold is chosen at 25 dB we can see that the sliding window

algorithm would not detect the target. However, KBMapSTAP would clearly

detect it at 5 dB above the threshold.
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FIGURE 6.69 KBMapSTAP — target injected at range bin 296 (mean MSMI ¼ 12.3,

variance MSMI ¼ 35.4).
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FIGURE 6.70 Sliding window — target injected at range bin 475 (mean MSMI ¼ 12.4,

variance MSMI ¼ 28.5).
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To test our hypothesis that the KBMapSTAP algorithm would perform the

same as the standard algorithm when a target occurred in a homogeneous clutter

environment, we injected a target in range bin 475. This range is in water and is

surrounded by water such that the major ground clutter is due also to water.

Figure 6.70 shows the result of the sliding window algorithm and Figure 6.71,

the result of KBMapSTAP. It was conjectured that the KBMapSTAP would do as

good as the sliding window algorithm and it did. One could argue however, that it

did better considering the lower mean and variance clutter levels.

6.7.7. CONCLUSIONS AND FUTUREWORK

From our limited analysis it can be concluded that the KBMapSTAP algorithm

outperforms the standard or sliding window algorithm for heterogeneous clutter

environments and performs approximately the same for homogeneous clutter

environments. PostDoppler STAP performance can be improved. The data

presented here are limited. More analysis and development is required before a

quantitative measure of performance can be obtained.

There are some issues that also need to be explored. The data from the USGS

database were collected approximately ten years before the radar data was

obtained. It is likely that some of the USGS data was not current when the radar

data were collected. Techniques to validate map data with the radar need to be

explored for those cases where recent map data are not available and when

weather and environmental conditions have changed, e.g., snow and flooding.

Map precision is important when the radar’s range and angle resolution is

significantly different from the map data precision. For our experiment the range

resolution of the radar was 120 m and the LULC data points were at a resolution

of 200 m by 200 m. Even with this difference in precision the KBMapSTAP
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FIGURE 6.71 KBMapSTAP — target injected at range bin 475 (mean MSMI ¼ 11.2,

variance MSMI ¼ 26.9).
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algorithm performed well. A sensitivity analysis should be performed and the

clutter patch characterization portion of the algorithm should be modified for

varying precision permutations between the radar and the available map data.

The Delmarva area is relatively flat and using LULC data worked well. If

however, the terrain is mountainous then the algorithm must include digital

elevation model data. This area needs further investigation along with tests to

evaluate its performance.

Finally, the LULC data we used did not contain explicit information about

man-made features such as railroads, roads, bridges, power lines, etc. The USGS

does offer Digital Line Graph data that maps these features. Future work should

be done to incorporate these data into the KBMapSTAP algorithm and tests done

to measure improvement.

6.8. IMPROVED STAP PERFORMANCE USING

KNOWLEDGE-AIDED SECONDARY DATA SELECTION

(C. T. CAPRARO, G. T. CAPRARO, D. D. WEINER,

M. C. WICKS, AND W. J. BALDYGO)

6.8.1. INTRODUCTION

In order to estimate the clutter covariance matrix needed for STAP, range rings

located close to the cell under test are normally chosen as secondary data.

If N cells are required for estimation, N/2 above the test cell and N/2 below the

test cell, excluding guard cells, are typically chosen. It is assumed this sliding

window (cell averaging symmetric) method of secondary data selection produces

cells that are representative of the clutter in the test cell. However, in a

nonhomogeneous terrain environment this assumption may not be valid. The

amount of secondary data required for proper estimation of the covariance matrix

in a stationary environment is predicted to be between two and five times the

number of degrees of freedom (DOF) of the radar.1 As a result, the sample

support needed may span hundreds of meters, or even kilometers, depending

on the range resolution and the DOF of the radar. Terrain boundaries such as

land-water or forest-farmland interfaces are likely to occur. This nonstationarity

due to nonhomogeneous terrain can lead to a poor estimation of the clutter

covariance matrix and, in turn, poor cancellation of the clutter.

Several authors2–4 have proposed statistical nonhomogeneity detectors,

in both Gaussian and nonGaussian distributed clutter environments, to excise

outliers contained within the secondary data. They have demonstrated the

deleterious effects of nonhomogeneous secondary data and have shown improve-

ments in STAP performance by filtering the outliers in the selection process.

We propose an approach, in the area of knowledge-aided STAP,5–8 which

uses digital terrain data to aid in choosing representative secondary data. The

assumption is that the estimation of the covariance matrix will improve by
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choosing secondary data based upon how well its terrain classification compares

with the cell under test and, therefore, the STAP algorithm will cancel the

interference due to terrain more effectively. This approach is not proposed

as a replacement for statistical nonhomogeneity detection. We envision

it as a preprocessing step that will enhance the ability of these detectors to

filter other types of nonhomogeneities such as targets or discretes.

There is a growing amount of terrain data publicly available at resolutions as

small as 10 m. Agencies such as the National Imagery and Mapping Agency,‡

NIMA (recently renamed National Geospatial-Intelligence Agency, NGA), and

the United States Geological Survey,§ USGS, offer digitized geospatial data

containing terrain elevation, classification (urban, agricultural, forested, etc.),

linear features (roads, power lines, railroads, etc.), and multispectral imagery.

Several software products are also available to aid in converting and viewing the

data.{

In this chapter, we provide a description of the measured airborne radar data

and terrain data used to demonstrate our approach. We present a method for

registering the radar data with the Earth using a more accurate elliptical Earth

model. We describe an automated secondary data selection algorithm based on

terrain classification. We include a description of the corrections applied to the

radar data in order to account for some variations encountered with our approach.

We present issues related to range-Doppler spread and propose a solution.

Finally, we show results comparing our approach of secondary data selection

with the sliding window method.

6.8.2. RADAR AND TERRAIN DATA

Measured airborne radar data, for this research, was obtained from the AFRL

Sensors Directorate’s Multi-Channel Airborne Radar Measurements (MCARM)

program.9 The datasets consist of multi-channel clutter data collected by an

airborne platform with a side looking radar. The radar was configured with a 2 by

11 channel linear array including sum and delta analog beamformers. MCARM

operated at L-Band, in low, medium, and high pulse repetition frequency (PRF)

modes. It had a range resolution of approximately 120 m with about 500 range

bins of data. Each coherent processing interval (CPI) consisted of 128 pulses and

the clutter was typically unambiguous in Doppler. Northrop Grumman collected

the data during flights over the Delmarva Peninsula and the East coast of the

United States in the mid-1990s. There were eleven flights with an in-scene

moving target simulator (MTS) in some of the data collection experiments. The

MTS transmitted five Doppler tones (0, 2200, 2400, 2600, and 2800 Hz) and

was used as the basis for evaluating our results.

‡ To obtain more information go to http://www.nga.mil.
§ To obtain more information go to http://www.usgs.gov.
{A versatile and inexpensive product is available from Global Mapper Software, LLC. at http://www.

globalmapper.com.
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Digital terrain data was obtained from the USGS to classify the ground

environment illuminated by MCARM. National Land Cover Data (NLCD) was

chosen, which has 21 terrain classifications and a spatial resolution of 30 m.10

(Each 30 by 30 meter area is given a classification.) The terrain is hierarchically

grouped by major classifications, such as, urban areas, barren land, water, etc.,

and subgrouped into minor classifications, such as, high intensity residential

urban areas, low intensity residential urban areas, etc. These data were collected

in the 1990s at about the same time as the MCARM experiments. As part of our

effort, the NLCD data was converted to an unprojected geographic coordinate

system (latitude and longitude) and stored in a relational database for flexible

search and retrieval. Other available terrain datasets that provide elevation and

linear feature information were not used in this chapter because the Delmarva

Peninsula is relatively flat and the NLCD data already contains some information

about major roads, bridges, and railroads. However, these additional datasets

should be considered especially in mountainous environments or areas where

more detailed information about linear features are required.

6.8.3. APPROACH

6.8.3.1. STAP Algorithm

In order to test our approach, we chose to implement a single-bin post-Doppler

STAP algorithm.11 Although it has been shown in Ref. 12 that heavy Doppler

tapering is needed and that multibin postDoppler performance is theoretically

better, the single-bin algorithm requires less sample support. The algorithm also

nonadaptively suppresses main beam ground clutter and localizes, at the Doppler

of interest, competing ground clutter in angle (see Figure 6.72). As a result, the

terrain, presumably causing the dominant interference, is confined to a narrow

Test Cell

Main Beam Doppler of Interest

Clutter

FIGURE 6.72 Location of competing ground clutter with single-bin post-Doppler STAP

algorithm.
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angular region. Therefore, instead of comparing terrain within the entire range

ring under test with other range rings, we compared just the competing range-

Doppler cell at the Doppler of interest with cells along the same iso-Doppler.

6.8.3.2. Registration of the Radar with the Earth

Registration of the radar with the Earth was performed to determine the terrain

illuminated by the MCARM radar during a CPI. A system of three nonlinear

equations was developed to calculate the position of a point on the Earth given a

slant range, a Doppler frequently, and an oblate spheroid (elliptical) model of the

Earth. Figure 6.73 illustrates the geometry of the problem.

An Earth-Centered Earth-Fixed (ECEF) geographical coordinate system was

used. The point Pr(xr,yr,zr) represents the position of the radar while the point on

the Earth to be determined is designated as Pe(x,y,z). Also shown in Figure 6.73 is

the slant range, Rs, to point Pe and the iso-Doppler of interest (represented as a

dashed line).

Assuming the radar is flying slower than the maximum unambiguous Doppler

velocity, the intersection of the slant range with the iso-Doppler contour and the

Earth’s surface occurs at two points, Pe and a mirror point on the iso-Doppler.

However, since the radar data was gathered by a side-looking radar we need only

determine the location of one of the two points depending on the orientation of

the radar platform.

The first equation is related to the slant range and is simply the Euclidian

distance between points Pe and Pr. The functional form of the equation is given as

F1ðx; y; zÞ ¼ ðx2 xrÞ2 þ ð y2 yrÞ2 þ ðz2 zrÞ2 2 R2
s ¼ 0 ð6:56Þ

Pr (xr, yr, zr)

Pe (x,y,z )

O (0,0,0)
a

b

Rs

FIGURE 6.73 Registration geometry.
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The second equation represents the iso-Doppler contour on the Earth and

takes the form,

F2ðx; y; zÞ ¼ ðx2 xrÞnrx þ ð y2 yrÞnry þ ðz2 zrÞnrz 2 fdlRs

2
¼ 0 ð6:57Þ

where nrx, nry, nrz are the components of the radar’s velocity vector, fd is the

Doppler frequency and l is the wavelength of the radar. The last equation models

the Earth’s surface as an oblate spheroid and is defined as,

F3ðx; y; zÞ ¼ x2

a2
þ y2

a2
þ z2

b2
2 1 ¼ 0 ð6:58Þ

where a and b are the semi-major and semi-minor radii of the Earth,

respectively. Values for these parameters were obtained from the WGS84 (also

known as GRS80) world geodetic datum because they were used by the USGS

to define the coordinates of the terrain data. However, depending upon where

registration is to be performed on the Earth, there may be a more accurate local

datum available.

In order to find solutions for x, y, and z, an iterative Newton-Raphson

method13 was used until the method converged to a solution within a certain

tolerance. The initial point of the iteration was calculated from a spherical Earth

model and was chosen to be near the point of interest, Pe. This helped the

Newton–Raphson method converge to Pe instead of its mirror point. A check was

done to ensure the result was on the correct side of the radar platform.

Atmospheric propagation effects such as ducting were not modeled in this

chapter. In addition, the elevation of the terrain was not included since the area

was relatively flat and close to sea level.

6.8.3.3. Data Selection

Once the registration algorithm was complete, it was used to determine the

locations of the boundary points along the iso-Doppler of interest, corresponding

to each range-Doppler cell. The points were then converted from ECEF coor-

dinates to geographic coordinates and used to query the NCLD terrain database.

The query returned a count of each of the 21 terrain classifications contained

within the boundary points. The result obtained for each cell was stored in a vector

and normalized to account for the variation in area of the range-Doppler cells.

After each of the range-Doppler cell terrain vectors was computed, a com-

parison was made with the test cell vector using an Euclidian distance measure.

The cells whose terrain vector was closest to the test cell’s were selected.

6.8.3.4. Corrections for Visibility

One of the advantages of the sliding window method of secondary data selection

is that the data, including the test cell, are very close in range. As a result, it is

less susceptible to variations in power due to range, clutter reflectivity due to
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grazing angle, and Doppler frequency due to array misalignment with the radar’s

velocity vector.11,14 Since our approach may choose secondary data that spans a

larger range extent, corrections were applied to the radar data to account for these

variations. The corrections were also applied for the sliding window method.

6.8.3.5. Secondary Data Guard Cells

As part of our approach, issues concerning range-Doppler spread were addressed.

During the analysis of the MCARM data containing the MTS simulated targets,

we noticed that a certain amount of range-Doppler spread occurred. This may

have been caused by numerous factors. As a result, cells experience signal

contamination from neighboring cells. This violates the requirement that

secondary data be independent and identically distributed (i.i.d.) when used in

estimating the clutter covariance matrix. In order to mitigate this effect, guard

cells were placed around the range-Doppler cells selected for secondary data.

Excluding these secondary data guard cells (SDGC) is analogous to the standard

practice of placing guard cells around the test cell. The number of SDGC used

was chosen by the amount of spread measured.

6.8.4. RESULTS

The results presented compare the sliding window method of secondary data

selection to our knowledge-aided approach. A single CPI from flight 5, acquisi-

tion 151, of the MCARM program, was processed, which contains simulated

target signals from the MTS. A modified sample matrix inversion (MSMI) test

statistic15 is plotted versus range bin for each of the results obtained. The ratio of

the MTS signal’s MSMI value to the range averaged MSMI value is our preferred

performance measure (PPM) in this work.

In Figure 6.74, all 22 channels of the MCARM array were used for STAP.

A total of 44 secondary data samples was chosen for the estimation of the
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FIGURE 6.74 Using full array. (a) Sliding window method. (b) Knowledge-aided

approach.
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covariance matrix. Guard cells were placed around the cell under test. However,

no secondary data guard cells were excluded. The simulated target is located at

range bin 450 (see arrow) and its MSMI value and PPM are given in each figure.

The range averaged MSMI value is also given and represented by a dashed line.

The PPM of our knowledge-aided approach, as illustrated in Figure 6.74, was

approximately 4.7 dB better than the sliding window method. Notice that the

knowledge-aided approach not only raised the MSMI value of the target but it

also lowered the range averaged MSMI statistic.

As mentioned above, there was some range-Doppler spread in the radar data.

Figure 6.75 shows the results obtained when guard cells are placed around the

secondary data as well as the cell under test. It can be seen that the range-averaged

MSMI value is significantly lowered, in both cases, by 6 to 8 dB. Furthermore,

the PPM of the simulated target, using the sliding windowmethod and SDGC, was

almost 3 dB better. However, the knowledge-aided approach did slightly poorer

with SDGC. This may be caused by the reduction in sample support due to
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elimination of the guard cells from use as secondary data. Since the knowledge-

aided approach may choose secondary data farther in range from the test cell than

the slidingwindowmethod, the added constraint of SDGCmay not be beneficial in

some cases.

In Figure 6.76, the returns from only the top row of the MCARM array,

consisting of 11 of the 22 available channels, were used for STAP to compensate

for the reduction in available secondary data because of SDGC. Although this

reduces the number of degrees of freedom for the adaptive filter, it also reduces

the amount of sample support needed from 44 samples to 22. The results show an

increase in performance, for both cases, compared to the previous results, and a

best performance with the knowledge-aided approach.

6.8.5. CONCLUSION

We have presented a knowledge-aided approach utilizing terrain data to select

secondary data for STAP. Measured airborne radar data from AFRL Sensors

Directorate’s MCARM program and digital terrain data from the USGS were

used to evaluate this approach. Corrections were applied to the radar data due to

variability in factors affecting the clutter returns. Guard cells were placed around

secondary data to mitigate the real world effects of range-Doppler spread.

A single-bin postDoppler STAP algorithm was chosen and a comparison was

performed between the standard sliding window method and the knowledge-

aided approach. The results illustrate the benefits of using terrain information,

a priori data about the radar, and the importance of statistical independence when

selecting secondary data for improving STAP performance.

Further study is needed to determine how well terrain classification data

correlates with airborne radar clutter statistics. Other types of terrain data should

be studied as well in order to explore their potential as an aid for STAP.

Future work will also include integrating this novel approach into the

AFRL Signal Processing Evaluation, Analysis and Research (SPEAR) Testbed,

configuring and evaluating it with several STAP algorithms and measured GMTI

radar datasets. The SPEAR Testbed provides a means of assessing performance

against a variety of signal processing metrics to aid in the comparison of multiple

competing adaptive signal processing approaches.

Additionally, SPEAR allows detection data to be input into several GMTI

tracking algorithms giving the user the ability to capture performance metrics

at the tracking stage. This unique ability—to correlate signal processing and

tracking metrics across a diverse set of signal processing algorithms, measured

and simulated datasets, and knowledge sources—provides a compelling means to

demonstrate the effectiveness of this technology to the warfighter.
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7 Introduction

M. M. Weiner

Part II Adaptive Antennas discusses implementation of the second of three

sequentially complementary approaches for increasing the probability of

detection within at least some cells of the surveillance volume for external

“noise” which can be either Gaussian or non-Gaussian in the spatial domain but is

Gaussian in the temporal domain. This approach, identified in the preface as

Approach B and also known as space–time adaptive processing, seeks to reduce

the competing electromagnetic environment by placing nulls in its principal

angle-of-arrival and Doppler frequency (space–time) dimensions. This approach

utilizes, k ¼ NM samples of signals from N subarrays of the antenna, over a

coherent processing interval containing M pulses to (1) estimate in the space–

time domain, an NM £ NM “noise” covariance matrix of the subarray signals,

(2) solve the matrix for up to N unknown “noise” angles of arrival and M

unknown “noise” Doppler frequencies, and (3) determine appropriate weighting

functions for each subarray which will place nulls in the estimated angle-of-

arrival and Doppler frequency domains of the “noise”. Approach B is a form of

filtering in those domains. Consequently, the receiver detector threshold can be

reduced because the average “noise” voltage variance of the surveillance volume

is reduced. The locations and depths of the nulls are determined by the relative

locations, strengths of the “noise” sources in the space–time domain and by the

differences between the actual and estimated “noise” covariance matrices. The

results are influenced by the finite number k of stochastic data samples and the

computational efficiency in space–time processing of the samples. Part II

Adaptive Antennas addresses these issues and presents physical models for

several applications.

Chapter 8 discusses, the Joint-Domain Localized General Likelihood Ratio

(JDL-GLR) algorithm “as an attractive solution to the problem of the joint-

domain optimum space–time processor of high order (NS spatial channels £ Nt

pulses in a coherent processing interval) with a fast convergence rate and high

computational efficiency, together with such highly desirable features as the

embedded constant false-alarm rate (CFAR) and robustness in non-Gaussian

clutter/interference”.

Chapter 9 presents a practical design of a smart antenna for high data-rate

wireless systems. An adaptive antenna utilizes space–time adaptive processing,

to minimize its radiation patterns in the direction or directions of external
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electromagnetic “noise”. A smart antenna, on the other hand, utilizes either

space–time adaptive processing or up-dated knowledge (assuming such

information is available) of the location of interferers to achieve the same

objective. A smart antenna is therefore, a more general class of antenna but not

necessarily is as complex or effective as an adaptive antenna.

Chapter 10 presents applications of adaptive antennas for cancellation of

jammer multipath and main beam and side lobe jamming (Section 10.1, Section

10.4, Section 10.5, Section 10.10); clutter reduction (Section 10.2, Section 10.3,

Section 10.6, Section 10.8, 10.9); improved monopulse patterns (Section 10.7);

and improved search and track (Section 10.11). Chapter 10 is based on physical

models assuming that the clutter is statistically homogeneous. It is assumed that

the clutter and jammer covariance matrix estimates (based on a finite number of

samples) yield a good approximation to the true covariance matrix of the physical

model. Of course, the physical model is only as good as its representation of the

real-life surveillance-volume clutter physics. With the exception of Section 10.6,

no experimental data is presented in Chapter 10. In real-life situations, often the

surveillance volume is not statistically homogeneous, its clutter physics is

different from the assumed physics, and the number of available samples are too

few. The methodologies of Part I and Chapter 8 address these real-life situations.

Therefore, the use of those methodologies, together with physical models of

Chapter 10, are expected to yield real-life experimental results which are closer to

the optimistic theoretical results, predicted by physical models of Chapter 10.
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8.1. INTRODUCTION

For detection of weak targets in strong clutter/interference of complicated angle-

Doppler spectrum, it is highly desirable for an airborne radar system to have the

optimum or near optimum performance. As the clutter or interference spectrum is

unknown to the system and the clutter or interference environment may be

varying in time and space, i.e., non stationary and non homogeneous, the signal

processor must be adaptive with a sufficiently fast convergence-rate.

Consider a system, which employs Ns spatial channels (subarrays of a phased-

arrays) and has Nt pulses in its Coherent Processing Interval (CPI). The optimum

processor or the Neyman–Pearson’s likelihood ratio test for such a system, is

well developed in Ref. 1 under the assumption of Gaussian clutter or interference.

This processor, to be referred to as the joint-domain optimum processor in

this chapter, has the highest performance potential which can be approached

by adaptive algorithms such as the Sample-Matrix-Inversion (SMI),2 the

421

© 2006 by Taylor & Francis Group, LLC



Generalized Likelihood Ratio (GLR),3,4 and the Modified SMI.5,6 To approach

this detection performance potential, however, these algorithms require the

training-data set (i.e., the so-called secondary data set) to have at least 2NsNt ,
3NsNt independent and identically distributed (iid) data vectors. Obviously, such

a training-data size requirement is impractical even for moderate Ns and Nt, as the

environment in which an airborne surveillance system operates, is usually

severely nonstationary and nonhomogeneous. Besides, the computational load

can easily become unbearable in practice since it is proportional to ðNsNtÞ3: One
should also note that, lowering Ns and Nt is not necessarily desirable in practice as

the performance potential critically depends on these when the angle-Doppler

spectrum of the clutter or interference is complicated.

The more popular approach to space–time processing can be classified as

cascade processing with either the beamformer-Doppler processor configuration

or the opposite order configuration. In this chapter, the former will be called the

Space– time (S–T) configuration and the latter the Time–Space (T–S)

configuration. Obviously, the optimum detection theory can be applied

separately to spatial and temporal parts of S–T and T–S configurations, together

with various adaptive algorithms available for each part. Of course, the

convergence-rate and computation load problems associated with adaptive

implementation of the joint-domain optimum processor also appear with the

cascade configurations, only to a lesser extent. When the convergence occurs, the

performance of an adaptive implementation with the S–T or T–S configuration

should approach that of the optimum processor with the same configuration.

Cascade processing, especially the S–T configuration, has been so popular in

recent years that it seems to replace the joint-domain processor in the airborne

surveillance application. Arguments can often be heard about which cascade

configuration has higher detection performance potential.

The first objective of this chapter is to show that

(1) None of the two cascade configurations is better than the other, and

(2) the performance potential of cascade configurations can fall far below

that of the joint-domain optimum processor. In other words, we show

that if one wants to approach the highest performance potential offered

by the joint-domain optimum processor, both cascade configurations

should be avoided.

As pointed out earlier in this section, it is difficult in practice to approach the

performance potential of the joint-domain optimum processor with the

straightforward application of adaptive algorithms such as the SMI, Modified

SMI, GLR, etc., especially in a severely non stationary and non homogeneous

environment, even if the heavy real-time computation could become affordable.

Therefore, the second objective of this chapter is to develop a new adaptive

algorithm for the joint-domain optimum processor, which should be more data-

efficient and computationally efficient than the aforementioned ones. This new
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algorithm is an extension of our recent work reported in Refs. 7 and 8 for adaptive

Doppler-domain processing.

We will first formulate the data model in Section 8.2. In Section 8.3 we will

compare the performance potentials of the cascade and joint-domain processors.

The new adaptive algorithm for the joint-domain optimum processor is presented

in Section 8.4, together with its performance analysis and comparison. Finally,

Section 8.5 summarizes the conclusions with some discussion of related issues.

8.2. DATA MODELLING

Consider a narrowband antenna array with Ns spatial channels (subarrays). Each

channel receives Nt data samples corresponding to the return of a train of Nt

coherent pulses for a given range cell. Let the column vector xtns , Nt £ 1,

represent the Nt baseband complex (I/Q) data samples of the nsth channel. The

data matrix X, Nt £ Ns, is defined by

X ¼ ½xt1xt2…xtNs
	 ¼

xTs1

xTs2

..

.

xTsNt

266666664

377777775 ð8:1Þ

where “T ” denotes the transpose and the row vectors of X, xTsnt , nt ¼ 1; 2;…;Nt,

are the “snapshots” obtained along the spatial channels.

Under the signal-absence hypothesis H0, the data matrix X consists of clutter

or interference and noise components only, i.e.,

X ¼ Cþ N ð8:2Þ
where C and N represent the clutter or interference and noise, respectively, and

are assumed to be independent. Under the signal-presence hypothesis H1, a target

signal component also appears in the data matrix, i.e.,

X ¼ aSþ Cþ N ð8:3Þ
where a is an unknown complex constant representing the amplitude of the signal

and S the signal matrix of a known form. We call X the primary data set as it is

from the range cell under the hypothesis test.

For simplicity of discussion only, we assume that the spatial channels are

collinear, identical, omni-directional, and equally spaced with spacing d; and

that the pulses of the coherent pulse trains are identical with a constant

Pulse Repetition Frequency (PRF). Under these assumptions, the ntnsth entry

of the signal matrix S has the following form

sðnt; nsÞ ¼ exp i2pðnt 2 1Þ 2v

lPRF
þ i2pðns 2 1Þ d sin u

l

� �
ð8:4Þ
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where v is the radial velocity of the target, u the direction of arrival of the target-

return planewave with respect to the broadside of the array, and l the radar

wavelength. Denoting

fst ¼ 2v

lPRF
ð8:5Þ

as the “normalized Doppler frequency” of the target signal, and

fss ¼ d sin u

l
ð8:6Þ

as the “spatial frequency,” S can be expressed by

S ¼ sTs ^ st ð8:7Þ

where: ^ is the Kronecker tensor product, and

st ¼ ½ 1, expði2pfstÞ, · · · , expði2pðNt 2 1ÞfstÞ 	T ð8:8Þ

and

ss ¼ ½ 1, expði2pfssÞ, · · · , expði2pðNs 2 1ÞfssÞ 	T ð8:9Þ

are the signal vectors in time and space domains, respectively.We assume that the

parameters PRF, l, and d have been properly chosen so that fst and fss are confined
within [20.5, 0.5].

To statistically characterize the clutter or interference and noise components

C and N, we introduce the notation Vec(·) for a matrix operation that stacks the

columns of a matrix under each other to form a new column vector. We assume

that the NtNs £ 1 vector Vec(C þ N) has a multivariate complex-Gaussian

distribution with zero mean and a covariance matrix R. Under this assumption,

xtns , ns ¼ 1; 2;…;Ns and xsnt , nt ¼ 1; 2;…;Nt will also be complex zero-mean

Gaussian. Let Rt and Rs be the covariance matrices of xtns and xsnt , respectively.

It is easy to see that Rt and Rs are the submatrices of R.
In the cases of unknown clutter or interference statistics, the data from the

adjacent range cells, conventionally referred to as the secondary data set, are also

needed for estimating the covariance of clutter or interference. Under either

hypothesis H1 or H0, these consist of the clutter or interference and noise

components only, and are denoted by

Yk ¼ Ck þ Nk; Nt £ Ns; k ¼ 1; 2;…;K ð8:10Þ
where K is the number of range cells available. We assume that Yk, k ¼ 1,2,…,K

and X are independent of each other and bear the same clutter or interference

statistics, i.e., VecðYkÞ should also have a complex-Gaussian distribution with

zero mean and a covariance matrix R.
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8.3. DIFFERENCE AMONG THE PERFORMANCE POTENTIALS

OF THE CASCADE AND JOINT-DOMAIN PROCESSORS

We will compare the detection performance potentials of the two cascade

configurations and the joint-domain processor under the assumption that the

clutter- or interference-plus-noise covariance matrix is known. With the known

covariance, the S–T configuration is the Nsth order optimum spatial processor

followed by the Ntth order optimum temporal (Doppler) processor, the T–S

configuration takes the opposite cascade, and the joint-domain processor is the

NsNtth order optimum processor. Applying the result in Ref. 1 to the above three,

we list the optimum weight vectors below for easy reference.

The S–T configuration: we have

ws;s– t ¼ cs;s– tR
21
s ss ð8:11Þ

for the spatial domain weight vector, and

wt;s– t ¼ ct;s– t½ðwH
s;s– t^IÞRðws;s– t^IÞ	21st ð8:12Þ

for the temporal domain weight vector, where cs;s– t and ct;s– t are constants.

We recall that Rs and Rt are the covariance matrices for the rows and columns

of X, respectively, and ss and st are specified by Equation 8.8 and Equation 8.9.

The test statistic is

hs– t ¼ wH
t;s– tXw

p
s;s– t ð8:13Þ

The T–S configuration:

wt;t –s ¼ ct;t –sR
21
t st ð8:14Þ

and

ws;t –s ¼ cs;t –s½ðI^wH
t;t –sÞRðI^wt;t –sÞ	21ss ð8:15Þ

for the temporal and spatial weight vectors, respectively. The test statistic is

ht – s ¼ wH
t;t –sXw

p
s;t – s ð8:16Þ

The joint-domain optimum processor: the whole set of the data is processed

all together by an optimum weight vector as

hJ ¼ wH
J VecðXÞ ð8:17Þ

where wJ is

wJ ¼ cJR
21 ð8:18Þ

with cJ being a constant scalar.
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One should note that the overall weight vectors for the two cascade

configurations can have the following equivalent expressions

ws– t ¼ ws;s– t^wt;s– t ð8:19Þ
and

wt – s ¼ ws;t – s^wt;t –s ð8:20Þ
The squared magnitude of the test statistic is compared with a chosen

threshold h0 which is determined by the required probability of false alarm Pf as

h0 ¼ 2ln Pf ð8:21Þ
and the signal presence is claimed if the test statistic surpasses the threshold.

From the result in Ref. 1, the probability of detection of the above three

processors has the same form below with their own weight vectors, i.e., ws– t,

wt –s, and wJ to replace w therein

Pd ¼ 12 expð2gÞ
ðh0

0
expð2tÞI0ð2

ffiffiffi
gt

p Þdt ð8:22Þ

where:

g ¼ lal2
wHssHw

wHRw
ð8:23Þ

and I0(·) denotes the zeroth order modified Bessel function of the first kind.

The key to achieving the objective of the comparison easily is to identify a

few typical cases, from the vast number of varieties of clutter or interference

conditions, which are also simple enough for numerical evaluation. To do so, the

following specifics are necessary.

(1) The covariance matrix of the receiver noise is given by

EðVecðNÞVecðNÞHÞ ¼ s 2
nI ð8:24Þ

with I being the NtNs £ NtNs identity matrix.

(2) The clutter or interference is assumed to have a two-dimension power

spectral density of the Gaussian shape centered at ½ fct; fcs	

Pcð ft; fsÞ ¼ s 2
c

1

2psftsfs

exp 2
ð ft 2 fctÞ2

2s 2
ft

þ ð fs 2 fcsÞ2
2s 2

fs

{ !" #
ð8:25Þ

where: ft and fs are the normalized Doppler frequency and spatial

frequency, respectively, and sft
and sfs

the parameters controlling the

spread of the clutter or interference spectrum. The separation between
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the signal and the centre of the clutter or interference spectrum is

denoted by Dft ¼ fst 2 fct and Dfs ¼ fss 2 fcs:
(3) The covariance of the clutter or interference corresponding to the above

spectrum is then found to be

EðVecðCÞVecðCÞHÞ ¼ s 2
cCs^Ct ð8:26Þ

where Ct and Cs are Toeplitz matrices specified by

Ct ¼Toeplitz{½1, e22ðpsftÞ22i2pfct , · · · , e22ðpsftðNt21ÞÞ22iðNt21Þ2pfct 	}
ð8:27Þ

and

Cs ¼Toeplitz{½1, e22ðpsfsÞ22i2pfcs , · · · , e22ðpsfsðNs21ÞÞ22iðNs21Þ2pfcs 	}
ð8:28Þ

respectively. It is easy to verify that Equation 8.24 and Equation 8.26

will lead to Rt ¼s 2
cCtþs 2

nI and Rs ¼s 2
cCsþs2

nI:

We define the clutter/interference-to-noise-ratio (INR) and signal-to-

clutter/interference-plus-noise-ratio (SINR) by

INR ¼ s 2
c

s 2
n

ð8:29Þ

and

SINR ¼ lal2

ðs 2
n þ s 2

cÞ
ð8:30Þ

Three simple cases are identified below in each of which at least one of the

cascade configurations suffers severe performance degradation, i.e., significantly

departing from the joint-domain optimum.

Case 1. The signal and interference are “well” separated in the angle domain

(in the sense that Dfs . 1=Ns) but close to each other in the Doppler-domain

ðDft , 1=NtÞ. This situation is shown in the subplot in Figure 8.1. The detection

performance vs. SINR for the three processors are plotted in Figure 8.1 with

INR ¼ 40 dB and Pf ¼ 1025. The S–T configuration shows almost the same

performance potential as the joint-domain optimum in this special case, while the

performance loss for the T–S configuration becomes significantly large.

Case 2. The signal and interference are “well” separated in the Doppler-

domain but close to each other in the angle domain, as indicated by the subplot in

Figure 8.2. The T–S configuration is now close to the joint-domain optimum

while the S–T configuration departs significantly.
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Case 3. The clutter or interference spectrum has two peaks with one close to

the signal in the angle domain while the other in the Doppler-domain. In this case

both cascade configurations fail to approach the joint-domain optimum, as shown

in Figure 8.3.
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FIGURE 8.1 Performance comparison of the three processing configurations: case 1.
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FIGURE 8.2 Performance comparison of the three processing configurations: case 2.
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The above three cases are typical in the sense that we can draw from them the

following conclusions:

(1) none of the two cascade configurations is better than the other, and

(2) the performance potential of both cascade configurations can fall far

below that of the joint-domain optimum processor.

Intuitively, the above conclusions are also well justified. The T–S

configuration in Case 1 suppresses the signal as well as the clutter

(or interference) as these have little separation in the Doppler frequency domain,

so does the S–T configuration in Case 2 in the angle domain. As both Case 1 and

Case 2 can appear in practical situations without a priori knowledge, preselection

of either cascade configuration is thus not appropriate. In Case 3, the signal and

clutter (or interference) have little separation in either of the two domains, which

results in the failure of both cascade configurations. However, the separation in

the joint-domain in Case 3 is still sufficiently large to lead to the success of the

joint-domain optimum processor. As an airborne system has to deal with clutter

or interference having angle and Doppler spectral spread, it is thus important to

make full use of the signal and clutter (or interference) separation, which cannot

always be achieved by either of the two cascade configurations.

Although our study so far in this chapter is centered around the

detection performance potentials, i.e., under the assumption of known clutter

or interference statistics, it is sufficient for us to direct our attention only to the

adaptive implementation of the joint-domain optimum processor, since the two

cascade configurations have been shown to have limited potentials. This will
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FIGURE 8.3 Performance comparison of the three processing configurations: case 3.
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be the focus of the remaining part of this chapter. Before we proceed, we should

point out that, in addition to the problem of limited potentials, the two cascade

configurations may have other serious problems of practical importance which

are associated with their adaptive implementations, e.g., the difficulty to

achieve a high-quality Constant False Alarm Rate (CFAR). This issue will be

briefly discussed later in Section 8.5 to preserve the continuity of our main

course.

8.4. THE JDL–GLR ALGORITHM

As pointed out in the introduction, the straightforward application of available

adaptive algorithms such as the SMI, Modified SMI, and GLR, etc., has

considerable difficulty to approach the joint-domain optimum processor in

practice, especially in severely non stationary and non homogeneous environ-

ments. Our goal here is to develop an adaptive implementation which is more

data-efficient (in the sense of faster convergence or requirement of fewer training-

data) as well as more computationally efficient. In addition, it is highly desirable

in practice to have the adaptive algorithm possess an embedded CFAR feature

and a low sensitivity to the deviation of the clutter or interference distribution

from the assumed Gaussian.

To achieve the above goal we will follow the idea of localized adaptive

processing as presented in Refs. 7 and 8 for adaptive MTD. Although this idea is

similar to that of beam-space processing in Refs. 9–11 under the term of partially

adaptive array processing, the work in Refs. 7 and 8 distinguishes itself from the

previous study on beam-space processing in the following ways. Refs. 7 and 8 are

the first to point out that, for the cases of limited training-data size, the use of

localized adaptive processing is almost mandatory, and they have shown that

localized adaptive processing can actually outperform fully adaptive processing

in non stationary and non homogeneous environments. Furthermore, Refs. 7 and

8 are also the first to study localized adaptive processing with the detection

performance measure, which is of course the primary concern of surveillance

systems. In contrast, the previous work on beam-space processing focuses on the

steady state performance and uses the signal estimation performance measure. As

the primary concern of this chapter is again detection in severely non stationary

and non homogeneous environments, it is natural to follow the work in Refs. 7

and 8. Of course, the extension represents a non trivial task as indicated by the

complexity of the joint angle-Doppler-domain.

As discussed in Refs. 7 and 8, the localized processing idea can be applied

with a variety of adaptive algorithms such as the SMI, Modified SMI, and GLR.

We will again pick up the GLR because it offers the desirable embedded CFAR

feature as well as possesses the desirable robustness in nonGaussian clutter

or interference.5,6 Hence, the new algorithm presented in this section will be

called the JDL–GLR algorithm, denoting that joint-domain localized (JDL)

processing is used in conjunction with the GLR algorithm.
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8.4.1. THE JDL–GLR PRINCIPLE

Figure 8.4 illustrates the principle of the JDL–GLR processor we propose.

The data in the space–time domain, X, Nt £ Ns is first transformed to the angle-

Doppler-domain. This multi-dimensional transform should be invertible to avoid

any information loss. It can be done most conveniently via the standard

two-dimensional DFT discrete Fourier transform (which is linear and

orthogonal), under the assumption made in Section 8.2 for the spatial channels

and pulse train. One should note that the gaussianarity assumed for X will not be

affected if the transformation is linear. The angle-Doppler-domain data matrix x,
Nt £ Ns, represents the data at the Nt Doppler-bins and Ns angle-bins of the range

cell under the hypothesis test. The same transform is also performed on the

secondary data Yk, k ¼ 1; 2;…;K, where K is the number of adjacent iid cells, to

obtain the angle-Doppler-domain secondary data yk, Nt £ Ns, k ¼ 1; 2;…;K:
In practice, only the few angle-bins covering the angle-section centred at the

broadside of the array (i.e., around the look direction where most of the

transmitted energy is contained) need to be tested, while at most all Doppler-bins

should be tested as the target Doppler frequency shift is unknown to the

processor. Let Ns0 be the number of angle-bins of interest. The Nt £ Ns bins to be

tested, will be divided into L groups, each of which contains Ns0 angle-bins and a

small number of adjacent Doppler-bins. An example for this grouping is given in

Figure 8.5 where Nt ¼ 24, Ns ¼ 12, and Ns0 ¼ 3: We note that the number

of Doppler-bins in each group need not be the same and that some overlap can

also be justified. The purpose of dividing along the Doppler axis is to avoid the

use of an adaptive processor with large degrees of freedom, which demands

• • • • • • • • • •

• • • • • • • • • •
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FIGURE 8.4 Block diagram for illustration of the principle of the JDL–GLR processor.
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a large training-data set as well as a large amount of computation. This

opportunity of “divide-and-conquer” is, of course, made available by the multi-

dimensional transformation from the space–time data domain to the angle-

Doppler-domain, which decouples the degrees of freedom necessary for handling

complicated clutter or interference, from the number of data points to be

processed. Based on our experience gained from the work in Refs. 7 and 8,

the number of bins in each group is expected to have only minor influence on

the detection performance and should be in the range of 2 £ Ns0 , 4 £ Ns0 in

general. The angle-Doppler-domain secondary data yk, k ¼ 1; 2;…;K should be

grouped in the same way.

Let Ntl be the number of Doppler-bins and Nl ¼ Ntl £ Ns0 the total number

of angle-Doppler-bins in the lth group. An Nlth order GLR processor will perform

the threshold detection on the Nl bins of the lth group with the test statistic

hðlÞ
nm ¼ lVecðSSðlÞ

nmÞHR̂21
l VecðxlÞl2

VecðSSðlÞ
nmÞHR̂21

l VecðSSðlÞ
nmÞ½1þ VecðxH

l ÞR̂21
l VecðxlÞ	

_
H1

H0

hð1Þ
0 ;

n ¼ 1; 2;…;Ntl m ¼ 1; 2;…;Ns0

ð8:31Þ

where

R̂l ¼
XK
k¼1

VecðylkÞVecðylkÞH ð8:32Þ

and SSðlÞ
nm, Ntl £ Ns0, is the signal-steering matrix in the angle-Doppler-domain

for the nmth bin of the lth GLR. For a uniform PRF and array spacing, it is easy to

see thatSSðlÞ
nm has all its entries equal to zero except the nmth one which is

ffiffiffiffiffiffi
NtNs
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FIGURE 8.5 An JDL–GLR example.
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We note that the threshold hðlÞ
0 need not be the same across the L groups

as evidenced in Section 8.4.2 below.

8.4.2. THE JDL–GLR DETECTION PERFORMANCE

The detection performance of the original GLR in Gaussian clutter or inter-

ference is given in Refs. 3 and 4 with deterministic modelling and in Ref. 12

with stochastic target modelling. As for the Doppler-domain localized GLR of

Refs. 7 and 8, it is straightforward to extend the results in Refs. 3, 4 and 12 to

obtain the probabilities of detection and false alarm, Pd and Pf , of the JDL–GLR

with both target models. Below we just list the results for the case of non

fluctuating targets with the trivial derivation omitted.

The probability of detection at the nmth bin of the lth GLR is found to be

PðlÞ
d ðn;mÞ ¼

ð0

1
PðlÞ
dlrðn;mÞf ðlÞnmðrÞdr ð8:33Þ

where

PðlÞ
dlrðn;mÞ¼12 ð12hðlÞ

0 ÞK2N‘þ1
XK2N‘þ1

k¼1

K2Ntþ1

k

0@ 1A hðlÞ
0

12hðlÞ
0

{ !k

e2rbðlÞ
nmð12hðlÞ

0
Þ

�
XK21

m¼0

½rbðlÞ
nmð12hðlÞ

0 Þ	m
m!

ð8:34Þ

f ðlÞnmðrÞ¼ ðKÞ!
ðK2Nlþ1Þ!ðNl22Þ!r

K2N‘þ1ð12rÞN‘22 ð8:35Þ

and

bðlÞ
nm¼ lal2VecðSSðlÞ

nmÞHRR21
l VecðSSðlÞ

nmÞ ð8:36Þ
with RR being the covariance matrix of VecðxlÞ:

The probability of false alarm for all bins in the lth GLR is given by

PðlÞ
f ¼ ð12 hðlÞ

0 ÞK2Nlþ1 ð8:37Þ
Obviously the probability of false alarm can be made equal across the

L groups by choosing different hðlÞ
0 , l ¼ 1; 2;…; L: Equation 8.37 also clearly

indicates that, like the original GLR and the Doppler-domain localized GLR, the

JDL–GLR has the “integrated/embedded” CFAR feature as PðlÞ
f , l ¼ 1; 2;…; L

do not depend on the covariance of the clutter or interference.

8.4.3. DETECTION PERFORMANCE COMPARISON

Although the convergence-rate advantage of the JDL–GLR can be seen intuitively

from the fact that the localized GLR’s have much lower degrees of freedom
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than a high-order GLR directly applied to the space–time domain data, the

numerical example below should demonstrate this advantage clearly.

Consider a system with Ns ¼ 12 and Nt ¼ 24: The clutter or interference

is assumed to have the two-dimensional multipeak Gaussian-shaped power

spectrum density (PSD) as shown in Figure 8.6. For convenience of reference

we have also indicated the centre locations of this multipeak spectrum in

Figure 8.5. The exact expression of this PSD is given by

Pcð ft; fsÞ ¼
X6
d¼1

s2
cd

1

2psftsfs

exp 2
ðft 2 fctdÞ2

2s2
ft

þ ðfs 2 fcsdÞ2
2s2

fs

{ !" #
ð8:38Þ

where: s2
cd is the power of the dth component. Obviously, the total clutter

or interference power s2
c is

s 2
c ¼

X6
d¼1

s 2
cd ð8:39Þ

We set s2
c1 ¼ s2

c2 ¼ s2
c4 ¼ s2

c5 ¼ s2
c6 ¼ s2

c3=10
2:5, INR ¼ 50, and

SNR ¼ 0 dB which gives SINR u250 dB. The thresholds for the processors

to be compared are such that every processor has a probability of false alarm

Pf ¼ 1025 at each tested bin. We assume that there are K ¼ 24 adjacent cells

from which the iid secondary data set is obtained.

Consider the following five processors:

(1) the joint-domain optimal,

(2) the JDL–GLR with L ¼ 7 localized GLR processors with their

coverage shown in Figure 8.5,

(3) the T–S configuration with the optimal processor for each part,
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−0.50.5
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fs

FIGURE 8.6 Two-dimensional power spectral density for the clutter or interference used

in the example.
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(4) the S–T configuration with the optimal processor for each part, and

(5) a conventional beamformer followed by the optimal temporal processor

(i.e., the optimal MTI).

We note that with Ns ¼ 12, Nt ¼ 24 but K ¼ 24 only, any straightforward

adaptive implementation of the joint-domain optimal, any adaptive processor

with the S–T configuration, or any adaptive processor with the T–S

configuration will fail to deliver an acceptable detection performance for this

example since K ¼ 24 is too small with respect to their degrees of freedom.

Therefore, these adaptive processors are excluded from the above list for detailed

comparison.

Figure 8.7 shows the probability of detection of the five processors listed in

Figure 8.7, at the sixth angle-bin which is the assumed angle of arrival of the

target signal. Obviously, the JDL–GLR is the only one that approaches the joint-

domain optimal, except at a few bins adjacent to the centre of the strongest clutter

or interference spectrum component. The poor performance of the two optimal

cascade configurations should not be a surprise from the discussion in Section

8.3. The fact shown in Figure 8.7 that the ad hoc processor (BF þ opt. MTI) can

outperform the two cascade configurations (especially the optimal S–T

configuration) is also strong evidence that optimality does not always mean

much with a wrong configuration. The optimal S–T configuration gives the

poorest performance because its spatial processor, in nulling the clutter or

interference, also nulls the target signal. Finally, we comment that a CFAR loss is
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FIGURE 8.7 Detection performance comparison of the five processors.
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inevitably associated with any adaptive implementation of the four optimal or

partially optimal processors in Figure 8.7, while the embedded CFAR feature of

the JDL–GLR makes any other additional CFAR processing unnecessary.

8.4.4. OTHER FEATURES OF JDL–GLR

The computation advantage of the JDL–GLR is clear. Recall that the Nth order

GLR has a computation load proportional to N3. Assume that each localized GLR

spans three angle-bins and four Doppler-bins and that Nt=4 localized GLRs are

required. This leads to a computation load proportional to ðNt=4Þð3 £ 4Þ3 ¼
432Nt for the JDL–GLR. With a load of N3

t N
3
s for the straightforward application

of the GLR to the space–time domain data, the JDL–GLR will show a

computation advantage when Nt . 4 and Ns . 3: For large Nt and Ns the JDL–

GLR offers a computation load reduction by a factor of

g ¼ N2
t N

3
s =432 ð8:40Þ

For the example of Nt ¼ 24 and Ns ¼ 12 in this section, the JDL–GLR’s

computation load is only 1/2304th of that for the straightforward application of

the GLR (or SMI) to the space–time domain data. Like the Doppler-domain

localized GLR in Refs. 7,8, the JDL–GLR can further reduce its computation

load via deleting the localized GLR processors for the region where the detection

performance improvement is unnecessary or impossible. This can be done when

some a priori information is available about the power concentration of the

clutter or interference in the angle-Doppler-domain. Furthermore, the realization

of the JDL–GLR benefits from the available parallel processing techniques as its

localized GLRs all operate in parallel.

Since the robustness feature in non Gaussian clutter or interference resides

with the GLR processor which will not be affected by the linear transformation,

the JDL–GLR is expected to maintain its robustness. Computationally intensive

simulation is being conducted to confirm this feature and the result will be

published separately.13

8.5. CONCLUSIONS AND DISCUSSION

This chapter shows:

(1) none of the two cascade configurations is better than the other;

(2) the performance potential of both cascade configurations can fall far

below that of the joint-domain optimum processor; and

(3) the JDL–GLR algorithm offers an attractive solution to the problem of

approaching the performance potential of the joint-domain optimum

processor of a high order ðNs £ NtÞ with a fast convergence-rate and

high computation efficiency, together with such highly desirable

features as the embedded CFAR and robustness in nonGaussian clutter

or interference.
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We would like to point out that both cascade configurations may have

considerable difficulty to achieve a high-quality CFAR in practice when spatial

and temporal parts are both adaptive. This is because of the random modulation

introduced by the adaptive algorithm for the early part of the cascaded two parts.

The problem may become more severe in highly nonstationary and non-

homogeneous environments where there is a shortage of a sufficient amount of iid

training-data to smooth out the extra random modulation. In contrast, the JDL–

GLR presented in this chapter is free of such random modulation and can

maintain its CFAR performance with a much smaller amount of iid training-data.

Simulation-based comparison, of the CFAR performance of adaptive spatial–

temporal processors, can be found in Ref. 13.
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9 A Printed-Circuit Smart
Antenna with
Hemispherical Coverage
for High Data-Rate
Wireless Systems

G. Ploussios

Whereas an adaptive antenna utilizes space–time adaptive processing to

minimize its radiation pattern in the direction or directions of external

electromagnetic “noise”, a smart antenna utilizes space–time adaptive proces-

sing or up-dated knowledge (assuming such information is available) to achieve

the same objective. A smart antenna is therefore a more general class of antenna

but not necessarily as complex or effective as an adaptive antenna. This chapter

describes a recently disclosed1 smart antenna that is well-suited to high data-rate

wireless systems.

This two-port, four-element antenna consists of a unique element

configuration and microstrip-feed which provides angle and polarization

diversity in an efficient, low-cost, minimum size package (a cylindrical volume

0:1l0 high £ 0:6l0 in diameter) operating at free-space microwave wavelengths

l0 < 3 to 30 cm. The antenna has a radiation pattern that is approximately

uniform over the entire upper hemisphere and has an operating bandwidth of 10

to 25%. The antenna is well-suited for high data-rate wireless systems on fixed or

mobile platforms subject to interference and multipath fading. Conventional

designs are of either (a) comparable volume with more restricted angular

coverage (very poor low-angle coverage) and limited system bandwidth or (b)

comparable performance but more costly and bulky (several times larger in

volume), and therefore impractical for most of the applications.

The antenna [Figure 9.1(a and b)] consists of two pairs of elements, the pairs

oriented at 908 in azimuth from each other, and each pair (designated a “doublet”)

with its own port. Each element of the doublet is a quarter-wave resonant bent

monopole with a common ground plane oriented in the direction of the horizon.
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Each bent element, comprising an electrically short vertical segment (< 0:1l0)
and a larger horizontal segment ð< 0:15l0Þ; radiates nearly uniformly over the

entire upper hemisphere because each segment has approximately the same peak

gain.2 The two vertical segments of each doublet are separated in space from each

other by approximately 0:5l0; are each fed approximately 1808 out-of-phase

(0:5l in the dielectric substrate) with each other by a microstrip transmission line

circuit, and have a combined figure-eight azimuthal pattern with coverage near

the horizon but no overhead coverage. The two horizontal segments of each

doublet have a figure-eight azimuthal pattern with overhead coverage but reduced

Port 2

PC feed line

Bent monopole

PC board
metallic surface

Dielectric
substrate

a + l /2

≈ l 0/2

(a)

Dielectric
substrate

PC board metallic surface-
antenna ground plane

PC feed line

Bent monopole doublet currents

l = Wavelength in dielectric substrate

s ≈ 0.15 l0

h ≈ 0.1 l0

l0 = Free-space wavelength

s
h

(b)

a Port 1

≈ l0 /2

FIGURE 9.1 Smart antenna configuration: (a) bent monopole elements and feed lines,

(b) monopole doublet currents.
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FIGURE 9.2 Single-port azimuthal patterns: (a) Eu and Ef polarizations (at an elevation

angle u ¼ 308) at one port of Figure 9.1. The second port patterns are rotated 908.
(b) Circular polarization (at elevation angles u ¼108, 308, 608, 708, and 908) formed by

combining, with a 908 combiner, the outputs of the two ports of Figure 9.1.
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coverage near the horizon. The net result is that each port has figure eight

azimuthal patterns for Eu and En polarization components [Figure 9.2(a)]. The

single-port principal plane Eu and En elevation patterns are very broad, peaking

overhead and then decreasing by 3 and 8 dB, respectively, at the horizon. The two

ports collectively produce Eu and En free-space coverage with nearly uniform

gain over the entire upper hemisphere. When combined with a 908 combiner, the

two ports produce a single-port circularly polarized output with nearly uniform

hemispherical coverage [Figure 9.2(b)]. Each of the Eu and Ef components (not

shown) of the circularly polarized output, has similar hemispherical coverage,

nominally reduced in power by approximately 3 dB. Alternately, the ports can be

(a) selected for maximum ratio of signal-to-interference plus noise, or (b) linearly

combined to generate elliptically polarized patterns. In summary, the small smart

antenna configuration of Figure 9.1 provides both polarization and angle diversity

(including the nulling of interfering signals). The stand-alone antenna

configuration of Figure 9.1 can also be arrayed to form a high-gain smart antenna.
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10.1. CANCELLATION OF SPECULAR AND DIFFUSE JAMMER

MULTIPATH USING A HYBRID ADAPTIVE ARRAY

(R. L. FANTE)

10.1.1. INTRODUCTION

Most analyses1,4 of adaptive cancellation of strong jammers consider only the

direct signal from the jammer, and ignore any multipath components5 scattered

from the Earth. For a smooth Earth the multipath consists of only a single time-

delayed, specularly reflected ray, but for a rough Earth the multipath consists6 of

many time-delayed, diffusely reflected components. The question then arises as to

how one can cancel both the direct jammer signal and these multiple reflections.

There are a number of choices: one can add more spatial degrees of freedom to the

adaptive array, more temporal degrees of freedom, or a combination of both.

Additional spatial degrees of freedom can be achieved by using additional

auxiliary antenna elements. The additional temporal degrees of freedom can be

achieved by using bandwidth partitioning (with a separate adaptive loop in each

subband), an adaptive finite impulse response (FIR) filter,5 or a hybrid system that

uses both bandwidth partitioning and adaptive FIR filters. This work is devoted to

a study of such hybrid systems. In particular, we study an ideal two-element array

that uses bandwidth partitioning in both the main and auxiliary channels, with an

Mth-order adaptive FIR filter in each subband of the auxiliary. We then study the

ability of this system to cancel specular, moderately diffuse and diffuse multipath,

and perform tradeoffs to determine what combinations of bandwidth partitioning

and filter order can achieve a specified jammer cancellation level.

10.1.2. WHYMULTIPATH REQUIRES ADDITIONAL DEGREES oF FREEDOM

In order to see why jammer multipath is a problem let us first consider the ideal

two-element canceler shown in Figure 10.1. Let ym denote the voltage received at

the main antenna terminals at time t ¼ mD and xm, the voltage received on the

auxiliary terminals at that time. Then the residue rm at the output is

rm ¼ ym 2 wxm ð10:1Þ
where the weight w is chosen to minimize the mean square residue. Using this

optimum weight it is readily shown that the minimum mean square residue is1–4

klrl2l ¼ klyl2l2
lkxpyll2

klxl2l
ð10:2Þ

where k l denotes an expectation, and we have removed the subscript m from rm,

xm, and ym because the expectations are independent of m for a stationary random

process.

We now wish to calculate the residue in Equation 10.2 for the case of

a jammer and a single, specularly reflected, multipath ray assuming that both

the direct and reflected jammer signals are much stronger than both any desired
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signal and the system noise. Consequently, we ignore both signal and noise in the

calculations to follow, because the weights in the adaptive system are then driven

by the jammer alone.

Let us denote the direct jammer signal at the main antenna element in

Figure 10.1 by j(t) exp(iv0t) where v0 is the radian carrier frequency. Also,

suppose that the relative strength of the multipath signal at the main antenna is r,
and its delay relative to the direct jammer signal is t1. Then, the total jammer

signal at the main antenna element is

yðtÞ ¼ jðtÞ þ rjðt2 t1Þexpð2iv0t1Þ ð10:3Þ

where a common term, expðiv0tÞ, has been ignored in Equation 10.3.

Next, let us consider the voltage in the auxiliary channel. If both the

jammer and its reflection point on the ground are in the far field of the array in

Figure 10.1, we can write the voltage in the auxiliary channel as

xðtÞ ¼ jðt2 TdÞexpð2iv0TdÞ þ rjðt2 Tm 2 t1Þexp½2iv0ðTm þ t1Þ	 ð10:4Þ

where Td is the time delay between the main and auxiliary elements for the direct

ray, and Tm is the delay between the main and auxiliary elements for the

multipath ray. We also assume that the jammer power spectral density is uniform

and occupies a bandwidth much larger than the bandwidth Br of the receiver, this

latter bandwidth is determined by the bandwidth of the desired signal. Then,

because the power spectral density is uniform over the receiver bandwidth Br, the

autocorrelation function k jðtÞjpðt þ tÞl is

k jðtÞjpðt þ tÞl ¼ sincðpBrtÞ ð10:5Þ
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FIGURE 10.1 Ideal two-element adaptive array.
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If Equation 10.3 and Equation 10.4 are used in Equation 10.2, with Equation 10.5

used to calculate the required expectations, we obtain an expression for

the average residue klrl2l: This residue, normalized to the power klyl2l received in
the main channel, has been plotted in Figure 10.2 as a function of bandwidth

for the case when r ¼ 0.5, Td ¼ 0, v0t1 ¼ (2n þ 1)p, n ¼ integer,

v0Tm ¼ (2p þ 1/2)p, p ¼ integer and Tm/t1 ¼ 0.02. We note that, for a given

delay t1 between the direct and multipath rays, the adaptive canceler in

Figure 10.1 is most effective for Brt1 p 1 and ineffective for Brt1 . 1, because,

for the latter case, the direct and multipath signals are then decorrelated and more

degrees of freedom are needed to cancel both of them. We find later that diffuse

multipath makes matters even worse. Nevertheless, it is clear from Figure 10.2

that if we can make Brt1 sufficiently small the adaptive canceler does cancel both

the direct and multipath jammer signals. This suggests partitioning7–9 the total

band Br into N subbands of width B ¼ Br /N, as shown in Figure 10.3. This allows

us to introduce new degrees of freedom by using an independent weight in each

subband, and also provides for channel equalization. In this case, it is

demonstrated in Appendix E that the average output power is

ð1

21
lrðtÞl2dt ¼

XN21

k¼0

klrkl
2l ð10:6Þ

where klrkl
2l is the average residue in the kth subband. Likewise, in the absence of

an auxiliary channel the average output power is

XN21

k¼0

klykl
2l
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FIGURE 10.2 Cancellation for v0t1 ¼ ð2nþ 1Þp, v0Tm ¼ ð2pþ 1=2Þp, Td ¼ 0,

Tm=t1 ¼ 0:02, n and p are integers.
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so that the normalized residue power, or cancellation ratio, can be defined as

C ¼
PN21

k¼0 klrkl
2lPN21

k¼0 klykl
2l

ð10:7Þ

For specular (diffuse multipath will be studied later) multipath it can be

demonstrated that the value of C for given values of Bt1 and BTm is nearly

independent ofN providedN is sufficiently large so thatNBt1 q 1 andNTBm q 1:
Therefore, if N is sufficiently large, one can generate universal asymptotic curves

for the normalized residue, or equivalently, the cancellation ratio. These

asymptotic results are shown in Figure 10.4 for five different multipath reflection

coefficients r. Although we do not present the details here, analytic approxi-

mations to these curves can be developed in the limits when Bt1 p 1 and Bt1 . 1.

ForBt1 p 1 andBTm p 1, we can use the Taylor series expansion for sincðpBtÞ in
the expressions for klrkl

2l and klykl
2l: If we use this, along with the fact that when

NBt1 q 1 and NBTm q 1, the summations over k of expð^i2pkBt1Þ and

expð^i2pkBTmÞ are nearly zero, we find that, provided Td ¼ 0, r , 1 and t1 q Tm

C ¼ 2

3

pr

1þ r2

� �2
GðrÞðBt1Þ2 ð10:8aÞ

where

GðrÞ ¼ 12
2r

1þ r2

� �2" #21=2

ð10:8bÞ
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FIGURE 10.3 Partition of Br into subbands.
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It should be noted thatC is not necessarily zero when there is nomultipath (r ¼ 0),

because we have set Td ¼ 0. In the limit when r ¼ 0 and Td – 0 we find C ¼
ðpBTdÞ2=3:

In the opposite limit when Bt1 q 1;NBt1 q 1;NBTm q 1 but BTm , 1 it is

easy to show that

C ¼ 2
r

1þ r2

� �2
ð10:9Þ

Within their ranges of validity both Equation 10.8a and Equation 10.9 are

excellent approximations to the numerical results presented in Figure 10.4.

In order to see how these results are used, let us assume that we need to

compensate for specular jammer multipath using bandwidth partitioning alone

(later we see the effect of combining adaptive FIR filters with bandwidth

partitioning). Suppose the specular-multipath delay t1 is 1026 s, the receiver

bandwidth Br ¼ 3 £ 106 Hz, and we wish to obtain a jammer cancellation of at

least 40 dB when r ¼ 0:5: Then, from Figure 10.4, we find that Bt1 . 0:6 £ 1022

is required to achieve C ¼ 1024. As we see later, diffuse multipath makes matters

worse, so in order to allow a safety factor in case the multipath is diffuse, rather

than specular, we can decrease Bt1 by a factor of 2 to obtain Bt1 . 0:3 £ 1022, or

B ¼ 0:3 £ 1022=t1 ¼ 3:0 £ 103 Hz: Therefore, the number of subbands required

is N ¼ Br/B ¼ 3 £ 106/3.0 £ 103 ¼ 1000.

If a DFT (discrete Fourier transform) rather than an analog realization is used

for bandwidth partitioning we would use an N ¼ 210 ¼ 1024 or 211 ¼ 2048 point

transform for the DFT shown in Figure 10.5. The formal expression for the block-

averaged power in this case is given in Appendix F. Note that, as pointed

out by Compton,10 if the block processing shown in Figure 10.5 is replaced by
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FIGURE 10.4 Average cancellation for specular multipath and one tap ðM ¼ 1Þ as

subband width B is varied. Average is over 5000 subbands.
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a sliding-window DFT, the inverse discrete Fourier transform (IDFT) shown in

Figure 10.5 is unnecessary. Of course, the actual implementation of all DFTs is

done using the fast Fourier transform (FFT) algorithm.

In the next section we generalize our results to include diffusely scattered

multipath and hybrid cancelers that employ both bandwidth partitioning and

adaptive FIR filtering.

10.1.3. GENERALIZATION

An analog model for the hybrid canceler is shown in Figure 10.6. A filter bank

partitions the main and auxiliary signals into N frequency bins, with an M-tap

adaptive FIR filter in each frequency bin. The delay D ¼ ðM 2 1ÞD=2 (for

M ¼ odd) is inserted5 into the main channel to ensure cancellation of all

directions of arrival. The canceled signals from each frequency bin are then

combined, producing the residue rðtÞ: Although the analog model is easier to

understand, in a realistic application the processing is done digitally, with a

typical digital realization shown in Figure 10.7. In this case an N-point DFT

(calculated with the FFT algorithm) partitions the signal bandwidth Br into N

subbands of width B ¼ Br=N: The adaptive processing is then performed in each

subband, and the time samples rm are recovered via an IDFT. As discussed

previously, the IDFT is unnecessary if sliding-window processing replaces block

processing. Also, in practice, the time samples xnmay be weighted before Fourier

transforming, in order to reduce the frequency sidelobes in each subband.

Let us refer to Figure 10.6, and define ykðtÞ as the voltage produced by a

jammer plus its multipath in the kth subband of the main channel at time t. Also,

define xkðtÞ as the voltage in the kth subband of the auxiliary. Then, by

generalizing Equation 10.2, it is readily shown that the residual power in the kth

subband after cancellation is

klrkl
2l ¼ klykl

2l2 ½Zp
k	T½Rk	21½Zk	 ð10:10Þ
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FIGURE 10.5 Bandwidth partitioning using DFTs.
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where

½Rk	 ;
kxpkðtÞxkðtÞl kxpkðtÞxkðt2 DÞl· · ·

kxpkðt2 DÞxkðtÞl kxpkðt2 DÞxkðt2 DÞl· · ·
..
. ..

.

26664
37775 ð10:11aÞ

½Zk	 ;

kxpkðtÞykðtÞl
kxpkðt2 DÞykðtÞl

..

.

kxpkðt2 ðM 2 1ÞDÞykðtÞl

266666664

377777775 ð10:11bÞ

where kl denotes an expectation, and we have assumed that there areM taps in the

adaptive filter in the kth auxiliary channel. The optimum weights for the kth

subband are given by

½wk	 ¼ ½Rk	21½Zk	 ð10:12Þ
We next need to discuss the form of xkðtÞ and ykðtÞ when the multipath is

nonspecular. Diffuse multipath can be modeled by using the glistening surface

approach developed by Beckmann and Spizzichino.6 A typical glistening surface

is shown in Figure 10.8, for the flat-Earth approximation. The shaded area in that

figure represents the region on the ground producing diffusely scattered jammer

multipath. In Ref. 6, an expression is derived for the diffusely scattered power,

which becomes particularly simple in the limit when the jammer and the radar are

at the same altitude ðh1 ¼ h2Þ: In that limit the total diffuse multipath power

received by the radar is

Pdiffuse ¼ lrl2
ðp2jA
jA

f ðjÞdj ð10:13aÞ

where f ðjÞ is plotted in Figure 10.9, r is the Fresnel reflection coefficient of the

ground, and j, jA, and Kb are defined as sin2ðj=2Þ ¼ X1=R, cos
2ðj=2Þ ¼ X2=R,
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h2
cot 2b0
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h2
h1

R

P
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FIGURE 10.8 Glistening surface for diffuse multipath.
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Kb ¼ 2h1=ðR tanb0Þ, tan b0 ¼ 2s=T , and sinjA tanjA ¼ Kb: As seen in

Figure 10.8, X1 and X2 are the projections of an arbitrary point P on the glistening

surface,R is the range from the jammer to the radar ðR ¼ X1 þ X2Þ, ands and T are

the standard deviation of the surface roughness and its transverse correlation

length, respectively. The integral

I ;
ðp2jA
jA

f ðjÞdj ð10:13bÞ

that appears in Equation 10.13a has been evaluated inRef. 6 and is replotted here in

Figure 10.10.

If we now refer back to the definition of Kb, it is evident that Kb p 1

corresponds to a diffuse (rough) surface, Kb . 1 to a moderately diffuse surface;

and Kb q 1 to a specular (smooth) surface. Consequently, from Figure 10.9 it is

seen that the multipath from a diffuse surface comes primarily from two regions:

one near the jammer and one near the radar. For example, when Kb ¼ 0.05

the multipath comes mainly from areas centered on j ¼ 158 and

j ¼ 1808 2 158 ¼ 1658. Likewise, when Kb ¼ 0.5 (moderately diffuse) the

multipath is nearly uniformly distributed from j ¼ 398 to j ¼ 1808 2 398 ¼ 1418.
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Finally, for Kb q 1 we approach the limit of a single reflection point located at

j ¼ 908.
The aforementioned multipath contributions can be modeled by a set of Q

discrete, independent scatterers with complex amplitudes Aqexpðifq 2 iv0tqÞ,
where the phases fq are all independent and randomly distributed from 0 to 2p.
The amplitudes Aq and the relative time delays tq of the qth multipath component

are chosen in accordance with distribution of f ðjÞ in Figure 10.8. Of course, for

specular multipath Q ¼ 1 and t1 ¼ 2ðh21 þ R2=4Þ1=2 2 R: The amplitudes Aq and

the number of scatterers Q must be chosen to represent the multipath such that

XQ
q¼1

lAql
2 ¼ lrl2I ð10:14Þ

That is, the incoherent addition of all the scatterer powers must equal the total

diffusely scattered power given by Equation 10.13a.

When the multipath is represented in accordance with the method described

above, the signals y(t) and x(t) in the main and auxiliary channels of either

Figure 10.6 or Figure 10.7 may be written as

yðtÞ ¼ jðt2 DÞ þ
XQ
q¼1

Aq jðt2 D2 tqÞe2iv0ðtqþDÞþifq ð10:15Þ

and

xðtÞ¼ jðt2TdÞe2iv0Td þ
XQ
q¼1

Aq jðt2Tmq2 tqÞexp½2iv0ðtqþTmqÞþ ifq	 ð10:16Þ

where Tmq is the delay between the main and auxiliary elements for the qth

multipath ray, v0¼2p f0, f0 is the frequency at the center of the desired signal

bandwidth Br, tq is the time delay at the main element between the direct jammer

ray and the qth multipath ray, Td is the delay of the direct jammer ray between the

main and auxiliary channels, D ¼ (M 2 1)D/2 for M ¼ odd and fq is a phase

randomly distributed between 0 and 2p.
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FIGURE 10.10 Integral I in Equation 10.12.
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The results in Equation 10.15 and Equation 10.16 are then used to calculate

the appropriate matrix elements in Equation 10.10 to Equation 10.12 for each

subband, using the result that for the kth subband k jðtÞjðt þ rÞl ¼
expði2pkBtÞsincðpbtÞ, where k ¼ 0,^ 1,^ 2…, and k has been ordered such

that k ¼ 0 corresponds to the subband centered at the middle of the total band Br.

Once both klykl
2l and the residue klrkl

2l have been obtained for each subband, the
normalized average power is obtained by summing over all the subbands, as

indicated in Equation 10.2. The matrix elements required to compute these

quantities are summarized in Appendix G.

10.1.4. NUMERICAL CALCULATIONS

Before we proceed to evaluate how well hybrid cancelers perform against various

types of jammer multipath, we first need to select an appropriate delay D for the

adaptive FIR filter in Figures 10.6 and 10.7. When the normalized multipath

delay Btq is not too close to zero the residue is rather insensitive to the choice of

BD, as long as BD is not too close to either zero or unity. This point was shown in

Ref. 5, Figure 11.19.

However, when Btq p 1 we have found numerically (see Appendix H) that

the cancellation is best if BD is of the same order as Btq. However, because one

does not know apriori what multipath delay to expect, one usually designs for the

maximum delay. Consequently, as a compromise we chose BD ¼ 0.5,

recognizing that this may not be the optimum choice for Btq p 1: Thus, the
curves for M ¼ 3, 5, and 9 in Figures 10.11 to 10.13 to follow do not necessarily

represent the very best we can do with tapped delay lines when Btq p 1: This
point is discussed further in Appendix H.
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In order to assess the effect of various types of multipath on performance, we

now consider the case when the radar and jammer are separated by 100 statute

miles and both are at an altitude of 6 statute miles above ground with a Fresnel

reflection coefficient r ¼ 0:5: For this case, diffuse (Kb ¼ 0.1), moderately

diffuse (Kb ¼ 0.5) and specular ðKb q 1Þ multipath are modeled in accordance

with the procedure outlined in the preceding section. The sidelobe canceler is

modeled as an ideal two-element array with the elements separated by one

wavelength at midband. The results are somewhat sensitive to element

separation, and we can expect to obtain different residues for other element

spacings, although the trends will not change. For all cases, the carrier frequency
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f0 was chosen to be 100 Br. In all results to follow, we have set BD ¼ 0.5, in

accordance with our discussions in the last paragraph.

Results for the effect of changing B on the normalized jammer residue C after

cancellation are presented in Figures 10.11 to 10.13 for diffuse moderately

diffuse, and specular multipath, respectively. The effect of decreasing the

reflection coefficient r is shown in Figure 10.14. All curves have been plotted

versus Btspec, where B is the bandwidth and tspec is the time delay of the specular

ray, relative to the direct ray, and is given by

tspec ¼ 2½h21 þ R2=4	1=2 2 R ð10:17Þ
In obtaining the curves in Figures 10.11 to 10.14, we have not averaged over

thousands of subbands, as would be required for these to be truly asymptotic

results, because in order to obtain asymptotic results we requireN to be sufficiently

large so that NBTspec and NBTm q 1: However, for Tm/tspec ¼ 0.02 and

Btspec ¼ 0.01 this means that NBTm ¼ N (Btspec) (tm/tspec) ¼ N (0.01) (0.02). 1,

so N must be of order 5000 or more. For the M ¼ 9 case, this implies 5000 to

10,000 inversions of a 9 £ 9 matrix for each point. Thus, the M ¼ 1 curve in

Figure 10.13 differs from the corresponding curve in Figure 10.4, because the

latter has been averaged over very many subbands. Although the average over

hundreds or thousands of subbands give somewhat different results than those

presented in Figures 10.11 to 10.13, the trends in both cases are identical, as

shown in Appendix H.

We note from Figures 10.11 to 10.13 that, for a given subband width B and

number of tapsM, diffuse multipath usually represents the worst case (i.e., highest

residue), although the asymptote for Btspec q 1 is somewhat lower for diffuse

multipath than for specular and moderately diffuse multipath because I is smallest
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for Kb p 1, as is evident from Figure 10.10. It is evident from Figures 10.11 to

10.13 that for a given multipath condition (e.g., diffuse) one can decrease the

residue either by decreasing the subbandwidthB, by increasing the number of taps

M, or both. It is also clear, a necessary condition for effective cancellation is that

the width B of each subband be sufficiently small so that Btspec p 1:
Let us now apply this result, along with the results in Figures 10.11 to 10.13,

to see what combinations of M and N allow us to cancel multipath to a specified

level. Suppose that we wish to suppress the jammer signal by 30 dB over a band

Br ¼ 2 MHz. Then using Figures 10.11 to 10.13 (in an expanded form) we obtain

the results in Figure 10.15, which show the number of subbands N required for

different choices of the number of taps M. The values for M ¼ even were

obtained using additional curves (not shown). In deriving the curves for

M ¼ even, the delay D in the main channel was set equal to zero in the

expressions in Appendix G.

Thus, the system designer can achieve the desired cancellation in a number of

ways. Which combination of N andM is best will depend on a number of factors,

such as how many samples are available, how many computations per output

sample are required, etc. A discussion of optimum combinations is given in

1
10

30

50

70

90

110

130

N
um
be
r
of
su
b-
ba
nd
s
(N
)

150

170

190

210

230

250

2 5
Number of taps (M )

6 7 10

Diffuse
Moderately Diffuse
Specular

3 4 8 9

FIGURE 10.15 Number of sub-bands required to achieve 30 dB of Jammer suppression

over a 2 MHz band.

Applications 459

© 2006 by Taylor & Francis Group, LLC



Appendix I, where it is indicated that the hybrid system (M . 1) is clearly

preferable to bandwidth partitioning alone (M ¼ 1).

We emphasize that the results we have obtained for N andM (or equivalently,

M and B) are for the specific conditions assumed. For lower altitudes, shorter

ranges, and reduced Earth reflectivity, the restrictions are less stringent, and one

can usually achieve acceptable cancellation with fewer taps per subband and

fewer subbands.

10.1.5. SUMMARY AND DISCUSSION

We have considered a two-element adaptive canceler that includes both tapped

delay lines and bandwidth partitioning, and have studied the ability of this system

to cancel a direct jammer signal and its diffuse multipath, assuming the jammer

signal is much stronger than any desired signal or system noise.

We did not study the effect of adding more spatial (i.e., more antenna

elements) degrees of freedom, although one expects that if more spatial degrees

of freedom were available fewer temporal degrees of freedom would have been

required. That is, because the phase delay is proportional to ðv=cÞsin u, signals at
different frequencies, but coming from the same angle u, are equivalent to signals
at the center frequency coming from different angles, and can, therefore, be

canceled by putting spatial nulls in the appropriate direction.

An interesting point we should discuss is why our hybrid system (with both

tapped delay lines and bandwidth partitioning) gives different results from one

with bandwidth partitioning alone, because as Compton10 has shown, time delays

and DFTs are interchangeable, provided the time delay D is equal to the

intersample period Ts. Let us now show that our system does not satisfy

Compton’s condition (i.e., Ts ¼ D). We found in Appendix D, that although the

cancellation is best when the intertap delay D is of the order of the multipath

delay tspec, acceptable performance is obtained as long as 0.05 , BD , 0.8, and

as a nominal value, for computing Figures 10.11 to 10.15, we chose BD ¼ 0.5.

The bandwidth B of each subband is Br /N, where Br is the total bandwidth and N

is the number of subbands, and is equal to the number of points in the DFT.

However, the sampling theorem requires that the intersample spacing Ts ¼ 1/Br,

so that B ¼ Br/N ¼ 1/NTs. Therefore, D ¼ 0.5/B ¼ 0.5 NTs, so that for N q 1 we

have Dq Ts: Consequently, Compton’s condition is not satisfied by our system,

and this explains why the residue is changed if the tapped delay lines are

interchanged with DFTs.

It should also be noted that our results will be unchanged if, in order to

remove clutter, a Doppler processor (i.e., another DFT) is placed between the

DFT and the weights in each subband of Figure 10.7. The proof of this point is

given in Ref. 10.

Finally, we note that the extension of this analysis to a sidelobe canceler with

multiple auxiliary antenna elements is straightforward. We simply allow the main

channel to have an arbitrary (voltage) gain GðuÞ where u is the angle relative

to boresight, and place a network such as shown in Figure 10.7 behind each
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of the S auxiliary antenna elements. If we define xk (i, t 2 pD) as the time-delayed

voltage of the ith auxiliary element in the kth subband, and then form the vector

½Ak	T ¼ ½xkð1,tÞ xkð1,t2 DÞ xkð1,t2 2DÞ…xkð2,tÞ…xkðS,tÞ…	
we find that the M £ M matrix [Rk] in Equation 10.11a is replaced by the

MS £ MS matrix k½Ap
k	½Ak	Tl and [Zk] in Equation 10.11b is replaced by the

MS £ 1 vector k½Ap
k	yl, where kl again denotes an expectation. The analysis then

proceeds just as before, with the residue in the kth subband calculated using

Equation 10.10, etc.

10.2. SOME LIMITATIONS ON THE EFFECTIVENESS

OF AIRBORNE ADAPTIVE RADAR

(E. C. BARILE, R. L. FANTE, AND J. A. TORRES)

10.2.1. BACKGROUND

Unlike a ground-based radar in which nearly all the clutter return is received at or

near zero Doppler, the clutter return in an airborne radar has Doppler frequencies

spread over a band of width (4Vf0 /c), where V is the platform speed, f0 is the

carrier frequency, and c is the speed of light. This is illustrated in Figure 10.16.

An important feature of the Doppler spectrum is that for small depression angles

each Doppler fd is uniquely associated with the clutter at an azimuth f satisfying

the relation fd ¼ ð2Vf0=cÞsin f, so that in sine azimuth–Doppler space all the

clutter lies along a single line, as shown in Figure 10.17. In constructing

Figure 10.17 we have assumed for ease of presentation that: (i) the pulse

fd =
2Vf0

c
sin j0

2Vf0
c

sin j0

f d = +
2Vf0

c

−
2Vf0
c

+
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c
f00

fd =
−2Vf0

c

fd = 0

j0

Clutter Power
Spectrum

FIGURE 10.16 Doppler spectrum of received clutter for airborne radar.
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repetition frequency (PRF) is sufficiently small so that there are no range

ambiguities, (ii) the depression angle u of the range ring under consideration is

such that cos u can be approximated by unity, (iii) the clutter is stationary, and

(iv) the transmit and receive patterns have a negligible response on the side of the

platform opposite to the side where the main beam is directed. For high PRF

radars there are multiple range ambiguities, including some where u is no longer

small. In this case, if the depression angles of the ambiguous range rings are

u1· · ·uN , the clutter at a given Doppler fd comes from azimuth fn such that

fd ¼ ð2Vf0=cÞsin fn cos un: If the clutter has internal randommotion, or if there is

a uniform bias in the relative velocity between the aircraft and the ground

(crabbing), or if there are near-field scatterers, then the linear relation between

Doppler and sin f cos u will be disturbed.

A conventional moving target indicator (MTI) is ineffective in canceling

airborne clutter because it uses temporal degrees of freedom only, and, hence,

produces the filtering action illustrated in Figure 10.18. Thus, MTI cancels the

clutter at f ¼ 08 but is ineffective at canceling the rest of the clutter. It is evident
that, in order to cancel along the diagonal line where the clutter lies, one must add

−
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FIGURE 10.17 Clutter return in Doppler–azimuth space.

−
2Vf0

c

2Vf0
c

Signal

−1
+

+1 sin f

Clutter Return

Do
pp
ler

MTI Filter

FIGURE 10.18 MTI filter superposed on spectrum of clutter.
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some spatial degrees of freedom. The simplest system that combines both spatial

and temporal degrees of freedom is the displaced phase center antenna (DPCA).

This is illustrated in its simplest form in Figure 10.19.

It is shown elsewhere1 that if all errors are neglected and the interpulse period

T is adjusted so that the element separation D ¼ 2VT, then the filtering response

of the DPCA is as illustrated in Figure 10.20. Thus, by adding a spatial degree of

freedom we have managed to rotate the MTI filter in azimuth–Doppler space so

as to put a null on the clutter line.

The problem with nonadaptive DPCA is that it is sensitive to antenna errors,

and requires that the platform velocity be known well enough to adjust the

∑

T

Antenna 2 Antenna 1

r (t )

+ −

Direction of
Platform
Motion

∆

FIGURE 10.19 Two-element DPCA.

−
2Vf0
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c
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−1

Clutter Return

Space-Time Filter

Doppler
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FIGURE 10.20 Space–time filter superposed on spectrum of clutter.
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interpulse period to satisfy the condition T ¼ D/2V. These difficulties can be

overcome by generalizing2,3 the design to an adaptive system, such as the one

shown in Figure 10.21. In this general system the radar is tuned to a target at a

specific azimuth f0 and Doppler fd0 and the weights w11, w12,… are then

adaptively adjusted to maximize the signal-to-clutter-plus-noise ratio. This

causes the main beam of the radar to be scanned to f0, and places a null in its

azimuth–Doppler pattern along the clutter line shown in Figure 10.17. Thus, it

would appear that one can completely eliminate the clutter. However, in practice

this is not the case because of internal clutter motion, crabbing, channel

mismatch, and scattering from near-field obstacles, such as the wing on the

airborne platform.

Internal clutter motion and crabbing limit cancellation because, as noted

earlier, they spread the clutter off the diagonal line in Figure 10.17. Near-field

scattering is a problem because, as illustrated in Figure 10.22, in the presence of a

near-field obstacle the energy received at a Doppler fd no longer comes only from

T

T

T

T

∑

T

Antenna 1
U1(t)

V(t )

w11

w12

w13

wN1

U2(t) UN(t)
Antenna 2 Antenna N

• • •

wN2

wN3

FIGURE 10.21 Generalized space–time processor.

Near Field
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Clutter Return
from Azimuth f

Scattered Rays

Antenna Array

FIGURE 10.22 Scattering by near-field obstacle.
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the azimuth f satisfying fd ¼ ð2Vf0=cÞsinf, but, rather, from many different

azimuths. Thus, near-field obstacles tend to smear the clutter return off the

diagonal line in Figure 10.17, and into the entire sine azimuth–Doppler plane.

Consequently, we should expect that clutter cancellation in the presence of a

near-field obstacle will require more degrees of space–time freedom than are

necessary in the absence of any obstacles.

In this chapter we investigate, quantitatively, the limitations placed on

space–time cancellation of clutter by internal clutter motion, crabbing, channel

mismatch, and near-field obstacles. We first develop very simple analytical

models to illustrate these effects, and then proceed to more complex models that

are studied numerically.

10.2.2. THEORETICAL INTRODUCTION

A block diagram of a space–time processor is shown in Figure 10.21. The

diagram consists of N antennas with L temporal taps having delay T and weights

that are adaptively controlled to maximize the signal-to-clutter ratio. If the clutter

produces signals U1ðtÞ;U2ðtÞ…UNðtÞ at the terminals of antennas 1 through N,

then the output signal vðtÞ is (ignoring noise)

vðtÞ ¼w11U1ðtÞþw12U2ðtÞþ · · ·w1NUNðtÞþw21U1ðt2TÞþw22U2ðt2TÞ
þ · · ·w2NUNðt2TÞþ · · ·wL1U1½t2 ðL21ÞT	þ · · ·wLNUN½t2 ðL21ÞT	

ð10:18Þ
The output vðtÞ may then be subjected to Doppler processing. For example, one

could form the samples vð0Þ,vðTÞ,vð2TÞ · · ·v½ðk21ÞT	, and then take their discrete
Fourier transform to yield a frequency decomposition of the space–time output.

We do not discuss Doppler processing here.

Equation 10.18 can be rewritten in matrix notation as

v ¼ ½w	T½U	 ð10:19Þ

where

½w	 ¼

w11

w12

..

.

w1N

w21

..

.

wLN

26666666666666666664

37777777777777777775

; ½U	 ¼

U1ðtÞ
U2ðtÞ
..
.

UNðtÞ
U1ðt2 TÞ

..

.

UNðt2 ðL2 1ÞTÞ

26666666666666666664

37777777777777777775
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and wij is the weight for the ith tap on the jth antenna element. The average clutter

power can then be written as

C ¼ kl½w	T½U	l2l ¼ ½wp	Tk½U	p½U	Tl½w	 ¼ ½wp	T½M	½w	 ð10:20Þ
where kl denotes an expectation, and ½M	 ¼ k½Up	½U	Tl:

When channel noise is included, the covariance matrix [M ] is replaced by

½M0	 ¼ ½M	 þ s 2½I	 ð10:21Þ
where s 2 is the noise power (assumed to be the same in each channel) and [I] is

the NL £ NL identity matrix.

Next, assume that a point target is present at a given azimuth f0 and Doppler

fd0, and produces an LN £ 1 signal vector

½s	 ¼

s1ðtÞ
s2ðtÞ
..
.

sNðt2 ðL2 1ÞTÞ

266666664

377777775 ð10:22Þ

The receive weighting applied to the antenna array to reduce sidelobes is, of

course, included in [s]. The corresponding signal power (in the absence of clutter

and noise) at the output is given by

S ¼ l½w	T½s	l2 ð10:23Þ
Therefore, the signal-to-clutter ratio is

S

C
¼ l½w	T½s	l2

½wp	T ½M0	½w	 ð10:24Þ
It can be shown (see Refs. 2,4) that the weights that maximize the signal-to-noise-

plus-clutter ratio are given by

½w	 ¼ m½M0	21½sp	 ð10:25Þ
where m is a constant, and the corresponding maximum signal-to-noise-plus-

clutter ratio is

S

N þ C

� �
max

¼ ½s	T½M0	21½sp	 ð10:26Þ
Next, we recognize that, because ½M	 ; k½Up	½U	Tl, [M0] is a Hermitian,

positive-definite matrix. Consequently, [M0]21 is also Hermitian and positive

definite. Furthermore, because [M0] is Hermitian and positive definite, all eigen-

values of [M0] are real and positive, and all its eigenvectors are orthogonal. The

matrices [M0] and [M0]21 can then be expanded in terms of the eigenvectors [ek]
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and eigenvalues lk of [M ] as

½M0	 ¼
X
k

ðlk þ s 2Þ½ek	½ek	þ ð10:27aÞ

½M0	21 ¼
X
k

1

lk þ s 2
½ek	½ek	þ ð10:27bÞ

where þ denotes a conjugate transpose. It is evident that if ek is an eigenvector

of [M ] it is also an eigenvector of [M0], because if

½M	½ek	 ¼ lk½ek	 ð10:27cÞ
then

½M0	½ek	 ¼ ½M	½ek	 þ s 2½I	½ek	 ¼ ðlk þ s 2Þ½ek	 ð10:27dÞ
If we substitute Equation 10.27b into Equation 10.25, it is immediately evident that

the maximum signal-to-noise-plus-clutter ratio is

S

C þ N

� �
max

¼
X
k

l½s	T½ek	l2
lk þ s 2

ð10:28Þ

The corresponding weight vector is

½w	 ¼ m
X
k

ð½ek	T½s	Þp
lk þ s 2

½ek	 ð10:29Þ

We can use Equation 10.29 to determine the azimuth–Doppler response of the

space–time processor. Suppose [su] is the signal vector produced by a signal at an

azimuthf andDoppler fd, which is different from the signal vector [s ] to which the

filter is tuned. Then, using Equation 10.23 and Equation 10.29 we find that the

response to [su] is

Pð fd,fÞ ¼ l½w	T½su	l2 ¼ m2
X
k

ð½ek	T½s	Þpð½ek	T½su	Þ
lk þ s 2

�����
�����
2

ð10:30Þ

By fixing fd and varying f we can obtain the azimuth response for a fixed

Doppler. Likewise, by fixing f and varying fd we obtain the Doppler response

in a given Azimuth cut.

Based on numerical studies by Klemm,5 one expects roughly L þ N distinct

eigenvalues associated with the clutter and LN 2 (L þ N) much smaller

eigenvalues that can be associated with the noise. (In the next section we

calculate these large and small eigenvalues for DPCA.) If, for the moment, we

ignore the noise s 2, it can be seen from Equation 10.28 and Equation 10.30 that,

because lk appears in the denominator, both the signal-to-noise-plus-clutter ratio

and the radiation pattern are dominated by the behavior of the smallest

eigenvalues. Which of these small eigenvalues will actually dominate will

depend on which one has the largest value of l½s	T½ek	l2=lk: Let us suppose this
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happens to be the pth eigenvalue. Then, Equation 10.28 and Equation 10.30 can

be approximated by

S

C þ N

� �
max

¼ l½s	T½ep	l2
lp

ð10:31Þ

Pð fd ,fÞ < m2 l½ep	T½s	l2
l2p

l½ep	T½s	l2 ð10:32Þ

Numerical studies of the radiation pattern for cases when the noise is negligible

(so that the pattern is determined by the structure of the pth eigenvector [ep]) have

shown that the pattern has many undesirable features. These include splitting and

distortion of the main beam and some high sidelobes. This problem can be cured

by increasing the system noise s 2, so that s 2 q lp: When this is done a single

eigenvector no longer dominates the radiation pattern, and in place of

Equation 10.32 we get

Pð fd ,fÞ < m2

s 4

X0

k

ð½ek	T½s	Þpð½ek	T½su	Þ
�����

�����
2

ð10:33Þ

where the prime on the summation indicates that the summation is over all the

small eigenvalues (i.e., over all the eigenvalues associated with the noise). This

has the effect of smoothing the radiation pattern, and yields well-behaved

patterns. This point is illustrated later in Section 10.2.4.

One additional general point that should be considered before we proceed to

specialized studies is the effect of tapering on the receive pattern in sine

azimuth–Doppler space. In order to study this effect, consider the voltage receive

pattern given by

Vð fd ,fÞ ¼ ½su	T½w	 ¼ ½w	T½su	 ð10:34Þ
where the power pattern P( fd, f) in Equation 10.30 is defined as Pð fd, fÞ ¼
lVð fd;fÞl2: If we substitute for [w ] from Equation 10.25, and then add and

subtract a term we find

Vð fd,fÞ ¼ ½su	T½M	21½sp	 ¼ ½su	T½sp	2 ½su	Tð½I	2 ½M	21Þ½sp	 ð10:35Þ
where [I] is the identity matrix. The first term on the right-hand side of

Equation 10.32 is the ambient azimuth–Doppler pattern of the unadapted array

(i.e., all weights set equal to unity) and the second term represents a narrow ridge-

beam in sine azimuth–Doppler space that subtracts out the clutter return shown

in Figure 10.17. The resulting radiation pattern is shown in Figure 10.23.

Unfortunately, when the steering vector is not tapered, as is the case for the

results shown in Figure 10.23, the sidelobe response in azimuth and Doppler is

poor, and it is therefore desirable to taper the steering vector. Suppose the

steering vector [s ] is multiplied by a real NL £ NL diagonal matrix [D ] that
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contains the tapering. Then, the new weight vector is ½w2	 ¼ ½M	21½D	½sp	, and
the corresponding receive pattern is

V2ð fd ,fÞ ¼ ½su	T½D	½sp	2 ½su	Tð½I	2 ½M	21Þ½D	½sp	 ð10:36Þ

The first term on the right-hand side of Equation 10.36 represents the unadapted,

tapered radiation pattern, whereas the second term represents a tapered clutter-

cancellation beam. Consequently, the space–time processor now produces a

radiation pattern that is equal to the unadapted, tapered pattern (with the desired

low sidelobes), minus a beam which is nonzero only along the clutter direction

and nearly zero elsewhere in sin azimuth–Doppler space. A typical adapted

azimuth-pattern-cut is shown in Figure 10.24. By substituting the expression for

[w2] into Equation 10.24 it is found that tapering produces a slight loss in the

output signal-to-clutter-plus-noise ratio below the optimum result given by

Equation 10.26. Typical losses are shown in Figure 10.25.

The foregoing analysis assumed the signalwas not included in the computation

of the covariance matrix. If the signal is included it can lead to deleterious effects,

as we now demonstrate. When the signal is included the covariance

matrix becomes ½Q	 ¼ ½M	 þ ½sp	½s	T so that the weight vector now is ½w3	 ¼
ð½M	 þ ½sp	½s	TÞ21½D	½sp	: If we apply the matrix inversion lemma we find

½w3	 ¼ ð½M	21½D	2 tg½M	21Þ½sp	 ð10:37Þ

2.85

−31.43

R
ec

ei
ve

P
at

te
rn

−
dB

−65.72

−100.88

0.67

0.670.25

SIN
(Azimuth angle)

0.25
−0.17

−0.17
−0.58 −0.58

−1.00 −1.00

Doppler/
halfblind Doppler

FIGURE 10.23 Adapted azimuth–Doppler pattern for eight-element linear array that

processes four pulses.
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where t21 ¼ ½s	T½M	21½sp	 þ 1 and g ¼ ½s	T½M	21½D	½sp	: The voltage radiation
pattern now becomes

V3ð fd,fÞ¼½su	T½D	½sp	2½su	Tð½I	2½M	21Þ½D	½sp	2a½su	T½M	21½sp	 ð10:38Þ
where a¼gt:Now recall the definitions of the untapered, adapted pattern Vð fd,fÞ
as given by Equation 10.35, and the tapered, adapted pattern V2ð fd,fÞ given by

Equation 10.36, that includes tapering but excludes the signal from the covariance
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FIGURE 10.24 Adapted azimuth response for Doppler cut corresponding to one half the

blind speed. Steering vector tapered but signal not included in weight calculation.
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computation. Then, it is evident thatV3ð fd,fÞ in Equation 10.38 can be rewritten as
V3ð fd,fÞ¼V2ð fd,fÞ2aVð fd,fÞ ð10:39Þ

That is, the radiation pattern is equal to the tapered, adapted pattern one obtains

with the signal excluded from the covariance, minus a coefficient a times the

adapted pattern one gets without any tapering at all. Because both beams are

pointed to the same point ðfd0,f0Þ in azimuth–Doppler space this can lead to a

resultant pattern with some very undesirable features, such as cancellation in the

pointing direction, as is evident from Figure 10.26. This produces a corresponding

loss in the output signal-to-clutter ratio, as can be seen from Figure 10.27. Thus,

−70
−1.0 −0.8 −0.6 −0.4 −0.2 0

Sine of Azimuth
0.2 0.4 0.6 0.8 1.0

−60

N
or
m
al
iz
ed
G
ai
n
(d
B
)

−50

−40

−30

−20

−10

0

FIGURE 10.26 Adapted azimuth response for Doppler cut corresponding to one half the

blind speed. Steering vector tapered and signal included in weight calculation.

−110
−20

−15

−10

−5

0

O
ut

pu
tS

/(
N

+
C

)
in

dB

5

10

15

20

25

−100 −90 −80
Input S /(N +C ) per Element in dB

−70 −60 −50

Untapered Steering Vector

Tapered Steering Vector
(40 dB Taylor, N = 7)

FIGURE 10.27 Effect of tapering vector on output signal-to-noise-plus-clutter ratio of

50-element linear array when signal is included in weight calculation.

Applications 471

© 2006 by Taylor & Francis Group, LLC



one must be careful to exclude the signal from the covariance matrix computation,

unless the signal is weak. Although we have not proven it here, it can be readily

shown that inclusion of the signal in the computation of the covariance matrix is

not a problem in the limit when there is no tapering applied. This can be seen by

setting ½D	¼½I	 in Equation 10.37 and then substituting the result into

Equation 10.24. This conclusion does not require that the received signal vector

exactly equal the assumed steering vector, because the degradation is gradual. The

analysis parallels the development in Ref. 5, Section 2.2.

Now that we have completed the general theoretical introductions we

proceed to specifics. In the next section we study the eigenstructure of the

simplest possible space–time processor, in order to demonstrate analytically how

various effects limit the possible improvement. Then in Section 10.2.4 we

numerically study more complex space–time processors.

10.2.3. TWO-ELEMENT DISPLACED PHASE CENTER ANTENNA

In order to illustrate in a simple manner how near-field obstacles (such as an

airplane wing), internal clutter motion, and aircraft crabbing limit the

performance of an adaptive radar, we now consider the simplest limiting case:

a two-element displaced phase center6–9 antenna (DPCA) that uses the

processing shown in Figure 10.19. In this case only w11 and w22 are nonzero in

Equation 10.18, and the covariance matrix ½M	 becomes

½M	 ¼ kUp
1ðtÞU1ðtÞl kUp

1ðtÞU2ðt2 TÞl
kUp

1 ðt2 TÞU1ðtÞl kUp
2ðt2 TÞU2ðt2 TÞl

" #
ð10:40Þ

We must now derive the voltages produced by clutter on the two antennas when a

near-field obstacle is present, along with internal clutter motion and aircraft

crabbing. In order to do this consider the geometry in Figure 10.28, where we

show a single clutter-scatterer of amplitude Aq in the far field of a two-element

array, and a near-field obstacle close to the array. For convenience, both the

clutter-scatterer and the near-field obstacle have been shown in the plane of the

array, but the generalization is straightforward. (For example, when the clutter is

not in the plane of the array, sin fq is replaced by sin fq cos uq where uq is the
depression angle of the scatterer.) The total clutter return will then be obtained by

summing over all the individual clutter scatterers, and then averaging. In order to

account for the desired platform speed, the internal clutter motion and the aircraft

crabbing (which is aircraft motion normal to the antenna array) the clutter-

scatterer is assumed to have an x-directed component of velocity Vx þ dvqx and a
y-directed component Vy þ dvqx, where Vx is the aircraft speed in the (desired)

direction along the array, dvqx is the x-component of the internal clutter motion of

the qth clutter scatterer, Vy is the velocity component produced by crabbing, and

dvqy is the y-component of the internal clutter motion of the qth clutter-scatterer.

All speeds are measured relative to the antenna array. We further assume that the

near-field obstacle scatters isotropically, with a bistatic radar cross section s0,
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and that only element 1 of the array transmits, but both elements receive. Then,

upon referring to the geometry of Figure 10.29, it is evident that the voltage

produced on each receive antenna element by a single far-field clutter-scatterer

at angular position fq is the sum of the four components shown. Upon adding

these four components it is straightforward to show that the voltage produced on

antenna 1 due to a far-field clutter-scatterer at fq is

U1qðtÞ ¼AqB
2
q exp{i2k½Rq2 ðVxþdvqxÞt sinfq2 ðVyþdvqyÞt cosfq	} ð10:41Þ

where

Bq¼ 1þG1 exp½ikðr12 tqÞ	 ð10:42Þ
and the magnitude of the complex scattering coefficient Aq of the qth clutter-

scatterer is proportional to s
1=2
q R22

q , where sq is the scatterer cross section. Also,
k¼v=c, tq¼ x0 sinfqþ z0 cosfq and G1 ¼ ðs0=4pr

2
1Þ1=2 where s0 is the bistatic

radar cross section and r1 is the distance between the-near-field obstacle and

antenna element 1 as shown in Figure 10.28. In deriving Equation 10.41 and

Equation 10.42 it has been assumed that r1pR0q, r1pRq, so that R0q can be

replaced by Rq in all nonphase terms.

Likewise, the voltage on element 2 due to the qth clutter-scatterer is

U2qðtÞ ¼ AqBqDq exp{i2k½Rq 2 ðVx þ dvqxÞt sin fq

2 ðVy þ dvqyÞt cos fq	2 ikD sin fq} ð10:43Þ

∆
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Rq −Vt sin fq
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Far-Field Clutter
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FIGURE 10.28 Obstacle in near field of two-element array.
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where

Dq ¼ 1þ G2 exp½ikðr2 2 tq þ D sin fqÞ	 ð10:44Þ
and G2 ¼ ðs0=4pr

2
2Þ1=2 where s0 is the bistatic radar cross section and r2 is the

distance between the near-field obstacle and antenna element 2 as shown in

Figure 10.28. The total field on elements 1 and 2 in Figure 10.28 and Figure 10.29

is are obtained by summing over all clutter-scatterers. That is,

U1ðtÞ ¼
X
q

U1qðtÞ ð10:45Þ

U2ðtÞ ¼
X
q

U2qðtÞ ð10:46Þ

We can now use Equation 10.41 to Equation 10.46 to calculate the elements of

the covariance matrix in Equation 10.40. If we assume that all clutter scatters are

independent, and randomly located, then we have

kApA
p
ql ¼ gqdpq ð10:47Þ

1(a)

To Scatterer q

2 (b)

A A

Obstacle

21

1(c)

B B

Obstacle

2 1(d)

Obstacle

2

FIGURE 10.29 Four scattering paths for near-field obstacle. (a) Direct path. (b) One

bounce path A. (c) One bounce path B. (d) Two bounce path.
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where dpq ¼ 1 if p ¼ q, and dpq ¼ 0 otherwise. If we use Equation 10.41 to

Equation 10.47 we find that the components of the covariance matrix are

M11 ¼ klU1l
2l ¼

X
q

gqlBql
4 ð10:48Þ

M22 ¼ klU2l
2l ¼

X
q

gqlBql
2lDql

2 ð10:49Þ

M12 ¼ kUp
1 ðtÞU2ðt2 TÞl ¼

X
q

gqlBql
2
Bp
qDqkexpðibqÞl ð10:50Þ

where

bq¼ k½ð2VxT2DÞsinfqþ2kdvqxT sinfqþ2kðVyþdvyÞT cosfq	 ð10:51Þ
and the remaining expectation indicated in Equation 10.50 must be taken over the

internal clutter motion. Also, we have not presented M21 because M21 ¼Mp
12,

where the asterisk denotes a complex conjugate. Now assume a perfect velocity

match so that the processor adjusts the pulse repetition rate to give

2VxT ¼D ð10:52Þ
Also assume the internal clutter motion and crabbing are sufficiently small so that

2kTdvqxp1 and 2kðVyþdvqyÞTp1: In this limit we can expand expðibqÞ in
Equation 10.50 in a Taylor series and then perform the expectation over the

internal clutter motion. If we assume that

kdvqxl¼ kdvqyl¼ 0 ð10:53Þ

kdv2qxl¼ kdv2qyl¼ sv
2

2
ð10:54Þ

where s2
v is the variance of the internal clutter speed, we find that M12 can be

approximated as

M12<
X
q

gqlBql
2
Bp
qDq½12 ðkTsvÞ2þ i2kVyTcosfq22ðkTVy cosfqÞ2	 ð10:55Þ

We can simplify M11, M12, and M22 even further if we assume that the near-field

obstacle is a weak scatterer, and hence G1p1, G2p1: In this limit we can then

ignore higher order terms in G1 and G2, so that

M11<C0ð1þ4G 2
1 Þ ð10:56Þ

M22<C0ð1þG 2
1 þG 2

2 þ2G1G2GÞ ð10:57Þ
M12<C0ð12eþ2G 2

1 þ2G1G2HÞ ð10:58Þ
where C0 is the clutter power received on a single element in the absence of

space–time processing and is defined as

C0¼
X
q

gq ð10:59Þ
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Also,

e¼ p 2

4

s 2
vþV2

y

V2
x

{ !
ð10:60Þ

G¼ 1

C0

X
q

gq coskðr22r1þD sinfqÞ ð10:61Þ

H¼ 1

C0

X
q

gq exp½ikðr22r1þD sinfqÞ	 ð10:62Þ

In deriving the results in Equation 10.58 it has been assumed that the clutter is

approximately uniformly distributed in angle so thatX
q

gq cosfq<0 ð10:63Þ

X
q

gq cos
2fq<

1

2

X
q

gq ð10:64Þ

It was further assumed that the interelement spacing D was one half wavelength,

so that Equation 10.52 gives VxT¼l=4, where l ¼ wavelength.

We can use the simplified expressions in Equation 10.56 to Equation 10.58 to

obtain the eigenvalues of the covariance matrix. Recall that the eigenvalues l1, l2
are solutions of the equation ðM11 2 lÞðM22 2 lÞ2 ðM12Þ2 ¼ 0, and can,

therefore, be expressed as

l1;2 ¼ 1

2
ðM11 þM22Þ^ 1

2
½ðM11 þM22Þ2 þ 4lM12l

2	1=2 ð10:65Þ

If the expressions of M11, M22, and M12 are substituted into Equation 10.65 we

find that the two eigenvalues are

l1 < 2C0 ð10:66Þ

l2 < 2C0

G 2
1

2
þ G 2

2

2
2 G1G2Gþ e

{ !
ð10:67Þ

and the corresponding normalized eigenvectors are

½e1	 < 1ffiffi
2

p 1

1

" #
; ½e2	 < 1ffiffi

2
p 1

21

" #
ð10:68Þ

The steering vector [s ] in Equation 10.22, for a target with a radial velocity

Vt is

½s	 ¼ s0

1

exp i
4pVtT

l

� �264
375 ð10:69Þ
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Therefore, if we use Equation 10.66 to Equation 10.69 in Equation 10.28 we

find that

S

C þ N

� �
max

¼ S0
C0

cos2
2pVtT

l

� �
1þ N

C0

þ
sin2

2pVtT

l

� �
1

4
ðG 2

1 þ G 2
2 2 2G1G2GÞ þ p2

8
w2
c þ p2

8

s2
v

V 2
x

þ N

2C0

26664
37775

ð10:70Þ

where N ¼ s 2 ¼ noise power, S0=C0 is the signal-to-clutter ratio in the

absence of space–time processing and wc is the crabbing angle defined as

tanwc < wc ¼ Vy=Vx: From Equation 10.70 it is evident that, because G1 p

1, G2 p 1, wc p 1, wc p 1, sv=Vx p 1 and ðN=2C0Þp 1, the second term on

the right-hand side of Equation 10.70 dominates, as long as the target is not at

a blind speed (i.e., Vt ¼ nl=2T , where n ¼ integer). Therefore, if we ignore the

first term on the right-hand side of Equation 10.70 and assume the target is at

one-half the blind speed we get for the improvement factor

S

C þ N

� �
max

S0
C0 þ N

� � ¼ 4

G 2
1 þ G 2

2 2 2G1G2Gþ p2

2
w2
c þ p2

2

s2
v

V2
x

{ !
þ 2N

C0

ð10:71Þ

where we have approximated S0=C0 by S0=ðC0 þ NÞ, because the system noise

N is much less than the clutter power C0.

Equation 10.71 shows how each factor limits the possible improvement

factor. The term, G 2
1 þ G 2

2 2 2G1G2G, which is proportional to the radar cross

section of the near-field obstacle, shows how a near-field scatterer limits

improvement. The term (pwc)
2/2 shows how crabbing limits improvement and

the term (ps/Vx)
2/2 shows how internal clutter motion limits improvement. Of

course, in the absence of crabbing, near-field obstacles and internal clutter

motion, Equation 10.71 reduces to

S

C þ N

� �
max

¼ 2S0
N

ð10:72Þ

so that the improvements is limited only by system noise N. The factor of 2 in

Equation 10.72 arises because there are two antenna elements, and the signals add

coherently in the output giving a signal power l2s0l
2 ¼ 4S0, whereas the noise

powers add incoherently, giving a total noise power of 2N.

It should be noted that, although the foregoing analysis was performed for the

two-element, two-pulse limit, numerical studies of the N-element, L-pulse system

demonstrate the same quadratic dependence of the improvement factor on G 2,
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ðsv=VxÞ2, etc., as exhibited in Equation 10.71 in the limit whensv=Vx ! 0, etc. The

only differences are that the coefficientsmultiplying ðsv=VxÞ2;w2
c , etc., are different.

10.2.4. SIMULATION RESULTS

10.2.4.1. Internal Clutter Motion

In this section we separately study each of the effects that limit the clutter

cancellation possible with space–time processing. Let us first study the effect of

internal clutter motion. Assume that the antenna array is linear and that the clutter

is modeled as a distribution of randomly located scatterers having a Gaussian

distribution of radial velocity, with a variance sv. The number of clutter scatterers

is chosen to be much larger than the number of degrees of freedom of the adaptive

radar. The other parameters assumed for the simulation are summarized in

Table 10.1, and the covariance matrix is calculated with the target excluded, in

order to avoid the problems, discussed in Section 10.2.2, that arise when the

steering vector is tapered. In performing the calculations the contributions from

all ambiguous range rings are included.

In Figure 10.30 we show the loss in the clutter cancellation in a two-pulse

processor produced by the effect of internal clutter motion. Note that, as predicted

for a two-element array in Section 10.2.3, the loss in improvement is still

approximately proportional to s22
v for small values of sv. The internal clutter

motion also produces a severe distortion in the radiation pattern as can be seen

from Figure 10.31, where we show an azimuth cut in the plane where the Doppler

is one half the blind speed. In the absence of internal clutter motion the adapted

pattern is approximately equal to the nonadapted pattern (where the weights are

given by the tapered steering vector), except with a null along the clutter line in

sine azimuth–Doppler space. As noted in Section 10.2.2, this distortion occurs

because the radiation pattern is dominated by the eigenbeams associated with the

smallest eigenvalues. A plot of these eigenvalues is shown in Figure 10.32, where

the eigenvalues have been normalized so that l1 represents the largest and l100

TABLE 10.1
Simulation Scenario Parameters

Parameter Value

Number of elements in azimuth 50

Taper in azimuth on transmit 40 dB Taylor, 
N ¼ 7

Carrier frequency L-Band

Pulse repetition frequency 3000 Hz

Platform velocity 350 knots

Platform altitude 30,000 ft

Target range 200 nmi

Azimuth electronic scan angle Broadside
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FIGURE 10.30 Effect of internal clutter motion of ½S=ðC þ NÞ	 after processing to

quiescent ½S=ðC þ NÞ	, for 50-element array that processes two pulses. Quiescent ½S=ðC þ
NÞ	 ¼ 255:1 dB:
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FIGURE 10.31 Quiescent and two-pulse STP antenna patterns with sv ¼ 0:4 m=s:

Applications 479

© 2006 by Taylor & Francis Group, LLC



the smallest. Observe how the internal clutter motion modifies the sharp drop-off

at l52 between the large eigenvalues (associated with clutter) and the smallest

eigenvalues (associated with noise). It is found that these smallest eigenvalues

l52 through l100 contribute negligibly to the space–time processing gain, as is

evident from Figure 10.33. Thus, the eigenbeams associated with these

eigenvalues are contributing nothing towards producing a notch on the clutter,

and all they are doing is producing pattern distortion and high azimuth–Doppler

sidelobes. One way this problem can be cured is to artificially raise the noise level

so that s 2 ¼ l51, in accordance with our discussion following Equation 10.33.

This nearly eliminates the pattern distortion, as can be seen from Figure 10.34,

and even produces a slight increase in S=ðC þ NÞ, because as seen in Figure 10.33
the eigenbeams associated with l52 to l100 actually cause S=ðC þ NÞ to decrease.

0
−90

N
or
m
al
iz
ed
ei
ge
nv
al
ue
(d
B
)

−80

−70

−60

−50

−40

−30

−20

−10

0

10 20 30 40
Eigenvalue number l

50 60 70 80 90 100

Number of Elements = 50
Frequency = L-Band
PRF = 3000 Hz
Azimuth Weighting = 40 dB Taylor, N = 7

With No Internal Clutter Motion
With Sigma = 0.4 m/s
With Sigma = 2 m/s

FIGURE 10.32 Effects of ICM on two-pulse STP eigenvalues.

0
−90

C
um

ul
at

iv
e

S
ig

na
l-t

o-
C

lu
tte

r-
P

lu
s-

N
oi

se
R

at
io

(d
B

)

−80

−70

−60

−50

−40

−30

−20

−10

0

10 20 30 40
Eigen Beams Used (B)

50 60 70 80 90 100

Number of Elements = 50
Frequency = L-Band
PRF = 3000 Hz
Azimuth Weighting = 40 dB Taylor, N = 7

FIGURE 10.33 Cumulative signal-to-clutter-plus-noise ratio for two-pulse STP, with

sv ¼ 0:4 m=s and tapered steering vector.

Adaptive Antennas and Receivers480

© 2006 by Taylor & Francis Group, LLC



Azimuth Weighting = 40 dB Taylor, N = 7
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eigenvalue compensation.
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However, a better approach to overcoming the effects of internal clutter

motion is to increase the number of pulses processed. That is, internal clutter

motion causes the clutter to spread off of the clutter line in the Doppler direction

in Figure 10.17. Therefore, we would expect that processing more pulses would

produce a better Doppler filter, and this is indeed what happens. Using four pulses

not only allows us to recover the quiescent radiation pattern, but also significantly

increases the value of S=ðC þ NÞ over the two-pulse canceler, as can be seen from
Figure 10.35. The four-pulse processor also provides an improved response at the

output of the Doppler processor, as demonstrated in Figure 10.36.

10.2.4.2. Aircraft Crabbing

We now study the effect of aircraft crabbing, assuming no internal clutter motion.

By recalling the analysis leading to Equation 10.65 we expect that aircraft
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FIGURE 10.36 Effects of ICM on signal-to-clutter-pulse-noise ratio in doppler for two-

and four-pulse STP.

TABLE 10.2
Effect of Aircraft Crabbing on Improvement Factor of 50-Element Linear

Array

Improvement Factor (dB)

Number of Pulses Processed wc 5 08 wc 5 58 wc 5 108

2 80.7 46.5 41.0

4 82.7 82.7 82.7

Note: Improvement factor ¼
� S

C þ N

�
adapted� S

C þ N

�
quiescent

:
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crabbing will produce the same sort of effects as internal clutter motion, because

it again causes the clutter to move off of the line in sine azimuth–Doppler space

shown in Figure 10.17, although in a different fashion than internal clutter

motion. That is, internal clutter motion smears the clutter off of the straight line in

the sine azimuth–Doppler plane in Figure 10.17, whereas crabbing causes the

clutter to lie on a curve in accordance with the relation

fd ¼ 2Vf0
c

½cos fc sin fþ sin wcð12 sin2 fÞ1=2	 ð10:73Þ

Azimuth Weighting = 40 dB Taylor, N = 7
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FIGURE 10.37 Quiescent and two-pulse STP antenna patterns with wc ¼ 58.
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where fd is the Doppler frequency, f is the azimuth and wc is the crabbing angle.

In Table 10.2 we show how crabbing decreases the output signal-to-clutter-plus-

noise ratio of a two-pulse processor for the parameters given in Table 10.1, and in

Figure 10.37 we show how crabbing distorts the desired radiation pattern. Again

the simple cure is found by studying how the eigenbeams contribute to the pattern

distortion and the signal-to-clutter-plus-noise ratio. Consider the calculations

shown in Figure 10.38. It is evident from this plot that the eigenbeams from 52

through 100 contribute nothing to canceling the clutter, and actually produce a

slight loss in the signal-to-clutter-plus-noise ratio. Thus, we can again use

eigenvalues compensation (by artificially increasing the noise so that s 2 ¼ ls1)
to obtain the improved radiation pattern shown in Figure 10.39, as well as the

slight improvement in S=ðC þ NÞ shown in Table 10.2. However, just as we

found for internal clutter motion, a better cure is to process more pulses. If we use

a four-pulse processor we recover the desired radiation pattern and, as seen from

Table 10.2, completely recover the signal-to-clutter-plus-noise ratio obtained in

the absence of crabbing.

10.2.4.3. Near-Field Obstacles

Perhaps the most stressing factor for a space–time processor is a near-field

obstacle, because, as noted earlier, it tends to spread to clutter over the entire sine

azimuth–Doppler plane. In order to study this problem we considered an obstacle

with a bistatic radar cross section s0 ¼ 1 m2 located a distance of ten

wavelengths along the normal to the center of a linear array. For these

calculations the transmit array was uniformly weighted, as was the steering
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vector, and it was assumed that there was no internal clutter motion aircraft

crabbing. An adapted radiation pattern in sine azimuth–Doppler space for this

case is shown in Figure 10.40. By comparing this pattern with Figure 10.23 we

see that, because the near-field obstacle has spread the clutter essentially

everywhere in sine azimuth–Doppler space, there is no longer a ridge null (as in

Figure 10.23), but rather a series of depressions produced as the processor is

trying to cancel clutter that is everywhere, and it simply does not have enough

degrees of freedom to do it. A study of the near-field structure shows that what the

processor attempts to do is to place a spatial null on the near-field obstacle. This is

quite evident from Figure 10.41 where we show the three pulse average of the

near field in cuts through the obstacle in planes normal and parallel to the array.

This point is further evident from Figures 10.42 and 10.43. In Figure 10.42 we

show that increasing the number of elements in the array is quite effective in

cancelling the effects of the near-field obstacle, because it allows a deeper null

to be placed on the obstacle. However, as seen from Figure 10.43, increasing the

number of pulses processed is less effective because it has little effect on

the spatial null placed on the object and only reduces the amount of clutter

with the same Doppler as the target.
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Calculations were also performed for the case of two near-field obstacles

each with bistatic cross sections of 1 m2, with one located ten wavelengths along

a normal to the center of the array (i.e., x ¼ 0, z ¼ 10l) and a second also located
ten wavelengths normal to the center of the array but displaced by two

wavelengths in the transverse direction (i.e., x ¼ 2l, z ¼ 10l). In Figure 10.44

we show that now the processor attempts to place a null on each obstacle, and in

Figure 10.45 we show that the presence of the second obstacle degrades the

signal-to-noise-plus-clutter ratio.

10.2.4.4. Antenna Errors (Channel Mismatch)

Antenna errors can be expected to limit the effectiveness of adaptive radar for

several reasons. First, they produce a spatial ripple across the received wavefront

that differs from the expected planar wavefront embedded within the steering

vector. Consequently, the actual received signal from a target has some features

that are different from the assumed steering vector and, hence, the adaptive radar

actually attempts to cancel part of the received signal from a true target. This

produces a slight degradation in the output signal-to-noise-plus-clutter ratio

below the theoretical optimum.
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A more stressing effect is the dispersion of errors across the bandwidth of the

receiver. Thus, because each receive channel has a different variation (called

“channel mismatch”) of the phase and amplitude errors across the frequency

band, a single receive weight cannot possibly cancel clutter across the entire

bandwidth. Mathematically, its effect is to multiply those members of the

covariance matrix corresponding to different receive elements by 12 s 2
e ;2s

2
r ,

where s 2
e is the variance of the phase errors and s 2

r is the variance of the

amplitude errors. The members of the covariance matrix corresponding to the

same receive element are unaffected.

An example of the effect of channel mismatch on improvement factor is

shown in Figure 10.46. We note that the dispersive errors do not affect the

improvement factor as long as s 2/N is less than the noise-to-clutter ratio, but the

improvement factor degrades as s 22 thereafter, where s 2 ¼ s 2
e þ s 2

r: Also, as
expected from classical smoothing theory, increasing the number of elements in

the array gives an improvement proportional to the number of elements, N. Thus,

as seen from Figure 10.46, increasing the number of elements by a factor of 4

(from 25 to 100) gives a 6 dB increase in the normalized improvement factor.

Because antenna errors are constant from pulse-to-pulse, one would not

expect the normalized improvement factor to be significantly changed by varying

the number of pulses processed, and this is indeed the case.
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10.2.5. SUMMARY

It has been shown that internal clutter motion, aircraft crabbing, and scattering

from near-field obstacles can limit the effectiveness of space–time processing in

eliminating airborne clutter. An analytical expression (Equation 10.71) was

developed to show how each of these effects produces a deterioration in the

signal-to-clutter-plus-noise ratio achievable. Furthermore, by studying the

spectral decomposition of the covariance matrix it was found that the effects of

both internal clutter motion and crabbing could either be compensated by

artificially adding noise or by processing more pulses. The latter approach is the

method of choice, when possible, especially in a low signal-to-clutter-plus-noise

environment.

A near-field obstacle limits performance in a different fashion, and produces

a spread of the clutter into all of sine azimuth–Doppler space. It was shown that

the space–time processor attempts to compensate for this effect by placing a

near-field null on the obstacle. Thus, adding more spatial degrees of freedom

(i.e., more elements) is much more effective in eliminating this effect than is

adding more temporal degrees of freedom (i.e., processing more pulses).

Channel mismatch also limits effectiveness, and this can be alleviated by

controlling the dispersive errors more tightly and by increasing the number of

receive elements.

Some people have argued that because the processor attempts to place nulls

on near-field obstacles, it might be better to apply a near-field constraint, a priori.

In Appendix J it is demonstrated that this is a suboptimum solution, and it is

always better to allow the processor to determine the near-field structure, because

it does it in the fashion that maximizes the signal-to-noise-plus-clutter ratio.

10.3. CLUTTER COVARIANCE SMOOTHING BY SUBAPERTURE

AVERAGING

(R. L. FANTE, E. C. BARILE, AND T. P. GUELLA)

10.3.1. INTRODUCTION

The detection of small targets with an airborne radar is complicated by the

presence of significant sidelobe clutter in the same Doppler bin as the target. The

conventional cure is to decrease the sidelobe level, but for targets with very small

radar cross section the sidelobe level required may not be achievable in practice.

However, one can still eliminate the offending clutter, while also eliminating any

jammers present, by using space–time processing to adaptively place nulls on the

undesirable sidelobe clutter (and jammers). It has been shown previously1,2 that

an airborne space–time adaptive radar (consisting of an antenna array with an

adaptive tapped delay line behind each element) can cancel ground clutter and

interferers, while simultaneously preserving a target return, by applying a weight
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vector w to the space–time array, where

w ¼ CF21sp ð10:74Þ
In Equation 10.74, C is a constant, s is the target steering vector, and F is the

covariance matrix of the interference and has a typical component

Fnmðr,pÞ ¼ kVnðrTÞVp
mðpTÞl, where Vn(rT) is the interference (clutter-plus-

jammers-plus-noise) voltage received on the nth element for the rth pulse, T is

the interpulse period, and kl denotes an expectation. One of the key

considerations in applying Equation 10.74 is the estimation of F: The usual

approach is to obtain an estimate using the samples Vnðt ¼ rT þ mðDR=cÞÞ of the
voltage in the mth range bin for the rth pulse, where DR is the range resolution

and c is the speed of light. Then the estimate of Fnmðr; pÞ is

F̂nmðr; pÞ < 1

M

XM
m¼1

VnðrT þ mDR=cÞVp
mð pT þ mDR=cÞ ð10:75Þ

where M is the number of independent range bins. As shown by Reed et al.3 this

provides an acceptable estimate of Fnmðr; pÞ as long asM $ 2NDOF, where NDOF

is the number of space–time degrees of freedom. However, the maximum

number of independent range bins is limited by the ambiguous range of the radar.

That is, the range resolution of the radar is c/2B, where B is the bandwidth and the

ambiguous range is c/2(PRF), PRF being the pulse repetition frequency, so that

the number of independent range bins is the number of resolution cells in the

ambiguous range. This gives M ¼ B/PRF independent range bins, or samples.

Thus, as long as B/PRF . 2NDOF, there are sufficient samples to estimate F, but

it is clear that for high PRF radars it may be difficult to obtain a sufficient number

of independent samples by range bin averaging. For this case an adjunct is needed

to provide additional smoothing of the covariance. This can be achieved by

subaperture averaging,4–6 which is sometimes used for other purposes. The idea

behind subaperture averaging, or spatial smoothing, is the recognition that the

estimate of Fnm for the nth and mth elements is effectively repeated in Fnþn;mþn,
where n is an integer, as long as the array elements are uniformly spaced, and the

incident field is spatially statistically stationary. Thus, if we have an N-element

array and are willing to suffer the loss in resolution entailed in using only NA

elements at a time, then (unless F̂nm and F̂nþn;mþn are highly correlated) we can

smooth the covariance by forming


Fnmðr; pÞ ¼ 1

K þ 1

XK
n¼0

F̂nþn;mþnðr;PÞ ð10:76Þ

where K þ 1 ¼ N 2 NA þ 1 is the number of subarrays. This procedure is

illustrated graphically in Figure 10.47 for the case where N ¼ 10 and NA ¼ 6.

Although it is clear that, in principle, the average in Equation 10.76 should reduce

the variance of Fnmðr; pÞ, we now need to quantitatively assess its effectiveness.
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If we substitute Equation 10.75 and Equation 10.76 and then define

~FnmðmÞ ¼ 1

K þ 1

XK
n¼0

VnþnðrT þ mDR=cÞ £ Vp
mþnð pT þ mDR=cÞ ð10:77Þ

we can rewrite Equation 10.76 as


Fnmðr; pÞ ¼ 1

M

XM
m¼0

F̂nmðmÞ ð10:78Þ

where the arguments r and p have been suppressed in the definition of ~Fnm:
The mean square difference between 
Fnm and the true covariance Fnm is

s 2
nmðK þ 1Þ ¼

����� 1M XM
m¼1

~FnmðmÞ2 kFnml
2

���� � ð10:79Þ

If we observe from Equation 10.77 that k ~Fnml ¼ Fnm, and assume that the values

of ~FnmðmÞ for different range bins are independent (because the range bins do not
overlap and, therefore, the scatterers in different bins are different) and

statistically stationary, we can rewrite Equation 10.79 as

s 2
nmðK þ 1Þ ¼ 1

M
½kl 
Fnml

2 2 lFnml
2l	 ð10:80Þ

In deriving Equation 10.80 from Equation 10.79 it was necessary in evaluating

k ~FnmðmÞ ~Fp
nmðnÞl to separately evaluate the M terms for which m ¼ n, and the

MðM 2 1Þ terms for which m – n: In the next section we evaluate the result in

Equation 10.80 for airborne clutter.

10.3.2. ANALYSIS FOR AN AIRBORNE RADAR

In order to evaluate s 2
nm, let us consider the case when the adaptive radar

is mounted on an airborne platform moving with a constant speed nA, and
the interference is due to ground clutter only (the case of a finite number of

Subarray 1 Array Elements

Subarray 5

FIGURE 10.47 Ten-element array (N ¼ 10) subarrayed to form five (K þ 1 ¼ 5)

overlapped subarrays of six elements (NA ¼ 6).
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jammers can be treated as a special case of our analysis). Suppose the reference

element on the radar transmits a pulse train

V0ðtÞ ¼
X1

r0¼21
Uðt2 r0TÞeivt ð10:81Þ

where v is the radian signal frequency, and UðtÞ ¼ 1 for 0 # t # t and UðtÞ ¼ 0

otherwise. Then, if there are K0 clutter scatterers with the kth one located at range

Rk and azimuth uk, as shown in Figure 10.48, it is readily shown that the received
voltage on the nth array element after down conversion is

VnðtÞ ¼
X
r0

X
k

akU akt2 r0T 2 2
Rk
c

2
nD

c
sin uk

� �
� exp iv ðak 2 1Þt2 2Rk

c
2

nD

c
sin uk

� �� �
: ð10:82Þ

where ak is the strength (including range effects) of the kth clutter scatterer,

ak ¼ 12 2ðvA=cÞsin uk, D is the separation between adjacent array elements, and

the summation on k is over all clutter scatterers. We now need to obtain the

voltage received on the nth element in the mth range bin for the rth pulse. If the

mth range bin is centered on range Rm ¼ mDR/c, we then evaluate Equation 10.82
at t ¼ rT þ 2Rm=c: Then, because the pulses do not overlap, only the term r 0 ¼ r

is nonzero in the summation on r 0. Also, we assume that both nAT and the array

length are small in comparison with the range resolution, ct/2. In this case we find
from Equation 10.82 that the voltage on the nth element in the mth range bin on

the rth pulse is

Vnðr;mÞ ¼
X
k

akUðgkmÞexp½2ifk 2 iwnr sin uk	 ð10:83Þ

∆

qk

Rk

Array
Element 1

Direction of array
motion (speed = vA)

Clutter scatter k

Array
Element n

FIGURE 10.48 Location of kth clutter scatterer relative to antenna array.
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where

gkm ¼ 2

c
ðRk 2 RmÞ

fk ¼ 2vRk
c

wnr ¼ v

c
nDþ 2rvAT þ 2

vA
c
Rm

� �
and we have abbreviated VnðrT þ mDR=cÞ by Vnðr;mÞ: Therefore, for the mth
range ring, we have

Vnðr;mÞVp
mðp;mÞ ¼

X
k

X
l

aka
p
lUðgkmÞUpðglmÞ·exp½iðfl 2 fkÞ

þ iðwmp sin ul 2 wnr sin ukÞ	 ð10:84Þ
If Equation 10.84 is used in Equation 10.77, and the summation over n is

performed, we obtain

~FnmðmÞ ¼
X
k

X
l

aka
p
lUðgkmÞUpðglmÞ exp½iðfl 2 fkÞ þ iðwmp sin ul

2 wnr sin ukÞ þ iKðrk 2 rlÞ=2	
sin

K þ 1

2

� �
ðrk 2 rlÞ

ðK þ 1Þsin 1
2
ðrk 2 rlÞ

ð10:85Þ

where rk ¼ vD sin uk=c ¼ 2pðD=lÞsin uk and K ¼ N 2 NA:
The location ðRk; ukÞ of the kth clutter scatterer can be treated as a random

variable, with a probability density pkðRk; ukÞ: Let us assume that all scatterer

locations are statistically independent so that the joint probability density function

pðR1; u1;R2; u2; · · · ;RN ; uNÞ ¼ p1ðR1; u1Þp2ðR2; u2Þ · · · pNðRN ; uNÞ; we further

assume that pkðRk; ukÞ ¼ pRðRkÞpuðukÞ: Then, if all scatterer ranges are equally

likely, we have pR(Rk) ¼ constant, and the phase fk ¼ 2vRk/c can therefore be

treated as a random variable that is uniformly distributed between 0 and 2p, with a
probability density pfðfkÞ ¼ 1=ð2pÞ for 0 # fk # 2p: Consequently,

kexp½iðfk2flÞ	l¼ 1

2p

� �2ð2p

0
dfk

ð2p

0
dfl exp½iðfk2flÞ	 ¼ dkl ð10:86Þ

and

kexp½iðfk2flþfr2fsÞ	l¼ dkldrsþdksdlr2dklrs ð10:87Þ
where dkl¼ 1 if k¼ l and dkl¼ 0, otherwise. Also, dklrs¼ 1 if k¼ l¼ r¼ s and

dklrs¼ 0, otherwise. Term dklrs is needed in Equation 10.77 because otherwise the
k¼ l¼ r¼ s term is counted twice. Equation 10.86 is used to average
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Equation 10.85 over f, we obtain

k ~Fnmlu ¼
X0

k

lakl
2
exp½iðwmp 2 wnrÞsin uk	 ð10:88Þ

where the prime indicates that the summation is only over clutter scatterers in the

mth range ring and klu denotes an expectation on fk with all uk held constant.

Likewise, using Equation 10.88 we can show that

kl ~Fnmllu ¼
X0

k

lakl
2
exp½iðwmp 2 wnrÞsin uk	

������
������
2

þ
X0

k

X0

l
k–l

lakl
2lall

2
sin

K þ 1

2

� �
ðrk 2 rlÞ

ðK þ 1Þsin 1
2
ðrk 2 rlÞ

2664
3775

2

ð10:89Þ

Finally, if Equation 10.88 and Equation 10.89 are substituted into Equation 10.80

we find

s 2
nmðK þ 1Þ ¼ 1

M

X0

k

X0

l
k–l

lakl
2lall

2 £
sin

K þ 1

2

� �
ðrk 2 rlÞ

ðK þ 1Þsin 1
2
ðrk 2 rlÞ

2664
3775

2* +
ð10:90Þ

where rk ¼ ðvD=cÞsin uk ¼ ð2pD=lÞsin uk, and the expectation kl in Equation

10.90 is an expectation over the scatterer polar angles uk. The expectation in

Equation 10.90 has been performed by Monte Carlo methods and the results

are presented in Figure 10.49 for the case when the scatterer amplitudes ak are

all equal. The results shown are the averages over 100 realizations, each

containing 512 randomly located scatterers per range ring. The normalized

variance shown on the ordinate of Figure 10.49 has been defined as

s 2
nmðK þ 1Þ=s 2

nm(1) where

s 2
nmð1Þ ¼ 1

M

X0

k

X0

l
k–l

lakl
2lall

2 ð10:91Þ

From Figure 10.49 we see that the normalized variance decreases approxi-

mately as ðK þ 1Þ21 when the number of subapertures is increased. Thus,

subaperture averaging does indeed lead to significant smoothing of the

covariance. In fact, if we recognize that the variance per range ring is given by

s 2
nm ¼

X0

k

X0

l
k–l

lakl
2lall

2 ð10:92Þ
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then it is evident from Equation 10.90, Equation 10.91, and Figure 10.76 that

after averaging over both range bins and subapertures the variance is

s 2
nmðK þ 1Þ < 1

MðK þ 1Þ ~s2
nm ð10:93Þ

Consequently, the variance per range bin has been reduced by the product of

the number of range bins and subapertures.

We have also performed the calculations for the case of J jammers. In that case

we again obtain the result in Equation 10.90, except that the sums are now over all

jammers (rather than all clutter scatterers in a given range ring) and there is no

expectation on the polar angles uk (because a different realization would still have
the jammer at the same angle. Only the phase angles would differ). The numerical

results show the same trend observed in Figure 10.49, and are not repeated here.

10.3.3. SUMMARY

It has been demonstrated that the covariance matrix estimate is indeed smoothed

by using subaperture averaging. In particular, we have shown that if we have

K þ 1 subapertures (K ¼ 0 corresponds to NA ¼ N so that there is no spatial

smoothing), and M independent range bins, then the equivalent number of

independent samples is approximately ðK þ 1ÞM: Therefore, the maximum

numberNDOF of space–time degrees of freedom that the adaptive radar can have is

NDOF <
ðK þ 1ÞM

2
ð10:94aÞ

1
10−3

10−2

N
or

m
al

iz
ed

va
ria

nc
e,

s n
m2

(K
+

1)
/s

nm
2
(1

)

10−1

1

10
(k + 1)

100 1000

∆ = 0.5l, sin qk
uniformly distributed
between −1 and 1

∆ = 0.6l, sin qk
uniformly distributed
between −1 and 1

∆ = 0.6l, sin qk
uniformly distributed

between −1/2 and 1/2

∆ = 0.5l, sin qk
uniformly distributed

between −1/2 and 1/2

FIGURE 10.49 Normalized variance of (n, m) component of covariance matrix after

subaperature averaging.
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If we recall that themaximumvalue ofM isB/PRF,we can rewrite this condition as

NDOF ¼ ðK þ 1ÞB
2PRF

ð10:94bÞ

For example, suppose B ¼ 0.7 MHz, PRF ¼ 20 kHz, and we have ðK þ 1Þ ¼ 4

overlapped subapertures (this implies using three additional array elements

becauseK þ 1 ¼ N 2 NA þ 1, so thatN 2 NA ¼ 3Þ: Then, from Equation 10.94b

we see that the maximum number of space–time degrees of freedom NDOF ¼ 70.

Therefore, subaperture averaging allows us to have sufficient samples to estimate

the covariance matrix for a 35 element adaptive space–time array that processes

two pulses (the array would actually have 38 elements, but the final three elements

are only used to smooth the covariance). This would not be otherwise possible for

the high PRF chosen.

10.4. CANCELLATION OF DIFFUSE JAMMER MULTIPATH BY

AN AIRBORNE ADAPTIVE RADAR

(R. L. FANTE AND J. A. TORRES)

10.4.1. INTRODUCTION

Airborne surveillance radars need to be able to detect targets in an environment

that can include the case when hostile airborne and ground-based jammers are

present. The surveillance radar can overcome the interference from a ground-

based jammer located in the radar sidelobes either by employing very low

sidelobes or placing an adaptive spatial null at the jammer location. However,

airborne jammers present a special problem because of multipath (i.e., reflection

of the jammer interference off the Earth into the radar), even when the jammer is

located in the sidelobes of the radar. In regions where the Earth is very smooth

(e.g., tranquil sea) this multipath appears at the same azimuth as the direct

jammer interference. Both components can usually be canceled with a single

spatial null, or by using very low radar sidelobes. However, in regions where the

surface of the Earth is diffuse (rough ground, high sea states) the jammer

interference is usually scattered off a large portion of the terrain, including that

portion subtended by the mainbeam of the radar. In this case, the integrated,

diffuse jammer multipath entering the radar through the azimuths subtended by

its mainbeam can be considerably larger than that entering through the radar

sidelobes. Thus, diffuse multipath creates a unique mainbeam jamming problem,

because the jammer interference is spatially distributed in azimuth throughout the

mainbeam. Placing a spatial null at a single azimuth in the mainbeam would be

ineffective.† Furthermore, one cannot place nulls everywhere in the mainbeam

† It has been assumed that because of size limitations, the airborne jammer is not highly directional,

and the surveillance radar elevation beamwidth is sufficiently large that a portion illuminates the

ground; in practical applications these assumptions are usually valid.
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because then the target signal would be canceled. Thus, conventional spatial

nulling is not a solution, and a different approach is required.

The time-domain approach to cancel such jammer interference is to obtain a

replica of the interference, pass it through a delay line that compensates for any

time differences between the interference and its replica, and then subtract the

two. This idea can be generalized to the cancellation of jammer multipath by

considering the geometry in Figure 10.50, where one places an auxiliary beam

adjacent to the mainbeam, in order to try to obtain a delayed replica of the

interference received through the mainbeam. For a sidelobe jammer, the jammer-

to-noise ratio in the auxiliary beam is expected to be of the same order as that in

the mainbeam. Then, if the interference received in the auxiliary beam is

passed through a tapped delay line that compensates for time differences

between the main and auxiliary interferences, the mainbeam interference can be

partially or fully canceled. The degree of cancellation depends on the degree

of correlation existing between the mainbeam and auxiliary beam interference.

A high degree of correlation (which yields good cancellation of mainbeam

interference) requires that the product of bandwidth and all time delays between

channels be small in comparison with unity.‡ Note that because the target signal

is present in the mainbeam, but only weakly present in the auxiliary beams

(because it is in the spatial sidelobes of the auxiliary), the target signal is not

canceled when the time-shifted auxiliary channel voltage is subtracted from the

main channel voltage.

Although the system discussed above may be reasonably effective in

canceling mainbeam diffuse jammer multipath, one might expect that more

orthogonal, auxiliary beams are necessary if one is also to cancel the diffuse

jammer multipath that enters the radar through its sidelobes. This implies that the

maximum cancellation occurs when all possible auxiliary beams are used.

However, once the number of beams equals the number of elements, then it does

not matter whether the cancellation is performed in element space or beam space

because the two are equivalent, as demonstrated in Appendix K.

This discussion suggests that the element space architecture required to

cancel diffuse jammer multipath is of the form shown in Figure 10.51.

The appropriate tap spacing T has been studied previously1–3 and the optimum

selection is such that BT < 0:3 to 0.7, where B is the radar bandwidth (it is

assumed that the jammer bandwidth exceeds the radar bandwidth). The number

of delays ðM 2 1Þ is chosen so that the range of delays expected is encompassed

by the total delay ðM 2 1ÞT of the tapped delay line. Of course, as noted

‡ That is, if one wishes to cancel an interference voltage j(t) with a delayed replica j(t 2 t) then the

mean residue power after cancellation is kljðtÞ2 jðt2 tÞl2l ¼ 2J½12 rðtÞ	 where J ¼ kljðtÞl2l, kl
denotes an expectation and r(t) is the normalized autocorrelation function. For a Gaussian

autocorrelation, we have rðtÞ ¼ exp½2ðt=tcÞ2	, where the correlation time tc is equal to B
21, and B is

the bandwidth. Thus, in order for the residue power to be small, we require r(t) < 1, which, in turn,

requires t=tc p 1, or Btp 1:
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previously, the product of the differential multipath delay and the jammer

bandwidth must also be less than unity.

The radar must also cancel conventional airborne clutter and, as illustrated in

Ref. 4, this requires an adaptive tapped delay line with the taps (i.e., pulses)

spaced by Tp, the inverse of the pulse-repetition frequency (PRF). Thus, the

generic space–time processor architecture for canceling both diffuse jammer

multipath and clutter requires antenna elements, pulses, and taps as shown in

Figure 10.52.

Let us now briefly discuss how the weights in Figure 10.52 are calculated so

as to maximize the signal-to-jammer-plus-clutter-plus-noise ratio. Suppose that

the voltage present at the terminals of the nth antenna in Figure 10.52 is Un(t).

Then, referring to Figure 10.52, the output voltage rn in that channel is the

weighted sum from M taps and L pulses, and can be written as

rnðtÞ ¼
XM
m¼1

XL
l¼1

wlmðnÞUn½t2 ðl2 1ÞTp 2 ðm2 1ÞT	 ð10:95Þ

MT
2

T

T

∑

∑

Beamformer

Antenna 1 Antenna n

Mainbeam Auxiliary beam

w1

w2

wM

Antenna N

M taps

• BT < 1

+

r

−

FIGURE 10.50 Generic two-beam adaptive architecture for canceling.
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T

T

∑

Antenna 1 Antenna n

w1(m)

w2(m)

wM(m)

T

T

∑

w1(n)

w2(n)

wM(n)

Antenna m Antenna N

•BT < 1 ∑

r

rn
r1 rN

rm

M taps

FIGURE 10.51 General fully adaptive element space architecture for canceling diffuse

jammer multipath.
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w12(n)
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• T << Tp

∑

r1
∑

r

rN
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M taps

L pulses

FIGURE 10.52 General fully adaptive element space architecture for canceling diffuse

jammer multipath and clutter.
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The output voltage r is the sum of all the antenna voltages, and is given by

rðtÞ ¼
XN
n¼1

XM
m¼1

XL
l¼1

wlmUn½t2 ðl2 1ÞTp 2 ðm2 1ÞT	 ð10:96Þ

Equation 10.96 can be written in vector notation by defining the N M L-by-1

vectors

u ¼

U1ðtÞ
U1ðt2 TÞ

..

.

U1½t2 ðL2 1ÞTp 2 ðM 2 1ÞT	
U2ðtÞ

U2ðt2 TÞ
..
.

U2½t2 ðL2 1ÞTp 2 ðM 2 1ÞT	
U3ðtÞ
..
.

UN½t2 ðL2 1ÞTp 2 ðM 2 1ÞT	

26666666666666666666666666666666664

37777777777777777777777777777777775

; w ¼

w11ð1Þ
w12ð1Þ

..

.

wLMð1Þ
w11ð2Þ
w12ð2Þ

..

.

wLMð2Þ
w11ð3Þ

..

.

wLMðNÞ

26666666666666666666666666666666664

37777777777777777777777777777777775

ð10:97Þ

Then, in terms of these vectors, we have

r 2 wTu ð10:98Þ
where the superscript T denotes a transpose.

It is then readily shown4–7 that the weight vector that maximizes the signal-

to-jammer-plus-clutter-plus-noise ratio is

w ¼ mF21sp ð10:99Þ
where m is a constant,F is the ideal interference (jammer-plus-clutter-plus noise)

covariance matrix defined as

F ¼ kupuTl ð10:100Þ
where kl denotes an expectation, and s is the steering vector. The steering vector

represents the voltage present at each of the M taps and L pulses in Figure 10.52
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when the desired target is present. That is, the desired target produces a vector

s ¼

s1ðtÞ
..
.

s1½t2 ðL2 1ÞTp 2 ðM 2 1ÞT	
s2ðtÞ
..
.

sN½t2 ðL2 1ÞTp 2 ðM 2 1ÞT	

26666666666666664

37777777777777775
ð10:101Þ

When the adaptive weights, as given by Equation 10.99, are applied it is readily

shown4,5 that the signal-to-interference ratio after adaptation is given by

S

I

� �
a
¼ sTF21sp ð10:102Þ

In the next section we compute the ideal covariance matrix and steering vector for

the case when jammers, jammer multipath, clutter, and noise are all present, and

when the processing is such that the received signal is down-converted

(demodulated to baseband) and passed through a matched filter before being

subjected to the processing indicated in Figure 10.52. Then in Section 10.4.3, we

present numerical results to demonstrate that the proposed architecture is

effective in canceling the direct-jammer interference, jammer multipath, and

conventional clutter without simultaneously canceling the desired signal. In

Section 10.4.4, we summarize our findings, discuss their limitations, and propose

areas for future research.

10.4.2. FILTERED RECEIVED SIGNALS

In this section we calculate the received signals for the jammer, noise, and target.

The received jammer voltage consists of a direct-path contribution and multiple,

multipath components scattered off the ground. These signals include down-

conversion to baseband and matched filtering. The ideal interference covariance

matrix and steering vector are also computed.

10.4.2.1. Received Jammer and Noise Signals

Let us refer to Figure 10.53, and assume the ground is subdivided into K subareas,

with the kth region having an effective area Ak and bistatic radar cross section per

unit area sk. We also assume the jammer gain in the direction of the radar is G0,

its gain in the direction of the kth surface patch isGk, and that the jammer radiates

a voltage j(t), with the impedance normalized such that the jammer power PJ is

equal to ljl2. Then, if we also assume that each receive element of the

radar antenna is isotropic, the total interference voltage on the nth receive
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element due to the direct jammer, its multipath, and noise can be written as

~VnðtÞ¼
ffiffiffiffiffiffi
G0l

p
4pR0

jðb0t2t0nÞþ l

ð4pÞ3=2
XK
k¼1

ffiffiffiffiffiffiffiffiffiffi
s kAkGk

p
R0
kR

00
k

jðbkt2tknÞþ ~xnðtÞ ð10:103Þ

where l is the wavelength, R0, R
0
k, and R00

k are shown in Figure 10.53, ~xn is the

noise on the nth receive element and

t0n¼ R0

c
2ðn21ÞT0 ð10:104Þ

tkn¼ 1

c
ðR0

k2R00
kÞ2ðn21ÞnTk; k–0 ð10:105Þ

T0¼ D

c
sinu0 cosc0 ð10:106Þ

Tk¼ D

c
sinuk cosck; k–0 ð10:107Þ

b0¼12
1

c
ðvA2vJÞR̂0 ð10:108Þ

bk¼12
1

c
ðvA·R̂00

k2vJ ·R̂
0
kÞ; k–0 ð10:109Þ

Array platform

Broadside

Jammer

k th Reflection point

∆

R0
ˆ

R0

q0

qk

R ′
k

R ′′

Rk

v j

vA

k

R̂ ′′
k

FIGURE 10.53 Model for jammer multipath.
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where vA is the velocity of the radar platform, vJ is the jammer velocity, D is the

separation between elements in the receive array, c0 and ck are, respectively,
the depression angles of the jammer and the kth reflection point on the ground,

and c is the speed of light. The first term in Equation 10.103 is the direct jammer

signal, the second term represents the jammer multipath, and the last term is the

noise. In deriving Equation 10.103 we have ignored conventional ground clutter,

which is added later in our analysis.

If we now define the new voltage

VnðtÞ ¼ 4pR0

lðG0Þ1=2
~VnðtÞ ð10:110Þ

and a new noise

xnðtÞ ¼ 4pR0

lðG0Þ1=2
~xnðtÞ ð10:111Þ

we can rewrite Equation 10.103 as

VnðtÞ ¼ jðb0t2 t0nÞ þ
XK
k¼1

ak jðbkt2 tknÞ þ xnðtÞ ð10:112Þ

where

ak ¼ s kAk
4p

� �1=2 Gk

G0

� �1=2 R0

R0
kR

00
k

ð10:113Þ

Equation 10.112 is the starting point for our analysis.

We now assume that the received interference signal VnðtÞ is filtered and then
down-converted (these operations can also be done in the reverse order) by

multiplying by exp(2 i2p fct), where fc is the carrier frequency. Then, if h(t) is the

impulse response of the filter, the output voltage is

ynðtÞ ¼ e2i2pfct
ð1

21
hðt2 tÞVnðtÞdt ð10:114Þ

If Vn(t) is substituted from Equation 10.112, this becomes

ynðtÞ ¼ e2i2p fct
XK
k¼0

ak

ð1

21
hðt2 tÞjðbkt2 tknÞdt

þ e2i2pfct
ð1

21
hðt2 tÞxnðtÞdt ð10:115Þ

where a0 ; 1.
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In practice, h(t) is a filter matched to the transmitted signal. If the transmitted

signal is z(t), then

hðtÞ ¼ Azpðt0 2 tÞ ð10:116Þ
where t0 is the time when the output is a maximum and A is a constant. For a chirp

(linear FM) pulse, we find A ¼ (B/ts)
1/2 and z(t) has the form

zðtÞ ¼ exp i2pfct þ i
pBt2

ts

" #
·rectðt=tsÞ ð10:117Þ

where B is the signal or radar bandwidth, rect(x) is equal to unity for 0 # x # 1

and is zero otherwise, and ts is the temporal duration of the uncompressed pulse.

Consequently, for a chirp signal

hðtÞ ¼ B

ts

� �1=2
exp 2i2pfcðt0 2 tÞ2 i

pBðt0 2 tÞ2
ts

" #
rect

t0 2 t

ts

� �
ð10:118Þ

10.4.2.2. Interference Covariance Matrix

By using Equation 10.115 and Equation 10.118 we now compute the interference

covariance matrix for the space–time processor discussed in the last section. The

general term of interest is the jammer-plus-noise covariance matrix given by

Ynmðt1; t2; tÞ ¼ kynðt þ t1Þypmðt þ t2Þl ð10:119Þ
where the brackets kl denote an expectation. If we assume that k jl ¼ kxl ¼ 0, and

that the jammer and noise voltages are statistically independent, we can substitute

Equation 10.115 and Equation 10.118 into Equation 10.119 to obtain

Ynmðt1;t2;tÞ¼G12

XK
k¼0

XK
l¼0

aka
p
l

ð1

21
dt
ð1

21
dt rhðtþt12tÞ·hpðtþt2t

0Þ

�k jðbkt2tknÞjpðblt 02tlnÞlþG12

ð1

21
dt
ð1

21
hðtþt12tÞ

�hpðtþt22t
0ÞkxnðtÞxpmðt 0Þl ð10:120Þ

where a0 ; 1, and

G12¼exp½2i2p fcðt12t2Þ	 ð10:121Þ
If the receiver noise is a stationary white random process, then

kxnðtÞxpmðt 0Þl¼Sxxð fcÞdðt2t 0Þdnm ð10:122Þ
where dð···Þ is the Dirac delta function, dnm is the Kronecker delta, Sxx( f ) is

the power spectrum of the noise, and we have assumed that the noise voltages

on the different antennas are independent. Likewise, if the jamming signal is also
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a stationary white random process

k jðbkt2tknÞjpðblt 02tlmÞl¼ Sjjð fcÞdðbkt2blt 02tkmþtlmÞ
¼ Sjjð fcÞ

lbll
d
bk
bl
t2t 02

tkn
bl

þtlm
bl

� �
ð10:123Þ

where Sjj( fc) is the power spectral density of the jammer. Consequently, if

we substitute Equation 10.122 and Equation 10.123 into Equation 10.120,

we obtain

Ynmðt1;t2;tÞ ¼G12Sjjð fcÞ
XK
k¼0

XK
l¼0

aka
p
l

lbll

ð1

21
dt·hðtþt12tÞhpðtþt22aklt2gÞ

þdnmG12Sxxð fcÞ
ð1

21
dt·hðtþt12tÞhpðtþt22t

0Þ ð10:124Þ

where

akl¼bk
bl

ð10:125Þ

and

g;g ðk;l;n;mÞ ¼ tlm2tkn
bl

ð10:126Þ
We can express Equation 10.124 in terms of the transmitted signal z(t) by using

Equation 10.116 with A ¼ (B/ts)
1/2. The result is

Ynmðt1;t2;tÞ ¼G12Sjjð fcÞ B

ts

� �XK
k¼0

XK
l¼0

aka
p
l

lbll

ð1

21
dt·zpðt02t2t1þtÞ

� zðt02t2t2þakltþgÞþdnmG12Sxxð fcÞ B

ts

� �ð1

21
dt

� zpðt02t2t1þtÞzðt02tþt2þtÞ ð10:127Þ
where z(t) is given by Equation 10.117. Letting

Iklðn;m;t1;t2;tÞ ¼
ð1

21
dt·zpðt02t2t1þtÞ·zðt2t2t2þakltþgÞ ð10:128Þ

I 0ðt1;t2Þ ¼
ð1

21
dr·zpðt02t2t1þtÞ·zðt02t2t2þtÞ ð10:129Þ

we obtain

Ynmðt1;t2;tÞ ¼G12Sjjð fcÞ B

ts

� �XK
k¼0

XK
l¼0

aka
p
l

lbll
Iklðn,m,t1,t2,tÞ

� dnmG12Sxxð fcÞ B

ts

� �
I0ðt1;t2Þ ð10:130Þ
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The integrals in Equation 10.128 and Equation 10.129 have been evaluated in

Appendix L for the case when z(t) is given by Equation 10.117. Note that because

of Doppler effects the covariance of the jammer multipath is temporally

nonstationary (i.e., Ikl depends on time t). As we later see, this means that if the

jammer multipath is to be canceled, the weights applied must also vary with time.

As we noted earlier, cancellation of diffuse multipath requires that there be

correlation between the scattered interference from scatterers in the mainbeam

and those in the sidelobes of the radar. This requires that for such scatterers Ikl do

not vanish and, in particular, that Ikl=ts be of order unity. Based on this

requirement it is shown in Appendix L that the necessary conditions for effective

cancellation of jammer multipath are:

(1) The differential delay between scatterers must be small in comparison

with the uncompressed pulse length.

(2) The product of the differential Doppler frequency and the uncom-

pressed pulse length must be small in comparison with unity.

(3) The product of the radar bandwidth and the differential delay between

scatterers must be small compared with unity.

It should also be noted that if multiple, independent jammers are present then the

first term in Equation 10.130 is replaced by

G12

B

ts

� �XJ
v¼0

S v
jjð fcÞ

XK
k¼0

XK
l¼0

akva
p
lv

lbll
Iklvðn;m; t1; t2; tÞ

where Svjjð fcÞ is the power spectrum of the vth jammer, J is the number of

independent jammers, and akv, Iklv are the scattering amplitudes and integrals

associated with the vth jammer, respectively.

The covariance due to conventional ground clutter was derived previously.4

If we denote the components of the clutter covariance matrix by Cnmðt1,t2Þ and
assume that the clutter return is statistically independent of both the noise and the

direct and scattered jammer signals, we then obtain for the (n, m) component of

the total interference covariance

Fnmðt1,t2,tÞ ¼ Ynmðt1,t2,tÞ þ Cnmðt1,t2Þ ð10:131Þ

The times t1 and t2 can be expressed in terms of the pulse and tap indices. For

reasons that will be obvious when we treat the steering vector, it is convenient

to choose the time origin at the center (or as close to the center as possible)

of the first tapped delay line. Thus, we can write t1 ¼ p1Tp þ l1T and

t2 ¼ pTp þ l2T , where we define p1 ¼ ðp01 2 1Þ, and p2 ¼ ðp02 2 1Þ, Tp is the

pulse spacing, and T is the tap spacing. The indices p01 and p02 are the pulse indices
and each ranges from 1 to L. Also, if the number of taps M is odd, we define

l1 ¼ l01 2 ðM þ 1Þ=2, and l2 ¼ l02 2 ðM þ 1Þ=2, where l01 and l02 are the tap indices
and each ranges from 1 to M. If the number of taps is even, then
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l1 ¼ l01 2 ðM þ 2Þ=2, and l2 ¼ l02 2 ðM þ 2Þ=2, where l0 and l02 again each range

from 1 to M.

10.4.2.3. Steering-Vector and Received Target Signal

In this section we calculate the steering vector after matched filtering and down-

conversion. Suppose the transmitted pulse train is

zxðtÞ ¼
XP
p¼1

u½t2 ð p2 1ÞTp	ei2pfct ð10:132Þ

where Tp is the interpulse period, fc is the carrier frequency and, for a linear FM

(chirp)

uðtÞ ¼ rect
t

ts

� �
exp i

pB

ts
t2

� �
ð10:133Þ

The function rectðxÞ is equal to unity if 0 # x # 1 and is zero otherwise. Also, B

is the radar bandwidth and ts is the temporal duration of the uncompressed pulse.

If the target is at range Rs, azimuth angel us, and has a velocity vs, then the

signal received on the nth element of the antenna array is

znðtÞ ¼
XP
p¼1

u½ð12 bsÞt2 ts 2 ðn2 1ÞTs 2 ð p2 1ÞTp	

� exp{i2pfc½ð12 bsÞt2 ts 2 ðn2 1ÞTs	} ð10:134Þ
where:

Ts ¼ D

c
sin us cos cs ð10:135Þ

ts ¼ 2Rs
c

ð10:136Þ

bs ¼ 2
2

c
ðvA 2 vSÞ·R̂s ð10:137Þ

D is the element spacing, vA is the aircraft velocity, R̂s is a unit vector joining the

radar to the target, and cs is the target depression angle. If the signal is passed

through a matched filter and down-converted, we have

snðtÞ ¼ e2i2pfcðt2t0Þ
ð1

21
hðt2 tÞznðtÞdt ð10:138Þ

where hðtÞ is given by Equation 10.118. By using Equation 10.133, we can

express hðtÞ in Equation 10.119 in terms of uðtÞ: We find

hðtÞ ¼ B

ts

� �1=2
e2i2pfcðt02tÞupðt0 2 tÞ ð10:139Þ
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Now substitute Equation 10.140 and Equation 10.139 into Equation 10.138. After

some simple manipulations, we obtain

snðtÞ ¼ B

ts

� �1=2XP
p¼1

ð1

21
dt·u½ð12 bsÞt2 ts 2 ðn2 1ÞTs 2 ðp2 1ÞTp	

£ upðt0 2 t þ tÞe2i2pfcðbstþtsþðn21ÞTsÞ: ð10:140Þ

Next let us evaluate Equation 10.140 at t ¼ t0 þ ts þ l1T þ p1Tp, and then make

the transformation h ¼ t2 ts 2 l1T 2 p1Tp: Then, because only the p ¼ p1 term

remains in the summation in Equation 10.140. We get

snðt0 þ ts þ l1T þ p1TpÞ

¼ B

ts

� �1=2
e2if

ð1

21
dh·u½ð12 bsÞðhþ l1TÞ2 ðn2 1ÞTs

2 bsðts þ p1TpÞ	upðhÞe2i2pbsfch ð10:141Þ
where

f ¼ 2pfc½ðbs þ 1Þts þ bsðl1T þ p1TpÞ þ ðn2 1ÞTs	 ð10:142Þ
If we assume that Bts q 1,ll1Tlp ts,pBD=cp 1, fcts q p1 and fc=Bq p1,

where D is the total linear dimension of the array, it can be shown that

snð p1,l1Þ < ðBtsÞ1=2e2if2 sincðpBl1TÞ ð10:143Þ
where

f2 ¼ 2pfcð1þ bsÞts þ 2pfcbsp1Tp þ 2pfcðn2 1ÞTs 2 pBl1T ð10:144Þ
and the argument ðt0 þ ts þ l1T þ p1TpÞ has been replaced by ( p1, l1) in Equation
10.143. Equation 10.143 is the expression used for the steering vector in the

calculations to follow. The reader is reminded that l1 and p1 are related to the tap

index l0 and pulse index p01 by the relations l1 ¼ l01 2 ðM þ 1Þ=2 where M is odd,

l1 ¼ l01 2 ðM þ 2Þ=2 when M is even and p1 ¼ ðp01 2 1Þ, where the tap index l01
ranges from 1 to M, and the pulse index p01 ranges from 1 to L. Thus, from

Equation 10.143 it is evident that the steering vector is centered at tap l01 ¼
ðM þ 1Þ=2 when M is odd and on l01 ¼ ðM þ 2Þ=2 when M is even.

10.4.3. NUMERICAL RESULTS

10.4.3.1. Introduction

In this section, we describe the model for the location of the diffuse jammer

multipath scatterers. We then illustrate how the adaptive processing architec-

tures discussed in Section 10.4.2 can provide cancellation of the diffuse

multipath jamming, and in particular, the scattering entering through the radar

mainbeam.
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Ideally, one would like to model all of the terrain contributing to the diffuse

jammer multipath by dividing the entire illuminated area into a grid of coherence

regions, and randomly placing a scatterer within each region. However, due to the

computational limitations of the simulation, only a subset of the multipath region

is modeled. In Appendix L, we show that good cancellation of jammer

interference from scatterers located in the radar mainbeam requires that they be

highly correlated with jammer interference from scatterers located in the radar

sidelobes. Specifically, the differential path delay between the mainbeam and

sidelobe scatterers must be small in comparison with the reciprocal of the radar

bandwidth B, and the differential Doppler frequency must be small in comparison

with the inverse of the uncompressed pulse length. Therefore, we begin by

defining a profile of points located on the ground such that the differential path

delay between any two points on the profile is zero. Next a set of profiles are

chosen to cover the entire extent of the multipath region. The profile separation

DR is chosen to be approximately equal to the correlation length of the diffuse

terrain, where DR/c is of the order of 1/B. The total extent R of differential path

delays covered equals the product of the profile separation DR and the number of

profiles less one. Finally, a number of scatterers are randomly distributed

throughout the region defined by the intersection of the mainbeam and first few

sidelobes of the radar with the multipath region defined by the total extent of

differential path delays, as illustrated in Figure 10.54. Note that when the sidelobe

scatterers are located near the mainbeam, the differential Doppler frequencies

between these scatterers and the mainbeam scatterers are also kept small.

For the illustrative examples of this section, we choose eighty to one hundred

scatterers; half randomly located in the mainbeam of a 16 element, uniformly

illuminated array from22 to 28 in azimuth, and half located in the sidelobes from

Mainbeam

Randomly distributed
scatterers

Profiles of
constant path
delay

Sidelobes

BR/cB∆R/c

FIGURE 10.54 Model for location of diffuse jammer multipath scatterers.

Adaptive Antennas and Receivers510

© 2006 by Taylor & Francis Group, LLC



9 to 128. The frequency is UHF, and PRF is 1000 Hz, the bandwidth B is 1 MHz,

and the queiscent jammer-plus-noise-to-noise ratio (JNR) is equal to 32.2 dB.

Unless otherwise stated, the examples will not include the contributions from the

direct jammer located in the radar sidelobes at 408 in azimuth. The simulation

parameters are summarized in Table 10.3. The ability of the adaptive processor to

cancel the diffuse multipath jamming is measured as the adaptive signal-to-

interference ratio (SIR) at the processor output, in comparison with the adapted

SIR achievable in the noise-only case. Specifically, performance is measured as a

loss in adapted SIR, where the best achievable value is 0 dB.

Figure 10.55 illustrates the cancellation (assuming instantaneous updating

of the weights) of diffuse multipath using the fully adaptive element space

architecture shown in Figure 10.51. For this example, the tap spacing is T ¼ 0.5/

B, and the multipath region is modeled by 80 scatterers covering a total extent

BR/c of 5.6. Increasing the number of temporal taps from 1 to 13 significantly

TABLE 10.3
Simulation Parameters

Number of antenna elements ¼ 16

Frequency ¼ UHF

Pulse repetition frequency ¼ 1000 Hz

Target azimuth ¼ 08

Jammer azimuth ¼ 408

Radar bandwidth B ¼ 1 MHz

Tap spacing ¼ 0.5/B

Quiescent multipath JNR ¼ 32.2 dB (direct jamming excluded)

1
35

30

25

20

Lo
ss

in
ad

ap
te

d
S

IR
(d

B
)

15

10

5

0

2 3 8
Number of taps, M

9 10 11 12 13 14 15 167654

FIGURE 10.55 Cancellation of diffuse jammer multipath using temporal taps for

BT ¼ 0.5 and BR/c ¼ 5.6.
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improves the performance of the adaptive processor by 21.5 dB (i.e., reduces the

loss in adapted SIR from 28.4 to 6.9 dB); increasing the number of taps from 13

to 16 only improves the performance by an additional 0.6 dB. This behavior is as

expected, because the number of taps needed to encompass a total delay Dt ¼ R/c

is given by

ðM 2 1ÞT ¼ Dt ð10:145Þ
For T ¼ 0.5/B, we then find

M ¼ 2BDtþ 1 ð10:146Þ
For BR/c ¼ BDt ¼ 5.6, Equation 10.146 givesM ¼ 2(5.6) þ 1 ¼ 12.2. Thus, we

would expect 12 or 13 taps would be needed to compensate for the multipath, and

there is only marginal gain in adding additional taps beyond this number. Note

that even for M !1, the performance does not approach the noise-only value

(0 dB), because the Doppler and delay match between the sidelobe and mainlobe

scatterers is never perfect.

10.4.3.2. Tap Spacing

Figure 10.56 illustrates the performance of the fully adaptive element space

processor, using the same multipath scenario modeled in the previous example,

when the number of taps and tap spacing are varied. The optimal tap spacing for

canceling the diffuse multipath depends on the number of taps used in the

architecture. However, for a given number of taps, performance varies less than

3 dB when the tap spacing T varies from 0.3/B to 0.7/B. Therefore, for the

remainder of this work, the tap spacing is set to T ¼ 0.5/B.
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FIGURE 10.56 Effect of tap spacing on the cancellation of diffuse jammer multipath

using M temporal taps for BR/c ¼ 5.6.
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10.4.3.3. Total Extent

In this section, we discuss the effect of the total extent of differential path delays

on the performance of the element space processor. Figure 10.57 illustrates the

loss in adapted SIR as a function of total extent when the number of temporal taps

is varied. In general, performance degrades as the total extent of the diffuse

multipath region increases. However, the losses in adapted SIR can be mitigated

by processing more temporal taps until the required value given by

Equation 10.146 is reached. We should comment that the reader may find the

oscillations in performance puzzling. These oscillations have been noted

previously1–3 and are produced by the interactions between the scatterers.

10.4.3.4. Ground Clutter

Here, we illustrate how the fully-adaptive element space architecture augmented

with PRI taps (i.e., pulses), as shown in Figure 10.52, can cancel both diffuse

jammer multipath and ground clutter. For illustrative purposes, the ground clutter

has no internal motion, so that two-pulse adaptive processing without temporal

taps is sufficient to cancel the clutter when no jammer multipath interference is

present.4,5 For this example, the quiescent clutter-plus-noise-to-noise ratio (CNR)

is 43.7 dB, and the multipath region is modeled by 90 scatterers covering a

total extent of BR/c ¼ 6.4. Figure 10.58 illustrates that without ground clutter

(i.e., jammer multipath and noise only), performance improves by nearly 21 dB

when the number of taps increases from one to 10. When the ground clutter and a

single PRI delay (i.e., two pulses) are added, performance is reduced by less than

1 dB.
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FIGURE 10.57 Effect of total extent on the cancellation of diffuse jammer multipath

using M temporal taps for BT ¼ 0.5.
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10.4.3.5. Temporal Averaging

It should be stressed that the diffuse jammer multipath covariance matrix is time

varying, requiring that the adapted weights be updated at roughly the rate of the

highest differential Doppler frequency present. Because this can become

computationally burdensome, it may be desirable to reduce the update rate and

apply a set of average weights to all the data within a temporal interval. These

average weights are calculated as

w ¼ m 
F21sp ð10:147Þ
where 
F is the interference covariance matrix averaged over a specified temporal

interval and s is the steering vector. Performance degradations due to the

temporal averaging are caused by the decorrelation of the jamming interference

from different scatterers. Figure 10.59 illustrates the loss in adapted SIR as a

function of the averaging time-interval, when the number of taps is varied. Note

that the loss in adapted SIR is an average value over the averaging time-interval,

and an averaging time of zero implies that the weights are updated

instantaneously. We see that at UHF the performance degrades by less than

3 dB for averaging times up to two PRI (i.e., 2 ms). However, the degradation is

larger at S-band because, as can be seen from Equation L-7 in Appendix L, the

nonstationary portion of the covariance depends on the Doppler frequency

difference, which increases as the carrier frequency is increased. In this example,

the platform and jammer speeds were 350 nmi/hr.

10.4.3.6. Beam Space

The computational complexity of the fully adaptive element space processor is a

significant consideration in practical implementations. The complexity can be
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FIGURE 10.58 Cancellation of ground clutter and diffuse jammer multipath for

BR/c ¼ 6.4 and BT ¼ 0.5.
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reduced, while maintaining performance, by using the beam space architecture.

This approach uses beamforming of the array element data to form distinct

orthogonal beams, where the number of beam is typically much less than the

number of array elements. The spatial information is adaptively filtered using a

tapped-delay line at the output of each beam. Appendix K shows that

the performances of the element and beam space architectures are equivalent

in the limit when the number of elements and beams are the same.

Figure 10.60 shows the performance of the beam space processor versus the

number of beams, when the number of temporal taps is varied. The multipath
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FIGURE 10.59 Effect of temporal averaging on the cancellation of diffuse jammer

multipath using temporal taps for BT ¼ 0.5 and BR/c ¼ 6.4.
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FIGURE 10.60 Effect of temporal averaging on the cancellation of diffuse jammer

multipath using M temporal taps (without direct jammer included) for BT ¼ 0.5 and

BR/c ¼ 7.2.
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region is modeled by 100 scatterers covering a total extent of BR/c ¼ 7.2. Note

that we first form a set of orthogonal beams uniformly spaced in sine of azimuth

space, where the number of beams equals the number of array elements. The beam

corresponding to the target azimuth (i.e., 08) is needed to maintain the target

signal. Therefore, we order this beam as number one. The remaining beams

are then selected based on descending order of received power. This results in

the beam ordering of Table 10.4.

Figure 10.60 illustrates that performance degrades by less than 2 dB when

three to four beams are used instead of all 16 beams or elements. This can

be explained by analyzing the spatial information contained within several of

the beams, as shown in Figure 10.61. The beams located at 7.2 and 14.58
contain the spatial information about the sidelobe scatterers, while the beams

located at 0 and 27.2 contain spatial information about the mainbeam

scatterers.

Figure 10.62 shows the performance of the beam space processor versus

the number of beams, when the number of temporal taps is varied, and the

contributions from the direct path jamming are now included. The multipath

region modeled is identical to the one modeled in the previous example, and

the quiescent JNR for the direct path jamming is 14.7 dB. We see that an

additional beam is required to cancel the direct path jamming. In particular, the

beam located at 38.78 is required since the jammer is located at 408.

TABLE 10.4
Order of Beam Locations

Beam Number
Beam Angle in

Azimuth (Degrees)

1 0.0

2 7.2

3 14.5

4 27.2

5 22.0

6 214.5

7 30.0

8 38.7

9 222.0

10 48.6

11 230.0

12 61.0

13 238.7

14 290.0

15 248.6

16 261.0
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10.4.4. SUMMARY AND DISCUSSION

We have modeled the interference received by an airborne adaptive radar due to

wideband noise, ground clutter, direct-path, sidelobe jammers, and diffuse

jammer multipath. It has been demonstrated that, by using the architecture shown

in Figure 10.52, it is possible to cancel all of the aforementioned interference,

except for the noise. Much of our attention was devoted to the diffuse jammer

multipath that is received primarily through the mainbeam of the radar and,

hence, cannot be canceled by simply placing adaptive spatial nulls in the

radiation pattern. It was found that the diffuse jammer multipath from scatterers

Multipath scatterers

−14.5 −7.2 −2 2 7.2 9 12 14.5 22

Beam 3Beam 2Beam 1
Beam 4

Azimuth
(degrees)

Target
Azimuth

0

FIGURE 10.61 Azimuth location of the beams and multipath scatterers.
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FIGURE 10.62 Effect of beam space processing on the cancellation of diffuse jammer

multipath using M temporal taps (with direct jammer included) for BT ¼ 0.5 and

BR/c ¼ 7.2.
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located in the radar mainbeam can be canceled with multipath from highly

correlated scatterers located outside the mainbeam. The necessary conditions for

highly correlated scatterers (i.e., good cancellation) are as follows:

Dtlkj jp ts ð10:148aÞ
lDflklts p 1 ð10:148bÞ
lBDtlklp 1 ð10:148cÞ

where Dtlk and Dflk are, respectively, the differential time delay and Doppler

frequency difference for the same antenna between a scatterer in the mainbeam

and the scatterer outside the mainbeam; ts is the uncompressed pulse length; and

B is the bandwidth of the radar. When the above conditions are satisfied the

diffuse jammer multipath can be canceled (along with ground clutter and direct-

path, sidelobe jammers) using the architecture shown in Figure 10.52. The

optimum tap spacing T was shown to be approximately 0.5/B. Therefore, if

the differential range extent of the multipath is R, then the total differential delay

is R/c, and we expect that

M < 2BR=cþ 1 ð10:149Þ

taps are required for effective multipath cancellation, as is clear from

Figures 10.57 and 10.58.

It was also shown that, although the diffuse jammer multipath is a temporally

nonstationary process, there is only a mild degradation if an average weight is

calculated from a temporally averaged interference covariance matrix, in

accordance with Equation 10.147, and applied to an entire PRI of data. Finally,

we demonstrated that effective cancellation can be performed in the beam space,

as well as in the element space, with a considerable reduction in processing

requirements. An additional reduction in processing complexity is achieved by

using suboptimum frequency domain processing. This approach will be discussed

in a future section, and appears quite promising. The foregoing analysis was

performed using an ideal interference covariance matrix. The effect of using a

finite number of samples and how the samples can be obtained are deferred to

a later section.

10.5. WIDEBAND CANCELLATION OF MULTIPLE MAINBEAM

JAMMERS

(R. L. FANTE, R. M. DAVIS, AND T. P. GUELLA)

10.5.1. INTRODUCTION

MAINBEAM jammers offer a serious challenge to a radar system. The usual

solution is to place a strobe in the jammer direction, but this effectively blanks out

two beamwidths of azimuth scan. Furthermore, if there is an array of jammers with
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an azimuthal spacing of several radar beamwidths, detection can be denied over an

entire azimuth sector. Thus, it is desirable to devise a method of compensating for

mainbeam jammers. The concept we will employ is to use auxiliary antennas that

are separated1 from the main antenna by sufficiently large distances (i.e.,

separations that are very much greater than the linear dimension of the main

antenna) so that the array can place narrow nulls on the mainbeam jammers while

still maintaining peak gain on a closely spaced target. The conventional approach

is to divide the main aperture into subapertures and either to implement a fully

adaptive array of subarrays or to form multiple adjacent beams and use them in a

beamspace canceller. Each of these approaches breaks down when the spacing

between the jammer and the quiet target becomes too small (less than about a

quarter of a 3-dB beamwidth) because the desired target falls into the jammer

notch. A second problem exists in the presence of multiple jammers. The system

lacks the resolution to place independent nulls on closely spaced jammers. Physics

demands that the effective aperture be increased to realize the requisite

improvement in resolution and drives us to the architecture considered.

For narrowband jammers, the problem is relatively simple: one can place N

narrowband nulls at angles u1· · ·uN by simply applying appropriate weights to the

outputs of N sufficiently spaced auxiliary antennas, and then adding these to the

main array output. However, in the wideband limit, this approach is not sufficient

because the location of each null varies with frequency. To make the nulls at

u1, u2,…, uN wideband, one needs to place an adaptive finite impulse response

(FIR) filter behind each of the auxiliary antennas.2–6 This leads us to the

architecture in Figure 10.63. The main array is modeled asM subarrays that span

a total linear dimension DM in the azimuth plane. The time delays t1, t2,…, tM
are required to steer the subarrays to the desired azimuthal scan angle u ¼ u0.
Jammer cancellation is provided by N auxiliary arrays separated from the main

array by distances L1, L2,…, LN , are these are used to cancel up to N mainbeam

jammers. All auxiliaries are assumed to be identical, each consisting of P

subarrays with the time delays t, 0
1, t

0
2, …, t 0

p used to steer them to u ¼ u0.
Behind each auxiliary is a bulk delay Tn ¼ Ln sin u0 /c, where c is the speed of

light and an adaptive tapped delay line with K þ 1 taps with corresponding

(adaptive) weights w0, w1, …, wK : These FIR filters are designed to maintain

nulls on each jammer over the entire operating band B. Previous studies2–4 have

shown that the intertap delay T should be approximately e /B, where

0.2 # e # 0.8. The required number K of delays per auxiliary is determined by

the maximum jammer delay that is likely to be encountered. Suppose jammers

can lie anywhere within the 3-dB beamwidth Du3 of the mainbeam. Then the

maximum delay across the array is ðLN=cÞsinðu0 ^ Du3=2Þ: The bulk delay TN ¼
(LN/c) sin u0, shown in Figure 10.63, partially compensates for this, but the

difference must be compensated by the tapped delay line. This differential delay is

Dt ¼ LN
c

sin u0 ^
Du3
2

� �
2 sin u0

� �
< ^

LNDu3
2c

cos u0 ð10:150Þ
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If there are K delays per tapped delay line and half are used to compensate for the

positive differential delays and half the negative ones, then it is evident that we

must set KT/2 ¼ Dt. This gives

K ¼ LNDu3 cos u0
cT

¼ LNBDu3 cos u0
ec

ð10:151Þ

In the next section, we will theoretically model the performance of the system

shown in Figure 10.63, for the case when there are NJ broad-band noise jammers

present in the mainbeam. We will then present the results of a set of simulations

that will not only illustrate the performance improvement possible, but also

provide answers on how can chooses the gain per auxiliary, the spatial span of the

auxiliaries, etc.

10.5.2. CALCULATION OF THE ARRAY PERFORMANCE

Let us first calculate the residual interference after adaptation. We assume that

there are NJ broad-band noise jammers located in the Fraunhofer zone (i.e., far

field) of the array at azimuths u1, u2, …, uNJ , that the voltage gain of the main

array is gMðu, f Þ, and that all the auxiliary arrays are identical and have a voltage
gain gAðu, f Þ where f is the frequency. Then, upon referring to Figure 10.63, it is

evident that the Fourier transform ~Uð f Þ of the main channel voltage U(t)

TN
w0(N )

Auxiliary
N

V0(N )

V1(N )

Vk(N )
wk(N )

xNx1
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-

FIGURE 10.63 Main beam plus N auxiliary antennas. The delay T0 ¼ KT=2 and the

delays Tn are ðLn=cÞsin u0 for n ¼ 1; 2;…;N:
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produced by the NJ jammers is

~Uð f Þ ¼
XNJ

q¼1

~Jqð f ÞgMðuq, f Þexpð2i2p f T0Þ þ ~Zð f Þ ð10:152Þ

where ~Jqð f Þ and ~Zð f Þ are the Fourier transforms of the qth jammer voltage and

main antenna noises, respectively, and T0 ¼ KT/2. Likewise, the Fourier

transform of the output xn(t) of the nth auxiliary antenna is

~Xnð f Þ ¼
XNJ

q¼1

~Jqð f ÞgAðuq, f ÞHnð f Þexpði2pf tnqÞ þ ~Znð f ÞHnð f Þ ð10:153Þ

where tnq ¼ Lnðsin uq 2 sin u0Þ=c, Ln is the separation between the centers of the
main array and the nth auxiliary, ~Znð f Þ is the Fourier transform of the noise at the

input to the adaptive FIR filter in the nth channel, and Hnð f Þ is the frequency

response of the FIR filter in the nth channel, defined as

Hnð f Þ ¼ 1ffiffiffiffiffiffiffiffi
K þ 1

p XK
k¼0

wkðnÞexpð2i2pk f TÞ ð10:154Þ

The weights wk(n) in the adaptive FIR filter are adjusted to minimize the output

interference power7–13 and vanish if the jammers vanish. Their calculation for

either narrowband or wideband interference is presented in Appendix M. By

combining Equation 10.152 and Equation 10.153, we find that the Fourier

transform ~Yð f Þ of the output voltage yðtÞ in Figure 10.63 is given by

~Yð f Þ ¼ e2i2pfT0
XNJ

q¼1

Jqð f ÞGðuq; f Þ þ ~Zð f Þ2 1ffiffiffi
N

p XN
n¼1

Hnð f Þ ~Znð f Þ ð10:155Þ

where N is the number of auxiliary antennas

Gðuq, f Þ ¼ gMðuq, f Þ2
gAðuq, f Þffiffiffi

N
p XN

n¼1

~Hnð f Þexpði2pf tnqÞ ð10:156Þ

and

~Hnð f Þ ¼ Hnð f ÞexpðipfKTÞ ð10:157Þ
Now let us calculate the output power spectral density, defined as kl ~Yð f Þl2l,
where k· · ·l denotes an expectation, or ensemble average. If we assume that the

noises in different subarrays are independent, and that the voltages received from

different jammers are independent, zero-mean, random variables, we find that the

power spectrum of the residue after adaptation is

kl ~Yð f Þl2l ¼
XNJ

q¼1

SJqð f ÞlGðuq, f Þl2 þ Szð f Þ 1þ 1

N

XN
n¼1

lHnð f Þl2
" #

ð10:158Þ
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where Szð f Þ is the power spectrum of the noise and SJq ð f Þ is the power spectrum
of the interference received from the qth jammer. The first term on the right-hand

side of Equation 10.158 is the uncancelled jammer residue, and the second is the

noise residue, sometimes called the “noise carryover.”

The voltage yðtÞ is typically passed through a matched filter that is designed

to optimize the signal-to-interference ratio. To discuss this filter, suppose a target

is present on radar boresight (i.e., u ¼ u0). Then the Fourier transform ~Ysð f Þ of
the output signal voltage ysðtÞ produced by the target is given by

~Ysð f Þ ¼ e2i2p f T0Gðu0, f Þ~Sð f Þ ð10:159Þ
where ~Sð f Þ is the Fourier transform of the received target return and Gðu0, f Þ is
given by Equation 10.156 with uq ¼ u0. The first term on the right-hand side of

Gðu0, f Þ in Equation 10.156 corresponds to the true target response. The second

term may produce spurious targets in different range bins if the bandwidth B is

sufficiently large that Dðsin uq 2 sin u0Þ . c=2B where D is the total span of the

auxiliary array and uq is the location of the qth jammer. A technique to reject

the false targets is described in Appendix N. The matched filter that produces the

maximum signal-to-interference ratio at time t ¼ 0 is

Ĥoptð f Þ ¼
~Y p
s ð f Þ

kl ~Yð f Þl2l ð10:160Þ

and this gives a signal-to-interference ratio

S

I

� �
opt
¼

ð 1

21
df

l ~Ysð f Þl2
kl ~Yð f Þl2l ð10:161Þ

For convenience, we have included both the noise and the jammer interference in

the interference term.

In trying to synthesize the optimum matched filter, one needs to know the

output-power spectral density kl ~Yð f Þl2l of the interference, but this is unknown

because the locations u1, u2, …, uQ of the jammers are unknown. However, as

will be seen later, in the absence of errors the adaptive FIR filters Hnð f Þ typically
reduce the first term on the right-hand side of Equation 10.158 to a level that is

well below the noise residue, which is given by the second term on the right-hand

side of Equation 10.158. Thus it is acceptable to approximate Ĥopt by

Ĥsubopt ;
~Y p
s ð f Þ

Szð f Þ 1þ 1

N

XN
n¼1

lHnð f Þl2
" # ð10:162Þ

This approximation typically gave results for ðS=IÞ that were within less than

0.1 dB of the results computed using the exact expression for Ĥopt given in

Equation 10.160. Thus, the results for S/I that will be presented in the next section
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are valid for either Ĥopt or Ĥsubopt: However, when errors are included, the results
using Ĥopt and Ĥsubopt will be different.

In all calculations to follow it will be assumed that the power spectral

densities of both the jammers and noise are white and, therefore, constant over

the radar bandwidth B.

10.5.3. SIMULATION RESULTS

There are a number of significant questions we must now answer. For a given

jammer scenario these are:

(1) Where should the auxiliaries be placed and what is the required spatial

span of the auxiliary array?

(2) How many auxiliaries should be used and what is the minimum

acceptable gain per auxiliary?

(3) What is the minimum target-jammer separation for which the signal-

to-interference ratio is acceptable?

(4) With a well-designed system, how much signal-to-interference

improvement is possible?

Let us now answer each of these questions.

10.5.3.1. Spatial Span and Location of the Auxiliaries

If there are multiple jammers present and the minimum expected angular

separation between jammers is Du, then one would expect that the spatial span D
of the auxiliary array must be of order Cl0 /Du, where l0 is the midband

wavelength and C is a constant of order unity. To verify this, we considered

a number of configurations in which the main antenna and N auxiliary antennas

(N was varied between 3 and 12) were located along a straight line. We then

studied the cases when all the auxiliaries were located on the same side of the

main antenna (as in Figure 10.63) and on both sides, so that the spatial centroid of

the auxiliaries lies fairly close to the location of the main antenna. Computer

experiments were run for the case when the main antenna and all the auxiliaries

had a 30 dB Taylor taper and we found that for up to N 2 1 jammers present, the

cancellation performance was best if the auxiliaries were placed such that their

spatial centroid was relatively close (within a few main antenna diameters) to the

main antenna array, and the total spatial span D of the auxiliary antennas satisfies

the condition

D

DM

$ 0:4
Du3
Du

ð10:163Þ

where Du3 is the 3 dB beamwidth of the main antenna and DM is the diameter of

the main antenna. For the Taylor taper used, Du3 ¼ 1.12 l0/DM (at broadside) so
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that we can rewrite Equation 10.163 as

D . 0:45
l0
Du

ð10:164Þ
Therefore, the coefficient C ¼ 0.45.

If the interjammer spacing is slightly less than Du, and NJ , N the canceller

will not be able to resolve the jammers and the residue will increase. If, however,

the interjammer spacing is much less than Du, adjacent jammers will begin to

look like one jammer and the residue will decrease. In results (not shown), it was

observed that the interjammer spacing, at which two jammers looked like one

jammer, was greater when the phase centers of the main and auxiliary arrays were

close, which is another reason for making the spatial centroids of the two arrays

close together.

10.5.3.2. Required Number of Auxiliaries and Gain per Auxiliaries

To decide how many auxiliaries are necessary and the minimum gain per

auxiliary that is required when NJ jammers are present in the mainbeam, we have

considered a geometry where up to 12 auxiliaries of arbitrary gain GA per

auxiliary are located, relative to the main array, along a line at the distances

L1, L 2, L 3, … given in Table 10.5.

(In practice, to compensate for jammers distributed in elevation, the

auxiliaries would not be located along a line but rather on a circular or

semicircular arc so that the distances L1, L2, … would actually be projections of

the actual locations onto a line normal to the scan direction. The latter

observation is one of the reasons why we located more auxiliaries near the ends of

the line than the center.) We will consider NJ mainbeam jammers at azimuths

TABLE 10.5
Normalized Auxiliary Locations Relative to Main Array

Auxiliary Number i Li /DM

1 43.57

2 244.07

3 22.62

4 220.82

5 32.94

6 232.33

7 10.87

8 210.41

9 38.00

10 238.49

11 29.18

12 234.70
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randomly located within an azimuthal range DuJ. The value of Du is chosen

so that the average angular jammer separation DuJ/NJ is at least several times

larger than the resolution Du which, from Equation 10.163, is given by

Du/Du3 ¼ 0.4DM/D.

Before we present results for the residue after adaptation, let us discuss what

we expect. In Appendix O, we show that as long as the number of auxiliaries is

greater than or equal to the number of jammers and the jammers are well

separated, we expect to cancel nearly all of the jammer interferences so that

virtually the entire residue is the noise residue given by

klyl2l < s 2 1þ bGMNJ

NGA

� �
ð10:165Þ

where b is determined empirically and is given by

b ¼ 1þ NJ 2 1

N 2 ðNJ 2 1Þ ð10:166Þ

s 2 is the variance of the main-channel noise,GM is the main-array gain,GA is the

gain of each auxiliary, NJ is the number of jammers, and N is the number of

auxiliaries. The quantity NGA is the total auxiliary gain. Because we expect the

adapted residue to depend on GMNJ=NGA we have plotted the numerical results

as a function of this quantity. In Figures 10.64 and 10.65, we show the normalized

narrowband and wideband residues klyl2l=s 2 obtained by integrating
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FIGURE 10.64 Residue after adaptation averaged over 25 Monte Carlos of jammer

locations within DuJ ¼ Du3=10 when B ¼ 0.001 f0, u0 ¼ 208, and auxiliary locations in

Table 10.5.
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Equation 10.158 over frequency for differing numbers of auxiliaries and

jammers. Each of the curves presented is the average of 25 Monte Carlos of the

jammer locations within an angular sector DuJ ¼ Du3/10. In these simulations

the array is scanned to u0 ¼ 208 and, for the wideband case (B ¼ 0.1 f0), we used

40 taps per auxiliary with an intertap delay T ¼ 0.3/B.

The theoretical prediction of Equation 10.165 is also shown on these figures.

In the narrowband limit we have found that the agreement with the simulated

results is excellent for all values of N $ NJ except where N ¼ NJ ¼ 2 (this case

will be discussed later). In the wideband limit, the agreement is always excellent

for N $ NJ þ 2; but for large NJ the agreement degrades somewhat for N ¼
NJ þ 1 and N ¼ NJ: This occurs because in the wideband case the adapted

jammer residue is no longer negligible (as was assumed in the derivation

of Equation 10.165) unless N $ NJ þ 2: That is, in the wideband limit we require

N $ NJ þ 2 to ensure that the jammer residue is negligible and all that remains is

noise carryover.

It should be noted that we have not shown the results for N ¼ NJ ¼ 2,

because this is a pathological case. When N ¼ 2, the array has grating lobes (that

are not suppressed as they are for larger N ), and the residue becomes quite large

whenever both jammers are in grating lobes. For this case the residue was much

larger than predicted by Equation 10.165. Because of this grating lobe

phenomenon, two auxiliaries should never be used.
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FIGURE 10.65 Residue after adaptation averaged over 25 Monte Carlos of jammer

locations within DuJ ¼ Du3/10 when B ¼ 0.1 f0, u0 ¼ 208, and auxiliary locations in

Table 10.5.
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10.5.3.3. Signal-to-Interference Ratio after Cancellation

Thus far, we have completely ignored what happens to the desired target signal.

We now wish to calculate the actual signal-to-interference ratio Equation 10.161

after adaptation and matched filtering by the filters defined in Equation 10.160.

Although the optimum filter defined in Equation 10.160 was used, we should note

that using the filter defined in Equation 10.162 gave results for S/I within 0.01 dB

of the optimum.

Let us consider an antenna system consisting of a main array with 264

columns and three auxiliary arrays of 88 columns each so that the total auxiliary

gain NGA equals the main antenna gainGMwith the auxiliaries located at position

1, 2, and 3 in Table 10.5, relative to the main array. We further assume that the

array is scanned to u0 ¼ 108, that a target is located on antenna boresight (i.e., at

u ¼ u0), and that there are two mainbeam jammers present. In performing the

calculations to follow, it was assumed that the magnitude squared lSð f Þl2 of the
signal Fourier transform is constant for f0 2 B=2 to f0 þ B=2 and zero outside this
band. In Figures 10.66 and 10.67, we show the narrowband and wideband signal-

to-interference ratios after adaptation and matched filtering. For these cases, the

azimuth of jammer one is held constant at 0.09 beamwidths off boresight, and the

azimuth of jammer two is varied. We see that there are some fades in S/I, but

these are filled in as the bandwidth is increased.

Figure 10.68 shows typical wideband antenna patterns before and after

cancellation for the case of three auxiliaries, each one third the length of the main

antenna, operating against two jammers. Although the peak of the adapted pattern

is nearly 7 dB above the peak of the quiescent pattern, the difference would

have been about 3 dB if we had normalized the adapted pattern by the total noise

residue. Note that the increase in the beamwidth of the adapted beam
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0.04 deg off boresight and Jammer 2 Azimuth varied. Three auxiliary antennas:
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occurs because each auxiliary is only one third the length of the main antenna.

This broadening of the receive beam could be eliminated by using auxiliaries that

are the same size as the main array. The auxiliaries need only be receive only and,

in some cases, could be reflectors.

It is interesting to note that even in the narrowband case the offboresight

fades are relatively narrow. By studying these results, it is easy to show that the

probability of a jammer located randomly within the 3 dB beamwidth causing a

fade in (S/I) greater than 10 dB is only 0.031. For the wideband case, this drops to
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0.018. Results were also generated (not shown) using six auxiliaries with

44 columns each so that the total auxiliary gain NGA was still equal to the

main array gain. When we increased the number of auxiliaries to six, there were

virtually no fades in S/I that exceed 10 dB, except very near boresight.

10.5.3.4. Simultaneous Nulling of Mainlobe and Sidelobe Jammers

An in-depth investigation of the problem of simultaneous nulling of mainlobe

and sidelobe jammers was not performed under this effort, but we did perform a

limited number of simulations. We had expected to have to add only NSL low-

gain auxiliaries to the main antenna to null NSL narrowband sidelobe jammers.

However, the bulk delay inserted in series with the high-gain auxiliaries (see

Figure 10.63) to time-align the mainlobe jammers does not time-align sidelobe

jammers sufficiently to prevent time-delay decorrelation. The problem can be

solved by adding low-gain auxiliaries within or next to each high-gain auxiliary,

and bulk delaying them with the same delay added to their companion high-gain

auxiliaries. Sidelobe jammers received by each high-gain auxiliary will then be

highly correlated with sidelobe jammers received in their companion low-gain

auxiliaries. The latter approach enables both sidelobe and mainlobe jammers to

be nulled by a single large canceller comprised of both multiple high- and low-

gain auxiliaries. That is, NJ mainlobe and NSL sidelobe jammers can be

simultaneously cancelled by employing NJ high-gain auxiliaries with NSL low-

gain auxiliaries added to the main array and to each high-gain auxiliary.

A typical result is illustrated in Table 10.6, where we show the residue after

adaptation for the case of one mainlobe jammer and either one or two sidelobe

jammers. The main array had 288 elements and the high-gain auxiliary had 88

elements and was located 103.51 m from the main array. Each low-gain auxiliary

consisted of one element. The array was scanned to 108, and the mainlobe jammer

was located at 10.048 and had a jammer-to-noise ratio of 32 dB in the main array.

Bulk delays of (Ln/c) sin 108 were inserted in series with the outputs of each high-

TABLE 10.6
Cancellation Performance Against OneMainlobe Jammer andOne and Two

Sidelobe Jammers: Cancellation Bandwidth 5 10 MHz. Residue Before

Adaptation 5 32.4 dB

# ML
Jammers

# SL
Jammers

# High-Gain
Auxs

# Low-Gain
Aux at Main

# Low-Gain
Aux at High-Gain Aux

Residue-to-Noise
Ratio (dB)

1 1 1 1 0 27.7

1 1 1 1 1 6.3

1 2 1 1 1 22.1

1 2 1 2 1 20.5

1 2 1 2 2 7.5
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gain auxiliary and its companion low-gain auxiliaries. Sidelobe jammer one was

located at 17.58 and had a 22 dB jammer-to-noise ratio in the main array and

27 dB in the high-gain auxiliary. Sidelobe jammer two was located at 23.58 and
had a 22 dB jammer-to-noise ratio in the main array and 24 dB in the high-gain

auxiliary. The cancellation bandwidth was chosen as 10 MHz and no tapped

delay lines were used. From Table 10.6 we see that if the main and high-gain

auxiliary each have NSL low-gain auxiliaries the cancellation performance

approaches the theoretical performance of 6 dB residue as predicted by Equation

10.165. (The residue would have only been 3 dB had we chosen the auxiliaries to

be the same size as the main array. For smaller bandwidths the residues are even

closer to the theoretical value.) However, unless we have at least NSL low-gain

auxiliaries in or very close to the main array and each high-gain auxiliary, there is

a severe performance degradation. Thus, the total number of spatial degrees of

freedom required is

NDOF ¼ NJ þ ðNJ þ 1ÞNSL ð10:167Þ

where NJ ¼ number of mainbeam jammers and NSL ¼ number of sidelobe

jammers. That is, we need NJ high-gain auxiliaries and (1 þ NJ) NSL low-gain

auxiliaries.

It should be noted that we have not discussed the special case when one or

more jammers lies in the sidelobes of the main array but within the mainbeam of

the high-gain auxiliary. In this case, the performance degrades but the

degradation is gradual (about a 6 dB increase in the residue after adaptation).

This degradation can be avoided by choosing the gain of each auxiliary equal to

that of the main antenna.

10.5.4. SUMMARY AND DISCUSSION

We have demonstrated that wideband or narrowband mainbeam jammers can

be cancelled using multiple auxiliary antennas each with an adaptive tapped

delay line. In the absence of errors, the jammers residue can be cancelled

down to below the system noise. The residue after nulling is due mainly to

thermal noise carried over from the auxiliaries (Equation 10.165). For a given

jammer scenario, we have provided design formulas for the required spatial

span of the auxiliaries (Equation 10.163), the number of taps per auxiliary

(Equation 10.151), and the gain GA per auxiliary (Equation 10.165). Although

the high-gain auxiliaries will be costly, they can be receive-only and, in some

cases, could be reflectors.

The problem of simultaneous nulling of mainlobe and sidelobe jammers was

not the primary focus of this effort. However, it was noted that the bulk delays

used to time align the main and high-gain auxiliaries in the narrowband case will

not always be sufficient to time-align sidelobe jammers. One solutions is to add

multiple low-gain auxiliaries to the main and high-gain auxiliaries to null

multiple sidelobe jammers.
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Finally, we have also demonstrated (results not shown) that the difference

beams in each of the auxiliaries can be used to cancel jammers in the difference

beams in the main channel while preserving to first order the monopulse slope of

the main array. Jammer cancellation performance and parameter sensitivities are

comparable to that obtained using the sum beams.

10.6. ADAPTIVE SPACE–TIME RADAR

(R. L. FANTE)

10.6.1. INTRODUCTION

Unlike a ground-based radar, in which all of the clutter is received at or near zero-

Doppler, the clutter return in an airborne radar hasDoppler frequencies spread over

a band of width 4V/l, where V is the platform speed and l is the radar wavelength.
Therefore, conventional moving target indicator (MTI) is ineffective in canceling

this clutterwithout also canceling desired targets.Another feature of airborne radar

is that there is usually clutter in the same Doppler cell as a target, but it usually

arrives from a different azimuth, as illustrated in Figure 10.69 for the case of frozen

clutter (i.e. no internal motion). This suggests that adding spatial degrees of

freedom to the conventionally-used temporal degrees of freedom should allow us

to place a null along the azimuth of the clutter that competes with the target, thus

allowing the clutter to be canceled, without canceling the desired target return. In

constructing Figure 10.69 we assumed that the pulse repetition rate is such that

there are no Doppler ambiguities. A typical space–time processor that combines

spatial and temporal degrees of freedom is shown in Figure 10.70. The processor is

formed by placing a tapped delay line at the output of each of N antennas of the

array, with the taps spaced by one pulse repetition interval (PRI) T. This processor

Ground Clutter
Directional
Antenna

Sidelobe
Jammer

0 Doppler
−VT , VC

−VA

+VA

Sidelobe
Clutter

Target

0° Beam
Angle

90°
Broadside
Azimuth

180°

FIGURE 10.69 Azimuth–Doppler plot of clutter and one sidelobe jammer interference

for airborne platform.
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has a number of degrees of freedom equal to the number N of antennas times the

number K of pulses (taps).

The adaptive weights in the processor shown in Figure 10.70 are chosen to

maximize the signal-to-noise-plus-clutter-plus-jammer ratio S=ðN þ C þ JÞ for a
specified desired signal (i.e. specified azimuth and Doppler). That is, the adaptive

space–time array is a matched filter designed to detect a desired radar signal

while rejecting all interference and signals that do not have the properties of the

desired signal. The quantity S=ðN þ C þ JÞ at the output of the array in Figure

10.70 is

S

N þ C þ J
¼ lwTsl2

klwTUl2l
ð10:168Þ

and this is maximized1 if the weight vector w ¼ [w11,w12,…,w1N,

w21,…,w2N ,…	T is given by

w ¼ mM21sp ð10:169Þ
where m is a constant, M is the covariance matrix defined as M ¼ kUUþl,
kl denotes an expectation, U is the received voltage vector given by

U ¼ ½U1ðtÞ…UNðtÞ, U1ðt2 TÞ…UNðt2 TÞ,…	T

and s is the steering vector describing the voltage that would be received on each

element of the array if a target at the desired azimuth and with the desired Doppler

were present. In the above equations the superscript T denotes a transpose, ‘*’

denotes complex conjugate and þ denotes conjugate transpose. When w is given

by Equation 10.168 it can be shown by substituting Equation 10.169 into

T

T

wN1

UN(t)

Antenna N

wN2

wN3

T

T

w11

U1(t )

Antenna 1

T

U2(t )

v(t)

Antenna 2

w12

w13

Σ

FIGURE 10.70 Generic space–time array.
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Equation 10.168 that S=ðN þ C þ JÞ after adaptation is given by
S

N þ C þ J
¼ sTM21sp ð10:170Þ

In an ideal world where the covariance could be exactly estimated, there is no

internal cluttermotion, channelmatch is perfect, the jammers are narrow-band, and

there is no jammer multipath, it can be shown that

S

N þ C þ J
! lsl2

s 2
ð10:171Þ

where lsl2 is the signal power and s 2 is the thermal noise power. Thus, under ideal

conditions the adaptive processor can cancel all clutter and interference, and all

that remains after adaptation is thermal noise.

Although the architecture shown in Figure 10.70 represents an element space

configuration, a beam space architecture is equivalent. For example, if a

beamformer is placed behind the elements in Figure 10.70, the N £ 1 voltage

vector b at the beamformer output can be written as b ¼ GU, where G is the

N £ N beamformer matrix. Then, if we note that the new steering vector after

beamforming is sTb ¼ GS and that

kbbþl ¼ GkUUþlGþ ¼ GMGþ

we can readily show that

S

N þ C þ J

� �
beam space

¼ sTb kbb
þl21spb ¼ sTM21sp ð10:172Þ

so that upon comparing Equation 10.172 with Equation 10.173 we see the output

signal-to-interference ratio is the same whether an element space or beamspace

architecture is used. However, sometimes beamspace may be preferable to

element space, because it allows for the development of suboptimum

architectures more readily, as will be discussed later.

10.6.2. UNDERSTANDING THE RESULTS IN EQUATION 10.169

AND EQUATION 10.170

In practice one must estimate the covariance matrix using a finite§ number of

samples, but for purposes of understanding we will assume that the number

of samples is so large that the ideal covariance matrix is available. For the

architecture in Figure 10.70 this is an NK £ NK square matrix M that can be

§ For an acceptable covariance estimate the number of samples must be at least 2NK and preferably

4NK, where NK is the total number of adaptive degrees of freedom.
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decomposed into its NK £ 1 eigenvectors ek and eigenvalues lk as
2

M ¼
XNK
k¼1

lkeke
þ
k ð10:173Þ

Likewise

M21 ¼
XNK
k¼1

eke
þ
k

lk
ð10:174Þ

Because M is Hermitian the eigenvalues are real and the eigenvectors are

orthogonal. Under ideal conditions (no internal clutter motion, narrowband radar,

etc.) there are N þ K large eigenvalues associated with the mainbeam and

sidelobe clutter [for ambiguous radars there are even more.3,4 A typical

eigenvalue strength plot for clutter only (no jammers) is shown in Figure 10.71.

Strong jammers produce additional large eigenvalues. If there are NJ

independent, resolved (i.e., spaced in angle by greater than the 3 dB beamwidth

of the antenna) jammers, there are NJ large jammer eigenvalues. However,

unresolved jammers and correlated jammers share a single eigenvalue, as

indicated in Figures 10.72 and 10.73. Thus, the covariance matrix M typically

has R ¼ N þ K þ NJ large eigenvalues and NK 2 R small eigenvalues with

magnitudes equal to the variance s 2 of the system noise. Consequently, Equation

10.176 can be rewritten as

M21 .
XR
k¼1

eke
þ
k

lk
þ 1

s 2

XNK
k¼Rþ1

eke
þ
k ð10:175Þ
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FIGURE 10.71 Clutter eigenvalue spread for N ¼ 50, K ¼ 2 (no jammers).
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Next, we recognize that the NK £ NK identity matrix I is defined as2

I ¼
XNK
k¼1

eke
þ
k ¼

XR
k¼1

eke
þ
k þ

XNK
k¼Rþ1

eke
þ
k ð10:176Þ

where the first term on the right-hand side of Equation 10.176 defines the

interference (clutter plus jammers) subspace and the second defines the noise

subspace. Thus, we can rewrite Equation 10.176 as a sum of two projections

I ¼ P11 þ P’ ð10:177Þ
where P11 is the projection into the interference subspace and P’ is the projection

orthogonal to the interference subspace. Therefore, Equation 10.175 can be
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FIGURE 10.72 Effect of jammer correlation on eigenvalues for two resolved jammers
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rewritten as

M21 ¼
XR
k¼1

eke
þ
k

lk
þ 1

s 2
P’ ð10:178Þ

If Equation 10.178 is now used in Equation 10.169 we see that the weight vector

w is

w ¼ m
XR
k¼1

eke
þ
k s

p

lk
þ m

s 2
P’s

p ð10:179Þ

Because, as can be seen from Figure 10.71, llklq s 2 we can neglect the first

term on the right-hand side of the Equation 10.179 so that

w .
m

s 2
P’s

p ð10:180Þ

This shows that the desired weight vector is the projection of the steering vector s

onto the subspace orthogonal to the interference subspace, and means that as long

as the steering vector has a component orthogonal to the interference subspace it

is possible to cancel the interference while preserving the desired signal (or at

least most of it).

It should also be noted that because llklq s 2 we can use Equation 10.181 to

write Equation 10.175 as

M21 .
1

s 2

XNK
k¼1

eke
þ
k 2

1

s 2

XR
k¼1

eke
þ
k ¼ 1

s 2
I 2

XR
k¼1

eke
þ
k

{ !
ð10:181Þ

This is a useful approach for inverting the covariance matrix when there are only

a few dominant eigenvalues, and has been exploited in Ref. 6.

By using Equation 10.181 in Equation 10.170 it is easy to see how well the

limit in Equation 10.171 is approached.

10.6.3. SEQUENTIAL CANCELLATION OF JAMMERS AND CLUTTER

In practice, when both jammers and clutter are simultaneously present it is

difficult to cancel both because of interactions in the covariance matrix

estimate. Thus, it is desirable to cancel the jammers before tackling the clutter.

One way to do this is to use the beam space architecture, place spatial nulls in

each beam on any jammers in that beam, and then combine those resulting

beams to cancel the ground clutter. Let us analyze here how one forms L # N

beams with nulls on any jammers present. In particular, we need to derive an

L £ N beamforming matrix G that produces L beams while simultaneously

minimizing jammer power. Let J be an N £ 1 vector consisting of the voltages

on the N antenna elements produced by any jammers present. These jammers

then produce a voltage vector at beam ports given by b5 GJ: Also, let h1 be

an N £ 1 vector of the voltages produced on the N antenna elements by an

incoming plane wave at an angle u1 relative to the array. Likewise, define h2 as
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the N £ 1 vector after a wave at angle u2, etc. Then, the condition for forming

L beams pointed at u1, u2, … is

Gkhk ¼ Ck ð10:182Þ

for k ¼ 1, 2, …L, where Gk is the 1 £ N vector formed by the kth row of G
and the Ck are specified constraints. Now we desire to minimize the

interference power kbþbl subject to the constraints in Equation 10.182. The

solution is

G ¼ bDGR21 ð10:183Þ

where

R ¼ kJJþl ð10:184Þ
is the jammer plus noise covariance matrix, G is the L £ N beamforming

matrix in the absence of jammers, D is a diagonal matrix with the kth

diagonal element given by Ck=ðhþk R21hkÞ and b is a constant. Note that if

the jammers are absent the jammer plus noise covariance matrix reduces

to the noise covariance matrix s 2IN, where IN is the N £ N identify matrix,

so that, as expected, the beamforming matrix G reduces to the jammer-free

beamforming matrix G.

One may next wonder how one estimates the jammer covariance matrix when

both jammers and clutter are present. This can be done by referring to the angle-

Doppler plot shown in Figure 10.69, and recognizing that the jammers spread

through all Doppler bins. Thus, if one could choose an angle-Doppler region that

is well removed from the peak of the clutter ridge it should be possible to estimate

the jammer covariance with little clutter interaction. Of course, for radars that are

unambiguous{ in Doppler this is a trivial task because there are then regions in

Doppler space where the clutter is completely absent, but the jammers are

present.

Once the jammers have been removed the clutter can then be cancelled either

in the beam-pulse domain (also called pre-Doppler) as in Figure 10.74 or in the

beam-Doppler domain (also called post-Doppler) as in Figure 10.75. The

architecture in Figure 10.75 is what is known as first-order factored processing

where the beams in each Doppler frequency bin are independently used to cancel

clutter. That is, if B( p) is an N £ 1 vector of the outputs of the N beam ports for

Doppler frequency bin p and S( p) is the N £ 1 steering vectork for the Doppler

frequency bin p, then the weight vectorWp used to combine the beam outputs in

{ Remember that the clutter only occupies the frequency region from ^2Vs /l so that if the pulse

repetition frequency exceeds this value there is a clutter-free region in the Doppler domain.
k S( p) is simply the discrete Fourier transform of the time domain steering vector s.
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Doppler frequency bin p is

Wp ¼ mkBð pÞBþð pÞl21Spð pÞ ð10:185Þ
where m is a constant.

In practice, however, it has been found that combining two Doppler bins

produces superior cancellation performance. The reader is referred to Ref. 5 for

details.

10.6.4. TYPICAL RESULTS

There are several experimental programs to test the adaptive cancellation

methods discussed in the last few sections. One is called Mountaintop (Lincoln

T
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FIGURE 10.74 Beam-pulse space processor.
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FIGURE 10.75 Beam-doppler space processor (first order factored).
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Laboratory) and is designed to evaluate space–time processing using emulated

motion of the radar platform. This program has demonstrated excellent

cancellation at UHF of emulated airborne clutter at the White Sands Missile

Range. Another is called MCARM (Northrup Grumman & Rome Laboratory)

and consists of actual BAC-111 flights of a 1.25 GHz adaptive array with 22

spatial degrees of freedom. In Figure 10.76 we show the MCARM signal-to-

clutter plus noise ratio (there were no jammers present) before and after

adaptation when the processing architecture in Figure 10.75 is used.7Note that up

to 40 dB of clutter cancellation has been achieved.

The clutter is not cancelled completely for a number of reasons including the

fact that the first order factored processing (as in Figure 10.75) is suboptimal and

that the clutter is spatially inhomogeneous, so the covariance matrix estimate is

not accurate for all ranges.

Additional results are available, but will be omitted for conciseness.

10.6.5. ADDITIONAL CONSIDERATIONS

In this brief exposition we have ignored many of the implementation problems

involved in the actual performance of a space–time adaptive array. Some of these

are:

(i) How does one obtain sufficient samples to estimate the covariance

matrix and what are the effects of inhomogeneous clutter on its value?

(ii) What are the effects of channel mismatch, radar-aircraft crabbing and

scatter from obstacles such as airplane wings that are in the near-field

of the array?
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and receive azimuth using first order factored processing. The clutter free SNR ¼ 20 dB.
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(iii) Is the computational load reasonable?

(iv) How does jammer multipath affect the interference cancellation?

All of these points have been investigated to some degree. Jammer multipath is

especially serious because the radiation of an airborne sidelobe jammer can be

scattered off the ground into the mainbeam (or its elevation sidelobes) of the radar

thus giving the appearance ofmultiplemainbeam jammers.Because the interference

is spread in all azimuths across the main beam it cannot be canceled, without

simultaneously canceling the target signal, using spatial nulls. Thus, time domain

cancellation techniques are required,8 but these are beyond the scope of this chapter.

10.6.6. SUMMARY

We have given a brief exposition of how a space–time adaptive canceller can

remove the deleterious effects of both ground clutter and jammers, thus enabling

an airborne radar to detect weak targets. In particular we have shown how the

processor accepts target signals, but rejects anything that does not look like a

target, as specified by the target’s Azimuth and Doppler frequency. Thus, in

principle, all interference except system noise can be eliminated.

10.7. SYNTHESIS OF ADAPTIVE MONOPULSE PATTERNS

(R. L. FANTE)

10.7.1. ANALYSIS

SPACE-TIME adaptive processing (STAP) is an effective method used by

airborne radars for adaptively canceling clutter and jammers while simul-

taneously detecting targets. However, while it is straightforward to form adapted

sum (S) and difference (D) beams, the adapted monopulse pattern D /Smay have

a highly distorted slope, rendering it ineffective for angular location.1 In this

letter, we present an approach to obtain controlled monopulse patterns for an

adaptive radar. The classical STAP architecture is shown in Figure 10.77.2,3 Our

procedure is to first form the adapted sum beam using the classic weight vector4

w ¼ F21sp

sTF21sp
ð10:186Þ

where for K antennas and M time taps wT ¼ ½w11· · ·w1M · · ·wN1· · ·wNM	, F is the

NM £ NM interference covariancematrix and s is the steering vector for the signal

defined as sT ¼ ½s11· · ·s1M · · ·sNM	: For a linear array and a target at azimuth uo and
Doppler frequency fo, the components of s are snm ¼ exp½ikxnsinuo 2 i2prnfoT	,
where xn is the location of antenna n and k is the wave number.

The difference beam D(u, fo) is now formed such that the received

interference is minimized subject to the constraints that D(uo, fo) ¼ 0 and
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the ratio D /S maintains a constant slope at Doppler frequency f as specified by

Dðuo ^ Du, foÞPðuo ^ Du, foÞ ¼ ^ksDu ð10:187Þ

where ks is a slope constant. If we define a difference-beam weight vector wD
and recognize that the adapted difference pattern in the azimuth–Doppler domain

(u, f ) is wT
Dg ¼ gTwD, where g(u, f ) is an NM £ 1 vector with components

gnm ¼ expðikxnsinu2 i2pmfTÞ, we see that the above three constraints can be

written in matrix notation as

HTwD ¼ r ð10:188Þ
where#

HT ¼
gTðuo þ Du, foÞ
gTðuo, foÞ

gTðuo 2 Du, foÞ

26664
37775 ð10:189Þ

r ¼ ks

wTgðuo þ Du, foÞ
0

2wTgðuo 2 Du, foÞ

26664
37775Du ð10:190Þ

T

T

vk(1)

wk1

wk2

vk(2)

vk(3)

wk3

∑

Antenna
element k

T

T

v1(1)

w11

w12

v1(2)

v1(3)

w13

∑

Antenna
element 1

∑

z

• • •

FIGURE 10.77 Space–time adaptive processor.

# In order to ensure that no anomalies occur we actually used lw Tgl in (Equation 10.190).
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The weight vector wD that minimizes the difference beam interference

wH
DFwD

subject to the constraint in Equation 10.188 is5

wD ¼ F21HpðHTF21HpÞ21r ð10:191Þ
In order to illustrate the results, we consider a 13 element linear array with 14

temporal taps per element, designed to detect low-speed targets in heavy ground

clutter (clutter-to-noise ratio ¼ 65 dB per element). In this case, the weight

vector in Equation 10.186 produces a sum beam having an interference-plus-

noise power after adaptation, which is close to the noise floor for all target speeds

V such that 0.05 , V/Vb , 0.95, where Vb is the radar blind speed. The weight

vector given in Equation 10.191 produces a difference beam with an adapted,

interference-plus-noise power close to the noise floor for all target speeds.

The adapted monopulse pattern D /S is shown in Figure 10.78 for two different

target†† speeds. Note that the monopulse slope is nearly linear over the entire

3 dB width of the sum beam, as required. If the constraint in Equation 10.188 is

not applied, the adapted monopulse pattern is highly distorted.

10.7.2. SUMMARY

We have developed a procedure to synthesize sum and difference patterns for

space–time adaptive arrays in such a way that a specified monopulse response can

†† The processor produces a different weight vector for each target speed (target Doppler) to which it

is tuned.
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FIGURE 10.78 Positive angle portion of adapted monopulse pattern for three constraints.
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be achieved. The approach is quite general and has been applied to more scenarios

than presented here, including the case of an adaptive array with spatial degrees of

freedom only (i.e., M ¼ 1). Additional details are available from the author.

10.8. GROUND AND AIRBORNE TARGET DETECTION WITH

BISTATIC ADAPTIVE SPACE-BASED RADAR

(R. L. FANTE)

10.8.1. INTRODUCTION

A space-based, bistatic surveillance radar has recently been proposed for

detecting ground-based moving targets. The concept consists of a geostationary

transmit satellite and multiple moving receive satellites that detect moving

targets immersed in ground clutter. Because the receiving satellites are in motion,

the ground clutter at an angle f relative to the satellite velocity vector appears to

have a speed Vcosf where V is the satellite speed. Therefore, the ground clutter

cannot be removed by simple Doppler processing, as is done with ground-based

radars. If the receive aperture has a dimension D along the direction of travel so

that the azimuthal extent of the main beam is Df ¼ l/D where l is the

wavelength, then the velocity spread of the main beam clutter is lV/D. For
l ¼ 0.03 m, V ¼ 7500 m/s and D ¼ 10 m the main beam clutter spreads

across ^ 23 m/s; consequently, all ground targets in speed range are of 223 to

þ23 m/s are buried within the main beam clutter. One can detect these low-speed

targets by increasing the aperture length, and hence, decreasing the width of

the main beam. But this may be impractical because one needs apertures that are

at least 100 m long to have any chance of detecting targets with radial velocities

of 2 m/s. Thus, we desire to consider other approaches that will allow detection,

of the low-speed targets, with smaller apertures.

The first approach that suggests itself is DPCA (Displaced Phase Center

Antenna) which attempts to compensate for receiver motion by maintaining the

phase center of the receive antenna at a fixed location. However, this has several

disadvantages, including a relatively wide notch around the zero speed (i.e., the

notch in the response around zero speed is fairly wide so that low-speed targets

are either not detected or detected poorly). This limitation can be overcome by

using a generalization of DPCA called Space–Time Adaptive Processing. In

space–time processing an adaptive finite impulse response filter is able to

preserve the response at the Azimuth and Doppler bin occupied by the desired

target while simultaneously placing nulls on the clutter at all azimuths that

produce interference in the same Doppler bin as the target.

In the next section we will develop a theory for a space–time adaptive array

using a low-cost partially filled receive aperture. We will demonstrate that this

array can not only form a sum beam to detect slowly-moving targets immersed in

ground clutter, but can also form an adaptive monopulse channel capable of

locating them.
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10.8.2. ANALYSIS

10.8.2.1. Sum Beam

Consider a receive array consisting of N subarrays, with each subarray having K

columns, as shown in Figure 10.79.

This array is assumed to move at a constant speed V in the direction indicated

in Figure 10.79.

In order to cancel clutter that is in motion relative to the receiver (i.e., we can

either consider the clutter as stationary and the receiver moving or the receiver as

stationary and the clutter moving past it at a speed V ) we need to add temporal

degrees of freedom behind each subarray, as indicated in Figure 10.80.

We now wish to weight each of the tap voltages in all subarrays and combine

them to minimize the clutter while maintaining the receiver gain at some desired

target azimuth u0 and a desired Doppler frequency f 0.

That is, we set up a bank of values (u0, f0), and for each set we minimize the

clutter. In order to perform this minimization let us first define the voltage vector

vT ¼ ½v1ðtÞ, v1ðt2 TÞ, v1ðt2 2TÞ,…v2ðtÞ, v2ðt2 TÞ…	 ð10:192Þ
where vn(t 2 pT ) is the voltage received on tap p of subarray n. Then if we weight

and sum the voltages on all time taps in all subarrays we can write that sum as

r ¼ wTv ¼ vTw ð10:193Þ
where w is an NQ £ 1 weight vector defined as

wT ¼ ½W10 W11 W12…W20 W21…	 ð10:194Þ
N is the number of adaptive subarrays, Q is the number of temporal taps per

subarray andWnk is the weight applied to the voltage on time tap k of subarray n.

Σ

• • •

Outter
scatterer q

qq

Rq

Subarray 1 Subarray N

v

d

w1
w2 wN

vq

FIGURE 10.79 Antenna array that employs spatial degrees of freedom only.
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We wish to minimize the average clutter power

lrl2 ¼ wHkvpvTlw ¼ wHFw ð10:195Þ
while maintaining the receive pattern gain in the desired target direction and

Doppler frequency. In Equation 10.195 the brackets kl denote an expectation. A

target at the desired azimuth u0 and Doppler frequency f0 produces a voltage on

time tap p of subarray n given by sn( p). We wish to find the weight vector that

minimizes klrl2l while maintaining wTs ¼ constant, where s is an NQ £ 1 vector,

defined as

sT ¼ ½s1ð0Þ, s1ð1Þ, …s2ð0Þ, s2ð1Þ; …	 ð10:196Þ
The solution is1,2

w ¼ F21sp

sTF21sp
ð10:197Þ

10.8.2.2. Difference Beam

We next wish to form a difference beam with the following properties:

1. The received clutter power is minimized.

2. The difference beam has a zero at u ¼ u0 and maintains a desired slope

such that

VDðu0 ^ Du, f0Þ
lVe ðu0 ^ Du, f0Þl ¼ ^ksDu ð10:198Þ

Subarray n

T

T

T

Wn1

Wn2

Wn3

Wnk

Σ

FIGURE 10.80 Adaptive FIR filter behind each array.
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where VDðuÞ is the difference beam voltage after adaptation and VS(u) is the sum
beam voltage pattern after adaptation. The difference beam pattern is given by

vDðu, f Þ ¼ wT
Dgðu, f Þ ð10:199Þ

where wD is the NQ £ 1 difference beam weight vector that we will determine

later. Sometimes the two constraints in Equation 10.198 are insufficient to

maintain the desired slope over the entire half-power width of the sum beam, and

if necessary additional constraints can be imposed. For example, in addition to

Equation 10.198 we can impose

VDðu0 ^ Du 0, f0Þ
lVPðu0 ^ Du 0, f0Þl ¼ ^ksDu

0 ð10:200Þ

where Du 0 is different from Du.
If we use only the two constraints indicated in Equation 10.198 we can write

the constraint in the form

HTwD ¼ r ð10:201Þ
where H T is a 2 £ NQ matrix of the form

HT ¼ gTðu0 þ Du, f0Þ
gTðu0 2 Du, f0Þ

" #
ð10:202Þ

r is a 2 £ 1 vector of the form

r ¼ ks
wTgðu0 þ Du, f0Þ
2wTgðu0 2 Du, f0Þ

" #
Du ð10:203Þ

and w is the sum-beam weight vector given in Equation 10.197.

If we use four constraints then the constraint equation still is of the form in

Equation 10.201, but nowHT is a 4 £ NQmatrix and r is a 4 £ 1 vector. In either

case the solution is1,2

wD ¼ R21HpðHTR21HpÞ21r ð10:204Þ

10.8.3. NUMERICAL STUDIES OF EFFECTIVENESS

In this section we will investigate how well a fast-moving radar can detect and

locate low speed targets immersed in heavy clutter. However, before we

proceed to evaluate target detection we must first investigate a design constraint

on the length and maximum allowable radar platform speed. For a stationary

transmitter the blind speed for ground targets viewed by the moving receiver is

Vblind ¼ l / T, where l is the wavelength and T is the interpulse period. Thus, for

a selected blind speed the pulse repetition frequency 1/T is determined. For
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example, if the wavelength is 0.03 m and the target blind speed is 100 m/sec

then T ¼ 0.0003 s and the pulse repetition frequency is 3333 Hz. Now suppose

the receiver is a linear array of length D moving at a speed V. We would expect

that there is a limit on the array speed V that requires successive received pulses

fall on the array. That is, we would expect that the temporal pulse processing

will not be effective unless VT , D. In order to prove this point we first studied

the effect of receiver speed V on the effectiveness of a 21 element linear array in

detecting a target with a speed of 50 m/sec (one half the blind speed) that is

immersed in very heavy clutter (clutter-to-noise ratio per element of 72 dB). In

Figure 10.81 we show the loss in signal-to-interference ratio after adaptation,

relative to the clutter-free signal-to-noise level as a function of VT/D. Note that

as long as VT , 0.5D there is virtually no loss in signal-to-interference ratio,

but the loss rises dramatically for VT $ D. Thus, in practice it is necessary to

choose D sufficiently large so that

VT

D
# 0:5 ð10:205Þ

The parameter VT/D also defines the fraction of the blind speed interval that is

occupied by the main beam clutter. The 3 dB beamwidth of the sum beam of

the receiver is approximately l/D. If the receiver is moving at a speed V and

the clutter is stationary, then the speed of the clutter at the azimuths

corresponding to the ^3 dB points of the receive beam is ^lV/2D. For a

bistatic radar with a stationary transmitter the blind speed is l / T, so that the
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FIGURE 10.81 Effect of platform speed on the signal-to-interference ratio after

adaptation.
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total fraction of the blind speed occupied by the main beam clutter is

DVmain

Vblind

¼ lV

D
·
T

l
¼ VT

D
ð10:206Þ

This is illustrated conceptually in Figure 10.82. Because we will often be forced

to have values of VT/D close to one half, this means that the 3 dB main beam

clutter usually fills nearly one half of the blind speed interval.

10.8.3.1. Sum Beam

We are now ready to present some numerical results for the adapted sum beam.

Let us first illustrate how increasing the number of pulses improves detection. We

again consider a 21 element linear array attempting to detect a target located

broadside to the array in stationary (no internal motion) clutter that is strong

enough to produce a clutter-to-noise ratio per element of 72 dB. The target is

assumed to produce a signal-to-noise ratio of 0 dB/element, so that

before adaptation the clutter is more than 70 dB stronger than the signal. In

Figures 10.83 and 10.84 we show the ability of adaptive processing to cancel the

clutter for the cases when VT ¼ 0.1D and VT ¼ 0.5D, respectively. Note that as

more pulses are processed the signal-to-interference ratio after adaptation can be

maintained at a high level even for very small target speeds.

Now that we have illustrated the cancellation with several examples, let us

proceed to discuss the space-based application. We assume that the transmitter is

a stationary satellite but the receiver is a satellite moving at a speed of 7500 m/s,

and we desire to detect ground targets with speeds from 0 to 100 m/s. The

frequency is X-Band (10 GHz), so the wavelength l ¼ 0.03 m. Therefore, we see

that for a blind speed of 100 m/s we require T ¼ 0.0003 s, or a pulse repetition

frequency of 3333 Hz. In order to keep the cost reasonable we consider a receive

array that is thinned, as shown in Figure 10.85. For this array each subarray is

adaptive, but the individual columns are not. The total length of the array is

6.57 m, and the array is approximately 16% filled. For the parameters chosen VT/

D ¼ 0.34, satisfying the requirement in Equation 10.205.

We now study the ability of this adaptive array to detect targets in heavy

clutter. The clutter is assumed to be uniformly distributed in angle and

illuminated by a transmit beam that is ten receive beamwidths wide, and produces

a clutter to noise ratio of 77 dB at each receive column. Each subarray of the

receive array has an adaptive tapped delay line containing 14 taps so that the total

VT
2D

VT
2D

1
2

Vtarget

Vblind0 1

FIGURE 10.82 Fraction of the blind speed interval occupied by main beam clutter.
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number of adaptive degrees of freedom is 14 taps £ 13 subarrays ¼ 182.

In Figure 10.86 we show the signal-to-interference ratio after adaptation (relative

to the signal-to-noise ratio per column in the absence of clutter) as a function of

target speed, for a target located broadside to the array. For targets at one half the

blind speed, the processor is able to cancel the clutter down to approximately the

noise floor, and thus achieve the full gain

G ¼ 10 log10ðNS·NC·NTÞ
where NS is the number of subarrays, NC is the number of columns per subarray

and NT is the number of temporal taps (pulses). Thus, G ¼ 10log10(13.6.14) ø
30 dB. The results in Figure 10.86 also indicate that this receive array should be

able to detect targets with speeds as low as 2 m/s and as high as 98 m/s without

incurring more than 10 dB penalty relative to the maximum gain. A typical

adapted sum beam pattern is shown in Figure 10.87 for a filter tuned‡‡ to 17.5 m/sec.

Subarray 1 (6 columns/subarray)

• • •

18λ

Subarray 13 (6 columns)

FIGURE 10.85 Thinned receive array.
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FIGURE 10.86 Signal-to-interference ratio gain for the thinned array in Figure 10.85

when 14 pulses are processed.

‡‡ That is, the results shown are the adapted patterns when the processor is separately tuned to each

target speed.
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This pattern illustrates a feature that can occur with an adaptive processor: there

may be a distortion of the receive beam and the peak of the beam may shift

slightly from the desired direction (which, in our case, is zero degrees). A shift

may occur whenever the clutter that is competing in the same Doppler bin as the

target, lies within the main beam. That is, for a target with speed Vtarget the clutter

that competes in the same Doppler bin lies in an angular region centered on

Vsinu ¼ 2Vtarget. Thus, for sin u ø u we can rewrite this condition as

u

u3dB
¼ 2

Vtarget

Vblind

D

VT

� �
ð10:207Þ

where u is the azimuth of the clutter that competes in the same Doppler bin

with the target and u3dB is the 3 dB beamwidth of the receive beam. For our array

D/VT ¼ 2.94 so that the competing clutter lies within the main beam whenever

lVtargetl , 0.34Vblind. This explains why the adapted main beam has shifted in

Figure 10.87. The processor is trying to move the competing clutter out of the

main beam.

10.8.3.2. Difference Beam

Next we consider the difference beam. We study the same geometry as in the

previous section, and attempt to synthesize a desired monopulse slope after

adaptation using the two constraints given in Equation 10.198. Although the

maximum value of ks is approximately ks ¼ 1.81/u3dB, we will choose ks ¼ 1.81/

u3dB and apply the constraints at Du ¼ 0.033u3dB. In Figure 10.88 we show the

positive-angle portion of the adapted monopulse pattern for four different target

speeds. That is, the plots shown are the monopulse patterns when the adaptive
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FIGURE 10.87 Adapted sum beam for filter tunes to 17.5 m/s.
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filter is tuned to each of the target speeds indicated. Note that the monopulse

patterns are all monotonic, but their slope does vary from the desired slope for

angles well-removed from the angle where the constraint is set. We note in

passing that the clutter plus noise in the adapted difference beam never rises more

than about 3 dB above the noise floor for any target speed.

It is disappointing that the monopulse slope in Figure 10.88 is not the same

for all target speeds. One might expect to achieve more uniform slopes by

applying the constraints at a larger value of Du. However, this does not work as

well as hoped, and when we used Du ¼ 0.2u3dB rather than Du ¼ 0.033u3dB we

actually ended up introducing a bias (i.e., the zero in the monopulse response no

longer occurs at u ¼ 0). This suggests maintaining the constraints at^0.033 u3dB
to force the response to pass through zero at u ¼ 0 and then adding two new

constraints (a total of four constraints) at ^au3dB where aq 0:033:
In Figure 10.89 we show the monopulse response for two different target

speeds when the constraints are applied at ^0.033 u3dB and ^0.33u3dB. Note
that the responses are quite close to both each other and the desired response,

and it is only near the 3 dB point of the sum beam that there is any significant

deviation.

It should be noted that when four rather than two constraints are used there

are fewer degrees of freedom available to cancel the clutter in the difference

beam. Thus, for targets at one half the blind speed the interference-plus-noise to

noise ratio rises from 1.25 to 4.6 dB. However, for the low speed targets (which

compete with clutter near the null in the difference beam) the use of four rather

than two constraints results in very little difference in the interference-pulse-noise

to noise ratio after adaptation.
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FIGURE 10.88 Adapted monopulse patterns for constraints at ^0.333u3dB.
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10.8.4. SUMMARY

We have demonstrated that by using space–time adaptive, bistatic, spaceborne

arrays it is possible to detect slowly-moving targets immersed in strong ground

clutter. It is also possible to design an adaptive monopulse that can locate those

targets in cross range. If the angular accuracy provided by the adaptive

monopulse (approximately 0.038) is not sufficient one can perhaps construct a

long interferometer consisting of two or more of the adaptive arrays discussed in

this report. This will be the subject of a future section.

10.9. ADAPTIVE NULLING OF SYNTHETIC APERTURE RADAR

(SAR) SIDELOBE DISCRETES

(R. L. FANTE)

10.9.1. INTRODUCTION

Synthetic aperture radar (SAR) uses the motion of the aircraft on which the radar

is mounted to achieve a large effective crossrange aperture, thus, achieving high

resolution images.1–5 However, when imaging targets immersed in ground

clutter, the image may be affected by the presence of strong discrete scatterers,

such as mountains, in the SAR response sidelobes. That is, although the SAR

sidelobes are usually low enough so that the image is unaffected by sidelobe

clutter, there are occasionally discretes strong enough to break through and

corrupt the target image. It is possible to compensate for these strong discrete
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scatterers by using adaptive SAR. In fact, it was shown recently6,7 that the entire

SAR image can be formed adaptively without the use of Fourier transforms, as is

conventionally done. Here, we pursue a hybrid approach in which the range

portion of the SAR image is formed conventionally, but the crossrange portion is

formed adaptively in such a way that nulls are placed at the crossrange location of

any strong clutter discretes. The main contribution of this work is to demonstrate

that by using an array of overlapped, adaptive subarrays rather than a full,

adaptive nonoverlapped array to form the crossrange image, a considerable

reduction in complexity (i.e., the dimension of the covariance matrix is reduced

from an N £ N matrix to an M £ M matrix, where N is the total number of

samples in the full array andM is the number of samples per subarray) is possible,

without any significant loss in performance.

10.9.2. FULLYADAPTIVE SAR

Let us begin with a brief description of SAR, and then discuss how adaptive

processing can be used to cancel the clutter discretes. More detailed discussions

of SAR are contained in Refs. 1–5.

Consider radar on an aircraft emitting a series of pulses

vðtÞ ¼ Pðt2 kTÞexp½2i2pfcðt2 kTÞ	 ð10:208Þ
where t ¼ time, k ¼ integer ðk ¼ 1, 2…NÞ, T ¼ interpulse period, fc is the carrier

frequency and, typically, P(t) is a chirp pulse, given by1–3

pðtÞ ¼ exp 2i
pBt2

T0

{ !
rect

t

T0

� �
ð10:209Þ

and T0 is the pulse length and B is the bandwidth. Now suppose this pulse train

illuminates a point scatterer at range R(t), and the received signals are recorded in

a two-dimensional array g(t0, tk), where ¼ t0 ¼ t 2 kT is known as the “fast time”

and tk ¼ kT is known as the “slow time.” Then, in terms of these variables the

received signal, after down conversion, can be written as

gðt0, tkÞ ¼ AP t0 2
2RðtkÞ
c

� �
exp i

4p fc
c

RðtkÞ
� �

ð10:210Þ

where A is a constant that depends on the scatterer strength and range (the range

is assumed to vary negligibly during the pulse length T0) and c is the speed of

light.

In order to discuss range migration, let us take the Fourier transform of

Equation 10.210 over the fast-time variable t0.
We obtain

Gð f , tkÞ ¼ A ~Pð f Þexp i
4p

c
ð f þ fcÞRðtkÞ

� �
ð10:211Þ
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where ~Pð f Þ is the Fourier transform of P(t) and f is the fast frequency. Now let us

expand the range to the scatterer in a Taylor series about tk ¼ 0,

RðtkÞ ¼ Rð0Þ þ _Rð0Þtk þ
€Rð0Þ
2

t2k þ · · · ð10:212Þ
If the result is substituted into Equation 10.211 we see that there is a term in the

exponent equal to 4p f _Rð0Þtk=c that couples the fast frequency f and slow time tk,

and may result in a migration of the scatterer out of the range resolution cell

during the coherent integration interval Tc ¼ NT, where N is the number of

pulses that must be integrated to achieve the desired crossrange resolution with

the SAR. If DR ¼ Ṙ(0)Tc is the total range migration during the coherent

integration interval, we see that because lf l # B=2 where B ¼ bandwidth, the

term exp(i4pf Ṙ(0)tk/c) can be approximated by unity if 2pBDR=c ,, 1, where B

is the fast-frequency bandwidth. If we recall that the range resolution of a radar is

dR ¼ c/2B we see that 2pBDR=c ,, 1 simply implies pDR ,, dR: When range

migration can be ignored, Equation 10.211 can be approximated by

Gð f ; tkÞ ¼ A ~Pð f Þexp i
4p

c
½ð f þ fcÞRð0Þ þ fc _Rð0Þtk þ fc €Rð0Þt2k=2	

� �
ð10:213Þ

We have shown elsewhere8 that when migration cannot be ignored it is possible

to correct for it by rescaling the data. The discussion here then applies to the

rescaled data.

If we now apply the matched range-filter ~Ppð f Þ, and then take an inverse

Fourier transform over the fast-frequency variable, the data produced by this

point scatterer in the range slow-time domain is

Dðr, tkÞ ¼ HðrÞexp i
4p

c
fcð _Rð0Þtk þ €Rð0Þt2k=2

� �
ð10:214Þ

where r is the range and

HðrÞ ¼ A
ð1

21
df l ~Pð f Þ2lexp 2i

4p f

c
ðr2 Rð0ÞÞ

� �
ð10:215Þ

An unimportant phase term has been lumped into A. The scatterer under

consideration can be imaged in the range-Doppler domain (r, fd) if we first

focus it by multiplying the dataD(r, tk) ; D(r, k) by the quadratic focusing function

expð2i2p fc €Rð0Þk2T2=cÞ
and then take an inverse Fourier transform to get

Iðr, fdÞ ¼
XN21

k¼0

Dðr; kÞexpð2i2p fdkT 2 ib0k
2Þ ð10:216Þ

where b0 ¼ 2p fc €Rð0ÞT2=c ¼ 2p fcV
2T2=Rð0Þc, V is the radar-platform speed and

we have used €Rð0Þ ¼ V2=Rð0Þ: This will produce an image at range r ¼ R(0) and

Doppler fd ¼ 2fc _Rð0Þ=c:
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Thus far, we have illustrated how an individual scatterer is imaged. However,

the scene being imaged contains multiple scattering centers, so that the data

received in the range-slow time domain is actually a summation over the

contributions from all the scattering centers. Let us denote the data from all

scatterers by d(r, k). Our goal is to image a particular scatterer with range-Doppler

coordinates (r0, f), while rejecting the interference produced by all the other

scatterers, especially those very strong scatterers we have called “discretes.”

As can be seen for Equation 10.214 a point scatterer at range r0 and Doppler
frequency f0 ¼ 2fc _R0=c produces a sequence of slow-time samples given by

s0ðkÞ ¼ exp½i2p f0kT þ ib0k
2	 ð10:217Þ

where b0 ¼ 2p fcV
2T2=r0c, and the range term H(r0) has been suppressed.

Equation 10.217 represents the ideal desired response from a selected scatterer in

the absence of all interference. Because the platform speed V and the range r0 to
the scatterer are known, we can therefore estimate b0, and then correct for the

defocusing by multiplying Equation 10.217 by expð2ib0k
2Þ to obtain the

modified scatterer response (of course we do not have access to the received

signal itself; ~s is merely the ideal response)

~sðkÞ ¼ exp½i2p f0kT	 ð10:218Þ
Likewise all of the actual data can be modified by the same correction to obtain

~dðkÞ ¼ dðr, kÞexpð2ib0k
2Þ ð10:219Þ

where the range dependence has been suppressed in ~d: We now wish to apply a

set of adaptive weights w(k) to the modified slow-time data ~dðkÞ such that the

response from the scatterer (target) to be imaged at coordinates (r0, f0) is

preserved while the contributions from all other scatterers are minimized. If we

define the N £ 1 vectors W, S̃, and ~D as

WT ¼ ½wð0Þ…wðN 2 1Þ	 ð10:220aÞ
~ST ¼ ½~sð0Þ…~sðN 2 1Þ	 ð10:220bÞ
~DT ¼ ½~dð0Þ…~dðN 2 1Þ	 ð10:220cÞ

we then desire to minimize the mean interference power

I ¼ kWH ~Dp ~DTWl ¼WHk ~Dp ~DTlW ð10:221Þ
where preserving the desired scatterer signal through the constraint

WT ~S ¼ 1 ð10:222Þ
The weight vector that accomplishes this objective is well known,§§ and is

§§ The solution is known as the minimum variance, distortionless look beamformer. It is a special case

of the linearly constrained variance beamformer.
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given by9–15

W ¼ F21 ~Sp

~STF21 ~Sp
ð10:223Þ

where F is an N £ N covariance matrix defined as

F ¼ k ~Dp ~DTl ð10:224Þ
and kl denotes an expectation. Although in principle the aforementioned approach

accomplishes the objective, it is impractical, because it is difficult to obtain sufficient

independent samples (even using forward-backward subaperture averaging) to

estimate F, and even if F could be estimated, its inversion is computationally

burdensome because for a high-resolution image the number of slow-time samplesN

may bemany thousand.However, aswe now show there is a simpleway around these

difficulties.

10.9.3. OVERLAPPED-SUBARRAY SAR

Let us construct an SAR array consisting ofQ overlapped adaptive subarrays, and

instead of placing nulls (on interfering scatterers) on an array level, as was done in

the last section, let us place nulls in each subarray. That is, the total SAR response is

the product of the subarray pattern and the array pattern, so that if the subarray

pattern has a crossrange null (on a strong discrete), this null also appears in the total

pattern. The arrays are overlapped in order to reduce the magnitude of the grating

lobes that always appear when nonoverlapped subarrays are employed.

We can form a set of overlapped subarrays (shown in Figure 10.90) by setting

k ¼ mþ pK ð10:225Þ
where 0 # m # M 2 1, 0 # p # Q 2 1, K is the number of samples overlapped,

and M is the number of slow-time samples per subarray, so that the total length of

the array isM þ (Q 2 1)K slow-time samples. In order for the overlapped subarrays

to achieve the same crossrange resolution as the nonoverlapped array we require that

M þ ðQ2 1ÞK ¼ N ð10:226Þ
This gives a crossrange angular resolution

du ¼ l

2ðN 2 1ÞVT ð10:227Þ

K

M

Subarray Q

Subarray 1

FIGURE 10.90 Full SAR array consists of Q overlapped subarrays of M points per

subarray.
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where l is the carrier wavelength, V is the platform speed, and T is the interval

between adjacent time samples. If Equation 10.225 is now used in Equation 10.218

we see that the slow-time signal, after quadratic compensation, produced on time

sample m within subarray p by a scatterer at Doppler frequency f0 is

~sðm; pÞ ¼ exp½i2p f0Tðmþ pKÞ	 ð10:228Þ
We stress that ~s is the desired signal that would be produced by the point selected for

imaging in the absence of all interference.

Now let us apply a deterministic weight wdð pÞ across the subarrays, in order

to control the overall sidelobe response. Then, the desired signal after summing

over subarrays is

~sðmÞ ¼
XQ21

p¼0

wdð pÞexp½i2p f0Tðmþ pKÞ	 ð10:229Þ

The correlated data ~dðkÞ ¼ ~dðmþ pKÞ in Equation 10.219 is also weighted and

summed over subarrays giving

d̂ðmÞ ¼
XQ21

p¼0

wdð pÞ~dðmþ pKÞ ¼
XQ21

p¼0

wdð pÞdðmþ pKÞexpð2ib0k
2Þ ð10:230Þ

We now wish to apply a set of adaptive weights wsðmÞ to the modified slow-time

data d̂ðmÞ such that the response ŝðmÞ from the scatterer at Doppler f0 is preserved,

while the contributions from all other scatterers are minimized. Define theM £ 1

vectors

WT
s ¼ ½wsð0Þ…wsðM 2 1Þ	 ð10:231aÞ
ŜT ¼ ½ŝð0Þ…ŝðM 2 1Þ	 ð10:231bÞ
D̂T ¼ ½d̂ð0Þ…d̂ðM 2 1Þ	 ð10:231cÞ

Then, paralleling the discussion in Equation 10.221 to Equation 10.224 we find

that the output response G ¼WT
s D̂ has the desired properties if

Ws ¼ G21Ŝp

ŜTG21Ŝp
ð10:232Þ

where G is an M £ M matrix, defined as

G ¼ kD̂pD̂lT ð10:233Þ

The signal-to-interference ratio after adaptation is

S

I
¼ ŜTG21Ŝp ð10:234Þ
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A typical component of G is

Gmn ¼
XQ21

p¼0

XQ21

q¼0

wp
dð pÞwdðqÞk~dpðmþ pKÞ~dðr þ qKÞl ð10:235Þ

We have now achieved a significant computational savings, because we need

only estimate and invert anM £ Mmatrix (whereM is of order 10) rather than an

N £ Nmatrix, where N is of order 1000. Furthermore, as is evident from Equation

10.235, by using subarrays one automatically achieves looks at each scatterer

from Q different angles (that is, each subaperture in Figure 10.90 views a given

scatterer from a different angle) which tends to smooth the covariance estimate.

Of course, all of these looks are not independent, because the looks need to be

spaced in angle by l/2D, where D is the crossrange dimension of the discrete

clutter region, in order to be independent. Nevertheless, smoothing does occur.

The remainder of the covariance smoothing is achieved through an average over

range. That is, although we have suppressed the range index, the corrected data

really is d̂ðr, mþ pKÞ: Thus the average kdpðmþ pKÞ~dðr þ qKÞl that appears in
Equation 10.235 is estimated by summing the product over range bins r, and then
dividing by the number of range bins. As demonstrated elsewhere,16 one typically

needs between 2M and 4M independent samples to achieve an acceptable

estimate of the covariance.

Once the weight vectorWs has been determined, the response of the SAR to

Doppler frequencies fd other than the value f0 to which the filter is tuned is

Cð fdÞ ¼WT
s h ð10:236Þ

where h is an M £ 1 vector, with components

hðmÞ ¼
XQ21

p¼0

wdð pÞexp½i2p fdTðmþ pKÞ	 ð10:237Þ

10.9.4. NUMERICAL RESULTS

In order to evaluate the performance achieved by using the adaptive, overlapped

subarrays let us model the strong ground clutter as a set of Ns statistically

independent point scatterers. In this model the scatterer labeled by the index n

produces a voltage dðkÞ ¼ Anexpði2p fnkT þ ibnk
2T2Þ, and the phase fn of each

complex amplitude An is an independent random variable uniformly distributed

in the interval (0, 2p). Using this in Equation 10.235 then gives a theoretical

covariance matrix G with components

Gmk ¼
XNs

n¼1

lAnl
2
XQ21

p¼0

XQ21

q¼0

wp
dð pÞwdðqÞ exp{2 i2p fnðmþ pK 2 k2 qKÞ

2 iDbn½ðmþ pKÞ2 2 ðk þ qKÞ2	}þ ymn ð10:238Þ
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where An is the strength of the scatterer n, including the reduction (inherent in

Equation 10.215) because the range rn of scatterer n is different from range r0
of the scatterer being imaged, fn is the Doppler frequency of scatterer n and

Dbn ¼ bn 2 b0 is its differential quadratic defocusing coefficient. The term ymk is

the receiver noise, defined as

ymk ¼
XQ21

p¼0

XQ21

q¼0

wp
dð pÞwdðqÞkxpðmþ pKÞxðk þ qKÞl ð10:239Þ

where xðmÞ is the noise measured on slow-time sample m. If all slow-time

receiver noise samples are statistically independent, so that kxpðvÞxðmÞl ¼ s 2dmv
then it is readily shown that for real weights and subapertures overlapped by K

samples

ymk ¼ s 2
XQ21

q¼0

w2
dðqÞ, k ¼ m

¼ s 2
XQ21

q¼1

wdðqÞwdðq2 1Þ; k ¼ m^ K

¼ s 2
XQ21

q¼2

wdðqÞwdðq2 2Þ; k ¼ m^ 2K ð10:240Þ

etc. For all other values of m and k we have ymk ¼ 0. Thus, because of subarray

overlap the noise covariance matrix is nondiagonal. Because of the presence of

this noise, the clutter-plus-noise covariance G is always nonsingular, even for

completely correlated clutter scatterers. However, if the noise is too small the

condition number of the matrix G may be very large. Thus, in some cases it may

be necessary to artificially add noise to the diagonal of G to improve the condition

number. This may result in a slight loss in the adapted signal-to-interference ratio.

Using the expression for G in Equation 10.238 we have evaluated how well

the adaptive processor cancels undesired clutter discretes, while simultaneously

imaging a target. One measure is the signal-to-interference ratio after adaptation,

relative to the signal-to-noise ratio if the clutter discretes were absent. As a test,

we chose a strong clutter discrete that produces an interference that is 30 dB

above the noise level, and then varied its location fd in Doppler relative to f0. We

chose an SAR array that consisted of 16 subarrays, each containing eight slow-

time samples, and overlapped## by fifty percent, (K ¼ 4). We then calculated the

## We have found that as long as the number M of samples in each subarray is much larger than the

number of interfering discretes, the 50% overlapped adaptive subarray interference cancellation is

within 1 dB of the interference cancellation produced by the fully adaptive array. However, there is

nothing magic about our choice of 50% overlap. In fact, a 60% or 70% overlap gives the same

interference cancellation with a smaller grating lobe (but at the expense of somewhat larger

computational complexity).
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signal-to-clutter-plus-noise ratio after adaptation relative to the signal-to-noise

ratio in the absence of the clutter discrete. The results are shown in Figure 10.91,

and indicate that as long as FdT ; ð fd 2 f0ÞT is not too small, the clutter discrete

is cancelled down to the noise floor.

The adapted SAR response functions (called “point spread functions” in

optics) can be calculated by using Equation 10.236. We considered both the case

when the deterministic weighting wd across the array was uniform and Hamming.

The response pattern for Hamming weighting and a single strong discrete at

FdT ¼ ð fd 2 f0ÞT ¼ 0:1 is shown in Figure 10.92. We note that the processor has

placed a null at FdT ¼ 0.1, and that the grating lobe at FdT ¼ 0.25 is down by
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FIGURE 10.91 Loss in signal-to-interference ratio relative to clutter-free limit as

function of clutter relative Doppler frequency.
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FIGURE 10.92 Adapted SAR response for strong discrete clutter at ( fd 2 f0)T ¼ 0.1.
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nearly 30 dB from the peak response. Except for the null region the adapted

pattern differs negligibly from the clutter-free pattern. In Figure 10.93, we show

the response for Hamming weighting when the clutter discrete is moved to

FdT ¼ 0.2. Now the processor has created a null region at FdT ¼ 0.2, but the

pattern is otherwise undisturbed.

Adding additional discrete scatterers at other Doppler frequencies does not

alter results presented in Figure 10.91. For example, when we sequentially placed

additional strong (C/N ¼ 30 dB each) clutter scatterers randomly within the

region from ( fd 2 f0)T ¼ 0.1 to ( fd 2 f0)T ¼ 0.5 we found virtually no

dependence of the adapted signal-to-interference ratio on the number of strong

discretes. The result for six strong discretes differed only by 0.1 dB from the

results for one discrete. This is because in the narrowband case we are

considering that the contributions from all the strong discretes add coherently, so

that the processor simply places a null on the composite direction of arrival.

We also examined whether there is any degradation because the clutter

discretes are unfocused, as evidenced by the term proportional to Dbn ¼ bn 2 b0

in the covariance in Equation 10.238. We have found that the adapted signal-to-

interference ratio is quite insensitive to discrete defocusing. In particular, we varied

Dbn from
kk 0 to 0.1 and found only a 0.1 dB degradation in the adapted signal-to-

interference ratio, even at Db ¼ 0.1. The adapted response function for this case is
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FIGURE 10.93 Adapted SAR response for strong discrete clutter at ( fd 2 f0)T ¼ 0.2.

kk Recall that when sampling at the Nyquist rate we have T ¼ rc /V, where rc is the crossrange

resolution. Thus, b0 ¼ 2pr2c=r0l where r0 is the target range and l is the wavelength. For a strong

discrete at range r1 we have Db ¼ 2prcðr1 2 r0Þ=lr0r1: If the crossrange resolution is 3 m, the

wavelength is 0.2 m, r0 ¼ 30 km and r1 ¼ 35 km, we find that Db ¼ 0.0013. Thus, Db ¼ 0.1 is

probably larger than is likely to occur in practice.
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nearly identical to that for Db ¼ 0 except that, because of defocusing, there is no

longer a distinct null at the Doppler frequency of the clutter discrete.

10.9.5. SUMMARY

We have developed a computationally simple, hybrid processing approach that

removes any image degradation caused by strong, discrete clutter in the sidelobes

of a SAR image. The approach involves forming the range image conventionally,

but forming the crossrange image in a partially adaptive fashion by using an array

of overlapped, adaptive subarrays. The adaptive algorithm used to obtain the

subarray weights is known as the minimum-variance, distortionless look

beamformer, and has the advantages that the target response is always preserved.

Thus, the algorithm does not require that the target signal be small in comparison

with the sidelobe clutter, and as shown elsewhere17 the algorithm is unaffected by

the inclusion of the target signal is the covariance matrix, so that the algorithm

works well even if the strong discrete scatterers are absent.

It is important, when using the algorithm developed, to always examine the

condition number of the matrix G, because G is generally rank deficient. As long

as the clutter-to-noise ratio is not extremely large and sufficient samples are used

to estimate G, matrix conditioning will not be an issue. However, in instances

where the clutter-to-noise ratio is extremely large, it may be necessary to

artificially add noise to the diagonal of G.

10.10. WIDEBAND CANCELLATION OF INTERFERENCE IN

A GLOBAL POSITIONING SYSTEM (GPS) RECEIVE ARRAY

(R. L. FANTE AND J. J. VACCARO)

10.10.1. INTRODUCTION

It is desirable that GPS receivers operate efficiently, even in the presence of22

interference and interference multipath. In order to counter this problem an

adaptive antenna array is required because the location of the interference will

not be known a priori. Conventional adaptive arrays that employ spatial degrees

of freedom to place nulls in the direction of interferers perform well over very

narrow bandwidths, but may be inadequate for broader band operation, especially

when multipath is present. In order to form broadband nulls both spatial and

temporal adaptive degrees of freedom are required.1–3 A generic space–time

processor that has the potential to cancel both interferers and their multipath is

shown in Figure 10.94. This architecture is a special case of the three-

dimensional space–time processor (3D STAP) proposed for radar systems to

cancel ground clutter, jammers and jammer multipath.3–7 The adaptive FIR

(finite impulse response) filters are able to tailor the response so as to null

interference plus multipath over broader bandwidths, provided the time delays T

are less than 1/B, where B is the operating bandwidth, and the length (P 2 1)T of
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each adaptive FIR filter is sufficient to encompass the differential multipath

delays. The processor works by choosing the adaptive weights wkq so as to

preserve the desired GPS signal while simultaneously minimizing all

interference. That is, we use the fact that we have information on the angular

location of each GPS satellite and the nature of the signal it transmits, to tailor the

space–time filter to receive this signal while rejecting others. In the next section

we illustrate how this is done for hypothetical antenna arrays.

10.10.2. ADAPTIVE FILTERWEIGHTS

We now wish to choose the weights wkq shown in Figure 10.94 so as to receive

the signal from each## GPS satellite while at the same time rejecting all other

signals. In order to see how this is done refer to Figure 10.94. The interferers plus

their multipath produce a voltage ykðtÞ on antenna k, and this voltage is then

received and downconverted, producing a voltage vk(t) at the input to the FIR

filter, and a voltage vk(t 2 qT ) on time tap q. We then desire to choose a set of

weights wkq so that the filter output

zðtÞ ¼
XK
k¼1

XP21

q¼0

wkqnkðt2 qTÞ ð10:241Þ

T

T

∑

Antenna
element k

T

T

v1(1) vk(1)

vk(2)

vk(3)

w11 wk1

wk2

wk3

w12

w13

v1(2)

v1(3)

∑

Antenna
element 1

∑

z

• • •

FIGURE 10.94 Adaptive space–time processor with three taps per antenna. Frequency

transfer function of filter is Hð f Þ:

## That is, a different set of weights is obtained for each GPS satellite.
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preserves the GPS signal while canceling the interference and its multipath. In

order to compactly formulate this problem let us define the KP £ 1 vector V as

VT ¼ ½n1ð0Þ…n1ðP2 1Þ…nKð0Þ…nKðP2 1Þ	 ð10:242Þ
where nkðqÞ ¼ nkðt2 qTÞ is the voltage on time tap q of antenna k produced by

the interferers, interference multipath and noise. Also define a KP £ 1 weight

vector W as

WT ¼ ½W1;0…W1;P21…WK;0…WK;P21	 ð10:243Þ
Then Equation 10.241 can be rewritten as

z ¼WTV ð10:244Þ
The average interference power at the filter output is

klzl2l ¼WHkVpVTlW ¼WHRW ð10:245Þ
where kl denotes an expectation and R is the interference-plus-noise covariance

matrix. This covariance matrix is derived in Appendix P and includes the effects

of system bandwidth, multipath, and channel mismatch. In practice, R is

estimated8 by averaging approximately 4KP independent time samples of the

received interference. Because the GPS signal strength is at least 20 dB below the

ambient noise floor, there is no need to be concerned about obtaining signal-free

samples.

When the desired GPS signal is incident and signal multipath is absent,†††

a voltage skðqÞ ; skðt2 qTÞ is produced on time tap q of antenna k: If we define a
KP £ 1 vector S as

ST ¼ ½s1ð0Þ…s1ðP2 1Þ…sKð0Þ…sKðP2 1Þ	 ð10:246Þ
we see that the signal voltage at the filter output is

zs ¼WTS ð10:247Þ
We now wish to determine the weight vector W. Because S is a stochastic vector

(typically the GPS signal is a Gold code or a PN (pseudonoise) sequence) the

classical solution,8–13

W ¼ R21Sp

used for deterministic signals is not appropriate, so we now consider some

different approaches for calculating W.

10.10.2.1. Maximum Signal-to-Interference Ratio

The average signal power at the filter output can be obtained from Equa-

tion 10.247 as

klzsl
2 ¼WHkSpSTlW ¼WHGW ð10:248Þ
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We now wish to determine the weight W that maximizes the average signal-to-

interference ratio

SI ¼ WHGW

WHRW
ð10:249Þ

The desired weightW is readily shown14 to be the eigenvector that corresponds

to the maximum eigenvalue l of

GW ¼ lRW ð10:250Þ
with the maximum signal-to-interference ratio (ignoring signal multipath) equal

to the largest eigenvalue. Note that the process is repeated for each GPS satellite

to be used in the solution for the platform position vector.

In practice, signal multipath is not always negligible, so the actual signal is

Sa ¼ S þ Sm, where Sm is the multipath contribution. Then, the ideal signal

covariance matrix must be replaced by the actual covariance matrix

Ga ¼ kðSp þ SpmÞðSþ SmÞTl ð10:251Þ
and the actual signal-to-interference ratio after adaptation is

SIa ¼ WHGaW

WHRW
ð10:252Þ

Typically, the signal multipath causes the actual signal-to-interference ratio to be

a few tenths of a dB below the ideal value. Of course, the interference covariance

matrix R always contains the interference multipath.

10.10.2.2. Minimum Mean Square Error

A second approach is to choose the weight vector to minimize the mean square

difference between the desired temporal signal sequence sd and the total received

voltage WTZ, where Z ¼ V þ S is the total voltage vector consisting of signal

plus all interference. That is, we choose W to minimize

e¼ klsd2WTZl2l¼ ksds
p
dl2W

TkZspdl2W
HkZpsdlþWHkZpZTlW ð10:253Þ

If we differentiate e with respect toWH, set the result equal to zero and use the

information that the GPS signal is independent of and much weaker than

the interference-plus-noise we find

W¼R21gs ð10:254Þ
where

gs¼ kSpsdl ð10:255Þ
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is the first column of the signal covariance matrix G. The signal-to-interference

ratio after adaptation is then obtained by using Equation 10.254 in Equa-

tion 10.252.

The weight vectors in Equation 10.250 and Equation 10.254 are not equal,

but we have shown elsewhere (using very many typical portions of PN

sequences), that the result in Equation 10.254 gives signal-to-interference ratios

that are only a few tenths of a dB less than those given using the weight in

Equation 10.250. Thus, either approach is acceptable, but in the simulations

presented in Section 10.10.5, Equation 10.254 has been used.

10.10.2.3. Minimum Output Power

Because the GPS signal is usually far below the receiver noise level, a simple

power minimization is often quite useful. In this method we simply constrain

the weight on the middle tap of antenna 1 (see Figure 10.94), and then minimize

the output power without attempting to preserve the gain in the signal direction.

This method has the disadvantage of allowing for possible signal fades, but the

advantage of not requiring the user to know the expected direction of arrival of

the incoming GPS signal. This approach was not pursued in this work.

In our analysis in Sections 10.10.2.1 and 10.10.2.2 it was assumed that the

angular location of each GPS satellite in view is approximately known, and that a

separate weight vector is calculated to either maximize the signal-to-interference

ratio or minimize the mean square error for each satellite. However, because the

visible GPS satellites usually lie above the horizon and interference very often

comes from at or near the horizon, it is possible to maximize the average of SI

over some solid angle V0 (or minimize the average of e), where V0 includes

nearly the entire upper hemisphere except the region near the horizon. In this case

G in Equation 10.249 is replaced by 
G and gs in Equation 10.255 is replaced by 
gs,

where


G ¼ 1

V0

ðð
V0

dVkSpST l


gs ¼ 1

V0

ðð
V0

dVkSpsdl

and dV is the element of solid angle. The advantages of this procedure are that (a)

one no longer needs to know the angular locations of each GPS satellite, and (b) a

single weight vector is used for all satellites. However, the disadvantage is that

we can no longer be assured of achieving full gain at the location of each satellite.

In Ref. 22 we present a detailed tradeoff of individual constraints versus

hemisphere-averaged constraints.

10.10.3. SIGNAL DISTORTION INTRODUCED BY THE PROCESSOR

As we see later the processor described in the last section can cancel the

interference introduced by ensembles of wideband and narrowband interferers,
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but because the architecture in Figure 10.94 does not have a uniform frequency

response across the operating band, it is possible that it will introduce a distortion

of the desired GPS signal. In order to study this problem, including steering

vector mismatch, suppose the GPS satellite is located at polar angle (us, fs) and

we assume it is at a different angle ðûs; f̂sÞ: Then, it is readily seen that the

response of the filter in Figure 10.94 to that satellite is

Hð f , us, fs; ûs, f̂sÞ ¼
XK
k¼1

XP21

q¼0

~wkqexp i2p f
jk
c

þ qT

� �� �
ð10:256Þ

where f is the frequency, ~wkq ¼ wkqðûs, f̂sÞexpði2p f0jk=cÞ, f0 is the carrier

frequency,

jk ¼ xk sin us cos fs þ yk sin us sin fs þ zk cos us ð10:257Þ
(xk, yk, zk) is the position of antenna k and wkqðûs, f̂sÞ is the weight vector

computed for assumed satellite position ðûs, f̂sÞ: Because ðûs, f̂sÞ and the filter

weights wkq are all known (after adaptation), this filter function is readily

constructed. If the GPS satellite emits a signal with a Fourier transform S( f ),

then, in the absence of signal multipath, the signal output after passing through

the adaptive filter is H( f )S( f ), which can be written in the time domain as

rðtÞ ¼
ð1

21
df Hð f ÞSð f Þexpði2p ftÞ ð10:258Þ

where, for notational convenience we have suppressed the angular dependence of

H. The GPS receiver estimates time delay by using15,16 the cross correlation‡‡‡ of

this received signal with the known signal

r0ðtÞ ¼
ð1

21
df 0Sð f 0Þexpði2p f 0tÞ ð10:259Þ

If the signal is a stationary random process, then

kSð f ÞSpð f 0Þl ¼ Pð f Þdð f 2 f 0Þ ð10:260Þ
where P( f ) is the power spectrum of the signal. If Equation 10.260 is used, along

with Equation 10.258 and Equation 10.259, we see that the cross correlation is

CðtÞ ¼ krðtÞrp0ðt þ tÞl ¼
ð1

21
df Pð f ÞHð f Þexpð2i2p f tÞ ð10:261Þ

Typically, P( f ) is a positive, symmetric function of f, so that in the absence of

H( f ) the correlation peak occurs at t ¼ 0: However, H( f ) can introduce both a

broadening of the correlation peak and a shift of that peak from the correct value

‡‡‡ This is referred to in GPS literature as the “code tracking loop.”
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at t ¼ 0: This shift (or bias) is introduced by the phase f( f ) of H( f ). In addition,
the presence of H( f ) could lead to a phase shift at the value of t where the

correlation peak occurs, and this could affect the high-precision, differential GPS

systems that use carrier-phase tracking. Thus, in a later section it is necessary to

carefully examine the effect of the adaptive antijam filter H( f ) on the cross

correlation function. Of course, if necessary, both the bias error and any phase

shifts, but not the broadening effect, can be corrected by following the adaptive

FIR filter with the filter§§§ G( f ) ¼ H *( f ). Then, the cross correlation becomes

C0ðrÞ ¼
ð1

21
df Pð f Þ lHð f Þl2 expð2i2p f tÞ ð10:262Þ

Because Pð f ÞlHð f Þl2 is real, the peak of lCðtÞl now lies at the correct location

(t ¼ 0) and, clearly, the phase of C0(0) is zero, as desired. However, the

correlation peak can potentially be broadened. Thus, there will be no bias in the

pseudorange### estimate, but the standard deviation of the error in the estimated

platform location may be increased. In a later section we show that this

compensation filter G( f ) is rarely needed. Unfortunately the compensation filter

H *( f ) does not cure the range estimation problems caused by signal multipath.

Signal multipath causes17 the correct GPS signal transform S( f ) to be replaced by

Sð f Þð1þ Dð f ÞÞ, where D is of the form

Dð f Þ ¼
XRm

r¼1

ar expð2i2p f trÞ ð10:263Þ

and Rm is the number of multipath sources, and ar, tr are the strength and delay of
each multipath scatterer, respectively. Note that because the GPS satellite is at a

different location than the interferers, the signal multipath delays are different

from the interferer multipath delays. In the presence of signal multipath, Equation

10.262 is replaced by

C0ðtÞ ¼
ð1

21
df Pð f Þ lHð f Þl2 ½1þ Dð f Þ	 expð2i2p f tÞ ð10:264Þ

Unless D( f ) is quite small, it is evident from Equation 10.264 that the signal

multipath can introduce both a bias and a broadening of the correlation peak.

§§§ It should be recognized that Gð f Þ ¼ Hpð f Þ is not the only option for compensation. In fact the

filter Gð f Þ ¼ H* ð f Þ=lHð f Þl2 is preferable because the cross correlation C0ðtÞ after compensation is

then undistorted. However, whereas H( f ) is a simple FIR filter, G( f ) is not.
### Because the GPS satellite and receiver clocks are not identical, a GPS system does not measure

true range, but rather pseudo-range. If the same clock were used then the differential delay would yield

true range.
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10.10.4. SUBOPTIMUM SPACE–FREQUENCY PROCESSING

We now wish to explore a suboptimum approach18 that may possibly reduce the

computational complexity without greatly sacrificing performance. One method

that readily suggests itself is to process in the frequency rather than the time

domain. That is, perhaps we can split the operating band B into M subbands of

bandwidth B=M, and then in each subband calculate weights for each antenna

that cancels the interference by placing spatial nulls on interferers within that bin

while preserving the signal. If the discrete Fourier transform (implemented as a

fast Fourier transform (FFT)) really did behave as a “brick wall” filter bank that

fully isolated each frequency bin from all others, we expect that this procedure

would rival the full time-domain processing discussed earlier. However, because

of leakage between bins, even with well-designed windows, it is necessary to

consider what is happening in some adjacent bins when attempting to minimize

interference in a particular frequency bin. We now discuss a method for

accounting for this spillover among bins.

Before we proceed to discuss this approach let us first transform the data into

the frequency domain as

XnðmÞ ¼
XM21

k¼0

bðkÞ xnðkÞ exp i
2pmk

M

� �
ð10:265Þ

where b(k) is an arbitrary windowing function (e.g., Hamming), xn(k) is the

voltage on time tap k of antenna n and Xn(m) is the voltage in frequency bin m of

antenna n. We combine these components into an KM £ 1 frequency-domain

voltage vector X as

XT ¼ ½X1ð0Þ…XKð0Þ, X1ð1Þ…XKð1Þ…X1ðmÞ…XKðmÞ…	 ð10:266Þ
where K is the number of antennas. Next, we define a KM £ 1 weight vector

WQ(m) for order Q processing as

W1ðmÞT ¼ ½0…0w1ðmÞ…wKðmÞ0…0	 ð10:267Þ
W2ðmÞT ¼ ½0…0w1ðmÞ…wKðmÞw1ðmþ 1Þ…wKðmþ 1Þ0…0	 ð10:268Þ

W3ðmÞT ¼ ½0…0w1ðm2 1Þ…wKðm2 1Þw1ðmÞ…wKðmÞw1ðmþ 1Þ
�…wKðmþ 1Þ0…0	 ð10:269Þ

Then, for an arbitrary order Q the output in frequency bin m after applying the

weights to the data is

VQðmÞ ¼WT
QðmÞX ð10:270Þ

Thus, for first order processing, defined by Q ¼ 1, the output after weighting in

frequency bin m is given by

V1ðmÞ ¼
XK
n¼1

wnðmÞXnðmÞ ð10:271Þ
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which clearly shows that bin m is processed without regard for the voltage in the

other bins. Second-order processing, defined by Q ¼ 2, gives

V2ðmÞ ¼
XK
n¼1

½wnðmÞXnðmÞ þ wnðmþ 1ÞXnðmþ 1Þ	 ð10:272Þ

and for third-order (Q ¼ 3) processing we have

V3ðmÞ ¼
XK
n¼1

½wnðm2 1ÞXnðm2 1Þ þ wnðmÞXnðmÞ

þ wnðmþ 1ÞXnðmþ 1Þ	 ð10:273Þ
etc. Thus, as we increase the order Qwe increasingly account for the data in other

bins when calculating the output in a given bin m. Consequently, we expect that

as the order is increased we can improve our ability to cancel the interference in

each bin while preserving the desired signal there. In the limit when the filter

order Q equals the number of taps, it can be shown19 that space–frequency and

space–time processing are equivalent.

For filter order Q, the unknown weights in Equation 10.271 to Equa-

tion 10.273 are computed by minimizing the mean square difference between the

actual voltage VQ(m) in bin m and the Fourier transform Sd (m) of the desired

signal. The procedure parallels the approach of DiPietro,18 and is omitted here

(complete details are contained in Ref. 20). In a later section we compare

suboptimum space–frequency processing with full space–time processing to see

if space–frequency processing really offers any computational advantages.

10.10.5. NUMERICAL SIMULATIONS

10.10.5.1. Introduction

We now wish to evaluate the cancellation performance of the full order space–

time processor described in Section 10.10.2 and of the suboptimum space–

frequency processor described in Section 10.10.4.

We assume a priori that the receiver in Figure 10.94 contains an analog-to-

digital converter ðA=DÞ with sufficient dynamic range to encompass

the interference-to-noise ratio. We also assume that each receiver has a response

which is essentially linear over the range of operation. If one specifies that, in

the presence of a jammer nonlinearity, variations from receiver-to-receiver

produce less than a 1 dB increase in output interference, this leads to the

requirement20 that

lbn 2 bml ,
0:47

J
J

N

� �1=2 ð10:274Þ
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where J is the interferer power, J/N is the interference-to-noise ratio andbn,bm are
the cubic nonlinearity coefficients of receivers n and m, respectively.

For our first set of simulations we consider a seven-element planar array with

elements uniformly spaced around a circle of radius equal to one half wavelength,

assume that the operating frequency is 1.575 GHz (L1) and that the operating

bandwidth is 20 MHz. In the absence of multipath the adaptive tapped delay lines

shown in Figure 10.94 are probably unnecessary except for very strong

interferers, because the maximum delay across the array in Figure 10.96 is

only 0.67 nsec. Thus, the product of the bandwidth and this delay is only 0:67 £
1029 £ 20 £ 106 ¼ 0:013: However, when the array is placed on a platform the

maximum differential multipath delay can be of the order of 100 nsec and

the delay-bandwidth product then is of order 2, so that the tapped delay lines are

clearly necessary. In fact, Bt products as small as a few tenths produce significant

degradation if only spatial nulling is used.

Our simulation accounts for antenna cross-polarization, mutual coupling

between antennas and mismatch between the different antenna responses. We

have found that for P . 1 mutual coupling has virtually no effectkkk on the results
unless the mutual coupling coefficient is greater than 215 dB. For nearly all

arrays of interest, the mutual coupling is well below this value. In the results to be

presented the mutual coupling option was ignored in order to save computer time.

The antenna mismatch, however, is an extremely important parameter, and we

have expressed the antenna mismatch in terms of a quantity known as

the “cancellation ratio,” which is minus the logarithm of the normalized residue

power when two antennas are illuminated by the same interferer and their outputs

subtracted. A high cancellation ratio means that the channels are well matched

and a low cancellation ratio implies poorly matched receivers. A derivation of the

cancellation ratio in terms of the amplitude and phase mismatch across

the operating band is presented in Appendix P.

The multipath is modeled as a set of point scatterers with an arbitrary strength

and position. The strength is defined relative to the strength of the direct ray from

the interferer. Thus, a strength of 240 dB means that the multipath produces a

voltage on each element, that is, 0.01 of the voltage produced by the direct signal

from the interferer. Additional details on the multipath model are given in

Appendix P.

Let us first examine how multipath affects interferer cancellation. We

consider the processor in Figure 10.94 and assume that the array is illuminated by

an array of interferers located randomly in azimuth near the horizon (x–y plane).

The GPS satellite is assumed to be located 108 off array boresight and the

multipath is modeled by four point scatterers located at (d, d), (d, 2d), (2d, d),

(2d, 2d). Thus, for interferers near the horizon the maximum differential

delay tmax between the direct ray and the multipath is tmax ¼ 2
ffiffi
2

p
d=c, where c is

kkk For P ¼ 1 (no time taps) mutual coupling significantly affects the results if the coupling coefficient

exceeds approximately 230 dB.
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the speed of light. Therefore, in order to compensate for delays of this order we

require that the number of time taps P per antenna must satisfy (see Appendix Q)

ðP2 1ÞT $ tmax ð10:275Þ

For a tap spacing T ¼ 1/B and d ¼ 30 m this condition becomes P . 1 þ 0.28B

(MHz), where B(MHz) is the bandwidth in MHz. Thus, if only one tap is used

(i.e., spatial degrees of freedom only) we expect performance to degrade

significantly if bandwidth is much larger than a few MHz. In Figure 10.95 we

show the loss, relative to the interference-free environment, in the adapted signal-

to-interference ratio for the cases when the antenna array is illuminated by one,

two, and three strong (J/N ¼ 60 dB/antenna/interferer) interferers, and multipath

is present and absent. Note that although there is little degradation in system

performance in the absence of multipath, as expected, when multipath is present

the performance begins to degrade badly for bandwidths exceeding a few MHz.

This clearly indicates the need for the adaptive FIR filter behind each antenna,

even when the antenna array is perfectly equalized (cancellation ratio ¼ 1).

We now illustrate for B ¼ 20 MHz how adding temporal taps cures the

degradation introduced by the multipath. In order to stress the processor we

increase the interference-to-noise ratio from 60 to 70 dB per element per

interferer, but again assume the array is well equalized (cancellation ratio ¼ 120

dB). Also, now the four multipath scatterers are placed randomly### at an average

distance of 12 m from the center of the antenna array, the tap spacing is now

3 Jammers

2 Jammers

1 Jammer

1
0

2

4

6

8

10

Lo
ss
in
S
ig
na
l-t
o-
In
te
rf
er
en
ce
R
at
io
(d
B
)

12

14

16

18

20

10

Bandwith (MHz)

100

No multipath
Four-30 dB scatterers
at average distance of
36 m

FIGURE 10.95 Effect of multipath on signal-to-interference loss for array that uses

spatial degrees of freedom only.

### The scatterers are placed randomly (uniform probability density) within a circular annulus in the

same plane as the antenna array. The inner radius of the annulus is 
R2 DR=2 and its outer radius is

Rþ DR=2 where 
R ¼ 12m and DR ¼ 2 m.
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0.84/B, and the results shown in Figure 10.96 are the averages over ten

realizations of the multipath scatterer locations. From Figure 10.96 we see that, as

expected, adding temporal taps does indeed reduce the loss in signal to

interference caused by the interference plus multipath. The maximum differential

multipath delay is approximately 140 nsec so that for T ¼ 0.84/B and

B ¼ 20 MHz, Equation 10.275 predicts that Q $ four-taps are required. As can

be seen from Figure 10.96 the signal-to-interference loss is always modest if four

or more taps are employed.

10.10.5.2. Effect of Channel Mismatch

Although the results is Figure 10.96 are encouraging we must recognize that they

are for a perfectly equalized array. We must now explore how imperfect

equalization affects performance. If the antenna pair is illuminated by an

interferer that produces an interference-to-noise ratio of 70 dB per element then a

cancellation ratio of 20 dB implies that the output interference-to-noise ratio after

subtraction is 50 dB. However, an adaptive tapped delay line (i.e., FIR filter) of

the type shown in Figure 10.94 can dramatically improve the channel

equalization. We illustrate this in Figure 10.97 where we show the output

interference-plus-noise to noise ratio when a pair of antennas operating over a

20 MHz band are illuminated by a broadband interferer that produces an

interference-to-noise ratio of 60 dB/element. The results shown are the averages

over ten Monte Carlo simulations of the receiver amplitude and phase ripples, for

the case when each receiver has three (random) ripples across the 20 MHz

passband. Note that, as expected, the adaptive array self-equalizes if sufficient

temporal taps (as was the case previously, the tap spacing is T ¼ 0.84/B) are

employed.
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FIGURE 10.96 Illustration that increasing number of time taps decreases loss in signal-

to-interference ratio.
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We have performed multiple, additional Monte Carlo simulations of the self-

equalization†††† capability of an adaptive array, and some of the results are

summarized in Figures 10.98 and 10.99. In Figure 10.98 we consider a two-

element adaptive array illuminated by a single broadband interferer, and find that

the antenna can self-equalize if each antenna contains 2Nr þ 3 taps, where Nr is

the number of ripples across the band B in each receiver response function. Note

that this is about half the number of taps calculated by Monzingo and Miller,2
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FIGURE 10.97 Illustration of self-equalization by two-element adaptive array.

†††† We define “self-equalization” as cancellation of the interference to within 3 dB of the receiver

noise floor.
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because they used an adaptive FIR filter behind only one antenna and we have

one behind both antennas.

In Figure 10.99 we consider the seven-element circular array illuminated by

three broadband interferers located randomly along the horizon (0 ,

azimuth , 2p). For this case only Nr þ 3 taps per antenna are required. Fewer

taps per antenna are required (as compared with the two-element adaptive array)

because the seven-element adaptive array has the freedom to choose the four or

five channels that are best matched to each other, and ignore channels with

response functions that are very different from the others (the two-element array

does not have this luxury).

One should (if possible) choose a receiver technology that has the minimum

number of random phase and amplitude ripples across the band B. If the number

Nr of ripples is five or fewer it may be feasible to self-equalize. Otherwise a fixed-

weight equalization filter is required in each channel.

10.10.5.3. Effect of Steering-Vector Mismatch

Because one does not always know the precise angular location of the GPS

satellite, it is important to study the sensitivity of the adaptive filter to errors in

satellite location. Therefore, we have performedmultiple simulations of the loss in

output signal-to-interference ratio as a function of the difference between the true

satellite location (us,fs) and our estimate ðûs, f̂sÞ of its position, for the case of one
to three strong jammers (60 dB/jammer/element) located randomly on the horizon

(randomly placed over 0 , azimuth , 2p) and a GPS satellite located randomly

in the upper hemisphere, but not within 158 of the horizon. The mean loss due to

steering vector mismatch is summarized in Table 10.7. Observe that as long as the

steering-vector mismatch is less than about 158 the loss is tolerable.
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FIGURE 10.99 Self-equalization of seven-antenna adaptive array.
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10.10.5.4. Distortion Introduced by the Adaptive Filter

In Section 10.10.3 we discussed the potential effects on the crosscorrelation

function introduced by the adaptive FIR filter in Figure 10.94. There are a number

of issues to be considered. These are:

(1) Does the adaptive filter produce a bias (time shift) of the cross

correlation function peak that is different for different GPS satellite

locations (a constant bias that is the same for all satellites does not

affect the estimate of position using the GPS system)?

(2) Is there significant broadening of the cross correlation, leading to an

increase in pseudo-range error?

(3) Does the adaptive filter introduce a significant phase error that will

affect the estimate of the carrier phase used by high-precision

differential GPS systems?

We have provided answers to these questions through multiple simulations, using

Equation 10.261 to calculate the cross correlation function for the case when the

GPS signal is a PN sequence that has the power spectrum

Pð f Þ ¼ P0

B
sin c2

p f

B

� �
ð10:276Þ

If Equation 10.256 and Equation 10.276 are substituted into Equation 10.261, the

time origin shifted to the center tap, and the integration performed, we find

CðtÞ ¼ P0

XK
k¼1

XP21

q¼0

~wkq triðaÞ ð10:277Þ

TABLE 10.7
Loss due to Steering-Vector Mismatch

Angular Error in GPS
Direction (degrees) Loss in S/I (dB)

0 0

5 0.1

10 0.6

15 1.4

20 2.4

25 3.7
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where triðxÞ ¼ 12 lxl for lxl , 1; triðxÞ ¼ 0 for lxl . 1

a ¼ B tþ jk
c

þ q2
ðP2 1Þ

2

� �
T

� �
ð10:278Þ

and t ¼ 0 corresponds to the delay on the center tap of each delay line.

In Figure 10.100 we show a typical result for the normalized cross correlation

function C(t)/C(0) for the cases when there are one to four, broadband, strong

(interference to noise ratio ¼ 60 dB/element/interferer) interferers located

randomly in azimuth along the horizon. Also present are four moderate strength

(230 dB) multipath scatterers located randomly near the plane of the antenna at

an average range of 14.2 m. From Figure 10.100 we note the following points:

(1) There is no discernable displacement of the cross correlation peak

from its correct location at t ¼ 0. (In fact, in over 100 different

simulations the largest shift we observed was only 0.05/B).

(2) The cross correlation function has nearly the same shape in the

presence of one or two interferers as it does in the interference-free

case.‡‡‡‡
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FIGURE 10.100 Uncompensated FIR filter does not significantly affect the cross

correlation function.

‡‡‡‡ In the absence of interference the normalized crosscorrelation is 1 2 Bltl for ltl , B 21, and zero

for ltl . B 21.
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(3) Even in the presence of four strong, broadband interferers there is not

a drastic broadening of the cross correlation function. Hence, the

increase in pseudo-range error is modest.

It is also important to question whether the presence of stronger multipath

would modify the above conclusions. Therefore, we varied the strength and

location of themultipath scatterers. In Figure 10.101we show results for one of the

worst cases encountered. Again the crosscorrelation peak is at the correct location,

but for very strong multipath (210 dB) there is a significant broadening of the

cross correlation peak. In general, however, multipath this strong is not usual

because 210 dB multipath corresponds to a scatterer with a bistatic radar cross

section of 253 m2 at a range of 14.2 m. Thus, we conclude that the adaptive FIR

filter in Figure 10.94 does not shift or radically broaden the cross correlation

function CðtÞ: Consequently there is no range bias error and only a very modest

increase in pseudo-range error. The compensation filter G( f ) ¼ H *( f ) discussed

in Equation 10.262 is unnecessary.

We also studied the carrier phase error, which is equal to the phase of C(0).

Typical values of the carrier phase error are shown in Figure 10.102 as a function

of steering-vector mismatch, i.e., the difference between the true GPS satellite

location (us, fs) and its estimated position ðûs, f̂sÞ: When the steering vector is

correctly estimated (mismatch ¼ 0) the carrier phase error is a fraction of a

degree. Even for rather crude estimates (errors up to 208) of the steering vector

the carrier phase error is only a few degrees. Thus, it appears that the adaptive
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FIR filter will not have a deleterious effect on differential GPS systems

employing carrier phase tracking for high-precision position location.

10.10.6. SPACE–TIME VS. SUBOPTIMUM SPACE- FREQUENCY

PROCESSING

We would now like to compare the performance of the null space–time

processor with that of the suboptimum space–frequency processor, using the

metric of computational complexity. That is, for equal computational

complexity, we wish to find which method produces a lower residual

interference after adaptation. The number of real operations per second to

form and invert the covariance matrix, using an LU factorization and forward-

back substitution, for the full space–time processor is§§§§ 17.33 ðPKÞ3Fu,

where P is the number of time taps and Fu is the weight update rate. The

number of operations per second to apply the weights in Equation 10.241 is

(8KP 2 2)Fs, where Fs is the sampling rate, so that the total number of

operations per second is the sum of these two quantities.

For suboptimum, space–frequency processing there are 17.33 (KQ)3MFu

operations per second to form and invert the covariance matrix, where M is the

number of frequency bins and Q is the processing order. For nonoverlapped FFTs

we require (K þ 1) (2 þ 5 log2 M) Fs operations per second to apply real weights
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§§§§ This assumes that 4 PK samples are used to estimate the covariance matrix, and that the

covariance domain is used. If the QR decomposition is done directly on sampled data then 17.33

(PK)3Fu is replaced by 32 (PK)3Fu.
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(e.g., Blackman) to the data block (of M samples), do the FFTs for each antenna

and then perform an inverse FFT (IFFT). In order to reduce windowing losses, the

FFTs are usually overlapped by at least fifty percent. If the FFTs are overlapped

by a factor Ov (i.e., Ov ¼ 1 means no overlap, Ov ¼ 2 means 50% overlap) then

there are OvðK þ 1Þ·ð2þ 5 log MÞFs operations per second to do the FFTs and

IFFT. Also, there are (8QK 2 2)OvFs operations per second to apply the weights.

Thus, the total number of operations per second is

17:33ðKQÞ3MFu þ OvFs½8KQ2 2þ ðK þ 1Þð2þ 5 log2 MÞ	
There are now two cases to be considered. In a highly dynamic environment the

covariance matrix update rate will dominate the computations count. However, in

a less dynamic environment the computation of the FFTs and application of

the weights will dominate. Typically, if the weight update rate is less than 1 kHz

the weight application will dominate the computations count, so that for space–

time processing the number of operations per second is approximately

(8KP 2 2)Fs, and for order Q space–frequency processing the number of

operations per second#### is approximately OvFs½8KQ2 2þ ðK þ 1Þ·ð2þ 5 �
log2MÞ	: In the results to follow we assume that the update rate is slower than

1 kHz and that a 50% overlap (Ov ¼ 2) is used.

In order to now compare performance versus processing requirements, we

consider the scenario where the seven-element circular array is operating over a

bandwidth B of 20 MHz and illuminated by zero, one, two and three broadband

(bandwidth greater than or equal to 20 MHz) interferers plus multiple narrowband

(i.e., bandwidth ! 0) interferers. Each interferer has an interference-to-noise

ratio of 70 dB, and there are four multipath scatterers present with a strength of

230 dB and an average range of 15 m. The narrowband interferers are randomly

located in azimuth at elevations close to the horizon, and are also randomly placed

within each frequency bin. In Figures 10.103 and 10.104 we show the residual

interference after adaptation for the case of sixteen bin, suboptimum, space–

frequency processing using a Blackman-Harris window. The cancellation ratio for

all cases is 120 dB. The results shown are the averages over three realizations of the

random placements of the narrowband interferers within the frequency bins. Also

shown is space–time processing (STAP) using four time taps. For each curve, we

show the relative processing complexity normalized to the processing complexity

for four-tap space–time processing. From Figure 10.103 and 10.104 it is evident

that four-tap space–time processing outperforms both order 1 and order 2

#### We can also consider memory requirements. A space–time processor with K antennas and P taps

requires each processing chain to collect 4 KP samples to estimate the covariance matrix, so that the K

antenna system has a memory requirement of 4 K 2P complex. An order 1 space–frequency processor

requires each antenna processing chain to collect 4 KM samples (i.e., 4 K samples per frequency bin)

so that the total memory requirement is 4K 2M. Thus, the space–frequency processor requires M/P

more storage than the space–time processor. Thus, memory requirements favor space–time over

space–frequency processing. Ultimately, this data requirement will limit adaptation rates for space–

frequency processing by the same M/P ratio relative to space–time processing.
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suboptimum, 16 bin, space–frequency processing and requires less than one half

the computations. For example, in Table 10.8 we compare four-tap STAP with 16

bin, order 2, space–frequency processing, using the performance measure that

there is less than a 3 dB increase in the interference-plus-noise to noise ratio after
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adaptation. Clearly, space–time is the winner when only 16 frequency bins are

used in the space–frequency processor.

The conclusion does not change if a larger FFT is used. A 64 bin, order 1

space–frequency processor requires 2.79 times the number of computations as a

four-tap space–time processor, so let us compare these two approaches. First,

consider the scenario where the seven-element array is illuminated by three,

randomly located, wideband interferers plus a varying number of narrowband

interferers. As before, the cancellation ratio is 120 dB. The interference-plus-

noise to noise ratio after adaptation for both processors is shown in Figure 10.105,

which indicates that the four-tap space–time processor performs as well as the

first order 64 bin space–frequency processor with a Blackman-Harris window.

It is important to recognize, however, that the aforementioned conclusions

apply to the case when the weight update rate is less than 1 kHz. When the update

rate is much faster than 1 kHz the first-order space–frequency processor with 128

or more binskkkk is often superior to the space–time processor (e.g., a 128 point

FFT processor gives equal performance using fewer operations per second than

the space–time processor when the update rate exceeds 10 kHz).

It is interesting to physically interpret some of the results in

Figures 10.103–10.105. Consider the P tap space–time processor. In view of

our discussion in Section 10.10.4 that space–time and full-order space–

frequency processing are equivalent, we can view this space–time processor as a

full order, P bin, space–frequency processor. If the processor has K antennas and

P bins, there are KP 2 1 degrees of freedom available. The desired GPS signal is

broadband, spreading across all P frequency bins. Thus, in each bin one spatial

TABLE 10.8
Number of Interferers Canceled without Increasing Noise Floor by More

than 3 dB

Processing Type

Relative
Processing
Complexity Number of Interferers Cancelled

Space–Frequency 2.57 0 wideband 1 wideband 2 wideband 3 wideband

16 bin, order 2 23 narrowband 14 narrowband 6 narrowband 1 narrowband

Four-Tap 1 0 wideband 1 wideband 2 wideband 3 wideband

Space–Time 26 narrowband 17 narrowband 12 narrowband 5 narrowband

kkkk One drawback with large-size FFTs is that the bandwidth of each frequency bin becomes very

small (each bin has a bandwidth of B/M where B is the operating bandwidth and M is the FFT size).

Thus, in order to estimate the K £ K covariance matrix one requires 4K independent samples, which

requires a time interval of a 4 KM/B sec. For K ¼ 7, M ¼ 256, B ¼ 20 MHz this requires a time

interval of 0.358 msec. Typically, in a dynamic environment the weights will need to be updated once

per millisecond, so M ¼ 256 is probably an upper limit.
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degree of freedom is required to protect the signal. Each broadband interferer also

requires one spatial degree of freedom in each bin in order to place a null on that

interferer. This leaves a total of

N0 ¼ KP2 12 P2 NP ¼ ðK 2 N 2 1ÞP2 1 ð10:279Þ
degrees of freedom to cancel narrowband interferers, where N is the number of

broadband interferers. For K ¼ 7 antennas, P ¼ 4 bins, and N ¼ 1 broadband

interferer, we see from Equation 10.279 that, in theory, the processor can cancel

up to N0 ¼ ð72 2Þ42 1 ¼ 19 narrowband interferers. From Figure 10.103 we

see that, because of frequency overlap and because multipath is also present, one

cannot quite cancel 19 narrowband interferers down to the noise floor, but it is

possible to cancel 16 or 17 narrowband interferers down to near the noise floor.

Likewise, for N ¼ 2 broadband interferers, Equation 10.279 predicts that 15

narrowband interferers can also be canceled, whereas the simulation in Figure

10.104 indicates that 11 or 12 are actually canceled down to near the noise floor.

The low-order (Q ¼ 1, 2) suboptimum space–frequency processor does not

perform as well as hoped because of leakage from bin to bin, even when a

Blackman-Harris window (which has extremely low sidelobes) is used. The

problem is that, although thewindow reduces the sidelobes, it spreads themainlobe

frequency response over multiple bins. Consequently, a narrowband interferer in

frequency binm has strong leakage into binsm ^ 1,m ^ 2 so that spatial nulls are

required in all five bins to null the single narrowband interferer. Thus, the available

degrees of freedom are rapidly consumed. Other windows, such as the Hamming

window, fare no better. Although, not presented here, we also studied the use of

polyphase filters to alleviate this leakage problem, but had limited success.
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10.10.7. SUMMARY

We have demonstrated that by using a space–time processor the interference

from multiple, strong interferers plus their multipath can be canceled down close

to the noise floor without producing serious loss or distortion of a GPS signal. We

also found that the processor demonstrates a remarkable capability for

self-equalization. An approximate relationship for the number of broadband

(N) and narrowband (N0) interferers that can be canceled is

N0 þ NP . ðK 2 1ÞP2 1 ð10:280Þ
where P is the number of time taps used behind each antenna in Figure 10.94 and

K is the number of antennas. The result above assumes that the wideband

interferers occupy the entire operating band B and that the narrowband interferers

are randomly located across B. The number of time taps must satisfy

ðP2 1ÞT . tmax ð10:281Þ
where T is the time-tap spacing, which must be less than 1/B, and tmax is the

maximum differential time delay between the direct interferer ray and the

multipath.

Previously, we speculated that suboptimum space–frequency adaptive

processing would work nearly as well as space–time processing, but would

require fewer computations. We have found that this speculation is untrue unless

the weights be updated very rapidly. For moderate update rates the space–time

processor outperformed the suboptimum space–frequency processor of equal

computational complexity. However, we also studied the case when the weights

needed to be updated very rapidly (e.g., once per 100 ms) so that the weight

update begins to dominate the computations count. In this case the space–time

and space–frequency (with FFT size . 64) processors both gave roughly equal

performance for equal computations count. Thus, space–time is not always a

clear winner, and if the update rate is sufficiently rapid (e.g., roughly 10 kHz or

faster) the first-order space–frequency processor with 128 or 256 bins

outperforms the space–time processor.

Although all results presented here employed ideal covariance matrices, we

also performed some simulations using estimated covariance matrices (using four

times the number of degrees of freedom samples of the voltages for the estimate)

and obtained essentially the same results.

10.11. A MAXIMUM-LIKELIHOOD BEAMSPACE PROCESSOR

FOR IMPROVED SEARCH AND TRACK

(R. M. DAVIS AND R. L. FANTE)

10.11.1. INTRODUCTION

MODERN radars utilize phased-array antennas and analog beamformers. The

search function is performed using a single beam to interrogate a grid of spatial
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positions. If a target is detected, its angle of arrival (AOA) is measured using two

orthogonal difference beams. Simultaneous ratioing of the difference-beam

voltages to the sum-beam voltage provides an instantaneous estimate of target

location. The process is referred to as monopulse.

The technology currently exists to do digital beamforming (DBF). Direct RF

digitization at the element level is possible in low-frequency systems. At higher

frequencies analog beamforming can be used to form subarrays whose outputs

can be downconverted and digitized. The authors believe that with DBF comes

the possibility of using multiple highly overlapped receive beams together with

maximum-likelihood (ML) processing to improve both search and track

performance. We have developed a maximum-likelihood beamspace processor

(MLBP) that implements the new approach and is the subject of this paper. The

processor and its advantages are described in Section 10.11.2. The processor is

analyzed in Section 10.11.3 and numerical results are presented in Section

10.11.4. The work is summarized in Section 10.11.5.

10.11.2. MAXIMUM- LIKELIHOOD BEAMSPACE PROCESSOR (MLBP)

The MLBP architecture (Figure 10.106) entails dividing the antenna aperture,

which may consist of a large array containing thousands of elements, into a small

number of subarrays (M ), and digitizing their outputs. A typical value ofMwould

be 16. The digitized signals are then passed through two stages of processing. In the

first stage, the subarray voltages are multiplied by N sets of complex weights and

summed to form N highly overlapped beams. A typical value of N would be four.

The centers of the beams are all located within the 3 dB contour of the transmit

beam. Their exact location is determined a priori. Interference is removed from

each of the beams by choosing the subarray weights to minimize the output mean

square power subject to a beam-pointing constraint, ormaximize the output signal-

to-interference ratio (SIR). Our procedure is a variation of an approach discussed

by Baranowski and Ward.1 In particular, our first stage beams are formed

adaptively and take the form of highly overlapped, fixed sum beams. Our choice of
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architecture was driven by our desire to both remove interference and eliminate

beam shape loss. The first level of processing is equivalent to what has historically

been referred to as a fully-adaptive array of subarrays. Applebaum was one of the

first to demonstrate the virtue of the adaptive array architecture.2Many techniques

exist for choosing the adaptive weights used to form the beams. The weights are

chosen in such away as to constrain the gain in the pointing direction of each of the

N beams. The constraint preserves the gain in the pointing direction and reduces

beam shape distortion. Pulse compression (PC) is done after the first stage

processing to prevent the first stage adaptive arrays from attempting to cancel

target returns. Target (often referred to as signal) cancellation can be prevented if

the signal to noise ratio in each of the beams is much less than unity prior to

adaptive nulling (see Appendix S for additional discussion). Performing pulse

compression at the beam level also reduces computational complexity (only four

channels must be compressed versus 16 had we done it at the subarray level).

During the second stage of processing, the N beams are themselves

adaptively weighted and combined to form a single output beam. The beam

weights in the second stage are chosen to maximize the probability of detecting

a target return. The processing used to choose the second set of weights is

referred to as maximum likelihood (ML). Kelly, Reed, and Root3 were among

the first to demonstrate the virtues of ML. The ML process entails performing a

search over all possible AOA directions of the target return and picking the

direction that yields a set of beam weights with the highest probability of

declaring a target to be present. The search can be constrained to a region

slightly larger than the 3 dB contour of the transmit beam. An independent

search must be performed in every range cell within the range sweep. Thus,

there will be a separate set of optimum beam weights for each range cell. We

assume, herein, that the target geometry and range resolution of the radar is

such that there will only be one target per cell.

The authors will show that under the assumption of Gaussian interference, the

second stage processing is equivalent to operating a fully adaptive array of beams

where the weights are chosen to maximize SIR in the composite output beam.

The observation emphasizes the commonality of the ML and adaptive array

processing paradigms.

Two impediments to performing the maximum-likelihood search in the past

have been the computational burden and the possibility of getting stuck in local

minima. Advances in high speed computing, together with the idea of limiting the

maximum-likelihood search to only a few beams, make the computation problem

tractable. Performing the search in beam space with highly overlapped beams

also appears to reduce the probability of getting stuck in local minima. The

MLBP architecture offers many advantages, notably:

(1) The ML search eliminates the need to form azimuth and elevation

difference beams to measure target AOA, thereby, reducing the

required RF beamforming, receiver, and analog-to-digital conversion

hardware by up to a factor of three.
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(2) Using multiple highly overlapped beams on receive, instead of a

single beam in conjunction with ML, nearly eliminates beam shape

loss on receive and increases the volume of space, which can be

searched for a given number of transmissions. The MLBP can search a

given volume of space using approximately 40% fewer pulses

compared to a traditional single-beam system. This provides the radar

with additional time and energy to perform other functions.

(3) The MLBP architecture supports improved angle accuracy compared

to monopulse. The improvement varies from a few percent when the

target is at the peak of the transmit beam to approximately 30% when

the target is at the 3 dB (half power) point on the transmit beam for a

system using four highly overlapped beams.

(4) The MLBP supports angle estimation over a larger angular volume

than monopulse. Monopulse systems can usually only be relied upon

when the target is within the 3 dB contour. The MLBP, however,

degrades gracefully as the target moves outside the 3 dB contour and

down the skirt.

(5) The fully adaptive array of subarrays followed by the fully adaptive

array of beams supports mainlobe and sidelobe interference suppres-

sion while minimizing beam shape distortion and signal cancellation.

A few comments regarding the first advantage are in order. The antenna designer,

while wanting to do digital beamforming and monopulse processing, is faced

with a difficult decision. The problem is how to simultaneously apply aperture

weighting (tapering) to sum and difference channels to achieve low sidelobes.

One option is to form a large number of small subarrays, digitize their output

voltages, and then split each one three ways and apply the appropriate weighting

(Taylor or Bayliss) digitally. The large number of small subarrays is required to

appropriately sample the tapering function. The first option requires a large

number of receivers and analog-to-digital converters (ADCs). The second option

is to split the output of each individual element three ways, apply tapering near

the array face, and duplicate the subarray beamforming three times. The second

option supports digitization of a smaller number of larger subarrays, but trades

the smaller number of receivers and ADCs for additional RF beamforming stages

(to form the larger subarrays), weighting circuitry, and possibly analog time

delay units to support wideband modes. A small number of large subarrays can be

used since there is no sampling problem associated with applying the taper

weights. The MLBP supports the best of both options. Since we do not form

difference beams, we can apply taper weights to the elements within each

subarray and use a small number of receivers and ADCs by digitizing a small

number of large subarrays. Although we do not consider wideband operation in

this paper, we expect that fewer time delay steering units may be required with

the MLBP compared to the second option, because the multiple overlapped

beams cover a larger volume of space than a single beam.
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10.11.3. ANALYSIS

The MLBP depicted in Figure 10.106 uses two stages of sequential processing on

receive. In the first stage, the subarray voltages are adaptively weighted and

summed to form N highly overlapped beams. The weights are chosen to

maximize SIR in each beam separately. The second stage entails adaptively

weighting and summing the beam voltages to form a single composite output

beam. A search process is used to find the adaptive beam weights that maximize

the probability of a target being present in the output beam. Interference that is

not cancelled during the first stage of processing, but is correlated beam to beam,

can be nulled in the second stage. In the analysis to follow the narrowband

approximation (signal bandwidth p carrier frequency) is implicit.

10.11.3.1. The First Stage

Suppose we are given the voltages out of M subarrays and we wish to form N

interference-free beams centered on the directions ðu1, f1Þ, ðu2, f2Þ,
…, ðuN , fNÞ, in spherical coordinate system, where u is the polar angle and f
is the azimuthal angle. If vðkÞ ¼ ½v1ðkÞ, v2ðkÞ, …vMðkÞ	T is a vector of the

transposed voltages (the superscript T denotes transpose) at the outputs of the

subarrays at discrete time k, we wish to multiply this set of voltages by an N £ M

beamforming matrix

B ¼

wH
1

wH
2

..

.

wH
N

266666664

377777775 ð10:282Þ

that will remove interference while simultaneously preserving the gain in

the N beam pointing directions. It is well known2,6 that the weight vector

wn ¼ ½wn1· · ·wnM	T given by

wn ¼ R21Sn
SHn R

21Sn
ð10:283Þ

maximizes SIR in the beam pointing direction (un, fn), thus, producing the

desired result. In Equation 10.283, R is the M £ M covariance matrix of

subarray voltages defined as R ¼ kvvHl, where kl denotes expectation. R can

be approximated as

R ¼ 1

K

XK
k¼1

vðkÞvHðkÞ ð10:284Þ

where K $ 4M and the superscript H denotes Hermitian (conjugate transpose7,8).

Also Sn ¼ ½sn1, sn2, · · ·, snM	T is aM £ 1 vector that defines the steering direction
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(un, fn) of the nth beam. The numerator of the weight equation is often referred to

as a Wiener whitening filter, while the denominator implements a point constraint

by scaling the adaptive pattern to provide the desired gain in the beam steering

direction. A typical component of Sn is

snm ¼ gmðun, fnÞexp½ jkðxm sin uncos fn þ ym sin unsin fn

þ zm cos unÞ	 ð10:285Þ
where gm(un, fn) is the voltage gain of themth subarray in the direction (un, fn), k
equals 2p/l, l is the wavelength, and (xm, ym, zm) is the location of the center of

the mth subarray in a Cartesian coordinate system. The voltages in each of the

output beams (see Figure 10.106) from the first stage of processing are denoted by

j1, j2, …jN . If we define j ¼ lj1, j2, …jN l
T
, then the first stage beamformer

output voltage vector is

j ¼ Bv ð10:286Þ

10.11.3.2. The Second Stage

Once the beams have been formed and most of the interference removed, PC is

performed on the beam voltages. Since there will be fewer beams than subarrays,

performing PC at the beam level is computationally efficient. As previously

noted, performing PC at the beam level, rather than the subarray level, also

ensures that the first stage adaptive array will not attempt to cancel target returns.

Prior to pulse compression, target returns in the subarrays will be well below

thermal noise and the adaptive array will, to first order, ignore them (see

Appendix S). There may be some applications involving high pulse repetition

frequency (PRF) radars where the presence of clutter will force PC to be

performed at the subarray level. If a clutter-free region does not exist, then PC

followed by Doppler processing may have to be performed at the subarray level

in order to generate clutter-free Doppler cells to sample the interference.

Although, the amplitude and direction of a target return is unknown, we can

postulate a unit-amplitude target in range bin n in direction (u, f). This produces
an M £ 1 voltage vector h ¼ ½h1h2· · ·hM	T at the output of the subarrays, where

hm ¼ gmðu, fÞexp½jkðxm sin u cos fþ ym sin u sin fþ zm cos uÞ	 ð10:287Þ
This hypothesis also produces a voltage vector G ¼ Bh in beamspace. If the

target is nonfluctuating#### and has unknown amplitude and phase denoted by the

complex quantity A, the voltage vector in beamspace produced by the postulated

#### For a fluctuating target we must estimate A1, A2…AK , in addition, to (u, f), where Ak is the

amplitude at time sample k. The probability function to be maximized becomes

pðj1…jK lA1…AK , u, fÞ. The analysis is more difficult, but straightforward provided the time

samples are sufficiently spaced to make the noise samples independent.
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target is

jt ¼ ABh ¼ AG ð10:288Þ
If we let the vector r denote the component of j containing uncancelled

interference and thermal noise in the second stage beams, then the first stage

output vector j can be written as

j ¼ rþ jt ¼ rþ AG ð10:289Þ
Assuming that r is a circular, normal random vector, it can be shown4,5,9 that the

probability density function for r is

pðrÞ ¼ p2N½detðCÞ	21 expð2rHC21rÞ ð10:290Þ
where C is the N £ N covariance matrix of beam voltages defined by

C ¼ krrHl ¼ BRBH ð10:291Þ
Solving Equation 10.289 for r and substituting into Equation 10.290 gives the

conditional probability density

pðjlA; ut;ftÞ ¼ p2N½detðCÞ	21·exp½2ðj2 AGÞHC21ðj2 AGÞ	 ð10:292Þ
The maximum-likelihood target parameter estimator ðÂ, ût, f̂tÞ occurs when

Equation 10.292 is a maximum or when

G ¼ ðj2 AGÞHC21ðj2 AGÞ ð10:293Þ
is a minimum. We can solve for the estimator Â, by differentiating G with respect

to A and setting the result to zero. Performing the differentiation we find

Â ¼ THj ð10:294Þ
where the beam weighting vector T is given by

T ¼ C21G

GHC21G
ð10:295Þ

We can show that the estimator given by Equation 10.294 is unbiased by

substituting Equation 10.289 into Equation 10.294 and taking the expected value.

Since krl ¼ 0, then kÂl ¼ A:
At this point in the analysis we make an important observation. T is

functionally identical to the weight vector that maximizes SIR in the output beam

of a fully adaptive array. Let us compare T in Equation 10.295 with wn in

Equation 10.283. In Equation 10.295 the covariance matrix C of beam voltages

replaces the covariance matrix R of subarray voltages in Equation 10.283 and G,
the steering vector that coheres the beam voltages of form a composite beam in

the direction of the target AOA, replaces Sn, the steering vector that coheres the

subarray voltages in the predetermined direction of the nth beam. The numerator

of T is again a Weiner whitening filter where C21/2j is the whitened data and
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C21/2G is the whitened steering vector in beamspace. The denominator is a

scalar that acts to constrain the gain of the composite beam in the target direction.

Based upon this observation, we could stop the analysis at this point and simply

search for the target AOA that maximizes SIR in the output beam. Instead, we will

continue the analysis to more firmly establish the equivalency between adaptive

array and maximum-likelihood theory.

Substituting Equation 10.294 back into Equation 10.293 gives

G ¼ j HC21j2 ðG HC21GÞlTHjl2 ð10:296Þ
Because jHC21j;GHC21G and lTHjl2 are positive definite quantities, it is

evident that G is minimized when ðGHC21GÞlTHjl2 is maximized. That is, the

estimate of target location is that direction (u, f) for which ðGHC21GÞlTHjl2 is a
maximum. Let us now discuss the physical meaning of this quantity.

Referring to Figure 10.106 we see that the voltage in the composite output

beam after weighting is THj. In a range bin where a target is present THj yields

an estimate of the target amplitude Â (from Equation 10.294). However, in range

bins where there is no target the mean output interference power is

I ¼ klTHrl2l ¼ TCTH ¼ 1

GHC21G
ð10:297Þ

Taking the ratio of the power in the range bin with the target present to the power

in a bin where there is no target yields an estimate of SIR in the output beam.

This is

SIRest ¼ ðGHC21GÞlTHjl2 ð10:298Þ
It should be noted that Equation 10.298 is actually the ratio of signal-plus-

interference power to interference power, but we identify it as SIR because we

assume that the tandem adaptive arrays effectively null the interference, so that

the signal is much larger than the residual uncancelled interference in the output

beam. We can now see that maximizing ðGHC21GÞlTHjl2 is equivalent to

searching over (u, f) to find the value ðû, f̂Þ that maximizes SIR in the output

beam. The value of SIR at ðû, f̂Þ is readily calculated to be jHC21j. After
estimating the target AOA, ðû, f̂Þ, the amplitude and phase of that target can be

estimated using Equation 10.294

Â ¼ THðû, f̂Þj ð10:299Þ
Although Equation 10.298 looks mathematically formidable, we show in

Appendix T that it reduces to a familiar result in the absence of any

interferers.

10.11.3.3. Target Detection

Target detection is achieved by comparing the value of Â in each range cell with a

threshold t determined using conventional constant false alarm rate (CFAR)

processing. If Â $ t, a “target” is declared and if Â , t, “no target” is declared.
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10.11.4. NUMERICAL EXAMPLES

AMATLAB computer simulationwas developed to verify the analysis and predict

performance of the MLBP. A 1024 element square array divided into 16 square

subarrays was used in the simulation. The elements were spaced l=2 apart and the
array was uniformly weighted on both transmit and receive. The phase shifters

within each subarray were set to steer the subarrays to the pointing direction of the

transmit beam. Target returns, interferers, and thermal noise were modeled as

tones (zero bandwidth). Thermal noise voltages were complex with their real and

imaginary components chosen from a unit variance, zero mean, Gaussian

distribution. Target returns were assumed to be nonfluctuating. Angle errors were

normalized to the 3 dB boresight beamwidth (u3) equal to 0.886 times l/D, where
the diameter of the array D was 16l.

The number of beams in the second stage of the processor was varied from

two to eight. The beams were offset from the subarray steering direction (u0, t0)

by some fraction of u3. The direction cosines with the x- and y-axis in the plane of
the array are defined in Figure 10.107. Figure 10.107 depicts a typical beam

geometry for the baseline case of four-beams. MATLAB function “FMINS” with

an error bound of 1024 was used to perform the search over all possible target

AOA (u, f). FMINS uses the Nelder-Mead simplex direct search method.

Nelder-Mead is an excellent engineering tool, but is inefficient. The mean and

variance of the final error were found to be relatively insensitive to both the

starting point of the search and the error used to determine the stopping point.

Subarray steering direction (u0, t0)

Beam steering direction

4 Beams

(u0+ θ3 /4, t0)

(u0, t0- θ3/4)

(u0, t0)

t

u

θ3

(u0, t0 + θ3/4)

(u0− θ3/4, t0)

3dB beamwidth

FIGURE 10.107 Beam geometry in direction cosine space.
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Since Nelder-Mead is not a gradient-based technique, it may be less likely to get

stuck in a local minima than other approaches. We did not notice a problem with

local minima in any of the studied cases. Studied cases included one and two

mainlobe interferers. We conjecture that the use of highly overlapped beams,

each having a constraint in the pointing direction, limits beamshape distortion

and the presence of multiple deep nulls.

The number of floating point operations per second (flops) required to

implement the MLBP depends upon the algorithm used to search for the AOA.

Even though Nelder-Mead is inefficient, we calculated the throughput using it to

obtain a benchmark. The number of nonrecurring floating point operations per

beam is due mainly to formation and inversion of the sample covariance matrix of

subarray voltages and to beamforming (multiplying subarray voltages by the

beam weights for each range cell). The recurring computation per beam is equal

to the number of operations needed to calculate SIR (see Equation 10.298) for

each hypothesized AOA, times the number of hypothesized AOAs per range cell,

times the number of range cells. Assuming 500 range cells, 16 subarrays, and 4

beams, it was found that 37 hypothesized AOAs at 1.7 K flops per iteration were

typically needed. The total nonrecurring flop count was roughly 200 K flops per

beam compared to 31.5 megaflops per beam for the recurring. If the radar puts out

100 beams per second the total throughput (100 times the sum of nonrecurring

plus recurring flops) would be 3.1 gigaflops. Note that the flop count is dominated

by the recurring count and other search algorithms exist that are more efficient

than Nelder-Mead (see, for example, Ref. 10).

10.11.4.1. Improved Clear Environment Search Performance

Figure 10.108 shows computer generated comparisons of the two-way (transmit

plus receive) loss in signal-to-noise ratio (SNR) between a conventional
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FIGURE 10.108 Comparison of two-way beam shape loss between MLBP and

conventional receiver. (a) Three beams. (b) Eight beams.
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architecture that uses a single receive beam and MLBP architectures using three

and eight receive beams. The figure was generated by moving a single target

return out from the peak of the transmit beam (also equal to the subarray steering

direction (u0, t0) along the t-axis (ut ¼ utarget ¼ u0). No interference except

receiver noise was present. The curves represent an average of 200 Monte Carlo

runs using different receiver noise realizations on the subarray voltages. The

figure shows that if search beams are laid down in a line and overlapped at the

5 dB (two-way) loss point, the coverage in one-dimension can be increased by

about 29 to 35% as the number of receive beams is increased from three to eight

using the MLBP architecture compared to the conventional approach. The

improvement is due to the elimination of receive beamshape loss. Figure 10.109

shows beam geometry for the three and eight beam cases.

10.11.4.2. Improved Clear Environment Angle Estimation

Figure 10.110 presents a comparison of the angle-estimation capability of a

conventional-monopulse processor with that of the MLBP for the three and eight

beam architectures. The figure was generated by moving a single target return out

from the peak of the transmit beam (also equal to the subarray steering direction

(u0, t0) along the t-axis (ut ¼ utarget ¼ u0). The transmit loss was taken into

account in the processing and the curves represent an average of 200Monte Carlo

realizations with different receiver noises. The results are compared to a

normalized monopulse error (s) in a thermal noise environment. The one-sigma

error was assumed to equal the 3 dB beamwidth divided by 1.6 times the square

root of twice the rms SNR.11

Figure 10.110 shows that the performances, of both the conventional

(monopulse) processor and the MLBP, approach the monopulse error for high

SNR (target near subarray pointing direction). At low SNR (as the target moves

off the peak and down the skirt of the transmit beam), the MLBP produces

significantly smaller one-sigma angle errors than the monopulse processor.

The improvement when the target is located at the 3 dB point, for example, varied

(a)

60°

t

u

q3/4

(b)

45°

t

u
q3/4

3q3/8

FIGURE 10.109 Beam geometry in direction cosine space. (a) Three beams. (b) Eight

beams.
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from about 16% for the three-beam architecture to 33% for the eight-beam

architecture. Using more than eight beams did not materially improve

performance over the eight-beam system. In fact, a four-beam system did almost

as well as the eight-beam system in the clear environment. A four-beam MLBP

system was interfaced to a six-state Kalman filter tracking simulation and the

resulting track errors were compared with a monopulse system that used the same

Kalman-filter tracker.12 The performance of the two systems (results not shown)

was nearly the same for on-axis tracking, but the track errors of the MLBP system

were nominally 50% lower than those of the monopulse system for off-axis

tracking. In an operational radar, the beam will normally be pointed at one of the

largest objects††††† in the beam and most targets will be tracked off-axis. It is also

noteworthy that while monopulse systems can fail catastrophically as the target

return approaches the sum beam null, the MLBP should degrade gracefully and

angle measurements made outside the 3 dB transmit contour should be reliable.

In summary, the improvement in tracking performance compared to monopulse

is due mainly to the fact that the ML search for the target AOA results in the

composite output beam being pointed directly at each tracked target.

10.11.4.3. Performance against a Single Mainlobe Interferer

Figure 10.111 shows typical computer simulated performance of a four-beam

MLBP operating against a single mainlobe interferer. A target was located

a distance of u3/8 from the subarray steering direction along a cut that made

a 308 angle with the t-axis. A single mainlobe interferer was stepped from the

††††† For example, when tracking a reentering missile complex, the radar might track the booster

(tank) and the separating reentry vehicles would be tracked off axis.
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subarray-steering direction along the cut, through the target’s location, and out to

a distance of one beamwidth. The target SNR and the INR (interferer-to-noise

ratio) were set equal to 20 and 15 dB, respectively, when received at the peak of a

beam pointed in the subarray steering direction. A nonfluctuating jammer

waveform (constant amplitude and phase) was used when generating the figure.

Although, the figure represents only a single realization of receiver noise, nearly

identical SIR performance (not shown) was obtained using a complex stochastic

waveform and averaging the signal and interference over 100 Monte Carlo runs.

The left insert in Figure 10.111 plots the signal, interference, and SIR in the

output beam, while the right insert shows SIR in each of the four first stage

beams. Note that the SIR in the composite beam in Figure 10.111 is usually larger

than any of the SIRs in the four first stage beams. The observation emphasizes the

fact that the second-stage processing does not merely pick the first-stage beam

having the highest SIR ratio. The first-stage beams are adaptively weighted and

summed to form a composite adapted output beam.

A significant improvement in SIR was observed in all computer runs

involving a single interferer except when it was very close to the target return—

and even then the degradation in SIR was always less than 2 dB of the value in the

absence of any adaptivity (which was 5 dB in Figure 10.111). The degradation

observed for small target-interferer separations was able to be eliminated by

adding more beams. One might have expected more degradation than observed

when the interferer approached the target. We hypothesized that the gain

constraints placed in the pointing direction of each of the first-stage beams

were limiting their ability to null the interferer. This prompted us to examine more

closely why the fully adaptive arrays of subarrays operating on the first-stage

beams did not result in more interferer nulling and more nulling of the target

return along with it.
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FIGURE 10.111 Four-beam MLRP operation against a single-mainlobe interferer. (a)

Signal, interference, SIR. (b) Signal-to-interference ratio (SIR). (c) Four beam geometry.

Applications 597

© 2006 by Taylor & Francis Group, LLC



FIGURE 10.112 Adapted antenna patterns vs. direction cosine separation ui 2 uc of interferer from constraint point (INR ¼ 15 dB at peak,

u3 ¼ 3 dB beamwidth). (a) No interferer. (b) ui 2 uc ¼ u3/2. (c) ui 2 uc ¼ u3/4. (d) ui 2 uc ¼ u3/8. (e) ui 2 uc ¼ u3/32. (f ) ui 2 uc ¼ u3/64.
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Figure 10.112 shows adapted antenna patterns for the first stage beam that is

pointed to ðu0 þ u3=4t0Þ as a single interferer located at ui is moved toward the

peak of the beam along the u-axis. The location of the gain constraint is denoted

by uc. The interference-to-noise ratio (INR) was set to 15 dB at the peak of the

beam and the fluctuation noise was removed from the interferer. Each insert

represents a single realization (no Monte Carloing). The inserts demonstrate that

when the interferer is brought closer than about u3/4 to the constraint point, the

array does not have enough resolution to maintain the constraint and place the null

on the interferer. In fact, as the separation between the interferer and the

constraint point is changed from u3/8 to zero, the null is observed to move back

out to where it was in the absence of the interferer. Thus, as anticipated, we find

that the point constraints placed at the peak of the first-stage beams prevent

significant interferer nulling over a relatively large area.

Although the patterns in Figure 10.112 can be used to estimate the exact

amount of interferer and target nulling, they cannot be used to determine the

overall interference after nulling. The total interference is due to the sum of the

uncancelled interferer and the thermal noise in the beam. As the interferer

approaches the constraint point, the adaptive subarray weights used to form the

first-stage beam become large. Multiplication of the weights by the thermal noise

causes an increase in the noise figure in the beam. Figure 10.113 plots the norm of

the subarray weights (the thermal noise) and the total interference in the first-

stage beam versus separation of the interferer from the constraint point. Note that

the weights increase until the separation reaches about u3/8 and then decrease as

the separation goes from about u3/8 to zero. Increasing INR will allow the null

to move slightly closer to the constraint point before reversing direction.
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The reversal point appears to be the point at which the norm of the weights (and

the output noise figure) is a maximum.

10.11.5. SUMMARY

The authors have described a maximum-likelihood beamspace processor for use

with an antenna architecture that performs digitization at the subarray level. The

MLBP uses two stages of processing. The first stage entails operating N fully

adaptive arrays of subarrays in parallel to form N highly overlapped beams. The

second stage entails operating a single fully adaptive array of beams to form a single

composite output beam pointed in the direction of the target return. The pointing

direction of the output beam is determined by performing a search over a

constrained region of possible target AOAs and declaring the angular location that

produces the highest SIR in the output beam to be the target location. The processing

must be repeated for each range cell. A typical system might use 16 subarrays and

four-output beams. The architecture supports improved radar performance by

eliminating beamshape loss on receive and enabling on-axis tracking of all targets.

Simulation results predict that a four-beam MLBP will be able to search

roughly 70% more volume for the same number of transmissions compared to a

conventional approach using a single receive beam. The improvement is due to

the elimination of receive-beamshape loss. The improvement in angle accuracy

compared to monopulse varied from a few percent for a target located at the peak

of the transmit beam, to roughly 30% for a target located at the 3 dB point for a

four-beam MLBP system. The improvement in angle accuracy translated into

roughly a 50% reduction in Kalman filter tracking errors for a target whose track

averaged about a third of a beamwidth off-axis.

The new architecture supports nulling of both mainlobe and sidelobe

interference. Most nulling occurs in the first stage processing, but residual—

interference that is correlated beam to beam—can be further nulled in the second

stage. Significant improvement in SIR was observed using a four-beam MLBP

operating against a single-mainlobe interferer except for very small target-

interferer separations. The small degradation observed for small separations,

compared to using no adaptivity, was able to be eliminated by adding more

beams. The fact that more degradation was not observed for small separations

was shown to be due to the reason that the gain constraints placed in the first-

stage beams preclude interferer nulling over a relatively large region.

We believe that future radars will abandon monopulse in favor of maximum-

likelihood target location and that a beamspace architecture using highly

overlapped beams supports practical and efficient implementation.
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11 Introduction

M. M. Weiner

Part III Adaptive Receivers discusses implementation of the third of three

sequentially complementary approaches for increasing the probability of

detection, within at least some cells of the surveillance volume, in presence of

external “noise” which can be either Gaussian or nonGaussian in the spatial

domain but Gaussian in the temporal domain. For each homogeneous subdivision

of the surveillance volume, this approach, identified in the Preface as Approach C,

generally utilizes a nonlinear, nonGaussian receiver whose detection algorithm

is matched to the sampled “noise” voltage spatial probability density function

(PDF) of that subdivision. When the nonGaussian “noise” waveform is spikier

than Gaussian noise, the nonlinear receiver is more effective than a linear receiver

in reducing the detection threshold for a given false alarm rate, provided that the

estimated spatial PDF is an accurate representation of the actual PDF. If the

estimated spatial PDF is Gaussian, then the nonlinear receiver reduces to a linear

Gaussian receiver. The issues are (1) how to model, simulate, and identify the

random processes associated with the correlated “noise” data samples and (2)

how to determine the nonlinear receiver and its threshold which are best matched

to those data samples. Part III Adaptive Receivers addresses these issues and

gives several applications.

Chapter 12 addresses the modeling, simulation, and distribution approxi-

mation of correlated spatially nonGaussian radar clutter. After introducing the

problem (Section 12.1), the properties of spherically invariant random processes

are presented (Section 12.2); several examples of multivariate probability density

functions arising from SIRPs are given (Section 12.3); two new canonical

computer simulation procedures are developed (Section 12.4) and a new

algorithm is introduced to address the distribution approximation of the clutter,

using relatively small sample sizes (Section 12.5). A spherically invariant

random vector (SIRV), containing N components is defined in Section 12.2 by

Equation 12.1. When the components are expressed in an N dimensional

spherical coordinate system, the definition and the very name spherically

invariant follow from the necessary and sufficient condition, that the PDF of the

magnitude of a white zero-mean SIRV is dependent only upon the magnitude of

the vector and is statistically independent of the remaining ðN 2 1Þ angular

coordinates of the vector (cf. Equation 12.20). SIRVs are useful in approximating
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the PDF of sampled nonGaussian and Gaussian random processes (provided the

process is an SIRP, i.e., every random vector of the process is a SIRV regardless

of sampling instants or the number of samples).

Chapter 13 addresses performance of the Locally Optimum Detector (LOD)

in radar weak signal detection for finite sample sizes, where the nonGaussian

radar clutter is modeled as a SIRP. A canonical form is established for the LOD

that is a product of the Gaussian linear receiver and a zero memory nonlinearity

(Section 13.2). A new method for threshold estimation based on extreme value

theory is derived which reduces by order of magnitudes the computation and

sample sizes required to set the threshold (Section 13.3). The performance is

evaluated by computer simulations for finite sample sizes for multivariate

Student-T and K-distributed disturbances (Section 13.4 and Section 13.5).

Chapter 14 generalizes SIRVs to include the case of independent vectors with

application to reverberation reduction in a correlation sonar.

Chapter 15 presents applications to: statistical normalization of spherically

invariant nonGaussian clutter on sonar displays (Section 15.1); nonGaussian

clutter modeling for radar target detection (Section 15.2); small signal detection

in impulsive nonGaussian clutter (Section 15.3); importance sampling for

reducing the number of Monte Carlo simulation bounds to obtain threshold

estimates (Section 15.4); rejection method bounds for efficient Monte Carlo

computer simulation of SIRVs (Section 15.5); optimal nonGaussian processing

using a new canonical form for the optimal nonlinear receiver (Section 15.6);

and multichannel detection for correlated nonGaussian processing using an

innovations-based detector, viz., a tracking filter or Kalman filter, which utilizes

the information in the last signal pulse to predict the next signal pulse

(Section 15.7).
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12.1. INTRODUCTION

The problem of weak signal detection in nonGaussian noise is of interest to

engineers in many disciplines such as, radar, sonar, digital communications, and

radio astronomy. In this research, we are interested in the detection of weak radar

targets in a strong clutter background. When a signal is transmitted by a radar, the

resulting received signal consists of returns from a target (desired signal) and
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returns from such objects as buildings, trees, water, land, and weather, depending

on the environment. Any return other than that from the target is an unwanted

signal and is defined as radar clutter.

The fundamental issues need to be addressed are:

(1) Specification of suitable statistical models for the clutter background.

(2) Development of efficient computer simulation procedures for

generating samples characterized by the various statistical models.

(3) Development of an approximation procedure for fitting one or more

statistical models to a set of experimental data whose distribution is

not own a priori.

With respect to item (1), a complete statistical clutter model should provide us

with a closed form analytical expression for the PDF of the clutter. This should

include information about the correlation of the clutter, thereby enabling us to

take advantage of this correlation in order to cancel the clutter. We are interested

in processing either N correlated complex samples or 2N correlated quadrature

components obtained by sampling a complex random process that can have a

non-Rayleigh envelope PDF with a phase uniformly distributed over the interval

(0, 2p). In addition, it is assumed that the envelope and the phase are statistically
independent. We can think of a vector Y ¼ ½Yc1;…YcN ; Ys1…YsN	T to represent
the collection of the complex samples obtained from the complex process. The

subscripts c and s denote the in-phase and out-of-phase quadrature components,

respectively. The issue we need to address is the specification of the joint PDF of

the N complex samples or the 2N quadrature components. In other words, we

need to specify the PDF of the vectorY. We require that the multivariate PDFs be

specified in closed form to facilitate their use in the derivation of optimal radar

signal processors.

For each PDF of Y developed, we need to obtain an efficient computer

simulation scheme for generating random vectors having this PDF. Computer

simulation is necessary because generally it will not be possible to evaluate

analytically the performance of optimal nonGaussian radar receivers. In such

cases, performance must be evaluated by computer simulation.

More often than not, the background clutter is not known a priori. Also, the

parameters of the clutter are unknown. Therefore, we need to develop estimation

procedures to approximate the clutter PDF and its parameters. We need to

address the problem of distribution approximation and parameter estimation.

This needs to have an extensive list of possible multivariate PDFs so that a good

fit can be found for a given environment. In practice, only a small number of

samples may be available. Therefore, there is a need to develop efficient

procedures to handle small sizes.

Because the clutter is apt to change in space and time, the radar signal

processor must be adaptive to meet the changing conditions. The approach

proposed here for the characterization, computer generation, and distribution
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approximation of the clutter is based on the theory of spherically invariant

random processes (SIRPs) that lends itself to adaptive receivers.

This dissertation addresses the above issues and is organized as follows. In

Section 12.2 we present a review of the literature as it pertains to the modeling of

radar clutter as a SIRP. Section 12.3 presents techniques for obtaining the joint

PDF of N complex, nonGaussian, random variables, assuming that the clutter can

be characterized as a SIRP. The need for a library of multivariate nonGaussian

PDFs is discussed. Several examples illustrating the various techniques for

specifying the multivariate nonGaussian PDF are provided. Finally, a key result

for identifying the multivariate nonGaussian PDFs arising from SIRPs is

presented in Section 12.3.

Section 12.4 deals with the problem of computer generation of correlated

nonGaussian radar clutters that can be characterized as SIRPs. Two canonical

simulation procedures are presented. A graphical goodness of fit test procedure is

presented, to validate the simulation procedures.

In Section 12.5 we concern ourselves with the distribution approximation of

radar clutter characterized by SIRPs. A new graphical scheme based on a key

result presented in Section 12.3 is used to address the distribution approximation

problem. This procedure reduces the multivariate distribution approximation

problem to an equivalent univariate distribution approximation problem,

resulting in considerable computational simplicity. Finally, a new technique

for shape parameter estimation is suggested based on the approximation

procedure. The chief advantage of this scheme is that relatively few samples

are needed for the distribution approximation problem.

Conclusions and suggestions for future research are presented in Section 12.6.

12.2. BACKGROUND

12.2.1. INTRODUCTION

We present an overview of the literature as it pertains to the modeling of radar

clutter by SIRPs. In addition, relevant mathematical preliminaries are presented

in this chapter. When a radar transmits a signal, the received echo may consist of

returns from one or more targets, buildings, trees, water, land, and weather

depending on the environment. The target returns contribute to the desired signal

while the other returns contribute the clutter. Many investigators1–4 have

reported experimental measurements for which the clutter PDF has an extended

tail. The extended tail gives rise to relatively large probabilities of false alarm.

The Gaussian model for the clutter fails to predict this behavior. Two approaches

have been used to explain the nonGaussian behavior. One of them is based on the

fact that application of the central limit theorem (CLT) is not appropriate. The

other approach is based on the nonstationary reflectivity properties of the scanned

areas. In any event, nonGaussian models for the univariate (marginal) clutter PDF

have been proposed. Commonly reported marginal nonGaussian PDFs for the

clutter are Weibull,1 Lognormal,5,6 and K-distributions.2,3,7 Second order
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statistics for these models have been reported in terms of autocorrelation

functions or power spectral densities.4,8

The Weibull1 and Lognormal2models for radar clutter are primarily based on

empirical studies, while the K-distribution has been shown to have physical

significance2,9 as the observed statistical properties can be related to the

electromagnetic and geometric factors pertaining to the scattering surface.

Computer simulation schemes for Weibull and Lognormal clutter based on the

univariate PDFs and correlation functions have been developed in Ref. 10 and,

Ref. 11 respectively. Extension of the Weibull, Lognormal, and K-distributed

clutter models for coherent radar processing have been developed in, Refs. 5, 12

and, Ref. 13 respectively.

Statistical characterization of the clutter is necessary in order to obtain the

optimal radar signal processor. Usually, radars process N pulses at a time.

A complete statistical characterization of the clutter requires the specification of

the joint PDF of the N samples. When the pulse returns are statistically

independent, the joint PDF is simply the product of the marginal PDFs. However,

the clutter can be highly correlated. In fact, the correlation between samples is

useful in canceling the clutter. Consequently, it is desirable to include the

correlation information in the multivariate PDF. For nonGaussian processes this

can be done in more than one way. The theory of SIRP provides a powerful

mechanism for obtaining the joint PDF of the N correlated nonGaussian random

variables. Applications for the theory of SIRPs can be found in the problem of

random flights,14 signal detection and estimation problems in communication

theory,15,16 speech signal processing,17,18 and radar clutter modeling and

simulation.13,19–22 The following sections provide a brief overview of literature

on the theory of SIRPs.

12.2.2. DEFINITIONS

In this section we present certain definitions and mathematical preliminaries

pertaining to the theory of SIRPs.

Consider a random process characterized by the random vector Y ¼ [Y1,

Y2,….,YN]
T, N $ 1; whose realization is y ¼ ½y1; y2;…; yN	T where T denotes

matrix transpose. The vector Y is said to be a SIRV if its PDF has the form14

fYðyÞ ¼ K·lSl21=2hNð pÞ ð12:1Þ
where k is a normalization constant chosen so that the volume under the curve of

the PDF is unity, S is a N £ N nonnegative definite matrix, hNð pÞ is a one-
dimensional, nonnegative, real-valued monotonically decreasing function with

argument p ¼ ½y2 b	T·S21·½y2 b	, b is a N by 1 vector, lSl is the determinant
of the matrix S, and S21 is the inverse of the matrix S. This paper follows the
space-saving conventions, often adopted by the signal processing community, of

not using brackets to denote a matrix quantity and of expressing a column vector

as the transpose of a row vector. Note that the argument p is a scalar quadratic

form. Note also that the PDF of a SIRV is elliptically symmetric (i.e., constant
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contours of fY(y) are composed of ellipses). If every random vector obtained by

sampling a random process y(t) is a SIRV, regardless of the sampling instants or

the number of samples, then the process y(t) is defined to be a SIRP.

Kingman14 introduced the definition of spherically symmetric random

vectors (SSRV). In particular, a random vector X ¼ ½X1;X2;…XN	T is said to be
spherically symmetric provided its PDF has the form

fxðxÞ2 khN½ðx21 þ x22 þ · · ·þ x2NÞ
1
2 	 ¼ khNðxTxÞ ð12:2Þ

where hNð·Þ is an arbitrary, nonnegative, monotonically decreasing radial

function of dimension N, and k is a normalization constant chosen so that the

volume under the curve of the PDF is unity. The subscript N is used to emphasize

that we are dealing with N random variables. Throughout the manuscript, it is

assumed that the PDF of a random vector is the joint PDF of its components.

Equivalently, ifv ¼ ½v1;v2;…;vN	T; the characteristic function of the SSRV X
defined by FXðvÞ ¼ E½expð jvTXÞ	; has the form

FXðvÞ2 gN½ðv21 þ v22 þ…þ v2NÞ
1
2 	 ð12:3Þ

where gNð·Þ is a nonnegative conjugate symmetric function that is magnitude
integrable. A SSRV is a special case of a SIRV, arising from Equation 12.1 when

b ¼ 0 and S ¼ I where I is the identity matrix. In Appendix U.2, we prove that

the characteristic function of a SSRV is also spherically symmetric.

12.2.3. CHARACTERIZATION OF SIRVs

In this section we present some important theorems that help us to characterize

the PDF of a SIRV. The work of Yao,15 Kingman,23 and Wise24 gave rise to a

representation theorem for SSRVs. The representation theorem can be stated as

follows.

Theorem 1. A random vector X ¼ ½X1, X2,…XN	 T is a SSRV for any N; if and
only if there exists a nonnegative random variable T (not to be confused with

the symbol T used to denote the transpose of a matrix, as in this theorem) such

that the random variables Xi; ði ¼ 1; 2;…; N Þ conditioned on T ¼ t are

independent, identically distributed, Gaussian random variables with zero

mean and variance equal to 2t:

Proof. Necessity: By definition, the characteristic function of X is

FXðvÞ ¼ E½expð jvTXÞ	 ¼
ð1

21
…

ð1

21
expð jvTxÞfXðxÞdx ð12:4Þ
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The PDF of the random variable T is introduced by noting that

fXðxÞ ¼
ð1

21
fX;T ðx; tÞdt ¼

ð1

21
fXlT ðxltÞfT ðtÞdt ð12:5Þ

Substituting into the expression for the characteristic function and interchanging

the order of integration we obtain

FXðvÞ ¼
ð1

21
FXlT ðv; tÞfT ðtÞdt ð12:6Þ

where

FXlT ðv; tÞ ¼
ð1

21
…

ð1

21
expð jvTxÞ fXlT ðxltÞdx ð12:7Þ

Since X is a SSRV for any N, its characteristic function has the form of

Equation 12.3. This requires that the functional form of FXlT (v, t) remain
unchanged for all N. Furthermore, FXlT (v, t) must also be a function of ðv21 þ
v22 þ · · ·þ v2NÞ for any choice of N. The only characteristic function satisfying
these conditions23 is

FXlT ðv; tÞ ¼ exp½2tðv21 þ v22 þ · · ·þ v2NÞ	 ð12:8Þ
where the conditional PDF of X, given T ¼ t; is recognized to be multivariate
Gaussian, with Xi; ði ¼ 1; 2;…;NÞ being statistically independent identically

distributed, zero mean Gaussian random variables with variance 2t. Because the

variance equals 2t, T must be a nonnegative random variable. Necessity follows.

Note that the theorem does not give any physical significance for T. Neither does

it reveal how to determine fT ðtÞ:
Sufficiency: To prove sufficiency, we need to show that every product of a

Gaussian random vector Z having zero mean and identity covariance matrix and a
random variable S0 ¼ ffiffiffiffi

2T
p

with PDF fS0 ðs0Þ results in a PDF of the form of

Equation 12.2.

In particular, consider the product X ¼ ZS0: The PDF of X conditioned on S0 is
then given by

fXlS0 ðxls0Þ ¼ ð2pÞ2 N
2 ls0l2N

exp 2
p0

2ls0l2

� �
ð12:9Þ

where p0 ¼ xTx: From the theorem on total probability, the PDF of X can be

written as

fXðxÞ ¼ ð2pÞ2 N
2

ð1

21
ls0l2N

exp 2
p0

2ls0l2

� �
fS0ðs0Þds0 ð12:10Þ

For convenience, we can write the PDF of S0 as

fS0 ðs0Þ ¼ f1ðs0Þ þ f2ðs0Þ ð12:11Þ

Spherically Invariant Random Processes 611

© 2006 by Taylor & Francis Group, LLC



where

f1ðs0Þ ¼
f1ðs0Þ s0 $ 0

0 otherwise

(
ð12:12Þ

and

f2ðs0Þ ¼
f ðs0Þ s0 # 0

0 otherwise

(
ð12:13Þ

Then, Equation 12.10 can be expressed as

fXðxÞ ¼ ð2pÞ2 N
2

ð0
21

ls0l2N
exp 2

p0

2ls0l2

� �
f2ð2s0Þds0

þ ð2pÞ2 N
2

ð1

0
ls0l2N

exp 2
p0

2ls0l2

� �
f1ðs0Þds0 ð12:14Þ

Making the change of variable 2s0 ¼ z in the first integral of Equation 12.14,
we have

fXðxÞ ¼ ð2pÞ2 N
2

ð1

0
ðs0Þ2Nexp 2

p0

2ðs0Þ2
� �

fS0 ðs0Þds0 ð12:15Þ

Thus, it is clear that regardless of whether S0 is positive or negative, the PDF of X
has the form of Equation 12.15. Henceforth, we always consider the product of Z

and a nonnegative random variable S in our analysis.

Comparing Equation 12.15 and Equation 12.2, we can write k ¼ ð2pÞ2 N
2 and

hNð p0Þ ¼
ð1

0
ðs0Þ2Nexp 2

p0

2ðs0Þ2
� �

fS0 ðs0Þds0 ð12:16Þ

Note that hNð pÞ given by Equation 12.16 is a nonnegative, monotonically

decreasing function of p, for all N. Therefore, the PDF of Equation 12.15 is

entirely equivalent to that of Equation 12.2. This establishes the theorem. Thus,

the PDF of a SSRV is uniquely determined by the specification of a Gaussian

random vector having zero mean and identity covariance matrix, and a first order

PDF fSðsÞ called the characteristic PDF.

The following theorem in Ref. 25 states that a SIRV is related to a SSRV by a

linear transformation.

Theorem 2. If X is a SSRV, with characteristic PDF fSðsÞ; then the deter-

ministic linear transformation

Y ¼ AXþ b ð12:17Þ
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results in Y being a SIRV having the same characteristic PDF. It is required that

A be a matrix such that AAT is nonsingular and b be an N by 1 vector.

Proof. Since X is a SSRV, we can express X asX ¼ ZS, where Z is a Gaussian
random vector having zero mean and identity covariance matrix and S is a

nonnegative random variable. Hence,

Y ¼ AZSþ b ð12:18Þ

Conditioned on S, the PDF of Y is Gaussian, with mean vector equal to b

and covariance matrix equal to AATs 2. The PDF of Y conditioned on S is

given by

fYlSðylsÞ ¼ ð2pÞ2 N
2
��S��2 1

2 s2Nexp 2
p

2s2

� �
ð12:19Þ

where p ¼ ðy2 bÞTS21ðy2 bÞ and lSl denotes the determinant of the

covariance matrix S ¼ AAT. Implicit herein is the assumption that S has unit

mean square value. Using the theorem on total probability, the PDF of Y can be

written as

fYðyÞ ¼ ð2pÞ2 N
2
��S��2 1

2 hNð pÞ ð12:20Þ
where

hNð pÞ ¼
ð1

0
s2Nexp 2

p

2s2

� �
fSðsÞds ð12:21Þ

The PDF of Y is of the form of Equation 12.1. Therefore Y is a SIRV.

The PDF of a SIRV is uniquely determined by the specification of a mean

vector, a covariance matrix, and a first order PDF called the characteristic PDF.

Theorem 1 for SSRVs generalizes for SIRVs in a straightforward manner. The

only difference is that, conditioned on the nonnegative random variable T, the

{Yk : ðk ¼ 1,2,…NÞ} are no longer statistically independent. Instead, the PDF of
Y conditioned on T is a multivariate Gaussian PDF. By the same argument used

for SSRVs, a SIRV can be written as a product of a Gaussian random vector and a

nonnegative random variable with the only difference that the mean of the

Gaussian random vector need not be zero and its covariance matrix is not the

identity matrix. As a corollary of Theorem 2,15 it can be readily shown that every

linear transformation on a SIRV results in another SIRV having the same

characteristic PDF. As a special case, when fSðsÞ ¼ dðs2 1Þ where d(·) is the unit
impulse function, hNð pÞ ¼ exp

�
2 p/2

�
and the corresponding SIRV PDF given

by Equation 12.20 is the multivariate Gaussian PDF. Therefore, the multivariate

Gaussian PDF is a special case of the SIRV PDF.

The following theorem16 provides an interesting property of SSRVs when

represented in generalized spherical coordinates.
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Theorem 3. A random vector X ¼ ½X1;…XN	T is a SSRV if and only if there

exist N random variables R [ ð0;1Þ; Q [ ð0; 2pÞ and Fk [ ð0;pÞ; ðk ¼
1;…N 2 2Þ such that when the components of X are expressed in the generalized

spherical coordinates

X1 ¼ R cosðF1Þ

Xk ¼ R cosðFkÞ
Yk21
i¼1

sinðFiÞ 1 , k # N 2 2

XN21 ¼ R cosðQÞ
YN22
i¼1

sinðFiÞ

XN ¼ R sinðQÞ
YN22
i¼1

sinðFiÞ

ð12:22Þ

then the random variables RQ andFk are mutually statistically independent and

have PDFs of the form

fRðrÞ ¼ r N21

2
N
2
21G N

2


 � hNðr2ÞuðrÞ
ffk

ðfkÞ ¼
G N2kþ1

2


 �
ffiffi
p

p
G N2k

2


 � sinN212kðfkÞ½uðfkÞ2 uðfk 2 pÞ	

fQðuÞ ¼ ð2pÞ21½uðuÞ2 uðu2 2pÞ	

ð12:23Þ

where Gð·Þ is the Eulero Gamma function and uð·Þ is the unit step function.

Proof. Since the random vector X is a SSRV, its PDF is of the form of

Equation 12.2 with hNð p0Þ being given by Equation 12.16. The Jacobian of the
transformation given by Equation 12.22 is obtained in Ref. 26 as

J ¼ RN21
YN22
k¼1

sinN212kðfkÞ
{ !21

ð12:24Þ

Using Equation 12.2 and Equation 12.24 and noting that R2 ¼ PN
k¼1 X2k ; the joint

PDF of R, Q and Fk ðk ¼ 1; 2;…N 2 2Þ becomes

fR;Q;F1…FN22
ðr; u;f1…fN22Þ ¼ r N21

ð2pÞ N
2

hNðr2Þ
YN22
k¼1

sinN212kðfkÞ ð12:25Þ

Since the joint PDF in Equation 12.25 can be written as a product of the marginal

PDFs given in Equation 12.23, the variables R, Q and Fk, are mutually

statistically independent with the prescribed PDFs. In order to prove the sufficient

part of the property, we start with the marginal PDFs of R, Q and Fk given by

Equation 12.23 and, under the assumption of statistical independence, obtain
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the joint PDF of Equation 12.25. Using the inverse of the Jacobian given by

Equation 12.24, results in the PDF of X as given by Equation 12.22.

12.2.4. DETERMINING THE PDF OF A SIRV

In this section we shall present schemes for determining the PDF of a SIRV. We

recognize that the PDF of a SIRV is uniquely determined by the specification of a

mean vector, a covariance matrix, and a characteristic first order PDF; and that

the SIRV PDF has the form of Equation 12.20. Several techniques are available

in the literature for specifying hNð pÞ: The simplest technique is to use Equation
12.21. However, this procedure requires the knowledge of the characteristic PDF

fSðsÞ: Therefore, when fSðsÞ: is not known in closed form or it is difficult to

evaluate the integral in Equation 12.21, alternate methods for specifying hNð pÞ
must be examined.

To study the behavior of hNð pÞ; it is convenient to replace p, which is a

quadratic form depending on N, by the dummy scalar variable q. We then write

hNðqÞ ¼
ð1

0
s2N exp 2

q

2s2

� �
fSðsÞds ð12:26Þ

When both sides of Equation 12.26 are differentiated with respect to q, we obtain

dhNðqÞ
dq

¼ 2
1

2

ð1

0
s2N22 exp 2

q

2s2

� �
fSðsÞds ð12:27Þ

The right hand side of Equation 12.27 is related to hNþ2ðqÞ by the factor of 2 1
2
:

Thus, we have an interesting result pointed out in Ref. 19 that

hNþ2ðqÞ ¼ ð22Þ dhNðqÞ
dq

ð12:28Þ

As

fYðyÞ ¼ ð2pÞ2 Nþ2
2
��S��2 1

2 hNþ2ð pÞ ð12:29Þ

when Y is of dimension N þ 2; if follows that hNðqÞ must be a monotonically
decreasing function for all N: Equation 12.28 provides a mechanism for relating

higher order PDFs with those of lower order, for a given SIRV. More precisely,

starting with N ¼ 1 and N ¼ 2; and using Equation 12.28 repeatedly, gives the
following pair of recurrence relations.

h2Nþ1ðqÞ ¼ ð22ÞN d
Nh1ðqÞ
dqN

h2Nþ2ðqÞ ¼ ð22ÞN d
Nh2ðqÞ
dqN

ð12:30Þ

Therefore, starting from h1ðqÞ and h2ðqÞ all PDFs of odd and even order,

respectively, can be generated by the use of Equation 12.30. However, since hNð·Þ
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is defined to be a nonnegative monotonically decreasing function for all N, h1ð·Þ
and h2ð·Þ must belong to a class of functions that are nonnegative and mono-
tonically decreasing. Consequently, their successive derivatives will

alternate between negative and positive functions that are monotonically

increasing and decreasing, respectively. Given hNðqÞ; the Nth order SIRV PDF

is given by

fYðyÞ ¼ ð2pÞ2 N
2
��S��2 1

2 hNð pÞ ð12:31Þ
where hNð pÞ is nothing more than hNð pÞ with q replaced by p.

Another approach for specifying hNð pÞ; which begins with the univariate
characteristic function, has been proposed in Refs. 15, 16, and 27, requiring that

the univariate characteristic function be a real even function whose magnitude is

integrable. Also, it is assumed that the components of the SIRV are identically

distributed. Under these conditions, it has been shown that

hNð pÞ ¼ ð ffiffi
p

p Þ12 N
2

ð1

0
v

N
2 fðvÞJ N22

2
ðv ffiffi

p
p Þdv ð12:32Þ

where fðvÞ is the univariate characteristic function and JaðhÞ is the Bessel
function of order a. Equation 12.32 has an elegant proof by induction, which is
presented here. From Equation 12.20 it follows that h1ð pÞ is related to the first
order SIRV PDF of the ith component. More explicitly, we can write

fYi ðyiÞ ¼ ð ffiffiffiffi
2p

p
sÞ21h1ð piÞ i ¼ 1; 2;…;N ð12:33Þ

where pi ¼ ð y21/s 2Þ and s 2 is the common variance of the random variables

Yi ði ¼ 1; 2;…;NÞ: For convenience, assume that s 2 is unity. The univariate

characteristic function is then given by

fiðvÞ ¼
ð1

21
fYið yiÞ expð jvyiÞdyi ð12:34Þ

Using the inverse Fourier transform and noting that yi ¼ ffiffiffi
pi

p
h1ð piÞ can be

expressed in terms of the characteristic function as

h1ð piÞ ¼ 1ffiffiffiffi
2p

p
ð1

21
fiðvÞ expð2jv

ffiffi
p

p Þdv ð12:35Þ

Since fiðvÞ is the same for all i, the subscript i in Equation 12.35 can be dropped.
In addition, because fðvÞ is an even function, we can rewrite Equation 12.35 as

h1ð pÞ ¼
ffiffiffiffi
2

p

r ð1

0
fðvÞ cosðv ffiffi

p
p Þdv ð12:36Þ

Recognizing that cosðxÞ ¼ ffiffiffiffi
px
2

p
J2 1

2
ðxÞ; and replacing p by the dummy variable q,
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we have

h1ðqÞ ¼ ð ffiffi
q

p Þ 12
ð1

0
v

1
2fðvÞJ2 1

2
ðv ffiffi

q
p Þdv ð12:37Þ

Since the derivation makes use of Equation 12.28 it is necessary to consider odd

and even values of N separately. For odd values of N, Equation 12.3 can be

written as

h2N21ðqÞ ¼ ðqÞ 322N
ð1

0
vN2 1

2 fðvÞJ 2N23
2
ðv ffiffi

q
p Þdv ð12:38Þ

Equation 12.38 is now shown to hold for all N by means of induction. With

N ¼ 1, Equation 12.38 reduces to Equation 12.37. It remains to show that

Equation 12.38 is valid when N is replaced by N þ 1. Differentiating both sides of

Equation 12.38 with respect to q, we obtain

dh2N21ðqÞ
dq

¼
ð1

0
vN2 1

2fðvÞ d
dq

ð ffiffi
q

p Þ 322NJ 2N23
2
ðv ffiffi

q
p Þ

h i
dv ð12:39Þ

First, focus on the term d
dq

�ð ffiffi
q

p Þ 322NJ 2N23
2
ðv ffiffi

q
p Þ�: Since this involves the

derivative of a product, we can write

d

dq
ð ffiffi
q

p Þ 322NJ 2N23
2
ðv ffiffi

q
p Þ

h i
¼ 1

2

3

2
2N

� �
ð ffiffi
q

p Þ2 1
2
2NJ 2N23

2
ðv ffiffi

q
p Þþð ffiffi

q
p Þ 322N d

dq
J 2N23

2
ðv ffiffi

q
p Þ

h i
ð12:40Þ

Using the identity28

dJaðhÞ
dh

¼ a

h
jaðhÞ2 Jaþ1ðhÞ ð12:41Þ

we have

d

dq
J 2N23

2
ðv ffiffi

q
p Þ

h i
¼ v

2
ð ffiffi
q

p Þ21 2N23

2v
ffiffi
q

p J 2N23
2
ðv ffiffi

q
p Þ2 J 2N21

2
ðv ffiffi

q
p Þ

" #
ð12:42Þ

Substituting Equation 12.42 into Equation 12.40 gives

d

dq
ð ffiffi
q

p Þ 322NJ 2N23
2
ðv ffiffi

q
p Þ

h i
¼ 2

v

2
ð ffiffi
q

p Þ 122NJ 2N21
2
ðv ffiffi

q
p Þ ð12:43Þ

Consequently, Equation 12.39 reduces to

dh2N21ðqÞ
dq

¼ 2
1

2
ð ffiffi
q

p Þ 122N
ð1

0
vNþ 1

2 fðvÞJ 2N21
2
ðv ffiffi

q
p Þdv ð12:44Þ

However, from Equation 12.28 we know that h2Nþ1ðqÞ ¼ ð22Þ dh2N21ðqÞ
dq

: Hence,
we have from Equation 12.44

h2Nþ1ðqÞ ¼ ð ffiffi
q

p Þ 122N
ð1

0
vNþ 1

2 fðvÞJ 2N21
2
ðv ffiffi

q
p Þdv ð12:45Þ
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Because Equation 12.45 is identical to Equation 12.38 with N replaced by N þ 1,

it has been shown by induction that Equation 12.38 is valid for all N. For ease of

derivation, it was assumed that the components of Y have identical variances.

However, since the functional form of hNð pÞ is invariant to the choice of p, it
follows that Equation 12.32 is valid for all odd values of N.

In a similar manner, starting with h2ð pÞ; it can be shown that
h2Nþ2ð pÞ ¼ ð ffiffi

p
p Þ2N

ð1

0
vNþ1fðvÞJNðv ffiffi

p
p Þdv ð12:46Þ

for all N. Note that Equation 12.46 is identical to Equation 12.32 with N replaced

by 2N þ 2: The proof of this result is presented in Section 12.3. Thus, in general,
for any N (odd or even), we can write hNð pÞ as in Equation 12.32.

12.2.5. PROPERTIES OF SIRVs

In this section we present certain important properties of SIRVs.

12.2.5.1. PDF Characterization

The multivariate PDF of a SIRV as given by Equation 12.20 and Equation 12.21

is uniquely determined by the specification of a mean vector b, a covariance

matrix S, and a characteristic first order PDF fSðsÞ: The PDF of the SIRV is

a nonnegative, real valued monotonically decreasing function, hNð·Þ; of a

nonnegative quadratic form multiplied by a constant. The type of SIRV is

determined by the form of hNð·Þ or, equivalently, the choice of fSðsÞ: Higher order
PDFs can be obtained by the use of Equation 12.32 whereas lower order PDFs

can be obtained in the usual manner by integrating out the unwanted variables.

We discuss this procedure in Appendix U.3. The PDFs of all orders are of the

same type. The marginal PDFs are used to classify the type of SIRV.

12.2.5.2. Closure Under Linear Transformation

As shown in Theorem 2 of Section 12.2.3, every linear transformation of the form

of Equation 12.17 on a SIRV results in another SIRV having the same

characteristic PDF.

This feature is called the closure property of SIRVs.15,16

12.2.5.3. Minimum Mean Square Error Estimation

In minimummean square error estimation (MMSE) problems, given a set of data,

SIRVs are found to result in linear estimators.15,27,29 An interesting proof of this

property is presented here. Let Y ¼ ½YT
1Y

T
2 	T where Y1 ¼ [Y1, Y2,…Ym]

T and

Y2 ¼ [Ymþ1, Ymþ2,…YN]
T denote the partitions of Y. It has been pointed out in

Ref. 30 that the minimum mean square error estimate of the random vector Y2
given the observations from the random vector Y1, is given by

Ŷ2 ¼ E½Y2lY1	 ð12:47Þ
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where E½Y2lY1	 denotes the conditional mean, i.e., the expected value of Y2
given Y1. Assume that Y is a SIRV of dimension N with characteristic PDF fSðsÞ:
Also, for convenience, it is assumed that the mean of Y is zero. The covariance

matrix of Y denoted by S can be portioned as

S ¼
C11 C12

C21 C22

" #
ð12:48Þ

where C11 denotes the covariance matrix of Y1, C12 denotes the cross covariance

matrix of the vectors Y1 and Y2, C21 is the transpose of C21, and C22 denotes the

covariance matrix of the vector Y2. The PDF of Y2 given Y1 is expressed as

fY2lY1
ðy2ly1Þ ¼ fYðyÞ

fY1
ðy1Þ ð12:49Þ

Recall from Equation 12.20 and Equation 12.21 that

fYðyÞ ¼ ð2pÞ2 N
2
��S��2 1

2 hNð pÞ ð12:50Þ
where

hNð pÞ ¼
ð1

0
s2N exp 2

p

2s2

� �
fSðsÞds ð12:51Þ

and p ¼ yTS21y. Note that the inverse covariance matrix can be partitioned as26

S21 ¼
A B

C D

" #
ð12:52Þ

where:

A ¼ ðC11 2 C12C
21
22 C21Þ21

B ¼ 2AC12C
21
22

C ¼ 2DC21C
21
11

D ¼ ðC22 2 C21C
21
11 C12Þ21

ð12:53Þ

Expanding the quadratic form, we have

p ¼ yT1Ay1 þ yT1By2 þ yT2Cy1 þ yT2Dy2 ð12:54Þ
Adding and subtracting yT1C

21
11 y1 to the right hand side of Equation 12.54 gives

p ¼ yT1 ðA2 C21
11 Þy1 þ yT1C

21
11 y1 þ yT1By2 þ yT2Cy1 þ yT2Dy2 ð12:55Þ

Note that

A2 C21
11 ¼ 2BC21C

21
11 ð12:56Þ
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Hence,

p ¼ yT1C
21
11 y1 2 yT1BC21C

21
11 y1 þ yT1By2 þ yT2Cy1 þ yT2Dy2 ð12:57Þ

However, it can be shown that

yT2Cy1 ¼ 2yT2DC21C
21
11 y1

yT1By2 ¼ 2yT1C
21
11 C12Dy2

2yT1BC21C
21
11 y1 ¼ yT1C

21
11 C12DC21C

21
11 y1

ð12:58Þ

Making these substitutions in the expression for p, it follows that

p ¼ yT1C
21
11 y1 þ yT2Dy2 2 yT2DC21C

21
11 y1 2 yT1C

21
11 C12Dy2

þ yT1C
21
11 C12DC21C

21
11 y1 ð12:59Þ

This can be rewritten as

p ¼ yT1C
21
11 y1 þ ðy2 2 C21C

21
11 y1ÞTDðy2 2 C21C

21
11 y1Þ ð12:60Þ

For simplicity, we define

p1 ¼ yT1C
21
11 y1

p2 ¼ ðy2 2 C21C
21
11 y1ÞTDðy2 2 C21C

21
11 y1Þ

ð12:61Þ

Then,

p ¼ p1 þ p2 ð12:62Þ
From Equation 12.62 and Equation 12.49 to Equation 12.51, we have

f
Y2 lY1

ðy2ly1Þ ¼ k

fY1 ð y1Þ
ð1

0
s2N exp 2

p1 þ p2

2s2

� �
fsðsÞds ð12:63Þ

where k ¼ ð2pÞ2 N
2

��S��2 1
2 Next, consider

E½Y2lY1	¼ k

fY1
ðy1Þ

ð1

0
s2N exp 2

p1

2s2

� �ð
Y2

y2 exp 2
p2

2s2

� �
dy2 fSðsÞds ð12:64Þ

Noting thatð
Y2

y2 exp 2
p2

2s2

� �
dy2 ¼ ð2pÞ N2m

2 lDl2
1
2 sN2m½C21C

21
11 y1	 ð12:65Þ

gives

E½Y2lY1	 ¼ k1
fY1

ðy1Þ
ð1

0
s2m exp 2

p1

2s2

� �
fSðsÞds ð12:66Þ

where k1 ¼ ð2pÞ2 m
2

��S��2 1
2 lDl2

1
2 ½C21C

21
11 y1	: When a matrix is partitioned as in

Equation 12.52, it is known that31��S�� ¼ lC11llC22 2 C21C
21
11 C12l ð12:67Þ
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Since

D ¼ ðC22 2 C21C
21
11 C12Þ21 ð12:68Þ

it follows that ��S�� ¼ lC11llD21l ð12:69Þ
Thus, ��S21�� ¼ lC11l

21lDl ð12:70Þ
Hence k1 ¼ ð2pÞ2 m

2 lC11l
2 1

2 ½C21C
21
11 y1	: Finally, since

fY1
ðy1Þ ¼ ð2pÞ2 m

2 lC11l
2 1

2

ð1

0
s2m exp 2

p1

2s2

� �
fSðsÞds ð12:71Þ

Ŷ2 ¼ E½Y2lY1	 ¼ ½C21C
21
11 y1	 ð12:72Þ

It is seen that the MMSE estimate of Y2, given the data Y1, is a linear function

of Y1.

If the random vectors Y1 and Y2 have nonzero means denoted by b1 and b2,

respectively, then Equation 12.72 takes the form

E½Y2lY1	 ¼ b2 þ C21C
21
11 ðy1 2 b1Þ ð12:73Þ

As a consequence of this property, when the random vectors Y1 and Y2 are
uncorrelated so that C21 ¼ 0, then we have

E½Y2lY1	 ¼ b2 ¼ E½Y2	 ð12:74Þ
This property is referred to as semi independence in Refs. 15, 27, and 32.

However, for all SIRVs except the Gaussian, this result does not imply that

fY2lY1
ðy2ly1Þ ¼ fY2

ðy2Þ ð12:75Þ
This emphasizes the property that although uncorrelatedness guarantees

statistical independence for Gaussian random vectors, it is not a general property

of SIRVs.

12.2.5.4. Distributions of Sums of SIRVs

While it is true that the sum of two jointly Gaussian random vectors is also

Gaussian, the same is not true for SIRVs in general. This result holds for two

SIRVs, when they are statistically independent, having zero mean and when the

covariance matrix of the first is within a multiplicative constant of the covariance

matrix of the second.15,16 More precisely, let Y1 ¼ [Y11, Y12,…Y1N]
T and

Y2 ¼ [Y21, Y22,…Y2N]
T denote two independent zero mean SIRVs. The

covariance matrix and characteristic PDF of Y1 are denoted by S1 and fS1ðs1Þ;
respectively. The corresponding quantities for Y2 are denoted by S2 and fS2ðs2Þ:
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We are interested in obtaining the distribution of the sum given by

Y ¼ Y1 þ Y2 ð12:76Þ
The characteristic function of Y is given by

E½expð jvTYÞ	 ¼ g1



vTS1v

�
g2



vT

X
2
v
�

ð12:77Þ
where g1ð·Þ and g2ð·Þ are the characteristic functions of Y1 and Y2, respectively. If
Y is a zero mean SIRV, then its characteristic function has the form

E½expð jvTYÞ	 ¼ g


vT

X
v
�

ð12:78Þ
In order to write Equation 12.77 as a function of a single quadratic form, S2must

be within a multiplicative constant of S1.

12.2.5.5. Markov Property for SIRPs

An interesting property of SIRPs is that a zero mean wide sense stationary SIRP

is Markov if and only if its autocorrelation function has the form

Rðt1; t2Þ ¼ expð2alðt1 2 t2lÞ ð12:79Þ
This result is well known for the special case of a zero mean wide sense

stationary Gaussian random process. To demonstrate the more general result we

consider N samples from a zero mean wide sense stationary SIRP yðtÞ: Let
Y ¼ ½Y1; Y2;…; YN	T denote the vector of successive samples obtained from the

SIRP.

Given that yðtÞ is a zero mean wide sense stationary Markov SIRP, we first
show that its autocorrelation function must have the form of Equation 12.79. Let

Y1, Y2, and Y3 denote the random variables obtained by sampling yðtÞ at time
instants t1; t2; and t3 such that t1 # t2 # t3: Since yðtÞ is a Markov process, the
joint PDF of Y1, Y2, and Y3 can be expressed as

fY1;Y2;Y3ð y1; y2; y3Þ ¼ fY1 ð y1ÞfY2lY1ð y2ly1ÞfY3lY2 ð y3ly2Þ ð12:80Þ
The autocorrelation function Rðt3; t1Þ ¼ E½Y3Y1	 is given by

Rðt3; t1Þ ¼
ð1

21

ð1

21

ð1

21
y3y1 fY1;Y2;Y3 ð y1; y2; y3Þdy1 dy2 dy3 ð12:81Þ

Also,

Rðt2; t2Þ ¼ E½Y22 	 ¼
ð1

21
y22 fY2ðy2Þdy2 ð12:82Þ

Hence,

Rðt3; t1ÞRðt2; t2Þ ¼
ð1

21

ð1

21

ð1

21

ð1

21
y3y1fY1;Y2;Y3ð y1; y2; y3Þ

� dy1 dy2 dy3y22fY2 ð y2Þdy2 ð12:83Þ
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Using Equation 12.80 we can rewrite the above equation as

Rðt3; t1ÞRðt2; t2Þ ¼
ð1

21

ð1

21
y3y2fY3;Y2;ð y3; y2Þdy3 dy2

�
ð1

21

ð1

21
y2y1fY2;Y1;ð y2; y1Þdy2 dy1 ð12:84Þ

Consequently,

Rðt3; t1ÞRðt2; t2Þ ¼ Rðt3; t2ÞRðt2; t1Þ ð12:85Þ
The only nontrivial autocorrelation function satisfying this property is given by

Equation 12.79.

Since yðtÞ is a zero mean SIRP, it follows that E[Y] ¼ 0. Letting

b ¼ exp(2a), we can write the covariance matrix of Y as

S ¼

1 b … bN21

b 1 … bN22

b2 b … bN23

… … … …

bN21 bN22 … 1

26666666664

37777777775
ð12:86Þ

under the assumption that ½t1; t2;…; tN	 ¼ ½1; 2;…;N	: We then make use of

Equation 12.73 to obtain

E½YN lYN21; YN22;…; Y1	 ¼ ½bN21bN22;…; b	S21
y0 Y

0 ð12:87Þ
where Y0 ¼ ½Y1; Y2;…; YN21	T and

Sy0 ¼

1 b … bN22

b 1 … bN23

… … … …

… … … …

bN22 bN23 … 1

26666666664

37777777775
ð12:88Þ

Recognizing that

S21
y0 ¼ 1

12 b2

1 2b 0 … 0 …

2b 1þ b2 2b 0 … 0

0 2b 1þ b2 … … 0

… … … … … …

0 … … 2b 1þ b2 2b

0 … … … 2b 1

26666666666664

37777777777775
ð12:89Þ
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Therefore, we can rewrite Equation 12.87 as

E½YN lYN21; YN22;…; Y1	 ¼ bYN21 ð12:90Þ

From Equation 12.73, we also obtain

E½YN lYN21	 ¼ bYN21 ð12:91Þ

Clearly E½YN lYN21	 ¼ E½YN lYN21; YN22;…; Y1	: Since this must be true for all
choices ofY1; Y2;…; YN21; it follows that fYN lYN21;YN22…;Y1

ð yN lyN21; yN22;…; y1Þ ¼
fyN lyN1ð yN lyN1Þ: Hence, y(t) is Markov.

12.2.5.6. Kalman Filter for SIRPs

It has been shown by Chu in Ref. 29 that the Kalman filter for SIRPs is identical

to the corresponding filter for a Gaussian random process. The model considered

in Ref. 29 is given by

xkþ1 ¼ Fkxk þGkwk k ¼ 0; 1;…;N 2 1

yk ¼ Hkxk þ vk k ¼ 0; 1;…;N 2 1
ð12:92Þ

where x k denotes the state vector of the underlying process, wk is its excitation

vector, yk denotes the observation vector, and vk is the measurement noise. It is

assumed that xk, wk, and vk are jointly SIRP with a common characteristic

PDF fSðsÞ: Also, let

Elxkl ¼ xk k ¼ 0; 1;…;N 2 1

E½ðxk 2 xkÞðxk 2 xkÞT	 ¼Mk

E½wk	 ¼ E½vk	 ¼ 0

E½ðxk 2 xkÞwT
k 	 ¼ Eðxk 2 xkÞvTk 	 ¼ E½wkv

T
k 	 ¼ 0

E½wklwkm	 ¼ Qkdl;m

E½vklvkm	 ¼ Rkdl;m

ð12:93Þ

where wkm and vkm are the mth components of wk and vk, respectively, and dl,m is
the Kronecker delta function. Hence, xk, wk, and vk are mutually uncorrelated

while wk and vk are each white with zero mean.

The innovations vectors is defined as

	yklk21 ¼ yk 2Hkx̂klk21 ð12:94Þ
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where x̂klk21 is the MMSE estimate of xk given the observation vectors up to

k 2 1. The covariance matrix of the innovations can be shown to be

Covð	yklk21Þ ¼ Sklk21 ¼ ðHkMkH
T
k þ RkÞ ð12:95Þ

It can be readily shown that xk and yk are jointly SIRP. Therefore, the MMSE

estimate of xk given the observation vectors up to k 2 1 is a linear function of ym,

m ¼ 1, 2,…,k 2 1, as shown by Equation 12.73. Hence, the Kalman filter

equations for SIRPs are identical to those for the Gaussian case. The Kalman gain

denoted by Kklk is expressed as

Kklk ¼MkH
T
k S

21
klk21 ð12:96Þ

The measurement update x̂klk is given by

x̂klk ¼ x̂klk21 þKklkŷklk21 ¼ ðI2 KklkÞx̂klk21 þKklkyk ð12:97Þ
The covariance matrix of the error in the update can be written as

Ck ¼Mk 2MkH
T
k ðHkMkH

T
k þ RkÞ21HkMk ð12:98Þ

The prediction is then given by

x̂kþ1lk ¼ Fkx̂klk ð12:99Þ
Finally, the covariance matrix of the prediction is expressed as

Mkþ1 ¼ FkCkF
T
k þGkQkG

T
k

ð12:100Þ
When systems driven by nonGaussian noise are encountered in practice, under

the assumption of joint SIRP, these equations provide an efficient computation

formula for the Kalman filter.

12.2.5.7. Statistical Independence

We point out that the only case where the components of a SSRV are statistically

independent occurs when the SSRV is Gaussian. This property is proved in

Appendix U.1.

12.2.5.8. Ergodicity of SIRPs

It has been pointed out in Ref. 27 that an ergodic SIRP is necessarily Gaussian.

The proof of the nonergodicity of SIRPs (except Gaussian) can be easily obtained

using the representation theorem15 for SIRPs, which states that an SIRP is a

univariate randomization of the Gaussian random process. More precisely, if yðtÞ
is an SIRP, then it can be expressed as yðtÞ ¼ SzðtÞ; where S is a nonnegative
random variable and zðtÞ is a Gaussian random process. Clearly, if zðtÞ is
stationary, then yðtÞ will also be stationary. However, different realizations of S
result in different scale factors for the sample functions of yðtÞ: Therefore, time
averages will differ from one sample function to another, and, in general, will not

equal the corresponding ensemble average. Consequently, yðtÞ cannot be ergodic.
When S is a nonrandom constant, yðtÞ is a Gaussian random process. Then yðtÞ
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will be ergodic provided zðtÞ is also ergodic. It is concluded that only Gaussian
SIRPs can be ergodic.

12.2.6. CONCLUSION

In this chapter, we have presented an overview of the literature on the modelling

of radar clutter and the theory of SIRPs. It is clear from this chapter that the

PDF of a SIRV is uniquely determined by the specification of a mean vector, a

covariance matrix, and a characteristic first order PDF. It is also seen that

many interesting properties of Gaussian random processes extend readily to

SIRPs. A major difference with nonGaussian SIRPs is their nonergodic

behaviour. Consequently, time averages do not result in corresponding ensemble

averages. However, if ensemble averages are used instead of time averages,

then nonergodicity is not a serious problem. In the following chapters, we shall

present the application of SIRPs for nonGaussian radar clutter modelling,

simulation, and distribution approximation.

12.3. RADAR CLUTTER MODELLING USING SPHERICALLY

INVARIANT RANDOM PROCESSES

12.3.1. INTRODUCTION

In this chapter we consider the use of the theory of SIRPs for modelling correlated

nonGaussian radar clutter. It has been pointed out in Section 12.2 that radar clutter

can be nonGaussian and that radars process N pulses at a time. Furthermore, the

clutter can be highly correlated. Therefore, by clutter modelling we mean the

specification of the joint PDF of the N correlated clutter samples. Since we are

dealing with correlated clutter, the joint PDF cannot be constructed by simply

taking the product of the marginal PDFs. This chapter presents a mathematically

elegant and tractable approach for specifying the joint PDF of N clutter samples. In

addition, we discuss the characterization of Gaussian and nonGaussian correlated

random vectors, the need for a library of multivariate PDFs for modelling

correlated nonGaussian clutter, several techniques for establishing this library,

reduction of the problems of and, finally, reduction of the problems of distribution

identification of multivariate correlated nonGaussian random vectors, to that of

equivalent identification of a univariate distribution of nonnegative guadratic form.

Specifically, the problem of modelling a random vector obtained by sampling

a stochastic process yðtÞ at N time instants is of interest to us. The stochastic

process may be real or complex. In addition, there is no restriction on the

number of samples obtained or the sampling time instants. In order to completely

characterize the random vector we need to specify the joint PDF of the N samples

(real or complex) or, equivalently, specify the joint characteristic function. This

problem is very well treated when the underlying stochastic process sin Gaussian.

The joint PDF in this case can be written as ð2pÞ2 N
2 lSl2

1
2 exp

�
2p=2

�
, where p is

a nonnegative quadratic form given by p ¼ ½y2 m	TS21½y2 m	: Here m and S

Adaptive Antennas and Receivers626

© 2006 by Taylor & Francis Group, LLC



denote the mean vector and covariance matrix, respectively, of the Gaussian

random vector Y whose components are the N samples of yðtÞ: However, if yðtÞ is
not a Gaussian random process, there is no unique specification for the joint PDF

of the N samples except when the samples are statistically independent.

When processing real world data, neither the Gaussian nature of the

underlying stochastic process nor the statistical independence of the samples is

guaranteed. In fact, it is likely that the samples may be correlated. Hence, we

need to obtain multivariate nonGaussian PDFs when can model the correlation

between samples. In practice, radar clutter can vary from one application to

another. Therefore, we need to have available a library of possible multivariate

nonGaussian PDFs so that an appropriate PDF can be chosen to approximate the

data for each clutter scenario.

The theory of SIRPs provides us with elegant and mathematically tractable

techniques to construct multivariate nonGaussian PDFs. SIRPs are generaliz-

ations of the familiar Gaussian random process. The PDF of every random vector

obtained by sampling a SIRP is uniquely determined by the specification of a

mean vector, a covariance matrix, and a characteristic first order PDF. In

addition, the PDF of a random vector obtained by sampling a SIRP is a function

of a nonnegative quadratic form. However, the PDF does not necessarily involve

an exponential dependence on the quadratic form, as in the Gaussian case. Such a

random vector is called a SIRV.

There are two kinds of models for nonGaussian radar clutter. One is called the

endogenous model, where the desired nonGaussian process with prescribed

envelope PDF and correlation function is realized by using a zero memory

nonlinear transformation on a Gaussian process having a prespecified correlation

function. In this approach it is not possible to independently control the envelope

PDF and the correlation properties of the nonGaussian process. In addition, not all

nonlinearities give rise to a nonnegative definite covariance matrix at their

outputs.33,34 The second model is called an exogenous product model.13 In this

model, the desired nonGaussian clutter is generated by the product of a Gaussian

random process and an independent nonGaussian process, which may be highly

correlated. In this scheme, the desired envelope PDF and the correlation properties

can be controlled independently. The exogenousmodel can be thought of as slowly

time variant nonGaussian process modulating a Gaussian random process. The

SIRP is a special case of the exogenousmodel, arisingwhen themodulatingprocess

does not change rapidly during the observation interval and can be approximated

as a random variable. This is due to the fact that the representation theorem for

SIRPs allows us to explicitly write the nonGaussian process as a product of a

Gaussian process and a nonnegative random variable. By assuming statistical

independence between the modulating random variable and the Gaussian process,

it is possible to independently control the nonGaussian enveloped PDF and its

correlation properties. The SIRP is the only known case of the exogenous

multiplicative model allowing the specification of the Nth order PDF.

Section 12.3.2 outlines the problem of interest. In Section 12.3.3 we present

several techniques to obtain SIRVs. Examples based on various techniques
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described in Section 12.3.3 are used to obtain a library of SIRV PDFs in Section

12.3.4. Finally, in Section 12.3.5, we present a key result which characterizes

SIRVs by using the quadratic form appearing in their PDFs.

12.3.2. PROBLEM STATEMENT

We assume we are dealing with coherent radar clutter. By coherent radar clutter,

we mean that the clutter is processed in terms of its in-phase and out-of-phase

quadrature components. Pre-detection radar clutter, being a bandpass random

process, admits a representation of the form

yðtÞ ¼ Re{~yðtÞ expð jv0tÞ} ð12:101Þ
where ~yðtÞ ¼ ycðtÞ þ jysðtÞ denotes the complex envelope of the clutter process,
v0 is a known carrier frequency, ycðtÞ and ysðtÞ denote the in-phase and out-of-
phase quadrature components of the complex process ~yðtÞ; respectively. Equation
12.101 can be rewritten as

yðtÞ ¼ ycðtÞ cosðv0tÞ2 ysðtÞ sinðv0tÞ ð12:102Þ
We are interested in specifying the joint PDF of N samples obtained by

sampling the process yðtÞ: Since it is always more convenient to work with the
associated low pass process, we consider the equivalent problem of specifying

the PDF of N complex samples obtained from the complex process ~yðtÞ: The
PDF of a complex random variable is defined to be the joint PDF of its in-phase

and out-of-phase quadrature components. Therefore, it follows that the joint

PDF of N complex random variables is the joint PDF of the 2N in-phase and

out-of-phase quadrature components. While dealing with complex random

variables, it is sometimes more convenient to work with their envelope and

phase. The envelope Ri and phase Qi of a complex random variable ~Y ¼
Yci þ jYsi are defined by

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffi
Y2ci þ Y2si

q
ð12:103Þ

Qi ¼ arctan
Ysi
Yci

� �
We consider the problem of specifying the PDF of a random vector YT ¼
½YTc ..

.
YTs 	 obtained by sampling the random process ~yðtÞ; where Yc ¼

½Yc1; Yc2;…; YcN	T and Ys ¼ ½Ys1; Ys2;…; YsN	T: The subscripts c and s denote
the in-phase and out-of-phase quadrature components, respectively. We assume

that the process yðtÞ is a wide sense stationary random process. The

necessary and sufficient conditions for yðtÞ to be a wide sense stationary

random process30 are:

(A) The quadrature components have zero mean.

(B) The envelope of the pairwise quadrature components is statistically

independent of the phase and the phase is uniformly distributed over
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the interval ð0; 2pÞ: This results in the pair wise quadrature

components being identically distributed and their joint PDF being

circularly symmetric. This also results in the orthogonality of the

pairwise quadrature components at each sampling instant.

(C) The autocovariance function and crosscovariance function of the

quadrature process of the complex process ~yðtÞ ¼ ycðtÞ þ jysðtÞ satisfy
the condition given by

KccðtÞ ¼ KssðtÞ
KscðtÞ ¼ 2KscðtÞ

ð12:104Þ

where:

KccðtÞ ¼ E{XcðtÞXcðt2 tÞ}
KssðtÞ ¼ E{XsðtÞXsðt2 tÞ}
KcsðtÞ ¼ E{XcðtÞXsðt2 tÞ}
KscðtÞ ¼ E{XsðtÞXcðt2 tÞ}

ð12:105Þ

Any choice of autocovariance and crosscovariance functions is allowed as long as

requirement (C) is satisfied and the resulting covariance matrix of Y is

nonnegative definite.

Due to requirement (A), E{Yc} ¼ E{Ys} ¼ 0: If follows that E{Y} ¼ 0: As
a consequence of requirements (B) and (C), the covariance matrix of Y, given by

S ¼
Sss l Sss

— l —

Sss l Sss

2664
3775 ð12:106Þ

must satisfy the conditions:

Scc ¼ Sss

Scs ¼ 2Ssc

ð12:107Þ

with the elements of the main diagonal of the matrices Scs and Ssc being equal to
zero. Note that Scc ¼ E{YcY

T
c }; Scs ¼ E{YcY

T
s }; Ssc ¼ E{YsY

T
c }; and Sss ¼

E{YsY
T
s }: Finally, we point out, regardless of the value of N, we always have an

even order PDF when dealing with quadrature components. We are now in a

position to proceed with the characterization of Y as a SIRV.

For a SIRV, it is pointed out that the PDF of a given order automatically

implies all lower order PDFs. For example, if N random variables are jointly

Gaussian, it is well known that the ith order PDF, i ¼ 1; 2;…;N 2 1; is Gaussian.
This property of SIRVs is called internal consistency. The requirements (A) to (C)

arising from the wide sense stationarity requirements of the process yðtÞ are called
external consistency conditions. Requirements (A) to (C) are not inherent to the

SIRP and do not hold when the SIRP is not wide sense stationary.
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12.3.3. TECHNIQUES FOR DETERMINING THE SIRV PDF

In this section, several techniques are presented for obtaining h2Nð pÞ defined in
Section 12.2. For convenience, temporal wide sense stationarity of the underlying

bandpass process is assumed. However, the functional form of h2Nð·Þ is

unaffected whether or not the random process is temporally wide sense

stationary. Hence, it is allowable to let p ¼ ðy2 bÞTS21ðy2 bÞ in the final

result, in general, where b is any mean nonzero vector and S is any nonnegative

definite matrix.

Recall from Section 12.2 that the PDF of a SIRV YT ¼ ½YT
c :Y

T
s 	, with Yc and

Ys as defined in Section 12.3.2 is given by

fYðyÞ ¼ ð2pÞ2N lSl2
1
2 h2Nð pÞ ð12:108Þ

Assuming temporal wide sense stationarity, p ¼ yTS21y where S is given by

Equation 12.106. The mean vector of Y is zero due to requirement (A) in

Section 12.3.2. The covariance matrix S having the form of Equation 12.106 and

satisfying the requirements of Equation 12.107 is readily determined when the

autocorrelation function of the process is specified. Given S, several techniques
for obtaining h2Nð pÞ are presented in this section.

The representation theorem for SIRVs allows us to express Y as a product of

a Gaussian random vector Z, having the same dimensions asY and a nonnegative

random variable S. For the problem of radar clutter modelling, since it is desirable

to control the nonGaussian nature of Y and its correlation properties

independently, we assume that the random variable S is statistically independent

of Z. In addition, the covariance matrix of the SIRV can be made equal to the

covariance matrix of the Gaussian random vector by requiring EðS2Þ to be unity.
Finally, it is pointed out that the mean of Z is necessarily zero.

A physical interpretation can be given to Z and S. Consider a surveillance

volume subdivided into contiguous range-Doppler-azimuth cells. Assuming a

large enough cell size such that many scatterers are located in each cell, the N

pulse returns from a given cell can be modelled as the Gaussian vector Z

according to the central limit theorem. Also assume that the average clutter power

remains constant over the N pulse returns in a coherent processing interval.

However, the average clutter power is allowed to vary independently from cell to

cell since different sets of scatterers are located in each cell. The variation of

the average clutter power from cell to cell is modelled by the square of the

nonnegative random variable S.

12.3.3.1. SIRVs with Known Characteristic PDF

We consider specification of the PDF of the SIRV Y when its characteristic PDF

is known is closed form. We have pointed out in the previous section that the

mean vector of Y is zero. Also, we have discussed the specification of

the covariance matrix of Y. Now, we shall focus on the specification of h2Nð pÞ:
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As a consequence of the representation theorem, we can write.

h2Nð pÞ ¼
ð1

0
s22N exp 2

p

2s2

� �
fSðsÞ ds ð12:109Þ

Equation 12.109 enables us to specify h2NðpÞ when the characteristic PDF fSðsÞ is
known is closed form. However, in some cases, even though an analytical

expression is known for the characteristic PDF, it may be difficult to evaluate the

integral in Equation 12.109 in closed form. In such instances, an alternate method

for specifying h2Nð pÞ must be examined. The method presented in the next

section is useful for these cases.

12.3.3.2. SIRVs with Unknown Characteristic PDFs

When the characteristic PDF of the SIRV is unknown or when the integral in

Equation 12.109 is difficult to evaluate, we propose an alternate method to obtain

h2Nð pÞ: Recall that we are dealing with an even order PDF. Therefore, we can use
Equation 12.30 starting with h2ðqÞ to obtain h2NðqÞ: It is worthwhile pointing out
that h2Nð·Þ is related to the first order envelope PDF. From requirement (B) of

Section 12.3.2, the joint PDF of the ith in-phase and out-of-phase quadrature

components can be expressed as

fYci;Ysið yci; ysiÞ ¼ ð2pÞ21s22h2ð pÞ i ¼ 1; 2;…;N ð12:110Þ
where p ¼ ð y2ci þ y2siÞ=s 2 and s 2 denotes the common variance of the in-phase
and out-of-phase quadrature components. The envelope and phase corresponding

to the ith quadrature components is given by

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffi
Y2ci þ Y2si

q
Qi ¼ arctan

Ysi
Yci

ð12:111Þ

Due to the assumption of wide sense stationarity, we can drop the subscript i in

Equation 12.111. The Jacobian of the transformation given by Equation 12.111 is

J ¼ R21; where J denotes the Jacobian. Using the Jacobian in Equation 12.110
results in the joint PDF of R and Q being given by

fR;Qðr; uÞ ¼ r

2ps2
h2

r2

s2

{ !
ð12:112Þ

Clearly, the joint PDF in Equation 12.112 can be factored as a product of the

marginal PDFs of the random variables R and Q: Consequently, the random
variables R and Q are statistically independent with PDFs given by

fRðrÞ ¼ r

s 2
h2

r2

s 2

{ !
0 # r # 1

fQðuÞ ¼ ð2pÞ21 0 # u # 2p

ð12:113Þ
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Equation 12.113 relates the envelope PDF to h2ð·Þ: Hence, we can write

h2
r2

s 2

{ !
¼ s 2

r
fRðrÞ ð12:114Þ

Thus, Equation 12.114 provides a mechanism to obtain h2ðqÞ: Starting from

h2ðqÞ; we then use Equation 12.30 to obtain h2NðqÞ: Since not all nonGaussian
envelope PDFs are admissible for characterization as SIRVs, we must check

that h2ðqÞ and its derivatives satisfy the monotonicity conditions stated in

Section 12.2. Finally, h2Nð pÞ is obtained by simply replacing q by p ¼
ðy2 bÞTS21ðy2 bÞ in h2NðqÞ:

12.3.3.3. Hankel Transform Approach

In this section we present an approach based on the Hankel transform for

specifying h2NðpÞ: Recall that the joint PDF of the ith in-phase and out-of-phase
quadrature components of Y is given by Equation 12.110. For convenience, it is

assumed that s 2 is unity. Dropping the subscript i from Equation 12.110, the joint

characteristic function of Yci and Ysi is expressed as

fYc;Ys ðv1;v2Þ¼ ð2pÞ21
ð1

21

ð1

21
expð jv1ycþ jv2ysÞh2ðy2cþy2s Þdyc dys ð12:115Þ

Introducing the transformations

R ¼
ffiffiffiffiffiffiffiffiffiffi
Y2c þ Y2s

q
Q ¼ arctan

Ys
Yc

v ¼
ffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
a ¼ arctan

v2
v1

ð12:116Þ

we can rewrite Equation 12.115 as

fYc;Ys ðv1;v2Þ ¼ ð2pÞ21
ð1

0

ð2p
21

exp½ jvr{cosðuÞcosðaÞ

þ sinðuÞsinðaÞ}	rh2ðr2Þdr du ð12:117Þ
Noting that cosðA2 BÞ ¼ cosðAÞcosðBÞ þ sinðAÞsinðBÞ; we can rewrite

Equation 12.117 as

fYc;Ys ðv1;v2Þ ¼ ð2pÞ21
ð1

0

ð2p
0
exp½ jvr cosðu2 aÞ	rh2ðr2Þdr du ð12:118Þ
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Interchanging the order of integration in Equation 12.118, and recognizing that35

J0ðxÞ ¼ 1

2p

ð2p
0
exp½ jx cosðb2 gÞ	db ð12:119Þ

where J0ðxÞ is the Bessel function of order zero, we have

fYc;Ys ðv1;v2Þ ¼
ð1

0
rh2ðr2ÞJ0ðvrÞdr ð12:120Þ

From Equation 12.120, it is clear that the joint characteristic function of Yc and Ys

is a function of v ¼
ffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
: Hence, it is a circularly symmetric characteristic

function. Denoting this function by cðvÞ; we can write

c ðvÞ ¼
ð1

0
rh2ðr2ÞJ0ðvrÞdr ð12:121Þ

Equation 12.121 is recognized as the Hankel transform of order zero of h2ðr2Þ:
Using the inverse Hankel transform, we obtain

h2ðr2Þ ¼
ð1

0
vc ðvÞJ0ðvrÞdv ð12:122Þ

Introducing the dummy variable v, we can write

h2ðqÞ ¼
ð1

0
vc ðvÞJ0ðv ffiffi

q
p Þdv ð12:123Þ

We can then use Equation 12.130 to obtain h2NðqÞ:More explicitly, we can write

h2NðqÞ ¼ ð22ÞN21
ð1

0
vc ðvÞ d

N21

dqN21
½J0ðv ffiffi

q
p Þ	dv ð12:124Þ

Using the identity35

dJ0ðhÞ
dh

¼ 2J1ðhÞ ð12:125Þ

we have

dJ0ðv ffiffi
q

p Þ
dq

¼ 2
v

2
v2 1

2 J1ðv ffiffi
q

p Þ ð12:126Þ

Use of the recurrence relation35

d

dh
½h2aJaðhÞ	 ¼ 2h2aJaþ1ðhÞ ð12:127Þ
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results in

d2

dq2
½ J0ðv ffiffi

q
p Þ	 ¼ v2

4
ð ffiffi
q

p Þ22J2ðv ffiffi
q

p Þ ð12:128Þ

Repeated use of Equation 12.127 gives

dN21

dqN21
½ J0ðv ffiffi

q
p Þ	 ¼ ð21ÞN21 v

N21

2N21
ð ffiffi
q

p Þ2Nþ1JN21ðv ffiffi
q

p Þ ð12:129Þ

Substituting Equation 12.129 into Equation 12.124 gives

h2NðqÞ ¼ ð ffiffi
q

p Þ12N
ð1

0
vNc ðvÞJN21ðv ffiffi

q
p Þdv ð12:130Þ

Finally, h2Nð pÞ is obtained from Equation 12.130 by replacing q by p ¼
ðy2 bÞTS21ðy2 bÞ: This completes the proof of Equation 12.32 for even values
of N, which was previously deferred. The integral in Equation 12.130 is

recognized as the Hankel transform of order N 2 1 of c ðvÞ: A number of Hankel

transforms have been provided in Ref. 36 and these will be made use of in the

examples presented in Section 12.3.4.

12.3.4. EXAMPLES OF COMPLEX SIRVS

This section presents examples based on the approaches discussed in

Section 12.3.3 and is divided into three parts. In Section 12.3.4.1, we present

examples that assume the knowledge of the characteristic PDF. In Section

12.3.4.2, the marginal envelope PDF is assumed to be known whereas in Section

12.3.4.3, knowledge of the marginal characteristic function is assumed. Finally,

at the end of Section 12.3.4.3 we point out some univariate PDFs that cannot be

generalized to SIRV characterization. We consider the problem of determining

the PDF of the random vector YT ¼ ½YT
c :Y

T
s 	 specified in Section 12.3.2. It is

assumed that the mean vector of Y and its covariance matrix S are known.

Consequently, specification of the PDF of Y of the form of Equation 12.108

reduces to determination of h2Nð pÞ:

12.3.4.1. Examples Based on the Characteristic PDF

12.3.4.1.1. Gaussian Distribution

The Gaussian marginal PDF for the quadrature components having mean bk and

variance s2
k is

fYk ð ykÞ ¼
1ffiffiffiffiffiffiffiffiffið2pÞsk

p exp 2
ð yk 2 bkÞ2

2s2
k

{ !
21 # yk # 1 ð12:131Þ

The characteristic PDF for this example is given by

fSðsÞ ¼ dðs2 1Þ ð12:132Þ
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where dð·Þ is the unit impulse function. Using Equation 12.21, it is seen that the
resulting hNð pÞ is given by

hNð pÞ ¼ exp 2
p

2

� �
ð12:133Þ

where p ¼ ðy2 bÞTS21ðy2 bÞ: The corresponding PDF for any N is given by

Equation 12.20. For N ¼ 1; this result reduces to Equation 12.131. When Y is

made up of quadrature components, we obtain the corresponding h2Nð pÞ by
simply replacing N by 2N in Equation 12.133. Whenever a characteristic PDF can

be made to approach a unit impulse function displaced to the right of the origin by

appropriate choice of its parameters, it follows that the corresponding SIRV PDF

will approach the Gaussian PDF.

12.3.4.1.2. K-Distribution

The K-distributed envelope PDF, by definition, is given by

fRðrÞ ¼ 2b

GðaÞ
br

2

� �a
Ka21ðbrÞuðrÞ ð12:134Þ

where a is the shape parameter of the distribution, b denotes the scale parameter
of the distribution, KNðtÞ is the Nth order modified Bessel function of the second
kind, and uðrÞ is the unit step function. The K-distributed enveloped PDF is

commonly used for modelling radar clutter PDFs that have extended tails.2, 9, 19, 20

In particular, the PDF becomes heavy tailed as a approaches zero. Plots of

Equation 12.134 for several values of a are shown in Figure 12.1 to Figure 12.4.
The K-distributed envelope PDF arises when we consider the product of a

Rayleigh distributed random variable R 0 and an independent Chi-distributed

random variable V. More precisely, we consider the product R ¼ R0V; with R 0

f R
(r

)

0.7
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r

FIGURE 12.1 K-Distribution, b ¼ 0:31; a ¼ 0:05:
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and V being statistically independent. Their PDFs are given by

fR0 ðr0Þ ¼ r0 exp 2
½r0	2
2

{ !
0 # r0 # 1 ð12:135Þ

and

fV ðvÞ ¼ 2b

GðaÞ2a ðbvÞ
2a21exp 2

b2v2

2

{ !
0 # v , 1 ð12:136Þ

f R
(r

)

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8 9

r
10

FIGURE 12.2 K-Distribution, b ¼ 0:77; a ¼ 0:3:
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FIGURE 12.3 K-Distribution, b ¼ 1:0; a ¼ 0:5:
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respectively. Consequently, the PDF of R is given by

fRðrÞ ¼
ð1

0
fRlV ðrlvÞfV ðvÞdv

¼
ð1

0

r

v2
exp 2

r2

2v2

{ !
2b

GðaÞ2a ðbvÞ2a21exp 2
b2v2

2

{ !
ð12:137Þ

From Ref. 35 we have

KvðxzÞ¼ zv

2

ð1

0
exp 2

x

2
tþ z2

t

{ !" #
t2v21dt larg zl,

p

4

� �
; z. 0 ð12:138Þ

Letting v2 ¼ t in Equation 12.137 and using the result of Equation 12.138, the

PDF of Equation 12.134 follows.

The quadrature components corresponding to the Rayleigh envelope PDF are

independent identically distributed zero mean Gaussian random variables having

unit variance. The PDF of the quadrature components corresponding to R0 is
expressed as

fZc ðzÞ ¼ fZs ðzÞ ¼ ð2pÞ2 1
2 exp 2

z2

2

{ !
ð12:139Þ

where Zc and Zs denote the in-phase and out-of-phase quadrature components,

respectively. The quadrature components arising from the K-distributed envelope

PDF, denoted by Yc and Ys; respectively, can be expressed as

Yc ¼ ZcV

Ys ¼ ZsV
ð12:140Þ
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FIGURE 12.4 K-Distribution, b ¼ 1:4; a ¼ 0:99:
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Note that l ~Yl ¼ l ~ZlV and Q ~Y ¼ Q~z: Consequently, the PDF of Yc is given by

fYc ð ycÞ ¼
b2affiffiffiffi

2p
p

GðaÞ2a21
ð1

0
v2a22exp 2

1

2

y2c

v2
þ b2v2

{ !" #
dv ð12:141Þ

Making the change of variables t ¼ b2v2 and z2 ¼ b2y2c ; and using

Equation 12.138, the PDF of Yc is expressed as

fYc ð ycÞ ¼
2b

GðaÞ ffiffiffiffi
2p

p
2a

lbycl
a2 1

2 K 1
2
2aðblyclÞ 21 , yc , 1 ð12:142Þ

where the absolute value denoted by l·l is used on account of the requirement that
z . 0: In a similar manner, it can be shown that the PDF of Ys has the same

functional form as Equation 12.142. The PDF of Equation 12.142 is called the

Generalized Laplace PDF.16

The characteristic PDF for the K-distributed SIRV is

fSðsÞ ¼ 2b

GðaÞ2a ðbsÞ
2a21exp 2

b2s2

2

{ !
uðsÞ ð12:143Þ

Using Equation 12.21 and Equation 12.138,

hNð pÞ ¼
ð1

0
s2Nexp 2

p

2s2

� �
2b

GðaÞ2a ðbsÞ
2a21exp 2

b2s2

2

{ !
ds ð12:144Þ

Making the change of variables t ¼ b2s2 and z2 ¼ b2p; the resulting hNð pÞ is
given by

hNð pÞ ¼ bN

GðaÞ
ðb ffiffi

p
p Þa2 N

2

2a21
K N

2
2aðb

ffiffi
p

p Þ ð12:145Þ

The corresponding SIRV PDF for any N is given by using Equation 12.20. For the

case when N ¼ 1; this reduces to Equation 12.142. When dealing with quadrature

components, we use Equation 12.145 with N replaced by 2N

12.3.4.1.3. Student-t Distribution

The Student-t distribution for the quadrature components is given by

fYk ðykÞ ¼
Gðvþ 1

2
Þ

b
ffiffi
p

p
GðvÞ 1þ y2k

b2

{ !2v2 1
2

ð21 , yk , 1Þ; v . 0 ð12:146Þ

where b is the scale parameter, v is the shape parameter GðvÞ is the Eulero–
Gamma function and k ¼ c; s: Plots of the Student-t distribution are shown

for several values of v in Figures 12.5 to 12.8. The characteristic PDF for

this example is

fSðsÞ ¼ 2

GðvÞ
1

2

� �v
b2v21ðs21Þ2vþ1exp 2

b2

2s2

{ !
uðsÞ ð12:147Þ
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Use of Equation 12.21 results in hNð pÞ being given by

hNð pÞ ¼
2

N
2 b2vGðvþ N

2
Þ

GðvÞðb2 þ pÞ N
2
þv ð12:148Þ

The corresponding SIRV PDF for any N is given by Equation 12.20. For N ¼ 1;
this result reduces to Equation 12.146. When dealing with quadrature compo-

nents, we make use of Equation 12.148 with N replaced by 2N.
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FIGURE 12.5 Student-t distribution, b ¼ 0:14; y ¼ 0:01:

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
−5 −4 −3 −2 −1

xk

1 50 2 3 4

f c
k(c

k
)

FIGURE 12.6 Student-t distribution, b ¼ 0:45; y ¼ 0:1:
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12.3.4.1.4. Mixture of Gaussian PDFs

An interesting nonGaussian marginal PDF that is admissible as a SIRV is the

mixture of Gaussian PDFs. We consider the PDF given by

fYk ðykÞ
X

aið2pk2i Þ2
1
2 exp 2

ðyk 2 bkÞ2
2k2i

{ !
ð12:149Þ

for the quadrature components of Y. The characteristic PDF for this example is

given by

fSðsÞ ¼
X

aidðs2 kiÞ ð12:150Þ
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FIGURE 12.7 Student-t distribution, b ¼ 1:0; y ¼ 0:5:
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FIGURE 12.8 Student-t distribution, b ¼ 2:23; y ¼ 2:5:
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Note that S is a discrete random variable, with ai denoting the probability

PðS ¼ kiÞ: Also, it is required that
ai $ 0 i ¼ 1; 2;…X

i

ai ¼ 1 ð12:151Þ

Using Equation 12.21, it is seen that

hNð pÞ ¼
X
i

k2N
i ai exp 2

p

2k2i

{ !
ð12:152Þ

The corresponding SIRV PDF for any N is given by Equation 12.20. For N ¼ 1;
this result reduces to Equation 12.49. When dealing with quadrature components,

we make use of the result of Equation 12.152 with N replaced by 2N. Note that the

ai’s can be assigned any desired discrete distribution.

12.3.4.2. Examples Based on Marginal Envelope PDF

We shall report here on some new SIRV PDFs obtained starting from the

marginal envelope PDF. Note in general, that the characteristic PDF for all

the examples considered here are not available in closed form. Since s 2 is the

common variance of the in-phase and out-of-phase quadrature components, s 2 is

equal to 1
2
EðR2Þ: In addition, recall that the binomial coefficient is defined by

l

i

{ !
¼ l!

i!ðl2 iÞ! ð12:153Þ

In all the examples in this section, we start with h2ðqÞ and obtain h2NðqÞ by the
process of successive differentiation. The corresponding h2Nð pÞ for each example
is obtained by replacing q by p in h2NðqÞ: In all the examples presented in this
section note that the envelope PDFs reduce to the Rayleigh envelope PDF for

appropriately chosen parameters.

12.3.4.2.1. Chi Envelope PDF

We consider the Chi distributed envelope PDF given by

fRðrÞ ¼ 2b

GðvÞ ðbrÞ
2v21 expð2b2r2Þ 0 # r # 1 ð12:154Þ

where b denotes the scale parameter and v denotes the shape parameter. Plots of

the Chi envelope PDF are shown in Figures 12.8 to 12.10 for several values of v.

Using Equation 12.114, we can write

h2ðqÞ ¼ 2

GðvÞ ðbsÞ
2vqv21 expð2b2s2qÞ ð12:155Þ
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Using Equation 12.30, we have

h2NðqÞ ¼ ð22ÞN21 d
N21h2ðqÞ
dqN21

¼ ð22ÞN21
GðvÞ 2ðbsÞ2v d

N21

dqN21
½qv21 expð2b2s2qÞ	 ð12:156Þ

Recall Leibnitz’s theorem for the nth derivative of a product,35 which states that

dnðuvÞ
dxn

¼
Xn
k¼0

n

k

{ !
dku

dxk
dn2kv

dxn2k
ð12:157Þ
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FIGURE 12.9 Chi envelope PDF, b ¼ 0:22; y ¼ 0:1:
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FIGURE 12.10 Chi envelope PDF, b ¼ 0:5; y ¼ 0:5:
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where u and v are functions of x. Noting that

dkðqv21Þ
dqk

¼ GðvÞ
Gðv2 kÞ q

v2k21 ð12:158Þ

it follows that

h2NðqÞ ¼ ð22ÞN21A
XN
k¼1

Gkq
v2kexpð2BqÞ ð12:159Þ

where:

Gk ¼
N 2 1

k2 1

0@ 1Að21ÞN2kBN2k GðvÞ
Gðv2 k þ 1Þ

A ¼ 2

GðvÞ ðbsÞ
2v

B ¼ b2s 2

ð12:160Þ

An important condition is that the SIRV PDF is valid only for v # 1: This is due
to the fact that h2ðpÞ and its derivatives are monotonically decreasing functions
only in the range of values of vmentioned above. Finally, for v ¼ 1; note that the
Chi envelope PDF reduces to the Rayleigh envelope PDF. The corresponding

SIRV PDF then becomes Gaussian.

12.3.4.2.2. Weibull Envelope PDF

The Weibull distributed envelope PDF is given by

fRðrÞ ¼ abrb21expð2arbÞ 0 # r # 1 ð12:161Þ
where a is the scale parameter and b is the shape parameter. Plots of the Weibull

distribution for several values of b are shown in Figures 12.11 to 12.13. Using

Equation 12.114, we have

h2ðqÞ ¼ abs bq
b
2
21expð2as bq

b
2 Þ ¼ ð22Þ d

dq
½expð2Aq

b
2 Þ	 ð12:162Þ

where A ¼ as b: From Equation 12.30, we have

h2NðqÞ ¼ ð22ÞN dN

dqN
½expð2Aq

b
2 Þ	 ð12:163Þ

The rule for obtaining the Nth derivative of a composite function is35: If f ðxÞ ¼
Fð yÞ and y ¼ wðxÞ; then

dN

dxN
{ f ðxÞ} ¼

XN
k¼1

Uk

k!

dk

dyk
½Fð yÞ	 ð12:164Þ
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where

Uk ¼
Xk
m¼1

ð21Þk2m
k

m

{ !
yk2m d

Nym

dxN
ð12:165Þ

Making the association x ¼ q and y ¼ 2Aq
b
2 ; we have

h2NðqÞ ¼
XN
k¼1

Ckq
kb
2
2N expð2Aq

b
2 Þ ð12:166Þ

where

Ck ¼
Xk
m¼1

ð21ÞmþN2N A
k

k!

k

m

{ !
Gð1þ mb

2
Þ

Gð1þ mb
2

2 NÞ ð12:167Þ
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FIGURE 12.12 Weibull distribution envelope PDF, b ¼ 0:5; a ¼ 1:86:
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FIGURE 12.11 Chi envelope PDF, b ¼ 0:7; y ¼ 1:0:
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The Weibull envelope PDF is admissible for characterization as a SIRV for

values of b less than or equal to 2. This is due to the fact that h2ðqÞ and its
derivatives fail to satisfy the monotonicity condition for other values of b.

However, this is not a serious restriction for the point of view of radar clutter

modeling because the Weibull envelope PDF is of interest in modeling large

tailed clutter. Such a situation arises only when 0 , b # 2: The Weibull

envelope PDF reduces to the Rayleigh envelope PDF when b ¼ 2: The

corresponding SIRV PDF then becomes Gaussian. Another case of interest

arises when b ¼ 1: In this case the Weibull envelope PDF corresponds to the

Exponential distributed envelope PDF (Figure 12.14).
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FIGURE 12.14 Exponential distributed envelope, b ¼ 2.0, a ¼ 0.5.
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FIGURE 12.13 Weibull distribution envelope PDF, b ¼ 1:0; a ¼ 1:
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12.3.4.2.3. Generalized Rayleigh Envelope PDF

The next PDF considered is for the Generalized Rayleigh envelope given by

fRðrÞ ¼ ar

b2G 2
a


 � exp 2
r

b

� �a� �
0 # r # 1 ð12:168Þ

where a is the shape parameter and b is the scale parameter. Plots of

the Generalized Rayleigh distribution are shown for several values of a in

Figures 12.15 to 12.17.

Proceeding as in the previous example, we find that

h2ðqÞ ¼ A expð2Bq
a
2 Þ ð12:169Þ

where:

A ¼ s2a

b2G
2

a

� �
B ¼ b2asa

ð12:170Þ

Using Equation 12.25, Equation 12.163, and Equation 12.164, we have

h2NðqÞ ¼
XN21
k¼1

Dkq
ka
2

2Nþ1 expð2Bq
a
2 Þ ð12:171Þ
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FIGURE 12.15 Generalized Rayleigh distributed envelope PDF, a ¼ 0:1; b ¼
3:45 £ 10215:
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where

Dk ¼
Xk
m¼1

ð21ÞmþN212N21 B
k

k!

k

m

{ ! G 1þ ma

2

� �
G 2þ ma

2
2 N

� � ð12:172Þ

Note that the SIRV PDF is valid only in the range ð0 # a # 2Þ: This is because of
the fact that the monotonicity conditions for the derivatives of h2ð pÞ are satisfied
only for the specified range of a: The Generalized Rayleigh envelope PDF

reduces to the Rayleigh envelope PDF when a ¼ 2:
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FIGURE 12.17 Generalized Rayleigh distributed envelope PDF, a ¼ 1; b ¼ 0:577:
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FIGURE 12.16 Generalized Rayleigh distributed envelope PDF, a ¼ 0:5; b ¼ 0:048:
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12.3.4.2.4. Rician Envelope PDF

There are two possible ways in which the Rician envelope PDF occurs. One

possibility arises through a complex zero mean random process with correlated

quadrature components that are Gaussian. The other is through a nonzero mean

complex Gaussian process. The former case is considered here, since the SIRV

PDF can be obtained by differentiation of h2ðqÞ: For this case, the envelope PDF
is given by (Figure 12.18)

fRðrÞ ¼ rffiffiffiffiffiffiffiffiffi
12 r2

p exp 2
r2

2ð12 r2Þ

" #
I0

rr2

2ð12 r2Þ

" #
ð0 # r # 1Þ ð0 , r # 1Þ

ð12:173Þ

where I0ðxÞ is the modified Bessel’s function of the first kind of order zero.

Plots of the Rician envelope PDF for several values of r are shown in

Figures 12.19 to 12.21. Let

A ¼ s2

2ð12 r2Þ ð12:174Þ

Using Equation 12.114 we have

h2ðqÞ ¼ s2ffiffiffiffiffiffiffiffiffi
12 r2

p expð2AqÞI0ðrAqÞ ð12:175Þ

From Equation 12.30

h2NðqÞ ¼ ð22ÞN21 d
N21h2ðqÞ
dqN21

ð12:176Þ
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FIGURE 12.18 Generalized Rayleigh distributed envelope PDF, a ¼ 2; b ¼ 1:414:
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We then use Equation 12.157 and the identities35

InðxÞ ¼ 1

2p

ð2p
0
cosðnuÞexp½x cosðuÞ	du

coskðuÞ ¼ 1

2k

Xk
m¼0

k

m

0@ 1Acos½ðk2 2mÞu	
ð12:177Þ

to obtain

h2NðqÞ ¼ s2N

ð12 r2ÞN2 1
2

XN21
k¼0

N 2 1

k

{ !
ð21Þk r

2

� �k
jk expð2AqÞ ð12:178Þ
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FIGURE 12.19 Rician envelope PDF, r ¼ 0:25:
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FIGURE 12.20 Rician envelope PDF, r ¼ 0:5:

Spherically Invariant Random Processes 649

© 2006 by Taylor & Francis Group, LLC



where

jk ¼
Xk
m¼0

k

m

{ !
Ik22mðrAqÞ ð12:179Þ

For r ¼ 0; note that the Rician envelope PDF corresponds to the Rayleigh

envelope PDF.

12.3.4.2.5. Generalized Gamma Envelope PDF

In a recent effort37 the Generalized Gamma envelope PDF has been proposed as a

candidate for univariate nonGaussian PDFs for modeling radar clutter. The

Generalized Gamma envelope PDF is given by

fRðrÞ ¼ ac

GðaÞ ðarÞ
ca21expð2arcÞ; 0 # r # 1; a; c;a . 0 ð12:180Þ

where a is the scale parameter and a and c are shape parameters of the PDF. Note
that the Generalized Gamma envelope PDF reduces to:

1. The Weibull envelope PDF when a ¼ 1:
2. The Gamma envelope PDF when c ¼ 1:
3. The Exponential envelope PDF when c ¼ a ¼ 1:
4. The Chi envelope PDF when c ¼ 2:
5. The Rayleigh envelope PDF when c ¼ 2 and a ¼ 1:

We show that this PDF is admissible as a SIRV. Using Equation 12.114, we can

write

h2ðqÞ ¼ Aq
ca
2

21expð2Bq
c
2 Þ ð12:181Þ
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FIGURE 12.21 Rician envelope PDF, r ¼ 0:9:
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where A ¼ ðasÞcac
GðaÞ and B ¼ as c: Using Equation 12.30, we have

h2NðqÞ¼ ð22ÞN21 d
N21h2ðqÞ
dqN21

¼ð22ÞN21A dN21

dqN21
½q ca2 21expð2Bq

c
2 Þ	 ð12:182Þ

Using Equation 12.157 and Equation 12.158, we can rewrite Equation 12.182 as

h2NðqÞ ¼ ð22ÞN21A
XN21
k¼0

N 2 1

k

{ !
dk

dqk

� ½expð2Bq
c
2 Þ	

G
ca

2

� �
G

ca

2
2 N þ k þ 1

� � q ca
2
2Nþk

ð12:183Þ
The kth derivative of the exponential term is readily obtained by using Equation

12.164 to Equation 12.167, Hence, we have

h2NðqÞ ¼
XN21
k¼0

Fkq
ca
2

2Nexpð2Bq
c
2 Þ ð12:184Þ

where

Fk ¼ ð22ÞN21A
N 2 1

k

0@ 1A G
ca

2

� �
G

ca

2
2 N þ k þ 1

� �

�
Xk
m¼1

Xm
l¼1

ð21Þmþl21 B
m

m!

G
lc

2
þ 1

� �
G

lc

2
2 k þ 1

� � v mc
2

ð12:185Þ

The Generalized Gamma envelope PDF is admissible for characterization as a

SIRV for values of ca less than or equal to 2. This is due to the fact that h2ðqÞ
and its derivatives fail to satisfy the monotonicity condition for other values of

ca: Interestingly enough, only these values of ca give rise to extended tails

for the PDF. Hence, the monotonicity conditions do not impose a serious

restriction.

12.3.4.3. Examples Using the Marginal Characteristic Function

Successful use of the marginal characteristic function approach requires the

knowledge of various Hankel transforms. For each example, the particular
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transform used is cited by equation and page number as it appears in Ref. 36. To

illustrate the procedure followed, a detailed derivation is presented in the first

example. However, in the remaining examples, we simply list the univariate

characteristic function of the quadrature components, the corresponding marginal

PDF, and the resulting h2NðqÞ: Finally, h2Nð pÞ is obtained by replacing qwith p in
the expressions for h2NðqÞ:

12.3.4.3.1. Gaussian Distribution

First, we consider the characteristic function given by

cðvÞ ¼ exp 2
v2

2

{ !
ð12:186Þ

The corresponding marginal PDF of the quadrature components is

fYk ð ykÞ ¼
1ffiffiffiffiffiffið2pÞp exp 2

y2k
2

{ !
21 # yk # 1 ð12:187Þ

Equation 12.187 is the PDF of a zero mean unit variance Gaussian random

variable. Substitution of Equation 12.186 into Equation 12.130 yields

h2NðqÞ ¼ ð ffiffi
q

p Þ12N
ð1

0
vN exp 2

v2

2

{ !
JN21ðv ffiffi

q
p Þdv ð12:188Þ

From Ref. 36, Equation (10), p. 29, we have the Hankel transform

ð1

0
xvþ

1
2 expð2ax2ÞJvðxyÞ ffiffiffi

xy
p

dx ¼ yvþ
1
2

ð2aÞvþ1 exp 2
y2

4a

{ !
ð12:189Þ

By making the association that a ¼ 0:5; v ¼ N 2 1; x ¼ v; and y ¼ ffiffi
q

p
; the

above result becomes

ð1

0
vNexp 2

v2

2

{ !
JN21ðv ffiffi

q
p Þ ffiffi

q
p

dv ¼ ffiffi
q

p N21þ 1
2 exp 2

q

2

� �
ð12:190Þ

If follows that

h2NðqÞ ¼ exp 2
q

2

� �
ð12:191Þ

From Equation 12.108, it is seen that the resulting SIRV PDF is the familiar

multivariate Gaussian PDF, given by

fYðyÞ ¼ ð2pÞ2N Sj j2 1
2 exp 2

p

2

� �
ð12:192Þ

Adaptive Antennas and Receivers652

© 2006 by Taylor & Francis Group, LLC



12.3.4.3.2. K-Distribution

The marginal characteristic function given by

c ðvÞ ¼ 1þ v2

b2

{ !2a

ð12:193Þ

corresponds to the K-distributed envelope whose PDF is

fRðrÞ ¼ 2b

GðaÞ
br

2

� �a
Ka21ðbrÞuðrÞ ð12:194Þ

where a is the shape parameter of the distribution, b denotes its scale parameter,
KNðtÞ is the Nth order modified Bessel function of the second kind and uðrÞ is the
unit step function. The pertinent Hankel transform for this example is found as

Ref. 36, Equation (20), p. 24:

ð1

0
xvþ

1
2 ðx2 þ a2Þ2u21JvðxyÞ ffiffiffi

xy
p

dx ¼ av2uyuþ
1
2 Kv2uðayÞ

2uGðuþ 1Þ ð12:195Þ

The resulting h2NðqÞ is

h2NðqÞ ¼ b2N

GðaÞ
ðb ffiffi

q
p Þa2N

2a21
KN2aðb ffiffi

q
p Þ ð12:196Þ

As a special case, when a is equal to unity, Equation 12.193 is the characteristic
function of the Laplace distribution for the quadrature components whose PDF is

given by

fYk ð ykÞ ¼
b

2
expð2blyklÞ 21 # yk # 1 ð12:197Þ

where lykl denotes the absolute value of yk and b denotes the scale parameter.

The corresponding h2NðqÞ is given by

h2NðqÞ ¼ b2Nðb ffiffi
q

p Þ12NKN21ðb ffiffi
q

p Þ ð12:198Þ
Another interesting case of the K-distribution arises when a ¼ 0:5: This

corresponds to the exponential distribution for the marginal envelope PDF.

Therefore, the K-distributed envelope PDF with a ¼ 0:5 is identical to the

Weibull distributed envelope with b ¼ 1. Although the characteristic PDF of the

Weibull SIRV is unknown in general, the characteristic PDF of theWeibull SIRV

for b ¼ 1 is obtained when a ¼ 0:5 in Equation 12.143. Finally, we point out
that the K-distributed envelope reduces to the Rayleigh envelope PDF when a
tends to 1:
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12.3.4.3.3. Student-t Distribution

The characteristic function for the Student-t distribution with scale parameter b

and shape parameter v is given by

c ðvÞ ¼ KnðbvÞðbvÞn
2n21GðvÞ ð12:199Þ

Note the functional similarity with the envelope PDF given by Equation

12.194. The Student-t distribution is referred to as the generalized Cauchy

distribution in Ref. 38 because the marginal PDF of the quadrature components

is given by

fYk ð ykÞ ¼
G nþ 1

2

� �
b

ffiffi
p

p
GðnÞ 1þ y2k

b2

{ !2n2
1
2

21 # xk # 1; n . 0 ð12:200Þ

where GðnÞ is the Eulero-Gamma function. The relevant Hankel transform (in

Ref. 36, Equation 3, p. 63) is

ð1

0
xuþvþ

1
2 KuðaxÞJvðxyÞ ffiffiffi

xy
p

dx ¼ 2vþuauGðuþ vþ 1Þyvþ 1
2

ð y2 þ a2Þuþvþ1 ð12:201Þ

Using Equation 12.130, h2NðqÞ is expressed as

h2NðqÞ ¼ 2Nb2nGðnþ NÞ
GðnÞðb2 þ qÞNþn ð12:202Þ

The Cauchy PDF for the quadrature components arises when n is set equal to
1=2 in Equation 12.200 and is given by

fYk ð ykÞ ¼
b

pðb2 þ y2kÞ
21 # xk # 1 ð12:203Þ

where b is the scale parameter. The corresponding h2NðqÞ is

h2NðqÞ ¼
2NbG

1

2
þ N

� �
ffiffi
p

p ðb2 þ qÞNþ 1
2

ð12:204Þ

Note that the Cauchy PDF does not have finite variance. However, this PDF is

useful in modeling impulsive noise.39 Finally, we point out that when b ¼ ffiffiffi
2n

p
and n tends 1 in Equation 12.200, the Student-t distribution reduces to the

Gaussian distribution.
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12.3.4.3.4. Rician Envelope PDF 2

We consider the Rician envelope PDF, arising from a nonzero mean complex

Gaussian process, given by

fRðrÞ ¼ r

a2
exp 2

ðr2 þ a2Þ
2a2

" #
I0

ar

a2

� �
ð12:205Þ

Plots of the Rician envelope PDF are shown in Figures 12.20 to 12.24 for several

values of a and a ¼ 1: Note that this PDF approaches the Rayleigh PDF as a
tends to zero. For convenience, we assume that s 2 ¼ ð1=2ÞEðR2Þ ¼ 1: Using
Equation 12.114, we have

h2ðr2Þ ¼ A exp 2
r2

2a2

{ !
I0

ar

a2

� �
ð12:206Þ

where:

A ¼
exp 2

a2

2a2

{ !
a2

Noting that35ð1

0
x expð2ax2ÞIvðbxÞJnðgxÞdx ¼ 1

2a
exp

b2 2 g2

4a

{ !
Jn

bg

2a

� �
Re{a} . 0; Re{n} . 21; ð12:207Þ

Equation 12.121 results in the characteristic function

cðvÞ ¼ exp 2
v2a2

2

{ !
J0

va

a2

� �
ð12:208Þ
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FIGURE 12.22 Rician envelope PDF, a ¼ 0:25; a ¼ 1:
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Recognizing that35

ð1

0
xl21expð2ax2ÞJmðbxÞJnðgxÞdx

¼ bmgna2
ðmþnþlþ2Þ

2

2mþnþ1Gðnþ 1Þ
X1
m¼0

G mþ n

2
þ mu

2
þ l

2
þ 1

� �
m!Gðmþ mþ 1Þ

� 2
b2

4a

{ !m

F 2m;2m2 m; nþ 1;
g2

b2

{ !
Re{a} . 0; Re{mþ nþ l} . 22; b . 0; g . 0 ð12:209Þ

where F
�
2 m;2m2 m; nþ 1; ðg2=b2ÞÞ is the four parameter hypergeometric

function, it follows from Equation 12.130 that

h2NðqÞ ¼ a2Nþ2

22Nþ1GðNÞ
X1
m¼0

Gðmþ N þ 1Þ
m!Gðmþ 1Þ

� 2a2

2a6

{ !m

F 2m;2m;N;
qa4

a2

{ !
ð12:210Þ

Since h2NðqÞ for this example involves an infinite series of hypergeometric

functions, its form is mathematically intractable. Therefore, the corresponding

multivariate SIRV PDF does note lend itself for use in practical applications.

We point out here that the lognormal envelope PDF and the Johnson

(unbounded) distribution are not admissible for extension to SIRVs. This is due to

the fact that h2ðqÞ obtained for each of these distributions fails to satisfy the
monotonicity conditions stated in Section 12.3.3. Table 12.1, presents a list of

marginal PDFs suitable for extension to SIRVs. Table 12.2 tabulates h2NðpÞ for
those marginal PDFs treated as envelope PDFs while Table 12.3 gives

those h2NðpÞ obtained from the associated marginal characteristic function.

Plots of Equation 12.108 with N ¼ 1 for the various SIRV PDFs are shown in

Figures 12.25–12.33. In all the plots, the covariance matrix used is given by

S ¼
1 0:5

0:5 1

" #
ð12:211Þ

Observe that each PDF is unimodal. However, the width and height of the peak

along with the behavior of the extreme values (i.e., the tails) differ significantly.

12.3.5. SIGNIFICANCE OF THE QUADRATIC FORM OF THE SIRV PDF

Thus far, our discussion has focused on techniques that can be used to obtain

the PDF of a SIRV starting from either the first order PDF or the first order

characteristic function. Given random data, we are also interested in the problem

Adaptive Antennas and Receivers656

© 2006 by Taylor & Francis Group, LLC



of approximating the distribution of the underlying data. The problem of

multivariate distribution identification is of interest in radar signal detection.

Since the background clutter is not known a priori, there is a need to identify the

underlying clutter PDF based on measurements obtained from a given

environment. Since the radar processes N pulses at a time, knowledge of the

joint PDF of the N samples is necessary in order to obtain the optimal radar signal

processor for the given clutter background. We present an important theorem

here for enabling us to address the distribution identification of a SIRV.

Theorem 4. The PDF of the quadratic form appearing in Equation 12.20 is

given by

fPðpÞ ¼ 1

2
N
2 G

N

2

� � p N
2
21hNðpÞ 0 # p # 1 ð12:212Þ

TABLE 12.1
Marginal PDFs Suitable for Extension to SIRVs

Marginal PDF fX(x)

Chi
2b

GðnÞ ðbxÞ
2n21expð2b2x2Þ

Weibull abxb21 expð2axbÞ

Generalized Rayleigh
ax

b2G
� 2
a

� exp½2� x
b

�a	
Generalized Gamma fRðrÞ ¼ ac

GðaÞ ðarÞ
ca21expð2arcÞ

Rician
xffiffiffiffiffiffiffiffiffi

12 r2
p exp

�
2

x 2

2ð12 r2Þ
�
I0
� rx2

2ð12 r2Þ
�

Gaussian
ffiffiffiffi
2p

p 21
exp

�
2

x2

2

�
Laplace

b

2
expð2blxklÞ

Cauchy
b

pðb2 þ x2kÞ

K-distribution
2b

GðaÞ
� bx
2

�a
Ka21ðbxÞuðxÞ

Student-t
G
�
nþ 1

2

�
b

ffiffiffi
p

p
GðnÞ

�
1þ x2k

b2
�2n2 1

2
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TABLE 12.2
SIRVs Obtained from the Marginal Envelope PDF

Marginal PDF h2N(p)

Chi ð22ÞN21APN
k¼1 Gkp

n2k expð2BpÞ

Gk ¼
{
N 2 1

k2 1

!
ð21ÞN2kBN2k GðnÞ

Gðn2 k þ 1Þ

A ¼ 2

GðnÞ ðbsÞ
2n

B ¼ b2s2

n # 1

Weibull
PN

k¼1 Ckp
ðkb=2Þ2N exp

�
2Apb=2

�
A ¼ as b

Ck ¼
Pk

m¼1 ð21ÞmþN2N A
k

k!

{
k

m

!
G
�
1þ mb

2

�
G
�
1þ mb

2
2 N

�
b # 2

Generalized

Rayleigh

PN21
k¼1 Dkp

ðka=2Þ2Nþ1 exp
�
2Bpða=2Þ

�
A ¼ s 2a

b2G

 2
a

�
B ¼ b2asa

Dk ¼
Pk

m¼1 ð21ÞmþN212N21 B
k

k!

{
k

m

!
G
�
1þ ma

2

�
G
�
2þ ma

2
2 N

�
a # 2

Generalized Gamma h2N ðpÞ ¼
PN21

k¼0 Fkpðca=2Þ2N exp
�
2Bpðc=2Þ

�

Fk ¼ ð22ÞN21A
N 2 1

k

0@ 1A G
ca

2

� �
G

ca

2
2 N þ k þ 1

� �

�
Xk
m¼1

Xm
l¼1

ð21Þmþl21 B
m

m!

G
‘c

2
þ 1

� �
G

‘c

2
2 k þ 1

� � p mc
2

ca # 2

Rician s2N

ð12 r2ÞN2ð1=2Þ
XN21
k¼0

N 2 1

k

{ !
ð21Þk r

2

� �k
jk expð2AÞ

jk ¼
Xk
m¼0

k

m

{ !
Ik22mðrAÞ; A ¼ ps2

2ð12 r2Þ
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Proof. First, we consider a spherically symmetric random vector (SSRV) X ¼
½X1;X2;…;XN	: Because a SSRV is a special case of the SIRV, the representation

theorem can be used to express X as

X ¼ ZS ð12:213Þ
where Z is a Gaussian random vector having zero mean and identity covariance

matrix and S is a nonnegative random variable with PDF fSðsÞ: Consider the
random variable

P0 ¼ XTX ð12:214Þ

TABLE 12.3
SIRVs Obtained from the Marginal Characteristic Function

Marginal PDF h2N(p)

Gaussian exp
�
2

P

2

�
Laplace b2N

�
b

ffiffi
p

p �12N
KN21

�
b

ffiffi
p

p �
Cauchy

2NbG
� 1
2
þ N

�
ffiffiffi
p

p ðb2 þ pÞNþð1=2Þ

K-distribution
b2N

GðaÞ
�
b

ffiffi
p

p �a2N

2a21
KN2a

�
b

ffiffi
p

p �
Student-t

2Nb2vG
�
nþ N

�
GðnÞðb2 þ pÞNþn

f R
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FIGURE 12.23 Rician envelope PDF, a ¼ 0:5; a ¼ 1:

Spherically Invariant Random Processes 659

© 2006 by Taylor & Francis Group, LLC



Using Equation 12.213 in Equation 12.214 gives

P0 ¼ ZTZS2 ð12:215Þ
Since ZTZ ¼ PN

i¼1 Z2i is the sum of the squares of independent identically

distributed Gaussian random variables having zero mean and unit variance, the

PDF of V ¼ ZTZ is a Chi Square distribution with N degrees of freedom.

Consequently,

fV ðvÞ ¼ v
N
2
21

2
N
2 G

N

2

� � exp 2
v

2

� �
v $ 0 ð12:216Þ
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FIGURE 12.24 Rician envelope PDF, a ¼ 0:9; a ¼ 1:
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FIGURE 12.25 Gaussian distribution, zero mean, unit variance.
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FIGURE 12.27 Cauchy distribution, b ¼ 1:
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FIGURE 12.26 Laplace distribution, b ¼ 1:
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FIGURE 12.28 K-Distribution, b ¼ 1; a ¼ 0:5:
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FIGURE 12.30 Chi-distribution, b ¼ 1; y ¼ 1:
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FIGURE 12.29 Student-t distribution, b ¼ 1; y ¼ 1:5:
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FIGURE 12.31 Generalized Rayleigh PDF, a ¼ 0:5; b ¼ 0:05:
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The transformation P0 ¼ VS2 then results in

fP0lSð p0lsÞ ¼
ð p0Þ N2 21

2
N
2 G

N

2

� � s2Nexp 2
p0

2s2

� �
ð12:217Þ

From the theorem of total probability, we have

fP0 ð p0Þ ¼
ð1

0

ð p0Þ N2 21

2
N
2 G

N

2

� � s2Nexp 2
p0

2s2

� �
fSðsÞds ð12:218Þ

Recall that

hNð p0Þ ¼
ð1

0
s2Nexp 2

p0

2s2

� �
fSðsÞds ð12:219Þ
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FIGURE 12.32 Weibull distribution, a ¼ 1; b ¼ 1:0:
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FIGURE 12.33 Rician PDF, r ¼ 0:5:
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Consequently, the PDF of P0 is expressed as

fP0ð p0Þ ¼ ð p0Þ N
2
21

2
N
2 Gð N

2
Þ hNð p

0Þ ð12:220Þ

Recall that a SIRV Y ¼ ½Y1; Y2;…; YN	T having a mean vector b and covariance
matrix S is related to SSRV X by the linear transformation

Y ¼ AXþ b ð12:221Þ
where S ¼ AAT: Then, the quadratic form appearing in Equation 12.214 can be

expressed as

P ¼ ðY2 bÞTS21ðY2 bÞ ð12:222Þ

However, Equation 12.222 is also the quadratic form appearing in Equation 12.20

as the PDFofY. SinceP ¼ P0; the PDFof the quadratic formP associatedwithY is

fPð pÞ ¼ ð pÞ N
2
21

2
N
2 G ð N

2
Þ hNð pÞ ð12:223Þ

This establishes the theorem. Thus, a SIRV is uniquely characterized by the

quadratic form appearing in its PDF. Knowledge of the quadratic form PDF is

sufficient to identify the SIRV PDF. This is an important result since it allows us to

reduce the multivariate distribution identification problem to the equivalent

problem of univariate distribution identification of the quadratic form. It is

emphasized that the PDF of P is invariant to the choice of m and S:We point out

that the invariance of the PDF of the quadratic form arises from the fact that a

SSRV arises from a uniform distribution over an N dimensional hypersphere of

radius R: The radius of the hypersphere remains unchanged regardless of whether
we consider a SIRV or a SSRV. Only the azimuthal angles and radial angle

change depending on whether the random vector is a SSRV or a SIRV. In context

of the radar problem, we are dealing with N complex samples or 2N quadrature

components. The results presented in this section are applicable when N is

replaced by 2N:

12.3.6. CONCLUSION

In this chapter we have pointed out a method to obtain the PDF of correlated

nonGaussian random vectors arising in the problem of radar clutter modelling.

The theory of SIRPs has been used to develop the multivariate PDFs. Various

techniques have been presented to obtain SIRV PDFs. Several examples are

provided to illustrate these techniques. The admissibility of the Chi envelope

PDF, Weibull envelope PDF, Generalized Rayleigh envelope PDF, Rician

envelope PDF, and Generalized Gamma envelope PDF as SIRVs has been

pointed out for the first time. Finally, we have obtained the PDF of the quadratic
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form of a SIRV and we have shown that this PDF remains unchanged regardless

of whether we are dealing with a SSRV or a SIRV. We have also established

that the quadratic form contains all the information that is required in order

to identify the SIRV PDF. As a consequence of this result, the problem of a

SIRV (multivariate) distribution identification has been reduced to the

equivalent identification of the univariate distribution of the nonnegative

quadratic form.

12.4. COMPUTER GENERATION OF SIMULATED

RADAR CLUTTER CHARACTERIZED AS SIRPS

12.4.1. INTRODUCTION

This investigation is motivated by a desire to simulate correlated nonGaussian

radar clutter. Various investigators have reported experimental results where

nonGaussian marginal PDFs have been used to model the clutter. Usually, radars

process N samples at a time. Statistical characterization of the clutter requires the

specification of the joint PDF of the N samples. In addition, the clutter may be

highly correlated. Hence, the joint PDF must take into account the correlation

between samples. Statistical characterization of the clutter is necessary if an

optimal radar signal processor is to be obtained. For use of the well known

likelihood ratio test, it is necessary to have closed form expressions for the joint

PDF of the N clutter samples in order to obtain the optimal radar signal processor.

In most cases, it is difficult to evaluate the performance of the optimal radar signal

processor analytically when the clutter samples are correlated and nonGaussian.

Then computer simulation may be necessary. Therefore, there is a need to

develop efficient procedures to facilitate computer simulation of the clutter.

A library of multivariate nonGaussian PDFs has been developed in Section 12.3,

using the theory of SIRPs and SIRVs. In view of the large number of parameters

that are free to be specified, the library of multivariate nonGaussian PDFs can be

used to approximate many different radar clutter scenarios. In this section we

concern ourselves with the development of computer simulation procedures for

the library of nonGaussian PDFs obtained in Section 12.3 so that the performance

of any radar signal processor can be evaluated for a variety of different clutter

scenarios. Another issue addressed in this section is performance assessment of

the simulation procedures.

It has been pointed out in Section 12.3 that the quadratic form appearing in

the PDF of the SIRV contains all the information necessary to identify the PDF of

the underlying SIRV. We make use of this result in order to assess the

performance of the simulation procedures. Some interesting simulation

techniques have been proposed for SIRVs in Refs. 18 and 20. The technique

suggested in Ref. 18 makes use of Meijer’s G-functions. These functions are

generalizations of Hypergeometric functions not lending themselves to the

development of simple elegant simulation procedures. The technique suggested

in Ref. 20 requires transformations from rectangular to spherical coordinates
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and then back again. Secondly, this simulation procedure involves the use of the

inverse distribution function approach for a rather complicated distribution

function. The approach developed in this chapter is simpler to implement than

those proposed in Refs. 18 and 20. In addition, a new approach is proposed for

assessing the effectiveness of the simulation procedure.

The problem of computer generation of correlated nonGaussian radar clutter

is equivalent to the problem of generating random variables with a jointly

specified marginal PDF and covariance matrix. While the problem of generating

random sequences with either a specified PDF or prescribed covariance function

has been well treated,34 the joint problem has received limited attention. In

general, it has been possible to control either the PDF or the correlation function

but not both simultaneously. Previous attempts5,8,10–12 to address the problem of

generating random sequences with jointly specified marginal PDF and covariance

function have not been successful because the procedures proposed therein made

use of zero memory nonlinear (ZMNL) transformations on a correlated Gaussian

sequence to obtain the desired nonGaussian sequence. Consequently, the

covariance matrix of the nonGaussian sequence was related to that of the

Gaussian sequence in a rather complicated manner. Hence, given a certain

covariance matrix for the nonGaussian sequence, it was not possible to determine

the corresponding covariance matrix of the Gaussian sequence. Furthermore, not

all nonlinear transformations gave rise to nonnegative definite covariance

matrices at their outputs.33,34 Thus, using ZMNL transformations on a correlated

Gaussian sequence does not offer a practical solution to the joint problem. The

techniques presented in this chapter successfully overcome the drawbacks of the

previous efforts. This is due to the fact that SIRPs belong to the class of

exogenous product models for radar clutter, which allows for independent control

of the marginal PDF and correlation function.

In Section 12.4.2, we review some definitions and background information

pertaining to the theory of SIRPs. Section 12.4.3 presents two canonical

simulation procedures for generating SIRVs. Performance assessment of the

simulation procedures is discussed in Section 12.4.4. Finally, conclusions are

presented in Section 12.4.5.

12.4.2. PRELIMINARIES

We begin by restating the definitions for a SIRV and a SIRP. A SIRV is a random

vector (real or complex) whose PDF is uniquely determined by the specification

of a mean vector, a covariance matrix, and a characteristic first order PDF.

Equivalently, the PDF of a SIRV can also be referred to as an elliptically

contoured distribution. A SIRP is a random process (real or complex) such that

every random vector obtained by sampling this process is a SIRV. The work of

Yao15 gave rise to a representation theorem that can be stated as follows

(see Theorem 1):
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If a random vector is a SIRV, then there exists a nonnegative random

variable S such that the PDF of the random vector conditioned on S is

a multivariate Gaussian PDF.

We consider the product given by X ¼ ZS; where X ¼ ½X1…XN	T denotes
the SIRV, Z ¼ ½Z1…ZN	T is a Gaussian random vector with zero mean and

covariance matrix M, and S is a nonnegative random variable with PDF fSðsÞ:
Since it is desirable to independently control the correlation properties and the

nonGaussian envelope PDF, Z and S are assumed to be statistically independent.

The PDF of X conditioned on S is (see Equation 12.14)

fXlSðxlsÞ ¼ ð2pÞ2 N
2 lMl2

1
2 s2Nexp 2

p

2s2

� �
ð12:224Þ

where p is a nonnegative quadratic form given by p ¼ xTM21x and lMl denotes
the determinant of the covariance matrix M. The PDF of X is given by

(see Equation 12.15 and Equation 12.16)

fXðxÞ ¼ ð2pÞ2 N
2 lMl2

1
2 hNð pÞ ð12:225Þ

where

hNð pÞ ¼
ð1

0
s2Nexp 2

p

2s2

� �
fSðsÞds ð12:226Þ

The PDF of the random variable S is called the characteristic PDF of the SIRV.

Therefore, it is apparent that the PDF of a SIRV is completely determined by the

specification of a mean vector, a covariance matrix, and a characteristic first order

PDF. In addition, the PDF of the SIRV is a function of a nonnegative quadratic

form. However, except for the Gaussian case, dependence on the quadratic form

is more complicated than the simple exponential. Therefore, an SIRP can be

regarded as a generalization of the familiar Gaussian random process. We point

out that the covariance matrix of the SIRV is given by S ¼MEðS2Þ where EðS2Þ
is the mean square value of the random variable S. It is seen that the covariance

matrix of the SIRV normalized by the mean square value of S is the covariance

matrix of the Gaussian random vector. Note that it is possible to set the

covariance matrix of the SIRV equal to that of the Gaussian random vector by

requiring EðS2Þ to be equal to unity. The desired nonGaussian PDF can be

obtained by choosing fSðsÞ appropriately. Thus, the SIRV formulation for radar

clutter modelling affords independent control over the nonGaussian PDF of the

clutter of its correlation properties. Several techniques are available in Section

12.3 for obtaining hNð pÞ: Note that the Gaussian random vector is a special case

of a SIRV and is obtained when fSðsÞ ¼ dðs2 1Þ where dðtÞ is the unit impulse
function. An interesting interpretation of the representation theorem is that every

SIRV is the modulation of a Gaussian random vector by a nonnegative random

variable.
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Many of the attractive properties of Gaussian random vectors also apply to

SIRVs. The most relevant property of SIRVs for the purpose of computer

simulation is the closure property under linear transformation15 stated below

(see Theorem 2, Section 12.2.3):

If X is a SIRV with characteristic PDF fSðsÞ; then
Y ¼ AXþ b ð12:227Þ

is also a SIRV with the same characteristic PDF. It is assumed that A
is a nonsingular matrix and b is a known vector having the same

dimension as X.

Theorem 2 provides us with a powerful technique for simulating SIRVs.

A white SIRV is defined as one that has a diagonal covariance matrix. In other

words, the components of the white SIRV are uncorrelated but not necessarily

independent. We can start with a zero mean white SIRV X having identity

covariance matrix and perform the linear transformation given by Equation

12.227 to obtain a SIRV Y having a nonzero mean and desired covariance matrix

S. The matrix A and the vector b are given by

A ¼ ED
1
2

b ¼ my

ð12:228Þ

where E is the matrix of normalized eigen-vectors of the covariance matrix S, D
is the diagonal matrix of eigen-values of S and my is the desired nonzero mean

vector.

In many instances it is not possible to obtain fSðsÞ for a SIRV in closed form,

even though its existence is guaranteed. In such cases, an alternate approach must

be used in order to characterize the SIRV. The following theorem can be used to

completely characterize a white SIRV having zero mean and identity covariance

matrix (see Theorem 3, Section 12.2.3):

A random vector X ¼ ½X1…XN	T is a zero mean white SIRV having

identity covariance matrix if and only if there exist random variables

R [ ð0;1Þ; Q [ ð0; 2pÞ and Fk [ ð0;pÞ; ðk ¼ 1;…N 2 2Þ such
that when the components of X are expressed in the generalized

spherical coordinates

X1 ¼ R cosðF1Þ

Xk ¼ R cosðFkÞ
Yk21
i¼1

sinðFiÞ 1 , k # N 2 2

XN21 ¼ R cosðQÞ
aN22
i¼1

sinðFiÞ

XN ¼ R sinðQÞ
YN22
i¼1

sinðFiÞ

ð12:229Þ
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then the random variables R; Q and Fk are mutually statistically

independent and have PDFs of the form

fRðrÞ¼ rN21

2
N
2
21G N

2


 �hNðr2ÞuðrÞ
fFk

ðfkÞ¼
G N2kþ1

2


 �
ffiffi
p

p
G N2k

2


 �sinN212kðfkÞ½uðfkÞ2uðfk2pÞ	

fQðuÞ¼ð2pÞ21½uðuÞ2uðu22pÞ	

ð12:230Þ

where GðnÞ is the Eulero Gamma function and uðtÞ is the unit step
function.

As a consequence of Theorem 3, any SIRV with zero mean and identity

covariance matrix can be represented in generalized spherical coordinates that

are mutually and statistically independent regardless of the SIRV considered.

Also, note that the PDFs of Q and Fk ðk ¼ 1;…N 2 2Þ are functionally

independent of the white SIRV considered. Only the PDF of R changes from one

white SIRV to another. Note that R2 ¼ PN
k¼1 X2k ¼ XTX: Hence R is the norm of

the SIRV.

Another important feature of the SIRV is that the quadratic form appearing in

its PDF contains all the information necessary to identify the PDF. It follows that

knowledge of the PDF of the quadratic form of the SIRV is sufficient to identify

the PDF of the corresponding SIRV21 (see Theorem 4):

The PDF of the quadratic form appearing in Equation 12.225 is given by

fPð pÞ ¼ 1

2
N
2 G N

2


 � p N
2
21hNð pÞ 0 # p # 1 ð12:231Þ

and remains unchanged regardless of whether or not the SIRV is white.

The theorems reviewed in this section will be made use of in the proposed

simulation approach, discussed in Section 12.4.3, and in assessing the

performance of the simulation procedure, discussed in Section 12.4.4.

In the context of the problem of radar clutter modeling and simulation, the

bandpass process YðtÞ ¼ Re½ ~YðtÞexp ð jv0tÞ	 can be expressed in terms of the

corresponding complex, wide sense stationary random processes ~YðtÞ: More
precisely, we obtain N complex samples by sampling the complex random

process ~YðtÞ ¼ YcðtÞ þ jYsðtÞ;where the subscripts c and s denote the in-phase and
out-of-phase quadrature components, respectively. This is equivalent to working

with a real vector of 2N quadrature components, and this is the approach taken in

this chapter. Therefore, the results presented in this section are applied to

the problem of radar clutter modeling with N replaced by 2N: For ease of

reference, the library of nonGaussian SIRV PDFs obtained in Section 12.3 is

repeated here. However, h2Nð pÞ for the SIRVs with known characteristic PDF
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are listed in Table 12.4. The corresponding characteristic PDFs are listed in

Table 12.5. Table 12.6 lists h2Nð pÞ for those SIRVs whose characteristic PDF is
unknown.

12.4.3. TWO CANONICAL SIMULATION PROCEDURES FOR

GENERATING SIRVS

In this section, we concern ourselves with two simulation procedures for

generating the SIRVs listed in Tables 12.4 and 12.5. The first simulation

procedure to be discussed is applicable when the characteristic PDF, fSðsÞ; is
known. For each of the PDFs listed in Table 12.4, the characteristic PDF fSðsÞ is
tabulated in Table 12.6, where EðS2Þ ¼ 1: Since the representation theorem

results in the covariance matrix of the SIRV being given by S ¼MEðS2Þ; the
choice of EðS2Þ ¼ 1 makes S identical to M, the covariance matrix of

the Gaussian random vector Z. However, as shown in Table 12.7, the PDFs for

the distributions in Table 12.4, as commonly expressed, do not have unit mean

square value. In order to obtain the random variable S; with unit mean square
value, and the corresponding PDF fSðsÞ; we generate the random variable V

having PDF fV ðvÞ and mean square value EðV2Þ ¼ a2; and perform the scaling

S ¼ V
a
to obtain the desired S: The simulation procedure for these SIRV PDFs is

fairly simple and is stated below:

(1) Generate a sample vector of a white zero mean Gaussian random

vector Z, having identity covariance matrix.

(2) Then generate a sample value of the random variable V from the PDF

fV ðvÞ: Denote the mean square value of V by a2:
(3) Normalize the sample value of the random variable V by a to obtain a

sample value of the modulating random variable S: In other words
generate S ¼ V

a
:

TABLE 12.4
h2N(p) for SIRVs with Known Characteristic PDF

Marginal PDF h2N(p)

Laplace b2N
�
b

ffiffi
p

p �12N
KN21

�
b

ffiffi
p

p �

Cauchy
2NbG

� 1
2
þ N

�
ffiffiffi
p

p ðb2 þ pÞNþð1=2Þ

K-distribution
b2N

GðaÞ
�
b

ffiffi
p

p �a2N

2a21
KN2a

�
b

ffiffi
p

p �

Student-t
2Nb2nGðnþ NÞ
GðnÞðb2 þ pÞNþn
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TABLE 12.5
h2N(p) for SIRVs with Unknown Characteristic PDFs

Marginal PDF h2N(p)

Chi ð22ÞN21APN
k¼1 Gkp

n2k expð2BpÞ

Gk ¼
N 2 1

k2 1

{ !
ð21Þk21Bk21 GðnÞ

Gðn2 k þ 1Þ

A ¼ 2

GðnÞ ðbsÞ
2n

B ¼ b2s 2

n # 1

Weibull
PN

k¼1 Ckp
ðkb=2Þ2N exp

�
2Apðb=2Þ

�
A ¼ as b

Ck ¼
Xk
m¼1

ð21ÞmþN2N Ak

k!

k

m

{ ! G 1þ mb

2

� �
G 1þ mb

2
2 N

� �

b # 2

Gen. Rayleigh
PN21

k¼1 Dkp
ðka=2Þ2Nþ1 exp

�
2Bpða=2Þ

�
A ¼ s2a

b2G
2

a

� �

B ¼ b2as a

Dk ¼
Xk
m¼1

ð21ÞmþN212N21 B
k

k!

k

m

{ ! G 1þ ma

2

� �
G 2þ ma

2
2 N

� �

a # 2

Rician s 2N

ð12 r2ÞN2ð1=2Þ
XN21
k¼0

N 2 1

k

{ !
ð21Þk r

2

� �k
jk expð2AÞ

jk ¼
Xk
m¼0

k

m

{ !
Ik22mðrAÞ; A ¼ ps 2

2ð12 r2Þ
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(4) Generate the product corresponding to X ¼ ZS: At this step, we have
a sample vector of a white SIRV having zero mean and identity

covariance matrix.

(5) Finally, perform the linear transformation given by Equation 12.228

to obtain a sample vector of the SIRV Y with desired mean and

covariance matrix.

Figure 12.34 shows the simulation procedure presented above.

The subroutine RNNOR in IMSL was used for generating the sample

vectors of the Gaussian random vector Z. Interestingly enough, the PDFs listed

TABLE 12.6
Characteristic PDF for SIRVs Listed in Table 12.4, [E(S 2) 5 1]

Marginal PDF fS(s)

Laplace ab2s exp 2
a2b2s2

2

{ !
uðsÞ

Cauchy a2b2s23 exp 2
b2

2a2s2

{ !
uðsÞ

K-distribution 2ab

GðaÞ2a ðbasÞ
2a21exp 2

b2a2s2

2

{ !
uðsÞ

Student-t 2ab

GðnÞ2n b
2n21ðasÞ2ð2nþ1Þexp 2

b2

2a2s2

{ !
uðsÞ

TABLE 12.7
Related PDF fV (v)

Marginal PDF fV (n) a2 5 E(V )2

Laplace b2n exp 2
b2n2

2

{ !
uðnÞ

2

b2

Cauchy b2n23 exp 2
b2

2n2

{ !
uðnÞ 1

K-distribution 2ab

GðaÞ2a ðbnÞ
2a21exp 2

b2n2

2

{ !
uðnÞ

2a

b2

Student-t 2b

GðnÞ2n b
2n21v2ð2nþ1Þ exp 2

b2

2n2

{ !
uðnÞ

b2

2ðn2 1Þ
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in Table 12.7 can be related to the PDF of the gamma distribution as discussed

below. The PDF fV ðvÞ for the K-distributed SIRV is a Chi PDF. We first

address the random variable generation for the Chi PDF and then provide the

transformations for obtaining the random variables for the other PDFs listed in

Table 12.7.

Consider the standard Gamma distribution given by

fT ðtÞ ¼ ta21

GðaÞ expð2tÞ t . 0 ð12:232Þ

where a denotes the shape parameter and GðaÞ is the Eulero-Gamma function.
The random variable V for the Chi PDF is obtained by the transformation V ¼ffiffiffi
2T

p
b

: Samples of the random variable T are readily generated by using the IMSL

subroutine RNGAM. The procedure for generating the Chi distributed random

samples needed for the K-distributed SIRV is summarized below.

1. Generate samples of the random variable T for the standard Gamma

distribution of Equation 12.232 by using the IMSL subroutine

RNGAM.

2. Perform the transformation V ¼
ffiffiffi
2T

p
b
:

The PDF fV ðvÞ for the Laplace SIRV is a Rayleigh PDF and is obtained from that

of the K-distributed SIRV by letting a ¼ 1: The random variable V for the PDF

fV ðvÞ listed in Table 12.7 for the Student-t SIRV is obtained from the standard

Gamma PDF of Equation 12.232 by the transformation V ¼ bffiffiffi
2T

p and letting

a ¼ n: Finally, the PDF fV ðvÞ for the Cauchy SIRV is obtained from that of the

Student-t SIRV by letting n ¼ 1: The procedure for generating the random

samples needed for the Student-t SIRV is summarized below.

Gaussian random
number generator

Generator for
V

S = V/a

Z X

V

Y
Y = AX + b

FIGURE 12.34 Simulation scheme for SIRVs with known characteristic PDF.
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1. Generate samples of the random variable T for the standard Gamma

distribution of Equation 12.232 by using the IMSL subroutine

RNGAM.

2. Perform the transformation V ¼ bffiffiffi
2T

p :

We now concern ourselves with the second simulation procedure that is

applicable when the characteristic PDF is unknown, as is the case for SIRVs

listed in Table 12.5. This alternate approach makes use of Theorem 3. In

particular, this procedure requires the capability to generate the independent

random variables, R; Q, and Fk ðk ¼ 1; 2;…;N 2 2Þ: Generation of the random
variables Q and Fk ðk ¼ 1; 2;…;N 2 2Þ is extremely difficult from a

computational standpoint. This problem is overcome as follows.

Recall that the PDFs of Q and Fk ðk ¼ 1; 2;…;N 2 2Þ remain unchanged
regardless of the white SIRV considered. Only the PDF of R changes from one

white SIRV to another. Furthermore, since a Gaussian random vector is a

member of the family of SIRVs, a white Gaussian random vector having zero

mean and identity covariance matrix admits a representation of the form of

Equation 12.229. It follows that

Xk

R
¼ Zk

RG
k ¼ 1; 2;…;N ð12:233Þ

where R is the norm of the desired white SIRV and RG is the norm of the zero

mean white Gaussian random vector. Consequently, the components of the

desired white SIRV are obtained as

Xk ¼ Zk

RG
R k ¼ 1; 2;…;N ð12:234Þ

The simulation procedure is stated below:

(1) Generate a sample vector of the white, zero mean Gaussian random

vector Z having identity covariance matrix.

(2) Compute the norm RG ¼ kZk ¼
ffiffiffiffiffiffi
ZTZ

p
of the sample vector Z.

(3) Generate a sample of the norm R ¼ kXk ¼
ffiffiffiffiffiffi
XTX

p
of the white SIRV

from the PDF of R given by Equation 12.230.

(4) Generate a sample vector of the white SIRV X by computing X ¼
Z

RG
R:

(5) Finally, perform the linear transformation given by Equation 12.228

to obtain a sample of the SIRV Y with desired mean and covariance

matrix.

The simulation procedure is shown schematically in Figure 12.35. Note that

this simulation procedure avoids the explicit generation of the variables Q and

Fk ðk ¼ 1;…;N 2 2Þ: The generation procedure for a white Gaussian random
vector is well known. Therefore, we need to concern ourselves only with the
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development of a suitable generation scheme for samples of the norm R of the

white SIRVX. Generation of the samples of R is not trivial. This is due to the fact

that the PDF of R is generally not in a simple functional form. Consequently, it

may not be possible to conveniently evaluate analytically the distribution

function and its inverse. Hence, generation methods based on the inverse

distribution function do not offer a practical solution to this problem. Therefore,

in this chapter we generate samples of R by making use of the approach called the

“Rejection Method”. The rejection method can be used to generate samples of

random variables whose cumulative distribution functions are not known, but

whose PDFs are known explicitly.40 The rejection procedure assumes knowledge

of the maximum value of the PDF of R for a given SIRV PDF and an estimate for

the finite range of the PDF of R so that the area under the PDF curve is close to

unity. These quantities are denoted by c and b; respectively. We discuss the

rejection procedure in detail in Appendix V. The Rejection method is

summarized below:

(1) Generate a uniform random variate U1 on the interval ð0; bÞ:
(2) Generate another uniform variate U2 on the interval ð0; cÞ:
(3) IfU2 # fRðU1Þ; then R ¼ U1:Otherwise, rejectU1 and return to step 1.

Note that the simulation procedures of Figures 12.34 and 12.35 are canonical as

their forms remain unchanged from the simulation of one SIRV to another. Even

though the scheme of Figure 12.35 can be used even when fSðsÞ is known, the
scheme of Figure 12.34 is preferred when S can be generated easily. The linear

transformation of Equation 12.228 is a filtering operation. In both schemes, pre-

modulation filtering is equivalent to post-modulation filtering. This results from

the fact that the representation theorem is valid whether or not the SIRV X and

the Gaussian random vector Z are white.

12.4.4. PERFORMANCE ASSESSMENT OF THE SIMULATION SCHEMES

In this section we concern ourselves with the performance assessment

of the simulation procedures developed in Section 12.4.3. We point out

Gaussian random
number generator

Z

Z

R

X Y

RG = ||Z || Z/RG

Z/RG

Generator
for R=||X ||

Y = AX + b

FIGURE 12.35 Simulation scheme for SIRVs with unknown characteristic PDF.
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that the simulation procedures developed in Section 12.4.3 are exact in the

sense they are derived without approximation from theory. Hence, departures

from the exact SIRVs will depend for the most part on the nonideality of the

uniform random number generators and on the number of samples used.

Empirical assessment of the simulation procedures is necessary for practical

applications.

One possible approach for assessing the distributional properties of the

simulated data is to perform a hypothesis test on the marginal distributions of

the components of the SIRV. More precisely, the problem is stated as follows.

H0: The hypothesis that the simulated data is from the desired distribution

H1: The hypothesis that the simulated data is not from the desired

distribution.

For a fixed Type-1 error probability (i.e., the probability thatH1 is accepted given

that H0 is true) each marginal distribution can be checked by employing one

of the commonly used goodness of fit procedures. Since the components of the

random vectors are not statistically independent, we are now confronted with

the problem of developing a goodness of fit test for the multivariate data. In

general, it is very difficult to obtain the overall significance level of the test (i.e.,

the probability that H0 is accepted given that H0 is true) for the multivariate

goodness of fit testing procedure.

However, an attractive feature of SIRVs is that the quadratic form p appearing

in the SIRV PDF contains all the information necessary for identifying the

PDF of the SIRV. In other words, knowledge of the PDF of the quadratic form

is sufficient to determine the underlying SIRV PDF. Furthermore, the quadratic

form PDF remains unchanged regardless of whether the SIRV is white or

colored. The PDF of the quadratic form appearing in the SIRV PDF is given by

Equation 12.231. For the radar problem where we deal with N complex samples

or 2N quadrature components, note that we make use of Equation 12.231 with N

replaced by 2N: Hence, we base our goodness of fit test procedure for the

generated SIRVs on the PDF of the quadratic form p: Note that we have now
reduced the multivariate problem to an equivalent univariate problem involving

the goodness of fit test for the PDF of the quadratic form.

In the examples presented in this section, we generated m ¼ 1000

realizations of the random vector Y with N ¼ 2 complex samples and from

these computed one thousand samples of the quadratic form r for each of the
non-Gaussia SIRVs whose PDFs are listed in Tables 12.4 and 12.6. In each

case, we used the corresponding theoretical PDF of the quadratic form given

by Equation 12.231 to test the distribution of the generated quadratic form.

The frequency histograms for the generated data and the corresponding

theoretical PDFs are shown in Figures 12.36–12.43. In addition, a Chi-Square

test was performed on the generated data with the Type-1 error fixed at 0.05

and the null hypothesis was not rejected in each case. The frequency

histograms provide a good idea about the true distributions for large sample
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sizes. Observe that the empirical PDFs are very close to the theoretical PDFs.

Note that the procedure used in this section to assess the distributional

assumptions of the random samples from the SIRV PDFs is a formal goodness

of fit test. Similar procedures have been proposed to test for multivariate

normality in Refs. 41 and 42.

12.4.5. CONCLUSIONS

In this chapter, we have presented two schemes that can be used in practice to

simulate correlated nonGaussian radar clutter, when the clutter can be modeled as

a SIRP. We pointed out that the simulation schemes developed are canonical
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FIGURE 12.37 Theoretical and empirical quadratic form PDFs for Cauchy SIRV.
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FIGURE 12.36 Theoretical and empirical quadratic form PDFs for Laplace SIRV.
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schemes and do not change form the simulation of one SIRV to another. A new

approach, based on the PDF of the quadratic form appearing in the SIRV PDF,

was used to perform a goodness of fit test in order to assess performance of the

proposed simulation schemes. Performance assessment based on this scheme

showed excellent agreement between the theoretical and empirical PDFs of the

quadratic form. Finally, it was pointed out that use of this technique reduced the

goodness of fit test from a multivariate testing procedure to a univariate testing

procedure resulting in tremendous processing simplicity. Therefore, this

procedure lends itself very well to practical applications.

0.8

0.6

0.4

0.2

0.0

0 10 3020
p

f P
(p

)

FIGURE 12.38 Theoretical and empirical quadratic form PDFs for K-distributed SIRV.
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FIGURE 12.39 Theoretical and empirical quadratic form PDFs for student SIRV.
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FIGURE12.41 Theoreticalandempiricalquadratic formPDFsforgeneralizedRayleighSIRV.
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FIGURE 12.42 Theoretical and empirical quadratic form PDFs for Weibull SIRV.
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FIGURE 12.40 Theoretical and empirical quadratic form PDFs for Chi distributed SIRV.
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12.5. DISTRIBUTION APPROXIMATION TO RADAR

CLUTTER CHARACTERIZED BY SIRPS

12.5.1. INTRODUCTION

This investigation is motivated by a desire to characterize correlated nonGaussian

radar clutter by approximating the underlying PDF of the clutter. Various

investigators have reported experimental results where nonGaussian marginal

PDFs have been used to model the clutter. Usually, radars process N samples at a

time. Statistical characterization of the clutter requires the specification of the

joint PDF of the N samples. In addition, the clutter may be highly correlated.

Hence, the joint PDF must take into account the correlation between samples.

Statistical characterization of the clutter is necessary if an optimal radar signal

processor is to be obtained. For use of the well known likelihood ratio test, it is

desirable to have a closed form expression for the joint PDF of the N clutter

samples in order to obtain the optimal radar signal processor. The joint PDF of

the N clutter samples can be easily specified when the clutter is Gaussian.

However, when the clutter is nonGaussian and is correlated, many different joint

PDFs of the clutter samples can result in the same set of marginal (univariate)

distributions having a specified nonGaussian character. The multivariate

nonGaussian PDF is uniquely determined from the marginal distribution only

when the samples are statistically independent.

Specification of the multivariate PDF is generally a nontrivial problem with

no simple best solution.43 The theory of SIRPs provides a powerful mechanism to

obtain the joint PDF of the N correlated, nonGaussian clutter samples. Many of

the tractable properties of the Gaussian random process also apply to SIRPs.

Typically, background clutter is not known a priori. Hence, while dealing with

real world data, there is a need to approximate the clutter PDF from a set of
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FIGURE 12.43 Theoretical and empirical quadratic form PDFs for Rician SIRV.
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measurements, which in turn needs a library of multivariate nonGaussian PDFs.

Such a library has been obtained in Section 12.3 based on the theory of SIRPs.

The multivariate PDFs thus obtained are functions of nonnegative quadratic

forms. Therefore, these PDFs are sometimes referred to as elliptically symmetric

distributions. The multivariate Gaussian PDF belongs to the family of SIRPs. The

multivariate Pearson types II and VII are examples of elliptically symmetric

multivariate nonGaussian PDFs. SIRPs have received considerable attention over

the past two decades since many of the elegant and mathematically tractable

properties of the multivariate Gaussian distribution generalize to this class of

distributions. Applications of SIRPs can be found in the random flight problem,14

signal detection,16 speech signal modeling,17 and radar clutter modeling.19,21

In practice, the clutter PDF encountered in radar signal processing is not

known a priori. Consequently, a scheme that approximates the clutter PDF based

on a set of measured data is necessary. Currently, available tests such as, the

Kolmogorov–Smirnov test and the Chi-Square test, address the problem of

goodness-of-fit for random data. In particular, these tests provide information

about whether a set of random data is statistically consistent with a specified

distribution, to within a certain confidence level. However, if the specified

distribution is rejected, these tests cannot be used for approximating the

underlying PDF of the random data. Moreover, these tests require large sample

sizes for reliable results.

In practice, only a small number of samples may be available. Therefore, the

scheme used should be efficient for small sample sizes. A new algorithm based on

sample order statistics has been developed in Ref. 41 for univariate distribution

identification. This algorithm has two modes of operation. In the first mode, the

algorithm performs a goodness-of-fit test. Specifically, the test determines, to a

desired confidence level, whether random data is statistically consistent with a

specified probability distribution. In the second mode of operation, the algorithm

approximates the PDF underlying the random data. In particular, by analyzing the

random data and without any a priori knowledge, the algorithm identifies from a

stored library of PDFs that density function which best approximates the data.

Estimates of the scale, location, and shape parameters of the PDF are provided by

the algorithm. The algorithm typically works well with samples sizes that may be

as small as 50 or 100 samples. An extension of this algorithm for the multivariate

Gaussian PDF has been considered in Refs. 41 and 44.

In this Section 12.5, using certain properties of SIRPs, we adopt the algorithm

developed in Ref. 41 to identify the underlying distribution of a given set of data. In

particular, we first show that the multivariate distribution approximation problem

for SIRPs is reduced to an equivalent univariate distribution approximation

problem. The new algorithm developed by Ozturk in Ref. 41 is used for the

univariate approximation problem. Section 12.5.2 presents definitions. Sections

12.5.3 to 12.5.5 summarize the algorithm developed in Ref. 41 for approximating

the univariate PDF of a set of random data. In Section 12.5.6 we present a

procedure for the goodness of fit test for PDFs arising from SIRPs. The proposed

distribution identification algorithm is discussed in Section 12.5.7. Section 12.5.8
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proposes a method to estimate the shape parameter based on the procedure

developed in Section 12.5.7. Finally, conclusions are presented in Section 12.5.9.

12.5.2. DEFINITIONS

Let fY ð yÞ denote the PDF of a random variable Y : Consider the linear

transformation defined by

x ¼ byþ a ð12:235Þ
The PDF of X is given by

fXðxÞ ¼ 1

lbl
fY

x2 a

b

� �
ð12:236Þ

where a and b are defined to be the location and scale parameters of fXðxÞ;
respectively. The mean mx and variance sx of the random variable X are given by

mx ¼ E½X	
s 2
x ¼ E½ðX 2 mxÞ2	

ð12:237Þ

Although the mean and the variance are related to the location and scale

parameters, note that the location parameter is not the mean value and the scale

parameter is not the square root of the variance, in general. However, for a

standardized Gaussian PDF fY ðyÞ with zero mean and unit variance, the location
parameter is the mean of X and the scale parameter is the standard deviation

(square root of the variance) of X:
The coefficient of skewness, a3; and the coefficient of kurtosis, a4; of X, are

defined to be

a3 ¼ E½ðX 2 mxÞ3	
s3
x

a4 ¼ E½ðX 2 mxÞ4	
s4x

ð12:238Þ

It is readily shown that a3 and a4 are invariant to the values of mx and sx: For any
PDF that is symmetric about the mean, a3 ¼ 0: For the case of the Gaussian
distribution, a3 ¼ 0 and a4 ¼ 3:

12.5.3. GOODNESS OF FIT TEST

In this section, we introduce a general graphical method for testing whether a set

of random data is statistically consistent with a specified univariate distribution.

The proposed method not only yields a formal goodness-of-fit test but also

provides a graphical representation that gives insight into how well the random

data is representative of the specified distribution (null hypothesis). Using the

standard normal distribution with zero mean and unit variance as a reference

distribution, the standardized sample order statistics are represented by a system
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of linked vectors. The terminal point of these linked vectors, as well as the shape

of their trajectories, are used in determining whether or not to accept the null

hypothesis.

In this section we first give a brief description of the corresponding test

statistic and then explain the goodness of fit test procedure. For illustration

purposes, we consider the null distribution to be Gaussian. However, the

proposed procedure works for any null hypothesis.

Let Xi; i ¼ 1; 2;…; n denote the ith sample from a Gaussian distribution with

mean m and variance s 2: Let X1:n # X2:n # · · · # Xn:n denote the ordered

samples obtained by ordering Xi; i ¼ 1; 2;…; n: We define

Yi ¼ lXi 2 
Xl
S

i ¼ 1; 2;…; n ð12:239Þ
where 
X ¼ P

Xi=n is the sample mean and S ¼ {
PðXi 2 
X Þ2=ðn2 1Þ}1=2 is the

sample standard deviation. The standardized order statistics are denoted by Yi:n
i ¼ 1; 2;…; n and are obtained by ordering the Yi; i ¼ 1; 2;…; n: It follows that

Yi:n ¼ lXi:n 2 
Xl
S

i ¼ 1; 2;…; n ð12:240Þ

The ith linked vector is characterized by its length and orientation with respect to

the horizontal axis. Let Gi:n denote the order statistic from the standard normal

reference distribution. Also, let mi:n ¼ E½Gi:n	: The length of the ith vector, ai; is
obtained from the magnitude of the ith standardized sample order statistic, while

its orientation ui is related to mi:n: More specifically, by definition,

ai ¼ Yi:n
n

ui ¼ p Fðmi:nÞ
ð12:241Þ

where FðxÞ ¼ � ffiffiffiffi
2p

p �21Ðx
21 exp

�
2 t2

2

�
dt is the cumulative distribution function

of the standard Gaussian distribution. We define the sample points Qk in a two

dimensional plane by

Qk ¼ ðUk;VkÞ k ¼ 1; 2;…; n ð12:242Þ
where U0 ¼ V0 ¼ 0 and

Uk ¼ 1

k

Xk
i¼1

{cosðuiÞ}Yi:n k ¼ 1; 2;…;m

Vk ¼ 1

k

Xk
i¼1

{sinðuiÞ}Yi:n k ¼ 1; 2;…;m

ð12:243Þ

The sample linked vectors are obtained by joining the points Qk: Note that
Q0 ¼ ð0; 0Þ: It should also be noted that the statistic Qn given in Equation 12.242

represents the terminal point of the linked vectors defined above. Figure 12.44
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shows the linked vectors obtained for the Gaussian distribution with n ¼ 6: Since
Un and Vn are random variables for a given n; the corresponding linked vectors
must be obtained by averaging the results of Monte Carlo trials. In this case the

linked vectors were obtained by averaging the results of 50,000 Monte Carlo

trials. The solid curve in Figure 12.44 shows the linked vectors for the sample

distribution while the dashed curve shows the ideal linked vectors for the null

distribution. The magnitudes and angles of the linked vectors are obtained from

Equation 12.241. Note that the angles are independent of the data. Only the

magnitudes of the linked vectors change from one trial to another.

For a typical set of ordered samples (i.e., ordered samples drawn from the

null distribution) it is reasonable to expect that the sample linked vectors would

follow the null pattern closely. If the ordered set of samples is not from the null

distribution, the sample linked vectors are not expected to follow the null pattern

closely. Hence, the procedure provides visual information about how well the

ordered set of samples fit the null distribution.

An important property of the Qn statistic is that it is invariant under

linear transformation. In particular, we consider the standardization used in

Equation 12.239. Let Zi ¼ cXi þ d; where c and d are known constants. Let S0

denote the sample standard deviation of the samples Zi: Then, it is readily
shown that lXi 2 
Xl/S ¼ lZi 2 
Zl/S0: The invariance property follows as a

consequence. The advantage of this property is that the PDF of Qn ¼ ðUn;VnÞ;
for a given sample and reference distribution, depends only on the sample size

n and is unaffected by the location and scale parameters. Since it is difficult to

determine the joint PDF of Un and Vn analytically, it is necessary to obtain

empirical results.

v

0.6
v

0.4

Qn

P0
P1

Q ′n u ′′

u ′

u

O ′

O

0.2

0.0

0.0 0.2

q1

q2

q3

q4

q5

q6

u
0.4−0.2

FIGURE 12.44 Linked vector chart: dashed lines P0 ¼ null linked vectors, solid lines

P1 ¼ sample linked vectors.
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Assuming that the conditions under the central limit theorem are satisfied,

the marginal PDFs of Un and Vn can be approximated as Gaussian, in the limit

of large n: In addition, it is assumed that the joint PDF of Un and Vn is

approximately bivariate Gaussian. Consequently, all that is needed to

determine the bivariate PDF is the specification of EðUnÞ; EðVnÞ; EðUnVnÞ;
VarðUnÞ; and VarðVnÞ: Drawing samples from the Gaussian distribution, it has

been shown empirically in Ref. 41 that for 3 # n # 100

EðUnÞ ¼ 0

EðVnÞ ¼ mv < 0:326601þ 0:412921

n

EðUnVnÞ ¼ 0

VarðUnÞ ¼ s 2
u <

0:02123

n
þ 0:01765

n2

VarðVnÞ ¼ s 2
v <

0:04427

n
2

0:0951

n2
:

ð12:244Þ

Since Un and Vn are approximately bivariate Gaussian for large or moderate

sample sizes, their joint PDF can be written as

fUn;Vn ðun; vnÞ ¼ ð2pÞ21ðsusvÞ21exp 2
t

2

� �
ð12:245Þ

where

t ¼ u2n

s 2
u

þ ðnn 2 mvÞ2
s 2
v

ð12:246Þ
Let t ¼ t0: Then the equation

t0 ¼ u2n

s 2
u

þ ðnn 2 mvÞ2
s 2
v

ð12:247Þ

is that of an ellipse in the un; vn plane, for which

fUn;Vn ðun; vnÞ ¼ ð2pÞ21ðsusvÞ21exp 2
t0
2

� �
ð12:248Þ

Points that fall within the ellipse correspond to those points in the un; vn plane
satisfying

fUn;Vnðun; vnÞ . ð2pÞ21ðsusvÞ21exp 2
t0
2

� �
ð12:249Þ

Let

a ¼ PðT . t0Þ ¼ P ½ðun; vnÞ outside the ellipse given in Eq: ð12:247Þ	 ð12:250Þ
It is well known that the PDF of the random variable T defined by Equation

12.246 has a Chi-Square distribution with two degrees of freedom45 and is
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given by

fT ðtÞ ¼ 0:5 exp 2
t

2

� �
ð12:251Þ

Hence,

a ¼ 12 exp 2
t0
2

� �
ð12:252Þ

Consequently, t0 ¼ 22 lnð12 aÞ: Thus, Equation 12.247 becomes
u2n

s 2
u

þ ðnn 2 mvÞ2
s 2
v

¼ 22 lnð12 aÞ ð12:253Þ

a is known as the significance level of the test. It is the probability that Qn

falls outside the ellipse specified by Equation 12.253 given that the data is

coming from a Gaussian distribution. The expression ð12 aÞ is known as the
confidence level and the corresponding ellipse is known as the confidence

ellipse.

Equation 12.247 can be written in the standardized form

1 ¼ u2n

s 2
ut0

þ ðnn 2 mvÞ2
s 2
v t0

ð12:254Þ

where the lengths of the major and minor axes are given by 2 max
�
su

ffiffiffi
t0

p
;sv

ffiffiffi
t0

p �
and 2 min

�
su

ffiffiffi
t0

p
;sv

ffiffiffi
t0

p �
; respectively. From Equation 12.252, observe that

smaller values of a correspond to larger values of t0: Consequently, the
confidence ellipses become larger as the confidence level is increased.

For a given sample size n ðn # 100Þ approximate values of mv;s
2
u; and s

2
n

can be obtained from Equation 12.244. The confidence ellipse of Equation 12.253

can then be used to make a visual as well as computational test of the null

hypothesis. If the terminal sample point falls inside the ellipse, then the data is

declared as being consistent with the Gaussian distribution with confidence level

12 a: Otherwise the null hypothesis is rejected with a significance level a:
A major difficulty in determining the joint PDF of Un and Vn is that the

coefficients of skewness and kurtosis of Un and Vn (see Table 12.8) indicate that

the Gaussian approximation for the bivariate PDF may not be satisfactory for

n , 100: The empirical bivariate PDF of U and V were obtained by using 50,000

Monte-Carlo trials for n ¼ 3; 10; 20; 30; 50; and 100. The corresponding constant
probability contours of the joint PDF ofUn and Vn are shown in Figure 12.45. The

same procedure is used even when the null distribution is different from the

Gaussian distribution. However, note that the standard Gaussian distribution is

always used as the reference distribution for determining the angles of the linked

vectors.

Adaptive Antennas and Receivers686

© 2006 by Taylor & Francis Group, LLC



TABLE 12.8
Some Monte Carlo Moments of U and V

U V

n Mean Variance Skew. Curtos. Mean Variance Skew. Curtos.

3 0.00037 0.00846 20.0036 1.7594 0.47067 0.00168 20.3174 1.8720

4 0.00052 0.00585 20.0157 3.1854 0.43458 0.00448 0.3599 2.5413

5 20.00030 0.00472 0.0186 2.6987 0.41276 0.00475 0.0141 2.2890

6 0.00007 0.00391 20.0055 2.8623 0.39793 0.00459 20.0243 2.5650

7 0.00021 0.00333 20.0033 2.9035 0.38763 0.00426 20.0552 2.6668

8 20.00025 0.00290 20.0025 2.9141 0.38000 0.00399 20.0694 2.7219

9 0.00008 0.00257 0.0050 2.9201 0.37362 0.00369 20.0551 2.7671

10 20.00051 0.00229 0.0041 2.9428 0.36865 0.00349 20.0528 2.7722

11 0.00032 0.00206 0.0110 2.9936 0.36516 0.00322 20.0384 2.7936

12 0.00012 0.00189 20.0213 2.9812 0.36154 0.00302 20.0496 2.8342

13 0.00005 0.00174 0.0088 2.9905 0.35858 0.00286 20.0362 2.8251

14 20.00012 0.00160 20.0023 3.0230 0.35633 0.00266 20.0466 2.8730

15 0.00003 0.00151 20.0133 3.0185 0.35457 0.00253 20.0370 2.8489

16 0.00008 0.00139 20.0193 3.0052 0.35271 0.00242 20.0297 2.8659

17 20.00005 0.00132 0.0073 3.0413 0.35108 0.00227 20.0304 2.8528

18 0.00004 0.00124 20.0018 3.0004 0.34973 0.00218 20.0088 2.8815

19 0.00041 0.00117 20.0070 3.0083 0.34829 0.00207 20.0297 2.8922

20 0.00012 0.00110 0.0065 3.0402 0.34728 0.00197 20.0344 2.9201

21 20.00011 0.00105 20.0013 2.9875 0.34632 0.00189 20.0368 2.9358

22 0.00008 0.00101 20.0043 3.0316 0.34525 0.00183 20.0097 2.4972

23 0.00000 0.00097 20.0122 2.9970 0.34431 0.00176 20.0111 2.9226

24 20.00003 0.00091 20.0141 3.0537 0.34360 0.00170 20.0114 2.8925

25 20.00006 0.00088 20.0112 3.0061 0.34273 0.00161 20.0260 2.9097

26 0.00013 0.00084 20.0153 3.0136 0.34225 0.00156 20.0387 2.9512

27 0.00003 0.00081 0.0056 3.0316 0.34167 0.00158 20.0165 2.9120

28 0.00010 0.00078 20.0030 3.0137 0.34120 0.00146 20.0155 2.9277

29 20.00016 0.00076 0.0052 3.0226 0.34056 0.00143 20.0282 2.9290

30 20.00006 0.00073 0.0016 3.0383 0.34009 0.00138 20.0131 2.9298

31 20.00007 0.00070 20.0157 3.0120 0.33980 0.00132 20.0308 2.9065

32 0.00008 0.00069 20.0055 3.0323 0.33904 0.00129 20.0083 2.9174

33 0.00009 0.00066 20.0051 3.0171 0.33901 0.00126 20.0215 2.9402

34 20.00012 0.00064 20.0050 3.0454 0.33827 0.00122 20.0056 2.9411

35 0.00002 0.00062 0.0023 2.9721 0.33815 0.00119 20.0126 2.9340

36 0.00008 0.00060 20.0048 2.9961 0.33789 0.00115 20.0139 2.9395

37 0.00003 0.00058 20.0144 3.0520 0.33752 0.00114 0.0082 2.9454

38 20.00007 0.00057 20.0002 3.0222 0.33739 0.00111 20.0187 2.9512

39 0.00000 0.00056 0.0191 3.0391 0.33712 0.00107 20.0130 2.9595

40 20.00007 0.00055 0.0161 3.0269 0.33682 0.00104 20.0267 2.9823

41 20.00001 0.00052 20.0189 3.0157 0.33649 0.00103 20.0085 2.9511

42 0.00010 0.00052 0.0076 2.9818 0.33602 0.00100 20.0074 2.9569

Continued
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TABLE 12.8 Continued

U V

n Mean Variance Skew. Curtos. Mean Variance Skew. Curtos.

43 20.00006 0.00050 0.0036 3.0233 0.33578 0.00098 20.0099 2.9548

44 0.00001 0.00050 0.0044 3.0025 0.33583 0.00096 20.0161 2.9515

45 20.00022 0.00048 0.0025 3.0340 0.33568 0.00093 20.0128 2.9680

46 0.00004 0.00047 0.0058 3.0439 0.33548 0.00092 20.0241 2.9734

47 0.00011 0.00045 20.0022 2.9621 0.33532 0.00089 20.0068 2.9415

48 0.00004 0.00045 0.0015 3.0596 0.33520 0.00087 20.0077 2.9795

49 20.00005 0.00044 20.0015 3.0063 0.33401 0.00086 20.0270 2.9255

50 0.00006 0.00044 0.0104 2.9943 0.33473 0.00084 20.0322 2.9442

51 20.00007 0.00042 20.0014 3.0078 0.33448 0.00083 0.0030 2.9332

52 20.00011 0.00041 0.0086 2.9636 0.33420 0.00081 20.0207 3.0032

53 0.00000 0.00041 0.0046 3.0510 0.33435 0.00080 20.0141 2.9716

54 20.00008 0.00040 20.0050 2.9991 0.33417 0.00079 0.0080 2.9615

55 0.00006 0.00040 0.0117 3.0644 0.33415 0.00078 0.0028 2.9750

56 20.00003 0.00038 20.0100 3.0360 0.33404 0.00076 20.0178 2.9792

57 20.00017 0.00038 0.0024 3.0245 0.33380 0.00075 20.0012 2.9731

58 0.00003 0.00037 0.0091 2.9809 0.33353 0.00073 20.0038 2.9540

59 0.00006 0.00037 20.0080 3.0141 0.33371 0.00072 20.0128 2.9767

60 0.00006 0.00036 0.0189 2.9986 0.33362 0.00071 20.0061 2.9756

61 20.00004 0.00035 0.0015 2.9801 0.33339 0.00070 0.0001 2.9630

62 20.00011 0.00035 0.0092 2.9575 0.33332 0.00069 20.0189 2.9607

63 20.00004 0.00034 20.0160 3.0105 0.33315 0.00069 20.0124 2.9839

64 0.00007 0.00033 20.0101 3.0385 0.33300 0.00068 20.0098 2.9753

65 20.00001 0.00033 0.0030 3.0394 0.33277 0.00066 0.0018 2.9691

66 0.00013 0.00033 0.0282 3.0242 0.33273 0.00065 20.0206 2.9699

67 0.00005 0.00032 0.0199 3.0353 0.33273 0.00064 20.0151 2.9870

68 0.00007 0.00032 0.0138 3.0174 0.33265 0.00063 20.0028 2.9478

69 0.00001 0.00031 0.0091 3.0329 0.33263 0.00062 20.0022 2.9994

70 20.00001 0.00030 20.0072 3.0419 0.33230 0.00062 0.0111 2.9338

71 0.00018 0.00030 0.0129 3.0295 0.33248 0.00061 20.0105 2.9610

72 20.00004 0.00030 0.0067 3.0035 0.33231 0.00060 20.0231 2.9837

73 20.00010 0.00030 20.0108 3.0114 0.33204 0.00059 20.0071 2.9926

74 0.00002 0.00029 0.0082 3.0396 0.33210 0.00058 20.0096 2.9811

75 20.00001 0.00028 20.0138 3.0576 0.33221 0.00058 20.0013 2.9766

76 0.00001 0.00028 0.0150 2.9840 0.33202 0.00056 0.0057 2.9676

77 0.00002 0.00028 20.0006 3.0450 0.33204 0.00055 0.0064 2.9976

78 0.00001 0.00028 0.0187 2.9942 0.33183 0.00056 20.0099 2.9492

79 20.00001 0.00027 0.0142 3.0058 0.33195 0.00054 20.0021 2.9621

80 0.00009 0.00027 20.0015 2.9686 0.33184 0.00054 20.0041 2.9766

81 0.00000 0.00027 0.0094 3.0087 0.33175 0.00053 20.0045 2.9790

82 20.00002 0.00026 20.0045 3.0379 0.33182 0.00052 20.0199 2.9482

83 0.00012 0.00026 0.0130 2.9860 0.33164 0.00052 20.0102 2.9827

Continued
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12.5.4. DISTRIBUTION APPROXIMATION

In this section we present a graphical procedure for approximating the underlying

PDF of a set of random data based on the goodness-of-fit test procedure discussed

in Section 12.5.3.

Following a similar approach to that outlined in Section 12.5.3, random

samples are generated from many different univariate probability distributions.

For each specified distribution and for a given n; the statistic Qn ¼ ðUn;VnÞ
given by Equation 12.243 is obtained for various choices of the shape parameter.

Thus, each distribution is represented by a trajectory in the two dimensional

plane whose coordinates are Un and Vn: Figure 12.46 shows an example of

such a representation. Twelve distributions namely Gaussian (1), Uniform (2),

Exponential (3), Laplace (4), Logistic (5), Cauchy (6), Extreme Value (7),

Gumbel type-2 (8), Gamma (9), Pareto (10), Weibull (11), and Lognormal (12)

are represented in this chart. Tables 12.9 and 12.10 show the standard form and

the general form, respectively, of the PDFs represented in the identification chart.

The value of Qn at each point of the trajectories is obtained by Monte-Carlo

experiments using the standard Gaussian distribution as the reference distribution

for determining the angles ui: The results are based on averaging 1000 trials
of n ¼ 50 samples from each distribution. The samples from each distribution

are obtained by using the IMSL subroutines for specified values of the shape

parameter. Since the procedure is location and scale invariant, the trajectory

TABLE 12.8 Continued

U V

n Mean Variance Skew. Curtos. Mean Variance Skew. Curtos.

84 0.00004 0.00026 0.0038 3.0150 0.33167 0.00051 20.0053 2.9966

85 0.00001 0.00025 20.0090 3.0179 0.33158 0.00051 0.0110 2.9789

86 20.00012 0.00025 20.0082 2.9790 0.33144 0.00050 20.0045 2.9701

87 20.00001 0.00025 20.0125 3.0148 0.33136 0.00049 0.0042 2.9658

88 0.00001 0.00024 20.0044 2.9644 0.33126 0.00049 0.0028 2.9725

89 0.00003 0.00024 20.0060 3.0055 0.33123 0.00048 20.0245 2.9970

90 20.00004 0.00024 20.0149 2.9977 0.33110 0.00048 20.0047 2.9775

91 20.00011 0.00023 20.0031 2.9945 0.33113 0.00047 0.0022 2.9718

92 0.00003 0.00023 0.0052 3.0332 0.33115 0.00047 0.0019 2.9709

93 20.00001 0.00023 20.0034 2.9954 0.33136 0.00047 0.0138 2.9983

94 0.00016 0.00023 0.0202 3.0274 0.33115 0.00046 20.0221 3.0140

95 0.00004 0.00022 20.0046 3.0133 0.33100 0.00046 20.0097 2.9855

96 20.00002 0.00023 20.0026 3.0332 0.33086 0.00045 20.0102 2.9731

97 0.00014 0.00022 0.0147 2.9938 0.33083 0.00045 20.0136 2.9566

98 20.00002 0.00022 20.0049 3.0553 0.33081 0.00044 20.0041 2.9902

99 0.00002 0.00022 0.0138 3.0012 0.33091 0.00044 0.0032 2.9974

100 0.00002 0.00021 0.0132 3.0208 0.33086 0.00043 0.0007 2.9950
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reduces to a single point for those PDFs which do not have shape parameters

but are characterized only in terms of their location and scale parameters. By way

of example, the Gaussian, Laplace, Exponential, Uniform, and Cauchy PDFs are

represented by single points in the Un 2 Vn plane. However, those PDFs having

shape parameters are represented by trajectories. For a given value of the shape

parameter, a single point is obtained in the Un 2 Vn plane. By varying the shape

parameter, isolated points are determined along the trajectory. The trajectory for

v
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FIGURE 12.45 Empirical distribution of Qn for several values of n:
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FIGURE 12.46 Identification chart for univariate distributions based on 1000 Samples

ðn ¼ 50Þ: B1 2 B5 ¼ Beta, J1 2 J9 ¼ SU Johnson, G ¼ Gamma, W ¼Weibull, K ¼ K-

distribution, P ¼ Pareto, I ¼ Lognormal, T ¼ Gumbel, E ¼ Ex ponential, V ¼ Extreme

Value, A ¼ Laplace, L ¼ Logistic, U ¼ Uniform, C ¼ Cauchy.

TABLE 12.9
Table of Standard Forms of Univariate PDFs Used for

Identification Chart of Figure 12.46

Distribution Standard Form fY(y)

Gaussian
ffiffiffiffi
2p

p
 �21
exp 2

y2

2

{ !
21 , y , 1

Uniform 1 0 , y , 1

Exponential expð2yÞ ð0 , y , 1Þ
Laplace 0:5 expð2lylÞ 21 , y , 1
Logistic expð2yÞ½1þ expð2yÞ	22 21 , y , 1
Cauchy

1

pð1þ y2Þ 21 , y , 1
Extreme value (Type 1) expð2yÞexp½2expð2yÞ	 21 , y , 1
Gumbel (Type 2) g y2g21 expð2y2gÞ 21 , y , 1
Gamma

1

GðaÞ expð2yÞyg21 0 , y , 1
Pareto

g

ygþ1
y . 1; g . 0

Weibull g yg21 expð2ygÞ y . 0

Lognormal gffiffiffiffiffi
2py

p exp 2
{g log ðyÞ}2

2

" #
y . 0
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the PDF is obtained by joining these points. In a sense the trajectory represents a

family of PDFs having the same distribution but with different shape parameters

values. For example, the trajectory corresponding to the Gamma distribution

in Figure 12.46 is obtained by joining the points for which the shape parameters

are 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, and 10.0. As the shape parameter

increases, note that the Gamma distribution approaches the Gaussian distribu-

tion. The representation of Figure 12.46 is called an identification chart. Some

distributions, such as, the b distribution and the SU-Johnson system of

TABLE 12.10
Table of General Form of Univariate PDFs Used for Identification Chart

of Figure 12.46

Distribution General Form fx(x)

Gaussian
ffiffiffiffi
2p

p
b


 �21
exp 2

ðx2 aÞ2
2b2

{ !
21 , x , 1

Uniform
1

b
a , x , aþ b

Exponential
1

b
exp 2

ðx2 aÞ
b

� �
a , x , 1

Laplace
0:5

b
exp 2

� ���� ðx2 aÞ
b

����� 21 , x , 1

Logistic
1

b
exp 2

ðx2 aÞ
b

� �
1þ exp 2

{x2 a}

b

� �� �22
21 , x , 1

Cauchy
1

pb 1þ ðx2 aÞ2
b2

" # 21 , x , 1

Extreme value (Type 1)
1

b
exp 2

ðx2 aÞ
b

� �
exp 2exp 2

ðx2 aÞ
b

� �� �
21 , x , 1

Gumbel (Type 2) ðg=bÞ½ðx2 aÞ=b	2g21 exp 2
ðx2 aÞ2g

bg

" #
a , X , 1; b . 0; g . 0

Gamma
1

bGðaÞ exp 2
ðx2 aÞ
b

� �
x2 a

b

� �g21
a , x , 1

Pareto
g

b

1

x2 a

b

� �gþ1 x . aþ b; g . 0

Weibull
g

b

x2 a

b

� �g21
exp 2

x2 a

b

� �g� �
x . a

Lognormal
gffiffiffiffi

2p
p

b
x2 a

b

� � exp 2

g log
x2 a

b

� �� �2
2

26664
37775 x . a
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distributions, have two shape parameters. For these cases, the trajectories are

obtained by holding one shape parameter fixed while the other is varied. For these

distributions, several different trajectories are generated in order to cover as much

of the Un 2 Vn plane as possible. For certain choices of the shape parameters,

two or more PDFs become identical. When this occurs, their trajectories intersect

on the identification chart.

It is apparent that the identification chart of Figure 12.46 provides a one-to-one

graphical representation for each PDF for a given n: Therefore, every point in the
identification chart corresponds to a specific distribution. Thus, if the null hypothesis

in the goodness-of-fit test discussed in Section 12.5.3 is rejected, then the

distribution that approximates the underlying PDF of the set of random data can

be found by comparingQn obtained for the samples with the existing trajectories in

the chart. The closet point or trajectory to the sample Qn is chosen as an

approximation to the PDF underlying the random data. The closet point or trajectory

to the sample point is determined by projecting the sample point Qn to neighboring

points or trajectories on the chart and considering that point or trajectory whose

perpendicular distance from the sample point is the smallest. Consider the situation

of Figure 12.47. LetQn ¼ ðu0; v0Þ denote the coordinates of the sample point. Let x1;
y1 and x2; y2 denote the coordinates of the points A and B on the trajectory shown in
Figure 12.47. It is assumed that the segment of the trajectory between the points A

and B is linear. Let x0; y0 denote the coordinates of the point of intersection of the
straight line between A and B and the projection of Qn ¼ ðu0; v0Þ onto this straight
line. The equation of the straight line between the points A and B can be written as

y2 y1 ¼ mðx2 x1Þ ð12:255Þ
where m ¼ y2 2 y1

ðx2 2 x1Þ : Also, the equation of the straight line joining x0; y0 and

ðu0; v0Þ is
y2 v0 ¼ 2

1

m
ðx2 u0Þ ð12:256Þ

y2

y0

y1

x1 x0 x2

ν'

u '

v

u

B

A

D
Qn

FIGURE 12.47 Distance computation.
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The coordinates x0; y0 result from the solution of Equation 12.255 and Equation

12.256 and are given by

x0 ¼ 1

m2 þ 1
½m2x1 2 my1 þ u0 þ mv0	

y0 ¼ 1

m2 þ 1
½y1 2 mx1 þ m2v0 þ mu0	

ð12:257Þ

Finally, the perpendicular distance from the sample point onto the trajectory

between the points A and B is

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðm2 þ 1Þ ½m
2z21 2 2m z1z2 þ z22	

s
ð12:258Þ

where

z1 ¼ u0 2 x1

z2 ¼ v0 2 y1
ð12:259Þ

The complete approximation algorithm is summarized as follows:

1. Sort of samples X1;X2;…;Xn in increasing order.
2. Obtain the standardized order statistic Yi:n:
3. Compute Un and Vn from Equation 12.243.

4. Obtain an identification chart based on the sample size n and plot the

sample point Qn on this chart.

5. Compute D using the sample point Qn and the existing distributions on

the chart. Choose the PDF corresponding to the point or trajectory,

which results in the smallest value ofD as an approximation to the PDF

of the samples.

The approximation to the underlying PDF of the set of random data can be

improved by including as many distributions as possible in the identification

chart so as to fill as much of the space as possible with candidate distributions.

However, it is emphasized that this procedure does not identify the underlying

PDF. Rather it identifies a suitable approximation to the underlying PDF.

12.5.5. PARAMETER ESTIMATION

Once the probability distribution of the samples is approximated, the next step is

to estimate its parameters. The method discussed in Section 12.5.4 lends itself for

estimating the parameters of the approximated distribution. We present the

estimation procedure for the location, scale, and shape parameters in this section.
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12.5.5.1. Estimation of Location and Scale Parameters

Let f ðx;a;b; Þ denote a known distribution that approximates the PDF of the set
of random data, where a and b are the location parameter and scale parameter,
respectively, of the approximating PDF. Let Xi:n denote the ordered statistics

of X from a sample of size n: A standardized ordered statistic is defined by

Wi:n ¼ Xi:n 2 a

b
ð12:260Þ

Let

mi:n ¼ E½Wi:n	 ð12:261Þ
Then

E½Xi:n	 ¼ bmi:n þ a ð12:262Þ
We consider the following statistics

T1 ¼
Xn
i

cosðuiÞXi:n T2 ¼
Xn
i

sinðuiÞXi:n ð12:263Þ

where ui is the angle defined in Equation 12.241. The expected values of T1 and
T2 are

E½T1	 ¼
Xn
i

cosðuiÞ½bmi:n þ a	 E½T2	 ¼
Xn
i

sinðuiÞ½bmi:n þ a	 ð12:264Þ

These can be written as

EðT1Þ ¼ aaþ bb EðT2Þ ¼ caþ db ð12:265Þ
where

a ¼
Xn
i

cosðuiÞ b ¼
Xn
i

mi:ncosðuiÞ

c ¼
Xn
i

sinðuiÞ d ¼
Xn
i

mi:nsinðuiÞ
ð12:266Þ

Because the standardized Gaussian distribution is used as the reference dis-

tribution for ui, it follows that a ¼ 0:41 The estimates for b and a are then

given by

b̂ ¼ Ê½T1	
b̂

â ¼ Ê½T2	2 d̂b̂

c
ð12:267Þ
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where the symbol L is used to denote an estimate. For n sufficiently large

(i.e., n . 50), suitable estimates for E½T1	 and E½T2	 are
Ê½T1	 ¼ T1 Ê½T2	 ¼ T2 ð12:268Þ

Estimates for b and d rely upon an estimate of mi:n. The parameter m̂i:n is obtained

from a Monte Carlo simulation of Wi:n where Wi:n is generated from the known

approximating distribution f ðx; 0; 1Þ having zero location and unity scale

parameters. m̂i:n is the sample mean of Wi:n based upon 1000 Monte Carlo trials.

Having m̂i:n; the estimates for b and d are given by

b̂ ¼
Xn
i

mi:ncosðuiÞ

d̂ ¼
Xn
i

mi:nsin ðuiÞ
ð12:269Þ

The scale and location parameters are then estimated by application of Equation

12.267.

12.5.5.2. Shape Parameter Estimation

In this section we present an approximate method for estimating the shape

parameter of the approximating PDF. This procedure can be used only when the

approximating PDF has a single shape parameter to be determined. Let g denote
the shape parameter of the approximating PDF. Since Un and Vn are location and

scale invariant, the point Qn depends only on the sample size n and the shape

parameter g.
Recall that the trajectories on the identification chart are obtained by

averaging the results of a large number of trials for Un and Vn: Consequently, for
a given value of n, the coordinates of the points along the trajectory for a specified

distribution and can be characterized by

EðUnÞ ¼ w1ðn; gÞ
EðVnÞ ¼ w2ðn; gÞ

ð12:270Þ

where the complete trajectory is obtained by repeating the large number of trials

over a suitable range of g. On a given trial involving the random data it is likely

that the coordinates Un and Vn for the samples will not coincide with any of the

trajectories on the chart. The random data is approximated by the distribution that

falls closest to the sample point Qn: The situation is illustrated in Figure 12.48.
Tr1 and Tr2 denote the trajectories for two different candidate distributions

denoted by PDF1 and PDF2, respectively. Let x0 denote the point on Tr1 closest

to Qn: Assume that the linear segment of Tr1 on which x0 falls was drawn

between the points (u1, v1) and (u2, v2). Let the shape parameter values

corresponding to these points be denoted by g1 and g2, respectively. Then the
value of the shape parameter corresponding to the sample point Qn is obtained by
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linear interpolation and is given by

ĝ < g1 þ ðg2 2 g1Þðx0 2 u1Þ
ðu2 2 u1Þ ð12:271Þ

where

x0 ¼ {AðVn 2 v1Þ þ A2u1 þ Un}

ðA2 þ 1Þ
A ¼ ðv2 2 v1Þ

ðu2 2 u1Þ
ð12:272Þ

The accuracy of the procedure can be improved by employing a nonlinear

interpolation method. It must be emphasized that the location, scale, and shape

parameter estimation procedures presented in this section are approximate

procedures.

12.5.6. ASSESSING THE DISTRIBUTIONAL PROPERTIES OF SIRVS

A random vector Y ¼ [Y1, Y2, …, YN]
T is a SIRV if its PDF has the form

fYðyÞ ¼ ð2pÞ2 N
2 lSl2

1
2 hNð pÞ ð12:273Þ

where p ¼ ðy2 mÞTS21ðy2 mÞ is a nonnegative quadratic form, m and S are the

mean vector and covariance matrix, respectively, of Y and hNð pÞ is a

nonnegative, monotonically decreasing, and real valued function for all N.

u1x0u2 u

v

Tr 2

Tr 1

y

FIGURE 12.48 Shape parameter estimation.
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Recall from Section 12.5.3 that the PDF of the quadratic form appearing in

Equation 12.273 is given by

fPð pÞ ¼ p
N
2 2 1

2
N
2 G N

2


 � hNð pÞuð pÞ ð12:274Þ

where G ðaÞ is the Eulero-Gamma function and u( p) is the unit step function. It
was also pointed out in Section 12.5.3 that the PDF of the quadratic form is

invariant to the choice of m and S. For example, in the multivariate Gaussian
case, the PDF of the quadratic form is the well known Chi-square distribution

with N degrees of freedom. Therefore, for a given N, the SIRV is uniquely

characterized by the quadratic form. In order to identify the PDF of the

underlying SIRV it is sufficient to identify the PDF of the quadratic form. This

attractive property of SIRVs enables us to study various distributional aspects

of the corresponding multivariate samples. When a radar uses coherent

processing, the joint PDF of the 2N quadrature components is of interest.

Equation 12.273 and Equation 12.274 are then applicable with N replaced by 2N.

In modeling real world data, the first step is to determine the most appropriate

PDF that approximates the data. In the univariate case, the fit and assessment of

the goodness of fit for various distributions has been studies extensively and

several methods are available for this purpose. However, limited success has been

achieved for the multivariate situation. Although a number of multivariate

distributions have been developed, the multivariate Gaussian distribution has

been the focus of much of the techniques for multivariate analysis.46

Assessment of the distributional assumptions formultivariate data is a non trivial

problem. Several techniques have been proposed to assess multivariate Gaussianity.

In a recent paper Ozturk and Romeu44 give a review of the methods for testing

multivariate Gaussianity. Many of the methods can be modified or generalized to

develop goodness offit methods for SIRVs. If a random vectorY is a SIRV, then the

corresponding marginal distributions must be identical (up to location and scale

parameters). Based on this property, one can use the standard univariate goodness of

fit testingprocedures to assess thedegree of similarity of themarginal distributions of

themultivariate data.However, such an approachdoesnot provide away to assess the

joint distribution of the components of the multivariate sample.

Since SIRVs can be uniquely characterized in terms of the quadratic form P,

Equation 12.274 provides an important property for developing goodness of

fit test procedures for SIRVs. Specifically, if the PDF of P can be identified, then

the corresponding PDF of the SIRV can also be identified. In fact, many tests

for assessment of multivariate Gaussianity are based on the use of this quadratic

form.47 By use of this technique, note that the multivariate distribution

approximation problem is reduced to a corresponding univariate distribution

approximation of the quadratic form. Any of the classical goodness of fit testing

procedures like the Kolmogorov–Smirnov and Chi-Square tests can be used to

address the problem of distribution identification of the quadratic form. However,

deficiencies of these tests, namely (1) the requirement of large sample sizes for
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specifying the parameters of the distributions and (2) weak decisiveness,

necessitate use of alternate procedures that are more efficient.

A general algorithm was developed in Ref. 41 to test for univariate and

multivariate normality and has been summarized in Sections 12.5.3 to 12.5.5. In

this section we propose the use of this algorithm for performing the goodness of fit

test for SIRVs. The procedure is summarized here for completeness. Let Y ¼
½Y1; Y2;…; YN	T denote a vector of observations. For each observation vector of
size N, we compute the corresponding quadratic form where the maximum

likelihood (ML) estimates of the mean vector of Y and its covariance matrix are

used. For the Gaussian case, it is well known that these ML estimates are the

sample mean and the sample covariance matrix, respectively.48 In AppendixW, it

is shown that the same results hold for SIRVs.49 Our goal is to test whether P̂i;
ði ¼ 1; 2;…; nÞ are samples from a certain distributionFð p;a;b; gÞwherea,b are
the location and scale parameters, respectively, and g is the shape parameter.

Let P̂i:n # P̂2:n # · · · # P̂n:n denote the ordered observations of the quadratic

form P̂i ði ¼ 1; 2;…; nÞ: We define the standardized ith sample order statistic as

Ri:n ¼ ðP̂i:n 2 
PÞ
SP

ð12:275Þ

where 
P and SP are the sample mean and sample standard deviation, respectively.

Corresponding to the ith sample order statistics Ri:n through Ri:n; the point Qi ¼
ðUi;ViÞ is defined where

Ui ¼ 1

i

Xi
j¼1

cos{pFðmj:nÞ}lRj:nl; Vi ¼ 1

i

Xi
j¼1

sin{pFðmj:nÞ}lRj:nl ð12:276Þ

where: F(·) and mj:n were defined in Section 12.5.3.

For a given set of n multivariate samples, the points Qi ¼ ði ¼ 1; 2;…; nÞ are
plotted and joined to obtain a linked vector chart. The linked vectors under the

null hypothesis are obtained by averaging the results of 50,000 Monte Carlo trials

from the PDF of the quadratic form given in Equation 12.274. The proposed test

is based on comparing the sample and the null linked vectors. If the null

hypothesis is true, then we expect that the sample linked vectors will follow the

null linked vectors closely.

Finally, a formal goodness of fit test is performed using the terminal point of

the null linked vectors (i.e., Qn ¼ ðUn;VnÞ). Using the central limit theorem, as
outlined in Section 12.5.3, confidence ellipses centered at Qn for the null linked

vectors are obtained. If the terminal point of the sample linked vectors does not

fall inside the 100 (1 2 a)% confidence ellipse, then the corresponding null

hypothesis is rejected at the a level of significance. Note that the Qn test provides

an interesting graphical representation of the data. An example of such a graphical

representation is given in Figure 12.49 for testing a multivariate Gaussian

distribution with n ¼ 50 and N ¼ 4:
It should be noted that the Qn statistic is location and scale invariant. In other

words it is independent of the location and scale parameters. However, it depends
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on the shape parameter of the null distribution. Assessment of the distributional

assumptions of distributions that have shape parameters is conceptually different

from the assessment for those that do not have shape parameters. In the former

case, we test whether the sample comes from a family of distributions while in the

latter case, we test for a simple distribution. One possibility for dealing with this

problem is to specify the value of the shape parameter and perform the test in the

usual way. If the shape parameter cannot be specified, then an adaptive approach

using a sample estimate of the shape parameter must be employed.

Advantages of using the Qn procedure are explained in Ref. 41. Usually the

classical goodness of fit tests end up with either rejecting or accepting the null

hypothesis. An attractive property of the Qn procedure is that it provides some

information about the true distributions if the null hypothesis is rejected. Using

this property an algorithm for characterizing and identifying the distributions can

be developed. The next section explains these ideas.

12.5.7. DISTRIBUTION IDENTIFICATION OF SIRVS

Following the same procedure described in Section 12.5.4, where the reference

distribution was Gaussian, an identification chart can be generated for each of

quadratic form PDFs of the SIRVs listed in Tables 12.9 and 12.10. Recall from

Section 12.5.3 that the PDF of the quadratic form is invariant to the choice of

m and S. Hence, for simplicity, the trajectories for the PDFs of the quadratic
forms of the SIRVs listed in Tables 12.9 and 12.10 are obtained by generating

the SIRVs having zero mean and identity covariance matrix. Each point on

0.6

0.4

0.2

0.0

v

−0.2 0.0 0.2 0.4
u

FIGURE 12.49 Goodness of fit test for SIRVs using the Qn procedure. 90, 95, and 99%

contours for the Gaussian distribution. Broken line ¼ null distribution pattern.
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a trajectory is obtained by averaging the results of 2000 Monte Carlo trials of size

n ¼ 100:As before, PDFs which do not have shape parameters are represented by
a single point in the U 2 V plane, while those with shape parameters generate a

trajectory in the U 2 V plane by changing the shape parameter.

Assuming coherent radar processing, Tables 12.11 and 12.12 provide a

library of h2Nð pÞ for various multivariate SIRV PDFs. An example of the

identification chart is given in Figure 12.50 for N ¼ 4 and n ¼ 2000 where the

expected values ofQn ¼ ðUn;VnÞ is plotted for various distribution. The Gaussian
distribution was used as the reference distribution. The SIRVs listed in Tables

12.9 and 12.10 are included in the chart and labeled by number. It is noted that

the multivariate Gaussian (1), Laplace (2), and Cauchy (3) distributions are

represented by single points on the chart; while the multivariate K-distribution

(8), Chi (9), Generalized Rayleigh (10), Weibull (11), and Rician (12) are

represented by trajectories. The Student-t distribution (4, 5, 6, 7) with degrees

of freedom 3, 5, 10, and 15, respectively, is also shown in the chart. The

trajectories for each distribution were obtained by joining ten points resulting

from the use of the distributions with parameter values listed in Table 12.13. Each

point in the chart is obtained by simulating 2000 samples from the corresponding

distributions. The methods developed by Rangaswamy et al.22,50 were used to

generate the multivariate samples in Figure 12.50.

The identification chart provides an interesting display for identifying

and characterizing the distributions. Also, relationships, between the various

distributions are clearly seen. For example, as their parameters are varied,

certain distributions approach the multivariate Gaussian distribution. Also, for

appropriately chosen parameters, the multivariate Weibull distribution and the

Generalized Rayleigh distribution can be seen to coincide. For a given N-

variate sample of size n, the statistic Qn based on the sample quadratic forms

can be computed and plotted on the identification chart. Then the nearest

distribution to the sample point is identified to be the best candidate for the

underlying true distribution of the data. An example of such an identification is

shown in Figure 12.50 where a well known data set (i.e., Iris Setosa 51) is used

to obtain a value for Qn and is denoted by the point S: The I. Setosa data

consists of four measurements taken from 50 plants. It is seen from Figure

12.50 that the best candidate for approximating the data is the multivariate

Chi(9) distribution.

We point out that there are other methods which can be used for the

distribution identification problem. A commonly used technique is the Q2 Q

plot. To identify the underlying distribution the sample quantiles are plotted

against the expected quantiles of a reference distribution. Then the resulting

shape of the plotted curve is taken as a basis for identifying the corresponding

candidate for the true distributions. However, the identification is made on a

subjective basis. Even then the procedure is not very easy. Another well known

approach of distinguishing between distribution is to characterize them via their

skewness ða3Þ and kurtosis ða4Þ coefficients. In this case, all the distributions are
represented by points on the a3 2 a4 plane and the sample data point is compared
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with the points representing the theoretical distributions in the same way as in the

Qn procedure. However, estimates of a3 and a4 are known to be highly sensitive
to extreme observations and therefore, large sample sizes are necessary to

perform the identification for a given degree of accuracy.

TABLE 12.11
SIRVs Obtained from the Marginal Envelope PDF

Marginal PDF h2N(p)

Chi ð22ÞN21APN
k¼1 Gkp

n2k expð2BpÞ

Gk ¼
N 2 1

k2 1

{ !
ð21Þk21Bk21 GðnÞ

Gðn2 k þ 1Þ

A ¼ 2

G ðnÞ ðbsÞ
2n

B ¼ b2s 2

n # 1

Weibull
PN

k¼1 Ckp
ðkb=2Þ2N exp

�
2Apðb=2Þ

�
A ¼ as b

Ck ¼
Xk
m¼1
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TABLE 12.12
SIRVs Obtained from the Marginal Characteristic Function

Marginal PDF h2N(p)

Gaussian exp 2
P

2

� �
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b

ffiffi
p

p �12N
KN21

�
b
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Cauchy 2NbG
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þ N
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K-distribution
b2N

GðaÞ
�
b

ffiffi
p

p �a2N

2a21
KN2a

�
b

ffiffi
p

p �
Student-t

2Nb2nG
�
nþ N

�
GðnÞðb2 þ pÞNþn

9

11
10

10

10

10

10 10

10

10

1212

12
12 12

12 12 12

10

11

8 8

8 8 8
8 8 8

8
11

11

11 11

11

11
11 11 110 1

9
9

9 9 9 9
9 9

S

3

4

2
5

6 7

0.40

0.35

0.30

0.25

−0.25 −0.15 −0.10 −0.05

V

U

FIGURE 12.50 Identification chart for SIRVs ðn ¼ 2000; N ¼ 4Þ: 1 ¼ Gaussian,

2 ¼ Laplace, 3 ¼ Cauchy, 4 to 7 ¼ Student-t, 8 ¼ K-Distribution, 9 ¼ Chi, 10 ¼
Generalized Rayleigh, 11 ¼Weibull, 12 ¼ Rician. S is Iris Setosa data point.
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12.5.8. ALTERNATIVEMETHOD FOR PARAMETER ESTIMATION

It is well known that the ML estimate of the covariance matrix of a Gaussian

random vector is the sample covariance matrix. Interestingly enough, it has been

shown in Ref. 49 that the ML estimate of the covariance matrixS for SIRVs is the

same sample covariance matrix used in the Gaussian case. From Equation 12.274,

it is clear that the expected value of the quadratic form can be expressed as

E½P	 ¼ wðN; gÞ ð12:277Þ
where g is the shape parameter of the distribution. For those SIRVs where w(·)
can be evaluated in closed form and is invertible, the sample mean of P; denoted
by 
P can be used to estimate the shape parameter according to

ĝ ¼ w21{ 
P;N} ð12:278Þ
where 
P ¼ 1

n

Pn
i¼1 Pi: For example, in case of the K-distribution, we have

E½P	 ¼ 2aN where a is the shape parameter of the K-distribution. Clearly, the

shape parameter is given by â ¼ 
P
2N

: Unfortunately, it is not always possible to
obtain an invertible closed form expression for wð…Þ: The shape parameter

estimation procedure suggested here is not suitable in such a case. An alternate

method for the parameter estimation problem is then needed.

In this section we propose to use the Qn statistic to obtain an approximate

estimator for the shape parameter. The underlying procedure is explained in

Ref. 41 and is summarized here. Let the points ðU1;V1Þ and ðU2;V2Þ denote the
coordinates of Qn corresponding to the parameters g1 and g2; respectively, of a
given SIRV. Suppose these points are the nearest points, on the trajectory for the

identical distribution to the sample pointQn ¼ ðUn;VnÞ corresponding to the data.
Then by using linear interpolation, an approximate estimator of g is given by

ĝ < g1 þ ðg2 2 g1Þðx0 2 U1Þ
ðU2 2 U1Þ ð12:279Þ

where

x0 ¼ {AðVn 2 V1Þ þ A2U1 þ Un}

ðA2 þ 1Þ ; A ¼ ðV2 2 V1Þ
ðU2 2 U1Þ ð12:280Þ

TABLE 12.13
Shape Parameters of the SIRVs Used for the Identification Chart

K-distribution 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9

Chi 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75, 0.95

Gen. Rayleigh 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0

Weibull 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0

Rician 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9

Adaptive Antennas and Receivers704

© 2006 by Taylor & Francis Group, LLC



The accuracy of the proposed estimator for g depends on the distance between
sample pointQn and the corresponding curve. If necessary, the approximation can

be improved by using nonlinear interpolation methods.

12.5.9. CONCLUSIONS

In this chapter we have addressed the problem of distribution identification of

radar clutter under the assumption that the clutter can be characterized as a SIRP.

First and foremost, we have shown that the multivariate distribution identification

problem for SIRPs can be reduced to an equivalent univariate distribution

identification problem of a nonnegative quadratic form, resulting in considerable

processing simplicity. A new algorithm, providing a graphical representation for

the goodness of fit test and the distribution identification, has been used. This

algorithm, while conceptually simple, it extremely efficient while dealing with

small sample sizes. Therefore, it is suitable for use in a variety of practical

applications. Finally, based on this algorithm, a new approach has been proposed

for estimating the shape parameter of SIRPs.

12.6. CONCLUSIONS

12.6.1. GENERAL REMARKS

We present conclusions and suggestions for future work in this chapter. We have

addressed the problem of modeling, simulation, and distribution identification

(multivariate) of correlated nonGaussian radar clutter that can be characterized as

a SIRP. The SIRP model for the clutter belongs to the class of exogenous product

models, where the clutter process can be decomposed as a product of two

independent random processes. One of the processes is Gaussian, while the other

is a highly correlated nonGaussian process modulating the Gaussian process. The

SIRP model arises as a special case when the modulating process is a nonnegative

random variable. This in turn, imposes the requirement that the modulating

random process should have a decorrelation time much larger than that of the

Gaussian process, so that the modulating process is approximately constant in a

given time observation interval.

For example, consider a high resolution airborne radar operating in a maritime

environment at low grazing angles. The overall sea clutter return is composed of

returns from the capillary waves and the gravity waves. The capillary waves

correspond to a rapidly time variant process. It has been pointed out in Ref. 19 that

the returns from the capillary waves can be approximated as being jointly

Gaussian. Therefore, the returns from the capillary waves can be modeled by a

Gaussian random process. The gravity waves correspond to a slowly time variant

phenomenon. Furthermore, it has been shown in Ref. 3, 7, and 19 that the

decorrelation time of the slowly time variant process is much larger than that of the

Gaussian process. Consequently, the slowly time variant process can be

approximated by a nonnegative random variable. Hence, the SIRP model
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is applicable in this case. In fact, if the nonnegative random variable has a

Chi-distribution, the overall sea clutter returns are characterized by

a K-distribution. We have pointed out that the K-distribution is a member of the

family of SIRPs. Therefore, for this case, the SIRP characterization enables us to

determine the optimal radar signal processor. The validity of other SIRPs as

models for radar clutter must be determined through an experimental effort.

This dissertation has made the following significant original contributions:

1. Application of the theory of SIRP to obtain a library of multivariate

PDFs of correlated nonGaussian random vectors.

2. Derivation of the result that a SIRV is uniquely characterized through

the knowledge of the PDF of a quadratic form.

3. Development of elegant and powerful simulation procedures for

computer generation of SIRVs.

4. Reduction of the distribution identification of SIRVs from a multi-

variate problem to an equivalent univariate distribution identification

problem.

As a result of these contributions, the problem of modeling, simulation, and

distribution identification for SIRVs has resulted in tremendous computational

simplicity. Consequently, the schemes developed here are suitable for use in

several practical applications.

12.6.2. SUGGESTIONS FOR FUTURE RESEARCH

It has been pointed out in this work that many of the attractive properties of

Gaussian random processes also apply to SIRPs. Consequently, the use of

SIRPs provides a convenient vehicle for solving several signal detection and

estimation problems involving correlated nonGaussian processes. In particular,

the following issues may be addressed as extensions of this work:

1. Use of experimental data to determine the applicability of the SIRP

model for modeling clutter in radar, sonar, and image processing.

2. Application of the Kalman filter for SIRPs.

3. Use of SIRPs for radar ambiguity function analysis.

4. Application of SIRPs for canceling interference in digital

communications.

5. Use of SIRPs in innovations based multichannel detection and

estimation.

6. Use of SIRPs in linear predictive coding for speech processing.

7. Use of neural networks for identifying SIRPs.

8. Information theoretic considerations, such as, channel capacity and

rate distortion theory, for SIRPs.

9. Use of SIRPs in parameter estimation involving the log likelihood

function.
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13.1. INTRODUCTION

13.1.1. WEAK SIGNAL PROBLEM

In radar applications it is found that the received target signal is contaminated

with clutter and thermal noise. The received signal due to undesired reflections

from land, sea, atmosphere etc. is called clutter. The thermal noise generated by

the receiver hardware is typically modeled as a Gaussian random process. This

kind of noise is always present. Depending upon the situation, the clutter may or

may not be modeled as a Gaussian random process. Also, the power associated

with the background clutter may be orders of magnitude larger than the receiver

thermal noise or the desired signal power.

In modern radars, temporal and spatial processing are used to separate the

target from the clutter. For example, the received signal from a target having a
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radial velocity with respect to the radar will experience a Doppler shift. If the

target spectrum appears in the tail of the clutter spectrum, then conventional

frequency domain techniques can be used to extract the target from the clutter.

Similarly, if the spatial spectrum of the target does not overlap that of the clutter,

performance will be limited by the background noise rather than the clutter. In

this research, use is also made of temporal and spatial processing. However, we

are interested in the case where the target temporal and spatial spectra cannot be

separated from the strong clutter. By definition, this is referred to as the weak

signal detection problem. Given a range–Doppler–azimuth cell in which a target

is to be detected, it is assumed that the signal is larger than the background noise

but much smaller than the clutter.

In the weak signal problem the performance is limited by the clutter even

after temporal and spatial processing. Therefore, it becomes very important to

identify the clutter plus noise probability density function (PDF). This density

function is the Nth order joint density function of the received radar samples

r1; r2;…; rN in the absence of a target signal. The received waveform can be

modeled as a random process. Since we will be sampling this process at N time

instants, we need to know the Nth order joint PDF of the N random variables. In

this research effort the performance measures of radar receivers are analyzed,

given the Nth order PDF associated with the random process.

In the hypothesis testing problem, where we have to decide whether the target

is present or absent, two kinds of errors can occur:

(1) A false alarm occurs when it is decided that the target is present even

though it is not.

(2) A miss occurs when it is decided that the target is not present even

though it is.

In many radar problems the chosen criterion is to fix the probability of false

alarm at a certain value and then to maximize the probability of detection.

In statistical decision theory the Likelihood Ratio Test (LRT) is optimum for

these kinds of problems. The LRT evaluates the likelihood ratio as the ratio of the

Nth order joint PDF under the alternative hypothesis H1 (signal present) to the

Nth order joint PDF under the null hypothesisH0 (signal not present). This ratio is

then compared to a certain threshold to make a decision. Under the constraint of a

fixed false alarm probability, the Neyman–Pearson receiver obtained on the basis

of the LRT is the optimum receiver.

Utilizing an underscore ( _ ) to denote a vector quantity, the components of

the received realization vector r of the random vector R can be written

mathematically as

H1 : ri ¼ si þ di ð13:1Þ

H0 : ri ¼ di i ¼ 1; 2;…;N ð13:2Þ
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where si and di represent the ith sample of the desired signal return and the additive

disturbance, respectively. Also, let fR


ð


rlH1Þ; fR



ð


rlH0Þ; fD



ð


dÞ denote the Nth order

PDFs of


R underH1; of



R underH0 and of the disturbance, respectively. In general,

the disturbance may be composed of clutter plus noise. Since it is not possible to

separate the clutter and noise components of the disturbance when the disturbance

is measured, we focus on the disturbance itself. As the signal becomes very weak

(i.e., as the signal to clutter plus noise ratio [SCNR] approaches zero), the

numerator and the denominator of the LRT tend to become identical. This is due to

the fact that

fR


ð


rlH1Þ < fR



ð


rlH0Þ ¼ fD



ð


dÞ ð13:3Þ

This will result in the likelihood ratio being approximately equal to unity

independent of the received signal. Thus, if Ts denotes the likelihood ratio,

PD ¼
ð1

h
fTs ðTslH1Þdts < PF ¼

ð1

h
fTs ðTslH0Þdts ð13:4Þ

where PD and PF represent the detection and false alarm probabilities, respecti-

vely. Therefore, the LRT performs poorly in the limit as the signal strength tends

to zero.

Even though the problem of weak signal detection in radar applications is of

great interest, most of the literature by various researchers has been devoted to

strong signals in a clutter plus noise background. Optimal and/or very good

suboptimal schemes have been proposed to achieve the desired level of

performance. Only a relatively small fraction of the literature is devoted to the

design of practical schemes for the detection of weak signals. In this study we

present a general theory for developing practical detector structures for weak

signal problems. Also, computer simulations are used to evaluate performance

when the disturbance can be approximated by the multivariate Student-T and

K-distributions. In such problems the concept of the Locally Optimum Detector

(LOD) is used to come up with the decision rule, which is also a ratio test. For a

deterministic signal, a statistic is obtained by taking the ratio of the derivative

with respect to the signal strength of the Nth order joint PDF under H1 to the Nth

order joint PDF under H0: The limit of this ratio as the signal strength tends to

zero is evaluated to obtain the test statistic for the decision rule. In the random

signal case the test statistic is a ratio, in the limit as the signal strength tends to

zero, of the second derivative with respect to the signal strength of the Nth order

joint PDF under H1 to the Nth order joint PDF under H0: This approach is valid

when it is known that the SCNR ratio is very small but the actual value of SCNR

is unknown. Thus, the LOD turns out to be a Uniformly Most Powerful (UMP)

test for the class of problems where the SCNR is in the neighborhood of zero.

13.1.2. NONGAUSSIAN CORRELATED DATA

Previously, general analytic expressions for the various applicable Nth order joint

nonGaussian PDFs that allow for correlation between the variables were
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unavailable. As a result, researchers in the past assumed independence between the

samples. By assuming independence between the samples, they were able to get

theNth order PDF as a product of themarginal density functions. If we carry out the

locally optimum test using the Nth order density function based upon

independence and evaluate its performance, it is found that an unreasonably

large number of samples is needed for acceptable performance. This arises because

independent samples imply a white spectrum. Consequently, space-time

processing cannot be used to filter the target from the clutter. Based on the

concept of Spherically Invariant RandomProcesses (SIRP), analytical expressions

for some Nth order joint nonGaussian PDFs that allow for correlation between the

variables are now available. Use of the multivariate expressions for the

nonGaussian PDFs and the theory of LODs enables receiver structures for weak

signal detection to be derived.

13.1.3. THESIS ORGANIZATION

The literature review on weak signal detection and the derivation of the LOD are

presented in Section 13.2. It is shown that the LOD determines whether a target is

present or absent by comparing a statistic, computed from the data, to a set

threshold. Both deterministic and random target signals are considered. The

receiver structures are specialized to the case forwhich the clutter plus noise can be

approximated by an SIRP.

Since the clutter is assumed to be nonGaussian, the LOD receiver structure

turns out to be nonlinear. As a result, system performance must be determined by

means of computer simulation. The threshold is conventionally determined

through a Monte Carlo procedure. Unfortunately, the number of trials is inversely

proportional to the false alarm probability, PF: For example, when PF ¼ 1026; a
minimum of ten million trials need to be generated. To avoid carrying out so

many trials, a new technique, based on extreme value theory, is presented in

Section 13.3. It is demonstrated that fairly accurate thresholds can be determined

for false alarm probabilities as small as 1027 with as few as 10,000 to 30,000

trials.

Assuming that the clutter plus noise can be approximated by either the

multivariate Student-T or K-distributions, the LOD is developed in Section 13.4

for the weak signal detection problem. The system performance is evaluated by

means of computer simulation for each distribution. It is shown that the

performance improvement for the LOD is significant compared to the linear

receiver when the clutter plus noise is approximated by the Student-T

distribution. However, the performance improvement compared to the linear

receiver is not quite as significant when the clutter plus noise is approximated by

the K-distribution.

To enhance the performance of the LOD for weak signal detection when the

clutter plus noise is approximated as multivariate K-distributed, a new technique

called the amplitude dependent locally optimum detector (ALOD) is presented in

Section 13.5. This test, however, is not a UMP test. Based on this test, it is
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demonstrated that significant performance improvements can be obtained

compared to the linear receiver, even when the clutter plus noise is multivariate

K-distributed. Summary and conclusions are presented in Section 13.6.

13.2. THE LOCALLY OPTIMUM DETECTOR (LOD)

13.2.1. LITERATURE REVIEW

The concept of the LOD was first established by Neyman and Pearson in 1930.1,2

Subsequently this was applied to statistical communication and signal processing

by several researchers.

David Middleton’s work3,4 on the LOD is based on expanding the LRT in

terms of a power series expansion and truncating the series to a first order

approximation. In the limit as the signal tends to zero, the canonical structure of

the LOD is established with very weak restrictions on the statistical properties of

signal and noise. The analysis applies equally well to nonGaussian as well as

Gaussian, and nonstationary as well as stationary processes, for stochastic as well

as deterministic signals, continuous as well as discrete time signals, and for

combinations of signal and noise that need not be additive. In fact, the general

character of the results is independent of the particular nature of the signal and

noise, although specific noise distributions determine the specific detector

structures. Middleton shows that the LOD is a threshold detector with very strong

optimality features in the limit of an infinitely large number of samples. However,

in our research, we are interested in applications where the number of samples

may not be too large.

David Middleton5 has also extended the problem of threshold or weak signal

detection to vector fields involving highly nonGaussian electromagnetic

interference and signals that are both narrowband. The emphasis is on a canon-

ical formulation. However, the performance measures presented are obtained on

the basis of asymptotically locally optimum algorithms. In Ref. 6 Middleton has

also analyzed the performance of the LODs in correlated interference. He points

out that the correlation function involves only the second order statistics whereas

higher order statistics should be considered for the nonGaussian case.

Consequently, the correlated noise model leads to a suboptimal receiver except

when the underlying noise distribution, is Gaussian. But when the sample to

sample correlation is strong, the resulting algorithms and performance measures

can provide noticeable improvements over models that employ independent

noise sampling assumptions.

Other researchers in this area, such as, J. H. Miller and John Thomas7 and

Saleem Kassam,8 have obtained performance of the LOD under the asymptotic

condition of an infinitely large number of samples. These researchers have

modeled the noise samples as independent, identically distributed random

variables. This enables them to have a closed form expression for the Nth order

PDF of multivariate nonGaussian noise. Applying the LOD test they have arrived

at the decision statistic. Using the central limit theorem, the test statistic is shown
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to approach Gaussian in the limit of very large sample size. Then the performance

measures are evaluated. Song andKassam9,10 have also derived the LODs for both

known signals and random signals in a generalized observation model. In this

model additive, multiplicative, and signal dependent noise models are considered.

They show that the detectors derived under this model are interesting

generalizations of the LODs derived in the additive noise model case. They

also analyze the performance of the detector for a finite sample size case. But, the

underlying noise distribution is assumed to be bivariate Gaussian.

For a variety of detection problems, Jack Capon11 concludes that implement-

ation of the LOD is either less or no more complicated than the Neyman–Pearson

detector. First, he proposes the LOD for weak signal applications and proceeds to

evaluate its performance by comparing it with the Neyman–Pearson detector.

The comparison is based on the concept of Asymptotically Relative Efficiency

(ARE). ARE is defined as the ratio of sample sizes required for two different

detectors to achieve the same error probability and for the same signal to noise

ratio, as the signal to noise ratio tends to zero and the sample sizes tend to infinity.

On the basis of this comparison, it is shown that the LOD is asymptotically as

efficient as the Neyman–Pearson detector. Conte, Izzo, Longo, and Paura12 have

also considered the problem of weak signal detection using LODs for arbitrarily

large sample sizes to show that significant improvements are achieved compared

to the linear detector. However, when they implement their algorithm for finite

sample sizes, they conclude that the promises of the asymptotic theory cannot be

achieved using even moderately large sample sizes. Hence, they propose a

scheme which is a hybrid of the asymptotically optimum detector and the linear

detector. Asymptotically effective nonparametric algorithms for detecting weak

signals in nonGaussian interference have also been considered by Valeyev and

Aspisov.13 They conclude that the effectiveness of such algorithms approaches

that of the optimum asymptotically, in the limit of large sample size. Raveendra

and Srinivasan14 have derived the locally optimum receiver structure for the

coherent detection of continuous phase frequency shift keying (CPFSK) is

nonGaussian noise channels. They evaluate the performance of the receiver

consisting of a zero memory nonlinearity followed by a correlator for a number of

noise models. The measure of performance is the asymptotic relative efficiency.

However, they point out two important drawbacks in the analysis of performance

through the ARE. The first one is, while large sample sizes are desirable for weak

signal detection, increasing the sample size actually makes the LOD suboptimal

partly due to the fact that there is an increased effect of higher order terms in the

expansion of the likelihood ratio. Secondly, under increasing sampling rates, the

assumption of independent samples, used in the derivation of the weak signal

detector under nonGaussian conditions becomes invalid. In a Naval Underwater

Systems Center report, Raymond Ingram and R. Houle15 analyze the

performance of the optimum and several suboptimum receivers for weak signal

detection of known signals in additive, white, nonGaussian noise. He concludes

that the implementation of the optimum or suboptimum nonlinear receivers yield

significant improvements in performance relative to the receiver which is
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optimum in Gaussian noise. However, the receiver structure is more complicated

than the linear receiver.

The structure of LODs has also been characterized in terms of locally

optimum estimators and correlators.16 These characterizations are canonical

structures involving estimators–correlators. It is shown that if the one step signal

predictor is recursive and the noise is white (possibly nonGaussian or non-

stationary), there is a canonical structure admitting recursive computation. The

motivation to get a recursive structure is to simplify implementations and

enhance adaptability. The problem of signal design has been considered for the

case of locally optimum detection by Johnson and Orsak.17 They show for the

weak signal problem as we have defined it in Section 13.1 (Introduction), that

the detection performance depends on signal energy in proportion to the Fisher

information for location. In other words, when the spectra of the signal and

disturbance overlap completely, significant improvements do not result from

signal design. Another useful result they point out is that, among all distributions

having zero mean and the same (finite) variance, the distribution having the

smallest Fisher information is the Gaussian. Because of this result, it is concluded

that detecting a small signal in Gaussian noise is the most difficult situation

possible for an optimal detector. An increase in the signal energy yields the

smallest possible performance improvement. Johnson and Orsak also come with

explicit expressions to quantify the “small signal regimes” depending on the

amplitude distribution of the noise.

Arthur Spaulding18 compares the performance of the Locally Optimum

Binary Detector (LOBD) with that of the linear receiver and a hard limiter.

The performance analysis is done via specific examples and through computer

Monte Carlo simulation. Under the assumption of independent, identically

distributed samples, he concludes that the LOBD approaches its optimum

performance only under the limit of large sample sizes and small signal to noise

ratios. Also, he shows by way of an example that one cannot always be assured

of obtaining great improvements over the linear receiver by using nonlinear

processing. This implies that even if the underlying PDF of the interference has a

much larger tail than that of the Gaussian, it does not guarantee a much improved

performance over the linear processor. The improvement in performance depends

on the particular nature of the underlying PDF. Michael Bouvet19 obtains the

LOD by expanding the likelihood ratio and truncating the expansion under the

weak signal assumption. He expands the likelihood ratio in two ways: one with

respect to the signal and the other with respect to the observation. He then

establishes the equivalence between the two different forms of expansion.

However, he points out the limitations of these expansions by stating that the

results are valid only if the neglected terms are actually negligible with respect

to the retained terms. Since the received observations are random, this cannot

always be guaranteed.

Shishkov and Penev20 have considered the case of correlated interference and

background white noise, but have restricted themselves to multivariate Gaussian

interference. For the known signal case, when the underlying noise distribution is
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Gaussian, the optimal detector obtained from the LRT is the same as the weak

signal detector obtained from the locally optimum test. Modestino and Ningo21

were among the earliest researchers to consider weak signal detection arising

from bandpass processes. They have modeled the received signal as statistically

independent complex samples and then obtained the joint density function of the

inphase and quadrature components. Under the assumption that the clutter

density function is circularly symmetric, they transform the joint density function

to an equivalent one involving the envelope and phase. This model still does

not include the correlation from one envelope sample to another and hence

large sample sizes are required for good performance. Martinez et al.22 have

considered the case where the noise has a multivariate Laplace distribution,

where any nonnegative definite matrix can be used to model the correlation

between the random variables. Based on this model they go ahead and derive the

LOD which, as expected, is nonlinear. They compare the performance of this

detector to the one developed by assuming the noise to be independent and

identically distributed, and to the matched filter. They compare the performance

of these receivers through the means of ARE and do not analyze the receiver

performance for small sample sizes, which is the case of practical interest.

Sangston and Gerlach23 have used the concept of the SIRP to model

multivariate nonGaussian PDFs. They derive the LOD based on this noise model.

It turns out that the LOD structure is the matched filter in conjunction with a

nonlinearity. They are able to establish the canonical nature of this result for the

class of joint density functions arising from SIRPs. They propose an equivalent

structure for the LOD. This takes the form of a receiver where the matched filter

output is compared to a nonlinear adaptive threshold. However, they do not

explore the issue in terms of performance analysis.

13.2.2. SPHERICALLY INVARIANT RANDOM PROCESSES (SIRP)

In general, the radar receiver processes N complex samples (or 2N quadrature

components) from each resolution cell. To develop an optimal receiver, it is

necessary to have a closed form analytical expression for the joint PDF of the

received samples. When the N samples are statistically independent, the joint

PDF is simply the product of the marginal PDFs. However, clutter samples are

likely to be correlated. Because this correlation is useful in canceling the clutter,

it is important that the correlation be modeled. Unfortunately, when the received

samples are correlated and nonGaussian, there are no unique analytical

expressions for their joint PDFs. A search of the mathematical and signal

processing literature reveals that the SIRP provides a powerful mechanism for

obtaining the PDF of N correlated nonGaussian random variables. SIRPs for

clutter modeling and simulation can be found in, Ref. 24 where Conte and Longo

model complex clutter as a spherically invariant random process. They point out

that the SIRP is ergodic only if the underlying clutter process is Gaussian. This

means that time averages cannot be used to approximate ensemble averages.

Conte et al.25 also propose specific computer simulation procedures for
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generating clutter realizations from an SIRP with desired correlation properties

when the underlying distribution is multivariate Weibull or K-distributed.

Rangaswamy et al.26 have developed a library of multivariate correlated

nonGaussian PDFs for characterizing various clutter scenarios through the theory

of SIRPs. A significant result in this chapter is the proof that the multivariate

SIRP PDF approximation problem can be reduced to an equivalent univariate

PDF approximation problem. Rangaswamy et al.27 develop two canonical

computer simulation procedures for the generation of any correlated nonGaussian

clutter that can be modeled as a spherically invariant random process.

Application of the theory of SIRPs to the problem of signal detection and

estimation can be found in Refs. 23 and 28. Yao28 derives the form of the unit

threshold likelihood ratio receiver for the detection of a known deterministic

signal in additive SIRP noise. He shows that the optimum receiver is the linear

receiver or the matched filter when the threshold is set to unity, a threshold

commonly arising in communication systems. This result is very significant

because it tells us that nonlinear processing will not improve performance when

the threshold is set to unity even though the disturbance is nonGaussian. However,

when the threshold is not unity, then the optimal nonGaussian receiver is a

nonlinear receiver. Pentini et al.29 consider the problem of detecting a known

target and a Swerling zero target embedded in coherent K-distributed clutter. The

detectors are derived based on the LRT where the multivariate joint density

functions used in the test are obtained from the theory of SIRPs. The receiver

performance is then evaluated for the strong signal case. The false alarm

probabilities used in obtaining the receiver performance are 1023 and 1024 so as

to reduce the number of Monte Carlo trials needed to set thresholds. For a

Swerling zero target model, they obtain a probability of detection equal to 0.1 for a

false alarm probability of 1023 using four complex samples and a signal to clutter

ratio (SCR) of 210 dB. However, they do not explore performance for lower

values of SCRs.

13.2.3. THE DERIVATION OF THE LOCALLYOPTIMUM DETECTOR

The usual criterion in radar problems is to maximize the probability of detection

under a fixed false alarm probability constraint. This receiver is called the

Neyman–Pearson receiver. The receiver implements the LRT and compares it

against a threshold whose value is designed to give the desired false alarm

probability. In particular, consider the received vector


RT ¼ ½R1;R2;…;RN	:

Introduce the two hypotheses H0 and H1 as described below:

H0 :ri ¼ ci þ ni ð13:5Þ
H1 :ri ¼ usi þ ci þ ni i ¼ 1; 2;…;N ð13:6Þ

Thus, H0 is the hypothesis that the received signal consists solely of clutter

plus noise while target signal is assumed to be present under the hypothesis H1.
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Let the joint PDF of R1; R2;…, RN under hypothesis Hk (k ¼ 0, 1) be denoted by

fR


ð


rlHkÞ: The Neyman–Pearson receiver performs the LRT

tsðrÞ ¼
fR


ð


rlH1Þ

fR


ð


rlH0Þ _

H1

H0

h ð13:7Þ

where h is specified to satisfy the false alarm constraint

PF ¼
ð1

h
fTsðtslH0Þdts ð13:8Þ

and fTsðtslHkÞ is the conditional PDF of the test statistic Ts given hypothesis

Hk:
However, when the signal strength is very small relative to the clutter plus

noise, the joint density function of the received random variables under H1

approaches that under H0: Then the numerator and the denominator of the LRT

become approximately equal, leading to numerical difficulties in discriminating

between the two hypotheses. The Neyman–Pearson test is of course optimum.

However, the form of the LRT can be rearranged to yield a test statistic that is

more sensitive to perturbations in the received data. This gives rise to the concept

of the LOD. In this chapter the concept of the LOD is developed in detail using

two approaches. The first approach is based on a power series expansion of

the LRT and the second approach derives the LOD by an optimization using

the principle of Lagrangian multipliers. It is shown that both approaches

yield identical detector structures, though starting from different theoretical points

of view. As the signal strength becomes weaker, the LOD becomes optimum

even though its performance for a fixed sample size may not be as good as desired.

13.2.4. THE SERIES APPROACH

13.2.4.1. The Known Signal Case

Let the additive clutter component


C ¼ ½C1;C2;…;CN	T be stationary and

independent of the stationary white Gaussian background noise


N ¼

½N1;N2;…;NN	T: The noise variance s 2
n is assumed to be several orders of

magnitude below the clutter variance s 2
c which is taken to be unity without loss

of generality. The signal is assumed to be of the form u


s; where



s is known. The

components of


s are chosen to have lsil

2 ¼ 1 so that the positive parameter u is a
measure of the SCR defined by

SCR ¼ u 2lsil
2

s 2
c

¼ u 2 ð13:9Þ

Because the clutter and noise are statistically independent with the noise

assumed to have zero mean, the covariance matrix of the disturbance vector
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D ¼



Cþ



N; denoted by MD; is equal to the covariance matrix MC of the clutter

plus the covariance matrix MN of the noise. Since the noise is white and

stationary, the covariance matrix of the noise is of the formMN ¼ s 2
nI;where I is

the identity matrix. When the clutter is highly correlated, the covariance matrix

MC tends to be ill-conditioned. However,MD will not be ill-conditioned because,

by adding the small value s 2
n to the diagonal elements of MC; the smallest

eigenvalue ofMD is guaranteed to be no smaller than s 2
n :Also, addition ofMN to

MC ensures that the disturbance spectrum will limit performance even in those

frequency intervals where the clutter spectrum is negligible.

With this assumption the LRT takes the form

ts ¼
fR


ð


rlH1Þ

fR


ð


rlH0Þ ¼ fD



ð


r2 u



sÞ

fD


ð


rÞ _

H1

H0

h ð13:10Þ

As mentioned previously, when up 1; the signal u


s represents a small

perturbation in the received vector under hypothesis H1: Hence, fR


ð


rlH1Þ

approximately equals fR


ð


rlH0Þ: As a result, Ts is relatively insensitive to u



s: One

approach at deriving a weak signal detector is to expand the numerator of the

LRT in a Taylor series.

For this purpose, let


y ¼



r2 u



s: Then

fR


ð


rlH1Þ ¼ fD



ð


yÞ ð13:11Þ

Expanding fDð


yÞ in a Taylor series about the received vector



r; we obtain

fD


ð


yÞ ¼ fD



ð


rÞþ

XN
k1¼1

ðyk1 2 rk1 Þ
›fD



ð


yÞ

›yk1

�����


y¼



r

þ 1

2!

XN
k1¼1

XN
k2¼1

ðyk1 2 rkÞðyk2 2 rk2 Þ
›2fD



ð


yÞ

›yk1›yk2

�����


y¼



r

þ· · ·

þ 1

n!

XN
k1¼1

XN
k2¼1

· · ·
XN
kn¼1

ðyk1 2 rk1 Þðyk2 2 rk2Þ…ðykn 2 rknÞ
›nfD



ð


yÞ

›yk1›yk2…›ykn

�����


y¼



r

þ · · · ð13:12Þ

This can be expressed in vector form by introducing the operator

ð


y2



rÞT7y¼

XN
k¼1

ðyk2 rkÞ ›

›yk
ð13:13Þ

where the subscript y on 7 indicates partial differentiation with respect to the
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components of


y. The expansion of fDð



y Þ about the point



y¼



r then becomes

fD


ð


yÞ ¼ fD



ð


rÞþ ½ð



y2



rÞT7y	 fD



ð


yÞl



y¼



r

þ 1

2!
½ð


y2



rÞT7y	2fD



ð


yÞl



y¼



rþ · · ·

þ 1

n!
½ð


y2



rÞT7y	nfD



ð


yÞl



y¼



rþ · · ·

¼ fD


ð


rÞþ

X1
n¼1

1

n!
½ð


y2



rÞT7y	nfD



ð


yÞl



y¼



r

ð13:14Þ

Recall that


y¼



r2u



s; where u and



s are constants. Note that



y2



r¼2u



s and

›=›yk ¼ ›=›rk: Then

ð


y2



rÞT7y¼

XN
k¼1

ð2uskÞ ›

›rk
¼2u



sT7r ð13:15Þ

where the subscript r on 7 indicates partial differentiation with respect to the

components of


r: It follows that the expansion may be written as

fD


ð


r2u



sÞ ¼ fD



ð


rÞþ

X1
n¼1

ð21nÞ
n!

un½


sT7r	n fD



ð


rÞ ð13:16Þ

In order for the above expansion to be meaningful, it is necessary that all the

derivatives in the above expansion exist.

Thus, using the above expansion of fDð


r2 u



sÞ; the Taylor series expansion

of the likelihood ratio about the received vector


r in Equation 13.10 can be

written as

Tsð


rÞ ¼ 1þ

X1
n¼1

ð21Þnu n

n!fD


ð


rÞ ðsT7rÞn

" #
fD


ð


rÞ ð13:17Þ

The first term, being a constant, can be combined with the threshold without

loss of optimality. The LOD is obtained by retaining only the term corresponding

to n ¼ 1 in the infinite summation. For up 1; it is assumed that the remaining

terms in the summation are negligible. On the other hand, because


r is governed

by a random vector and the partial derivatives of the PDF evaluated at


r may be

large, the remaining terms may actually not be negligible. However, it is assumed

that this occurs with small probability. The resulting detector structure can then

be expressed as

TLODð


rÞ ¼ 2

ðsT7rÞfD


ð


rÞ

fD


ð


rÞ _

H1

H0

hk ð13:18Þ

where hk is chosen so as to achieve the desired false alarm probability.
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13.2.4.2. The Random Signal Case

When the signal is random, fRð


rlH1Þ is obtained by integrating the joint density

function fR;Sð


r;


slH1Þ over all possible values of



s: Hence,

fR


ð


rlH1Þ ¼

ð1

21
fR


;


Sð


r;


slH1Þds ¼

ð1

21
fR


l


S¼



sð
rl
s; lH1ÞfS



ð


sÞds

¼ Es½fR


l


S¼



sð
rl
s;H1Þ	 ð13:19Þ

where Es denotes the expectation operation carried out with respect to the

random vector


S: Because the denominator of Ts in Equation 13.10 is

independent of


s; the Taylor series expansion of the likelihood ratio can now be

written as

Tsð


rÞ ¼ 1þ

X1
n¼1

ð21Þnu n

n!fD


ð


rÞ Es½ð



sT7rÞn	fD



ð


rÞ

" #
ð13:20Þ

Once again, as in the known signal case, the unity term appearing in the test

statistic can be put into the threshold. If we make the assumption that the

expected value of the signal vector is


0; then the n ¼ 1 term in the infinite series

of Equation 13.20 goes to zero. Thus, for the random signal case, where the

signal vector has zero mean, the LOD is defined to be the second term ðn ¼ 2Þ
in the infinite series. As in the deterministic signal case, u is assumed to be

small enough such that the remaining terms of the series are negligible with

high probability. Consequently, the LOD for the random signal case is given by

Ts2ð


rÞ ¼ u2

2fD


ð


rÞ Es½ð



sT7rÞ2	 fD



ð


rÞ_

H1

H0

h0 ð13:21Þ

where Ts2 represents the second order term in the Taylor series expansion of Ts:
The above equation can be rewritten as

Ts2ð


rÞ ¼ u2

2fD


ð


rÞ Es½7T

r


s


sT7r	 fD



ð


rÞ_

H1

H0

h0 ð13:22Þ

where, as before, h0 is chosen to achieve the specified false alarm probability.

Lumping the constant u2=2 with the threshold and recognizing that

Es½ð


sT7rÞ2	 ¼ Es½7T

r


s


sT7r	 ¼ 7T

r P7r ð13:23Þ
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where P is the covariance matrix of the signal vector, the detector structure for

the locally optimal test becomes

TLODð


rÞ ¼ 7T

r P7r½ fD


ð


rÞ	

fD


ð


rÞ _

H1

H0

hu ð13:24Þ

13.2.5. THE LAGRANGIAN APPROACH

Consider again the hypotheses testing problem defined in Equation 13.5 and

Equation 13.6. Let us define a nonrandomized decision rule fð


rÞ such that

fð


rÞ ¼

1; H1 true ðtarget presentÞ
0; H0 true ðtarget absentÞ

(
ð13:25Þ

This amounts to partioning the decision space into two regions, S1 and S0: A
target is declared if the vector



r is present in the region S1: If it falls in the region

S0; then the decision is made that the target is absent. The probability of detection

equals the probability that the nonrandomized decision rule equals unity, given

that hypothesis H1 is indeed true. This probability will, in general, be a function

of u; the signal-to-clutter ratio. Denoting bðuÞ as the probability of detection we

have

PD ¼ bðuÞ ¼ p½fð


rÞ ¼ 1lH1	 ¼

ð1

21
fð



rÞfR



ð


rlH1Þdr ð13:26Þ

bðuÞ is also called the power function of the test. The false alarm probability is

given by

PF ¼ p½fð


rÞ ¼ 1lH0	 ¼

ð1

21
fð



rÞfR



ð


rlH0Þdr ¼ PF ð13:27Þ

The optimization problem to be discussed in the next section imposes the

constraint that the false alarm probability be equal to PF: PF is also defined to be

the significance level of the test.

13.2.5.1. The Known Signal Case

As discussed earlier, in the limit as the signal strength tends to zero, the

probability of detection becomes approximately equal to the probability of false

alarm. Therefore, instead of maximizing the probability of detection, one

approach is to maximize the slope of the power function bðuÞ curve at the point
u ¼ 0. The function to be maximized and the constraint are given in the following
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two equations. Maximize

›bðuÞ
›u2

����
u¼0

¼
�
›

›u

ð1

21
fð



rÞfR



ð


rlH1Þdr

�����
u¼0

ð13:28Þ

subject to the constraint ð1

21
fð



rÞfR



ð


rlH0Þdr ¼ a ð13:29Þ

We also require that the test be UMP in the sense that fð


rÞ be independent of

u for small neighborhoods in the vicinity of u ¼ 0: Notice that there is a

derivative with respect to u outside the integral in Equation 13.28. If the function
fRð



rlH1Þ is a well behaved function of u such that its derivative exists at all points,

the derivative can be moved inside the integral resulting in

›

›u

ð1

21
fð



rÞfR



ð


rlH1Þdr

¼
ð1

21
›fð



rÞ

›u
fR


ð


rlH1Þdr þ

ð1

21
fð



rÞ ›fR
 ð
rlH1Þ

›u
dr ð13:30Þ

Because of the UMP requirement, ›fð


rÞ=›u ¼ 0 and the first integral on the

right side of Equation 13.30 integrates to zero. It follows that

›

›u

ð1

21
fð



rÞfR



ð


rlH1Þdr ¼

ð1

21
fð



rÞ ›fR
 ð
rlH1Þ

›u
dr ð13:31Þ

Given the function ð›bðuÞ=›uÞlu¼0 to be maximized along with the false

alarm probability constraint, the functional form of the maximization problem

using the Lagrange multiplier approach is

max
ð1

21
fð



rÞ

�
›fR



ð


rlH1Þ
›u

dr

����
u¼0

þ hk a2
ð1

21
fð



rÞfR



ð


rlH0Þdr

� ��
ð13:32Þ

where hk is the Lagrange multiplier. Expression (13.32) can be rewritten as

max
ð1

21
fð



rÞ

�
›fR



ð


rlH1Þ
›u

2 hkfR


ð


rlH0Þdr

����
u¼0

�
þ hka ð13:33Þ

To maximize the above integral, the decision regions should be chosen such

that the integrand is always positive. In other words, the decision regions are

chosen such that

›fR


ð


rlH1Þ
›u

�����
u¼0

_
H1

H0

hk fR


ð


rlH0Þ ð13:34Þ
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As was pointed out in the previous section, fRð


rlH1Þ is identical to fDð



r2 u



sÞ:

Therefore, the decision rule becomes

›fD


ð


r2 u



sÞ

›u

����
u¼0

_
H1

H0

hkfD


ð


rÞ ð13:35Þ

The LOD is defined to be the detector implementing the ratio test

›fD


ð


r2 u



sÞ

›u

����
u¼0

fD


ð


rÞ _

H1

H0

hk ð13:36Þ

The Lagrange multiplier hk is chosen to satisfy the false alarm constraint.

Note that

fD


ð


r2 u



sÞ ¼ fD



ðr1 2 us1; r2 2 us2;…; rN 2 usNÞ ð13:37Þ

As a result,

›fD


ð


r2 u



sÞ

›u
¼ ›fD



ð


r2 u



sÞ

›ðr1 2 us1Þ
›ðr1 2 us1Þ

›u
þ ›fD



ð


r2 u



sÞ

›ðr2 2 us2Þ
›ðr2 2 us2Þ

›u

þ · · ·þ ›fD


ð


r2 u



sÞ

›ðrN 2 usNÞ
›ðrN 2 usNÞ

›u

¼
XN
k¼1

›fD


ð


r2 u



sÞ

›ðrk 2 uskÞ ð2skÞ ð13:38Þ

Consequently,

›fD


ð


r2 u



sÞ

›u

����
u¼0

¼ 2
XN
k¼1

›fD


ð


rÞ

›rk
sk ¼ 2ð



sT7rÞ fD



ð


rÞ ð13:39Þ

Thus, the LOD can also be written as

TLODð


rÞ ¼ 2

ðsT7rÞ fD


ð


rÞ

fD


ð


rÞ _

H1

H0

hk ð13:40Þ

It can be seen that this detector is identical to the one in Equation 13.18

obtained through the series approach.

13.2.5.2. The Random Signal Case

Consider a random signal S and let its joint PDF be denoted by f


sð


sÞ: Also,

without loss of generality, we can make the assumption that the signal vector

has zero mean and each component of the vector has unit variance. Given the
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signal vector


S the joint density function on the received vector under hypothesis

H1 is

f


Rð


rl


s;H1Þ ¼ fD



ð


r2 u



sÞ ð13:41Þ

The power function for the locally optimum test was given in the previous

section in Equation 13.26. However, in the random signal case the

unconditional density function fRð


rlH1Þ is obtained by integrating out the

random vector


S from the joint PDF fRSð



r;


slH1Þ ¼ fRð



r; l



s;H1Þ fSð



sÞ: Use of

Equation 13.41 results in

bðuÞ ¼
ð1

21

ð1

21
fð



rÞfD



ð


r2 u



sÞ fS



ð


sÞdr ds ð13:42Þ

The false alarm constraint is once again given by

ð1

21
fð



rÞ fR



ð


rlH0Þdr ¼ a ð13:43Þ

As before, we wish to maximize ð›bðuÞ=›uÞlu¼0: If the function fDð


r2 u



sÞ is

a well behaved function such that its derivative exists at all points, then

›bðuÞ
›u

¼
ð1

21

ð1

21
fð



rÞ ›fD
 ð
r2 u



sÞ

›u
fS


ð


sÞdr ds ð13:44Þ

It follows from Equation 13.39 that

›bðuÞ
›u

����
u¼0

¼ 2
ð1

21

ð1

21
fð



rÞ

XN
k¼1

›fD


ð


rÞ

›rk
sk

" #
fS


ð


sÞdr ds ð13:45Þ

Because of the zero mean assumption

ð1

21
skfS



ð


sÞds ¼ 0 ð13:46Þ

We conclude that

›bðuÞ
›u

����
u¼0

¼ 0 ð13:47Þ

independent of the choice of fð


rÞ: Therefore, to achieve the maximum increase

of the power function in the vicinity of the origin, we maximize

ð›2bðuÞ=›u 2Þlu¼0: As before, assuming that the integration and differentiation

can be interchanged,

›2bðuÞ
›u2

¼
ð1

21

ð1

21
fð



rÞ ›

2fD


ð


r2 u



sÞ

›u2
fS


ð


sÞdr ds ð13:48Þ
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However from Equation 13.38

›2fD


ð


r2 u



sÞ

›u2
¼ ›

›u

XN
k¼1

›fD


ð


r2 u



sÞ

›ðrk 2 uskÞ ð2skÞ

¼
XN
j¼1

XN
k¼1

›2fD


ð


r2 u



sÞ

›ðrj 2 usjÞ›ðrk 2 uskÞ
›ðrj 2 usjÞ

›u
ð2skÞ

¼
XN
j¼1

XN
k¼1

›2fD


ð


r2 u



sÞ

›ðrj 2 usjÞ›ðrk 2 uskÞ sjsk ð13:49Þ

Hence,

›2fD


ð


r2 u



sÞ

›u2

�����
u¼0

¼
XN
j¼1

XN
k¼1

›2fD


ð


rÞ

›rj›rk
sjsk ¼ ð7T

r


s


sT7rÞ fD



ðrÞ ð13:50Þ

Then the second derivative of the power function at the origin takes the

form

›2bðuÞ
›u2

�����
u¼0

¼
ð1

21

ð1

21
fð



rÞð7T

r


s


sT7rÞfD



ð


rÞfS



ð


sÞdr ds

¼
ð1

21
fð



rÞEsð7T

r


s


sT7rÞfD



ð


rÞdr ð13:51Þ

Using the approach of Lagrange multipliers to maximize the function in

Equation 13.51 along with the constraint Equation 13.43, the optimization

problem can be written as

max
ð1

21
fð



rÞEs½7T

r


s


sT7r	 fD



ð


rÞdr þ hu a2

ð1

21
fð



rÞfD



ð


rÞdr

� �� �
ð13:52Þ

The above expression can be rewritten as

max
ð1

21
fð



rÞ½Es½7T

r


s


sT7r	 fD



ð


rÞ2 hu fD



ð


rÞ	dr

� �
þ hua ð13:53Þ

To maximize the integral the decision regions have to be chosen such that

the integrand is always nonnegative. The resulting decision regions yield the

inequalities

Es½7T
r


s


sT7r	 fD



ð


rÞ_

H1

H0

hu fD


ð


rÞ ð13:54Þ
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If the covariance matrix of the signal vector is denoted by P, then the LOD

can be written as

TLODð


rÞ ¼ ð7T

r P7rÞfD


ð


rÞ

fD


ð


rÞ _

H1

H0

hu ð13:55Þ

which is identical to Equation 13.24.

As a general rule for deriving locally optimum tests, note that we maximize at

the origin the first nonvanishing derivative of the power function. For the known

and the purely random signal cases the first nonvanishing derivative is the first

and the second derivative, respectively.

13.2.6. SPECIAL CASES

In this section, LOD structures will be derived for three special cases. In the first

it is assumed that the N random variables in the disturbance vector


D are

statistically independent. With this assumption, the joint PDF of the N random

variables is the product of the marginal density functions of the individual

random variables. In the second, the N random variables are modeled as arising

from an SIRP. This model enables us to write the joint PDF of the random

variables analytically, accounting for the correlation between the random

variables. In the last case, the N correlated random variables are assumed to be

jointly Gaussian. The LOD structures are derived for all cases. It turns out in all

three cases that the detector can be expressed in a canonical form. This canonical

expression is derived for both the known and the random signal problems.

13.2.6.1. The Known Signal Problem

13.2.6.1.1. Disturbance Modeled as Independent Random Variables

From Equation 13.36, the LOD structure in the known signal case is given as

›fD


ð


r2 u



sÞ

›u

����
u¼0

fD


ð


rÞ _

H1

H0

hk ð13:56Þ

Let the N random variables in the vector


D be independent where the PDF of

the ith random variable is fDi
ðdiÞ: Therefore, the conditional joint density

functions of the N received random variables are given by

fR1;R2;…;RN
ðr1; r2;…; rN lH0Þ ¼

YN
i¼1

fDi
ðriÞ ð13:57Þ

fR1;R2;…;RN
ðr1; r2;…; rN lH1Þ ¼

YN
i¼1

fDi
ðri 2 usiÞ ð13:58Þ
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The numerator in the ratio test of Equation 13.56 is evaluated as

›fD


ð


r2 u



sÞ

›u

����
u¼0

¼ ›

›u

YN
i¼1

fDi
ðri 2 usiÞ

" #�����
u¼0

¼
XN
i¼1

ð2siÞ
dfDi

ðriÞ
dri

YN
j¼1

j–i

fDi
ðrjÞ

8>>>><>>>>:

9>>>>=>>>>;
ð13:59Þ

Thus, from Equation 13.56 the LOD statistic for independent random

variables is given by

TLODðr1; r2;…; rNÞ ¼ 2
XN
i¼1

si
f 0Di

ðriÞ
fDi

ðriÞ ð13:60Þ

where f 0Di
ðriÞ denotes the derivative of fDi

ðriÞ with respect to ri: The above

equation for the LOD statistic is the canonical form obtained when the random

variables are independent. For different density functions, fDi
ðriÞ; the detector will

be different, although its structure remains the same. The canonical form of the

detector is shown in Figure 13.1.

−s1f ′D1
(r1)

fD1
(r1)

r1

r2

TLOD H1
H0

> h
Yes

No

rn

−s2f ′D2
(r2)

fD2
(r2)

−snf ′Dn
(rn)

fDn
(rn)

FIGURE 13.1 Canonical form of LOD assuming known signal and independent random

variables.
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13.2.6.1.2. Disturbance Modeled as an SIRV

When the random variables of the disturbance are drawn from a zero mean SIRP

distribution, the joint PDF can be written as

fD


ð


dÞ ¼ 1

2p N=2lMl1=2
hNð pÞ ð13:61Þ

where p ¼


dTM21



d;M is the covariance matrix for the N random variables and

hNð pÞ is a positive valued, nonlinear function of p: The numerator of the ratio test

in Equation 13.56 is then given by

›fD


ð


r2 u



sÞ

›u

����
u¼0

¼ ›

›u

1

2p N=2lMl1=2
hNðpÞ

� �����
u¼0

¼ 1

2p N=2lMl1=2
›

›u
{hNðpÞ}

����
u¼0

ð13:62Þ
where the quadratic form p equals ð



r2 u



sÞTM21ð



r2 u



sÞ since



d ¼



r2 u



s: From

the chain rule for differentiation we have

›

›u
ðhNð pÞÞ ¼ ›

›p
ðhNð pÞÞ ›p›u ð13:63Þ

From the expression for p

›p

›u

����
u¼0

¼22ð


sTM21



rÞ ð13:64Þ

Making use of Equation 13.62 to Equation 13.64 the LOD statistic in

Equation 13.56 becomes

TLODð


rÞ ¼22ð



sTM21



rÞ h

0
Nð pÞ
hNð pÞ ð13:65Þ

where h0Nð pÞ denotes the derivative of the function hNð pÞ with respect to the

argument p: The LOD statistic in Equation 13.65 represents the canonical structure

when the disturbance ismodeled as an SIRV. The nonlinear function hNð pÞ depends
on the particular joint density function used tomodel the disturbance. The canonical

structure for the detector is shown in Figure 13.2. Note that the detector multiplies

the output of a matched filter with the output of a nonlinearity. Just as with a

Gaussian receiver, the matched filter maximizes the signal to disturbance ratio even

though the received signal is nonGaussian (i.e., derivation of the matched filter

to maximize signal to noise ratio does not depend on the Gaussian assumption).

For nonGaussian problems, matched filtering alone is suboptimum. For SIRPs

the optimal receiver requires nonlinear processing as well as matched filtering.

13.2.6.1.3. Random Variables Arising from the Gaussian Distribution

The SIRP class of disturbance reduces to the Gaussian distribution when

hNð pÞ ¼ e2P=2 ð13:66Þ
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It follows that

h0Nð pÞ
hNð pÞ ¼ 2

1

2
ð13:67Þ

With reference to Equation 13.65, the LOD statistic becomes

TLODð


rÞ ¼ 2



sTM21



r ð13:68Þ

Interestingly enough, this is identical to the statistic of the LRT for the known

signal Gaussian problem.30 Hence, for the known signal Gaussian problem, the

strong and the weak signal detectors are identical. Note that there is no non-

linearity involved with the weak signal detector for this case. To put it another

way, the general nonlinear SIRPweak signal detector of Figure 13.2 reduces to the

linear receiver or matched filter known to be optimum for the Gaussian problem.

13.2.6.2. The Random Signal Problem

13.2.6.2.1. Independent Disturbance Random Variables

The LOD is given by Equation 13.55 when the signal is random. Repeating

Equation 13.55 the LOD structure is

TLODð


rÞ ¼ ð7T

r P7rÞfD


ð


rÞ

fD


ð


rÞ _

H1

H0

hu ð13:69Þ

P is the random signal covariance matrix. In this section the components of the

disturbance vector


D are assumed to be statistically independent. The analysis

is further simplified when the signal random variables are also assumed to be

uncorrelated. The covariance matrix P then becomes diagonal. Let the diagonal

elements of the matrix P be represented by s 2
i ; i ¼ 1; 2;…;N: Because

the disturbance random variables are independent, the joint density function

fDð


rÞ is again given by the product of the marginal density functions of the

TLOD H1
H0

> h
Yes

No

h ′N (p)

hN (p)

r
−2 sTM−1r

FIGURE 13.2 Canonical form of LOD assuming known signal and random variables

arising from an SIRP.
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individual random variables. Specifically,

fD


ð


rÞ ¼

YN
i¼1

fDi
ðriÞ ð13:70Þ

Also, when P is diagonal,

7T
r P7r ¼

XN
i¼1

s 2
i

›2

›r2i
ð13:71Þ

Using Equation 13.69 to Equation 13.71 and following the same steps as in

the known signal case, the LOD statistic can be derived as

TLODð


rÞ ¼

XN
i¼1

s 2
i

f 00Di
ðriÞ

fDi
ðriÞ ð13:72Þ

where the double prime indicates second derivative with respect to the argument.

The canonical structure derived above is shown in Figure 13.3.

13.2.6.2.2. Disturbance Random Variables from an SIRP Distribution

When the disturbance vector is modeled as having an SIRP distribution, the joint

PDF is given by Equation 13.61. The LOD structure for the random signal case is

given by Equation 13.69. Since the constant terms in the joint density function

cancel out in the numerator and denominator of the ratio test in Equation 13.69,

r1

r2

TLOD H1
H0

> h
Yes

No

rn sn
2f ′′Dn

(rn)

fDn
(rn)

s2
2f ′′D2

(r2)

fD2
(r2)

s1
2f ′′D1

(r1)

fD1
(r1)

FIGURE 13.3 Canonical form of LOD assuming random signal and independent random

variables.
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the LOD statistic is obtained by evaluating

TLODð


rÞ ¼ ð7T

r P7rÞhNð pÞ
hNð pÞ ð13:73Þ

The numerator of Equation 13.73 can be expanded as a sum of terms

involving partial derivatives. The result is simplified considerably when the

covariance matrix P of the signal vector is diagonal. When P is chosen to be the

Identity matrix (i.e., P is diagonal and the variance of each element of the signal

vector is unity), the LOD statistic is given by

TLODð


rÞ ¼ ð7T

r 7rÞhNð pÞ
hNð pÞ ð13:74Þ

The inner product involving the 7 vector can be written as

7T
r 7r ¼

XN
i¼1

›2

›r2i
ð13:75Þ

Application of Equation 13.75, to the numerator of Equation 13.74, results in

XN
i¼1

›2hNð pÞ
›r2i

¼
XN
i¼1

h0Nð pÞ ›
2p

›r2i
þ h00Nð pÞ ›p

›ri

� �2
ð13:76Þ

where the prime indicates differentiation with respect to p: Using Equation 13.76
and dividing by hNð pÞ the LOD statistic becomes

TLODð


rÞ ¼ 1

hNð pÞ
XN
i¼1

h0Nð pÞ ›
2p

›r2i
þ h00Nð pÞ ›p

›ri

� �2{ !" #
ð13:77Þ

The quadratic form p can be written as

p ¼
XN
k¼1

XN
l¼1

rkM
21
kl rl ð13:78Þ

whereM21
kl represents the kth row and lth column entry of the matrixM21. From

Equation 13.78 ›p=›ri; ð›p=›riÞ2 and ›2p=›r2
i
can be calculated. In particular,

we have

›p

›ri
¼ ›p

›ri

XN
k¼1

XN
l¼1

rkM
21
kl rl ¼

XN
k¼1

rkM
21
ki þ

XN
l¼1

rlM
21
il ð13:79Þ
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Because of the symmetric nature of the matrices M and M21; M21
ki ¼ M21

ik :
It follows that the square of the above equation is then given by

›p

›ri

� �2
¼

XN
k¼1

rkM
21
ki þ

XN
l¼1

rlM
21
il

{ !2

¼ 2
XN
k¼1

rkM
21
ki

{ !2

¼ 4
XN
k¼1

XN
l¼1

rkM
21
ki M

21
li rl ¼ 4

XN
k¼1

XN
l¼1

rkM
21
ki M

21
il rl ð13:80Þ

Utilizing Equation 13.79,

›2p

›r2i
¼ ›

›ri

XN
k¼1

rkM
21
ki þ

XN
l¼1

rlM
21
il

{ !
¼ 2M21

ii ð13:81Þ

With reference to Equation 13.77 and Equation 13.79 to Equation 13.81, define

T ð1Þ
LODð
rÞ ¼

1

hNð pÞ
XN
i¼1

h0Nð pÞ ›
2p

›r2i

" #
¼ 2

h0Nð pÞ
hNð pÞ

XN
i¼1

M21
ii ð13:82Þ

T ð2Þ
LODð
rÞ ¼

1

hNð pÞ
XN
i¼1

h00Nð pÞ ›p

›ri

� �2
¼ 4

h00Nð pÞ
hNð pÞ

XN
i¼1

XN
k¼1

XN
l¼1

rkM
21
ki M

21
il rl

¼ 4h00Nð pÞ
hNð pÞ 


rTM21M21



r ð13:83Þ

The LOD statistic that results from Equation 13.82 and Equation 13.83 is

written as

TLODð


rÞ ¼ T ð1Þ

LODð
rÞ þ T ð2Þ
LODð
rÞ

¼ 1

hNð pÞ ½2h
0
Nð pÞtrðM21Þ þ 4h00Nð pÞ



rTM21M21



r	 ð13:84Þ

where trðM21Þ is the sum of the all the diagonal elements of the matrixM21: The
canonical structure of the receiver is shown in Figure 13.4.

13.2.6.2.3. Disturbance Random Variables Arising from the Gaussian
Distribution

As pointed out in Section 13.2.6.1.3, the SIRP disturbance reduces to the

Gaussian distribution when

hNð pÞ ¼ e2p=2 ð13:85Þ
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From the above equation it follows that

h0Nð pÞ
hNð pÞ ¼ 2

1

2

h00Nð pÞ
hNð pÞ ¼ 1

4
ð13:86Þ

Consequently Equation 13.82 reduces to

T ð1Þ
LODð
rÞ ¼ 2trðM21Þ ð13:87Þ

whereas Equation 13.83 becomes

T ð2Þ
LODð
rÞ ¼ 


rTM21M21



r ð13:88Þ

Note that T ð1Þ
LODð
rÞ is a constant that can be combined with the threshold. As a

result, the LOD statistic for the random signal Gaussian problem is given by

TLODð


rÞ ¼



rTM21M21



r ð13:89Þ

Unlike the known signal Gaussian problem, the weak signal LOD statistic

does not equal the statistic of the likelihood ratio for the random signal Gaussian

problem,30 which is

TLRð


rÞ ¼



rT½M21 2 ðMþ PÞ21	



r ð13:90Þ

TLOD H1
H0

> h
Yes

No

4 h ′′N (p)

hN (p)

2 h ′N (p)

hN (p)

r
rTM –1M –1r

tr (M−1)

_
_ _

FIGURE 13.4 Canonical form of LOD assuming random signal and random disturbance

arising from an SIRP.
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The two statistics becomes equivalent only when

M ¼ P ¼ I ð13:91Þ
Although the strong and weak signal detectors have different test statistics,

the receiver structures are both quadratic in nature.

13.3. DETERMINING THRESHOLDS FOR THE LOD

13.3.1. LITERATURE REVIEW

In this dissertation, multivariate density functions for modeling nonGaussian

PDFs are assumed to be known. They are obtained using the theory of SIRPs.

Once the multivariate density functions are known, we derive a decision rule

using the theory of LODs, that is applicable when the signal to be detected is

weak compared to the additive disturbance. The procedure for obtaining the

decision rule is explained in detail in Section 13.2.

However, the detector that is obtained on the basis of the theory of LODs is

typically nonlinear as the underlying processes are nonGaussian. When the test

statistic is nonlinear, it is not possible to evaluate the performance of the detector

analytically. Consequently, we have to resort to computer simulations to analyze

the performance. There are two steps involved in computer simulations to analyze

performance. The first step is to evaluate the threshold so as to obtain the desired

false alarm probability. The second step is to evaluate the detection probability

once the threshold is set, corresponding to the desired false alarm probability.

13.3.1.1. Classical Methods for Evaluating Thresholds

Monte Carlomethods have typically been used for this purpose. A large number of

trialsM are generated under the hypothesis that the received signal consists of the

disturbance alone. The detector outputs, Tsi i ¼ 1; 2;…;M corresponding to the

generated disturbance vectors, are recorded. Based on the output of the detector,

thresholds can be set to obtain the desired false alarm probability. But, in order to

establish the threshold for a specified PF; it is necessary to accurately know the

behavior of the tail of the test statistic. Unfortunately, the number of trials required

for the Monte Carlo technique is very large, as is evident from the rule of thumb

M $
10

PF

ð13:92Þ

Hence, ifPF ¼ 1025; onemillion trials should be generated. Clearly, this is not

a very desirable situation. Thus, for a reasonable sample size M; estimation of

thresholds corresponding to small false alarm probabilities cannot be made when

these methods are used. For Monte Carlo simulations the construction of

approximate confidence intervals for the threshold estimates based on various

estimators are discussed by Hosking and Wallis.31
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Some other approaches that do not make use of raw data or their smoothed

versions have been suggested by various authors. For example, Harrel and

Davis32 suggested using linear combinations of sample order statistic. Their

approach appears to be applicable for estimation of thresholds in the central

region of the distribution. However, the underlying threshold estimator is not in a

simple computational form and does not offer any additional advantage over the

Monte Carlo method in terms of threshold estimation corresponding to small

false alarm probabilities.

It has recently been shown33 that the PDFs of the test statistic can be

determined experimentally using a relatively small number of samples (e.g., 50 to

100 samples give accurate fits depending on the distribution). Because the

number of samples required by Ozturk’s technique is small, it is unlikely that

samples will be from the extreme tails of the PDFs. Consequently, the accurate fit

mentioned above applies to the main body of the density function.

A number of statisticians have developed methods for estimating the extreme

tail of the distributions using the asymptotic properties of extreme order statistics.

Assuming an unknown PDF fXðxÞ; then, for large X, Hill34 proposed usingLðxÞ ¼
12 cx2a as a limiting form of the distribution function to infer the tail behavior.

A similar approach is also given by Pickands.35 Weissman36 proposed a different

approach based on the joint limiting distribution of the largest k order statistics.

His approach is based on the fact that “the largest k order statistics have a joint

distribution that is approximately the same as the largest k order statistics from a

location and scale exponential distribution.” Weissman obtained a simple

expression for the estimate of the thresholds corresponding to various false alarm

probabilities of the distributions. Based on the empirical comparisons, Boos37

reported that Weissman’s estimators have lower mean squared error than those of

standard methods when the tails are exactly exponential. When the tails are not

exactly exponential the estimators become highly biased. The mean squared

errors of the estimators strongly depend on the choice for k: Although the method

is nonparametric in nature, the optimal choice of k requires the knowledge of the

parent distribution.

The use of stable distributions to model data having large tailed distributions

has attracted considerable attention.38–41 The independent and identically

distributed random variables Y1; Y2;…; Yn are said to have a stable distribution

if Y1 þ Y2 þ · · ·þ Yn have the same distribution as the individual random

variables. With the introduction of additional parameters, control of the mean,

variance, and the skewness of the distribution is possible. A major difficulty with

stable distributions is that they usually cannot be expressed in closed form. Also,

estimation of parameters is not computationally easy.42

13.3.2. EXTREME VALUE THEORY

Guida et al.43 compared the performance analysis of some extrapolative

estimators of probability tails with application to radar systems design. They

show that the estimates based on the extreme value theory yield clearly superior
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accuracy, while achieving a substantial savings in sample size compared to the

classical Monte Carlo techniques. However, their method suffers from two

major drawbacks. First, they assumed that the underlying unknown distribution

is always exponential in nature. This assumption can be restrictive in certain

situations. The other drawback is that the samples are partitioned into many

smaller sets of samples and the maximum from each set is drawn for esti-

mation purposes. They provide no optimum rule for determining the number of

sets to be used in partitioning the original sample even though the accuracy

of the estimation depends strongly on the original sample size and the number

of sets.

Pickands35 first suggested that the Generalized Pareto distribution (GPD) can

be used to model to extreme tails of PDFs. The GPD is a two parameter distri-

bution, with a scale and a shape parameter. Modeling the extreme tail then

corresponds to estimating the two parameters of the GPD. The estimation methods

for the GPD have been reviewed by Hosking and Wallis.31 They considered the

method of moments, probability-weightedmoments, and themaximum likelihood

method for estimating the parameters and the thresholds. Based on computer

simulation experiments, they showed that the probability weighed moment

method is more reliable than the maximum likelihood method for sample sizes

less than 500.

13.3.3. THE RADAR PROBLEM

The hypothesis testing problem for deciding whether or not a target is present is

given by Equation 13.5 to Equation 13.6 in Section 13.2. For weak signal

applications, it was shown that the LOD is useful for arriving at a decision rule.

For the known signal case, the LOD structure is given by Equation 13.36. Since

the test statistic is typically a nonlinear function when fDð


rlH0Þ and fDð



rlH1Þ are

multivariate nonGaussian density functions, it is not possible, in general, to

analytically evaluate in closed form the threshold h for a specified false alarm

probability. Given the PDFs of the test statistic, Ts; under hypotheses H1 and H0;
the detection and false alarm probabilities are

PD ¼
ð1

h
fTsðtslH1Þdts ð13:93Þ

PF ¼
ð1

h
fTs ðtslH0Þdts ð13:94Þ

PD and PF are represented by the shaded areas shown in Figure 13.5.

As indicated in the figure, PF is typically much smaller than PD:
In practice, the density function of Ts is not known in advance. For example,

depending upon various conditions such as terrain, weather etc., the clutter may

be best modeled by Gaussian, K-distributed, Weibull or some other probability
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distribution. In this section a new approach is developed for experimentally

determining the extreme tail of fTsðtslH0Þ; where the number of samples required

is several orders of magnitude smaller than that suggested by Equation 13.92.

Once the tail of fTs ðtslH0Þ; has been estimated, the threshold can be determined by

use of Equation 13.94.

13.3.4. METHODS FOR ESTIMATING THRESHOLDS

13.3.4.1. Estimates Based on Raw Data

In this section we consider some commonly used threshold estimates. These

estimates are called raw estimates and are already included in some statistical

package programs (e.g., the UNIVARIATE procedure in the SAS44 package).

Let X1 # X2 # · · · # Xn denote the sample order statistics from a

distribution function FðxÞ: Let p denote the desired false alarm probability.

Also, let nð12 pÞ ¼ jþ g where j is the integer part of nð12 pÞ: We denote the

threshold estimate based on the kth procedure to be described below by hðkÞ
p : Four

different threshold estimates are given as follows:

hð1Þ
a ¼ ð12 gÞXj þ gXjþ1 ð13:95Þ

hð2Þ
a ¼ Xk; where k is the integer part of ½nð12 aÞ þ 1=2	 ð13:96Þ

hð3Þ
a ¼ ð12 dÞXj þ dXjþ1; d ¼ 0 if g ¼ 0; d ¼ 1 if g . 0 ð13:97Þ

hð4Þ
a ¼ dXjþ1þð12dÞðXjþXjþ1Þ=2; d¼ 0 if g¼ 0;d¼ 1 if g. 0 ð13:98Þ

It is known that all of the above methods are asymptotically equivalent.

Thus, if a large sample size is used (where for example M is determined from
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FIGURE 13.5 Shaded areas indicating PF and PD:
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Equation 13.92), the choice of the best method is no longer critical. However, in

an empirical study,37 it has been shown that hð4Þ
a outperformed the other

estimators when g ¼ 0: It is noted that the methods based on the above estimators

are restricted by the condition 1 # nð12 aÞ # n2 1: This implies that the

smallest value of the false alarm probability a cannot be lower than 1=n:
Consequently, the threshold corresponding to the smallest false alarm

probability, which can be estimated by these procedures depends on the sample

size. Thus, for a reasonable size of n; estimation of thresholds for small false

alarm probabilities cannot be made when these methods are used.

13.3.4.2. Estimates Motivated by the Extreme Value Theory

Extreme value distributions are obtained as limiting distributions of largest

(or smallest) values of sample order statistics. Assuming independent trials, if

X1 # X2 # · · · # Xn are order statistics from a common distribution function

FðxÞ; then the cumulative distribution function of the largest order statistic is

given by

GnðxÞ ¼ PðXn # xÞ ¼ ½FðxÞ	n ð13:99Þ
It is clear, as n!1; that the limiting value of GnðxÞ approaches zero if FðxÞ

is less than 1, and unity if FðxÞ is equal to 1 for a specified value of x: A
standardized limiting distribution of Xn may be obtained by introducing the linear

transformation, anXn þ bn; where an and bn are finite constants depending on the

sample size n:
In Appendix X, using the theory of limiting distributions,45 it is shown that if

there exist sequences an and bn such that

lim
n!1P

Xn 2 bn
an

# x

� �
¼ lim

n!1F
nðanxþ bnÞ ¼ lim

n!1Gnðanxþ bnÞ! LðxÞ
ð13:100Þ

then the solution of Equation 13.100 yields all the possible forms for the

distribution function GnðxÞ in the limit as n!1: The solutions to the above

equation are derived in Appendix X and are rewritten here:

LðxÞ ¼ expð2e2xÞ x $ 0 ð13:101Þ

LðxÞ ¼ expð2x2kÞ x $ 0; k . 0 ð13:102Þ

LðxÞ ¼ expð2ð2xÞkÞ x # 0; k . 0 ð13:103Þ

In the limit, as n gets large, these are the three types of distribution functions

to which the largest order statistic, drawn from almost any smooth and continuous

distribution function, converge. By differentiating the three functions, we obtain
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analytical expressions for the limiting forms of the PDFs. However, because of

the differentiation, it should be recognized that these expressions may not be

good approximations to the density functions. In practice, extreme value theory

should always be applied to a distribution function, or equivalently, the area

under the density function. For x $ 0; differentiation of Equation 13.101 and

Equation 13.102 result in

1:
dLðxÞ
dx

< HðxÞ ¼ e2x ð13:104Þ

2:
dLðxÞ
dx

< HðxÞ ¼ kx2ðkþ1Þ k $ 0 ð13:105Þ
The first equation above is the well known exponential distribution and the

second equation is related to the Pareto distribution. The details that lead to these

analytical expressions are shown in Appendix X.

It remains to be explained how the distribution of the largest order statistic is

related to the tails of the underlying PDF from which the samples are drawn. The

relationship is based on the observation that inferences from short sequences are

likely to be unreliable. In particular, instead of observing k sets of n samples and

taking the largest order statistic from each of the k sets, it is better to observe a

single set of nk samples and use the largest k samples from this set.46 The k largest

order statistics from a vector of nk observations constitute the tail of the

underlying distribution especially when n is very large. Therefore, the limiting

distribution of the largest order statistic closely approximates the tail of the

underlying PDF for large n:

13.3.5. THE GENERALIZED PARETO DISTRIBUTION

The GPD is defined for x . 0 by the distribution function

GðxÞ ¼ 12 ð1þ g x=sÞ21=g; 21 , g , 1;s . 0; gx . 2s ð13:106Þ
This distribution has a simple closed form and includes a range of

distributions depending upon the choice of g and s: For example, the exponential

distribution results for g ¼ 0 and the uniform distribution is obtained when

g ¼ 21: The GPD defined in Equation 13.106 is valid for all x . 0 while

Equation 13.104 and Equation 13.105 are valid only for large x:
The PDF corresponding to the GPD is given by

gðxÞ ¼ d

dx
12 1þ gx

s

� �21=g
" #

¼ 1

s
1þ gx

s

� �2ð1=gÞ21

ð13:107Þ

If we let g! 0 in the above equation, note that

lim
g!0

¼ 1

s
1þ gx

s

� �2ð1=gÞ21

¼ 1

s
e2x=s ð13:108Þ
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Also, if we let x be large in Equation 13.107, note that

1

s
1þ gx

s

� �2ð1=gÞ21

<
1

s

g

s

� �2ð1=gÞ21

x2ð1=gÞ21 ð13:109Þ

Equation 13.108 and Equation 13.109 are of the same form as Equation

13.104 and Equation 13.105, respectively. Thus, the GPD can be used to

approximate both types of tail behavior exhibited by the right tail. Typical plots

of the Generalized Pareto PDF for g , 0 and g . 0 are shown in Figure 13.6 and

Figure 13.7, respectively.

We wish to set thresholds for specified false alarm probabilities when the

underlying density functions are unknown. To set very small false alarm
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FIGURE 13.6 Generalized Pareto PDF, g ¼ 21:
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FIGURE 13.7 Generalized Pareto PDF, g ¼ 1:

Adaptive Antennas and Receivers740

© 2006 by Taylor & Francis Group, LLC



probabilities, the tail of the PDF fTsðtslH0Þ has to be accurately modeled.

Figure 13.8 represents a typical PDF of the test statistic with the tail region of the

PDF being defined as that to the right of t ¼ t0: Figure 13.9 shows the tail

translated to the origin. The choice for t0 is somewhat arbitrary. For example,

t0 can be chosen such that the area in the shaded region equals 0.1, 0.05, or 0.01.

It is the portion of the PDF to the right of t0 that we are interested in modeling

by the GPD. In particular, the tail region of the PDF is translated to the origin

and modeled as a GPD. Once the estimates of s and g have been obtained,

the GPD is multiplied by the area of the shaded region and translated back to the

point t0: In this way, the area under the PDF of the test statistic is maintained

at unity.

0 to

PT(t /H 0)

FIGURE 13.8 PDF of test statistic with tail region defined for t $ t0:

g(
t−

t o
)

0
t

FIGURE 13.9 Tail of the test statistic shifted to origin.
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13.3.5.1. Methods for Estimating the Parameters of the GPD

Suppose that the sample ordered statistics X1 # X2 # · · · # Xn are drawn from

the distribution function FðxÞ: To estimate the right tail of this distribution it is

necessary to determine a value (say, x0) and then use those sample observations

greater than x0 to obtain the quantity z ¼ x2 x0: Once the tail observations have
been chosen, the GPD can be fitted to these observations by using standard

methods of parameter estimation. Note that the portion of the observations used

from a complete set of samples depends on the choice of x0: One approach to

selecting x0 is to make a histogram of the data and choose x0 to be near the point

of inflection of the histogram. DuMouchel47 proposed choosing x0 to be the value

such that
Ð1
x0
fXðxÞdx ¼ 0:1: Such an approach is less subjective and appears to be

satisfactory for many applications. However, it is noted by DuMouchel that

“using an even smaller fraction of observations would restrict profitable use of

the statistic to much larger sizes. On the other hand, to use more than the upper

one tenth of a sample would seem to allow too much dependence on the central

part of the distribution.” In other words, if a smaller fraction is used, we need

larger sample sizes to get an adequate number of samples for estimation and if a

larger fraction is used, the body of the distribution may influence estimation of

the tail.

Let x0 be such that 12 Fðx0Þ ¼
Ð1
x0
fXðxÞdx ¼ l: The distribution function to

be used in approximating the tail can be written as

~FðxÞ ¼ ð12 lÞ þ lGðx2 x0Þ ¼ 12 l 1þ g

s
ðx2 x0Þ

� �21=g

; x . x0 ð13:110Þ

where GðxÞ is given in Equation 13.106. Assuming that the tail of a given

distribution can be adequately approximated by Equation 13.110, the estimation

problem of the distribution in the tail region is reduced to estimation of the

parameters of the GPD.

In this chapter we consider three methods for the parameters estimation of the

GPD. The three methods are maximum likelihood estimation, the method of

probability weighted moments, and the ordered sample least squares (OSLS)

approach. The first two methods, applied to the GPD, are discussed by Hosking

andWallis.31 The OSLS approach is a new technique developed in this work. The

performance of the three estimation procedures and compared on the basis of

estimation bias and mean square error.

13.3.5.1.1. Maximum Likelihood Estimation

The PDF corresponding to the GPD from Equation 13.107, with x replaced by

z; is

gðzÞ ¼ 1

s
1þ gz

s

� �2ð1=gÞ21

ð13:111Þ
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Given a sample vector ½z1; z2;…; zm	 from the GPD the joint density

function, then LZð


zÞ of the m samples, assuming independence, is given by

LZ


ð


zÞ ¼ 1

sm

Ym
i¼1

1þ gzi
s

� �2ð1=gÞ21

ð13:112Þ

To theoretically obtain the maximum likelihood estimates of s and g, the
logarithm of the joint density function in Equation 13.112 is differentiated

with respect to s and g, respectively, and the derivatives are set to zero. Let the

m largest observations from the unknown distribution whose tail is being

modeled by the GPD be placed in the vector ½xn2mþ1; xn2mþ2;…; xn	: Translation
of the tail region to the origin results in the vector ½xn2mþ1 2 x0;
xn2mþ2 2 x0;…; xn 2 x0	 ¼ ½z1; z2;…; zm	: Letting t ¼ g=s in Equation 13.112

and differentiating the logarithm of the joint density function with respect to s
we get

2
d

ds
log LZ



ð


zÞ ¼ d

ds
m logðsÞ þ ð1þ ðtsÞ21Þ

Xm
i¼1

logð1þ tziÞ
" #

¼ m

s
þ 12

1

s 2t

� �Xm
i¼1

logð1þ g zi=sÞ ð13:113Þ

By setting Equation 13.113 to zero and solving for s we obtain

s ðtÞ ¼
Xm
i¼1

logð1þ t ziÞ=ðmtÞ ð13:114Þ

The expression for s is now substituted into Equation 13.113, so as to

obtain a function of t alone. t̂ is derived by differentiating the expression

m log s ðtÞ þ ð1þ ½sðtÞt	21Þ
Xm
i¼1

logð1þ tziÞ ð13:115Þ

with respect to t and setting the derivative equal to zero with the constraint that

tzi . 21: However, the differentiation leads to a nonlinear equation whose

analytical solution is not known. This difficulty is circumvented by minimizing

Equation 13.115 numerically with respect to t: The numerical minimization was

performed using the Nelder–Mead algorithm.48 Once the estimate for t has

been obtained, then ŝ is obtained form Equation 13.114 and l is estimated by

ĝ ¼ ŝt̂:

13.3.5.1.2. Probability Weighted Moments

The probability weighted moments of a continuous random variable Z with

distribution function G are the quantities

Mp;r;s ¼ E½ZpGrðZÞð12 GðZÞÞs	 ð13:116Þ
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where E is the expectation operator of p; r and s are real numbers. For the GPD it

is convenient to choose p ¼ 1 and r ¼ 0; respectively. Then the probability

weighted moments are

M1;0;s ¼ E½Zð12 GðZÞÞs	 ð13:117Þ
For the GPD there are two parameters to be estimated, s, and g: Substituting

s ¼ 0 in Equation 13.117, we get

10 ¼ M1;0;0 ¼ E½Z	

¼
ð1

0

Z

s
1þ gZ

s

� �2ð1=gÞ21

dZ

ð13:118Þ

Letting 1þ ðgZ=sÞ ¼ Y ; Equation 13.118 results in

10 ¼ s

g 2

ð1

1
ðY 2 1ÞY2ð1=gÞ21 dY

¼ s

g 2

Y2ð1=gÞ21

2
1

g
þ 1

2
Y21=g

2
1

g

2664
3775

1

1

¼ s

12 g

ð13:119Þ

Letting s ¼ 1 in Equation 13.117 we obtain

11 ¼ M1;0;1 ¼ E½Zð12 GðZÞÞ	

¼
ð1

0

Z

s
1þ gZ

s

� �21=g

1þ gZ

s

� �2ð1=gÞ21

dZ ð13:120Þ

Letting 1þ ðgZ=sÞ ¼ Y ; as before, Equation 13.120 results in

11 ¼ s

g 2

ð1

1
ðY 2 1ÞY2ð2=gÞ21dY ¼ s

g 2

Y2ð2=gÞ21

2
2

g
þ 1

2
Y22=g

2
2

g

2664
3775

1

1

¼ s

2ð22 gÞ ð13:121Þ

The values of 10 and 11 are obtained from Equation 13.119 and Equation

13.121, respectively, for given values of s and g: Since there are two equations

in two unknowns, s and g can be obtained as functions of 10 and 11,
respectively. Solving for s and g we obtain

ŝ ¼ 21011=ð10 2 211Þ ð13:122Þ
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ĝ ¼ 22 10=ð10 2 211Þ ð13:123Þ

where 10 and 11 are estimated from the data by the estimators 10 ¼
Pm

i¼1 zi=m
and 11 ¼

Pm
i¼1 ðm2 iÞzi={mðm2 1Þ}.31 Once the value of 10 11 are obtained,

the estimates of s and g are obtained by making use of Equation 13.122 and

13.123. Note that the method of probability weighted moments involves

computationally simple expressions for the estimates.

13.3.5.1.3. The Ordered Sample Least Squares
Method — A New Approach

The procedure used in maximum likelihood estimation is based on minimizing

Equation 13.115. The probability weighted moment estimates are obtained by

equation the sample based averages with the theoretical values of the quantity

E½Zð12 GðZÞÞs	; s ¼ 0; 1; where Z ¼ X 2 x0: A third approach is the OSLS

method based on the principle of minimizing the squared distance between the

ordered sample and the expected value of the ordered sample. Computer

simulations reveal that this can be a more suitable approach for estimating the

parameters.

In Appendix X the method for evaluating the mean and the variance of the rth

order statistic from a sample of size n is presented. For the GPD the mean and the

variance of the rth order statistic can be derived since the probability distribution

function is known in closed from. Let x be replaced by z in Equation 13.106 and

let GðzÞ ¼ u: Solution for z results in

z ¼ G21ðuÞ ¼ s

g
½ð12 uÞ2g 2 1	 ð13:124Þ

Making use of the above equation and Equation X. 62 in Appendix X, the

expected value of the rth order statistic Zr is

EðZrÞ ¼ s

g

n!

ðr 2 1Þ!ðn2 rÞ!
ð1

0
ðð12 uÞ2g 2 1Þur21ð12 uÞn2rdu

� �
ð13:125Þ

The integral in the above equation can be broken into two parts as follows.

EðZrÞ ¼ s

g

n!

ðr 2 1Þ!ðn2 rÞ!

�
ð1

0
ð12 uÞ2gur21ð12 uÞn2rdu2

ð1

0
ur21ð12 uÞn2rdu

� �
ð13:126Þ
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From results presented in Gradshtyn and Ryzhik49, the expression for E(Zr)

becomes

EðZrÞ ¼ s

g

n!

ðr 2 1Þ!ðn2 rÞ!

� ðr 2 1Þ!ðn2 r 2 gÞ!
ðn2 gÞ! 2

ðr 2 1Þ!ðn2 rÞ!
n!

� �

¼ s

g

n!ðn2 r 2 gÞ!
ðn2 rÞ!ðn2 gÞ! 2 1

� �

¼ s

g

Gðnþ 1ÞGðn2 r 2 gþ 1Þ
Gðn2 r þ 1ÞGðn2 gþ 1Þ 2 1

� �
ð13:127Þ

To calculate the variance of Zr; we first calculate EðZ2
r Þ: Making use of

Equation 13.124 and Equation X. 65 in Appendix X.3, the expected value of Z2
r is

EðZ2
r Þ ¼ s 2

g 2

n!

ðr21Þ!ðn2 rÞ!
ð1

0
ðð12uÞ2g21Þ2ur21ð12uÞn2rdu

� �
ð13:128Þ

Expanding the square in the integrand of the above equation gives

EðZ2
r Þ ¼ s 2

g 2

n!

ðr 2 1Þ!ðn2 rÞ!

�
ð1

0
ðð12 uÞ22g 2 2ð12 uÞ2g þ 1Þur21ð12 uÞn2rdu

� �
ð13:129Þ

Making use of results from Ref. 49 the above integral evaluates to

EðZ2
r Þ ¼ s 2

g 2

n!

ðn2 rÞ!
ðn2 r 2 2gÞ!
ðn2 2gÞ! 2

2ðn2 r 2 gÞ!
ðn2 gÞ! þ 1

� �

¼ s 2

g 2

Gðnþ 1Þ
Gðn2 r þ 1Þ

� Gðn2 r 2 2gþ 1Þ
Gðn2 2gþ 1Þ 2

2Gðn2 r 2 gþ 1Þ
Gðn2 gþ 1Þ þ 1

� �
ð13:130Þ
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From Equation 13.127 and Equation 13.130 and the relation VarðZrÞ ¼
EðZ2

r Þ2 E2ðZrÞ; we have

VarðZrÞ ¼ s 2

g 2

Gðnþ 1Þ
Gðn2 r þ 1Þ

� Gðn2 r 2 2gþ 1Þ
Gðn2 2gþ 1Þ 2

2Gðn2 r 2 gÞ þ 1

Gðn2 gþ 1Þ þ 1

� �

2
s

g

Gðnþ 1ÞGðn2 r 2 gþ 1Þ
Gðn2 r þ 1ÞGðn2 gþ 1Þ 2 1

� �� �
ð13:131Þ

Simplifying the above equation results in

VarðZrÞ

¼ s 2

g 2

Gðnþ 1Þ
Gðn2 rþ 1Þ

Gðn2 r2 2gþ 1Þ
Gðn2 2gþ 1Þ 2

G 2ðnþ 1Þ
G 2ðn2 rþ 1Þ

G 2ðn2 r2gþ 1Þ
G 2ðn2 rþ 1Þ

" #
ð13:132Þ

Letting QrðgÞ ¼ Gðnþ 1Þ
Gðn2 rþ 1Þ

Gðn2 r2gþ 1Þ
Gðn2gþ 1Þ results in

EðZrÞ ¼ mr ¼ s

g
{QrðgÞ2 1} ð13:133Þ

VarðZrÞ ¼ s 2
r ¼ s 2

g 2
{Qrð2gÞ2 ðQrðgÞÞ2} ð13:134Þ

A computationally simpler expression can be found for QrðgÞ by making use

of the properties of the gamma function. Dividing QrðgÞ by Qr21ðgÞ we get

QrðgÞ
Qr21ðgÞ ¼

Gðnþ 1Þ
Gðn2 r þ 1Þ

Gðn2 r 2 gþ 1Þ
Gðn2 gþ 1Þ

Gðnþ 1Þ
Gðn2 r þ 2Þ

Gðn2 r 2 gþ 2Þ
Gðn2 gþ 1Þ

¼ n2 r þ 1

n2 r 2 gþ 1
ð13:135Þ

Equation 13.135 reduces to

QrðgÞ ¼
Yr
i¼1

n2 iþ 1

n2 iþ 12 g
ð13:136Þ

To find the least squares estimates of the parameters we write the following

nonlinear model for the rth sample order statistic

Zr ¼ EðzrÞ þ er; r ¼ 1; 2;…;m ð13:137Þ
where the error term er has a distribution with mean 0 and variance s 2

r : Since the
order statistics are not independent, the errors are also not independent. Because

of the nonlinear structure of the model in Equation 13.137 and correlated error,
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the method of least squares estimation does not offer a straightforward solution to

the estimation problem. Even so, in this study we proceed to sue the OSLS

procedure to estimate the parameters.

In Equation 13.133, we note that the scale parameter s appears linearly

whereas the shape parameter g does not. The least squares estimates are obtained

by minimizing the quantity

S ¼
Xm
r¼1

e2r ¼
Xm
r¼1

½Zr 2 s

g
ðQrðgÞ2 1Þ	2 ð13:138Þ

Since s appears linearity in the above expression, minimization can be

achieved analytically. Differentiating Equation 13.138 with respect of s and

setting the derivative equal to zero results in

2
Xm
r¼1

Zr 2
s

g
ðQrðgÞ2 12 1Þ

� �
2

1

g
ðQrðgÞ2 12 1Þ

� �
¼ 0 ð13:139Þ

The solution for s from the above equation is

ŝ ðgÞ ¼ g

Xm
r¼1

ZrðQrðgÞ2 1Þ
Xm
r¼1

ðQrðgÞ2 1Þ2
ð13:140Þ

The expression for ŝ is substituted in Equation 13.138 and the resulting

expression is minimized with respect to g: After the substitution the resulting

expression is nonlinear and minimization cannot be performed analytically.

Using the Nelder–Mead algorithm,48 the minimization is done numerically.

Once the estimate of ĝ is obtained, ŝ is obtained from Equation 13.140.

Recall that the GPD is being used to approximate the tail of the underlying

distribution. Hence, the ordered statistics Zr; r ¼ 1; 2;…;m; from the GPD actually

correspond to the ordered statistics Xn2mþ1 2 x0; Xn2mþ2 2 x0;…;Xn 2 x0
from the underlying distribution.

The least squares procedure results in a computationally convenient

algorithm. It is emphasized that the minimization of S is carried out only with

respect to the single parameter g: Furthermore, the underlying criterion is based

on minimizing the distance between the empirical values and the expected values

of the ordered samples. Some numerical comparisons are given in Section 13.3.6.

13.3.5.2. Estimation of Thresholds

The GPD that is estimated from the data is used to approximate the tail of the

unknown, underlying distribution. We now show that the threshold is related

to the approximating distribution function in a direct manner. With reference to

Equation 13.110, let ĥa denote the estimate of the threshold corresponding to
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a false alarm probability a: We then have

~FðĥaÞ ¼ 12 a ¼ 12 l 1þ g

s
ðĥa 2 x0Þ

� �21=g

ð13:141Þ

Solving for ĥa,

ĥa ¼ x0 þ sðq2g 2 1Þ=g ð13:142Þ

where l ¼ 12 Fðx0Þ; q ¼ ð12 aÞ=l and x0 ¼ F21ð12 lÞ: For many appli-

cations DuMouchel47 suggests that l ¼ 0:1 be used. As will be discussed in the

subsequent sections, the optimal value of l depends on the threshold being

estimated. Since the distribution function FðxÞ is not known, x0 cannot be

determined for a given value of a: Therefore, following common practice, the

sample order statistic Xn2m; where m ¼ ½ln	 and [.] denotes the integer part

operator, is used as an estimate of x0:

13.3.6. NUMERICAL RESULTS

13.3.6.1. Characterization of Tail Shape for Known Distributions

We first discuss a method for estimating the parameters of the GPD when the

underlying distribution is known. Choose x0 such that 12 Fðx0Þ ¼ 0:1: Then
define the points pi i ¼ 1; 2;…; 1000 by

pi ¼ 0:90005þ 0:0001 ði2 1Þ ð13:143Þ
Analytically evaluate xi ¼ F21ðpiÞ from the knowndistribution.Using the 1000

values of xi; the maximum likelihood estimation, the OSLS, and the probability

weighted moments procedures were applied to determine the corresponding g
values for various distributions. The results are given in Table 13.1. The number in

parentheses for the Weibull and Lognormal distributions is the value of the

shape parameter. For the remaining distributions the number denotes the degrees of

freedom. Since s is a scale parameter, the shape parameter g best describes the

tail shape. For the exponential and the uniform distributions the value of g can be

obtained analytically. The parameterg is 0 for the exponential distribution and is21

for the uniform distribution. Since the size of the tail decreases with decreasing

g; the relationship between the tail behavior and the corresponding values of

the shape parameter g can be clearly inferred from this table.

13.3.6.2. Empirical Properties of the Estimators for Known Distributions

Seven distributions with widely differing tail behaviors were chosen in order to

investigate the adequacy of the approximation of extreme tails by the GPD

and to compare the three estimation procedures. The gamma distribution and

Weibull distribution with shape parameter of value 3 have tails that decay

faster than those of the exponential PDF. The tails of the chi-square
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distribution with 4 degrees of freedom and the Student-T distribution with 8

degrees of freedom are approximately the same as those of the exponential

PDF. Finally, the Student-T distribution with 4 degrees of freedom and the

Lognormal distribution with shape parameter of value 1 have tails that decay

slower than those of the exponential PDF.

Let h and ĥ denote the true and estimated thresholds, respectively. A Monte

Carlo experiment was performed to investigate the normalized bias, ĥ2 h=h
and the normalized mean square error ððĥ2 hÞ=hÞ2 of the proposed threshold

estimates. The four sample sizes given by m ¼ 25, 50, 100, and 1000 were

considered. Each set of samples was obtained by generating n observations and

taking the largest m ¼ 0:1n observations. For example, a set of samples of size 25

was obtained by selecting the largest 25 observations from a collection of 250

samples. For each of the four different values of m, k ¼ 200,000/m trials were

performed for each of the seven distributions. The median of the normalized bias

values was computed for each distribution and estimation procedure. The results

for PF ¼ 102k, k ¼ 2; 3;…; 7 are given in Table 13.2. Similarly the median of the

positive square root of the normalized mean square error are presented in

Table 13.3. The results in the two tables differ because the sign of ðĥ2 hÞ=h is

lost in the normalized root mean square values computed in Table 13.3.

Extremely poor estimates for h were obtained in a few of the trials. These poor

estimates could severely influence an arithmetic mean of the estimates. To avoid

this problem, median values were used in place of arithmetic means.

The empirical results in Table 13.2 indicate that the newly proposed OSLS

estimator generally has a smaller normalized bias than the other estimators for

TABLE 13.1
Tail Parameter gDescribing the Upper Ten Percent of Various Distributions

Distribution OSLS ML PWM

Gaussian 20.144 20.151 20.174

Weibull (3) 20.163 20.168 20.194

Weibull (.67) 0.108 0.129 0.137

Weibull (.5) 0.201 0.265 0.263

Student-T (3) 0.290 0.260 0.261

Student-T (5) 0.132 0.099 0.090

Student-T (8) 0.031 0.006 20.010

Lognormal (1) 0.232 0.259 0.258

Chi-square (1) 0.030 0.034 0.044

Chi-square (4) 20.024 20.033 20.034

Chi-square (8) 20.047 20.058 20.064

OSLS ¼ Ordered Sample Least Square, ML ¼ Maximum Likelihood, PWM ¼ Probability Weighted

Moments.
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TABLE 13.2
Median of the Normalized Bias Values for Different Percentiles

PF 1022 1023 1024 1025 1026 1027

(a) nl5 25

Normal OSLS 20.0112 0.0043 20.0040 20.0276 20.0571 20.0872

Normal ML 20.0034 0.0187 0.0328 0.0358 0.0281 0.0137

Normal PWM 20.0084 20.0208 20.0560 20.1015 20.1464 20.1924

Weibull (3) OSLS 20.0048 0.0013 20.0041 20.0202 20.0418 20.0619

Weibull (3) ML 0.0039 0.0481 0.0938 0.1374 0.1776 0.2137

Weibull (3) PWM 20.0037 20.0106 20.0333 20.0635 20.0919 20.1216

t (4) OSLS 20.0424 20.0792 20.1658 20.2727 20.3872 20.4922

t (4) ML 20.0166 20.1115 20.2526 20.4045 20.5416 20.6541

t (4) PWM 20.0218 20.0929 20.2160 20.3498 20.4761 20.5881

t (8) OSLS 20.0221 20.0186 20.0572 20.1164 20.1975 20.2879

t (8) ML 20.0104 20.0468 20.1169 20.2077 20.3055 20.4033

t (8) PWM 20.0129 20.0452 20.1095 20.2039 20.3063 20.4115

Chi-sq (4) OSLS 20.0209 20.0039 0.0241 0.0333 20.0088 20.0104

Chi-sq (4) ML 20.0037 0.0943 0.2518 0.4571 0.6185 0.8810

Chi-sq (4) PWM 20.0144 20.0205 20.0334 20.0576 20.1254 20.1624

Lognormal OSLS 20.0835 20.0982 20.0634 0.0016 0.1007 0.2567

Lognormal ML 20.0058 0.1836 0.5932 1.2736 2.4832 4.4947

Lognormal PWM 20.0543 20.0878 20.0931 20.0728 20.0228 0.0639

Pareto (20.25) OSLS 20.0092 0.0208 0.0423 0.0631 0.0780 0.0874

Pareto (20.25) ML 20.0030 0.0523 0.1190 0.1868 0.2479 0.2969

Pareto (20.25) PWM 20.0077 0.0052 0.0121 0.0199 0.0237 0.0278

(b) nl5 50

Normal OSLS 0.0036 0.0073 20.0068 20.0354 20.0676 20.1022

Normal ML 0.0042 0.0323 0.0467 0.0578 0.0528 0.0380

Normal PWM 20.0012 20.0118 20.0459 20.0861 20.1318 20.1742

Weibull (3) OSLS 20.0022 20.0007 20.0133 20.0337 20.0571 20.0838

Weibull (3) ML 0.0056 0.0500 0.0991 0.1436 0.1847 0.2199

Weibull (3) PWM 20.0014 20.0105 20.0342 20.0629 20.0937 20.1256

t (4) OSLS 20.0147 20.0646 20.1800 20.3209 20.4501 20.5063

t (4) ML 20.0068 20.0867 20.2264 20.3736 20.5120 20.6291

t (4) PWM 20.0078 20.0622 20.1662 20.2973 20.4233 20.5391

t (8) OSLS 20.0062 20.0222 20.0841 20.1723 20.2694 20.3703

t (8) ML 20.0031 20.0502 20.1352 20.2385 20.3460 20.4517

t (8) PWM 20.0032 20.0336 20.1064 20.2041 20.3051 20.4046

Chi-sq (4) OSLS 20.0092 20.0004 0.0051 0.0060 20.0498 20.0686

Chi-sq (4) ML 0.0115 0.1134 0.2755 0.4775 0.6368 0.9150

Chi-sq (4) PWM 20.0041 20.0087 20.0191 20.0407 20.1123 20.1488

Lognormal OSLS 20.0544 20.0594 20.0272 0.0458 0.1573 0.3274

Lognormal ML 0.0092 0.2177 0.6336 1.3811 2.6197 4.7101

Lognormal PWM 20.0302 20.0391 20.0185 0.0413 0.1480 0.2977
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TABLE 13.2 Continued

PF 1022 1023 1024 1025 1026 1027

Pareto (20.25) OSLS 20.0052 0.0100 0.0214 0.0326 0.0404 0.0448

Pareto (20.25) ML 0.0005 0.0463 0.1011 0.1560 0.2003 0.2357

Pareto (20.25) PWM 20.0050 20.0018 20.0012 20.0019 20.0023 20.0012

(c) nl5 100

Normal OSLS 0.0017 20.0016 20.0253 20.0637 20.1040 20.1464

Normal ML 0.0068 0.0263 0.0306 0.0229 0.0063 20.0185

Normal PWM 0.0018 20.0181 20.0549 20.1022 20.1524 20.1986

Weibull (3) OSLS 0.0005 20.0017 20.0164 20.0376 20.0624 20.0888

Weibull (3) ML 0.0037 0.0270 0.0564 0.0840 0.1003 0.1158

Weibull (3) PWM 0.0004 20.0095 20.0320 20.0607 20.0918 20.1220

t (4) OSLS 20.0064 20.0441 20.1421 20.2680 20.3922 20.5031

t (4) ML 20.0004 20.0564 20.1650 20.2907 20.4174 20.5354

t (4) PWM 20.0003 20.0478 20.1403 20.2636 20.3809 20.4949

t (8) OSLS 20.0024 20.0134 20.0751 20.1606 20.2578 20.3548

t (8) ML 0.0011 20.0342 20.1145 20.2123 20.3157 20.4216

t (8) PWM 0.0013 20.0271 20.0955 20.1888 20.2892 20.3916

Chi-sq (4) OSLS 20.0032 20.0028 20.0077 20.0198 20.0841 20.1111

Chi-sq (4) ML 0.0175 0.1189 0.2655 0.4581 0.5917 0.8298

Chi-sq (4) PWM 20.0004 20.0089 20.0238 20.0448 20.1143 20.1520

Lognormal OSLS 20.0159 20.0542 20.0876 20.1089 20.0940 20.0617

Lognormal ML 20.0111 20.0251 20.0068 0.0536 0.1499 0.3104

Lognormal PWM 20.0165 20.0210 0.0141 0.0924 0.2315 0.3965

Pareto (20.25) OSLS 20.0023 0.0109 0.0255 0.0350 0.0419 0.0471

Pareto (20.25) ML 0.0033 0.0544 0.1170 0.1739 0.2215 0.2611

Pareto (20.25) PWM 20.0014 0.0004 0.0052 0.0084 0.0112 0.0129

(d) nl5 1000

Normal OSLS 0.0035 20.0013 20.0244 20.0613 20.1010 20.1432

Normal ML 0.0059 0.0017 20.0259 20.0626 20.1075 20.1476

Normal PWM 0.0028 20.0192 20.0586 20.1064 20.1560 20.2016

Weibull (3) OSLS 0.0013 20.0023 20.0175 20.0381 20.0627 20.0885

Weibull (3) ML 0.0020 20.0018 20.0159 20.0386 20.0641 0.0909

Weibull (3) PWM 0.0010 20.0092 20.0297 20.0578 20.0880 20.1192

t (4) OSLS 0.0058 20.0044 20.0605 20.1574 20.2690 20.3715

t (4) ML 0.0141 20.0137 20.1018 20.2167 20.3326 20.4406

t (4) PWM 0.0141 20.0176 20.1104 20.2277 20.3479 20.4598

t (8) OSLS 0.0033 20.0021 20.0452 20.1167 20.2001 20.2896

t (8) ML 0.0070 20.0117 20.0664 20.1464 20.2404 20.3382

t (8) PWM 0.0045 20.0219 20.0896 20.1825 20.2857 20.3862

Chi-sq (4) OSLS 0.0003 0.0012 20.0057 20.0167 20.0826 20.1107

Chi-sq (4) ML 0.0012 20.0021 20.0152 20.0354 20.1026 20.1349

Chi-sq (4) PWM 0.0006 20.0011 20.0080 20.0263 20.0934 20.1211
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small or moderate sample sizes. Overall the second smallest normalized bias is

achieved by the probability weighted moments method. The maximum likelihood

estimator has the largest normalized bias when PF $ 1025; especially for the

long tailed distributions. The normalized bias all three estimators decrease as the

sample size increases. When the parent distribution is GPD, all three estimators

perform very well. Even so, the ordered sample least square estimator

outperforms the others. The relatively strong performance for the GPD is

explained as follows. The extreme value theory is based on the premise that tails

of smooth continuous distributions tend towards the GPD. For the GPD, this

premise is exactly satisfied. Hence, the corresponding performance is noticeably

better than for other distributions.

The results for the median of the normalized root mean square error are

surprising. The maximum likelihood estimator is known to be asymptotically

efficient. This is always true when the samples are drawn for the underlying

distribution (in our case from the GPD). This property of the maximum

likelihood estimator can be observed in Table 13.3 when m ¼ 1000 but not for

smaller sample sizes. Although the OSLS method has a smaller normalized root

mean square error in many cases, there is no clear winner with respect to this

criterion.

From the empirical results based on a limited number of distributions and

sample sizes, it is not easy to make a strong recommendation as to which method

to use in practice. However, it terms of the normalized bias, the ordered samples

least squares estimator appears to perform better than the other estimators in

estimating the large thresholds when PF # 1026: In any event, it is seen that the

extreme value theory can be used successfully to determine threshold values,

when the false alarm probability is very small.

Two practical advantages of estimation based on extreme value theory are:

(1) When there is a constraint on the number of samples, the thresholds obtained

from extreme value theory are expected to be closer to the true thresholds than

those obtained by conventional Monte Carlo techniques. However, in both

TABLE 13.2 Continued

PF 1022 1023 1024 1025 1026 1027

Lognormal OSLS 20.0038 20.0221 20.0259 0.0055 0.0646 0.1638

Lognormal ML 20.0098 0.0063 0.0616 0.1767 0.3495 0.5999

Lognormal PWM 20.0128 20.0004 0.0567 0.1683 0.3400 0.5771

Pareto (20.25) OSLS 0.0002 0.0002 0.0012 0.0007 0.0003 0.0000

Pareto (20.25) ML 20.0002 20.0010 20.0044 20.0061 20.0081 20.0094

Pareto (20.25) PWM 0.0003 20.0011 20.0007 20.0006 20.0035 20.0038

OSLS ¼ Ordered Sample Least Square, ML ¼ Maximum Likelihood, PWM ¼ Probability Weighted

Moments.
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TABLE 13.3
Median RMS Errors for Various Percentiles

PF 1022 1023 1024 1025 1026 1027

(a) nl5 25

Normal OSLS 0.0558 0.1127 0.2022 0.2825 0.3507 0.4044

Normal ML 0.0558 0.0909 0.1459 0.2057 0.2588 0.3070

Normal PWM 0.0559 0.1215 0.2121 0.2920 0.3586 0.4117

Weibull (3) OSLS 0.0257 0.0577 0.1089 0.1580 0.2031 0.2415

Weibull (3) ML 0.0258 0.0531 0.0950 0.1378 0.1780 0.2139

Weibull (3) PWM 0.0256 0.0624 0.1149 0.1659 0.2110 0.2495

t (4) OSLS 0.1069 0.2261 0.4160 0.5989 0.7397 0.8405

t (4) ML 0.1051 0.2353 0.4157 0.5812 0.7127 0.8097

t (4) PWM 0.1019 0.2329 0.4213 0.5956 0.7368 0.8344

t (8) OSLS 0.0781 0.1666 0.3073 0.4455 0.5701 0.6730

t (8) ML 0.0779 0.1493 0.2554 0.3648 0.4689 0.5649

t (8) PWM 0.0775 0.1752 0.3180 0.4544 0.5783 0.6787

Chi-sq (4) OSLS 0.0610 0.1313 0.2441 0.3592 0.4650 0.5455

Chi-sq (4) ML 0.0721 0.2179 0.4459 0.7901 1.1783 1.7789

Chi-sq (4) PWM 0.0592 0.1384 0.2500 0.3622 0.4666 0.5446

Lognormal OSLS 0.1335 0.2452 0.4362 0.6271 0.7785 0.8785

Lognormal ML 0.1439 0.4007 0.7303 1.4149 2.7312 5.0774

Lognormal PWM 0.1260 0.2582 0.4463 0.6281 0.7737 0.8705

Pareto (20.25) OSLS 0.0409 0.0787 0.1348 0.1752 0.2017 0.219

Pareto (20.25) ML 0.0402 0.0763 0.1419 0.2075 0.2640 0.3127

Pareto (20.25) PWM 0.0411 0.0866 0.1430 0.1817 0.2084 0.2240

(b) nl5 50

Normal OSLS 0.0401 0.0772 0.1391 0.1981 0.2548 0.3042

Normal ML 0.0394 0.0689 0.1122 0.1559 0.1959 0.2328

Normal PWM 0.0399 0.0865 0.1530 0.2192 0.2759 0.3273

Weibull (3) OSLS 0.0180 0.0393 0.0743 0.1135 0.1511 0.1854

Weibull (3) ML 0.0185 0.0509 0.0997 0.1447 0.1859 0.2214

Weibull (3) PWM 0.0180 0.0442 0.0852 0.1263 0.1661 0.2017

t (4) OSLS 0.0779 0.1826 0.3506 0.5179 0.6633 0.7724

t (4) ML 0.0768 0.1910 0.3602 0.5244 0.6688 0.7762

t (4) PWM 0.0760 0.1778 0.3332 0.4899 0.6303 0.7386

t (8) OSLS 0.0561 0.1228 0.2316 0.3503 0.4666 0.5698

t (8) ML 0.0553 0.1219 0.2226 0.3385 0.4504 0.5529

t (8) PWM 0.0554 0.1306 0.2405 0.3613 0.4793 0.5807

Chi-sq (4) OSLS 0.0431 0.0890 0.1678 0.2509 0.3351 0.4109

Chi-sq (4) ML 0.0489 0.1661 0.3386 0.5487 0.7664 1.1112

Chi-sq (4) PWM 0.0426 0.0939 0.1747 0.2584 0.3431 0.4185

Lognormal OSLS 0.0975 0.1834 0.3439 0.5155 0.6660 0.7990

Lognormal ML 0.0993 0.3381 0.6769 1.3921 2.6297 4.7240
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TABLE 13.3 Continued

PF 1022 1023 1024 1025 1026 1027

Lognormal PWM 0.0864 0.1954 0.3510 0.5143 0.6621 0.8012

Pareto (20.25) OSLS 0.0289 0.0534 0.0890 0.1162 0.1346 0.1486

Pareto (20.25) ML 0.0284 0.0602 0.1149 0.1675 0.2084 0.2417

Pareto (20.25) PWM 0.0293 0.0616 0.1032 0.1320 0.1533 0.1666

(c) nl5 100

Normal OSLS 0.0284 0.0522 0.0964 0.1414 0.1863 0.2305

Normal ML 0.0290 0.0517 0.0840 0.1123 0.1433 0.1689

Normal PWM 0.0281 0.0584 0.1090 0.1635 0.2134 0.2585

Weibull (3) OSLS 0.0128 0.0273 0.0529 0.0811 0.1101 0.1378

Weibull (3) ML 0.0131 0.0389 0.0790 0.1202 0.1570 0.1868

Weibull (3) PWM 0.0126 0.0312 0.0622 0.0942 0.1284 0.1590

t (4) OSLS 0.0550 0.1400 0.2801 0.4336 0.5739 0.6909

t (4) ML 0.0525 0.1377 0.2716 0.4165 0.5497 0.6627

t (4) PWM 0.0527 0.1334 0.2619 0.4046 0.5323 0.6469

t (8) OSLS 0.0386 0.0914 0.1770 0.2761 0.3758 0.4732

t (8) ML 0.0388 0.0896 0.1735 0.2710 0.3734 0.4763

t (8) PWM 0.0384 0.0869 0.1727 0.2750 0.3777 0.4817

Chi-sq (4) OSLS 0.0287 0.0649 0.1264 0.1932 0.2699 0.3373

Chi-sq (4) ML 0.0350 0.1437 0.2959 0.4688 0.6092 0.8592

Chi-sq (4) PWM 0.0283 0.0686 0.1289 0.1948 0.2730 0.3383

Lognormal OSLS 0.0683 0.1527 0.2794 0.4174 0.5299 0.6290

Lognormal ML 0.0652 0.1515 0.2690 0.4039 0.5465 0.6769

Lognormal PWM 0.0647 0.1417 0.2519 0.3805 0.5218 0.6710

Pareto (20.25) OSLS 0.0201 0.0372 0.0637 0.0845 0.0997 0.1110

Pareto (20.25) ML 0.0197 0.0569 0.1192 0.1746 0.2221 0.2613

Pareto (20.25) PWM 0.0201 0.0434 0.0718 0.0952 0.1108 0.1220

(d) nl5 1000

Normal OSLS 0.0077 0.0182 0.0373 0.0643 0.1017 0.1440

Normal ML 0.0087 0.0160 0.0362 0.0632 0.1075 0.1476

Normal PWM 0.0081 0.0247 0.0586 0.1064 0.1560 0.2016

Weibull (3) OSLS 0.0037 0.0086 0.0194 0.0393 0.0630 0.0890

Weibull (3) ML 0.0040 0.0078 0.0191 0.0397 0.0649 0.0909

Weibull (3) PWM 0.0036 0.0108 0.0300 0.0578 0.0880 0.1192

t (4) OSLS 0.0203 0.0534 0.1383 0.2476 0.3717 0.4763

t (4) ML 0.0213 0.0447 0.1083 0.2168 0.3326 0.4406

t (4) PWM 0.0213 0.0499 0.1207 0.2306 0.3479 0.4598

t (8) OSLS 0.0135 0.0298 0.0726 0.1376 0.2121 0.3018

t (8) ML 0.0129 0.0272 0.0750 0.1518 0.2436 0.3406

t (8) PWM 0.0129 0.0349 0.0939 0.1830 0.2863 0.3863

Chi-sq (4) OSLS 0.0104 0.0207 0.0362 0.0588 0.1094 0.1408

Chi-sq (4) ML 0.0099 0.0192 0.0363 0.0589 0.1095 0.1429
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techniques an increase in sample size offers greater accuracy in estimating

thresholds. (2) Because the estimate of the tail of the underlying distribution is in

closed form, estimation can be made for thresholds corresponding to extremely

small false alarm probabilities independent of the sample size. In experiments

with fixed amounts of data, this is an important advantage.

13.3.6.3. Effect of the Choice of l on the Threshold Estimates

As was mentioned previously, only those samples exceeding x0 are used in

estimating the GPD parameters. The value of x0 is determined by l: The results
presented in Table 13.2 and Table 13.3 were obtained by means of Monte Carlo

experiments where l ¼ 0:1 was used independent of the value of PF for which the

threshold was being estimated. When the false alarm probability was extremely

small, the bias and root mean square errors were quite large for some distributions.

The smaller the value of l; the better will be the GPD approximation over the

extreme tail being approximated. When l is chosen too large, a better fit is found

for that portion of the distribution closer to the center at the expense of lesser

accuracy in the extreme tail. Of course, there is a tradeoff between the choice of

l and the number of data samples available for determining the parameters of

the GPD.

In our application the major objective is to approximate the extreme tails

corresponding to thresholds of 1025 or smaller. Consequently, we explored the

implications of selecting values less than 0.1 for l: To accomplish this, we

obtained the theoretical values of xi for the standard Normal and Lognormal

distributions corresponding to F21ðpiÞ where pi ¼ ði2 0:5=nÞ i ¼ 1; 2;…; n;
and n ¼ 1000 and 10,000, respectively. These two distributions are chosen

because they represent extremes: The Normal distribution is light tailed (decays

faster) while the Lognormal is a heavy tailed (decays slower) distribution.

TABLE 13.3 Continued

PF 1022 1023 1024 1025 1026 1027

Chi-sq (4) PWM 0.0100 0.0211 0.0400 0.0602 0.1103 0.1433

Lognormal OSLS 0.0206 0.0528 0.1222 0.1836 0.2429 0.3276

Lognormal ML 0.0195 0.0434 0.0984 0.2012 0.3581 0.5999

Lognormal PWM 0.0201 0.0410 0.0927 0.1919 0.3445 0.5770

Pareto (20.25) OSLS 0.0061 0.0101 0.0158 0.0213 0.0247 0.0278

Pareto (20.25) ML 0.0063 0.0092 0.0154 0.0198 0.0243 0.0268

Pareto (20.25) PWM 0.0065 0.0126 0.0222 0.0306 0.0375 0.0428

OSLS ¼ Ordered Sample Least Square, ML ¼ Maximum Likelihood, PWM ¼ Probability Weighted

Moments.
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The number of the xi samples used to determine the parameters of the GPD is

given by ln: The parameters were estimated using the OSLS procedure for

values of l equal to 0.1, 0.05, and 0.01. The resulting GPDs were then used to

determine the thresholds for false alarm probabilities given by PF ¼ 102k where

k ¼ 2, 3,…,7. These results are presented in Figure 13.10 and Figure 13.11,

where both the theoretical and approximated thresholds are plotted as a function

of k for (A) Normal distribution (n ¼ 10,000), (B) Normal distribution

(n ¼ 1000), (C) Lognormal distribution (n ¼ 10,000), (D) Lognormal distri-

bution (n ¼ 1000). For k $ 5; it is seen that l ¼ 0:01 (curve b) appears to be the
best choice for approximating the thresholds. The best results were obtained with

n ¼ 10,000. However, good results were obtained with n ¼ 1000.
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FIGURE 13.10 Normal distribution. Data points correspond to k ¼ 2; 3, 7. a: True,
b: l ¼ 0:01; c: l ¼ 0:05; d: l ¼ 0:10: (a) n ¼ 10000 thresholds for PF ¼ 102k:
(b) n ¼ 1000 Thresholds for PF ¼ 102k:
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13.3.7. EXAMPLES

13.3.7.1. Known Distribution Case

To evaluate the accuracy of the threshold value estimates, 10,000 random

samples were generated from the Gaussian and Lognormal distributions and the

upper tails of these two distributions were modeled as Generalized Pareto.

In Section 13.3.4.1 and Section 13.3.4.3, theoretical values given by xi ¼ F21ðpiÞ
were used to estimate the tail. In this section randomly generated samples are

used in place of the theoretical values. Choosing l ¼ 0.01, the theoretical

thresholds of the Gaussian distribution for PF ¼ 102k; k ¼ 2; 3;…; 7 are 2.326,

3.090, 3.719, 4.265, 4.753, and 5.199, respectively. The thresholds estimated,
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FIGURE 13.11 Lognormal distribution. Data points correspond to k ¼ 2; 3, 7. a: True,
b: l ¼ 0:01; c: l ¼ 0:05; d: l ¼ 0:10: (a) n ¼ 10; 000 thresholds for PF ¼ 102k: (b)
n ¼ 1000 Thresholds for PF ¼ 102k:

Adaptive Antennas and Receivers758

© 2006 by Taylor & Francis Group, LLC



based on one set of random samples are 2.315, 3.223, 3.847, 4.370, 4.855, and

5.292. For the Lognormal distribution the theoretical thresholds corresponding to

PF ¼ 102k; k ¼ 2; 3;…; 7 are 10.240, 21.982, 41.224, 71.157, 115.981, and

181.152. Once again, using l ¼ 0.01, the thresholds estimated based on one set

of random samples are 10.449, 22.862, 42.473, 69.216, 112.229, and 183.495.

Note that the estimated results are very close to the true thresholds. We note here

that these results were obtained on the basis of one set of observations from the

two known distributions, corresponding to a particular seed value. For a different

set of samples the estimates will be different depending on the tail behavior of

that set of samples. But, unless the samples are really not a true representative of

the distribution from which they are drawn, we expect that the estimates based on

different samples should give threshold values yielding false alarm probabilities

close to the design value.

13.3.7.2. An Unknown Distribution Case

In the previous section the underlying distributions were known to us and the

estimates based on the extreme value theory were encouraging for both light and

heavy tail behavior. In this example, we take a nonGaussian problem where the

underlying distribution is unknown.

The two hypotheses characterizing the detection problem are given in

Equation 13.1 and Equation 13.2. We consider the weak signal case for which the

clutter is much stronger than the background noise. The LOD8 has been shown to

be suitable for the weak signal detection problem. Under hypothesis H1; the
signal is denoted by usi; where u is a measure of the signal strength. For a

deterministic signal and a given set of observations


r ¼ ½r1; r2…; rN	T the LOD

performs the ratio test

TLODðrÞ ¼

›PRlH1
ðrlH1Þ

›u

�����
u¼0

›PRlH0
ðrlH0Þ _

H1

H0

hk ð13:144Þ

where PRlHi
ðrlHiÞ is the joint PDF of r1; r2;…rN under hypothesis Hi:i ¼ 0; 1:

Martinez, Swaszek, and Thomas22 studied the locally optimal detection

problem for nonGaussian distributions and considered the bivariate Laplace

distribution as an example. In this section we illustrate the procedure for

determining the thresholds of a LOD based on N ¼ 2 and the received samples

under H0 having the bivariate Laplace distribution given by

fRðr1; r2Þ ¼ 1

2plMl1=2
K0½ð2rTM21rÞ1=2	 ð13:145Þ

when M is the covariance matrix for the two samples, lMl denotes its

determinant,


rTM21



r is equal to ðr21 2 2rr1r2 þ r22Þ=ð12 r2Þ; r is the correlation

coefficient between R1 and R2; and K0ð·Þ is the modified Bessel function of the
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second kind of zero order. The resulting LOD statistic is22

TLODðr1; r2Þ 2

rTM21r

� �1=2 K1½ð2rTM21rÞ1=2	
K0½ð2rTM21rÞ1=2	 £ sTM21r ð13:146Þ

where


s ¼ ðs1; s2ÞT;



sTM21



r ¼ ðr1 2 rr2Þs1 þ ðr2 2 rr1Þs2 and K1ð:Þ is the

modified Bessel function of the second kind of first order. s1 and s2 are the

known signal levels. In this example we take s1 ¼ 1 and s2 ¼ 21: Because of

the complexity of TLODð:Þ; it is not possible to determine a closed form expression

for its PDF.

In many applications in radar, thresholds have to be set to achieve desired

false alarm probabilities based on a sample size with orders of magnitude less

than 10/PF. As will be pointed out later, the statistic in Equation 13.146

represents a worst case situation as our simulations indicate that the variance of

the test statistic is extremely large. To investigate the reliability of the thresholds

estimated based on extreme value theory with smaller sample sizes, 10,000 pairs

of observations ðr1; r2Þ were generated form the bivariate Laplace distribution

given in Equation 13.145, with r ¼ 0:90: The values of TLODðr1; r2Þ were

computed for each pair and sorted in increasing order. Corresponding to

l ¼ 0:01; the largest 100 values of the underlying statistic (the top one per cent)

were selected to fit the GPD. This experiment was repeated 250 times. The

threshold corresponding to a certain false alarm probability PF of the

distribution of the statistic TLODðr1; r2Þ is estimated from Equation 13.142 as

~ha ¼ x0 þ ŝ
ĝ ½ð 12a

0:01 Þ2ĝ 2 1	 where x0 is the 9900th largest value of the statistic.

Thresholds were estimated for false alarm probabilities PF ¼ 102k; k ¼ 2;…; 7
for each repetition of the experiment. Histograms of these threshold values are

shown in Figure 13.12 to Figure 13.17, for the different PFs. To give a better

appreciation for the range of values, the bins are not necessarily of equal width.

The histograms give an indication of the spread in the threshold values depending
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FIGURE 13.12 Histogram of threshold values, PF ¼ 1022:
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on the particular samples collected. From the histograms corresponding to false

alarm probabilities of 1022, 1023, and 1024 we can see that the threshold

estimates obtained on the basis of even one set of samples is likely to

approximately yield the desired PF: Since the underlying distribution of TLODð:Þ
is unknown, one measure of the accuracy of the estimate is the extent to which

most of the estimates fall in one bin of the histogram. Also, we can see that there

is negligible overlap between the estimated threshold values in the histograms for

the three different values of PF: This supports the claim that the estimated
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threshold is likely to yield a false alarm probability of the same order as the

desired PF: There is a higher overlap in the thresholds of the histograms for

PF ¼ 1025; 1026, and 1027. Also, there is much higher spread in the threshold

values estimated. Based on the excellent results obtained for the same choices of

PF in the known cases of the previous section, these results are surprising.

However, it is explained as follows. The g values of the GPD estimated for the

different repetitions of this experiment lie in the range 0.45 2 0.55. This

represents an extremely heavy tailed distribution. From Table 13.1 we can see

that the Lognormal distribution, which is quite a heavy tailed distribution, has

g ¼ 0:232: The heavy tailed nature of the detector statistic can also be observed
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by comparing the large threshold values seen in the histograms with the

corresponding thresholds of the Gaussian and the Lognormal distributions. The

variance of the GPD is given by

VarðXÞ ¼ s 2

ð12 g2Þð12 2gÞ g , 0:5

¼ 1 g $ 0:5

ð13:147Þ

Thus, the bivariate Laplace results in a very highly fluctuating statistic with an

extremely large variance. As such, it represents a “worst case” situation for

empirically determining the threshold. A much larger sample size is needed to

obtain reliable threshold estimates because of the exceedingly large tail of the

underlying distribution.

In general, an indication of how heavy the true tail may be for an unknown

distribution is given by the estimate of g for the GPD. When an extremely heavy

tail is indicated, another strategy for estimating the thresholds when PF is very

small is to choose the median value of the thresholds estimated when the

experiment is repeated a specified number of times with 10,000 samples in each

repetition. The choice of the median as the estimator ensures that very large and

very small values do not affect the results. For the present example, we chose to

repeat the 250 trials three times. By counting the number of estimates that fell

into the bins centered at 20, 28, and 36 for PF ¼ 1025; 40, 50, 70, and 90 for

PF ¼ 1026; 100 and 150 for PF ¼ 1027; it was found that 88 percent of the

estimates fell into these bins. Thus, even for this extremely large tailed example,
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we believe that use of the GPD has allowed us to estimate useful values for the

thresholds with sample sizes much smaller than 10/PF.

13.4. PERFORMANCE OF THE LOD FOR MULTIVARIATE

STUDENT-T AND K-DISTRIBUTED DISTURBANCES

In radar problems involving weak signal applications, it is found that the large

returns due to clutter can lead to a small signal to disturbance ratio. When the

density function of the clutter exhibits an extended tail behavior relative to the

Gaussian PDF, the PDF of the disturbance can no longer be modeled as Gaussian.

The significance of a nonGaussian PDF with an extended tail is that many more

large returns result than would be the case for a Gaussian PDF having the same

variance. Hence, there is a need to be able to model nonGaussian random

processes.

The multivariate Student-T distribution is a member of the class of joint PDFs

arising from SIRPs. SIRPs are explained in Section 13.2. When an SIRP is

sampled at N instants in time, the resulting vector is said to be a spherically

invariant random vector (SIRV). The theory of SIRPs offers a way to model the

joint density function on these N samples where the correlation between the

individual random variables in the vector is accounted for. With this approach

LOD structures can be derived for nonGaussian disturbances without the need to

assume that the random variables are statistically independent. In this section we

analyze the performance of the LOD for the known signal problem when the

background disturbance consisting of clutter and noise can be modeled as having

a multivariate Student-T distribution or a multivariate K-distribution.

13.4.1. THE MULTIVARIATE STUDENT-T DISTRIBUTION

A convenient procedure for deriving the multivariate Student-T distribution from

the representation theorem28 is discussed in this section. Let the random vector


X

have a multivariate Gaussian distribution with zero mean and covariance matrix

M. The zero mean assumption will not affect the generality of the results that

follow. The joint density function on the elements of X is given by

JxðxÞ ¼ 1

ð2pÞN lMl1=2
e2ðxTM21x=2Þ ð13:148Þ

where the vector


X has 2N elements from N inphase and N quadrature samples.

Consider the vector


W ¼



X=n; where n is a nonnegative random variable

statistically independent of X: Let wTM21w be noted by the variable p: Then, the
conditional density function of the vector W given n can be written as

fWðwlnÞ ¼ 1

ð2pÞN lMl1=2
n2Ne 2n2p

2
ð13:149Þ
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The unconditional density function of W is given by

fWðwÞ ¼
ð1

0
f wðwlnÞfnðnÞdn ð13:150Þ

where fnðnÞ is the PDF of the random variables n: Because


X and n are statistically

independent, it follows that

EðWÞ ¼ E
X

n

� �
¼ EðXÞEðn21Þ ¼ 0 ð13:151Þ

EðW _WTÞ ¼ EðX XTÞEðn22Þ ¼ Eðn21ÞM ð13:152Þ
It can be seen from the above equation that the covariances of the elements

of the vector W can be adjusted by appropriate choice of Eðn22Þ:
With respect to Equation 13.150, let fnðnÞ be the generalized chi PDF

given by

fnðnÞ ¼ 2
n 2b21e2an2ab

GðbÞ n $ 0 ð13:153Þ

From Equation 13.153, Eðn22Þ can be calculated. Specifically,

Eðn22Þ ¼
ð1

0
2n22 n

2b21e2an2ab

GðbÞ dn ¼
ð1

0
2
n 2b23e2an2ab

GðbÞ dn ð13:154Þ

Letting an 2 ¼ x in the above equation we get

Eðn22Þ ¼ a
ð1

0

xb22e2x dx

GðbÞ ¼ a
Gðb2 1Þ
GðbÞ ¼ a

b2 1
ð13:155Þ

If we let a ¼ b2 1; then the generalized chi PDF in Equation 13.153 is

such that Eðn22Þ ¼ 1 irrespective of the choice for the parameter b: Then the

generalized chi PDF takes the form

fnðnÞ ¼ 2n 2b21e2ðb21Þn2ðb2 1Þb
GðbÞ b . 1 ð13:156Þ

In general, we can set the value of Eðn22Þ to a desired constant c by choosing
a ¼ cðb2 1Þ: Then the covariance matrix of W is guaranteed to equal cM
independent of b:

Integrating the conditional density function fWð


wlnÞ; as given by

Equation 13.149, over the PDF of the nonnegative random variable n; we obtain
the multivariate Student-T distribution. The details are given below. Choosing
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a ¼ b2 1 in Equation 13.153 we can write

fWðwÞ ¼
ð1

0

1

ð2pÞN lMl1=2
n2Neð2n2p=2Þ 2n

2b21e2ðb21Þv2 ðb2 1Þb
GðbÞ dn

¼ ðb2 1Þb
ð2pÞN lMl1=2GðbÞ

ð1

0
2n2Nþ2b21e2n2ðb21þp=2Þdn ð13:157Þ

Letting ðb2 1þ p=2Þn 2 ¼ y we get

fWðwÞ ¼ ðb2 1Þb
ð2pÞN lMl1=2GðbÞ

ð1

0

yNþb21e2y

ðb2 1þ p=2ÞNþb
dy

¼ ðb2 1ÞbGðN þ bÞ
ð2pÞN lMl1=2GðbÞðb2 1þ p=2ÞNþb

ð13:158Þ

The above expression is defined to be the 2N-dimensional multivariate

Student-T distribution with parameters N and b. N represents the number of

complex samples and b determines the tail behavior of the multivariate density

function. The smaller the value of b, the larger will be the tail.

The density function in Equation 13.156 can be simulated as follows. The

first step is to generate a standard Gamma variate having the density function

fY ð yÞ ¼ yb21e2y=GðbÞ: This was done using the subroutine DGAMDF from the

IMSL package. The next step is to divide the generated random variable by the

parameter b2 1: Let Z ¼ Y=ðb2 1Þ: The density function of Z is

fZðzÞ ¼ ðb2 1Þbzb21e2zðb21Þ

GðbÞ ð13:159Þ

The positive square root of Y=ðb2 1Þ results in the desired density function.

Let n ¼ Z1=2: Therefore Z ¼ n 2: Introducing the Jacobian of the transformation,

the density function of n becomes

fnðnÞ ¼ 2n 2b21e2ðb21Þn 2 ðb2 1Þb
GðbÞ ð13:160Þ

which is identical to that in Equation 13.156.

13.4.1.1. The Locally Optimum Detector

The LOD for the multivariate Student-T distribution can now be derived. From

Equation 13.36, the LOD is given as

›fDðr 2 usÞ
›u

�����
u¼0

fDðrÞ _
H1

H0

h ð13:161Þ
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Assuming the disturbance can be modeled by a multivariate Student-T

distribution, fDð


rÞ is given by Equation 13.158, with the variable



R replacing the

variable


W; where p ¼



rTM21



r: Since Equation 13.161 is a ratio test and all

constants can be placed in the threshold determined by specifying a false alarm

probability, all multiplicative constants are ignored for convenience. Hence, we

will be concerned only with the terms containing the variable R. Excluding the

constant term the numerator in the ratio test is given by

›fD


ðr 2 usÞ
›u

����
u¼0

¼ ›

›u

1

ðb2 1þ p=2ÞNþb

" #�����
u¼0

ð13:162Þ

Applying the chain rule, the derivative with respect to u can be expressed as

the derivative with respect to p times the derivative of p with respect to u: The
derivative of p with respect to u at u ¼ 0 can be derived as

›p
›u

����
u¼0

¼ ›

›u
ðr 2 usÞTM21ðr 2 usÞ

� �����
u¼0

¼ 22sTM21r ð13:163Þ

Therefore, the numerator in the ratio test, excluding the constant, is given by

›fDðr 2 usÞ
›u

�����
u¼0

¼ ðb2 1þ p=2Þ2ðNþbþ1Þ £ sTM21r ð13:164Þ

From the above equation, the sufficient statistic for the LOD for the

multivariate Student-T distribution can be written as

TLODðrÞ ¼ sTM21r

b2 1þ p=2
ð13:165Þ

The above result for the LOD statistic is very significant. The numerator in

Equation 13.165 is recognized as the Gaussian linear detector. This detector is a

matched filter that maximizes the signal-to-disturbance ratio whether or not the

disturbance is Gaussian. In weak signal applications, by definition, the signal to

disturbance ratio will still be low after matched filtering. The denominator of

the LOD statistic is the nonlinear term in the statistic. The behavior of the

nonlinearity is such that it scales down large values of p and enhances small

values of p. The nonlinearity is plotted as a function of p in Figure 13.18. This is

reasonable because, as shown in Section 13.1.3, large values of radar returns

result in large p while small values of the returns yields small values of p.

Because it is known a priori that we are dealing with the weak signal problem,

large returns cannot be due to the signal. Consequently, the output of the

matched filter is weighted by a small number. On the other hand, the matched

filter output is weighted by a large number when the return is small and the

contribution due to the signal, if present, can be detected. However, when

the signal is present, the optimum nonlinearity alone is not sufficient to get
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detections, though it brings the output close to the threshold value. The matched

filter having a higher output value when the signal is present than when the

signal is absent, contributes to raising the output value over the threshold when

detections are obtained. The role of the matched filter is explained in greater

detail in Section 13.4.1.3.

13.4.1.2. Computer Simulation of Performance

Because analytical closed form expressions for the detection and false alarm

probabilities of the LOD in a multivariate Student-T distributed clutter are

difficult to obtain, performance is evaluated through computer simulations for

weak signal applications. For simulation purposes a multivariate Student-T

distributed disturbance vector


D and a transmitted signal vector



S have to be

generated. The covariance matrix of the clutter process is assumed known with

unit elements along the diagonal. To get the covariance matrix of the disturbance

we add a small number, determined by the clutter to noise ratio, to the diagonal

elements of the clutter covariance matrix. This serves to limit the performance of

the receiver even where the clutter power is negligible. In this simulation, the

clutter to noise ratio is taken to be 80 dB. The simulation procedure for the

disturbance vector is outlined as follows:

1. Generate a 2N-dimensional white Gaussian random vector X
0
: This

was done by using the DRRNOA subroutine from the IMSL package.

2. Do a Cholesky decomposition on the matrixM to getM ¼ KKT where

K is a lower triangular matrix.

3. The vector X ¼ KX0 is the multivariate correlated Gaussian vector.

4. Generate a standard Gamma variate Y : This was done by using the

subroutine DGAMDF from the IMSL package.
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FIGURE 13.18 Nonlinearity of the LOD statistic for the Student-T distribution.
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5. Obtain n ¼ ðY=ðb2 1ÞÞ1=2: The random variable n has the generalized
chi PDF.

6. Obtain the multivariate Student-T distributed disturbance vector


D

with the desired correlation properties from D ¼ x=n:

The block diagram of the simulation procedure is shown in Figure 13.19. The

autocorrelation of the clutter process is taken to be a geometric function in this

problem. Assuming radar returns from clutter cells to be highly correlated, as is

the case with ground clutter, the sample to sample time correlation is taken as

0.95 in this problem. Specifically, the sample autocorrelation function is

chosen as

RCCðnÞ ¼ ð0:95Þn n ¼ 0; 1;…;N 2 1 ð13:166Þ
where RCCðnÞ is the discrete time autocorrelation function of the clutter process.

Figure 13.20 and Figure 13.21 show the autocorrelation and the power spectral

density of the clutter process. The power spectral density of clutter has a very

small spread as the clutter is highly correlated. Using Equation 13.166 the

elements of the covariance matrix of the disturbance can be filled appropriately.

The elements of the signal vector are chosen such that the nth element

Sn ¼ e j2pfDðn21ÞT , n ¼ 1,2,…,N: fD represents the Doppler frequency shift of the

received signal and T represents the time separation between sampling instants,

as shown in Figure 13.22.

The detector in Equation 13.165 is now simulated. A value of b ¼ 1:5 for the
multivariate Student-T distribution is chosen because this value results in a

relatively long tail for the corresponding marginal PDF of one element of the

vector. By evaluating thresholds for specified false alarm probabilities, the

Student-T distribution was seen to have heavier tails than the Gaussian

distribution for false alarm probabilities less than 1024 but smaller tails than

the Gaussian otherwise.

The thresholds corresponding to false alarm probabilities 102k; k ¼ 1,2,

3,4 are obtained through the method of extreme value theory explained in Section

Generate white
Gaussian vector X ′

Generate standard
Gamma variate

Y with parameter β

M = KKT

Y

K

X ′
X = KX′

n = (
Y

)b − 1
1/2

X

X

n

nD = D−−
Correlated
student T
vector

FIGURE 13.19 Generation scheme for the correlated multivariate Student-T distributed

vector.

Weak Signal Detection 769

© 2006 by Taylor & Francis Group, LLC



13.3. Once the threshold is set, the detection probabilities are obtained by

simulating the LOD for received vectors consisting of the sum of the signal and

disturbance vectors for various signal-to-disturbance ratios. The value of fD is

chosen to be zero in this simulation, resulting in a worst case situation. The

number of trials in the Monte Carlo simulation for obtaining detection

probabilities is equal to 10,000. The performance of the LOD is compared to

that of the Gaussian detector for the same multivariate Student-T distributed

clutter. The test statistic for the Gaussian detector is the same as the numerator of

the LOD, i.e., sTM21r:
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FIGURE 13.20 Autocorrelation of the clutter process for the Student-T distribution.
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FIGURE 13.21 Power spectral density of the clutter process for the Student-T distribution.
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13.4.1.3. Results of the Computer Simulation

The results of the computer simulations are shown in Table 13.4. When SCR is

less than 0 dB, it is seen from the tables that the LOD always outperforms the

Gaussian receiver for all values of the tabulated false alarm probabilities.

The difference is especially significant for false alarm probabilities equal to 1023

and 1024.

The Student-T distribution, while being heavier tailed than the Gaussian, is

not as heavy tailed as the K-distribution and Weibull distribution. In fact, the

Student-T distribution may not be a likely candidate for modeling the radar

disturbance. The Student-T distribution was chosen as the first distribution to be

studied only because of the mathematical simplicity and well behaved nature

of its multivariate PDF. Nevertheless, the analysis done with the Student-T

distribution confirms that the LOD outperforms the Gaussian receiver for a

nonGaussian weak signal application.

As the SCR is reduced, it can be observed from the tables that the Gaussian

receiver performance degrades abruptly for false alarm probabilities less than or

equal to 1022, whereas the LOD shows a gentler variation in performance. From

the Tables it is seen that the performance of the LOD peaks around 0 dB and falls

off for both higher and lower values of SCR. But as the SCR values fall below

0 dB, the degradation in the LOD’s performance is not as drastic as that of the

Gaussian receiver. Both the receivers show an improvement in performance as

the number of samples is increased. However, the LOD shows a dramatic

improvement in performance when the sample size is greater than 64. When the

sample size is equal to 64 and the false alarm probability is as low as 1024, it is

seen from Table 13.4(g) that the detection probability resulting from the LOD is

10
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FIGURE 13.22 Log power spectral density of the clutter and signal processes for the

Student-T distributions.
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TABLE 13.4
Probability of Detection PD for Student-TDistributed Disturbance, b 5 1.5

PD

SCR (dB) LOD GR

(a) N5 16; PF 5 1022

5 0.35 0.65

3 0.36 0.35

1 0.37 0.23

0 0.38 0.11

23 0.32 0.052

26 0.27 0.039

28 0.23 0.03

29 0.15 0.024

210 0.10 0.019

(b) N5 16; PF 5 1023

5 0.08 0.007

3 0.11 0.005

1 0.17 0.004

0 0.16 0.003

23 0.13 0.002

26 0.10 0.001

28 0.08 0.001

(c) N5 32; PF 5 1022

5 0.38 0.99

3 0.42 0.57

21 0.45 0.32

0 0.46 0.18

23 0.38 0.08

26 0.31 0.06

28 0.27 0.04

29 0.20 0.033

210 0.13 0.026

211 0.10 0.019

(d) N5 32; PF 5 1023

8 0.09 0.15

7 0.11 0.08

5 0.14 0.014

2 0.22 0.008

0 0.26 0.004

23 0.19 0.003

26 0.14 0.002

28 0.11 0.002

29 0.08 0.001

Continued
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TABLE 13.4 Continued

PD

SCR (dB) LOD GR

(e) N 5 64; PF 5 1022

5 0.44 0.96

3 0.47 0.68

1 0.53 0.42

0 0.55 0.30

23 0.48 0.17

26 0.40 0.10

28 0.36 0.03

210 0.14 0.023

212 0.09 0.012

(f) N 5 64; PF 5 1023

9 0.10 0.17

7 0.15 0.10

5 0.18 0.02

0 0.36 0.005

23 0.28 0.002

26 0.22 0.002

28 0.18 0.001

29 0.10 0.001

(g) N5 64; PF 5 1024

5 0.08 0.0007

0 0.25 0.0002

23 0.19 0.0002

26 0.13 0.0001

28 0.11 0.0001

29 0.06 0.0001

(h) N5 128; PF 5 1022

5 0.51 0.998

0 0.65 0.71

21 0.63 0.57

23 0.57 0.35

26 0.51 0.16

28 0.46 0.11

210 0.22 0.032

212 0.15 0.027

213 0.11 0.023

215 0.09 0.02

(i) N5 128; PF 5 1023

5 0.20 0.30

4 0.23 0.23

Continued
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on the order of tenths for SCR as small as 28 dB. The corresponding detection

probabilities resulting from the Gaussian receiver are negligibly small. In fact,

there is an improvement factor in the vicinity of three orders of magnitude in

favor of the LOD. When 210 dB # SCR , 0 dB, an interesting observation

from the tables, for all values of N considered, is that the LOD outperforms the

Gaussian receiver by close to one order of magnitude for PF ¼ 1022, by three

orders of magnitude for PF ¼ 1023, and by three orders of magnitude for

PF ¼ 1024. For SCR values lower than 210 dB, the LOD significantly

outperforms the Gaussian receiver but with very small values of PD. When

both SCR $ 4 dB and PF . 1023, the Gaussian receiver outperforms the LOD,

as can be seen from the tables. For positive values of SCR in the range 0 to 5 dB

and for false alarm probabilities equal to 1023 and 1024, it is interesting to note

that the LOD still outperforms the Gaussian receiver. The LOD shows a

significant performance improvement over the Gaussian receiver over a dynamic

range of about 14 dB. The end points of the range vary depending on the sample

size and false alarm probability.

The test statistic is a product involving the outputs of matched filter and the

optimum nonlinearity. In Section 13.4.1.1 it was explained how the nonlinearity

present in the test statistic boosts small values of the received signal and attenuates

large values. This not only serves to bring down the value of the threshold needed

TABLE 13.4 Continued

PD

SCR (dB) LOD GR

3 0.29 0.19

0 0.48 0.01

23 0.36 0.006

26 0.30 0.005

28 0.26 0.004

29 0.14 0.003

210 0.09 0.002

( j ) N5 128; PF 5 1024

7 0.08 0.001

5 0.13 0.0.0004

2 0.30 0.0004

0 0.37 0.0003

23 0.27 0.0003

26 0.21 0.0002

28 0.17 0.0001

29 0.09 0.0001

SCR ¼ Signal to Clutter Ratio, LOD ¼ Locally Optimum Detector, GR ¼ Gaussian Receiver.

Adaptive Antennas and Receivers774

© 2006 by Taylor & Francis Group, LLC



to obtain the desired false alarm probability but also to bring the output for small

received signals close to the threshold value whether or not the desired signal is

present. The role of the matched filter is explained as follows. The matched filter

has a larger output value when the signal is present as opposed to the signal absent

case. This serves to increase the statistic in Equation 13.165. However, the

quadratic form p; in general, also has a larger value when the signal is present than
under the H0 hypothesis. Thus, the factor, in the test statistic in Equation 13.165

due to the nonlinearity, decreases when the signal is present. This serves to lower

the value of the test statistic. Therefore, detections are obtained only when the

increase due to the matched filter dominates the decrease due to the nonlinearity.

Simulations reveal that the matched filter’s role is dominant only when the SCR is

in the range210 dB # SCR , 0 dB. This is expected since the linear receiver’s

performance is known to drop drastically for very low SCRs. The matched filter’s

effect is enhancedwhen aDoppler is present in the desired received signal since the

clutter components become less correlated with the Doppler shifted reference

signal. However, one must be careful when the Doppler frequency is so large that

the signal spectrum appears in the tail of the clutter spectrum. Then a strong signal

situation may exist and the nonlinearity that transforms large values into small

values will cause performance to degrade. The LOD should not be used in strong

signal situations.

The aim of using a LOD is to obtain detection in range–Doppler–azimuth

cells where conventional space-time processing is unable to obtain acceptable

performance. In present day radars these cells are ignored because the probability

of detection is so small under a false alarm constraint. In general, when the SCR

is relatively high (.0 dB) the LRT is the optimal test for target detection under a

fixed false alarm constraint. In addition to not performing well when SCR is too

large, the LOD does not perform well when SCR is too small. When the SCR

drops below a certain value, depending upon N and PF, the LOD receiver hardly

shows any detections even though it still outperforms the Gaussian receiver. This

is because the PDFs under H0 and H1 are so close to each other that it is

impossible to discriminate between them without increasing the sample size by

orders of magnitude.

The concepts of SIRP and LODs are particularly relevant in the context of

modern radar applications. When the radar scans a volume searching for targets

there might be certain regions in the volume where the clutter returns are

significantly stronger than the desired target returns. It is in these regions that we

can obtain detections with the LODs. There is a need to monitor the environment

so that we are able to separate the clutter regions from volumes limited by weak

background noise. When detection is limited by background noise alone, the

LOD is not applicable. Using the concepts of artificial intelligence, clutter

patches can be identified and the underlying multivariate PDF of the clutter

returns can be approximated using the library of SIRPs that have been

developed.26 From the library of LODs the LOD corresponding to the

approximated SIRP can be used in clutter regions to obtain detections if the

target is present, where earlier it would not have been possible.
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13.4.2. THE MULTIVARIATE K-DISTRIBUTION

In the previous section we analyzed the performance of the LOD for the

multivariate Student-T distribution. The multivariate K-distribution is also a

member of the class of joint PDFs arising from SIRPs. Jakeman50 has shown that

the K-distributed PDF has a physical interpretation in the sense that it arises from

the random walk problem where the number of steps itself is random having a

negative binomial distribution. Also, radar clutter has been empirically shown to

have K-distributed PDF. In this chapter we analyze the performance of the LOD

when the background disturbance consisting of the clutter and noise can be

approximated as having a multivariate K-distribution.

Derivation of the multivariate K-distributed PDF from the representation

theorem for SIRPs28 is discussed next. Let the random vector X have a

multivariate Gaussian distribution with zero mean and covariance matrixM: The
zero mean assumption will not affect the generality of the results that follow. The

joint density function on the elements of


X is given by Equation 13.148. Consider

the vector


W ¼ n



X; where n is a nonnegative random variable statistically

independent of


X: Let



wTM21



w be once again denoted by the variable p: Then,

the conditional density function of the vector W given n can be written as

fWðwlnÞ ¼ 1

ð2pÞN lMl1=2
n22Ne

2
P
2n 2 ð13:167Þ

The unconditional density function on


W is given by Equation 13.150, where

fnðnÞ is the PDF of the random variable n: Because


X and n are statistically

independent, it follows that

EðWÞ ¼ EðnXÞ ¼ EðXÞEðnÞ ¼ 0 ð13:168Þ

EðWWTÞ ¼ EðX XTÞEðn2Þ ¼ Eðn 2ÞM ð13:169Þ
As is the case for the Student-T distribution, the variance of the elements of

the vector


W can be adjusted by appropriate choice of Eðn2Þ: Let fnðnÞ be the

generalized chi PDF given by Equation 13.153. Eðn2Þ is then given by

Eðn2Þ ¼
ð1

0
2n2 n

2b21e2an 2

ab

GðbÞ dn ¼
ð1

0
2
n 2bþ1e2an 2

ab

GðbÞ dn ð13:170Þ

Letting an 2 ¼ x in the above equation we get

Eðn2Þ ¼
ð1

0

xbe2xdx

aGðbÞ ¼ Gðbþ 1Þ
aGðbÞ ¼ b

a
ð13:171Þ

If we let a ¼ b; then the generalized chi PDF in Equation 13.153 is such

that Eðn 2Þ ¼ 1 irrespective of the choice for the parameter b: Then the
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generalized chi PDF takes the form

fnðnÞ ¼ 2n 2b21e2bn 2

bb

GðbÞ b . 1 ð13:172Þ

In general, we can set the value of Eðn 2Þ to a desired constant C by choosing

a appropriately. Integrating the conditional density function fWð


wlnÞ given by

Equation 13.167, over the PDF of the nonnegative random variable n; we obtain
the multivariate K-distribution. The details are given below. Choosing a ¼ b in

Equation 13.153 we can write

f
W
ðwÞ ¼

ð1

0

1

ð2pÞN lMl1=2
v22Ne

2
p

2n 2
2n 2b21e2bn 2

bb

GðbÞ dn

¼ bb

ð2pÞN lMl1=2GðbÞ
ð1

0
2n22Nþ2b21e

2bn 22
p

2n 2 dn ð13:173Þ

Letting bn2 ¼ y and simplifying we get

f
W
ðwÞ ¼ bN

ð2pÞN lMl1=2GðbÞ
ð1

0
y2Nþb21e

2 yþ bp
2y


 �
dy ð13:174Þ

From page 183 of Watson’s book on Bessel functions,51 we have the result

KbðzÞ ¼ 1

2

z

2

� �bð1

0
y2b21e

2 yþ x2

4y


 �
dy ð13:175Þ

provided that the real part of z2 is Re z2 .0. KbðzÞ represents the modified Bessel

function of the second kind of order b: Combining Equation 13.174 and

Equation 13.175 results in

f
W
ðwÞ ¼ 2

bN

ð2pÞN lMl1=2GðbÞ
2

ð2bpÞ1=2
{ !N2b

KN2b½ð2bpÞ1=2	

¼ 22
Nþb
2

þ1b
Nþb
2 KN2b½ð2bpÞ1=2	

pN lMl1=2GðbÞp
N2b
2

ð13:176Þ

The above expression is defined to be the 2N-dimensional multivariate

K-distribution with parameters N and b: N represents the number of complex

samples and b determines the tail behavior of the multivariate density function.

For simulation purposes, the density function in Equation 13.172 can be

simulated as follows. The first step is to generate a standard Gamma variate

having the density function fY ðyÞ ¼ yb21e2y=GðbÞ: The IMSL package is used to

generate the standard Gamma variates. The next step is to divide the generated
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random variable by the parameter b: Let X ¼ Y lb: The density function of X is

fXðxÞ ¼ bbxb21e2bx

GðbÞ ð13:177Þ
The positive square root of Y=b results in a variate having the desired density

function. Let n ¼ X1=2: Therefore, X ¼ n 2: Introducing the Jacobian of the

transformation, the density function of n becomes

fnðnÞ ¼ 2n 2b21e2bn 2

bb

GðbÞ ð13:178Þ
which is identical to that in Equation 13.172. This random variable is used to

multiply the Gaussian vector


X in order to generate the K-distributed vector



W:

13.4.2.1. The Locally Optimum Detector

The LOD for the multivariate K-distribution can now be derived. From Equa-

tion 13.36 the LOD is given as

›f
D
ðr 2 usÞ
›u

�����
u¼0

f
D
ðrÞ _

H1

H0

h ð13:179Þ

Assuming the disturbance can be modeled by a multivariate K-distribution,

fDð


rÞ is given by Equation 13.176 with the variable



R replacing the variable



W;

where p ¼


rTM21



r: Since Equation 13.179 is a ratio test and all constants can be

placed in the threshold determined by specifying a false alarm probability, all

multiplicative constants are ignored for convenience. Hence, we will be

concerned only with the terms containing the vector


R: Excluding the constant

term the numerator in the ratio test is given by

›f
D
ðr 2 usÞ
›u

�����
u¼0

¼ ›

›u
p
b2N
2 KN2b½ð2bpÞ

1
2 	

� �����
u¼0

ð13:180Þ

Applying the chain rule, the derivative with respect to u can be expressed as

the derivative with respect to p times the derivative of p with respect to u. From
Equation 13.163, the derivative of p with respect to u at u ¼ 0 is given by

22sTM21r: Therefore, the numerator in the ratio test, excluding the constant, is

given by

›fDðr2 usÞ
›u

�����
u¼0

¼
{
b2N

2
p
b2N
2

21KN2b½ð2bpÞ
1
2 	

þ p
b2N
2 K 0

N2b½ð2bpÞ
1
2 	 b

1
2

2p

!
ð22sTM21rÞ ð13:181Þ
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where K 0
N2b½x	 denotes the derivative of KN2b½x	 with respect to x: From

the above equation, the sufficient statistic for the LOD for the multivariate

K-distribution can be written as

TLODðrÞ ¼2sTM21r
b2 N

p
þ 2b

p

� �1=2 K 0
N2b½ð2bpÞ 1

2 	
KN2b½ð2bpÞ 1

2 	

" #
ð13:182Þ

Equation 13.182 can be simplified further using the property of Bessel

functions. From p. 79 of Watson’s book on Bessel functions51 we have the two

results:

1: K 0
nðzÞ ¼ n

z
KnðzÞ2 Knþ1ðzÞ ð13:183Þ

2: K2nðzÞ ¼ KnðzÞ ð13:184Þ
Use of Equation 13.183 and Equation 13.184 in Equation 13.182 and

combining the constant term with the threshold results in

TLODðrÞ ¼2sTM21r
KN2bþ1½ð2bpÞ 1

2 	
p

1
2KN2b½ð2bpÞ 1

2 	

{ !
ð13:185Þ

The numerator in Equation 13.185 once again has as a factor a term which is

the Gaussian linear detector or the matched filter that maximizes the signal-to-

disturbance ratio whether or not the disturbance is Gaussian. The factor

multiplying the linear detector is the optimum nonlinearity for weak signal

detection when the disturbance is K-distributed. The nonlinearity is plotted as a

function of p in Figure 13.23. The behavior of the nonlinearity is similar in form

to the one obtained for the Student-T distributed disturbance. It scales down large
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FIGURE 13.23 Nonlinearity of the LOD statistic for the K-distribution.
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values of p and enhances small values of p. Since it is known that we are dealing

with the weak signal problem, large returns cannot be due to the signal.

Consequently, the output of the matched filter is weighted by a small number. On

the other hand, when the return is small, there is a greater chance of the signal

being detected, if present. Hence, the nonlinearity weights it by a large number.

The role of the matched filter is also similar to the situation when the disturbance

was modeled as having a Student-T distributed disturbance.

13.4.2.2. Computer Simulation of Performance

Because analytical closed form expressions for the detection and false alarm

probabilities of the LOD in a multivariate K-distributed clutter are difficult to

obtain, performance is evaluated through computer simulations for weak signal

applications. For simulation purposes a multivariate K-distributed disturbance

vector


D and a transmitted signal vector



S have to be generated. The covariance

matrix of the clutter process is assumed known with unit elements along the

diagonal. To get M; the covariance matrix of the disturbance, we add a small

number, determined by the clutter to noise ratio, to the diagonal elements of the

clutter covariance matrix. This serves to limit the performance of the receiver

even where the clutter power is negligible. In this simulation, the clutter to noise

ratio is taken to be 80 dB. The simulation procedure for the disturbance vector is

outlined as follows:

1. Generate a 2N-dimensional white Gaussian random vector X0: This
was done by using the DRRNOA subroutine from the IMSL package.

2. Do a Cholesky decomposition on the matrixM to getM ¼ KKT where

K is a lower triangular matrix.

3. The vector X ¼ KX0 is the multivariate correlated Gaussian vector.

4. Generate a standard Gamma variate Y. This was done by using the

subroutine DGAMDF from the IMSL package.

5. Obtain n ¼ ðY=bÞ1=2: The random variable n has the generalized chi

PDF.

6. Obtain the multivariate K-distributed disturbance vector


D with the

desired correlation properties from


D ¼ n



X:

The block diagram of the simulation procedure is shown in Figure 13.24. The

autocorrelation of the clutter process is taken to be a Gaussian function in

this problem. Assuming radar returns from clutter cells to be highly correlated, as

is the case with ground clutter, the sample to sample time correlation is taken as

0.999 in this problem. Specifically, the sample autocorrelation function is

chosen as

RCCðnÞ ¼ expð20:000801n2Þ n ¼ 0; 1;…;N 2 1 ð13:186Þ
where RCCðnÞ is the discrete time autocorrelation function of the clutter process.

The autocorrelation and the power spectral density of the clutter process are
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shown in Figure 13.25 and Figure 13.26, respectively. Once again, we see that the

spectral spread of the clutter is very small. Using the above function the elements

of the covariance matrix of the disturbance can be filled appropriately. The

elements of the signal vector are chosen such that the nth element Sn ¼
e j2pfDðn21ÞT ; n ¼ 1; 2;…;N: fD represents the Doppler frequency shift of the

received signal, and T represents the time separation between sampling instants,

as shown in Figure 13.27.

The detector in Equation 13.165 is now simulated. As b!1; the

K-distribution tends to the Gaussian distribution. As b! 0:5; the K-distribution
deviates from that of the Gaussian in the sense of having very large tails. Four

different values of b ¼ 0.5, 1.0, 1.5, and 2.0 were used for performance

evaluation.

The threshold corresponding to false alarm probabilities 102k; k ¼ 1; 2; 3; 4
are obtained through the method of extreme value theory explained in

Generate white
Gaussian vector X ′

Generate standard
Gamma variate

Y with parameter b

M = KKT

Y

K

X′
X = KX′

n = ( Y )
b

1/2

X

n

D = nX D

Correlated
K-distributed T

vector

FIGURE 13.24 Generation scheme for the correlated multivariate K-distributed vector.
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Section 13.3. Once the threshold is set the detection probabilities are obtained by

simulating the LOD for received vectors consisting of the sum of the signal and

disturbance vectors for various signal to disturbance ratios. The value of fD is

chosen to be zero in this simulation, a worst case situation. The number of trials in

the Monte Carlo simulation for obtaining detection probabilities is equal to

10,000. The performance of the LOD is compared to that of the Gaussian detector

for the multivariate K-distributed clutter. The test statistic for the Gaussian

detector is given by


sTM21



r: Simulations could not be carried out for sample

sizes larger than 128 because of the behavior of the modified Bessel functions.

The modified Bessel functions are highly nonlinear and numerical difficulties
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arise in the evaluation of the Bessel functions for either small arguments and

large orders or large arguments and small orders. For the modified Bessel

function of the second kind KnðxÞ; n must not be so large compared to x such that

KnðxÞ < GðnÞ
2ðx=2Þn ð13:187Þ

overflows. With reference to Equation 13.185 it is noticed that for n ¼ b2 N .
128; the value x ¼ 2ð2bpÞ 1

2 frequently is small enough to result in overflow.

However, we notice that in Equation 13.185, the test statistic has a ratio of

modified Bessel functions with the order differing by one. By using the small

argument approximation given in Equation 13.187, the overflow problem for

small arguments and large orders can be overcome. On the other hand, when the

argument is large and the order is small underflow problems result. IMSL uses an

iterative scheme to generate the modified Bessel functions of the second kind,

starting from lower orders and building upto higher orders. The lower order

Bessel functions, needed to generate the higher order Bessel functions, overflow

for sufficiently large values of the argument. Because of this numerical difficulty

analysis of performance is restricted to sample sizes smaller than 128.

13.4.2.3. Conclusions

When the sample size was less than 128, the probability of detection for the LOD

was always less than 0.1 for false alarm probabilities less than or equal to 1022.

Consequently, in this section results are tabulated for N ¼ 128: As mentioned

previously, numerical difficulties made it impossible to determine performance

for sample sizes greater than 128. Results are presented in Table 13.5 for values of

the shape parameter equal to 0.5, 1.0, 1.5, and 2.0 when N ¼ 128 and PF ¼ 1022:
Recall that b ¼ 0:5 corresponds to a very large tail while b ¼ 2:0 results in a

distribution that begins to approximate the Gaussian tail. Note that PD for the

LOD is relatively constant when210 dB # SCR , 0 dB. The best performance

is achieved for b ¼ 0.5 where PD peaks at a value of 0.23 and the LOD performs

significantly better than the Gaussian receiver over a dynamic range of 20 dB

extending from SCR equal to 0 dB to 220 dB. For b ¼ 1.0 and 1.5, PD peaks

around 0.18 and 0.19 with a useful dynamic range of approximately 11 dB

extending over the range 217 dB # SCR # 2 7 dB. Finally, for b ¼ 2.0 the

peak value of the LOD is 0.16 and the LOD performs better than the Gaussian

receiver over a 7 dB dynamic range extending extending between 29 dB and

215 dB. The LOD for the K-distributed disturbance does not peak at values of PD

as large as those for the Student-T distribution. This result agrees with Spaulding18

who shows that we cannot arbitrarily say, by inspection, that a noise process

which is “tremendously” nonGaussian (i.e., the noise distribution has a very large

tail) can result in “tremendous” improvement over the corresponding Gaussian or

linear receiver situation. This behavior is explained by once again examining the

role of the nonlinearity and the matched filter in determining the test statistic. As

was the case with the Student-T distribution, the nonlinearity maps large values
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TABLE 13.5
Probability of Detection PD for K-Distributed Disturbance; N 5 128,

PF 5 1022

PD

SCR (dB) LOD GR

(a)b5 0:5

5 0.13 0.99

1 0.21 0.25

0 0.21 0.16

23 0.22 0.12

26 0.22 0.09

28 0.23 0.07

210 0.23 0.05

212 0.20 0.03

214 0.17 0.02

215 0.15 0.01

218 0.12 0.01

220 0.08 0.01

(b)b5 1:0

5 0.10 1.0

0 0.17 0.35

23 0.17 0.33

26 0.17 0.19

27 0.18 0.15

28 0.18 0.13

210 0.18 0.04

211 0.16 0.04

213 0.14 0.04

215 0.12 0.03

217 0.10 0.03

220 0.08 0.02

(c)b5 1:5

25 0.11 1.0

0 0.18 0.40

23 0.18 0.37

26 0.19 0.24

27 0.19 0.19

28 0.19 0.17

210 0.19 0.03

212 0.16 0.03

215 0.12 0.026

217 0.09 0.02

(d)b5 2:0

5 0.06 0.99

0 0.14 0.44

Continued
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into small values and vice versa. However, when b ¼ 0.5, the tail of the K-

distribution is much heavier than any of those encountered with the Student-T

distribution. In addition to more large values of the received signal due to the

clutter, there are also more small values. This prevents the threshold for the K-

distribution from being lowered as much as it was for the Student-T distribution.

As a result, if a detection is to occur, a larger boost must be generated by the

matched filter when a signal is present. Unfortunately, with reference to Equation

13.185, the increase due to the matched filter under hypothesis H1 does not

dominate the decrease due to the nonlinearity. Consequently, not as many

detections result as occurred with the Student-T distribution. Finally, it is pointed

out that the detection probability was much less than 0.1 for all values of the shape

parameter with N ¼ 128 and PF ¼ 1023:
It should be noted that dramatically improved performance might occur when

the sample size is greater than 128. Because the LOD is nonlinear, a threshold

effect exists. It is not clear that N ¼ 128 is a sufficiently large sample size to get

over the threshold. On the other hand, larger sample sizes cause both numerical

difficulties and may not be achievable in an actual application.

In the next chapter we come up with an alternative scheme and derive a

detector with enhanced performance under weak signal conditions. This detector

is termed the amplitude dependent locally optimum detector. This detector is not

UMP. Thus, the thresholds for obtaining the desired false alarm probabilities and

the detection probabilities are functions of the SCR and u: It is shown that this

detector offers a significant improvement in performance for smaller sample sizes

compared to the LOD obtained on the basis of the UMP test.

13.4.3. DETERMINING LOD THRESHOLD WITH REAL DATA

Since the LODs corresponding to SIRP multivariate density functions are

nonlinear, it is not possible to evaluate the thresholds corresponding to different

TABLE 13.5 Continued

PD

SCR (dB) LOD GR

23 0.14 0.41

26 0.15 0.25

28 0.15 0.18

29 0.16 0.14

210 0.16 0.08

212 0.14 0.05

214 0.11 0.03

215 0.09 0.02

SCR ¼ Signal to Clutter Ratio, LOD ¼ Locally Optimum Detector, GR ¼ Gaussian Receiver.
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false alarm probabilities in closed form. However, it is shown in Section 13.3 that

by using extreme value theory we can model the tail behavior of the test statistic

using empirically available outputs of the LOD. It is also shown that this

technique yields fairly accurate thresholds for sample sizes with orders of

magnitude smaller than those required for Monte Carlo simulation. In practice,

the cell false alarm probability is determined by specifying the number of false

alarms allowed per scan of the surveillance volume. For example, if one false

alarm per scan is specified and the surveillance volume consists of one million

resolution cells, then the false alarm probability for each cell is set at 1026. The

weak signal detector should be applied only to those cells for which a weak signal

problem exists, as discussed in Section 13.1.3.

The number of such cells in typically a small fraction of the total number of

cells in the surveillance volume. In addition, because of the difficulty in

detecting weak signals, one should allow for a few more false alarms than is the

case for strong signal detection. For example, assume a surveillance volume is

comprised of one million resolution cells and that 1% of these cells can be

classified as “weak signal”. Allowing for one false alarm per scan due to the

“weak signal” cells, the false alarm probability for each of these cells would be

1024. If reports from the tracker are used to sort out false alarms, even larger

false alarm probabilities, such as 1023 might be acceptable. The false alarm

probabilities can be made even larger as the number of “weak signal” cells

become smaller.

In practice, reference cells centered around the test cell are used to determine

the threshold for the test cell. The problem is complicated by the fact that

reference cells too far removed from the test cell may not be representative due to

nonhomogeneities in the clutter. As a result, the number of representative

reference cells is limited. In fact, there may not be available the number of

representative reference cells required by the extreme value theory. This poses a

practical problem in terms of implementation of the LOD.

Fortunately, the behavior of the LOD is such that this problem can be

overcome. As seen from Figure 13.18 and Figure 13.23, the nonlinearity is such

that, it transforms large values of the received observations (corresponding to

large values of the quadratic form p) to small values and small values of the

received observation (corresponding to small values of the quadratic for p) to

large values. This implies that the tail behavior of the LOD test statistic is

governed by the body of the multivariate SIRP disturbance PDF. This is due to

the fact the tail region of the test statistic corresponds to large values of the test

statistic. Due to the nonlinearity, these in turn, arise from small values of the

quadratic form p, which correspond to the body of the disturbance PDF.

The LOD based on the K-distributed disturbance was simulated to see if,

indeed, the tail of the test statistic corresponded to disturbance values that arise

from the body of the K-distributed disturbance. Since the disturbance

observation space in an N-dimensional space, corresponding to N points in

the observation vector, the body and tail of the disturbance is defined through

the corresponding quadratic form p: If the observations are uncorrelated, then p
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corresponds to a hypersphere in N-dimensional space. The body of the

disturbance density function, then can be defined as those points that lie within

the sphere and the tail as those points outside the sphere. For a SIRP disturbance

the univariate density function of p can be evaluated in closed form. This

enables us to evaluate the point p ¼ p0 such that
Ðp0
0 fPðpÞdp ¼ d; where fPðpÞ is

the PDF of the quadratic form p and d is a number between 0 and 1. By

choosing d say equal to 0.98, we define the point p0: Then we classify the

simulated disturbance vectors as follows: If p . p0; the vector arises from the

tail of the disturbance PDF. On the other hand, if p , p0; the vector arises from
the body of the disturbance PDF. If the vector is correlated the treatment is

similar. In this case, p corresponds to


rTM21



r where M is the covariance matrix

of the disturbance. A constant value of p then corresponds to an ellipse in a

N-dimensional space. A value for p0; can be defined in the same way as was

done for the uncorrelated vector situation. When the vector is uncorrelated note

that M is the identity matrix.

To verify this idea, simulations were carried out using the same covariance

matrix as in Section 13.4.2.2. The value of d ¼ 0:98 was chosen. From the

analytical expression for the PDF of p corresponding to the K-distributed SIRP,

the value of p0 was found to be equal to 2.15. Hence, observation vectors that

resulted in values of p . 2:15 were assigned to the tail of the disturbance PDF

and those for which p , 2:15 were assigned to the body of the disturbance

PDF. We now turn our attention to the test statistic. With respect to the PDF of

the test statistic, the tail region is defined as the region corresponding to an area

of 0.02 in the tail. From the simulations it was seen that the small values of p

mapped on to either the left tail (i.e., negative) or the right tail (i.e., positive) of

the test statistic PDF. Note that the output of the nonlinearity is nonnegative

while the output of the matched filter can be either positive or negative.

Consequently, the sign of the matched filter output determines whether small

values of p map into the left or right tail. The PDF of the test statistic under the

null hypothesis is symmetric with respect to the origin. Therefore, the right and

the left tail were each assigned an equal area of 0.01. The threshold estimated

using 10,000 computer simulations for a false alarm probability of 0.01 was

131.22. Thus, the right tail of the test statistic is defined to be those values

exceeding 131.22. Ten thousand random vectors of dimension N ¼ 16 were

then simulated from the K-distributed disturbance. The value of the quadratic

form and the test statistic were evaluated corresponding to simulated

disturbance vectors. The test statistic was then sorted in ascending order.

The test statistic values exceeding 131.22 and the corresponding quadratic form

values were noted. It was found that the values of p corresponding to the test

statistic values greater than 131.22 were all less than 1.72. From the data it is

also seen that the smaller the value of the quadratic form, the higher is the

value of the test statistic. This confirms that the tail values of the test statistic

arise from the body of the disturbance PDF.

To utilize the Ozturk algorithm discussed in Section 13.3.1.1, it is required

that approximately 100 of the neighboring cells be representative of the test cell.
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Ozturk’s algorithm can then be used to accurately approximate the body of the

multivariate PDF. Once the body of the disturbance PDF is approximated

accurately, it can be employed to generate the much larger sample size required

to estimate the thresholds of the test statistic through extreme value theory. Good

results are expected for the threshold estimation when the body of the disturbance

PDF has been accurately approximated by the Ozturk algorithm because the tail

of the test statistic is caused by the body of the disturbance PDF. Thus, we see that

the number of reference cells required for threshold estimation is approximately

100, although we still have to generate from the approximated disturbance PDF

much larger sample sizes off-line in order to make use of the extreme value

theory.

When the disturbance random variables arise from the Student-T distributed

disturbance, a similar nonlinear mapping is seen whereby the tail of the test

statistic is caused by the body of the disturbance PDF and vice versa. A

procedure similar to the one followed for the K-distributed disturbance case can

also be used to reduce the number of reference cells. Such a reduction in the

number of required reference cells makes the implementation of these LODs

practical.

13.5. PERFORMANCE OF THE AMPLITUDE DEPENDENT LOD

In Section 13.4 we analyzed the performance of the LOD when the underlying

disturbance was modeled by the Student-T and K-distributions, respectively. It

was seen that the performance of the LOD was not as good as desired for the case

where the disturbance is approximated as K-distributed. In this chapter we come

up with an alternate form of the LOD, which takes into account the amplitude of

the weak signal. Such a detector is no longer UMP in the sense that the thresholds

for different false alarm probabilities and detection probabilities is a function of

the SCR. We will then compare the performance of the ALOD with that of the

LOD for the K-distributed and Student-T disturbance models.

The UMP test for a deterministic signal utilizes the ratio of the derivative

with respect to the signal strength of the Nth order joint PDF under H1 to the Nth

order joint PDF under H0: The limit of this ratio as the signal strength tends to

zero is evaluated to obtain the test statistic for the decision rule. The ALOD also

utilizes the ratio of the derivative with respect to the signal strength of the Nth

order joint PDF under H1 to the Nth order joint PDF under H0. However, for the

ALOD we do not evaluate this ratio as the signal strength tends to zero but leave

it as a function of u, the square root of the SCR. Note that u also corresponds to

the signal strength since, as explained in Section 13.2, the variance of the clutter

is taken to be unity. Because u is unknown a priori, a bank of receivers tuned

to different values of u must be implemented. Such an approach is analogous to

that of a Doppler filter bank used in range–Doppler processing of radar signals.

Instead of having a bank of Doppler filters, the ALOD employs a bank of
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amplitude filters. The output of each filter will be maximized when the signal

amplitude is matched to the amplitude for which the filter is designed.

13.5.1. THE AMPLITUDE DEPENDENT LOD FOR THE MULTIVARIATE

K-DISTRIBUTED DISTURBANCE

The ALOD for a given value of the SCR, u, is defined to be

›fD


ðr 2 usÞ
›u
fDðrÞ _

H1

H0

h ð13:188Þ

Assuming the disturbance can be modeled by a multivariate K-distribution,

fDð


rÞ under H0 is given by Equation 13.176 where p ¼



rTM21



r: On the other

hand, under H1 the quadratic form in fDð


r2 u



sÞ is pu ¼ ð



r2 u



sÞTM21ð



r2 u



sÞ

where the subscript u is used to emphasize that we are not taking the limit as u
approaches zero. Since Equation 13.188 is a ratio test, all constants can be placed

in the threshold that is determined by specifying a false alarm probability.

Therefore, the multiplicative constants are ignored for convenience. Hence, we

will be concerned only with the terms containing the vector


R: Excluding

constants the numerator in the ratio test is given by

›fD


ðr 2 usÞ
›u

¼ ›

›u
ðpuÞ

b2N
2 KN2b½ð2bpuÞ

1
2 	:

� �
ð13:189Þ

Applying the chain rule, the derivative with respect to u can be expressed

as the derivative with respect to pu times the derivative of pu with respect to u:
The derivative of pu with respect to u can be derived as

›pu
›u

¼ ›

›u
ðr 2 usÞTM21ðr 2 usÞ

� �
¼ 22sTM21ðr 2 usÞ ð13:190Þ

Therefore, differentiating the right hand side of Equation 13.189 with respect

to u and excluding the constant, we get

›fD


ðr2 usÞ
›u

¼2lu
b2N

2
ðpuÞ

b2N
2

21KN2b ð2bpuÞ
1
2

h i
þ ð puÞ

b2N
2 K 0

N2b ð2bpuÞ
1
2

h i b

2pu

� � 1
2

{ !
ð13:191Þ
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where lu ¼ 2


sTM21ð



r2 u



sÞ; the subscript u on l is again used to emphasize that

we are not taking the limit as u approaches zero and the prime denotes the

differentiation operation with respect to the argument of the function.

Equation 13.191 can be simplified further by using Equation 13.183 and

Equation 13.184. The amplitude dependent locally optimum test can then be

written as

TALODðrÞ ¼ lu

ðpuÞ 1
2

pu
p

� � b2N
2 KN2bþ1½ð2bpuÞ 1

2 	
KN2b½ð2bpÞ 1

2 	

{ !
ð13:192Þ

Notice that the Bessel function in the numerator is one order higher than the

Bessel function in the denominator. This is significant. In the LRT, the orders of

the Bessel functions in the numerator and denominator are identical. This order

difference between the Bessel function in the numerator and denominator of the

ALOD makes the ALOD more sensitive to small perturbations than the classical

form of the Neyman–Pearson test.

The computer simulation of performance was carried out in the same manner

as described in Section 13.4.2.2. The values of the shape parameter b chosen in

this simulation are 0.5, 1.0, 1.5, and 3.0. With reference to Equation 13.192, it is

noticed for n ¼ N 2 b . 16 that the value x ¼ ð2bpÞ1=2 frequently assumes

small enough values to result in overflow. Also, we notice in Equation 13.192

that the test statistic has a ratio of modified Bessel functions with the order

differing by one. Since the Bessel functions in the numerator and the deno-

minator of the test statistic differ in both the argument and the order, the

small argument approximation given in Equation 13.187 cannot be used. Because

of this numerical difficulty analysis of performance is restricted to sample size

equal to 16.

13.5.1.1. Results of Computer Simulation

The results of the computer simulation are shown in Table 13.6 for 16 complex

samples and b ¼ 0:5; 1.0, 1.5, and 3.0, respectively. Performance is evaluated

only for values of SCR less than or equal to 0 dB because we are interested in the

problem of weak signal detection. From the tables we observe that the best

performance of the ALOD is obtained for b ¼ 0:5: For this value of b the

K-distribution has a maximum deviation from the Gaussian in the sense of having

a large tail. When b ¼ 3:0; the tail of the K-distribution closely approximates

that of the Gaussian.

It is seen from the tables that the ALOD for the K-distribution significantly

outperforms both the Gaussian receiver as well as the LOD. The performance of

the LOD for K-distributed disturbance is tabulated in Section 13.4, for N ¼ 128:
Some of those results are shown again in Table 13.6. Table 13.6(a) shows the

detection probabilities obtained for different false alarm probabilities and SCRs
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TABLE 13.6
Probability of Detection PD for K-distributed Disturbance, N 5 16

PD

SCR (dB) PF ALOD GR LOD (N 5 128)

(a) b5 0:5

0 1022 0.50 0.06 0.21

25 1022 0.46 0.04

210 1022 0.40 0.02 0.23

215 1022 0.32 0.01 0.15

220 1022 0.22 0.01 0.08

225 1022 0.17 0.01

230 1022 0.11 0.01

0 1023 0.41 0.003

25 1023 0.39 0.001

210 1023 0.35 0.001

215 1023 0.27 0.001

220 1023 0.17 0.001

225 1023 0.13 0.001

230 1023 0.08 0.001

0 1024 0.35 0.0003

25 1024 0.32 0.0001

210 1024 0.28 0.0001

215 1024 0.23 0.0001

220 1024 0.16 0.0001

225 1024 0.09 0.0001

0 1025 0.30 1025

25 1025 0.28 1025

210 1025 0.25 1025

215 1025 0.18 1025

220 1025 0.10 1025

(b) b5 1:0

0 1022 0.44 0.10 0.17

25 1022 0.40 0.06

210 1022 0.33 0.03 0.18

215 1022 0.25 0.02 0.12

220 1022 0.17 0.01 0.08

225 1022 0.12 0.01

230 1022 0.08 0.01

0 1023 0.35 0.004

25 1023 0.30 0.001

210 1023 0.24 0.001

215 1023 0.18 0.001

220 1023 0.10 0.001

0 1024 0.30 0.0005

Continued
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when b ¼ 0:5: For PF ¼ 1022 the ALOD significantly outperforms the

Gaussian receiver over a 30 dB dynamic range extending form 0 dB to

230 dB. The peak value of PD equals 0.5. A similar result to that obtained for

the performance of the LOD with a Student-T distributed disturbance is

TABLE 13.6 Continued

PD

SCR (dB) PF ALOD GR LOD (N 5 128)

25 1024 0.27 0.0001

210 1024 0.22 0.0001

215 1024 0.11 0.0001

0 1025 0.19 1025

25 1025 0.16 1025

210 1025 0.11 1025

(c) b5 1:5

0 1022 0.41 0.10 0.18

25 1022 0.36 0.06

210 1022 0.27 0.02 0.19

215 1022 0.21 0.01 0.12

220 1022 0.12 0.01

0 1023 0.29 0.009

25 1023 0.24 0.002

210 1023 0.19 0.001

215 1023 0.11 0.001

0 1024 0.20 0.0005

25 1024 0.18 0.0004

210 1024 0.16 0.0003

215 1024 0.09 0.0002

0 1025 0.13 1025

25 1025 0.10 1025

210 1025 0.07 1025

(d) b5 3:0

0 1022 0.36 0.18 0.14

25 1022 0.26 0.10

210 1022 0.17 0.03 0.16

215 1022 0.11 0.01 0.09

0 1023 0.18 0.06

25 1023 0.13 0.009

210 1023 0.06 0.004

SCR ¼ Signal to Clutter Ratio, ALOD ¼ Amplitude Dependent Locally Optimum Detector.

GR ¼ Gaussian Receiver, LOD ¼ Locally Optimum Detector.
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observed here. The ALOD outperforms the Gaussian receiver by one order of

magnitude for PF ¼ 1022; two orders of magnitude for PF ¼ 1023; three orders
of magnitude for PF ¼ 1024 and four orders of magnitude for PF ¼ 1025: The
useful dynamic range of the ALOD is smaller for decreasing values of PF: The
useful dynamic range is about 30 dB for false alarm probabilities equal to 1022

and 1023, 25 dB for false alarm probability equal to 1024, and 20 dB for a false

alarm probability equal to 1025. Recall that the detection probabilities resulting

form the LOD for the K-distributed disturbance were negligibly small when PF

was lower than 1022. The ALOD, on the other hand, yields significant values of

PD for PF as low as 1025.

As the value of b is increased it is noticed from the tables that the peak value

of PD as well as the dynamic range of the receiver decreases. This arises because

the tail of the K-distribution becomes closer to that of the Gaussian. In fact, when

b ¼ 3:0; the detection probabilities obtained with the ALOD for PF ¼ 1024 and

1025 are negligible. Also, the useful dynamic range of the ALOD is about 15 dB

for PF ¼ 1022 and less than 10 dB for PF ¼ 1023. It is interesting to note that the

Gaussian receiver shows an improvement in performance for increasing values of

b: The improvement, however, is only marginal.

The behavior of the ALOD can be understood as follows. With reference to

Equation 13.192, the ALOD can be factored into three terms. The first is lu:
The second is

1

ðpuÞ 1
2

pu
p

� � b2N
2

and the third term is

KN2bþ1½ð2bpuÞ 1
2 	

KN2b½ð2bpÞ 1
2 	

The term lu behaves identically to that of the Gaussian receiver. It yields a higher

value when the signal is present than when it is absent case. The random variable

pu; in general, tends to assume a lower value whether or not the signal is present,

compared to the term p: Since b2 N=2 is negative with magnitude greater than

one, the second term in the ALOD assumes a value greater than one whether or

not the signal is present. However, from the simulations, it is seen in most cases

that the second factor in the ALOD assumes a larger value when the desired

signal is present than the value when it is not present. The modified Bessel

function of the second kind, being a monotonically decreasing function assumes

large values when the argument is small and small values when the argument is

large. Since pu , p in general, the third term in the ALOD also has a value

greater than one whether or not the signal is present. Once again, from the

computer simulations, it is observed that the third term has a higher value in most

cases when the desired signal is present. Thus, the ALOD for the K-distributed

disturbance has three factors where each of the three factors, in general, assumes
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larger values under hypothesis H1 than under hypothesis H0: This contributes to
the increased sensitivity of the ALOD to weak signals for the K-distributed

disturbance resulting in dramatically improved performance over that of the LOD

with a much larger sample size. Recall that the LOD has two factors, one of

which increases when the desired signal is present and the other decreases. The

increase in the value of the test statistic of the ALOD when the signal is present is

not restricted to weak signal situations. It will also hold true for strong signal

situations. However, when there is a strong signal situation, the LRT is the

optimal test and the ALOD should not be used.

13.5.2. THE AMPLITUDE DEPENDENT LOD FOR THE STUDENT-T

DISTRIBUTED DISTURBANCE

Assuming the disturbance can be modeled by a multivariate Student-T

distribution, fDð


rÞ under H0 is given by Equation 12.234 where p ¼



rTM21



r:

On the other hand, as before, under H1 the quadratic form in fDð


r2 u



sÞ is pu ¼

ðr 2 usÞTM21ðr 2 usÞ where the subscript u is used to emphasize that we are not

taking the limit as u approaches zero. Since Equation 13.188 is a ratio test, all

constants can be placed in the threshold determined by specifying a false alarm

probability. Therefore, the multiplicative constants are ignored for convenience.

Hence, we will be concerned only with terms containing the vector


R: Excluding

constants the numerator in the ratio test is given by

›fDðr 2 usÞ
›u

¼ ›

›u

1

b2 1þ ðpu=2Þ

�Nþb

264
375 ð13:193Þ

Applying the chain rule, as was done with the K-distributed disturbance

differentiating with respect to u and excluding the constant, the numerator in the

ratio test is given by

›fD


ðr 2 usÞ
›u

¼ lu

b2 1þ ðpu=2Þ

�ðNþbþ1Þ ð13:194Þ

where lu ¼ 2


sTM21ð



r2 u



sÞ: From the above equation the sufficient statistic for

the ALOD for the multivariate Student-T distribution can be written as

TALODðrÞ ¼
lu



b2 1þ ð pu=2Þ

�Nþb



b2 1þ ðpu=2Þ

�Nþbþ1
ð13:195Þ

Notice that the exponent in the denominator of the test statistic is one more

than that in the numerator. In the LRT the exponents in the numerator and the

denominator of the test statistic are identical. But the factor lu appearing in

the ALOD will not be present. The computer simulation of the ALOD for the
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TABLE 13.7
Probability of Detection PD for Student-TDistributed Disturbance, b 5 1.5

PD

SCR (dB) PF ALOD GR LOD

(a) N 5 16

0 1022 0.48 0.11 0.38

23 1022 0.36 0.052 0.32

26 1022 0.30 0.039 0.27

29 1022 0.19 0.024 0.15

210 1022 0.12 0.019 0.10

0 1023 0.34 0.003 0.16

23 1023 0.23 0.002 0.13

26 1023 0.15 0.001 0.10

28 1023 0.10 0.001 0.08

(b) N5 32

0 1022 0.48 0.18 0.46

23 1022 0.39 0.08 0.38

26 1022 0.34 0.06 0.31

29 1022 0.24 0.033 0.20

210 1022 0.15 0.026 0.13

212 1022 0.11 0.013

0 1023 0.37 0.004 0.26

23 1022 0.25 0.003 0.19

26 1023 0.16 0.002 0.14

28 1023 0.11 0.002 0.11

(c) N5 64

0 1022 0.59 0.30 0.55

23 1022 0.52 0.17 0.48

26 1022 0.46 0.10 0.40

29 1022 0.40 0.03

210 1022 0.16 0.023 0.14

212 1022 0.12 0.012 0.09

0 1023 0.40 0.005 0.36

23 1022 0.30 0.002 0.28

26 1023 0.23 0.002 0.22

29 1023 0.11 0.001 0.10

0 1024 0.36 0.0007 0.25

23 1024 0.24 0.0002 0.19

26 1024 0.15 0.0001 0.13

28 1024 0.12 0.0001 0.11

SCR ¼ Signal to Clutter Ratio, ALOD ¼ Amplitude Dependent Locally Optimum Detector.

GR ¼ Gaussian Receiver, LOD ¼ Locally Optimum Detector.
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multivariate Student-T distributed disturbance was carried out as mentioned in

Section 13.4.1.2. The results of the computer simulation are shown in Table 13.7.

13.5.2.1. Conclusions

As was the case for the K-distributed disturbance, performance is evaluated

only for values of SCR less than or equal to 0 dB. Even though the ALOD

may outperform the Gaussian receiver for values above 0 dB of SCR up to a

certain level, the decision rule that should be used in such situations is the

optimum one based on the LRT. The value of b ¼ 1:5 is chosen because it

represents a heavy tail situation. Three different sample sizes of N ¼ 16; 32,
and 64 were chosen for simulation purposes.

It is seen from the tables that the ALOD significantly outperforms the

Gaussian receiver in the range of SCR values considered. The performance

improvement of ALOD over the Gaussian receiver is similar to that of the LOD

discussed in Section 13.4.1.3. Compared to the Gaussian receiver, the ALOD has

about an order of magnitude improvement in performance for PF ¼ 1022; two
orders of magnitude improvement in performance for PF ¼ 1023 and three orders

of magnitude improvement in performance for PF ¼ 1024: The performance

improvement of the ALOD for the Student-T distribution compared to that of

the LOD is not as dramatic as was noticed for the K-distributed case. For the

Student-T distribution the performance of the LOD and the ALOD are actually

quite close. The ALOD for the K-distribution significantly outperformed both the

LOD and the Gaussian receiver. The ALOD for the Student-T distribution, while

significantly outperforming the Gaussian receiver in the range of SCR values

considered, does not outperform the LOD significantly. In fact, comparing the

detection probabilities resulting from the ALOD with the detection probabilities

resulting form the LOD, it is noticed that the performance of the ALOD exceeds

that of the LOD by less than a tenth for SCR values less than 0 dB.

With reference to Equation 13.195, the ALOD can be factored into two

terms. The first term is lu: The behavior of lu was explained in Section 13.5.1.1.

The output of lu and the test statistic increase when the signal is present as

opposed to the signal absent case. The second term is a ratio of two

polynomials. In general, as discussed in Section 13.5.1.1, pu , p whether or not

the signal is present. Therefore, in general, the ratio of the two polynomials is a

number greater than unity. It is seen in the simulations that this ratio has a

higher value under the signal present hypothesis more often than it does under

the signal absent hypothesis. This contributes to an increased sensitivity to the

presence of weak signals. This explains why the ALOD outperforms the LOD.

The increase in the value of the test statistic of the ALOD when the signal is

present is not restricted to weak signal situations alone. The LOD also has two

factors in the test statistic. However, when the signal is present, one factor

increases and the other decreases. This is not a favorable situation for raising the

output of the test statistic over the threshold for small signals. The LOD’s

nonlinearity for the Student-T distribution, which is the second factor in the test
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statistic, is not as highly nonlinear as was observed for the K-distributed case.

Thus, the performance improvement of the ALOD with respect to the LOD is

not as significant.

13.6. CONCLUSIONS

13.6.1. SUMMARY

Conclusions and suggestions for future work are presented in this chapter. We

have addressed the problem of weak signal detection in correlated multivariate

nonGaussian noise. Weak signal detectors were derived, based on the locally

optimum decision rule, using the concept of SIRP for modeling the radar

disturbance. LODs are useful only in the neighborhood of the point for which

they are evaluated. For nonGaussian problems the test statistic derived for the

LOD are nonlinear. Due to the nonGaussian and nonlinear nature of the

problem, thresholds needed to set specified false alarm probabilities cannot be

obtained in closed form. The GPD in conjunction with the method of Extreme

Value Theory was used to obtain accurate approximations to thresholds for

specified false alarm probabilities. This was achieved with orders of magnitude

fewer samples compared to Monte Carlo simulation. Performance analyses of

the LODs for the multivariate K-distribution and the Student-T distribution

were carried out by means of computer simulations. Finally, the concept of the

ALOD was introduced. For the K-distribution the ALOD was shown to greatly

outperform the LOD.

The following significant contributions appear in this dissertation:

1. Under the assumption that the radar clutter can be modeled as a SIRP

the canonical model for the LOD was shown to be the product of the

Gaussian linear receiver and a zero memory nonlinearity.

2. The computational requirements needed to set thresholds for very small

false alarm probabilities were reduced by orders of magnitude using the

GPD in conjunction with themethod of ExtremeValue Theory. Accurate

thresholds were determined by introducing Ordered Samples Least

Squares technique to estimate the parameters of the GPD. For example,

only 20,000 samples were required for different distributions to establish

thresholds corresponding to a false alarm probability equal to 1026.

3. In contrast to the available literature, where LODs are evaluated based

on the assumption of an infinite sample size, performance of the LODs

were obtained for finite sample sizes.

4. The new concept of the ALOD was introduced.

5. Performance of the ALOD was evaluated for finite sample sizes. The

ALOD had a significant performance improvement over the LOD

when the disturbance was K-distributed.
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As a result of the above contributions, practical decisions can be made with

respect to use of LODs. These decisions will be based on the available sample

size, the desired detection and false alarm probabilities, and the SCR.

13.6.2. SUGGESTION FOR FUTURE RESEARCH

This research has led to many important results and has also raised a number of

interesting questions. In particular, some of the issues arising an extensions to this

work are to:

1. Compare performance of the LOD and the ALOD with that of the

classical LRT for a broad range of SCRs and sample sizes. This will

establish the conditions under which there is a need for weak signal

detectors.

2. Analyze performance of the LOD and the ALOD for other multivariate

PDFs in the SIRP class, such as, Weibull and Rician.

3. Establish confidence intervals for the thresholds estimated based on

Extreme Value Theory.

4. Extend all of the above work to space-time processing.

5. Study the role of signal design in enhancing performance of the LOD.
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14.1. INTRODUCTION

An active sonar system operates by transmitting an acoustic pulse into the water

and monitoring a target echo. Besides receiving an echo from a desired target,

the system may also receive an echo from the ocean floor or the surface as

shown in Figure 14.1. In sonar terminology, any nontarget echo arising

explicitly from bottom or surface, is referred to as boundary reverberation.

Typically, boundary reverberation power greatly exceeds that of a target. If it

arrives at the same time as the target echo, this reverberation interferes with

detection of the desired signal.

There currently exist several methods for finding a target hidden in loud

reverberation. For example, if the target moves fast enough, the resulting Doppler

shift lets a low-pass filter separate out the reverberation as shown in Figure 14.2.

In addition to such spectral processing, spatial processing techniques can also

help remove reverberation, as explained in Refs. 1–3. For example, Figure 14.3
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shows how an adaptive beamformer steers a beam pattern null in the direction of

the interference.

Consider the problem of finding a stationary target, lurking near the ocean

floor. Bottom reverberation often masks such a target. Since the target does not

move, its spectrum occupies the same band as the reverberation, meaning that

SURFACE ECHO
(SOUND DOES NOT
ALWAYS TRAVEL

IN A STRAIGHT PATH
UNDER WATER)

SHIP

TARGET ECHO

BOTTOM ECHO

FIGURE 14.1 Sources of reverberation.

Power
Spectral
Density Low Pass Filter

Reverberation
Spectrum

0 Fd

Target Doppler
Frequency

Target
Spectrum

Frequency

FIGURE 14.2 Spectral reverberation reduction.
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qt
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FIGURE 14.3 Spatial reverberation reduction.
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spectral processing, as shown in Figure 14.2, cannot separate the desired signal

from the bottom echo interference. Furthermore, spatial processing cannot

resolve the target since it lies at approximately the same azimuth as the

reverberation. In other words, these traditional reverberation reduction methods

cannot isolate this target.

The above example illustrates a shortcoming of existing reverberation

reduction algorithms, i.e., they all require some sort of physical separation

between the signal and the interference. This separation can be spectral or spatial,

but it must exist. When the target and reverberation are not separated as such,

these algorithms fail.

Given that the spectral and spatial reverberation reduction techniques fail,

traditional sonar systems rely on a matched filter to uncover signals buried in

interference. The matched filter is the optimum processor for finding a

deterministic signal in Gaussian interference. If the interference is nonGaussian,

the optimum processor utilizes a different nonlinear filter.

The first step in the design and evaluation of the optimum nonlinear filter

involves determining the underlying distribution of the interference. For this

dissertation, the interference is modeled as a generalized Spherically Invariant

Random Vector (SIRV). As explained in Ref. 4, an SIRV is obtained by

multiplying a Gaussian random vector by a nonnegative random scalar. In the

case of radar clutter, the components of an SIRV serve to model the pulse train

echoes from a single spatial range or bearing cell.5–7 In the case of sonar

reverberation, the components of an SIRV serve to model range cell returns from

a single active pulse, or ping. Any two SIRV realizations result in independent

vectors. Consequently, the radar returns, from different range cells or the sonar

returns from different pings, must be modeled as statistically independent.

Section 14.2 presents a generalized SIRV model which allows for

dependence between SIRV realizations. Following this analysis, Section 14.3

describes significant properties of the generalized SIRV. Although these

properties are readily derived, specific examples of the generalized SIRV joint

density functions are difficult to obtain because of the multi-dimensional integral

involved. Nevertheless, Section 14.4 derives four nontrivial examples.

Given explicit expressions of density functions, Section 14.5 demonstrates

how to generate generalized SIRV realizations. Section 14.6 then shows how to

approximate the density of real data with a generalized SIRV. This section

concludes by analyzing recorded sea data, and finding a close nonGaussian

generalized SIRV approximation for density of surface reverberation.

An application particularly sensitive to surface reverberation interference is

correlation sonar. As explained in Ref. 8–12, a correlation sonar measures own-

ship velocity by comparing the return from two active pulses which ensonify

the same target volume at different times. Section 14.7 describes how

interference arises when echoes from the first pulse intrude on data collected

during the reception of the second pulse. When these previous pulse echoes

ensonify an ocean boundary, the resulting interference power greatly exceeds that

of the desired second pulse signal, leading to significant degradation in
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performance. As shown in Section 14.6, these surface echoes may follow

nonGaussian densities. Consequently, the cancellation of previous pulse

boundary echoes, in correlation of sonar data, is a problem uniquely suited for

the results derived in this dissertation.

Section 14.7 presents the optimum correlation sonar receiver. Since this

optimum receiver is difficult to implement, a more practical sub-optimum

receiver is proposed. Section 14.8 concludes the analysis by simulating

correlation of sonar data and evaluating the performance of the sub-optimum

receiver in an environment corrupted by nonGaussian interference.

14.2. THE SIRV REPRESENTATION THEOREM

This chapter first presents, the traditional SIRV representation theorem and

describes how it applies to radar clutter or sonar reverberation. Following this

work, the theorem is generalized to account for spatial dependence in the radar

case, or temporal dependence in the sonar case.

14.2.1. THE TRADITIONAL SIRV MODEL

Consider a collection of clutter range/bearing cells. Assume that a radar

illuminates one of these cells with a pulse train of length N: Let the vector X, of
dimension ½N £ 1	; model these pulse train samples. If X is given by

X ¼ ZS ð14:1Þ

where Z is a zero mean Gaussian random vector and S is a random variable, then

X is defined as a SIRV. Although s may be positive or negative, it is assumed

nonnegative in this work without loss of generality, as explained in Ref. 13.

Equation 14.1 is referred to as the SIRV representation theorem. The vector Z

models the rapid noisy fluctuations of the clutter while the scalar S models

environmental effects associated with the illuminated spatial cell. The random

process which generates S, is assumed to be slowly fluctuating so that the same

value modulates the entire pulse train.

In case of active sonar, the transmitter emits a single ping, rather than a pulse

train. Since the time interval between successive pulses is relatively large, the

environment does not remain stable from ping to ping. As such, the sonar model

does not treat the elements of an SIRV as successive pulse returns from a single

reverberation cell, but rather as samples from different spatial cells ensonified by

the same ping. The modulating scalar S then models temporal oceanic effects

associated with the environment at the moment of ensonification, such as current

turbulence. These effects are assumed to be “slowly fluctuating” across the region

of space occupied by the SIRV. Therefore, the same random variable modulates

each spatial cell.
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The joint density function of the SIRV X is derived in Ref. 14. The following

paragraphs summarize this work.

Assume that the vector Z contains N jointly Gaussian random variables with

zero mean. Based on this assumption, the density function of Z is

fZðzÞ ¼ ð2pÞ2N=2lSzl
21=2

exp 2
1

2
zTS21

z z

� �
ð14:2Þ

where Sz is the ½N £ N	 covariance matrix of the random vector Z. Based on the

representation theorem, Equation 14.1, the conditional density of X given S is

fXlSðxlsÞ ¼ 1

sN
fZ

x

s

� �
ð14:3Þ

Since the joint density of X and s is given by

fX;Sðx; sÞ ¼ fXlSðxlsÞfSðsÞ ð14:4Þ

the marginal density of X is

fXðxÞ ¼
ð1

0
fX;Sðx; sÞds ¼

ð1

0
fXlSðxlsÞfSðsÞds ð14:5Þ

where the lower limit of integration is zero because S is nonnegative.

Substituting Equation 14.2 and Equation 14.3 into Equation 14.5 gives the

density of X as

fXðxÞ ¼ ð2pÞ2N=2lSzl
21=2

ð1

0

1

sN
exp 2

1

2

xTS21
z x

s2

( )
fSðsÞds ð14:6Þ

Define the scalar ax as

ax ¼ xTS21
z x ð14:7Þ

Substituting Equation 14.7 into Equation 14.6 yields

fXðxÞ ¼ ð2pÞ2N=2lSzl
21=2

ð1

0

1

sN
exp 2

1

2

ax
s2

� �
fSðsÞds ð14:8Þ

In Equation 14.8, note that the density of X depends solely on the scalar

quantity ax. The vector is referred to as spherically invariant because when Sz
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equals a constant K times the identity matrix, ax becomes

ax ¼ K S
N

i¼1
x2i ð14:9Þ

the equation of a sphere in N-dimensional space.

In order to highlight the importance of the scalar ax, Equation 14.8 is

rewritten as

fXðxÞ ¼ KhNðaxÞ ð14:10Þ
where K is a constant and hN (·) is a one-dimensional nonlinear function. From

Equation 14.8, the constant is

K ¼ ð2pÞ2N=2lSZl
21=2 ð14:11Þ

while the characteristic nonlinear function hN (·) is

hNðuÞ ¼
ð1

0

1

sN
exp 2

1

2

u

s2

� �
fsðsÞds ð14:12Þ

In Equation 14.12, u is just a dummy variable.

Equation 14.10 to Equation 14.12 provide the basis for the traditional SIRV

clutter model. Note that the density of X is completely specified by the

characteristic univariate density fS(s) and a covariance matrix, Sz. Furthermore,

as explained in Ref. 14, the components of the vector X are nonGaussian and

those are similarly distributed except for location and scale variations.

14.2.2. THE GENERALIZED SIRV MODEL

As explained above, the elements of a given SIRV correspond to the pulse train

samples from a given radar range or bearing cell. In the sonar case, these elements

correspond to digitized temporal range samples received from a given ping. Now

consider two vectors; i.e., the return from two radar cells or two sonar pings.

Assume that the two underlying Gaussian vectors which generate these SIRV’s

are independent. Also assume that, a different random scalar modulates each of

the Gaussian vector. Based on the representation theorem (see Equation 14.1),

these two vectors are given by

X1 ¼ Z1S1 ð14:13Þ
and

X2 ¼ Z2S2 ð14:14Þ
Expand this model to account for M radar range cells or M sonar pings with

each independent Gaussian vector modulated by a different random scalar.
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The corresponding M vectors are

X1 ¼ Z1S1

..

.

XM ¼ ZMSM:

ð14:15Þ

From the previous section, we know that any vector Xi is an SIRV, for all i

from one toM. From Equation 14.2 and Equation 14.3, the conditional density of

any vector Xi given Si is,

fXilSi ðxilsiÞ ¼
1

sN
ð2pÞ2N=2lSzil

21=2
exp 2

1

2

xTi S
21
zi xi
s2i

( )
ð14:16Þ

Define the scalar axi as

axi ¼ xiTS21
zi xi ð14:17Þ

Based on this, the conditional density shown in Equation 14.16 becomes

fXilSiðxilsiÞ ¼
1

sNi
ð2pÞ2N=2lSzil

21=2
exp 2

1

2

axi
s2i

( )
ð14:18Þ

Since the Gaussian vectors {Z1…Zm} are independent, the conditional

vectors {X1=S1…XM=SM} are also independent. This means that the joint

conditional density of the M vectors is given by the product of the individual

conditional densities, or,

fX1…XM lS1…SM
ðx1…xM lS1…SMÞ ¼

YM
i¼1

fXilSiðxilsiÞ ð14:19Þ

For the sake of notational simplicity, define the matrix 
X as


X ¼ {X1;X2…XM} ð14:20Þ
and the vector S as

S ¼ {S1; S2;…SM} ð14:21Þ
Based on this convention, Equation 14.19 becomes

f 
Xlsð
xlsÞ ¼
YM
i¼1

fXilSi ðxilsiÞ ð14:22Þ

Since the joint density of 
X and S is given by

f 
X;Sð
x; sÞ ¼ f 
XlSð
xlsÞfSðsÞ ð14:23Þ
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the density of 
X alone is

f 
Xð
xÞ ¼
ð1

0
· · ·

ð1

0
f 
XlSð
xlsÞfSðsÞds1…dsM ð14:24Þ

Substituting Equation 14.18 and Equation 14.19 into Equation 14.24 yields

f 
Xð
xÞ ¼ KhNMðax1;ax2;…;axMÞ ð14:25Þ
where

K ¼ ð2pÞ2NM=2
YM
i¼1

lSzil
21=2

{ !
ð14:26Þ

hNMðax1;ax2;…;axMÞ ¼
ð
s

YM
i¼1

1

sNi

{ !
exp 2

1

2
S
M

i¼1

axi
s2i

( )
fSðsÞds ð14:27Þ

ð
s
¼

ð1

0
…

ð1

0
ðM-fold integrationÞ ð14:28Þ

and

ds ¼ ds1ds2…dsM ð14:29Þ
As seen from Equation 14.25, the joint density of the M vectors is a function

of theM scalar products {ax1…axM}: This joint density is completely specified by

the covariance matrices of the Gaussian random vectors {Z1…ZM} and the

multivariate characteristic density function fS(s).

14.2.3. A COMPARISON OF THE TRADITIONAL

AND GENERALIZEDMODELS

This section compares the models presented above with respect to the correlation

and independence among the elements of an SIRV realization. An examination of

the correlation and independence between two separate SIRV realizations then

follows.

The traditional and generalized SIRV’s presented in the two previous

sections, allow for correlation between the elements of a given vector. In fact, the

correlation among elements of SIRV X (or Xi in the generalized case) is

determined by the correlation matrix Sz (or Szi) of the generating Gaussian

vector. Since the density shown in Equation 14.9 cannot be decomposed into a

product of factors, the traditional SIRV radar clutter model cannot allow for

independence between any of the pulse train samples. Similarly, in the sonar

case, the model cannot allow for independence between any of the spatial cells.

However, the independence among the elements of a generalized SIRV can

be accounted for by multiplying each element by a different random scalar.
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In Equation 14.25 to Equation 14.29, this is accomplished by letting M equal

the desired length of the SIRV and N equal 1. The independence of the

generalized SIRV elements is now tied to the independence of the vector S. If

fS(s) is separable, so then is f 
Xð
xÞ:
Let us consider the case of correlation and independence between two radar

clutter cells or two sonar pulses. Independence arises through different

mechanisms for the two models. For the traditional SIRV, independence results

when independent realizations of the vector Z and scalar S are used. On the other

hand, the generalized SIRV models independent cells (pings), when the elements

of fS(s) are independent.

The traditional SIRV can account for dependence between two cells (pings)

only if the same realization of S modulates each, generating Gaussian vector;

X1 ¼ Z1S ð14:30Þ
and

X2 ¼ Z2S ð14:31Þ
In effect, this is the same as treating the two vectors X1 and X2 as one large

vector, or,

X1

X2

" #
¼

Z1

Z2

" #
S ð14:32Þ

All of the elements of this “double” vector are dependent, and their

correlation is determined by the correlation of the vector ½ZT
1 ;Z

T
2 	T:

Consider the correlation among the elements of two generalized SIRV’s. The

covariance of any given generalized SIRV is given by

KXiXi
¼ E{XiX

T
i }2 E{Xi}E{Xi}

T ð14:33Þ
where E{·} is the expected value operator. From the generalized SIRV

representation theorem, the vector Xi is

Xi ¼ ZiSi ð14:34Þ
Since Zi is zero mean and independent from Si, Equation 14.33 reduces to

KXiXi
¼ E{ZiZ

T
i }E{S

2
i } ð14:35Þ

If E{s2i } is arbitrarily set equal to unity, then the covariance among the

elements of a generalized SIRV becomes the covariance of the generating

Gaussian vector, or,

KXiXi
¼ Szi ð14:36Þ
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Let us consider the covariance between two different generalized SIRV’s,

KXiXj
¼ E{XiX

T
j }2 E{Xi}E{Xj}

T ð14:37Þ
Using the same logic as that applied above yields

KXiXj
¼ E{ZiZ

T
j }E{Si Sj} ð14:38Þ

However, recall that the generalized generating Gaussian vectors are

independent and have zero mean. This fact reduces Equation 14.38 to

KXiXj
¼ 0 ð14:39Þ

As seen, despite the fact that the modulating scalars Si and Sj may be

correlated, the final SIRV’s Xi and Xj are uncorrelated. Herein lies a potential

limitation of the generalized model; although it can model two dependent

SIRV’s, these vectors must be uncorrelated. If correlated SIRV’s are required,

note that the generalized model can “double-up” the vectors as well, just as

shown in Equation 2.32 for the traditional case. As such, either of the models can

account for correlation between radar spatial cells or sonar pings.

To illustrate potential limitations of the traditional model, consider the case

of sonar reverberation. Recall that the scalar S modulates a spatial patch of

reverberation cells. The traditional model either assumes this scalar to be rapidly

fluctuating between successive pings, giving rise to independent reverberations

with each pulse, or not fluctuating at all. However, the generalized model can

account for dependent fluctuations of this scalar through the joint density fS(s).

TABLE 14.1
A Comparison of the Traditional and Generalized Models

Model Sonar Radar

Traditional Cannot model independent spatial cells Cannot model independent pulse train

samples

Generalized Can model independent spatial cells Cannot model independent pulse train

samples

Traditional Can model dependent pings only

if the same random scalar

modulates each

Can model dependent cells only

if the same random scalar

modulates each

Generalized Can model dependent pings Can model dependent cells

Traditional Can model correlated pings only

if the same random scalar

modulates each

Can model correlated cells only

if the same random scalar

modulates each

Generalized Can model correlated pings only

if the same random scalar

modulates each

Can model correlated cells only

if the same random scalar

modulates each
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For convenience, Table 14.1 summarizes the two SIRV models. The next

section derives significant properties of the generalized SIRV model.

14.3. GENERALIZED SIRV PROPERTIES

This chapter derives a series of significant properties associated with the

generalized SIRV model.

14.3.1. LINEAR TRANSFORMATION

Generalized SIRV’s remains invariant under a linear transformation. In order to

prove this assertion, first pass the M SIRV’s through M different linear

transformations. The ith transformation is specified by a matrix Ai, and a vector

bi, such that

Y1 ¼ A1X1 þ b1 ¼ A1Z1S1 þ b1;

..

.

YM ¼ AMXM þ bM ¼ AMZMSM þ bM :

ð14:40Þ

In this case the conditional density of any Yi given Si is

fYilSiðyilsiÞ ¼
1

sNi
ð2pÞ2N=2lðAiSziAiÞl21=2

exp 2
1

2

ðAiyiþbiÞTS21
zi ðAiyiþbiÞ
s2i

( )
ð14:41Þ

Define the scalar ayi as

ayi¼ ðAiyiþbiÞTS21
zi ðAiyiþbiÞ ð14:42Þ

With this definition, the derivation of the density of the matrix


Y¼ {Y1;Y2;…YM} ð14:43Þ
follows the derivation of f 
Xð
xÞ given in Section 14.2.2. Based on this work, the

density of 
Y is given by

f 
Yð
yÞ ¼KhNMðaY1
;aY2

;…aYM
Þ ð14:44Þ

where the constant K is

K¼ ð2pÞ2NM=2
YM
i¼1

lðAiSziAiÞl21=2

{ !
ð14:45Þ

and hNM(·) is the exact same function as that shown in Equation 14.27. As seen,

passing generalized SIRV’s through a set of linear transformations, yields

another set of generalized SIRV’s with the same characteristic nonlinear function

hNMðu1;…;uMÞ: Since linear transformations can be used to transform each of the
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covariance matrices Szi into identity matrices, there is no loss in generality when

assuming each of the quadratic forms axi to be spherically invariant, (i.e.,

axi¼ xTi xi).

14.3.2. THE GENERALIZED SIRV “BOOTSTRAP” THEOREM

Higher order generalized SIRV’s can be generated from lower order SIRV’s. To

help illustrate this point, define the vector ax as

ax ¼ {ax1 ;ax2 ;…;axM} ð14:46Þ
where axi is defined in Equation 14.17. Based on this definition, the characteristic
nonlinear function given in Equation 14.27 can be written as

hNMðaxÞ ¼
ð
s

YM
i¼1

s2N
i exp

2axi
2s2i

{ !" #
fSðsÞds ð14:47Þ

Now take a partial derivative of this function with respect to ax1. The result is

›hNMðaxÞ
›axi

¼
ð
s

21

2s2i

{ !YM
i¼1

s2N
i exp

2axi
2s2i

{ !" #
fSðsÞds ð14:48Þ

Taking more partial derivatives with respect to the other elements of ax yields

›MhNMðaxÞ
›axi…›axM

¼
ð
s

YM
i¼1

21

2s2i

{ !
s2N
i exp

2axi
2s2i

{ !" #
fSðsÞds ð14:49Þ

Simplifying Equation 14.49 gives

›MhNMðaxÞ
›axi…›axM

¼ 2
1

2

� �Mð
s

YM
i¼1

s2ðNþ2Þ
i exp

2axi
2s2i

{ !" #
fSðsÞds ð14:50Þ

Compare the right side of Equation 14.50 with that of Equation 14.47. As seen,

the M-fold integral in Equation 14.50 is of the same form as that in Equation

14.47 with N replaced by ðN þ 2Þ: It follows that

›MhNMðm1;…;mMÞ
›m1…›mM

¼ 2
1

2

� �M
hðNþ2ÞMðm1;…;mMÞ ð14:51Þ

Rearranging terms in Equation 14.51 yields

hðNþ2ÞMðm1;…;mMÞ ¼ ð22ÞM ›MhNMðm1;…;mMÞ
›m1…›mM

ð14:52Þ
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Equation 14.52 is the generalized SIRV “bootstrap” theorem. As seen, the

characteristic nonlinear function of a generalized SIRV of order (N þ 2)M can be

generated from one of order NM. Consequently, the characteristic nonlinear

function of all generalized SIRV’s with an even number of elements can be

generated from h2M(·), and all odd order functions can be generated from h1M(·).

Note that the bootstrap theorem is not valid if the density fS(s) depends on the

value of N. This can be readily seen by substituting fS(s, N) for fS(s) in the above

analysis. With this substitution, the right side of Equation 14.50 is not equal to a

constant times h(Nþ2)M(ax) because the density under the integral is still fS(s, N),

not fS(s, N þ 2).

14.3.3. THE MONOTONICITY OF hNM(ax1;…;axM)

For the purposes of this dissertation, a multivariate function f ðx1;…; xMÞ is

defined as monotonically nonincreasing if

f ðx1 þ d1;…xM þ dMÞ # f ðx1;…; xMÞ ð14:53Þ
for all values ðx1;…; xMÞ and for all nonnegative perturbations

ðd1;…; dMÞ $ 0 ð14:54Þ
From Equation 14.27, the characteristic nonlinear function of a generalized

SIRV is

hNMðax1;ax2;…;axMÞ ¼
ð
s

YM
i¼1

1

sNi

{ !
exp 2

1

2

XM
i¼1

axi
s2i

( )
fSðsÞ ds ð14:55Þ

Adding a nonnegative perturbation along each axis yields

hNMðax1 þ d1;…;axM þ dMÞ ¼
ð
s

YM
i¼1

1

sNi

{ !
exp 2

1

2

XM
i¼1

axi þ di
s2i

( )
fSðsÞ ds

ð14:56Þ
Since all values in the set {d1;…dM} are nonnegative, the exponential term in

Equation 14.56 is always less than or equal to that in Equation 14.55. Also, since

all elements of S are nonnegative, the integrand in Equation 14.56 is always less

than or equal to that in Equation 14.55. This means that

hNMðax1 þ d1;…;axM þ dMÞ # hNMðax1;…;axMÞ ð14:57Þ
and the characteristic nonlinear function of a generalized SIRV is monotonically

nonincreasing.

14.3.4. SPHERICAL COORDINATES

The conversion of the traditional SIRV from a representation in Cartesian

coordinates to one involving spherical coordinates is presented in Ref. 14. This
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section follows a similar analysis to convert the generalized SIRV into spherical

coordinates.

Consider a traditional SIRV X with a characteristic nonlinear function

hN(ax). As explained in Ref. 14, the relations between cartesian and spherical

coordinates are given by

kXl1 ¼ R·cosðf1Þ

kXlk ¼ R·cosðfkÞ
Yk21

j¼1

sinðfjÞ; for all k [ ½2;…;N 2 2	

kXlN21 ¼ R·cosðuÞ
YN22

j¼1

sinðfjÞ

and

kXlN ¼ R·sinðuÞ
YN21

j¼1

sinðfjÞ ð14:58Þ

where kXli is the ith element of X.

If a random vector Y is a function of another random vector X such that

Y ¼ gðXÞ ð14:59Þ
then the density of the vector Y is

fYðyÞ ¼ fXðg21ðYÞÞ=J ð14:60Þ
where J is the Jacobian of the transformation. The Jacobian is defined by

J ¼

›y1
›x1

· · ·
›y1
›xN

..

. ..
.

›yN
›x1

· · ·
›yN
›xN

266666664

377777775

�������������

�������������
ð14:61Þ

From Ref. 8, the Jacobian of the transformation shown in Equation 14.58 is

J ¼ RN21
YN22

k¼1

sinN212kðfkÞ
" #21

ð14:62Þ

Assume that the vector X has zero mean and an indentity covariance matrix.

From Equation 14.49 and Equation 14.50, the density of X is

fXðxÞ ¼ 1

ð2pÞN=2 hNðaxÞ ð14:63Þ
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where

ax ¼ x21 þ…þ xN2 ¼ r2 ð14:64Þ
Based on Equation 14.60 and Equation 14.62, the joint density of

{R; u;f1;…fN22} is

fðR;Q;F1;…;FN22Þðr; u;f1;…;fN22Þ ¼ rN21

ð2pÞN=2 hNðr
2Þ

YN22

k¼1

sinN212kðfkÞ ð14:65Þ

where it is recognized that

ax ¼ r2 ð14:66Þ
Equation 14.65 reveals that R; the envelope of the vector X, is independent of

the variables {u;f1;…;fN22} and has a density of

fRðrÞ ¼ rN21

2ðN22Þ=2GðN=2Þ hNðr
2ÞuðrÞ ð14:67Þ

where L(·) is the Gamma function and u(·) is the unit step function. The densities

of u and {f1;…fN22} are also derived from Equation 14.65. These densities are

fQðuÞ ¼ ð2pÞ21·½uðuÞ2 uðu2 2pÞ	 ð14:68Þ
and

fFk
ðfkÞ ¼

G
N 2 k þ 1

2

� �
ffiffi
p

p
G

N 2 k

2

� � sinN212kðfkÞ·½uðfkÞ2 uðfk 2 pÞ	 ð14:69Þ

As seen, all of the angles is the set {u;f1;…fN22} are independent.

Now consider a set of generalized SIRVs 
X with the characteristic nonlinear

function hNMðax1;…;axMÞ: The relations between cartesian and spherical

coordinates are given by

kXil1 ¼ Ri·cosðfi;1Þ

kXilk ¼ Ri·cosðfi;kÞ·
Yk21

j¼1

sinðfi;jÞ; for all k [ ½2…N 2 2	

kXilN21 ¼ Ri·cosðuiÞ·
YN22

j¼1

sinðfi;jÞ
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and

kXilN ¼ Ri·sinðuiÞ·
YN21

j¼1

sinðfi;jÞ ð14:70Þ

where: kXilj is the jth element of the ith vector Xi and ði ¼ 1;…;MÞ:
Define Ji, the Jacobian of the transformation from the vector Xi to the set

{Ri; ui;fi;1;…;fi;N22}; as the determinant of a matrix Ai, or

Ji ¼ lAil ¼

›Ri
›kXil1

›ui
›kXil1

›fi;1

›kXil1
· · ·

›fi;N22

›kXil1

..

. ..
. ..

. ..
.

›Ri
›kXilN

›ui
›kXilN

›ui
›kXilN

· · ·
›fi;N22

›kXilN

2666666664

3777777775

��������������

��������������
ð14:71Þ

Since the spherical coordinate transformation of any generalized SIRV Xi in the

matrix 
X does not depend on the spherical coordinates of any other vector in the

matrix, and Jacobian of the entire matrix transformation is

J 
X ¼

A1 0 · · · 0

0 A2 · · · 0

..

. ..
. ..

.

0 0 · · · AM

266666664

377777775

�������������

�������������
ð14:72Þ

Simplification of Equation 14.72 yields

J 
X ¼ lA1l·lA2l· · ·lAMl ð14:73Þ
Equation 14.62 gives the determinant of any matrix Ai as

Ji ¼ RN21
i ·

YN22

k¼1

sinN212kðfi;kÞ
" #21

ð14:74Þ

Based on Equation 14.73 and Equation 14.74, the Jacobian of the

transformation of the matrix 
X into spherical coordinate is

J 
X ¼
YM
i¼1

RN21
i ·

YN22

k¼1

sinN212kðfi;kÞ
" #21

ð14:75Þ

For the sake of notational simplicity, define the vector R as

R ¼ ½R1;…;RM	T ð14:76Þ
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the vector 
Q as,


Q ¼ ½u1;…; uM	T ð14:77Þ
and the matrix 
F as


F ¼
f1;1 · · · f1;N22

..

.

fM;1 · · · fM;N22

266664
377775 ð14:78Þ

The transformation in Equation 14.70 can now be denoted as


X ¼ g21ðr; 
u; 
fÞ ð14:79Þ
The density of the transformed matrix is

fR; 
Q; 
Fðr; 
u; 
fÞ ¼ f 
Xð
xÞ
J 
X

�����

x¼g21ðr; 
u; 
fÞ

ð14:80Þ

From Equation 14.25, the density of the matrix 
X is

f 
Xð
xÞ ¼ KhNMðax1;ax2;…axMÞ ð14:81Þ
Substituting Equation 14.75 and Equation 14.81 into Equation 14.80

produces the final density function of the spherically transformed matrix. Once

again, all of the angles are independent, and their densities resemble those for a

traditional SIRV given in Equation 14.68 and Equation 14.69,

fQi
ðuiÞ ¼ ð2pÞ21½uðuiÞ2 uðui 2 2pÞ	 ð14:82Þ

and

fFi;k
ðfi;kÞ ¼

G
N 2 k þ 1

2

� �
ffiffi
p

p
G

N 2 k

2

� � sinN212kðfi;kÞ½uðfi;kÞ2 uðfi;k 2 pÞ	 ð14:83Þ

Not only are the angles independent from each other, but those are also

independent of the envelope vector, R. However, the elements of R are not

necessarily independent. From Equation 14.75, Equation 14.80, and Equation

14.81 the multivariate density of the envelope is

fRðrÞ ¼

YM
i¼1

ri

{ !
Kr

hNMðr21;…; r2MÞuðr1Þuðr2Þ…uðrMÞ ð14:84Þ
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where: Kr is a normalizing constant. Equation 14.84 reveals that the envelopes of

the vectors in the generalized SIRV matrix 
X are independent if and only if the

vectors themselves are independent.

14.3.5. THE GENERALIZED SIRV BESSEL FUNCTION REPRESENTATION

The characteristic nonlinear function of a generalized SIRV, hNMðu1;…; uMÞ; can
be expressed in terms of the vector’s characteristic function fð·Þ and a product of
Bessel functions. From Equation 14.47, the characteristic nonlinear function is

hNMðaxÞ ¼
ð
s

YM
i¼1

1

sNi

{ !
exp

1

2

XM
i¼1

axi
s2i

( )
fSðsÞds ð14:85Þ

where

ax ¼ {ax1 ;ax2 ;…;axM} ð14:86Þ

Let N, the length of each vector in the matrix 
X; equal unity. Based on this, the

matrix 
X is really a vector, or,


X ¼ {X1;…;XM} ð14:87Þ
Define the multivariate characteristic function of this vector 
X as

cðwÞ ¼
ð


X
f 
Xð
xÞexp{j½v1x1 þ…þ vMxM	}d
x ð14:88Þ

where:

w ¼ {v1;v2;…vM} ð14:89Þ
d
x ¼ dx1dx2…dxM ð14:90Þ

and ð

X
¼

ð
X1

· · ·
ð
XM

ðM-fold integrationÞ ð14:91Þ

Taking the multidimensional inverse Fourier transform of Equation 14.88

yields

f 
Xð
xÞ ¼ ð2pÞ2M
ð
W
cðwÞexp{2 j ½v1x1 þ…þ vMxM	}dw ð14:92Þ

where:

dw ¼ dv1dv2…dvM ð14:93Þ
and

ð
W

¼
ð1

21
· · ·

ð1

21
ðM-fold integrationÞ ð14:94Þ
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Assume that the elements of 
X have zero mean and unit variance. From

Equation 14.25 and Equation 14.26, it follows that the density of 
X becomes

f 
Xð
xÞ ¼ ð2pÞ2M=2·h1MðaxÞ ð14:95Þ
where · the ith element of ax is

axi ¼ x2i ð14:96Þ
Substituting Equation 14.95 into Equation 14.92 yields

h1MðaxÞ ¼ ð2pÞ2M=2·
ð
W
cðwÞexp{2 j½v1x1 þ…þ vMxM	}dw ð14:97Þ

Substituting Equation 14.96 into Equation 14.97 produces

h1MðaxÞ ¼ ð2pÞ2M=2
ð
W
cðwÞ

YM
i¼1

exp 2jvi

ffiffiffiffi
axi

p# $
dw ð14:98Þ

or

h1MðaxÞ ¼ ð2pÞ2M=2·
ð
W
cðwÞ·

YM
i¼1

cos vi

ffiffiffiffi
axi

p� �
2 j sin vi

ffiffiffiffi
axi

p� �# $
dw ð14:99Þ

Carrying out the product shown in Equation 14.99 yields

h1MðaxÞ ¼ ð2pÞ2M=2·
ð
W
cðwÞ·

YM
i¼1

cos vi

ffiffiffiffi
axi

p� �
dw

þ ð2pÞ2M=2·ð2jÞM ·
ð
W
cðwÞ·

YM
i¼1

sin vi

ffiffiffiffi
axi

p� �
dw

þ ð2pÞ2M=2·
ð
W
cðwÞ·{cosine=sine cross-terms}dw ð14:100Þ

For the middle integral of Equation 14.100, separation of the M-fold product

gives

ð
W
cðwÞ·

YM
i¼1

sin vi

ffiffiffiffi
axi

p� �
dw ¼

ð1

21
· · ·

ð1

21
cðwÞsin vi

ffiffiffiffi
axi

p� �
dv1

� �
·

�
YM
i¼1

sin vi

ffiffiffiffi
axi

p� �
dv1…dvM ð14:101Þ

Equation 14.88 gives the multivariate characteristic function as

cðv1;…;vMÞ ¼
ð


X
f 
Xð
xÞexp{j½v1x1 þ…þ vMxM	}d
x ð14:102Þ
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Substituting 2v1 for v1 gives

cð2v1;…;vMÞ ¼
ð


X
f 
Xðx1;…; xMÞexp{j½2v1x1 þ…þ vMxM	}d
x ð14:103Þ

Letting the variable z equal 2x1 produces

fð2v1;…;vMÞ ¼
ð1

21
· · ·

ð1

21
f 
Xð2z; x2;…; xMÞexp{j½v1zþ v2x2…

þ vMxM	}dz dx2…dxM ð14:104Þ
However, note that Equation 14.95 to Equation 14.97 show f 
Xð
xÞ as a function of
xi
2, for each i from 1 to M. This means that f 
Xð
xÞ is an even function with respect

to all axes, and

f 
Xð2z; x2;…; xMÞ ¼ f 
Xðz; x2;…; xMÞ ð14:105Þ
Substituting this into Equation 14.104 and comparing the result to Equation

14.102 produces

cð2v1;…;vMÞ ¼ cðv1;…;vMÞ ð14:106Þ
Equation 14.106 reveals that c(w) is even with respect to the v1 axis. A

similar analysis can be performed to show that c(w) is even with respect to all

other axes as well. Since c(w) is even and sin(·) is odd, the bracketed integral in

Equation 3.62 is zero. This renders the entire integral zero, or

ð
W
cðwÞ

YM
i¼1

sin vi

ffiffiffiffi
axi

p� �
dw ¼ 0 ð14:107Þ

Equation 14.107 shows that middle integral of Equation 14.100 is zero. A

similar analysis shows that the final integral is also zero, since a single odd sine

term can be bracketed off with the even c(w) here as well. This means that the

characteristic nonlinear function is given by

h1MðaxÞ ¼ ð2pÞ2M=2
ð
W
cðwÞ

YM
i¼1

cos vi

ffiffiffiffi
axi

p� �
dw ð14:108Þ

Recall that the Bessel Function J21/2(·) is related to the cosine function by

cosðuÞ ¼
ffiffiffiffi
p

2

r ffiffi
u

p
J21=2ðuÞ ð14:109Þ

Substituting Equation 14.109 into Equation 14.108 yields

h1MðaxÞ ¼ 22M
ð
W
cðwÞ

YM
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffi
axi

p� �q
J21=2 vi

ffiffiffiffi
axi

p� �� �
dw ð14:110Þ
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The limits on theM dimensional integral shown in Equation 14.110 are from

minus infinity to infinity. Since the integrand is even, Equation 14.110 can be

rewritten as

h1MðaxÞ ¼
ð1

0
· · ·

ð1

0
cðwÞ·

YM
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffi
axi

p� �q
·J21=2 vi

ffiffiffiffi
axi

p� �� �
dw ð14:111Þ

Equation 14.111 expresses the generalized characteristic nonlinear function

in terms of the characteristic function c(w) and a product of Bessel functions, for
the case where the length of each SIRV in the matrix 
X is unity. Higher odd-order

functions can now be generated by use of the bootstrap theorem. As shown

below, these higher odd-order functions are given by

hð2N21ÞMðm1;…;mMÞ

¼
YM
i¼1

ffiffiffi
mi

p
( ) 3

2
2N

·
ð1

0
· · ·

ð1

0
cðwÞ·

YM
i¼1

v
N2

1
2

i ·J
N2

3
2

vi

ffiffiffi
mi

p� �( )
dw ð14:112Þ

The following inductive proof verifies Equation 14.112. Equation 14.111

shows that the hypothesis holds for N equal to one. Next, assume that Equation

14.112 holds for some value of N. If Equation 14.112 can be shown to hold for

ðN þ 1Þ as well, then the inductive proof is complete.

To show that Equation 14.112 holds for ðN þ 1Þ; first take a series of partial
derivatives with respect to ðm1;…;mMÞ: As provided by Ref. 14, an identity

which helps in taking these derivatives is,

›

›a

ffiffi
a

p 3
2
2N

·J
N2

3
2

v
ffiffi
a

p� �� �
¼ 2v

2
·
ffiffi
a

p 1
2
2N

·J
N2

1
2

v
ffiffi
a

p� � ð14:113Þ

Based on Equation 14.112 and Equation 14.113, the derivative of

hð2N21ÞMðm1;…;mMÞ with respect to m1 is

›hð2N21ÞMðm1;…;mMÞ
›m1

¼
ð1

0
· · ·

ð1

0
cðwÞ 21

2

� �
v
Nþ 1

2

1

ffiffiffiffi
m1

p 1
2
2NJ

N2
1
2

v1

ffiffiffiffi
m1

p� �

�
YM
i¼2

v
N2

1
2

i

ffiffiffiffi
m1

p 3
2
2N ·JN2 3

2
vi

ffiffiffi
mi

p� �( )
dw ð14:114Þ
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Taking the remaining partial derivatives yields

›hð2N21ÞMðm1;…;mMÞ
›m1…›mM

¼
ð1

0
· · ·

ð1

0
cðwÞ 21

2

� �
·
YM
i¼1

v
Nþ 1

2

i

ffiffiffiffi
m1

p 1
2
2NJ

N2
1
2

vi

ffiffiffi
mi

p� �� �
dw ð14:115Þ

This can be further simplified by use of the bootstrap theorem which states that

hðNþ2ÞMðm1;…;mMÞ ¼ ð22ÞM ›MhNMðm1;…;mMÞ
›m1…›mM

ð14:116Þ

Substituting Equation 14.116 into Equation 14.115 gives

hðNþ2ÞMðm1;…;mMÞ

¼
YM
i¼2

ffiffiffi
mi

p
( ) 1

2
2Nð1

0
· · ·

ð1

0
cðwÞ·

YM
i¼2

v
Nþ 1

2

i JN2 1
2
vi

ffiffiffi
mi

p� �n o
dw ð14:117Þ

Equation 14.117 concludes the inductive proof because this is the same result as

that which is obtained by letting ðNÞ equal ðN þ 1Þ in Equation 14.112.

Note that Equation 14.112 derives odd order characteristic nonlinear

functions. A similar result is provided for even order traditional SIRV’s in Ref.

14. The extension of this work to higher even order generalized SIRV’s follows

in the same manner as that shown above for odd orders. The result is

hðNþ2ÞMðm1;…;mMÞ

¼
YM
i¼1

ffiffiffi
mi

p
( )2Nð1

0
· · ·

ð1

0
cðwÞ

YM
i¼1

vNþ1
i JN vi

ffiffiffi
mi

p� �n o
dw ð14:118Þ

Equation 14.118 and Equation 14.112 can be combined to yield an expression for

any value of N; odd or even. The result is

hðNþ2ÞMðm1;…;mMÞ

¼
YM
i¼1

ffiffiffi
mi

p
( )12 N

2 ð1

0
· · ·

ð1

0
cðwÞ·

YM
i¼1

v
N
2

i J N
2
21

vi

ffiffiffi
mi

p� �� �
dw ð14:119Þ

Equation 14.119 thus shows how to represent hNMðm1;…;mMÞ in terms of the

multivariate characteristic function c(w) and a product of Bessel functions. Note
that c(w) is derived from the density f 
Xð
xÞ which corresponds to the case where

the length of each SIRV in the matrix 
X equals unity.

A Generalization of Spherically Invariant Random Vectors 821

© 2006 by Taylor & Francis Group, LLC



14.3.6. MINIMUMMEAN SQUARE ERROR ESTIMATION

As stated earlier, the generalized SIRV matrix 
X contains a set of M column

vectors, each of length N: The result of partitioning each of these column vectors

into two sub-vectors is

Xi ¼
Xai

Xbi

" #
i [ ½1;…;M	 ð14:120Þ

where Xai is of dimension ½K £ 1	 and Xbi is of dimension ½ðN 2 KÞ £ 1	: Based
on this, the matrix 
X can be partitioned into the two sub-matrices


Xa ¼ {Xa1;…;XaM} ð14:121Þ

and


Xb ¼ {Xb1;…;XbM} ð14:122Þ
where


X ¼

Xa


Xb

" #
ð14:123Þ

Note that 
Xa is of dimension ½K £M	 and 
Xb is of dimension ½ðN 2 KÞ £M	:
From Ref. 15, the minimum mean square error estimate of 
Xb given 
Xa is

X
̂
b
¼ E½ 
Xbl 
Xa	 ð14:124Þ

The following analysis reveals that when 
X is a generalized SIRV, this

estimate is a linear function of the data vectors in the matrix 
Xa:
Let Si, the covariance matrix of vector Xi, equal

Si ¼
Caai

Cabi

Cbai
Cbbi

" #
ð14:125Þ

where Cabi
and Cbai

are the cross covariance matrices of Xai and Xbi, Caai
is the

covariance matrix of Xai, and Cbbi
is the covariance matrix of Xbi. Recall that the

representation theorem gives the ith vector of the generalized SIRV matrix as

Xi ¼ Zi·Si ð14:126Þ

As explained in Ref. 14, the expected value of (XbilXai) conditioned on Si is

E½ðXbilXaiÞlSi	 ¼ Cbai
·C21

aai
·xai ð14:127Þ
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Since all of the conditional vectors [(XbilXai)lSi] are statistically independent,
the expected value of the conditional matrix ½ð 
Xbl 
Xa	lS1…SM	 is

E½ð 
Xbl 
Xa	lS	 ¼ E½ðXb1lXa1Þ	lS1;…; ðXbMlXaMÞ	lSM	
¼ E½½ðXb1lXa1Þ	lS1	;…;EðXbMlXaMÞ	lSM		 ð14:128Þ

where:

S ¼ {S1;…; SM} ð14:129Þ
Substituting Equation 14.127 into Equation 14.128 gives

E½ð 
Xbl 
XaÞlS	 ¼ ½ðCba1
·C21

aa1
Þ·Xa1;…; ðCbaM

·C21
aaM

Þ·XaM	 ð14:130Þ
or

E½ð 
Xbl 
XaÞlS	 ¼
XM
i¼1

ðCbai
·C21

aai
Þ·DXi ð14:131Þ

where:

DXi ¼ ½
0; 
0;…;Xai;…; 
0	 ð14:132Þ
The expected value of ð 
Xbl 
XaÞ is related to the conditional expectation shown in

Equation 14.131 by

Eð 
Xbl 
XaÞ ¼ ES½ð 
Xbl 
XaÞlS	 ð14:133Þ
or

E½ 
Xbl 
Xa	 ¼
ð1

0
· · ·

ð1

0
E½ð 
Xbl 
XaÞ	lS	fSðsÞds1…dsM ð14:134Þ

Substituting Equation 14.131 into Equation 14.134 gives

E½ 
Xbl 
Xa ¼ 
xa	 ¼
ð1

0
· · ·

ð1

0

XM
i¼1

ðCaai
·C21

aai
Þ·DXi

( )
·fSðsÞds1…dsM ð14:135Þ

or

E½ 
Xbl 
Xa ¼ 
xa	 ¼
XM
i¼1

ðCbai
·C21

aai
Þ·DXi

( )
·
ð1

0
· · ·

ð1

0
fSðsÞds1…dsM ð14:136Þ

Since fS(s) is a density, Equation 14.136 reduces to

E½ 
Xbl 
Xa ¼ 
xa	 ¼
XM
i¼1

ðCbai
·C21

aai
Þ·DXi

( )
ð14:137Þ
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Substituting Equation 14.137 into Equation 14.124 yields


̂Xb ¼
XM
i¼1

ðCbai
·C21

aai
Þ·DXi

( )
ð14:138Þ

Equation 14.138 thus reveals that the minimum mean square error estimate of the

matrix 
Xb is a linear function of the data vectors in the matrix 
Xa:

14.3.7. THE GENERALIZED SIRV LAPLACE TRANSFORM REPRESENTATION

Recall that the M dimensional Laplace transform of g(z) is given by

GðaxÞ ¼
ð
z

YM
i¼1

exp½2axizi	·gðzÞdz ; LM{gðzÞ} ð14:139Þ

where

ax ¼ ðax1;…;axMÞ ð14:140Þ
z ¼ ðz1;…; zMÞ ð14:141Þ
dz ¼ dz1…dzM ð14:142Þ

and

ð
z
¼

ð1

0
· · ·

ð1

0
ðM-fold integrationÞ ð14:143Þ

The following analysis will show how the Laplace transformation can simplify

the expression for the generalized SIRV characteristic nonlinear function

hNM(ax). From Equation 14.27, the characteristic nonlinear function is

hNMðaxÞ ¼
ð
s

YM
i¼1

s2N
i exp 2

1

2

axi
s2i

( )" #
fSðsÞds ð14:144Þ

where

ax ¼ ðax1;ax2;…;axMÞ ð14:145Þ

In Equation 14.144, let

zi ¼ 1

2s2i
ð14:146Þ

and

dsi ¼ 2ð2ziÞ23=2dzi ð14:147Þ
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for all i in the set (1,…,M). Substituting Equation 14.147 and Equation 14.146

into Equation 14.144 gives

hNMðaxÞ ¼
ð
s

YM
i¼1

½exp{2 axizi}	·
YM
i¼1

ð2ziÞ2
N23
2


 �" #
fS

1ffiffiffiffi
2z1

p ;…;
1ffiffiffiffiffi
2zM

p
� �

dz

ð14:148Þ
Define the function g(z) as

gðzÞ ¼ 1

KS

YM
i¼1

ð2ziÞ2
N23
2


 �
uðziÞ

" #
fS

1ffiffiffiffi
2z1

p ;…;
1ffiffiffiffiffi
2zM

p
� �

ð14:149Þ

where: Ks is a constant. Notice that gðzÞ appears in the integrand of Equation

14.148. Comparison with Equation 14.139 thus results in

hNMðsÞ ¼ Ks·L
M½gðzÞ	 ð14:150Þ

From Equation 14.149 and Equation 14.146 it follows that

fSðsÞ ¼ Ksðs1…sMÞðN23Þg
1

2s21
;…;

1

2s2M

{ !
uðs1Þ…uðsMÞ ð14:151Þ

In this equation, the constant Ks is chosen to normalize the area under fS(s) to
unity. As seen, if fS(s) can be expressed as shown in Equation 14.151, then the

generalized SIRV characteristic nonlinear function is proportional to the Laplace

transform of the function g(z).

With this representation, it is possible to choose a Laplace transform pair

where fS(s) is not a density function, but the function f 
Xð
xÞ generated from

hNM(ax) is a density function. Also, note that the function fS(s) depends on the

value of N: As such, the bootstrap theorem does not hold for characteristic

nonlinear functions generated in this fashion.

Since multi-dimensional Laplace transforms can be difficult to evaluate, the

representation presented above will now be modified to include only one-

dimensional transforms. Let the function g(z) equal

gðzÞ ¼
YM
i¼1

zNi expð2biziÞuðziÞ
h i

·
XM
j¼1

gjðzjÞ ð14:152Þ

Define the one-dimensional Laplace transform of each function gjðzjÞ as

GjðaxiÞ ¼ L{gjðzjÞ} ð14:153Þ
From Ref. 16, two Laplace transform pairs are

L{zNi expð2biziÞuðziÞ} ¼ N!

ðaxi þ biÞNþ1
ð14:154Þ
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and

L{zNi expð2bjzjÞgjðzjÞ} ¼ G
{N}
j ðaxj þ bjÞ ð14:155Þ

where: N is an even number, andG
{N}
j ðaxiÞ is the Nth derivative ofGjðaxiÞ: Based

on these equations, the M dimensional Laplace transform of the g(z) in Equation

14.152 is

GðaxÞ ¼ ðN!ÞðM21Þ·
XM
j¼1

G
{N}
j ðsj þ bjÞYM

i¼1
i–j

ðsj þ bjÞðNþ1Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð14:156Þ

After substituting Equation 14.146 and Equation 14.152 into Equation 14.151,

the function fS(s) becomes

fSðsÞ ¼ Ks

2NM
·
YM
i¼1

s2ð3þNÞ
i exp

2bi
2s2i

{ !
uðsiÞ

" #
·
XM
j¼1

gj
1

2s2j

{ !
ð14:157Þ

Substituting Equation 14.156 into Equation 14.150 gives the characteristic

nonlinear function hNM(ax) as

hNMðaxÞ ¼ KsðN!ÞðM21Þ·
XM
j¼1

G
{N}
j ðaxj þ bjÞYM

i¼1
i–j

ðaxj þ bjÞðNþ1Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð14:158Þ

When fS(s) can be expressed in terms of a set of functions

{g1ðz1Þ;…; gMðzMÞ}, as given in Equation 14.157, then Equation 14.158 shows

how hNM(ax) can be expressed in terms of the Nth derivatives of the

corresponding Laplace transforms.

This concludes the presentation of generalized SIRV fundamental properties.

The next section provides specific closed-form examples of generalized SIRV

density functions.

14.4. THE GENERALIZED SIRV DENSITY FUNCTION

Equation 14.25 gives the density function of the generalized SIRV matrix 
X as

f 
Xð
xÞ ¼ K·hNMðaxÞ ð14:159Þ
where


X ¼ {X1;X2;…XM} ð14:160Þ
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and

ax ¼ {ax1;ax2;…;axM} ð14:161Þ
From Equation 14.26, the constant K is

K ¼ ð2pÞ2NM=2
YM
i¼1

lSzil
21=2

{ !
ð14:162Þ

and, from Equation 14.27, the characteristic nonlinear function is

hNMðaxÞ ¼
ð
s

YM
i¼1

s2N
i ·exp

2axi
2s2i

( )" #
·fSðsÞds

{ !
ð14:163Þ

where

s ¼ {s1; s2;…; sM} ð14:164Þð
s
¼

ð1

0
· · ·

ð1

0
ðM-fold integrationÞ ð14:165Þ

and

ds ¼ ds1ds2…dsM ð14:166Þ
In order to use Equation 14.163 to find a closed-form expression for the

generalized SIRV density, the multidimensional integral shown must be

analytically evaluated. The properties developed in the previous section can

help to simplify this task. For example, only h1M(·) and h2M(·), the first and second

order characteristic nonlinear functions, need be derived. Once these are found,

the bootstrap theorem can then be used to generate higher order functions.

Employing the Bessel function representation of hNM(·) may also help to evaluate

the integral. In Ref. 14, this was done for traditional SIRV’s, where M equals

unity and the Bessel function representation shown in Equation 14.119 reduces to

a Hankel transform. A table of these transforms is presented in Ref. 17. However,

it is yet to be shown how to use this approach for the generalized SIRV case

where M can exceed unity.

Two approaches are used in the following analysis to find closed-form

expressions for hNM(ax). The first involves utilizing densities fS(s) which lend

themselves to direct evaluation of the multidimensional integral. The second

approach involves utilizing the Laplace transform representation presented in

Section 14.3.7.

14.4.1. DIRECT EVALUATION OF hNM(ax)

This section presents two closed form solutions for hNM(ax) as derived through

direct evaluation of the integral shown in Equation 14.163.
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14.4.1.1. Case 1

Consider the function

fSðsÞ ¼ Ks

YM
i¼1

s
2Qi

i exp
2bi
2s2i

{ !" #
·
XM
j¼1

½s2Rj
j 	·uðs1Þ…uðsMÞ ð14:167Þ

where {Q1,…,QM},{R1,…,RM}, and {b1,…,bM} are shape parameters and Ks is a

normalizing constant. Because the variables {s1,…,sM} are nonnegative and the

volume of fS(s) will be shown to be finite, the function can be interpreted as a

probability density function. Since the volume under a density must be unity, the

normalizing constant KS satisfies

1

Ks

¼
ð
S

YM
i¼1

s
2Qi

i ·exp
2bi
2s2i

{ !" #
·
XM
j¼1

½s2Rj
j 	ds ð14:168Þ

Interchanging the order of summation and integration and taking out the jth term

from the product produces

1

Ks

¼
XM
j¼1

ð1

0
s
2ðQjþRjÞ
j exp

2bj
2s2j

{ !
dsj·

YM
i¼1
i–j

ð1

0
s
2Qi

j exp
2bi
2s2i

{ !
dsi

8>><>>:
9>>=>>; ð14:169Þ

In order to simplify Equation 14.169, consider the integral

ð1

0
s2xexp

2b

2s2

� �
ds ð14:170Þ

where b is greater than zero. In Equation 14.170, let

z ¼ b

2s2
ð14:171Þ

and

ds ¼ 2
1

2
·221=2·b1=2·z23=2dz ð14:172Þ

Substituting Equation 14.172 and Equation 14.171 into Equation 14.170 gives

ð1

0
s2xexp

2b

2s2

� �
ds ¼ 2

x23
2


 �
·b

12x
2


 �
·
ð1

0
z

x23
2


 �
exp{2 z}dz ð14:173Þ

Recall that the gamma function is given by the integral

GðxÞ ¼
ð1

0
tx21·exp½2t	dt ð14:174Þ
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Substituting Equation 14.174 into Equation 14.173 produces

ð1

0
s2xexp

2b

2s2

� �
ds ¼ 1

2

b

2

� �2 x21
2


 �
·G

12 x

2

� �
ð14:175Þ

Equation 14.175 is now used to find the normalizing constant KS. Substitution of

Equation 14.175 into Equation 14.169 yields

1

Ks

¼ 22M ·
XM
j¼1

bj
2

� �2 QjþRj21

2


 �
G

QjþRj21

2

� �
·
XM
i¼1

i–j

bj
2

� �2 Qi21
2


 �
G

Qi21

2

� �264
375

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð14:176Þ

The derivation of this constant completes the specification of the density fS(s).

Note that Ks is finite if and only if all of the parameters {b1;…;bM} are greater

than zero.

The generalized SIRV characteristic nonlinear function is found by

substituting fS(s), as given in Equation 14.167, into Equation 14.346. The result

of this operation is

hNMðaxÞ ¼ Ks

ð
s

YM
i¼1

s
2ðNþQiÞ
i ·exp

2ðaxi þ biÞ
2s2i

( )" #
·
XM
j¼1

½s2Rj
j 	ds ð14:177Þ

Note the similarities between this and Equation 14.168. Following the same

procedure as that used to derive Equation 14.176 gives

hNMðaxÞ ¼Ks·2
2M

�
XM
j¼1

axj þ bj
2

� �2 QjþRjþN21

2


 �
G

Qj þ Rj þ N 2 1

2

� �8><>:
�
Y
i¼1

M

i–j

axi þ bi
2

� �2 QiþN21
2


 �
G

Qi þ N 2 1

2

� �264
375
9>>=>>; ð14:178Þ

Equation 14.178 presents a closed-form solution for a generalized SIRV

characteristic nonlinear function. The multivariate density which generated this

function is shown in Equation 14.167.
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The characteristic nonlinear function of an SIRV is monotonically

nonincreasing, as described in Section 14.3.3. In order to form a valid density,

this function must also be nonnegative. Note that the function shown in Equation

14.178 is nonnegative and monotonically nonincreasing, given that all values of

{Q1;…;QM} and {R1;…;RM} are positive.

Since fS(s) is not a function of the vector length N; this characteristic

nonlinear function must also satisfy the bootstrap theorem. From Equation 14.52,

this theorem is,

hðNþ2ÞMðm1;…;mMÞ ¼ ð22ÞM · ›
MhNMðm1;…;mMÞ

›m1…›mMÞ ð14:179Þ

Taking M partial derivatives of Equation 14.178 yields

›MhNMðm1;…;mMÞ
ð›m1…›mMÞ ¼ Ks2

2Mð22Þ2M
XM
j¼1

Qj þ Rj þ N 2 1

2

� �
mj þ bj

2

� �2 QjþRjþN21

2


 �

£ G Qj þ Rj þ N 2 1

2

� �

£
YM
i¼1

i–j

Qi þ N 2 1

2

� �
mi þ bi

2

� �2 QjþN21

2
þ1


 �
G

Qj þ N 2 1

2

� �264
375

ð14:180Þ

With reference to Equation 14.174, a property of the gamma function is

GðxÞ ¼ ðx2 1ÞGðx2 1Þ ð14:181Þ

Substituting Equation 14.181 into Equation 14.180 produces

ð22ÞM ›MhNMðm1…›mMÞ
›m1…›mM

¼ Ks2
2M

XM
j¼1

mj þ bj
2

� �2 QjþRjþðNþ2Þ21

2


 �

£ G Qj þ Rj þ ðN þ 2Þ2 1

2

� �

£
YM
i¼1

i–j

mi þ bi
2

� �2 QjþðNþ2Þ21

2


 �
G

Qj þ ðN þ 2Þ2 1

2

� �264
375

ð14:182Þ

At this point, verification of the bootstrap theorem is complete since the right side

of Equation 14.182 is hðNþ2ÞMðm1;…;mMÞ:
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Another interesting property of the generalized SIRV characteristic nonlinear

function is its relation to the density of the vector envelopes. From Equation

14.84, this relationship is

fRðrÞ ¼

YM
i¼1

ri

{ !N21

KR

hNMðr21 ;…; r2MÞuðr1Þuðr2Þ…uðrMÞ ð14:183Þ

Without loss of generality, this equation assumes that the covariance matrices

Szi equal the identity matrix for all i in the set ð1;…;MÞ: Consider the case where
the number of vectors equals unity, (i.e., M ¼ 1). Substituting Equation 14.178

into Equation 14.183 gives

fRðrÞ ¼ KRS·r
N21 r2 þ b

2

{ !2
QþRþN21

2


 �
·uðrÞ ð14:184Þ

where Krs is a normalizing constant. Figure 14.4 to Figure 14.6 show plots of this

density for various values of N,Q, R, and b:Note the heavy tails that can arise for
suitable choices of the parameters.

For the case where the number of vectors is two, (i.e., M ¼ 2), the joint

density of the envelopes is

fR1 ;R2
ðr1;r2Þ¼Krs·ðr1r2ÞN21

� r21þb1

2

{ !2
Q1þR1þN21

2


 �
·
r22þb2

2

{ !2
Q2þN21

2


 �
·G

Q1þR1þN21

2

� �264
8><>:

�G Q2þN21

2

� �#
þ r22þb2

2

{ !2
Q2þR2þN21

2


 �
r21þb1

2

{ !2
Q1þN21

2


 �

� G
Q2þR2þN21

2

� �
G

Q1þN21

2

� �)
uðr1Þuðr2Þ ð14:185Þ

Figure 14.7 and Figure 14.8 show plots of this two-dimensional density.

Consider, once again, the case where the number of vectors is unity,

(i.e., M ¼ 1). The marginal density of one element of this vector is derived from

the expression

fXðxÞ ¼ ð2pÞ21=2·h11ðx2Þ ð14:186Þ

for the case where the covariance equals unity. Substituting Equation 14.176 and

A Generalization of Spherically Invariant Random Vectors 831

© 2006 by Taylor & Francis Group, LLC



Q+R = 9

f R
(r

)

r

2.0

1.5

1.0

0.5

0.0
0 1 2 3

Q+R = 7

Q+R = 5

N = 3

b = 0.4

FIGURE 14.4 Case 1 envelope density with ðQþ RÞ as a parameter.

b = 0.2

0 2 31
r

b = 0.4

b = 0.8

Q+R = 7

N = 3

f R
(r

)

2.0

1.5

1.0

0.5

0.0

FIGURE 14.5 Case 1 envelope density with b as a parameter.

N = 2

N = 3

N = 4

b = 0.4

Q+R = 7

f R
(r

)

2.0

1.5

1.0

0.5

0.0

r
0 1 2 3

FIGURE 14.6 Case 1 envelope density with N as a parameter.
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Equation 14.178 into this expression produces

fXðxÞ ¼
ð2pÞ21=2·

x2 þ b

2

{ !2
QþR
2


 �
G

Qþ R

2

� �
b

2

� �2 QþR21
2


 �
G

Qþ R2 1

2

� � ð14:187Þ

N = 4

2
r2

0

0

r1

2

b1 = b2 = 0.2

Q1 = Q2 = 5
R1 = R2 = 2

FIGURE 14.7 Case 1 envelope density ðM ¼ 2Þ symmetric in r1 and r2:

N = 4
Q1 = Q2 = 5
R1 = R2 = 2
b1 = 0.2
b2 = 0.42

2

r1

r2

0

0

FIGURE 14.8 Case 1 envelope density ðM ¼ 2Þ asymmetric in r1 and r2:
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If ðQþ RÞ is an odd integer, then Equation 14.187 can be simplified to

fXðxÞ ¼
x2 þ b

2

{ !2
QþR
2


 �
·ðQþ R2 2Þ!

b

2

� �2 QþR21
2


 �
·2

QþR2 3
2


 �
·

Qþ R2 3

2

� �
!

� �2 ð14:188Þ

Figure 14.9 and Figure 14.10 show plots of this function for various values of

Q;R; and b:
In order to determine the covariance matrix of an SIRV, it is convenient to

know the covariance matrix of the generating density fS(s). The following

analysis derives the expected values and covariance matrix of the generating

density fS(s) for the special case where bi equals b; Qi equals Q; and Ri equals R

for all i in Equation 14.167. The resulting symmetric density is

fSðsÞ ¼ Ks

XM
j¼1

s
2ðQþRÞ
j

YM
n¼1
n–j

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )2664
3775uðs1Þ…uðsMÞ ð14:189Þ

where Equation 14.176 gives the normalizing constant as

1

Ks

¼ M22M ·
b

2

� � 2M
Q21
2


 �
2
R
2

h i
·G

Q2 1

2

� �M21

G
Qþ R2 1

2

� �
ð14:190Þ

Based on these equations, the expected value of the kth component of the

random vector s is

E{sk} ¼
ð
S
sk·fSðsÞds ð14:191Þ

Q+R = 9

b = 0.4

Q+R = 7

Q+R = 5

x

f X
(x

)

− 2 −1 0 2
0

1

2

3

1

FIGURE 14.9 Case 1 marginal density with ðQþ RÞ as a parameter.
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or

E{sk} ¼
ð
S
Kss

2ðQþR21Þ
k

YM
n¼1

n–k

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )
ds

þ
ð
S
Ks

X
j¼1
j–k

M s2ðQ21Þ
k s2ðQþRÞ

j

YM
n¼1
n–j;k

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )2664
3775ds

Equation 14.175 can be modified to produce

ð
S

YM
i¼1

s
xi
i exp 2

b

2

XM
j¼1

s22
j

8<:
9=;ds ¼ 22M b

2

� �2XM
i¼1

xi 2 1

2

� �YM
j¼1

G
xi 2 1

2

� �
ð14:193Þ

Application of Equation 14.193 to Equation 14.192 yields

E{sk}¼Ks2
2M b

2

� �2 ðM21Þ Q21
2


 �
þ QþR22

2


 �h i
G

Q2 1

2

� �M21

G
QþR2 2

2

� �

þKsðM2 1Þ22M b

2

� �2 ðM22Þ Q21
2


 �
þ Q22

2


 �
þ QþR21

2


 �h i

£G Q2 1

2

� �M22

G
Q2 2

2

� �
G

QþR2 1

2

� �
ð14:194Þ

Q+R = 7

x

f X
 (

x)

− 2 −1 0 1 2

3

2

1

0

b = 0.2

b = 0.4

b = 0.8

FIGURE 14.10 Case 1 marginal density with b as a parameter.

(14.192)

A Generalization of Spherically Invariant Random Vectors 835

© 2006 by Taylor & Francis Group, LLC



or, after simplification,

E{sk}¼Ks2
2M b

2

� �2 M
Q21
2


 �
þ R

2

h i
G

Q2 1

2

� �M21

G
QþR2 1

2

� �

� b

2

� �1=2 G
QþR2 2

2

� �
G

QþR2 1

2

� � þðM2 1Þ
G

Q2 2

2

� �
G

Q2 1

2

� �
8>><>>:

9>>=>>; ð14:195Þ

Finally, substitution of Equation 14.190 into Equation 14.195 gives

E{sk}¼ 1

M

b

2

� �1=2 G
QþR2 2

2

� �
G

QþR2 1

2

� � þðM2 1Þ
G

Q2 2

2

� �
G

Q2 1

2

� �
8>><>>:

9>>=>>; ð14:196Þ

Because the shape parameters are identical for all sk; and fS(s) is symmetric

with respect to all sk; the mean is the same for all sk:
The expected value of S2k is

E S2k

n o
¼

ð
S
s2k ·fSðsÞds ð14:197Þ

¼
ð
S
Kss

2ðQþR22Þ
k

YM
n¼1
n–k

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )
ds

þ
ð
S
Ks

XM
j¼1
j–k

s
2ðQ22Þ
k s

2ðQþRÞ
j

YM
n¼1
n–j;k

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )2664
3775ds ð14:198Þ

Application of Equation 14.193 to Equation 14.198 yields

E{S2k}¼Ks2
2M b

2

� �2 ðM21Þ Q21
2


 �
þ QþR23

2


 �h i
G

Q21

2

� �M21

£G QþR23

2

� �
þKSðM21Þ22M b

2

� �2 ðM22Þ Q21
2


 �
þ Q23

2


 �
þ QþR21

2


 �h i

£G Q21

2

� �M22

G
Q23

2

� �
G

QþR21

2

� �
ð14:199Þ
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or, after simplification,

E{S2k}¼KS2
2M b

2

� �2 M
Q21
2


 �
þR

2

h i
G

Q21

2

� �M21

G
QþR21

2

� �

� b

2

� � G
QþR23

2

� �
G

QþR21

2

� � þðM21Þ
G

Q23

2

� �
G

Q21

2

� �
8>><>>:

9>>=>>; ð14:200Þ

Finally, substitution of Equation 14.190 into Equation 14.200 gives

E{S2k}¼ 1

M

b

2

� � G
QþR23

2

� �
G

QþR21

2

� � þðM21Þ
G

Q23

2

� �
G

Q21

2

� �
8>><>>:

9>>=>>; ð14:201Þ

The variance of sk is given by

s2
k ¼E{S2k}2E{Sk}

2 ð14:202Þ
Substitution of Equation 14.201 and Equation 14.196 into Equation 14.202

produces

s2
k ¼ b

2M

G
QþR23

2

� �
G

QþR21

2

� � þðM21Þ
G

Q23

2

� �
G

Q21

2

� �
8>><>>:

9>>=>>;
2

b

2M2

G
QþR22

2

� �
G

QþR21

2

� � þðM21Þ
G

Q22

2

� �
G

Q21

2

� �
8>><>>:

9>>=>>;
2

ð14:203Þ

Note that the variance is the same for all Sk:
The covariance between two different components of S is defined by

Csu;v ¼ E{½Su 2 EðSuÞ	½Sv 2 EðSvÞ	} ð14:204Þ
Since the density is assumed symmetric, the expected value is the same for all

components of S. The covariance thus becomes

Csu;v ¼ EðSuSvÞ2 EðSuÞ2 ð14:205Þ
The expected value of the product between two different components of S is

E{SuSv} ¼
ð
s
susv fSðsÞds ð14:206Þ
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or

E{susv}¼
ð
S
Kss

2ðQþR21Þ
u s2ðQ21Þ

v

Y
n¼1

M

i–u;v

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )
ds

þ
ð
S
Kss

2ðQþR21Þ
v s2ðQ21Þ

u

Y
n¼1

M

i–u;v

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )
ds

þ
ð
s
Ks

X
j¼1

M

j–u;v

s2ðQ21Þ
u s2ðQ21Þ

v s
2ðQþRÞ
j

Y
n¼1

M

n–u;v;j

s2Q
n exp 2

b

2

XM
i¼1

s22
i

( )2664
3775ds

ð14:207Þ
Application of Equation 14.193 to Equation 14.207 yields

E{susv}¼ 2Ks2
2M b

2

� �2 ðM22Þ Q21
2


 �
þ QþR22

2


 �
þ Q22

2


 �h i

�G Q21

2

� �M22

G
QþR22

2

� �
G

Q22

2

� �

þKsðM22Þ22M b

2

� �2 ðM23Þ Q21
2


 �
þ2

Q22
2


 �
þ QþR21

2


 �h i

�G Q21

2

� �M23

G
Q22

2

� �2
G

QþR21

2

� �
ð14:208Þ

or, after simplification,

E{susv} ¼ Ks2
2M b

2

� �2 M
Q21
2


 �
þ R

2

h i
G

Q2 1

2

� �M21

G
Qþ R2 1

2

� �

� b

2

� �
2

G
Q2 1

2

� �
G

Qþ R2 2

2

� �
G

Q2 1

2

� �
G

Qþ R2 1

2

� � þ ðM 2 2Þ
G

Q2 2

2

� �2
G

Q2 1

2

� �2
8>><>>:

9>>=>>;

ð14:209Þ
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Substitution of Equation 14.190 into Equation 14.209 gives

E{SuSv} ¼ b

2M

G
Q2 2

2

� �
G

Q2 1

2

� �

� 2

G
Qþ R2 2

2

� �
G

Qþ R2 1

2

� � þ ðM 2 2Þ
G

Q2 2

2

� �
G

Q2 1

2

� �
8>><>>:

9>>=>>; ð14:210Þ

Finally, Equation 14.210 and Equation 14.196 can be inserted into Equation

14.205 to produce the covariance,

Csu;v
¼ b

2M

G
Q2 2

2

� �
G

Q2 1

2

� � 2

G
Qþ R2 2

2

� �
G

Qþ R2 1

2

� � þ ðM 2 2Þ
G

Q2 2

2

� �
G

Q2 1

2

� �
8>><>>:

9>>=>>;

2
b

2M2

G
Qþ R2 2

2

� �
G

Qþ R2 1

2

� � þ ðM 2 1Þ
G

Q2 2

2

� �
G

Q2 1

2

� �
8>><>>:

9>>=>>;
2

ð14:211Þ

Once again, because the shape parameters are identical for all Sk; and fSðsÞ
is symmetric with respect to all Sk; the covariance is seen to be independent of u

and v: Consequently, the full covariance matrix is simply evaluated by

computing only two parameters. All of the diagonal elements are equal and are

given by Equation 14.203. Similarly, all of the off-diagonal elements are equal

and are given by Equation 14.211. This is referred to as a diagonal innovation

matrix.

The covariance derivation for a nonsymmetric density fSðsÞ is more complex.

To simplify the analysis, let the number of SIRVs equal two, (i.e.,M ¼ 2). From

Equation 14.167, the generating density fSðsÞ is

fS1;S2 ðs1; s2Þ ¼ Kss
2Q1

1 exp
2b1

2s21

( )
s
2Q2

2 exp
2b2

2s22

( )
½s2R1

1 þ s
2R2

2 	uðs1Þuðs2Þ

ð14:212Þ
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where: the constant Ks satisfies

1

Ks

¼ 1

4

b1

2

� �2 Q1þR121
2


 �
b2

2

� �2 Q221
2


 �
G

Q1 þ R1 2 1

2

� �
G

Q2 2 1

2

� �

þ 1

4

b2

2

� �2 Q2þR221
2


 �
b1

2

� �2 Q121
2


 �
G

Q2 þ R2 2 1

2

� �
G

Q1 2 1

2

� �
ð14:213Þ

The expected value of S1 is given by

E{S1} ¼
ð1

0

ð1

0
s1fS1;S2ðs1; s2Þds1 ds2 ð14:214Þ

¼
ð1

0

ð1

0
Kss

2Q1þ1
1 exp

2b1

2s21

( )
s
2Q2

2 exp
2b2

2s22

( )
½s2R1

1 þ s
2R2

2 	ds1 ds2 ð14:215Þ

Repeated use of Equation 14.175 produces

E{S1}¼Ks

4

b1

2

� �2 Q1þR122
2


 �
b2

2

� �2 Q221
2


 �
G

Q1þR122

2

� �
G

Q221

2

� �

þ Ks

4

b2

2

� �2 Q2þR221
2


 �
b1

2

� �2 Q122
2


 �
G

Q2þR221

2

� �
G

Q122

2

� �
ð14:216Þ

In a similar fashion, the expected value of S21 is found to be

E{S21}¼Ks

4

b1

2

� �2 Q1þR123
2


 �
b2

2

� �2 Q221
2


 �
G

Q1þR123

2

� �
G

Q221

2

� �

þ Ks

4

b2

2

� �2 Q2þR221
2


 �
b1

2

� �2 Q123
2


 �
G

Q2þR221

2

� �
G

Q123

2

� �
ð14:217Þ

The variance of S1 is found by substituting Equation 14.216 and Equation

14.217 into Equation 14.202. Note that the expected values of S2 and S22 are

identical to those shown in Equation 14.216 and Equation 14.217, except for a

one-to-one interchange of the one and two subscripts.

The expected value of the product ðS1S2Þ is

E{S1S2} ¼
ð1

0

ð1

0
s1s2fS1;S2 ðs1; s2Þds1 ds2 ð14:218Þ
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¼ Ks

4

b1

2

� �2 Q1þR122
2


 �
b2

2

� �2 Q222
2


 �
G

Q1 þ R1 2 2

2

� �
G

Q2 2 2

2

� �

þ Ks
4

b2

2

� �2 Q2þR222
2


 �
b1

2

� �2 Q122
2


 �
G

Q2 þ R2 2 2

2

� �
G

Q1 2 2

2

� �
ð14:219Þ

The covariance between s1 and s2 is given by E{s1s2}2 E{s1}E{s2}:
The density fSðsÞ used in case one to find a closed form expression for hNMðaxÞ

was chosen so as to factor the multidimensional integral into a product of single

dimensional integrals. The following analysis presents another generalized SIRV

derived through direct evaluation of hNMðaxÞ:

14.4.1.2. Case 2

From Equation 14.27, the characteristic nonlinear function is

hNMðaxÞ ¼
ð
s

YM
i¼1

s2N
i exp

2axi
2s2i

( )" #
fSðsÞds ð14:220Þ

In Equation 14.220 let

zi ¼ s22
i ð14:221Þ

Based on Equation 14.221,

dsi ¼ 2
1

2
z
23=2
i dzi ð14:222Þ

for all i in the {1;…;M}: Substituting Equation 14.222 and Equation 14.221 into

Equation 14.220 produces

hNMðaxÞ ¼ 22M
ð
z

YM
i¼1

z

N23
2


 �
i exp 2

axi
2
zi

� �24 35fSðz21=2
1 ;…; z

21=2
M Þdz ð14:223Þ

where:

z ¼ {z1; z2;…; zM} ð14:224Þð
z
¼

ð1

21
…

ð1

21
ðM-fold integrationÞ ð14:225Þ

and

dz ¼ dz1dz2…dzM ð14:226Þ
In making this substitution, note that setting zi equal to an inverse of si causes

an exchange in the integral limits of zero and infinity. However, the negative sign

in Equation 14.222 causes them to change back.
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Consider the density

fS ¼ {z
21=2
1 ;…; z

21=2
M } ¼ KsNMYM

i¼1

½z2Qi

i exp{2 bizi}	exp 2
g

z1…zM

� �
uðz1Þ…uðzMÞ ð14:227Þ

where KsNM
is a normalizing constant and {b1;…;bM ; g} are shape parameters.

Define the parameters Qi such that

N 2 3

2

� �
2 Qi ¼ i

M þ 1

� �
2 1 ð14:228Þ

or

Qi ¼ N 2 1

2

� �
2

i

M þ 1

� �
ð14:229Þ

for all i in the set {1;…;M}: Substituting Equation 14.227 and Equation 14.229

into Equation 14.223 gives

hNMðaxÞ ¼ 22MKsNMð
z

YM
i¼1

z

1
Mþ1

21


 �
i exp 2

axi
2

þ bi

� �
zi

� �24 35exp 2
g

z1…zM

� �
dz ð14:230Þ

In Equation 14.230 let

ui ¼ axi
2

þ bi

� �
zi ð14:231Þ

and

dzi ¼ 2

axi þ 2bi

� �
dui ð14:232Þ

for all i in the set {1;…;M}: Substituting Equation 14.231 and Equation 14.232

into Equation 14.230 produces

hNMðaxÞ ¼ 22MKsNM
YM
i¼1

2

axi þ 2bi

� � 1
Mþ1


 �

�
ð
u

YM
i¼1

u

1
Mþ1

21


 �
i exp{2 ui}

24 35exp 2
lMþ1
M

u1…uM

( )
du ð14:233Þ

where

u ¼ {u1; u2;…uM} ð14:234Þ
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ð
u
¼

ð1

0
…

ð1

0
ðM-fold integrationÞ ð14:235Þ

du ¼ du1du2…duM ð14:236Þ
and

lM ¼ g
YM
i¼1

axi
2

þ bi

� �( ) 1
Mþ1


 �
ð14:237Þ

From Ref. 19, the solution to the multidimensional integral shown in Equation

14.233 is

hNMðaxÞ ¼22MKsNM

YM
i¼1

2

axi þ 2bi

� � 1
Mþ1


 �
ð2pÞM=2ffiffiffiffiffiffiffiffi
M þ 1

p
( )

� exp{2 ðM þ 1ÞlM} ð14:238Þ
The density function fSðsÞ which generates this characteristic nonlinear function

is found by substituting Equation 14.221 and Equation 14.229 into Equation

14.227. The result of these operations is

fSðsÞ ¼ KsNM

YM
i¼1

s
ðN21Þ2 2l

Mþ1

n o
i exp 2

bi
s2i

( )
uðsiÞ

24 35expð2gs21…s2MÞ ð14:239Þ

The values of KsNM
can be found through numerical integration. For the special

case where all of the shape parameters are unity, Table 14.2 shows values of this

constant for several values of N and M:
With reference to Equation 14.239, note that the density function depends on

the value of N: Because of this, the bootstrap theorem does not hold for the

characteristic function hNMðaxÞ shown in Equation 14.223. Nevertheless, this

function still generates a valid generalized SIRV density function.

TABLE 14.2
Case 2 Density Normalizing Constant

KsNM for (b1,…,bM,g) 5 (1.0,…,1.0,1.0)

N M 5 1 M 5 2

2 8.3377 19.644

4 5.5584 10.515

8 0.8663 1.0885

16 0.0012 0.0009
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Consider the case where the number of vectors in the generalized SIRV

matrix is one, (i.e., M ¼ 1). From Equation 14.84, the density of the envelope of

this vector is

fRðrÞ ¼ Kr1·r
ðN21Þ r2

2
þ b

{ !21=2

exp 22
ffiffi
g

p r2

2
þ b

{ !1=2
24 35 ð14:240Þ

where Kr1 is a normalizing constant. Figure 14.11 to Figure 14.13 show plots of

this density for various values of b; g; and N:
Once again, consider the case where the number of vectors in the generalized

SIRV matrix is one (i.e.,M ¼ 1). The marginal density of one component of this

vector is found by setting N equal to unity in Equation 14.238. This marginal

density is

fXðxÞ ¼ Kx

x2

2
þ b

{ !21=2

exp 22
ffiffi
g

p x2

2
þ b

{ !1=2
24 35 ð14:241Þ

where Kx is a normalizing constant. Figure 14.14 and Figure 14.15 show plots of

this density of various values of b and g:
This concludes discussion of the case 2 SIRV since it was not possible to

obtain a closed form expression for the covariance matrix of S.

14.4.2. EVALUATION oF hNM USING THE LAPLACE TRANSFORM

The previous section presented two closed form expressions for hNMðaxÞ as

derived through direct evaluation of the integral shown in Equation 14.163. This

section utilizes the Laplace transform representation derived in Section 14.3.7 to

b = 1

N = 2

g = 3

0.6

0.4

0.2

0.0
0 2

f R
(r

)

4
r

6 108

g = 2

g =1

FIGURE 14.11 Case 2 envelope density with g as a parameter.
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N=4
N=6

N=2

0
r

f R
(r

)

42

b = 1
g = 1

86 10

0.6

0.4

0.0

0.2

FIGURE 14.13 Case 2 envelope density with N as a parameter.

b = 1

N = 2

0

0.6

0.4

0.2

0.0
2

r

f R
(r

)

4 6 8 10

b = 10

b = 5

g =1

FIGURE 14.12 Case 2 envelope density with b as a parameter.

f X
(x

)

0.0
−10 −5

x
50
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0.6

10

g = 1

g = 2

g = 3b = 3

FIGURE 14.14 Case 2 marginal density with g as a parameter.
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find closed form expressions for hNMðaxÞ: From Equation 14.157 and Equation

14.158, the generating density,

fSðsÞ ¼ Ks

2NM

YM
i¼1

s2ð3þNÞ
i exp

2bi
2s2i

( )
uðsiÞ

" #XM
j¼1

gj
1

2s2j

{ !
ð14:242Þ

results in

hNMðaxÞ ¼ KsðN!ÞðM21Þ XM
j¼1

G
{N}
j ðaxj þ bjÞYM

i¼1
i–j

ðaxj þ bjÞðNþ1Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð14:243Þ

where the functions in the sets {g1ðz1Þ;…; gMðzMÞ} and {G1ðax1Þ;…;GMðaxMÞ}
form one-to-one Laplace transform pairs. The following analysis presents two

closed form expressions for hNMðaxÞ derived through use of these equations.

14.4.2.1. Case 3

Consider the case where the number of vectors in the generalized SIRV matrix is

one (i.e., M ¼ 1). Based on this, Equation 14.242 and Equation 14.243 reduce to

fSðsÞ ¼ Ks

2N
s2ð3þNÞexp

2b

2s2

� �
g

1

2s2

� �
uðsÞ ð14:244Þ

and

hNðaxÞ ¼ KsG
{N}ðax þ bÞ ð14:245Þ

f X
(x

)

0.0
−10 −5

x
50

0.2

0.4

0.6

10

b = 1

b = 5
b = 10

g = 1

FIGURE 14.15 Case 2 marginal density with b as a parameter.
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From Equation 14.84, the envelope density of this vector is

fRðrÞ ¼ rðN21Þ

Kr

G{N}ðr2 þ bÞuðrÞ ð14:246Þ

where Kr is a normalizing constant. Consider the function

gðzÞ ¼ expð2zÞ ð14:247Þ
From Ref. 16, the Laplace transform of this function is

GðaxÞ ¼ ðax þ 1Þ21 ð14:248Þ
Taking N derivatives with respect to ax produces

G{N}ðaxÞ ¼ ð21ÞNðN!Þðax þ 1Þ2ðNþ1Þ ð14:249Þ
After assuming N is an even integer such that G{N}ðaxÞ is nonnegative,

substitution of Equation 14.249 into Equation 14.246 yields

fRðrÞ ¼ N!

Kr

rðN21Þðr2 þ bþ 1Þ2ðNþ1ÞuðrÞ ð14:250Þ

Substituting Equation 14.247 into Equation 14.244 gives

fSðsÞ ¼ Ks

2N
s2ð3þNÞexp

2ðbþ 1Þ
2s2

� �
uðsÞ ð14:251Þ

The function shown in Equation 14.251 is the generalized SIRV

characteristic density which gives rise to the random vector whose envelope

density is specified by Equation 14.250. This example SIRV is derived in Ref. 14

through direct evaluation of the integral shown in Equation 14.163, for the case

where M equals unity. The components of this SIRV follow the student t

distribution.18

The Laplace transformation representation readily allows for expansion

to cases where M is greater than unity. Assume that all of the functions in the set

{g1ðz1Þ;…; gMðzMÞ} are the same and that N is an even integer. Substituting

Equation 14.249 into Equation 14.243 gives the characteristic nonlinear

function as

hNMðaxÞ ¼ ðN!ÞMKs

XM
j¼1

ðaxj þ bj þ 1Þ
YM
i¼1
i–j

ðaxj þ biÞ

2664
3775

2ðNþ1Þ8>><>>:
9>>=>>; ð14:252Þ

Furthermore, from Equation 14.84 the joint density of the M vector envelopes is

fRðrÞ ¼ KSðN!ÞM
Kr

ðr1…rMÞN21
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XM
j¼1

ðr2j þ bj þ 1Þ
YM
i¼1
i–j

ðr2i þ biÞ

2664
3775

2ðNþ1Þ8>><>>:
9>>=>>;uðr1Þ…uðrMÞ ð14:253Þ

and from Equation 14.242 and Equation 14.247, the multivariate characteristic

generating density is

fSðsÞ ¼ Ks

2NM

YM
i¼1

s2ð3þNÞ
i exp

2bi
2s2i

( )
uðsiÞ

" #XM
j¼1

exp
21

2s2j

{ !
ð14:254Þ

The following analysis concludes the investigation of the case three SIRV by

deriving the expected values and covariance matrix of the generating density

fSðsÞ; for the symmetric case where bi equals b for all i in Equation 14.254. The

resulting symmetric density is

fSðsÞ ¼ Ks

2NM

YM
i¼1

s2ð3þNÞ
i exp

2b

2s2i

( )
uðsiÞ

" #XM
j¼1

exp
21

2s2j

{ !
ð14:255Þ

or

fSðsÞ ¼ Ks

2NM

XM
j¼1

s2ð3þNÞ
j exp

2ðbþ 1Þ
2s2j

( )
uðsjÞ

YM
i¼1

i–j

s2ð3þNÞ
i exp

2b

2s2i

( )
uðsiÞ

" #8>>>><>>>>:

9>>>>=>>>>;
ð14:256Þ

Since the volume under the density is unity, the normalizing constant KS satisfies

1

KS

¼ 1

2NM

XM
j¼1

ð1

0
s2ð3þNÞ
j exp

2ðbþ1Þ
2s2j

( )
dsj

YM
i¼1

i–j

ð1

0
s2ð3þNÞ
i exp

2b

2s2i

( )
dsi

" #
8>>>>><>>>>>:

9>>>>>=>>>>>;
ð14:257Þ

Assume that b is positive. From Equation 14.175, the solutions to the

integrals shown in Equation 14.257 result in

1

KS

¼ 1

2NM

XM
j¼1

1

2

bþ1

2

� �2 Nþ2
2


 �
G

Nþ2

2

� �YM
i¼1

i–j

1

2

b

2

� �2 Nþ2
2


 �
G

Nþ2

2

� �264
375

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð14:258Þ
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or

1

KS

¼ 1

2NM
M

2M
G

Nþ2

2

� �M bþ1

2

� �2 Nþ2
2


 �
b

2

� �2ðM21Þ Nþ2
2


 �
ð14:259Þ

Substitution of Equation 14.259 into Equation 14.255 gives

fSðsÞ ¼ 2M

M

bþ1

2

� � Nþ2
2


 �
b

2

� �ðM21Þ Nþ2
2


 �

G
Nþ2

2

� �M

�
YM
i¼1

s2ð3þNÞ
i exp

2b

2s2i

( )
uðsiÞ

" #XM
j¼1

exp
21

2s2j

{ !
ð14:260Þ

From Ref. 16, two properties of the gamma function are

GðmÞ ¼ ðm21Þ! ð14:261Þ
and

G mþ 1

2

� �
¼ ffiffi

p
p

2ð122mÞ ð2m21Þ!
ðm21Þ! ð14:262Þ

where m is an integer. Based on Equation 14.261, for the special case where N is

an even integer, Equation 14.260 simplifies to

fSðsÞ ¼ ðbþ1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M YM
i¼1

s2ð3þNÞ
i exp

2b

2s2i

( )
uðsiÞ

" #

�
XM
j¼1

exp
21

2s2j

{ !
ð14:263Þ

In Equation 14.263, note that fSðsÞ is always positive since b is positive. This

fact, and the fact that the volume under the function is unity, verifies that fSðsÞ is a
probability density.

The expected value of the kth component of the random vector s is

E{Sk} ¼
ð
S
skfSðsÞds ð14:264Þ
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or, for the case where N is even,

E{Sk} ¼ ðbþ 1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M ð
s
sk
YM
i¼1

s2ð3þNÞ
i exp

2b

2s2i

{ !" #

�
XM
j¼1

exp
21

2s2j

{ !
ds ð14:265Þ

Equation 14.265 can also be written as

E{Sk} ¼ ðbþ 1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M

�
ð
s
sk
XM
j¼1

s2ð3þNÞ
j exp

2ðbþ 1Þ
2s2j

{ !YM
i¼1

i–j

s2ð3þNÞ
i exp

2b

2s2i

{ !" #8>>>><>>>>:

9>>>>=>>>>;
ds

ð14:266Þ

Separating the integrals in Equation 14.266 produces

E{Sk} ¼ ðbþ 1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M

�
ð1

0
s2ð2þNÞ
k exp

2ðbþ 1Þ
2s2k

{ !
dsk

Y
i¼1

M

i–j;k

ð1

0
s2ð3þNÞ
i exp

2b

2s2i

{ !
dsi

" #2664

þ
X
j¼1

M

j–1

ð1

0
s2ð2þNÞ
k exp

2ðbÞ
2s2k

{ !
dsk

ð1

0
s2ð3þNÞ
j exp

2ðbþ 1Þ
2s2j

{ !
dsj

8><>:

�
Y
i¼1

M

i–j;k

ð1

0
s2ð3þNÞ
i exp

2b

2s2i

{ !
dsi

" #9>>=>>;
3775 ð14:267Þ
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From Equation 14.175, the solutions to the integrals shown in Equation 14.267

result in

E{Sk} ¼ ðbþ 1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M

� 22M bþ 1

2

� �2 Nþ1
2


 �
G

N þ 1

2

� �
b

2

� �2ðM21Þ Nþ2
2


 �
G

N þ 2

2

� �ðM21Þ
264

þ ðM 2 1Þ22M b

2

� �2 Nþ1
2


 �
G

N þ 1

2

� �
bþ 1

2

� �2 Nþ2
2


 �

� G N þ 2

2

� �
b

2

� �2ðM22Þ Nþ2
2


 �
G

N þ 2

2

� �ðM22Þ#
ð14:268Þ

or

E{Sk} ¼ ðbþ 1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M 2MN=2 N

2
!

� �M
ðbþ 1Þ

Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �

�
ffiffiffiffiffiffiffiffiffi
bþ 1

2

r G
N þ 1

2

� �
G

N þ 2

2

� � þ ðM 2 1Þ
ffiffiffiffi
b

2

r G
N þ 1

2

� �
G

N þ 2

2

� �
2664

3775 ð14:269Þ

Since N is an even integer, and utilizing Equation 14.261 and Equation 14.262,

Equation 14.269 simplifies to

E{Sk} ¼ 1

M

ffiffi
p

p
21=22NðN 2 1Þ!
N 2 2

2

� �
!
N

2

� �
!

½ ffiffiffiffiffiffiffiffi
bþ 1

p þ ðM 2 1Þ ffiffi
b

p 	 ð14:270Þ

Because the shape parameters are identical for all Sk; and fSðsÞ is symmetric with

respect to all Sk; the mean is the same for all Sk:
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Following the same approach as that used to derive Equation 14.268, the

expected value of S2k is

E{S2k} ¼ ðbþ 1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M

� 22M bþ 1

2

� �2 N
2


 �
G

N

2

� �
b

2

� �2ðM21Þ Nþ2
2


 �
G

N þ 2

2

� �ðM21Þ
264

þ ðM 2 1Þ22M b

2

� �2 N
2


 �
G

N

2

� �
bþ 1

2

� �2 Nþ2
2


 �

�G N þ 2

2

� �
b

2

� �2ðM22Þ Nþ2
2


 �
G

N þ 2

2

� �ðM22Þ
375 ð14:271Þ

or

E{S2k} ¼ 2

MN

bþ 1

2
þ ðM 2 1Þ b

2

� �
ð14:272Þ

Simplification of Equation 14.272 produces

E{s2k} ¼ 1

NM
þ b

N

� �
ð14:273Þ

Substitution of Equation 14.273 and Equation 14.270 into Equation 14.202 gives

the variance of sk as

s 2
k ¼ 1

NM
þ b

N

� �

2
1

M

ffiffi
p

p
21=22NðN 2 1Þ!
N þ 2

2

� �
!
N

2

� �
!

½ ffiffiffiffiffiffiffiffi
bþ 1

p þ ðM 2 1Þ ffiffi
b

p 	

2664
3775

2

ð14:274Þ

Note that the variance is the same for all Sk:
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The covariance between any two different components of S is

E{SuSv} ¼
ð
s
susvfSðsÞds ¼ ðbþ 1Þ

Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M

� 2
ð1

0
s2ð2þNÞ
u exp

2ðbþ 1Þ
2s2u

� �
dsu

ð1

0
s2ð2þNÞ
v exp

2ðbÞ
2s2v

� �
dsv

2664
�

Y
i¼1

M

i–u;v

ð1

0
s2ð3þNÞ
i exp

2b

2s2i

{ !
dsi

" #

þ
X
j¼1

M

j–u;v

ð1

0
s2ð2þNÞ
u exp

2b

2s2u

� �
dsu

ð1

0
s2ð2þNÞ
v exp

2ðbÞ
2s2v

� �
dsv

8>><>>:
�
ð1

0
s2ð3þNÞ
j exp

2ðbþ 1Þ
2s2j

{ !
dsj

�
Y
i¼1

M

i–j;u;v

ð1

0
s2ð3þNÞ
i exp

2b

2s2i

{ !
dsi

" #9>>=>>;
3775 ð14:275Þ

From Equation 14.175, evaluation of the integrals shown in Equation 14.275

results in

E{SuSv}¼ðbþ1Þ
Nþ2
2


 �
b
ðM21Þ Nþ2

2


 �
M2MN=2 N

2
!

� �M 22M bþ1

2

� �2 Nþ1
2


 �
G

Nþ1

2

� �264

� b

2

� �2 Nþ1
2


 �
G

Nþ1

2

� �
b

2

� �2ðM22Þ Nþ2
2


 �
G

Nþ2

2

� �ðM22Þ

þðM22Þ22M b

2

� �22
Nþ1
2


 �
G

Nþ1

2

� �2 bþ1

2

� �2 Nþ2
2


 �

�G Nþ2

2

� �
b

2

� �2ðM23Þ Nþ2
2


 �
G

Nþ2

2

� �ðM23Þ
375 ð14:276Þ
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Based on Equation 14.261 and Equation 14.262, and recalling that N is an

even integer, Equation 14.276 simplifies to

E{SuSv} ¼ p
ffiffi
B

p
M2ð2N21Þ

{ !
ðN 2 1Þ!

N 2 2

2

� �
!
N

2

� �
!

2664
3775

2

ð2 ffiffiffiffiffiffiffiffi
bþ 1

p þ ðM 2 2Þ ffiffi
b

p Þ

ð14:277Þ
The covariance between any two components of the vector S is

Csu;v
¼ E{SuSv}2 E{S2u} ð14:278Þ

Substitution of Equation 14.277 and Equation 14.270 into Equation 14.278

produces

Csu;v
¼ p

M22ð2N21Þ

� � ðN 2 1Þ!
N 2 2

2

� �
!
N

2

� �
!

2664
3775

2

ð ffiffiffiffiffiffiffiffi
bþ 1

p
2

ffiffi
b

p Þ2 ð14:279Þ

Once again, because the shape parameters are identical for all Sk; and fSðsÞ is
symmetric with respect to all Sk; the covariance is independent of u and v:
Consequently, the full covariance matrix is simply evaluated by computing only

two parameters. All of the diagonal elements are equal and are given by Equation

14.274. Similarly, all of the off-diagonal elements are equal and are given by

Equation 14.279.

This concludes the analysis of the Case 3 SIRV. The next case looks at

another SIRV derived through use of the Laplace transform representation.

14.4.2.2. Case 4

Once again, let the number of vectors in the generalized SIRV matrix be unity,

(i.e., M ¼ 1). Consider the function

gðzÞ ¼ sinðzÞ ð14:280Þ

From Ref. 16, the Laplace transform of this function is

GðaxÞ ¼ ða2
x þ 1Þ21 ð14:281Þ

Taking N derivatives with respect to ax produces

G{N}ðaxÞ ¼ ð21ÞNðN!Þð2aÞða2
x þ 1Þ2ðNþ1Þ ð14:282Þ
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After assuming that N is an even number, substitution of Equation 14.282

into Equation 14.246 yields

fRðrÞ ¼ 2NN!

Kr

" #
rðN21Þ ðr2 þ bÞN

½ðr2 þ bÞ2 þ 1	Nþ1
uðrÞ ð14:283Þ

Figure 14.16 and Figure 14.17 show plots of this density for various values of

b and N; where Kr has been numerically evaluated such that the area under fRðrÞ
is unity. Substituting Equation 14.280 into Equation 14.244 yields

fSðsÞ ¼ Ks

2N
s2ð3þNÞexp

2b

2s2

� �
sin

1

2s2

� �
uðsÞ ð14:284Þ

Figure 14.18 shows a plot of this function. As seen, this is not a valid density

since it goes negative for certain values of s. However, it is known that it is not

necessary for fSðsÞ to be a density function, or even nonnegative.13 As shown in

Section 14.3.7, the Laplace transform representation used in this case guarantees

that this function generates a valid SIRV density.
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FIGURE 14.16 Case 4 envelope density with b as a parameter.
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FIGURE 14.17 Case 4 envelope density with N as a parameter.
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For the case where M is greater than unity, and all of the functions in the set

{g1ðz1Þ;…; gMðzMÞ} are the same, fSðsÞ and hNMðaxÞ are readily derived from

Equation 14.242 and Equation 14.243 to be

fSðsÞ ¼ KS

2NM
·
YM
i¼1

s2ð3þNÞ
i exp

2bi
2s2i

{ !
uðsiÞ

" #XM
j¼1

sin
1

2s2j

{ !
ð14:285Þ

and

hNMðaxÞ ¼ ðN!ÞM2NKs

XM
j¼1

ðaxj þ bjÞNðaxj þ bj þ 1Þ2ðNþ1ÞYM
i¼1
i–j

ðaxi þ biÞðNþ1Þ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð14:286Þ

This concludes the analysis of specific generalized SIRVs. The next chapter

describes how to generate random data which follows a particular SIRV density.

14.5. GENERALIZED SIRV GENERATION

This section describes a method for generating random data which follows a

particular generalized SIRV density function. The method of generation is based

on the generalized SIRV representation theorem, which is

X1 ¼ Z1S1

..

.

XM ¼ ZMSM;

ð14:287Þ

f S
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FIGURE 14.18 Case 4 generating function.
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where ½X1;…;XM	 are M dependent SIRVs, ½Z1;…;ZM	 are M independent

Gaussian random vectors, and ½S1;…; SM	 are M correlated random nonnegative

scalars. Figure 14.19 shows the process used to generate generalized SIRVs

based upon this theorem. As seen, the method involves first generating the M

independent Gaussian random vectors. These vectors are then each multiplied by

the appropriate random scalar to generate the M dependent SIRVs.

With reference to Figure 14.19, the generation of M independent Gaussian

random vectors is a straightforward procedure. However, a scheme needs to be

developed to generate the vector S: ½S1;…; SM	 which follows a particular SIRV

generating density fSðsÞ:
A scheme for generating random scalars is presented in Ref. 15, based on the

rejection theorem. The following analysis presents an extension of this work to

account for multivariate random variables.

14.5.1. MULTIVARIATE REJECTION THEOREM

The goal of this analysis is to create a method for generating a random vector s,

which follows the multivariate density fSðsÞ; based on generation of another

random vector Q, which follows the multivariate density fQðqÞ:
Assume that both densities are nonzero over the same interval. In particular,

if fSðxÞ equals zero, then fQðxÞ also equal zero for all x. If the densities are limited

in this fashion, then there exists a finite positive scalar, a; such that

fQðqÞ=fSðqÞ $ a ð14:288Þ

Generate
M

correlated
scalars

s ~fS(s)

…
… …

S1

SM

Generate
M

independent
Gaussian
Random
Vectors

Z1

ZM

X1=Z1S1x

x
XM =ZMSM

FIGURE 14.19 Generalized SIRV generation.
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for all vectors Q in the region R where the densities are nonzero. Define the

function gðqÞ as

gðqÞ ¼ a·fSðqÞ=fQðqÞ ð14:289Þ
where gðqÞ # 1 for all vectors Q in R.

Let V be a random scalar uniformly distributed over the interval [0, 1].

Assume that V is statistically independent of Q. Define M as the event that v

is less than or equal to gðqÞ; or

M: ½v # gðqÞ	 ð14:290Þ
The probability of event M is

P{M} ¼
ð
q

ðgðqÞ

0
fQ;V ðq; vÞdv dq ð14:291Þ

where

ð
q
dq ¼

ð
q1

…
ð
qM

dq1…dqM ð14:292Þ

and fQ;V ðq; vÞ is the joint density of q and v:
Since q and v are independent, Equation 15.109 simplifies to become

P{M} ¼
ð
q

ðgðqÞ

0
fQðqÞdvðvÞdv dq ð14:293Þ

Note that fV ðvÞ is unity over the interval [0, 1]. Furthermore, since gðqÞ is less
than or equal to one, Equation 14.293 reduces to

P{M} ¼
ð
q
gðqÞfQðqÞdq ð14:294Þ

Substituting Equation 14.289 into Equation 14.294 produces

P{M} ¼
ð
q
a·fSðqÞdq ¼ a·

ð
q
fSðqÞdq ð14:295Þ

Since the densities fQðqÞ and fSðqÞ are nonzero over the same region R, the

integrals shown in Equation 14.295 span the entire domain of fSðqÞ: Because the
volume under a multivariate density is unity, Equation 14.295 simplifies to

become

P{M} ¼ a ð14:296Þ
Define A as the event that the random vector Q lies within an incremental

distance away from a particular realization vector q, or

A: {q1 , Q1 , q1 , Dq1;…; qM , QM , qM þ DqM} ð14:297Þ
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The probability of event A is

P{A} ¼
ðq1þDq1

q1

· · ·
ðqMþDqM

qM

fQðqÞdq1…dqM ð14:298Þ

Assuming Dq1;…;DqM are sufficiently small such that the function fQðqÞ can
be approximated by a constant over the region of integration, the probability of

event A becomes

P{A} ¼ fQðqÞDq ð14:299Þ
where

Dq ¼ {Dq1·;…; ·DqM} ð14:300Þ
From Equation 14.298, the probability of event A given event M is

P{A=M} ¼
ðq1þDq1

q1

· · ·
ðqMþDqM

qM

fQlMðqÞdq1…dqM ¼ fQlMðqÞDq ð14:301Þ

Furthermore, with reference to Equation 14.293 and Equation 14.298, the

joint probability of events A and M is

P{AjM} ¼
ðq1þDq1

q1

· · ·
ðqMþDqM

qM

ðgðqÞ

0
fQ;vðq; vÞdv dq

¼
ðq1þDq1

q1

· · ·
ðqMþDqM

qM

ðgðqÞ

0
fQðqÞfvðvÞdv dq

¼
ðq1þDq1

q1

· · ·
ðqMþDqM

qM

gðqÞfQðqÞdq ¼ gðqÞfQðqÞDq ð14:302Þ

Bayes’ rule gives the joint probability of two events as

P{A;M} ¼ P{AjM}·P{M} ð14:303Þ

Substituting Equation 14.302, Equation 14.301, and Equation 14.296 into

Equation 14.303 produces

gðqÞfQðqÞDq ¼ fQlMðqÞDq·a ð14:304Þ

Inserting the expression for gðqÞ from Equation 14.289 into Equation 14.304

gives

a·fSðqÞDq ¼ a·fQlMðqÞDq ð14:305Þ
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Finally, canceling like terms from both sides of Equation 14.305 yields the

multivariate rejection theorem,

fSðqÞ ¼ fQlMðqÞ ð14:306Þ

14.5.2. APPLICATION OF THE REJECTION THEOREM

With reference to Equation 14.306, the rejection theorem states that the density of

Q conditioned on event M equals the density of S. To use the rejection theorem,

first generate an ensemble of vectors q which follow the density fQðqÞ: Next,
remove all of those vectors q for which event M does not hold true. The

remaining vectors are all conditioned on event M; and thus follow the density

fSðqÞ:
As an example, let fQðqÞ equal a uniform density over the nonzero regionR of

fSðqÞ; as shown in Figure 14.20 for a univariate case. If fSðqÞ does not have finite
upper limits, then values must be chosen such that the volume under fSðqÞ within
these limits is very close to unity.

Assume that the lower boundaries of R are zero in all dimensions. Define the

upper bounds of R to be {sh1;…; shM}: Based on these values, the multivariate

uniform density fQðqÞ is

fQðqÞ ¼
1:0=ðsh1·sh2·…·shMÞ when {0, q1 , sh1;…;0, qM , shM}

0:0 elsewhere

(
ð14:307Þ

From Equation 14.288, there exists a positive scalar, a, such that

fQðqÞ=fsðqÞ$ a; for all vectors q inR ð14:308Þ

fS (s)

smax sh
s

fQ (q)

sh

1/sh

q

fS (s)ds =1
S

h

0

FIGURE 14.20 Rejection theorem densities.
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From Equation 14.296, the scalar a equals the probability of event M; or the
probability that we do not reject a given q realization. From a practical

standpoint, it is desirable to pick this scalar as large as possible in order to

minimize the number of rejections. In Equation 14.308, note that fQðqÞ is constant
over R. The maximum value of the scalar a is thus governed by the maximum

value of fSðqÞ: Define smax as the vector at which the function fSðsÞ is a maximum.

Using this notation, the maximum value of the scalar a is

a¼ ðsh1·sh1·…·shMÞ21=fSðsmaxÞ ð14:309Þ
Equation 14.289 gives the function gðqÞ as

gðqÞ ¼ a·fSðqÞ=fQðqÞ ð14:310Þ
Substituting Equation 14.307 and Equation 14.309 into Equation 14.310

produces

gðqÞ ¼ fSðqÞ=fSðsmaxÞ ð14:311Þ
This is the function used to determine whether or not to reject a given

realization of q.

To summarize, the steps taken to generate random data which follows the

density fSðsÞ are listed below:

(1) Determine the upper bounds of R, the nonzero region of fSðsÞ:
(2) Find the maximum value of fSðsÞ; fSðsmaxÞ:
(3) Generate an ensemble of vectors q which follow the uniform density

fQðqÞ given in Equation 14.307.

(4) For each vector q, generate the random scalar v uniformly distributed

over [0, 1].

(5) Reject all those vectors q which do not satisfy v , gðqÞ; where gðqÞ is
given in Equation 14.311.

(6) The remaining vectors can be considered to be samples from fSðqÞ:

These vectors can now be used to generate the desired SIRV, as shown in

Figure 14.19.

14.5.3. EXAMPLES OF RANDOM VARIABLE GENERATION

This section presents two examples of random variable generation via the

rejection theorem. The first example presents the generation of a univariate

random scalar, while the second presents the generation of a multivariate random

vector.

14.5.3.1. Example 1

Consider the Case 1 density derived in Section 14.4.1.1. Let the number of

generalized SIRV’s equal unity, (i.e., M ¼ 1). Furthermore, let the shape
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parameter b equal (1/2) and the sum ðQþ RÞ equal 5. From Equation 14.167 and

Equation 14.166, the resulting SIRV generating density function fSðsÞ is

fSðsÞ ¼ 1

8s5
exp

21

4s2

� �
ð14:312Þ

Since the random variable s is nonnegative, the lower bound onR is zero, and

the upper bound is infinity. A more practical upper limit is

sh ¼ 3 ð14:313Þ
Since

ð3

0
fSðsÞds . 0:9996 ð14:314Þ

The maximum value of fSðsÞ is found at smax ¼ 0:316: This maximum is

fSðsmaxÞ ¼ 3:245 ð14:315Þ
Substituting Equation 14.313 and Equation 14.315 into Equation 14.309

gives the probability of acceptance as

a ¼ 1=ð3 £ 3:245Þ ¼ 0:103 ð14:316Þ
The steps outlined above can now be used to generate random scalars which

follows fSðsÞ: Figure 14.21 shows the results. To generate this data, 1000 uniform
random variable realizations q were generated over the interval [0, 3], of which

102 were accepted by the theorem. These 102 random variable realizations were

used to create the histogram. As seen, the histogram closely follows the desired

density.
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FIGURE 14.21 Rejection theorem Example 1.
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14.5.3.2. Example 2

Consider once again the Case 1 density derived in Section 14.4.1.1. For this

example, let the number of generalized SIRVs equal two, (i.e., M ¼ 2).

Furthermore, let the shape parameters b1 and b2 equal (1/2), Q1 and Q2 equal

three, and R1 and R2 equal two. From Equation 14.167 and Equation 14.176, the

resulting symmetric density is

fS1;S2ðs1; s2Þ ¼
1

32s31s
3
2

1

s21
þ 1

s22

{ !
exp

21

4s21
þ 1

4s22

( )
ð14:317Þ

With maximum boundaries of eight, (i.e., sh1; sh2 ¼ 8), the volume under this

density is greater than 0.9661. The maximum value of the density is 4.96. From

Equation 14.309, the probability of acceptance is 0.003. Figure 14.22 shows a

histogram of data which follows this density, as generated by the rejection

theorem. To create these plots, 1,000,000 vectors ðq1; q2Þ were generated from

the multivariate density over the region given by {0 # ðq1; q2Þ # 8}: Of these
vectors, 3320 were accepted. These accepted vectors were used to generate the

histogram. Once again, the histogram closely follows the desired density.

This example illustrates a potential problem associated with using a uniform

density of fQðqÞ; the probability of acceptance may be quite low (.003 in the

above example). This problem becomes especially significant as the dimension-

ality of the density increases. In general, the probability of acceptance

rises as fQðqÞ approaches fSðsÞ: As an example, the univariate density shown in

Figure 14.23, which consists of three linear segments, yields a higher probability

of acceptance than a uniform density. When fQðqÞ is made up of linear pieces in

this fashion, note that the q samples can be generated from the inverse

distribution function.

This section presented a method for generating random data which follows a

particular SIRV density. The next section describes a method for approximating

the SIRV density underlying a particular set of random data.

14.6. GENERALIZED SIRV DENSITY APPROXIMATION

This section describes a method for approximating the SIRV density underlying a

particular set of random data, as based on the work of Ozturk20 and

Rangaswamy.14 The Ozturk algorithm accurately approximates the underlying

distribution of univariate random data, even when presented with a relatively

small number of samples. Rangaswamy used this algorithm to approximate the

underlying distribution of an SIRV by processing the quadratic form generated

from the components of the vector. Assuming an identity covariance matrix, this

quadratic form is the square of the envelope. As seen in Equation 14.84, the

envelope density of an SIRV is unique. Approximating the density of the

envelope thus reduces the multivariate random vector approximation problem to

a univariate approximation problem.
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However, generalized SIRV’s have associated with them M different

envelopes, hence the work described above must be extended. The analysis

begins with a summary of Ozturk’s algorithm in the following section.

Subsequent sections describe how to extend the algorithm to account for

FIGURE 14.22 Rejection theorem Example 2.

smax sh s,q

fS (s)

fQ (q)

FIGURE 14.23 Alternate fQðqÞ density.
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generalized SIRV approximation. The analysis concludes with an examination of

recorded SONAR data.

14.6.1. UNIVARIATE DENSITYAPPROXIMATION

This chapter summarizes Ozturk’s algorithm for approximating the underlying

distribution of a random scalar. Consider a set of Ns samples, {x1;…; xNs
};

generated from the density fXðxÞ: Define xðkÞ as the kth ordered sample in the set.

For each ordered sample, define the vector uk as

uk ¼ ðlxðkÞlcos uk; lxðkÞlsin ukÞ ð14:318Þ
where

uk ¼ pFrefðmk:Ns
Þ ð14:319Þ

Frefð·Þ is the distribution function of a specified reference density, andmk:Ns
is the

expected value of the kth ordered statistic from an Ns sized sample of that

reference density. The creation of the vector uk involves mapping one dimensional

data into a two dimensional plane, as shown in Figure 14.24. Note that the

magnitude of the vector uk equals the magnitude of the scalar xðkÞ:
Define the vector u as the normalized sum of the individual vectors uk; or

u ¼ 1

Ns

XNs

k¼1

uk ð14:320Þ

As shown in Figure 14.25, the vector u is the end-point of a trajectory made

up of the Ns individual vectors uk:
Ozturk’s algorithm involves generating many samples of length Ns from a

known density fXðxÞ: A separate u vector is then created for each set of Ns

samples. The end-points of these vectors form a cloud in ðu1; u2Þ space, as shown
in Figure 14.26. Define the average of all these u vectors as 
u:

The above procedure can be repeated for as many different densities as

desired. This leads to formation of a “map” in ðu1; u2Þ space, where different

points correspond to the computed value of 
u for different densities, as shown in

Figure 14.27.

0 0

|x(k)| sinqk

|x(k)| cosqk

qk

x(k) x

u2

uk

u1

One-Dimensional Data Two-Dimensional Data

FIGURE 14.24 Ozturk algorithm univariate mapping.

A Generalization of Spherically Invariant Random Vectors 865

© 2006 by Taylor & Francis Group, LLC



uk=1

u1

Ns·u

uk=2

uk=Nsu2

FIGURE 14.25 Ozturk algorithm trajectory.

u2

u1

Individual u vectors

u

FIGURE 14.26 Ozturk algorithm u vector cloud.

u2

u1

fX (x)
fZ (z)

fY (y)

FIGURE 14.27 Ozturk algorithm map.
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To approximate the density of an unknown sample, compute u as described

above and plot the end-point location on the map. By definition, the chosen

density is the one whose value of 
u lies closest to the unknown data u vector.

Obviously, the final accuracy of the approximation procedure improves as Ns and

the number of 
u points on the map increases.

14.6.2. 2-D DENSITYAPPROXIMATION

Now consider a sample set of Ns random vectors where each vector contains two

components. The sample can thus be expressed as

X ¼ {x1; x2;…; xNs
} ð14:321Þ

where xi is the ith random vector with xTi ¼ ðxi;1; xi;2Þ: Define xðkÞ as the kth

ordered sample of this set, as based on the magnitude of the vectors. In order to

form the vector uk associated with xðkÞ; rotate xðkÞ into the third dimension as

shown in Figure 14.28. In this figure, the angle of rotation equals the same angle

as that shown in Figure 14.24.

Equation 14.319 gives the value of this angle.

Based on Figure 14.28, the components of vector uk are

uk;1 ¼ lxðkÞlcos ukcos f ¼ lxðkÞ;1l·cos uk ð14:322Þ

uk;2 ¼ lxðkÞlcos uksin f ¼ lxðkÞ;2l·cos uk ð14:323Þ

uk,3

uk,1

uk,2

u3

uk

qk

f

u2, x2

u1, x1

x(k)

x(k), 1

x(k),2

|uk| = |x(k)|

FIGURE 14.28 Ozturk algorithm 2-D mapping.
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and

uk;3 ¼ lxðkÞlsin uk ¼ ðx2ðkÞ;1 þ x2ðkÞ;2Þ1=2·sin uk ð14:324Þ
In Equation 14.322 and Equation 14.323, the absolute value of xðkÞ;1 and xðkÞ;2

forces uk into the positive sector of 3 D space. Note that the magnitude of uk
equals the magnitude of xðkÞ; just as in the one-dimensional case.

The set of vectors {u1;…; uNs
} are now summed and normalized to form the

vector u,

u ¼ 1

Ns

XNs

k¼1

uk ð14:325Þ

Once again, this vector is averaged over many trials to form one 
u vector for

each density on the map. This time, however, the map is three-dimensional.

14.6.3. MULTIVARIATE DENSITYAPPROXIMATION

Now consider a sample set of Ns random vectors, where each vector contains Nx

components. The data sample can be expressed as

X ¼ {x1; x2;…; xNs
} ð14:326Þ

where xi is the ith random vector with xTi ¼ ðxi;1; xi;2;…; xi;Nx
Þ: Define xðkÞ as the

kth ordered sample of this set, as based on the magnitude of the vectors. In order

to form the vector uk associated with xðkÞ; rotate xðkÞ into the ðNx þ 1Þth dimension

using the same angle of rotation as that defined by Equation 14.319.

The components of vector uk are

uk;1 ¼ lxðkÞ;1l·cos uk ð14:327Þ
uk;2 ¼ lxðkÞ;2l·cos uk ð14:328Þ

..

.

uk;Nx
¼ lxðkÞ;Nx

l·cos uk ð14:329Þ
and

uk;Nxþ1 ¼ ðx2ðkÞ;1 þ · · ·þ x2ðkÞ;Nx
Þ1=2·sin uk ð14:330Þ

Just as in the two-dimensional case, the vectors are added together and

normalized to form the vector u. Note that the final approximation map which

arises by averaging the u vectors is of dimensionality ðNxþ1Þ:
The previous sections describe how to extend Ozturk’s algorithm into multi-

dimensions. The next section presents an example of real data processed in this

fashion.
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14.6.4. REAL DATA ANALYSIS

As explained above, approximating the densities of real data requires creation of

an approximation map. The first step in this process involves defining the angles

{u1;…uNs
}: From Equation 14.319, these angles are given by

uk ¼ pFrefðmk:NsÞ ð14:331Þ

where Frefðmk:NsÞ is the distribution function of a specified reference density, and

mk:Ns is the expected value of the kth ordered statistic from that reference density.

For analytic simplicity, this example employs as a reference the Rayleigh

density function,

frefðxÞ ¼ x e2x2=2; x . 0 ð14:332Þ

The Rayleigh distribution function is

FrefðzÞ ¼
ðz

0
frefðxÞdx ¼ 12 e2z2=2 ð14:333Þ

From Ref. 18, the density of the kth order statistic from a sample of size Ns is

fXðkÞ ðxÞ ¼
Ns!

ðk2 1Þ!ðNs 2 kÞ!
� �

½FXðxÞ	ðk21Þ½12 FXðxÞ	ðNs2kÞfXðxÞ ð14:334Þ

Substituting Equation 14.333 and Equation 14.332 into Equation 14.334

produces

frefðkÞ ðxÞ ¼
Ns!

ðk2 1Þ!ðNs 2 kÞ!
� �

xð12 e2x2=2Þðk21Þe2ðNs2kþ1Þx2=2; x . 0

ð14:335Þ
The expected value of the kth ordered statistic is

mk:Ns
¼

ð1

0
x·frefðkÞ ðxÞdx

¼ Ns!

ðk2 1Þ!ðNs 2 kÞ!
� �ð1

0
x2ð12 e2x2=2Þðk21Þe2ðNs2kþ1Þx2=2dx ð14:336Þ

In Equation 14.336, let

u ¼ x2=2 ð14:337Þ
and

du ¼ x dx ð14:338Þ
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Substituting Equation 14.337 and Equation 14.338 into Equation 14.336 gives

mk:Ns
¼

ffiffi
2

p
Ns!

ðk2 1Þ!ðNs 2 kÞ!

{ !ð1

0

ffiffi
u

p ð12 e2uÞðk21Þe2ðNs2kþ1Þu du ð14:339Þ

From Ref. 19, the solution to the integral shown above results in

mk:Ns
¼

ffiffi
2

p
Ns!

ðk2 1Þ!ðNs 2 kÞ!

{ !
1

2

ffiffi
p

p ð21Þðk21Þ

�
Xðk21Þ

j¼0

ð21Þ j ðNs 2 jÞ23=2

j!ðk2 12 jÞ!

" # ð14:340Þ

Equation 14.340 and Equation 14.333 can now be combined with Equation

14.331 to find the desired angles uk: In practice, the specific values of the angles

are not as important as the consistency; that is, the same set of angles must be

used both to create every point on the map and to approximate the unknown data

density.

The next step in the analysis involves creating the approximation map. This is

accomplished by generating random vectors which follow a particular density. In

this example, the length of each random vector is two. Define the number of

vectors in a given sample set as Ns: With reference to Figure 14.25, Ns

corresponds to the number of vectors used to form a given vector u. Define the

total number of sample sets as Nu; where Nu is the number of u vectors averaged

together to form 
u; the final point on the approximation map.

The map created for this example utilizes the four SIRV envelope densities

derived in Section 14.4. To begin with, consider Equation 14.185 which gives the

envelope density for case 1 where the number of generalized SIRV’s is two. This

is a two-dimensional density function, where each dimension corresponds to the

envelope of one SIRV. The shape parameters were chosen to be Q1 ¼ Q2 ¼ 5;
R1 ¼ R2 ¼ 2; and b1 ¼ b2 ¼ 0:2; resulting in a symmetric density. A computer

subroutine was developed to generate Nu ¼ 2000 sample sets of random vectors

which follow this density. The generation scheme is based on the generalized

rejection theorem, as outline in Section 14.5.

As described above, one u vector was computed for each generated sample

set. Figure 14.29 shows plots of the estimated standard deviation and mean of the

components of u as a function of the size of each sample set, Ns: As seen, the
standard deviation is less than .02 for sizes above 200 samples. For this reason, a

sample size of 200 was used to create the approximation map. Note that the

statistics of u1 equal those of u2 because the density is symmetric.

The approximation map vector 
u is the sample mean of the Nu ¼ 2000 u
vectors and has components 
u1; 
u2; 
u3: Since the density is symmetric, the sample

mean of 
u1 equals 
u2; and the map needs only consider two dimensions; 
u3 and

either 
u1 or 
u2: Figure 14.30 shows the resulting approximation map for the case 1

density. Each point on this chart corresponds to a different set of shape
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parameters. Nu ¼ 2000 sets of length Ns ¼ 200 were averaged to create each

point.

The next density examined is the case 2 density from Section 14.4.1.2. The

characteristic function of this generalized SIRV density, hNMðaxÞ; is given in

Equation 14.238. This function is inserted into Equation 14.84 to find the

envelope density. Note that even if the shape parameters are identical in all

dimensions, this density is not symmetric. Table 14.3 presents a list of the 3D

approximation map values for various values of the shape parameters.

Sections. 14.4.2.1 and Section 14.4.2.2 derive the case 3 and case 4 densities.

Equation 14.252 and Equation 14.286 give the characteristic functions for these

cases. Figure 14.31 shows the approximation map formed after assuming

symmetric densities, (i.e., the single shape parameter b is the same in all

dimensions).

The final density examined is that which arises when the components of the

random vector follow the standard normal Gaussian distribution. From Ref. 18,
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FIGURE 14.29 The effects of changing the sample size.
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FIGURE 14.30 The case 1 approximation map.
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the envelope of such a vector follows the density

fRðrÞ ¼ rðn21Þe2r2=2

2
n
2
21


 �
n=2
� �

2 1
� �

!

ð14:341Þ

where n corresponds to the number of vector components (2 in this example).

TABLE 14.3
Case 2 Approximation Map

Shape Parameters ID Chart Values

g b ū1 ū2 ū3

4 1.0 1.76 1.62 3.05

3 1.0 1.90 1.73 3.31

2 1.0 2.08 1.88 3.60

1 1.0 2.51 2.21 4.36

4 0.5 1.79 1.57 3.16

3 0.5 1.92 1.67 3.36

2 0.5 2.14 1.83 3.77

1 0.5 2.60 2.16 4.59

4 0.1 2.05 1.50 3.77

3 0.1 2.18 1.60 3.97

2 0.1 2.45 1.76 4.43

1 0.1 2.97 2.08 5.36

4.0

3.0

2.0

1.0

0.0
2.01.51.00.50.0

u 3

Case 3, b = 0.5 to 12.0
Case 4, b = 0.5 to 12.0

u1 = u2

FIGURE 14.31 Cases 3 and 4 approximation maps.
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Nu ¼ 2000 sets of length Ns ¼ 200 were processed to create 
u on the

approximation map. It was observed that ð
u1; 
u2Þ ¼ 1:62; and 
u3 ¼ 2:70:
The last step in the analysis involves processing the real data. In this example,

two data tapes were examined. The first contains acoustic echoes off the surface

of the ocean, called surface reverberation, and the second contains echoes from

naturally occurring small organic particles suspended in the water, called volume

reverberation. One sample set was processed from each tape. As explained in

Section 14.2, the digitized spatially active returns from a given sonar ping make

up the components of the SIRV. For this analysis, two aligned returns of 8 digital

samples from the same range cells for successive pings make up two vectors in

the generalized SIRV matrix.

A sample set of Ns ¼ 200 independent vector pairs was read from each tape.

Before being processed by the Ozturk algorithm, the sample mean was subtracted

from each vector in the sample set, and the result divided by sample standard

deviation. As explained in Section 14.3.1, the characteristic function of a

generalized SIRV remains invariant to linear transforms of this nature. The

envelope was then found for each vector to form the final generalized Ozturk

algorithm sample set of NS ¼ 200 envelope pairs. Table 14.4 shows the result of

processing this normalized envelope data with the generalized Ozturk algorithm,

as a function of the sample size, NS:
Note that the average 
u1 and 
u2 values lie close to one another, especially when

compared to 
u3: Because of this, the data was plotted on the 2D approximate map

after assuming a symmetric density and averaging the sample means of 
u1 and 
u2:
Figure 14.32 shows the result for a sample size of NS ¼ 200 vectors.

From this chart it is possible to approximate the densities followed by the

reverberation echoes. For surface reverberation, the closest point belongs to the

case 1 density, with shape parameters of Q ¼ 2; R ¼ 2; and b ¼ 0:2: For volume

reverberation, the closest point belongs to either the Gaussian envelope or the

case 4 density with shape parameter b ¼ 10:0:
To help confirm the accuracy of these density approximations, Figure 14.33

shows histograms of the real data. Figure 14.34 shows the case 1 and case 4

approximation densities. Figure 14.35 shows the Gaussian envelope density.

TABLE 14.4
Real Data Results

Sample Size Volume Reverberation Surface Reverberation

NS ū1 ū2 ū3 ū1 ū2 ū3

25 1.83 1.71 3.17 0.57 0.66 1.08

50 1.82 1.58 3.01 0.62 0.74 1.19

100 1.71 1.58 2.87 0.78 0.73 2.06

200 1.58 1.47 2.71 0.74 0.63 1.92
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FIGURE 14.32 Ozturk algorithm: real data results.

FIGURE 14.33 Real data histograms.
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Since only NS ¼ 200 vector pairs make up the sample set, the resulting real data

histograms are not an accurate indicator of the underlying density. Real data

tends to be nonstationary and nonhomogeneous. Consequently, in practice, it is

difficult to collect enough data to generate accurate histograms. It is for this

reason that the generalized Ozturk algorithm is required in the first place.

In summary, this section presents a method for approximating the density

function of multi-dimensional random data. This method was employed to find

approximations for the densities of real sonar surface and volume reverberations.

The volume reverberation is assumed to follow a Gaussian density. In contrast,

the surface reverberation is nonGaussian. The density function of the examined

surface echo data is approximated by case 1 which was derived in Section 14.4.1.

The processing of Gaussian data is a straightforward and well-studied

problem. In contrast, this dissertation deals with the processing of nonGaussian

data, as specifically modeled by generalized SIRVs. An application well suited

FIGURE 14.34 Approximation densities.
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for this analysis is that of a correlation sonar. A correlation sonar measures own-

ship velocity by comparing the return from two active pulses which ensonify the

same target volume at different times. Interference arises when echoes from

the first pulse intrude on the data collected during the second pulse window.

When these previous pulse echoes ensonify an ocean boundary, the resulting

interference power greatly exceeds that of the desired second pulse signal,

leading to significant degradations in performance. As shown above, these

surface echoes may follow nonGaussian densities. Consequently, the cancella-

tion of previous pulse boundary echoes in correlation sonar data presents itself as

a problem uniquely suited for this dissertation. The next section begins this

analysis with an introduction of correlation sonar fundamentals.

14.7. CORRELATION SONAR FUNDAMENTALS

This section begins with a description of how a correlation sonar operates, as

presented in Refs. 8–12. A derivation of a sub-optimal receiver then follows. A

detailed analysis of the correlation sonar signal and interference concludes this

section.

14.7.1. CORRELATION SONAR BASIC OPERATION

A correlation sonar measures own-ship velocity by comparing the return from

two active pulses which ensonify the same volume at different times. A typical

system consists of two perpendicular receive arrays and a separate projector

mounted to the hull of a ship, as shown in Figure 14.36. In this case, the projector

generates two successive pulses which propagate down and echo off the bottom.

By means of gating, the X array receives a bottom echo from the first pulse, while

the Y array receives one from the second.

In the far field, any of the bistatic projector-receive element pairs shown in

Figure 14.36 can be modeled as a monostatic sonar located halfway between the

FIGURE 14.35 Envelope of Gaussian data density.
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two. As such, in the far field, a correlation sonar system looks like a series of

monostatic sonars aligned in a “T” pattern. To determine own-ship velocity, each

X array sonar first samples a different region of the ocean floor, as shown in

Figure 14.37. Then, after a small period of time, each Y array sonar samples the

ocean floor. In both cases, the sonar beam pattern limits the size of the ensonified

region.

Own-ship velocity allows a Y array element region to overlap with that of an

X array element. After transmission of the first pulse, the platform moves, which

brings the Y array over to the same general area as that previously occupied by the

X array. It is now possible for one of the ensonified regions seen by a Y element to

overlap with that seen by an X element, as shown in Figure 14.38.

The system uses samples from the bottom echo in order to estimate the

correlation of the signal received on an X element with that received on a Y

element. If the scattering characteristics of the bottom do not change during the

time interval between pulses, then this correlation, in effect, measures how much

overlap occurs between the region ensonified by the X pulse and the region

X array elements

Bottom

View of a correlation
sonar as seen looking

up at the ship

Y
ar

ra
y

el
em

en
ts

Projector

FIGURE 14.36 A hull mounted correlation sonar.

Top view looking down on ocean floor
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…

…

FIGURE 14.37 Regions ensonified by the first pulse.
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ensonified by the Y pulse. If both elements receive echoes from the same region,

then the correlation estimate returns a high value. To figure out own-ship

velocity, therefore, the system must determine which X–Y element pair produces

the highest estimate of the correlation. Then, armed with precise knowledge of

the array geometry, the system calculates the velocity which causes the

ensonified region from these two elements to overlap.

Besides using the bottom echo, a correlation sonar can also estimate own-

ship velocity by examining volume returns from small organic scatterers

suspended throughout the water. The system typically operates in this volume

echo mode when the bottom lies far away. This, of course, only works if the

volume scattering characteristics do not significantly change during the time

interval between pulses. When operating in this mode, the system treats depth as

a discrete series of range bins, each as wide as one half of the pulse width. The

system can use any one of these range bins to estimate own-ship velocity.

The above description does not account for the fact that the Y array receives

volume echoes from both the first pulse and the second, as shown in Figure 14.39.

With reference to the sketch drawn for time t ¼ ti þ Td; let the previous pulse

echo be defined as the signal arising from scatterers in the volume ensonified by

the first pulse. On the Y array, this previous pulse echo arrives at the same time as

the second pulse, and thus interferes with the desired signal. Fortunately, the

previous pulse volume usually lies far enough away that attenuation renders this

interference negligible.

A problem arises, however, if the previous pulse ensonifies a boundary such

as the ocean floor. Such boundary returns significantly exceed typical volume

returns. In this case, the previous pulse boundary echo dominates the data

received on the Y array. Since this boundary data comes from a completely

different set of scatterers than those contributing to the X array data, it interferes

Region
seen by
first Y

element

Region
seen by
last Y

element

Region
seen by
last X

element

Overlap
region

Region
seen by
First X

element

FIGURE 14.38 Overlap region.
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with the desired X–Y correlation estimate. As the strength of the boundary

interference increases, the correlation estimate becomes more and more

corrupted. This means that the system cannot accurately determine own-ship

velocity when a significant previous pulse echo contaminates the Y array data.

A possible solution to the problem of previous pulse echoes involves gating

the data so as to exclude the interference. Figure 14.40 shows an example. In the

top graph, the boundary lies for enough away such that its echo never intrudes on

the Y array data. The second graph shows what can happen in shallower water. In

this figure, a boundary echo from the first pulse intrudes on the data from the

second. The bottom graph shows how decreasing the time interval between

pulses removes the previous pulse boundary echo from the Y data.

This solution carries two undesirable features. First, for a given array

configuration, longer time intervals are required in order to detect slower speeds.

This means that decreasing the interpulse period increases the minimum

detectable velocity of the correlation sonar. Furthermore, this solution also

involves decreasing the size of the time window during which data is received,

(1) Time t = 0,
Ist pulse transmitted

(3) Time t = Td ,
2nd pulse transmitted

(C Td /2)

1st pulse
continues to
propagate

2nd pulse ensonies
this region: C ti /2

1st pulse ensonies
this region:
C (ti + Td)/2

(4) Time t = (ti + Td),
Y array receives data from both pulses

(2) Time t = ti,
X array receives data from 1st pulse

Range to ensonified
region = C ti / 2,

Where C = Sound speed

FIGURE 14.39 Y array previous pulse echo.
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which limits the range extent over which the system can gather own-ship velocity

estimates. To avoid these limitations, the system must have the ability to directly

process data contaminated by a previous pulse boundary echo.

The following analysis begins by considering correlation sonar operation

when the data is not corrupted by interference. First, an analytical model of

volume reverberation signals is created, and applied to a correlation sonar

system. A sub-optimal processor of uncorrupted data is then derived, based on the

work of Van Trees.21 The reverberation models are then applied to this sub-

optimal processor, leading to an analytical expression for the output statistic.

14.7.2. CORRELATION SONAR REVERBERATIONMODEL

This section derives explicit equations which model the desired correlation sonar

volume reverberation signals. The analysis begins with a study of single pulse

Pulse

X

X

X

Y

Y

Y

Td

Td

(c) Solution: decrease interpulse period (Td)

X gate

X gate

X gate

(b) Shallow water-boundary echo slips in

Y gate

Y gate

Y gate

Time

PulseVolume
X return

Volume
Y return

Boundary
X return

Boundary
X return

Boundary
X return

(a) No boundary echo in the data

FIGURE 14.40 Boundary echoes in the data.
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monostatic volume reverberation, and then continues with an examination of

bistatic reverberation. The analysis concludes by presenting a model for the two

desired bistatic reverberation signals heard on a moving correlation sonar

platform.

14.7.2.1. Monostatic and Bistatic Reverberation

To model monostatic reverberation, the following analysis borrows heavily from

the work of Van Trees,21 who derived a series of radar clutter models. The

simplest model treats reverberation as a ring of slowly fluctuating point targets,

all at the same range. “Slowly fluctuating” means that the scattering

characteristics do not change during ensonification. An equation which models

such reverberation is

~srðtÞ ¼
ffiffiffi
Et

p XNi

i

~gi ~fðt2 lÞ ð14:342Þ

where:

~srðtÞ ¼ Complex envelope of received signal (henceforth, the (, )

superscript will denote a complex envelope)

Et ¼ Transmit energy,

Ni ¼ Total number of ensonified scatterers,

~gi ¼ Random scattering strength of scatterer i (this complex value also

accounts for propagation effects and attenuation),
~fðtÞ ¼ Complex envelope of transmit waveform,

l ¼ Two-way travel time to the scatterers.

Application of the central limit theorem reduces Equation 14.342 to

~srðtÞ ¼
ffiffiffi
Et

p
~b~fðt2 lÞ ð14:343Þ

where ~b is a complex Gaussian random variable which models scattering

strength, propagation loss, and attenuation.

A more sophisticated reverberation model allows the scattering character-

istics to change with time during ensonification. Such reverberation is referred to

as a Doppler spread target in Ref. 21. An equation which models this

reverberation is

~srðtÞ ¼
ffiffiffi
Et

p
~bðt2 l=2Þ~fðt2 lÞ ð14:344Þ

In this model, ~bðtÞ is a random process with an independent variable that

corresponds to the ensonification time of the scatterers.

A third clutter model in Ref. 21 accounts for the fact that the ensonified

volume may have a greater range extent than that of a point target. This range

spread model treats reverberation as a collection of discrete point target volumes,
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as shown in Figure 14.41. Each volume ðjÞ has its own two-way travel time, or

range, lj:
The return from the jth discrete volume is modeled by

~sjðtÞ ¼
ffiffiffi
Et

p
~bðljÞ~fðt2 ljÞ ð14:345Þ

where ~bðlÞ is a random process with an independent variable that corresponds to

range. For a given range lj; note that ~b is a constant with respect to the time

variable t: The echoes from these discrete volumes sum up to form the echo from

the range spread target. In the limit, as the range extent of each discrete volume

decreases, this sum approaches an integral. The final range spread target model

thus becomes

~srðtÞ ¼
ffiffiffi
Et

p ð
L

~bðlÞ~fðt2 lÞdl ð14:346Þ
where L indicates the range extent of the total volume, as shown in Figure 14.41.

A combination of Equation 14.344 and Equation 14.346 yields the model for

a doubly spread target; that is, a range spread target whose scattering

characteristics may change with time during ensonification. The doubly spread

reverberation model is

~srðtÞ ¼
ffiffiffi
Et

p ð
L

~bðl; t2 l=2Þ~fðt2 lÞdl ð14:347Þ
In this model, the random process ~bðl; tÞ has two independent variables. The first
corresponds to range, or two-way travel time, and the second corresponds to

ensonification time.

The limits of integration in Equation 14.347 depend on the transmit pulse

length. Consider a monostatic omni-directional sonar transmitting a pulse of

length Tp: At any time t; the sonar receives echoes from a locus of scatterers

which lie within a spherical shell of width ðCTp=2Þ; as shown in Figure 14.42.

l0 l1 l2

Ensonified
volume

L

λn…

FIGURE 14.41 Range spread target.
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Based on this figure, the model becomes

~srðtÞ ¼
ffiffiffi
Et

p ðt

t¼Tp
~bðl; t2 l=2Þ~fðt2 lÞdl ð14:348Þ

Equation 14.348 serves as a doubly spread monostatic volume reverberation

model. As will be shown, this model can be applied to a bistatic system, provided

that the range to any scatterer greatly exceeds the projector–receiver separation.

This is true even though the set of all bistatic point targets with the same two-way

travel time forms an ellipsoidal locus, as shown in Figure 14.43, as opposed to a

spherical locus, as shown in Figure 14.42.

The relationship between bistatic two-way travel time and range is a

nonlinear function which varies with the target bearing. Consequently, Equation

14.348 does not model general bistatic reverberation, since it employs a linear

monostatic relationship between range and travel-time. If the reverberation lies in

the far-field, however, as shown in Figure 14.44, the distance to any ensonified

scatterer greatly exceeds the projector–receiver separation, and the ellipsoid

begins to approximate a sphere. At these ranges, the bistatic sonar can be

modeled by an equivalent monostatic system. This equivalent sonar is located in

such a fashion as to keep the ensonified volume symmetric about the original

bistatic system. From Figure 14.43, this location corresponds to the point exactly

half-way along a line drawn between the projector and receiver, henceforth

referred to as the bistatic midpoint.

In summary, far field bistatic volume reverberation can be modeled under

appropriate assumptions, as derived in this section. The next section applies this

model to the correlation sonar.

14.7.2.2. Reverberation as Heard on a Moving Correlation
Sonar Platform

A correlation sonar compares two far-field reverberation returns as heard on a

moving platform. If the two pulses are examined independently, Equation 14.348

serves as an adequate model, but this equation does not account for correlation

CTp /2

C (t−Tp)/2

C = Speed of sound
Tp = Pulse width
t = Signal arrival time

at receiver

Cross section of ensonified
spherical volume

Ct /2

FIGURE 14.42 Monostatic reverberation volume.
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between these returns. As stated earlier, the overlap between the ensonified

volumes causes the two pulse returns to be correlated. Figure 14.45 demonstrates

how the amount of overlap, and hence the correlation, depends on the distance

moved by the sonar. As seen, the moving sonar samples the reverberation process

at different spatial locations with each pulse. In order to model this spatial

sampling, a new dimension must be included in the far-field bistatic volume

reverberation equation.

Define a coordinate system where the ðx; yÞ plane lies parallel to the ocean

surface, and the z dimension corresponds to depth. Assume that the platform

depth does not significantly change during the interpulse period. Also assume that

the platform moves with a constant speed V in the x direction. Under this

convention, the spatial sampling model need only keep track of the sonar’s x

coordinate. Inserting this dimension into Equation 14.348 yields

~srðx; tÞ ¼
ffiffiffi
Et

p ðt

t2Tp

~bðx; l; t2 l=2Þ~fðt2 lÞdl ð14:349Þ

p R

FIGURE 14.44 Far-field bistatic ellipsoid.
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S2

Travel time C (P-S1-R) =
C = speed of sound

Travel time C (P-S2-R)

For all scatterers on the ellipsoid

FIGURE 14.43 Bistatic constant travel-time ellipse.
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The random process ~bðx; l; tÞ; which models scattering strength, propagation

loss, and attenuation, now has three independent variables. The first variable

corresponds to the location of the bistatic midpoint at transmission. The last two

variables correspond to range and ensonification time, as before.

In order to help apply Equation 14.349 to the correlation sonar, consider the

system geometry of the snap-shot shown in Figure 14.46. This system consists of

a single Y element and Nx co-linear X array elements. The platform moves along

the x axis with speed V : At the time of first pulse transmission, the coordinate set

{x1; x2;…; xNx
} defines the locations of the X array midpoints. Similarly, the

bistatic midpoint of the Y element lies at coordinate ðxyÞ: At the time of second

pulse transmission, this midpoint lies at ðxy þ VTdÞ; where Td equals the

interpulse period.

HIGH CORRELATION

SMALL CORRELATION

NO CORRELATION

Ensonified volume,
first ping

Ensonified volume,
second ping

Sonar postition,
second ping

Sonar postition,
first ping

FIGURE 14.45 Overlapping volumes and correlation.

Y element X array

Velocity (along x axis)

Projector

xy x1 … xNX

FIGURE 14.46 Correlation sonar geometry.
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Based on Figure 14.46, Equation 14.349 gives the first pulse reverberation

signal heard on the ith element of the X array as

~sxiðxi;mÞ ¼
ffiffiffi
Et

p ðm
m2Tp

~bðxi; l;m2 l=2Þ~fðm2 lÞdl ð14:350Þ

where m is a variable which measures receiver arrival time relative to

transmission of the first pulse. Similarly, Equation 14.349 gives the second

pulse Y element signal as

~syðxy þ VTd; nþ TdÞ

¼ ffiffiffi
Et

p ðn
n2Tp

~bðxy þ VTd; l; nþ Td 2 l=2Þ~fðn2 lÞdl ð14:351Þ

This equation differs from Equation 14.350 in two key respects. First ðxy þ
VTdÞ corresponds to the coordinate location of the Y element bistatic midpoint at

the time of the second pulse transmission. Second n measures time relative to

transmission of the second pulse. This is why the absolute time index shifts by Td
seconds, as seen in the second argument of ~sy: Also, note that the ensonification
time of the scatterers shifts with Td; as reflected in the final argument of ~b: This
argument corresponds to the explicit physical time that the waveform hits the

scatterer.

To summarize the analysis thus far, Equation 14.350 and Equation 14.351

model the correlation sonar bistatic reverberation signals. Each signal arises from

a different scattering volume. The correlation sonar attempts to derive platform

velocity by determining which of the first pulse ensonified volumes completely

overlaps with the second pulse volume. The following analysis proves that these

volumes completely overlap if and only if their bistatic midpoints are colocated.

The system thus needs only to determine the platform velocity which causes these

midpoints to overlap.

The analysis begins by deriving a general expression for the round-trip

distance traveled by the pulse in a bistatic system. This round-trip distance, Cl;
equals the product of the two-way travel time to the scatterer, l; and the speed of
sound, C: Figure 14.47 shows the geometry of a general bistatic system, where

bold-face indicates a vector. Based on this figure, the round-trip distance is

Cl ¼ lDpslþ lDrsl ð14:352Þ
or

Cl ¼ lDpslþ lDps 2 Dprl ð14:353Þ
Expanding the second magnitude in Equation 14.353 produces

Cl ¼ lDpslþ {lDpsl
2 þ lDprl

2
2 2 £ DprDps}

1=2 ð14:354Þ
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where ðDpr·DpsÞindicates a dot product between the vectors. Moving lDpsl outside
of the square root yields

Cl ¼ lDpslþ lDpsl £ 12 2 £ DprDps

lDpsl
2

þ lDprl
2

lDpsl
2

( )1=2

ð14:355Þ

Assume that the distance to the scatterer greatly exceeds the projector–receiver

separation such that

lDpsl @ lDprl ð14:356Þ
This assumption places the scatterer in the far field of the bistatic system.

Equation 14.356 renders the squared term in Equation 14.355 negligible, thus

producing

Cl < lDpslþ lDpsl £ 12 2 £ DprDps

lDpsl
2

( )1=2

ð14:357Þ

Define a unit vector pointing in the direction of Dps as

nps ¼
Dps

lDpsl
ð14:358Þ

Substituting Equation 14.358 into Equation 14.357 gives

Cl < lDpslþ lDpsl £ 12 2 £ Dpr

lDpsl
nps

( )1=2

ð14:359Þ

Recall the following quadratic approximation for small Dx:

{12 Dx}1=2 < 12 Dx=2 ð14:360Þ

P = Projector

Dps

Drs

Dpr

P

R

S

Dps = A vector which connects the
projector to the scatterer

Drs = A vector which connects the
receiver to the scatterer

Dpr = A vector which connects the
projector to the receiver

R = Receiver

S = Scatterer

FIGURE 14.47 General bistatic geometry.
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The far-field assumption described by Equation 14.356 allows for use of this

approximation. Applying Equation 14.360 to Equation 14.359 yields

Cl < lDpslþ lDpsl £ 12
Dpr

lDpsl
·nps

( )
ð14:361Þ

or

Cl ¼ 2lDpsl2 Dpr·nps ð14:362Þ
From Equation 14.362, the set of all vectors Dps which yield a constant time

ellipsoid for a given Dpr must satisfy the equation

ð2lDpsl2 Dpr·npsÞ=C ¼ l ð14:363Þ

Now consider a second bistatic system, henceforth denoted by a prime

superscript, situated relatively close to the one examined above. Figure 14.48

shows the geometry. The vectors dp and dr indicate the location of the second

system (P0 and R0) as measured relative to the first (P and R). The round-trip

distance to any given scatterer for this second system is

Cl0 ¼ lD0
pslþ lD0

rsl ð14:364Þ
or

Cl0 ¼ lDps 2 Dplþ Dps 2 ðDpr þ drÞl ð14:365Þ

Dps
D′

ps

Drs D′
rs

D′
pr

Dpr

dp

dr

P

S

P′

R

R′

FIGURE 14.48 A second bistatic system.
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Assume that the distance to the scatterer greatly exceeds the distance between

any of the bistatic elements shown in Figure 14.48. This assumption allows for

creation of the following two conditions:

lDpsl @ ldpl ð14:366Þ
and

lDpsl @ lDpr þ drl ð14:367Þ
A comparison of Equation (14.353) and Equation (14.361) shows that lDps 2
Dprl can be approximated as

lDps 2 Dprl < lDpsl £ 12
Dpr

lDpsl
·nps

( )
¼ lDpsl2 Dpr·nps ð14:368Þ

when Equation 14.356 holds. In a similar fashion, the two magnitudes in

Equation 14.365 can be approximated, due to the assumptions presented in

Equation (14.366) and Equation (14.367). Applying these approximations yields

Cl0 < ðlDpsl2 dp·npsÞ þ ðlDpsl2 Dpr·nps 2 dr·npsÞ ð14:369Þ

From Equation 14.369, the set of all vectors Dps which yield a constant time

ellipsoid for a given Dpr; dp; and dr must satisfy the equation

ð2lDpsl2 Dpr·npsÞ=C 2 ðdp þ drÞ·nps=C ¼ l0 ð14:370Þ

At this point in the analysis, Equation 14.363 defines the first system’s

constant-time ellipsoid, while Equation 14.370 defines that of the second bistatic

system. Under the constraint that l equals l0; a single set of vectors Dps solves

both equations if and only if the following condition holds true:

dp ¼ 2dr ð14:371Þ

Figure 14.49 shows the geometry associated with this result. The figure

shows both bistatic systems, with a line connecting P to R; and another

connecting P0 to R0:
Because of Equation 14.371, the vectors dp and dr are parallel, and have the

same magnitude. It follows that the interior angles measured from these vectors

are all equal, or

u1 ¼ u2 ð14:372Þ
and

f1 ¼ f2 ð14:373Þ
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In addition, because the interior angles of a triangle sum to 1808, the

remaining two angles are equal, or

g1 ¼ g2 ð14:374Þ
Because of Equation (14.372) to Equation (14.374), the two triangles shown

in Figure 14.49 are similar, with sides having the same length opposite g1 and g2:
Hence, the sides opposite u1 and u2 must have the same length, as must the sides

opposite f1 and f2: Consequently, the point of intersection between the two lines
is the bistatic midpoint for both systems. In other words, the far-field constant-

time ellipsoids of two bistatic sonars completely overlap if and only if the

systems have the same midpoint.

In summary, a correlation sonar determines platform velocity by first

determining which X array ensonified volume completely overlaps with the Y

element ensonified volume. It then calculates the speed required to cause the Y

element bistatic midpoint to overlap with that X array midpoint. A technique still

remains to be developed, however, that determines which of the ensonified

volumes overlap. The following section derives a sub-optimal receiver which is

used to accomplish this task.

14.7.3. A SUB-OPTIMAL CORRELATION SONAR RECEIVER

The work of Van Trees21 provides the background required to derive a sub-

optimum correlation sonar processor. The analysis begins with a statement of the

detection hypotheses.

Consider Figure 14.46, which shows a system that consists of Nx co-linear X

elements and a single Y element. The platform moves with speed V along the x

axis. As stated earlier, the system transmits two pulses which are separated by an

interpulse period of length Td: The X array elements receive echoes from the first

pulse, and Td seconds later the Y element receives echoes from the second pulse.

P P′

R′ R

Bistatic midpoint

f1

f2

g1

g2

q2

q1

dr

dp

FIGURE 14.49 Bistatic midpoint.
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Let ~wðtÞ represent a white Gaussian signal which models the ambient ocean noise

received on these elements. With reference to Equation 14.350, let ~sxiðxi; tÞ
represent the volume echo received on the ith element of the X array, where xi
corresponds to the location of this element’s bistatic midpoint at the time of

first pulse transmission. Furthermore, with reference to Equation 14.351, let

~syðxy þ VTd; t þ TdÞ represents the volume echo received Td seconds later on the

single Y element, where ðxy þ VTdÞ corresponds to the location of the element’s

bistatic midpoint at the time of second pulse transmission. The time variable, t;
ranges from Ti to Tf ; two time instants which define the edges of the range bin

under examination. Under these definitions, the total signal received on the ith

element of the X array becomes

~xiðtÞ ¼ ~sxiðxi; tÞ þ ~wðtÞ Ti , t , Tf ð14:375Þ
and that received Td seconds later on the single Y element becomes

~yðt þ TdÞ ¼ ~syðxy þ VTd; t þ TdÞ þ ~wðt þ TdÞ Ti , t , Tf ð14:376Þ
For practical purposes, assume during the interpulse period that the bistatic

midpoint of the Y element moves into a location previously occupied by one of

the X element midpoints. Given the identity of this X element, the system can

determine the velocity which causes these midpoints to overlap. Based on this,

the processor must decide between the following Nx possible hypotheses;

H1 : ðxy þ VTdÞ ¼ x1

H2 : ðxy þ VTdÞ ¼ x2

..

.

HNx
: ðxy þ VTdÞ ¼ xNx

ð14:377Þ

Combining these hypotheses with Equation 14.376 produces an equivalent

set of hypotheses based on the received waveform. These hypotheses are

H1 : ~yðt þ TdÞ ¼ ~syðx1; t þ TdÞ þ ~wðt þ TdÞ;
H2 : ~yðt þ TdÞ ¼ ~syðx2; t þ TdÞ þ ~wðt þ TdÞ;

..

.

HNx
: ~yðt þ TdÞ ¼ ~syðxNx

; t þ TdÞ þ ~wðt þ TdÞ; Ti , t , Tf

ð14:378Þ

If Td is short enough such that the scattering characteristics do not

significantly change between the two pulses, then the volume echo waveforms

are essentially invariant during the interpulse period. Under this assumption, the

waveform ~sxiðxi; tÞ approximately equals ~syðxi; t þ TdÞ; for any given element.

Consequently, the volume echo waveforms can be modeled as deterministic

signals. Applying this assumption to the hypotheses listed in Equation 14.378
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gives

H1 : ~yðt þ TdÞ < ~sx1ðx1; tÞ þ ~wðt þ TdÞ;
H2 : ~yðt þ TdÞ < ~sx2ðx2; tÞ þ ~wðt þ TdÞ;

..

.

HNx
: ~yðt þ TdÞ < ~sxNx

ðxNx
; tÞ þ ~wðt þ TdÞ; Ti , t , Tf

ð14:379Þ

In this way, the correlation sonar problem is formulated as an M-ary

deterministic signal detector.

The derivation of the optimal M-ary detector depends on the criterion being

optimized. A criterion which lends itself to this purpose is probability of error, Pe;
or equivalently, the probability of making a correct choice, Pc: Any receiver

which minimizes Pe also maximizes Pc:
As outlined in Ref. 21, the procedure to optimize either criterion starts by

approximating the received signal ~yðt þ TdÞ by an equivalent data vector of finite
length K: Define this vector as

~y ¼ {~y1; ~y2;…~yk} ð14:380Þ
The ith element of this vector is given by

~yi ¼
ðTf

Ti

~yðt þ TdÞfiðtÞdt ð14:381Þ

where fiðtÞ is the ith member in a complete ortho-normal function set.

Consider the set of all possible data vectors ~y; defined as the decision space.

This decision space is partitioned into a set of nonoverlapping regions Zi; each
corresponding to a different hypothesis, as shown in Figure 14.50. If the received

vector ~y falls within region Zi; the M-ary detector chooses hypothesis Hi: For a
receiver operating in this fashion, the probability of making a correct choice is

Pc ¼
XM
i¼1

Pi·
ð
Z
f ~YlHi

ð~ylHiÞd~y ð14:382Þ

Decision space

Zm

Z3

Y
~

Z4

Z2

Z1

Received vector

If the received vector
falls within region Zi,
choose hypothesis Hi

FIGURE 14.50 M-ary decision space.
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where f ~YlHi
ð~ylHiÞ is the joint conditional density function of the received vector ~y;

given that hypothesis Hi is true.

Assume that all hypotheses are equally likely. Based on this assumption,

Equation 14.382 reduces to

Pc ¼ 1

M

XM
i¼1

ð
Zi

f ~YlHi
ð~ylHiÞd~y ð14:383Þ

As stated earlier, the optimum receiver is derived by maximizing this

criterion. This is accomplished by defining the regional boundaries Zi such that

theM integrals in Equation 14.383 are maximized. To maximize a given integral,

place into the region Zi all of the data vectors ~y where f ~YlHi
ð~ylHiÞ exceeds every

other f ~YlHj
ð~ylHjÞ (for j – i). Not only does defining the regions in this way

maximize the probability of making a correct choice and minimize the

probability of error, but it also results in a simple receiver structure. For a

given received vector ~y; the optimum M-ary detector calculates a set of statistics

{ f ~YlH1
ð~ylH1Þ;…; f ~YlHm

ð~ylHmÞ}; and then chooses the hypothesis which corre-

sponds to the largest.

Define ~w as the vector arising from the k-term ortho-normal expansion of the

white-noise shown in Equation 14.376. This data vector has a joint density

function given by f ~wð ~wÞ: Define the likelihood ratio on hypothesis Hi as

Lið~yÞ ¼ f ~YlHi
ð~ylHiÞ=f ~wð~yÞ ð14:384Þ

Since the denominator is the same for every hypothesis, the maximum Lið~yÞ
corresponds to the maximum f ~YlHi

ð~ylHiÞ: As such, the optimalM-ary detector can

make its decision based on choosing the largest likelihood ratio, Lið~yÞ:
The above “largest-of ” detector is derived for the data vector ~y; not the actual

continuous waveform ~yðt þ TdÞ: Based on the ortho-normal function set, the

original continuous received signal is

~yðt þ TdÞ ¼ l:i:m
K!1

XK
i¼1

~yifiðtÞ ð14:385Þ

where l.i.m stands for “limit in the mean-squared sense”. The optimum

continuous likelihood ratio, therefore, corresponds to that shown in Equation

14.384 in the limit as K goes to infinity. This limit is calculated in Ref. 21 for a

deterministic signal corrupted by white Gaussian noise. The resulting likelihood

ratio reduces to the output of a matched filter correlator followed by an additive

bias term. If all of the M signals have the same energy, the bias is the same for

every likelihood ratio, and may be removed. The optimum M-ary detector,

therefore, consists of a matched filter bank, as shown in Figure 14.51. The

receiver picks the hypothesis which corresponds to the channel with the largest

matched filter output.

A problem still exists, however. Although the signals ~sx1ðx1; tÞ through

~sxnxðxnx; tÞ are modeled as being deterministic, they are still unknown.
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Fortunately, the received waveform ~x1ðtÞ contains the signal ~sx1ðx1; tÞ; ~x2ðtÞ
contains ~sx2ðx2; tÞ; and so on. Under the assumption that the additive noise is

small relative to the reverberation, a possible sub-optimal receiver would

correlate ~yðt þ TdÞwith the received and stored waveforms ~x1ðtÞ through ~xnxðtÞ; in
lieu of the desired unknown signals. Figure 14.52 shows a block diagram of this

sub-optimal receiver. As the signal-to-noise ratios (SNR) in the signals ~x1ðtÞ
through ~xnxðtÞ increase, the sub-optimal processor approaches the optimum

receiver in performance.

X

X

X

Tf

Ti

dt

Tf

Ti

dt

Tf

Ti

dt

S∗
x1

(X1, t)
~

y (t + Td)~

S∗
x2

(X2, t)
~

S∗
xnx

(Xnx, t)
~

LR1

LR2

LRnx

Choose
largest

…

FIGURE 14.51 Optimum M-ary detector in Gaussian noise.
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X

Tf

Ti

dt

Tf

Ti
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Tf

Ti

dt

x∗
1 (t)

x∗
2 (t)

x∗
Nx(t)

y (t + Td)~

~

LR1

LR2

LRnx

Choose
largest

…

FIGURE 14.52 Sub-optimum M-ary detector in Gaussian noise.
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To summarize the results thus far, the processor shown in Figure 14.52

approximates the optimum receiver, based on assumptions of equal energy

signals and equally likely hypotheses. In addition, the ratio between the

reverberation energy and the corrupting white Gaussian noise energy must

greatly exceed unity.

This concludes the analysis of correlation sonar operation on data uncorrupted

by previous pulse interference. The next section examines the effects of

previous pulse interference interference on correlation sonar performance.

14.7.4. PERFORMANCE IN PREVIOUS PULSE INTERFERENCE

The previous section derived an optimal correlation sonar designed to operate in

the presence of additive Gaussian noise. With reference to Figure 14.46, the

receiver determines which X array midpoint most closely overlaps with the Y

element midpoint by first calculating a set of likelihood ratios. Each likelihood

ratio corresponds to a different X element. The correlation sonar then makes a

decision by choosing whichever X element has the largest likelihood ratio.

When given Gaussian noise, the likelihood ratio values equal the output of a

matched filter bank, as shown in Figure 14.51. This optimal processor correlates

the total signal received on the Y element with the noise free reverberation

received on each X element. Since these reverberations are unknown, a suggested

sub-optimal receiver instead correlates with the total signal received on each X

element, as shown in Figure 14.52. This receiver is sub-optimal because additive

noise corrupts the reverberations received on the X array. As the additive noise

becomes less significant, this sub-optimal processor approaches the optimum

receiver in performance.

Now consider what happens if interference corrupts the correlation sonar

data. As explained in Section 14.7.1, one source of such interference arises when

an echo from the first pulse intrudes on the second pulse data collected by the Y

element. With reference to Figure 14.39, the previous pulse ensonifies a

completely different range bin than the one under examination. Consequently, the

previous pulse echo acts as a source of interference in the total signal received on

the Y element. To account for this interference, the hypotheses given in Equation

14.379 should be rewritten as

Hi : ~yðt þ TdÞ ¼ ~sxi ðx1; t þ TdÞ þ ~dðtÞ Ti , t , Tf ð14:386Þ
where ~dðtÞ represents the combined effects of the previous pulse echo and the

additive Gaussian noise. Note that the signal received on an X element is still

given by

~xiðtÞ ¼ ~sxi ðxi; tÞ þ ~wðtÞ Ti , t , Tf ð14:387Þ
since no previous pulse exists before the first pulse.

The nature of the signal ~dðtÞ governs the design of the optimum receiver.

Typically, if the previous pulse ensonifies volume scatterers, the resulting echo is
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assumed to be modeled by a Gaussian signal. An examination of actual volume

echoes serves to bear out the validity of this assumption, as shown in Figure

14.32. If ~dðtÞ is thus modeled as a Gaussian signal, the processor shown in Figure

14.51 still serves as the optimum receiver. In the presence of Gaussian noise and

Gaussian interference, no other receiver has a lower probability of error.

If the previous pulse ensonifies an ocean boundary, however, a Gaussian

signal may not serve as an adequate model for the resulting echo, as shown in

Figure 14.32. Consequently, the optimum processor no longer consists of the

traditional bank of matched filters. In addition, the previous pulse boundary echo

power often greatly exceeds that of the desired volume echo. As such, this

nonGaussian interference typically masks the desired signal, and significantly

degrades the resulting correlation sonar performance.

To summarize, this section reveals that a correlation sonar can be treated as

an M-ary detector. This section also demonstrates how the correlation sonar is

sensitive to nonGaussian interference. The next section responds to these results

by deriving and testing the optimum nonGaussian M-ary detector for the case in

which the disturbance is much larger than the additive noise and can be modeled

as a generalized SIRV.

14.8. M-ARY DETECTION

This section derives and evaluates several detectors for identifying one of M

possible signals in a data set corrupted by nonGaussian interference. The problem

is formulated as that of M-ary detection, where the mth hypothesis is

Hm : y ¼ u xm þ d ð14:388Þ
In this equation, y is a random vector which contains digital samples of the

received data, xm is a unit amplitude deterministic vector which contains samples

of the mth signal, u is a nonrandom scalar which accounts for the actual received

amplitude of the mth signal, and d is a random vector which contains samples of

the interference. If the interference is modeled as a traditional SIRV, its density

function is given by

fDðdÞ ¼ KhNðaÞ ð14:389Þ
where K is a scalar, N is the number of samples in the vector d, hNðaÞ is the
characteristic nonlinear function, and a is the inner product

a ¼ dTd ð14:390Þ
where, without loss of generality, the covariance matrix of the interference is

assumed to be the identity matrix.

The analysis begins with an examination of the optimum detector, where the

interference is modeled as a traditional SIRV. Subsequent subsections derive and

evaluate detectors for the case where the interference is modeled with generalized

SIRVs.
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14.8.1. OPTIMUM M-ARY DETECTION

Section 14.7 reveals that the optimum M-ary detector is a “largest-of ” receiver

with statistic

LmðyÞ ¼ fYlHm
ðylHmÞ=fDðyÞ ð14:391Þ

This statistic is computed for each m from one toM; and the receiver makes a

decision by picking that hypothesis which returns the largest value. Since the

denominator of Equation 14.391 is the same for all hypothesis, it may be removed

without affecting the final outcome. The “largest-of ” receiver thus need only

compute

LmðyÞ ¼ fYlHm
ðylHmÞ ð14:392Þ

This statistic is derived based on an assumption of equi-probable hypotheses.

From, Ref. 21, a more general statistic is

LmðyÞ ¼ Pm·fYlHm
ðylHmÞ ð14:393Þ

where Pm is the probability of hypothesis m:
With reference to Equation 14.388, the interference under hypothesis m is

given by

d ¼ y2 u xm ð14:394Þ
Based on Equation 14.394, the “largest-of ” statistic can be expressed as

LmðyÞ ¼ Pm·fDðy2 u xmÞ ð14:395Þ
For an SIRV interference model, Equation 14.395 reduces to

LmðyÞ ¼ PmKhNðaÞ ð14:396Þ
where

a ¼ ðy2 u xmÞTðy2 u xmÞ ð14:397Þ
The SIRV constant K is the same on all hypotheses, and can thus be removed

withoutaffecting thefinaldecision.Basedonthis, the“largest-of ”statisticbecomes

LmðyÞ ¼ PmhN½ðy2 u xmÞTðy2 u xmÞ	 ð14:398Þ
Assumethatallhypothesesareequally likely. If this is thecase, then theconstant

Pm can be removed from the previous equation, producing

LmðyÞ ¼ hN½ðy2 u xmÞTðy2 u xmÞ	 ð14:399Þ
However, it is shown in Section 14.3.3 that the SIRV characteristic function

hNðaÞ is monotonically nonincreasing. The largest LmðyÞ thus corresponds to the
smallest a: Note that a is nonnegative because it is the magnitude squared of a

vector. To formulate the processor in terms of a “largest-of ” receiver,2a can be
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chosen as the statistic. Based on this, the “largest-of ” statistic can be expressed as

LmðyÞ ¼ 2a ¼ ð21Þ·½ðy2 u xmÞTðy2 u xmÞ	
¼ 2u xTmy2 yTy2 u2xTmxm ð14:400Þ

Becausexm hasunit amplitude for allm;andu is assumed tobe the same foreach

hypothesis, the final term ðu2xTmxmÞ can be removed from the statistic. By the same

token, the second term ðyTyÞmay also be removed. The resulting statistic is

LmðyÞ ¼ 2u xTmy ð14:401Þ
or, after removing like terms,

LmðyÞ ¼ xTmy ð14:402Þ
Equation14.402issimplyadigital implementationofamatchedfilterbank. Just

as for the Gaussian case, this analysis reveals, when the hypotheses are equally

likely, that the optimum M-ary detector for interference modeled by any

nonGaussian SIRV is a series of matched filters.

However, it is not reasonable to assume equi-probable hypotheses for a

correlation sonar. Recall from Section 14.7.3 that each hypothesis corresponds to

a different own-ship velocity estimate. Since own-ship velocity is not normally

subject to rapid change, previous velocity estimates provide information

regarding the probability distribution for the next velocity estimate. In practice,

this probability distribution is approximated as Gaussian, where the mean

corresponds to the previous velocity estimate (or the previously chosen

hypothesis), and the standard deviation is one velocity resolution cell as

determined by the spacing of the horizontal array elements. For five hypotheses

centered about the previous choice, the hypothesis probabilities are determined

from the standard normal density illustrated in Figure 14.53. The resulting

probabilities are

P1 ¼ :05856;

P2 ¼ :24197;

P3 ¼ :39894;

P4 ¼ :24197;

P5 ¼ :05856

ð14:403Þ

With this in mind, Equation 14.398 gives the optimum M-ary “largest-of ”

statistic for the case where the interference can be modeled as a traditional SIRV

and the hypotheses are not equally likely. The following paragraphs derive two

explicit expressions for this statistic; one for the case where the interference

is Gaussian, and another for the case where the interference is a traditional

SIRV which follows from the case 1 Generalized SIRV density derived in

Section 14.4.1 by letting M equal unity.
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Gaussian random vectors are SIRVs with a characteristic function given by

hNðaÞ ¼ expð2a=2Þ ð14:404Þ
Substituting Equation 14.404 into Equation 14.398 gives

LmðyÞ ¼ Pm·exp½2ð1=2Þðy2 u xmÞTðy2 u xmÞ	 ð14:405Þ
Since the logarithm function is monotonically increasing, the logarithm of

LmðyÞ can be used as a statistic without affecting the final decision. The “largest-

of ” statistic thus becomes

ln{LmðyÞ} ¼ ln{Pm}2 0:5ðy2 u xmÞTðy2 u xmÞ;
¼ ln{Pm}þ u xTmy2 0:5ðyTyþ u2xTmxmÞ ð14:406Þ

As with Equation 14.400 and Equation 14.401, the statistic in Equation

14.406 can be simplified to

ln{LmðyÞ} ¼ ln{Pm}þ u xTmy ð14:407Þ
Equation 14.407 is the optimum M-ary detector “largest-of ” statistic for

Gaussian interference. The inner product ðxTmyÞ is the output of a conventional

matched filter. When the events are equi-probable, and u is the same on every

hypothesis, Equation 14.407 reduces to

ln{LmðyÞ} ¼ xTmy ð14:408Þ
As seen, the M-ary detector for Gaussian interference reduces to a matched

filter bank, as shown in Figure 14.51 for analog data.

Now consider nonGaussian interference. Section 14.6.4 reveals that

nonGaussian surface reverberation can be closely approximated by the case 1

density derived in Section 14.4.1, with shape parameters ðQ ¼ R ¼ 2Þ and ðb ¼
0:2Þ: For the case of a tradition SIRV, (i.e., where the number of vectors in the

generalized SIRV formulation is unity), Equation 14.178 gives the case 1

characteristic function as

hNðaÞ ¼ ðaþ 0:2Þ2½ð3þNÞ=2	 ð14:409Þ

P2
P1 P5P4

P3

s= 1

1 2 3 4 5
Hypothesis

Standard Normal
Gaussian Density

FIGURE 14.53 Hypothesis probability distribution.
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Substituting Equation 14.409 into Equation 14.396 and taking the logarithm

gives

ln{LmðyÞ} ¼ ln{Pm}þ ln{K}2 ½ð3þ NÞ=2	ln{aþ 0:2} ð14:410Þ

Removing the constant term ln{K} produces

ln{LmðyÞ} ¼ ln{Pm}2 ½ð3þ NÞ=2	ln{aþ 0:2} ð14:411Þ
where

a ¼ ðy2 u xmÞTðy2 u xmÞ ð14:412Þ
Note that the optimum receiver for nonGaussian interference does not reduce

to a familiar matched filter bank.

A computer simulation of correlation sonar data was used to evaluate the

performance improvement of a nonGaussian receiver over a matched filter bank

achieved in an environment corrupted with nonGaussian interference. Recall

from Section 14.7.3 that the “deterministic” signal xm in a correlation sonar is

actually a sample from a slowly varying volume reverberation. Section 14.6.4

reveals that the density of volume reverberation can be closely approximated by

the Gaussian density. Figure 14.54 thus shows the scheme used to simulate

correlation sonar data.

As seen, the system generates 5 standard normal Gaussian reference vectors,

{x1;…; x5}: As shown in Figure 14.46, these signals correspond to the volume

reverberation echoes received on 5 adjacent X-array elements. For each

experimental trial, one of these signals is chosen according to the a priori

probabilities {P1;…;P5} and multiplied by the scalar u: The resulting vector

represents the deterministic signal vector of the true hypothesis.

GRV

GRV

x1

GRV

x2

GRV

x3

GRV

x4

GRV

x5

GRV

z

s

d

×

+q

Random Choice
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(vector covariance = 1)

y = q xm + d

q xm

Generate
Random
Scalar

FIGURE 14.54 Correlation sonar data simulator.
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The program also creates an interference signal d by multiplying another

Gaussian random vector z by the random scalar s, whose probability density

function is given by Equation 14.167. Section 14.5 explains in detail the

procedure for generating SIRV interference data in this fashion. The scalar s is

generated so as to make the interference follow the case 1 surface reverberation

SIRV density. (When Gaussian interference is wanted, this scalar is set equal to a

constant value of unity). Finally, the interference and signal are then combined to

form the correlation sonar input vector y.

The program creates 10,000 of these correlation sonar input vectors. It then

computes the largest-of statistics as given in Equation (14.407) and Equation

(14.411). A correct choice is made if the largest statistic Lm corresponds to the

true hypothesis. The program tallies up the number of correct choices and then

estimates the probability of a correct choice ðPcÞ by dividing this sum by the total

number of trials, 10,000. This experiment is repeated for various values of the

signal-to-background ratio (SBR). With reference to Figure 14.54, the SBR is

SBR ¼ u2

E{dTd}
¼ u2

E{s2}E{zTz}
¼ u2

NE{s2}
ð14:413Þ

Figure 14.55 shows the performance metric Pc as a function of SBR for both

the Gaussian and case 1 receivers. In the top graph the interference is Gaussian,

while in the lower graph it is nonGaussian. As seen, when the disturbance d

follows a Gaussian distribution, both receivers return approximately the same Pc:
When processing nonGaussian data, however, the case 1 receiver yields a

significantly higher value in the range of SBR from 230 to 0 dB.

With reference to Equation 14.407 and Equation 14.411, note that both

receivers require explicit knowledge of u: In practice, the amplitude of the

volume reverberation is not known. The next section presents a sub-optimal

receiver designed to address this issue.

14.8.2. SUB-OPTIMUM M-ARY DETECTION

From Equation 14.411, the optimum statistic for case 1 nonGaussian surface

reverberation is

ln{LmðyÞ} ¼ ln{Pm}2 ½ð3þ NÞ=2	 ln{aþ 0:2} ð14:414Þ
where

a ¼ ðy2 u xmÞTðy2 u xmÞ ð14:415Þ
Note that this receiver depends on a priori knowledge of the signal amplitude

u: When this value is unknown, the wrong optimum receiver may be employed,

leading to poorer performance than that achieved with the correct receiver.

Consequently, a robust sub-optimum receiver is designed.

The first class of sub-optimal receivers investigated uses a fixed value of u;
denoted as u0: Regardless of the true volume reverberation amplitude u; the
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receiver uses the quadratic form

a0 ¼ ðy2 u0xmÞTðy2 u0xmÞ ð14:416Þ

Correlation sonar data was simulated as shown in Figure 14.54, and

the performance of this sub-optimal receiver was measured in terms of Pc:
Figure 14.56 shows the results for three values of u0: The SBR is varied by

changing the actual value of u: As seen, the sub-optimal performance approaches

the ideal receiver performance only when the true value of u lies close to u0: This
result suggests that a bank of filters, each with a different u0;may be employed to

yield higher values of Pc:
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Receiver

(a)

P
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FIGURE 14.55 Correlation sonar optimum performance; (a) Gaussian clutter, (b) Case 1

clutter.
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The second class of sub-optimal receivers investigated uses a filter bank, as

shown in Figure 14.57. Note that each filter outputs five statistics. For a receiver

with 6 filters, the final decision must be made by examining all 5 £ 6 ¼ 30 output

statistics.

This analysis considers two different methods for making a decision at the

output of anM-ary filter bank. The first approach simply picks the channel which

yields the largest output across all 30 statistics. Henceforth, the receiver which

employs this method will be referred to as a maximum output filter bank. The

second approach first finds the largest response within each filter. Think of this as

each filter “voting” for one channel. The receiver then picks the channel which

P
c
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FIGURE 14.56 Correlation sonar sub-optimum performance; (a) u0 ¼ 0 dB, (b)

u0 ¼ 220 dB, (c) u0 ¼ 240 dB.
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receives the most “votes.” Henceforth, the receiver which employs this method

will be referred to as a voting filter bank.

Correlation sonar data was simulated as shown in Figure 14.54, and

the performance of these sub-optimal receivers was measured in terms of Pc:
Figure 14.58 shows the results for both types of filter banks. As seen, the

maximum output filter bank yields results closer to optimal than the voting

filter bank.

All of the receivers designed so far have been based on a traditional SIRV

interference model. The next section presents receivers derived to process

generalized SIRV interference.

14.8.3. GENERALIZED SIRV M-ARY DETECTION

From Equation 14.393, the optimum largest-of statistic for M-ary detection is

LmðyÞ ¼ PmfYlHm
ðylHmÞ ð14:417Þ

Filter 1:q1

Filter 6: q6

5 output statisitics
per filter

Decision
Process Output

Decision

Input Data
Vector

FIGURE 14.57 Sub-optimum filter bank.
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Filter Bank

Max Output
Filter Bank

FIGURE 14.58 Correlation sonar filter-bank performance.
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where:

y ¼ u xm þ d ð14:418Þ
In Equation 14.418, y is the received data vector, xm is the mth deterministic

signal vector with unit amplitude, and d is the interference vector.

In a correlation sonar, the interference d consists of ambient noise and the

dominant previous pulse echo. As such, the dominant interference data in d arises

from the first pulse, while the signal data in xm arises from the second pulse.

(Since the volume reverberation is assumed to be slowly varying, the signal

information xm received on the y element is identical to one of the signals

received after first pulse transmission on the x array elements.) Therefore the

received vector y contains information from both pulses, or one correlation sonar

pulse pair. This data is processed to yield a single velocity estimate.

By transmitting successive pulse pairs, the system forms successive velocity

estimates. Define the y vector which arises from the first pulse pair as

y1 ¼ u xm;1 þ d1 ð14:419Þ
Similarly, define the y vector which arises from the second pulse pair as

y2 ¼ u xm;2 þ d2 ð14:420Þ
and so on. In this model, note that xm;i is the mth signal vector from the ith pulse

pair. In a correlation sonar, the mth signal results from a slowly varying volume

reverberation echo. Hence, it is reasonable to expect differences between pulse

pairs.

The traditional SIRV model does not allow for dependence between

successive interference vector d1 and d2: However, when the interference is

modeled as a generalized SIRV, the density of the interference is given by

f 
Dð 
dÞ ¼ KhNPða1;a2;…;apÞ ð14:421Þ
where:


d ¼ ½d1; d2;…; dP	 ð14:422Þ
In Equation 14.422, the set {d1;…; dP} represents P interference vectors

received from P successive correlation sonar pulse pairs. The length of each

vector is N: In Equation 14.421, the scalars {a1;…aP} are defined by the

quadratic form

ai ¼ dTi Ridi ð14:423Þ
for all i from 1 to P; where Ri is the covariance matrix of the ith interference

vector. Henceforth, without loss of generality, this covariance matrix is assumed

to be equal to the identity matrix for all i such that

ai ¼ dTi di ð14:424Þ
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Define yi as the data vector received after the ith pulse pair. From Equation

14.418,

yi ¼ u xm;i þ di ð14:425Þ
From Equation 14.417, the generalized SIRV largest-of statistic is

Lmðy1;…; yPÞ ¼ PmfðY1;…;YPÞlHm
ðy1;…; yPlHmÞ ð14:426Þ

or

Lmðy1;…; yPÞ ¼ PmfðD1;…;DPÞ{ðy1 2 u xm;1Þ;…; ðyP 2 u xm;PÞ} ð14:427Þ
Substituting Equation 14.421 into Equation 14.427 gives

Lmðy1;…; yPÞ ¼ PmKhNPða1;…;aPÞ ð14:428Þ
where:

ai ¼ ðyi 2 u xm;iÞTðyi 2 u xm;iÞ ð14:429Þ
for all i from one to P:

Assume that the interference is independent from ping to ping and follows a

Gaussian distribution. The generalized SIRV characteristic function for such

interference is

hNPða1;…;aPÞ ¼ exp{2 ð1=2Þða1 þ a2 þ · · ·þ aPÞ} ð14:430Þ
Assume that the number of generalized SIRVs is two (i.e., P ¼ 2).

Substituting Equation 14.430 into Equation 14.428 gives

Lmðy1; y2Þ ¼ PmK exp{2 a1=2}{2 a2=2} ð14:431Þ
Removing the constant K and taking the logarithm produces

ln½Lmðy1; y2Þ	 ¼ ln{Pm}2 a1=22 a2=2 ð14:432Þ
Substituting Equation 14.429 into Equation 14.432 yields

ln½Lmðy1; y2Þ	 ¼ ln{Pm}2 ð1=2ÞyT1y1 2 ð1=2Þu2xTm;1xm;1 þ u xTm;1y1

2 ð1=2ÞyT2y2 2 ð1=2Þu2xTm;2xm;2 þ u xTm;2y2 ð14:433Þ
Removing terms which do not change from hypothesis to hypothesis gives

ln½Lmðy1; y2Þ	 ¼ ln{Pm}þ u xTm;1y1 þ u xTm;2y2 ð14:434Þ
As seen, for pulse pair independent Gaussian interference, the optimum

receiver is the sum of the output from two matched filter banks.

Now assume that the interference follows the case 1 SIRV surface

reverberation model identified in Section 14.6.4. For shape parameters ðQ1 ¼
Q2 ¼ R1 ¼ R2 ¼ 2Þ and ðb ¼ 0:2Þ; Equation 14.178 gives the generalized SIRV
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characteristic function as

hN2ða1;a2Þ ¼ K{ða1 þ 0:2Þða2 þ 0:2Þ}2
1þN
2


 �
£ 1

a1 þ 0:2
þ 1

a2 þ 0:2

� �
ð14:435Þ

Substituting Equation 14.435 into Equation 14.428, taking the logarithm, and

removing like terms produces

Lmðy1; y2Þ ¼ ln{Pm}2
1þ N

2

� �
{lnða1 þ 0:2Þ þ lnða2 þ 0:2Þ}

þ ln
1

a1 þ 0:2
þ 1

a2 þ 0:2

� �
ð14:436Þ

where:

a1 ¼ ðy1 2 u xm;1ÞTðy1 2 u xm;1Þ ð14:437Þ
and

a2 ¼ ðy2 2 u xm;2ÞTðy2 2 u xm;2Þ ð14:438Þ
Equation 14.436 is the optimum M-ary detector largest-of statistic for the

case where the interference follows the generalized SIRV surface reverberation

model.

A computer simulation was implemented to evaluate the effectiveness of the

optimum receivers developed above. Figure 14.59 shows a block diagram of the

scheme used to simulate correlation sonar data. The only difference between this

and the previous scheme illustrated in Figure 14.54 is that the program generates

a pair of Gaussian random vectors for each hypothesis. To create the interference,

GRV
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y2 = q xm, 2
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(s1, s2) ~ fS1
, S2

(s1, s2)

FIGURE 14.59 Correlation sonar 2-D data simulator.
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the program simulates two dependent scalars s1 and s2: When multiplied by two

independent Gaussian vectors, these scalars produce the desired pair of

generalized SIRVs.

In order to evaluate the generalized SIRV receivers, a computer program

creates 10,000 pairs of correlation sonar input vectors. It then computes the

largest-of statistics as given in Equation (14.434) and Equation (14.436). Once

again, a correct choice is made if the largest statistic Lm corresponds to the true

hypothesis. This experiment is repeated for various values of the signal-to-

background ratio (SBR). Figure 14.60 shows the resulting performance metric

Pc; the probability of correct detection, as a function of the SBR for the Gaussian

and case 1 receivers. Once again, when processing nonGaussian data, the case 1

receiver yields higher values of Pc for values of SBR from 230 to 0 dB.

With reference to Equation (14.434) and Equation (14.436), note that both

receivers require explicit knowledge of u: When this quantity is unknown, a

robust sub-optimum processor is used, as previously described in Section 14.8.2.

Figure 14.61 shows the result of processing the simulated correlation sonar data

with two sub-optimum receivers; a maximum output filter bank and a voting filter
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FIGURE 14.60 Generalized SIRV optimumM-ary performance; (a) 2D Gaussian clutter,
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bank. Once again, the maximum output filter bank yields results closer to those

achieved with an optimum receiver using the correct value of u:
In summary, this section demonstrates that correlation sonar performance

against nonGaussian interference can be improved by utilizing a nonGaussian

receiver. This holds true for both the traditional and generalized SIRV

interference models. The improvement is especially significant for quiet targets

with Signal-to-Background ratios in the range of 230 to 0 dB.

14.9. CONCLUSION

The original research presented within this dissertation includes several

significant findings, as detailed in the paragraphs below.

Section 14.2 presents a generalized SIRV clutter model. The generalization

represents an improvement over the traditional model in that the new version can

account for dependence between SIRV realizations. In the radar case, the

generalized model can account for dependent returns from neighboring spatial

range/bearing cells. In the sonar case, the generalized model can account for

dependent returns from successive pings.

Section 14.3 derives a significant properties associated with the generalized

SIRV. One interesting property is that the generalized SIRV characteristic

function hNMða1;…;aMÞ remains invariant when the random vector undergoes a

linear transformation, just like the traditional SIRV. Another property reveals that

the joint envelope density for a set of generalized SIRVs is unique. Because of

this property, one can approximate data with a generalized SIRV by solely

examining the vector envelopes. Section 14.3 also presents a method for deriving

explicit expressions for the generalized SIRV density based on the Laplace

transform.
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FIGURE 14.61 Generalized SIRV sub-optimum M-ary performance with 2D case 1

clutter.
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Section 14.4 derives four generalized SIRV density functions. The first two

are derived based on direct substitution into a multi-dimensional integral

obtained from the generalized SIRV representation theorem. The remaining two

density functions are derived with the Laplace transform representation.

Section 14.5 presents a method for generating data which follows a given

generalized SIRV density function. This analysis includes an extension of the

rejection theorem for generating a random variable15 in order to account for

multi-dimensional data.

Section 14.6 describes how to approximate with a generalized SIRV the

density underlying random data. This work required extension of the Ozturk

algorithm20 in order to account for multi-dimensional data. Section 14.6

concludes with an analysis of real data. This analysis reveals that a suitable

choice of shape parameters exists such that surface reverberation can be closely

modeled by the first nonGaussian generalized SIRV density derived in Section

14.4.

Section 14.7 presents an analysis of a correlation sonar, an application

particularly sensitive to surface reverberation. After deriving an optimum

receiver that is difficult to implement, the analysis presents a practical sub-

optimum receiver. When the ambient oceanic noise is small as compared to the

received acoustic echoes, the performance of this sub-optimum receiver

approaches that of the optimum receiver.

Section 14.8 concludes the analysis by simulating correlation sonar data and

evaluating the receivers derived in Section 14.7. In this analysis, the interference

is modeled by the case 1 nonGaussian generalized SIRV identified in Section

14.6. When processing nonGaussian data, the case 1 receiver significantly out-

performed the Gaussian matched filter bank in the region of signal-to-background

ratios from 230 to 0 dB.

14.9.1. SUGGESTIONS FOR FUTURE RESEARCH

The following paragraphs outline four areas which serve as a logical extension of

the work presented in this dissertation.

First, additional closed form generalized SIRV density functions need to be

derived, in order to build a more complete library of interference models. The

Laplace transform representation presented in Section 14.3 lends itself to this

work. This presentation allows for the direct derivation of closed-form

generalized SIRV density functions, without solving any multi-dimensional

integrals.

Upon creation of the interference models described above, the Ozturk

approximation map should be expanded based on these densities. A more

complete map allows for a more accurate approximation of the underlying

density followed by actual reverberation.

Following this work, the Ozturk algorithm should be employed to

approximate the underlying distribution of additional recorded data. This
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analysis should focus on surface and bottom reverberation, since the protection of

shallow coastal water has become a priority in today’s Navy.

Finally, nonGaussian filters should be derived to process the reverberation

data which follows the densities approximated above. This work should be

applied to more conventional sonar systems, as opposed to the lesser known

correlation sonar.
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15.1. STATISTICAL NORMALIZATION OF SPHERICALLY

INVARIANT NONGAUSSIAN CLUTTER

(T. J. BARNARD AND F. KHAN)

15.1.1. INTRODUCTION

Three critical requirements of active sonar systems are as follows:

(1) constant false-alarm rate (CFAR) relative to undesired clutter;

(2) maximized probability of detection (PD) relative to desired contacts;

(3) uniform background on the display.

The third requirement, which necessitates a consistent background mean and

variance, enables operator-assisted detection.

When searching for active sonar returns in background interference, the

likelihood-ratio test (LRT) maximizes PD for a specified probability of false

alarm (PFA). Given a Gaussian background, this LRT reduces to comparing the

normalized matched filter output power to a threshold. Under a Gaussian

assumption, this detector meets all three of the requirements above, as the output

power consistently follows a unit-mean/unit-variance exponential density.

However, an active sonar operating in littoral waters faces interference from

bottom and surface echoes, as well as particulates suspended in the water. Signal

detection within such clutter or reverberation requires specialized processing1

and interference modeling,2–4 since strong interference raises the tail of the

background distribution above that arising from Gaussian noise alone. Processing

with a matched filter thus increases the PFA, as many of these undesired returns

cross the Gaussian-based threshold. Such clutter also has an increased variance

(even after unit-mean normalization), which leads to an inconsistent background

density.

One solution involves modeling the non-Gaussian interference at the signal-

processor output with spherically invariant random vectors (SIRVs). This model

allows for application of an LRT and threshold which adapt to the dominant non-

Gaussian background. The SIRV model also accounts for correlation between

vector components and remains invariant to linear transforms such as

demodulation and beamforming. This latter advantage means that the SIRV
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model can be applied at the output of a conventional front end processing chain

and still achieve optimal PD/PFA performance; it is unnecessary to implement a

different non-Gaussian beamformer for each chosen SIRV. Instead, only the final

detector stage is changed so that, the sonar system front end output is changed

into a scalar for threshold comparison.

In radar applications, the SIRV components model successive wave-train

returns from a single range/bearing cell of interest.5–7 When present, a signal

component exists on every element of the received vector. However, in many

active sonar applications, propagation speed and environmental instability limit

the effectiveness of a multipulse wave-train. Instead, the system employs a single

long-pulse broadband waveform and the SIRV contains the echo from the

resolution cell of interest and the surrounding neighborhood. For a spatial point

target assumption, the signal now exists on only one element of the received

vector. Depending on the clutter model, this assumption simplifies the LRT and

enables closed-form derivation of the density at the detector output.

Given this density, the monotonic function, that converts the LRT output

power to data which follows a unit-mean exponential distribution, can be found.

Note that application of this monotonic function does not affect the optimum

PD/PFA statistics of the detector. However, this transform statistically normalizes

the data; despite a varying heavy-tailed input, the output always follows the same

density and, thus, requires same threshold to achieve a desired CFAR output.

Furthermore, the resulting display now has a consistent background distribution,

which aids the sonar operator trying to make manual detection decisions.

15.1.2. BACKGROUND

As shown in Ref. 8, multiplying a Gaussian random vector 
Z by a random scalar S

gives rise to an SIRV


X ¼ ½X1· · ·XN	T ¼ S· 
Z ð15:1Þ

assuming that a nonnegative random scalar allows for the derivation of several

useful properties and does not lead to a loss of generality.9 If the processor output

undergoes unit-power normalization prior to detection, then EðS2Þ ¼ 1: As stated
in Section 15.1, for active sonar systems, the components of the SIRV 
X contain

the returns from the spatial cell of interest and the surrounding neighborhood. For

example, the vector could contain the response from adjacent bearing cells (or

beams) at a given range. Under this model, the covariance matrix S of the

Gaussian vector 
Zmodels the underlying spatial correlation in this neighborhood.

Also, the “slowly varying” random scalar S is assumed to remain constant across

this region of space. Ref. 10 helps to validate the multiplicative model shown in

Equation 15.1 by demonstrating how a finite number of scatterers in a resolution

cell give rise to a K-distributed envelope density, which serves as a popular

SIRV-based clutter model in the radar community.11–18
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The underlying Gaussian nature of an SIRV gives rise to a canonical

density or

f 
Xð
xÞ ¼ hNð
xHS21

xÞ=pN detðSÞ ð15:2Þ

where the characteristic nonlinear function is defined as

hNðuÞ ¼
ð1

0
s22Ne2u=s2 fSðsÞds ð15:3Þ

As seen, this representation depends solely on the density of the random scalar

fSðsÞ and the covariance matrix S. Ref. 11 uses this representation to provide a
tabulated library of SIRV density functions based on the desired distribution of

the marginal envelope

r1 ¼ lx1l ¼
ffiffiffiffiffiffi
x1x

p
1

q
ð15:4Þ

It also is proven in Ref. 11 that the scalar quadratic form of the SIRV

a ¼ 
x
H ·S21·
x ð15:5Þ

serves as a sufficient statistic for identifying the multivariate density function,

given the known covariance. Ref. 12 comes to the same conclusion regarding

the marginal envelope shown in Equation 15.4. In other words, when fitting

data into a particular clutter model, the shape parameters in the univariate

density fAðaÞ need to be estimated rather than the multivariate SIRV density

f 
Xð
xÞ: The univariate approach requires fewer independent samples and is more
robust.

Based on the notation defined above, the densities of these sufficient statistics

become

fR1 ðrÞ ¼ 2rh1ðr2Þ ð15:6Þ
and

fAðaÞ ¼ aN21hNðaÞ=ðN 2 1Þ! ð15:7Þ
The density of the marginal power a1 ¼ lx1l

2
thus becomes

fA1 ðaÞ ¼ h1ðaÞ ð15:8Þ
We use Equation 15.2, Equation 15.3 and Equation 15.8 to characterize the

SIRV-based clutter model.

Next, consider the detection of random signals in non-Gaussian interference

using an LRT matched to this SIRV-based model. We have two hypotheses

regarding the received data vector 
x :H0 with no signal and a SIRV-based

background

H0 : 
x ¼ s·
z ð15:9Þ
and H1 with a signal present in the same interference

H1: 
x ¼ a·
gþ s·
z ð15:10Þ
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In these equations, 
x is an [N £ 1] vector that contains the received data and 
y is

an [N £ 1] normalized replica of the expected signal structure ð
gH 
g ¼ NÞ: Under
a Swerling type-I assumption, the amplitude a is a slowly fluctuating random

variable which remains constant for the duration of the return. The LRT

Lð
xÞ ¼ f 
XlH1
ð
xÞ

f 
XlH0
ð
xÞ _

H1

H0

h ð15:11Þ

which compares the function Lð
xÞ to a threshold h, maximizes PD for a fixed

PFA. The density in the denominator is simply that of the SIRV background or,

from Equation 15.2.

f 
XlH0
ð
xÞ ¼ hNð
xHS21


xÞ=pN detðSÞ ð15:12Þ
The density in the numerator is difficult to derive in closed-form when facing a

random amplitude signal. This means, the implementation of the optimum test

requires computationally intensive numeric integration. In contrast, a generalized

LRT (GLRT) assumes deterministic, yet still unknown, signal amplitude and

inserts an Maximum Likelihood Estimate (MLE) thereof into the likelihood

test.13 This incorrect assumption enables a realizable closed-form, yet

suboptimal, detector. Based on this deterministic model, the received density

conditioned on H1 becomes

f 
XlH1
ð
xÞ ¼ hNðð
x2 a·
gÞHS21ð
x2 a·
gÞÞ=pN detðSÞ ð15:13Þ

GLRT thus reduces to

LGLRTð
xÞ ¼ hN½ð
x2 â·
gÞHS21ð
x2 â·
gÞ	
hNð
xHS21 
xÞ ð15:14Þ

where â represents the MLE of the amplitude, given in Ref. 13 as

â ¼ 1

N
·ð
gH 
xÞ ð15:15Þ

Substituting this estimate into Equation 15.14 and assuming whitened data (i.e.,

S ¼ I, where I is the identity matrix) finally gives the GLRT as

LGLRTð
xÞ ¼
hN 
xH 
x2

1

N
·l
gH 
xl2

� �
hNð
xH 
xÞ ð15:16Þ

Equation 15.16 represents a canonical form of the SIRV-based GLRT. Specific

examples are presented in Section 15.1.3. Note that, for a Gaussian background,

where

hNðuÞ ¼ e2u ð15:17Þ
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the GLRT reduces to

Lð
xÞ ¼ 1

N
·l
gH 
xl2 ð15:18Þ

which is a standard matched filter across the domain in question.

15.1.3. SIRV EXAMPLES

As an example of SIRV, consider the gamma density function with shape

parameters l and a or

fV ðvÞ ¼ la

GðaÞ v
a21e2lv; s $ 0 and l;a $ 0 ð15:19Þ

where the gamma function is defined by

GðuÞ ¼
ð1

0
zu21e2z dz ð15:20Þ

If we let l ¼ a ¼ integer M and s ¼ v1=2, the generating density becomes

fSðsÞ ¼ 2sfV ðs2Þ ¼ 2s
MM

ðM 2 1Þ! s
2ðM21Þe2Ms2

¼ 2MM

ðM 2 1Þ! s
2M21e2Ms2 s $ 0; integer M . 0

ð15:21Þ

Note that the chosen shape parameters l ¼ a ¼ integer M drive the expected

value of s 2 to unity, i.e., EðS2Þ ¼ 1, which will happen after unit-power

normalization in the signal-processor. Equation 15.3 then gives the resulting

characteristic nonlinear function as

hNðuÞ ¼ 2MM

ðM 2 1Þ!
u

M

� �ðM2NÞ=2
KM2Nð2

ffiffiffiffi
Mu

p Þ ð15:22Þ

where KMð·Þ is an Mth order modified Bessel function defined as

KnðxÞ ¼ p

2
jnþ1½Jnð jxÞ þ jYnð jxÞ	 ð15:23Þ

where Jnð·Þ is the Bessel function

JnðxÞ ¼
X1
k¼0

ð21Þk
k!Gðnþ k þ 1Þ

x

2

� �nþ2k
ð15:24Þ

and Ynð·Þ is the Weber function

YnðxÞ ¼ lim
n!n

JnðxÞcosðnpÞ2 J2nðxÞ
sinðnpÞ ð15:25Þ
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Equation 15.6 gives the marginal envelope density as

fRðrÞ ¼ 4MðMþ1Þ=2

ðM 2 1Þ! r
MKM21ð2

ffiffiffi
M

p
rÞ ð15:26Þ

which is the K-distributed form common in radar clutter modeling.11–13,18

As another example, in the gamma density from Equation 15.19, let l ¼ b
and a ¼ bþ 1: Furthermore, let s ¼ v21=2, so that the generating density is

fSðsÞ ¼ 2s23fV ðs22Þ ¼ 2s23
bbþ1

Gðbþ 1Þ s
22be2bs

22

¼ 2bb

GðbÞ
e2b=s

2

s2bþ3
; s $ 0; b . 1:

ð15:27Þ

Once again, note that the chosen shape parameters l ¼ b and a ¼ bþ 1 drive

the expected value of s 2 to unity, i.e., Eðs2Þ ¼ 1: Equation 15.21 gives the

resulting characteristic nonlinear function as

hNðuÞ ¼ Gðbþ N þ 1Þ
Gðbþ 1Þ

bðbþ1Þ

ðb2 uÞðNþbþ1Þ ð15:28Þ

and Equation 15.26 gives the marginal power density as

fAðaÞ ¼ ðbþ 1Þbðbþ1Þ

ðbþ aÞðbþ2Þ ð15:29Þ

This is normalized, i.e., EðaÞ ¼ 1, and location-shifted version of the generalized

Pareto density (GPD)19 (i.e., a ¼ z2 b where z follows the GPD). Figure 15.1

shows a plot of this function for various values of the shape parameter b: As this
value increases, the Pareto tail approaches that of the complex Gaussian

normalized power density.

15.1.4. PARETO SIRV GLRT

Substituting the characteristic nonlinear function from Equation 15.28 into

Equation 15.16 gives the Pareto SIRV GLRT as

Lð
xÞ ¼
1

N
·l
gH 
xl2

bþ 
xH 
x2
1

N
·l
gH 
xl2

� � þ 1 ð15:30Þ

after applying the monotonic function u1=ðNþbþ1Þ: Note that the application of
such simplifying monotonic functions does not change the optimum PD and PFA

detection statistics. Furthermore, removing the additive constant and multiplying
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by b produces another equivalent GLRT with the same PD and PFA performance

Lð
xÞ ¼
1

N
·l
gH 
xl2

1þ 1

b
· 
xH 
x2

1

N
·l
gH 
xl2

� � ð15:31Þ

As stated previously, due to the SIRV invariance to linear transforms, we can

apply this GLRT after conventional front end processing, such as beamforming

and matched filtering. As such, the replica 
g contains the single echo from the

resolution cell of interest, along with the echoes from neighboring cells. In this

sonar context, a point target residing solely within a single resolution cell gives

rise to the replica vector


g
T ¼ ½0;…;

ffiffiffi
N

p
;…; 0	 ð15:32Þ

Substituting this target model into the GLRT thus gives rise to the simplified test

Lð
xÞ ¼ lxml
2

1þ 1

b

P
n¼1
n–m

N

lxnl
2

ð15:33Þ

where m locates the resolution cell of interest within 
g: This GLRT depends

solely on the noncoherent power data from the matched filter and as such serves

as a more robust detector than those that require a complex target model.

Also note that, as b increases, this test approaches the point target GLRT for

Pareto: b = 1

Pareto: b = 20
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FIGURE 15.1 Pareto power density tail approach to the Gaussian as b grows.
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a Gaussian noise background, derived from Equation 15.18 as

LGaussð
xÞ ¼ lxml
2 ð15:34Þ

This result makes sense because, as b increases, the Pareto SIRV power density

approaches the complex Gaussian power density (Figure 15.1). Thus, we can

think of the GLRT from Equation 15.33 as a weighted normalizer: as the tail of

the background density increases, the denominator becomes more significant.

The GLRT detector compares the output from Equation 15.33 to a threshold

h to determine if a signal lies within the received data. When the data consists of

background interference only (i.e., the null hypothesisH0), all threshold crossings

are false alarms. Thus, the PFA becomes

Pfa ¼
ð1

0
falH0

ðlÞdl ð15:35Þ

When processing any whitened SIRV with the Pareto GLRT shown in Equation

15.33, this PFA becomes

Pfa ¼ b

hþ b

� �N21ð1

0
e2h=S

2

fSðsÞds ¼ b

hþ b

� �N21
h0ðhÞ ð15:36Þ

Derivation of this result requires use of the integral

e2u

uðN21Þ
¼

ð1

u

ðN 2 1Þ
zN

þ 1

zN21

� �
e2z dz ð15:37Þ

In Equation 15.36, h0ð·Þ corresponds to the 0th-order characteristic nonlinear

function of the SIRV in question, as defined by Equation 15.3.

When the data consists of unit power interference plus a random signal with

variance s 2
A (the signal hypothesis H1), all threshold crossings are desired

detections. Thus, the PD becomes

Pd ¼
ð1

h
fAlH1

ðlÞdl ð15:38Þ

which, for data processed with the Pareto GLRT, reduces to

Pd ¼
ð1

h

exp 2
h

Ns2
A þ s2

{ !
fSðsÞ

s2

Ns2
A þ s2

{ !
h

b
þ 1

" #ðN21Þ ds ð15:39Þ

Note that as the signal power s2
A goes to zero, this PD approaches the PFA, as

given by Equation 15.36. Furthermore, as s2
A goes to infinity, Pd approach unity,

as expected.

We refer to a plot of PD vs. PFA for a specific signal power s 2
A as a receiver

operating characteristic (ROC) curve. To derive the ROC curve for any SIRV
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processed with the Pareto GLRT, first invert Equation 15.36 to express the

threshold h as a function of PFA and then insert the result into Equation 15.39.

The solution to Equation 15.39 typically requires numeric integration. However,

this does not present a significant computational burden, as the operating PD of

interest typically lies high enough to obviate detailed sums down into the far tails

of an integrand. In contrast, the K-distributed SIRV characteristic nonlinear

function shown in Equation 15.22 does not lead to a simplified GLRT form which

one can readily derive the densities falH0
ðlÞ and falH1

ðlÞ: As such, computation of
the threshold that gives rise to a low PFA value requires either multidimensional

numeric integration into the far tails of known densities or simulating at least

(10/PFA) random samples on the null hypothesis and processing with the GLRT

from Equation 15.16.

Equation 15.36 and Equation 15.39 define the ROC curve that results when

processing any SIRV with the Pareto GLRT Equation 15.33. When processing

any SIRV with the point target Gaussian GLRT Equation 15.34, the resulting

detection statistics become

Pfa ¼ h0ðhÞ ð15:40Þ
and

Pd ¼
ð1

0
e2h=ðNs

2
aþs2ÞfSðsÞds ð15:41Þ

Note how the Pareto GLRT performance from Equation 15.36 and Equation

15.39 approaches that of the Gaussian test shown in Equation 15.40 and Equation

15.41 as b increases.
When processing real data or simulated data which follows some other

density, implementation of the Pareto GLRT requires estimation of the shape

parameter b: This generally is not an easy problem.19 However, the MLE has

been shown to return robust performance with a limited number of samples. To

numerically implement the MLE, we chose a span of potential b values

ðb1;b2;…;bMÞ and then pick the one that maximizes the test statistic

Qð 
a;bmÞ ¼
YN
n¼1

fAðan;bmÞ ¼
YN
n¼1

ðbm þ 1Þbðbmþ1Þ
m

ðbm þ anÞðbmþ2Þ
ð15:42Þ

for a given collection of N power samples 
a ¼ {a1;a2;…;aN}: In this

equation, we are estimating b from the marginal power density shown in

Equation 15.29.

To illustrate the impact of utilizing the MLE, Figure 15.2 shows the result at

b ¼ 2, of processing Pareto clutter (Equation 15.28 and Equation 15.29) with the

Pareto GLRT (Equation 15.33). The thicker leftmost line shows the result of

using Equation 15.36 and Equation 15.39 to form the ROC curve. This represents

performance achieved with a priori knowledge of the true shape parameter. The

thinner line to the immediate right of this curve shows the result of simulating
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Pareto clutter data and implementing an MLE and GLRT. In this case, the MLE

uses 100 independent samples of the background to estimate the shape parameter.

As seen, the estimator degrades performance by about 1 dB at PD ¼ 0.50 and

PFA ¼ 0.001. However, this degraded curve still lies 3 dB above that found

through application of the Gaussian GLRT (used in conventional sonar

processing), shown as the dotted line on the far right and generated by Equation

15.40 and Equation 15.41.

Figure 15.2 shows the result of processing Pareto-SIRV data with the Pareto-

SIRV GLRT Equation 15.33. In contrast, Figure 15.3 shows the result of

processing heavy-tailed K-distributed clutter [(M ¼ 1Þ (Equation 15.21 and

Equation 15.26)] with this detector. The thicker leftmost line shows the result of

using simulated data and the GLRT from Equation 15.16 to form the ROC curve.

This represents performance achieved with a priori knowledge of the true K

density. The thinner line to the immediate right of this curve shows the result

implementing a 100 sample MLE and Pareto GLRT (Equation 15.33). This time,

the estimator degrades performance by less than 1 dB and, once again, the curve

lies 3 dB above that found through application of the conventional sonar

Gaussian GLRT.

Figure 15.3 demonstrates that the Pareto GLRT suffers a negligible loss

compared to the optimal detection of K-distributed data. This result is not

unexpected, as extreme value theory indicates that the Pareto density reasonably

models the tail of K-distributed data.19
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FIGURE 15.2 Processing Pareto clutter ðb ¼ 2Þ with the proposed GLRT gives rise to a
3 dB gain over the Gaussian GLRT at Pd ¼ 0:50 and Pfa ¼ 0:001:
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15.1.5. STATISTICAL NORMALIZATION

Use of the GLRT with a varying threshold ensures that the sonar system meets the

first two requirements set forth in Section 15.1.1, that of CFAR and a maximized

PD. However, an additional processing step is required to achieve the third

requirement of a consistent background density. We refer to this process as

statistical normalization (SN).20

When processing generic SIRV data with the Pareto GLRT, the output under

the null hypothesis Equation 15.9 follows the density

fAlH0
ðlÞ ¼

ð1

0
fðAlH0Þ;sðl; sÞds ¼

ð1

0
fðAlH0Þlsðl; sÞfSðsÞds

¼ b̂

lþ b̂

{ !N21
N 2 1

lþ b̂

{ !
h0ðlÞ þ h1ðlÞ

( )
ð15:43Þ

where b̂ is the estimate of b used in the detector. For the Pareto SIRV Equation

15.28, given that the estimate b̂ exactly equals the true value b, this reduces to

fAlH0
ðlÞ ¼ ðN þ bÞbðNþbÞ

ðlþ bÞðNþbþ1Þ ð15:44Þ

Consider the monotonic transform

c ¼ ðN þ b̂Þln l

b̂
þ 1

{ !
ð15:45Þ
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FIGURE 15.3 Processing K-distributed clutter ðM ¼ 1Þ with the Pareto GLRT at Pfa ¼
0:001 yields less than 1 dB loss when compared to processing with a matched GLRT.
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which yields the same PD and PFA as the original Pareto GLRT when applied to

the output. However, underH0 and assuming that b̂ exactly equals b, this new test
follows the exponential density or

fclH0
ðcÞ ¼ dl

dc
fAlH0

ðlðcÞÞ ¼ e2c ð15:46Þ

Note that, with an estimated value of b, the resulting density approximates the
exponential density, with the quality of this approximation tied to the quality of

the estimate.

The transform shown in Equation 15.45 statistically normalizes the heavy-

tailed clutter; when the Pareto SIRV well represents the input, the output always

approximates the same exponential distribution. This is the same power density

as that followed by normalized complex Gaussian data. Since the statistically

normalized Pareto GLRT output always approximates the exponential density,

the detector achieves true CFAR processing with one threshold and, therefore,

has a consistent background distribution.

Implementation of the proposed SN once again requires estimation of the

shape parameter b, which can degrade performance. However, Figure 15.4 shows
the result of applying Equation 15.45 with an MLE estimate of b to simulated

K-distributed data sent through the Pareto GLT Equation 15.22. In fact, this is the

same data and Pareto GLRT output used to generate the ROC curves from

Figure 15.3, which shows the histogram of this data after application of the

statistical normalizer. As seen, despite errors induced through estimation, the

resulting normalized histogram lies close to the exponential density, as desired.
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More formally, the exponential density serves as a “good fit” to this data, based

on computation of the standard chi-squared testing statistic.21 Finally, note that

for the purpose of comparison, this figure also shows the heavy-tailed

output density that arises when utilizing the conventional Gaussian processor

Equation 15.34.

As a final validation, Figure 15.5 shows the result of applying an MLE of b,
the Pareto GLRT, and statistical normalizer to real clutter-returns recorded in

shallow water. This plot shows PFA vs. threshold for the proposed detector and

the conventional Gaussian-based approach. Both are compared to the false alarms

arising from data that follow the exponential density. As seen, the statistical

normalizer drives the heavy tails of the recorded clutter envelope down toward the

exponential density, which empirically demonstrates the validity of the proposed

Pareto-SRIV model. However, note that, in the far tail of the density, below

PFA ¼ 1024, the model starts to break down due to estimation errors.

15.1.6. CONCLUSION

The most significant conclusion derived from this work is that the proposed

Pareto GLRT allows for robust near-optimal processing and statistical normal-

ization of heavy-tailed clutter. This was demonstrated against a limited set

of recorded sea clutter and also against simulated clutter that follows the

K-distribution that is popular in radar signal processing. In the latter case, the

proposed approach gave rise to a 3-dB gain relative to conventional processing

(at PD ¼ 0:50 and PFA ¼ 0:001).
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FIGURE 15.5 Applying the proposed processing string to recorded clutter returns drives

the heavy tail down to the desired exponential density.
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The analysis also derives a closed-form expression for the likelihood output

density conditionedon the null hypothesis,which enables direct computation of the

threshold required to achieve a given PFA. In contrast, the likelihood test derived

from a K-distributed clutter model does not reduce to a closed-form density, so

threshold computation requires numeric integration.Additionally, the closed-form

Pareto SIRV density allows for statistical normalization; without an expression for

the density at the likelihood output, we cannot find a monotonic function that

returns a consistent background distribution. Such statistical normalization

approximates true CFAR by driving the Pareto GLRT output toward an

exponential distribution, depending on the quality of the shape parameter estimate.

15.2. NONGAUSSIAN CLUTTER MODELING AND APPLICATION

TO RADAR TARGET DETECTION

(A. D. KECKLER, D. L. STADELMAN, AND D. D. WEINER)

15.2.1. INTRODUCTION

Conventional radar receivers are based on the assumption of Gaussian distributed

clutter. However, the Weibull and K-distribution are shown to approximate

the envelope of some experimentally measured non-Gaussian clutter data.1–5

The detection performance of the Gaussian receiver in this environment is

significantly below that of the optimum non-Gaussian receiver, especially for

weak target returns.

NonGaussian clutter is often observed to be “spiky,” as illustrated in

Figure 15.6. In such cases, the threshold of the conventional Gaussian receiver

must be raised in order to maintain the desired false alarm rate. This results in a

reduction of the probability of detection. In contrast, non-Gaussian receivers

contain nonlinearities that limit large clutter spikes and allow a lower threshold to

be used, which improves performance of targets with a low signal-to-clutter ratio
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FIGURE 15.6 Comparison of Gaussian data with non-Gaussian data of equal variance:

(a) Gaussian example, (b) non-Gaussian example.
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(SCR). Determination of these non-Gaussian receivers requires specification of

suitable PDFs for the clutter.

The nonhomogeneous and nonstationary clutter environment must be

monitored to adapt detection algorithms over the surveillance volume. This is

complicated by the need for an efficient technique to accurately approximate a

joint clutter PDF that incorporates the pulse-to-pulse correlation. Spherically

invariant random vectors (SIRVs), which are explained in this chapter, have been

shown to be useful for modeling correlated non-Gaussian clutter.6 The class

includes many distributions of interest, such as the Gaussian, Weibull, Rician,

and K-distributed, among others.6–9

This section extends the Ozturk algorithm for approximating univariate

PDF’s6,10 to the case of multivariate SIRV clutter data. Several issues are

addressed with regard to practical implementation of this approach, viz.,

computer simulation of correlated SIRVs, generation of Ozturk approximation

charts for the corresponding multivariate PDFs, fit of approximations to the

underlying distributions, and impact of using an estimated covariance matrix.

The section concludes with a specific example illustrating how well an adaptive

Ozturk-based receiver, which approximates the unknown clutter PDF, performs

compared to a non-Gaussian receiver with a priori knowledge of the clutter PDF.

15.2.2. SUMMARY OF THE SIRV MODEL

A random vector Y of dimension N is defined to be an SIRV if and only if its PDF

has the form

fYðyÞ ¼ ð2pÞ2N=2lSl21=2hNðqðyÞÞ ð15:47Þ
where S is an N £ N nonnegative definite matrix, q(y) is the quadratic form

defined by

q ¼ qðyÞ ¼ ðy2 bÞTS21ðy2 bÞ ð15:48Þ
b is the N £ 1 mean vector, and hNð·Þ is a positive, monotonic decreasing function
for all N:11 Equivalently, an SIRV Y can be represented by the linear

transformation

Y ¼ AXþ b ð15:49Þ
where X is a zero-mean SIRV with uncorrelated components represented by

X ¼ SZ ð15:50Þ
Z is a zero-mean Gaussian random vector with independent components, and S is

a nonnegative random variable independent of Z. The probability density

function of S, fSðsÞ, uniquely determines the type of SIRV and is known as the

characteristic PDF of Y. Since the matrix A is specified independently of fSðsÞ, an

Applications 929

© 2006 by Taylor & Francis Group, LLC



arbitrary covariance matrix, S ¼ AAT, can be introduced without altering the

type of SIRV.

This representation is used to obtain

hNðqÞ ¼
ð1

0
s2Ne2q=2s2 fSðsÞds ð15:51Þ

and subsequently, the PDF of the quadratic form is

fQðqÞ ¼ 1

2N=2GðN=2Þ q
ðN=2Þ21hNðqÞ ð15:52Þ

Since hNðqÞ uniquely determines each type of SIRV, Equation 15.52 indicates
that the multivariate approximation problem is reduced to an equivalent uni-

variate problem.

It is not always possible to obtain the characteristic PDF fSðsÞ in closed-form.
However, an N dimensional SIRV with uncorrelated elements can be expressed

in generalized spherical coordinates R, u, and fk for k ¼ 1;…;N 2 2, where the

PDF of R is given by

fRðrÞ ¼ rN21

2ðN=2Þ21GðN=2Þ hNðr
2ÞuðrÞ ð15:53Þ

The angles u and fk are statistically independent of the envelope R and do not

vary with the type of SIRV. When fSðsÞ is unknown, Equation 15.53 can be used
both to generate SIRVs and determine hNðqÞ:6

It is desirable to develop a library of SIRV’s for use in approximating

unknown clutter-returns. Table 15.1 contains the characteristic PDF’s and hNðqÞ0s
of some SIRVs for which analytical expressions are known. For simplicity,

the results presented for the Weibull and Chi SIRV are valid only for even N:
Additional SIRVs, such as the generalized Rayleigh, generalized Gamma, and

Rician, have been developed in Ref. 6.

The discrete Gaussian mixture (DGM) is an SIRV of special interest. Its PDF

is a simple finite weighted sum of Gaussian PDF’s. It is useful for approximating

many other SIRVs, as well as generating unique distributions.

15.2.3. DISTRIBUTION APPROXIMATION USING

THE OZTURK ALGORITHM

It is important to suitably model the clutter PDF to obtain improved detection

performance of weak signals in non-Gaussian clutter. Ozturk developed a general

graphical method for testing whether random samples are statistically consistent

with a specified univariate distribution.10 The Ozturk algorithm is based upon

sample order statistics and has two modes of operation. The first mode consists of

the goodness-of-fit test. The second mode of the algorithm approximates the PDF

Adaptive Antennas and Receivers930

© 2006 by Taylor & Francis Group, LLC



TABLE 15.1
Characteristic PDFs and hN(q) Functions for Known SIRVs

Marginal PDF Characteristic PDF fS(s) hN(q)

Gaussian dðs2 1Þ e2q=2
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2b

GðnÞ2n b
2n21s2ð2nþ1Þe2ðb2=2s2ÞuðsÞ
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2b
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p
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of the underlying data by using a test statistic generated from the goodness-of-fit

test to select from a library of known PDFs.

The goodness-of-fit test is illustrated in Figure 15.7. The solid curve denotes

the ideal locus of the null distribution, which is obtained by averaging 1000

Monte Carlo simulations of 100 data samples, where the Gaussian distribution is

chosen as the null distribution. The 90, 95, and 99% confidence contours are

shown. The dashed curve shows the locus of test data, which is accepted as being

Gaussian distributed with significance 0.1. Figure 15.8 shows the scatter of locus

0
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FIGURE 15.7 Linked vector and 90, 95, and 99% confidence intervals for the standard

Gaussian distribution.
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end points for 1000 simulations of K-distributed data. Each end point is obtained

from 100 vectors of four components.

An approximation to an unknown distribution can be obtained by examining

the location of the end point coordinate. An approximation chart is constructed

for a library of PDFs by plotting the end point coordinates for each density in

the library. A distribution that does not depend upon a shape parameter will

appear as a single point on the approximation chart. Distributions that have a

single shape parameter, such as the Weibull or K-distributions, will appear as

trajectories. Distributions with more than one shape parameter are represented

by a family of trajectories. A sample approximation chart for univariate

distributions is shown in Figure 15.9 for 100 data samples and 1000 Monte

Carlo simulations.

15.2.4. APPROXIMATION OF SIRVs

The distribution approximation technique described above applies to univariate

distributions. It is seen from Equation 15.47 and Equation 15.51 that the

characteristic PDF of an SIRV is invariant with respect to the vector dimension N

and uniquely determines the SIRV. If the data can be appropriately modeled as

SIRV, then the marginal distribution can be used to uniquely distinguish it from

all other SIRVs. Since the marginal distribution of an SIRV is univariate, the

procedure discussed in Section 15.2.3 can be applied directly. However,

V
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knowledge of the marginal distribution is insufficient to ensure that multivariate

data can be modeled as an SIRV.

Multivariate sample data can be rejected as having a particular type of SIRV

density if the envelope distribution is not supported by the Ozturk algorithm. In

addition, the angle distributions must be checked for consistency. However, the

angle distributions are independent of the type of SIRV considered and are useful

only for verifying that sample data is not SIRV distributed.

The approximation problem in further complicated since the covariance

matrix of the underlying SIRV distribution is usually unknown. The maximum

likelihood (ML) estimate of the covariance matrix for a known zero-mean SIRV

is given by

Ŝy ¼ 1

K

XK
k¼1

hNþ1ðyTk ŜyykÞ
hNðyTk ŜyykÞ

yky
T
k ð15:54Þ

Since Equation 15.54 depends upon hNðqÞ, the ML estimate of the covariance

matrix cannot be used in the approximation problem. Alternatively, a statistic

formed using the well known sample covariance matrix is used in this chapter to

select the appropriate approximation for the clutter distribution. This statistic is

given by

R̂ ¼ ½ðy2 b̂yÞTS21y ðy2 b̂yÞ	1=2 ð15:55Þ

where Ŝy is the sample covariance matrix, given by

Ŝy ¼ 1

n2 1

Xn
k¼1

ðyk 2 b̂yÞðyk 2 b̂yÞT ð15:56Þ

and b̂y is the sample mean. Approximation charts using the envelope statistic R̂

of Equation 15.55 are shown in Figure 15.10 and Figure 15.11 for vector

dimensions N ¼ 2 and N ¼ 4, respectively. The 90% confidence contours for

the K-distribution with shape parameter ak ¼ 0:4 are shown on the charts.

Surprisingly, the size of the confidence intervals does not significantly increase

as the dimension of the SIRV increases. While the sample covariance matrix of

Equation 15.56 may be a poor estimate of the actual covariance matrix, the

statistic of Equation 15.55 appears to be insensitive to this estimation.

As seen in Figure 15.10 and Figure 15.11, the confidence contours overlap

several trajectories on the approximation charts. Therefore, it is possible that any

one of several different types of SIRV distributions may be selected by the Ozturk

algorithm to approximate an SIRV distributed sample. Figure 15.12 compares the

quadratic form PDF for two distributions that fall within the confidence contour

shown in Figure 15.11. The locus end point of a K-distributed SIRV with shape

parameter ak ¼ 0:4 is marked by a 1 in Figure 15.11. The locus end point of a
Weibull SIRV with shape parameter aw ¼ 0:8 is labeled with a two. The close
match between theses PDFs, even when their locus end points are separated
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within the confidence contour, suggests similar distributions fall within a

particular localized region of the Ozturk chart. Consequently, distributions whose

locus end points are contained within a confidence contour are expected to be

suitable approximations.
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15.2.5. NONGAUSSIAN RECEIVER PERFORMANCE

The performance of an adaptive detection scheme, which uses the Ozturk PDF

approximation algorithm to regularly update the choice of receiver, is evaluated

by simulating SIRV clutter. The clutter power is assumed to be much greater than

the background noise power for the weak signal problem. Consequently, only the

clutter PDF is used to model the total disturbance. The clutter is also assumed to

have zero-mean and a known covariance matrix, S. The amplitude of the desired
signal is modeled as an unknown complex random variable, which is constant

over each P pulse coherent processing interval. The phase of the complex

amplitude is assumed to have a Uð0; 2pÞ PDF. Thus, the form of the ML estimate

for the complex amplitude is the same for all SIRVs, and the generalized

likelihood-ratio test (GLRT) is8

TGLRTð~rÞ ¼
h2P 2 ~rH ~S21~r2

l~sH ~S21 ~rl2

~sH ~S21~s

{ !" #
h2Pð2~rH ~S21~rÞ _

H1

H0

h ð15:57Þ

where examples of h2Pð·Þ are given in Table 15.1. The GLRT of Equation 15.57 is
formulated in terms of the complex low-pass envelopes of the receive data, ~r, and

known signal pattern, ~s: Previous investigation has shown there is little or no
degradation in performance of the GLRT for the known covariance problem,

when compared with the Neyman–Pearson (NP) test.5,12

Figure 15.13 compares the two-pulse performance of the adaptive Ozturk-

based receiver to several other receivers for a Swerling I target amplitude in K-

distributed clutter. The shape parameter is chosen as ak ¼ 0:4, which is within

f Q
(q

)

5

4

3

2

1

0
0 0.5 1 1.5

q
2 2.5 3

N = 4

Weibull, aw = .8

K, ak = .4

K-distributed and Weibull Quadratic Form PDF’s
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Adaptive Antennas and Receivers936

© 2006 by Taylor & Francis Group, LLC



the range of values measured for real data.1 The performance is evaluated for an

identity covariance matrix, and may be interpreted as a function of the SCR at the

output of a prewhitening filter. Detection results are obtained by processing

100,000 vector samples of K-distributed clutter. The solid curve shows the

baseline detection performance of the K-distributed GLRT designed for 0.001

PFA. The adaptive receiver performance, also indicated in Figure 15.13, is

obtained by partitioning the data into 50 intervals of 2000 samples each. The first

100 samples of each interval are processed by the Ozturk algorithm to obtain the

data end points shown in Figure 15.14. For each data end point, the corresponding
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2000 sample interval is processed by a GLRT based upon the PDF associated

with the closest library end point. While the known covariance matrix is used in

the GLRT implementation, the sample covariance matrix for each 100 samples is

used in the Ozturk algorithm, as described in Section 15.2.3 and Section 15.2.4.

Performance of the adaptive receiver closely matches the baseline

performance and show significant improvement over the Gaussian receiver for

SCR values below 10 dB. The measured PFA for the adaptive receiver is 0.00163,

which is slightly above the design value. This explains why the PD for the

adaptive receiver exceeds that of the baseline receiver at large SCR values.

Baseline receiver performance for the higher measured PFA is also included in

Figure 15.13 for comparison.

The adaptive receiver processed data associated with all the end points shown

in the scatter diagram of Figure 15.14, including those that fell outside the 90%

confidence contour. Nonetheless, the localized PD for each interval did not vary

significantly form the average value reported in Figure 15.13 for a given SCR.

15.2.6. CONCLUDING REMARKS

This chapter provides significant contributions to the development of a novel

adaptive non-Gaussian processing technique, which is based on the Ozturk PDF

approximation algorithm. New results are presented, which allow the algorithm

to adequately approximate multivariate SIRV PDFs from only 100 sample clutter

vectors. Then, a simple example is presented for K-distributed clutter with

known covariance matrix and 1023 probability of false alarm. A receiver which

adaptively processes the data based on the Ozturk PDF approximation has near

optimum performance for this example, thus, demonstrating the successful

application of the Ozturk algorithm to weak signal detection. Furthermore,

the adaptive receiver has significantly better detection performance than the

Gaussian receiver at low SCRs, with only a slight increase in the PFA. The above

results motivate investigation into application of the adaptive Ozturk algorithm to

problems of more practical interest, such as unknown clutter covariance matrix

and lower false alarm probabilities.

15.3. ADAPTIVE OZTURK-BASED RECEIVERS FOR SMALL SIGNAL

DETECTION IN IMPULSIVE NONGAUSSIAN CLUTTER

(D. L. STADELMAN, A. D. KECKLER, AND D. D. WEINER)

15.3.1. INTRODUCTION

Experimental measurement of radar clutter-returns shows the data may often be

non-Gaussian and have a non-Rayleigh envelope distribution, such as the

Weibull or K-distribution, particularly for data collected at low grazing angles

or high resolution.1–5 The detection performance of the Gaussian receiver in

this environment is significantly less than the optimum non-Gaussian receiver
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performance, especially for weak target returns. NonGaussian clutter is often

observed to be impulsive or “spiky.” Consequently, the threshold of the

conventional Gaussian receiver must be raised in order to maintain the desired

false alarm rate. This results in a reduction of the probability of detection. In

contrast, non-Gaussian receivers contain nonlinearities that limit large clutter

spikes and allow a lower threshold to be used, which improves performance for

targets with a low SCR.

The nonhomogeneous and nonstationary clutter environment must be

monitored to adapt detection algorithms over the surveillance volume.

Determination of the appropriate non-Gaussian receiver to use for a region in

the volume is based upon knowledge of the probability density function (PDF)

for the received clutter data from that region. Thus, multivariate, non-Gaussian

models which incorporate the pulse-to-pulse correlation of the clutter data are

needed to describe the joint PDF of the received data. Furthermore, a means of

choosing a particular one of these joint PDFs that sufficiently approximates the

unknown, underlying PDF of the clutter data is required. The changing nature of

the clutter environment limits the number of samples available to this PDF

approximation method.

The application of SIRV models to many non-Gaussian clutter environments

has both empirical and theoretical support. First, the SIRV model is equivalent

to the compound clutter model, which is found to be an excellent fit to real sea

clutter data in many instances.2 Second, the SIRV PDF for radar clutter is derived

from a generalization of the central limit theorem in which the number of

scatterers in a range-azimuth cell is assumed to be a random variable.6 The class

of SIRVs includes many distributions of interest, such as the Gaussian, Weibull,

Rician, and K-distributed, and has several properties which facilitate develop-

ment and implementation of optimal receivers.6–9

The Ozturk algorithm10 is a very efficient method for obtaining an

approximation to an unknown PDF, requiring only about 100 samples from the

unknown distribution. The efficiency of the Öztürk algorithm has prompted much

investigation of its application to the non-Gaussian radar problem, particularly

with regard to the SIRV clutter models.7,11–13 Since the algorithm uses only

about 100 points to approximate a PDF, few of these points are expected to fall

within the tail region of the unknown PDF. Thus, while the Öztürk algorithm does

a good job in selecting a PDF which closely approximates the body to the

underlying PDF of the data, this approximating PDF is not expected to adequately

match the tail behavior of the unknown PDF.

The low false alarm rates desired in radar applications result in receiver

thresholds which fall in the tail region of the PDF of the receiver output statistic.

Improper selection of this threshold yields an unacceptably high false alarm rate

or a severe degradation of target detection capability. The optimal receiver

for detection in Gaussian clutter is a matched filter, which is linear.

Consequently, points in the tail region of the PDF for the output of the matched

filter are generated by data in the tail region of the clutter PDF at the receiver

input. The nonlinear behavior of the non-Gaussian receivers and the applicability
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of the Öztürk algorithm to the radar detection problem in regard to threshold

selection in an area of much interest.

An analysis is presented which shows the nonlinear nature of the non-

Gaussian receivers causes most false alarms to arise from a small percentage of

points within the body of the PDF for the received clutter data in some important

cases of interest. An easily understood graphical representation is developed and

illustrates the conditions that must be satisfied for the Öztürk-based receiver to

control the false alarm rate in an acceptable manner.

15.3.2. SUMMARY OF THE SIRV MODEL

A brief review of the significant properties of SIRVs is presented.6,7,14 Any

SIRV, X, with zero-mean, uncorrelated components has the Gaussian mixture

representation,X ¼ SZ, where Z is a Gaussian random vector with N, zero-mean,

independent components, and S is a real, nonnegative random variable which is

independent of Z. The PDF of S, denoted by fSðsÞ, is called the characteristic PDF
of the SIRV and is normalized to mean-square value, Eðs2Þ ¼ 1, without loss of

generality. This mixture model admits an interpretation which is consistent with

observations often made on real clutter data. Clutter returns from a given range-

azimuth cell are usually Gaussian (Z), but the average clutter power level (S 2)

varies among cells in the surveillance volume.

Correlation is introduced by the linear transformation, Y ¼ AXþ b: The
transformed vector, Y, is always another SIRV and has mean vector, b,
covariance matrix, S ¼ AAT, and the same characteristic PDF as X. The PDF of

Y is obtained form the Gaussian mixture representation as

fYðyÞ ¼ ð2pÞ2N=2lSl21=2hN½ðy2 bÞTS21ðy2 bÞ	 ð15:58Þ
where hNð·Þ is a positive, real valued, monotonic decreasing function given by

hNðqÞ ¼
ð1

0
s2N exp 2

q

2s2

� �
fSðsÞds ð15:59Þ

Thus, the PDF of any N-dimensional SIRV is uniquely specified by a covariance

matrix, mean vector, and either the characteristic PDF or hNðqÞ: Since a linear
transformation is reversible, preprocessing to whiten the received data can be

performed without loss of optimality.

The PDF of the quadratic form, q ¼ ðy2 bÞTS21ðy2 bÞ, is

fQðqÞ ¼ qðN=2Þ21

2N=2GðN=2Þ hNðqÞ ð15:60Þ

and has an important implication. Since hNðqÞ is unique for each type of SIRV,
Equation 15.60 indicates the multivariate PDF for any SIRV is uniquely

determined by the univariate PDF of the quadratic form. This significantly

reduces the complexity of the PDF approximation required in the practical

implementation of optimal, non-Gaussian processing.
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The vector, X, of the Gaussian mixture representation is an SIRV if and only

if it can be expressed in generalized spherical coordinates in terms of N,

statistically independent, random variables. The generalization of spherical

coordinates to N-dimensions is not unique.15,16 The possible generalizations

differ only in their definition of the N 2 1 spherical angles. The vector

magnitude, R, remains unchanged in all of these coordinate systems. Any of these

generalizations may be used to specify an SIRV in spherical coordinates. A

coherent radar processes Np pulses of in-phase and quadrature data samples.

Optimum processing requires the specification of a 2Np dimensional joint PDF.

One convenient spherical coordinate transformation which is useful in the

analysis of this case is, for N ¼ 2Np components,
17

X1 ¼ R cos Q1 cos F1; X2 ¼ R cos Q1 cos F1 ð15:61aÞ

X2k21 ¼ R cos Qk cos Fk

Yk21
i¼1

sin Fi;

X2k ¼ R sin Qk cos Fk

Yk21
i¼1

sin Fi; k ¼ 2;…;Np 2 1

ð15:61bÞ

X2Np21 ¼ R cosQNp

YNp21
i¼1

sinFi; X2Np ¼ R sinQNp

YNp21
i¼1

sinFi ð15:61cÞ

with R2¼X21þX22þ · · ·þX22Np and Jacobian, J¼R2Np21
QNp21

i¼1 ðsinFiÞ2Np2122i�
cosFi: The spherical coordinate variables, R, R;F1;…;FNp21, Q1;…;QNp

, are

statistically independent with PDFs,

fRðrÞ¼ r2Np21

2Np21GðNpÞ
h2Npðr2Þ; 0# r,1 ð15:62Þ

fFk
ðfkÞ¼2ðNp2kÞcosfkðsinfkÞ2ðNp2kÞ21

0#fk#
p

2
; k¼1;…;Np21

ð15:63Þ

fQk
ðukÞ¼ 1

2p
; 0#u,2p; k¼1;…;Np ð15:64Þ

15.3.3. THE OZTURK ALGORITHM AND SIRV PDF APPROXIMATION

Öztürk developed a general graphical method for testing whether random

samples are statistically consistent with a specified univariate distribution.10 The

Öztürk algorithm is based upon sample order statistics and has two modes of

operation. The first mode performs a goodness-of-fit test. The second mode of the

algorithm uses a test statistic generated from the goodness-of-fit test to select an

approximation for the PDF of the underlying data from a library of known PDFs.

The goodness-of-fit test is illustrated in Figure 15.15a. The curve on the right

denotes the ideal locus of the null distribution. This locus is obtained by
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averaging 1000 Monte Carlo simulations of 100 data samples. The Gaussian

distribution is chosen as the null distribution in this example and the 90, 95,

and 99% confidence contours are shown. The other curve is the locus for some

non-Gaussian, sample data, which is rejected as Gaussian with significance 0.01.

An approximation chart is constructed for a library of PDFs by plotting

the end point coordinates of the goodness-of-fit test locus for each density in

the library, as shown in Figure 15.15b. A density which does not depend upon a

shape parameter, such as the normal or uniform, appears as a single point

on the approximation chart. Densities with a single shape parameter, such as the

Weibull or K-distributions, appear as trajectories. Densities with more than one

shape parameter are represented by a family of trajectories.

An approximation to the unknown PDF is obtained by examining the

coordinates at the end point of the locus for the sample data. The endpoint of the

goodness-of-fit locus in Figure 15.15a for the sample data is marked by an “o” at

coordinates (20.106, 0.319) on Figure 15.15b. The PDF in the library which is

closest to this endpoint is chosen as the approximating PDF. Figure 15.16

compares the approximating PDF to the original PDF (which is a Weibull

density). The Oztürk algorithm approximation is a good fit over most of the body

of the PDF. However, as Figure 15.16 illustrates, the tail of the approximating

PDF is below that of the original PDF.

The distribution approximation technique described above applies to

univariate distributions. Since a multivariate SIRV is uniquely specified by its

hN function, Equation 15.17 indicates that the univariate PDF of the quadratic form

is also unique for each type of SIRV. Thus, the Öztürk algorithm can be applied to

themultivariate PDF approximation problem for SIRVs by using it to approximate

either the quadratic formPDF or the envelope PDF inEquation 15.19.Multivariate

sample data is rejected as coming from a particular type of SIRV density if the

envelope PDF is not supported by the results of the Öztürk algorithm.
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FIGURE 15.15 Ozturk algorithm charts for univariate densities (A ¼ Laplace,

B ¼ Cauchy, E ¼ Exponential, G ¼ Gamma, J ¼ SU Johnson, K ¼ K-distribution,

L ¼ Lognormal, N ¼ Normal, P ¼ Pareto, S ¼ Logisitic, T ¼ Gumbel, U ¼ Uniform,

V ¼ Extreme Value, W ¼Weibull).
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The covariance matrix of the underlying SIRV distribution is usually

unknown, which complicates the multivariate PDF approximation problem. The

ML estimate of the covariance matrix for a zero-mean SIRV depends upon hN ,

which is unknown. Thus, the ML estimate of the covariance matrix cannot be

used in the approximation problem. Alternatively, the statistic,

R̂ ¼ ½ðy2 b̂yÞTŜ21y ðy2 b̂yÞ	1=2

is formulated using the sample covariance matrix,

Ŝy ¼
Xn
k¼1

ðyk 2 b̂yÞðyk 2 b̂yÞT=ðn2 1Þ

where b̂y ¼
Pn

k¼1 bk=n is the sample mean. The secondary data vectors, yk,

k ¼ 1;…n, are assumed to be homogeneous for the data of interest.

Approximation charts are shown in Figure 15.17 for vector dimensions N ¼ 2

and N ¼ 4, respectively. The 90% confidence contour for the K-distribution with

shape parameter, n ¼ 0:4, is shown on each chart.
As seen in Figure 15.17, the confidence contour overlaps several trajectories

on the approximation chart. Therefore, it is possible for any one of several

different types of SIRV density functions to be selected by the Öztürk algorithm to

approximate an SIRV distributed sample. Densities with locus end points inside

the confidence contour are expected to be suitable approximations, since PDFs

which are near each other on the approximation chart have similar looking shapes.

f R
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0
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FIGURE 15.16 Ozturk PDF approximation comparison. Original PDF (—) and

approximation (– –).
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15.3.4. NONGAUSSIAN SIRV RECEIVERS

Target detection of a reflected radar waveform of Np coherent pulses is described

by the binary hypothesis problem, H0: r ¼ d (target absent) vs. H1: r ¼
asðfÞ þ d (target present), where the elements of the 2Np dimensional vectors, r,

d, and s, are in-phase and quadrature samples of the received data, the disturbance

(clutter plus background noise), and the desired signal, respectively. The clutter

power is assumed to be much greater than the background noise power in the

weak signal detection problem of interest. Consequently, only the clutter PDF is

used to determine the statistics of the total disturbance. Signal attenuation and

target reflection characteristics are modeled by the target amplitude parameter, a:
The initial phase of the received waveform, which is pulse-to-pulse coherent, is

represented by f: Complete knowledge of a and f is usually unavailable.

The Neyman–Pearson (NP) receiver, which maximizes PD, for a specified

PFA, is optimum for this binary detection problem when a andf are assumed to be
random. The NP test can be evaluated in closed-form for some SIRVs in this

instance, but this is not typical. Consequently, analyzing the behavior of the

optimum NP test is difficult.

However, if the target amplitude and phase remain constant over a single

coherent processing interval (CPI) but vary between CPIs, then a generalized

likelihood-ratio test (GLRT) receiver is more easily used. Closed-form solutions

exist for the GLRT for many SIRVs. Furthermore, for several cases of interest,

detection performance of theGLRT is essentially equivalent to that of the optimum

NPreceiver used indetectionof targetswith randomamplitudeandUð0; 2pÞ random
phase.5,17 Thus, study of the GLRT receiver implementation is preferred here.

The linear transformation property for SIRVs allows preprocessing to whiten

the received data and normalize the clutter power of each element without loss of

optimality when the covariance matrix is known. Hence, the low-pass, complex

envelope samples of the clutter are assumed to be uncorrelated with covariance
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matrix,S ¼ 2I:Detection performance in correlated clutter is obtained by adding
the processing gain of the whitening filter onto the input SCR before using

detection performance curves for the uncorrelated clutter case.

The GLRT is obtained by using the maximum likelihood (ML) estimates for

the target amplitude and phase in a likelihood ratio test. The GLRT in this case

may be expressed as6

TGLRTð~rÞ ¼
h2NPð~rH ~r2 l~sH ~rl2Þ

h2NP½~rH ~r	
_
H1

H0

h ð15:65Þ

Here ~r is the low-pass, complex envelope, ~r ¼ rI þ jrQ: The joint PDF of ~r is the
2Np dimensional joint PDF of the elements of r ¼ [rIrQ]

T. The low-pass complex

envelope of the signal is defined similarly and ~sH ~s ¼ k~sk2 ¼ 1 is assumed without

loss of generality.

Representing the whitened data in the spherical coordinate system of

Equation 15.61a–c allows an arbitrary rotation of the system such that the desired

signal components are completely represented with only one of the coordinate

planes, specifically the one in Equation 15.61a. Consequently, defining

R2 ¼ R2s þ R2o, with Rs ¼ l~sH ~rl ¼ R cos F1 and Ro ¼ R sin F1, simplifies the

GLRT in Equation 15.65 to

TGLRTðRs;RoÞ ¼
h2Np ðR2oÞ

h2Np ðR2s þ R2oÞ
_
H1

H0

h ð15:66Þ
Some examples of Equation 15.66 are given in Table 15.2 for Gaussian,

Student t, and K-distributed SIRVs.

This GLRT depends only on, the envelope of the signal component of the

received data (Rs), and on the envelope of the orthogonal component of the

received data (Ro). Since Rs and Ro are nonnegative, D0, the decision region for

H0, and D1, the decision region for H1, are located in the first quadrant of the

Rs 2 Ro plane. The boundary which separates these decision regions is a curve in

this quadrant whose shape is determined by the type of SIRV. Each boundary

curve denotes a contour level for the GLRT receiver function, TGLRT, at the

selected value of the threshold, h:

15.3.5. GRAPHICAL REPRESENTATION OF SIRV RECEIVER BEHAVIOR

The dependence of the GLRT on Rs and Ro in Equation 15.66 motivates the

determination of the joint conditional densities, fRs;Roðrs; rolH0Þ and

fRs;Roðrs; rolH1Þ: The PFA and PD associated with a particular threshold equal

the volumes under these two PDFs, respectively, within the decision region, D1:
Under hypothesis,H0, there is no signal component in the received data. Only

SIRV interference is present. Consequently, the spherical coordinate random

variables, R and F1, are statistically independent with PDFs,

fRðrÞ ¼ r2Np21

2Np21GðNpÞ
h2Np ðr2Þ; 0 # r , 1 ð15:67Þ
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TABLE 15.2
Summary of Results for Gaussian, Student t, and K-distributed SIRVs. (The Shape Parameter is n, the Scale Parameter is b,

and g is the Threshold Corresponding to PFA. The Dimension is N 5 2NP)

Gaussian Student t ðn > 0Þ K-Distribution

h2Np ðqÞ exp


2

q

2

� 2Npb2nGðnþ NpÞ
GðnÞðb2 þ qÞnþNp

b2Np

GðnÞ
ðb ffiffi

q
p Þn2Np

2n21
KNp2n

ðb ffiffi
q

p Þ

TGLRTðrs; roÞ rs
r2s

b2 þ r2o


 roffiffiffiffiffiffiffiffiffi
r2s þ r2o

p �n2Np KNp2nðbroÞ
KNp2nðb

ffiffiffiffiffiffiffiffiffi
r2s þ r2o

p Þ

fRs ;Ro lH0
ðrs; rolH0Þ rsr

2Np23
o

2Np22GðNp 2 1Þ exp


2

r2s þ r2o
2

� 4b2nGðnþ NpÞ
GðNp 2 1ÞGðnÞ

rsr
2Np23
o

ðb2 þ r2s þ r2oÞnþNp
8b2Np rsr

2Np23
o KNp2nðb

ffiffiffiffiffiffiffiffiffi
r2s þ r2o

p Þ
2NpþnGðNp 2 1ÞGðnÞðb ffiffiffiffiffiffiffiffiffi

r2s þ r2o
p ÞNp2n

fR(r)
r2Np21

2Np21GðNÞ exp


2

r2

2

� 2b2nGðnþ NpÞ
GðnÞGðNpÞ

r2Np21

ðb2 þ r2ÞnþNp
4bnþNp rnþNp21

2nþNpGðNpÞGðnÞKNp2nðbrÞ

fRlFA(rlFA)
rðr2 2 g2ÞNp21
PFA2

Np21GðNpÞ
exp



2

r2

2

�
for r . g ð0 elsewhereÞ

2b2nGðnþ NpÞ
PFAðgþ 1ÞNp21GðnÞGðNpÞ

rðr2 2 gb2Þ
ðb2 þ r2ÞnþNp

for r . b
ffiffi
g

p ð0 elsewhereÞ

(not available)
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and

fF1
ðf1Þ ¼ 2ðNp 2 1Þcosðf1Þsinð2Np23Þðf1Þ; 0 # f1 #

p

2
ð15:68Þ

for a 2Np dimensional SIRV. The joint conditional PDF is easily obtained from

fR;Fðr;fÞ ¼ fRðrÞfFðfÞ ¼ r2Np21

2Np22GðNp 2 1Þ h2Npðr
2ÞcosðfÞsinð2Np23ÞðfÞ ð15:69Þ

via the variable transformations, Rs ¼ R cos F1 and Ro ¼ R sin F1, with

Jacobian, JðR;F1Þ ¼ R21, as

fRs;Roðrs; rolH0Þ ¼ fR;F1
ðr;f1ÞlJðr;f1Þl r¼

ffiffiffiffiffiffi
r2sþr2o

p
cosðf1Þ¼rs=r
sinðf1Þ¼ro=r

¼ rsr
2Np23
o h2Np ðr2s þ r2oÞ
2Np22GðNp 2 1Þ :

ð15:70Þ
Examples of this conditional probability density function are given in Table 15.2

for the Gaussian, Student t, and K-distributed SIRVs.

Under hypothesis, H1, the signal coordinate envelope, Rs, contains both

SIRV interference and a signal component. Consequently, R andF1 are no longer

statistically independent random variables and the conditional joint PDF,

fRs;Ro ðrs; rolH1Þ, is not as easily obtained. However, for a given value of the target
amplitude, a, the conditional PDF is found to be17

fRs;Ro ðrs; rola;H1Þ ¼ r
2Np23
o rs

2Np22GðNp 2 1Þ G
r2s þ r2o þ a2

2

{ !
ð15:71Þ

whereGðkÞ is the Laplace transform,GðkÞ ¼ L{ð1=2ÞtNp2ð3=2ÞfSðtð21=2ÞÞI0ðarstÞ}:
Combined contour plots of fRs;Ro ðrs; rolH0Þ and TGLRTðrs; roÞ are shown in

Figure 15.18 to Figure 15.20 for Gaussian, Student t, and K-distributed SIRV

examples, respectively. The closed contours correspond to the conditional

PDF and the open contours correspond to the GLRT receiver. Gaussian GLRT

contours are shown in Figure 15.18 for thresholds associated with PFA values of

1021, 1022, 1023, 1024, and 1025. The contours are shown in Figure 15.19 for

the Student t GLRT are associated with the same PFA values, with a Student t

threshold given by g ¼ P
1=ðnþNp21Þ
FA 2 1: The dependence of the Student t GLRT

threshold on the dimension, 2Np, explains the change in the contours as NP
increases, even though the GLRT given in Table 15.2 does not depend on Np.

The contours shown in Figure 15.20 for the K-distributed GLRT correspond to

arbitrary, unknown PFA values.

These combined contour plots give a qualitative indication of how the

received data, ðrs; roÞ, maps into the decision regions for the test statistic of the
receiver output. This is illustrated further by the scatter plot of 20,000 received
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data points shown in Figure 15.21a for simulated, Student t, SIRV clutter with

n ¼ 2 and Np ¼ 4: The GLRT contours of Figure 15.19b are also indicated on

this figure. The mapping of received data points into D1, the decision region for

H1, when H0 is true is of particular interest, since these are the points which cause

false alarms. This is illustrated in the scatter plot of Figure 15.21b, where only

received data points which cause a false alarm are plotted. The contour shown in

Figure 15.21b, corresponds to PFA ¼ 0.01 for the same Student t SIRV clutter, so

a sample of 100,000 received data points is simulated to obtain approximately

1000 points on this scatter plot. This mapping is determined by the Öztürk

algorithm approximation of fR(r). However, as previously described, the Öztürk

algorithm provides a good approximation to the body of the PDF, but this

approximating PDF is not expected to adequately match the tail region.

Consequently, the Öztürk approximation for fR(r) must adequately characterize

the distribution of data points in Figure 15.21b if a receiver and threshold

selection based on this approximation is to control the false alarm rate without a

significant loss in detection performance.

When H0 is true and the received data point maps into D1, a false alarm

occurs. The conditional distribution of the magnitude, R, of these data points is
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denoted as FRlFA (rla false alarm occurs) or FRlFA (rlFA) and is given by

FRlFAðrlFAÞ ¼
Pr{R # r > FA}

Pr{FA}
ð15:72Þ

The denominator of this expression is the false alarm probability, PFA. The

conditional PDF is obtained from

fRlFAðrlFAÞ ¼
d

dr
FRlFAðrlFAÞ ¼

d

dr
Pr{R # r > FA}

PFA
ð15:73Þ

Determination of fRlFAðrlFAÞ is closed-form is possible for the Student t and

Gaussian SIRV cases.17 These results are given in Table 15.2 and examples are

plotted in Figure 15.22 and Figure 15.23. When a closed analytical form for

fRlFAðrlFAÞ cannot be found, such as for the K-distributed SIRV, a histogram of

simulated data is sufficient. Figure 15.24 and Figure 15.25 compare histograms of

fRlFAðrlFAÞwith fRðrÞ for PFA ¼ 0.01 and PFA 0.001 in the two-pulse and 16 pulse

cases, respectively.

A comparison of the conditional density, fRlFAðrlFAÞ, with the density

function, fRðrÞ, is very enlightening. It shows that for some important cases there
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is significant overlap in the body regions of these two PDFs. Furthermore, the

comparisons indicate that the overlap increases as PFA increases and as ND, the

number of pulses, increases. These trends are also indicated by the histogram

comparisons shown in Figure 15.24 and Figure 15.25 for simulated, K-distributed

data. A comparison between different SIRV types also shows that the overlap

tends to be greater as the density is more non-Gaussian. There is more overlap for

the K-distribution than in the Student t case for Np ¼ 2 and PFA ¼ 0.001. The

Student t case also shows slightly more overlap than the Gaussian case in this

same example. The performance of an adaptive Öztürk based receiver is

evaluated for this K-distributed case.

15.3.6. ADAPTIVE OZTURK-BASED RECEIVER

The performance of an adaptive detection scheme, which uses the Öztürk PDF

approximation algorithm to regularly update the choice of GLRT receiver, is

evaluated by simulating SIRV clutter. The clutter power is assumed to be much

greater than the background noise power for the weak signal problem.

Consequently, only the clutter PDF is used to model the total disturbance.
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The clutter is also assumed to be zero-mean with identity covariance matrix. The

target amplitude is modeled as an unknown random variable which is constant

over each Np pulse coherent processing interval. The initial target phase is

assumed to be uniformly distributed on ð0; 2pÞ:
Figure 15.26 compares the two-pulse performance of the adaptive Öztürk-

based receiver to several other receivers for a Swerling I target amplitude in

K-distributed clutter. The shape parameter is chosen as n ¼ 0:4, which is within
the range of values measured for real data.1 The performance is evaluated for an

identity covariance matrix, and may be interpreted as a function of the SCR at the

output of a prewhitening filter. Detection results are obtained by processing

100,000 vector samples of K-distributed clutter. The solid curve shows the

baseline detection performance of the K-distributed GLRT designed for

PFA ¼ 0.001. The adaptive receiver performance, also indicated in

Figure 15.26, is obtained by partitioning the data into 50 intervals of 2000

samples each. The first 100 samples of each interval are processed by the Öztürk

algorithm to obtain the data end points shown in Figure 15.27. For each data end

point, the corresponding 2000 sample interval is processed by a GLRT based

upon the PDF associated with the closest library end point. While the known
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covariance matrix is used in the GLRT implementation, the sample covariance

matrix for each 100 samples is used in the Öztürk algorithm.

Performance of the adaptive receiver closely matches the baseline

performance and shown significant improvement over the Gaussian receiver

for SCR values below 10 dB. The measured PFA for the adaptive receiver is

0.00163, which is slightly above the design value. This explains why the

probability of detection (PD) for the adaptive receiver exceeds that of the baseline

receiver at larger SCR values. Baseline receiver performance for the higher

measured PFA is also included in Figure 15.26 for comparison.

The adaptive receiver processed data associated with all the end points shown

in the scatter diagram of Figure 15.27, including those that fell outside the 90%

confidence contour. Nonetheless, the localized PD for each interval did not vary

significantly from the average value reported in Figure 15.26 for a given SCR.

15.3.7. CONCLUSIONS

The performance potential of an adaptive Öztürk-based receiver for detection of

weak targets in non-Gaussian SIRV clutter is demonstrated for a K-distributed

example. The false alarm rate of this receiver is slightly higher than the design
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value of 0.001. However, it is of the same order of magnitude and preserves the

target detection capability. Furthermore, the graphical representation which is

developed is useful for determining when the adaptive Öztürk-based receiver is

expected to perform close to optimum. This representation provides guidelines

based on PFA, number of pulses, and non-Gaussianity of the data. It indicates that

for a relatively small number of pulses, the Öztürk algorithm is able to adequately

characterize the PDF of the received data, particularly the data which causes false

alarms to occur. Thus, an appropriate receiver and threshold can be adaptively

selected. The graphical contour representation of the GLRT is also useful in the

analysis and specification of limiter approximations to the optimum non-

Gaussian receivers.17

15.4. EFFICIENT DETERMINATION OF THRESHOLDS VIA

IMPORTANCE SAMPLING FOR MONTE CARLO EVALUATION

OF RADAR PERFORMANCE IN NONGAUSSIAN CLUTTER

(D. L. STADELMAN, D. D. WEINER, AND A. D. KECKLER)

15.4.1. INTRODUCTION

Interest in the detection of targets in correlated, non-Gaussian radar clutter

environments has led to significant interest in the multivariate spherically random

vector (SIRV) clutter model. The SIRV model1,2 describes multivariate

generalizations of many non-Gaussian distributions which are commonly used

as statistical fits to real clutter data. It includes the K-distribution, which is

commonly used to model sea clutter3 and SAR clutter,4 the Weibull distribution,
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and the Student t distribution, which is also related to statistical models used for

SAR data.5 Several optimal and near-optimal detectors are available for the SIRV

model. These include the generalized likelihood-ratio test (GLRT),6 adaptive

matched filter,7,8 and the parametric adaptive matched filter.9

Due to the nonlinear nature of the non-Gaussian receivers and the additional

mathematical complexity of the non-Gaussian distributions, it is frequently

impossible to obtain closed form analytical results for the threshold, PFA, and PD.

This is especially the case for adaptive receivers which estimate the unknown

covariance matrix of the clutter data. Consequently, Monte Carlo simulation is

used to obtain estimates of performance.

Determination of a receiver threshold is the critical aspect of the radar

detection performance evaluation. Conventional Monte Carlo simulation

typically requires 100/PFA independent trials to obtain a suitable estimate of

the threshold. For example, estimating a threshold for PFA ¼ 1027 requires one

billion samples of the receiver test statistic. The computational burden of

calculating these samples for adaptive non-Gaussian receivers often prevents

practical use of this technique. This problem is confirmed in the literature, where

performance results from Monte Carlo simulation of adaptive non-Gaussian

receivers are typically presented for false alarm probabilities on the order of 1022

to 1024.10,11 These values of PFA exceed practical radar design requirements by

several orders of magnitude. Analytical tractability requires assumptions which

may not be characteristic of real clutter data.

A very efficient simulation method that uses importance sampling (IS) to

estimate the threshold for very small PFA values is developed. A significant

reduction in the required number of trials is achieved.

15.4.2. THE COMPLEX SIRV CLUTTERMODEL

Let the clutter vector, X ¼ XI þ jXQ, be modeled as a complex N-dimensional

SIRV with zero-mean, where XI and XQ are real vectors of the in-phase (I) are

quadrature (Q) components of the clutter samples, respectively. The marginal

PDFs for the ðI;QÞ pair of each complex component are assumed to be identical
and circularly symmetric.

The PDF of X is defined as the multivariate PDF for the concatenated, 2N-

dimensional real vector, Xr ¼ ½XI ;XQ	: If the covariance matrix of X r has the

structure,

S ¼
G 2F

F G

{ !
ð15:74Þ

where G is positive definite andF is skew symmetric (F ¼ 2FT), then the PDF

of the complex SIRV, X, is1,2

fXðxÞ ¼ p2N lSl21h2NðxHS21xÞ ð15:75Þ
where h2NðqÞ is a monotonic, decreasing function for all N:
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The covariance matrix for X is S ¼ 2ðGþ jFÞ, which is Hermitian and

positive definite. Therefore, it has an eigenvalue decomposition, S ¼ UDUH ,

where D is a diagonal matrix of positive eigenvalues and U is a unitary matrix of

the orthonormal eigenvectors of S. The representation theorem for SIRVs2 is

used to express X as the scale mixture,

X ¼ VUD1=2Z ð15:76Þ
where Z has the N dimensional, complex normal distribution, N(0,IN), and V is a

real, nonnegative random variable which is independent of Z and normalized to

EðV2Þ ¼ 1: The PDF of X is then

fXðxÞ ¼
ð1

0
fXkV ðxlvÞfV ðvÞdv ð15:77Þ

where Xlv is conditionally Gaussian with PDF, Nð0; v2SÞ, and

h2NðqÞ ¼
ð1

0
v22Ne2q=v2 fV ðvÞdv ð15:78Þ

is easily obtained by equating Equation 15.75 and Equation 15.77.

A linear transformation, S21=2 ¼ D21=2UH , whitens X and gives

XHS21X ¼ ðS21=2XÞHðS21=2XÞ ¼ XT
wXw ¼ kXwk

2 ¼ R2 ð15:79Þ
Hence, from Equation 15.75, the PDF of X is only a function of R, which is the

norm of the whitened vector, Xw ¼ S21=2X: The PDF of R obtained through a

spherical coordinate transformation of Xw is

fRðrÞ ¼ 2rN21

GðNÞ h2Nðr
2Þ; 0 # r , 1 ð15:80Þ

The PDF of V , denoted by fV ðvÞ, is the characteristic PDF of the SIRV and can be

used to create SIRVs having specific marginal distributions. For example, a

K-distributed SIRV is obtained when V has a gamma density function. The

functions h2NðqÞ and fRðrÞ for the Gaussian, Student t, and K-distributed classes of
SIRVs are given in Table 15.3, where b is a scale parameter and n is a shape
parameter that characterizes different PDFs within a class of SIRVs.

15.4.3. NONGAUSSIAN SIRV RECEIVERS

The target detection problem in non-Gaussian SIRV clutter is formulated as the

hypothesis test, H0 : r ¼ x vs. H1 : r ¼ ~asþ x, where x is a vector of N complex

interference samples, s is a known signal vector, and ~a is the unknown complex

amplitude of the signal. The interference consists of clutter and additive white

noise. However, the clutter-to-noise ratio is assumed large and the total

interference is approximated by the SIRV clutter model only.
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TABLE 15.3
Summary of Results for Gaussian, Student t, and K-Distributed SIRVs. (A Condensed Version of Table 15.2)

Gaussian Student t ðn > 0Þ K-Distribution

h2N ðqÞ e2q b2nGðnþ NÞ
GðnÞðb2 þ qÞnþN

b2N

GðnÞ
ðb ffiffi

q
p Þn2N

2Nþn21
KN2nðb ffiffi

q
p Þ

fR(r)
2r2N21

GðNÞ e
2r2 2b2nGðnþ NÞ

GðnÞGðNÞ
r2N21

ðb2 þ r2ÞnþN
4bnþNrnþN21

2nþNGðNÞGðnÞKN2nðbrÞ
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15.4.3.1. Known Covariance Matrix Case

When the covariance matrix is known, nearly optimal detection performance is

obtained with the generalized likelihood-ratio test (GLRT). The GLRT is

obtained by using the maximum likelihood estimate (MLE) of the unknown

complex signal amplitude, ~a, in the likelihood ratio test. The form of the test for

SIRV clutter is6

TGLRTðrÞ ¼ h2Nðr2oÞ
h2Nðr2o þ r2s Þ

_
H1

H0

g ð15:81Þ

with

r2s ¼ lsHS21rl2

sHS21s
¼ lsHwrwl

2

sHwsw
ð15:82Þ

and

r2o ¼ rHS21r2 r2s ¼ rHwrw 2 r2s ¼ r2 2 r2s ð15:83Þ
where rw ¼ S21=2r is now whitened. The transformed signal vector, sw ¼
S21=2s may be arbitrarily chosen as coincident with a coordinate vector for the

whitened data. Consequently, rs is the magnitude of the signal component in the

received data and ro is the magnitude of the components orthogonal to the signal

in the received data. GLRTs for the Student t and K-distributed SIRV cases are

listed in Table 15.3.

Since TGLRT(r) is dependent on h2NðqÞ, the PDF of the interference must be
known. In practice, a suitable approximation to the PDF of the SIRV must be

obtained.

A suboptimum test statistic which does not require the PDF of the SIRV

clutter is the normalized matched filter (NMF),7

TNMFðrÞ ¼ lsHS21rl2

ðsHS21sÞðrHS21rÞ ¼ lsHwrwl
2

ðsHwswÞðrHwrwÞ ¼ r2s

r2
ð15:84Þ

15.4.3.2. Unknown Covariance Matrix Case

The covariance matrix of the clutter is usually unknown and an estimate of the

covariance matrix is used in the detectors of Equation 15.81 to Equation 15.84

instead. The MLE, Ŝ, of the SIRV covariance matrix is obtained from a set of

independent secondary data vectors, {y1;…; yK}: This estimate satisfies
12

Ŝ ¼ 1

K

XK
k¼1

2
h02NðyHk ŜykÞ
h2NðyHk ŜykÞ

yky
H
k ð15:85Þ

which is solved using the expectation-maximization (EM) algorithm. The

estimator reduces to the sample covariance matrix when the SIRV is Gaussian.

Otherwise, it depends on suitable knowledge of the underlying clutter PDF.
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15.4.4. IMPORTANCE SAMPLING

The false alarm probability of the decision,

TðrÞ_
H1

H0

g

is

PFA ¼
ð1

g
fT ðtÞdt ð15:86Þ

where fT ðtÞ is the PDF of the test statistic, T: This is expressed in terms of the PDF
of the input data as

PFA ¼
ð
V1ðrÞ

IgðrÞfRlH0
ðrlH0Þdr ð15:87Þ

where V1(r) denotes the decision region in r for H1 and Ig(r) is the indicator

function,

IgðrÞ ¼
1 if TðrÞ . g

0 if TðrÞ . g

(
ð15:88Þ

The unbiased estimate, P̂FA, obtained from M conventional Monte Carlo trials is

the sample mean,

P̂FA ¼ 1

M

XM
k¼1

IgðrkÞ ð15:89Þ

which is approximately Nð0;PFA=MÞ for large M and PFA ,, 1. The quality of

this estimate is characterized by the relative error,

e ¼ PFA 2 P̂FA
PFA

ð15:90Þ

The relative RMS error is the standard deviation of e, which is 1=
ffiffiffiffiffiffiffiffi
MPFA

p
in this

case. Typically, M ¼ 100=PFA trials are required to obtain good threshold

estimates in radar applications. The relative RMS error is then 0.1, which is used

as a benchmark to measure the efficiency of importance sampling Monte Carlo

simulations.

Importance sampling (IS) is a variance reduction technique that substantially

reduces the number of Monte Carlo trials required to obtain accurate threshold

estimates.13,14 The basic idea behind importance sampling is to use random

samples with a modified probability density function for the detector input. The

modified PDF is selected to generate more threshold crossings at the detector

output. Each detector output is then weighted in the computation of P̂FA to

compensate for this modification.
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The modified PDF, f ðmÞR ðrÞ, is introduced into Equation 15.87 as

PFA ¼
ð
V1ðrÞ

wðrÞf ðmÞR ðrÞdr ð15:91Þ

where w(r) is the weighted indicator function,

wðrÞ ¼ IgðrÞ
fRlH0

ðrlH0Þ
f ðmÞR ðrÞ ¼

fRlH0
ðrlH0Þ

f ðmÞR ðrÞ for TðrÞ . g

0 for TðrÞ . g

8><>: ð15:92Þ

The weighting depends only on the input data and is the ratio of the original PDF

to the modified PDF.

The PFA, now interpreted as the average of w(r) when the detector inputs are

generated from the modified PDF, is estimated by the sample mean,

P̂FA;IS ¼ 1

Mis

XMis

k¼1
wðrkÞ ð15:93Þ

of Mis importance sampling trials. This estimate is unbiased when the modified

PDF spans the decision region. It is straightforward to show the variance of the

relative error for this estimate is

1

MisP
2
FA

ð
V1ðrÞ

wðrÞfRlH0
ðrlH0Þdr ð15:94Þ

Then, for the same relative RMS error in both estimates,

Mis

M
¼ 1

PFA

ð
V1ðrÞ

wðrÞfRlH0
ðrlH0Þdr ð15:95Þ

provides a measure of the effectiveness of the IS technique. The objective is to

make this ratio very small, such that Mis nM.
Methods for selecting a modified PDF which realizes this effectiveness have

been developed and very successfully implemented in many problems.13–17

However, their application to a particular detection problem is not necessarily

obvious and the optimum modification to minimize the variance may not be easy

to find. Consequently, several modified PDFs may need to be tried and the

question, of how many trials,Mis, should be chosen to achieve an accurate result,

is raised.

The importance sampling technique based on a simple variance scaling to

modify the input PDF is developed for the SIRV receivers. Confidence in the

results is obtained by considering the sample variance of the relative error, known

analytical results and PDF tail behavior related to extreme value theory.
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15.4.5. ESTIMATION OF SIRV DETECTOR THRESHOLDS WITH

IMPORTANCE SAMPLING

Importance sampling is first applied to the estimation of thresholds when the

covariance matrix of the received clutter data is known. This provides an upper

bound on the detection performance obtained when an estimate of the covariance

matrix is used. The behavior of the adaptive receivers should be similar to this

case when good estimates of the covariance matrix are generated. A limited

number of closed-form analytical expressions for the threshold are also available

for the known covariance problem.18 These provide excellent cases with which to

evaluate and validate the importance sampling Monte Carlo methods.

The GLRT and NMF receivers described by Equation 15.81 to Equation

15.84 are functions of only the norms, Rs and Ro, of the signal and orthogonal

components in the received data. The joint PDF of Rs and Ro for an SIRV with

known covariance is18

fRs;Roðrs; rolH0Þ ¼ 4rsr
2Np23
o

GðNp 2 1Þ h2Npðr
2
s þ r2oÞ ð15:96Þ

This joint density is used as the original input PDF for threshold estimation using

importance sampling.

Representative contour plots of fRs;Roðrs; rolH0Þ and the GLRT are shown in

Figure 15.28 and Figure 15.29 for N ¼ 4: The decision region for H1, V1(r),

tends towards larger values of Rs and smaller values of Ro as the threshold is

increased. Consequently, the probability mass of the modified PDF for

rS

r o
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12
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TGLRT

m = 1

2

3

4

fRSRo

FIGURE 15.28 Student t SIRV contour plots of TGLRT and fRs;RolH0
ðrs; rolH0Þ with N ¼ 4,

n ¼ 2: Numbered GLRT contours correspond to PFA ¼ 102m, where m is the number on

the curve.
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importance sampling should be shifted to larger values of Rs and smaller values

of Ro. Such a shift is obtained from a simple variance scaling of these

components. Since the peak of the original distribution occurs near the origin and

that region is contributing very little toV1(r), most of the IS improvement comes

from the shift in Rs values. The modified PDF for IS has the form,

f ðmÞRs;Ro
ðrs; rolH0Þ ¼ 4rsr

2N23
o h2N½ðr2s =k2s Þ þ ðr2o=k2oÞ	
GðN 2 1Þk2ok2ðN21Þo

ð15:97Þ

where ks . 1 scales the signal component and ko # 1 scales the orthogonal term.

This is illustrated in Figure 15.30 for the Student t SIRV with ks ¼ 10 and ko ¼ 1:
The IS weighting function Equation 15.92 for this modification is

wðrs; roÞ ¼ k2s k
2ðN21Þ
o ¼ h2Nðr2s þ r2oÞ

h2N½ðr2s =k2s Þ þ ðr2o=k2oÞ	
IgðrÞ ð15:98Þ

Threshold estimates obtained from only 10,000 importance sampling trials for

the Student t GLRT with N ¼ 4 are shown in Figure 15.31 for the shape

parameters, n ¼ 1:1 and n ¼ 2: The theoretical values of the threshold are given
by g ¼ P

21=ðn21Þ
FA 2 1 and marked with a “diamond” in the figure. Results for

three values of ks are overlaid and all show excellent agreement with the

analytical results for a wide range of PFA values. Figure 15.32 shows an

approximation to the relative RMS error, ê ¼ ŝw=ðP̂FA
ffiffiffiffiffi
Mis

p Þ, where ŝw is the

sample variance of the importance sampling weights. Similar results are shown in
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3

FIGURE 15.29 K-distributed SIRV contour plots of TGLRT and fRs;Ro lH0
ðrs; rolH0Þ with

N ¼ 4, n ¼ 2: Numbered GLRT contours correspond to PFA ¼ 102m, where m is the

number on the curve.
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Figure 15.33 and Figure 15.34 for a K-distributed SIRV with shape parameter,

n ¼ 0:4, although no theoretical results are available in this case.
Both examples exhibit a distinct minimum in the relative RMS error for a

particular ks. However, this minimum is very broad and excellent estimates of the

threshold are obtained over many orders of magnitude in PFA for a single choice

of ks. As the relative RMS error increases, the results become noticeably erratic.

Where the relative RMS error is small, the results converge for several ks values.
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FIGURE 15.30 Modified Student t contour plots of TGLRT and fRs;Ro lH0
ðrs; rolH0Þ with

N ¼ 4, n ¼ 2, ks ¼ 10, ko ¼ 1: Numbered GLRT contours correspond to PFA ¼ 102m,

where m is the number on the curve.
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FIGURE 15.31 Importance sampling threshold estimates for a Student t GLRT with

N ¼ 4, Mis ¼ 10000, and ks ¼ 10, 20, 50.
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The asymptotic linear nature of all these results is very significant. This is

shown to be a consequence of extreme value theory in Section 15.4.6. It suggests

that thresholds for very small PFA values can be extrapolated from good estimates

at higher PFA. Figure 15.35 and Figure 15.36 show the threshold estimates the

relative RMS error for the Student t SIRV when a MLE of the covariance matrix

is obtained form K secondary data vectors. An identity covariance matrix is used

for this simulation. The estimate of the covariance matrix is good when larger

numbers of secondary data vectors (10N, 5N, and 4N) are used. Excellent
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FIGURE 15.33 Importance sampling threshold estimates for K distributed GLRT with

N ¼ 4, Mis ¼ 10000, and ks ¼ 20, 40, 100, 200.
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FIGURE 15.32 Relative RMS error of the importance sampling threshold estimates for a

Student t GLRT with N ¼ 4, n ¼ 2, Mis ¼ 10000:
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threshold estimates down to PFA ¼ 10210 are obtained. The results degrade when

the covariance matrix is estimated from fewer secondary data vectors (2N and

3N), but not severely. The asymptotic linear behavior is observed in this case and

the slope of the asymptote is not very sensitive to K: Consequently, the slope of
the known covariance matrix case might be applied to the estimated cases to

extrapolate thresholds for the lower false alarm values.
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FIGURE 15.34 Relative RMS error of the importance sampling threshold estimates for a

K-distributed GLRT with N ¼ 4, n ¼ 0:4, Mis ¼ 10000:
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FIGURE 15.35 Importance sampling threshold estimates using estimated covariance

matrices for a Student t GLRT with N ¼ 4, n ¼ 2, Mis ¼ 10000:
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15.4.6. EXTREME VALUE THEORYAPPROXIMATION

The results exhibit a linear relationship between log(PFA) and log(g) at very small
PFA. This is a consequence of extreme value theory,19 which addresses the

distribution of the maximum (and minimum) extreme values of independent,

identically distributed (IID) random variables. The distribution of the extremes is

related to the upper (and lower) tail of the underlying distribution of the random

variables. The extreme value distributions are obtained as the limiting

distributions for N !1 of the largest (or smallest) value in the sample of N

IID random variables.

Since the threshold is in the upper tail of the test statistic PDF for the very

small false alarm probabilities of interest, extreme value theory as it relates to

maximum extremes is applicable in the radar problem. The appropriate

cumulative distribution function (CDF) for this case is the generalized extreme

value (GEV) distribution,19

FT ðtÞ ¼ e2
�
1þ
�
j
t2m
s

�21=j �
;
m2 s

j
# t , 1; j . 0 ð15:99Þ

A broad range of tail behavior is modeled by the shape parameter, j, and j . 0

corresponds to an infinitely long upper tail which is characteristic of the PDF for

many radar test statistics.

Expanding Equation 15.99 in a Taylor series gives

FT ðtÞ ¼ 12 1þ j
t2 m

s

� �21=j
þ 1

2!
1þ j

t2 m

s

� �22=j
2· · · ð15:100Þ
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FIGURE 15.36 Relative RMS error of the importance sampling threshold estimates using

estimated covariance matrices for a Student t GLRT with N ¼ 4, n ¼ 2, Mis ¼ 10000:
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From j . 0 and sufficiently large threshold values, the higher order terms of the

expansion are negligible and FT ðtÞ is approximately

F̂T ðtÞ ¼ 12 1þ j
t2 m

s

� �21=j
ð15:101Þ

This is exactly the form of the generalized Pareto distribution, which has been

successfully used to model tail behavior of locally optimum detector (LOD) test

statistics.20

The PFA obtained from the approximate CDF is

PFA < 12 F̂T ðtÞ ¼ 1þ j
t2 m

s

� �21=j
ð15:102Þ

Applying the logarithm to both sides yields

logðPFAÞ < 2
1

j
log 1þ j

t2 m

s

� �
ð15:103Þ

If t is sufficiently large, the approximation simplifies to

logðPFAÞ < 2
1

j
log j

t

s

� �
¼ 2

1

j
logðtÞ2 1

j
log

j

s

� �
ð15:104Þ

This is the equation of a straight line in the variables, log(PFA) and log(t), and is

valid for suitably large threshold values corresponding to very low probabilities

of false alarm. The importance sampling simulation results presented in this

chapter demonstrate this linear behavior at low false alarm probabilities.

15.5. REJECTION-METHOD BOUNDS FOR MONTE CARLO

SIMULATION OF SIRVs

(A. D. KECKLER AND D. D. WEINER)

15.5.1. INTRODUCTION

In recent years, considerable interest has developed in the use of SIRV’s as a

model for non-Gaussian distributed radar clutter.1–7,12–14 As a result, efficient

techniques in the generation of SIRV distributed random samples are desirable

for Monte Carlo simulation and system performance analysis. According to the

representation theorem for SIRVs, an SIRV with zero-mean independent

components can be generated as the product of a univariate random variable

and a Gaussian vector with zero-mean independent components. In contrast with

other multivariate non-Gaussian distributions, SIRVs exhibit closure under linear

transformations, and the desired correlation can then be imposed by simple

multiplication of the SIRV by the appropriate matrix. Additionally, the desired

mean vector can be introduced by simply adding it to the SIRV.
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SIRV’s can be simulated by separately generating a Gaussian vector and an

independent random scalar multiplier. The generation of independent zero-mean

Gaussian random vectors is well understood. The univariate random multiplier is

used to control the type of SIRV. However, generation of random data for the

univariate multiplier is not always straightforward. Its probability density

function (PDF), known as the characteristic PDF of the SIRV, may well have a

mathematically complex form which does not lead to a convenient inverse for the

corresponding cumulative distribution function (CDF), which is required to

directly generate data for the scalar multiplier. If a function can be found that

tightly bounds the characteristic PDF from above, and for which a convenient

inverse CDF can be found, then the rejection theorem can be used to efficiently

generate data from the characteristic PDF. A method for finding such a tight,

computationally simple bound is presented in this section. This is significant, as

the efficiency of the rejection method suffers dramatically when the bound is not

tight. In the case where the characteristic PDF is not known, an alternative

approach using the envelope of the SIRV can be employed.8 Additionally, this

technique can be applied directly to the PDFs of the envelope and/or the quadratic

form for direct generation of these quantities, when only they are of interest.

15.5.2. SUMMARY OF THE SIRV MODEL

A random vector Y of dimension N is defined to be an SIRV if and only if its PDF

has the form6,7

fY ðyÞ ¼ ð2pÞ2N=2lSl21=2hNðqðyÞÞ ð15:105Þ
where S is an N £ N nonnegative definite matrix, q(y) is the quadratic form

defined by

q ¼ qðyÞ ¼ ðy2 bÞTS21ðy2 bÞ ð15:106Þ
b is the N £ 1 mean vector, and hNð·Þ is a positive, monotonic decreasing function
for all N:8 Equivalently, an SIRV Y can be represented by the linear

transformation

Y ¼ AXþ b ð15:107Þ
where X is a zero-mean SIRV with uncorrelated components represented by

X ¼ SZ ð15:108Þ
Z is a zero-mean Gaussian random vector with independent components, and S is

a nonnegative random variable independent of Z. The probability density

function of S, fSðsÞ, uniquely determines the type of SIRV and is known as the

characteristic PDF of Y. Since the matrix A is specified independently of fSðsÞ, an
arbitrary covariance matrix, S ¼ AAT, can be introduced without altering the

type of SIRV.
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The representation is used to obtain

hNðqÞ ¼
ð1

0
s2Ne2q=2s2 fSðsÞds ð15:109Þ

and subsequently, the PDF of the quadratic form is

fQðqÞ ¼ 1

2N=2GðN=2Þ q
ðN=2Þ21hNðqÞ ð15:110Þ

Since hNðqÞ uniquely determines each type of SIRV, Equation 15.110 indicates
that the multivariate approximation problem is reduced to an equivalent

univariate problem.

It is not always possible to obtain the characteristic PDF fSðsÞ in closed-form.
However, an N dimensional SIRV with uncorrelated elements can be expressed

in generalized spherical coordinates R, u, and fk for k ¼ 1;…; ðN 2 2Þ, where the
PDF of R is given by

fRðrÞ ¼ rN21

2ðN=2Þ21GðN=2Þ hNðr
2ÞuðrÞ ð15:111Þ

The angles u and fk are statistically independent of the envelope R and do not

vary with the type of SIRV. When fSðsÞ is unknown, Equation 15.111 is used both
to generate SIRVs and to determine hNðqÞ:6

It is desirable to develop a library of SIRVs for use in approximating

unknown clutter-returns. Table 15.4 contains the characteristic PDFs and hNðqÞ0s
of some SIRVs for which analytical expressions are known. For simplicity, the

results presented for the SIRVs developed from the marginal envelope (Chi,

Weibull, generalized Rayleigh, Rician, and generalized Gamma) are valid only

for even N: Additional SIRVs, such as the generalized Pareto envelope, envelope
SIRVs based on the Confluent Hypergeometric Function, and SIRVs based upon

polynomial characteristic PDFs, have been developed.9

The discreete Gaussian mixture (DGM) is an SIRV of special interest. Its

PDF is a simple finite weighted sum of Gaussian PDFs. It is useful for

approximating many other SIRVs, as well as generating unique distributions.

15.5.3. GENERATION OF SIRV DISTRIBUTED SAMPLES

If the characteristic PDF of the SIRV fSðsÞ is known, a zero-mean SIRV with

uncorrelated components X can be generated from Equation 15.108, where Z is a

zero-mean Gaussian vector with uncorrelated components. Without loss of

generality, we assume that E{S2} ¼ 1, so that the covariance matrix of X is then

identical to that of Z. The desired covariance matrix and mean vector can be

introduced using the linear transformation shown in Equation 15.107, where the

covariance matrix of Y is AAT and its mean vector is b. This procedure is shown

in Figure 15.37.
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TABLE 15.4
Characteristic PDFs and hN(Q) Functions for Known SIRVs. (An Expanded Version of Table 15.1)

Marginal PDF Characteristic PDF fS(s) hN(q)

Gaussian dðs2 1Þ e2q=2

Student t
2b

GðnÞ2n b
2n21s2ð2nþ1Þe2ðb2=2s2ÞuðsÞ

2N=2b2nG

{
nþ N

2

!
GðnÞðb2 þ qÞðN=2Þþn

Laplace b2seð2b2s2=2ÞuðsÞ bN ðb ffiffi
q

p Þ12ðN=2ÞKðN=2Þ21ðb ffiffi
q

p Þ

K-distributed

envelope

2b

2aGðaÞ ðbsÞ
2a21e2ðb2s2=2ÞuðsÞ bN

GðaÞ
ðb ffiffi

q
p Þa2ðN=2Þ

2a21
KðN=2Þ2aðb ffiffi

q
p Þ

Cauchy

ffiffiffiffi
2

p

r
bs22e2ðb2=2s2ÞuðsÞ

2N=2bG

{
N

2
þ 1

2

!
ffiffiffi
p

p ðb2 þ qÞðN=2Þþð1=2Þ

Chi envelope n , 1
2nþ1b2n

GðnÞGð12 nÞ
s2n21

ð12 2b2s2Þn uðsÞu
{

1

b
ffiffi
2

p 2 s

!
ð2ÞN=2b2n
Gðy Þ

PN=2
k ¼1

{ N

2
2 1

k2 1

!
qn2kbN22k

Gðk2 nÞ
Gð12 nÞ e

2b2q

Gaussian mixture

wk . 0,
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k ¼1 wks
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TABLE 15.4 Continued

Marginal PDF hN(Q) Components of hN(Q)

Weibull envelope

0 , b , 2

ð22ÞN=2e2asbqb=2 PN
k ¼1 Bk

ðasbÞk
k!

qðkb=2Þ2ðN=2Þ Bk ¼
Pk

m ¼1 ð21Þm
{
k

m

!QM21
i ¼ 0

{
mb

2
2 i

!

Generalized Rayleigh

0 # a # 2

PðN=2Þ21
k¼1 Dkq

ðka=2Þ2ðN=2Þþ1e2b
2asaqa=2 Dk ¼

Pk
m ¼ 1 ð21ÞmþðN=2Þ212ðN=2Þ21

b2aksak

k!

{
k

m

! G

{
1þ ma

2

!

G

{
2þ ma

2
2 N

!
Rician 0 , r # 1

sN

ð12 r2ÞN212
PðN=2Þ21

k ¼ 0

{ N

2
2 1

k

!
ð21Þk� r

2

�kjkes2q=2ð12r2Þ jk ¼
Pk

m ¼ 0

{
k

m

!
Ik22m

{
rs2q

2ð12 r2Þ

!

Generalized Gamma

ca # 2

a, c, a . 0

PðN=2Þ21
k ¼ 0 Fkq

ðca2NÞ=2e2as cqc=2 Fk ¼ð22ÞðN=2Þ21 cðasÞ
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{N
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{
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!
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{
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When the characteristic PDF is unknown, an alternate approach is required.

Recall that a SIRV with uncorrelated elements can be represented in spherical

coordinates, elements can be represented in spherical coordinates, and that the

PDFs of u and fk remain unchanged, regardless of the type of SIRV under

consideration. Only the PDF of R changes. Furthermore, since a Gaussian random

vector is an SIRV, a white zero-mean Gaussian vector can be expressed in the

spherical coordinates of Equation 15.111. It follows that6

Xk

kXk
¼ Zk

kZk
; k ¼ 1; 2…;N ð15:112Þ

where k·k denotes the vector norm. Consequently, the components of the desired
white SIRV can be obtained from

Xk ¼ Zk
kXk
kZk

; k ¼ 1; 2…;N ð15:113Þ

It should be noted that the norm of an N dimensional SIRV is the envelope R,

which has the PDF given in Equation 15.111. In order to simulate the zero-mean

white SIRV, it is only necessary to generate a sample from its envelope, and

multiply it by a zero-mean white Gaussian distributed vector with norm of unity.

Again, the desired covariance matrix and mean vector can be imposed upon

the SIRV using Equation 15.107. This simulation procedure is illustrated in

Figure 15.38.

A quick perusal of Table 15.4 shows that many of the characteristic PDFs and

envelope PDFs are uncommon and mathematically complex. They do not lead to

convenient closed-forms for the inverse CDFs, and thus are unsuitable for the

direct generation of random samples. Some, such as the Student t characteristic

PDF, can be generated by transforming samples from well known distributions

(in this case, the gamma distribution), but involve a reciprocal. This can cause

problems, due to the granularity of the original samples. The transformed

samples do not uniformly sample the domain of the desired PDF, and is

particularly relevant to the non-Gaussian problem. A preferred method for

generating samples from the characteristic PDFs or the envelope PDFs is the

rejection method.

Gaussian Random
Number Generator

Z X Y

S

Y = AX + b

Generator for S

FIGURE 15.37 Generation of the SIRVs with known characteristic PDF fSðsÞ:
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The rejection theorem can be stated as10:

Theorem 1. Let S be a random variable with density fSðsÞ and F be any

random variable with density fFðfÞ such that fsðsÞ ¼ 0 whenever fFðfÞ ¼ 0: Then
let U be uniformly distributed on the interval (0,1). If F and U are statistically

independent and

h ¼ {u # TðfÞ} ð15:114Þ
where

TðfÞ ¼ fsðfÞ=½afFðfÞ	 # 1 ð15:115Þ
then the rejection theorem states

fFlhðflhÞ ¼ fSðfÞ ð15:116Þ
The density fFðfÞ approximates fSðsÞ if the value

a ¼ maxs½ fFðsÞ=fSðsÞ	 ð15:117Þ

is a constant close to one. If a equals 1, then fS is identical to ff: In Figure 15.39,
the function afF is seen to bound fS in the sense that afFðsÞ $ fSðsÞ for all s in the
support of S: It is desired to generate a random variable S with density fSðsÞ
from variates generated from fFðfÞ: This can be accomplished using the

following algorithm:

STEP 1. Generate f from fFðfÞ and compute TðfÞ ¼ fSðfÞ=afFðfÞ,
STEP 2. Generate u as a realization of a uniform random variable

distributed over (0,1).

STEP 3. If u . TðfÞ, reject f and return to STEP 1, else accept f as a

variate from fSðsÞ:
If fSðsÞ is a time-consuming function to evaluate, and there exists a function

hðsÞ such that hðsÞ # fSðsÞ for all s in the support of S, then a fast, preliminary test
can be made, as can be seen in Figure 15.39. The modified procedure becomes:

Gaussian
Random
Number

Generator

Generator for R

Rz = ||Z||

R/Rz
R/Rz

Y = AX + b
X Y

Z

R

FIGURE 15.38 Generation of the SIRVs with unknown characteristic PDF fSðsÞ:

Adaptive Antennas and Receivers974

© 2006 by Taylor & Francis Group, LLC



STEP 1. Generate a realization f from fFðfÞ and compute

ThðfÞ ¼ hðfÞ=afFðfÞ,
STEP 2. Generate u drawn from a uniform (0,1),

STEP 3. If u # ThðfÞ, accept f as a variate from fSðsÞ,
STEP 4. Else, compute TðfÞ ¼ fSðfÞ=afFðfÞ: If u # TðfÞ, accept f as a

variate from fSðsÞ, else reject f and return to STEP 1.

The procedure has a geometric interpretation. A point ðf; yÞ is generated in
the region bounded by afFðfÞ and the f-axis with probability 1=a: If the point
falls within the region bounded by hðfÞ and the f axis, accept f immediately. If

not, then if the point falls within the region bounded by fSðfÞ and the f-axis,
accept f: Otherwise reject f: The parameter a equals the area under the bound
function, and the average efficiency of the rejection algorithm is equal to 1=a:

15.5.4. GENERATION OF PDF BOUNDS

For the rejection method to be viable, it is necessary to find a suitable bound for

which random samples can easily be generated. As a practical matter, this bound

should have an area as close to unity as possible, to avoid rejecting too many

samples. Many simple bounds encountered may have extremely low acceptance

rates. In the approach used here, the PDF is segmented into M equal intervals,

such that horizontal line segments can be used to approximate the PDF, as shown

in Figure 15.40. Samples can be generated from each segment with a simple

uniform number generator, and each segment is chosen with a probability equal

to its relative area.

Obviously, if the PDF has an infinite tail, the entire support cannot be

segmented. The PDF is then divided into a body and a tail section at a point
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FIGURE 15.39 Illustration of the acceptance–rejection method.
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sufficiently far into the tail. The generalized Pareto PDF, given by

f ðsÞS

����
Pareto

¼ 1

s
1þ gðs2 s1Þ

s

� �2ð1þgÞ=g
uðs2 s1Þ ð15:118Þ

where s is the scale parameter, g is the shape parameter, and s1 is the point where
the tail begins, can be sued to bound the tail. This is illustrated in Figure 15.41.

The parameters s and g in Equation 15.118 can be obtained by matching
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FIGURE 15.40 Piecewise constant bound of PDF.
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FIGURE 15.41 Pareto bound of PDF tail.
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probability weighted moments. The estimates of the parameters are given by11

ŝ ¼ 2a0a1=ða0 2 2a1Þ ð15:119Þ
and

ĝ ¼ 22 a0=ða0 2 2a1Þ ð15:120Þ
where

a0 ¼
Xm
i¼1

zi=m ð15:121Þ

and

a1 ¼
Xm
i¼1

ðm2 iÞzi={mðm2 1Þ} ð15:122Þ

The samples zi can be obtained using a bootstrapping approach, where the

rejection method, using a piecewise constant bound, is applied to a truncated

portion of the tail. While this is approximate in the sense that the samples

generated are drawn only from a portion of the tail, it is sufficient for fitting the

generalize Pareto bound to the tail. Similarly, if the PDF becomes infinite at its

endpoints, an inverted generalized Pareto PDF, given by

fSðsÞ Inverted Pareto ¼ s

1þ g
ðssÞ2g=ð1þgÞuðsÞuðs2 sÞ

���� ð15:123Þ

can be used to bound the PDF near the singularity. This is illustrated in

Figure 15.42. Random samples for the generalized Pareto PDF and the PDF of

Equation 15.123 are readily generated, as the inverse of the CDF’s for both are

simple in form.

N = 4, a = .5, b = 1
Gamma = 1.0184, Sigma = 25, Ab= .11

Inverted pareto bound
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15

10

5

0
0 0.01 0.02 0.03 0.04

a

f Q
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FIGURE 15.42 Inverted Pareto bound of singularity.
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Random samples were obtained for the Student t SIRV characteristic

PDF using this technique. Figure 15.43 shows the bounds generated, while

Figure 15.44 shows a histogram for 10000 samples. As the total probability

associated with the tail portion of the PDF is usually small, the lower bound hðsÞ
is not fitted to it, since relatively few evaluations of the PDF in the tail region will

be required in any case. In this example, fully 89.6% of the samples generated

were accepted using the bounds shown in Figure 15.43. Figure 15.45 shows a

histogram of 10000 samples generated from the enveloped of the K-distributed
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FIGURE 15.43 Bounds for the Student t SIRV characteristic PDF.
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FIGURE 15.44 Histogram of characteristic PDF for the Student t SIRV.
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SIRV when N ¼ 4: This PDF goes to infinity at the origin. Despite this, an

efficiency of 74.2% was still obtained in this case.

15.5.5. CONCLUDING REMARKS

Efficient methods for simulating correlated multivariate non-Gaussian data are

of interest. This chapter presents a technique for simulating non-Gaussian data

based upon the SIRV model. The rejection method provides an elegant solution

to the problem, provided a suitable bound can be found. A simple method is

presented for producing tight bounds to fairly arbitrary PDFs, and for which the

generation of random samples is easy and efficient. While the generation of the

bound itself may require a fair amount of computation, it is straightforward and

need be done only once for any particular PDF. Furthermore, this technique is

not specific to any one SIRV, and can additionally be applied to a wide range of

univariate densities. Of equal importance, this approach avoids the problems

incurred when generating samples through the use of transformations. By using

the generalized Pareto PDF to bound the tail, and its inverse to bound

singularities, no truncation of the desired PDF is encountered, and samples can

thus be drawn from the entire PDF.

The examples presented illustrate the efficiency of the bounds with respect to

the acceptance of the samples generated. The acceptance rate for the bound can

be readily adjusted by increasing or decreasing the number of segments used in

the bound, at the cost of increasing the bound’s computational complexity. This

must be balanced against the cost of evaluating the original PDF. Further

improvements to the bound can be readily achieved through the use of simple

techniques, such as by using nonuniformly spaced segments, or by using

piecewise linear instead of piecewise constant segments.
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FIGURE 15.45 Histogram of envelope PDF for the K-distributed SIRV.
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15.6. OPTIMAL NONGAUSSIAN PROCESSING IN SPHERICALLY

INVARIANT INTERFERENCE

(D. STADELMAN AND D. D. WEINER)

15.6.1. INTRODUCTION

Conventional adaptive radar receiver designs are based on the assumption of

Gaussian distributed clutter data, which corresponds to a Rayleigh distributed

envelope. However, the statistics of a significant portion of the radar clutter

samples from a surveillance volume are often non-Gaussian, particularly for

data collected at low grazing angles or at high resolution. A Gaussian receiver is

not optimum in this environment and may experience significant reduction

in detection performance, especially for small targets, when compared to the

optimal non-Gaussian processor. Other research1 has shown that is some types

of non-Gaussian clutter, near-optimal processing by locally optimum detectors

gives detection probabilities of about .1 to .3, whereas, the Gaussian receiver

applied to the same data has detection probabilities on the order of the false alarm

rate, typically 1023 to 1025.
This loss in detection performance of the Gaussian receiver may be

understood by considering a probability density function (PDF), such as the

Weibull or K-distribution, which is typically used to model real non-Gaussian

radar clutter data. These PDFs have higher tails than the Gaussian PDF, which

results in more frequent occurrences of very large clutter values. This effect is

often described as “spiky” clutter and is illustrated in Figure 15.46.

The very low false alarm probabilities for which radar systems are designed

cause the detection threshold to fall in the tail of the PDF for the clutter-only test

statistic. The spiky clutter associated with the extended tail density of the non-

Gaussian data generates significantly more false alarms in the Gaussian receiver.

Consequently, the threshold in the Gaussian receiver must be raised to maintain

the desired false alarm rate for the non-Gaussian clutter problem. This higher

threshold causes a reduction in the probability of detection.
In contrast, the optimal non-Gaussian receiver is found to contain a

nonlinearity which reduces the large clutter spikes. This allows the threshold to

be maintained at a lower level, which provides increased target detection

opportunities at the desired false alarm rate. This improvement in detection

probability of the non-Gaussian receiver can be very significant, especially for

low signal-to-clutter ratio (SCR) targets.
Optimal radar target detection requires the joint PDF of N pulse returns which

are collected from a particular range-azimuth cell during a coherent processing

interval (CPI). Pulse-to-pulse correlation may exist in the clutter-returns of this

received data vector.

If the clutter samples in the received data vector are Gaussian, the form of the

joint PDF iswell known and optimal detection is accomplished by amatched filter.

The matched filter is the linear filter which maximizes the output signal-to-

interference ratio. Its design requires knowledge of only the second ordermoments
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of the interference. Since the PDF of a zero-mean Gaussian random vector is

completely determined by its covariance matrix, the matched filter is able to

accomplish optimal detection in Gaussian clutter. A complete characterization of

non-Gaussian clutter requires knowledge of the higher ordermoments of the clutter

PDF. Thus, a matched filter alone is neither expected nor able to achieve optimum

performance. Some form of nonlinear processing of the received data is necessary.

There are two major requirements of optimal non-Gaussian receiver design

which must be addressed in any target detection application: (1) specification

of an appropriate non-Gaussian PDF model, which must be approximated from

the received clutter data, and (2) determination and implementation of the optimal

(or near-optimal) non-Gaussian receiver for the PDF model which is selected.

Specification of the optimal receiver for targets in non-Gaussian clutter is

typically limited by the lack of a sufficient mathematical model to completely

describe the joint PDF of the non-Gaussian data. Furthermore, optimal detection is

complicated by the lack of an efficient technique for accurately approximating this

joint PDF from the received data. Frequently, the assumption of independent

identically distributed (IID) interference samples is used for non-Gaussian data

because it yields a closed-form solution for the joint PDF. This assumption also

reduces the multivariate PDF approximation problem to a univariate one.

However, the independent sample assumption implies awhite clutter spectrum and

can lead to inferior performance when the received data is correlated.
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FIGURE 15.46 Time sequence of clutter data.
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Spherically invariant random vectors (SIRVs) have recently been investi-

gated for modeling correlated, non-Gaussian clutter data.3,4 Closed-form

expressions exist for the multivariate PDF of many types of SIRVs. Furthermore,

these multivariate PDFs are uniquely identified by a single univariate PDF. The

class of SIRV models includes many correlated distributions of interest in radar

applications, such as Weibull, Student t, Gaussian, Chi, and K distributed.

The application of SIRV models to many non-Gaussian clutter environments

has both empirical and theoretical support. First, the SIRV model is equivalent to

the compound clutter model, which is found to be an excellent fit to real sea

clutter data in many instances.5,20 Second, the SIRV PDF for radar clutter has

been derived from a generalization of the central limit theorem in which the

number of scatterers in a range-azimuth cell from CPI to CPI is assumed to be

random with a Poisson mixture distribution.6

Some general results related to the optimal detection of radar signals in SIRV

clutter have been reported, with application to K-distributed clutter.1,6–9 Design

and performance of the LOD in Student t and K-distributed SIRV clutter1 and the

GLRT in K-distributed SIRV clutter6,7 have also been presented. While the LOD

and GLRT receivers have desirable characteristics, they are suboptimum for the

detection of targets with random amplitude and phase parameters. A suboptimum

channelized implementation of the optimal receiver for detecting targets that have

an initial random phase which is uniformly distributed on ð0; 2pÞ has been
considered.8,9

This chapter considers optimal detection of signals with Uð0; 2pÞ random
phase in SIRV clutter. New results which illustrate the role of the matched filter

and a whitening transformation in the optimum non-Gaussian SIRV receiver are

presented. Furthermore, the first examples of closed-form expressions for the

likelihood-ratio test of optimum receivers to detect a random amplitude and

phase signal in non-Gaussian SIRV clutter are presented.

15.6.2. A REVIEW OF THE SIRV MODEL

Recent research into the characteristics of the SIRV model has demonstrated its

usefulness in approximating the joint probability density function of correlated,

non-Gaussian radar clutter samples. The SIRV model has many nice properties,

which can be attributed to its special relationship with Gaussian random vectors.

A description of the SIRV model, examples, and some relevant properties are

briefly presented in this chapter. Proofs and more detailed discussion of these and

several other properties can be found in the references.3,4,6

15.6.2.1. Definition of the SIRV Model

The Representation Theorem. Every SIRV, X ¼ ½X1…XN	T, with mean

vector, m, and covariance matrix, S, can be represented in the form,

X ¼ SZþm ð15:124Þ
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where Z ¼ ½Z1…ZN	T is a zero-mean Gaussian random vector, also with

covariance matrix, S, and S is a nonnegative random variable which is

independent of Z andm. The mean-square value of S is intentionally assumed to

be unity, so that the covariance matrix of the SIRV is equal to the covariance

matrix of the underlying Gaussian random vector.

The representation theorem in Equation 15.124 provides a very useful

description of the SIRV model because it relates non-Gaussian SIRVs to

Gaussian random vectors. It clearly illustrates that X, conditioned on a given

S ¼ s, is a Gaussian random vector with mean, m, and covariance matrix, s 2S.
Hence, the conditional PDF of Xl(S ¼ s) is the multivariate Gaussian density

function,

fXlSðxlsÞ ¼ ð2pÞ2ðN=2Þls2Sl2ð1=2Þ
exp 2

ðx2mÞTðs2SÞ21ðx2mÞ
2

{ !
ð15:125Þ

The probability density function of X is obtained by substituting

Equation 15.125 into

fXðxÞ ¼
ð1

0
fXlSðxlsÞfSðsÞds ð15:126Þ

which results in

fXðxÞ ¼ ð2pÞ2ðN=2ÞlSl2ð1=2Þ
hNðqÞ ð15:127Þ

where hNð·Þ is defined by

hNðqÞ ¼
ð1

0
s2Nexp 2

q

2s2

� �
fSðsÞds ð15:128Þ

and q is the quadratic form,

q ¼ ðx2mÞTS21ðx2mÞ ð15:129Þ
The probability density function, fSðsÞ, of the random scale variable, S, is

called the characteristic PDF of the SIRV. Different types of SIRVs can be

modeled by changing the characteristic PDF.

The mixture model Equation 15.124 admits an interpretation which is

consistent with observations often made on real clutter data. Clutter returns over a

CPI from a given range-azimuth cell are usually Gaussian (Z), but the average

clutter power level (S 2) varies among cells in the surveillance volume. One

consequence of Equation 15.128 is that hNðqÞ is a positive, monotonic decreasing
function of q for all N. In addition, the PDF of any N-dimensional SIRV is

uniquely and completely specified by a mean vector, covariance matrix, and

either the characteristic PDF or hNð·Þ:
Finally, while the contours of constant density of fX(x) are ellipsoidal, X is

still frequently referred to as an spherically invariant random vector. This latter
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terminology is chosen because X can always be transformed into a vector with

spheroidal contours of constant density.

15.6.2.2. SIRV Properties

15.6.2.2.1. Linear Transformation

Let X be an SIRV with covariance matrix SX, mean vectormX, and characteristic

PDF, fSðsÞ: Then, if AAT is nonsingular, the vector, Y, defined by the linear

transformation,

Y ¼ AXþ b ð15:130Þ
is also an SIRV with the same characteristic PDF, a new mean value,

mY ¼ AmX þ b ð15:131Þ
and a new covariance matrix,

SY ¼ ASXA
T ð15:132Þ

Consequently, the class of SIRVs is closed under linear transformations.

This result is significant to non-Gaussian clutter modeling for two reasons.

First, since a linear transformation is reversible, preprocessing to whiten the

received data can be performed without loss of optimality. Second, the marginal

PDF of any lower dimensional vector, which can be obtained by a linear

transformation, is also an SIRV with the same characteristic PDF as the full

vector.

15.6.2.2.2. Lack of Additive Closure for SIRVs

Let X1 and X2 be two statistically independent SIRVs with covariance matrices,

S1 and S2, respectively. The sum, X1 þ X2 is not necessarily another SIRV,

hence, the class of SIRVs is not closed under addition. Two circumstances under

which this sum does yield another SIRV are:

1. X1 and X2 are both Gaussian random vectors.

2. The covariance matrices, S1 and S2, are related by S1 ¼ kS2, where k

is any positive constant. The characteristic PDF can be different for

each SIRV.

15.6.2.2.3. The Bootstrap Property

The probability density function of an N-dimensional SIRV may be obtained

from the lower order density functions by using the recursive relation,

h2mþ1ðjÞ ¼ ð22Þm d
mh1ðjÞ
djm

; m ¼ 0; 1; 2;… ð15:133Þ
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for odd orders, and

h2mþ2ðjÞ ¼ ð22Þm d
mh2ðjÞ
djm

; m ¼ 0; 1; 2;… ð15:134Þ

for even orders. Thus, only h1ðjÞ and h2ðjÞ are required to determine all the higher
dimensional density functions for a particular type of SIRV.

It is sometimes desirable to define an SIRV probability density function

which has a specific univariate marginal density function. The appropriate choice

for the characteristic PDF is not always apparent. However, it is usually possible

to determine h1ðjÞ and h2ðjÞ directly from the specified marginal PDF. Then, any

higher order PDF may be obtained from the above recursions, provided that hNðjÞ
derived in this way is a positive, monotonic decreasing function of any N:
Otherwise, it is not possible to define a valid SIRV PDF which has the desired

marginal density function.

15.6.2.2.4. Spherical Coordinate Representation

Any zero-mean random vector, X ¼ ½X1…XN	T, with identity covariance matrix
can be expressed as

X1 ¼ R cosðF1Þ ð15:135Þ

Xk ¼ R cosðFkÞ
Yk21
i¼1

sinðFiÞ; k ¼ 2;…;N 2 2 ð15:136Þ

XN21 ¼ R cosðQÞ
YN22
i¼1

sinðFiÞ ð15:137Þ

XN ¼ R sinðQÞ
YN22
i¼1

sinðFiÞ ð15:138Þ

where R, Q, and F1;…;FN22 are random variables which uniquely specify the

vector in a generalized, N dimensional spherical coordinate system. Such a

vector, X, is an SIRV if and only if the random variables, R, Q, and F1;…;FN22

are all statistically independent and have the respective PDFs,

fRðrÞ ¼ rN21

2ðN=2Þ21GðN=2Þ hNðr
2Þ; 0 # r , 1 ð15:139Þ

fFk
ðfkÞ ¼

G
N 2 k þ 1

2

� �
ffiffi
p

p
G

N 2 k

2

� � sinN2k21ðfkÞ

0 # fk # p; k ¼ 1;…;N 2 2

ð15:140Þ
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fQðuÞ ¼ 1

2p
; 0 # u , 2p ð15:141Þ

where Gð·Þ denotes the gamma function.
The distance, R ¼ ffiffiffiffiffiffiffi

XTX;
p

is the only random spherical coordinate with a

probability density function that varies for different SIRVs. The PDFs of the other

N 2 1 random spherical angles remain invariant to the type of SIRV which is

considered. Thus, only the PDF of R is needed to characterize an SIRV with zero-

mean and identity covariance matrix.

The generalization of spherical coordinates of N dimensions is not

unique.17,18,21,22 The possible generalizations differ only in how the set of

N 2 1 spherical angles and their PDFs are defined. The distance, R, remains

unchanged in all of these coordinate systems. Therefore, any convenient

generalization may be used in place of the one described above to specify an

SIRV in spherical coordinates.

15.6.2.2.5. PDF of the Quadratic Form

For any SIRV, Y, with mean vector,m, and covariance matrix, S, the PDF of the
quadratic form,

Q ¼ ðY2mÞTS21ðY2mÞ ð15:142Þ

is given by

fQðqÞ ¼ qðN=2Þ21

2N=2GðN=2Þ hNðqÞ ð15:143Þ

This follows from Equation 15.139 because the linear transformation property

implies

ðY2mÞTS21ðY2mÞ ¼ XTX ¼ R2 ð15:144Þ

where X is a zero-mean SIRV with identity covariance matrix.

Since hNðqÞ is unique for each type of SIRV, the multivariate density function
for a particular type of SIRV can be uniquely determined based upon the

univariate density function of its quadratic form. This property significantly

reduces the complexity of the PDF approximation that must be performed for

optimal non-Gaussian processing.

15.6.2.2.6. Unimodality

Since hNðqÞ is a positive, monotonic decreasing function for all N, and q

describes contours of constant density for any SIRV, then clearly, the probability

density function in Equation 15.127 is unimodal for all SIRVs. The peak value of

the density function is ð2pÞ2ðN=2ÞlSl2ð1=2Þ
hNð0Þ, which occurs at the mean value

of the SIRV.

Adaptive Antennas and Receivers986

© 2006 by Taylor & Francis Group, LLC



15.6.2.2.7. Statistical Independence

If the components of an SIRV are statistically independent, then that SIRV must

be Gaussian. It is not possible for any other types of SIRVs to have independent

components.

15.6.2.3. The Complex SIRV Model

Sometimes it is more convenient to work with the N dimensional complex vector,
~Y ¼ Yc þ jYs, rather than the 2N dimensional real vector, ½YT

c ;Y
T
s 	T: Under

certain conditions, the two approaches are equivalent and either one may be used.

Otherwise, the real vector model should be used. A brief description of the

complex SIRV Model in relation to complex Gaussian random vectors and the

previous results for real SIRVs is given here.

Let ½YT
c ;Y

T
s 	T be a 2N dimensional SIRV with mean vector, ½mT

c ;m
T
s 	T, and

covariance matrix,

S ¼
G 2F

F G

{ !
ð15:145Þ

where G is positive definite and F is skew symmetric (F ¼ 2FT). Then ~Y ¼
Yc þ jYs is a complex SIRV with mean,

~m ¼ mc þ jms ð15:146Þ
and the positive definite, Hermitian covariance matrix,

~S ¼ 2ðGþ jFÞ ð15:147Þ

Furthermore, the complex representation theorem, analogous to Equation 15.124,

is

~Y ¼ S ~Zþ ~m ð15:148Þ
where ~Z is a complex, zero-mean, Gaussian random vector with covariance

matrix, ~S, and S is a real nonnegative random variable which is independent of ~Z

and ~m:Again, S is assumed to have unit-mean-square value so that the covariance
matrices of ~Y and ~Z are equal.

The probability density functions of the N dimensional complex SIRV, ~Y, is

then found to be

f ~Yð~yÞ ¼ p2N l ~Sl21h2Nð2qÞ ð15:149Þ

where h2Nð2qÞ is obtained from Equation 15.128 and given by

h2Nð2qÞ ¼
ð1

0
s22Nexp 2

q

s2

� �
fSðsÞds ð15:150Þ
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with q denoting the quadratic form,

q ¼ ð~y2 ~mÞH ~S21ð~y2 ~mÞ ð15:151Þ

The notation, ~xH , denotes the Hermitian transpose of ~x:

15.6.2.4. Examples

Some univariate probability density functions which have multivariate

generalizations corresponding to SIRVs include Weibull, Student t, chi, and

K-distributed. Specific expressions for these and other SIRV density functions

are given in Ref. 3.

15.6.3. OPTIMAL DETECTION IN NONGAUSSIAN SIRV CLUTTER

15.6.3.1. Introduction

Target detection in clutter for a transmitted radar waveform of N coherent pulses

is described by the binary hypothesis problem,

H0 : ~r ¼ ~d ðtarget absentÞ
H1 : ~r ¼ aejf~sþ ~d ðtarget presentÞ

ð15:152Þ

where the elements of the N dimensional vectors, ~r, ~d, and ~s, are low-pass

complex enveloped samples of the received data, the disturbance (clutter plus

background noise), and the desired signal, respectively. Signal attenuation and

target reflection characteristics are modeled by the target amplitude parameter, a.

The initial phase of the received waveform, which is pulse-to-pulse coherent, is

represented by f. This model has implicitly assumed that the time of arrival and
doppler shift of the target return are known.

Complete knowledge and a and f is usually unavailable. However, the

optimal receiver for the completely known signal provides the basis for optimal

and near-optimal detection when a and f are modeled as either random variables

or unknown constants. The optimal known signal receiver in non-Gaussian SIRV

clutter is presented in Section 15.6.3.2, where it is also used to introduce a

canonical structure for optimal SIRV receivers which also applies to the optimal

and near-optimal receivers developed thereafter.

The primary emphasis of the research presented in this chapter is on optimal

and near-optimal detection of target return signals with random amplitude and

phase in non-Gaussian SIRV interference. Attention is focused on this problem

for two major reasons. First, a signal with random phase and amplitude is usually

the most realistic model for radar target returns. Second, this type of detection

problem for SIRV clutter has not been adequately addressed in the literature.

General solutions for the optimum SIRV receiver are developed in Section

15.6.3.3 and illustrated by some examples for specific SIRV clutter models.
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Suboptimum receivers which have near-optimal performance are investigated in

Section 15.6.3.4 and Section 15.6.3.5.

Two significant assumptions are made about the statistics of the non-

Gaussian SIRV clutter for the receiver development presented here. First,

attention is focused only on situations where the disturbance is dominated by

clutter, with the clutter power being much greater than the background Gaussian

noise power. The PDF of the disturbance is then closely approximated by the

PDF of the SIRV clutter. Second, the covariance matrix of the received clutter

samples is assumed to be known. In practice, the clutter covariance matrix is

usually unknown and changing. The impact of both assumptions is discussed

latter.

15.6.3.2. Completely Known Signals

The Neyman–Pearson (NP) receiver is optimum for the detection problem of

Equation 15.152. It maximizes probability of detection, PD, for a specified

probability of false alarm, PFA. The NP receiver for a completely known signal is

the likelihood-ratio test (LRT),10

Tð~rla;fÞ ¼ f ~RlH1
ð~rlH1Þ

f ~RlH0
ð~rlH0Þ ¼ f ~Dð~r2 aejf~sÞ

f ~Dð~rÞ
_
H1

H0

h ð15:153Þ

where f ~Dð~dÞ is the PDF of the disturbance and the threshold, h, is determined from
the design constraint on the probability of false alarm.

For the disturbance dominated by clutter which is assumed to be a zero-mean,

complex SIRV with known covariance, matrix, ~S, and PDF described by

Equation 15.149, the optimum NP receiver of Equation 15.153 is

Tð~rla;fÞ ¼ h2N½2ð~r2 aejf~sÞH ~S21ð~r2 aejf~sÞ	
h2N½2~rH ~S21~r	 _

H1

H0

h ð15:154Þ

The specific form of Equation 15.154 depends on the type of SIRV clutter which

is present.

However, the general form of this optimum receiver for any SIRV has a

canonical structure which incorporates the test statistic of the conventional

Gaussian receiver. This canonical form, shown in Figure 15.47, is easily

demonstrated by expanding the quadratic form in the numerator of Equation

15.154 to yield

Tð~rla;fÞ ¼ h2N½2ð~rH ~S21~r2 2aRe{e2jf~sH ~S21~r}þ a2~sH ~S21~sÞ	
h2N½2~rH ~S21~r	 _

H1

H0

h ð15:155Þ

and recognizing that

Tgð~rÞ ¼ Re{e2jf~sH ~S21~r} ð15:156Þ
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is the optimum Gaussian test statistic. [The signal amplitude, a, is not included in

this expression, because the optimum Gaussian statistic is uniformly most

powerful (UMP) with respect to a and can be implemented without knowledge of

its value.] The optimum SIRV receiver can now be written as

Tð~rla;fÞ ¼ gNL½Re{e2jf~sH ~S21~r}; ~rH ~S21~r	 ¼ gNL½Tgð~rÞ; Tqð~rÞ	 ð15:157Þ

where Tqð~rÞ is defined as

Tqð~rÞ ¼ ~rH ~S21~r ð15:158Þ

and gNL[·,·] is used to denote the nonlinear function of two arguments in Equation

15.155. This receiver is also a special case of the NP receivers considered in the

derivation of Appendix Y.

The LRT given in Equation 15.153 is usually not sufficient for practical radar

applications because the amplitudes and phase parameters are seldom known.

However, the performance of this receiver, which assumes perfect a priori

knowledge about the signal parameters, provides an upper bound on the detection

performance when the signal parameters are not completely known. This

performance bound is often referred to as the perfect measurement bound10 or the

envelope power function.2

15.6.3.3. Signals with Random Parameters

A more realistic target model assumes the target amplitude and phase are

statistically independent random variables with PDFs, fAðaÞ and fFðfÞ,
respectively. If a and f are assumed to remain constant for a single CPI, then

Gaussian
Receiver

Quadratic
Form

Optimal
Nonlinearity

Tq( )

w
Tg( )

Tg( )

T ( )
H1
>
<

η

H0

Whitener

(b)

Gaussian
Receiver

Quadratic
Form

Optimal
Nonlinearity

gNL(Tg,Tq)

gNL(Tg,Tq)

Tq( ) =
HΣ −1~

T ( )
H1
>
<

η

H0

r~

r~

r~

r~

r~

r~

r~

r~

r~

r~

r~

(a)

FIGURE 15.47 Optimal SIRV receiver: (a) canonical form, (b) equivalent canonical form

with a single whitening filter.
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the optimum NP receiver can be expressed as the average,10

Tð~rÞ ¼
ð
Vf

ð
Va

Tð~rla;fÞfAðaÞfFðfÞda df_
H1

H0

h ð15:159Þ

which becomes

Tð~rÞ¼
ð
Vf

ð
Va

h2N½2ð~r2aejf~sÞH ~S21ð~r2aejf~sÞ	
h2N½2~rH ~S21~r	 fAðaÞfFðfÞdadf_

H1

H0

h ð15:160Þ

for SIRV clutter when Equation 15.154 is substituted for Tð~rla;fÞ:
It is shown in Appendix Y that this receiver also has the canonical form of

Figure 15.47 for any SIRV, whenever the optimum Gaussian test statistic, Tgð~rÞ,
satisfies the sufficient condition,

Tgðc~rÞ ¼ f ðcÞTgð~rÞ ð15:161Þ
where c does not depend on ~r and f(·) is any function. This condition is satisfied by

the Gaussian receiver for many commonly used target models, including a

Uð0; 2pÞ distribution for f and any amplitude PDF, fAðaÞ:
The canonical structure in Figure 15.47a is a significant result. It indicates

that the optimal non-Gaussian SIRV receiver should incorporate the Gaussian

receiver which is currently implemented in existing radar systems. Thus,

techniques which have been developed to achieve optimal (or near-optimal)

processing in Gaussian clutter are required to implement optimal non-Gaussian

SIRV processing.

An equivalent representation of the canonical receiver structure is given in

Figure 15.47b. The quadratic form, ~rH ~S21~r, is equivalent to ~rHw ~rw, where ~rw ¼
~S21=2~r is obtained by passing ~r through a whitener. The same whitening

operation is also inherent to the Gaussian receiver. These identical whiteners are

replaced by a single whitening filter at the input, as shown in Figure 15.47b. This

equivalence is a consequence of the linear transformation property for SIRVs

discussed in Section 15.6.2.2.

This alternative canonical form is significant because it indicates that

detection performance depends upon only the signal energy and not the signal

shape. Thus, detection performance in correlated clutter can be obtained by

adding the processing gain of the whitening filter onto the input SCR, and then

evaluating detection performance for the modified SCR in uncorrelated clutter.

The optimal Gaussian test statistic is uniformly most powerful (UMP) with

respect to the target amplitude. Hence, the design of the optimal Gaussian

receiver is independent of the probability density function of the random

amplitude, a. Only the detection performance of the Gaussian receiver depends

on the target amplitude model.

In contrast, the design of the optimal non-Gaussian SIRV receiver obtained

from Equation 15.159 does depend on the target amplitude PDF. Thus,

uncertainty in the target amplitude characteristics results in a detection

performance loss.
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The integrations necessary to determine the optimal SIRV receiver for a

particular type of SIRV are usually very difficult, if not impossible, to evaluate in

closed-form. The case of known amplitude, random phase signal is considered

first, since the integration with respect to the phase has certain similarities to the

Gaussian problem. Then the problem of both random amplitude and random

phase is addressed for a channelized structure involving the discrete Gaussian

mixture (DGM) SIRV.

15.6.3.3.1. Signals with Random Phase

The optimum NP receiver for the known amplitude, random phase target takes

the form,

Tð~rlaÞ ¼
ð
Vf

h2N½2ð~r2 aejf~sÞH ~S21ð~r2 aejf~sÞ	
h2N½2~rH ~S21~r	 fFðfÞdf_

H1

H0

h ð15:162Þ

The quadratic form in the numerator of the integrand is expanded to

ð~r2 aejf~sÞH ~S21ð~r2 aejf~sÞ
¼ ~rH ~S21~r2 2a Re{e2jf~sH ~S21~r}þ a2~sH ~S21~s ð15:163Þ

If the complex cross product, ~sH ~S21~r, is defined to be

~sH ~S21~r ¼ Lc þ jLs ð15:164Þ
then the quadratic form expansion in Equation 15.163 becomes

ð~r2 aejf~sÞH ~S21ð~r2 aejf~sÞ
¼ ~rH ~S21~r2 2aðLc cos fþ Ls sin fÞ þ a2~sH ~S21~s ð15:165Þ

Substituting this into Equation 15.162 yields

Tð~rlaÞ

¼
ð
Vf

h2N½2ð~rH ~S21~r2 2aðLc cos fþ Ls sin fÞ þ a2~sH ~S21~sÞ	
h2N½2~rH ~S21~r	 fFðfÞdf

ð15:166Þ
for the optimum test statistic. This result is similar to one obtained for the

Gaussian noise problem (in Ref. 10, p. 337).

A useful model for the random signal phase is the Viterbi phase density,10,11

fFðfÞ ¼ expðLm cos fÞ
2pI0ðLmÞ ; 2 p # f # p ð15:167Þ

where I0ð·Þ denotes the modified Bessel function of the first kind of order 0 and
Lm is a shape parameter for the PDF. This phase density is uniformly distributed

when Lm is zero, becomes more peaked as Lm increases, and tends to the

known phase case when Lm approaches infinity. Substitution of this PDF into
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Equation 15.166 gives

Tð~rlaÞ ¼
ðp
2p

h2N½2ð~rH ~S21~r2 2aðLc cos fþ Ls sin fÞ þ a2~sH ~S21~sÞ	
h2N½2~rH ~S21~r	

� expðLm cos fÞ
2pI0ðLmÞ df ð15:168Þ

By definition, the monotonic decreasing function, h2NðjÞ, is

h2NðjÞ ¼
ð1

0
s22Nexp 2

j

2s2

� �
fSðsÞds ð15:169Þ

where s is the random scalar of the SIRV representation theorem with PDF, fSðsÞ:
Applying this definition for h2NðjÞ to the numerator of Equation 15.168 results in

Tð~rlaÞ ¼
ðp
2p

1

h2N½2~rH ~S21~r	
expðLm cos fÞ
2pI0ðLmÞ

�
ð1

0
s22N exp 2

~rH ~S21~r2 2aðLc cos fþ Ls sin fÞ þ a2~sH ~S21~s

s2

{ !
� fSðsÞds df ð15:170Þ

which, after interchanging the order of integration and combining the

exponentials on f, is

Tð~rlaÞ ¼
ð1

0

s22N fSðsÞ
h2N½2~rH ~S21~r	 exp 2

~rH ~S21~rþ a2~sH ~S21~s	
s2

{ !
�
ðp
2p

1

2pI0ðLmÞ exp Lm þ 2aLc

s2

� �
cos f2

2aLs

s2
sin f

� �
df ds

ð15:171Þ

The inner integral of Equation 15.171 is a standard form given by (in Ref. 25,

p. 523)

ðp
2p

1

2pI0ðLmÞ exp Lm þ 2aLc

s2

� �
cos f2

2aLs

s2
sin f

� �
df

¼ 1

I0ðLmÞ I0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm þ 2aLc

s2

� �2
þ 2aLs

s2

� �2s0@ 1A ð15:172Þ
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The optimum receiver is now

Tð~rlaÞ ¼
ð1

0

s22N fSðsÞ
I0ðLmÞh2N½2~rH ~S21~r	 I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm þ 2aLc

s2

� �2
þ 2aLs

s2

� �2s0@ 1A
� exp 2

~rH ~S21~rþ a2~sH ~S21~s

s2

{ !
ds ð15:173Þ

which is of the general form,

Tð~rlaÞ ¼
ð1

0
gðsÞexp 2

k~r

s2

� �
ds ð15:174Þ

where k~r is defined to be

k~r ¼ ~rH ~S21~rþ a2~sH ~S21~s ð15:175Þ
and g(s) is the remaining portion of the integrand in Equation 15.170,

gðsÞ ¼ s22N fSðsÞ
I0ðLmÞh2N½2~rH ~S21~r	 I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm þ 2aLc

s2

� �2
þ 2aLs

s2

� �2s0@ 1A ð15:176Þ

Applying the variable transformation, s ¼ t21=2, to Equation 15.174 results in

Tð~rlaÞ ¼
ð1

0

1

2
t23=2gðt21=2Þexpð2k~rtÞdt ð15:177Þ

which is recognized as the Laplace transform,24

Tð~rlaÞ ¼ L
1

2
t23=2gðt21=2Þ

� �
ð15:178Þ

The final form of the optimum SIRV receiver for the random Viterbi phase signal

with known amplitude, a, is obtained by substituting Equation 15.176 into

Equation 15.178. This yields

Tð~rlaÞ ¼ L{tN2ð3=2ÞfSðt21=2ÞI0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLm þ 2aLctÞ2 þ ð2aLstÞ2

p Þ}
2I0ðLmÞh2N½2~rH ~S21~r	 ð15:179Þ

whereL{·} is the one-sided Laplace transform operator with frequency variable,

k~r ¼ ~rHS21~rþ a2~sHS21~s, and fSðsÞ is the characteristic PDF of the SIRV.
In general, the result in Equation 15.179 does not have a closed-form

solution. However, for the case Lm ¼ 0, which corresponds to a random

phase variable which is uniformly distributed on ð2p;pÞ, the general result
reduces to

Tð~rlaÞ ¼ L{tN2ð3=2ÞfSðt21=2ÞI0ð2a
ffiffiffiffiffiffiffiffiffiffi
L2c þ L2s

p
tÞ}

2h2N½2~rH ~S21~r	 ð15:180Þ
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Since Lc and Ls are defined by Equation 15.164, this optimum receiver can be

expressed as

Tð~rlaÞ ¼ L{tN2ð3=2ÞfSðt21=2ÞI0ð2al~sH ~S21~rltÞ}
2h2N½2~rH ~S21~r	 ð15:181Þ

The Student t and DGM SIRVs are two examples for which a closed-form

solution to Equation 15.180 does exist. The detailed solutions for these cases

are now presented.

15.6.3.3.1.1. Student t Example

The characteristic PDF of the Student t SIRV is3

fSðsÞ ¼ 2b2n

2nGðnÞ s
2ð2nþ1Þexp 2

b2

2s2

{ !
; s $ 0; n . 0 ð15:182Þ

where n is a shape parameter and b is a scale parameter. Substituting this

characteristic PDF into Equation 15.181, which is the optimum receiver for a

Uð0; 2pÞ random phase signal, leads to

Tð~rlaÞ ¼
b2nL tNþn21I0ð2al~sH ~S21~rltÞ exp 2

b2t

2

{ !( )
2nGðnÞh2N½2~rH ~S21~r	 ð15:183Þ

The expð2b2t=2Þ factor in the argument of the Laplace transform is handled by

the shifting property

L exp 2
b2t

2

{ !
gðtÞ

( )
¼ G k~r þ b2

2

{ !
ð15:184Þ

where Gðk~rÞ is the Laplace transform of g(t).

The solution to Equation 15.183 is now reduced to finding the transform,

Gðk~rÞ ¼ L{tNþn21I0ð2al~sH ~S21~rltÞ} ð15:185Þ

This is similar to the standard Laplace transform (in Ref. 23, p. 149),

L{tmpInpðaptÞ}
¼ Gðnp þ mp þ 1Þðk2~r 2 a2pÞ2ðmpþ1Þ=2P2np

mp
½k~rðk2~r 2 a2pÞ21=2	 ð15:186Þ
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where P2np
mp

½·	 is the associated Legendre function of the first kind, defined as

P2np
mp

½z	 ¼ 1

Gð1þ npÞ
zþ 1

z2 1

� �2ðnp=2Þ
2F1 2mp;mp þ 1; np þ 1;

12 z

2

� �
ð15:187Þ

with 2F1ða; b; c; zÞ denoting the Gauss hypergeometric function. The two

conditions which must be satisfied for Equation 15.186 to be a valid transform

are23

Re{np þ mp} . 21 ð15:188Þ

and

Re{k~r} . lRe{ap}l ð15:189Þ

The standard transform of Equation 15.186 is related to the desired transform of

Equation 15.185 by the parameter definitions,

np ¼ 0 ð15:190Þ

mp ¼ N þ n2 1 ð15:191Þ
and

ap ¼ 2al~sH ~S21~rl ð15:192Þ
Substituting these parameter relations into the standard transform of Equation

15.186 results in

L
n
tNþn21I0ð2al~sH ~S21~rltÞ

o
¼ GðN þ nÞ½k2~r 2 ð2al~sH ~S21~rlÞ2	2ðNþnÞ=2

£ PNþn21
k~rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2~r 2 ð2al~sH ~S21~rlÞ2
q

0B@
1CA

ð15:193Þ

where Pmð·Þ is the Legendre function of the first kind of degree m. (Associated
Legendre functions reduce to Legendre functions when the upper index is equal to

zero, in which case the upper index is omitted.)
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The monotonic decreasing function in the denominator of Equation 15.183

for the complex Student t SIRV is

h2Nð2~rH ~S21~rÞ ¼ 2Nb2nGðnþ NÞ
GðnÞðb2 þ 2~rH ~S21~rÞnþN ð15:194Þ

Substituting this and Equation 15.193 into Equation 15.183 and applying the

shifting property of Equation 15.184 leads to

Tð~rlaÞ¼ b2n

2nGðnÞGðNþnÞ k~rþ b2

2

{ !2
2ð2al~sH ~S21~rlÞ2

" #2ðNþnÞ=2

�PNþn21
k~rþ b2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~rþ b2

2

{ !2
2ð2al~sH ~S21~rlÞ2

vuut

0BBBBBB@

1CCCCCCA
GðnÞðb2þ2~rH ~S21~rÞnþN

2Nb2nGðnþNÞ

" #

which simplifies to

Tð~rlaÞ¼ b2

2
þ ~rH ~S21~r

{ !nþN
k~rþ b2

2

{ !2
2ð2al~sH ~S21~rlÞ2

" #2ðNþnÞ=2

�PNþn21
k~rþ b2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~rþ b2

2

{ !2
2ð2al~sH ~S21~rlÞ2

vuut

0BBBBBB@

1CCCCCCA
ð15:196Þ

The optimum receiver can be expressed completely in terms of the received data,

r, by substituting Equation 15.175 for k~r into the above equation. This results in

Tð~rlaÞ¼
~rH ~S21~rþ b2

2

{ !
l~r

~rH ~S21~rþ b2

2
þa2~sH ~S21~s

0BBBB@
1CCCCA
nþN

PnþN21ðl~rÞ ð15:197Þ

(15.195)
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where l~r is defined to be

l~r¼
~rH ~S21~rþ b2

2
þa2~sH ~S21~sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~rH ~S21~rþ b2

2
þa2~sH ~S21~s

{ !2
2ð2al~sH ~S21~rlÞ2

vuut

0BBBBBB@

1CCCCCCA$1 ð15:198Þ

b is the Student t scale parameter, n is the Student t shape parameter, and a is the
known target amplitude. Notice that Equation 15.197 is consistent with the

canonical structure of Figure 15.47, where l~sH ~S21~rl is identified as the Gaussian
receiver output for the Uð0;2pÞ random phase signal.

The Legendre function of the first kind of degree m, Pmð·Þ, reduces to a

Legendre polynomial for integer m: Thus, for integer values of the shape

parameter, n, PnþN21ðl~rÞ becomes a polynomial in l~r:
It still remains to verify that conditions Equation 15.188 and Equation 15.189

are satisfied. If the parameter definitions of Equation 15.190 and Equation 15.191

are substituted into Equation 15.188, the first condition becomes

Re{N þ n2 1} . 21 ð15:199Þ
This simplifies to

N þ n . 0 ð15:200Þ
which is obviously satisfied for all positive N and n.

Since the shifting property of Equation 15.184 has been used to obtain the

desired Laplace transform, the second condition to be satisfied is now

Re k~r þ b2

2

( )
. lRe{ap}l ð15:201Þ

which is equivalent to

Re ~rH ~S21~rþ a2~sH ~S21~sþ b2

2

( )
. lRe{2al~sH ~S21~rl}l ð15:202Þ

The verification of this condition is more easily obtained by using the linearly

transformed vectors, ~rw ¼ ~S21=2~r and ~sw ¼ ~S21=2~s, in which case Equation

15.202 becomes

Re k~rwk
2 þ a2k~swk

2 þ b2

2

( )
. lRe{2al~sHw ~rwl}l ð15:203Þ
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This is further simplified to

k~rwk
2 þ a2k~swk

2 þ b2

2
. 2al~sHw ~rwl ð15:204Þ

since the arguments of both Re{·} operations in Equation 15.203 are real and

positive.

The relation,

ðk~rwk2 ak~swkÞ2 ¼ k~rwk
2 þ a2k~swk

2
2 2ak~swk k~rwk $ 0 ð15:205Þ

implies

k~rwk
2 þ a2k~swk

2 $ 2ak~swk k~rwk ð15:206Þ
Therefore, the condition in Equation 15.204 is satisfied whenever

2ak~swk k~rwkþ b2

2
. 2al~sHw ~rwl ð15:207Þ

is true. The above relation is always satisfied, as seen by application of the

Schwarz inequality,29

k~swk k~rwk $ l~sHw ~rwl ð15:208Þ
Thus, Equation 15.197 is a valid solution for the optimum receiver of a random

phase signal in Student t SIRV clutter.

15.6.3.3.1.2. DGM Example

A DGM SIRV with K mixture components is generated by a discrete

characteristic PDF of the form,

fSðsÞ ¼
XK
k¼1

wkdðs2 skÞ ð15:209Þ

where d(·) is the impulse function and wk, k ¼ 1;…;K, are probability weights
which must be positive and sum to unity. The monotonic decreasing function,

h2NðjÞ, for this case is

h2Nðj Þ ¼
XK
k¼1

wks
22N
k exp 2

j

2s2k

{ !
ð15:210Þ

The optimum receiver for detection of a signal with a random Viterbi phase

density in DGM clutter can be obtained from Equation 15.179. However, because

of the occurrence of impulse functions in fS(s), it is easier to use Equation 15.173

to find the optimum receiver.
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Substituting Equation 15.209 into Equation 15.173 yields

Tð~rlaÞ ¼
ð1

0

s22N

I0ðLmÞh2N½2~rH ~S21~r	 I0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm þ 2aLc

s2

� �2
þ 2aLs

s2

� �2s0@ 1A
� exp 2

~rH ~S21~rþ a2~sH ~S21~s

s2

{ !XK
k¼1

wkdðs2 skÞds ð15:211Þ

Interchanging the order of the summation and integration results in

Tð~rlaÞ ¼ I0ðLmÞ
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !" #21

�
XK
k¼1

wk

ð1

0
s22NI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm þ 2aLc

s2

� �2
þ 2aLs

s2

� �2s0@ 1A
� exp 2

~rH ~S21~rþ a2~sH ~S21~s

s2

{ !
dðs2 skÞds ð15:212Þ

where Equation 15.210 has also been used. The optimum receiver now simplifies to

Tð~rlaÞ¼

XK
k¼1

wks
22N
k exp 2

~rH ~S21~rþa2~sH ~S21~s

s2k

{ !
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lmþ 2aLc

s2k

{ !2
þ 2aLs

s2k

{ !2vuut0B@
1CA

I0ðLmÞ
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !
ð15:213Þ

where a is the known target amplitude,Lm is the Viterbi phase parameter and Lc and Ls
are the real and imaginary parts of ~sH ~S21~r, respectively.

A Uð0; 2pÞ random phase density is obtained for Lm ¼ 0 and the optimum

receiver in this case becomes

Tð~rlaÞ ¼

XK
k¼1

wks
22N
k exp 2

a2~sH ~S21~s

s2k

{ !
exp 2

~rH ~S21~r

s2k

{ !
I0

2al~sH ~S21~rl
s2k

{ !
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !
ð15:214Þ

The receiver in Equation 15.214 is also seen to have the canonical structure of

Figure 15.47, where l~sH ~S21~rl is identified as the Gaussian receiver output for the
Uð0;2pÞ random phase signal.

The DGM SIRV has the potential to closely approximate many SIRVs having

continuous characteristic PDFs. This suggests the optimal receiver can be

approximated by a receiver with the above structure, which is particularly useful

when a closed-form solution for the optimal receiver cannot be obtained.
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15.6.3.3.2. Signals with Random Amplitude and Phase

When both the phase, f, and amplitude, a, of the target return are random, the
optimum SIRV receiver given by Equation 15.160 can be expressed as

Tð~rÞ ¼
ð1

0
Tð~rlaÞfAðaÞda ð15:215Þ

A closed-form evaluation of this integral is usually not possible, even when

Tð~rlaÞ is known, and a near-optimal approximate receiver implementation is

desired. A channelized approach which uses the DGM SIRV is discussed in this

section and alternative approaches are discussed later.

The quantity, v ¼ a2, is directly related to the radar cross section and

represents the amount of reflected energy received from the target. For

convenience, the optimum receiver in Equation 15.215 is expressed in terms of

the target energy as

Tð~rÞ ¼
ð1

0
Tð~rl ffiffi

v
p ÞfV ðvÞdv ð15:216Þ

The amplitude (or energy or radar cross section) of the target return is assumed to

remain constant during a single CPI of N pulses. However, the amplitude is

assumed to exhibit a random fluctuation across different CPIs. Specifically, the

Swerling one and Swerling three-target models are considered.

The probability density function of v for a Swerling one model is

Swerling 1: fV ðvÞ ¼ 1

v
exp 2

v


v

� �
; v $ 0 ð15:217Þ

which is the exponential density function, and the PDF for the Swerling three-

target model is

Swerling 3: fV ðvÞ ¼ 4v


v2
exp 2

2v


v

� �
; v $ 0 ð15:218Þ

where 
v denotes the average value of v.

The Swerling one and Swerling three models are special cases of the chi-

square distribution of degree 2m, for m ¼ 1 and m ¼ 2, respectively.30–32 The

chi-square PDF is

fV ðvÞ ¼ m

ðm2 1Þ!
v
mv


v

� �m21
exp 2

mv


v

� �
; v . 0 ð15:219Þ

The variance of the random target amplitude is reduced as m increases. In the

limit, as m approaches infinity, a nonfluctuating target is obtained.

15.6.3.3.2.1. DGM Example

The optimum receiver for target detection in DGM SIRV interference is derived.

The random phase of the target is assumed to have a Uð0; 2pÞ density and the
target energy, v ¼ a2, is assumed to have a chi-square density. The optimum
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receiver for this case is obtained by substituting Equation 15.214 and

Equation 15.219 into Equation 15.216, which yields

Tð~rÞ ¼
ð1

0

XK
k¼1

wks
22N
k exp 2

~sH ~S21~sv

s2k

{ !
exp 2

~rH ~S21~r

s2k

{ !
I0

2l~sH ~S21~rl
ffiffi
v

p
s2k

{ !
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !

� m

ðm2 1Þ!
v
mv


v

� �m21
exp 2

mv


v

� �
dv

This can be rearranged to the form,

Tð~rÞ ¼

XK
k¼1

wks
22N
k Dk exp 2

~rH ~S21~r

s2k

{ !
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !
ð15:221Þ

where Dk is given by

Dk ¼ ðm=
vÞm
ðm2 1Þ!

ð1

0
exp 2

~sH ~S21~sv

s2k

{ !
I0

2l~sH ~S21~rl
ffiffi
v

p
s2k

{ !
vm21 exp 2

mv


v

� �
dv

ð15:222Þ
which simplifies to

Dk ¼ ðm=
vÞm
ðm2 1Þ!

ð1

0
vm21 exp 2

~sH ~S21~s

s2k
þ m


v

{ !
v

" #
I0

2l~sH ~S21~rl
ffiffi
v

p
s2k

{ !
dv

ð15:223Þ
This integral is related to the standard form (in Ref. 25, p. 741),ð1

0
xm2ð1=2Þexpð2axÞI2nð2b

ffiffi
x

p Þdx

¼
G mþ nþ 1

2

� �
Gð2nþ 1Þ b21 exp

b2

2a

{ !
a2mM2m;n

b2

a

{ !
ð15:224Þ

where the function,M2m;nðzÞ, is called the Whittaker function and is related to the

confluent hypergeometric function, 1F1ða; b; zÞ by

M2m;nðzÞ ¼ znþð1=2Þ exp 2
z

2

� �
1F1

1

2
þ nþ m; 2nþ 1; z

� �
ð15:225Þ

Substituting

m ¼ m2
1

2
ð15:226Þ

(15.221)
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and

n ¼ 0 ð15:227Þ
into Equation 15.224 yields

ð1

0
xm21 expð2axÞI0ð2b

ffiffi
x

p Þdx ¼ GðmÞ
Gð1Þ b

21 exp
b2

2a

{ !
a2mþð1=2Þ

�M2mþð1=2Þ;0
b2

a

{ !
ð15:228Þ

which, from Equation 15.225, can be expressed as

ð1

0
xm21 expð2axÞI0ð2b

ffiffi
x

p Þdx ¼ GðmÞ
Gð1Þ b

21 exp
b2

2a

{ !
a2mþð1=2Þ b2

a

{ !1=2
� exp 2

b2

2a

{ !
1F1 m; 1;

b2

a

{ !

This simplifies to

ð1

0
xm21 expð2axÞI0ð2b

ffiffi
x

p Þdx ¼ GðmÞa2m
1F1 m; 1;

b2

a

{ !
ð15:230Þ

The evaluation of Dk in Equation 15.223 is obtained by substituting

a ¼ ~sH ~S21~s

s2k
þ m


v
ð15:231Þ

and

b ¼ l~sH ~S21~rl
s2k

ð15:232Þ

into the above result and using the notational equivalence, GðmÞ ¼ ðm2 1Þ!: This
yields

Dk ¼ m


v

� �m ~sH ~S21~s

s2k
þ m


v

{ !2m

1F1 m; 1;
l~sH ~S21~rl2

s4k
~sH ~S21~s

s2k
þ m


v

{ !
0BBBB@

1CCCCA ð15:233Þ

(15.229)
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The final result for the optimum receiver is obtained by substituting Equation

15.233 into Equation 15.221, which results in

Tð~rÞ ¼

XK
k¼1

wks
22N
k

~sH ~S21~s

s2k
þ m


v

{ !2m

exp 2
~rH ~S21~r

s2k

{ !
1F1 m; 1;

l~sH ~S21~rl2

s4k
~sH ~S21~s

s2k
þ m


v

{ !
0BBBB@

1CCCCA

v

m

� �mXK
k¼1

wks
22N
k exp 2

~rH ~S21 ~r

s2k

{ !
ð15:234Þ

where 2m is the number of degrees of freedom in the chi-square target amplitude

model.

Swerling 1 Case. The Swerling one target amplitude model is obtained for

m ¼ 1: In this case, the optimum receiver for detection of targets with Uð0; 2pÞ
random phase becomes

Tð~rÞ ¼

XK
k¼1

wks
22N
k

~sH ~S21~s

s2k
þ 
v

21

{ !21

exp 2
~rH ~S21 ~r

s2k

{ !
1F1 1; 1;

l~sH ~S21 ~rl2

s4k
~sH ~S21~s

s2k
þ 
v21

{ !
0BBBB@

1CCCCA

v
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !
ð15:235Þ

However, the confluent hypergeometric function has the property,

1F1ð1; 1; zÞ ¼ expðzÞ ð15:236Þ

and the optimum receiver in Equation 15.235 simplifies to

Tð~rÞ ¼

XK
k¼1

wks
22N
k

~sH ~S21~s

s2k
þ 
v21

{ !21

exp 2
~rH ~S21~r

s2k

{ !
exp

l~sH ~S21~rl2

s4k
~sH ~S21~s

s2k
þ 
v21

{ !
0BBBB@

1CCCCA

v
XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !
ð15:237Þ
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Swerling 3 Case. The Swerling three model occurs for m ¼ 2, and the

corresponding optimum receiver obtained from Equation 15.234 is

Tð~rÞ ¼

XK
k¼1

wks
22N
k

~sH ~S21~s

s2k
þ 2


v

{ !22

exp 2
~rH ~S21~r

s2k

{ !
1F1 2; 1;

l~sH ~S21~rl2

s4k
~sH ~S21~s

s2k
þ 2


v

{ !
0BBBB@

1CCCCA

v

2

� �2XK
k¼1

wks
22N
k exp 2

~rH ~S21~r

s2k

{ !
ð15:238Þ

The confluent hypergeometric function also has the reduction property

1F1ðaþ1;g;zÞ ¼ zþ2a2g

a

� �
1F1ða;g;zÞþ g2a

a

� �
1F1ða21;g;zÞ ð15:239Þ

which gives

1F1ð2;1;zÞ ¼ ð1þ zÞ1F1ð1;1;zÞþ0¼ ð1þ zÞ expðzÞ ð15:240Þ
The optimum Swerling three, Uð0;2pÞ receiver becomes

Tð~rÞ ¼

XK
k¼1

wks
22N
k

1þ l~sH ~S21 ~rl2

s4k
~sH ~S21~s

s2k
þ 2


v

{ !
~sH ~S21~s

s2k
þ 2


v

{ !2

266666666664

377777777775
exp 2

~rH ~S21 ~r

s2k

{ !
exp

l~sH ~S21 ~rl2

s4k
~sH ~S21~s

s2k
þ 2


v

{ !
0BBBB@

1CCCCA


v

2

� �2XK
k¼1

wks
22N
k exp 2

~rH ~S21 ~r

s2k

{ !
As expected, these DGM SIRV receivers have the canonical structure of Figure

15.47. They can also be represented by the channelized canonical structure

shown in Figure 15.48 for appropriate choices of f ð~r;sk;wkÞ and gð~r;sk;wkÞ:
The latter form is significant because it provides a suboptimal receiver

structure which has the potential to closely approximate the performance of

optimum receivers for the detection of random amplitude and phase targets in

many types of SIRV clutter. This follows because any finite-valued SIRV PDF

can be suitably approximated by some set of probability weights, wk, and scale

mixture values, sk, for k ¼ 1;…;K:

15.6.3.4. Generalized Likelihood Ratio Test

When the signal amplitude the phase parameters are modeled as constants which

randomly change from one observation interval (CPI) to the next in the decision

problem of Equation 15.152, it is often impossible to obtain a closed-form

solution for the integrals required by the optimum NP receiver in non-Gaussian

(15.241)
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interference. It is then useful to investigate suboptimal techniques which have

potential for nearly optimum detection performance.

The GLRT, whereby ML estimates of the unknown parameters under each

hypothesis are substituted into the LRT of Equation 15.154, is one such approach

which is commonly used in radar applications. The performance of the GLRT in

detection of signals with unknown amplitude and phase in K-distributed SIRV

interference has been investigated.6,7

Consider the radar detection problem in the form,

H0 : ~r ¼ ~d

H1 : ~r ¼ ~a~sþ ~d;
ð15:242Þ

where ~a ¼ aejf is an unknown complex constant, ~s is the low-pass complex

envelope of the desired signal, ~r is the low-pass complex envelope of the received

data, and ~d is the low-pass complex envelope of the SIRV disturbance.

The likelihood ratio in SIRV interference is given by

Tð~rl ~aÞ ¼ h2N½2ð~r2 ~a~sÞH ~S21ð~r2 ~a~sÞ	
h2N½2~rH ~S21~r	 ð15:243Þ

Hence, the GLRT for an SIRV is defined to be

TGLRTð~rÞ ¼ Tð~rl ~aÞ ð15:244Þ
which becomes

TGLRTð~rÞ ¼ h2N½2ð~r2 ~a~sÞH ~S21ð~r2 ~a~sÞ	
h2N½2~rH ~S21~r	 _

H1

H0

h ð15:245Þ

+

+

f ( )

f ( )

g ( )

g ( )

S1

SK

SK

S1 W1

WK

÷
TNP(r )

r

FIGURE 15.48 DGM SIRV optimal receiver.
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where ~̂a denotes the MLE of the unknown complex constant amplitude, ~a, and is
the value of ~a which maximizes the conditional probability density function,

f~rl ~a;H1
ð~rl ~a;H1Þ ¼ p2N l ~Sl21h2N½2ð~r2 ~a~sÞH ~S21ð~r2 ~a~sÞ	 ð15:246Þ

Since h2Nð·Þ is a monotonic decreasing function for every SIRV, this conditional
PDF is maximized when the quadratic argument, ð~r2 ~a~sÞH ~S21ð~r2 ~a~sÞ, is
minimized. The minimization of this quadratic form is independent of the

function, h2Nð·Þ, which characterizes the type of SIRV interference. Conse-

quently, the ML estimate of ~a is the same for all types of SIRV interference and

must be identical to the estimate obtained in Gaussian interference. Therefore, ~̂a
is always

~̂að~rÞ ¼ ~sH ~S21~r

~sH ~S21~s
ð15:247Þ

The individual ML estimates of a and f follow as

âð~rÞ ¼ l~sH ~S21~rl
~sH ~S21~s

ð15:248Þ

and

f̂ð~rÞ ¼ argð~sH ~S21~rÞ ð15:249Þ
The general expression for the GLRT receiver in SIRV interference is obtained

by substituting the ML estimate (MLE) given by Equation 15.247 into Equation

15.245. The resulting expression can be simplified to6

TGLRTð~rÞ ¼ h2N½2~rH ~S21~rð12 lrl2Þ	
h2N½2~rH ~S21~r	 _

H1

H0

h ð15:250Þ

where lrl2 is determined by

lrl2 ¼ l~sH ~S21~rl2

ð~rH ~S21~rÞð~sH ~S21~sÞ ð15:251Þ

It follows from the Schwarz inequality that r satisfies 0 # lrl # 1:
In the case of a Gaussian SIRV with h2NðqÞ ¼ expð2q=2Þ, the generalized

likelihood ratio can be reduced to the sufficient statistic, l~sH ~S21~rl2: Hence, the
GLRT for any SIRV is a nonlinear function of both the Gaussian receiver test

statistic and the quadratic form, ~rH ~S21~r, and can be implemented in the canonical

receiver form of Figure 15.47.

A MLE is consistent, which means it converges in probability to the true

values as the sample size approaches infinity. Consequently, the detection

performance of the GLRT asymptotically approaches the perfect measurement

bound. If acceptable (near-optimal) detection performance cannot be obtained by
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the GLRT with the available number of samples, then other test procedures

should be investigated. Simulation results for a few examples of GLRT detection

in K-distributed SIRV clutter have been reported.7 These results indicate the

GLRT performance is near the perfect measurement bound for even relatively

small sample sizes.

A performance comparison between the optimum NP receiver for the random

parameter case and a GLRT used in the same random parameter case is of interest

for several reasons. First, the optimum NP receiver for random signal parameters

requires a knowledge of the joint probability density function of these

parameters. If this density function is not known to sufficient accuracy, then it

is possible that a distribution-free test, such as the GLRT, has better detection

performance. Second, the GLRT may have a simpler functional form which leads

to a less complicated and more accurate receiver implementation. In fact, if there

is not a closed-form solution for the optimum receiver when the signal parameters

are random, then a suboptimum implementation is necessary. That another

suboptimum processor outperforms a GLRT without significantly more

complexity is not guaranteed.

15.6.3.5. Maximum Likelihood Matched Filter

A suboptimal receiver which is independent of the type of SIRV clutter which

is received is obtained by considering the nature of the SIRV model as

described in the representation theorem. The clutter samples from the ith range-

azimuth cell are assumed to be jointly Gaussian with zero-mean and covariance

matrix, s2i
~S, where ~S is the covariance matrix of the underlying Gaussian

vector in the SIRV representation theorem. The commonality of the covariance

structure for the received data from each range-azimuth cell is exploited in this

development.

The likelihood-ratio test for Gaussian clutter in the ith range-azimuth cell is

given by

Tð~rÞ ¼
exp 2ð~r2 aejf~sÞHðs2i ~SÞ21ð~r2 aejf~sÞ

h i
expð2~rHðs2i ~SÞ21~rÞ

_
H1

H0

h ð15:252Þ

which is easily reduced to

Tð~rÞ ¼ exp
2a2~sH ~S21~s

s2i

{ !
exp

2a Re{ejf~sH ~S21~r}

s2i

{ !
_
H1

H0

h ð15:253Þ

The unknown signal phase is replaced by the MLE of Equation 15.249 to yield

Tð~rÞ ¼ exp
2a2~sH ~S21~s

s2i

{ !
exp

2al~sH ~S21~rl
s2i

{ !
_
H1

H0

h ð15:254Þ
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This result is independent of the phase density function. However, for a Uð0; 2pÞ
random phase, it compares to the optimum NP receiver,

exp
2a2~sH ~S21~s

s2i

{ !
I0

2al~sH ~S21~rl
s2i

{ !
_
H1

H0

h0 ð15:255Þ

which can be obtained from Equation 15.214 for a single Gaussian mixture

component. The Gaussian receivers in Equation 15.254 and Equation 15.255 are

usually reduced to the envelope-detected matched filter,

l~sH ~S21~rl_
H1

H0

h00 ð15:256Þ

by moving constants, including a and s2i , into the threshold and applying the

inverses of monotonic functions. The threshold is then determined from the

specified probability of false alarm, which can only be done if the clutter power,

s2i , is known.

Since the unknown clutter power in each cell is the basis for the SIRV model,

simplification to Equation 15.256 cannot be performed. Furthermore, a UMP test

with respect to the signal amplitude, a, cannot be obtained without knowledge of

s2i : This is consistent with the previous discussion concerning optimal SIRV

receivers.

The ML matched filter (MLMF) is obtained by replacing a and s2i in Equation

15.254 with the MLEs, â and ŝ2i : Taking the natural logarithm of Equation 15.254

yields

2a2~sH ~S21~s

s2i
þ 2al~sH ~S21~rl

s2i
_
H1

H0

ln h ð15:257Þ

Thus, the MLMF statistic is given by

TMLMFð~rÞ ¼ 2â2~sH ~S21~s

ŝ2i
þ 2âl~sH ~S21~rl

ŝ2i
ð15:258Þ

which, for the signal amplitude estimate given by Equation 15.248, simplifies to

TMLMFð~rÞ ¼ l~sH ~S21~rl2

ð~sH ~S21~sÞŝ2i
ð15:259Þ

Knowledge of the covariance matrix, ~S, determines a whitening transformation
which can be applied to the received data. The MLMF statistic is expressed in

terms of the whitened vectors, ~rw ¼ ~S21=2~r and ~sw ¼ ~S21=2~s, as

TMLMFð~rwÞ ¼ l~sHw ~rwl
2

ð~sHw ~swÞŝ2i
ð15:260Þ
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The whitening transformation does not affect s2i , which is seen by considering the

SIRV representation theorem. In fact, s2i is the variance of both the real and imaginary

parts of every complex element in thewhitened vector, ~rw: Furthermore, the spherical
symmetry of the problem permits an arbitrary rotation of the coordinates, such that all

of the unknown signal energy is contained in a single complex element and the

remaining N 2 1 orthogonal complex elements contain only clutter components.

The N 2 1 signal-free components of the whitened vector are used to obtain

the MLE of s2i , given by

ŝ2i ¼ 1

2ðN 2 1Þ ~r
H
w’~rw’ ð15:261Þ

where the ’ subscript indicates that the N 2 1 dimensional complex vector of

these signal-free components is orthogonal to the complex signal component.

This estimate is substituted into Equation 15.260 to yield

TMLMFð~rwÞ ¼ l~sHw ~rwl
2

ð~sHw ~swÞð~rHw’~rw’Þ
_
H1

H0

hp ð15:262Þ

where the constant factor, 2ðN 2 1Þ, in incorporated into the threshold, hp. The
relation,

l~sHw ~rwl
2 ¼ ð~sHw ~swÞð~rHws~rwsÞ ð15:263Þ

where ~rws denotes the projection of the whitened received vector, ~r, onto the

whitened signal plane, is used to simplify Equation 15.262 to

TMLMFð~rwÞ ¼ ~rHws~rws

~rHw ~rw’
_
H1

H0

hp ð15:264Þ

Substituting

~rHw ~rw’ ¼ ~rHw ~rw 2 ~rHws~rws ð15:265Þ
into this expression gives

TMLMFð~rwÞ ¼ ~rHws~rws

~rHw ~rw 2 ~rHws~rws
ð15:266Þ

which can also be written as

TMLMFð~rwÞ ¼ 1

~rHw ~rw

~rHws~rws
2 1

_
H1

H0

hp ð15:267Þ

Further simplification of this statistic yields

TMLMFð~rwÞ ¼ ~rHws~rws

~rHw ~rw
_
H1

H0

hpp ð15:268Þ

where the threshold, hpp , includes the appropriate modifications to hp.
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The MLMF statistic is written in terms of the original unwhitened received

data by using Equation 15.263 to obtain

TMLMFð~rwÞ ¼ l~sHw ~rwl
2

ð~sHw ~swÞð~rHw ~rwÞ _
H1

H0

hpp ð15:269Þ

which leads to

TMLMFð~rÞ ¼ l~sH ~S21~rl2

ð~sH ~S21~sÞð~rH ~S21~rÞ ð15:270Þ

for the final form of the statistic.

During the course of this research, this MLMF receiver statistic also appeared

in the literature.26–28 However, the derivation presented here is different and

provides a simpler explanation in terms of the Gaussian matched filter

development.

The receiver statistic, TMLMFð~rÞ, in Equation 15.270 does not require any
knowledge of the type of SIRV clutter which is present in the received data in

order to be implemented. Furthermore, under hypothesis H0, the probability

density function of this test statistic is also independent of which SIRV is present.

(Since the received data is only SIRV clutter under H0, the SIRV representation

theorem is used to replace the received data vector, ~r, in Equation 15.270 by

the product of a Gaussian vector and a scalar. The scalar divides out of both the

numerator and denominator, leaving the resulting expression independent of

the scalar value and, hence, independent of the type of SIRV.) Consequently, the

threshold required to maintain a given false alarm rate is constant for all SIRVs

and can be determined from a Gaussian clutter assumption. Thus, this

suboptimum receiver is the least complicated to implement for any non-Gaussian

SIRV clutter environment. The performance of the MLMF statistic is compared

to the NP and GLRT performance in Section 15.6.4.5.

15.6.4. NONLINEAR RECEIVER PERFORMANCE

15.6.4.1. Introduction

Since the optimum non-Gaussian receivers of Equation 15.154 and Equation

15.159 are nonlinear, it is usually impossible to obtain a closed-form expression

for the PDF of the optimum test statistic. This makes analytical determination of

receiver performance very difficult. Consequently, Monte Carlo simulation

methods are considered for the determination of the receiver threshold and the

evaluation of detection performance.

A direct approach to simulating the receiver test statistic, Tð~rÞ, in Figure
15.47 requires the generation of independent realizations of the complex input

vector, ~r, having the multivariate PDF given by Equation 15.127. Several

techniques for generating SIRV samples with the appropriate PDF have been

discussed.12,13 This direct approach has two drawbacks, however. First, 2N
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independent, real data samples are required in order to obtain a single sample of

the output statistic. This is very inefficient for large N. Second, undesirable

correlation between vector samples may be created by grouping the outputs of a

pseudo-random number generator. This problem is not well studied for even

moderate N, but in some instances it becomes much worse as N increases. A

significant correlation structure in the 2N dimensional vector sample space used

for the Monte Carlo simulation could give erroneous performance results.14–16

A more efficient and reliable technique is based upon the canonical receiver

in Figure 15.47. The inputs, Tgð~rÞ and Tqð~rÞ, to the optimal nonlinearity can be
shown to depend on only a small fixed number of independent random variables

with known PDFs. Consequently, the potential correlation problems of high

dimensional random vector generation are avoided for all N by computing

samples of Tgð~rÞ and Tqð~rÞ from these random variables, instead of generating the

elements of the received vector, ~r:

15.6.4.2. Indirect Simulation of SIRV Receiver Statistics

All the receivers in Section 15.6.3 for detection of signals in SIRV clutter are

expressed in terms of low-pass complex envelope samples. The development of

these receivers is often simplified by using the complex envelope, especially

when considering signals with an unknown phase. The inputs to the optimal

nonlinearity in Figure 15.47 are expressed in terms of the signal parameters and

clutter disturbance, ~d, by substituting Equation 15.152 for the received vector

under each hypothesis into the appropriate definitions for Tgð~rÞ and Tqð~rÞ:
All the real and imaginary components of the complex clutter samples are

assumed to be uncorrelated and to have unit-variance, without loss of generality.

Thus, the covariance matrix of ~d is ~S ¼ 2I, where I is the N £ N identity matrix.

The SCR is adjusted by changing the signal energy.

For a completely known signal in this uncorrelated clutter, the inputs to the

optimal nonlinearity are given by Equation 15.156 and Equation 15.158. Since

the signal is completely known, its phase is assumed to be f ¼ 0 without loss of

generality. Furthermore, the spherical symmetry of the clutter allows rotation

of the signal vector, ~s, such that all of the signal energy is contained in the real

part of one component. The inputs to the nonlinearity under hypotheses H0 and

H1 are then

Tqð~rlH0Þ ¼ k ~dk2=2 ð15:271Þ

Tgð~rlH0Þ ¼ k~sk k ~dkcosðfdÞ=2 ð15:272Þ

Tqð~rlH1Þ ¼ ðk ~dk2 þ 2ak~sk k ~dkcosðfdÞ þ a2k~sk2Þ=2 ð15:273Þ
and

Tgð~rlH1Þ ¼ ðak~sk2 þ k~sk k ~dkcosðfdÞÞ=2 ð15:274Þ
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These statistics depend on only two independent random variables, qd ¼ k ~dk2 ¼
dH ~d and fd: The real, 2N dimensional vector, d ¼ ½dTc ; dTs 	T, where dc and ds are
the in-phase and quadrature components of ~d ¼ dc þ jds, has the same norm as ~d:
Thus, it satisfied k ~dk2 ¼ kdk2 and the PDF of qd is given by Equation 15.171 with
N replaced by 2N: The second variable, fd, is the angle between the clutter
disturbance vector and the signal vector, which is rotated as described above.

This is precisely the spherical angle F1 of Equation 15.135 for the spherical

coordinate representation described in Section 15.6.2.2.4, but with dimension 2N.

Consequently, the PDF of fd is

fFd
ðfdÞ ¼ GðNÞffiffi

p
p

G N 2
1

2

� � sin2ðN21ÞðfdÞ; 0 # fd # p ð15:275Þ

Only these two sequences of independent random numbers must be generated for

computer simulation of the receiver performance.

Similarly, for the Uð0; 2pÞ random signal phase case, Tq and Tg under each

hypothesis are derived as

TqðrlH0Þ ¼ kdk2=2 ð15:276Þ
TgðrlH0Þ ¼ ksk kdkcosðvÞ=2 ð15:277Þ

TqðrlH1Þ ¼ ðkdk2 þ 2aksk kdkcosðvÞcosðcÞ þ a2ksk2Þ=2 ð15:278Þ
and

TgðrlH1Þ ¼ ðksk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ksk2 þ 2aksk kdkcosðvÞcosðcÞ þ kdk2cos2ðvÞ

q
Þ=2 ð15:279Þ

Now, only three independent random variables, qd ¼ kdk2, v, and c, are needed
to generate the above statistics. The random variable, qd, is identical to the

previous known signal problem and again has a PDF given by Equation 15.171.

Since the assumed signal has an unknown phase, it can only be rotated such

that all the signal energy is contained in a single pair of real and imaginary

components describing a plane. The variable, v, is the angle between the clutter
disturbance vector and this plane. This is precisely the spherical angle, F1, from

Equation Z-15 and Equation Z-16 of the alternative spherical coordinate

representation described in Appendix Z. Its PDF, obtained from Equation Z-29

for k ¼ 1, is

fVðvÞ ¼ 2ðN 2 1Þ cosðvÞsinð2N23ÞðvÞ; 0 # v #
p

2
ð15:280Þ

Finally, c is a Uð0; 2pÞ distributed angle which occurs as a result of the random
signal phase.

When a random signal amplitude case is considered, random samples of a

must also be generated according to the amplitude PDF, fAðaÞ:
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The receiver performance is simulated by the following method. At least

100/PFA samples of either qd and fd for the known signal case or qd, v, and c for
the random signal phase case are generated. Samples of the clutter-only output

test statistic, Tð~rlH0Þ, are computed and used to determine the threshold which
gives the desired PFA value. Then samples of the output test statistic, Tð~rlH1Þ, are
computed and the PD is determined from the number of threshold crossings.

15.6.4.3. Student t SIRV Results

Detection in uncorrelated Student t SIRV clutter is considered for both a fully

known signal and a signal with known amplitude and Uð0; 2pÞ random phase.

The marginal PDFs of the quadrature components, di;q, are the Student t density,
3

fDi;q
ðdi;qÞ ¼

G vþ 1

2

� �
b

ffiffi
p

p
GðvÞ 1þ d2i;q

b2

{ !2v2ð1=2Þ
; v . 0 ð15:281Þ

where n is a shape parameter, b is a scale parameter, and Gð·Þ denotes the gamma
function. The monotonic decreasing function, h2NðqÞ, for the complex Student t
SIRV is3

h2NðqÞ ¼ 2Nb2nGðnþ NÞ
GðnÞðb2 þ qÞnþN ; n . 0 ð15:282Þ

and the optimum known signal receiver is obtained by substituting this function

into Equation 15.154. Since detection performance of this receiver depends only

on the signal energy, f ¼ 0 is used for the signal phase without loss of generality.

The optimum receiver then reduces to

b2 þ k~rk2

b2 þ k~r2 a~sk2
¼ b2 þ k~rk2

b2 þ k~rk2 þ a2k~sk2 2 2a Re{~sH ~r}
_
H1

H0

h ð15:283Þ

which is seen to have the canonical form of Figure 15.47a when Re{~sH ~r} ¼
TGð~rÞ is recognized as the optimal Gaussian statistic for this target model in

uncorrelated clutter.

Optimum detection of the known amplitude, Uð0; 2pÞ random phase signal is

givenbyEquation15.159,whereonly anaverageover thephasedensity is required.

The optimum receiver in Student t SIRV clutter for this case is derived in Section

15.6.3.3.1 and given by Equation 15.197 and Equation 15.198. For uncorrelated

clutter samples, with ~S ¼ 2I, the Student t receiver is easily simplified to

ðk~rk2 þ b2Þl~r

k~rk2 þ b2 þ a2k~sk2

{ !nþN
PnþN21ðl~rÞ_

H1

H0

h; n . 0 ð15:284Þ
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where l~r is given by

l~r ¼ k~rk2 þ b2 þ a2k~sk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk~rk2 þ b2 þ a2k~sk2Þ2 2 ð2al~sH ~rlÞ2

q
0B@

1CA $ 1 ð15:285Þ

and Pm(·) is the Legendre function of the first kind of degree m, which reduces to a
Legendre polynomial for integerm. Notice that Equation 15.165 is consistent with
the canonical structure of Figure 15.47, where l~sH ~rl is identified as the Gaussian
receiver output for the Uð0; 2pÞ random phase signal.

Detection performance of the optimum receiver in uncorrelated Student t

clutter for PFA ¼ 0.01, n ¼ 2, and N ¼ 2, 4, 8, and 16 pulses is shown in

Figure 15.49 to Figure 15.51. The SCR is defined to be

SCR ¼ a2k~sk2

Eðk ~dk2Þ ¼ a2k~sk2

2N
ð15:286Þ

These figures indicate the optimal non-Gaussian receiver has significantly better

detection performance than the Gaussian receiver for at least a 10 dB interval of

SCR values.

The Gaussian receiver performance is essentially optimum for very strong

signals. This is expected, since the signal appears more like a clutter spike as its

strength increases. Therefore, nonlinear processing which reduces the large

clutter spikes would also reduce the signal energy. The coherent integration gain
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FIGURE 15.49 Detection probability for completely known signal in Student t

SIRV clutter with n ¼ 2, PFA ¼ 0.01, and N ¼ 2, 4, 8, 16 pulses. (—) Optimal receiver,

(– –) Gaussian receiver, (†––†) LOD.
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of the matched filter dominates the processing and provides enough margin

between the signal and the clutter spikes to set a suitable threshold. The detection

performance must approach the false alarm probability as the signal strength

tends to zero. Detection of these very weak signals is accomplished only by using

a very large number of integrated pulses. When the SCR lies between these two
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FIGURE 15.50 Detection probability for signal of known amplitude andUð0; 2pÞ random
phase in Student t SIRV clutter with n ¼ 2, PFA ¼ 0.01, and N ¼ 2, 4, 8, 16 pulses.

(—) Optimal receiver, (– –) Gaussian receiver.
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FIGURE 15.51 Detection probability with optimal receiver in Student t SIRV clutter with

n ¼ 2, PFA ¼ 0.01, and N ¼ 2, 4, 8, 16 pulses. (–) Signal of known phase, (—) signal of

Uð0; 2pÞ random phase.
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extremes, the nonlinear processing of the optimal non-Gaussian receiver provides

a significant detection capability for weak signals.

Figure 15.49 also compares performance of the optimal known signal

receiver to the LOD,1 given by

TLODð~rÞ ¼
Tgð~rÞ

n2 1þ 1

2
Tqð~rÞ

; n . 1 ð15:287Þ

for a Student t SIRV clutter case. The LOD is a suboptimum receiver which is

often used for detection of unknown amplitude signals in small SCR situations. It

is derived from a Taylor series expansion of the LRT about a ¼ 0 and is also

equivalent to maximizing the slope of the Pd vs. SCR curve at the origin.

One advantage of the LOD is that it does not require knowledge of the signal

amplitude. The significant performance improvement of the LOD compared to

the Gaussian receiver is verified by Figure 15.49. However, this figure also

indicates that the LOD suffers a sizable detection loss for some SCR ranges when

compared to the optimal known signal receiver performance. This detection loss

is the motivation behind receiver designs which estimate the signal amplitude.6,7

Figure 15.51 compares optimal receiver performance between the known

phase case and the Uð0; 2pÞ random phase case. These results indicate that an

additional 2 to 4 dB increase in SCR is required for the unknown phase signal to

obtain the same performance as a known phase signal.

Since the random phase of the received target return is assumed constant over

the N pulse CPI, a commonly suggested receiver is the GLRT. The GLRT

substitutes a ML estimate for the unknown phase into the likelihood-ratio test of

Equation 15.153. The GLRT for the Student t SIRV has the form,

TGLRTð~rÞ ¼ b2 þ k~rk2

b2 þ k~rk2 2 2al~sH ~rlþ a2k~sk2
ð15:288Þ

A comparison of the detection performance of the GLRT and the optimum NP

receivers for Uð0; 2pÞ random phase is given in Figure 15.52. These results

indicate that the two receivers have identical performance, even though the

GLRT is not necessarily expected to be optimal for non-Gaussian SIRVs. This

same result has been reported for a single example in K-distributed SIRV clutter.9

It has also been observed for several examples involving the DGM SIRV, which

is discussed in the next section.

The reason for this behavior is not thoroughly understood. However,

investigation into whether or not it holds for all SIRVs is proceeding. Since the

GLRT and NP receivers are known to be equivalent for the Gaussian clutter

problem, the result is presumed to be related to the underlying conditionally

Gaussian nature of SIRVs.

Performance has been shown for PFA ¼ 0.01, which is a high value for the

false alarm probability if the entire surveillance volume is considered. Certainly,
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performance for lower PFA values is still of interest and being investigated.

However, it is expected that optimum non-Gaussian processing is only necessary

in a portion of this volume where there is very strong clutter. It seems reasonable

to allow some increase in the false alarm rate within these regions to improve

detection capability, with the understanding that the false alarm rate will be

appropriately lowered in other regions of the volume.

15.6.4.4. DGM Results

DGM SIRVs are obtained when the characteristic PDF, fV ðvÞ, of the SIRV is a

discrete probability density function described by

fV ðvÞ ¼
XK
i¼1

widðv2 viÞ; for wi . 0 and
XK
i¼1

wi ¼ 1 ð15:289Þ

and illustrated in Figure 15.53.

The monotonic decreasing function for the DGM SIRV is

h2NðqÞ ¼
XK
k¼1

wkv
22N
K exp 2

q

2v2k

{ !
ð15:290Þ

which is a continuous function.

The DGM SIRV is especially useful because closed-form solutions exist for

the optimum receiver for Uð0; 2pÞ random signal phase and chi-square random

signal amplitude models, which includes the Swerling 1 and Swerling 3 models.

The optimum receivers for these models are derived in Section 15.6.3.3.2.
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FIGURE 15.52 Detection probability for signal of Uð0; 2pÞ random phase in Student t

SIRV clutter with n ¼ 2, PFA ¼ 0.01, and N ¼ 2, 4, 8, 16 pulses. (– –) NP receiver,

(—) GLRT receiver.
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Furthermore, any finite valued SIRV PDF can be approximated as closely as

desired by some appropriate choice of K, wi, and vi for the characteristic PDF of

Equation 15.289. Thus, the DGM SIRVs can be used to evaluate optimal

performance for many other types of SIRVs. This is now illustrated in the

following examples which use a ten-component DGM to approximate the n ¼ 2

Student t SIRV density of the previous section.

Figure 15.54 compares the performance of the optimal Student t receiver and

an approximating DGM receiver for detection of a known amplitude target with

Uð0; 2pÞ random phase in Student t clutter with shape parameter, n ¼ 2: It shows
that the DGM receiver does an excellent job of realizing the full detection

capability. This DGM receiver is then used to evaluate the PD for Swerling one-

and Swerling three-targets in this same clutter. These results are shown in
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FIGURE 15.54 NP optimal receiver performance in DGM, 10 components and Student t

SIRV clutter.
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FIGURE 15.53 Characteristic PDF for a DGM SIRV.
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Figure 15.55 and Figure 15.56 and again the optimal SIRV receiver significantly

outperforms the Gaussian receiver for a significant range of SCR values.

15.6.4.5. NP vs. GLRT Receiver Comparison

A comparison of the detection probabilities of a Swerling one target in DGM

clutter for the GLRT and the optimum NP receivers is shown in Figure 15.57 to

Figure 15.59 at a .001 probability of false alarm. Once again, just as in the Student

t SIRV clutter examples, the two receivers are seen to have essentially identical

16 8 4 2N = 32

PFA = 0.001

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
−10−15−20 −5 0 5 10 15 20

SCR (dB)

P
ro

b.
of

D
et

ec
tio

n,
P

D

FIGURE 15.55 Optimal detection of a Uð0; 2pÞ, Swerling one-target in DGM clutter.
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FIGURE 15.56 Optimal detection of a Uð0; 2pÞ, Swerling three-target in DGM clutter.
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performance. Attempts to analytically verify the equivalent performance of these

two receivers has been unsuccessful. However, several significant experimental

results have been obtained from an investigation of this behavior.

1. As shown in Figure 15.57 to Figure 15.59, the number of samples used

to estimate the signal amplitude and phase for the GLRT do not affect

this phenomenon. Even when only two complex samples are used for
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FIGURE 15.57 Detection probability of NP, GLRT, and maximum likelihood matched

filter (MLMF) receivers in DGM clutter with N ¼ 8 and PFA ¼ 0.001.
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filter (MLMF) receivers in DGM clutter with N ¼ 4 and PFA ¼ 0.001.
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the estimates needed by the GLRT, it performs as well as the optimal

NP receiver.

2. The same behavior is observed at both higher and lower false alarm

probabilities.

3. The NP and GLRT are not equivalent test statistics, which does not

necessarily rule out the possibility the two statistics have equivalent

performance.

4. If these two receivers are used in SIRV clutter that is different from the

clutter for which they are designed, the detection performances are still

“equivalent”, though no longer optimum.

These observations are important because they strengthen the case for

using the GLRT in place of the NP statistic for optimal SIRV receivers. This

is significant, because the GLRT is simpler than the NP receiver and has a

closed-form solution for any SIRV for which the monotonic decreasing

function, hNðqÞ is known. Figure 15.57 to Figure 15.59 also show the MLMF

receiver performance. It is seen that the MLMF performance is significantly

below optimum unless a sufficient number of samples are available for the

required estimations. Nonetheless, if adequate samples are available for

processing, this receiver performs very well and is by far the simplest of those

considered.

15.6.4.6. Additional Implementation Issues

The receiver design and performance results presented above have been obtained

by assuming exact knowledge of the clutter covariance matrix, target amplitude

NP
GLRT
MLMF

0 5 10 15 20
SCR (dB)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

P
ro
b.
of
D
et
ec
tio
n,

P
D

FIGURE 15.59 Detection probability of NP, GLRT, and maximum likelihood matched

filter (MLMF) receivers in DGM clutter with N ¼ 2 and PFA ¼ 0.001.
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PDF, and clutter PDF. In practical applications, these quantities are not known.

Estimation of the covariance matrix for SIRV clutter includes all the problems

associated with estimating the covariance matrix for Gaussian clutter, including

selection of appropriate secondary data for the estimation. Problems raised by

unknown target amplitude and clutter PDFs are not encountered in optimal

Gaussian receiver design.

The optimal test statistic in Gaussian interference is UMP with respect to

signal amplitude. Thus, the optimal receiver can be designed without knowledge

of the signal amplitude or its PDF. No UMP test with respect to signal amplitude

for optimal non-Gaussian receivers exists. Consequently, the receiver design

depends on the value of a constant signal amplitude or the PDF of a random

signal amplitude and it is expected that optimal receiver performance is degraded

by the uncertain knowledge about the signal amplitude. A GLRT which uses a

MLE of the amplitude may prove to be a suitable suboptimum receiver,

depending on its detection loss for various target models.

Since the clutter PDF is not known a priori and only a relatively small

number of clutter samples are available, an efficient PDF approximation

algorithm such as the Öztürk algorithm19 is necessary. Furthermore, since

there are many possible types of non-Gaussian SIRV clutter, it is expected that

the radar must select the best alternative from a library of receivers. The

coarseness of this library depends on the sensitivity of detection performance

to inaccuracy in the clutter PDF approximation. The optimal nonlinearities

may be difficult to implement and in cases where no closed-form solution for

the optimal SIRV receiver exists, a channelized receiver or other approxi-

mation becomes necessary. In addition, it is desirable for the library to cover a

broad range of clutter densities. The DGM SIRV may prove particularly useful

for this.

15.6.4.7. Summary

Several significant results in the area of optimal non-Gaussian receiver design in

SIRV clutter have been presented. The significant improvement in detection

performance of the optimal non-Gaussian receiver compared to conventional

receiver design has been demonstrated. It is also shown that this optimal receiver

has a canonical form which uses current Gaussian-based processing and has

significant implications for space–time adaptive processing applications. The

conventional matched filter is an integral component of this canonical

architecture. It is shown that a whitening filter can be used to preprocess signals

in correlated clutter without a loss in detection performance. The canonical form

has also been used to develop a more efficient and reliable method of simulating

the performance of the nonlinear receivers which arise in non-Gaussian

processing. Finally, the first closed-form solution for an optimal non-Gaussian

SIRV detector of a signal with random phase is presented.
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15.7. MULTICHANNEL DETECTION FOR CORRELATED

NONGAUSSIAN RANDOM PROCESSES BASED

ON INNOVATIONS

(M. RANGASWAMY, J. H. MICHELS, AND D. D. WEINER)

15.7.1. INTRODUCTION

This work is motivated by a desire to detect signals in additive correlated non-

Gaussian noise using multichannel data. The problem of signal detection in

additive noise background is of interest in several areas such as radar, sonar, and

digital communications. This problem has been addressed in great detail when the

background noise is Gaussian.1 However, the corresponding problem for the case

of additive, correlated non-Gaussian noise has received limited attention.2Most of

the previous work dealing with signal detection and estimation in non-Gaussian

noise is based on the assumption that the noise samples are independent identically

distributed (IID) random variables.3,4 In many instances, the noise can be highly

correlated. When the noise is a correlated non-Gaussian random process, there is

no unique analytical expression for the joint PDF of N random variables obtained

by sampling the noise process. The theory of spherically invariant random

processes (SIRP) provides a powerful mechanism for modeling the joint PDF of

the N correlated non-Gaussian random variables. Applications of SIRPs can be

found in Refs. 5 and 6.

SIRPs are generalizations of the familiar Gaussian random process in that the

PDF of every random vector obtained by sampling a SIRP is uniquely determined

by the specification of a mean vector, a covariance matrix, and a characteristic

first-order PDF. In addition, the PDF of a random vector obtained by sampling an

SIRP is a monotonically decreasing function of a nonnegative quadratic form.

However, the PDF does not necessarily involve an exponential dependence on

the quadratic form, as in the Gaussian case. Many of the attractive properties of

the Gaussian random process also apply to SIRPs. Every random vector obtained

by sampling an SIRP is a SIRV.

Model-based parametric approaches for detection of time-correlated signals

in nonwhite Gaussian noise for radar applications have received considerable

attention.1,7 An important feature of the model-based methods is their ability to

utilize modern parameter estimators in the signal processing. In this scheme,

random processes are whitened through a causal transformation of the observed

data using prediction error filters. The resulting uncorrelated error processes are

the innovations and contain, in a compact form, all the useful information about

the processes. The innovations are useful for obtaining a sufficient statistic in

hypothesis testing for the presence or absence of a desired signal.8 Extension of

these techniques for the multichannel problem using Gaussian noise has been

considered in Refs. 7 and 9.

In this section, we present an innovations-based detection algorithm (IBDA)

for multichannel signal detection in additive correlated non-Gaussian noise under

Adaptive Antennas and Receivers1024

© 2006 by Taylor & Francis Group, LLC



the assumption that the noise process can be modeled as an SIRP. Preliminary

results of investigations for the single-channel case are available in Ref. 10. In

particular, it is shown that the optimal estimator for obtaining the innovations

process for SIRPs is linear and that the resulting detector has a canonical form.

The detection architecture consists of a linear prediction filter followed by a

memory less nonlinear transformation. Previous work11 dealing with non-

Gaussian processes has indicated that the innovations processes are obtained by

using nonlinear prediction error filters. This approach, while having some

interesting features, has several drawbacks and results in a suboptimal receiver.

On the other hand, the work dealing with non-Gaussian random processes which

can be modeled as SIRPs reveals that the optimal filter for obtaining the

innovations process is linear. In addition, the IBDA developed in this section is

optimal. Thus, the work of this chapter generalizes previous work in the area of

signal detection in non-Gaussian noise.

This section is organized as follows:

In Section 15.7.2, we present a brief review of the theory of SIRPs. Section

15.7.3 describes the procedure for obtaining the innovations process. In Section

15.7.4, we present the IBDA for SIRPs. Section 15.7.5 presents detection results

obtained from the IBDA for the case of the K-distributed SIRP. Estimator

performance for SIRPs is discussed in Section 15.7.6. Finally, conclusions are

presented in Section 15.7.7.

15.7.2. PRELIMINARIES

The definitions and relevant mathematical preliminaries for complex SIRVs and

complex SIRPs are presented in this section. A zero-mean random vector
~Y ¼ Yc þ jYs, where: Yc ¼ ½Yc1; Yc2;…; YcN	T and Ys ¼ ½Ys1; Ys2;…; YsN	T
denote the vectors of the in-phase and out-of-phase quadrature components, is

a complex SIRV if its PDF has the form

f ~Yð~yÞ ¼ ðpÞ2N l ~Sl21h2Nð pÞ ð15:291Þ

where: p ¼ ~yH ~S21 ~y; ~S is a nonnegative definite Hermitian matrix, and h2Nð·Þ is a
positive, real valued, monotonically decreasing function for all N. If every

random vector obtained by sampling a complex random process ~yðtÞ is a complex
SIRV, regardless of the sampling instants or the number of samples, then the

process ~yðtÞ is defined to be a complex SIRP.
Yao, in Ref. 12, derived a representation theorem for real SIRV’s. The

representation theorem extends to complex SIRVs readily and is stated as

follows.

The random vector ~Y is a complex SIRV if and only if it is equivalent to the

product of a complex Gaussian random vector ~Z and an independent, nonnegative

random variable V with PDF fV(v), which is defined to be the characteristic PDF

of the complex SIRV.
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Consequently,

~Y ¼ ~ZV

f ~Yð~yÞ ¼
ð1

0
f ~YlV ð~ylvÞfV ðvÞdv

f ~YlV ð~ylvÞ ¼ p2N l ~Sl21v22N exp 2
p

v2

� �
h2NðpÞ ¼

ð1

0
v22N exp 2

p

v2

� �
fV ðvÞdv:

ð15:292Þ

It is assumed without loss of generality that EðV2Þ ¼ 1 so that the covariance

matrix of the complex SIRV is equal to that of the complex Gaussian random

vector. Due to the assumption EðV2Þ ¼ 1, the covariance matrix of the complex

SIRV is ~S:
The representation theorem and the assumption that EðV2Þ ¼ 1 give rise to

the following necessary and sufficient conditions for representing ~Y as a complex

SIRV

E{Yc} ¼ E{Ys} ¼ 0; Scc ¼ Sss; Scs ¼ 2Ssc ð15:293Þ

where:

Scc ¼ E{YcY
T
c } Sss ¼ E{YsY

T
s }

Scs ¼ E{YcY
T
s } Ssc ¼ E{YsY

T
c }

ð15:294Þ

Under these conditions, it follows that

~S ¼ 2½Scc þ jSsc	 ð15:295Þ
Several attractive properties of complex Gaussian random vectors generalize to

complex SIRVs as a consequence of the representation theorem. Complex SIRVs

satisfying the conditions of Equation 15.293 are also called SIRVs of the circular

class.13 For this chapter, the most important property of complex SIRVs of

the circular class is the linearity of estimators in minimum mean-square error

estimation (MMSE) problems.13 This property is discussed in detail in

Section 15.7.3.

15.7.3. MINIMUMMEAN-SQUARE ESTIMATION INVOLVING SIRPs

In MMSE problems, given a set of data, real SIRVs are found to result in linear

estimators.12,14,15 This property is readily extended to complex SIRV’s in this

section. Let ~Y ¼ ½ ~YT
1
~YT
2 	T where ~Y1 ¼ ½ ~Y1; ~Y2;…; ~Ym	T and ~Y2 ¼ ½ ~Ymþ1,

~Ymþ2;…; ~YN	T denote the partitions of ~Y: Note that ~Yi ¼ Yci þ jYsi, i ¼ 1,

2;…;N: It can be readily shown that the MMSE estimate of ~Y2, given the
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observations from ~Y1, is

~̂Y2 ¼ E½ ~Y2l ~Y1	 ¼ ½C21C21
11 ~y1	 ð15:296Þ

where:

C11: covariance matrix of ~Y1

C21: cross-covariance matrix of the vectors ~Y2 and ~Y1

E½ ~Y2l ~Y1	: conditional mean or the expected value of ~Y2, given ~Y1:

Details of the derivation of Equation 15.296 are available in Ref. 16.

We assume that the complex SIRV ~Y is obtained by sampling a complex

SIRP ~yðkÞ at different time instants. Thus, for a given k; ~yðkÞ is a complex random
variable. The complex innovations sequence is defined as

~eðkÞ ¼ ~yðkÞ2 ~̂yðkÞ ð15:297Þ

where ~̂yðkÞ is the MMSE estimate of ~yðkÞ, given the observations ~yðmÞ, m ¼
1; 2;…k2 1: Since ~yðkÞ is a complex SIRP, it follows that ~̂yðkÞ can be obtained by
using Equation 15.296. This is achieved by the use of a linear prediction error

filter whose coefficients are chosen to be equivalent to Equation 15.296. In

particular, we use a complex autoregressive (AR) process of order two (AR[2]

process) for approximating the complex SIRP. Details for specifying the linear

prediction filter matrix coefficients are available in Refs. 9 and 17. The complex

innovations process of Equation 15.297 has zero-mean, is uncorrelated, and is a

complex SIRP having the same characteristic PDF as ~yðkÞ:
The problem of obtaining the single-channel innovations sequence for

correlated non-Gaussian processes has also been considered in Refs. 11 and 18.

The approach of Farina et al.11,18 involved zero memory nonlinear (ZMNL)

transformations, which transformed the processes from non-Gaussian to

Gaussian. This was followed by a linear prediction filter and another ZMNL

transformation, which gave rise to the innovations process. This approach has the

following drawbacks.

(1) The correlation function at the output of the ZMNL transformation is

related in a rather complicated manner to the correlation function at the

input.

(2) The correlation function at the output of the ZMNL transformation is

not guaranteed to be nonnegative definite.19

(3) If the process at the input of the ZMNL transformation is bandlimited,

then the process at the output is also bandlimited if and only if the

nonlinearity is a polynomial.20

Therefore, the approach using nonlinear transformations to obtain the

innovations process is suboptimal. However, for non-Gaussian complex SIRPs,

we have shown that the linear prediction filter is optimal for obtaining the
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innovations sequence. The complex innovations sequence obtained in this section

is used for developing the detection procedure of Section 15.7.4.

15.7.4. INNOVATIONS-BASED DETECTION ALGORITHM FOR SIRPs

USINGMULTICHANNEL DATA

We concern ourselves with the multichannel innovations-based detection

algorithm (IBDA) for SIRPs in this section. In particular, we consider the binary

multichannel detection problem for a known (nonrandom) signal in an additive

SIRP interference. The interference is allowed to be correlated within a given

channel as well as across channels. We present a model-based approach for this

problem and show that the resulting receiver has a canonical form. The

underlying interference process is assumed to be characterized by a multichannel

auto regressive (AR) process. The detection procedure implements a likelihood

ratio that is sensitive to the differences between the estimated model parameters

under each hypothesis. Thus, the model-based approach is based on the

contention that the coefficients of the received process are distinct for each of the

two hypotheses. The innovations process arises naturally in this procedure.

We consider the following multichannel detection problem and derive the

relevant likelihood ratio by two different methods. Consider the two hypotheses

H0: ~xðkÞ ¼ ~yðkÞ k ¼ 1; 2;…;N

H1: ~xðkÞ ¼ ~sðkÞ þ ~yðkÞ k ¼ 1; 2;…;N
ð15:298Þ

where:

H0 and H1: absence and presence of the signal, respectively

~xðkÞ: J £ 1 complex observation data vector
~yðkÞ: zero-mean complex SIRP

~sðkÞ: known J £ 1 constant complex signal

J: number of channels.

15.7.4.1. Block Form of the Multichannel Likelihood Ratio

We first express the likelihood ratio for the multivariate SIRV PDFs as

L{~x} ¼ f ~XlH1
ð~xlH1Þ

f ~XlH0
ð~xlH0Þ ð15:299Þ

where ~x ¼ ½~xð1ÞT ; ~xð2ÞT ;…; ~xðNÞT 	T : From the complex SIRV PDF of Equation

15.291, it follows that

f ~XlHi
ð~xlHiÞ ¼ p2JN lSJN;Hi

l21h2JNðq~xlHiÞ i ¼ 0; 1 ð15:300Þ
where q~x ¼ ~xHðSJN;Hi

Þ21 ~x; SJN;Hi
is the JN £ JN covariance matrix of the

observed process ~x under the hypothesis Hi; h2JNð·Þ is a positive, real valued,
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monotonically decreasing function for all N and J, and h2JNð·Þ is obtained by
using Equation 15.292. Considering an LDLH decomposition of SJN;Hi

, where L

is a lower triangular unit diagonal matrix, it can be readily shown that

S21
JN;Hi

¼ ½LH
~b;Hi

	21D21
~b;Hi

ðL ~b;Hi
Þ21

lSJN;Hi
l ¼ lL ~b;Hi

llD ~b;Hi
llLH

~b;Hi
l ¼ lD ~b;Hi

l
ð15:301Þ

where D ~b;Hi
is a diagonal matrix. Since SJN;Hi

¼ L ~b;Hi
D ~b;Hi

LH
~b;Hi
, it follows that

D ~b;Hi
¼ E½ ~b ~bH	 ð15:302Þ

where ~b ¼ L21
~b;Hi

~x: Consequently

q~xlHi ¼ ~xHðSJN;Hi
Þ21 ~x ¼ ½L ~b;Hi

~b	H½LH
~b;Hi

	21ðD ~b;Hi
Þ21L21

~b;Hi
½L ~b;Hi

~b	

¼ ½ ~bHðD ~b;Hi
Þ21 ~b	 ¼

XJ
j¼1

XN
n¼1

l ~bl2

s2jn
ðHiÞ ¼ q ~blHi ð15:303Þ

where s2jn is the jnth diagonal component of D ~b;Hi
: The vector ~b is the

multichannel complex innovations process.7,9 Thus, a block form of a statistically

equivalent innovations-based likelihood ratio can be written as

L{ ~b} ¼ f ~blH1
ð ~blH1Þ

f ~blH0
ð ~blH0Þ

¼ lD ~b;H1
l21h2JNðq ~blH1Þ

lD ~b;H0
l21h2JNðq ~blH0Þ

ð15:304Þ

Taking the natural logarithm of Equation 15.304, we obtain

ln½L{ ~b}	 ¼
XJ
j¼1

XN
n¼1

ln½s2jnðH0Þ	2 ln½s2jnðH1Þ	
8<:

9=;þ ln½h2JNðq ~blH1
Þ	

2 ln½h2JNðq ~blH0
Þ	 ð15:305Þ

Although Equation 15.296 for the MMSE estimate of ~Y2 is independent of

the type of SIRP, observe that the test statistic of Equation 15.305 involves a

nonlinearity h2JNð·Þ, which does depend on the type of SIRP.

15.7.4.2. Sequential Form of the Multichannel Likelihood Ratio

In order to obtain the sequential form of the multichannel likelihood ratio, we

make use of the representation theorem. We start with the PDF of Equation

15.300. Due to the representation theorem for complex SIRVs, we can express

the PDF of Equation 15.300 as

f ~XlHi
ð~xlHiÞ ¼

ð1

0
f ~XlHi;V

ð~xlHi; vÞfV ðvÞdv ð15:306Þ
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where

f ~XlHi;V
ð~xlHi; vÞ ¼ p2JN lSJN;Hi

l21v22JNexp 2
q~xlHi

v2

� �
ð15:307Þ

The PDF of Equation 15.307 can be expressed as

f ~XlHi;V
ð~xlHi; vÞ ¼ f ~Xð1ÞlHi;V

ð~xð1ÞlHi; vÞ
YN
k¼1

f ~XðkÞlHi; ~Xðk21Þ;V

� ½ ~XðkÞlHi; ~xðk2 1Þ; v	: ð15:308Þ

Since the conditional PDF of Equation 15.307 is a complex Gaussian PDF, it

follows that the conditional PDF’s

f ~XðkÞlHi; ~Xðk21Þ½ ~XðkÞlHi; ~xðk2 1Þ; ~xðk2 2Þ;…; ~xð1Þ; v	; k ¼ 2; 3;…;N

are also complex Gaussian. Therefore, all that is needed to determine the PDF’s

f ~XðkÞlHi; ~Xðk21Þ½ ~Xðk22Þ;…; ~Xð1Þ;V·½~xðkÞlHi;~xðk21Þ;~xðk22Þ;…;~xð1Þ;v		; k¼2;3;…;N

is the specification of their conditional means and conditional covariance

matrices. In particular, we need to specify

~̂XðkÞ¼E½ ~XðkÞl ~Xðk21Þ; ~Xðk22Þ;…; ~Xð1Þ;V	
Sklk21;V¼E½{ ~XðkÞ2 ~̂XðkÞ}{ ~XðkÞ2 ~̂XðkÞ}H	

ð15:309Þ

Let

~fðkÞ¼½{ ~XðkÞ2 ~̂XðkÞ}	lHi;V

Mklk21;Hi;V
¼E½ ~fðkÞ ~f HðkÞ	:

ð15:310Þ

A further LDLH decomposition ofMklk21;Hi;V
results in the quadratic form q~xlHi

being expressed as

q~xlHi¼
XJ
j¼1

XN
n¼1

l ~Gl2

s2jn
ðHiÞ¼q ~GlHi ð15:311Þ

where ~GðkÞ is the complex zero-mean, uncorrelated innovations vector having a
diagonal covariance matrix D ~G;Hi

, and sjn is the jnth diagonal component of

D ~G;Hi
: Therefore, it follows that

f ~XlHi;V
ð~xlHi;vÞ¼p2JN lD ~G;Hi

l21v22JNexp 2
q ~GlHi

v2

� �
ð15:312Þ

where q ~GlHi is defined in Equation 15.311. Using Equation 15.312 in Equation

15.306, and recognizing that the resulting integral is of the form of Equation
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15.292, it follows that the PDF of Equation 15.306 can be expressed in terms of

the corresponding multichannel innovations process. The likelihood ratio of the

form of Equation 15.305 follows, using the approach Section 15.7.4.1. Thus, we

have shown that the block form and sequential form of the innovations-based

likelihood ratio are equivalent. We use the sequential approach for ease of

implementation. The implementation of the linear prediction filter for obtaining

the multichannel innovations process is discussed in detail in Ref. 9.

The detection procedure consists of comparing the innovations-based

likelihood ratio of Equation 15.305 with a suitable threshold h. The threshold
h is determined based on a desired false alarm probability. Therefore, the IBDA

takes the form

ln{L{ ~G}	_
H1

H0

h ð15:313Þ

where

L{ ~G} ¼ f ~GlH1
ð ~GlH1Þ

f ~GlH0
ð ~GlH0Þ

¼ lD ~G;H1
l21h2JNðq ~GlH1Þ

lD ~G;H0
l21h2JNðq ~GlH0Þ

ð15:314Þ

The resulting receiver consists of a whitening filter followed by a zero memory

nonlinear (ZMNL) transformation under H0 and H1, where the difference is

compared with a threshold. The detection architecture is shown in Figure 15.60.

The detection architecture of Figure 15.60 is canonical for all complex SIRPs.

The innovations-based likelihood ratio enables understanding of the role of

the nonlinear transformation in the detection architecture of Figure 15.60 and

is presented here. Since h2JNð·Þ is a monotonically decreasing function of the
argument for all JN, h2JNð·Þ decreases as qGlHi increases. Furthermore, the

error term l ~GðklHiÞl2 increases under the incorrect hypothesis in a statistical

LINEAR
PREDICTION
ERROR FILTER

F1

LINEAR
PREDICTION
ERROR FILTER

F0

ZMNL
in h2JN(qg

~|H1)

ZMNL
in h2JN(qg

~|H0)

ESTIMATION
ALGORITHMS

+

+
+
− THRESHOLD

H0 H1

−S

X
~

FIGURE 15.60 Multichannel detection architecture of the IBDA for the known constant

signal case.
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sense. Thus, q ~GlHi increases proportionally via Equation 15.313 under the

mismatched hypothesis condition. Therefore, the basis of the detection strategy

is that under hypothesis H0, the log-likelihood ratio of Equation 15.313

decreases, thus remaining below a fixed threshold. This is due to the fact that

h2JNðq ~GlH1Þ decreases with increasing error signals under the mismatched

hypothesis. Conversely, h2JNðq ~GlH0Þ increases, yielding a larger negative

contribution in Equation 15.313. When H1 is true, the respective roles of

h2JNðq ~GlH0Þ and h2JNðq ~GlH1Þ are reversed, thus causing an increase in the log-
likelihood ratio.

15.7.5. DETECTION RESULTS USINGMONTE-CARLO SIMULATION

We present detection results using the detection architecture of Figure 15.60 in

this section. Performance of the IBDA developed in Section 15.7.4 is determined

by using computer simulation for the case of a known (nonrandom) signal in an

additive K-distributed SIRP interference. We consider both the case of an

uncorrelated SIRP and an AR SIRP of order two.

The K-distributed envelope PDF, whose quadrature components have a

generalized-Laplace distribution, is useful for modeling non-Gaussian inter-

ference in radar2 and communications21 and is given by

fRðrÞ ¼ 2b

GðaÞ
br

2

� �a
Ka21ðbrÞ 0 # r # 1 ð15:315Þ

where:

a: shape parameter of the distribution

b: scale parameter of the distribution

KN(t): Nth order modified Bessel function of the second kind.

It has been pointed out in Ref. 22 that the K-distribution is a member of the

family of SIRV’s. The characteristic PDF for the K-distributed SIRV and the

corresponding h2JNðqÞ are

fV ðvÞ ¼ 2b

GðaÞ ðbvÞ
2a21expð2b2v2Þ; 0 # v # 1

h2JNðqÞ ¼ 2b2JN

GðaÞ ðb
ffiffi
q

p Þa2JNKa2NJð2b ffiffi
q

p Þ
ð15:316Þ

Details of the Monte Carlo procedure are described in Ref. 9. The input

observation data processes are generated using the process synthesis procedure

described in Ref. 17, which has been modified to include the SIRP generation

procedure developed in Ref. 22. Detection performance results are determined as

a function of the channel signal-to-noise (SNR)j ratios and the temporal and

cross-channel correlation of the interference processes.

In several practical applications, a priori information may be available for

determining the filter order and coefficients. Specifically, a “secondary data set”
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is used to assess the hypothesis H0 condition while a “primary data set”

(statistically independent of the secondary set) is used for that of H1. Under these

conditions, the two data sets are used for estimating the filter coefficients F0 and

F1, respectively.

In this section, the filter orders are assumed to be known a priori. For the case

of a deterministic signal and SIRP interference modeled as an AR process of

order two, the F1 and F0 filters are also of order two. However, the prediction

error filter coefficients need to be determined. For the case where the interference

spectrum is unknown, the filter coefficients are estimated with the Strand–Nuttall

algorithm23,24 using a priori data consisting of NTC time samples. With the

estimated prediction error filter coefficients, the detection results are then

computed for NT ¼ 2 time samples per channel using NR ¼ 105 Monte-Carlo

realizations and a false alarm probability (PFA) of 10
24.

Figure 15.61 shows the plot of PD vs. signal-to-noise ratio (SNR) for a known

deterministic signal in an additive white K-distributed SIRP. Since for this case,

the SIRP is known to be white a priori and uncorrelated across channels, the F1
and F0 filters are omitted.

Figure 15.61(a) shows the detection results for the single channel ðJ ¼ 1Þ
case. Curve one describes the case where the white K-distributed SIRP has shape

parameter a ¼ 0:1: Curve two corresponds to the case of a ¼ 1, i.e., when the
interference is a white Gaussian SIRP. The h2JNð·Þ for this case is simply

exp(2q). Curve three shows the mismatch case, where the receiver designed for

the K-distributed SIRP ða ¼ 0:1Þ is used to cancel white Gaussian interference.
Finally, curve 4 shows the case where a receiver matched to the white Gaussian

SIRP is used when the interference is a white K- distributed SIRP with a ¼ 0:1:
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FIGURE 15.61 Probability of detection vs. SNR, known constant signal in white noise

(J ¼ 1, NT ¼ 2, shape parameter a is for a K-distributed PDF). (a) Curves one and two:

receivers matched to K ða ¼ 0:1Þ and Gaussian noise, respectively. Curve three: K ða ¼
0:1Þ receiver with Gaussian noise. Curve 4: Gaussian receiver with K ða ¼ 0:1Þ noise. (b)
Curves one, three, and four: receivers matched to K ða ¼ 0:1Þ, K ða ¼ 0:5Þ, and Gaussian
noise, respectively. Curves two and five: K ða ¼ 0:5Þ receiver with K ða ¼ 0:1Þ and
Gaussian noise, respectively.
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These curves reveal several important features. First, curves one and two

show the potential for significant performance improvement at low SNRs when

dealing with non-Gaussian processes. For example, at SNR ratio of 25 dB, the

results for the K-distributed SIRP for a ¼ 0:1 show performance improvement of

more than two orders of magnitude compared with the case of the Gaussian SIRP.

Comparison of curves one and four reveals that there is a significant degradation

of performance due to receiver mismatch. Comparison of curves two and three

also shows a degradation in performance for the case where the non-Gaussian

receiver is used, and the interference is Gaussian. However, the degradation

for the latter case is less severe than in the former. Therefore, there is an

improvement in performance when the interference is modeled correctly and the

receiver matched appropriately to the interference is used, i.e., performance is

degraded severely when the Gaussian receiver is used to cancel the non-Gaussian

interference. However, we notice that the non-Gaussian receiver shows

considerable robustness for shape parameter values in the range a ¼ 0:1–1:
The robustness of the non-Gaussian receiver is further explored in Figure

15.61(b). Curves one and four of this figure are identical to curves one and two,

respectively, of Figure 15.61(a). Curve three shows the case where the K-

distributed SIRP has a shape parameter a ¼ 0:5, and the receiver is matched to
this condition. Curve two corresponds to the case where the interference is a K-

distributed SIRP with a ¼ 0:1 while the receiver is designed for a ¼ 0:5: Curve
five pertains to the case where the interference is Gaussian and the receiver is

designed for a K-distributed SIRP with a ¼ 0:5: Comparison of curves four and
five shows the loss in performance for this mismatched receiver case.

Comparison of curves one and two indicates that performance penalty is

insignificant for the mismatch. However, we observe that the receiver designed

for a ¼ 0:5 performs better than the receiver designed for a ¼ 0:1 while dealing
with Gaussian interference. In summary, we point out that the receiver designed

for a ¼ 0:5 is robust over a considerable range of shape parameter values.
The role of the ZMNL transformation is apparent in curves one, three, and

four. For the Gaussian receiver, h2JNðqÞ ¼ expð2qÞ: It follows that the ZMNL
transformation, i.e., ln½h2JNðqÞ	 is simply2q. However, for non-Gaussian SIRPs,

ln½h2JNðqÞ	 is a monotonically decreasing function. Therefore, large values of q
are mapped to smaller values of the test statistic and vice versa. Consequently, the

threshold can be lowered in a weak signal situation, resulting in improved

detection performance.

Figure 15.62 contains the plots of Pd vs. SNR for a known constant signal

in known interference modeled as a K-distributed SIRP. The K-distributed SIRP

was modeled as an AR(2) process with a normalized Doppler shift of 0.5.

The results were obtained using J ¼ 2, NT ¼ 2, and equal SNR’s (SNR)j, j ¼
1; 2: The one lag temporal correlation parameter9,17 on each channel was

lj ¼ 0:7, j ¼ 1; 2: The K-distributed SIRP with shape parameter values a ¼ 0:1,
0.5, and1 was used. For each shape parameter value, the K-distributed SIRP was

modeled with cross-channel correlation parameters rij ¼ 0 and 0.99.
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Figure 15.63 considers the case where theK-distributed SIRP is approximated

by an AR(2) process with unknown coefficients. These coefficients are estimated

from the data for a signal to white noise ratio (SWNR) ¼ 210 dB. In this case,

NTC data samples were used to estimate the AR(2) parameters. The plots show the

convergence of the detection results to the corresponding known interference
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FIGURE 15.62 Probability of detection vs. SNR, known constant signal, AR(2) K-

distributed SIRP noise, normalized clutter Doppler ¼ 0.5, J ¼ 2, NT ¼ 2, lc ¼ 0:7:
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FIGURE 15.63 Probability of detection vs. number of time samples NTC used to estimate

AR(2) clutter parameters. J ¼ 2, NT ¼ 2, l11 ¼ l22 ¼ 0:7, rc ¼ 0, SNR ¼ 210 dB,

PFA ¼ 1024.
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case presented in Figure 15.62 as the estimator performance improves for large

values of NTC.

15.7.6. ESTIMATOR PERFORMANCE FOR SIRPs

We discuss the effect of the estimated AR(2) coefficients on the detection

performance in this section. In particular, we consider the J £ 1 multichannel AR

vector as

~YðkÞ ¼ 2
Xp
l¼1
AðlÞ ~Yðk2 lÞ þ ~UðkÞ ð15:317Þ

where:

p: model order
~AðlÞ: J £ J matrix
~UðkÞ: J £ 1 white noise driving vector with covariance matrix Su.

We concern ourselves with the estimates of the 2 £ 2 matrices ~AðlÞ and Su.
The PD shown in Figure 15.63 is obtained by averaging the results of nine

independent detection runs. It is important to note that the detection probabilities

converge to the values obtained for the known interference case of Figure 15.62

for increasing values of NTC. The results are shown for a K-distributed SIRP with

a ¼ 0:5 as well as the Gaussian case ða ¼ 1Þ: It is important to note that every
realization of the SIRP corresponds to a fixed value of the random variable V.

However, V is random from one realization to another according to Equation

15.292. We emphasize that the SIRP is nonergodic (except for the Gaussian

case).

We have observed that both the magnitude of the bias as well as the error

variance of the elements of ~AðkÞ fall off rapidly as NTC increases. This result
applies for both the K-distributed SIRP as well as the Gaussian process. A similar

result was noted for the magnitude of the bias of the estimator for Su. However,

Figure 15.64 shows an interesting result for the error variance of ŝu11, which is

the one-one element of Su. Specifically, the error variance decreases for

increasing NTC for the Gaussian process. However, for the K-distributed SIRP,

the error variance reaches a saturation level with increasing NTC. Hence, the

estimate ŝu11 is inconsistent for SIRPs. The inconsistency of the estimator is due

to nonergodicity of the SIRP and the large tail behavior of the SIRP arising from

small values of a. Consequently, the error variance of the estimator reaches a
saturation level and is reported here for SIRPs for the first time. A similar result

was reported in Ref. 4 while dealing with a different class of non-Gaussian

phenomena.

We can now argue that the reduction in the level of the bias magnitude results

in improvement of detection performance as NTC increases. Our results also show

that the receiver for the K-distributed SIRP is less sensitive to the estimation error

as opposed to the Gaussian receiver. This is explained by the argument that

h2JNð·Þ appearing in the likelihood ratio of Equation 15.314 is a monotonically
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decreasing function. Thus, large values of the argument of h2JNð·Þ are mapped
into small values. Large values in the argument of h2JNð·Þ arise on account of the
errors in the AR parameter estimation resulting from the nonergodicity of

the SIRP (different realizations of the SIRP corresponding to different values

of the random variable V). However, since h2JNð·Þ arises from a representation of

the form of Equation 15.292, an averaging over the random variable V results.

Hence, the detection results are insensitive to the errors in the parameter

estimation problem.

15.7.7. CONCLUSION

This section has made several significant original contributions. First, the

complex SIRP model for correlated non-Gaussian random processes was

developed. Next, it was shown that the innovations process for complex SIRPs

can be obtained by using linear prediction filters. The IBDA was then developed

for known signals in additive complex SIRP interference using multichannel

observations and showed that the resulting receiver was canonical. Finally, a

performance analysis of the IBDA was carried out showing excellent agreement

with that of Ref. 2. Performance analysis of the IBDA also indicates that the

receiver is robust for a variety of shape parameters. Furthermore, it was found

that the receiver designed for the K-distributed SIRP is less sensitive to

estimation errors arising from the estimates of the parameters of the AR process

than the Gaussian receiver.
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APPENDIX A. STOCHASTIC REPRESENTATION FOR THE

NORMALIZED GENERALIZED INNER PRODUCT (SECTION 3.1)

Let Z denote a data matrix whose columns are the previously defined zi, i ¼
1, 2,…,K: The maximum likelihood estimate of the covariance matrix is given

by R̂ ¼ ð1=kÞZZH : The data matrix Z and the test data vector x admit a

representation of the form

Z ¼ R1=2Y x ¼ R1=2y ðA:1Þ
where Y is a data matrix whose columns yi, i ¼ 1, 2,…,K are IID CNð0, IÞ
random vectors and y is a CNð0, IÞ random vector which is statistically

independent of Y. Hence, the normalized GIP is expressed as

P0 ¼ yHS21y y ðA:2Þ
where Sy ¼ ð1=KÞYYH : Next, we use a Householder transformation defined by
A ¼ �

I2 2ðuuH=uHuÞ�, where u ¼ y2 kyke and e ¼ ½100…0	T so that ~y ¼ Ay:
Also let ~Y ¼ AY: Since AAH ¼ AHA ¼ I, it follows that the statistics of ~Y are
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identical to that of Y. Consequently, the normalized GIP is expressed as

P0 ¼ ~yHS21y ~y: ðA:3Þ

Furthermore, we partition ~Y ¼ yH1

YH
11

" #
where yH1 is the first row of ~Y and YH

11

denotes the ðM 2 1Þ £ K matrix formed from the remaining rows of ~Y:
Consequently,

S~y ¼
yH1 y1 yH1 Y11

YH
11y1 YH

11Y11

" #
: ðA:4Þ

Also, S21~y admits a representation of the form

S21~y ¼
S11 S12

S21 S22

" #
: ðA:5Þ

Finally, the normalized GIP is expressed as

P0 ¼ kyk2S11:

However, from the matrix inversion Lemma it follows that S11 ¼ ðyH1 P’y1Þ21
where P’ ¼ I2 Y11ðYH

11Y11Þ21YH
11: Since Y11ðYH

11Y11Þ21YH
11 is a projection

matrix of rank M 2 1, it follows that P’ is a projection matrix of rank

K 2M þ 1: Consequently,

yH1 P’y1 ¼
XK2Mþ1

i¼1
lyðiÞl2 ðA:6Þ

where yðiÞ , CNð0, 1Þ: Hence S11 is simply the reciprocal of a Chi-Squared

distributed random variable with ðK 2M þ 1Þ complex degrees-of-freedom.

Also, since y is a CNð0, IÞ random vector, kyk2 is a Chi-Squared distributed

random variable with M complex degrees of freedom. Consequently, the

representation of Equation 3.5 follows.

APPENDIX B. EXPECTATION-MAXIMIZATION ALGORITHM FOR

COVARIANCE MATRIX ESTIMATION (SECTION 3.2)

We discuss the maximum likelihood estimation of the SIRV covariance matrix

in this appendix. Let X denote a data matrix, whose columns xi, i ¼ 1, 2,…,K are

independent identically distributed training data vectors, which are distributed as

SIRV½0,Rx, fV ðvÞ	: The likelihood function for estimating R if given by

g½XlR	 ¼
YK
i¼1

p2M lRl21h2MðqiÞ: ðB:1Þ
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Direct maximization of the likelihood function of Equation B.1 over R is

rendered difficult because of the missing information. Consequently, it is helpful

to treat the problem in the context of a complete–incomplete data problem.28

Recall from the representation theorem for SIRVs22 that xi ¼ ziVi, where zi,

i ¼ 1, 2,…,K are statistically independent CNð0,RÞ random vectors, and Vi,

i ¼ 1, 2,…,K are statistically independent random variables with PDF fV ðvÞ: For
this problem, the complete data is either zi, Vi, i ¼ 1, 2,…,K or xi, Vi, i ¼
1, 2,…,K: However, the observed data xi, i ¼ 1, 2,…,K, contains no explicit

information about Vi, i ¼ 1, 2,…,K and thus constitutes the incomplete data.

The complete data likelihood function is given by the joint PDF of xi, Vi,

i ¼ 1, 2,…,K, which is expressed as

gc½X,VilR	 ¼
YK
i¼1

f ðxilViÞ
YK
i¼1

f ðviÞ ðB:2Þ

Taking the natural logarithm of Equation B.2 yields the complete-data log-

likelihood function of the form

L½X,VilR	 ¼ 2KM logðpÞ2 K logðlRlÞ2
XK
i¼1

qiv
22
i þ

XK
i¼1

log½v22Mi f ðviÞ	: ðB:3Þ

Note that given an initial estimate of R denoted by R̂, the quantity,

E{log½v22Mi f ðviÞ	lR̂} ðB:4Þ
depends only on R̂ and not on R. Consequently, the relevant terms for the

maximization over R are given by

L1½X;VilR	 ¼ 2K logðlRlÞ2
XK
i¼1

qiv
22
i ðB:5Þ

The missing data, vi, i ¼ 1, 2,…,K, are assumed to be missing at random

(MAR).28 Consequently, given an initial estimate of R denoted by R̂, the

complete data sufficient statistic28 is given by

ci ¼ E½V22
i lR̂,xi	: ðB:6Þ

Thus, ci is simply, the minimum mean squared error (MMSE) estimate of V22
i

given xi. Note that f(v1) ¼ f(v2) ¼… ¼ f(vK) ¼ fV(v) (since vi, i ¼ 1, 2,…,K are

independent identically distributed random variables). Therefore,

fVilXi , R̂
ðvilxi, R̂Þ ¼ f ðxilvi, R̂ÞfV ðviÞ

fXilR̂ðxilR̂Þ
: ðB:7Þ

However,

f ðxilvi, R̂ÞfV ðviÞ
fXilR̂ðxilR̂Þ

¼ v22Mi expðqiv22i ÞfV ðviÞ
h2MðqiÞ : ðB:8Þ
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Consequently,

ci ¼

ð1

0
v22M22
i expðqiv22i ÞfV ðviÞdvi

h2MðqiÞ ¼ 2
h02MðqiÞ
h2MðqiÞ ¼ h2Mþ2ðqiÞ

h2MðqiÞ ðB:9Þ

Having specified the complete data sufficient statistic, we seek the maximization

of Equation B.5. For this purpose, we reproduce the following matrix

differentiation identities from Ref. 42.

d½R21	 ¼ 2R21d½R	R21 d½loglR21l	 ¼ 2tr{R21d½R	} ðB:10Þ
Further, we recognize that qi ¼

PK
i¼1 tr½R21xix

H
i 	: Consequently,

dL1½X,VilR	 ¼ Ktr{R21d½R	}2 tr R21d½R	R21
XK
i¼1

cixix
H
i

" #
: ðB:11Þ

Maximization of Equation B.5 results from setting Equation B.11 equal to zero.

Therefore, the maximum likelihood estimate of R is given by

R̂ ¼ 1

K

XK
i¼1

cixix
H
i : ðB:12Þ

Since R̂ appears on both sides of Equation B.12 (implicitly on the right hand side

through the calculation of ci), it is not possible to obtain a closed form solution

for the resulting estimate. Consequently, an iterative method is needed for

calculating R̂: The EM algorithm, which provides an iterative solution to this

problem, is summarized below.

1. E Step: Given an initial estimate of R denoted by R̂, calculate ci for

i ¼ 1, 2,…,K:
2. M Step: Calculate R̂ ¼ 1

K

PK
i¼1 cixixHi :

3. Use R̂ from step two to calculate a new value of ci:
4. Iterate until convergence. Convergence is determined through a

suitable error criterion.

In Section 3.2, the convergence criterion is an error of 1026 defined to be

the Frobenius norm of the difference between the values of R̂ resulting from

two successive iterations. At convergence, the resultant R̂, is to within a

multiplicative constant of the sample covariance matrix. This is due to the fact

that the outer product of each training data realization with itself is scaled by the

MMSE estimate of V22
i : This fact has been verified for all the simulated data

examples presented in the paper. In particular, we examined the diagonal matrix

of eigen values of the estimated covariance matrix. We found that they were

to within a multiplicative constant of the eigenvalues of the sample covariance

matrix formed by averaging the outer products of the realizations zi, i ¼
1, 2,…,K, of the Gaussian component of the SIRV xi: Convergence of the

Appendices 1043

© 2006 by Taylor & Francis Group, LLC



algorithm is dictated by the choice of the initial estimate of R. Any positive

definite Hermitian matrix is suitable for the initial estimate of R. Two choices,

which readily arise are theM £M identity matrix, IM , and the sample covariance

matrix given by S ¼ 1

K

PK
i¼1 xixHi :We employ the latter choice in this paper due

to the fact that it yields faster convergence.

The simulated data examples considered in this paper involve the calculation

of the modified Bessel function of the second kind for specifying h2Mð·Þ and
its derivative. Numerical errors in their calculation for a ¼ 0:1 tend to be

rather large. Consequently, convergence of the algorithm is extremely slow for

a ¼ 0:1:

APPENDIX C. ALGEBRAIC DERIVATIONS FOR JOHNSON

DISTRIBUTIONS (SECTION 4.2)

In this appendix, the criteria given in Equation 4.52 of Section 4.2 are established

and the parameter estimates given in Equation 4.57, Equation 4.59, and Equation

4.61 are developed.

C.1. JOHNSON SUU DISTRIBUTION

The transformation for the Johnson SU Distribution is of the form

R ¼ gþ h sinh21
G2 e

l

� �
ðC:1Þ

where R is a standard normal variable e and is a location parameter, l is a scale
parameter, and g and h are shape parameters for the PDF of the SU Distribution.

Solving Equation C.1 for G in terms of R, there results

G ¼ e þ l sinh
R2 g

h

� �
¼ e 2 l sinh

g2 R

h

� �
ðC:2Þ

where we have made use of the fact that sinhðAÞ is an odd function of A. Define

m ¼ g3r 2 gr l ¼ g2r 2 gr p ¼ gr 2 g2r ðC:3Þ

where g^r, g^3r are obtained from Equation C.2 for ^ r and ^3r,

respectively.
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For a fixed positive value of r, Equation C.2 and Equation C.3 give

m ¼ l sinh
g2 r

h

� �
2 sinh

g2 3r

h

� �� �
¼ l sinh

g2 2r þ r

h

� �
2 sinh

g2 2r 2 r

h

� �� �
,

l ¼ l sinh
gþ 3r

h

� �
2 sinh

gþ r

h

� �� �
¼ l sinh

gþ 2r þ r

h

� �
2 sinh

gþ 2r 2 r

h

� �� �
,

p ¼ l sinh
gþ r

h

� �
2 sinh

g2 r

h

� �� �
:

ðC:4Þ

Using the standard formula

sinhðAþ BÞ2 sinhðA2 BÞ ¼ 2 cosh A sinh B: ðC:5Þ
we obtain the values of m, l and p from Equation C.4 as

m ¼ 2l cosh
g2 2r

h

� �
sinh

r

h

� �
l ¼ 2l cosh

gþ 2r

h

� �
sinh

r

h

� �
p ¼ 2l cosh

g

h

� �
sinh

r

h

� �
:

ðC:6Þ

Thus,

m

p
¼

cosh
g2 2r

h

� �
cosh

g

h

� � l

p
¼

cosh
gþ 2r

h

� �
cosh

g

h

� � , ðC:7Þ

which gives

ml

p2
¼

cosh
g2 2r

h

� �
cosh

gþ 2r

h

� �
cosh2

g

h

� � : ðC:8Þ

Using the identity

coshðAþ BÞcoshðA2 BÞ ¼ cosh2Aþ cosh2B2 1, ðC:9Þ
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we obtain from Equation C.8

ml

p2
¼

cosh2
g

h

� �
þ cosh2

2r

h

� �
2 1

cosh2
g

h

� � ¼ 1þ
cosh2

2r

h

� �
2 1

cosh2
g

h

� � : ðC:10Þ

Since cosh2
�
2r=h

�
. 1, it is clear that ml=p2 . 1 for the SU distribution.

Applying the identity.

coshðAþ BÞ þ coshðA2 BÞ ¼ 2cosh A cosh B: ðC:11Þ
to the sum of m/p and l/p in Equation C.7, we get

m

p
þ l

p
¼

2 cosh
g

h

� �
cosh

2r

h

� �
cosh

g

h

� � ¼ 2 cosh
2r

h

� �
: ðC:12Þ

Solving Equation C.12 for h, we get

h ¼ 2r

cosh21
1

2

m

p
þ l

p

� �� � h . 0: ðC:13Þ

Since h . 0 is assumed, the positive value of the inverse of cosh(·) must be

chosen.

The expression for coshð2r=hÞ in Equation C.12 can be substituted into

Equation C.10 to give

ml

p2
¼

cosh2
g

h

� �
þ mþ l

2p

� �2
21

cosh2
g

h

� � : ðC:14Þ

Solving for cosh2ðg=hÞ,

cosh2
g

h

� �
¼ ðmþ lÞ2 2 4p2

4ðml2 p2Þ : ðC:15Þ
Since cosh2ðAÞ2 sinh2ðAÞ ¼ 1, Equation C.15 leads to

sinh2
g

h

� �
¼ ðm2 lÞ2

4ðml2 p2Þ ðC:16Þ

Thus,

sinh
g

h

� �
¼ ½ðm2 lÞ2	1=2

2ðml2 p2Þ1=2 : ðC:17Þ
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Unlike h, the parameter g may be either positive or negative. Thus, a

determination of the sign of the numerator in Equation C.17 must be made.

Taking the difference of l/p and m/p in Equation C.7 and applying the hyperbolic

identity,

coshðAþ BÞ2 coshðA2 BÞ ¼ 2 sinh A sinh B, ðC:18Þ
yields

l2 m

p
¼

2 sinh
g

h

� �
sinh

2r

h

� �
cosh

g

h

� � : ðC:19Þ

Both coshðg=hÞ . 0 and sinhð2r=hÞ . 0 (since r . 0) and hence the sign of

sinhðg=hÞ is the same as that of l2 m: It follows that

sinh
g

h

� �
¼ l2 m

2ðml2 p2Þ1=2 ðC:20Þ

and g is given by

g ¼ h sinh21

l

p
2

m

p

� �
2

m

p

l

p
2 1

� �1=2
26664

37775: ðC:21Þ

As indicated earlier, the expression for p is given by Equation C.6 as

p ¼ 2lg cosh
g

h

� �
sinh

r

h

� �
: ðC:22Þ

Sinhðr=hÞ can be obtained by using the relationship sinh2A ¼ cosh 2A2 1

2
in

conjunction with Equation C.12. This gives

sinh2
r

h

� �
¼

mþ l

2p
2 1

2

0BB@
1CCA ¼ mþ l2 2p

4p
: ðC:23Þ

coshðg=hÞ is known from Equation C.15. Using Equation C.22, Equation C.15,

and Equation C.23, we get

p ¼ 2l
ðmþ l2 2pÞðmþ lþ 2pÞ1=2

4½pðml2 p2Þ	1=2 : ðC:24Þ
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Consequently,

l ¼
2p

ml

p2
2 1

� �1=2
m

p
þ l

p
2 2

� �
m

p
þ l

p
þ 2

� �1=2 : ðC:25Þ

Finally, consider

gr þ g2r ¼ 2e 2 l sinh
g2 r

h

� �
þ sinh

gþ r

h

� �� �
: ðC:26Þ

Using the standard formula,

sinhðAþ BÞ þ sinhðA2 BÞ ¼ 2 sinh A cosh B: ðC:27Þ

Equation C.26 can be rewritten as

gr þ g2r ¼ 2e 2 2l sinh
g

h

� �
cosh

r

h

� �
: ðC:28Þ

Coshðr=hÞ in Equation C.28 is obtained using the relation, cosh2A ¼
ð1þ coshð2AÞÞ=2: It follows from Equation C.12 that

cosh2
r

h

� �
¼

1þ ðmþ lÞ
2p

2
¼ 2pþ mþ l

4p
: ðC:29Þ

Thus, using the values of sinhðg=hÞ from Equation C.20, coshðr=hÞ from

Equation C.29 and l from Equation C.25, it is seen that

gr þ g2r ¼ 2e 2 2
2p½pðml2 p2Þ	1=2

ðmþ l2 2pÞðmþ lþ 2pÞ1=2
" #

l2 m

2ðml2 p2Þ1=2
" #

� ð2pþ mþ lÞ1=2
2p1=2

" #

¼ 2e 2
pðl2 mÞ
mþ l2 2p

: ðC:30Þ
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Consequently, we get

e ¼ 1

2
gr þ g2r þ

p
l

p
2

m

p

� �
m

p
þ l

p
2 2

� �
26664

37775: ðC:31Þ

C.2. JOHNSON SBB DISTRIBUTION

The transformation of the Johnson SB Distribution is of the form

R ¼ gþ h ln
G2 e

lþ e 2 G

� �
ðC:32Þ

where R is the standard normal random variable and e is a location parameter, l is
a scale parameter, and g and h are the shape parameters of the SB Distribution.

Solving Equation C.32 for G, we obtain

G ¼ e þ l

1þ exp
g2 R

h

: ðC:33Þ

As was done in the previous section, we now proceed to findm, l and p in terms of

the parameters g, l, h, and e. Thus,

m ¼ g3r 2 gr ¼ l

1þ exp
g2 3r

h

� � 2
l

1þ exp
g2 r

h

� � : ðC:34Þ

Therefore,

m ¼ l

exp
g2 r

h

� �
2 exp

g2 3r

h

� �
1þ exp

g2 3r

h

� �
þ exp

g2 r

h

� �
þ exp

2g2 4r

h

� �
26664

37775 ðC:35Þ

and consequently,

m ¼ l

exp
g

h

� �
exp

22r

h

� �
exp

r

h

� �
2 exp

2r

h

� �� �
1þ exp

g2 3r

h

� �
þ exp

g2 r

h

� �
þ exp

2g2 4r

h

� � : ðC:36Þ
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This implies

m¼l

2exp
g22r

h

� �
sinh

r

h

� �
exp

g22r

h

� �
exp 2

g22r

h

� �
þexp 2r

h

� �
þexp r

h

� �
þexp g22r

h

� �� � : ðC:37Þ

Finally, we get

m ¼ l

sinh
r

h

� �
cosh

g2 2r

h

� �
þ cosh

r

h

� � : ðC:38Þ

Proceeding in a similar fashion, we find

l ¼ g2r 2 g23r ¼ l

sinh
r

h

� �
cosh

r

h

� �
þ cosh

gþ 2r

h

� � ðC:39Þ

and

p ¼ gr 2 g2r ¼ l

sinh
r

h

� �
cosh

r

h

� �
þ cosh

g

h

� � : ðC:40Þ

In summary, the values of m, l and p are

m ¼
l sinh

r

h

� �
cosh

r

h

� �
þ cosh

g2 2r

h

� �

l ¼
l sinh

r

h

� �
cosh

r

h

� �
þ cosh

gþ 2r

h

� �

p ¼
l sinh

r

h

� �
cosh

r

h

� �
þ cosh

g

h

� � :

ðC:41Þ
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Hence,

p

m
¼

cosh
r

h

� �
þ cosh

g2 2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� �

p

l
¼

cosh
r

h

� �
þ cosh

gþ 2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� � ,

ðC:42Þ

which gives

p

m

p

l
¼ A

B
ðC:43Þ

where

A ¼ cosh2
r

h

� �
þ cosh

g2 2r

h

� �
cosh

gþ 2r

h

� �

þ cosh
r

h

� �
cosh

g2 2r

h

� �
þ cosh

r

h

� �
cosh

gþ 2r

h

� �
ðC:44Þ

and

B ¼ cosh2
r

h

� �
þ cosh2

g

h

� �
þ 2cosh

g

h

� �
cosh

r

h

� �
: ðC:45Þ

Using the identities

coshðAþ BÞcoshðA2 BÞ ¼ cosh2ðAÞ þ cosh2ðBÞ2 1

coshðAþ BÞ þ coshðA2 BÞ ¼ 2coshðAÞcoshðBÞ
cosh2ðAÞ2 sinh2ðAÞ ¼ 1

ðC:46Þ

and applying them to Equation C.44, we get

A ¼ cosh2
r

h

� �
þ cosh2

g

h

� �
þ 2cosh

r

h

� �
cosh

g

h

� �
cosh

2r

h

� �

þ sinh2
2r

h

� �
: ðC:47Þ

B is smaller than A because the cosh function assumes only positive values

and since cosh
�
2r=h

�
. 1 and sinh2

�
2r=h

�
. 0: This gives ð p2=ml Þ . 1 or

equivalently, ðml=p2Þ , 1:
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From Equation C.41

1þ p

m
¼

2 cosh
r

h

� �
þ cosh

g

h

� �
þ cosh

g2 2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� �

1þ p

l
¼

2 cosh
r

h

� �
þ cosh

g

h

� �
þ cosh

gþ 2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� � :

ðC:48Þ

Multiplying the expressions in Equation C.48 and using the identities in Equation

C.46 we get

1þ p

m

� �
1þ p

l

� �
¼ C

D
ðC:49Þ

where

C ¼ 4 cosh2
r

h

� �
þ 2 cosh2

g

h

� �
1þ cosh

2r

h

� �� �
þ 4 cosh

g

h

� �
cosh

r

h

� �
cosh

2r

h

� �
þ 1

� �
þ cosh2

2r

h

� �
2 1 ðC:50Þ

and

D ¼ cosh2
r

h

� �
þ cosh2

g

h

� �
þ 2 cosh

r

h

� �
cosh

g

h

� �
: ðC:51Þ

Using the property, coshð2AÞ þ 1 ¼ 2 cosh2A in Equation C.50, we get

C ¼ 4 cosh2
r

h

� �
þ 4 cosh2

g

h

� �
cosh2

r

h

� �
þ 8 cosh

g

h

� �
cosh3

r

h

� �

þ 4 cosh4
r

h

� �
2 4 cosh2

r

h

� �
: ðC:52Þ

thus

C ¼ 4 cosh2
r

h

� �
D: ðC:53Þ

Finally, from Equation C.48 and Equation C.52 we get

1þ p

m

� �
1þ p

l

� �
¼ 4 cosh2

r

h

� �
: ðC:54Þ
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Solution for h results in

h ¼ r

cosh21
1

2
1þ p

m

� �
1þ p

l

� �� �1=2" # : ðC:55Þ

Now consider the sum of the terms in Equation C.41. Using the identities in

Equation C.45 on this sum we get

p

m
þ p

l
¼

2 cosh
r

h

� �
þ cosh

gþ 2r

h

� �
þ cosh

g2 2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� �

¼
2 cosh

r

h

� �
þ 2 cosh

g

h

� �
cosh

2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� � ðC:56Þ

Solving the above equation for cosh ðg=hÞ, we get

cosh
g

h

� �
¼

cosh
r

h

� �
p

m
þ p

l
2 2

� �
p

m
þ p

l
þ 2

� �
2 4 cosh2

r

h

� � ðC:57Þ

where again we have made use of the identities in Equation C.45. From Equation

C.53 expressions of coshðr=hÞ and sinh2ðr=hÞ are obtained and substituted in
Equation C.56. The result is

cosh
g

h

� �
¼

p

m
þ p

l
2 2

� �
1þ p

m

� �
1þ p

l

� �� �1=2
2 1þ p

m
þ p

l
þ p

m

p

l
2

p

m
2

p

l
2 2

� �

¼
p

m
þ p

l
2 2

� �
1þ p

m

� �
1þ p

l

� �� �1=2
2

p2

ml
2 1

{ !
ðC:58Þ

Rather than solve this for g, it is preferable to derive sinhðg=hÞ because sinh21ð·Þ
yields the correct sign of g due to it being single valued. Again we use the identity
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in Equation C.45 to get sinh(·) from cosh(·). Thus

sinh
g

h

� �
¼

p

m
2

p

l

� �2" #1=2
1þ p

m

� �
1þ p

l

� �
2 4

� �1=2
2

p

m

p

l
2 1

� � : ðC:59Þ

To see which root should be taken in the first factor in the numerator, observe

from Equation C.41 that

p

l
2

p

m
¼

2 sinh
g

h

� �
sinh

2r

h

� �
cosh

r

h

� �
þ cosh

g

h

� � , ðC:60Þ

where the hyperbolic identity, coshðAþ BÞ2 coshðA2 BÞ ¼ 2 sinhðAÞsinhðBÞ,
is used. The denominator on the right of Equation C.60 is always positive. Also,

sinhð2r=hÞ . 0 since r . 0: Hence, it follows that the sign of sinhðg=hÞ is the
same as that of ð p=lÞ2 ð p=mÞ: Equation C.58 then becomes

sinh
g

h

� �
¼

p

l
2

p

m

� �
1þ p

m

� �
1þ p

l

� �
2 4

� �1=2
2

p

m

p

l
2 1

� � ðC:61Þ

The value of g is consequently given by

g ¼ h sinh21

p

l
2

p

m

� �
1þ p

m

� �
1þ p

l

� �
2 4

� �1=2
2

p

m

p

l
2 1

� �
26664

37775: ðC:62Þ

The parameter l can be evaluated using the expression for p in

Equation C.40,

l ¼
p cosh

r

h

� �
þ cosh

g

h

� �� �
sinh

r

h

� � : ðC:63Þ
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Coshðr=hÞ and sinhðr=hÞ are known in terms of p, l and m from Equation C.53

and coshðg=hÞ is obtained from Equation C.58. Thus

l¼p

1þ p

m

� �
1þ p

l

� �� �1=2
þ

1þ p

m

� �
1þ p

l

� �� �1=2 p

m
þ p

l
22

� �
p2

ml
21

8>><>>:
9>>=>>;

1þ p

m

� �
1þ p

l

� �
24

� �1=2 : ðC:64Þ

Going through the algebra we get

l¼p

1þ p

m

� �
1þ p

l

� �� �1=2
1þ

p

m
þ p

l
22

p2

ml
21

{ !
266664

377775
1þ p

m

� �
1þ p

l

� �
24

� �1=2 ðC:65Þ

which gives

l¼p

1þ p

m

� �
1þ p

l

� �� �1=2
1þ p

m

� �
1þ p

l

� �
24

� �1=2
p2

ml
21

{ ! : ðC:66Þ

Consequently,

l¼p

1þ p

m

� �
1þ p

l

� �� �2
24 1þ p

m

� �
1þ p

l

� �� �1=2
p2

ml
21

{ ! : ðC:67Þ

Finally the formula for l is obtained as

l¼p

1þ p

m

� �
1þ p

l

� �
22

� �2
24

� �1=2
p2

ml
21

{ ! : ðC:68Þ

Appendices 1055

© 2006 by Taylor & Francis Group, LLC



For e, Equation C.33 is used to determine the sum

grþg2r¼2eþl
1

1þexp
g2 r

h

� � þ 1

1þexp
gþr

h

� �
2664

3775: ðC:69Þ

This is easily shown to be equivalent to

grþg2r¼2eþl 12

sinh
g

h

� �
cosh

g

h

� �
þcosh

r

h

� �
2664

3775: ðC:70Þ

From Equation C.61, this reduces to

grþg2r¼2eþl2

p sinh
g

h

� �
sinh

r

h

� � : ðC:71Þ

Substituting the previously determined values of sinhðg=hÞ and sinhðr=hÞ in
terms of p, l and m from Equation C.60 and Equation C.53 respectively, quickly

yields the desired result for e, as

e¼ grþg2r

2
2
l

2
þ

p
p

l
2

p

m

� �
2

p

m

p

l
21

� � : ðC:72Þ

C.3. JOHNSON SL DISTRIBUTION

The Johnson SL Distribution is given by the transformation of the form

R ¼ gp þ h lnðG2 eÞ ðC:73Þ

where again R is a standard normal variable, e is a location parameter, and g and
h are the shape parameters. Solving Equation C.73 for G we get

G ¼ e þ exp
R2 gp

h

� �
: ðC:74Þ
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Then

m ¼ g3r 2 gr ¼ exp
3r 2 gp

h

� �
2 exp

r 2 gp

h

� �
l ¼ g2r 2 g23r ¼ exp

2r 2 gp

h

� �
2 exp

23r 2 gp

h

� �
p ¼ gr 2 g2r ¼ exp

r 2 gp

h

� �
2 exp

2r 2 gp

h

� �
:

ðC:75Þ

It follows that

m

p
¼ exp

2r

h

� �
l

p
¼ exp

22r

h

� �
ðC:76Þ

and therefore ðml=p2Þ ¼ 1:

Moreover, the value of h is obtained from Equation C.76 as

h ¼ 2r

ln
m

p

� � : ðC:77Þ

From Equation C.75 and Equation C.76,

p ¼ exp 2
gp

h

� �
m

p

� �1=2
2

l

p

� �1=2" #
ðC:78Þ

which yields g p as

gp ¼ h ln

m

p
2 1

p
m

p

� �1=2
26664

37775: ðC:79Þ

Finally,

gr þ g2r ¼ 2e þ exp 2
gp

h

� �
exp

r

h

� �
þ exp 2

r

h

� �� �
: ðC:80Þ

Substituting the known expressions for expð2gp=hÞ and expðr=hÞ from Equation

C.75 and Equation C.76 respectively, we get the desired result for e, as

e ¼ gr þ g2r

2
2

p
m

p
þ 1

2
m

p
2 1

: ðC:81Þ
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APPENDIX D. CONNECTIONS BETWEEN ga, ka, Pa (SECTION 4.2)

According to Equation 4.75 of Section 4.2, the Gaussian random variable R is

related to the nonGaussian random variable G by the transformation

R ¼ gþ h fiðG; l,eÞ ðD:1Þ
where fi(g; l,e) are single valued monotonically increasing functions, i ¼ 1,2, 3:
Let r0 and g0 satisfy Equation D.1. Because of the single-valued monotonically

increasing nature of the transformation

PrðG # g0Þ ¼ PrðR # r0Þ: ðD:2Þ
From a relative frequency point of view

PrðR # r0Þ < Number of observations less than equal to r0
n

ðD:3Þ
where n is the total number of observations.

Now assume that n observations of the random variable G are obtained.

Ordering the observations of G from the smallest to the largest, denote the kth

ordered observation by gk: Then k equals the number of observations less than or
equal to gk: Corresponding to the ordered observations of the random variable G

are ordered realizations of the random variable R [See Equation 4.45]. Denote the

kth ordered realization of R by rk: Because the transformation in Equation D.1 is
single valued and monotonically increasing, it follows that

PrðR # rkÞ ¼ PrðG # gkÞ < k

n
ðD:4Þ

Introducing the “continuity correction”, as was done with the q–q and p–p plots

in Chapter 1, PrðR # rkÞ is approximated by

PrðR # rkÞ < k2 1
2

n
: ðD:5Þ

By definition,

Pa ¼ PrðR # aÞ ðD:6Þ
where a ¼ 3r, r, 2r, 23r. We define the integer ka such that

Pa <
ka 2

1
2

n
ðD:7Þ

where

ka ¼ nPa þ 1

2

� �
, ðD:8Þ

[·] denotes the closest integer and a ¼ 3r, r, 2r, 23r.
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Equation D.6 and Equation D.7 imply that a approximately equals the kath

ordered sample of R. Note that the kath ordered sample of G is gka , where rka and

gka satisfy Equation D.1. From Equation D.4 and Equation D.5

PrðG # gka Þ ¼ PrðR # rka Þ < PrðR # aÞ < ka 2
1
2

n
: ðD:9Þ

It follows, given Pa, that one can determine ka, and given ka, one can determine ga
by the simple relation

ga ¼ gka : ðD:10Þ

APPENDIX E. CANCELLATION FOR AN ANALOG HYBRID

CANCELER (SECTION 10.1)

Here we derive the cancellation for an analog canceler which employs bandwidth

partitioning and time delays as shown in Figure 10.6. Let the system function

Hkð f Þ for the kth band-pass filter have the characteristic

Hkð f Þ ¼ 1, f0 þ k2
1

2

� �
B , f , f0 þ k þ 1

2

� �
B

¼ 0, otherwise

ðE:1Þ

where f0 is the center frequency and B is the filter bandwidth. Then, in the main

channel the signal ykðtÞ at the filter output in the kth frequency bin is

ykðtÞ ¼
ð1

21
Hkð f ÞYð f Þe j2pft df ðE:2Þ

where Yð f Þ is the Fourier transform of yðtÞ: Also, if Gkð f Þ is the system function

of the section containing the time delays, the output in the kth frequency bin of

the auxiliary channel is

xkðtÞ ¼
ð1

21
df Hkð f ÞGkð f ÞXð f Þe j2pft: ðE:3Þ

After adding the outputs of all the frequency bins, the output signal r(t) is

rðtÞ ¼
XN21
k¼0

rkðtÞ ¼
XN21
k¼0

½ykðtÞ2 xkðtÞ	: ðE:4Þ

The average output power is

ð1

21
lrðtÞl2dt ¼

XN21
k¼0

XN21
l¼0

ð1

21
rkðtÞrpl ðtÞdt: ðE:5Þ

Appendices 1059

© 2006 by Taylor & Francis Group, LLC



The terms with k – l can be shown to vanish because

ð1

21
dt rkðtÞrpl ðtÞ ¼

ð1

21
df

ð1

21
df 0Bkð f ÞBp

l ðf 0ÞHkð f ÞHp
l ðf 0Þ

�
ð1

21
dt exp½ j2pðf 2 f 0Þt	 ðE:6Þ

where

Bkð f Þ ¼ Yð f Þ2 Gkð f ÞXð f Þ: ðE:7Þ
If we use the result thatð1

21
dt exp½ j2pð f 2 f 0Þt	 ¼ dð f 2 f 0Þ ðE:8Þ

we can rewrite Equation E.6 asð1

21
dt rkðtÞrpl ðtÞ ¼

ð1

21
df Bkð f ÞBp

l ð f ÞHkð f ÞHp
l ð f Þ: ðE:9Þ

However, because Hkð f Þ and Hlð f Þ do not overlap, it is clear that the integral on
the right-hand side of Equation E.9 vanishes unless k ¼ l: Consequently,
Equation E.5 reduces to

ð1

21
lrðtÞl2dt ¼

XN21
k¼0

ð1

21
lrkðtÞl2dt: ðE:10Þ

A similar result applies to the case when the auxiliary channel is absent. If the

output in that case is denoted by r0ðtÞ then the average output isð1

21
lr0ðtÞl2dt ¼

XN21
k¼0

ð1

21
lykðtÞl2dt: ðE:11Þ

Consequently, if we define the cancellation as the average output power with the

auxiliary channel to that without the auxiliary we find

C ¼
PN¼1

k¼0 klrkl
2lXN¼1

k¼0 klykl
2l

ðE-12Þ

where we have replaced the time average with an ensemble average.

APPENDIX F. CANCELLATION FOR A DIGITAL HYBRID

CANCELER (SECTION 10.1)

Let us discuss here how the cancellation is defined for a hybrid canceler that

employs both bandwidth partitioning and time delays, as shown in Figure 10.7
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when the delay D is chosen to be equal to pTs, where Ts is the inter-sample

period. If we define YðkÞ as the DFT of the main channel signal yn and XðkÞ as the
DFT of the auxiliary channel signal xn then, after weighting and summing, the

signal RðkÞ in the kth frequency bin is
RðkÞ ¼ YðkÞ2 HðkÞXðkÞ ðF:1Þ

where, for a three-tap system,

HðkÞ ¼ wk0 þ wk1 exp 2j
2pkp

N

� �
þ wk2 exp 2j

4pkp

N

� �
:

The time sequence rn at the output of the IDFT is

rn ¼ 1

N

XN21
k¼0

RðkÞexp j
2pnk

N

� �
: ðF:2Þ

The average power in the nth output sample is

klrnl
2l ¼ 1

N2

XN21
k¼0

XN21
m¼0

kRðkÞRpðmÞlexp j
2pnðk2 mÞ

N

� �
: ðF:3Þ

We now consider the average power over the block of N consecutive output

samples. This is

kPl ¼ 1

N

XN21
n¼0

klrnl
2l: ðF:4Þ

If Equation F.3 is substituted into Equation F.4 and the summation over n is

performed, we obtain

kPl ¼ 1

N2

XN21
k¼0

klRðkÞl2l ðF:5Þ

where we have used the result that

1

N

XN21
n¼0

exp j
2pnðk2 mÞ

N

� �
¼ dkm ðF:6Þ

and dkm is the Kronecker delta. If we substitute Equation F.1 into Equation F.5 we
then have

kPl ¼ 1

N2

XN21
k¼0

klYðkÞ2 HðkÞXðkÞl2l: ðF:7Þ
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Next, consider the block-averaged power kP0l when there is no adaptive

processing (auxiliary channel absent). In this case

kP0l ¼ 1

N2

XN21
k¼0

klYðkÞl2l: ðF:8Þ

Consequently, we may define the cancellation C as

C ¼ kPl
kP0l

¼
PN21

k¼0 klYðkÞ2 HðkÞXðkÞl2lXN21

k¼0 klYðkÞl2l
: ðF:9Þ

APPENDIX G. MATRIX ELEMENTS IN

EQUATION 10.10 (SECTION 10.1)

For the signals in Equation 10.15 and Equation 10.16 it is readily shown that for

the kth subband the elements in the matrices ½Zk	 and ½Rk	 are, for n ¼ 1, 2,…, N,

m ¼ 1, 2,…, M

Zn ¼ FðanÞ þ
XQ
q¼1

rpqFðan þ tqÞexpðifkqÞ þ
XQ
q¼1

rqFðan 2 tqÞexpð2ickqÞ

þ
XQ
q¼1

XQ
l¼1

rqr
p
l Fðan 2 tq þ tlÞ £ exp½iðfkl 2 ckqÞ	 ðG:1Þ

Rnm ¼ Fðan 2 amÞ þ
XQ
q¼1

rpqFðan 2 am þ tqÞexpðifkqÞ

þ
XQ
q¼1

rqFðan 2 am 2 tqÞexpð2ifkqÞ

þ
XQ
q¼1

XQ
l¼1

rpqrlFðan 2 am þ tq 2 tlÞexp½iðfkq 2 fklÞ ðG:2Þ

where Yn ¼ ðn2 1ÞDþ Td 2 D, D ¼ ðM 2 1ÞD=2, Td ¼delay of direct jammer
ray between main and auxiliary elements, tq ¼ Tmq þ tq 2 Td, Tmq ¼delay of qth
multipath ray between main and auxiliary elements, fkq ¼ vktq, ckq ¼ vktq,

tq ¼ delay of qth multipath ray relative to the direct jammer ray at the main

element, vk is the radian frequency at the center of the kth subband and
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FðxÞ ¼ sincðpBxÞ. Also,

klykl
2l ¼ Fð0Þ þ

XQ
q¼1

rqFðtqÞexpð2ickqÞ þ
XQ
q¼1

rpqFðtqÞexpðickqÞ

þ
XQ
q¼1

XQ
l¼1

rqr
p
l Fðtq 2 tlÞexp½iðckl 2 ckqÞ	: ðG:3Þ

APPENDIX H. ASYMPTOTIC CANCELLATION CURVES

(SECTION 10.1)

In this Appendix it has been chosen to present asymptotic cancellation curves for

M ¼ 2, M ¼ 3 in the limit when the multipath is specular. In Figure H.1, the

cancellation (averaged over 2000 subbands) for M ¼ 2, BD ¼ 0:25, and

Tm=tspec ¼ 0:05 will be shown. The averages were also performed over 10,000
subbands, and the results were indistinguishable from those averaged over 2000

subbands; therefore a 2000 subband average is sufficient to ensure asymptotic

conditions. Figure H.2 shows the relative insensitivity of the average cancellation

level to the value chosen for the intertap delay D, although it is evident that the
results are best if D ¼ tspec: The sensitivity of the cancellation to the value chosen
for Tm=tspec was also studied. The results were quite insensitive to the value

chosen, as long as Tm=tspec ,, 1:
In Figure H.3 the cancellation, averaged over 2,000 subbands, for M ¼ 3,

BD ¼ 0:25, and Tm=tspec ¼ 0:05 is shown. The sensitivity of these results to the
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value chosen for the intertap delay D is investigated in Figure H.4. It may be

noted that the cancellation is again best when the intertap delay D is of the order

of the multipath delay tspec:
It is important to note that the conclusions which was reached in Section

10.1.4 are not altered if these asymptotic curves are used. For example, suppose

we require 40 dB of cancellation, over a band Br ¼ 5 MHz, of a jammer plus

specular multipath with a time delay tspec ¼ 1026 sec. Then for M ¼ 1 we find

from either Figure 10.4 or Equation 10.8a that Btspec ¼ 0.0075 is required, so that
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the subband width is B ¼ 7.5 £ 103 Hz. For M ¼ 2 we find from Figure H.2 that

if D < tspec (optimum design) then Btspec . 0:075 so that B . 7.5 £ 104 Hz.

Finally, for M ¼ 3 it is evident from Figure H.4 that for the optimum choice

D , tspec we obtain Btspec . 0:130, so that B ¼ 1.3 £ 105 Hz. Because

Br ¼ 5 MHz this implies N ¼ Br=B ¼ 667 subbands are needed forM ¼ 1, N ¼
67 subbands are required for M ¼ 2 and we need N ¼ 39 subbands for M ¼ 3:

APPENDIX I. OPTIMUM VALUES OF N AND M (SECTION 10.1)

One important question that arises is whether there is an optimum combination of

M and B ¼ Br=N (remember Br is the total bandwidth and N is the number of

subbands) that results in the smallest number of computations. In order to discuss

this point we need to decide on a processing scheme. One possible approach is to

group the samples XmðkÞ in each subband (k) in Figure 10.7 into blocks of length
S. The S samples in the pth data block of the kth subband would then be used to

estimate the covariance matrix

½Rk	 ¼ 1

S

XS
m¼1

½Xp
mðkÞ	½XmðkÞ	T ðI:1Þ

and compute the weight vector ½wk	 ¼ ½Rk	21½Zk	: This weight would then be
applied to all samples in the ( p þ 1)th block of S samples. Likewise, the S

samples in the ( p þ 1)th data block would be used to compute the weight applied

to all S samples in the ( p þ 2)th block. The residue rk for each sample in the

( p þ 1)th data block of the kth subband is calculated from RmðkÞ ¼
YmðkÞ2 ½wk	T½XmðkÞ	:

We can readily estimate the number of operations necessary to obtain

each sample of the residue RmðkÞ: To form S samples of ½XmðkÞ	 in all the
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subbands of the auxiliary and S samples of YmðkÞ in the main channel

requires SðM þ 1ÞN log2 N, assuming a radix two FFT is used to perform the

subbanding operation. Once the block of S snapshots is obtained, it is shown

in [in Ref. 11, Section 5.3.3] that if the “normal-equation method” is used,

M2ðSþM=3Þ operations are required to form the weight vector ½wk	 in each
subband. Therefore, the total number of operations necessary to form weight

vectors in all N subbands is NM2ðSþM=3Þ: Finally, once ½wk	 is known, we
require 2MS operations to form the residue rk in each subband, assuming, as

noted earlier, that the same weight is applied to all S snapshots (samples) in

the data block. This result must be multiplied by the total number of

subbands N.

There is one other set of operations that could be considered, the IDFT shown

in Figure 10.7. We do not include this in our calculations, because as mentioned

earlier, it may not be necessary. Furthermore, including it in our calculations does

not alter the conclusions we reach.

If we add up all the aforementioned operations, we find that the total number

of operations needed to form a block of S samples in each of the N subbands is

SðM þ 1ÞN log2 N þM2ðSþM=3Þ þ 2MNS: The number of operations per

sample is obtained by dividing this result by S, and is

Operations/Sample ¼ N ðM þ 1Þlog2 N þM2 1þ M

3S

� �
þ 2M

� �
: ðI:2Þ

Brennan et al.12 have shown computationally that a good approximation for ½Rk	
is obtained whenever S $ 2M: Therefore, if we choose the minimum allowable

value, S ¼ 2M, we obtain from Equation I.2

Operations/Sample ¼ N ðM þ 1Þlog2 N þ 7

6
M2 þ 2M

� �
: ðI:3Þ

Equation I.3 gives the number of operations per output sample, but because

bandwidth partitioning has reduced the number of independent samples by a

factor of N, all of the output samples are no longer independent. That is, if one

samples at the Nyquist rate each input sample is independent, but

because bandwidth partitioning reduces the bandwidth by a factor of N, and

hence increases the decorrelation time by the same factor, one must choose

output samples separated by at least N for independence. Thus, the number of

operations per independent output sample is given by multiplying Equation I.3 by

N, (this multiplication by N is unnecessary if we use a block transform rather than

a sliding window transform) giving

Operations=Independent Sample ¼ N2 ðM þ 1Þlog2 N þ 7

6
M2 þ 2M

� �
: ðI:4Þ

The result in Equation I.4 has been used in conjunction with those in Figure 10.15

to obtain the plots in Figure I.1, which shows the number of operations per
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independent output sample when 30 dB cancellation is required. The results

clearly indicate that it is preferable to use multiple temporal taps. What particular

value ofM should be chosen is a compromise, because choosingM .. 1 implies

holding the weight constant for S ¼ 2M snapshots, whereas ideally one would

like to vary the weight from sample to sample.

APPENDIX J. EFFECT OF NEAR-FIELD NULLING

CONSTRAINT (SECTION 10.2)

In this Appendix we demonstrate that enforcing a near-field nulling constraint

degrades the adapted signal-to-clutter ratio. This, of course, is to be expected

because, in absence of a constraint, the processor automatically places nulls on

near-field obstacles in an optimum manner.
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In order to demonstrate this point, suppose we forced the processor to place a

null on the near-field obstacle. Mathematically, this constraint can be written as

½w	T½Q	 ¼ 0 ðJ:1Þ
where w is the weight vector and [Q] is a vector given by

½Q	T ¼ ½a1a2· · ·aN a1· · ·aN · · ·a1· · ·aN	, ðJ:2Þ

an ¼ expðikRnÞ
Rn

ðJ:3Þ

and Rn is the distance from the nth antenna to the near-field obstacle. If there are L

pulses the sequence a1· · ·aN in Equation J.2 is repeated L times.
We now minimize the clutter power subject to the constraint in Equation J.1,

along with the constraint that the signal be fixed; this latter constraint is specified

by wTs ¼ C. This requires that we minimize

H ¼ ½w	þ½M	½w	2 lð½w	T½s	2 CÞ2 b½w	T½Q	 ðJ:4Þ
where [w]þ is the conjugate-transpose of [w]. The optimum weight vector is

obtained by differentiating Equation J.4, setting which results equal to zero and

then using the resulting solution in the constraint equations to determine the

Lagrange multipliers l and b: The result is

½w	 ¼ lp½M	21½sp	 þ bp½M	21½Qp	 ðJ:5Þ
where

l ¼ a22C
p

D

b ¼ a21C
p

D

D ¼ l11l22 2 l12l21

a11 ¼ ½s	T½M	21½sp	
a12 ¼ ½Q	T½M	21½sp	
a21 ¼ ½s	T½M	21½Qp	
a22 ¼ ½Q	T½M	21½Qp	:

If the weight vector in Equation J.5 is used in the expression

S

C þ N
¼ l½w	T½s	l2

½w	þ½M	½w	 ðJ:6Þ
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for the signal-to-noise-plus-clutter ratio, we get

S

C þ N
¼ S

C þ N

� �
0
2

l½Q	T½M	21½sp	l2
½Q	T½M	21½Qp	 ðJ:7Þ

where

S

C þ N

� �
0
¼ ½s	T½M	21½sp	 ðJ:8Þ

is the signal-to-clutter-plus-noise ratio in the absence of a near-field constraint.

Because the second term in Equation J.7 is a positive-definite quantity, it is clear

from Equation J.7 that the near-field constraint always produces a loss in signal-

to-clutter-plus-noise relative to that which would be obtained if no near-field

constraint were employed. Thus, it is best to allow the processor to use whatever

degrees of freedom are required to deal with near-field obstacle, rather than

attempting to apply a specific constraint.

APPENDIX K. EQUIVALENCE OF ELEMENT SPACE AND BEAM

SPACE RESULTS (SECTION 10.4)

In this Appendix we show that, for a fully adaptive array, the SIR after adaptation

is the same for both element space and beam space.

In Equation 10.103, we noted that for the element space the SIR after

adaptation is

S

I

� �
a
¼ sTF21sp: ðK:1Þ

Now suppose a beamforming network is inserted between the antenna elements

and the tapped-delay-lines of the processor in Figure 10.52. Then instead of

having the element space vector U as input to the space-time processor, the new

beam space input is

U0 ¼ BU ðK:2Þ
where B is a matrix representing the beamforming operation. This should not be

confused with the radar bandwidth. If we assume that the beams are orthogonal

and the number of beam is equal to the number of elements, then B will be a

square invertible matrix.

Now let us compute the new covariance matrix F0 in beam space. We have

F0 ¼ kU0pU0Tl ¼ BpkUpUTlBT ¼ BpFBT: ðK:3Þ
Likewise, the steering vector s0 in beam space is

s0 ¼ Bs: ðK:4Þ
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Consequently, the adapted SIR is

S

I

� �0

a
¼ ðs0ÞTðF0Þ21s0p ¼ sTBTðBpFBTÞ21Bpsp

¼ sTBTðBTÞ21F21ðBpÞ21Bpsp ¼ sTF21sp ¼ S

I

� �
a
: ðK:5Þ

Consequently, the SIR after adaptation is the same whether we work in element

space or beam space, as long as the number of beam is equal to the number of

antenna elements. When there are fewer beams than elements, we may expect

some degradation.

APPENDIX L. EVALUATION OF THE INTEGRALS IN EQUATION

10.128 AND EQUATION 10.129 (SECTION 10.4)

Let us consider the first integral on the right-hand side of Equation 10.127. If we

make the transformation z ¼ tþ t0 2 t2 t1, the integral in Equation 10.128

becomes

Iklðn,m, t1, t2, tÞ ¼
ð1

21
dzzpðzÞzðaklzþ QÞ ðL:1Þ

where Q ¼ ðakl 2 1Þðt2 t0Þ þ gþ aklt1 2 t2: The integral l
0 in Equation 10.129

is of the same form, except with akl ¼ 1 and g ¼ 0: Now because zðzÞ – 0 for

0 # z # ts, and z(z) is equal to zero outside this interval, the integrand is nonzero
over only a limited region. Now, we set t1 ¼ p1Tp þ l1T , and t2 ¼ p2Tp þ l2T ,

where Tp is the interpulse period and T is the intertap spacing. It is evident that the

right-hand side of Equation L.1 vanishes unless p1 ¼ p2, because there is no

pulse overlap otherwise. Thus, in all that follows, we implicitly assume p1 ¼ p2:
By considering the various possible parameters we can rewrite Equation L.1

as

Ikl ¼
ðbts

ats

dzzpðzÞzðaklzþ QÞ ðL:2Þ

where a and b are given in Table L.1, and the arguments n, m, t1, t2, t have been

suppressed. If we now substitute Equation 10.117 for zðzÞ we find

Ikl ¼
ðbts

ats

dz exp i2pfc½ðakl 2 1Þzþ Q	
�
þi pB

ts
½ða2kl 2 1Þz2 þ 2aklzQþ Q2	

�
:

ðL:3Þ

Because the maximum value of b is roughly unity, the term in Equation L.3 that is

quadratic in z is at most equal to pBða2kl 2 1Þts: By recalling the definition of akl,
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it is evident that ða2kl 2 1Þ is at most of order 2v=c where v is the magnitude of the
net velocity between the platform and the jammer and c is the speed of light. For

typical velocities the quantity v=c < 1026: Also, for typical high performance
radars Bts < 103, so that pBtsða2kl 2 1Þ < 2p ð1023Þð1026Þ , 2p £ 1023, and
the term in Equation L.3 that is quadratic in z can consequently be neglected, so
that the resulting integration is readily performed. The result is

Ikl ¼ ðb2 aÞts exp{i½wþ pðbþ aÞVts	}·sinc½pðb2 aÞVts	, a # b;

¼ 0, a . b ðL:4Þ
where

V ¼ fcðakl 2 1Þ þ aklBQ

ts
ðL:5Þ

w ¼ 2pfcQþ pBQ2

ts
: ðL:6Þ

It is important to note that the integral Ikl is a function of time, because Q is a

function of time.

Cancellation effectiveness depends on the degree of correlation between the

interference from scatterers located in the radar main beam and those located in

the side lobes. Therefore, it is now important to substitute for a, b, etc. to

determine the conditions under which lIkl=tsl becomes smaller than unity,

because as is evident from Equation 10.130, this will indicate when the

interference from the kth and lth scatterers is becoming decorrelated.

Decorrelated interference usually results in a reduction in cancellation

effectiveness. Let us therefore evaluate Equation L.4 for the case when n ¼ m

(same element) and t1 ¼ t2 ¼ 0: If we also neglect higher order terms in vA=c and

TABLE L.1
Value of a and b

Condition a b

Q . 0,0 ,
1

ak‘
12

Q

ts

� �
, 1 0

1

ak‘
12

Q

ts

� �

Q . 0,
1

ak‘

�
12

Q

ts

�
. 1 0 1

Q , 0,
1

ak‘

�
1þ Q

ts

���� ����� , 1
Q

ak‘ts

���� ���� 1

ak‘

�
1þ Q

ts

���� �����

Q , 0,
1

ak‘

�
1þ Q

ts

���� ����� . 1
Q

ak‘ts

���� ���� 1
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vJ=c, assume ðv=cÞðTp=tsÞp 1,pðBtsÞðTp=tsÞðv=cÞp 1, and ignore an unim-

portant phase term, we then obtain from Equation L.4

1

ts
Iklðn,n, 0, 0, tÞ

< 12
lDtlkl
ts

� �
exp½i2pDfklðt2 t0Þ	·sinc p 12

lDtlkl
ts

� �
ðDfklts þ BlDtlklÞ

� �
,

ðL:7Þ
where Dtlk ¼ tln 2 tkn is the differential delay, as measured on the nth antenna
element, between the jammer interference scattered by the lth scatterer and that

scattered by the kth scatterer. The quantity Dfkl is the Dopper difference between
the jammer signal scattered by the kth and lth scatterers, and is defined as

Dfkl ¼ fc
C
½vA·ðR̂00

k 2 R̂00
l Þ2 vJ ·ðR̂0

k 2 R̂0
lÞ	 ðL:8Þ

where R̂00
k, R̂

0
k, etc. are shown in Figure 10.53. From Equation L.7 we note that the

conditions necessary for lIkl=tsl < 1, and hence good cancellation of the jammer

multipath, are:

lDtlklp ts ðL:9Þ
lDfkllts p 1 ðL:10Þ
lBDtlklp 1: ðL:11Þ

Consequently, the necessary conditions for effective cancellation of the jammer

multipath are that (1) the differential delay between the main beam and side lobe

scatterers be small in comparison with the uncompressed pulse length, (2) the

product of the differential Doppler frequency and the uncompressed pulse length

must be small in comparison with unity, and (3) the product of the radar

bandwidth and the differential delay between the scatterers must be small in

comparison with unity. The term exp½i2pDfklðt2 t0Þ	 illustrates the nonsta-

tionary behavior of the covariance, and its dependence on the Doppler frequency

difference.

APPENDIX M. CALCULATION OF THE

ADAPTIVE WEIGHTS (SECTION 10.5)

Let us refer to the one-dimensional array, shown in Figure 10.63, and make the

following assumptions: (1) all the auxiliary arrays are identical, (2) there are NJ
jammers located in the Fraunhofer (or far) zone of the array at azimuths

ðu1,u2, · · ·,uNJÞ, (3) the voltage that would be received from the qth jammer by an

isotropic antenna at the location of the main array is jqðtÞ, and (4) the array is
scanned to an angle u0: We also define gMðu, f Þ as the voltage gain of the main
array at azimuth u and frequency f, and assume the temporal Fourier transform
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of this quantity if ~gMðu, tÞ: Likewise, the voltage gain of each auxiliary array is
gA(u, f) with a corresponding Fourier transform ~gAðu, tÞ: Then, referring to Figure
10.63 and using all of the above definitions, we can write the output voltage UðtÞ
in the main array as

UðtÞ ¼
XNJ

q¼1

ð1

21
dt~gMðuq,tÞjqðt2 t2 T0Þ þ zðtÞ ðM:1Þ

where zðtÞ is the main channel noise. Likewise, the voltage received on the kth tap
of the nth auxiliary is

Vkðn, tÞ ¼
XNJ

q¼1

ð1

21
dt ~gAðuq,tÞjqðt2 t2 an, kÞ þ znðt2 kTÞ ðM:2Þ

where

ank ¼ Ln
C

ðsin uq 2 sin u0Þ2 kT ðM:3Þ
Ln is the separation between the centers of the main and nth auxiliary arrays, and

znðtÞ is the noise in the nth auxiliary. If we refer to Figure 10.63, it is evident that
the output voltage y is

y ¼ U 2
1ffiffiffiffiffiffiffiffiffiffiffiffi

NðK þ 1Þp XN
n¼1

XK
k¼0

wkðnÞVkðnÞ ðM:4Þ

Let us define

~wkðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
NðK þ 1Þp wkðnÞ

along with the vectors

~wT ¼ ½ ~w0ð1Þ· · · ~wKð1Þ ~w0ð2Þ· · · ~wKð2Þ· · ·	
vT ¼ ½V0ð1Þ· · ·VKð1ÞV0ð2Þ· · ·VKð2Þ· · ·	:

Equation M.4 can be rewritten as

y ¼ U 2 ~wTv: ðM:5Þ
It can we shown that the jammer residue y is minimized if the weight vector ~w is

chosen as

~w ¼ F21g ðM:6Þ
where F is an NðK þ 1Þ £ NðK þ 1Þ matrix given by

F ¼ kvpvTl ðM:7Þ
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g is an NðK þ 1Þ £ 1 vector defined as
g ¼ kvpUl ðM:8Þ

and k· · ·l denotes an expectation.
We can now use Equation M.1 and Equation M.2 to compute the components

of F and g. Let us write

jqðtÞ ¼ JqðtÞexpði2pf0tÞ ðM:9Þ
and assume the voltages from different jammers are statistically independent,

zero mean random variables so that

kJqðtÞJpp ðt þ zÞl ¼ RqðzÞdpq ðM:10Þ
where dpq is the Kronecker delta and RqðzÞ is the autocorrelation function for the
qth jammer. Then we obtain

kVkðnÞVp
l ðmÞl ¼

XNJ
q¼1

ð1

21
dt

ð1

21
dt0 ~gAðuq,tÞ ~gpAðuq,t0Þ·Rqðt2 t0 2 bÞ

� exp½2 i2pf0ðt2 t0 2 bÞ	 þ Rzz½ðk2 ‘ÞT	dnm
� exp½2 i2p f0ðk2 ‘ÞT	 ðM:11Þ

where bðn,k,m, l,qÞ ; ank 2 aml and RzzðtÞ is the autocorrelation function of the
noise. A similar expression is obtained for the components

kUðtÞVp
k ðn, tÞl

of the vector g, but for brevity, these will be omitted. We can simplify the result in

Equation M.11 by recalling that gAðu, f Þ by

~gAðu,tÞ ¼
ð1

21
df gAðu, f Þei2pf t: ðM:12Þ

Next, assume that all jammers are identical with an auto-correlation function

RqðtÞ ¼ JB sincðpBtÞ ðM:13Þ
where J is the power density of the jammer and B is its bandwidth. Then, if

Equation M.12 and Equation M.13 are used in Equation M.11 and the

integrations performed we obtain

kVkðnÞVp
l ðmÞl ¼ J

XNJ

q¼1

ðf0þB=2

f02B=2
df lgAðuq, f Þl2·expði2pbf Þ þ noise: ðM:14Þ

Equation M.14 and a similar expression for kUVp
k ðnÞl are the wideband

expressions required in Equation M.7 and Equation M.8. Note that b is a

function of n, m, k, l, and q, but the argument has been suppressed for

conciseness.
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APPENDIX N. ELIMINATION OF FALSE TARGETS (SECTION 10.5)

As mentioned earlier, false targets may be produced when the received signals

due to targets are subjected to the delays in the auxiliary antennas, if those delays

are larger than c=2B (i.e., one resolution cell). These spurious targets can be

eliminated by using a second bank of matched filters that place the false targets in

different range bins than they are placed in by the conventional matched filter

in Equation 10.162. Then using AND gates, such as shown in Figure N.1, one can

eliminate the false targets while retaining the true targets.

A filter that achieves the aforementioned goal is H 00
subð f Þ where Hsub( f) has

the same denominator as Hsub( f) in Equation 10.162, but instead of Ys
*( f) in the

numerator, we have

Yp
p ð f Þ ¼ CSpð f ÞG00ðu0; f Þ ðN:1Þ

where G00ðu0, f Þ is the same as Gðu0, f Þ in Equation 10.156, except for the minus
sign in front of gA replaced by a plus sign and C is a constant.

To understand how this approach works, suppose there is only one auxiliary

antenna and only one jammer. Suppose further that the main and auxiliary arrays

are identical (gM ¼ gA) and that only one weight wL in the tapped delay line in

Figure 10.150 is nonzero. Then, by taking the inverse transform of Ysð f ÞHsubð f Þ
we find that the temporal response (for a target on boresight) after conventional

Hsub (f) H′′sub (f)And
1 or 0

∑

1 or 0

Target in range Bin 1

Hsub (f) H′′sub (f)And

Target in range Bin 2

Hsub (f) H′′sub (f)

Threshold

Threshold

Threshold

Threshold

Threshold

Threshold And

Target in range Bin n

Signal from
main channel

Signals from
auxiliary channels

Bank of matched filters
dened in Eq. (10.162 )

Bank of matched filters
dened in Eq. (N.2)

FIGURE N.1 Approach to discriminate true targets from false targets.
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matched filtering is

ysðtÞ ¼ ð1þ lw0
Ll
2ÞrðtÞ2 w0

Lrðt2 tLÞ2 w0
L
prðt þ tLÞ ðN:2Þ

where rðtÞ is the inverse Fourier transform of lSð f ÞgMðu0, f Þl2, Xð f Þ is the
quantity in the denominator of Equation 10.162, and w0

L ¼ wL=ðk þ 1Þ1=2: Thus,
the conventional matched filter produces the true target response rðtÞ pulse two
false targets—one delayed by tL and one advanced by tL:

Next, consider the output of H 00
subð f Þ: We now find that the response to a

target is

y00s ðtÞ ¼ rðtÞ2 ðw0
LÞ2rðt2 2tLÞ: ðN:3Þ

Therefore, H 00
subðtÞ again produces the true target response tðtÞ, but now there is

only a single false target delayed by 2tL:
If AND logic is used, only the true target survives, and the false targets are all

rejected. This approach can be generalized to multiple targets. For example, if

there were two targets present then, unless the differential delay happens to be an

odd multiple of tL, the approach again rejects all the spurious targets while

retaining the two true targets. It is also noteworthy that waveforms having

sufficient bandwidth to produce spurious targets would normally only be used in

track modes. Thus, the number of matched filters in the hardware (software)

shown in Figure N.1 should be small.

APPENDIX O. APPROXIMATE DERIVATION

OF EQUATION 10.165 (SECTION 10.5)

Assume that the jammer bandwidth is sufficiently small that the temporal taps

shown in Figure 10.150 are unnecessary. We also recognize that when N

auxiliaries are used, we have the capability of forming up to N cancellation

beams. Therefore, we can insert an imaginary beamformer behind the N auxiliary

arrays such that the ports b1 through bN are now beam ports, and the weights

w0
1,w

0
2, · · ·,w

0
n are now applied in beamspace rather than element space. Because

each of the N beams is formed using all N auxiliaries, each beam has a gain

Gb ¼ NGA, where GA is the gain per auxiliary. Suppose further that the jammers

are spaced in azimuth so that there is only one jammer located within the 3 dB

beamwidth of each new auxiliary beam. If there are NJ mainbeam jammers

present and we ignore any target signals, then the main channel voltage (ignoring

constants of proportionality) is

vM ¼ G
1=2
M

XNJ

p¼1
jpðtÞ þ nMðtÞ ðO:1Þ
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where GM is main-array gain, jpðtÞ is the voltage of the pth jammer, and nM(t) is
the main-channel noise. The auxiliary voltage vA is

vA ¼ G
1=2
b

XN
p¼1

w0
pjpðtÞ þ

XN
p¼1

w0
pnpðtÞ ðO:2Þ

where Gb ¼ NGA,npðtÞ is the noise voltage at the pth beam port, we have ignored

the delay in jpðtÞ between the main and auxiliary channels because the delay
bandwidth product has been assumed to be much less than unity, and we have

assumed that NJ # N: The residue y ¼ vM 2 vA is given by

y ¼ G
1=2
M

XNJ

p¼1
jp 2 G

1=2
b þ

XN
p¼1

w0
pjp þ nM 2

XN
p¼1

w0
pnp: ðO:3Þ

Because dispersive effects are compensated by the tapped delay line, we expect

that the jammer residue will be nearly completely cancelled and the remaining

residue is just the noise. For N . NJ , this has been verified by computation of the

two terms in Equation 10.158. Thus, jammer portion of the residue in Equation

O.3 vanishes if the weights are chosen so that w0
p ¼ ðGM=GbÞ1=2 for p ¼

1, 2,…,NJ , and w
0
p ¼ 0 for p ¼ NJ þ 1,…,N: Then, if we define the N £ 1 weight

and noise vectors

n ¼

n1

n2

..

.

nN

26666666666666666666664

37777777777777777777775

ðO:4Þ

the residue after adaptation in Equation O.3 can be written as

y ¼ nM 2 w0Tn: ðO:5Þ
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The noise vector n at the beam ports is related to the noise vector n0 at the input to
the beamformer by the transformation

n ¼ Qn0 ðO:6Þ
where:Q is the N £ N beamforming matrix. One way to form this transformation

matrix is to use the eigenvectors of the covariance matrix F; the latter approach
will place a cancellation beam on each well-resolved jammer.2 Because F is

Hermitian, its eigenvectors are orthonormal so that

QQþ ¼ IN : ðO:7Þ
If Equation O.6 is used in Equation O.5, and we take the expected value of the

magnitude squared of the residue voltage, we find

klyl2l ¼ klnMl
2lþ wTQkn0n

0þlQþwp ðO:8Þ
whereQþ is the conjugate transpose ofQ, kl denotes an expectation and we have
used the result that the main channel and auxiliary noises are independent.

Because the noises in each of the auxiliary arrays are independent, we may write

kn0n
0þl ¼ s2IN ðO:9Þ

where IN is the N £ N identity matrix. Also, klnMl
2l ¼ s2 so that Equation O.8

becomes

klyl2l ¼ s2½1þ wTQQþwp	: ðO:10Þ
If Equation O.7 is used we find

klyl2l ¼ s2½1þ wTwp	: ðO:11Þ
Finally, if Equation O.4 is used in Equation O.11, we obtain

klyl2l ¼ s2 1þ NJGM

Gb

� �
¼ s2 1þ NJGM

NGA

� �
ðO:12Þ

where GA is the gain of each auxiliary.

In reality, Equation O.12 is valid only for the artificial geometry where the

jammers are well-resolved in angle so that the weight of each cancellation beam

can be independently estimated. To extend our result to the general case when the

jammer separations are arbitrary, we have postulated that the residue after

cancellation will still depend on NJGM=NGA, but that this quantity will be

multiplied by a factor b that depends only on N and NJ , but not on GM, GA:We

have obtained this factor b by using 25 Monte Carlos over jammer locations for
each of the following cases:

N ¼ 1 to 8 and NJ ¼ 1 to N. For all cases, except N ¼ 2, which is a

pathological case because of grating lobes, we found that the coefficient b, given
in Equation 10.166, gave a residue after cancellation that was within 1 dB of the

simulated results for 0:3 # NJGM=NGA # 50:
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APPENDIX P. INTERFERENCE COVARIANCE

MATRIX (SECTION 10.10)

In this Appendix we calculate the interference covariance matrix. Consider an

array of K antennas mounted on an arbitrary platform and suppose the position of

antenna k is ðxk,yk, zkÞ, and that multipath is represented by L point scatterers

with scatterer p having a bistatic scattering function† given by Spðus,fs; ui,fiÞ,
where ðui,fiÞ is the angular direction of the incident radiation and ðus,fsÞ is the
angular direction of the scattered radiation. This array is illuminated by N far-

field interferers such that interferer n produces a voltage jnðtÞexpði2pf0tÞ on the
reference element of the antenna array in the absence of multipath, where f0 is the

carrier frequency. Then, if both the direct and multipath voltages are included

(and polarization effects are temporarily ignored) the voltage produced by the N

interferers on antenna element k, after down-conversion (by multiplying by

expð2i2pf0tÞ) is‡

ykðtÞ ¼
XN
n¼1

jnðt2 tnkÞexpð2i2pf0tnkÞ þ
XN
n¼1

XL
p¼1

bkpSpðuk,fk; un,fnÞ

� jnðt2 ~tnp 2 TpkÞ exp½2i2pf0ð ~tnp þ TpkÞ	 þ ukðtÞ ðP:1Þ
where tkn is the direct-path delay at antenna k from interferer n, ~tnp is the delay
from interferer n to scatterer p, Tpk is the delay from scatterer p to antenna k, bkp is

a term that contains the range from scatterer p to antenna k and ukðtÞ is the receiver
noise on antenna k: In the frequency domain we can write Equation P.1 as

Ykð f Þ ¼
XN
n¼1

Jnð f ÞGnkð f Þ þ Ukð f Þ ðP:2Þ

where Yk, Jn, and Uk, are the Fourier transforms of yk, jn, and uk, respectively, and

Gnkð f Þ ¼ exp½i2pðf 2 f0Þtnk	 þ
XL
p¼1

bkpSpexp½2i2pðf 2 f0Þð ~tnp þ TpkÞ	: ðP:3Þ

† The bistatic radar cross section is lSpl2.
‡ The result in Equation P.1 ignores mutual coupling between antennas. This can be approximately

included by writing

y0kðtÞ ¼ ykðtÞ þ
X
l–k

rklylðt2 jklÞ

where rkl is a complex coupling coefficient and jkl is the propagation delay from antenna k to antenna

l. We have included mutual coupling in our covariance matrix, but our calculations indicate that it has

a negligible effect on the results unless lrl . 215 dB, which represents a highly coupled antenna

array. For a detailed treatment of the effect of mutual coupling on adaptive arrays the reader can

consult Ref. 21.
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Because the channels in the antenna array are not perfectly equalized, we must

account for the different frequency response of each channel across the band of

operation. We include this effect by defining Hkð f Þ as the frequency response of
receiver k, so that the interference voltage at the output of receiver k is

Vkð f Þ ¼ Hkð f ÞYkð f Þ: ðP:4Þ
Then, the time domain interference on time tap q of antenna k (see

Figure 10.94) is

vkðt2 qTÞ ¼
XN
n¼1

ð1

21
df Hkð f ÞJnð f ÞGnkð f Þ £ exp½i2pf ðt2 qTÞ	

þ ~ukðt2 qTÞ ðP:5Þ
where ~ukðt2 qTÞ is the noise on time tap q of antenna k:

Let us now derive the interference covariance matrix for the case when the

interference consists of N1monochromatic (i.e., very narrowband) interferers and

N2 statistically independent, stationary, broadband noise interferers. For a

monochromatic noise interferer radiating a frequency fn we have

Jnð f Þ ¼ Jndðf 2 fnÞ ðP:6Þ
and for the independent, wideband noise interferers we have

kJnð f ÞJpmð f 0Þl ¼ Pnð f Þdnmdð f 2 f 0Þ ðP:7Þ
where Pnð f Þ is the power spectrum for interferer n, and dnm is the Kronecker

delta. Thus, by using Equation P.6 and Equation P.7 we can show that the general

term in the covariance matrix is

Rklðp2 qÞ ; kvkðt2 pTÞvpl ðt2 qTÞl

¼
XN1
n¼1


PnHkðfnÞHp
l ðfnÞGnkðfnÞGp

nlðfnÞ £ exp½i2pfnðq2 pÞT	

þ
XN2
m¼1

ð1

21
df Pmð f ÞHkð f ÞHp

l ð f ÞGmkð f ÞGp
mlð f Þ

£ exp½i2pf ðq2 pÞT	 þ dklRN½ðp2 qÞT	 ðP:8Þ
where 
Pn ¼ lJnl

2
and

RN½ðp2 qÞT	 ¼ k~ukðt2 pTÞ~upkðt2 qTÞl ðP:9Þ
is the noise covariance.

The response Hkð f Þ of channel k can be written as

Hkð f Þ ¼ ½1þ akð f Þ	exp½ibkð f Þ	: ðP:10Þ
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The phase fluctuation bk from channel-to-channel (the mean group delay has

been removed from Equation P.10 is usually small in comparison with unity, so

that the exponential can be expanded in a Taylor series giving

Hkð f Þ ¼ 1þ akð f Þ þ · · · ðP:11Þ
where ak ¼ ak þ ibk: Typically, akð f Þ can be represented as

akð f Þ ¼ bkð f Þ þ cksinð2pgkf þ fkÞ ðP:12Þ
where the first term on the right-hand side of Equation P.12 is the differential

variation that is linear in frequency and the second term represents a ripple across

the passband that also varies from channel-to-channel. In general, the coefficients

bk and ck may be complex, but gk and fk are real. If Equation P.12 is used in

Equation P.8 the integration over frequency is readily performed, but the results

are omitted here.

The cancellation ratio is a measure of the mismatch from antenna to antenna.

For a white-noise jammer illuminating antennas k and P the cancellation ratio in

decibels is defined as 210 log10 (CR) where

CR ¼ klnkðtÞ2 n‘ðtÞl2l
PJB

: ðP:13Þ

If Equation P.12 is used in Equation P.5 and the resulting expression substituted

into Equation P.13 we find

CR ¼ CR0 þ CR00 ðP:14Þ
where CR0 is the contribution to the cancellation ratio by the linear fluctuations
from channel to channel, and CR00 is the contribution due to the differential

ripples across the passband. If the real and imaginary parts of the coefficient bk
are random and uniformly distributed between ^bmax we find that

CR0 ¼ B2

9
b2max: ðP:15Þ

Also, if fk is random and uniformly distributed between zero and 2p and the real
and imaginary parts of the coefficient ck and each random and uniformly

distributed between ^cmax we find

CR00 ¼ 2

3
c2max: ðP:16Þ

Typically, it is very easy to equalize the variations that are linear in frequency,

but it is much more difficult to equalize multiple ripples across the passband.

Thus, the value of CR00 is much more important than the value of CR0.
It should be noted that the Doppler effects due to either moving interferers or

a moving platform are not included in this analysis. We have shown that Doppler

Appendices 1081

© 2006 by Taylor & Francis Group, LLC



effects can be ignored if

2pfdðP2 1ÞT p 1 ðP:17Þ
where fd is the Doppler shift (differential speed divided by wavelength) and P is

the total number of taps in each delay line. For all of the cases considered in this

analysis the condition in Equation P.17 is easily satisfied.

APPENDIX Q. NUMBER OF TIME TAPS

REQUIRED (SECTION 10.10)

In order to better understand the condition expressed by Equation 10.275 suppose

we have the two antenna configuration shown in Figure Q.1, and this

configuration is illuminated by an interferer at an angle u, so that the delay

between the two antennas is t ¼ d sin u=c:We now desire to examine how well

the tapped delay line can track the delay across the frequency band. If the

interferer voltage has a Fourier transform Jð f Þ then the outputOð f Þ in FigureQ.1 is

Oð f Þ ¼ Jð f Þ½expði2pf tÞ2 Hð f Þ	 ðQ:1Þ
where:

Hð f Þ ¼
XP21
q¼0

wqexpði2pq fTÞ: ðQ:2Þ

T

T

∑

∑

−+

O(f )

J(f )·H(f )

J(f )
J(f )exp (i2pft)

delay t

Interference from
jammer

w0

w1

w2

FIGURE Q.1 Two-element processor.
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If we use Parseval’s Theorem, we can express the mean output power as

12 ¼
ð1

21
dð f ÞPJð f Þlexpði2pf tÞ2 Hð f Þl2 ðQ:3Þ

where PJð f Þ is the interferer power-spectral-density. If we assume the interferer
radiates white noise, so that PJð f Þ ¼ PJ for lf l , B=2 and PJ ¼ 0, otherwise, we

can write Equation Q.3 as

12

PJB
¼ 12

XP21
q¼0

ðwq þ wp
qÞ sincpBðt2 qTÞ

þ
XP21
q¼0

XP21
r¼0

wqw
p
r sincpBðq2 rÞT : ðQ:4Þ

If we minimize 12 with respect to wq we find that the normalized residual power

after adaptation is

residue ¼ 12 hTG21h ðQ:5Þ
where h is P £ 1 vector with components

hq ¼ sincpBðt2 ðq2 1ÞTÞ ðQ:6Þ
and G is P £ P matrix with components

Gqr ¼ sincpBTðq2 rÞ: ðQ:7Þ
Aplot of the residue power versus the normalized delayBt that must bematched is
shown in Figure Q.2, for the case when the normalized tap spacing BT ¼ 0:8: For
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FIGURE Q.2 Normalized residue power for BT ¼ 0:8:
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the tapped delay line with five taps, the total normalized delay encompassed is

ðP2 1ÞBT ¼ 3:2:Note that as long as Bt # 3:2 the normalized interferer residue
is small, but for Bt . 3:2 it rises rapidly. When nine taps are used the total delay

encompassed is ðP2 1ÞBT ¼ 6:4, and as long asBt # 6:4 the interferer residue is
small, but for Bt . 6:4 the residue rises rapidly, because the delay line is not long
enough to match the delay.

APPENDIX R. INCLUSION OF POLARIZATION (SECTION 10.10)

The effects of polarization are readily included in our analysis. In order to do so,

let us define a two by one vector Jn as

JTn ¼ ½ jnHðtÞ jnVðtÞ	 ðR:1Þ

where jnH and jnV are, respectively, the voltages emitted by interferer n on

horizontal and vertical polarization. Also define the two by one vector ak as

aTk ¼ ½aHðkÞ aVðkÞ	 ðR:2Þ

where aHðkÞ, aVðkÞ are the voltages gains of antenna k on horizontal and

vertical polarization, respectively. Finally, define the two by one scattering

matrix

SP ¼
SHHð pÞ SHVð pÞ
SVHð pÞ SVVð pÞ

" #
ðR:3Þ

where sHH, sHV, sVH, sVV are the scattering amplitudes of multipath scatterer p:
Then, in place of Equation P.1 we can write the general expression for the

interference voltage received on antenna k as

ykðtÞ ¼
XN
n¼1

aTk jnðt2 tnkÞexpð2i2pf0tnkÞ þ
XN
n¼1

XL
p¼1

bkpa
T
k SpJnðt2 ~tnp 2 TpkÞ

£ exp½2i2pf0ð ~tnp þ TpkÞ	 þ ukðtÞ: ðR:4Þ

All of the remainder of the analysis then proceeds exactly as in Appendix P.

It is important that polarization be included in the analysis, because

interferers may radiate independent voltages on each of two orthogonal

polarizations. In this case, depending on the differences in the cross-polarization

response from antenna to antenna, it may like up to twice the number of degrees

of freedom to cancel the interferers than it does for interferers that do not use

independent signals.
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APPENDIX S. SIGNAL CANCELLATION IN FIRST

STAGE BEAMFORMER (SECTION 10.11)

In this appendix, we demonstrate that if beam formation is done before pulse

compression, there will generally be no signal cancellation as long as SNR in the

beam before nulling is less than unity (target return less than receiver noise). In

order to demonstrate the point, we have modeled a linear array of M elements

separated by one-half wavelength (i.e., each subarray consists of only one

element). Suppose we adaptively weight the M elements so as to form a beam

steered to u0 in the presence of a nonfluctuating signal incident as us ¼ u0 þ au3,
where u3 is the 3 dB beamwidth. In the absence of interference, the voltage on

element n at discrete time i is

vnðiÞ ¼ sn þ xnðiÞ ðS:1Þ
where: the signal voltage on the nth element is given by

sn ¼ A exp½ jpnðsinus þ sinu0Þ	 ðS:2Þ
and xn is the complex, zero mean, unit variance noise voltage on element n: The
covariance matrix of the M elements is then given by

RI ¼ I21
XI
i¼1

Vp
i V

T
i ðS:3Þ

where

VT
i ¼ ½viðiÞv2ðiÞ…vMðiÞ	:

In order to form a beam steered to u0, we apply the weight vector

W ¼ M1=2R21
I P

PHR21
I P

ðS:4Þ

to the received voltage Vi, where P is an M £ 1 steering vector of ones. The
numerator of Equation S.4 is the whitening filter and the denominator is a scale

factor that constrains the gain at the peak of the beam. The signal power in the

beam (in the absence of any interference) before nulling is

j0 ¼ lSTPl2

M
ðS:5Þ

where

ST ¼ ½s1s2…sM	 ðS:6Þ
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The signal cancellation ratio is then given by

CRs ¼ lWTSl2

j0
: ðS:7Þ

AMATLAB program was written for a 16 element linear array to study the signal

cancellation problem. The beam was steered 208 off normal and the angle of
arrival and SNR of the incident signal were varied. The left insert in Figure S.1

plots signal cancellation ratio versus output SNR before nulling, for a case where

4M samples ðI ¼ 64Þ were used to generate the sample covariance matrix and the
target return was present in each sample. The right insert shows the same cases,

but the target was present in only two of the 64 training samples.

The left insert shows that if the signal is present in all samples used to form

the covariance matrix, no signal cancellation occurs until SNR in the beam before

nulling (adaptive weights set to unity) is within 10 dB of the receiver noise level,

and even at the signal level, nulling only begins if the signal is near the 3 dB point

on the beam. As the signal approaches the peak of the beam (the constraint point),

SNR before nulling must get larger before any signal cancellation occurs. The

right insert demonstrate that if the signal is not present in all samples, the SNR at

which cancellation begins increases, as the number of samples containing the

signal decreases.

The issue at hand is whether to perform pulse compression at the subarray

level or the beam level. Let us first assume that compression is done at
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the subarray level prior to beam formation and adaptive weighting. After

compression, the signal will typically straddle two adjacent range cells. The right

insert in Figure S.1 shows that significant signal cancellation will occur a large

percent of the time since SNR will be the 10 to 20 dB region, in two cells, at

the beam level, after compression but prior to nulling. One solution is to

recalculate both the first and second stage covariance matrices and their inverses

for every range cell in which we attempt a detection; and, omit the detection cell

and its nearest neighbors from the training region. The latter requirement would

substantially increase the computational complexity. A more reasonable

approach appears to be to do compression at the beam level — at least in radars

having high pulse compression gain.

If compression is done at the beam level, then in radars having high pulse

compression gain, SNR will usually be much less than unity in each of the first-

stage beams prior to compression and adaptive nulling, and no signal cancellation

will occur. If the signal is so large that it is above noise at the beam level prior to

compression and the compression gain is large, the radar could insert attenuation

to lower the signal or could just tolerate a little cancellation. If, however, the

wave form has low compression gain, even if we compress the signal at the beam

level, it may still be above noise prior to compression and we could be in trouble.

In the latter case, we have two options: 1) recalculate the covariance matrix for

each range cell in which a detection is attempted, omit the detection cell and its

nearest neighbors from the training region, and live with the increased

computation, or 2) apply diagonal loading to the covariance matrix of subarray

voltages.13 Figure S.2 shows that adding 8 dB of diagonal loading solves
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the problem. The diagonal loading was accomplished by adding a term dlzil2 to
the ith diagonal component of the covariance matrix, where d is a scalar and zi is a

complex, zero-mean, unit variance Gaussian variate. Computer simulation

predicted that in the presence of sidelobe interference, d could be as large as one-

tenth the trace of the covariance matrix prior to loading before seriously affecting

the ability of the canceller to null the interference.

APPENDIX T. INTERFERER-FREE LIMIT

OF EQUATION 10.298 (SECTION 10.11)

Suppose that there are no interferers present and that each subarray consists of

only a single isotropic element, so that gmðu,FÞ ¼ 1: Then, if the noise in each
subarray is independent and a target of amplitude A is located at the center of a

beam, it is well known that the output signal to noise ratio is MlAl2=s 2 where M

is the number of elements and s 2 is the noise power on each element. Let us show

that Equation 10.298 correctly reduces to this limit.

In the absence of interferers, R ¼ s 2I, where I is the M £M identity matrix.

Therefore, Equation 10.291 becomes

C ¼ s 2BBH : ðT:1Þ

If Equation T.1 and Equation 10.299 are used, we can calculate

THj ¼ Aþ GHC21r

GHC21G
: ðT:2Þ

Because r includes only noise, then if the SNR after pulse compression is large,

we can ignore the second term on the right-hand side of Equation T.2.

Consequently, if we use Equation T.1 and Equation T.2, along with the defined

quantity G ¼ Bh in Equation 10.298, we get

SIR ¼ lAl2

s2
hHBHðBBHÞBh: ðT:3Þ

Next, suppose there is only a single constraint (beam) at ðu1,f1Þ and the target is
located at the peak of the beam. Then, because SH1 S1 ¼ M, we see from Equation

10.282 and Equation 10.283 that w1 ¼ S1=M and B ¼ SH1 =M: Also, upon
comparing Equation 10.285 and Equation 10.287, it is evident that when u ¼
u1,f ¼ f1, we have h ¼ S1: Therefore, if these results are used in Equation T.3,
we find

SIR ¼ lAl2

s2

SH1 S1
M

{ !
SH1 S1

M2

{ !21
SH1 S1
M

{ !
¼ M

lAl2

s2
ðT:4Þ

which is the correct limit.
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APPENDIX U. PROPERTIES OF SIRVs (SECTION 12.2)

In this appendix we present some original proofs for properties of SIRPs stated in

the literature.

U. 1. STATISTICAL INDEPENDENCE

An SSRV X ¼ ½X1,X2,…,XN	T has statistically independent components Xi
i ¼ 1, 2,…,N if and only if the SSRV is Gaussian.

Proof. Recall that the PDF of X can be expressed as

fXðxÞ ¼ khN½ðx21 þ x22 þ · · ·þ x2NÞ1=2	 ¼ ð2pÞ2N=2hNð
ffiffiffiffiffi
xTx

p
Þ: ðU:1Þ

If the components of X are statistically independent, then the PDF given by

Equation U.1 must factor into the product of the marginal PDFs of the

components of X. It then follows that

hN½ðx21 þ x22 þ · · ·þ x2NÞ1=2	 ¼
YN
i¼1

gðxiÞ: ðU:2Þ

Letting r ¼ ðx21 þ x22 þ · · ·þ x2NÞ1=2 and differentiating both sides of Equation U.2
with respect to xi, results in

xi
r
h0NðrÞ ¼

YN
j¼1
j–i

gðxjÞg0ðxiÞ: ðU:3Þ

Dividing both sides of Equation U.3 by xihN(r) results in

h0NðrÞ
rhNðrÞ ¼ g0ðxiÞ

xigðxiÞ : ðU:4Þ

Equality holds in Equation U.4 if and only if the left and right sides of Equa-

tion U.4 are equal to the same constant. Denoting this constant by 2l, we have

h0NðrÞ
rhNðrÞ ¼ 2l: ðU:5Þ

Integrating both sides of Equation U.15 with respect to r gives

hNðrÞ ¼ a exp 2
lr2

2

{ !
ðU:6Þ

where a is the constant of integration. Hence,

hN½ðx21 þ x22 þ · · ·þ x2NÞ1=2	 ¼ a exp 2
l

2
ðx21 þ x22 þ · · ·þ x2NÞ

� �
ðU:7Þ
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Substitution of Equation U.7 into Equation U.1 clearly results in the Gaussian

PDF. The constraint of unity volume under the PDF results in a ¼ lN=2:
In order to prove the sufficient part of the property, we start with the PDF of a

Gaussian SSRV X given by

fXðxÞ ¼ 2p

l

� �2N=2

exp 2
l

2

XN
i¼1

x2i

{ !
: ðU:8Þ

Clearly the PDF given by Equation U.8 can be expressed as

fXðxÞ ¼
YN
i¼1

fXi ðxiÞ: ðU:9Þ

where

fXiðxiÞ ¼
2p

l

� �21=2
exp 2

lx2i
2

{ !
: ðU:10Þ

Hence, the sufficient part of the property follows.

An alternate proof of this property can be obtained by using the representation

theorem. The representation theorem allows us to express the SSRV X as a

product of a Gaussian random vector Z having zero mean and identity covariance

matrix and a non-negative random variable S. More precisely, we can write

X ¼ ZS: ðU:11Þ
The components of X can be statistically independent if and only if S is a

constant. When S is a constant, X is a Gaussian SSRV. As is often the case,

the representation theorem provides a simplified approach for determining

properties of SIRVs.

U.2. SPHERICALLY SYMMETRIC CHARACTERISTIC FUNCTION

In this section, we prove that the characteristic function of an SSRV is spherically

symmetric.

Proof. We consider the SSRV X ¼ [X1,X2,…,XN]
T. From the representation

theorem, we can write X ¼ ZS where Z is a Gaussian random vector having zero

mean and identity covariance matrix of S is a non-negative random variable with

PDF fS(s). The characteristic function of X given by

FXðvÞ ¼ E½expðjvTXÞ	 ðU:12Þ
where v ¼ ½v1,v2,…,vN	T, can be expressed as

FXðvÞ ¼ ES½FXlS¼sðvÞ	 ðU:13Þ
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where FXlS¼sðvÞ ¼ E½expð jvTZsÞ	: However,

E½expð jvTZsÞ	 ¼ exp 2
s2

2

XN
i¼1

v2i

{ !
: ðU:14Þ

Using Equation U.14 in Equation U.13 results in

FXðvÞ ¼
ð1

0
exp 2

s2

2

XN
i¼1

v2i

{ !
fSðsÞds: ðU:15Þ

The characteristic function given by Equation U.15 can be expressed as a

function of
ffiffiffiffiffiffi
vTv

p
: Hence it is spherically symmetric.

U.3. RELATIONSHIP BETWEEN HIGHER ORDER

AND LOWER ORDER SIRV PDFs

In this section we examine the relationship between the higher order and lower

order SIRV PDFs. More precisely we consider an SIRV Y ¼ ½Y1,Y2,…,YN	T
having mean vector m, covariance matrix S and characteristic PDF fS(s). The

PDF of Y is given by

fYðyÞ ¼ ð2pÞ2N=2lSl21=2hNð pÞ ðU:16Þ
where p ¼ ðy2 mÞTS21ðy2 mÞ and

hNð pÞ ¼
ð1

0
s2N exp 2

p

2s2

� �
fSðsÞ ds: ðU:17Þ

The vector Y can be partitioned as Y ¼ [Y1
T Y2

T]T where Y1 ¼ ½Y1,Y2,…,Ym	T
and Y2 ¼ ½Ymþ1,Ymþ2,…,YN	T: Let m1 and m2 denote the mean vectors of Y1 and
Y2, respectively, and S1 and S2 denote the corresponding covariance matrices.
We wish to obtain the PDF of Y1 from the PDF of Y by integrating out over

the N 2 m random variables (i.e., the components of Y2). Let p1 ¼
ð y1 2 m1ÞTS21

1 ðy1 2 m1Þ and p2 ¼ ðy2 2 m2ÞTS21
2 ðy2 2 m2Þ: The PDF of Y1 is

given by

fY1
ðy1Þ ¼ ð2pÞ2N=2lSl21=2

ð1

21

ð1

0
s2N exp 2

p

2s2

� �
fSðsÞds dy2: ðU:18Þ

From Ref. 26 (p. 17 Equation 8, p. 18 Equation 11) we have

ð2pÞ2N=2lSl21=2
ð1

0
exp 2

p

2s2

� �
dy2¼ð2pÞ2m=2lS1l

21=2
sN2mexp 2

p1

2s2

� �
: ðU:19Þ

Using Equation U.19 in Equation U.18 gives

fY1
ðy1Þ¼ð2pÞ2m=2lS1l

21=2
ð1

0
s2mexp 2

p1

2s2

� �
fSðsÞds: ðU:20Þ
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The PDF of Y1 can be expressed as

fY1
ðy1Þ¼ð2pÞ2m=2lS1l

21=2
hmð p1Þ ðU:21Þ

where

hmð p1Þ¼
ð1

0
s2mexp 2

p1

2s2

� �
fSðsÞds: ðU:22Þ

Clearly, hm( p1) given by Equation U.22 can be obtained from Equation U.17 by

simply replacing N by m and p by p1. To determine the PDF of Y1, all that is

needed is the specification of its mean vector and covariance matrix. As a special

case, when m¼1, Equation U.20 gives us the first order SIRV PDF. Therefore, to

obtain the first order SIRV PDF of the ith component of Y starting from the

Nth order SIRV PDF, we simply use Equation U.20 with m¼1, S1 ¼ si and
p1¼ðyi2miÞ2=s2i :

APPENDIX V. COMPUTER GENERATION OF SIRVs USING

REJECTION METHOD (SECTION 12.4)

V.1. REJECTIONMETHOD

We present a proof of the rejection procedure30 used for generating the norm R of

the white SIRV X in Section 12.4. In many instances, it is likely that the PDF of

a random variable is known explicitly, but its cumulative distribution function

is either unknown or has a complicated functional form. Consequently,

the cumulative distribution function cannot be inverted easily. Therefore, the

use of the inverse distribution function for generating the randomvariable does not

offer a practical solution for this problem. Hence, it is necessary to use a

different scheme for generating the random variable. We consider the problem of

generating a sequence of random numbers with PDF fR(r) of a random variable R,

in terms of a random number sequence with PDF fU1
ðu1Þ of a random variable U1.

The underlying assumption is that the random number sequence from the PDF of

U1 can be readily generated.

The rejection method used in Section 12.4 is based on the relative frequency

interpretation of the conditional PDF

fU1
ðu1lMÞdu1 ¼ P{u1 , U1 # u1 þ du1,M}

PðMÞ ðV:1Þ

of a random variable U1 given the event M. M is expressed in terms of the

random variable U1 and another random variable U2 and is chosen so that the

resulting conditional PDF fU1
ðu1jMÞ equal fR(r). The desired sequence is

generated by setting R ¼ U1 given that the event M has occurred and rejecting

U1 otherwise. The problem has a solution only if the domains of r and u1 are such
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that fRðrÞ ¼ 0 in every interval for which fU1
ðu1Þ ¼ 0: Therefore, we can assume

that the ratio fU1
ðu1Þ=fR1ðu1Þ is bounded from below by some positive constant a:

fU1
ðu1Þ

fR1 ðu1Þ
$ a . 0 for every u1 ðV:2Þ

V.2. REJECTION THEOREM

It is desired to generate a random variable R with PDF fR(r). Let U1 be any

random variable with PDF fU1
ðu1Þ such that fU1

ðu1Þ ¼ 0 whenever fRðrÞ ¼ 0: Let
U2 be a uniformly distributed random variable on the interval (0,1). If the random

variables U1 and U2 are statistically independent and

M ¼ {U2 # gðU1Þ} ðV:3Þ
where

gðu1Þ ¼ a
fR1 ðu1Þ
fU1

ðu1Þ # 1, ðV:4Þ

then

fU1
ðu1lMÞ ¼ fRðu1Þ: ðV:5Þ

Proof. The joint PDF of the random variables U1 and U2 can be written as

fU1,U2
ðu1,u2Þ ¼ fU1

ðu1ÞfU2
ðu2Þ, since U1 and U2 are statistically independent.

Hence, we have

PðMÞ ¼
ð1

21

ðgðu1Þ

0
fU1

ðu1ÞfU2
ðu2Þdu1 du2: ðV:6Þ

However, since U2 is uniformly distributed in the interval (0,1) and gðu1Þ # 1,ðgðu1Þ

0
fU2

ðu2Þdu2 ¼ gðu1Þ: ðV:7Þ

Using Equation V.7 in Equation V.6 gives

PðMÞ ¼
ð1

21
gðu1ÞfU1

ðu1Þdu1: ðV:8Þ

However, gðu1Þ ¼ a½ fRðu1Þ=fU1
ðu1Þ	: Therefore, we have

PðMÞ ¼ a
ð1

21
fRðu1Þdu1 ¼ a: ðV:9Þ
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We can express the numerator of Equation V.1 as

P{u1 , U1 # u1 þ du1,M} ¼
ðgðu1Þ

0
fU1

ðu1ÞfU2
ðu2Þdu1 du2

¼ gðu1ÞfU1
ðu1Þdu1 ¼ afRðu1Þdu1: ðV:10Þ

Using Equation V.9 and Equation V.10 in Equation V.1 results in Equation V.5.

Thus, we have the following algorithm for generating the sequence of random

numbers from the PDF of R.

1. Generate U1 and U2.

2. If U2 # a½ fRðu1Þ=fU1
ðu1Þ	, then U1 ¼ R

3. Otherwise reject U1.

Referring now to the generation of samples of the norm R in Section 12.4, note

that U1 and U2 were uniformly distributed random variables. Let c denote the

maximum value of the PDF of R and b denote a finite range for the PDF of R such

that the area under the curve of the PDF is close to unity. U1 is assumed to be

uniformly distributed in the interval (0,b). Clearly,

fU1
ðu1Þ

fRðu1Þ $
1

bc
:

Hence,

fRðu1Þ
bcfU1

ðu1Þ # 1:

Therefore, a ¼ 1=bc: Step 2 above becomes: If

U2 #
fRðu1Þ

bcfU1
ðu1Þ ¼ fRðu1Þ

c
,

then U1 ¼ R: This can be rewritten as: If cU2 # fRðu1Þ, then U1 ¼ R: For ease of
implementation, this latter form is used in conjunction with a uniform random

variable U 0
2 that is uniformly distributed over the interval (0,c). This is the

procedure followed in Section 12.4.

The method used in Section 12.4 becomes inefficient if U1 is rejected

frequently in step 3, resulting in the necessity to generate the two uniformly

distributed random variables of step 1 an inordinate number of times. This

problem can be overcome by using for U1 a PDF which bounds the PDF of R

and satisfies the conditions stated in Section V.1 and in the rejection theorem.

Then a random variable from this PDF is used in step 1 instead of the uniform

random variable U1.

A second drawback of using a uniformly distributed random variable U1 is that it

may not be possible to efficiently generate SIRVs of length greater than eight.

This is due to the fact that the PDF of R depends on N. Consequently, the uniform
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distribution for U1 may not satisfactorily bound the PDF of the norm R for all N.

This drawback can be overcome by choosing a different PDF for U1 for each

choice of N, such that the conditions stated in Section V.1 and in the rejection

theorem are satisfied. This method would require the use of an exhaustive table

which tabulates the appropriate PDF of U1 for each desired value of N.

Finally, it is pointed out that by using a composite function for the PDF ofU1, it is

possible to improve the simulation procedure by making it possible to generate

random numbers from the body and the tail of the PDF of R. These issues are

suitable topics for future investigation as an extension of this work.

APPENDIX W. MAXIMUM LIKELIHOOD ESTIMATION

INVOLVING SIRVs (SECTION 12.5)

The objective of this appendix is to determine maximum likelihood estimates for

the mean vector and covariance matrix of an N-dimensional SIRV obtained by

sampling a wide sense stationary (WSS) SIRP. Ideally, n independent data

vectors Yi, i ¼ 1, 2,…,n should be processed corresponding to n independent

trials of the basic experiment. This corresponds to the sample space given by the

product

S ¼ S1 £S2 £ · · · £S3 ðW:1Þ
whereSi, i ¼ 1, 2,…,n denotes the ith ensemble of the SIRP and Yi is obtained

from Si. This is shown in Figure W.1.

However, the approach becomes unwieldy from a practical point of view

because n ensembles are required. An alternate approach49 makes use of a single

ensemble as shown in Figure W.2, where Y ¼ ½YT
1 ,Y

T
2 ,…,Y

T
n 	T is obtained by

…
…

…

…

…

……

…

S1 ⇒Y1

t1 t2

SN ⇒YN

tN…t1 t2 tN…t1 t2 tN

S2 ⇒Y2

FIGURE W.1 Independent sampling.
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sampling a WSS SIRP at nN time instants, such that

tmNþj 2 tmNþk ¼ tj 2 tk j,

m ¼ 1, 2,…,n2 1; j,k ¼ 1, 2,…,N
ðW:2Þ

and the Yi, i ¼ 1,2,…,n, are obtained from n different sample functions of the

same ensemble. Due to this, the mean of Y is

a ¼ ½bT,bT,…,bT	T ðW:3Þ
and

E½ðYi 2 bÞTðYi 2 bÞT	 ¼ Sdjk ðW:4Þ
where djk is the Kronecker delta function, so that the covariance matrix of Y is

C ¼

S 0 · · · 0

0 S · · · 0

0 0 S 0

· · · · · · · · · · · ·

0 0 0 S

26666666664

37777777775
: ðW:5Þ

In the context of the radar problem, we consider a surveillance volume that

represents a single ensemble for the SIRP. Each cell within the volume generates

a sample function of the SIRP. The ith data vector Yi is obtained from the ith cell

of the volume by sampling at the time instants tði21ÞNþk as shown in Figure W.2.

t1 t2 tN t2NtN+1 tN+2 t2N+1 t(n−1)N+2 tN(n−1)+2 tnN

FIGURE W.2 Sampling from a single ensemble.
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In terms of the representation theorem, each cell corresponds to a different value

of the random variables S whose density function is the characteristic PDF fS(s).

The PDF of Y given b and S is

fYlb,Sðylb,SÞ ¼ ð2pÞ2nN=2lSl2n=2
hnNð pÞ ðW:6Þ

where p ¼ ðYi 2 aÞTC21ðYi 2 aÞ ¼ Pn
j¼1 ðyj 2 bÞTS21ð yj 2 bÞ and

hnNð pÞ ¼
ð1

0
s2nN exp 2

p

2s2

� �
fSðsÞds: ðW:7Þ

Note that hnN(·) is a monotonically decreasing function for all n and N.

Since p is a scalar, we have

p ¼
Xn
j¼1

ðyj 2 bÞTS21ðyj 2 bÞ ¼ tr
Xn
j¼1

ðyj 2 bÞTS21ðyj 2 bÞ ðW:8Þ

where tr(·) denotes the trace of the matrix (·). However, for any two square

matrices A and B,

trðABÞ ¼ trðBAÞ: ðW:9Þ
Consequently,

p ¼ trðS21GÞ ðW:10Þ
where

G ¼
Xn
j¼1

ðyj 2 bÞðyj 2 bÞT: ðW:11Þ

Thus, we have

fYlb,Sðylb,SÞ ¼ ð2pÞ2nN=2lSl2n=2
hnN½trðS21GÞ	: ðW:12Þ

Let

W ¼
Xn
j¼1

ðyj 2 
yÞðyj 2 
yÞT: ðW:13Þ

where


y ¼ 1

n

Xn
j¼1
yj: ðW:14Þ
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Then, we can express p as

p ¼
Xn
j¼1

ðyj 2 bÞTS21ðyj 2 bÞ

¼
Xn
j¼1

ðyj 2 
yþ 
y2 bÞTS21ðyj 2 
yþ 
y2 bÞ

¼
Xn
j¼1

ðyj 2 
yÞTS21ðYj 2 
yÞ þ
Xn
j¼1

ðyj 2 
yÞTS21ð
yj 2 bÞ

þ
Xn
j¼1

ð
y2 bÞTS21ðyj 2 
yÞ þ
Xn
j¼1

ð
y2 bÞTS21ð
y2 bÞ ðW:15Þ

However, from Equation W.14,

Xn
j¼1

ðyj 2 
yÞTS21ð
y2 bÞ ¼ 0

Xn
j¼1

ð
y2 bÞTS21ðyj 2 
yÞ ¼ 0:

ðW:16Þ

Therefore,

p ¼
Xn
j¼1

ðyj 2 
yÞTS21ðyj 2 
yÞ þ nð
y2 bÞTS21ð
y2 bÞ: ðW:17Þ

Using Equation W.9, we have

p ¼ trðS21WÞ þ nð
y2 bÞTS21ð
y2 bÞ: ðW:18Þ
Thus, the likelihood function for b and S can be expressed as

Lðb,SÞ ¼ fYlb,Sðylb,SÞ ¼ ð2pÞ2nN=2lSl2n=2
hnNð pÞ ðW:19Þ

where p is given by EquationW.18. We first prove thatW is positive definite with

probability one. We can express W as

W ¼
Xn
i¼1
Wi ðW:20Þ

where Wi ¼ ðyi 2 
yiÞðyi 2 
yiÞT: W is positive definite if Wi, i ¼ 1, 2,…,n are

positive definite. We consider a vector a ¼ ½a1,a2, · · · aN	T such that ai – 0,

i ¼ 1, 2,…,n: Then Wi is positive definite if and only if

aTWia . 0: ðW:21Þ
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We have

qi ¼ aTWia ¼
XN
j¼1

XN
k¼1

ajakðyij 2 yijÞðyik 2 yikÞ

¼
XN
j¼1

ajðyij 2 yijÞ
24 352

$ 0: ðW:22Þ

However, the probability ofQi ¼ 0 is zero. Therefore,Wi is positive definite with

probability one. It follows that W is positive definite with probability one.

Before proceeding with the maximum likelihood estimate of b and S, we
present an important lemma49 which is useful for the maximization problem.

Lemma. Let gð·Þ be a monotonically decreasing differentiable function such

that cgðx21 þ x22 þ · · ·þ x2KÞ is a PDF of X ¼ [X1,X2,…,XK]
T, where c is a

nonzero constant. Then the function hðxÞ ¼ xK=2gðxÞ for x .0 has a maximum at

some finite x0 and is a solution of

g0ðxÞ þ K

2x
gðxÞ ¼ 0: ðW:23Þ

Proof. Since cg(·) is a PDF,

ð1

21
· · ·

ð1

21
g

XK
i¼1

x2i

{ !
dx1· · ·dxK ¼ 1

c
, 1: ðW:24Þ

Also, using the transformation to generalized spherical coordinates of

Equation 12.22 and integrating over u and Fk, k ¼ 1, 2,…K 2 2, it follows that

ð1

21
· · ·

ð1

21
g

XK
i¼1

x2i

{ !
dx1· · ·dxK ¼ p K=2

G
K

2

� � ð1

0
2rK21gðr2Þdr: ðW:25Þ

Making the change of variable r2 ¼ a, we have

ð1

21
· · ·

ð1

21
g

XK
i¼1

x2i

{ !
dx1· · ·dxK ¼ p K=2

G
K

2

� � ð1

0
aðK=2Þ21gðaÞda: ðW:26Þ

Since g(·) is a monotonically decreasing function,

gð2xÞ½2x2 x	 ¼ xgð2xÞ #
ð2x
x
gðtÞdt: ðW:27Þ
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Hence,

22K=2ð2xÞK=2gð2xÞ ¼ xK=2gð2xÞ # xðK=2Þ21
ð2x
x
gðtÞdt: ðW:28Þ

Since g(·) is a monotonically decreasing function,

xK=2gð2xÞ # xðK=2Þ21
ð2x
x
gðtÞdt #

ð2x
x
tðK=2Þ21gðtÞdt: ðW:29Þ

Since tðK=2Þ21gðtÞ is the PDF of t ¼ PK
i¼1 x2i , to within a multiplicative

constant, and since the PDF of t! 0 as t!1 (see Section 12.3 for details), it

follows that

ð2x
x
tðK=2Þ21gðtÞdt! 0 as x!1: ðW:30Þ

Also, hð0Þ ¼ 0 and hðxÞ $ 0,x . 0: Therefore, h(x) has a maximum at some finite

x0 . 0: The first assertion of the lemma follows. Differentiating h(x) with respect
to x, we have

h0ðxÞ ¼ K

2
xðK=2Þ21gðxÞ þ xK=2g0ðxÞ: ðW:31Þ

Since h(x) has a maximum at some finite x0 . 0, it follows that x0 is a solution to

the equation

K

2x0
gðx0Þ þ g0ðx0Þ ¼ 0: ðW:32Þ

Letting K ¼ nN and x ¼ N=l, we have hðN=lÞ ¼ ðN=lÞnN=2gðN=lÞ: It follows
from the above lemma that the function

f ðlÞ ; l2nN=2g
N

l

� �
ðW:33Þ

arrives at its maximum at some finite positive l0 and arises as a solution of

nl0
2

g
N

l

� �
þ g0

N

l

� �
¼ 0 ðW:34Þ

We now return to the problem of maximization of L(b, S). Since hnNð·Þ is a
monotonically decreasing function and S is positive definite with probability one,

L(b, S) arrives at its maximum when b̂ ¼ 
y: We then focus on the concentrated

likelihood function

Lðb,SÞ ¼ ð2pÞ2nN=2lSl2n=2
hnN½trðS21WÞ	: ðW:35Þ

SinceW is a positive definitematrix, it can be represented asW ¼ CCTwhereC is

a nonsingular matrix.We define thematrix ~S ¼ C21SðCTÞ21, so thatS ¼ C ~SCT:
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Also, it follows that

trðS21WÞ ¼ tr½ðC ~SCTÞ21W	 ¼ trð ~S21½CCT	21WÞ ¼ trð ~S21Þ
lSl ¼ lC ~SCTl ¼ l ~SllWl

ðW:36Þ

Hence, the likelihood function can be rewritten as

Lðb,SÞ ¼ ð2pÞ2nN=2lWl2n=2l ~Sl2n=2
hnN½trð ~S21Þ	: ðW:37Þ

Let li . 0, i ¼ 1, 2,…N denote the eigenvalues of ~S: Then,

Lðb,SÞ ¼ ð2pÞ2nN=2lWl2n=2
YN
i¼1

l21i

{ !2n=2

hnN
XN

i¼1l
21
i


 �

¼ ð2pÞ2nN=2lWl2n=2
YN
i¼1

l
21=N
i

{ !2Nn=2

hnN
XN

i¼1l
21
i


 �
ðW:38Þ

Since the arithmetic mean is always greater than or equal to the geometric mean, it

follows that

Lðb,SÞ # ð2pÞ2nN=2lWl2n=2ð 
lÞnN=2hnNðN 
lÞ ðW:39Þ
where 
l ¼ ð1=NÞPN

i¼1l21i : Equality between the arithmetic and geometric mean
holds only if l1 ¼ l2 ¼ · · · ¼ lN ¼ l: Therefore, L(b, S) arrives at its maximum
when the eigenvalues of ~S are equal. Consequently,

max Lðb,SÞ ¼ maxð2pÞ2nN=2lWl2n=2l2nN=2hnN
N

l

� �

¼ maxð2pÞ2nN=2llWl2n=2
hnN

N

l

� �
¼ maxð2pÞ2nN=2lWl2n=2

f ðlÞ: ðW:40Þ
where f ðlÞ is given by Equation W.33 with g(·) replaced by hnN(·). Note that hnN(·)

satisfies all the conditions of the lemma dealing with the maximization of h(·). Let

the value of l resulting in the maximum be denoted by l0. Comparing Equation
W.40 with EquationW.33, it follows that the maximum likelihood estimate ofS is

Ŝ ¼ l0W: ðW:41Þ
In summary, the maximum likelihood estimates of b and S are:

b̂ ¼ 
y

Ŝ ¼ l0W
ðW:42Þ

In order to guarantee the nonnegative definite property of Ŝ, it is required that
n . N: It has been pointed out inRefs. 52 and 53 that a rule of thumb for obtaining a
reasonably good estimate of S is that n $ 2N 2 3:
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APPENDIX X. ISSUES RELATED TO

EXTREME VALUE THEORY (SECTION 13.3)

X.1. LIMITING FORMS FOR THE LARGESTORDER STATISTIC

Let X1 # X2 # · · · # Xn be the ordered statistics of n random variables having a

common distribution function F(x). Assuming that the trials of drawing the

random variables from the distribution function F(x) are independent, the

distribution function of the largest order statistic Xn is given by

PðXn # xÞ ¼ PðX1 # x,X2 # x,…,Xn # xÞ
¼ FnðxÞ: ðX:1Þ

When F is continuous but unknown, an asymptotic theory is developed for F

in the range 0þ to 12.
45 It is shown that positive sequences {an} and {bn} exist

such that

lim
n!1 P

Xn 2 bn
an

# x

� �
¼ lim

n!1 PðXn # anxþ bnÞ! LðxÞ ðX:2Þ

or equivalently, by means of Equation X.1, that

lim
n!1 Fnðanxþ bnÞ! LðxÞ: ðX:3Þ

Let n ¼ md in Equation X.3. d is a fixed positive constant so that as n!1,
m!1: Using the fact that n ¼ md, we can write

lim
m!1 Fmdðamdxþ bmdÞ ¼ lim

n!1 Fnðanxþ bnÞ! LðxÞ: ðX:4Þ

It is also true that

lim
m!1 ½Fmðamxþ bmÞ	d ¼ lim

m!1 Fmdðamxþ bmÞ! LdðxÞ: ðX:5Þ

If Equation X.4 and Equation X.5 hold, then from a theorem of Hintchin,52 there

exist numbers Ad . 0 and Bd . 0 such that

LdðAdxþ BdÞ ¼ LðxÞ ðX:6Þ
for all integer values of d.

Solution of the above functional equation yields all the possible limiting

forms for the distribution function F n(x). The constant Ad may or may not be

unity. If it is unity, then the functional equation to be solved is given by

Ldðxþ BdÞ ¼ LðxÞ: ðX:7Þ
On the other hand, if Ad is not unity, the form of Equation X.6 stands and there

exists a value x0d ¼ Bd=ð12 AdÞ such that
Ldðx0dÞ ¼ Lðx0dÞ: ðX:8Þ
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Constraining the solution to the above equation to be real and nonnegative, the

solution is either L ¼ 0 or 1. However, becauseLðxÞ is a distribution function the
value of L can be zero only if x0d is the lower endpoint at which Lðx0dÞ ¼ 0þ and
L can be one only if x0d is the upper end at which Lðx0dÞ ¼ 12: Since Ad and Bd
are assumed to be finite, x0d must also be finite. Consequently, there is no loss

in generality by assuming that the endpoint of interest is located at the origin

(i.e., x0d ¼ 0). When Ad – 1, note that x0d ¼ 0 implies Bd ¼ 0: As a result, the
solutions for Equation X.6 fall into three cases which are given below.

ð1Þ Ldðxþ BdÞ ¼ LðxÞ Ad ¼ 1 ðX:9Þ
ð2Þ LdðAdxÞ ¼ LðxÞ Ad – 1 F ¼ 0 when x ¼ 0 ðX:10Þ
ð3Þ LdðAdxÞ ¼ LðxÞ Ad – 1 F ¼ 1 when x ¼ 0 ðX:11Þ

X.1.1. Case 1

Case (1) of Equation X.9 is solved as follows. Taking the logarithm, we have

log LðxÞ ¼ d log Lðxþ BdÞ: ðX:12Þ
Multiplying through by a minus sign and taking the logarithm of both sides, we

obtain

log½2log LðxÞ	 ¼ log d þ log½2log Lðxþ BdÞ	: ðX:13Þ
For simplicity, let

gðxÞ ¼ log½2log LðxÞ	: ðX:14Þ
Then Equation X.13 becomes

gðxÞ ¼ log d þ gðxþ BdÞ: ðX:15Þ
Equivalently,

gðx2 BdÞ ¼ log d þ gðxÞ ðX:16Þ
or

gðxÞ ¼ gðx2 BdÞ2 log d: ðX:17Þ
Adding Equation X.15 and Equation X.17, we obtain

gðxþ BdÞ þ gðx2 BdÞ ¼ 2gðxÞ: ðX:18Þ
The above equation is valid for all x if and only if g(x) is linear in x. Specifically,

let

gðxÞ ¼ kxþ j ðX:19Þ
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where j and k are constants. Then

gðxþ BdÞ ¼ kðxþ BdÞ þ j ¼ gðxÞ2 log d ¼ kxþ j2 log d: ðX:20Þ
It follows that

kBd ¼ 2log d or k ¼ 2
log d

Bd
: ðX:21Þ

Substituting Equation X.21 in Equation X.19, we see that

gðxÞ þ x log d

Bd
¼ j: ðX:22Þ

Using Equation X.14, this result becomes

log½2log LðxÞ	 þ x log d

Bd
¼ j: ðX:23Þ

Thus, we have

log½2log LðxÞ	 ¼ 2
x log d

Bd
þ j: ðX:24Þ

Hence, for case (1) of Equation X.9 to hold, log½2log LðxÞ	 must be linear in x.
We now solve for the sequence {Bd}. For this purpose, let d ¼ pq where p

and q are both integers. Note that

Lpqðxþ BpqÞ ¼ LðxÞ: ðX:25Þ
From the above equation we get

Lðxþ BpqÞ ¼ L1=pqðxÞ ¼ ½L1=pðxÞ	1=q
¼ ½Lðxþ Bp	1=q ¼ L1=qðxþ BpÞ
¼ Lððxþ BpÞ þ BqÞ ¼ Lðxþ Bp þ BqÞ:

ðX:26Þ

Equation X.26 implies that

Bpq ¼ Bp þ Bq: ðX:27Þ
We now determine the functional dependence of the sequence (Bd) on

the subscript d. To emphasize this functional dependence, we rewrite

Equation X.27 as

Bð pqÞ ¼ Bð pÞ þ BðqÞ: ðX:28Þ
From the above equation, it is clear that the functional dependence is logarithmic.

Thus, the solution for Bd is given by

BðdÞ ¼ Bd ¼ log d ðX:29Þ
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Substituting Equation X.29 into Equation X.24 yields

log½2log LðxÞ	 ¼ 2xþ j ðX:30Þ
where j plays the role of a location parameter. Hence, without loss of generality, j

is chosen to be zero. The above equation then simplifies to

log½2log LðxÞ	 ¼ 2x: ðX:31Þ
Solution for LðxÞ results in

LðxÞ ¼ expð2e2xÞ: ðX:32Þ
Equation X.32 is the solution of Equation X.9 for case one.

X.1.2. Cases 2 and 3

The solutions to Cases (2) and (3) of Equation X.10 and Equation X.11 are now

derived. In both cases we have

LdðAdxÞ ¼ LðxÞ: ðX:33Þ
From Equation X.33 we get

log LðxÞ ¼ d log LðAdxÞ: ðX:34Þ
Multiplying through by a minus sign and taking the logarithm of both sides, we

obtain

log½2log LðxÞ	 ¼ log d þ log½2log LðAdxÞ	: ðX:35Þ
As in case 1, let

gðxÞ ¼ log½2log LðxÞ	: ðX:36Þ
Then Equation X.35 becomes

gðxÞ ¼ log d þ gðAdxÞ: ðX:37Þ
Alternatively,

g
x

Ad

� �
¼ log d þ gðxÞ ðX:38Þ

or equivalently,

gðxÞ ¼ 2log d þ g
x

Ad

� �
: ðX:39Þ

Adding Equation X.37 and Equation X.39 results in

gðAdxÞ þ g
x

Ad

� �
¼ 2gðxÞ: ðX:40Þ
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The solution to the above equation is

gðxÞ ¼ ^k log x for x . 0 ðX:41Þ
and

gðxÞ ¼ ^k logð2xÞ for x , 0 ðX:42Þ
where k is a positive constant. Use of Equation X.36 in Equation X.41 and

Equation X.42 yields

log½2log LðxÞ	 ¼ ^k log x for x . 0 ðX:43Þ

log½2log LðxÞ	 ¼ ^k logð2xÞ for x , 0: ðX:44Þ

For Case 2, L ¼ 0 when x ¼ 0: This implies x ¼ 0 is the lower end point of

LðxÞ: Hence, LðxÞ is nonzero for x $ 0: Therefore, our solution is given by

Equation X.43 where we must choose the sign in front of k to be negative.

Then

log½2log LðxÞ	 ¼ 2k log x x $ 0 ðX:45Þ
which results in

LðxÞ ¼ expð2x2kÞ x $ 0: ðX:46Þ
For Case 3, L ¼ 1 when x ¼ 0: This implies that x ¼ 0 is the upper endpoint of

LðxÞ: Hence, LðxÞ is nonzero for x # 0: Consequently, the solution is given by
Equation X.44 where we choose the sign in front of k to be positive. Then

log½2log LðxÞ	 ¼ k logð2xÞ x # 0 ðX:47Þ
resulting in

LðxÞ ¼ expð2ð2xÞkÞ x # 0: ðX:48Þ
Thus, the three possible forms for the limiting distribution LðxÞ that arise as
solutions to Equation X.6 are given as follows:

ð1Þ LðxÞ ¼ expð2e2xÞ ðX:49Þ
ð2Þ LðxÞ ¼ expð2x2kÞ x $ 0, k . 0 ðX:50Þ

ð3Þ LðxÞ ¼ expð2ð2xÞkÞ x # 0, k . 0: ðX:51Þ

X.2. TAILS OF PROBABILITY DENSITY FUNCTIONS

Equation X.49 to Equation X.51 represent the three possible limiting forms of the

distribution function for almost all smooth and continuous probability density

functions. By differentiating the three functions, we obtain analytical expressions
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for the limiting forms of the probability density functions. However, because of

the differentiation, it should be recognized that these expressions may not be

good approximations to the density functions. In practice, extreme value theory

should always be applied to a distribution function, or equivalently, the area

under the density function.

X.2.1. Case 1

The derivative of LðxÞ is given by

HðxÞ ¼ d

dx
LðxÞ ¼ expð2e2xÞð2e2xÞð21Þ ¼ e2x expð2e2xÞ

¼ expð2x2 e2xÞ: ðX:52Þ

In our application we are interested in the right tail of the probability density

function. Since we have to set thresholds corresponding to small false alarm

probabilities, the thresholds will be in the right tail of the probability density

function. When x is very large, x .. e2x. Therefore, Equation X.52 can be

simplified to obtain the PDF of the tail as

HðxÞ ¼ e2x x large: ðX:53Þ

X.2.2. Case 2

The derivative of LðxÞ is given by

HðxÞ ¼ d

dx
LðxÞ ¼ expð2x2kÞðkx2k21Þ ¼ k expð2x2kÞeð2k21Þlog x

¼ k exp½2x2k 2 ðk þ 1Þlog x	: ðX:54Þ
When x is very large log x .. x2k: Therefore, Equation X.54 can be simplified to
obtain the PDF of the tail as

HðxÞ ¼ ke2ðkþ1Þlog x ¼ kx2ðkþ1Þ x . 0, x large k . 0: ðX:55Þ

X.2.3. Case 3

The derivative of LðxÞ for this case is given by

HðxÞ ¼ d

dx
LðxÞ ¼ expð2ð2xÞkÞðkð2xÞk21Þ ¼ k expð2ð2xÞkÞeðk21Þlogð2xÞ

¼ k exp½2ð2xÞk þ ðk2 1Þlog x	: ðX:56Þ
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When 2x is very large, (2x)k @ log x. Therefore, Equation X.56 can be

simplified to obtain the PDF of the tail as

HðxÞ ¼ k e2ð2xÞk x , 0, 2 x large k . 0: ðX:57Þ

A basic assumption in the above development is that successive trials are

independent. This led to Equation X.1. In practice, as n becomes large, it may be

difficult to ensure the independence of successive trials. To the extent that the

assumption holds, the results in Equation X.49 to Equation X.51 are valid.

X.3. PDF OF THE r TH ORDER STATISTIC

Suppose that the ordered samples X1 # X2 # · · · # Xn are drawn from the

distribution function F(x). Let us further assume that the trials used to draw the

samples from the distribution are independent. Consider the rth order statistic Xr.

Recall that PðXr # xÞ is the distribution function of Xr. This, in turn, is the

probability that at least r of the X0
is are less than or equal to x. Treating this as a

Binomial problem, the distribution function is

FxrðxÞ ¼ PðXr # xÞ ¼
Xn
i¼r

n!

i!ðn2 iÞ! F
iðxÞ½12 FðxÞ	n2i ðX:58Þ

where the ith term in the summation is the binomial probability that exactly i of

X1,X2,…,Xn are less than or equal to x. Equation X.58 can also be represented in

the form of an integral,

FXr ðxÞ ¼
n!

ðr 2 1Þ!ðn2 rÞ!
ðFðxÞ

0
tr21ð12 tÞn2r dt ðX:59Þ

which can be verified by using integration by parts in Equation X.59. The

probability density function of the rth order statistic is the derivative of FXr ðxÞ
and is given by

fXr ðxÞ ¼
d

dx
FXr ðxÞ ¼

n!

ðr 2 1Þ!ðn2 rÞ!
d

dx

ðFðxÞ

0
tr21ð12 tÞn2rdt

¼ n!

ðr 2 1Þ!ðn2 rÞ! F
r21ðxÞ½12 FðxÞ	n2rf ðxÞ ðX:60Þ

where f ðxÞ ¼ ðd=dxÞFðxÞ: Equation X.60 represents the general form of the

PDF of the rth order statistic. If F(x) is known, then the mean and the variance
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of the rth order statistic can be calculated. The expected value of Xr is given by

EðXrÞ ¼ n!

ðr 2 1Þ!ðn2 rÞ!
ð1

21
xFr21ðxÞ½12 FðxÞ	n2rf ðxÞdx: ðX:61Þ

An alternate form for the expected value of Xr can be obtained by letting

u ¼ FðxÞ: Therefore, x ¼ F21ðuÞ: The infinite limits of the integral in the

above equation then become finite after the transformation. The transformed

integral is

EðXrÞ ¼ n!

ðr 2 1Þ!ðn2 rÞ!
ð1
0
F21ðuÞur21ð12 uÞn2r du: ðX:62Þ

The variance of the r th order statistic is expressed as

VarðXrÞ ¼ E{½Xr 2 EðXrÞ	2} ¼ EðX2r Þ2 E2ðXrÞ: ðX:63Þ

Making use of Equation X.60, EðX2r Þ can be written as follows.

EðX2r Þ ¼ n!

ðr 2 1Þ!ðn2 rÞ!
ð1

21
x2Fr21ðxÞ½12 FðxÞ	n2rf ðxÞdx: ðX:64Þ

An alternate form for the expected value of Xr can be obtained by again letting

u ¼ FðxÞ: We then get

EðX2r Þ ¼ n!

ðr 2 1Þ!ðn2 rÞ!
ð1
0
½F21ðuÞ	2ur21ð12 uÞn2r du: ðX:65Þ

The variance of Xr can be calculated from Equation X.64 and Equation X.65

when F21ðuÞ is known.

APPENDIX Y. CANONICAL FORM DERIVATION (SECTION 15.6)

A derivation of the canonical form given in Figure 15.47 for the optimal SIRV

receiver specified by Equation 15.159 is presented. The target return is assumed

to depend on an unknown parameter vector, v, which has a probability

density function, fV(v), defined on a parameter space, Vv. The optimum NP test

is given by

Tð~rÞ ¼

ð
Vv

p2N l ~Sl21h2N½2ð~r2 ~sðvÞÞH ~S21ð~r2 ~sðvÞÞ	 fVðvÞdv
p2N l ~Sl21h2N½2~rH ~S21 ~r	 _

H1

H0

h: ðY:1Þ
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After the integral form for h2N(·) is substituted into the numerator, the test

becomes

Tð~rÞ¼

ð
Vv

ð1

0
s22N fSðsÞ exp 2

ð~r2~sðvÞÞH ~S21ð~r2~sðvÞÞ
s2

" #
fVðvÞdsdv

h2N½2~rH ~S21 ~r	 _
H1

H0

h: ðY:2Þ

The denominator does not depend on v or s and can be moved inside the integrand

to yield

Tð~rÞ¼
ð
Vv

ð1

0

s22N fSðsÞexp ð~r2~sðvÞÞH ~S21ð~r2 ~sðvÞÞ
s2

$ %
fVðvÞdsdv

h2N½2~rH ~S21 ~r	 _
H1

H0

h: ðY:3Þ

Interchanging the order of integration and expanding the quadratic form in the

numerator of the integrand leads to

Tð~rÞ¼
ð1

0

exp 2
~rH ~S21 ~r

s2

{ !
h2N½2~rH ~S21 ~r	 s22N fSðsÞGð~rlsÞds, ðY:4Þ

where Gð~rlsÞ is defined to be

Gð~rlsÞ¼
ð
Vv

exp 2
22Re{~sðvÞH ~S21 ~r}þ~sðvÞH ~S21~sðvÞ

s2

" #
fV ðvÞdv: ðY:5Þ

Gð~rlsÞ is recognized as the Gaussian receiver, for a given value of s, which would
usually be simplified to a sufficient statistic, Tgð~rÞ (by incorporating constant
terms into a threshold and applying the inverses of monotonic functions). This

simplification cannot be performed in Equation Y.5 because s is the variable of

integration in Equation Y.4. Nonetheless, Gð~rlsÞ can be written in the general
functional form,

Gð~rlsÞ¼g Tg
~r

s2

� �
, s

� �
: ðY:6Þ

Substitution of this expression for Gð~rlsÞ into Equation Y.4 yields

Tð~rÞ¼
ð1

0

exp 2
~rH ~S21 ~r

s2

{ !
h2N½2~rH ~S21 ~r	 s22N fSðsÞg Tg

~r

s2

� �
, s

� �
ds_

H1

H0

h: ðY:7Þ
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In general, the integral in the above result is not an explicit function of the

sufficient statistic, Tgð~rÞ, of the Gaussian problem. However, if Tgð~rÞ satisfies the
separability condition,

Tgðc~rÞ¼f ðcÞTgð~rÞ, ðY:8Þ

where c does not depend on ~r and f(·) is any function, then Equation Y.7

simplifies to

Tð~rÞ¼
ð1

0

exp 2
~rH ~S21 ~r

s2

{ !
h2N½2~rH ~S21 ~r	 s22N fSðsÞg½ f ðs22ÞTgð~rÞ, s	ds_

H1

H0

h: ðY:9Þ

This result is an explicit function of the Gaussian sufficient statistic and can be

written in general as

Tð~rÞ¼gNL½Tgð~rÞ, ~rH ~S21 ~r	_
H1

H0

h, ðY:10Þ

where gNL [·,·] is the optimal nonlinearity which must be determined for each

SIRV receiver. This general form is implemented by the canonical receiver

structure given in Figure 15.47.

APPENDIX Z. ALTERNATIVE SPHERICAL COORDINATE SIRV

REPRESENTATIONS (SECTION 15.6)

Any zero mean random vector, X ¼ [X1· · ·XN], with identity covariance matrix

can be expressed in terms of a commonly used set of N generalized spherical

coordinate variables, R, Q, and F1,…,FN22, by the transformation equations,

X1 ¼ R cos F1 ðZ:1Þ

Xk ¼ R cos Fk

Yk21
i¼1

sin Fi, k ¼ 2,…,N 2 2 ðZ:2Þ

XN21 ¼ R cos Q
YN22
i¼1

sin Fi ðZ:3Þ

XN ¼ R sin Q
YN22
i¼1

sin Fi, ðZ:4Þ

with

R2 ¼ X21 þ X22 þ · · ·þ X2N ¼ XTX ðZ:5Þ
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and

dX1dX2 · · ·dxN ¼ lJldFN22 · · · dF2dF1dQdR, ðZ:6Þ

where J is the Jacobian of the transformation, given by

J ¼ RN21
YN22
i¼1

sinN212iðFiÞ: ðZ:7Þ

The transformation is one-to-one over the entire N-dimensional space for angular

coordinate variables restricted to the intervals 0 # Q , 2p and 0 # Fk # p for

k ¼ 1,…,N 2 2:
This generalized spherical coordinate representation is not unique for N . 3:

Two distinct representations are possible for N ¼ 4 and more distinct spherical

coordinate system choices are available as N increases.17,18 The transformation

equations above may be interpreted as the decomposition of the generalized

N-dimensional sphere into a diameter (one-dimensional spherical coordinate

system) and an (N 2 1)-dimensional spherical coordinate system. The (N 2 1)-

dimensional sphere is then decomposed into another diameter and an (N 2 2)-

dimensional spherical coordinate system, which is further decomposed in this

way.

An alternative spherical coordinate representation is derived here. The

particular alternative spherical coordinate system of interest may be interpreted

as a decomposition of a generalized N-dimensional spherical coordinate system

into a circle (two-dimensional spherical coordinate system) and an (N 2 2)-

dimensional spherical coordinate system. Further decomposition of the (N 2 2)-

dimensional sphere is arbitrary for applications considered in this research.

However, N is assumed to be an even integer and the decomposition into another

circle at each stage is continued for this example.

A technique for developing alternative spherical coordinate system

representations is presented in Ref. 18. It is based on

kðuÞ ¼
ð1

0
xu exp 2

x2

2

{ !
dx, Re{u} . 21, ðZ:8Þ

which is a variant of the gamma function, and the resulting form of the Euler beta

integral,

ðp=2
0

cosausinbu du ¼ kðaÞkðbÞ
kðaþ bþ 1Þ , Re{a}, Re{b} . 21: ðZ:9Þ
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These two relations are substituted for the appropriate factors in the identity,

kða1Þkða2Þ· · ·kðaNÞ
¼ kða1 þ a2 þ · · ·þ aN þ N 2 1Þ

� kða1 þ a2 þ 1Þkða3 þ a4 þ · · ·þ aN þ N 2 3Þ
kða1 þ a2 þ · · ·þ aN þ N 2 1Þ

kða1Þkða2Þ
kða1 þ a2 þ 1Þ

� kða3 þ a4 þ 1Þkða5 þ a6 þ · · ·þ aN þ N 2 5Þ
kða3 þ a4 þ · · ·þ aN þ N 2 3Þ

kða3Þkða4Þ
kða3 þ a4 þ 1Þ

� kða5 þ a6 þ 1Þkða7 þ a8 þ · · ·þ aN þ N 2 7Þ
kða5 þ a6 þ · · ·þ aN þ N 2 5Þ

kða5Þkða6Þ
kða5 þ a6 þ 1Þ

..

.

� kðan23 þ aN22 þ 1ÞkðaN21 þ aN þ 1Þ
kðaN23 þ aN22 þ aN21 þ aN þ 3Þ

kðaN23ÞkðaN22Þ
kðaN23 þ aN22 þ 1Þ

� kðaN21ÞkðaNÞ
kðaN21 þ aN þ 1Þ : ðZ:10Þ

There are many ways to construct the right hand side of this identity. This choice

results in the desired decomposition which is discussed above.

The integral in Equation Z.8 is used to express the product on the left hand

side of Equation Z.10 as

kða1Þkða2Þ· · ·kðaNÞ ¼
ð1

0
· · ·

ð1

0
x
a1
1 x

a2
2 · · ·x

aN
N

� exp 2
x21 þ x22 þ · · ·þ x2N

2

{ !
dx1· · ·dxN ðZ:11Þ

and to express the first factor on the right hand side of Equation Z.10 as

kða1 þ a2 þ · · ·þ aN þ N 2 1Þ ¼
ð1

0
Ra1þa2þ· · ·þaNþN21

� exp 2
R2

2

{ !
dR, ðZ:12Þ

where R is used as the variable of integration in anticipation of the spherical

coordinate determinations. The Euler beta integral in Equation Z.9 is used to

express the remaining factors on the right hand side of Equation Z.10 as integrals

over a set of angular variables. If F1,F2,…,FðN=2Þ21 and Q1,Q2,…,QN=2
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are used to denote these integration variables, then Equation Z.10 becomesð1

0
· · ·

ð1

0
x
a1
1 x

a2
2 · · ·x

aN
N exp 2

x21 þ x22 þ · · ·þ x2N
2

{ !
dx1 · · ·dxN

¼
ð1

0
Ra1þa2þ· · ·þaNþN21 exp 2

R2

2

{ !
dR

�
ðp=2
0

ðcos F1Þa1þa2þ1ðsin F1Þa3þa4þ· · ·þaNþN23dF1

�
ðp=2
0

ðcos Q1Þa1 ðsin Q1Þa2dQ1

�
ðp=2
0

ðcos F2Þa3þa4þ1ðsin F2Þa5þa6þ· · ·þaNþN25dF2

�
ðp=2
0

ðcos Q2Þa3 ðsin Q2Þa4dQ2

�
ðp=2
0

ðcos F3Þa5þa6þ1ðsin F3Þa7þa8þ· · ·þaNþN27dF3

�
ðp=2
0

ðcos Q3Þa5 ðsin Q3Þa6dQ3

..

.

�
ðp=2
0

cos FðN=2Þ21

 �aN23þaN22þ1

sin FðN=2Þ21

 �aN21þaNþ1

dFðN=2Þ21

�
ðp=2
0

cos FðN=2Þ21

 �aN23

sin FðN=2Þ21

 �aN22

dFðN=2Þ21

�
ðp=2
0

cos QN=2


 �aN21
sin QN=2


 �aN
dQN=2 ðZ:13Þ

Grouping terms with common exponents in the above expression leads toð1

0
· · ·

ð1

0
x
a1
1 x

a2
2 · · ·x

aN
N exp 2

x21 þ x22 þ · · ·þ x2N
2

{ !
dx1 · · ·dxN

¼
ð1

0

ðp=2
0

· · ·
ðp=2
0

ðR cos F1 cos Q1Þa1ðR cos F1 sin Q1Þa2

�


R sin F1 cos F2 cos Q2Þa3 ðR sin F1 cos F2 sin Q2

�a4
..
.

� R sin F1 sin F2 · · · sin FðN=2Þ22 cos FðN=2Þ21 cos QðN=2Þ21

 �aN23

� R sin F1 sin F2 · · · sin FðN=2Þ22 cos FðN=2Þ21 sin QðN=2Þ21

 �aN22

� R sin F1 sin F2 · · · sin FðN=2Þ21 cos QN=2


 �aN21
� R sin F1 sin F2 · · · sin FðN=2Þ21 sin QN=2


 �aN
exp 2

R2

2

{ !
� RN21 cos F1 sin

N23F1Þðcos F2 sin
N25F2


 �
· · · cos FðN=2Þ21 sin FðN=2Þ21


 �
� dF1dF2 · · ·dFðN=2Þ21dQ1dQ2 · · ·dQN=2dR: ðZ:14Þ
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Equating the integrands on both sides of this expression results in the

transformation equations,

X1 ¼ R cos Q1 cos F1 ðZ:15Þ
X2 ¼ R sin Q1 cos F1 ðZ:16Þ

X2k21 ¼ R cos Qk cos Fk

Yk21
i¼1

sin Fi, k ¼ 2,…,
N

2
2 1 ðZ:17Þ

X2k ¼ R sin Qk cos Fk

Yk21
i¼1

sin Fi, k ¼ 2,…,
N

2
2 1 ðZ:18Þ

XN21 ¼ R cos QN=2

YðN=2Þ21

i¼1
sin Fi ðZ:19Þ

XN ¼ R sin QN=2

YðN=2Þ21

i¼1
sin Fi ðZ:20Þ

with

R2 ¼ X21 þ X22 þ · · ·þ X2N ðZ:21Þ
and the Jacobian,

J ¼ RN21
YðN=2Þ21

i¼1
ðsin FiÞN2122i cos Fi, ðZ:22Þ

for this alternative spherical coordinate representation.

The integration in Equation Z.14 covers only the positive orthant of the N-

dimensional space. The transformation, Equation Z.15 to Equation Z.20, is one-

to-one over all 2N orthants for

0 # Fi #
p

2
, i ¼ 1,…

N

2
2 1, ðZ:23Þ

0 # Qi , 2p, i ¼ 1,…
N

2
, ðZ:24Þ

and 0 # R , 1: The extension of the transformation to cover the entire N-

dimensional space is accomplished by expanding the range of the Qi coordinate

variables in Equation Z.24.

The multivariate probability density function of the N spherical coordinate

variables is given by

FR,F1,…FðN=2Þ21,Q1,…QN=2
ðr,f1,…fðN=2Þ21,u1,…uN=2Þ ¼ lJlfXðxÞ ðZ:25Þ

The PDF of the SIRV, X, is

fXðxÞ ¼ ð2pÞ2N=2hNðxTxÞ: ðZ:26Þ
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Substitution of Equation Z.21, Equation Z.22, and Equation Z.26 into

Equation Z.25 for the joint PDF of the spherical coordinate variables leads to

fR,F1,…FðN=2Þ21,Q1,…QN=2
ðr,f1,…fðN=2Þ21,u1,…uN=2Þ

¼ ð2pÞ2N=2rN21hNðr2Þ
YðN=2Þ21

i¼1
ðsin fiÞN2122i cos fi: ðZ:27Þ

Since the right hand side of this equation is factored into separate functions of

each of the spherical coordinate variables, R,F1,…,FðN=2Þ21,Q1,…,QN=2, then

these coordinate variables are all statistically independent. Their respective PDFs

are determined to be

fRðrÞ ¼ r N21

2ðN=2Þ21G
N

2

� � hNðr2Þ, 0 # r , 1 ðZ:28Þ

fFk
ðFkÞ ¼ ðN 2 2kÞcos fkðsin fkÞN22k21,

0 # fk #
p

2
, k ¼ 1,…,

N

2
2 1 ðZ:29Þ

fQk
ðukÞ ¼ 1

2p
, 0 # u , 2p, k ¼ 1,…,

N

2
: ðZ:30Þ

The integral,

ðp=2
0

cos vðsin vÞN22k21dv ¼ 1

N 2 2k
, k ¼ 1,…,

N

2
2 1, ðZ:31Þ

is used in determining the fFk
ðfkÞ:

An interpretation of the angular coordinate variables in this alternative

generalized spherical coordinate representation is obtained by comparing it to the

standard representation of Equation Z.2 to Equation Z.4. The Fi variables of

Equation Z.23 are seen to be analogous to the angular coordinate variables of

a standard N=2-dimensional generalized spherical coordinate representation,

except in this case each of the N=2 orthogonal dimensions is a plane. Points on
each of these planes are represented in polar coordinates local to each plane and

the Qi variables of Equation Z.24 are the localized polar angles. This is

particularly useful for representing a vector of complex envelope samples.
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Acronyms

PREFACE

CFAR Constant False-Alarm Rate

LOD Locally Optimum Detector

LR Likelihood Ratio

PDF Probability Density Function

SCV SubClutter Visibility

CHAPTER 1

ASCAPE Automatic Statistical Characterization and Partitioning of

Environments

CFAR Constant False-Alarm Rate

IPUS Integrated Processing and Understanding of Signals

NHD Nonhomogeneous Detector

PDF Probability Density Function

CHAPTER 2

SECTION 2.1

(H1, H0) Binary Hypothesis

LOD Locally Optimum Detector

LR Likelihood Ratio

LRT Likelihood Ratio Test

PD Probability of Detection

PDF Probability Density Function

PFA Probability of False Alarm

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

SECTION 2.2

BN Background Noise

CL Clutter
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GLRT Generalized Likelihood Ratio Test

ISC Intermediate Signal Case

LOD Locally Optimum Detector

LRT Likelihood Ratio Test

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SSC Strong Signal Case

WSC Weak Signal Case

SUD/FFES Signal Understanding and Detection using a Feedforward

Expert System

WSUD/FFES Weak Signal Understanding and Detection using a Feed-

forward Expert System

SECTION 2.3

GLRT Generalized Likelihood Ratio Test

IPUS Integrated Processing and Understanding of Signals

KS Knowledge Source

LOD Locally Optimum Detector

PDF Probability Density Function

RESUN Resolving Sources of Uncertainty

SOU Sources of Uncertainty

SPA Signal Processing Algorithm

WSUD/FFES Weak Signal Understanding and Detection using a Feed-

forward Expert System

SECTION 2.4

BN Background Noise

CL Clutter

FFT Fast Fourier Transform

IPUS Integrated Processing and Understanding of Signals

PRI Pulse Repetition Interval

R/A Range-Azimuth

R/A/D Range-Azimuth-Doppler

RF Radio-Frequency

SECTION 2.5

BN Background Noise

(BN! CL)i Percentage of the total number of cells in the surveillance

volume that were below the threshold but are reclassified as

Clutter cells after the ith correction stage

BNCCP Percentage of Background-Noise cells in the corrected-

corrected volume
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BNCQP Percentage of Background Noise cells in the corrected-

Quantized Volume

BNQP Percentage of Background Noise cells in the Quantized

Volume

CCV Corrected-Corrected Volume (second corrected volume)

CL Clutter

(CL! BN)i Percentage of the total number of cells in the surveillance

volume that were above the threshold but are reclassified as

backgound noise cells after the ith correction stage

CLE Clutter Edge

CNR Clutter-to-Noise Ratio

CQV Corrected-Quantized Volume (first corrected volume)

CQV! CCV Mapping procedure during the second-correction stage

FFT Fast-Fourier Transform

IPUS Integrated Processing and Understanding of Signals

NCC Number of neighboring Cells in the first Corrected volume

NCQ Number of neighboring Cells in the Quantized volume

NS Neighboring cells in the Smoothed Volume

PDF Probability Density Function

PRI Pulse Repetition Interval

QV Quantized Volume

QV! CCV Mapping procedure at the end of the two correction stages

QV! CQV Mapping procedure during the first-correction stage

R/A Range-Azimuth

SNR Signal-to-Noise Ratio

SECTION 2.6

BN Background Noise

CL Clutter

CNR Clutter-to-Noise Ratio

ISC Intermediate Signal Case

NCC Number of neighboring Cells in the first Corrected volume

NCQ Number of neighboring Cells in the Quantized Volume

PDF Probability Density Function

PLCCP Percentage number of cells of the subpatch with the Lowest

power among the possible subpatches of a Clutter patch in the

second Corrected stage

PLCQP Percentage number of cells of the subpatch with the lowest

power among the possible subpatches of a clutter patch in the

first-corrected stage

PLQP Percentage number of cells of the subpatch with the lowest

power among the possible subpatches of a Clutter patch in the

quantized stage

R/A Range/Azimuth
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R/A/D Range/Azimuth/Doppler

SSC Strong Signal Case

SUD/FBES Signal Understanding and Detection using a Feedback Expert

System

SUD/FFES Signal Understanding and Detection using a Feed Forward

Expert System

WSC Weak Signal Case

SECTION 2.7

BN Background Noise

BNCCP Percentage of Background-Noise cells in the Corrected-

Corrected volume

BNCQP Percentage of Background Noise cells in the Corrected-

Quantized Volume

BNQP Percentage of Background Noise cells in the Quantized

Volume

BNQPt True value for the fraction of Background Noise cells in the

generated scene

CL Clutter

CNR Clutter-to-Noise Ratio

FFES Feed-Forward Expert System

GLRT Generalized Likelihood Ratio Test

IPUS Integrated Processing and Understanding of Signals

ISC Intermediate Signal Case

LOD Locally Optimum Detector

LRT Likelihood Ratio Test

N/A Not Applicable

NCC Number of the neighboring Cells in the first Corrected volume

NCQ Number of neighboring Cells in the Quantized volume

PDF Probability Density Function

PLQP Percentage number of cells of the subpatch with the lowest

power among the possible subpatches of a clutter patch in the

quantized stage

PLQPt True value of PLQP

SPA Signal Processing Algorithm

SSC Strong Signal Case

WSC Weak Signal Case

CHAPTER 3

SECTION 3.1

AMF Adaptive Matched Filter

CFAR Constant False-Alarm Rate
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GIP Generalized Inner Product

IID Independent Identically Distributed

MCARM Multi-Channel Airborne Radar Measurement

MF Matched Filter

NAMF Normalized Adaptive Matched Filter

NHD Nonhomogeneity Detector

N PAMF Normalized Parametric Adaptive Matched Filter

PAMF Parametric Adaptive Matched Filter

PDF Probability Density Function

SINR Signal-to-Interference Noise Ratio

SNR Signal-to-Noise Ratio

STAP Space–Time Adaptive Processing

SECTION 3.2

CFAR Constant False-Alarm Rate

DFT Discrete Fourier Transform

EM Expectation-Maximization

GIP Generalized Inner Product

IID Independent Identically Distributed

MAR Missing at Random

MCARM Multichannel Airborne Radar Measurement

ML Maximum Likelihood

MMSE Minimum Mean Squared Error

NAMF Normalized Adaptive Matched Filter

NHD Nonhomogeneity Detector

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

STAP Space–Time Adaptive Processing

CHAPTER 4

SECTION 4.1

CDF Cumulative Distribution Function

PDF Probability Density Function

P–P Probability–Probability

Q–Q Quantile–Quantile

SECTION 4.2

SIRV Spherically Invariant Random Vector

VLSI Very Large–Scale Integrated
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SECTION 4.4

SIRP Spherically Invariant Random Process

CHAPTER 5

SECTION 5.1

IMSL International Mathematical and Statistical Libraries

MLE Maximum Likelihood Estimate

Q–Q Quantile–Quantile

SECTION 5.2

FORTRAN Formula þ Translation

IMSL International Mathematical and Statistical Libraries

CHAPTER 6

SECTION 6.1

PDF Probability Density Function

PDFs Probability Density Functions

SECTION 6.2

BN Background Noise

BNCCP Percentage of BN cells in the “Corrected-Corrected” volume

BNCQP Percentage of BN cells in the “Corrected-Quantized” volume

BNQP Percentage of BN cells in the Quantized volume

CCV “Corrected-Corrected” Volume

CL Clutter

CLE Clutter edge

CNR Clutter-to-Noise Ratio

CQV “Corrected-Quantized” Volume

LOD Locally Optimum Detector

LRT Likelihood Ratio Test

NCC Number of neighboring Cells in the first Corrected volume

NCQ Number of neighboring Cells in the Quantized Volume

PDF Probability Density Function

PRI Pulse Repetition Interval

R/A Range-Azimuth

SIRP Spherically Invariant Random Process

SV Smoothed Volume
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SECTION 6.3

BN Background Noise

BNCCP Percentage of BN cells in the “Corrected-Corrected” volume

(BN! CL)i Percentage of the total number of cells in the surveillance

volume that were below the threshold but are reclassified as

CL cells after the i th correction stage

BNCQP Percentage of BN cells in the “Corrected-Quantized” Volume

BNQP Percentage of BN cells in the Quantized Volume

CCV “Corrected-Corrected” volume

CL Clutter

(CL! BN)i Percentage of the total number of cells in the surveillance

volume that were above the threshold but are reclassified as

BN cells during the i th correction stage

CQV “Corrected-Quantized” Volume

NCC Number of neighboring Cells in the first Corrected volume

NCQ Number of neighboring Cells in the Quantized Volume

PDF Probability Density Function

QV Quantized Volume

SECTION 6.4

ASCAPE Automatic Statistical Characterization and Partitioning

of Environments

IPUS Integrated Processing and Understanding of Signals

LP Lowest Patch (patch with lowest average power level

LPE LP Edge cell (cell with power level below latest threshold)

NR Sample size

PDF Probability Density Function

RP Remaining Patch (patch excluding LP)

RPE RP Edge cell (cell with power levels above latest threshold)

SPA Signal Processing Algorithm

SECTION 6.5

ASCAPE Automated Statistical Characterization and Partitioning of

Environments

GLRT Generalized Likelihood Ratio Test

INR Interference-to-Noise Ratio

IPUS Integrated Processing and Understanding of Signals

LOD Locally Optimum Detector

LRT Likelihood Ratio Test

PD Probability of Detection

PDF Probability Distribution Function
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SCR Signal-to-Clutter Ratio

SDR Signal-to-Disturbance Ratio

SECTION 6.6

ASCAPE Automated Statistical Characterization and Partitioning of

Environments

GLRT Generalized Likelihood Ratio Test

ML Maximum Likelihood

MMW MilliMeter Wave

PDF Probability Distribution Function

SCR Signal-to-Clutter Ratio

SIRV Spherically Invariant Random Vector

SECTION 6.7

CFAR Constant False Alarm Rate

KBMapSTAP Knowledge Based Map Space Time Adaptive

Processing

LULC Land Use and Land Cover

MCARM Multi-Channel Airborne Radar Measurements

MSMI Modified Sample Matrix Inversion

PRF Pulse Repetition Frequency

STAP Space–Time Adaptive Processing

USGS United States Geological Survey

SECTION 6.8

AFRL Air Force Research Laboratory

CPI Coherent Processing Interval

DOF Degrees Of Freedom

ECEF Earth-Centered Earth-Fixed

GMTI Ground Moving Target Indicator

MCARM Multi-Channel Airborne Radar Measurements

NLCD National Land Cover Data

MSMI Modified Sample Matrix Inversion

MTS Moving Target Simulator

NGA National Geospatial-Intelligence Agency

NIMA National Imagery and Mapping Agency

PPM Preferred Performance Measure

PRF Pulse Repetition Frequency

SDGC Secondary Data Guard Cells

SPEAR Signal Processing Evaluation Analysis and Research
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STAP Space–Time Adaptive Processing

USGS United States Geological Survey

CHAPTER 7

CFAR Constant False-Alarm Rate

JDL-GLR Joint-Domain Localized General Likelihood Ratio

PDF Probability Density Function

CHAPTER 8

SECTION 8.1

CPI Coherent Processing Interval

GLR Generalized Likelihood Ratio

IID Independent and Identically Distributed

SMI Sample-Matrix Inversion

S-T Space–Time

T-S Time–Space

SECTION 8.2

PRF Pulse Repetition Frequency

SECTION 8.3

CFAR Constant False Alarm Rate

INR Clutter/Interference-to-Noise-Ratio

SINR Signal-to-Clutter/Interference-plus-Noise-Ratio

S-T Space–Time

T-S Time–Space

SECTION 8.4

CFAR Constant False Alarm Rate

DFT Discrete Fourier Transform

GLR Generalized Likelihood Ratio

IID Independent and Identically Distributed

INR Clutter/Interference-to-Noise Ratio

JDL-GLR Joint-Domain Localized GLR

MTD Moving Target Detector

MTI Moving Target Indicator

PSD Pulse Spectrum Density

SMI Sample-Matrix Inversion

SNR Signal-to-Noise Ratio
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S-T Space–Time

T-S Time–Space

SECTION 8.5

CFAR Constant False Alarm Rate

GLR Generalized Likelihood Ratio

IID Independent and Identically Distributed

JDL-GLR Joint-Domain Localized GLR

CHAPTER 10

SECTION 10.1

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FIR Finite Impulse Response

IDFT Inverse Discrete Fourier Transform

SECTION 10.2

DPCA Displaced Phase Center Antenna

MTI Moving Target Indicator

PRF Pulse Repetition Frequency

SECTION 10.3

PRF Pulse Repetition Frequency

SECTION 10.4

JNR Jammer-plus-Noise-to-Ratio

PRF Pulse-Repetition Frequency

PRI Pulse-Repetition Interval

SIR Signal-to-Interference Ratio

UHF Ultra High Frequency

SECTION 10.5

FIR Finite Impulse Response

SECTION 10.6

FFT Fast Fourier Transform

MCARM Multichannel Airborne Radar Measurements
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MTI Moving Target Indicator

PRI Pulse Repetition Interval

SECTION 10.7

STAP Space–Time Adaptive Processing

SECTION 10.8

DPCA Displaced Phase Center Antenna

FIR Finite Impulse Response

SECTION 10.9

SAR Synthetic Aperture Radar

SECTION 10.10

A/D Analog-to-Digital

FIR Finite Impulse Response

GPS Global Positioning System

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

STAP Space–Time Adaptive Processing

SECTION 10.11

ADC Analog-to-Digital convertor

AOA Angle of Arrival

CFAR Constant False Alarm Rate

DBF Digital Beam Forming

INR Interference-to-Noise Ratio

ML Maximum Likelihood

MLBP Maximum Likelihood Beamspace Processor

PC Pulse Compression

PRF Pulse Repetition Frequency

SIR Signal-to-Interference Ratio

SNR Signal-to-Noise Ratio

CHAPTER 11

LOD Locally Optimum Detector

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector
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CHAPTER 12

SECTION 12.1

PDF Probability Density Function

SECTION 12.2

CLT Central Limit Theorem

MMSE Minimum Mean Square Error

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

SSRV Spherically Symmetric Random Vector

SECTION 12.3

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

SSRV Spherically Symmetric Random Vector

SECTION 12.4

IMSL International Mathematical and Statistical Libraries

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

ZMNL Zero Memory NonLinear

SECTION 12.5

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

SECTION 12.6

SIRP Spherically Invariant Process

SIRV Spherically Invariant Random Vector

CHAPTER 13

SECTION 13.1

LOD Locally Optimum Detector

LRT Likelihood Ratio Test
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PDF Probability Density Function

SCNR Signal to Clutter plus Noise Ratio

SIRP Spherically Invariant Random Process

UMP Uniformly Most Powerful

SECTION 13.2

ARE Asymptotically Relative Efficiency

CPFSK Continuous Phase Frequency Shift Keying

LOBD Locally Optimum Binary Detector

LOD Locally Optimum Detector

LRT Likelihood Ratio Test

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

UMP Uniformly Most Powerful

SECTION 13.3

GPD Generalized Pareto Distributionr

LOD Locally Optimum Detector

OSLS Ordered Sample Least Squares

PDF Probability Density Function

UMP Uniformly Most Powerful

SECTION 13.4

IMSL International Mathematical and Statistical Libraries

LOD Locally Optimum Detector

PDF Probability Density Function

SCR Signal to Clutter Ratio

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

UMP Uniformly Most Powerful

SECTION 13.5

ALOD Amplitude Dependent Locally Optimum Detector

LOD Locally Optimum Detector

SCR Signal to Clutter Ratio

UMP Uniformly Most Powerful

SECTION 13.6

ALOD Amplitude Dependent Locally Optimum Detector

LOD Locally Optimum Detector
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GPD Generalized Pareto Distributionr

SIRP Spherically Invariant Random Process

CHAPTER 14

SECTION 14.1 TO SECTION 14.9

SIRV Spherically Invariant Random Vector

SECTION 14.7

SNR Signal-to-Noise Ratio

SECTION 14.8

SBR Signal-to-Background Ratio

CHAPTER 15

SECTION 15.1

CFAR Constant False-Alarm Rate

GLRT Generalized Likelihood Ratio Test

LRT Likelihood Ratio Test

MLE Maximum Likelihood Estimate

PD Probability of Detection

PFA Probability of False Alarm

ROC Receiver Operating Characteristic

SIRV Spherically Invariant Random Vector

SN Statistical Normalizer (or Statistical Normalization)

SECTION 15.2

GLRT Generalized Likelihood Ratio Test

ML Maximum Likelihood

NP Neyman–Pearson

PDF Probability Density Function

SCR Signal-to-Clutter Ratio

SIRV Spherically Invariant Random Vector

SECTION 15.3

CPI Coherent Processing Interval

GLRT Generalized Likelihood Ratio Test
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ML Maximum Likelihood

NP Neyman–Pearson

PD Probability of Detection

PDF Probability Density Function

SCR Signal-to-Clutter Ratio

SIRV Spherically Invariant Random Vector

SECTION 15.4

EM Expectation-Maximization

GEV Generalized Extreme Value

GLRT Generalized Likelihood Ratio Test

IID Independent, Identically Distributed

LOD Locally Optimum Detector

IS Importance Sampling

ML Maximum Likelihood

PD Probability of Detection

PDF Probability Density Function

RMS Root-Mean-Squared

SAR Synthetic Aperture Radar

SIRV Spherically Invariant Random Vector

SECTION 15.5

CDF Cumulative Distribution Function

PDF Probability Distribution Function

SIRV Spherically Invariant Random Vector

SECTION 15.6

CPI Coherent Processing Interval

DGM Discrete Gaussian Mixture

GLRT Generalized Likelihood Ratio Test

IID Independent Identically Distributed

LOD Locally Optimum Detector

LRT Likelihood Ratio Test

ML Maximum-Likelihood

MLE Maximum Likelihood Estimate

MLMF Maximum-Likelihood Matched Filter

NP Neyman-Pearson

PDF Probability Density Function

SCR Signal-to-Clutter Ratio

SIRV Spherically Invariant Random Vector

UMP Uniformly Most Powerful
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SECTION 15.7

AR Auto Regressive

AR(2) Auto Regressive of order Two

IBDA Innovations-Based Detection Algorithm

IID Independent Identically Distributed

MMSE Minimum Mean Square Error

PDF Probability Density Function

SIRP Spherically Invariant Random Process

SIRV Spherically Invariant Random Vector

SNR Signal-to-Noise ratio

SWNR Signal-to-White-Noise Ratio

ZMNL Zero Memory NonLinear
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Program GENREJ uses the generalized acceptance–rejection method to generate

random samples from a large range of probability distributions, as discussed in
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Chapter 15. When using the acceptance–rejection algorithm, a random number,

F; is generated from a probability density function (PDF), fFðfÞ; associated with
a bound of the desired PDF, fSðsÞ: The bound function is given by afFðfÞ; where
a is the area under the bound. A random variate, Y, which is uniformly distributed

on the interval (0,afFðf ¼ FÞ), is generated and used to form a uniformly

distributed random point, ðF; YÞ; in the region bounded by afFðfÞ and the F-
axis. If the point falls within the region bounded by fSðFÞ and theF-axis, then the
random variate, F, is accepted; otherwise it is rejected.

For the acceptance–rejection method to be viable, it is necessary to find a

suitable easily obtained bound for which random samples can be readily

generated. As a practical matter, this bound should have an area as close to unity

as possible to avoid rejecting too many samples, as the efficiency of the

generalized rejection algorithm is equal to 1=a: In the approach developed here a
piecewise constant bound is used, as shown in Figure A.1. Samples can be

generated from each segment with a simple uniform number generator. Each

segment is chosen with a probability equal to its relative area. Obviously, if the

PDF has a tail of infinite extent, the entire support cannot be segmented. The PDF

is then divided into a body and a tail section at a point sufficiently far into the tail.

The generalized Pareto PDF, given by

pSðsÞ ¼ 1

s
1þ g ðs2 s1Þ

s

� � 1þg
g

uðs2 s1Þ ðA:1Þ
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FIGURE A.1 Illustration of the acceptance–rejection method.
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where s is the sale parameter, g is the shape parameter, and s1 is the point where
the tail is determined to begin, is used to bound the tail. The parameters, s and g,
are obtained by matching probability weighted moments.

Program GENBND is used to generate the bound function, afFðfÞ: It is
invoked in MATLABw using the command

½BND	 ¼ GENBNDðPDF; ½A	; ½B	;NS;MARGIN;P1;P2;…Þ

The parameter PDF is a string containing the name of the program used to

calculate the PDF, fSðsÞ; which is to be bounded. The parameters A and B

represent the left and right endpoints of the PDF. If A or B are passed as arrays of

the form [a, inf] and [b, inf], respectively, then GENBND fits a generalized

Pareto distribution to the corresponding tail and the parameters a and b represent

the transition point from the body to the tail of the PDF. Typically values for a

and b are selected such that the tail region has an area of 0.1. The parameter NS

represents the number of piecewise constant segments used to bound the body of

the PDF. Increasing the number of segments tightens the fit of the bound function,

which increases the efficiency of the generalized acceptance–rejection

algorithm, but also increases the cost of evaluating the bound. Typically, the

number of segments, NS, is set to 10. The parameter MARGIN represents a small

factor used to raise the bound to account for numerical inaccuracies and

guarantee that the generated function is actually greater than the PDF across its

entire support. The optional parameters P1, P2, etc., represent parameters of the

PDF. Program GENBND returns a structure, BND, containing parameters of the

fitted bound.

Once the bound function has been created, random variates for the PDF, fSðsÞ;
are generated by invoking the program GENREJ using the command,

½S;EFF	 ¼ GENREJðPDF;N;M;BND;U;P1;P2;…Þ

Again, the parameter PDF is a string containing the name of the PDF program,

and BND is the structure generated by GENBND for this PDF. The parameters N

and M are the dimensions of the random matrix to be generated. The optional

parameter U specifies the source of the univariate random numbers used by the

acceptance–rejection algorithm, and again the optional parameters P1, P2, etc.,

represent parameters of the PDF.

B. OZTURK — UNIVARIATE PROBABILITY DISTRIBUTION

APPROXIMATION ALGORITHM

(A. D. KECKLER)

Program OZTURK approximates the underlying probability distribution of a

collection of random samples using hypothesis testing to assess whether
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a distribution is statistically consistent with the data sample via a goodness-of-fit

test. The goodness-of-fit test for the Öztürk algorithm is based upon the sample

order statistics, which act as estimators for the ½k=ðK þ 1Þ	 £ 100 percentile of
the sample data. The sample order statistics are compared against the expected

order statistics produced by a reference distribution. The relative order statistics

are plotted in a two-dimensional space to produce a unique curve, which is

formed as a set of linked vectors such that any deviations from the reference are

cumulative. This dramatically increases the power of the test. The endpoint of the

linked vector is an accumulation of all the deviations observed along the length of

the curve. The endpoint is used as the test statistic and forms a unique point in the

associated two-dimensional space for each distribution family tested. The

expected values of the endpoints generated for the hypotheses are used to identify

candidate distributions. This is illustrated in Figure B.1.

The expected value of the test statistic for the Öztürk goodness-of-fit test

produces a unique point in the associated space. This can be exploited when the

null hypothesis is rejected. The expected value of the test statistic for a

hypothesis with the nearest endpoint to the test statistic of the data is considered

a likely candidate. If the test statistic from the data falls within the specified

confidence contour of the closest hypothesis, then the hypothesis is accepted. If

not, the next few closest neighbors are checked since the confidence contours

may not be the same for neighboring distributions. The Öztürk approximation

chart is constructed by calculating the expected value of the test statistic for a

library of normalized (with respect to scale and location parameters)

distributions. Distributions that do not have shape parameters appear as single

points on the Öztürk chart. For distributions that have a shape parameter, the

0.4
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0
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FIGURE B.1 Öztürk goodness-of-fit linked vector with 90, 95, and 99% confidence

intervals for the standard Gaussian distribution.
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shape parameter is varied to produce points on the chart which are connected

with straight line segments to form trajectories. Each point on a trajectory is

considered a separate hypothesis even though they are drawn from the same

distribution. A trajectory can be considered as a family of distributions having

the same form but different shape parameters. For distributions with two shape

parameters, one shape parameter is held constant while the other is varied to

form a trajectory, resulting in multiple trajectories. The Öztürk approximation

chart is illustrated in Figure B.2.

When program OZTURK is invoked, it brings up a graphical user interface

(GUI) for generating and displaying the Öztürk approximation chart. A collection

of random samples stored in a MATLABw vector can be loaded using the LOAD

tab, whereupon program OZTURK generates the appropriate Öztürk chart and

plots the test statistic for the random data sample on it, identifying the best

approximations for the underlying distribution of the random data sample. The

library of probability distributions available to program OZTURK is listed in

Table B.1. The Öztürk algorithm can provide meaningful results with as few as

40 random samples, but it has been observed that the best results are obtained for

sample sizes of 100 or more. It should be noted that the Öztürk chart is unique for

each sample size, and must be regenerated if the sample size changes, which can

be a lengthy calculation. Therefore, it is advisable to process all data sets of the

same size together.

Distribution Approximation Chart
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FIGURE B.2 Öztürk Distribution approximation chart for univariate distributions:

B ¼ Beta, J ¼ SU Johnson, G ¼ Gamma, K ¼ K-distribution, P ¼ Pareto, L ¼ Log-

normal T ¼ Gumbel, E ¼ Exponential, V ¼ Extreme Value, A ¼ Laplace, S ¼ Logistic,

U ¼ Uniform, N ¼ Normal, W ¼Weibull, C ¼ Cauchy.
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C. OZSIRV— MULTIVARIATE PROBABILITY DISTRIBUTION

ALGORITHM FOR SPHERICALLY INVARIANT

RANDOM VECTORS (SIRVS)

(A. D. KECKLER)

The PDF of a Spherically Invariant Random Vector (SIRV), Y, of dimension N is

given by

fYðyÞ ¼ ð2pÞ2 N
2 lSYl

2
1
2 hNðqÞ ðC:1Þ

TABLE B.1
Univariate Öztürk Chart Library of Probability Distributions

Distribution Öztürk Chart Symbol Standardized PDF, fX(x)

Beta B
xv21ð12 xÞl21

bðv;lÞ uðxÞuðx2 1Þ

Cauchy C
1

pð1þ x2Þ
Exponential E e2xuðxÞ

Extreme value I V e2xexpð2e2xÞ

Extreme value I (Gumbel,

Frechet)

T vx2v21expð2x2vÞuðxÞ

Gamma G
1

GðvÞ x
v21e2xuðxÞ

Johnson S.U. J l e
l2

2
ðsinh21ðxÞ2vÞ2 ð2pð1þ x2ÞÞ2 1

2

K-distribution K
2

GðvÞ
�
x

2

�v
Kv21ðxÞuðxÞ

Laplace A
1

2
e2lxl

Logistic S e2xð1þ e2xÞ22

Log-normal L
1

v
ffiffiffiffi
2p

p x21e
2
ðln xÞ2
2v2 uðxÞ

Normal N
1ffiffiffiffi
2p

p e2
x2

2

Pareto P
v

xvþ1
uðx2 1Þ

Uniform U uðxÞ2 uðx2 1Þ

Weibull W vxv21e2xvuðxÞ
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where b is the mean vector
P

Y is the covariance matrix of Y, respectively. The

quadratic form, q, is given by q ¼ qðyÞ ¼ ðy2 bÞTS21
Y ðy2 bÞ; and the function

hNðqÞ is given by

hNðqÞ ¼
ð1

0
s2N e

2
q

2s2 fSðsÞds ðC:2Þ
where fSðsÞ is the characteristic PDF of the SIRV and is unique for each type of

SIRV. Implicit in Equation C.1 is the assumption that E{S2} is unity. The PDF of

the corresponding Spherically Symmetric Random Vector (SSRV), X, where
b ¼ 0 and SX ¼ I; is given by

fXðxÞ ¼ ð2pÞ N2 hNðqÞ ðC:3Þ
where q ¼ xTx is characterized completely by hNðqÞ: The SIRV,Y, can be related
to the SSRV, X, by the whitening transformation

X ¼ S
2
1
2

Y ðY2 bÞ ðC:4Þ
Thus, the PDF of X can be considered the standard form of the PDF, which

defines the type of SIRV.

Since the characteristic PDF of an SIRV, fSðsÞ; is unique to each type of
SIRV, hNðqÞ is also unique and Equation C.1 shows that the PDF of the SIRV, Y,
is completely characterized by specification of the mean vector, b, the covariance

matrix, SY; and the function, hNðqÞ. The quadratic form is also invariant to the

mean vector, b, and the covariance matrix, SY. The PDF of the quadratic form is

given by

fQðqÞ ¼ q
N
2
21

2
N
2 G

N

2

� � hNðqÞuðqÞ ðC:5Þ

The PDF of the quadratic form given in Equation C.5 is uniquely determined by

hNðqÞ, and contains all the information required to uniquely identify the PDF of
the SSRV.

In general the mean vector, b, and the covariance matrix, SY; which are
required to form the quadratic form, q ¼ ðy2 bÞTS21

Y ðy2 bÞ; are unknown,
Thus, the quadratic form, q, is not directly observable. Instead, an estimate of the

quadratic form, q̂ is substituted, where the sample mean and covariance matrix

have been substituted, such that q̂ ¼ ðy2 
yÞT 
S21y ðy2 
yÞ;where the sample mean
is given by 
y ¼ 1

K

PK
i¼1 yi and the sample covariance matrix is given by 
Sy ¼�

1
K21

PK
i¼1 ðyi 2 
yÞðyi2 
yÞT�: Samples of SIRVs are first converted to equivalent

univariate distributions, using estimates of the quadratic form, and the procedure

described in Computer programs, Section B is used to approximate the

underlying SIRV distribution. Essentially, the distributions, for which the test

statistic are plotted on the Öztürk chart, are the distributions of the estimate, q̂,

and not those of the actual quadratic form. The results are then related back to
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the parent SIRV distributions. Therefore, the linked vector endpoint of each

hypothesis is constructed using the estimates of the quadratic form, q̂: This
models the error introduced to the quadratic form when the sample mean and

sample covariance matrix have been substituted. In this way the errors are

accounted for by the Öztürk chart.

The PDFs of the SSRV, fXðxÞ and the quadratic form, fQðqÞ; are expressed in
terms of the function, hNðqÞ: Thus, the quadratic form is the straightforward

choice for the statistic for determining an approximate PDF for the SIRV.

However, empirical results suggest the generalized envelope of the SSRV, R,

may provide better discrimination on the Öztürk chart. The generalized envelope

of the SSRV, X, can be expressed in terms of the SIRV, Y, by rw ¼ ffiffi
q

p ¼
½ðy2 bÞTS21

Y ðy2 bÞ	 12 ; where rw is termed the whitened envelope. An example
of the Öztürk approximation chart for SIRVs is illustrated in Figure C.1.

Similar to program OZTURK described in Computer Programs, Section, the

program OZSIRV brings up a graphical user interface (GUI) when invoked. A

collection of random vectors stored in row–column format as a MATLABw

matrix can be loaded using the LOAD tab, whereupon program OZSIRV

generates the appropriate Öztürk SIRV approximation chart and plots the test

statistic for the random data samples on it, identifying the best approximations for

the underlying SIRV distribution. The library, of SIRV probability distributions

available to program OZSIRV and the shape parameters used to generate the

Öztürk SIRV approximation charts, is listed in Table C.1. The Öztürk SIRV

approximation chart is specific to both the number of vectors in the random data

sample and the dimension of the random vectors, and must be regenerated if the

sample size or vector size changes from test to test.
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FIGURE C.1 Example Öztürk approximation chart using whitened envelopes for N ¼ 4:
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D. GMIXEM — APPROXIMATION OF SIRVs WITH GAUSSIAN

MIXTURES USING THE EXPECTATION–MAXIMIZATION

(EM) ALGORITHM

(A. D. KECKLER)

Often, the probability density function (PDF) of an SIRV is mathematically

complex, and it is desirable to approximate it with a simpler distribution, and a

discrete Gaussian mixture SIRVG can often be used. The PDF of the normalized

discrete Gaussian mixture SIRV is given by

fXðxÞ ¼ ð2pÞ2 N
2
XK
k¼1

wk

sNk
e

q

2S2
k ðD:1Þ

For wk . 0;
PK

k¼1 wk ¼ 1; and with covariance matrix SX ¼ I and mean vector

b ¼ 0. Once and adequate approximation has been obtained, analytical results for

receiver performance and other problems of interest can often be obtained for the

discrete Gaussian mixture SIRV, due to its simple form. If analytical results

cannot be obtained, computer simulation of the discrete Gaussian mixture SIRV

is readily performed. The approximation by a discrete Gaussian mixture SIRV

can be made arbitrarily accurate but may require many terms in the mixture,

especially if accuracy is required in the tails of the PDF. The main difficulty

encountered with using the discrete Gaussian mixture SIRV as an approximation

is in performing the fit. In one approach, the Expectation Maximization (EM)

TABLE C.1
Öztürk SIRV Approximation Chart Distributions and Shape Parameters

SIRV Distribution
Symbol on Öztürk

Chart Shape Parameters

K-distributed K 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.1, 1.5, 2, 3, 5

Chi C 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99

Contaminated

Gaussian ðsc ¼ 6Þ
M 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2,

0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.96,

0.97, 0.98, 0.99, 1

Student-t S 1.1, 1.12, 1.14, 1.16, 1.18, 1.2, 1.22, 1.24,

1.26, 1.28, 1.3, 1.35, 1.4, 1.45, 1.5,

1.7, 2.0, 2.5, 5.0

Gaussian N N/A

Exponential E N/A

Laplace L N/A

Weibull W 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 1.1, 1.5, 2.0

Cauchy Y N/A
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algorithm is applied to the problem of approximation a SIRV. Program

GMIXEM fits the quadratic form PDF of the discrete Gaussian mixture to the

corresponding PDF of the SIRV being approximated.

In this approach, the error between the PDFs of the quadratic form is

minimized. If a set of data is obtained from the SIRV distribution being

approximated and each sample is considered to have been generated by a specific

component of the discrete Gaussian mixture SIRV, then the approximation

problem can be viewed as an estimation involving incomplete data. Each element

of the complete data consists of the random sample generated and the component,

k, from which it was drawn. The observed data, however, consists only of the

random sample and, therefore, is incomplete. An elegant solution to this problem

is provided by the Expectation–Maximization (EM) algorithm, which is an

iterative method that produces maximum likelihood (ML) estimates of the

parameters. An example of an approximation of an SIRV using this approach is

shown in Figure D.1.

Program GMIXEM is called from MATLABw using

½W; S;ES2	 ¼ GMIXEMðQ;K;W0;V0;TOL;MAXITERÞ

The parameter Q is a vector of random samples of the quadratic form drawn

from the SIRV distribution to be approximated. The parameter K is the number of

components in the Gaussian mixture SIRV. The parametersW0 and V0 are initial

guesses for the component weights and variances, respectively. TOL specifies the

convergence criteria, with regards to the relatives change from iteration to

iteration, and MAXITER is the maximum number of iterations for the EM

algorithm.
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K-distributed
Gaussian Mixture

FIGURE D.1 Normalized K-distributed SIRV quadratic form PDF and EM Gaussian

mixture approximation.
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While the approximation using the EM algorithm is determined based

upon a particular order of the quadratic form PDF, the resulting approximation

is not restricted to that value of N because the approximation is a discreate

Gaussian mixture SIRV that is defined for any N . 0: It is recommended,
however, that the approximation be obtained using PDFs of the order of

interest, as the error in the approximation will not necessarily be invariant with

respect to N.

E. SIRVCOV— MAXIMUM LIKELIHOOD ESTIMATION

OF THE COVARIANCE MATRIX FOR AN SIRV

(A. D. KECKLER)

The maximum likelihood (ML) estimate of the covariance matrix is obtained

using K independent and identically distributed (IID) realizations of the SIRV,

designated as yk for k ¼ 1; 2;…K; and assuming the form of the PDF of the

SIRV, Y, is known and that the mean vector b is zero. With the mean vector

b ¼ 0; the SIRV, Y, can be expressed as

Y ¼ SW ðE:1Þ

where S is a positive, independent random multiplier, and W is a zero-mean

Gaussian random vector with covariance matrix, SW: The covariance matrix of
the SIRV, Y, is given by

SY ¼ E{S2}SW ðE:2Þ

and, thus, SY ¼ SW when the SIRV is normalized such that E{S2} is unity.

It is assumed that each realization of the SIRV, Y, has been obtained from an

independent realization of the random multiplier, S, as well as independent

realizations of the Gaussian random vector, W. If each realization, sk; of the
random multiplier is known, then the realizations wk of the Gaussian random

vector,Wk can be obtained from the observed realizations of the SIRV such that

wk ¼ yk
Sk

ðE:3Þ

It is well known that the ML estimate of the covariance matrix, SW; for the zero-
mean Gaussian random vector W is the sample covariance matrix, such that

ŜW ¼ 1

K

XK
k¼1

WkW
T
k

" #
ðE:4Þ

Since the covariance matrix of the SIRV, Y, is related to the covariance matrix of

the underlying Gaussian random vector,W, by Equation E.2, the ML estimate of
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SY is given by

ŜY ¼ E{S2}ŜW ðE:5Þ
which, if the SIRV is normalized such that E{S2} is unity, reduces to

ŜY ¼ ŜW ðE:6Þ
In practice, however, the realizations of the random multiplier, Sk; are not known,
and estimation of the convariance matrix, SW; becomes an estimation problem
with incomplete data. This is similar to the problem of estimating the parameters

of the discrete Gaussian mixture SIRV approximation discussed in Computer

Programs, Section D.

The ML estimate of SW can be obtained from the incomplete data iteratively

by applying the EM algorithm. The complete data consists of pairs of the

observed SIRVs, yk; and the corresponding realizations of the independent

multiplier, sk; for k ¼ 1; 2;…;K: The incomplete data consists of just the

realizations of the SIRV, yk, for k ¼ 1; 2;…;K. If the complete data were

available, it would be possible to determine the Gaussian vectors, wk, directly and

then the sample covariance matrix could be used to estimate SW. However, since

they are not, the expectation of the log-likelihood function for the complete data

is required, conditioned on the incomplete data. The resulting ML estimate for

the covariance matrix is obtained iteratively, and is given by

ŜWðiþ 1Þ ¼ 1

K

XK
k¼1

hNþ2ðyTk ½ŜWðiÞ	21ykÞ
hNðyTk ½ŜWðiÞ	21ykÞ

yky
T
k

¼ 2
2

K

XK
k¼1

h0NðyTk ½ŜWðiÞ	21ykÞ
hNðyTk ½ŜWðiÞ	21ykÞ

yky
T
k ðE:7Þ

Equation E.7 is iterated until convergence is reached, such that ŜWðiþ 1Þ ¼
ŜWðiÞ ¼ ŜW: The convergence criterion can be specified using the Frobenius
norm of the difference between the estimates of the covariance matrix from

successive iterations. The Frobenius norm is a matrix norm defined to be equal to

the square root of the sum of the absolute squares of its elements, and can be

calculated using

kAkF ¼
ffiffiffiffiffiffiffiffiffiffi
trðAAHÞ

q
ðE:8Þ

Where tr(·) is the matrix trace, andAH is the conjugate transpose of the matrix, A.
Therefore, the convergence criterion using Equation E.8 is given by

kŜWðiþ 1Þ2 ŜWðiÞkF , h ðE:9Þ
where h is a threshold specifying the allowable error.
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Once the ML estimate for the covariance matrix, SW, of the underlying

Gaussian vector, W, has been determined, the estimate of the covariance matrix

for the SIRV, Y, is obtained using

ŜY ¼ E{S2}ŜW ðE:10Þ
which, if the SIRV is normalized such that E{S2} ¼ 1; reduces to

ŜY ¼ ŜW ðE:11Þ
It should be noted, since the PDF of the SIRV, Y, is assumed known by the EM

algorithm, that E{S2} does not need to be estimated. Therefore, the ML estimate,

ŜY; of the covariance matrix for the SIRV, Y, is obtained directly from the ML

estimate of the covariance matrix, ŜW; of the underlying Gaussian random

vector, W.

The EM algorithm converges to a local minimum, and is dependent upon the

initial guess for the estimate, ŜWð0Þ: Any symmetric positive definite matrix can
be used for the initial guess, with the N £ N identity matrix, I, or the sample

covariance matrix, 
Sy ¼
�
1
K

PK
k¼1 ykyTk

�
; as two readily available choices.

The ML estimates for the covariance matrix of a set of SIRV samples is

obtained using the function call

½C; S;E1;E2	 ¼ EMCOVðX;HN;C0;TOL;MAXITER;P1;P2;…Þ
In this call, the parameter X is a MATLABw matrix whose K rows contain

samples of SIRVs, each of dimension N. The parameter HN is a string containing

the name of the program used to evaluate the characteristic function, hNðqÞ; of the
SIRV, C0 is the initial guess for the covariance matrix, which must be a

symmetric positive definite matrix of dimension N £ N: The parameter TOL is

the convergence criteria indicated in Equation E.9, and MAXITER is the

maximum number of iterations allowed before termination of the algorithm.

Finally, the parameters P1, P2, etc., are parameters for the characteristic function

specified by HN.

F. THRESHOLD — GENERATION OF RECEIVE THRESHOLDS

FOR VARIOUS FALSE ALARM PROBABILITIES AND SAMPLED

UNKNOWN NOISE DISTRIBUTIONS

(P. CHAKRAVARTHI)

Program THRESHOLD computes the thresholds corresponding to various false

alarm rates when there is no information on the underlying noise distribution. For

signal detection in non-Gaussian noise it is important to accurately estimate the

threshold corresponding to a given false alarm probability. The estimation of

these thresholds becomes especially hard when the underlying noise distribution

is unknown and the false alarm probabilities are very small, i.e., ,1025.
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Extreme Value Theory is an approach that enables estimating the tail of

probability density functions with far samples than conventionally required by

the Monte Carlo method. Generating typically between 1000 and 20,000 samples

of the underlying noise, the tail of the non-Gaussian clutter is fitted by the

Generalized Pareto Distribution (GPD) described in Section 13.3.5. The user

supplies as input a column vector of observation samples from the underlying

noise distribution and the false alarm rates, as well as specifies the method to use

in estimating the parameters of the GPD. In particular, the Maximum Likelihood

(ML) method and the Ordered Sample Least Squares (OSLS) method are used for

estimating the GPD parameters.

Let x [ R denote a column vector composed of the observation samples of

the noise and a denote the desired false rate. Program thresholdByGPD

(x, a, ‘ML’) will return the estimated threshold at false alarm rate a through

estimating the GPD parameters by the ML method. Similarly, program

thresholdByGPD ðx;a; ‘OSLS’Þ gives the result through the OSLS method.
The program is written in MATLAB and can be executed on a PC.
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