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Preface

The primary intent of this book is to provide an introduction to state-of-the art
research on the modeling, testing, and application of adaptive antennas and
receivers. As such, it provides a baseline for engineers, scientists, practitioners,
and students in surveillance, communication, navigation, government service,
artificial intelligence, computer tomography, neuroscience, and security intrusion
industries. This book is based on work performed at Syracuse University and
The MITRE Corporation with sponsorship primarily by the U. S. Air Force.

At issue is the detection of target signals in a competing electromagnetic
environment which is much larger than the signal affer conventional signal
processing and receiver filtering. The competing electromagnetic environment
is external system noise (herein designated as “noise”) such as clutter residue,
interference, atmospheric noise, man-made noise, jammers, external thermal
noise (optical systems), in vivo surrounding tissue (biological systems), and
surrounding material (intrusion detection systems). The environment is statis-
tically characterized by a probability density function (PDF) which may be
Gaussian, or more significantly, nonGaussian. For applications with an objective
of target detection, the signal is assumed to be from a moving target within the
surveillance volume and with a velocity greater than the minimum discernable
velocity.

In radars, which look down at the ground to detect targets, the clutter echo
power can be 60 to 80 dB larger than the target echo power before signal
processing. The target is detected by measuring the difference in returns from
one pulse to the next. This method is based on the underlying assumption that
the clutter echo power and the radar system are stable between pulses whereas the
target signal is not. The degree of stability influences the subclutter visibility
(SCV), i.e., the ratio by which the target echo power may be weaker than the
coincident clutter echo power and still be detected with specified detection
and false-alarm probabilities. The receiving systems of interest comprise an
antenna array, digital receiver, signal processor, and threshold detector.'

The electromagnetic environment is assumed to be characterized by a “noise”
voltage with a PDF that is temporally Gaussian but not necessarily spatially
Gaussian. Conventional signal detection, for a specified false alarm rate or
bit error rate, is achieved by measuring the magnitude-squared output of a linear
Gaussian receiver compared to a single threshold determined by the variance
of the noise voltage averaged over all the cells of the total surveillance volume.
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vi Preface

A linear Gaussian receiver is defined as a receiver matched to the frequency
spectrum of the signal and assumes a temporally Gaussian PDF “noise” voltage.
In conventional signal detection, the probability of signal detection within any
cell of the surveillance volume is small if the signal power is small compared
to the average noise variance of the total surveillance volume.

This book considers the more general case where the “noise” environment
may be spatially nonGaussian. The book is divided into three parts where
each part presents a different but sequentially complementary approach for
increasing the probability of signal detection within at least some of the
cells of the surveillance volume for a nonGaussian or Gaussian ‘“noise”
environment. These approaches are: Approach A. Homogeneous Partitioning
of the Surveillance Volume; Approach B. Adaptive Antennas; and Approach C.
Adaptive Receivers.

Approach A. Homogeneous Partitioning of the Surveillance Volume. This
approach partitions the surveillance volume into homogeneous, contiguous
subdivisions. A homogeneous subdivision is one that can be subdivided into
arbitrary subgroups, each of at least 100 contiguous cells, such that all the
subgroups contain stochastic spatio-temporal “noise” sharing the same PDF.
At least 100 cells/subgroup are necessary for sufficient confidence levels (see
Section 4.3). The constant false-alarm rate (CFAR) method reduces to Approach
A if the CFAR “reference” cells are within the same homogeneous subdivision
as the target cell. When the noise environment is not known a priori, then it is
necessary to sample the environment, classify and index the homogeneous
subdivisions, and exclude those samples that are not homogeneous within a
subdivision. If this sampling is not done in a statistically correct manner, then
Approach A can yield disappointing results because the estimated PDF is not
the actual PDF. Part I Homogeneous Partitioning of the Surveillance Volume
addresses this issue.

Approach B. Adaptive Antennas. This approach, also known as space-time
adaptive processing, seeks to minimize the competing electromagnetic environ-
ment by placing nulls in its principal angle-of-arrival and Doppler frequency
(space-time) domains of the surveillance volume. This approach utilizes k = NM
samples of the signals from N subarrays of the antenna over a coherent process-
ing interval containing M pulses to (1) estimate, in the space-time domain, an
NM X NM “noise” covariance matrix of the subarray signals, (2) solve the matrix
for up to N unknown “noise” angles of arrival and M unknown “noise” Doppler
frequencies, and (3) determine appropriate weighting functions for each subarray
that will place nulls in the estimated angle-of-arrival and Doppler frequency
domains of the “noise”.

Approach B is a form of filtering in those domains. Consequently, the
receiver detector threshold can be reduced because the average “noise” voltage
variance of the surveillance volume is reduced. The locations and depths of the
nulls are determined by the relative locations and strengths of the “noise” sources
in the space-time domain and by differences in the actual and estimated “noise”
covariance matrices. The results are influenced by the finite number k of
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Preface vii

stochastic data samples and the computational efficiency in space-time
processing the samples. Part II Adaptive Antennas addresses these issues and
presents physical models of several applications.

Approach C. Adaptive Receivers. For each homogeneous subdivision of the
surveillance volume, this approach generally utilizes a nonlinear, nonGaussian
receiver whose detection algorithm is matched to the sampled “noise” voltage
spatial PDF of that subdivision. When the nonGaussian “noise” waveform is
spikier than Gaussian noise, the nonlinear receiver is more effective than a linear
receiver in reducing the detecton threshold for a given false alarm rate provided
that the estimated spatial PDF is an accurate representation of the actual PDF.
If the estimated spatial PDF is Gaussian, then the nonlinear receiver reduces to a
linear Gaussian receiver. At issue are (1) how to model, simulate, and identify
the random processes associated with the correlated “noise” data samples
and (2) how to determine the nonlinear receiver and its threshold that are best
matched to those data samples. Part III Adaptive Receivers addresses and
illustrates these issues with some applications.

Approach C should not be implemented until Approaches A and B have
been implemented. For a prespecified false alarm probability, Approach A or B
alone have a better probability of target detection than in their absence. The
combination of Approaches A and B has a better probability of target detection
than Approach A or B alone. The combination of Approaches A, B, and C has a
still better probability of target detection. For this reason, this book often refers
to the combination of Approaches A, B, and C as the weak signal problem,
(i.e., small signal-to-noise ratio case); the combination of Approaches A and B or
Approach A or B alone as the intermediate signal problem, (i.e., intermediate
signal-to-noise ratio case); and the absence of all three approaches as the strong
signal problem, (i.e., large signal-to-noise ratio case). Approaches A and C are
usually more difficult to implement than Approach B alone because “noise”
spatial PDF is more difficult to measure than “noise” variance. However, for the
weak signal problem, Approaches A and C can be worth the effort as is shown
in Part III. All of these approaches have benefited from orders-of-magnitude
increases in the speeds of beam scanning and data processing made possible by
recent technological advances in integrated circuits and digital computers.
However, equally important, are the recent advances in methodology which are
reported in this book.

Adaptive antennas originated in the 1950s with classified work by
S. Applebaum followed later by P. W. Howells, both of whom published
their work about 40 years ago.>” Practical techniques for space-time processing
of the sampled data originated with B. Widrow and colleagues approximately a
year later.*

A nonlinear nonGaussian receiver for weak signal detection, in the presence
of “noise” whose PDF is not necessarily Gaussian, originated with D. Middleton
approximately 45 years ago.” The receiver is designated a “locally optimum
detector” (LOD) because, in a Taylor series expansion of the numerator of
the likelihood ratio (LR) about a unity operating point, only the second term
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viii Preface

(a linear test statistic) is retained and the first term (a constant) is combined as
part of the threshold. Thus, for small signal-to-disturbance ratio, a sensitive yet
computationally simpler test statistic is obtained, resulting in either a nonlinear
receiver for non-Gaussian disturbances or a linear matched filter for Gaussian
disturbances with deterministic signals. Unlike an adaptive receiver, Middleton’s
LOD utilized a fixed detection algorithm and threshold that were determined
a priori to the detection process.

The feasibility of an adaptive receiver was made possible less than 15 years
ago when Aydin Ozturk (Professor, Dept. of Mathematics, Syracuse University)
developed an algorithm for identifying and estimating univariate and multivariate
distributions based on sample-order statistics.®’ At that time, my brother, Donald
D. Weiner (Professor, Dept. of Electrical and Computer Engineering, Syracuse
University), in collaboration with his doctoral student Muralidhar Rangaswamy
and A. Ozturk, conceived the idea of an adaptable receiver which (1) sampled in
real time the “noise” environment, (2) utilized the Ozturk algorithm to estimate
the “noise” PDF, and (3) utilized the Middleton LOD by matching its detection
algorithm and threshold to the estimated “noise” PDF.**

By 1993, with additional collaboration from Prakash Chakravarthi,
Mohamed-Adel Slamani (doctoral students of D. D. Weiner), Hong Wang
(Professor, Dept. of Electrical and Computer Engineering, Syracuse University)
and Lujing Cai (doctoral student of H. Wang), the core ideas for much of the
material in this book had been developed.'®'" With the exception of Chapters 9
and 10, all of the materials in this book are based on later refinements,
elaborations, and applications by D. D. Weiner, his students (Thomas J.
Barnard, P. Chakravarthi, Braham Himed, Andrew D. Keckler, James H.
Michels, M. Rangaswamy, Rajiv R. Shah, M. A. Slamani, Dennis L.
Stadelman), his colleagues at Syracuse University (A. Ozturk, H. Wang),
students of H. Wang (L. Cai, Michael C. Wicks), his colleagues at Rome
Laboratory (Christopher T. Capraro, Gerard T. Capraro, David Ferris, William
J. Baldygo, Vincent Vannicola), his son (William W. Weiner), and Fyzodeen
Khan (colleague of T. J. Barnard). Chapter 9 is contributed by George Ploussios
(consultant, Cambridge, MA). Chapter 10 consists of reprints of all the refereed
journal papers on adaptive antennas individually authored by Ronald L. Fante
(Fellow, The MITRE Corporation) or co-authored with colleagues Edward C.
Barile, Richard M. Davis, Thomas P. Guella, Jose A. Torres, and John J.
Vaccaro.

My interest in the core ideas of this book originated in 1993 from two
invited talks at the MITRE Sensor Center.'*'? The two talks utilized novel
mathematical tools (such as the Ozturk algorithm and spherically invariant
random vectors) for more effective implementation of homogeneous partitioning,
adaptive antennas, and adaptive receivers. Since that time, the utilization of these
tools for those purposes has been reported in the journal literature but not in a
book. In July 2003, Marcel Dekker Inc. asked me to recommend a prospective
author for a book on smart antennas. Smart antennas are nothing more than
adaptive antennas (with or without the signal processing associated with adaptive
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Preface ix

antennas) which are specifically tailored for the wireless mobile communication
industry. Since there were already several books on smart antennas, the publisher
agreed instead to accept a proposal from me for the present book.

All of the material for this book is in the public domain. Chapters 1, 7, 9, and
11 were written specifically for this book. The material is from the following
sources:

Chap. Source

1 Contributed by Weiner, M.M.

Slamani, M.A., A New Approach to Radar Detection Based on the
Partitioning and Statistical Characterization of the Surveillance
Volume, University of Massachusetts at Amherst, Final Technical
Report, Rome Laboratory, Air Force Material Command, RL-TR-95-
164, Vol. 5, Sept. 1995.

3.1 Rangaswamy, M., Michels, J.H., and Himed, B., Statistical analysis
of the nonhomogeneity detector for STAP applications, Digital Signal
Processing Journal, Vol. 14, No. 1, Jan. 2004.

32 Rangaswamy, M., Statistical analysis of the nonhomogeneity detector
for nongaussian interference backgrounds, IEEE Trans. Signal
Processing, Vol. 15, Jan./Feb. 2005.

4 Shah, R.R., A New Technique for Distribution Approximation of
Random Data, University of Massachusetts at Amherst, Final
Technical Report, Rome Laboratory, Air Force Material Command,
RL-TR-95-164, Vol. 2, Sept. 1995.

5.1 Ozturk, A., A New Method for Distribution Identification, J. American
Statistical Association, submitted but not accepted for publication,
1990 (revised 2004). Contributed by A. Ozturk.

5.2 Ozturk, A., A general algorithm for univariate and multivariate
goodness-of-fit tests based on graphical representation, Commun. in
Statistics, Part A—Theory and Methods, Vol. 20, No. 10,
pp- 3111-3131, 1991.

6.1 Weiner, W.W., The Ozturk Algorithm: A New Technique for
Analyzing Random Data with Applications to the Field of Neuro-
science, Math Exam Requirements for Ph.D. in Bioengineering and
Neuroscience, Syracuse University, May 9, 1996.

6.2 Slamani, M.A. and Weiner, D.D., Use of image processing to partition
a radar surveillance volume into background noise and clutter patches,
Proc. 1993 Conference on Information Sciences and Systems, Johns
Hopkins Univ., Baltimore, Md., March 24-26, 1993.

6.3 Slamani, M.A. and Weiner, D.D., Probabilistic insight into the
application of image processing to the mapping of clutter and noise
regions in a radar surveillance volume, Proc. 36th Midwest Symposium
of Circuits and Systems, Detroit, Mi., Aug. 10—18, 1993.
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Slamani, M.A., Ferris, D., and Vannicola, V., A new approach to the
analysis of IR images, Proc. 37th Midwest Symposium in Circuits and
Systems, Lafayette, LA, Aug. 3-5, 1994.

Slamani, M.A., Weiner, D.D., and Vannicola, V., ASCAPE: An automated
approach to the statistical characterization and partitioning of a
surveillance volume, Proc. 6th International Conference on Signal
Processing Applications and Technology, Boston, MA, Oct. 2426, 1995.
Keckler, A.D., Stadelman, D.L., Weiner, D.D., and Slamani, M.A.,
Statistical Characterization of Nonhomogeneous and Nonstationary
Backgrounds, Aerosense 1997 Conference on Targets and Back-
grounds: Characterization and Representation III, Orlando FL, April
21-24, 1997, SPIE Proceedings, Vol. 3062, pp. 31-40, 1997.
Capraro, C.T., Capraro, G.T., Weiner, D.D., and Wicks, M.C,,
Knowledge-based map space-time adaptive processing, Proc. 2001
International Conference on Imaging Science, Systems, and Techno-
logy, Las Vegas, Nev., Vol. 2, pp. 533-538, June 2001.

Capraro, C.T., Capraro, G.T., Weiner, D.D., Wicks, M.C., and
Baldygo, W.., Improved space-time adaptive processing using
knowledge-aided secondary data selection, Proc. 2004 IEEE Radar
Conference, Philadelphia, PA, April 26—-29, 2004.

Contributed by Weiner M.M.

Cai, L. and Wang, H., Adaptive Implementation of Optimum Space-
Time Processing, Chapter 2, Kaman Sciences Corp., Final Technical
Report, Rome Laboratory, Air Force Material Command, RL-TR-93-
79, May 1993.

Contributed by Ploussios, G.

Fante, R.L., Cancellation of specular and diffuse jammer multipath
using a hybrid adaptive array, IEEE Trans. Aerospace and Electronic
Systems, Vol. 27, No. 5, pp. 823—837, Sept. 1991.
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1 Introduction

M. M. Weiner

Part 1 Homogeneous Partitioning of the Surveillance Volume discusses the
implementation of the first of three sequentially complementary approaches for
increasing the probability of target detection within at least some of the cells of
the surveillance volume for a spatially nonGaussian or Gaussian ‘“noise”
environment that is temporally Gaussian. This approach, identified in the Preface
as Approach A, partitions the surveillance volume into homogeneous contiguous
subdivisions. A homogeneous subdivision is one that can be subdivided into
arbitrary subgroups, each of at least 100 contiguous cells, such that all the
subgroups contain stochastic spatio-temporal “noise” sharing the same
probability density function (PDF). At least one hundred cells per subgroup are
necessary for sufficient confidence levels (see Section 4.3). The constant false-
alarm rate (CFAR) method reduces to Approach A if the CFAR “reference” cells
are within the same homogeneous subdivision as the target cell. When the noise
environment is not known a priori, then it is necessary to sample the
environment, classify and index the homogeneous subdivisions, and exclude
samples that are not homogeneous within a subdivision. If this sampling is not
done in a statistically correct manner, then Approach A can yield disappointing
results because the estimated PDF is not the actual PDF. Part I addresses this
issue.

Chapter 2 discusses the implementation of Approach A to the radar detection
problem. In Section 2.1, the simplest but least versatile implementation is
discussed for utilization when statistical knowledge of the environment is known
a priori. Section 2.2 discusses a feedforward expert system for implementation
when the statistical environment is not known a priori but must be estimated
from data samples in real time. Section 2.3 introduces a feedback expert system
Integrated Processing and Understanding of Signals (IPUS) that augments the
feedforward system of Section 2.2 by assessing whether correct signal processing
and understanding have taken place and then performs additional data sampling
and signal processing if required. Section 2.4 discusses the application of a
feedback expert system to radar signal processing. The issues associated with
clutter-patch mapping (Section 2.5) and indexing (Section 2.6) with a
feedforward expert system are implemented by IPUS for a feedback expert
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4 Adaptive Antennas and Receivers

system in Section 2.7. Conclusions and suggestions for future research are
presented in Section 2.8.

Chapter 3 analyzes the integrity of a nonhomogeneous detector (NHD) for
excluding nonhomogeneous samples from a candidate subdivision. The cases of
Gaussian and nonGaussian interference environments are discussed in Section 3.1
and Section 3.2, respectively.

Given a finite number of correlated samples that are realizations of a
stochastic process, as in Section 2.2 to Section 2.7 and Chapter 3, how does one
determine the best-fit approximation to the PDF of those samples? Chapter 4
discusses a new technique, the Ozturk algorithm, for achieving this difficult task.
After areview of the literature (Section 4.1), the Ozturk algorithm is summarized
(Section 4.2), and then evaluated by simulation results (Section 4.3). Conclusions
and suggestions for future work are given in Section 4.4.

A more complete discussion of the Ozturk algorithm is given in Chapter 5 by
its originator, Aydin Ozturk.

Chapter 6 presents applications of homogeneous partitioning to neuroscience
(Section 6.1), radar detection (Section 6.2, Section 6.3, Section 6.7, and Section
6.8), infra-red image processing (Section 6.4 and Section 6.5), and concealed
weapon detection (Section 6.6). Section 6.2 and Section 6.3 summarize an image
processing mapping procedure, previously discussed in Section 2.4 to Section
2.7, for distinguishing patches dominated by background noise from those
dominated by clutter. Section 6.5 presents a formalized process Automatic
Statistical Characterization and Partitioning of Environments (ASCAPE) for that
purpose. Section 6.7 and Section 6.8 utilize a priori knowledge-based terrain
maps to achieve homogeneous partitioning.
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2.0. INTRODUCTION

In signal processing applications it is common to assume a Gaussian process in
the design of optimal signal processors. However, non-Gaussian processes do
arise in many situations. For example, measurements reveal that radar clutter
may be approximated by either Weibull, K-distributed, Lognormal, or Gaussian
distributions depending upon the scenario.*”'® When the possibility of a
non-Gaussian problem is encountered, the question, as to which probability
distributions should be utilized in a specific situation for modeling the data, needs
to be answerd.

In practice, the underlying probability distributions are not known a priori.
Consequently, an assessment must be made by monitoring the environment.
Another consideration is that radar detection problems can usually be divided
into strong, intermediate, and weak signal cases. Hence, the system that monitors
a radar environment must be able to subdivide the surveillance volume into
background noise and clutter patches in addition to approximating the underlying
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probability distributions for each patch. This is in contrast to current practice
where a single robust detector, usually based on the Gaussian assumption, is
employed.

The objective of this work is to develop techniques that monitor the
environment and select appropriate detector for processing the data.

The main contributions are: (1) an image processing technique is devised
which enables partitioning of the surveillance volume into background noise
and clutter patches, (2) a new algorithm, developed by Dr. Ozturk while he was a
Visiting Professor at Syracuse University,”’ % is used to identify suitable
approximations to the probability density function for each clutter patch, and
(3) rules to be used with the expert system, Integrated Processing and Under-
standing of Signals (IPUS),?°~?? are formulated for monitoring the environment
and selecting the appropriate detector for processing the data.

This dissertation is organized as follows: Section 2.1 discusses some of
the difficulties that arise in the classical radar detection problem. Their solution
is proposed in Section 2.2 which uses an expert system with feed-forward
processing. In Section 2.3 an improved solution is presented using feed-back
processing. The general radar detection problem is described in Section 2.4 and
a mapping procedure is introduced to separate between background noise and
cluter patches. In Section 2.5 an image processing technique is developed for
the mapping procedure. Next, an indexing procedure is developed in Section 2.6
to enable the invetigation of clutter subpathces and the approximation of
probability distributions for each clutter patch. Finally, expert system rules are
developed in Section 2.7 to enable the system to control both the mapping and
indexing stages. Conclusions and suggestions for future research are given in
Section 2.8.

2.1. RADAR DETECTION WITH A PRIORI STATISTICAL
KNOWLEDGE OF THE ENVIRONMENT

2.1.1. INTRODUCTION

The optimal radar detection problem consists of collecting a set of N samples
(ro, 11,-.., ry—1) from a given cell in space, processing the data by a Neyman—
Pearson receiver which takes the form of a likelihood ratio test (LRT)l and
deciding for that cell whether or not a target is present. Let r denote the vector
formed by N samples, r = (ry, q,..., rn—1)", where T denotes “transpose” and
the samples are realizations of the random variables R,, R;---Ry_i,
respectively. The LRT compares a statistic A to a fixed threshold 7). The
statistic A is the ratio between the joint probability density function (PDF),
pr(rlH,), of the N samples given that a target is present and the joint PDF,
pr(rlHy) of N samples, given that no target is present. H, and H, denote the
hypotheses that a target is present and absent, respectively. This ratio is called
LR. The threshold 7 is determined by constraining the probability of false alarm
(PFA) to a specified value.

© 2006 by Taylor & Francis Group, LLC



A New Approach to Radar Detection 9

The binary hypotheses (H;, Hy) are defined in a way such that, under
hypothesis Hy, the kth collected sample, ry, k = 0,1,..., N — 1, is composed of a
target signal sample, sy, plus an additive disturbance sample, d;. Under hypothesis
Hy, the kth sample, r, (where k=0, 1,..., N — 1), consists of the disturbance
sample d,. Hence,

Sk+dk; H]
re= k=0,1,... N—1. .1
dis H,

In general, the disturbance sample d; consists of a clutter (CL) sample ¢y, plus a
BN sample n;.
The LRT then takes the form

_ pr(@lE) T

==z (2.2)
pr((r)|Hy) Hy

For A > n, H, is decided otherwise, Hy is decided.

Assuming that the samples are statistically independent, the joint PDF
pr((0)Hy); i =0, 1, is nothing but the product of the N marginal PDFs of the
samples. Specifically,

N—1
pr(@H) =[] pa,(lH);  i=0,1 (2.3)
k=0

The LRT is then readily implemented provided the marginal PDFs are known.

In practice, the real data may be correlated in time, making the statistical
independence assumption invalid. Unless the joint PDFs of the correlated
samples are assumed to be Gaussian, it is not commonly known how to specify
the joint PDFs pr((r)|H,); i = 0, 1. Many engineers invoke the Gaussian assump-
tion even when it is known to be not applicable. It is for this reason the most of
the radars today are Gaussian receivers (i.e., these process data using LRT based
on the joint Gaussian PDF). When the target signal, s;, cannot be filtered from
the disturbance, d;, by means of spatial or temporal processing and d is much
larger than s; (where k = 0, 1,..., N — 1) then r, approximately equals d; under
hypotheses and high precision is needed to evaluate the LRT because pr(r|H,)
becomes approximately equal to pr(r|H). Specifically,

_ prOIH)

= R 2.4
pr(riHy) @9

and the statistic A becomes insensitive to the received data.

Recent work reported by Rangaswamy et al.? shows that, it is possible to
model N correlated nonGaussian random samples as samples, from a spherically
invariant random process (SIRP). The vector R of the N samples is said to
be a spherically invariant random vector (SIRV). More details about SIRVs are
presented in Section 2.1.2.
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In addition, the work done by Chakravarthi et al.> shows for the nonGaussian
weak signal case (WSC) (i.e., the average power of s, is much less than that of dj,
k=0, 1,..., N — 1) that the use of a locally optimum detector (LOD) provides
improved performance over direct application of the Gaussian LRT. LODs are
introduced in Section 2.1.3.

2.1.2. SIRV

Many investigators*~’ have reported experimental measurements for which the
CL PDF has an extended tail. The extended tail gives rise to spiky CL and
relatively large probabilities of false alarm. The Gaussian model for the CL fails
to predict this behavior. NonGaussian models for the univariate (marginal) CL
PDF have been proposed. Commonly reported marginal non-Gaussian PDFs for
the CL are Weibull,4 log-normal&9 and K-distributed.>®'°

Usually, radars process N pulses at a time. A complete statistical characteri-
zation of the CL requires the specification of the joint PDF of the N samples. The
theory of SIRPs provides a powerful mechanism for obtaining the joint PDF of
the N correlated non-Gaussian random variables.

2.1.2.1. Definitions

An SIRV*!! is a random vector PDF of which is uniquely determined by the
specification of a mean vector, a covariance matrix and a characteristic first
order PDF. The PDF of a random vector is defined to be the joint PDF of the
components of the random vector.

An SIRP is a random process such that every random vector obtained by
sampling this process is an SIRV.

The work of Kingman'? and Yao'? gave rise to a representation theorem,
valid for all SIRVs which is summarized below. Let z = [z3, z5,..., zN]T denote
the realization of a real zero mean Gaussian random vector Z with covariance
matrix M. Let s denote the realization of a nonnegative random variable S with
PDF fs(s). It is assumed that S is independent of Z. The representation theorem
states that X is an SIRV if and only if it can be expressed in the form X = ZS.
In particular the PDF of X is given by

X™ X

fx(x) = (277)‘N/2|M|*1/2J s‘Nexp(— >
0 2s

)fs(S)dS 2.5

where: IM| denotes the determinant of the covariance matrix M. Let
p =X"™ 'X. Then Equation 2.5 can be written as

fx®) = Qm VM 2 hy(p) (2.6)
where:

) = [ 5 exp( = L5 ) s @7
0 2s
Note that fs(s) is defined to be the characteristic PDF of the SIRV.

© 2006 by Taylor & Francis Group, LLC



A New Approach to Radar Detection 11

2.1.2.2. Properties of SIRVs

2,14—16

Several properties of SIRVs are stated below:

e It has been pointed out in Ref. 15 that when fs(s) = 6(s — 1), where
o(-) is the unit impulse function, the resulting Axn(P) is the familiar
multivariate Gaussian PDF.

« Differentiation of Equation 2.7 with respect to the argument gives'®

dhy(w)

dw

hypa(w) = —2 2.8)
In Equation 2.8 the argument has been replaced by w because the quadratic form
p depends on N and therefore cannot be used in the equality. Equation 2.8
provides a mechanism to relate the functional forms of the higher order PDFs
with those of the lower orders. Starting with N =1 and using Equation 2.8
repeatedly gives

dVh (w
a0 = (-2 S 2.9)
Starting with N = 2,
dVhy(w
avaaton) = (-2 S 2.10)

It is therefore possible to construct all higher order PDFs for odd values of N and
even values of N, starting from /,(w) and hy(w), respectively.

e The PDF of an SIRV is a function of a nonnegative quadratic form.
The PDF is uniquely determined by specification of a mean vector,
a covariance matrix and characteristic first-order PDF.

e An SIRV is invariant under a linear transformation. More precisely,
if X is an SIRV with characteristic PDF fg(s), then Y = AX + B is an
SIRV with the same characteristic PDF as X, where A is a matrix and B
is a vector.

e h(p)isrelated to the marginal (first order) PDF of X;. This can be seen
easily by letting N = 1 in Equation 2.6. More precisely,

1
ka(xk) = ﬁhl(p), k= O, 1,2,...,N -1 (211)
k

where p = x} /0 and o7 denotes the variance of X;.
o Two of the possible techniques for obtaining the PDF of an SIRV are:
(1) If the characteristic PDF of the SIRV is readily available, then
evaluate hy( p) directly from Equation 2.7. Complete the charac-
terization by specifying the mean vector and covariance matrix
of the SIRV.
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(2) If the characteristic PDF of the SIRV is not readily available, but
the marginal PDF is known, first obtain /,( p) from the marginal
PDF using Equation 2.11. Then obtain fs(s) by solving the integral
equation in Equation 2.7 with N = 1. Next use fs(s) in Equation 2.7
for desired N to obtain &y ( p). Finally, specify the mean vector and
covariance matrix of the SIRV.

In the work that follows SIRPs will be used to model correlated non-Gaussian
disturbances (i.e., CL plus noise).

2.1.3. LocALLY OPTIMUM DETECTOR

Assume that the received target signals have a very small unknown amplitude 6,

so that
UnderH;, r=6s+d
(2.12)
Under H, r=d
A Taylor series expansion of the numerator of the LR results in'’
2
d d
— pr(rlH —— PR(rH))
pr(riH,) 146 dOPR(r 1)9:0 n 0> d¢ 0=0 2.13)
pr(rlHp) pr(rlHy) 2 pr(rlHp)

The LRT consists of comparing the LR to a threshold 7. For the case where 6 is
very small, it is assumed that the terms involving 67, 6°, ... are negligible with
high probability. Ignoring these terms, the LRT simplifies to

d
@PR(I‘|H1)‘ H,
4av 16=0 >y (2.14)

140
pr(rlHy) H,

d

A erlH ‘

dHPR(r ])9=0 Iil n—1 _
pr(lHy) g 6

The receiver which performs the above test is referred to as the LOD. Because the
probability of detection (PD) and the PFA are given by

vy (2.15)

PD = rpy(ylHl)du (2.16)
Y

PFA = J p, (WHy)dv (2.17)
Y

and because p, (vIH,) approaches p,(vIH,) as 6 goes to zero, it follows that
PD = PFA when 6 = 0. The power function of a receiver is defined as the curve
relating PD and 6. Under a fixed PFA constraint, a typical power function curve is
shown in Figure 2.1 for an LOD.
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PD PFA = constant

PFA

0 6

FIGURE 2.1 Power function for a locally optimum detector.

PD PFA = constant
LOD

PFA Other receiver

0 0, 6

Cc

FIGURE 2.2 Tllustration of non-optimality of locally optimum detector when 6 > ..

An alternative approach to the weak signal detection problem (i.e., 6§ < 1)
is to find that receiver which maximizes the slope of the power function at § = 0.
Solution of this optimization problem results in the same ratio test as given
by Equation 2.2. Consequently, the LOD is identical to that receiver which
maximizes the slope of power function at 6 = 0. As a result, the LOD will
maximize PD for 0 sufficiently small. However, other receivers may yield larger
values of PD when 6 becomes large. As shown in Figure 2.2, for 8 > 6, another
receiver is shown to out-perform the LOD.

2.2. UNDERSTANDING OF SIGNAL AND DETECTION
USING A FEEDFORWARD EXPERT SYSTEM

2.2.1. INTRODUCTION

The use of SIRPs in the implementation of LRTs and LODs for radar detection
problem allows to derive algorithms for performing strong and weak signal
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detection in a nonGaussian environment. Classical detection assumes a priori
knowledge of joint PDF underlying the received data. In practice, received data
can come from a clear region, where background noise (BN) alone is present or
from a clutter (CL) region, where returns are due to BN and reflections from such
objects as ground, sea, buildings, birds, ... etc. When a desired target return is
from a clear region and the BN is sufficiently small, the signal-to-noise ratio will
be large and the strong signal detector (i.e., the LRT) should be used. However, if
a desired target return is from a CL region, two situations can exist. When the
desired target can be filtered from the CL by means of space—time processing and
the BN is sufficiently small, the signal-to-noise ratio will be large and a strong
signal detector should again be used. When the desired target cannot be filtered
from the CL by means of space—time processing and the CL return is much larger
then the desired target return, a weak signal detector (i.e., LOD) should be used.
Use of the LOD in a strong signal situation can result in a severe loss of
performance. Hence, it is necessary for the receiver to determine whether a strong
or weak signal situation exists.

All of this suggest use of an expert system in the radar detection problem for:
(1) monitoring the environment and (2) selecting the appropriate detector for
processing the data. This is in contrast to current practice where a single robust
detector, usually based on the Gaussian assumption, is employed. In addition
depending on statistical changes in the environment over time and space, the
expert system enables the receiver to adapt so as to achieve close to optimal
performance. The goal of this study is to explore how an expert system can be
used to develop an adaptive radar receiver, able to outperform traditional radars
with respect to high subCL visibility. The focus of the study deals with detection
of weak targets which cannot be filtered from the CL by means of space—time
processing. For this purpose, it is convenient to divide the problem into two steps.
The first step involves classification of the cells to be tested, while the second has
to do with determining whether or not a target is present in the test cell. The two
steps are discussed in more details in the following sections.

2.2.2. CLASSIFICATION OF THE TEST CELLS

Classification of test cells involves two steps: mapping of the space and indexing
of the cells.

2.2.2.1. Mapping of the Space

In this research, the term, space, is used in its most general context. In practice,
an effort is made to filter the desired target return from the CL to the extent
possible. This is accomplished by performing space—time processing on
received data. In particular, given N temporal samples and M spatial samples
from a single range ring, spatial and temporal spectra are generated by performing
a linear transformation on the NM samples. When random processes are modeled
as SIRPs, the space—time processing will not change the nature of random
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processes, since a linear transformation of an SIRP results in an SIRP of the
same type. For example, if the underlying samples are modeled as Weibull,
the transformed samples will also be Weibull. The spatial spectra contain angle
of arrival information while the temporal spectra contain Doppler information.
Consequently, the space of interest consists of range/angle of arrival/Doppler
cells, respectively. It is in this general context that we refer to space and cells.

The mapping of the space can be done in two different ways: first, a CL
map of entire space can be generated by assigning a scan of the radar receiver for
this purpose. The CL map will indicate a priori those locations, which are likely
to consist of clear regions (where BN alone is present) and CL patches. Another
way, is to do a real-time assessment of a test cell. In other words, the question of
whether the test cell is in a clear region or in a CL patch is determined in real-time
during the scan.

2.2.2.2. Indexing of the Cells

In the regions where CL patches are present, a sufficient number of reference
cells near the test cell must be chosen so that the number of samples from the
reference cells (approximately 100 if using Ozturk’s algorithm®®*’) are adequate
for approximating the body of the joint PDF that is to be used in characterizing
the disturbance of the test cell. It should be recognized that a CL patch could
be nonhomogeneous. If so, it may be necessary to subdivide the CL patches
into subpatches. The samples from each subpatch would be approximated by a
different joint PDF.

An important point is that knowledge of the body of joint PDF describing
the disturbance is usually insufficient for determination of threshold of the radar
receiver. In this research, our focus is on the weak signal detection problem.
As pointed out earlier, the appropriate processor for this problem is the LOD.
For the LOD, Chakravathi and Weiner*'®*® have conjectured that the body of
PDF for the disturbance may be sufficient for determining the tail of the PDF for
the LOD statistic. The body of joint PDF describing the disturbance could then
be sufficient for determining the threshold of the LOD. This is significant
because, only around 100 reference cells are needed when Ozturk’s identifica-
tion algorithm is used.

A set of descriptors need to be allocated for each cell. This allocation is
referred to as cell indexing. The first item which needs to be determined is
whether the detection problem for the test cell should be classified as strong signal
detection, weak signal detection, or an intermediate case which falls between
strong and weak signal detection. For the case of strong signal detection, the
conventional radar receiver is adequate. For weak signal detection, the LOD
should be used. For the intermediate case, it is proposed to use Wang’s
processor'® based on the generalized likelihood ratio test (GLRT).

In all the three cases, it is necessary to use reference cells to estimate
information needed for implementation of the processor. This assumes that
the disturbance is homogeneous such that the reference cells neighboring the
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test cell are representative of the test cell. However, a test cell may be near
the edge of a CL patch or subpatch. Its location relative to these edges should
be known, so that the reference cells, which are truly representative of the test
cell, are selected.

For weak signal detection, the LOD differs from one joint PDF to another.
Hence, it is necessary to know the type of random processes (e.g., Gaussian,
K-distributed, Weibull, etc.) associated with the disturbance in the region, where
the test cell is located. In practice, Ozturk’s algorithm may indicate that, several
different PDFs are suitable for approximating a particular disturbance. When this
is the case, it may be desirable to implement several LODs and fuse the results.
Hence, descriptors should be allocated to each cell for describing one or more
joint PDFs in terms of their types, scales, locations, and shape parameters.

2.2.3. TARGET DETECTION

As mentioned previously, the type of detector depends upon whether the
detection problem has been classified as a strong signal case (SSC), weak signal
case (WSCQ), or intermediate signal case (ISC). Once the type of detector has been
selected, parameters for the sufficient statistic of the detector are determined from
the cell descriptors. Information from the cell descriptors is used to determine the
threshold. When several detectors are employed simultaneously, as could arise in
the WSC, a fusion algorithm is used to arrive at a global decision.”’

Mapping of the Space

Indexing of the Cells

Step 1: Classification of the test cells

Preprocessor

Target Detection

Step 2: Target detection

FIGURE 2.3 Signal understanding and detection using a feedforward expert system.
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The above discussion provides the basis for signal understanding and
detection using a feed forward expert system (SUD/FFES). A block diagram of
the SUD/FFES is shown in Figure 2.3.

The preprocessor collects data, performs classical space—time processing,
and stores the resulting data. This data is then used by the mapping, indexing, and
detection blocks, which implement the two steps discussed previously. A more
detailed block diagram is shown in Figure 2.4 where each block is subdivided
into signal processing blocks and signal interpretation blocks. Because weak
signal detection will be emphasized in this study, the portion dealing with weak
signal detection, is shown using solid lines while the remaining portions are
enclosed by dashed lines. The solid line portion is referred to as weak signal
understanding and detection using a feed forward expert system (WSUD/FFES).
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S. P.: Signal processing block (processes the data)
S. |.: Signal interpretation block (gives an interpretation to the S. P. output)

FIGURE 2.4 Signal processing and interpretation blocks in a feedforward expert system.
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TABLE 2.1
Functioning of the Signal Processing and Interpretation Blocks in a
Feedforward Expert System

Preprocessing

S.P. 1 Collects data.

Performs space-time processing
for each range ring to produce
a two dimensional spectrum
describing angle of arrival and

Doppler frequency information.

S.P.2

S.1.2

ssC
S.P. 10
For a given test cell assigns
a homogeneous distance
procedure to every pair
of cells within a specified
region of the space.

S.1.10

Chooses the reference cells
for the test cell based
upon number of reference
cells required and the
homogeneous distance
procedure.

Mapping
Uses spectral analysis and
rank ordering or a
thresholding technique to
distinguish between CL
and background noise.

Declares cells as BN
(therefore SSC) or CL cells.

Indexing

S.P.3

Uses rank ordering or
thresholding technique
to distinguish between
WSC and ISC

S.I.3
Declares cells as WSC or ISC

WSC
S.P. 4
For a given test cell assigns
a homogeneous distance
procedure to every pair of
cells within a specified
region of the space.

S.1.4

Chooses reference cells for the
test cell based upon number
of reference cells required
and the homogeneous
distance procedure.

ISC
S.P.7
For a given test cell assigns
a homogeneous distance
procedure to every pair
of cells within a specified
region of the space.

S.1.7

Chooses reference cells for
the test cell based upon
number of reference cells
required and the homoge-
neous distance procedure.
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TABLE 2.1 Continued

Indexing (cont.)

S.P. 11 S.P.5 S.P. 8
Estimates for each test cell Uses Ozturk’s algorithm to Estimates signal covariance
the variance needed to determine the PDF(s) matrix of the test cell
determine threshold. of the reference cells using data from the
and the associated reference cells.

parameters (e.g., scale,
location, shape, variance...).

S.L.11 S.I.5 S.1.8

Declares the cells from the Assigns one or more PDF(s) Models data as having a
clear region as SSC, and their parameters to jointly Gaussian PDF.
stores the value of the the test cell.

variance for each cell
(assuming white Gaussian
background noise).

Target Detection

ssC WSC IsC

S.P. 12 S.P.6 S.P.9

Computes threshold and Computes threshold, Computes threshold and
processes data from processes data using one processes data using
test cell using or more LODs, and fuses GLRT.
conventional radar (LRT). the results.

S.L.12 S.I.6 S.L1.9

Target present or absent. Target present or absent. Target present or absent.

A more detailed discussion of each block is provided in Table 2.1, and further
more in Sections 2.4—2.7. It may be noted that, this is a feedforward system in
the because the mapping, indexing, and detection are done sequentially with no
feedback between these blocks.

Since the data collected from the environment is random, it is not possible
to carry out an exact probability distribution identification using a reasonably
small amount of data. Consequently, it is better to think about the probability
distribution identification problem as an approximation problem, where we
expect to select PDFs and their parameters, which result in good approximations
to the underlying probability distributions.

Because the expert system of Figure 2.3 is feedforward, it does not allow for
verification of the interpretations made by any of the signal interpretation blocks
of Figure 2.4. Also, reprocessing of the data is not allowed by the feedforward
configuration. The system discussed in the next chapter adds to the expert system
the ability to reprocess data, if discrepancies are found to exist at the output of
any signal interpretation block. The concept of discrepancy analysis is discussed
in the next section.
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2.3. SIGNAL UNDERSTANDING AND DETECTION USING
A FEEDBACK EXPERT SYSTEM

2.3.1. INTRODUCTION

To convert the feedforward system of the previous chapter to a feedback
system, feedback is introduced within each block and to each previous block.
This is shown in Figures 2.5 and 2.6. We refer to such a system as signal under-
standing and detection using a feedback expert system (SUD/FBES). The expert
system analyzes the output of each block and makes an assessment, as to
whether correct signal processing and understanding have taken place. The
signal interpretation blocks of the feedforward system are augmented to carry
out this task. Depending upon the assessment made, additional data and signal
processing may be carried out.

The assessment procedure is indicated in Figure 2.5 by a block in the shape
of a diamond with one input and two outputs. The diamond input corresponds to
the output of the block to be evaluated. If correct signal processing and under-
standing is believed to have taken place, the block under evaluation is allowed
to communicate with the next block directly through the normal feedforward
channel. Otherwise, additional data and signal processing are carried out under
supervision of the expert system.

The feedback expert system to be used in this study, is called IPUS?
(Integrated Processing and Understanding of Signals). It is presently under
development by V. Lesser and H. Nawab?! and was successfully applied to an
acoustic recognition problem.?* In this study, it is proposed to apply the IPUS
expert system to the radar weak signal detection problem. In the following
sections, the theory of IPUS is introduced and examples for application of IPUS
to the radar weak signal detection problem are discussed.

2.3.2. IPUS ARCHITECTURE
2.3.2.1. Introduction

The TPUS architecture has evolved from research on the design of an acoustic
recognition system.?”> The goal of such a system is to identify the origins of
various sound sources (such as telephones, vacuum cleaners, crying infants, etc.).
The complexity of the acoustic recognition problem arises because of two
factors:

(a) The need to process a tremendous variety of signal types due to the
situation-dependent nature of the input. For example, not only may
the input of an acoustic recognition system includes different types
of signals, such as narrow-band, impulsive, and harmonic signals, but
also may include various combinations of these signals.

(b) The need to change processing goals in a context-dependent way. For
example, the goal of a signal understanding system might be to respond
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Mapping of the Space [+—

Indexing of the Cells

Preprocessor

Step 1: Classification of the test cells

Target Detection

—

HO or H1

Step 2: Target detection

FIGURE 2.5 SUD/FBES.

to either the sounds of an infant or a ringing telephone and ignore other
sound sources. If an infant sound is detected, the system would then
ignore the telephone and would switch its main goal to determining
whether the infant is laughing, crying, or choking.

These two factors also arise in the radar detection problem. Specifically,
complexity is encountered because of:

(a) The need to process a tremendous variety of signal types due to the
situation-dependent nature of input. For example, the PDFs of random
received signals may be Gaussian, Weibull, K-distributed, etc., with
various values for the scales, locations, and shape parameters.

(b) The need to change processing goals in a context-dependent way.
For example, the usual operational mode of a radar involves processing
of returns from clear regions which consist of strong signals embedded
in a weak Gaussian BN. If a return from a CL region is determined, it
must be decided whether either the intermediate or weak signal case
(WSC) exists. If the WSC is applicable, one or more LODs need to
be selected.
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S. P.: Signal Processing block (processes the data) *
S. |.: Signal Interpretation block (gives an interpretation to the S. P. output)

FIGURE 2.6 Signal processing and interpretation blocks in a feedback expert system.

In discussing the IPUS expert system, concepts are illustrated with examples
taken from the radar detection problem.

In the radar detection problem considered in this research, it is assumed that,
the signal environment is unknown a priori, even though mathematical models,
for various signals that can arise, are assumed to be known. Once the environment
has been determined, application of the appropriate signal detection algorithm
(e.g., Gaussian receiver, LODs, GLRT) is straightforward. The difficult problem
addressed by the IPUS architecture deals with the use of measured data to
identify suitable mathematical models, for approximating the various signals
received from the unknown environment.
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The algorithms employed in the IPUS architecture to identify mathematical
models for approximating the received signals, are referred to as signal processing
algorithms (SPAs).

Because of the two factors mentioned previously, it is very difficult or
even impossible, to design a single mathematically derived SPA which can be
applied to all possible input signals to produce the desired information for
each input. To deal with such complexities, the approach taken in the IPUS
architecture is for the signal understanding system to have access to a ‘“data-
base” of mathematically derived algorithms. For the radar detection problem,
examples are algorithms for the mean estimation, covariance matrix estimation,
goodness of fit test and the PDF approximation. This database is indexed by
the type of assumptions made about the input signal and the type of output
information desired in accordance with the current goals of the signal under-
standing system.

For example, it may be assumed that the input signal is Gaussian. A good-
ness of fit test algorithm would be applied to determine whether the data is
statistically consistent with the Gaussian assumption. If the Gaussian assumption
is not rejected, then the desired output information would be the sample mean
vector and sample covariance matrix of the data.

The IPUS architecture utilizes the fact that, signal processing theories often
supply a system designer with an SPA which has adjustable control parameters
(sampling period of data samples, number and location of reference cells, etc.).
SPA denotes a database of SPA “instances,” each instance corresponding to a
particular set of fixed values for the control parameters. The IPUS architecture
is designed to search for appropriate SPA instances to be utilized in particular
situations in order to accurately model the unknown environment.

Two basic approaches for carrying out the signal processing are:

(a) Process the incoming signal with all the SPA instances those are
potentially relevant to the entire class of possible input signals in
the application domain and then choose the output data which has the
most consistent interpretation. This approach requires vast amounts of
signal-processing output data to be examined by higher level inter-
pretation processes.

(b) Process the incoming signal with one or a small number of the possibly
relevant SPA instances, then use some mechanism to recognize whether
incorrect processing has taken place. This is followed by determination
of the nature of incorrect processing, through a diagnostic reasoning
process and finally changing the parameter settings of the SPA with
the aim of obtaining an SPA instance appropriate for the processing of
input signal. The SPA instance with the adjusted control parameter
settings is then used to reprocess the input signal.

In order to select appropriate values for SPA control parameters, the system
must consider the current system goals as well as knowledge about certain
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characteristics of the particular input signal. This leads to a paradox. Choosing
the appropriate control parameter values requires knowledge about the signal.
However, this knowledge can only be obtained by first processing the signal with
an algorithm with appropriate control parameter setting. Under this situation the
following approach is adopted.

The IPUS architecture uses an iterative technique for converging to the
appropriate control parameter values. The technique begins by using the best
available guess for the SPA control parameters values. The SPA instance output
is then analyzed through a discrepancy detection mechanism for indicating the
presence of distorted SPA output data. A diagnosis is then performed for mapping
the detected discrepancies to distortion hypotheses. A signal reprocessing phase
then proposes a new set of values for the control parameters of the SPA with the
aim of eliminating the hypothesized distortions. The SPA instance corresponding
to new control parameter values is then used to reprocess the input signal. The
output from the reprocessing once again undergoes discrepancy detection and if
necessary, is followed by diagnosis, signal reprocessing planning, and further
reprocessing of the input signal.

The signal data and the interpretation hypotheses derived from that data are
stored on a blackboard with hierarchically organized information levels. The
hypotheses on the blackboard fall into two basic categories: hypotheses posted
to explain the signal data and hypotheses posted to specify expectations about
the nature of the signal data. The inferencing on the blackboard is performed by
different knowledge sources (KSs) for tasks, such as, discrepancy detection,
diagnosis and reprocessing, and data interpretation. These tasks are presented in
the following subsections.

2.3.2.2. Discrepancy Detection

Ideally, application of an SPA instance to input data results in undistorted output
data. If the control parameters of the SPA instance are not appropriately chosen,
distorted output data may result. The key to discrepancy detection is the ability
to recognize and classify discrepancies due to distortion introduced by the SPA
instance. Three types of discrepancies are possible:

1. The first type of discrepancy is referred to as a violation. A violation
occurs when the SPA output data implies the presence of a signal which is not
a member of the allowable class of input signals. For example, disturbances
arising from cells in the clear region are always modeled in this work as
Gaussian processes, because of the expectation that BN is Gaussian. Suppose,
when output data from an SPA instance implies that the disturbance from a
cell in the clear region is non-Gaussian, a violation type of discrepancy
would result.

2. The second type of discrepancy is referred to as a conflict. A conflict
occurs when current SPA output data is inconsistent with expectations arising
from interpretations of past data. There are two types of conflicts depending on
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whether all, or only a portion, of the current SPA output data is inconsistent.
For an example of the first type of conflict, suppose previous SPA output data
arose from disturbances in the clear region while current SPA output data is
arising from disturbances in a CL patch. A conflict of the first type occurs if
all of the current SPA output data, such as an increase in variance and
nonGaussianity of the data, conflict with previous interpretations from the clear
region. For an example of the second type of conflict, suppose previous SPA
output data has resulted in the interpretation that the disturbance is from the
clear region. This might be implied by the SPA output data indicating Gaussian
statistics, zero mean and a variance level in the range of BN. A conflict of
the second type occurs when, even though Gaussian statistics are confirmed by
current SPA output data, it also reveals that the mean is no longer zero and
the variance level has increased significantly. This could happen if the
disturbance is now coming from a Gaussian CL patch where the data is highly
correlated.

3. The third type of discrepancy is referred to as a fault. A fault can arise in
two different ways. First, it occurs when two or more different SPAs, those that
are applied to the same data, result in different output interpretations. Second,
it occurs when two or more instances of a single SPA (i.e., the same SPA with
different parameter values) result in different interpretations when applied to
the same data. An example of the first kind of fault would be the situation where
SPA # 1, a power level detector, indicates a power level consistent with the
BN while SPA # 2, Ozturk’s distribution identification algorithm, indicates a
nonGaussian distribution. This is a fault because the BN is assumed to be
Gaussian. An example of the second kind of fault would be the situation where
the use of Ozturk’s algorithm based on 50 and 100 samples from the same CL
patch results in a different interpretation.

2.3.2.3. Diagnosis and Reprocessing

When the signal being monitored does not satisfy the requirements of the SPA
instance, the output of the SPA is distorted resulting in a discrepancy. Once a
discrepancy has been detected, a diagnosis procedure is used to identify the
distortion which may have led to the discrepancy. Knowing the distortion, either
the appropriate parameters of the same SPA can be adjusted or a different
SPA can be chosen to reprocess the data. In a sense, the diagnosis procedure
maps symptoms (discrepancies) to hypothesized underlying causes (distortions).
For example, assume the sample mean of a CL patch is repeatedly being
evaluated by processing 50 samples at a time. Although, the first eight trials result
in values close to zero, the ninth trial produces a large negative value for the
mean. This represents a conflict of the first kind. The diagnosis procedure may
surmise that the conflict may be due to the presence of one or more outliers.
Consequently, the reprocessing procedure concludes that the data from the ninth
trial should be reprocessed after removal of the outliers.
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2.3.2.4. Interpretation Process

The interpretation process is a search through a space of sets of interpretation
models for modeling signals. When a possible combinatorial explosion in inter-
pretation models does not exist, the interpretation process may be viewed as just a
straight-forward classification process. Otherwise, the search must be carried out
as a constructive problem solving process. The IPUS architecture employs the
constructive problem solving approach, which reduces to the classification
approach in absence of a combinatorial explosion.

Constructive problem solving techniques must be used when the set
of possible solutions is too large to be enumerated. For example, although the
set of PDF types is finite in the radar problem, there are an infinite number of
different PDFs possible because of the infinite number of values that can be
assumed by the scales, locations, and shape parameters. Consequently,
constructive problem solving is needed to approximate the underlying probability
distribution of the data.

2.3.2.5. SOU and Resolving Control Structure

At any stage in monitoring the environment, one can never be totally sure that
various interpretations are correct. Sources of uncertainty (SOU) always exist
with regards to the correct processing of data and the extent of confidence to be
placed in the interpretation. The objective of IPUS is to continue to reprocess
data, as time permits, so as to reduce the SOUs. This reprocessing is continued
until either the level of uncertainty has been reduced to some acceptable level or
until all the time allotted for reprocessing has been utilized.

The process of reducing the SOUs can be viewed as a problem solving
activity. At each stage of the IPUS architecture, it is necessary to identify SOUs
associated with a particular output and to have a strategy for reprocessing the
data, so as to efficiently reduce the SOUs associated with a particular output. The
Resolving Sources of Uncertainty (RESUN) control®' structure is used to direct
the problem-solving procedure used to gather evidence, in order to resolve
particular SOUs in the interpretation hypotheses.

The IPUS architecture and RESUN control structure presently group SOUs
into three categories: (1) violation-type discrepancies, (2) conflict-type discre-
pancies, (3) fault-type discrepancies. The basis for these categories is largely
empirical and is continually evolving. These categories are discussed below.

2.3.2.5.1. Violation-Type Discrepancies

A violation type discrepancy occurs when signal processing output data violates
a priori known characteristics of the entire class of possible input signals for the
radar problem. For example, BN is assumed to have zero mean. Assume that a
signal has been interpreted as white Gaussian and with a very small power level.
In addition, the mean has been interpreted as being nonzero. Because of the
nonzero mean, the signal cannot be classified as BN. Also, because of the small
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power level, the signal cannot be classified as CL. Clearly, a violation exists
and the zero-mean condition has been violated. There are various SOUs which
could have caused this violation. For example,

(1) there could have been one or more outliers in data,

(2) there may not have been an adequate number of samples processed,

(3) the random samples may not have been representative of the zero-mean
signal,

(4) a desired target return could be contained in one or more of the
reference cells.

For each of the above SOUs, respectively, one or more procedures exist
for their reduction. For example,

(1) extreme values could be excised from the data,

(2) the number of samples processed could be increased,

(3) an entire set of new samples could be processed,

(4) previously detected targets could be checked to determine, whether one
or more targets are likely to be present in one or more of the reference
cells. If so, these cells should be eliminated as reference cells, for the
test cell of interest.

When a violation-type discrepancy is noted, the hypothesis that a violation
exists is posted on the interpretation blackboard of the expert system. For each
condition being violation and each SOU that could have caused the violation,
an additional output data hypothesis is posted which describes the condition
being violated and the SOU that could have caused the violation. The SOUs,
which fail to produce some particular support evidence for a single input
signal or fail to result in any valid explanation for a combination of input
signals, are classified as negative evidence SOUs. The hypothesis concerning
the violation-type discrepancy and each of the additional hypotheses are then
connected by a negative evidence link and are labeled as VIOLATION-
NEGATIVE EVIDENCE SOU. Further problem solving to reduce the SOU
can then be carried out by reprocessing the underlying signal with different
SPA instances.

2.3.2.5.2. Conflict-Type Discrepancies

After processing a certain quantity of data, various expectations related to
the data to be processed arise. Conflicts occur when these expectations are not
met. If all the expectations are not met, the conflict is said to be of the first kind.
If some expectations are met while others are not, the conflict is said to be of the
second type.

An unverified expectation hypothesis exists when there is a conflict of
the first type. A NO-SUPPORT SOU label is attached to each unverified
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expectation hypothesis. For each expectation (i.e., component of the hypothesis)
not being met and for each SOU that might be responsible, an additional
hypothesis is posted on the interpretation blackboard which describes the
unsupported expectations and the corresponding SOUs. The hypothesis
concerning the conflict-type discrepancy and each of the additional hypotheses
are connected by a link labeled NO-SUPPORT SOU. Further problem solving
can then attempt to find SPA instances so as to produce output data that can
support the expectation.

When there is a conflict of the second type, a partially verified expectation
hypothesis is posted on the interpretation blackboard with a PARTIAL-
EVIDENCE SOU label. As in the previous case, each unsupported expectation
(i.e., inference or hypothesis component) is associated with a hypothesis, labeled
NO-SUPPORT SOU, which describes the unsupported expectation and the
corresponding SOU. The hypothesis labeled PARTIAL-EVIDENCE SOU can
trigger further problem solving, to find support for lower component hypotheses
labeled NO-SUPPORT SOU.

By way of example, assume that the previous ten test cells were classified
as having been in the clear. Our expectation hypothesis, therefore, is that the
11th test cell will also be in the clear. If the 11th test cell fails the Gaussian,
zero-mean, and small power level inferences, we have a conflict of the first type.
On the other hand, if the Gaussian and zero-mean inferences are found to have
support while the small power level inference is unsupported, we have a conflict
of the second type. SOUs and corresponding linked hypotheses would be
identified with each unsupported inference and additional signal processing
would be carried out to reduce the level of SOUs as time permits.

2.3.2.5.3. Fault-Type Discrepancies

Fault-type discrepancies arise when two different SPAs or instances produce
different output interpretations. In such a case, a composite hypothesis is created
which is a copy of the more reliable or the two output interpretations. A link
labeled with a NEGATIVE-EVIDENCE SOU connects the less reliable
hypothesis to the composite hypothesis. Further problem solving, attempts to
remove the negative-evidence SOU by reprocessing the signal using different
SPA instances for the less reliable SPA. Two possible outcomes are then
possible. Either the negative evidence SOU is eliminated or it is replaced by
another negative-evidence SOU. In the latter case, further problem solving can
attempt to reprocess the signal with the more reliable SPA but using different
SPA instances.

By way of example, assume that a zero-mean inference is to be supported
by a sample-mean algorithm and a median detector algorithm. Assume that,
only a small number of data samples are available. Under this assumption, the
median detector algorithm is likely to be more reliable. Suppose, the median
detector algorithm supports the zero-mean inference while the sample mean
algorithm does not. RESUN creates the composite hypothesis that the mean is
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zero. The composite hypothesis is limited to the hypothesis that the mean is not
zero by using a NEGATIVE-EVIDENCE OUTLIER label. The data samples
are then reprocessed by sample mean algorithm using SPA instances, which
delete some of the extreme data values. If the zero-mean inference is supported,
the negative evidence SOU is assumed to have been eliminated. On the
contrary, the signal is reprocessed by the median detector algorithm, where
different sets of outliers may be chosen.

2.3.3. AprPLICATION OF IPUS 1O RADAR SIGNAL UNDERSTANDING

The IPUS architecture is suitable when a single SPA instance cannot correctly
process all input signals which can potentially arise in a signal understanding
application. In the radar problem, the variety of probability distributions under-
lying the data, along with different tasks to be carried out in monitoring the
environment (CL mapping and cell indexing), necessitate more than one SPA
instance, rendering IPUS suitable for the radar problem.

In this research we emphasize the weak singal case (WSC). As explained
previously, the branch of Figure 2.6 corresponding to the WSC is referred to as
WSUD/FBES. From the figure, it is clear that tasks of WSUD/FBES have been
subdivided into mapping, indexing and detection. Assuming the mapping and
indexing to be done properly, application of the LOD is straightforward.

2.4. PROPOSED RADAR SIGNAL PROCESSING SYSTEM
USING A FEEDBACK EXPERT SYSTEM

2.4.1. DATA COLLECTION AND PREPROCESSING

Assume that a radar transmits a periodic signal composed of a series of predefined
RF pulses. Let T be the period of the signal and 7. denote pulse duration. T is
known as the pulse repetition interval (PRI). Assuming rectangular-shaped
pulses, the envelope of emitted signals is shown in Figure 2.7 where A denotes
pulse amplitude.

For ease of discussion, consider a low pulse repetition frequency (PRF) radar
for which there is no range ambiguity. During the time interval [pT + 7,
(p+ DT], of the pth PRI, p =1, 2, 3, ..., the radar functions are in the receive

Transmitted signal envelope

FIGURE 2.7 Envelope of the transmitted signals.

© 2006 by Taylor & Francis Group, LLC



30 Adaptive Antennas and Receivers
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FIGURE 2.8 Range cells in a constant azimuth beam.

mode and collect data, due to the pth pulse from the azimuth angle, 8,, to which
the radar antenna is oriented. The collected data corresponds to returns from
different range cells as illustrated in the top view of Figure 2.8 where A6 denotes
the antenna beam width.
The round trip delay, #4, from a given range R is given by
tg = 2R (2.18)
c

where, c denotes the velocity of propagation of the electromagnetic wave. For the
pth period of the transmitted signal, the time interval [pT 4 7., (p + DT] is
subdivided into J range bins of duration 7.. Each range bin corresponds to a range
cell with its range extent denoted by r.. Figure 2.9 shows the different range cells
and their corresponding range bins on the time axis for a fixed azimuth angle 0,.

Top view

Emitted burst——=_4 —» To «—
envelope . T E— t
P 0 Hih bl et
Bin 1 Bin K

FIGURE 2.9 Range cells and their corresponding time bins.
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Let R, and R;, denote the ranges to the leading and trailing edges of the kth
range cell. Also, let #; and #, denote the corresponding round trip delay times.
Then, using Equation 2.18 it can be written

2R 2R
f = Tk and 1, = é‘“ (2.19)

Taking the difference and utilizing the fact that a range bin is defined to be of time
extent, 7., results in

2Rys; — R
bt — o= 7, = % (2.20)

Hence, each range bin of time extent, 7., corresponds to a range cell of range
extent, r., where
Te

Te = Ry —Rk=c7 (2.21)
This process is repeated for different azimuth angles, 6,. The collection of
cells corresponding to different ranges and azimuth angles can be represented
in a rectangular format, as illustrated in Figure 2.10. The collection of range
cells corresponding to a constant azimuth angle is shown in Figure 2.8. For a
fixed range, the collection of azimuth cells is as shown in Figure 2.11.
Let the range bins be indexed by kg, 1 =< kg = J, and the azimuth bins be
indexed by ks, 1 = ko = K. The resolution cell corresponding to kg =j and
ka = k is referred to as the jkth range—azimuth (R/A) cell, as illustrated in

Figure 2.10.
N jkth R/A cell

K
(2]
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FIGURE 2.10 Rectangular format for representative cells at different ranges and azimuth
angles.
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\\\ """" /% Azimuth bin

FIGURE 2.11 Collection of azimuth cells for a fixed range.

In practice, the antenna beam dwells on each R/A cell for a time duration,
known as the dwell time which is equal to P PRIs. Consequently, P pulse returns
from each R/A cell, spaced T seconds apart, can be processed. After decomposing
the P received pulses into a sequence of / and Q quadrature components, a
Doppler filter bank is implemented by performing a M-point fast Fourier
transform (FFT) on each of the P quadrature component samples where M = P
depending upon whether or not zero padding is used. Let y;,(j, k) and yo,(j, k),
p=1,2,3, ..., P,denote the ] and Q components from the pth PRI of the jkth R/A
cell. Similarly, let Y;,,(j, k) and Yy,,(j, k), m = 1,2, 3, ..., M, denote the mth FFT
coefficient from the jkth R/A cell. In addition to computing the temporal data
magnitudes, y,(j, k), from the I and Q quadrature components for each PRI,
the magnitude of each Fourier coefficient, Y,,(j, k), is computed, as shown in
Figure 2.12, to form the FFT coefficient magnitudes.

The collection of cells corresponding to different ranges, azimuth angles, and
Doppler frequencies can be represented in a 3-D cubic format, as illustrated in
Figure 2.13. Let the Doppler bins be indexed by kp, 1 = kp = M. The resolution
cell corresponding to kg =j, ka = k, and kp = m is referred to as the jkmth
range—azimuth—Doppler (R/A/D) cell. The total number of R/A/D cells is given
by J X KX M.

The temporal data magnitudes and FFT coefficient magnitudes are used by the
mapping processor to enable classification of the R/A/D cells into BN cells and
CL cells. The mapping approach is described in the next section for the general
radar problem.

2.4.2. MAPPING

The purpose of mapping is to declare a R/A/D cell, as either a BN cell or
CL cell. As shown in Figure 2.14, two types of data are formed in the
preprocessing stage. These are, temporal data magnitudes, y,(j, k), and FFT
coefficient magnitudes, Y,,(j, k). The set of y,(j, k) magnitudes consists of P
data points for each R/A cell in the J X K R/A plane, while, the set of Y,,(j, k)
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FIGURE 2.12 Block diagram of data processing stage.

magnitudes consists of one data point for each R/A/D cell in the J X K X M
R/A/D space.

The mapping is done in two stages. First, using y,(j, k), the R/A plane is
mapped into BN and CL (CL) R/A cells. Then, using Y,,(j, k), the 3-D R/A/D
space is mapped into BN and CL R/A/D cells. The necessity for performing
mapping in two stages is explained next.

In the first mapping stage, an average P(j, k) is formed for each R/A cell in
the J X K R/A plane by averaging the power of the P temporal data magnitudes,
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FIGURE 2.13 Cubic format for representing cells at different ranges, azimuth angles, and
doppler frequencies.

¥p(Jj, k) as shown in Equation 2.22,

, l & 5. j=L2..J
PGB = P;yp(”k)’ k=12, K. (2.22)
The average powers P(j, k) are used to classify BN and CL cells in the R/A plane,
as is discussed in the next chapter.

The second stage involves the 3-D R/A/D space. In particular, each cell in the
R/A/D space needs to be classified as either BN or CL. The classification
performed in the first mapping stage is useful in reducing the effort required in
the second stage. If the jkth R/A cell is BN, then all of the jkm Doppler cells,
m=1, 2,..., M, will also be BN. However, if the jkth R/A cell is CL, then the
Jjkm Doppler cells, m = 1, 2,..., M, may or may not be CL depending upon the
CL spectrum. Consequently, only the Doppler cells corresponding to R/A cells
that have been identified as CL in the first mapping stage need to be examined
in the second stage. This reduces considerably the amount of processing needed
for the second mapping stage.

Notice that two-way communications is required between the preproces-
sing and mapping stages. As shown in Figure 2.14, the preprocessing stage
generates the quadrature components, the FFT coefficients, and their magni-
tudes. The first mapping stage classifies the R/A cells as either BN or CL.
For those R/A cells classified as BN, the corresponding Doppler cells are also
classified as BN by the second mapping stage. For those R/A cells that are
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FIGURE 2.14 Block diagram of the preprocessing and mapping of data.

classified as CL, the second mapping stage obtains the FFT coefficient
magnitudes. These are then used to classify the remaining R/A/D cells as
either BN or CL.

The major focus of this work is to demonstrate how the principles of IPUS
can be applied to the radar problem. For that purpose, procedures and rules
have been developed that utilize the IPUS capabilities to solve the various
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stages of the radar problem. Throughout this work the procedures and rules have
been tested with nontrivial radar examples. The first procedure, presented in the
next section, is a mapping technique that classifies cells into BN and CL.

2.5. MAPPING PROCEDURE

In this section a mapping procedure for a surveillance volume subdivided
into R/A cells is presented along with examples. Also, extension of the mapping
procedure to R/A/D cells is discussed in the last section. General procedures are
presented without explanations of how to choose parameters. The explanations
are provided in Section 2.7.

2.5.1. INTRODUCTION

Assume that J X K R/A cells are scanned by a radar antenna. Furthermore,
for simplicity, assume that the dwell time is equal to the PRI so that only a single
pulse is processed from each cell, i.e., P = 1. In this case, an FFT is not possible
and the block diagram of the preprocessing stage reduces to that shown in
Figure 2.15. When an FFT is not possible, the block diagram of the preprocessing
and mapping stages, shown in Figure 2.14, simplifies to Figure 2.16. Only J X K
temporal data magnitudes y(j, k) are available to the mapping stage. In this case,
only J X K R/A cells need to be mapped into BN and CL cells and the mapping
process of Figure 2.14 reduces to the first mapping stage alone. As explained
in Section 2.4.2, an average power P(j, k) is formed for every R/A cell in
the J X K R/A plane. For P = 1, Equation 2.22 becomes

i=1,2,...,J

2.2
k=1,2,..,K. (2.23)

PG, k) = y1(j, k);

I-component bank
i Yn (1 1 ) /XT
Antenna — Mixer [ . :‘7l
<]
N Temporal data
. + magnitude bank
St = y(1)
Range |, | LT |
selector 7 Bk S
-component ban ?
yQ‘l (1 '1 ) — '
) < yi(J.K)
3 _
L Mixer | >
Ya1 (J, K)
Output

FIGURE 2.15 Block diagram of data preprocessing stage for P = 1.
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Generation of quadrature components
as shown in Figure 2.15
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FIGURE 2.16 Block diagram of preprocessing and mapping stages for P = 1.

At this point, the R/A plane consists of two different types of regions that need to
be identified. These are clear regions, where BN alone is present, and CL patches,
where CL and additive BN are present. Let us, first, examine the nature of the BN
and CL in order to understand the theory behind the procedure development for

mapping.
2.5.2. OBSERVATIONS ON BN AND CL CELLS

Assuming additive BN and CL, the following observations are based on many
computer generated examples of a BN region containing CL patches where the
CL-to-noise ratio (CNR) is assumed to be greater than 0 dB. The BN envelope
is assumed to be Rayleigh while the CL envelope may be either Rayleigh,
K-distributed, Weibull, or lognormal.

2.5.2.1. Observations on BN Cells

The following observations on BN cells were noted:

— On an average, the BN data values are smaller than the CL data values.

— Large data values may exist in a BN cell that may be higher than some
data values of a CL cell.

— Large data values in the BN tend to be isolated points.

— The number of BN data significantly larger than the average is relatively
small. Figure 2.17 shows a typical BN data histogram.
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FIGURE 2.17 Example of a BN histogram.

— The relatively small numbers of large BN data are distributed sparsely
throughout the surveillance volume.

2.5.2.2. Observations on CL Cells

The following observations on CL cells were noted:

— On an average, CL data values are higher than BN data values.

— A CL region contains additive CL and BN.

— Small data values may exist in a CL cell that may be smaller than some
data values of a BN cell.

— The large CL data values tend to be larger than most of the large BN data
values assuming positive CNR.

— Whereas the BN data values are distributed over the entire surveillance
volume, the CL data values are distributed only over the CL regions.

— Large data values in the CL tend to be clustered.

Figure 2.18 shows an example of the distribution of large values of BN data
denoted by ( X ) and large values of CL data denoted by (0). Notice that the large

X X
X
X

] X
3 o 08%

0 %0

x o

£ x 95O x o o
g 0 0
15 . 9.0
< o

x x x

X

x Large BN data
o Large CL data

Range bins

FIGURE 2.18 Concentration of large data in a scanned volume.
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BN data values are sparsely distributed over a large area while large values of CL
are concentrated in small regions, the CL regions.

2.5.3. MAPPING PROCEDURE

Using the fact that CL patches, on an average, have stronger radar returns, the
mapping processor begins by setting a threshold which results in a specified
fraction of BN cells, as explained in Section 2.7. Image processing is then used
to establish the BN and CL patches. If the final image contains a significantly
different fraction of BN than originally established by the initial threshold, the
process is repeated with a new threshold. The mapping processor iterates until
it is satisfied that the final scene is consistent with the latest specified threshold.
Finally, CL patch edges are detected using image processing technique.

The mapping procedure consists of two steps. The first step is the identifica-
tion of CL patches within BN and second is the detection of CL patch edges and
their enhancements. These two steps are explained next.

2.5.3.1. Separation of CL Patches from Background Noise

Identification of CL patches within BN is performed by following steps: thres-
holding, quantization, correction, and assessment.

2.5.3.1.1. Thresholding and Quantization

Identification of CL patches within BN starts by setting a threshold ¢ that results
in a specified fraction of BN cells. Then a quantized volume is formed as follows:
all R/A cells with average power less than g are given a value of zero and all
R/A cells with average power above g are given a value of one (unity). Let O(j, k)
represent the quantized value of the jkth R/A cell. Then,

1 if P(jk)=gq

j=1,2,....,J and k=1,2,.... K (2.24
0 if P(],k)<q J )< ’ an )< ’ ( )

Q(j,k):[

where P(j, k), the average power of the jkth R/A cell, is defined in Equation 2.23.

Figure 2.19 shows the computer generated CL patches and BN region which
are to be separated by mapping procedure. A, B, C, and D denote the CL patches.
Figure 2.20 shows a typical contour plot of the quantized R/A volume. Initially,
let R/A cells with a quantized value of one be declared as CL cells and R/A
cells with a quantized value of zero be declared as BN cells. By comparing
Figures 2.19 and 2.20, note that the quantized version differs from the original.
This is due to the fact that even though the average powers of BN cells are
expected to fall under the threshold typically, some BN cells have an average
power that falls above the threshold. Similarly, while the average powers of CL
cells are expected to fall above the threshold, typically, some CL cells have an
average power that falls under the threshold. Also, as explained in Section 2.7,
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FIGURE 2.19 Example of a generated range—azimuth volume that is to be separated by
the mapping procedure.
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FIGURE 2.20 Example of a quantized range—azimuth volume.

the first setting of the threshold, which is somewhat arbitrary, is likely not to be
the best for identifying CL patches within BN.

2.5.3.1.2. Correction

After quantization, the next step is to correct misclassified BN and CL cells.
Consider a set of three by three R/A cells. As shown in Figure 2.21, let the center
cell be referred to as the test cell and the surrounding cells be referred to as the
neighboring cells. Assume that a CL patch cannot be formed by a single cell. In
this case, every test cell in the CL patch has at least one neighboring cell that
belongs to the same CL patch.
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FIGURE 2.21 3 X 3 Range—azimuth cells.

A test cell belonging to a CL patch that has at least one neighboring BN cell
is referred to as a CL edge cell. On the other hand, a test cell that belongs to a
CL patch, for which none of the neighboring cells are in the BN, is referred to as
an inner CL cell.

The proposed correction technique consists of transforming the quantized
volume into a “corrected* volume. The transformation consists of the following
steps:

1. As explained in Chapter 7, choose the necessary number of CL neigh-
boring cells in the quantized volume (NCQ), for a test cell in the
quantized volume to be declared as a CL cell in the corrected volume.
NCQ can take one of the following values: 5, 6, 7, 8.

2. For every test cell in the quantized volume count the number of
neighboring CL cells. If the number is greater than or equal to NCQ
declare the test cell as a CL cell in the corrected volume. Otherwise,
declare the test cell as a BN cell in the corrected volume.

When all the cells of quantized volume have been tested, a corrected volume
consisting of declared BN or CL R/A cells is obtained. Notice that a cell type is
not updated until the entire correction is done. Figure 2.22 shows an example of a
corrected volume. Notice that the latter volume has larger homogeneous regions
than the quantized one.

Because NCQ is chosen to be relatively large (i.e., NCQ =135, 6, 7, or 8),
BN cells those were incorrectly identified in the quantized volume as CL cells,
due to their large power, tend to be reclassified as BN cells. Also, inner CL cells
in the quantized volume are recognized as CL cells in the corrected volume.
Meanwhile, most of the CL edge cells in the quantized volume are recognized as
BN cells in the corrected volume. This results in an over-correction where most

© 2006 by Taylor & Francis Group, LLC



42 Adaptive Antennas and Receivers

60

40

30

Azimuth

20 -

00,

10

10 20 30 40 50 60 70 80 90
Range

FIGURE 2.22 Example of a “corrected” range—azimuth volume.

of the CL edge cells are identified as BN. As an example, when NCQ = 8, only
inner CL cells in the quantized volume are recognized as CL cells in the corrected
volume and all CL edge cells in the quantized volume are recognized as BN cells
in the corrected volume. In order to recover the edge cells, a second correction
stage is needed where the first corrected volume will be transformed into a second
corrected volume. Let the first corrected volume be referred to as the “corrected-
quantized” volume (CQV) and the second “corrected” volume be referred to
as the “corrected—corrected” volume (CCV). The following steps are used to
transform the CQV into the CCV:

1. As explained in Section 2.7, choose the necessary number of CL
neighboring cells, NCC, for a test cell in the CQV to be declared as a
CL cell in the CCV. NCC can take one of the following values: 1, 2, 3,
or 4.

2. For every test cell in the CQV count the number of neighboring
CL cells. If the number is greater than or equal to NCC declare the test
cell as a CL cell in the CCV. Otherwise, declare the test cell as a BN
cell in the CCV.

Figure 2.23 shows the CCV obtained by transforming the CQV of
Figure 2.22.

2.5.3.1.3. Assessment

Let BNQP, BNCQP, and BNCCP denote the percentage of BN cells in the
“quantized,” corrected—quantized and corrected—corrected volumes, respect-
ively. BNQP is prespecified so as to determine the threshold for the quantized
volume, whereas BNCQP and BNCCP are computed after the CQV and the CCV
are obtained.
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FIGURE 2.23 Example of the CCV corresponding to the CQV of Figure 2.22.

The assessment process consists of comparing BNCQP and BNCCP to
BNQP in order to determine whether or not the percentages of the BN cells after
correction are consistent with the percentage of BN cells in the quantized volume.
When there is no consistency, further quantization, correction and assessment are
performed until consistency is obtained.

The thresholding/quantization, first correction, second correction, and assess-
ment stages are used to find the best threshold to separate between BN and
CL patches. Once BNQP has been set, a threshold is computed. Then corrections
are made to try and build the BN region and CL patches. The correction stages
relabel some of the above-threshold cells as BN cells if they are likely to belong
to the BN, and some of the below-threshold cells as CL cells if they are likely
to belong to a CL patch, based on the choices for NCQ and NCC. Depending on
how good or how bad of a choice is the threshold, many or few cells are relabeled,
respectively. At the end of the procedure, BNCCP is computed and compared
to BNQP. If the values are within a certain range, few cells would have been
relabeled, the threshold is accepted and the assessment passes. Otherwise, many
cells have been relabeled and the threshold is rejected. The iterative process
then continues by setting another threshold through the choice of a new value
for BNQP.

Rules for choosing NCQ, NCC, and BNQP and for determining when
consistency of the percentages are obtained are explained in Section 2.7.

2.5.3.1.4. Smoothing

Examples have shown in many cases that when the percentages are consistent,
CL declared patches may contain isolated BN declared cells. Because small
powers can arise in a CL patch as explained in Section 2.5.2, it is most likely that
isolated BN cells in CL patches are CL cells. The smoothing process is
used to detect these isolated cells and label them adequately by transforming
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FIGURE 2.24 Example of the smoothed volume corresponding to the corrected-corrected
volume (CCV) of Figure 2.23.

the CCV into a smoothed volume (SV). The smoothing technique consists of the
following steps:

1. Choose the necessary number of CL neighboring cells, NS, for a BN
identified test cell in the CCV to be declared as a CL cell in the SV
where NS can take one of the following values: 5, 6, 7, or 8.

2. For every BN identified cell in the CCV count the number of neigh-
boring CL cells. If the number is greater than or equal to NS, declare the
test cell as a CL cell in the SV. Otherwise, declare the test cell as a BN
cell in the SV.

Figure 2.24 shows an example of the SV corresponding to the CCV of
Figure 2.23. Note that the CL patches are smooth and do not contain any isolated
points.

2.5.3.2. Detection of CL Patch Edges and Edge Enhancement

2.5.3.2.1. Detection of CL Patch Edges

After smoothing, each cell in the SV has been declared as either a CL or BN cell.
The next step is to determine which of the CL cells are located on the edges of the
CL patches. This is important for subsequent radar signal processing if reference
cells for estimating parameters of a test cell are to be chosen properly.

Identification of CL edge (CLE) cells is done by the use of an image
processing technique referred to in the image processing literature as unsharp
masking.>**> It consists of the following steps:

1. A weighting filter consisting of a three by three array of cells is
constructed, as shown in Figure 2.25, where the center cell has a
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w1, -1)==1| w(©,-1)=-1| w(1,-1)=-1

w(-1,0) =-1 w(0,0)=8 w(1, 0) =-1

wi-1,1)=-1| w(0, 1) =-1 w(1, 1) = -1

FIGURE 2.25 Weighting filter.

weight given by w(0, 0) = 8 and the neighboring cells have weights
givenbyw (—1, = 1) =w(0, — 1) =w(1, — 1) = w(—1,0) = w(l, 0)
= w(—1,1)=w(0, 1) = w(l, 1) = — 1. The center cell is positioned
on the test cell. Notice that the weights of the filter cells sum to zero.
In particular,

1 1
> D wimn) =0 (2.25)

m=—1 n=—1

2. Assume the weighting filter is centered at the jkth cell in SV. The cells
corresponding to the 3 X 3 array of the weighting filter have quantized
values as illustrated in Figure 2.26. By definition,

1 if the jkth cell in SV is declared as CL

2.26
0 if the jkth cell in SV is declared as BN ( )

SQU, k) = [

where j=1,2,....,J and K = 1,2,...,K. To avoid filter cells falling

outside SV, the coordinates of the jkth cell at which the filter is

centered are constrained toj =2, 3,...,J — l,and k= 2,3,..., K — 1.
3. Form the sum

1 1
S= > > wim,mSQ(j+m,k+n) (2.27)

m=—1 n=—1

— If S is equal to zero, all cells have the same assigned value. This
can arise only when the test cell is not an edge cell.
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SQ(j-1, k-1) sSQ(j k1) SQ(j+1,k-1)
SQ(j-1, k) SQ(j; k) SQ(j+1, K)
SQ(j-1, k+1) SQ(j, k+1) SQ(j+1, k+1)

FIGURE 2.26 Quantized values of the 3 X 3 array corresponding to the jkth cell.

— If S is positive, the test cell is an edge cell and is labeled as such.

— If § is negative, the test cell cannot be an edge cell. On the other
hand, one or more of the neighboring cells are guaranteed to be an
edge cell.

The three situations are illustrated in Figure 2.27, where the black and white
cells represent BN and CL cells, respectively. In Figure 2.27(a,b), S = 0 because
all nine cells are in BN and CL, respectively. Observe that the test cell is not an
edge cell. In Figure 2.27(c), S = 4 > 0. Note that the test cell is an edge cell.
Finally, in Figure 2.27(d), S = —2 < 0 and the test cell is not an edge cell.
At the end of the edge detection procedure, each cell in the original volume has
been labeled as CL, BN or CLE cell. At this point, the mapping is done. The
final volume is referred to as the mapped volume (MV).

2.5.3.2.2. Enhancement of CL Patch Edges

The edges detected after smoothing, tend not to follow the irregular edges which
may actually exist. Consequently, the edges are further enhanced by examining
the power levels of cells, just outside and on the edge cells. If the power levels
of these cells exceed the threshold set in the quantization stage, those are declared
as edge cells, otherwise, as BN cells.

At the end of edge enhancement procedure, edges are detected and each cell
in the original volume is labeled as either CL, BN, or CLE cell.

2.5.3.3. Conclusion

As shown in Figure 2.28, the mapping procedure consists of the following
steps: thresholding or quantization, correction, assessment, smoothing, edge
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FIGURE 2.27 Example of unsharp masking technique. (a) S=0, (b) S=0, (c) S >0,
@ S<o.

enhancement, and edge detection. As will be explained later on in Section 2.5.7,
the feedback loop which connects the assessment procedure to the thresholding
or quantization, first correction, and second correction blocks, is controlled
by IPUS.

2.5.4. EXAMPLES OF THE MAPPING PROCEDURE

Before presenting examples to illustrate how the mapping procedure performs a
separation between BN and CL patches, a brief review of the mapping procedure
is first given followed by three different examples of the mapping procedure. The
generated scene and the distributions of CL patch data are shown for every
example. Also, only the results corresponding to the initial and final choices of
BNQP are illustrated in each case. The in-between settings of BNQP are listed in
tables.

2.5.4.1. Introduction

The mapping procedure begins by selecting a threshold, such that, the percentage
of BN cells relative to total number of cells is equal to a specified value, denoted
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FIGURE 2.28 Block diagram of the mapping procedure.

by BNQP. Two correction stages then ensue. In the first correction stage, each
cell in the quantized volume, denoted by QV, is tested by a three by three mask
centered on the test cell. The test cell is labeled as BN, only if less than NCQ of
the eight neighboring cells are declared as CL in the QV volume, where NCQ is a
parameter specified by the user. In the following discussion it will be shown that,
the first correction stage tries to restore the right tail of BN PDF, which had
been severely distorted by the quantization. After the first correction stage, the
corrected volume is denoted by CQV. The second correction stage attempts to
correctly reclassify the edges of the CL patches. This is done by testing each cell
in CQV, using once again, a three by three mask, centered on the test cell. The
test cell is labeled as BN if less than NCC of the eight neighboring cells is
declared as CL in the CQV volume where NCC is a parameter specified by user.
Typical values for NCQ are 5, 6, 7, 8 while typical values for NCC are 1, 2, 3, 4.
In the following discussion, it will be shown that the second correction stage
attempts to restore the shapes of the BN and CL PDFs. After the second
correction stage, the corrected volume is denoted by CCV. The percentage of BN
cells relative to the total number of cells in the CCV volume is denoted by
BNCCP. BNCCP is compared to BNQP. If the difference IBNCCP — BNQP! is
smaller than a prespecified value, the iteration process ends and some additional
processing is done to enhance and label the edges. As explained in Section 2.7, if
the difference is not too large, additional iterations are made with new values for
NCQ and NCC. If these do not lead to convergence or if the difference is too
large, the whole process is repeated by selecting a new threshold. If the difference
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is large, the new value for BNQP is chosen to be the previous BNCCP.
Otherwise, the new value of BNQP is chosen to be half way in between the
previous values of BNQP and BNCCP.

2.5.4.2. Examples

In the following examples, it is assumed that the radar scans over 120° in the
azimuthal direction and has a beam width of 2°. Hence, the azimuthal axis is
subdivided into 60 bins. Also, the length of a range cell is given by c7/2 where
¢ = 3 x 10® m/s is the speed of the light and 7 is the radar pulse width. Assuming
a pulse width of 7= 1 us and a maximum range of R,,x = 13.5 km, the range
axis is divided into {R,.x/[(c7)/2]} = 90 bins. Consequently, this subdivision of
the entire surveillance volume yields a total of 5400 R/A cells.

In all examples presented in this dissertation CL plus noise data in a given
cell are obtained by simply adding the envelopes of the CL and BN values for that
cell. Of course, the envelope of the sum of two random processes does not equal
to the sum of the envelopes. Nevertheless, it is possible to develop the important
concepts of mapping and indexing using any set of random variables. The sum
of envelopes approach was chosen in order to simplify the many computer
simulations required by this research. Specifically, it was not necessary to
first generate random processes whose envelopes are Weibull, Lognormal, and
K-distributed.

The following three examples illustrate, respectively, the cases of three
problems, viz., easy, difficult but resolvable, difficult and not resolvable. These
examples are discussed throughout the work.

2.5.4.2.1. Example 1

Consider a surveillance volume containing four homogeneous CL patches,
denoted by A, B, C, and D. CL patches C and D are contiguous and form a single
nonhomogeneous CL patch C/D. Let CNR denote the CL to BN average power
ratio. Table 2.2 lists the parameters of each CL patch. BN, which is spread
throughout the surveillance volume, is Rayleigh-distributed.

In this example, 66.07% of the total scanned volume is occupied by BN
alone. Also, CL patch C contains the same number of cells as CL patch D.
Figures 2.29 and 2.30 show the CL patch boundaries and the 3-D envelope plot
for the surveillance volume, respectively. The PDFs and histograms of the BN
and CL patches are shown in Figure 2.31. Comparing Figure 2.31(a,b), notice that
some of the BN data are larger than some of the CL data of CL patches A and B.

The iteration process begins with the threshold set such that 10% of the
sorted data are below the threshold, i.e., BNQP = 10%. Although the value of
10% is arbitrary, the initial setting of BNQP should be low. With the setting at
10%, the contour plot of the quantized volume is shown in Figure 2.32. In this
figure, the closed solid line contours surround the BN declared regions and the
rest is CL. Notice that a lot of BN cells have data exceeding the threshold
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TABLE 2.2
CL Patch Parameters (Example 1)
CL CNR (dB) Data Distribution Shape Parameter Number of Cells
A 10 Rayleigh None 117
B 20 K-distributed 10.0 1423
C 30 Lognormal 0.01 146
D 40 Weibull 5.00 146
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FIGURE 2.29 Boundaries of the CL regions (Example 1).
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FIGURE 2.30 3-D envelope plot of the surveillance volume (Example 1).
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FIGURE 2.31 Probability density functions and histograms of the BN and CL patches
(Example 1). (a) Rayleigh-distributed background noise, (b) Rayleigh-distributed CL
patch A, (c) K-distributed CL patch B, (d) Lognormal-distributed CL patch C, (e) Weibull-
distributed CL patch D.

because the threshold was set very low. This results in a lot of small BN
regions. For the purpose of comparison, the boundaries of the original CL
patches are shown in dotted lines. With, NCQ set to eight and NCC set to one,
the contour plots resulting from the first and second corrections, respectively,
are shown in Figures 2.33 and 2.34.

As shown in Table 2.3, when BNQP = 10% and (NCQ, NCC) = (8, 1),
BNCCP = 22% which results in IBNQP — BNCCP| = 12% being large. A
new threshold is then chosen so that BNQP = 22% which is the previous
value obtained for BNCCP. The iterative process continues until it is
found for BNQP = 63.37%, NCQ =5, and NCC = 3, that IBNQP —
BNCCP! is less than 1%. In particular, for these parameter values
IBNQP — BNCCP! = 163.37 — 64.17| < 1%. At this stage the assessment
passes and the iterative process stops.
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FIGURE 2.32 Contour plot of the quantized volume with BNQP = 10% (Example 1).
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FIGURE 2.33 Contour plot of the first correction volume with NCQ = 8 (Example 1).

Figures 2.35-2.37 show the contour plots obtained after quantization, first
correction and second correction, respectively, when BNQP = 63.37%,
NCQ =5, and NCC = 3. Note first from Figure 2.35 that even with this setting
of BNQP, where the threshold is very close to its true value, some of the BN data
exceed the threshold and form very small CL patches, and some of the CL data in
every patch falls below the threshold causing holes in the CL patch. Figure 2.36
shows how most of the erroneously declared BN and CL cells have been correctly
reclassified as CL and BN cells, respectively. Next, the edges are augmented as
shown in Figure 2.37. However, comparing the resulting edge contour to the ideal
contour shows that not all the edges have been recovered even though the CL
patches have been identified.
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FIGURE 2.34 Contour plot of the second correction volume with NCC = 1 (Example 1).

Next, smoothing, edge enhancement, and edge detection are performed.
The results are shown in Figures 2.38-2.40, respectively. First, comparing
Figures 2.37 and 2.38, note that smoothing did not result in any change from the
mapped volume. This is because the regions of Figure 2.37 do not contain any
holes whereas the purpose of smoothing is to remove holes. Comparing the edge
enhanced regions in Figure 2.39 (in solid lines) to the ideal one (in dotted lines),
one can see how close the two sets of regions have become. In fact, at the end of
edge enhancement, 65.54% of the total number of cells are declared BN where as
ideally the BN percentage of the generated scene was 66.07%. Note that, only 10

TABLE 2.3

Settings of Percentage of BN Cells in the Quantized Volume (BNQP)

(Example 1)
BNQP (%)

10.00
(guess)

22.00
latest BNCCP

50.39
latest BNCCP

63.37
latest BNCCP

63.37 same as
latest BNQP

NCQ =38
NCC = 1
NCQ =8
NCC = 1
NCQ =7
NCC =1
NCQ=5
NCC =1
NCQ=5
NCC =3

Parameter Values

BNCQP = 51.56
BNCCP = 22.00

BNCQP = 68.28
BNCCP = 50.39

BNCQP = 70.93
BNCCP = 63.37

BNCQP = 67.35
BNCCP = 59.72

BNCQP = 67.35
BNCCP = 64.17
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FIGURE 2.35 Contour plot of the quantized volume with BNQP = 63.37% (Example 1).

CL cells were misidentified and associated with the BN. Out of these, six had
data values under the threshold (BNQP = 63.37%). Also, 39 BN cells were
misidentified and associated with the CL. Of these, 21 had data values above the
threshold. These results in the ratios

misidentified CL cells below threshold

=0.22% 2.28
total number of CL cells v ( )
and
misidentified BN cells below threshold
total number of BN cells =0:50% (2.29)
Figure 2.40 shows the edges in the edge detected volume.
60 T T T T T T T T
50F E
40f S :
s
=
£ 30 ]
N
<
20} |

Range

FIGURE 2.36 Contour plot of the first correction volume with NCQ = 5 (Example 1).
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FIGURE 2.37 Contour plot of the second correction volume with NCC = 3 (Example 1).
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FIGURE 2.38 Contour plot of the smoothed volume with NS = 7 (Example 1).

An assessment of the mapping procedure results in three CL patches with
the number of cells for each patch as listed in Table 2.4. By comparing Tables 2.2
and 2.4, you can notice how close the number of cells are.

2.5.4.2.2. Example 2

Consider, a surveillance volume containing four homogeneous CL patches,
denoted by A, B, C, and D, as shown in Figure 2.41. CL patches C and D are
contiguous and form a single nonhomogeneous CL patch C/D. Table 2.5 lists
the parameters of each CL patch. In addition, the BN which is spread throughout
the surveillance volume is Rayleigh-distributed.
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FIGURE 2.39 Contour plot of the edge enhanced volume (Example 1).
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FIGURE 2.40 Contour plot of the edge selected volume (Example 1).

TABLE 2.4
CL Patch Parameters after Assessment (Example 1)

CL Number of Cells
A 113
C+D 304
B 1444
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FIGURE 2.41 Boundaries of the CL regions (Example 2).

In this example, 79.80% of the total scanned volume is occupied by BN
alone. Also, CL patch C contains approximately the same number of cells as CL.
patch D. Figures 2.41 and 2.42 show the CL patch boundaries and the 3-D
envelope plot for the surveillance volume, respectively. The PDFs and
histograms of the BN and CL patches are shown in Figure 2.43. In this example,
not only is the CNR for every patch low but the shape parameters of the PDFs
from which the CL data have been generated are such that the CL in patches A, B,
and C is very spiky, as shown by the long tails in Figure 2.43(b—d). The shape of
the histograms for CL patches A, B, and C is such that a lot of CL data overlap the
BN data in value making it difficult to separate between the BN and CL patches
just by setting a threshold.

The iteration process begins with the threshold, once again, arbitrarily set
such that 10% of the sorted data are below the threshold, i.e., BNQP = 10%.
With this setting, the contour plot of the quantized volume is shown in
Figure 2.44. In this figure, the closed solid line contours surround the BN
declared regions and the rest is CL. Notice that a lot of BN cells have data
exceeding the threshold because the threshold was set very low. This results in

TABLE 2.5
CL Patch Parameters (Example 2)

CL CNR(dB) Data Distribution  Shape Parameter ~ Number of Cells

A 10 K-distributed L5 117
B 10 Weibull 1.0 672
C 10 Lognormal 1.0 151
D 10 Rayleigh None 151
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FIGURE 2.42 3-D Envelope plot of the surveillance volume (Example 2).
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FIGURE 2.43 Probability density functions and histograms of the BN and CL patches
(Example 2). (a) Rayleigh-distributed background noise, (b) Rayleigh-distributed CL
patch A, (c) K-distributed CL patch B, (d) Lognormal-distributed CL patch C, (e) Weibull-
distributed CL patch D.
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FIGURE 2.44 Contour plot of the quantized volume with BNQP = 10% (Example 2).

a lot of small BN regions. For the purpose of comparison, the boundaries of the
original CL patches are shown in dotted lines. With, NCQ set to 8 and NCC set
to 1, the contour plots resulting from the first and second corrections,
respectively, are shown in Figures 2.45 and 2.46.

As shown in Table 2.6, when BNQP = 10% and (NCQ, NCC) = (8§, 1),
BNCCP = 20.59% which results in IBNQP — BNCCP| = 10.59% being large.
A new threshold is then chosen so that BNQP = 20.59% which is the
previous value obtained for BNCCP. The iterative process continues until it is
found for BNQP = 75.78%, NCQ =15, and NCC =1, that IBNQP —
BNCCP! < 1%. In particular, for these parameter values IBNQP — BNCCP| =

Azimuth

FIGURE 2.45 Contour plot of the first correction volume with NCQ = 8 (Example 2).
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Azimuth

FIGURE 2.46 Contour plot of the second correction volume with NCC = 1 (Example 2).

175.78 — 75.311 < 1%. At this stage the assessment passes and the iterative
process stops.

Figures 2.47-2.49 show the contour plots obtained after quantization,
first correction and second correction, respectively, when BNQP = 75.78%,
NCQ =5, and NCC = 1. First, note from Figure 2.47 that even with this setting
of BNQP where the threshold is very close to its true value, a lot of BN data

TABLE 2.6

Settings of Percentage of BN Cells in the Quantized Volume (BNQP)
(Example 2)

BNQP (%) Parameter Values

10.00 NCQ =38 BNCQP = 56.35
(guess) NCC=1 BNCCP = 20.59
20.59 NCQ =38 BNCQP = 77.43
latest BNCCP NCC =1 BNCCP = 48.04
48.04 NCQ=7 BNCQP = 84.11
latest BNCCP NCC=1 BNCCP = 72.30
72.30 NCQ=5 BNCQP = 82.17
latest BNCCP NCC=1 BNCCP = 73.94
72.30 same as NCQ=5 BNCQP = 82.17
latest BNQP NCC=3 BNCCP = 79.26
75.78 NCQ =5 BNCQP = 83.50
half way rule NCC=1 BNCCP = 75.31
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FIGURE 2.47 Contour plot of the quantized volume with BNQP = 75.78% (Example 2).

exceed the threshold and form very small CL patches, and also, a lot of the CL
data in every patch falls below the threshold causing holes in the CL patch.
Figure 2.48 shows how most of the erroneously declared BN and CL cells
have been correctly reclassified as CL and BN cells, respectively. Next, the
edges are augmented as shown in Figure 2.49. Comparing the resulting edge
contour to the ideal one, it shows that not all the edges have been completely
recovered even though the CL patches have been identified. Also, notice in this
case, the CL patches are not homogeneous and contain holes in them.

Next, smoothing, edge enhancement and edge detection are performed
The results are shown in Figures 2.50-2.52, respectively. First, on correcting
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FIGURE 2.48 Contour plot of the first correction volume with NCQ = 5 (Example 2).
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FIGURE 2.49 Contour plot of the second correction volume with NCC = 1 (Example 2).

Figures 2.49 and 2.50, note that the smoothing reclassified the BN declared
cells causing holes inside the CL as CL cells. Comparing the edge enhanced
regions in Figure 2.51 (in solid lines) with the ideal one (in dotted lines), one can
see how close the two sets of regions have become. In fact, at the end of edge
enhancement, 80.31% of total number of cells are declared BN where as,
ideally the BN percentage of generated scene was 79.80%. Note that, 86 CL cells
were misidentified and associated with the BN. Out of these 72 had data values
under the threshold (BNQP = 79.59%). Also, 58 BN cells were misidentified
and associated with the CL. Of these, 32 had data values above the threshold.
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FIGURE 2.50 Contour plot of the smoothed volume with NS = 7 (Example 2).
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FIGURE 2.51 Contour plot of the edge enhanced volume (Example 2).

These result in

misidentified CL cells above the threshold
total number of CL cells

=1.28% (2.30)

misidentified BN cells below the threshold
total number of BN cells

= 0.60% (2.31)

Figure 2.52 shows the edges of the edge detected volume.

An assessment of the mapping procedure results in three CL patches with the
number of cells for each patch as listed in Table 2.7. By comparing Tables 2.5
and 2.7, you can notice how close the number of cells are.
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FIGURE 2.52 Contour plot of the edge detected volume (Example 2).
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TABLE 2.7

CL Patch Parameters after Assessment (Example 2)
CL Number of Cells

A 133

C+D 308

B 622

2.5.4.2.3. Example 3

Consider a surveillance volume containing four homogeneous CL patches,
denoted by A, B, C, and D, as shown in Figure 2.53. CL patches C and D are
contiguous and form a single nonhomogeneous CL patch C/D. Table 2.8 lists the
parameters of each CL patch. In addition, the BN is Rayleigh-distributed.
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FIGURE 2.53 Boundaries of the CL regions (Example 3).

TABLE 2.8
CL Patch Parameters (Example 3)

CL CNR (dB) Data Distribution Shape Parameter Number of Cells

A 10 Rayleigh None 117
B 10 K 10.0 298
C 10 Lognormal 0.01 161
D 10 Weibull 10.0 162
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FIGURE 2.54 3-D envelope plot of the surveillance volume (Example 3).

In this example, 86.33% of the total scanned volume is occupied by BN
alone. Also, CL patch C contains approximately the same number of cells as
CL patch D. Figures 2.53 and 2.54, show the CL patch boundaries and the 3-D
plots of the surveillance volume, respectively. Notice in Figure 2.54 how small
are some of the CL data compared to the BN data and how large are some of
the BN data compared to the CL data. This is due to the fact that the CNR for
each patch is low. (Assuming an SNR of 10 dB in order to obtain reasonable
detections in the absence of CL, CNR = 10 dB implies equal signal and CL
powers. For values of CNR less than 10 dB, the signal would be larger than
CL and no WSC would be available.) In this example, the mapping procedure is
tested on a situation where CNR for every CL patch is low. The PDFs and
histograms of the BN and CL patches are shown in Figure 2.55. Comparing the
histograms in Figure 2.55(a—c,e), notice that, some of the BN data are higher than
some of the CL data in patches A, B, and D. Also, observe that overlaps between
histograms of the BN with CL patches A and B are noticeable.

The iteration process begins with the threshold, once again, it is set in such
a way that 10% of the sorted data are below the threshold, i.e., BNQP = 10%.
With this setting, the contour plot of the quantized volume is shown in
Figure 2.56. In this figure, the closed solid line contours surround the BN
declared regions and the rest is CL. Notice that a lot of BN cells have data
that exceed the threshold because the threshold was set very low. This results in a
lot of small BN regions. For purpose of comparison, the boundaries of the
original CL patches are shown in dotted lines. With NCQ set to eight and NCC set
to one, the contour plots resulting from the first and second corrections are shown
in Figures 2.57 and 2.58, respectively.

As shown in Table 2.9, when BNQP = 10% and (NCQ, NCC) = (8, 1),
BNCCP = 20.04% which results in IBNQP — BNCCP| = 10.04% being large.
A new threshold is then chosen so that BNQP = 20.04% which was the previous
value obtained for BNCCP. The iterative process continues until it is found
for BNQP = 84.70%, NCQ = 5, and NCC = 3, that IBNQP — BNCCP! < 1%.
For these parameter values, IBNQP — BNCCP| = 184.70 — 85.46/ < 1%. At this
stage the assessment passes and the iterative process stops.
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FIGURE 2.55 Probability density functions and histograms of the BN and CL patches
(Example 3). (a) Rayleigh-distributed background noise, (b) Rayleigh-distributed CL
patch A, (c) K-distributed CL patch B, (d) Lognormal-distributed CL patch C, (e) Weibull-
distributed CL patch D.

Figures 2.59-2.61 show the contour plots obtained after quantization, first
correction and second correction, respectively, when BNQP = 84.70%,
NCQ =5, and NCC = 3. First, note from Figure 2.59 that even with this setting
of BNQP, where the threshold is very close to its true value, some of the BN data
exceed the threshold and form very small CL patches and some of the CL data in
every patch falls below the threshold causing holes in the CL patch. Figure 2.60
shows how most of the erroneously declared BN and CL cells have been correctly
reclassified as BN and CL cells, respectively. Next, the edges are augmented as
shown in Figure 2.61. Comparison of the resulting contour with the ideal one,
shows that even though the CL patches have been identified, the edges are not
completely recovered.
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FIGURE 2.56 Contour plot of the quantized volume with BNQP = 10% (Example 3).

Next, smoothing, edge enhancement, and edge detection are performed.
The results are shown in Figures 2.62-2.64, respectively. First, comparing
Figures 2.61 and 2.62, note that smoothing did not result in any change from the
mapped volume. This is because the regions of Figure 2.61 do not contain any
holes whereas the purpose of smoothing is to remove holes. Comparing the edge
enhanced regions in Figure 2.63 (in solid lines) with the ideal one (in dotted
lines), one can see how close the two sets of regions have become. In fact, at the
end of edge enhancement, 85.72% of the total number of cells are declared BN
where as, ideally the BN percentage of the generated scene was 86.33%. Note
that only six CL cells were misidentified and associated with the BN. Out of
these, five had data values under the threshold (BNQP = 84.70%). Also, 39 BN

Azimuth

FIGURE 2.57 Contour plot of the first correction volume with NCQ = 8 (Example 3).
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FIGURE 2.58 Contour plot of the second correction volume with NCC = 1 (Example 3).

cells were misidentified and associated with the CL. Of these, 10 had data values
above the threshold. These result in

misidentified CL cells above the threshold
total number of CL cells

=0.13% (2.32)

TABLE 2.9

Settings of Percentage of BN Cells in the Quantized Volume (BNQP)
(Example 3)

BNQP (%) Parameter Values

10.00 NCQ=38 BNCQP = 56.17
(guess) NCC =1 BNCCP = 20.04
20.04 NCQ =8 BNCQP = 77.98
latest BNCCP NCC=1 BNCCP = 43.78
43.78 NCQ =8 BNCQP = 90.78
latest BNCCP NCC=1 BNCCP = 82.65
82.65 NCQ=7 BNCQP = 91.17
latest BNCCP NCC=1 BNCCP = 84.70
84.70 NCQ=5 BNCQP = 87.61
latest BNCCP NCC=1 BNCCP = 82.00
84.70 same as NCQ=5 BNCQP = 87.61
latest BNQP NCC =3 BNCCP = 85.46
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FIGURE 2.59 Contour plot of the quantized volume with BNQP = 84.70% (Example 3).

and

misidentified BN cells below the threshold
total number of BN cells

=0.62% (2.33)

Figure 2.64 shows the edges of the edge detected volume.

An assessment of the mapping procedure results in three CL patches with the
number of cells for each patch as listed in Table 2.10. By comparing Tables 2.8
and 2.10, you can notice how close the number of cells are.
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FIGURE 2.60 Contour plot of the first correction volume with NCQ = 5 (Example 3).
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FIGURE 2.61 Contour plot of the second correction volume with NCC = 3 (Example 3).
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FIGURE 2.62 Contour plot of the smoothed volume with NS = 7 (Example 3).

2.5.5. CONVERGENCE OF THE MAPPING PROCEDURE
2.5.5.1. Introduction

Consider an image containing two regions where the PDFs for each region have
nicely separated peaks as shown in Figure 2.65(a) and the overall PDF for both
regions is as shown in Figure 2.65(b). In practice, a histogram is generated
which approximates the overall PDF. Note that the individual PDF of each
region is unknown. Because the individual PDFs are adequately separated, the
overall histogram will be bimodal and separation between the two regions is
readily obtained by placing the threshold 71 between the two peaks as shown
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FIGURE 2.63 Contour plot of the edge enhanced volume (Example 3).
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FIGURE 2.64 Contour plot of the edge selected volume (Example 3).

TABLE 2.10

CL Patch Parameters after Assessment (Example 3)
CL Number of Cells

A 124

C+D 341

B 306
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FIGURE 2.65 Nonoverlapping PDFs of two distinct regions. (a) Individual PDFs for each
region. (b) Overall PDF for both regions.

in Figure 2.65(b). Cells with data values lower than T'1 are declared to belonging
to region one, while cells with data values higher than 7'1 are declared to belong

to region two.

Now consider the slightly overlapping PDFs as shown in Figure 2.66(a,b).
Although the overall PDF of the data regions is again bimodal, a noticeable
overlap now exists between the tails. Once again, a threshold 71 is used to
separate between the two regions. However, now a significant number of cells
will be misclassified and corrections should be made to the extent possible.

PDF of region 1

PDF of region 2

Overall PDF of regions 1 & 2

FIGURE 2.66 Overlapping PDFs of two distinct regions with a small overlapping area.
(a) Individual PDFs for each region. (b) Overall PDF for both regions.
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FIGURE 2.67 Overlapping PDFs of two distinct regions with a big overlapping area.
(a) Individual PDFs for each region. (b) Overall PDF for both regions.

Figure 2.67 shows a more complicated case where the two regions now have
major overlap between the tails. The overall PDF of the data from both regions is
now unimodal and it is not possible to choose a threshold which separates the two
regions without significant misclassifications.

In this section, it is shown that the mapping procedure described previously
can adaptively choose a threshold and correct misclassifications so as to obtain
good approximations to the PDFs of each region. The mapping procedure enables
the region having the smallest envelopes, on average, to be separated from the
remaining regions. By successive application of the mapping procedure, it is
possible to first separate out the region with smallest envelopes, followed by the
region with next smallest envelopes, and so forth. In the first application of the
mapping procedure to a radar surveillance volume, region one consists of the BN
while region two consists of the entire set of CL patches.

2.5.5.2. Separation between BN and CL Patches

An important observation relative to selection of the threshold, via specification
of BNQP, is made when considering a surveillance volume consisting of only
BN. The objective is to determine the range of threshold settings, for which
mapping procedure declares the entire surveillance volume as BN. For this
purpose, we consider the situation where entire scene consists of BN and the data
are generated from a Rayleigh PDF.

For the scenario under consideration, the whole scene is homogeneous BN
and the mapping, if done correctly, should identify the entire volume as a single
BN region. Table 2.11 shows the values of BNCCP obtained for different settings
of BNQP. Notice from the table that, a single region results only when threshold

© 2006 by Taylor & Francis Group, LLC



74 Adaptive Antennas and Receivers

TABLE 2.11
BN Percentages and Threshold Values Corresponding to

the Rayleigh Distributed Background Noise

BNQP (%) Threshold Value BNCCP (%)
10 0.32 19.48
20 0.47 42.80
30 0.59 71.61
40 0.72 89.06
50 0.84 96.26
60 0.95 99.85
70 1.10 100.00
80 1.29 100.00
90 1.53 100.00

exceeds 70% of the data. As shown in Figure 2.68, the mapping procedure
correctly reclassifies all cells corresponding to values above the threshold as long
as the same is sufficiently towards the tail of PDF. In general, it is observed that
the mapping procedure works best provided the threshold is adequately
positioned towards the tail of PDF.

Another parameter that arises in the mapping procedure is BNCQP which
denotes the percentage of BN cells after the first correction relative to the total
number of cells in the surveillance volume. To gain insight into the relationships
among BNQP, BNCQP, and BNCCP, we return to example number two,
previously discussed in Section 2.5.4.2.2, where a lot of CL patch data overlap
with the BN data in a manner similar to Figure 2.70. In Table 2.12, different
values of these parameters are tabulated as the mapping procedure converges
to the end result. If the test cell is to be declared as CL, recall that at least NCQ
and NCC neighboring cells are required to be declared as CL in the QV and CQV
during the first and second corrections, respectively.

051 B

o
o
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-
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90% threshold
70% threshold 80% threshold

FIGURE 2.68 PDF of the Rayleigh-distributed patch.
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TABLE 2.12
BN Percentages (Example 2)

BNQP (%) BNCQP BNCCP

(NCQ, NCC) (%) (%) IBNCQP — BNCCPl  IBNCCP — BNQP!
10.00 (8, 1) 56.35 20.59 35.76 10.59
20.59 (8, 1) 7743 48.04 29.39 27.45
48.04 (7, 1) 84.11 72.30 11.81 24.26
7230 (5, 1) 82.17 73.94 8.23 1.64
72.30 (5, 3) 82.17 79.26 291 6.96
7578 (5, 1) 83.50 7531 8.19 0.27

Table 2.13 tracks the mapping procedure during the first correction
stage (denoted by QV — CQV), during the second correction stage (denoted
by CQV — CCV) and at the end of the two correction stages (denoted by
QV — CCV). All percentages given are with respect to the total number of cells
in the surveillance volume. Initially, the threshold is set such that BNQP
percentage of the total number of cells is below the threshold. The first correction
stage requires that at least NCQ of the neighboring cells be above the threshold if
the test cell is to be classified as a CL cell. Under the column headed by
QV — CQV, (CL — BN); denotes the percentage of the total number of cells
in the surveillance volume that were above the threshold but are reclassified as
BN cells during the first correction stage. Similarly, (BN — CL); denotes the
percentage of the total number of cells in the surveillance volume that were
below the threshold but are reclassified as CL cells after the first correction
stage. Note that the difference, (CL — BN); — (BN — CL);, is the net
percentage of the total number of cells in the surveillance volume that have
been reclassified from CL to BN cells after the first correction stage. Similar
statements apply for: (1) the second correction stage to (CL — BN),,

TABLE 2.13
CL-to-BN and BN-to-CL Transitions (Example 2)
BNQP QV — CQV CQV — CCV QV — CCV
(%) (CL—BN); (BN—CL); (CL—BN), (BN—CL), (CL—BN) (BN—CL)

(NCQ, NCO) (%) (%) (%) (%) (%) (%)
10.00 (8, 1) 49.83 3.46 3.70 39.46 10.61 0.00
20.59 8, 1) 59.35 2.48 2.96 32.35 27.48 0.00
48.04 (7, 1) 38.07 1.98 0.61 12.43 27.48 3.20
7230 (5, 1) 13.93 4.04 0.09 8.31 9.63 7.96
72.30 (5, 3) 13.93 4.04 0.65 3.56 11.31 4.33
7578 (5, 1) 11.85 4.11 0.04 8.22 7.59 8.04
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(BN — CL),, and (CL — BN), — (BN — CL), under the column headed by
CQV — CCV and (2) for the combined results of the two correction stages to
(CL — BN), (BN— CL), and (CL — BN) — (BN — CL) under the column
headed by QV — CCV. Note that

(CL—BN) - (BN—CL) = — [(CL—BN), — (BN— CL),]

(2.34)
+ [(CL — BN), — (BN — CL),].
Also,
BNCQP — BNQP = (CL — BN);, — (BN— CL),
BNCCP — BNCQP = (CL—BN), — (BN— CL
QP = ( )2 —( )2 (2.35)

BNCCP — BNQP = (CL — BN) — (BN — CL)
= [BNCQP — BNQP] + [BNCCP — BNCQP]

The mapping procedure involves iterations which continue until the difference
BNCCP — BNQP is sufficiently small. From Equation 2.35 it is seen that
convergence results when

(CL— BN) = (BN—CL) (2.36)

Consequently, near convergence, the combined effect of the two correction
stages should result in the percentage of CL cells reclassified as BN cells being
approximately equal to the percentage of BN cells reclassified as CL cells.
Alternatively, from Equation 2.35 convergence results when

[BNCQP — BNQP] ~ —[BNCCP — BNCQP] (2.37)

or equivalently, when

[(CL—BN), = (BN—CL);] = —[(CL—BN), — BN—CL),] (2.38)

Thus, near convergence, the net percentage of cells which have been reclassified
from CL to BN cells during the first correction stage should approximately
equal the negative of the net percentage of cells which have been reclassified
from CL to BN cells during the second correction stage. These observations are
helpful in coming up with rules for determining the next setting of the parameters
in the iteration process.

By way of example, when BNQP = 10%, the threshold is such that 10%
of total number of cells in surveillance volume fall below the threshold while
90% fall above. The situation is pictured in Figure 2.69(b). With reference to
Table 2.13, when NCQ = 8, 49.83% of the total cells in the surveillance volume
which were classified as CL cells for being above threshold, are reclassified
as BN cells after the first correction stage, whereas 3.46% of the total cells,
which were classified as BN cells because they were below the threshold, are
reclassified as CL cells. The net percentage of the cells reclassified as BN is
49.83% — 3.46% = 46.37%. For the second correction stage, with NCC = 1,
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FIGURE 2.69 Overlapping PDFs of BN region and CL patches. (a) Individual PDFs for
each region. (b) Overall PDF for both regions.

3.70% of the total cells in the CQV surveillance volume, which were classified as
CL cells after the first correction stage, are reclassified as BN cells because these
do not have at least one neighboring CL cell. Similarly, 39.46% of the total cells
in the CQV surveillance volume, which were classified as BN cells, are
reclassified as CL cells because these have one or more neighboring CL cells. The
last row of Table 2.13 corresponds to a situation close to convergence. When
the threshold is set such that 75.78% of the total number of cells in the
surveillance volume are below threshold, the combined effect of the two
correction stages results in

(CL—BN) =7.59% = (BN — CL) = 8.04% (2.39)
Similarly,
[(CL—BN), — (BN—CL),] =8.74% ~ —[(CL — BN), — (BN — CL),]
= 8.18%. (2.40)

Equivalently, from Table 2.12 for BNQP = 75.78%,
[BNCQP — BNQP] = 7.72% = —[BNCCP — BNCQP] = 8.19% (2.41)

Insight into the manner by which the PDFs of BN and CL are modified during the
correction stages, is obtained by examining pertinent amplitude histograms for
various surveillance volumes QV, CQV, and CCV. The overall amplitude
histogram for the generated data of the QV volume is shown in Figure 2.70(a).
Note that the histogram is unimodal and it is not possible to distinguish between
the BN and the CL cells. In fact, by just looking at the histogram one would
not suspect that more than one region exists. When the threshold is set at 0.37
such that BNQP = 10%, many of the BN cells are classified as CL due to the low
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FIGURE 2.70 Region histograms corresponding to BNQP = 10%, NCQ = 8, and
NCC = 1. (a) Overall histogram of the generated data. (b) BN histogram at the
quantization stage. (c) CL histogram at the quantization stage. (d) BN at the first correction
stage. (¢) CL histogram at the first correction stage. (f) BN histogram at the second
correction stage. (g) CL histogram at the second correction stage.
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threshold. The amplitude histograms for the BN and CL cells in the QV volume
are shown in Figure 2.70(b,c), respectively. Note that the BN histogram is
truncated to a cell amplitude of 0.35.

The amplitude histograms for the CQV volume resulting from the first
correction stage are shown in Figure 2.70(d,e). Comparing Figure 2.70(d) with (b),
it is seen that many cells with amplitudes above the threshold value of 0.35 have
been reclassified as BN. The amplitude histograms for the CCV volume resulting
from the second correction stage are shown in Figure 2.56(f,g). Note the further
enhancement of the right tail of the BN amplitude histogram. This enhancement
is due to the image processing and is in spite of the low threshold value.

During the iteration process the threshold is gradually increased and
converges to a value in the vicinity of 1.51 for which BNQP = 75.78%. In
Figure 2.71(a), this threshold is shown in the overall histogram for the QV
volume. The amplitude histograms for the BN and CL cells in the QV volume are
shown in Figure 2.71(b,c), respectively. Note that the amplitudes of the BN cells
fall below 1.51 whereas those of the CL cells fall above 1.51. The results of the
first and second correction stages and the edge enhancement stage are shown in
Figure 2.71(d-1), respectively. To provide a basis for comparison, the actual
BN and CL amplitude histograms are shown in Figure 2.71(j,k). The strong
similarity between the amplitude histograms of Figure 2.71(h,i) and those of
Figure 2.71(j,k) indicates that the mapping procedure has converged satisfac-
torily. Note how nicely the final histograms of Figure 2.71(h,i) have evolved from
the original histograms of Figure 2.70(b,c).

In general, the first correction stage begins to establish the right tail of the BN
amplitude histogram and reshapes the CL amplitude histogram by reclassifying
mislabeled BN cells. The second correction stage reshapes the bodies and the
tails of the BN and CL histograms by recovering the CL edges.

2.5.6. EXTENSION OF THE MAPPING PROCEDURE
TO RANGE-AZIMUTH-DOPPLER CELLS

Assume that the dwell time is P = M > 1. In this case, an FFT is possible and
the block diagram of the preprocessing and mapping of data is as shown in Figure
2.14. As explained in Section 2.4.2, the mapping consists of two stages. The first
mapping stage operates on R/A cells while the second one operates on R/A/D cells.

Once the R/A surveillance volume has been mapped into BN and CL cells, as
explained in Section 2.5.3, the second mapping stage starts by declaring as BN
cells as R/A/D cells corresponding to R/A cells which were previously declared
as BN in the first mapping stage. Meanwhile, the FFT magnitudes of R/A cells
which were previously declared as CL in the first mapping stage, are obtained
from the preprocessing blocks to enable classification of the remaining R/A/D
cells as either BN or CL cells.

Note that a row of range cells, having a fixed azimuth, in the R/A volume
corresponds to a R/D plane in the R/A/D volume. Also, a row of azimuth cells,
having a fixed range in the R/A volume corresponds to an A/D plane in the R/A/D
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FIGURE 2.71 Region histograms corresponding to BNQP = 75.78%, NCQ =5, and
NCC = 1. (a) Overall histogram of the generated data. (b) BN histogram at the quanti-
zation stage. (c) CL histogram at the quantization stage. (d) BN at the first correction stage.
(e) CL histogram at the first correction stage. (f) BN histogram at the second correc-
tion stage. (g) CL histogram at the second correction stage. (h) BN histogram at the MV.
(i) CL histogram at the MV. (j) Actual BN histogram of the generated data. (k) Actual CL

histogram at the generated data.
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FIGURE 2.71 Continued.

volume. These are illustrated in Figure 2.72(a,b), respectively. Hence, range and
azimuth rows of BN declared cells in the R/A volume correspond to R/D
and A/D planes, respectively, of BN declared cells in the R/A/D volume and no
additional processing is needed for such a plane.

Mapping of the R/A/D volume is done on a plane-by-plane basis. Either a
R/A plane (with parameterized azimuth) or an A/D plane (with parameterized
range) can be considered. The best choice is one which would involve the least
processing. For example, if there are more R/D BN declared planes than A/D
BN declared planes in the R/A/D volume, the best choice in this case would be
to process R/D planes, and vice versa.

Assume that R/D plane-by-plane processing has been chosen. The mapping
procedure becomes a two dimensional problem, and, thresholding/quantization,
first correction, second correction, smoothing, edge-enhancement, and edge
detection are performed as explained in Section 2.5.3.

When the second mapping stage is done, the R/A/D volume will consist of
a R/A/D BN region and R/A/D CL patches in the form of 3-D objects.

2.5.7. CONCLUSION

In summary, a mapping procedure was presented in Section 2.5 which allowed
for distinguishing between BN and CL patches. The procedure was illustrated
with examples which showed how the mapping procedure works, even under hard
conditions as in the example of Section 2.5.4.2.2, where the histograms of the CL
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FIGURE 2.72 BN declared rows and their corresponding BN declared planes: (a) BN row
of range cells and their BN range—Doppler plane (b) BN row of azimuth cells and BN

azimuth—Doppler plane.

patches and BN region overlapped to render the total histogram unimodal such
that one would not suspect the presence of more than one distribution.

It is to be noticed that there was no discussion in this chapter about the rules
which govern the choice of parameters viz., BNQP, NCQ, and NCC. These rules will
be introduced later in Section 2.7 along with the role of IPUS in mapping procedure.

2.6. INDEXING PROCEDURE

2.6.1. INTRODUCTION

As explained in Table 2.1, and shown in examples of Section 2.5.4.2, the
mapping procedure subdivides the surveillance volume into BN regions and CL
patches labeling the cells in surveillance volume as either BN or CL cells.
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In this research it is assumed that BN is white and sufficiently weaker than a
desired target return so that the SSC is applicable and detections can be obtained
using the conventional Gaussian receiver with little degradation in performance.
Consequently, no additional indexing is needed for BN cells.

On the other hand, more processing is needed on CL cells before the detection
process can begin. This is because (1) CL patches may be nonhomogeneous
containing two or more CL subpatches, (2) in each CL patch, or CL subpatch
if it exists, either the SSC, WSC, or ISC will apply, (3) for each WSC CL patch or
subpatch, its PDF must be approximated. Also, for each ISC CL patch or subpatch,
its covariance matrix must be approximated. All these steps need to be
implemented during the indexing stage and are explained in this chapter.

The indexing procedure starts with an assessment stage by which (1) CL
patches and the BN region are identified by assigning a unique identification
number to all cells within a CL patch or BN region, and (2) CNR and number of
cells in each CL patch are determined. The next stage, called the subpatch
investigation stage, consists of determining the existence of CL subpatches. If
CL subpatches are found, the assessment stage is then carried out, once again, for
the entire surveillance volume. The final stage of the indexing procedure is the
PDF approximation stage where the PDF for each WSC CL patch is approxi-
mated. The assessment, CL subpatch investigation, and PDF approximation
stages are explained next.

2.6.2. ASSESSMENT STAGE

As explained above, assessment is carried out: (1) to assign a unique number
to the BN region and each CL patch, (2) to estimate the CNR for each CL patch,
and (3) to classify CL patches as either SSC, WSC or ISC regions.

2.6.2.1. Identification of the BN and CL Patches

When the mapping is completed, recall that the mapped volume has a value of
zero assigned to BN cells and a value of one assigned to the CL cells. Therefore,
nothing more needs to be done for the BN region as all of its cells are already
indexed by the number zero. On the other hand, all cells in each of the CL patches
are assigned a value of one. Thus, a numbering procedure has to be implemented
to enable the computer to distinguish between the various CL patches. The
approach taken in this work is to assign every cell in the first patch investigated
the number one, every cell in the second patch investigated the number two, and
so on until all patches have been indexed with consecutive integers. In this way,
all cells in each CL patch are assigned a unique number.

If a cell belongs to a new CL patch, the key to the numbering is the ability to
recognize this fact. This is done by considering a mask of five cells as shown in
Figure 2.73 where the white cells represent neighboring cells and the shaded one
is the test cell to be numbered. Since the surveillance volume has previously been
augmented by adding rows of BN to its left, top right, and bottom edges, there is
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|:| Neighboring cell

@ Test cell

FIGURE 2.73 Mask used in numbering.

no problem positioning this mask for each test cell in the original unaugmented
surveillance volume.
Let M(i, j) be the value assigned to the ijth cell in the MV where,

M j) = [ 0 if ijth cell is declared as BN 2.42)

1 if ijth cell is declared as CL.
Assuming that the test cell to be numbered is the jkth cell in the original
unaugmented surveillance volume, let the assigned number be denoted by N(j, k).
Also, let G denote the unique number assigned to the CL patch previously
investigated and H the minimum positive number assigned to neighboring cells.
Then, by definition, we have

0 it M@, k)=0
N(j,k) = | (G+1) if all neighboring cells are numbered 0
H if at least one of the neighboring cells is numbered nonzero.

(2.43)

The number G is incremented by unity whenever a new CL patch is detected.
Because a CL patch boundary may be sharply shaped, as shown in the example
of Figure 2.74, the numbering procedure may end up by assigning two different
numbers for different cells of the same CL patch. This anomaly is avoided by
further testing the neighboring cells of the cell to be numbered as follows:

1. For the given cell to be numbered, look up the numbers assigned to the
set of neighboring cells (j — 1,k — 1), (j,k—1),(j+ 1,k — 1), and
(= Lk,

2. Take the minimum nonzero number of those in step one,

3. Reassign all nonzero numbered neighboring cells the minimum
nonzero number from step two,
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FIGURE 2.74 Example of a sharply-shaped boundary.

4. Revisit all the cells in the surveillance volume that have previously
been numbered. If any cell is assigned a nonzero number identical to one
of those in step one, reassign that cell the minimum nonzero number of
step two.

For example, with respect to Figure 2.74, the above steps have the effect of
assigning a value of one to all cells of the CL patch shown.

Once numbering is completed, the BN cells are assigned a value of zero, and
every CL patch is assigned a unique positive number.

2.6.2.2. Computation of CL-to-Noise Ratios

The CNR for CL patch k is given by [(d;, — 71)/7i]*, expressed in dB, where dj is
the sample average of the CL plus BN values distributed over CL patch k and 7 is
the sample average of the BN values distributed over the BN region.

2.6.2.3. Classification of CL Patches

Throughout this work the minimum target SNR is assumed to be 10 dB so that
targets are readily detected when they appear in the BN region. The classification
of a CL patch as an SSC, WSC, or ISC then depends on its CNR. Ranges of the
CNR for the strong, weak, and intermediate signal cases are given in Table 2.14.
The bounds for this work were chosen based on experience gained through
computer simulations. For example, when CNR = 8 dB, the average signal
power is 2 dB larger than the average CL power. Nevertheless, non-Gaussian CL
tends to be spiky. Consequently, even when CNR = 8 dB, there are regions
where the CL is much larger than the signal. Consequently, 8 dB is chosen as the
lower bound on CNR for WSC. Also, when CNR = 5 dB, the average signal
power is 5 dB larger than the average CL power. At this level, the CL typically
dominates the signal at only a few isolated points. Thus, 5 dB is chosen as the
upper bound on CNR for SSC. ISC is defined to fall between the two bounds.
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TABLE 2.14

Classification of a CL Patch

Classification CNR

SSC CNR < 5dB

1SC 5dB = CNR < 8 dB
WsC CNR > 8 dB

When a CL patch is classified as SSC, the returns from this patch are
processed by the same detector as that used for the BN region. Only the
threshold needs to be adjusted properly. When a CL patch is classified as ISC,
the GLRT' is used to process the associated returns. Finally, when a CL patch
is classified as WSC, it is necessary to determine the associated PDF so that the
appropriate processor can be selected from the library of weak signal detectors.

2.6.3. CL SUBPATCH INVESTIGATION STAGE

Recall that mapping consists of appropriately selecting a threshold to distinguish
between BN and CL patches using only the assumption that the BN power, on
average, is smaller than the CL power. This same approach may be used, once
again to extract that CL subpatch with the lowest average power from a set
of contiguous CL subpatches of higher average powers in a given CL patch.
In this case, the CL patch containing CL subpatches will be viewed as a volume
containing a CL subpatch region with low average power and a set of subpatches
with higher average powers occupying the rest of the CL patch area as shown in
Figure 2.75.

The mapping procedure, therefore, is used to extract the CL subpatch with
the lowest average power from among the remaining CL subpatches in a given
CL patch. Because numbering has already labeled each patch with a unique
number, it is straightforward for the computer program to select a patch and
check for the presence of subpatches in it.
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FIGURE 2.75 Example of a CL patch containing CL subpatches.
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1

1- Label BN cells with O

2- Label CL patches each with
a unique positive number

l

1- Compute CNR for every CL patch

2- Classify CL patches as SSC
WSC or ISC regions

l

FIGURE 2.76 Assessment stage.

For each CL patch, the mapping procedure is performed iteratively until it
is hypothesized, that every subpatch in a given CL patch is homogeneous and
cannot be partitioned further. After all CL subpatches have been extracted, the
surveillance volume consists of a BN region and CL patches that may or may
not be contiguous. Notice that every CL subpatch is now referred to as a CL
patch.

If CL subpatches are found to exist, assessment is performed once again
to (1) allocate, or reallocate, a number for every CL patch in the surveillance
volume, (2) compute the CNR for every patch, and (3) classify the CL patches as
SSC, WSC, or ISC regions. Assessment and subpatch investigation are described
by the flow charts of Figures 2.76 and 2.77. Figure 2.78 shows the order in which
assessment and CL subpatch investigation are performed.

Once WSC regions have been identified and numbered, their respective PDFs
are approximated as explained in the next section.

2.6.4. PDF ApPROXIMATION OF WSC CL PATCHES

The PDF approximation of WSC CL patches follows two steps. During the first
step, which is also referred to as test cell selection, a WSC CL patch is selected
from among the WSC declared CL patches, a set of test cells is chosen in that
CL patch, and reference cells are identified for each test cell which belong to the
selected CL patch and are the closest to the test cell. In the second step, referred
to as PDF approximation, the data of the reference cells are processed by the
Ozturk algorithm so that the PDF of the test cell can be approximated. The
process iterates for next WSC CL patch until each WSC CL patch in the
surveillance volume has its PDF approximated. Test cell selection, PDF
approximation, outlier definition and a PDF approximation strategy are
introduced next.
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FIGURE 2.77 CL Subpatch investigation stage.

2.6.4.1. Test Cell Selection

As explained above, test cell selection involves three steps:

(1) A WSC CL patch is chosen from among the WSC declared CL patches.
This can be done automatically by the computer program since at this
stage every CL patch has been labeled with a unique number.

(i) A set of Nt test cells is then chosen in the WSC CL patch being
processed where the value of Nt depends upon the extent to which the
patch needs to be characterized. Note that any cell in the CL patch can
be a test cell. A possible choice for the test cells is equally spaced test
cells that cover the entire area of the CL patch.

(iii) Finally, for each test cell, a set of reference cells is selected. The
reference cells must be in the same CL patch as the test cell and should
be closest in distance to it to comply with the assumption that the
reference cells are representative of the test cells.

In order to select the reference cells for a given test cell, the program starts by
centering a three by three mask around the test cell and choosing as reference cells
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Data information coming out of the
mapping procedure

Assessment

BN regions CL patches

Proceed as shown in
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Table 2 1 for ISC To PDF approximation

FIGURE 2.78 Assessment and CL subpatch investigation.

those neighboring cells within the mask that are declared to be in the same CL
patch as the test cell. If the desired number of reference cells are not obtained, the
program increases the size of mask by adding one row and one column to each
boundary of the three by three mask. This results in a five by five mask where only
the cells in augmented rows and columns need to be examined. The process of
adding one row and one column to each boundary of the previous mask continues
until desired number of reference cells have been obtained.

2.6.4.2. PDF Approximation

Approximation of the PDF underlying a test cell consists of processing the data in
the reference cells. The PDF approximation is performed by the Ozturk algorithm
which consists of two modes, which is also referred to as the goodness of fit test
mode and the approximation chart mode. These two modes are discussed in the
following sections.
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2.6.4.2.1. Introduction to Ozturk Algorithm

The Ozturk algorithm®® is a recent algorithm based on sample order statistics
which has been developed”’~*° and reported®® for univariate distribution
approximation. This algorithm has two modes of operation. In the first mode,
the algorithm performs a goodness of fit test. The test determines, to a desired
confidence level, whether the random data is statistically consistent with a
specified probability distribution. In the second mode of operation, the algorithm
approximates the PDF underlying the random data. In particular, by analyzing the
random data and without any a priori knowledge, the algorithm identifies the
density function which best approximates the data from a stored library of PDFs.
Estimates of the location, scale, and shape parameters of the PDF are provided by
the algorithm. The algorithm has been found to work reasonably well for
observation sizes as small as 75 to 100. Throughout this work, a number of 100
reference cells are selected for each test cell.

2.6.4.2.2. Goodness of Fit Test

The goodness of fit determines whether or not the set of data samples provided
to the algorithm is statistically consistent with a specified distribution, referred
to as the null hypothesis. Let Ng denote the number of reference cells.
For the null hypothesis, the program utilizes a Monte Carlo simulation of 2000
trials to generate an averaged set of Ny linked vectors in the uv plane, as shown in
Figure 2.79. Using the standardized sample order statistics of the data, the
program then creates a second system of Ny linked vectors in the uv plane, as
shown in Figure 2.79(a). The terminal points of the linked vectors, as well as

Sample data
................................... Null hypothesis

Confidence
ellipses

(b)

FIGURE 2.79 Goodness of fit test: (a) linked vectors; (b) confidence ellipses.
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the shapes of their trajectories, are used in determining whether or not to accept
the null hypothesis. The null hypothesis is the distribution against which the
sample data is to be tested.

The algorithm provides quantitative information as to how consistent the
sample data set is with the null hypothesis distribution by use of confidence
contours. In confidence contours, each contour is derived from a specified
probability so that the end point falls within the contour, given that the data
comes from the null distribution. An example of these contours is shown in
Figure 2.79(b) for probabilities of .9, .95, and .99. If the end point of the sample
data linked vector locus falls within a contour, then the sample data set is said to
be statistically consistent with the null hypothesis at a confidence level based on
the probability specified for that contour. If the sample data set is truly consistent
with the null hypothesis, the system of sample linked vectors is likely to closely
follow that for the system of null linked vectors.

2.6.4.2.3. Approximation Chart Mode

The approximation chart mode is simply an extension of the goodness of fit
test mode. Following a similar approach as outlined in the section for the
goodness of fit mode, random samples are generated from a library of different
univariate probability distributions. In the goodness of fit test mode, the locus
of end point was obtained for the null hypothesis and sample size, Ng. For the
approximation chart mode we go one step further by obtaining the locus of end
point for each distribution from the library of distributions for the given sample
size, N, and for various choices of the shape parameter(s). Thus, depending on
whether it has a shape parameter or not, each distribution is represented by a
trajectory or point in the two dimensional uv plane. The distributions which are
plotted on the distribution approximation chart are: (1) Gaussian, (2) Uniform,
(3) Exponential, (4) Laplace, (5) Logistic, (6) Cauchy, (7) Extreme Value, (8)
Gumbel type-2, (9) Gamma, (10) Pareto, (11) Weibull, (12) Lognormal, (13)
Student-7, (14) K-distributed, (15) Beta, and (16) Su-Johnson. Figure 2.80
shows an example of the approximation chart. Note that every point in the
approximation chart corresponds to a specific distribution. That point closest to
the sample data locus end point is chosen as the best approximation to the PDF
underlying the random data. This closest point is determined by projecting the
sample locus end point to all points on the approximation chart and selecting
that point whose perpendicular distance from the sample point is the smallest.
Once the PDF underlying the sample data is selected, the shape, location and
scale parameters are then approximated.

2.6.4.3. PDF Approximation Metric

In the goodness of fit test, it is hypothesized that whenever the end point of the
sample data locus falls within the .99 probability confidence contour of the null
distribution, the PDF underlying the data can be approximated by the null
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FIGURE 2.80 Approximation chart: N = normal, U = uniform, E = negative exponen-
tial, A = Laplace, S = logistic, C = Cauchy, V = extreme value, T = gumbel type-2,
G = gamma, P = pareto, W = Weibull, L = lognormal, K = K-distributed, B = beta,
SU = Su-Johnson. Sample data locus end point e is shown with 0.99, 0.95, 0.90
confidence contours and candidate PDFs.

distribution. Because the confidence contours are neither circular nor exactly
elliptical, analytically determining whether the locus end point falls within the
contour is a difficult computational problem. Thus, by definition, the sample
data is declared to be from the null distribution provided the locus end point
of the sample linked vectors is within the locus end point of the null distribution
by a distance that is less than half the length of the minor axis of the .99
confidence contour.

Although the approximation chart can accommodate a wide variety of PDFs,
most experimentally measured data for radar CL envelopes are approximated
as arising from either Rayleigh, Weibull, Lognormal, or K-distributed PDFs,
as noted in Section 2.1.2. Hence, for ease of implementation, it is assumed
throughout this work that random data in a homogeneous region are generated
from and approximated by one of the cited PDFs. Note that because the Weibull
PDF becomes the Rayleigh PDF when its shape parameter equals two, only
Weibull, Lognormal, or K distributions are used. The half-length of the minor
axis of the .99 confidence contour is listed in Table 2.15 for the Rayleigh,
Weibull, Lognormal, and K-distributed PDFs for various values of the shape
parameters when Nz = 100. For a shape parameter that is not listed in the table,
the half-length of the minor axis of the .99 confidence contour is approximated
by that of the closest shape parameter for the particular PDF. Because the
smallest PDF approximation metric that appears in Table 2.15 is d;, =
0.13x 10!, the null distribution is declared as the approximating distribution
without the need to refer to the table whenever the distance between the end
points of the sample and null distribution linked vectors is less than dpp,.
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TABLE 2.15
PDF Approximation Metric for Different PDFs, Ng = 100

Half-length of the

PDF Shape Parameter Minor Axis ( x 107")
Rayleigh — 0.47
Weibull 0.1 0.25

0.5 0.41
1.0 0.41
2.0 0.47
3.0 0.47
4.0 0.45
5.0 0.44
10.0 0.44
Lognormal 0.01 0.48
0.05 0.45
0.1 0.43
0.2 0.42
0.3 0.42
0.4 0.46
1.0 0.41
5.0 0.28
10.0 0.13
K-distribution 0.01 0.13
0.1 0.37
1.0 0.29
5.0 0.47
10.0 0.47
20.0 0.49
40.0 0.49
50.0 0.49

2.6.4.4. Outliers

Even though the mapping procedure does a good job in separating the BN and CL
regions one or more outliers may exist in a set of reference cells. For example,
outliers may arise due to (1) misidentified BN cells in a CL patch or misidentified
CL cells in the BN, (2) cells having data values of low probability of occurrence,
and (3) cells containing signals from strong targets.

In correctly approximating the PDF underlying a set of data, outliers can
cause a problem by significantly altering the set of linked vectors generated by
the Ozturk algorithm. To illustrate this, a set of Ng = 100 reference data, referred
to as set A, are generated from the Lognormal distribution with shape parameter
0.01. The histogram of this set is plotted in Figure 2.81. Also, another set, referred
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FIGURE 2.81 Histogram of set A.
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FIGURE 2.82 Histogram of set B.

to as set B, is formed which contains 97 data points from set A and three data
points with very small values to constitute the outliers in the set. Figure 2.82
shows the histogram of this second set. Note from the histogram that the three
data points have resulted in an isolated bar. The two sets are processed by the
Ozturk algorithm and have their locus end points plotted in approximation charts
of Figures 2.83 and 2.84. Note how the end point in Figure 2.84 for the set
containing outliers (set B) is far removed from the Lognormal PDF from which
97 out of the 100 data points of set B were generated. To understand the cause,
Figures 2.85 and 2.86 show the plots of the goodness of fit test for set A and set B,
respectively, where the null hypothesis is the Lognormal PDF with shape
parameter 0.01. Comparing the two figures, it is noted that the linked vectors in
set B are smaller than those of set A, causing the locus end point for set B to fall
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FIGURE 2.83 Approximation chart for the end point of set A.

way below the end point for set A and, therefore, outside the confidence ellipses.
This is due to the fact that, the amplitudes of linked vectors are proportional to
the magnitude of standardized data, which depend on the mean and standard
deviation of the set. The three outliers do not significantly affect the mean of
the set but do increase the variance tremendously causing the standardized
data and, therefore, the amplitudes of the linked vectors to become smaller. In
this example, the mean and standard deviation for set A are equal to 32.54 and
4.69, respectively, while the mean and standard deviation for set B are equal to
31.63 and 18.08, respectively. This example illustrates what can happen when
three BN cells with small data values are misidentified and associated with a set

of CL cells.
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FIGURE 2.84 Approximation chart for the end point of set B.
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FIGURE 2.86 Goodness of fit test for set B.

One way to identify outliers within a region is to compute the mean m
and standard deviation o within that region and call any cell whose data value
falls outside the interval [m — 20, m + 20°] as an outlier. This method is used
to identify outliers within a set of selected reference cells. When this method is
applied to set B, whose histogram is shown in Figure 2.82, the three outliers are
identified and removed from the set.

2.6.4.5. PDF Approximation Strategy

As mentioned in Section 2.6.4.3, CL data are generated in this work from
either the Weibull, Lognormal, or K-distributed distributions. Consequently,
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the strategy for approximating the PDF underlying a CL patch consists of the
following steps:

1. Select a total of Nt test cells that are evenly spread throughout the
CL patch.

2. For each test cell, choose its closest Ng = 100 reference cells as
described in Section 2.6.4.1.

3. Using the Ozturk algorithm, determine the distance between the locus
end point of the data linked vectors and its projection onto the Weibull,
Lognormal, and K-distributed trajectories.

4. Discard those PDFs for which the distances in step 3 exceed the
corresponding distances obtained from Table 2.15.

5. If all possible PDFs are discarded in step 4, excise any outliers that may
exist from the data and proceed to step 3.

6. Use IPUS, as discussed in the next chapter, to determine the best
PDEF(s) to approximate the data.

Steps 1-5 are now illustrated through examples.

2.6.5. EXAMPLES

In this section, indexing is performed on the same examples considered in
Section 2.5.4 where mapping procedure was carried out. Discussion of each
example ends with a table indicating the approximations to be used for the PDFs
underlying selected test cells in the CL patches. The quality of the
approximations is discussed in Section 2.7 for each of the examples.

2.6.5.1. Example 1

Consider the example of Section 2.5.4.2.1 where the parameters of the generated
scene are given in Table 2.2.

2.6.5.1.1. Assessment

The indexing procedure starts by first assessing the mapped volume. This consists
of labeling the CL patches, estimating CNR for each patch, and counting the
number of cells in each patch. The results are presented in Table 2.16. CL patches
labeled one, two and three, are shown in Figure 2.87. By comparing Table 2.2
with Table 2.16, it is seen that reasonable results are obtained for the CNRs and
numbers of cells. Because the CL patch labeled as two consists of C 4 D, its
CNR and number of cells, respectively, are approximated by the average of the
CNRs and the sum of the number of cells for C and D.

2.6.5.1.2. CL Subpatch Investigation

The next step in the indexing procedure consists of identifying subCL patches
within a CL patch. This is done by selecting a CL patch and applying the mapping
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TABLE 2.16

Assessment Parameters (Example 1)

CL Patch CL Patch Label CNR (dB) Number of Cells
A 1 9.04 113
C+D 2 36.66 304

B 3 23.31 1444

procedure to it. If one or more subpatches exist, the procedure attempts to first
identify the subpatch having the lowest average power. If a subpatch does not
exist, the procedure attempts to recognize this situation.

Let PLQP, PLCQP, and PLCCP represent the percentage number of cells of
the subpatch with the lowest power among the possible subpatches of a CL patch
in the quantized, first-corrected and second-corrected stages, respectively.
Tables 2.17-2.19 show the results of the mapping procedure applied, respectively,
to CL patches one, two, and three. For CL patches one and three, the mapping
procedure results with PLCCP being equal to 100%, reflecting the conclusion that
the subpatches with the lowest average power in CL patches one and three occupy
100% of the area in each patch. Therefore, it is concluded that CL patches one and
three are homogeneous and do not contain any subpatches. On the other hand,
mapping of CL patch two results with PLCCP = 48.75%. This indicates that CL
patch two contains at least two subpatches and the subpatch with the lowest
power occupies 48.75% of the total area of patch two. This is consistent with the
generated surveillance volume, where CL patch C has a smaller power than CL
patch, D and C occupies 50% of the total area of CL patch two.
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FIGURE 2.87 Contour plot of the mapped volume after numbering (Example 1).
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TABLE 2.17
Mapping Procedure Applied to CL Patch 1 (Example 1)

PLQP (%) Parameter Values
10.00 NCQ =38 PLCQP = 70.59
(guess) NCC=1 PLCCP = 20.59
20.59 NCQ =8 PLCQP = 94.12
previous PLCCP NCC=1 PLCCP = 82.35
82.35 NCQ =38 PLCQP = 100.0
previous PLCCP NCC=1 PLCCP = 100.0
TABLE 2.18
Mapping Procedure Applied to CL Patch 2 (Example 1)

PLQP (%) Parameter Values
10.00 NCQ =38 PLCQP = 39.38
(guess) NCC=1 PLCCP = 7.50
20.00 NCQ =38 PLCQP = 59.38
previous PLCCP NCC =1 PLCCP = 43.12
43.12 NCQ =7 PLCQP = 55.00
previous PLCCP NCC =1 PLCCP = 49.38
49.38 NCQ =5 PLCQP = 50.62
previous PLCCP NCC =1 PLCCP = 46.25
49.38 NCQ=>5 PLCQP = 50.62
previous PLCCP NCC=3 PLCCP = 48.75
TABLE 2.19
Mapping Procedure Applied to CL Patch 3 (Example 1)

PLQP (%) Parameter Values
10.00 NCQ=38 PLCQP = 50.25
(guess) NCC=1 PLCCP = 12.19
12.19 NCQ =38 PLCQP = 58.51
previous PLCCP NCC=1 PLCCP = 16.61
16.61 NCQ =38 PLCQP = 73.62
previous PLCCP NCC=1 PLCCP = 28.80
28.80 NCQ =38 PLCQP = 92.57
(guess) NCC =1 PLCCP = 66.19
66.19 NCQ =38 PLCQP = 100.0
previous PLCCP NCC=1 PLCCP = 100.0
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2.6.5.1.3. Reassessment

Finally, mapping was applied to CL patches two and four with the result that both
patches were judged to be homogeneous.

Treating each identified subpatch as a patch, assessment is done once more
to relabel all subpatches in the surveillance volume. Results of the assessment
are tabulated in Table 2.20. Now the surveillance volume is identified to include
four CL patches where CL patches one, two, three, and four coincide with
CL patches A, C, B, and D, respectively, of the original scene. Note how close
are the number of cells and CNR for every patch when comparing Tables 2.2
and 2.20. Note also that using the values of Table 2.14, every CL patch in
the surveillance volume has been identified as a WSC region. Also, using the
ranges of the CNR for the strong, weak, and intermediate signal cases, as given
in Table 2.14, classification of the CL patches is shown in column five of
Table 2.20. Figure 2.88 shows the result of the numbering of the new mapped
volume.

TABLE 2.20
Reassessment Parameters (Example 1)

CL Patch CL Patch Label CNR (dB) Number of Cells Classification

A 1 9.04 113 WSC
B 2 30.63 151 WSC
C 3 23.31 1444 WSC
D 4 40.54 146 WSC
60 T T T T T T T T
50 b
40 - 1
=
=
£ 301 ]
N
<
20 b
1 1 1 1 1 1 1 1

Range

FIGURE 2.88 Contour plot of the MV after renumbering (Example 1).
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2.6.5.1.4. Steps 1-5 of the PDF Approximation Strategy

As detailed in Section 2.6.4.5, the first step in the PDF approximation strategy is
to select a total of Nt test cells that are evenly spread throughout the CL patch.
For each of the four CL patches listed in Table 2.20, let Ny = 5. Assume each CL
patch is scanned from left to right and from top to bottom. In each CL patch let
the first cell scanned be numbered as one. The last cell scanned in each patch is
assigned a number equal to the total number of cells in that patch. The test cells
selected for CL patches one, two, three, and four are listed in the first column
of Tables 2.21-2.24, respectively. Note that the test cells are evenly spread
throughout each CL patch.

The second step in the PDF approximation strategy is to choose for each test
cell the closest Ng = 100 reference cells as detailed in Section 2.6.4.1.

Using the Ozturk algorithm, the third step is to determine the distance
between the locus end point of the data linked vectors and its projection onto
the Weibull, Lognormal, and K-distributed trajectories. The distance, shape,
scale, and location parameters for the approximating PDFs are tabulated in
columns four, five, six, and seven, respectively, of Tables 2.21-2.24. The (u, v)
coordinates of the data locus end point are listed in column eight of the tables.
Finally, column three provides a ranking based on the smallest distance between
the approximating PDF and the data locus end point.

TABLE 2.21
PDF Approximation for CL Patch 1 (Example 1)
Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

w 1 072x10°2T 212 320 0.58  (—0.0298, 0.3503)
1 L 022%x107'T 018 7.48 —4.18

K 3 017x107'T 500 0.43 0.77

w 2 090x107>T 214 326 054 (—0.0293, 0.3320)
28 L 5  024x107'T 018 776 —4.47

K 3 018x107'T 500 0.43 0.75

W 1 074%1072T 194 3.01 0.74  (—0.0376, 0.3500)
57 L 5 024x107'T 021 674 —3.50

K 3 013x10°'T  50.0 0.43 0.69

w 2 013x107'T 206 3.16 0.63  (—0.0313, 0.3561)
85 L 6 028x107'T 019 738 —4.10

K 3 021x107'T 500 0.43 0.73

w 1 023x1072T  2.01 3.09 0.69  (—0.0330, 0.3455)
113 L 5 018x107'T 020 7.02 —3.75

K 2 0.11x107'T 50.0 043 0.73
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TABLE 2.22

PDF Approximation for CL Patch 2 (Example 1)

Test Cell No.

1
w/o 3
Outliers

38

38
w/o 4
Outliers

76

76
w/o 4
Outliers

114

114
w/o 5
Outliers

151

151
w/o 5
Outlier

PDF

A= RO = A g RO = Ao g RO Z R g ARC S

"o g AC Z

Rank

17
19
20

2
4
6

23
21
20

1
4
14

24
21
20

26
23
21

12

11

26

23
21

10

11

Distance

024 x10°° ¥
025%x107°%
026X 107°W¥

0.87X1072T
021x107'T
027x10°'T

029 % 107° ¥
027 %X 107 %%
026 X 107 ° ¥

0.63%107>T
0.18x10°'T
031x107'T

030%x 107 ¥
027 X 107° ¥
026 X 10 °W¥

020X 1072 T
0.11x107!'T
021x10°'T

031x10°° ¥
029 % 107 °W¥
027 X 107° ¥

028x10°'T
0.14x10°'T
028x107!'T

031 x10°° ¥
029 %10 °Ww
027 X107 °W¥

028x107'T
0.14x10°'T
028x10°'T

Shape

5.00
0.76
32.0

2.60
0.10
50.0

0.73
0.81
50.0

2.82
0.06
50.0

0.74
1.10
50.0

2.52
0.13
50.0

0.52
1.84
50.0

2.45
0.18
50.0

0.52
1.85
50.0

2.44
0.18
50.0

Scale

9.00
1.97
0.72

1.39
5.02
0.16

1.81
2.27
0.72

1.46
7.81
0.15

1.81
1.29
0.71

1.25
3.62
0.14

1.19
0.37
0.84

1.19
2.57
0.14

1.19
0.38
0.84

1.19
2.58
0.14

Location

24.12
30.20
28.99

31.30
27.50
31.58

30.84
29.80
28.09

31.30
24.77
31.67

30.79
30.67
28.09

3143
28.89
31.66

31.02
31.41
27.16

31.41
29.86
31.60

31.02
31.41
27.16

31.48
29.85
31.60

(u, v)

(—0.0952, 0.1143)

(—0.0177, 0.3512)

(0.1281, 0.1361)

(—0.0122, 0.3486)

(0.1310, 0.1360)

(—0.0202, 0.3406)

(0.1581, 0.1563)

(—0.0235, 0.3143)

(0.1581, 0.1563)

(—0.0235, 0.3147)

Step 4 is to discard those PDFs for which the distances in step 3 exceed
the corresponding distances obtained from Table 2.15. In Tables 2.21-2.24, the
results are indicated by either W or T, respectively, depending upon whether
the PDFs are discarded or not.
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TABLE 2.23
PDF Approximation for CL Patch 3 (Example 1)
Test

Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 w 5 0.17x107' T 1.62 13.1 0.82 (—0.0476, 0.3235)
L 1 025%x1072T 034 204 —9.04
K 3 0.75%x1072T 156 3.90 -1.19

361 W 6 024x107'T 1.67 13.7 1.65 (—0.0438, 0.3171)
L 1 049x1072T 033 214 —8.75
K 4 0.15x107'T 15.8 3.94 —0.01

722 W 3 0.19%x10°'T 267 221 —4.93  (—0.0154, 0.3620)
L 5 032%x107'T 0.07 1.15 —101.14
K 7 035x107!'T 50.0 2.43 —0.14

1083 W 1 033x1072T 1.63 11.8 341 (—0.0508, 0.3433)
L 5 022x107'T 0.31 19.8 —6.95
K 2 0.11x107'T 350 2.34 1.51

1444 W 1 036X 1072 T 2.2 16.9 —-1.17 (—0.0285, 0.3393)
L 3 0.11x107'T 0.19 37.7 —24.57
K 4 0.12x107'T 500 2.18 0.26

TABLE 2.24

PDF Approximation for CL Patch 4 (Example 1)

Test

Cell No. PDF Rank Distance Shape  Scale Location (u, v)

1 \%% 5 044x107' T 4.30 86.9 16.66  (0.0165, 0.3811)
L 6 0.52x107'¥  0.01 2625 —2529.01
K 20 0.72x107'¥ 500 6.34 57.92

37 W 5 036X 107'T 3.88 79.5 23.66 (0.0102, 0.3751)
L 044x107'T 0.01 2628 —2532.56
K 18 0.63x107'¥ 500 6.35 57.54

73 W 2 0.78 X 1072T 5.00 96.2 17.69  (0.0119, 0.3630)
L 5 023%107'T 0.01 2547 —2508.77
K 19 0.60x 107'¥ 500 6.16 58.36

110 \%% 1 0.52x 1072T 5.00 99.3 5.24  (0.0153, 0.3317)
L 5 0.16x107'T  0.01 2616 —2520.22
K 18 056X 107'¥ 500 6.32 58.84

146 W 1 047%1072T 4.37 92.2 11.62  (0.0080, 0.3430)
L 3 0.14x107'T 0.01 2736 —2640.34
K 18 048 % 107'T 50.0 6.61 56.10
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TABLE 2.25

Assessment Parameters (Example 2)

CL Patch CL Patch Label CNR (dB) Number of Cells
A 1 12.03 133
C+D 2 8.22 308

B 3 8.65 622

In the shaded background rows of Table 2.22, related to CL patch 2, note
that all possible PDFs are discarded. Consequently, step 5 is implemented where
outliers that exist are excised from each set of reference cells. Steps 3 and 4 are
then repeated and the results presented with a white background in Table 2.22.
With the outliers removed, note that the distance measure for one or more of the
approximating PDFs has become significantly smaller.

2.6.5.2. Example 2

Consider now the example of Section 2.5.4.2.2 where the parameters of the
generated scene are given in Table 2.5.

2.6.5.2.1. Assessment

Following the same strategy discussed in Section 2.6.5.1, results of the assess-
ment stage are presented in Table 2.25. CL patches 1, 2 and 3, are shown in
Figure 2.88. Comparison of Tables 2.5 and 2.25 shows that reasonable results are
obtained for the CNRs and number of cells.

2.6.5.2.2. CL Subpatches Investigation

Tables 2.26—2.28, show the results of the mapping procedure applied, respec-
tively to CL patches one, two, and three. For CL patches one, two, and three,

TABLE 2.26
Mapping Procedure Applied to CL Patch 1 (Example 2)
PLQP (%) Parameter Values
10.00 NCQ =38 PLCQP = 36.73
(guess) NCC=1 PLCCP = 8.16
20.00 NCQ =38 PLCQP = 71.43
modified PLQP NCC =1 PLCCP = 28.57
28.57 NCQ =38 PLCQP = 87.76
previous PLCCP NCC =1 PLCCP = 55.10
55.10 NCQ =38 PLCQP = 100.0
previous PLCCP NCC=1 PLCCP = 100.0
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TABLE 2.27
Mapping Procedure Applied to CL Patch 2 (Example 2)
PLQP (%) Parameter Values

10.00 NCQ =38 PLCQP = 60.38
(guess) NCC=1 PLCCP = 19.50
19.50 NCQ =38 PLCQP = 81.76
previous PLCCP NCC=1 PLCCP = 49.06
49.06 NCQ =38 PLCQP = 94.97
previous PLCCP NCC=1 PLCCP = 81.76
81.76 NCQ =38 PLCQP = 100.0
previous PLCCP NCC =1 PLCCP = 100.0

the mapping procedure results with PLCCP being equal to 100% reflecting
the conclusion that the subpatches with the lowest power in CL patches one, two,
and three occupy 100% of the area in each patch. Therefore, it is concluded that
all of these CL patches are homogeneous and do not contain any subpatches.
In fact, CL patch two consists of subpatches C and D. By using expert system
rules, it is shown in Section 2.7 that CL patch two can be further separated.

2.6.5.2.3. Reassessment

Because the CL subpatch identification does not result in finding any subpatches
within CL patches one, two and three, the mapped volume is not changed and
assessment is not necessary.

2.6.5.2.4. Steps 1-5 of the PDF Approximation Strategy

Tables 2.29 to 2.31 list the results of steps 1—5 of the PDF approximation strategy
applied to CL patches one, two, and three, respectively.

TABLE 2.28
Mapping Procedure Applied to CL Patch three (Example 2)
PLQP (%) Parameter Values

10.00 NCQ =38 PLCQP = 63.36
(guess) NCC=1 PLCCP = 22.12
22.12 NCQ =38 PLCQP = 89.63
previous PLCCP NCC=1 PLCCP = 62.90
62.90 NCQ =38 PLCQP = 100.0
previous PLCCP NCC=1 PLCCP = 100.0
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TABLE 2.29

PDF Approximation for CL Patch 1 (Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 w 5 016X107'T 140 454 020  (—0.0566, 0.3207)
L 1 031x1072W 040 667  —293
K 2 057x1072% 993 190  —1.00

33 w 5 013x107'T 137 457 023 (—0.0604, 0.3232)
L 3 073x1072T 041 663  —2.80
K 1 017x1072T 861 209  —L110

66 w 6  044Xx107'W 086 293 148 (—0.0802, 0.2751)
L 2 016x107'¥ 077 314 037
K 5 035x107'W 171 436 —036

66 w 0.13x107'T 130 382 068  (—0.0651,032116)

wio 3 L 3 082x1072T 045 526  —1.64

outliers K 1 016x1072T 696 203  —0.58

99 w 5 023x107'T 127 411 062  (—0.0636,0.3113)
L 1 065x10°T 048 535  —159
K 3 011x107'T 623 235  —0.79

133 w 7 056x107'W 073 239 205 (—0.0732,0.2641)
L 3 029%x107'¥ 083 28  —085
K 6  048x107'W 173 493  —023

133 w 5 018x107'T 136  4.08 055  (—0.0586,0.3181)

wlo 4 L 1 021x107°T 042 577  —2.06

outliers K 2 071x1072T 880 193  —0.62

2.6.5.3. Example 3

Finally, consider the example of Section 2.5.4.2.3 where the parameters of the
generated scene are given in Table 2.8.

2.6.5.3.1. Assessment

Following the same strategy discussed in Section 2.6.5.1, results of the
assessment stage are presented in Table 2.32. CL patches one, two and three,
are shown in Figure 2.89. Comparison of Tables 2.8 and 2.32 shows that
reasonable results are obtained for the CNRs and number of cells.

2.6.5.3.2. CL Subpatch Investigation

Tables 2.33-2.35 show the results of the mapping procedure applied,
respectively, to CL patches one, two, and three. For CL patches one, two, and
three, the mapping procedure results with PLCCP being equal to 100% reflecting
the conclusion that the subpatches with the lowest power in CL patches one,
two, and three occupy 100% of the area in each patch. Therefore, it is concluded
that all CL patches are homogeneous and do not contain any subpatches.
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TABLE 2.30

PDF Approximation for CL Patch 2 (Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 8 057x107'¥ 073 1.08 147  (—0.0725, 0.2622)
L 3 030x107'T 0.84 1.27 0.93
K 6 050x107'¥ 171 202 0.41

77 W 7 0.85x 107! ¥ 0.72 1.09 1.53 (—0.0813, 0.2659)
L 2 021x107'T 0.85 1.27 0.99
K 5 041x107'¥ 147 219 0.51

154 w 2 0.18x107'T 1.34 2.56 0.91 (—0.0740, 0.3510)
L 7 037x10°'T 0.40 3.98 —-1.07
K 4 029x10°'T 1.92  1.16 0.08

231 W 3 093x1072T 2.08 4.06 0.24 (—0.0316, 0.3338)
L 2 067x107°T 021 8.63 —4.97
K 4 093x1072T 50.0 0.55 0.42

308 w 1 001x107°T 1.99 3.99 0.25 (—0.0335, 0.3435)
L 4 016x107'T 020 9.0 —552
K 2 094%x1072T 50.0 0.56 0.29

TABLE 2.31

PDF Approximation for CL Patch 3 (Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 \%% 3 0.69x 1072T 0.90 2.06 0.87 (—0.0997, 0.3072)
L 6 0.19%x107'T 0.69 2.45 —=0.12
K 1 026X 1072T 169 294 —0.30

156 W 1 0.13x 1072T 1.13 2.66 0.52 (—0.0830, 0.2397)
L 5 025x10°'T 0.52 3.51 —1.02
K 4 0.13x107'T 4.00 2.08 —0.65

311 W 4 0.13x107'T 1.17 2.50 0.88 (—0.0743, 0.3181)
L 3 0.11x107'T 052 321 —0.45
K 1 048 % 1073T 4.47 1.78 —-0.12

466 w 4 0.13x107'T 117 312 0.81  (—0.0743,0.3174)
L 3 011x107'T 052  3.99 —0.84
K 1 0.11x1072T 441 2.25 —0.45

622 w 5 024x107'T 076 213 143 (—0.0965, 0.2867)
L 1 033X 1072T 0.79 2.57 0.31
K 3 0.16x107'T 1.36 4.03 —=0.19
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TABLE 2.32
Assessment Paramete

rs (Example 3)

CL Patch CL Patch Label CNR (dB) Number of Cells
A 1 9.34 124
C+D 2 10.63 341
B 3 13.47 306
60 T T T T T T T T
50 B
40 B
c
5
E 30 b
N
<
20 B
1 1 1 1 1 1 1 1
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Range

90

FIGURE 2.89 Contour plot of the mapped volume after numbering (Example 2).

TABLE 2.33

Mapping Procedure Applied to CL Patch 1 (Example 3)

PLQP (%)
10.00
(guess)

20.00
modified PLQP

51.06
previous PLCCP

Parameter Values

NCQ =38
NCC = 1
NCQ=38
NCC = 1
NCQ=38
NCC = 1

PLCQP = 48.94
PLCCP = 8.51

PLCQP = 82.98
PLCCP = 51.06

PLCQP = 100.0
PLCCP = 100.0
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TABLE 2.34
Mapping Procedure Applied to CL Patch 2 (Example 3)
PLQP (%) Parameter Values

10.00 NCQ =38 PLCQP = 42.93
(guess) NCC=1 PLCCP = 11.62
11.62 NCQ =38 PLCQP = 53.54
previous PLCCP NCC=1 PLCCP = 13.64
13.64 NCQ =8 PLCQP = 64.14
previous PLCCP NCC=1 PLCCP = 18.69
18.69 NCQ =38 PLCQP = 77.27
previous PLCCP NCC=1 PLCCP = 32.32
32.32 NCQ =38 PLCQP = 94.44
previous PLCCP NCC=1 PLCCP = 69.70
69.70 NCQ =38 PLCQP = 100.0
previous PLCCP NCC=1 PLCCP = 100.0
TABLE 2.35

Mapping Procedure Applied to CL Patch 3 (Example 3)

PLQP (%) Parameter Values

10.00 NCQ =38 PLCQP = 46.53
(guess) NCC=1 PLCCP = 14.36
14.36 NCQ =38 PLCQP = 70.30
previous PLCCP NCC=1 PLCCP = 26.24
26.24 NCQ =38 PLCQP = 92.08
previous PLCCP NCC=1 PLCCP = 66.83
66.83 NCQ =38 PLCQP = 100.0
previous PLCCP NCC=1 PLCCP = 100.0

As in example 2, CL patch two consists of subpatches C and D. In Chapter 7
it is shown that expert system rules are unable, in this case, to further subdivide
the CL patch. However, it is also shown that the PDFs of subpatches C and D are
very similar with identical power levels. Consequently, the inability to subdivide
CL patch two is not a serious problem.

2.6.5.3.3. Reassessment

Because the CL subpatch identification does not result in finding any subpatches
within CL patches one, two, and three, the mapped volume is not changed and
assessment is not necessary (see Figure 2.90).

© 2006 by Taylor & Francis Group, LLC



110 Adaptive Antennas and Receivers

60 T T T T T T T T

50 b

30 b

Azimuth

20

1om

10 20 30 40 50 60 70 80 90
Range

FIGURE 2.90 Contour plot of the mapped volume after numbering (Example 3).

2.6.5.3.4. Steps 1-5 of the PDF Approximation Strategy

Tables 2.36—2.38 list the results of steps 1-5 of the PDF approximation strategy
applied to CL patches one, two, and three, respectively.

TABLE 2.36

PDF Approximation for CL Patch 1 (Example 3)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 3 030x107'T 220 390 —001 (—0.0250, 0.3733)
L 7 044x107'¥ 013 124 -9.01
K 5 039%107'T 500 0.49 0.40

31 W 3 027x107'T 232 398 —007 (—0.0233,0.3702)
L 7 041x107'T 0.12 129 —9.60
K 4 036x107'T 500 0.49 0.42

62 W 2 097x107°T 200 369 —032  (—0.0342, 0.3529)
L 5  025x10°'T 020 841  —5.00
K 3 0.17x107'T 500 0.51 0.54

93 w 3 028x107'T 232 398 —0.07 (—0.0238, 0.3709)
L 7 041x107'T 0.12  13.0 —9.60
K 4 037x107'T 500 0.49 0.41

124 W 3 028x10°'T 210  3.77 0.12  (—0.0276, 0.3727)
L 7 041x107'T 0.15 10.8 -17.53
K 4 036x107'T 500 0.49 0.39
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TABLE 2.37
PDF Approximation for CL Patch 2 (Example 3)

Test Cell No. PDF Rank Distance Shape Scale Location

1 W 15 094x10°'¥ 500 3.06 1.24
L 14  094x107'® 001 810 —7696
K 20 0.11x107°% 500 0.19 2.89
1 w 2 013x107'T 239 120 3.07
wlo 5 L 6 026x107'T 0.13 3.8 0.52
Outliers K 4 025x107'T 500 0.14 3.24
85 W 15 011x10°¥ 500 3.04 1.19
L 14 011x10°® 001 805 —176.56
K 18  013x10°°% 365 0.22 2.84
85 w 1 079%1072T 219  1.03 3.14
wlo 6 L 5 023x107'T 0.17 251 1.51
Outliers K 3 018x10°'T 500 0.13 3.23
171 W 22 018x107°% 049 024 3.68
L 14  012x10°% 001 800 —7624
K 18  014x10°¥ 500 0.19 278
171 w 12 032x107'T 235 116 2.97
wlo 5 L 3 017x107'T 022 205 1.91
Outliers K 11 030x107'T 438 0.15 3.13
256 W 15 047x10°'¥ 470 245 1.71
L 12 040x10°'w 005 986 —5.89
K 18 055x10°'¥ 500 0.16 2.98
256 w 1 039%x10°2T 229 114 2.98
wlo 3 L 5 018x107'T 0.16  2.88 1.07
Outliers K 0.17x107'T  50.0 0.14 3.11
341 W 23 019x10°°% 039 0.6 372
L 14  012x10°% 001 941 —90.21
K 19 014x10°% 500 0.22 2.57
341 W 8 024x10°'T 236 121 295
wlo 7 L 1 094%x1072T 0.18 256 1.42
Outlier K 7 024x10°'T 500 0.14 3.12

(u, v)

(0.0308, 0.2437)

(—0.0227, 0.3554)

(0.0282, 0.2214)

(—0.0281, 0.3509)

(0.0365, 0.2186)

(—0.0258, 0.3105)

(—0.0005, 0.2915)

(—0.0256, 0.3468)

(0.0469, 0.2188)

(—0.0253, 0.3186)

2.6.6. EXTENSION OF THE INDEXING PROCEDURE
TO RANGE-AZIMUTH-DOPPLER CELLS

It is possible to extend the indexing procedure to the 3-D R/A/D plane. The same
steps used in indexing the R/A plane are followed. Namely, (1) an assessment
stage is utilized to assign a unique number to the BN region and each 3-D

© 2006 by Taylor & Francis Group, LLC



112 Adaptive Antennas and Receivers

TABLE 2.38

PDF Approximation for CL Patch 3 (Example 3)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)

1 W 14 073x10°'% 096 290 239  (—0.0530, 0.2596)
L 6 047x107'¥w 072 3.07 1.41
K 10 062x107'¥ 303 3.06 0.29

1 w 12 033x107'T 223 536 0.03  (—0.0291, 0.3098)

wlo 3 L 3 016x107'T 024 891 —4.35

Outliers K 10 029x10°'T 353 0.81 0.54

76 W 14  071x107'% 098 3.00 239  (=0.0519, 0.2632)
L 6 045x107'¥ 069 326 13
K 10 059x107'w 333 297 0.58

76 w 10 029x107'T 218 539 0.05  (—0.0300, 0.3135)

wlo 3 L 2 013x107'T 024 920 —46l

Outliers K 7 025x10°'T 386 0.79 0.48

153 w 5  017x107'T 131 349 1.61  (—0.0626, 0.3176)
L 1 039%x1072T 045 478 —0.48
K 2 058x1072T 751 181 0.49

229 w 3 036x107'T 1.50 420 129  (—0.0673, 0.3742)
L 7 057x107'¥ 035 670 —2.14
K 4  045%107'T 429 0.82 0.24

306 W 3 025%x107'T 150 422 123 (—0.0645, 0.3623)
L 044%x10°'T 036  6.59 —2.02
K 4 033x101T 315 0.95 0.18

CL patch, compute the CNR for each CL patch, and classify CL patches as to
whether they are SSC, WSC, or ISC regions, (2) a CL subpatch investigation
stage is utilized to subdivide nonhomogeneous CL patches into contiguous CL
subpatches, and (3) a random data analysis stage is utilized to obtain a PDF
approximation of WSC CL patches stage.

Even though the indexing procedure for the R/A/D volume follows the same
steps as those shown in Figures 2.76—2.78 for the R/A plane, some changes are
needed to apply the indexing algorithms of the R/A plane to the R/A/D volume.
These changes are:

(1) The mask used in the numbering procedure and shown in Figure 2.73
becomes a 3-D mask which consists of the 13 previously numbered
neighboring cells to the test cell. This is illustrated in Figure 2.91 for
the ijkth test cell.

(i) For the choice of the reference cells, a three by three by three mask
of neighboring cells is initially centered around the test cell instead
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FIGURE 2.91 Mask used in numbering the range—azimuth—Doppler volume.

of the three by three one used for the R/A plane. Then, the mask is
augmented by one plane at each of its boundaries resulting in a five by
five by five mask. As was done for the R/A case, the process of adding
one row and one column to each boundary of the previous mask
continues until the desired number of reference cells have been
obtained. Note that the process of choosing a specified number of
reference cells in the R/A/D volume results in the cells being closer to
the test cell than for the R/A plane. For example, in order to choose
100 reference cells in a homogeneous region, a mask of dimension
11 X 11 is needed in the R/A plane whereas a mask of dimension five
by five by five suffices in the R /A/D volume. Thus, the reference cells
are a distance of up to five cells away from the test cell in the R/A
plane, whereas the distance is only up to two cells away from the test
cell in the R/A/D plane.

2.6.7. CONCLUSION

In summary, an indexing procedure has been presented that allows for
numbering each of the BN region and CL patches with a unique number,
extracting CL subpatches, and approximating the PDF of the test cells in the CL
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patches. The procedure was illustrated with examples that show how the
indexing procedure works.

With respect to the indexing procedure presented in Table 2.1, every step of
the WSC has been discussed in this chapter. It should be pointed out that the
procedures used for choosing test and reference cells in SSC and ISC are same as
those used for WSC.

Note that detection is not handled in this work because it is assumed that the
appropriate detection algorithms to be used are known once the mapping and
indexing are handled correctly.

Up to this point, only the SUD/FFES has been presented. Rules are presented
in the next chapter to enable SUD/FBES.

2.7. APPLICATION OF IPUS TO THE RADAR
DETECTION PROBLEM

Various aspects of the radar detection problem were illustrated in Figure 2.5.
The IPUS architecture decides whether or not a weak signal situation exists by
classifying the data to be processed into either SSC, ISC, or WSC. As explained
in Table 2.1, the SSC uses the LRT, the ISC uses the GLRT, and the WSC uses
the LOD.

Thus far, the mapping and indexing stages for the FFES, shown in Figure 2.4,
have been detailed. In this chapter, rules are developed which allow IPUS to
supervise (1) the convergence process in the mapping procedure, and (2) the
interpretation of the indexing procedure.

Section 2.7.1 summarizes IPUS concepts. In Sections 2.7.2 and 2.7.4, rules
are developed for the mapping and indexing procedures, respectively, along with
examples which illustrate application of the rules.

2.7.1. SUMMARY OF IPUS CONCEPTS
The following items summarize the concepts upon which IPUS is based:

— Signal processing algorithm (SPA): one or more SPAs and the
corresponding control parameters need to be defined. The set of values
assigned to the control parameters at a given instance is referred to as an
SPA instance.

— Discrepancy detection: when the signal being monitored by the SPA
does not satisfy the requirements of the SPA instance, the output of the
SPA is distorted. Recognition of the fact that SPA instance is not
properly chosen for the input data stream is referred to as discrepancy
detection.

— Diagnosis procedure: once a discrepancy has been detected, a diagnosis
procedure is used to identify the source of the distortion which may have
led to the discrepancy.
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— Reprocessing procedure: knowing the source of distortion, either the
parameters of the same SPA can be readjusted or a different SPA can be
chosen to reprocess the data.

In the following sections, (1) SPAs are identified along with their sets of
control parameters, (2) rules are developed which enable the detection of
discrepancies and identification of sources of distortion, and (3) examples are
presented to illustrate the result of reprocessing.

2.7.2. ROLE OF IPUS IN THE MAPPING PROCEDURE

In this section, control by IPUS of the convergence process in the mapping
procedure is described.

2.7.2.1. IPUS Stages Included in the Mapping Procedure

2.7.2.1.1. SPA and SPA Instance

It has been shown in the block diagram of Figure 2.28 that part of the mapping
procedure consists of a set of four blocks linked by feed-forward and feed-back
loops. These blocks are: thresholding or quantization, correction-quantized,
correction-corrected, and assessment. Recall that these blocks are used to find the
best threshold to separate between BN and CL patches.

The parameters associated with the first three blocks are BNQP, NCQ, and
NCC, respectively. The assessment block defines whether or not reprocessing
through the feedback loops is needed and, if so, which control parameters should
be changed and what values should be assigned to the control parameters. The
assessment stage computes BNCQP and BNCCP and compares them to BNQP.

In this application IPUS treats all four blocks as a single SPA. The SPA
control parameters are BNQP, NCQ, and NCC. Any one set of the control
parameter values is referred to as an SPA instance.

2.7.2.1.2. Observations on Setting of the Control Parameters

In this section, different effects of the control parameters are discussed. Note first
that the intervals for the allowable values of the control parameters are given in
Section 2.5 and are equal to

0% =< BNQP < 100%
5<NCQ<=38 (2.44)
1 = NCC = 4.

Recall the BNQP represents the fraction of BN cells in the quantized volume. It is
used to determine the threshold ¢ for which all cells with data amplitudes below g
are identified as BN and above g are identified as CL in the quantized volume.
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Also, NCQ is the minimum number of neighboring cells in the quantized
volume required to be identified as CL cells, for a test cell to be declared as a CL
cell in the first-corrected volume. Finally, NCC is the minimum number of
neighboring cells in the first-corrected volume required to be identified as CL
cells, for a test cell to be declared as a CL cell in the second-corrected volume.

BNCQP and BNCCP are computed parameters which represent the BN
percentages in the first and second-corrected volumes, respectively.

Define BNQP, to be the true value for the fraction of BN cells in the generated
scene.

As explained in Section 2.5.3, the mapping processor begins by setting a
threshold that results in a specified fraction of BN cells equal to BNQP.
The mapping processor iterates until the latest scene is consistent with the last
specified value of BNQP. When the iteration process ends, it is assumed that

BNQP = BNQP, (2.45)

2.7.2.1.2.1. Observations on the Setting of BNQP

1. Setting BNQP much smaller than BNQP;: many cells have data
amplitudes larger than the threshold resulting in a large number of BN
cells being declared as CL cells in the quantized volume.

2. Setting BNQP much larger than BNQP;: CL patch cells may be
misclassified due to the fact that some CL patches have data amplitude
values below the threshold. This results in many CL cells, being
identified as BN cells in the quantized volume.

Conclusion: because (1) the objective of the mapping procedure is to separate
between BN and CL patches, (2) the average power of the BN is the lowest
among all regions, and (3) the threshold is set adaptively by the assessment stage,
the threshold is always set very low at the beginning so that BN information is
gained as the process iterates. The threshold, controlled by the assessment stage,
is raised adaptively until BNQP = BNQP,.

2.7.2.1.2.2. Observations on the Setting of NCQ. Recall that NCQ controls which
test cells in the first-corrected volume are to be declared as CL. NCQ is said to be
large when its value approaches eight and small when its value approaches five.
The following observations relative to NCQ take into consideration that in the
initial setting the BNQP is low and then is increased until BNQP approximates
the true value BNQP,. Depending on the setting of BNQP with respect to BNQP,,
four cases exist:

1. BNQP much smaller than BNQP;:

(a) Setting NCQ small: in this case, because many CL declared cells
exist in the quantized volume due to the low threshold, small NCQ
results in the building of a multitude of CL patches which are
likely to be so close that they form a single big CL patch in the
first-corrected volume.
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(b) Setting NCQ high: here, even though many CL declared cells
exist in the quantized volume due to the low threshold, high NCQ
results in the building of fewer CL patches than when NCQ is
small. This is due to the fact that there must be at least NCQ CL
cells neighboring the test cell in the quantized volume, where
NCQ is large, in order for the test cell to be declared as a CL cell
in the first-corrected volume. In this case, corrections are made
and some of the cells previously declared as CL cells in the
quantized volume are now declared as BN cells in the first-
corrected volume.

2. BNQP close to BNQP;: when BNQP is close to its true value, the
threshold is high enough to separate between the BN region and CL
patches. With either small or large values for NCQ, the CL regions are
well approximated. In this case, the choice of NCQ affects the
classification of the inner cells of the CL regions. This is because, even
though the data amplitudes of CL cells are higher than those of the BN
cells, in general, some CL cells with data amplitudes lower than those
of the highest BN data values exist and may be lower than the
threshold.

(a) Setting NCQ small: all test cells in the quantized volume which
have at least NCQ neighboring cells are declared as CL cells in the
first-corrected volume. Small NCQ helps to correctly classify the
inner CL cells. However, note that small NCQ also results in
misclassifying BN cells that are surrounded by at least NCQ
declared CL cells.

(b) Setting NCQ high: every test cell must have a large number of
neighboring CL declared cells in the quantized volume for it to be
declared as a CL cell in the first-corrected volume. This causes the
procedure to misclassify some of the inner CL cells when too
many of the neighboring cells have their data amplitudes falling
below the threshold. In this case, the identified CL regions are not
homogeneous and contain BN declared “holes.”

Conclusion: The value of NCQ should be chosen as large as possible at the
beginning of the iterative process when the threshold is set very low, to correctly
reclassify the maximum number of BN cells misidentified at the thresholding/
quantization stage. When the threshold reaches a level, close to its convergence
value, NCQ should then be chosen as small to avoid nonhomogeneous CL
regions.

2.7.2.2. Observations on the Setting of NCC

Because NCQ truncates the boundaries of the CL regions, NCC is used to
augment the edges of the CL declared regions. NCC is said to be large when its
value approaches four and small when its value approaches one. In the following
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discussion it is assumed that the conclusions previously reached on the settings of
BNQP and NCQ are taken into consideration so that BNQP is initially set low to
be increased until it approaches its true value BNQP,, while NCQ is initially set to
a large value, to be decreased as BNQP approaches its true value. Four cases are
then identified:

1. BNQP much smaller then BNQP, and NCQ large: because NCQ is
set large, many CL edge cells are misclassified and associated with the
BN region.

(a) Setting NCC small: when NCC is set small, many of the edge cells
are correctly reclassified from BN cells to CL cells in the second-
corrected volume.

(b) Setting NCC large: in this case, only a few misclassified CL edge
cells are correctly reclassified in the second-corrected volume.

2. BNQP close to BNQP, and NCQ small: because NCQ is small, only
a few CL edge cells are associated with the BN.

(a) Setting NCC small: small NCC causes not only CL edge cells to be
recovered but also BN cells to be misclassified in the second-
corrected volume.

(b) Setting NCC large: in this case, most of the CL edge cells are
correctly classified in the second-corrected volume and only few
BN cells are misclassified as CL cells.

Conclusion: NCC results in the recovery of CL edge cells and the mis-
classification of some BN cells close to the CL edge cells. In order to maximize
recovery of the CL edge cells and minimize the misclassification of BN cells,
NCC should be set small when NCQ is set large in order to recover a lot of CL
edge cells that were lost in the first correction. On the other hand, NCC should be
set large when NCQ is set small because, in this case, only a few CL edge cells
need to be recovered.

2.7.2.2.1. Discrepancy Detection

In this section, rules are developed to enable the detection of discrepancies. The
assessment stage of the mapping procedure consists of comparing at each step of
the iteration the value for BNCCP with the corresponding BNQP. When BNCCP
is not sufficiently close to BNQP, the assessment stage is said to fail. This initiates
the discrepancy detection stage. Diagnosis identifies the distortion that may
have caused the discrepancy and adjusts one or more of the mapping control
parameters for reprocessing of the data.

The strategy behind the iterative process of mapping procedure employs
two stages. In the first stage, referred to as the threshold approximation stage,
BNQP is varied iteratively by the mapping processor until, as explained later, it
is expected that BNQP is within 10% of its true value BNQP,. The second stage,
referred to as threshold fine-tuning stage, consists of iteratively varying BNQP
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until it converges to within 1% of the last computed value for BNCCP. The two
stages are now discussed in detail.

(a) Threshold approximation stage: during this stage, two sets of SPA
instances are used on the same data of the surveillance volume. For sets BNQP
and NCC are the same whereas NCQ is equal to seven for one set and eight
for other.

Recall that NCQ is used to recognize the CL patches in the surveillance
volume. First consider the situation where BNQP approximately equals BNQP;.
Here the threshold is such that it is possible to do a good job of separating
between the BN region and CL patches. Steps are then taken to correct
misclassified BN and CL data. Note that misclassifications are due to large BN
data exceeding the threshold and small CL data falling below the threshold. At
this point, setting NCQ to seven and eight, respectively, results in very close
values for BNCQP and BNCCP due to the facts that (1) the two masks are
very similar NCQ = 8 requires that eight neighboring cells be declared CL in the
quantized volume for a test cell in the first-corrected volume to be declared CL
whereas NCQ = 7 requires that seven neighboring cells be declared CL in the
quantized volume for a test cell in the first-corrected volume to be declared CL)
and (2) only a few cells are misclassified in the quantized volume.

Now consider that BNQP is significantly smaller than BNQP,. In this case
many BN cells are misclassified after quantization. Even though masks with
NCQ equal to seven and eight are similar, they result in BNCQP and BNCCP
being considerably different due to the fact that the large number of misclassified
BN cells are so many that they tend to group together. Consequently, changing
NCQ from eight to seven simply results in additional BN cells grouping together
to form additional CL regions and more edges. Because of this

[BNCQP]ncq=7 < [BNCQPlyco=s

(2.46)
and
[BNCCP]ncg=7 < [BNCCPlyco=s

Because the second-corrected volume represents the scene where CL patches
and their edges are assumed to be properly recovered had the threshold BNQP
been chosen properly, BNCCP tries to converge to BNQP,. Thus, it is logical
to begin each iteration by assigning to BNQP the latest computed value of
[BNCCP]nco=s- The very first value assigned to BNQP is simply a guess. This
value should be such that the threshold is low. In all of our examples, the first
value of BNQP is chosen equal to 10%.

Using different scenes with different values for BNQP,, it has been deter-
mined near convergence that whenever the difference between BNCCPlNCQ:7
and [BNCCP]nco—s is within 10%, then BNQP is likely to be within 10% of
its true value. This is confirmed in Figure 2.92 where plots of the quantities
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FIGURE 2.92 Plot of [BNCQP]NCQ:g - [BNCQP]NCQ:7 VS. BNQP - BNQPl for
different values of BNQP,.

[BNCCP]ncq = 8 — [BNCCP]ncg =7 vs. BNQP — BNQP; are shown for
different values of BNQP,. Note that

(i) for different values of BNQP,, all plots are such that near convergence
the difference [BNCCP]xcg—g — [BNCCP]ycq—7 approaches to 0
when BNQP — BNQP, also approaches 0,

(i1) for different values of BNQP,, when BNQP — BNQPt > — 10%, the
difference [BNCCP]ncg=s — [BNCCPlnco=7 < 10%.

As a result of the above, the threshold approximation stage iterates until it is
satisfied that

[BNCCP]ncos — [BNCCPlycoy < 10% (2.47)

In summary, as shown in the flow chart of Figure 2.93, a guess for the initial value
of BNQP is followed by the execution of the mapping procedure using two
different SPA instances. The outputs of the two SPA instances are compared by
means of the computed values of BNCCP. If [BNCCP]ncg=s — [BNCCP]nco—7
is more than 10%, a discrepancy is detected and it is concluded that the value
of BNQP differs from its true value by more than 10%. BNQP is then increased
to the latest computed value of [BNCQP]nco—s. BNQP is varied from one
iteration to the next while NCC is kept equal to one. This choice for NCC agrees
with the observations made previously where it was concluded that NCC should
be set small when NCQ is set large. In this case NCQ has a large value equal to
either seven or eight.

The discrepancies that may arise in the threshold approximation stage are due
to the fact that two instances of the same SPA result in different interpretations
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FIGURE 2.93 Threshold approximation stage, discrepancy reduction.

when applied to the same data. As defined in Section 2.3.2.2, such a discrepancy
is typified as a fault.

Two fault-type discrepancies are readily identified in the threshold approx-
imation stage. These are as follows:

1. [BNCCP]ncg=s — [BNCCP]ncq—7 > 10%: as discussed above, the
goal of the threshold approximation stage is to obtain a threshold
BNQP that is within 10% of its true value. As shown in Figure 2.92, this
is likely only when [BNCCP]ycq—s — [BNCCP]nco—7 < 10%. When
the difference between the computed thresholds [BNCCPlycq—s —
[BNCCP]ncq=7 is more than 10%, a fault type of discrepancy is detected
during the assessment stage. The diagnosis process identifies the fact
that BNQP — BNQP, < (—)10% as the source for the distortion causing
the discrepancy. The remedy, in this case, is to increase the value of
BNQP during the reprocessing stage to the latest computed value for
[BNCCP]nco=s-

2. Initial BNQP set too low: in some cases, when the initial guess for BNQP
is too small, the number of BN cells with data exceeding the threshold
is so large that when corrections are made, the second-corrected volume
results in many CL declared patches or, in the worst case, a single
big CL patch. This results in the values of either [BNCCP]ncq=s or
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TABLE 2.39

Fault-Type Discrepancies in the Threshold Approximation Stage
Discrepancy Diagnosis
(Fault Type) (Source of Distortion) Reprocessing

[BNCCP]ncg=s — [BNCCP]nco—7 BNQP — BNQP, > (—) 10% Assign to BNQP the latest

is more than 10% value of [BNCCP]ncq—s
[BNCCP]ncg=s — [BNCCP]nco—7 Initial value of BNQP is Increase BNQP by 10%
is less than 10% in the early too low from its initial value

stages of iteration

[BNCCP]nco—=7 being even smaller than BNQP. In this case, it is
possible to obtain a value for the difference [BNCCP]lncqo—s —
[BNCCP]ncg—7 that is smaller than 10%. The IPUS control must be
suspicious of such a case and declare BNQP-set-too-low as the source
for the distortion causing the discrepancy. The remedy, in this case, is to
increase the initial value of BNQP during the reprocessing stage. In our
examples, we choose to increase BNQP by 10% every time an initial-
BNQP-set-too-low fault is obtained.

Table 2.39 summarizes the discrepancies that may occur during the threshold
approximation stage.

(b) Threshold fine-tuning stage: at the end of the threshold approximation
stage BNQP is likely to be within 10% of its true value BNQP,. During the
threshold fine-tuning stage, BNQP is varied until BNCCP is within 1% of the
corresponding value of BNQP.

During the threshold fine-tuning stage, NCQ is lowered to avoid holes in
the CL patches caused by misclassified CL cells whose data values are lower
than the threshold. For the same reason BNQP is assigned the latest value of
[BNCCP]ncq—7 rather than the latest value of [BNCCP]ncq—s. In addition, the
value of NCC is raised to avoid misclassification of BN cells close to the CL
edges. These choices for NCQ and NCC agree with observations mentioned in
Section 2.7.2.1.2.

The following observations on BNQP, NCQ, and NCC are necessary to
understand how these parameters should be automatically set in order for BNCCP
to converge to within 1% of BNQP.

1. When BNQP is increased while NCQ and NCC are kept constant,
the number of BN cells in the quantized volume is increased and,
therefore, BNCQP and BNCCP are likely to increase.

2. When NCQ is increased while BNQP and NCC are kept constant, the
requirement on a test cell to be declared as a CL cell in the first-
corrected volume becomes more stringent and, therefore, the number
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of CL cells in both corrected volumes are likely to decrease. This tends
to increase the number of BN cells causing BNCQP and BNCCP to
increase.

3. When NCC is increased while BNQP and NCQ are kept constant, the
requirement on a test cell to be declared as a CL cell in the second-
corrected volume becomes more stringent and, therefore, the number of
CL cells in this volume is decreased. Thus, the number of BN cells in the
second-corrected volume increases and, consequently, BNCCP
increases.

Using the above observations, the following strategy is used by the
assessment stage to control the threshold fine-tuning stage,

1. Because BNQP is within 10% of its true value at the beginning of the
threshold fine-tuning stage, the threshold is likely to be relatively high.
Thus, NCQ should be set to its smallest value of five while, as needed,
NCC should be incremented iteratively from its minimum value of one
up to its maximum value of four.

2. When the inequality in Equation 2.47 is not satisfied, BNQP should be
increased in small steps. Otherwise, the iterative process diverges
when the same rule from the threshold approximation stage is used.
The approach taken in this work during the threshold fine-tuning stage
consists of assigning a value to BNQP that is half way between its
latest value and the latest value of BNCCP, i.e.,

[B NQP] latest + [BNCCP] latest
2

BNQP = (2.48)
3. The condition set forward for ending the threshold fine-tuning stage
is given by

IBNQP — BNCCPI < 1% (2.49)

Two cases are possible when the inequality in Equation 2.49 is not
satisfied: either BNQP << BNCCP or BNQP > BNCCP.

4. When the inequality in Equation 2.49 is not satisfied and BNQP <
BNCCP, the control parameters should be varied by the diagnosis
procedure such that BNCCP is decreased. In this case, NCQ should be
made smaller. If none of the allowable values for NCQ result in the
inequality in Equation 2.49 being satisfied, then BNQP is varied
according to Equation 2.48.

5. When the inequality in Equation 2.49 is not satisfied and BNQP >
BNCCP, the control parameters should be varied by the diagnosis
procedure such that BNCCP is increased. In this case, NCC should be
made larger. If none of the allowable values for NCC result in the
inequality in Equation 2.49 being satisfied, then BNQP is varied
according to Equation 2.48.
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FIGURE 2.94 Threshold fine-tuning stage, discrepancy reduction.

During the threshold approximation stage note that only BNQP was varied.
On the other hand, in the threshold fine-tuning stage, any of the parameters
BNQP, NCQ, and NCC may be varied.

In summary, as shown in the flow chart of Figure 2.94, the threshold fine-
tuning stage begins by assigning to BNQP the latest value of BNCCPlyco—7.
Once quantization, first correction, and second correction stages are completed
with preselected values for NCQ and NCC, the assessment stage diagnoses the
results according to the strategy discussed above, and, depending on the outcome,
decides either that reprocessing is necessary with adjusted values for any of
the BNQP, NCQ, and NCC parameters, or the threshold fine-tuning stage is
completed.

At the end of each iteration of the threshold fine-tuning stage it is expected
that the computed value of BNCCP will be within 1% of BNQP. When the
inequality in Equation 2.49 is not satisfied, a conflict type of discrepancy is
detected based on the inconsistency in the expectation that BNCCP will be within
1% of BNQP. Table 2.40 summarizes the discrepancies that may occur during the
threshold fine-tuning stage.

It has been determined through examples that the initial setting of NCQ = 5
is adequate for the threshold fine-tuning stage to converge (i.e., in the examples
studied it was never necessary to decrease NCQ).

In the following section, examples are presented which illustrate use of
the rules developed for the threshold approximation and threshold fine-tuning
stages.
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TABLE 2.40
Fault-Type Discrepancies in the Threshold Fine-Tuning Stages
Discrepancy Diagnosis
(Conflict Type) (Source of Distortion) Reprocessing
[BNQP — BNCCPI > 1% and Either NCQ or BNQP Decrease NCQ, otherwise
BNQP < BNCCP are not well adjusted update BNQP
[BNQP — BNCCP| > 1% and Either NCC or BNQP Increase NCC, otherwise
BNQP > BNCCP are not well adjusted update BNQP

2.7.3. EXAMPLES OF MAPPING

In this section, tables describing previous results from the mapping procedure of
examples one, two and three in Section 2.5 are modified to demonstrate operation
of the rules developed in this chapter for the threshold approximation and
threshold fine-tuning stages. In the following examples, define

A] = [BNCCP]NCQ=8 - [BNCCP]NCQ=7 (250)

and

A, = IBNQP — BNCCP! (2.51)

2.7.3.1. Example 1

First, consider the example presented in Section 2.5.4.2.1. Table 2.41 is an
expanded version of Table 2.3 in order to include information about the
procedures for the threshold approximation and threshold fine-tuning stages.
In the first step of the threshold fine-tuning stage note that A, > 1% and
BNCCP < BNQP. Using the decision rules in Table 2.40, NCC is increased in the
next steps.

2.7.3.2. Example 2

Consider now the example presented in Section 2.5.4.2.2. Tables 2.42 is an
expanded version of Table 2.3 in order to include information about the
procedures for the threshold approximation and threshold fine-tuning stages. In
the first step of the threshold fine-tuning stage note that A, > 1% and
BNCCP > BNQP. Using the decision rules in Table 2.40, BNQP is increased
using the half way rule of Equation 2.48.

2.7.3.3. Example 3

Consider now the example presented in Section 2.5.4.2.3. Table 2.43 is an
expanded version of Table 2.9 in order to include information about the
procedures for the threshold approximation and threshold fine-tuning stages.
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TABLE 2.41
Setting of BNQP in the Threshold Approximation and Threshold
Fine-Tuning Stages (Example 1)

BNQP (%) Parameter Values A;

Threshold Approximation Stage

10.00 (guess) NCQ =38 NCQ=7 A > 10%

NCC=1 NCC=1

BNCQP = 51.56 BNCQP = 25.78

BNCCP = 22.00 BNCCP = 7.09
22.00 NCQ =38 NCQ =7 A > 10%
Latest NCC =1 NCC =1
BNCCP BNCQP = 68.28 BNCQP = 54.06

BNCCP = 50.39 BNCCP = 25.74
50.39 NCQ =38 NCQ =7 A < 10%
Latest NCC =1 NCC =1
BNCCP BNCQP = 75.56 BNCQP = 70.93

BNCCP = 68.46 BNCCP = 63.37

Threshold Fine-Tuning Stage

63.37 NCQ =5 A, > 1%
Latest NCC=1
BNCCP BNCQP = 67.35

BNCCP = 59.72 < BNQP
63.37 NCQ =5 A > 1%
Latest NCC =2
BNCCP BNCQP = 67.35

BNCCP = 62.26 < BNQP
63.37 NCQ =5 A< 1%
Same as latest NCC =3
BNQP BNCQP = 67.35

BNCCP = 64.17

As was the case in example one, note that A, > 1% in the first step of the
threshold fine-tuning stage and BNCCP << BNQP. Once again, using the decision
rules in Table 2.40, NCC is increased.

2.7.4. ROLE OF IPUS IN THE INDEXING PROCEDURE

In this section, control of the indexing procedure by IPUS is described. Recall
that the indexing procedure consists of the assessment, CL subpatch investigation
and PDF approximation stages. Control by IPUS of these different stages is
discussed next.
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TABLE 2.42
Setting BNQP in the Threshold Approximation and Threshold
Fine-Tuning Stages (Example 2)

BNQP (%) Parameter Values A;

Threshold Approximation Stage

10.00 (guess) NCQ =28 NCQ =7 Ay > 10%

NCC =1 NCC =1

BNCQP = 56.35 BNCQP = 23.94

BNCCP = 20.59 BNCCP = 6.33
20.59 NCQ =28 NCQ =7 Ay > 10%
Latest NCC=1 NCC =1
BNCCP BNCQP = 77.43 BNCQP = 53.30

BNCCP = 48.04 BNCCP = 16.94
48.04 NCQ =38 NCQ =7 A < 10%
Latest NCC=1 NCC=1
BNCCP BNCQP = 91.83 BNCQP = 84.11

BNCCP = 81.70 BNCCP = 72.30

Threshold Fine-Tuning Stage

72.30 NCQ =5 A > 1%
Latest NCC=1
BNCCP BNCQP = 82.17

BNCCP = 79.26 > BNQP
75.78 NCQ =5 A, < 1%
Half way NCC=1

BNCQP = 83.50

BNCCP = 75.31

2.7.4.1. IPUS Stages Included in the Assessment Stage

As explained in Section 2.7.2, the assessment stage consists of (1) assigning
a unique number to the BN region and each CL patch (2) computing the CNR
for each CL patch, and (3) classifying CL patches as either SSC, WSC, or ISC
regions. Due to the straightforward implementation of these steps, any control
by IPUS of the assessment stage is not discussed further.

2.7.4.2. IPUS Stages Included in the CL Subpatch Investigation Stage

The approach used to extract a CL subpatch from a set of contiguous CL subpatches
is the same as that used in the mapping procedure to extract the BN from CL patches.
Therefore, control by IPUS is needed in the CL subpatch investigation stage.
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TABLE 2.43
Setting of BNQP in the Threshold Approximation and Threshold
Fine-Tuning Stages (Example 3)

BNQP (%) Parameter Values A;

Threshold Approximation Stage

10.00 NCQ =38 NCQ =7

(guess) NCC=1 NCC=1
BNCQP = 56.17 BNCQP = 24.24 Ay > 10%
BNCCP = 20.04 BNCCP = 6.09

20.04 NCQ =38 NCQ =7

Latest NCC =1 NCC =1

BNCCP BNCQP = 77.98 BNCQP = 51.22 A > 10%
BNCCP = 43.78 BNCCP = 14.83

43.78 NCQ =38 NCQ=7

Latest NCC =1 NCC =1

BNCCP BNCQP = 90.78 BNCQP = 84.78 Ay > 10%
BNCCP = 82.65 BNCCP = 66.09

82.65 NCQ =38 NCQ=7

Latest NCC=1 NCC=1

BNCCP BNCQP = 93.43 BNCQP =91.17 A < 10%
BNCCP = 89.39 BNCCP = 84.70

Threshold Fine-Tuning Stage

84.7 NCQ=5

Latest NCC =1

BNCCP BNCQP = 87.61 A > 1%
BNCCP = 82.00 < BNQP

84.70 NCQ=5

Latest NCC=2

BNCCP BNCQP = 87.61 A > 1%
BNCCP = 83.65 < BNQP

84.70 NCQ =5

Same as latest NCC =3 A < 1%

BNQP BNCQP = 87.61
BNCCP = 85.46

2.7.4.2.1. SPA and SPA Instance

Recall that the CL subpatch investigation stage attempts to extract first, if it exists,
the CL subpatch having the lowest average power. This part of the CL subpatch
investigation stage consists of a set of four blocks linked by feedforward and
feedback loops. These blocks are: thresholding or quantization, correction—
quantized, correction—corrected, and assessment.
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The parameters associated with first three blocks are PLQP, NCQ, and NCC,
respectively. The assessment stage computes PLCQP and PLCCP and compares
them to PLQP. IPUS treats all four blocks as a single SPA. The control parameters
for the SPA are PLQP, NCQ, and NCC. Any single set of the control parameter
values is referred to as an SPA instance.

2.7.4.2.2. Observations on the Setting of the Control Parameters

The observations previously made for the mapping procedure parameters
(i.e., BNQP, NCQ, and NCC) also hold for the CL subpatch investigation
parameters (i.e., PLQP, NCQ, and NCC).

2.7.4.2.3. Resolution of Discrepancies

As was the case for the mapping procedure, threshold approximation and
threshold fine-tuning stages are used in the CL subpatch investigation stage to
enable resolution of discrepancies. Because the procedure for extracting a CL
subpatch is the same as that used for separating BN and CL patches, discrepancy
detection rules for both procedures are the same. The threshold approximation
stage block diagram of Figure 2.93 becomes that of Figure 2.95 where BNQP
and BNCCP have been replaced by PLQP and PLCCP, respectively. Let PLQP,
represent the true value for PLQP, the threshold approximation stage iterates until
it is satisfied that PLQP is within 10% of its true value PLQP;. This is satisfied
when

[PLCCP]ycoes — [PLCCPlycoer < 10% (2.52)

| Initial guess for PLQP |
T

|
1- Quantization 1-Quantization
2-Correction-Quantized 2-Correction-Quantized
NCQ =8 NCQ=7
3-Correction-Corrected 3-Correction-Corrected
NCC =1 NCC =1
[PLCCPInca-=s [PLCCPInca-7
Update PLQP Assessment

l Satisfactory PLQP

FIGURE 2.95 Threshold approximation stage, resolution of discrepancies.
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PLQP = [PLCCP]\co-
Update PLQP | QP =[PLCC ]NCQ-7|

Quantization |
Change NCQ I
v
NCQ
Correction-Quantized
Change NCC T
1
NCC
Correction-Corrected
)
Decision Assessment

l Satisfactory result

FIGURE 2.96 Threshold fine-tuning stage, resolution of discrepancies.

The threshold fine-tuning stage converges when
IPLQP — PLCCP| < 1% (2.53)

Figure 2.96 shows the block diagram of the threshold fine-tuning stage.

In addition to the discrepancy rules described in Section 2.7.2.1.3 for the
threshold approximation and fine-tuning stages and summarized in Tables 2.39
and 2.40, additional rules are introduced next as a result of some more observations
on the behavior of PLQP for the case where a CL patch is homogeneous and
does not contain subpatches. These are,

1. It is noted that during the threshold approximation stage it is
possible that the inequality in Equation 2.52 will be satisfied with
[PLCCP]Incg=7 or 8 = 100%. This means that the subpatch with the
smallest average power occupies 100% of the CL patch area.
Consequently, the CL patch is homogeneous.

2. When the inequality in Equation 2.52 is met with [PLCCP]ncq=7=
100%, there is no need for the threshold fine-tuning stage. This is
because the initial value of PLQP in the threshold fine-tuning stage
would be equal to 100% and any more processing would also result in
PLCCP = 100% regardless of the values chosen for NCQ and NCC.

3. If the threshold fine-tuning stage results in PLCCP = 100% at any
iteration, the threshold fine-tuning stage should end because, as in
observation 2, any more processing will end with PLCCP = 100%
regardless of the values chosen for NCQ and NCC. This, in turn, will
make PLQP equal to 100%.
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TABLE 2.44
Conflict-Type Discrepancies in the Threshold Approximation Stage
Diagnosis
Discrepancy (Conflict Type) (Source of Distortion) Reprocessing

[PLCCP]nco=s — [PLCCPlnco—7 PLQP — PLQP, > — 10% Assign to PLQP the latest

is more than 10% value of [PLCCP]nco—s
[PLCCP]nco=s — [PLCCPlnco=7 Initial value of PLQP is too Increase PLQP by 10% from
is less than 10% in the early low its initial value
stages of iteration
[PLCCP]nco=s — [PLCCPlnco=7 CL patch homogeneous No threshold fine-tuning
is less than 10% and is needed

PLCCPlycoerors = 100%

Tables 2.44 and 2.45 summarize the discrepancies that may occur during the
threshold approximation and fine-tuning stages for the CL subpatch investigation.

Examples are next presented to illustrate the control by IPUS of the CL
subpatch investigation.

2.7.4.3. Examples

In this section, tables describing the CL subpatch investigation of examples
one, two and three in Section 2.6 are modified to include the rules developed
in this chapter for the threshold approximation and threshold fine-tuning stages.
In the following examples, define 4; = [PLCCP]yco=g — [PLCCP]ycq=7 and
A, = IPLQP — PLCCP!.

2.7.4.3.1. Example 1

First consider the example of Section 2.6.5.1. Tables 2.46-2.48 are expanded
versions of Tables 2.17-2.19 to include information about the procedures for

TABLE 2.45
Conflict-Type Discrepancies in the Threshold Fine-Tuning Stage
Discrepancy Diagnosis
(Conflict Type) (Source of Distortion) Reprocessing

[PLQP — PLCCPI| > 1% and Either NCQ or PLQP are not well Decrease NCQ, otherwise

PLQP < PLCCP adjusted update PLQP

[PLQP — PLCCP! > 1% and Either NCC or PLQP are not Increase NCC, otherwise
PLQP > PLCCP well adjusted update PLQP

[PLQP — PLCCP! > 1% and CL patch homogeneous Stop threshold fine-tuning

PLCCP = 100%

© 2006 by Taylor & Francis Group, LLC



132

Adaptive Antennas and Receivers

TABLE 2.46

Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 1 (Example 1)

PLQP (%) A;
Threshold Approximation Stage

10.00 NCQ=38 NCQ=7 A; > 10%
(guess) NCC =1 NCC =1

PLCQP = 70.59 PLCQP = 23.53

PLCCP = 20.59 PLCCP =2.94
20.59 NCQ =38 NCQ =17 A > 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 94.12 PLCQP = 79.41

PLCCP = 82.35 PLCCP = 38.24
82.35 NCQ =38 NCQ=7 A < 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 100.0 PLCQP = 100.0

PLCCP = 100.0 PLCCP = 100.0

the threshold approximation and threshold fine-tuning stages. Note in Table 2.46
no threshold fine-tuning is needed for CL patch 1. This is due to the fact that
CL patch 1 is homogeneous and does not contain subpatches. Also in Table 2.48
note that the threshold fine-tuning stage needs not be carried out as
PLCCP = 100% in the last row before of the threshold approximation stage.
However, when the fine-tuning stage is carried out, PLQP converges to 99.33%.

2.7.4.3.2. Example 2

Consider the example of Section 2.6.5.2. Tables 2.49-2.51 are expanded
versions of Tables 2.52—2.54 to include information about the procedures for
the threshold approximation and threshold fine-tuning stages. In Table 2.50 note
that the threshold fine-tuning steps, presented in the shaded rows, need not be
carried out.

2.7.4.3.3. Example 3

Finally, consider the example of Section 2.6.5.3. Tables 2.52—-2.54 are expanded
versions of Tables 2.33-2.35 to include information about the procedures
for the threshold approximation and threshold fine-tuning stages. Note from
Tables 2.26—2.28 that no threshold fine-tuning is needed for CL patches one, two,
and three. Also, note that that the last four shaded rows of Table 2.54 need not be
carried out.
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TABLE 2.47
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 2 (Example 1)

CL Patch 2
PLQP (%) A;

Threshold Approximation Stage

10.00 NCQ =38 NCQ =7 A <10%
(guess) NCC=1 NCC =1

PLCQP = 39.38 PLCQP =9.37

PLCCP = 7.50 PLCCP = 0.00
20.00 NCQ =38 NCQ=7 A > 10%
(new guess) NCC =1 NCC =1

PLCQP = 59.38 PLCQP = 38.12

PLCCP =43.12 PLCCP = 38.75
43.12 NCQ =38 NCQ =7 A > 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 61.88 PLCQP = 55.00

PLCCP = 51.25 PLCCP = 49.38

Threshold Fine-Tuning Stage

49.38 NCQ=5 A > 1%
Latest NCC =1
PLCCP PLCQP = 50.62

PLCCP = 46.25
49.38 NCQ=5 A > 1%
Same as latest NCC =2
PLQP PLCQP = 50.62

PLCCP = 46.88
49.38 NCQ =5 A < 1%
Same as latest NCC =3
PLQP PLCQP = 50.62

PLCCP = 48.75

2.7.4.4. IPUS Stages Included in the PDF Approximation Stage

Recall that the objective of the PDF approximation stage is to approximate
the PDF underlying a particular CL patch region. A six-step strategy for PDF
approximation was presented in Section 2.6.4.5. The first five steps consisted of
(1) selecting a total of Nt test cells that are evenly spread throughout the CL
patch, (2) choosing for each test cell the closest Ng = 100 reference cells,
as described in Section 2.6.4.1, (3) Using the Ozturk algorithm to determine
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TABLE 2.48

Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 3 (Example 1)

PLQP (%)

10.00
(guess)

12.19
Latest
PLCCP

16.61
Latest
PLCCP

28.80
Latest
PLCCP

66.19
Latest
PLCCP

98.66
Latest
PLCCP

99.33
Half way
Rule

Threshold Approximation Stage

NCQ =8
NCC =1

PLCQP = 50.25
PLCCP = 12.19

NCQ =38
NCC =1
PLCQP = 58.51
PLCCP = 16.61

NCQ =8
NCC =1

PLCQP = 73.62
PLCCP = 28.80

NCQ =38
NCC =1
PLCQP = 92.57
PLCCP = 66.19

NCQ =8
NCC =1

PLCQP = 100.0
PLCCP = 100.0

NCQ =7

NCC = 1
PLCQP = 14.61
PLCCP = 0.33

NCQ =7
NCC =1
PLCQP = 20.28
PLCCP = 0.83

NCQ =7

NCC = 1
PLCQP = 33.97
PLCCP = 2.42

NCQ=7
NCC =1
PLCQP = 70.03
PLCCP = 22.79

NCQ =7
NCC = 1

PLCQP = 99.83
PLCCP = 98.66

Threshold Fine-Tuning Stage

NCQ=5
NCC =1

PLCQP = 100.0
PLCCP = 100.0

NCQ =5
NCC =1

PLCQP = 100.0
PLCCP = 100.0

Ay > 10%

A; > 10%

Ay > 10%

A > 10%

A < 10%

Ay > 1%

A< 1%

the distance between the locus end point of the data linked vectors and its
projection onto the Weibull, Lognormal, and K-distributed trajectories, (4)
Discarding those PDFs for which the distances in step 3 exceed the corresponding
half length of the minor axis obtained from Table 2.15, and (5) Excising any
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TABLE 2.49
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 1 (Example 2)

CL Patch 1
PLQP (%) A;

Threshold Approximation Stage

10.00 NCQ =38 NCQ =7 A < 10%
(guess) NCC =1 NCC=1

PLCQP = 36.73 PLCQP =38.16

PLCCP = 8.16 PLCCP = 2.04 A > 10%
20.00 NCQ =38 NCQ=7
(new guess) NCC=1 NCC=1

PLCQP =171.43 PLCQP = 55.10

PLCCP = 28.57 PLCCP = 10.20
28.57 NCQ =38 NCQ=7 A > 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 87.76 PLCQP = 55.10

PLCCP = 55.10 PLCCP = 10.20
55.10 NCQ =38 NCQ=7 A > 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 100.0 PLCQP = 95.92

PLCCP = 100.0 PLCCP = 79.59
79.59 NCQ =38 NCQ=7 A < 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 100.0 PLCQP = 100.0

PLCCP = 100.0 PLCCP = 100.0

outliers that may exist from the data and proceeding to step 3 when all possible
PDFs are discarded in step 4. These steps were illustrated through examples in
Section 2.6.5. Step 6 consists of the use of [PUS to determine one or more PDFs
to approximate the data in a particular CL patch. Thus, IPUS is needed to
complete the PDF approximation stage of the indexing procedure.

In order to be able to identify the SPA, SPA instance, and discrepancies
associated with the PDF approximation stage, step 6 of the PDF approximation
strategy has to be formulated.

2.7.4.4.1. Step 6 of the PDF Approximation Strategy

When the five first steps of the PDF approximation strategy are completed, the
information available to step 6 consists of (1) identification numbers of the test
cells, (2) best PDF(s) to approximate the data of the reference cells in every test
cell along with their shape, scale, and location parameters, (3) distance from
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TABLE 2.50

Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 2 (Example 2)

PLQP (%)

10.00
(guess)

19.50
Latest
PLCCP

49.06
Latest
PLCCP

81.76
Latest
PLCCP

94.97
Latest
PLCCP

97.47
Half way
Rule

98.73
Half way
rule

99.36
Half way
rule

CL Patch 2

Threshold Approximation Stage

NCQ =38
NCC = 1

PLCQP = 60.38
PLCCP = 19.50

NCQ =38
NCC =1
PLCQP = 81.76
PLCCP = 49.06

NCQ =38
NCC =1

PLCQP = 94.97
PLCCP = 81.76

NCQ =8
NCC =1

PLCQP = 100.0
PLCCP = 100.0

NCQ=7

NCC =1
PLCQP = 16.35
PLCCP = 0.00

NCQ =17

NCC =1
PLCQP = 46.54
PLCCP = 8.80

NCQ =7
NCC =1

PLCQP = 81.76
PLCCP = 57.23

NCQ =7
NCC =1

PLCQP = 99.37
PLCCP = 94.97

Threshold Fine-Tuning Stage

NCQ =5
NCC = 1

PLCQP = 100.0
PLCCP = 100.0

NCQ=5
NCC =1

PLCQP = 100.0
PLCCP = 100.0

NCQ =5
NCC = 1

PLCQP = 100.0
PLCCP = 100.0

NCQ=5
NCC =1
PLCQP = 100.0
PLCCP = 100.0

Ay > 10%

A > 10%

Ay > 10%

A < 10%

Ay > 1%

A, > 1%

Ay > 1%

A< 1%
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TABLE 2.51
Setting of PLQP in the Threshold Approximation and Threshold
Fine-Tuning Stages, CL Patch 3 (Example 2)
CL Patch 3
PLQP (%) 4
Threshold Approximation Stage

10.00 NCQ =38 NCQ =7 A > 10%
(guess) NCC =1 NCC=1

PLCQP = 63.36 PLCQP = 17.97

PLCCP =22.12 PLCCP = 0.69
22.12 NCQ =38 NCQ =7 A > 10%
Latest NCC =1 NCC=1
PLCCP PLCQP = 89.63 PLCQP = 63.82

PLCCP = 62.90 PLCCP = 19.12
62.90 NCQ =38 NCQ =7 A < 10%
Latest NCC =1 NCC=1
PLCCP PLCQP = 100.0 PLCQP = 99.08

PLCCP = 100.0 PLCCP =94.70

the locus end point of every test cell to the approximating PDF(s), and (4) (u, v)

coordinates of the locus end point for every test cell. This information has been

tabulated for the selected examples of Sections 2.6.5.1-2.6.5.3.
The following strategy is used in step 6:

6.1.

6.2.

6.3.

Only those kinds of PDFs among the Weibull, Lognormal and
K distributions, denoted by W, L, and K, respectively, that pass step 4
to all of the test cells in the patch are considered as possible
approximating kind of PDF(s) for the CL patch. A violation type of
discrepancy occurs when none of the distributions pass step 4 for all of
the test cells in the patch. This situation initiates a search for
subpatches within the patch.

The ranking of each possible approximating type of PDF is summed
over all of the test cells in the CL patch. That distribution having the
lowest sum is chosen as the best approximation kind, for underlying CL
patch distribution. For example, consider Table 2.23 which contains
the distribution rankings for each test cell. The sum of rankings for W,
L, and K are 16, 15, and 20, respectively. Consequently, L is chosen as
the best approximating kind.

A check is made to determine whether, the patch under consideration
is homogeneous. If it is, numerical values are determined for the best
approximating kind of PDF. If it is not, a fault type of discrepancy
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TABLE 2.52
Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 1 (Example 3)

CL Patch 1
PLQP (%) A;

Threshold Approximation Stage

10.00 NCQ =38 NCQ =7 A < 10%
(guess) NCC=1 NCC=1
PLCQP = 48.94 PLCQP = 6.38
PLCCP = 8.51 PLCCP = 0.00
20.00 NCQ =38 NCQ=7 Ay > 10%
(new guess) NCC =1 NCC=1
PLCQP = 82.98 PLCQP = 46.81
PLCCP = 51.06 PLCCP = 10.64
51.06 NCQ =38 NCQ =7 Ay > 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 100.0 PLCQP = 95.74
PLCCP = 100.0 PLCCP = 78.72
Latest NCQ =38 NCQ=7
PLCCP NCC=1 NCC=1 A < 10%
PLCQP = 100.0 PLCQP = 100.0
PLCCP = 100.0 PLCCP = 100.0

occurs and a subpatch search is initiated. The check for homogeneity
proceeds by determining whether all of the test cells in the patch
fall within the .99 confidence contour of the approximating PDF for
each test cell. However, in contrast to Section 2.6.4.3, the length of
the minor axis is used as opposed to the half length. The lengths of the
minor axes are tabulated in Table 2.55 for Ng = 100 and various shape
parameters. The procedure is carried out as follows:

6.3.a. Select the first test cell in the CL patch.

6.3.b. Using the best approximating kind of PDF found in step 6.2,
and the shape, parameter associated with the selected test cell,
determine the length of the minor axis from Table 2.55.

6.3.c. Using the (u, v) coordinates for the locus end points, compute
the distances between the (u, v) coordinates of the selected test
cell and every other test cell.

6.3.d. Check the distances computed in 6.3.c. against the minor axis
length obtained in 6.3.b. Those test cells within the minor axis
length from the selected test cell pass and are indicated by a
T. The remaining cells are indicated by an V.
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TABLE 2.53
Setting of PLQP in the Threshold Approximation and Threshold
Fine-Tuning Stages, CL Patch 2 (Example 3)
PLQP (%) 4;
Threshold Approximation Stage
10.00 NCQ=38 NCQ=7 A; > 10%
(guess) NCC =1 NCC=1
PLCQP =42.93 PLCQP = 16.67
PLCCP = 11.62 PLCCP = 1.51
11.62 NCQ =8 NCQ =7 A, > 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 53.54 PLCQP = 19.19
PLCCP = 13.64 PLCCP = 1.51
13.64 NCQ =38 NCQ=7 A > 10%
Latest NCC =1 NCC =1
PLCCP PLCQP = 64.14 PLCQP = 24.24
PLCCP = 18.69 PLCCP = 2.52
18.69 NCQ =38 NCQ =7 A > 10%
Latest NCC =1 NCC=1
PLCCP PLCQP = 77.27 PLCQP = 44.95
PLCCP = 32.32 PLCCP = 17.57
32.32 NCQ =38 NCQ =17 A, > 10%
Latest NCC =1 NCC =1
PLCCP PLCQP = 94.44 PLCQP = 78.79
PLCCP = 69.70 PLCCP = 37.37
69.70 NCQ =38 NCQ =7 A < 10%
Latest NCC=1 NCC=1
PLCCP PLCQP = 100.0 PLCQP = 100.0
PLCCP = 100.0 PLCCP = 100.0
6.3.e. Select the second test cell in the CL patch and repeat 6.3.b.
through 6.3.d.
6.3.f. Continue this process until all test cells have been selected.
6.3.g. Record the results in a table referred to as the exclusion table.
The CL patch is assumed to be homogeneous only if no ¥s
appear in the exclusion table.
6.3.h. When only Ts appear in the exclusion table, the CL patch

is considered to be homogeneous. An approximating PDF is
obtained by averaging over all of the test cells the shape, scale,

© 2006 by Taylor & Francis Group, LLC



140

Adaptive Antennas and Receivers

TABLE 2.54

Setting of PLQP in the Threshold Approximation and Threshold

Fine-Tuning Stages, CL Patch 3 (Example 3)

PLQP (%)

10.00
(guess)

14.36
Latest
PLCCP

26.24
Latest
PLCCP

66.83
Latest
PLCCP

93.07
Latest
PLCCP

96.53
Half way
Rule

98.26
Half way
Rule

99.13
Half way
Rule

CL Patch 3

Threshold Approximation Stage

NCQ =38
NCC = 1

PLCQP = 46.53
PLCCP = 14.36

NCQ =38
NCC =1
PLCQP = 70.30
PLCCP = 26.24

NCQ =38
NCC =1

PLCQP = 92.08
PLCCP = 66.83

NCQ =8
NCC =1

PLCQP = 100.0
PLCCP = 100.0

NCQ=7

NCC =1
PLCQP =11.39
PLCCP =1.98

NCQ =17

NCC =1
PLCQP = 31.68
PLCCP =5.44

NCQ =7
NCC = |
PLCQP = 68.81
PLCCP = 24.75

NCQ =7
NCC =1

PLCQP = 99.01
PLCCP = 93.07

Threshold Fine-Tuning Stage

NCQ=5
NCC = 1
PLCQP = 100.0
PLCCP = 100.0
NCQ =5
NCC = 1
PLCQP = 100.0
PLCCP = 100.0
NCQ=5
NCC =1
PLCQP = 100.0
PLCCP = 100.0
NCQ =8
NCC = 1
PLCQP = 100.0
PLCCP = 100.0

Ay > 10%

A > 10%

Ay > 10%

A < 10%

A, > 1%

Ay > 1%

A, > 1%

Ay < 1%
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TABLE 2.55
Minor Axis Length for Different PDFs, Np = 100
PDF Shape Parameter Length of the Minor Axis ( x 107"
Rayleigh — 0.94
Weibull 0.1 0.50
0.5 0.82
1.0 0.82
2.0 0.94
3.0 0.94
4.0 0.90
5.0 0.88
10.0 0.88
Lognormal 0.01 0.96
0.05 0.90
0.1 0.86
0.2 0.84
0.3 0.84
0.4 0.92
1.0 0.82
5.0 0.56
10.0 0.26
K-distribution 0.01 0.26
0.1 0.74
1.0 0.58
5.0 0.97
10.0 0.94
20.0 0.98
40.0 0.98
50.0 0.98

and location parameters of the best approximating kind of PDF
obtained in 6.2.

6.3.i. When Vs appear in the exclusion table, a fault type of dis-
crepancy occurs. This is discussed in a later section dealing with
discrepancies.

Steps 6.3.a.—6.3.h. are now illustrated using the data in Table 2.23. As noted
in step 6.2., Lognormal is the best PDF approximating kind for the CL patch
under consideration. Therefore, using Table 2.55, the lengths of the minor axes
corresponding to the shape parameter values of the Lognormal PDF found in
Table 2.23 are listed in Table 2.56 for the different test cells. The second column
and first row of Table 2.56 indicate the assigned numbers of the test cells.
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TABLE 2.56

Distance Between All Pairs of Test Cells for the Example of Table 2.19
Length from Table 2.55 Cell No. 1 361 722 1083 1444
0.084 1 0 0.007 0050 0020  0.025
0.084 361 0.007 0 0.053 0.027 0.027
0.084 722 0.050  0.053 0 0040  0.026
0.084 1083 0020  0.027 0040 0 0.023
0.090 1444 0.025 0.027 0026 0.023 0
TABLE 2.57

Exclusion Table for the Example of Table 2.19

Cell No. 1 361 722 1083 722
1 T T T T T
361 T T T T T
722 T T T T T
1083 T T T T T
1444 T T T T T

The remaining entries in the table represent the distance between the locus end
points of the tabulated pairs of test cells.

The exclusion table corresponding to Table 2.56 is shown in Table 2.57 and
consists Ts and W's depending on whether or not the distances in every row of
Table 2.56 are smaller of larger than the length shown in the first column of the
same row. For this example, note that the entries are all Ts indicating that all test
cells are within the length of the minor axes for the appropriate lognormal
distribution. It is concluded that the patch under investigation is homogeneous.
This example is completed in Section 2.7.5.1.

2.7.4.4.2. SPA and SPA Instance

Steps 1-6 of the PDF approximation stage involve the choice of Nt test cells,
the selection of Ny reference cells for each test cell, use of the Ozturk algorithm
to find the best approximating PDF(s) for each test cell, and determination of an
approximating PDF when the CL patch is homogeneous or implementation of a
subpatch search procedure when the CL patch is nonhomogeneous. These steps,
which are diagrammed in Figure 2.97, constitute the SPA. A particular setting
of the parameters N, and Ny constitutes an SPA instance.
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Choice of N+ test cells

1

Choice of N reference cells
for each test cell

!

Ozturk algorithm

!

PDF approximation for
each test cell

!

PDF approximation for a homogeneous CL patch
or subpatch search for a nonhomogeneous
CL patch

!

FIGURE 2.97 PDF approximation stage.

2.7.4.4.3. Resolution of Discrepancies

In this section, rules are developed to enable resolution of discrepancies that
may occur during the PDF approximation stage. Discrepancies may arise during
two different phases of this stage: (1) during the PDF approximation for each
test cell and (2) during PDF approximation for a homogeneous CL patch or
subpatch search for a nonhomogeneous CL patch. These phases are viewed as
two substages and are investigated next.

(1) PDF approximation for each test cell: in order to approximate the PDF(s)
of a test cell, steps 1-5 of the PDF approximation stage are implemented,
as presented in Section 2.6.4.5. As shown in the examples of Section 6.5, the
outcome of the Ozturk algorithm phase is rejected whenever none of the
allowable distributions (i.e., W, L, K) is found to be a suitable approximation.
This decision is based on the fact that the data are known to be generated from
either W, L, or K. When the data cannot be approximated by one of the allowable
PDFs, a violation type of discrepancy is detected. At this point, the diagnosis
process hypothesizes that the presence of outliers may be the source for the
distortion causing the discrepancy. The first row of Table 2.58 summarizes
resolution of the discrepancy that may occur in the PDF approximation of a
test cell.

Even though the data are known to be generated from the W, L, and K
distributions, these may not be representative. As a result, the allowable
distributions may not provide suitable approximations even after removal of
the outliers. Because the data have been identified to be belonging to WSC,
the Gaussian receiver is likely to produce false alarms. Consequently, the
discrepancy is resolved by discarding the data. The second row of Table 2.58
summarizes resolution of this discrepancy.
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TABLE 2.58
Discrepancies in the PDF Approximation of a Test Cell Stage

Discrepancy (Violation Type) Diagnosis (Source of Distortion) Reprocessing
None of the allowable distributions is Presence of outliers Remove outliers

found to be a suitable approximation
for the test cell
After removal of outliers none of Data is not representative Discard data
the allowable distributions is found to
be a suitable approximation for the
test cell

(2) PDF approximation for a CL patch: in order to approximate the PDF
of a CL patch, step 6 of the PDF approximation stage is implemented. As
discussed in Section 2.7.4.4.1, the decision about existence of a suitable
approximating PDF for a CL patch is based on the outcome of the exclusion
table. As stated previously, a discrepancy is detected when one or more Ws
occur in the exclusion table.

When this happens, two cases are possible:

(2a) The CL patch is homogeneous. In this case, the discrepancy is of the
conflict type because the expectation that only Ts should be encountered in the
exclusion table has not materialized. However, the full length minor axis
criterion has yet to be applied to the PDF which would be obtained by averaging
over the parameters of all test cells for the best approximating PDF kind. This is
necessary because an ¥V which appears in the exclusion table due to two test
cells having widely separated (u, v) coordinates may disappear when the (u, v)
coordinates of each test cell are compared to those of the average PDF. Should
this fail, an exclusion table is generated for the next best ranked PDF kind. If
only Ts appear in the exclusion table, the parameters of this PDF kind are
averaged over all the test cells and the average PDF is used to approximate the
homogeneous CL patch. If one or more Ws appear in the exclusion table, phase
(2a) is repeated until all possible PDF kinds have been exhausted. Should all
possibilities fail, it is assumed that the CL patch is not homogeneous and the
process initiates phase (2b).

(2b) The CL patch is not homogeneous. In this case, the discrepancy is of
the violation type because none of the allowable PDF kinds is able to model the
entire CL patch. Therefore, it should be modeled by two or more approximating
PDFs. By using the exclusion table to identify groupings and by introducing
new test cells between the groupings to generate even larger exclusion tables,
the system attempts to determine a suitable number of PDFs for modeling the
nonhomogeneous CL patch. This is achieved by examining the patterns of Ws
and Ts which appear, as discussed below.

© 2006 by Taylor & Francis Group, LLC



A New Approach to Radar Detection 145

TABLE 2.59

Exclusion Table for Cells a, b, ¢, d, and e

Cell No. a b C d e
a T v T v v
b v T v T T
¢ T v T v v
d v T v T T
e v T v T T

For example, five test cells numbered a, b, ¢, d, and e might yield the
exclusion table shown in Table 2.59, By interchanging rows b and ¢ and columns
b and c, Table 2.60 results. From this table, there are seen to be two groupings:
cells a, c and cells b, d, e. To determine whether the CL patch may consist of more
than two groupings, new test cells, numbered f, g, h, which are located between
the groupings are introduced. After rearranging rows and columns, the exclusion
table given by Table 2.61 may result. By inspection, it is concluded that cells
f, g, h are not common to the previous two groupings. It is concluded that the
CL patch is likely to be composed of at least three groupings. On the other hand,
the introduction of cells f, g, h might result in the exclusion table shown in
Table 2.62. Here, cells f, g, and h are seen to be common to both of the original
groupings. Cells f, g, and h can be classified as “border” test cells (i.e., cells
having reference cells extending into more than one homogeneous subregion
of the CL patch). It is concluded that two subregions are likely to exist within
the CL patch. Further refinements can be made by introducing additional new test
cells and studying the resulting exclusion tables.

In general, additional groupings are identified when new test cells cannot
be associated with existing groupings. Otherwise, new test cells will either be
associated with existing groupings or be classified as border cells. When all cells
of the CL patch have been used as either test cells or reference cells and when

TABLE 2.60

Exclusion Table when Cells b and c are Interchanged

Cell No. a b c d e
a T T v v v
c T T v v v
b N4 N4 T T T
d N4 v T T T
e v N4 T T T
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TABLE 2.61

Exclusion Table with Additional Cells f, g, and h Not Common to

Other Cells

Cell No. a c f g h b d e
a T T v v v v v v
[ T T v v v v v v
f v v T T T v v v
g ¥ ¥ T T T ¥ ¥ ¥
h v v T T T v v v
b v v v v v T T T
d v v v v v T T T
e v v v v v T T T

new test cells result only in border cells, the refinement procedure stops and the
system assumes that additional groupings do not exist.

(2¢) The next step in the procedure is to identify those cells in the various
homogeneous subregions of the CL patch. In general, each test cell in a grouping
has associated with it Ni reference cells. It is assumed that all Ng reference
cells belong to the same subregion as the corresponding test cell. All the cells
identified for a particular subregion are assigned the same number. For example,
all the cells in the kth subregion are assigned the number k. At this point each cell
in the CL patch will have one or more numbers assigned to it. Those cells with a
single assigned number are assumed to belong to the numbered subregion. Those
cells with more than one assigned number are assumed to belong to a border
region bordering the numbered subregions. For example, a cell with the assigned
numbers j and k is assumed to be in a border region bordering the jth and kth
subregions. Similarly, a cell with the assigned numbers j, k, and m is assumed to
be in a border region bordering the jth, kth, and mth subregions.

TABLE 2.62

Exclusion Table with Additional Cells f, g, and h Common to Other Cells
Cell No. a c f g h e
a T T T T T v v v
c T T T T T v v v
f T T T T T T T T
g T T T T T T T T
h T T T T T T T T
b v v T T T T T T
d v v T T T T T T
e v v T T T T T T
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TABLE 2.63
Discrepancies in the PDF Approximation of a CL Patch
Discrepancy Diagnosis (Source of Distortion) Reprocessing
Not all test cells CL patch may be Try the next best
can be approximated by homogeneous but cannot be average PDF
the best average PDF approximated by the best
(conflict type) average PDF
Not all test cells CL patch is not Separate subpatches and
can be approximated by homogeneous approximate their
any of the average corresponding PDF(s)

PDF(s) (violation type)

(2d) Once the subregions have been identified, the PDF associated with each
subregion is approximated. This is accomplished by following the procedure
previously outlined in substeps 6.1-6.3 of step 6 for the PDF approximation
strategy. Depending upon the application, the data from the border regions
can either be discarded or approximated by one of the PDFs from the bordering
subregions.

In summary, two types of discrepancies can arise during the PDF approxima-
tion of a CL patch, as shown in Table 2.63. When the CL patch may be homo-
geneous but cannot be approximated by the best average PDF, a conflict type of
discrepancy is noted and the diagnosis suggests that the next best average PDF
be tried. On the other hand, when it is concluded from the exclusion table not all
cells in a CL patch can be approximated by the same PDF, a violation type of
discrepancy is detected indicating that the CL patch is not homogeneous. The
diagnosis recommends that the CL patch data should be reprocessed to search for
subpatches within the CL patch. Once the subregions have been identified, their
PDFs are approximated.

2.7.5. EXAMPLES OF INDEXING

The IPUS concepts presented in Section 2.7.4 are now illustrated by continuing
the examples treated previously in Sections 2.6.5.1-2.6.5.3. In this section, the
possible kinds of approximating PDFs are ranked as explained in Section 2.7.4.4.
For each approximating kind of PDF, the corresponding exclusion table is then
built. Conclusions from examination of the exclusion tables are indicated with
either an “All pass” or a “Not all pass” label. A not all pass label indicates that the
corresponding exclusion table includes at least one W and that the full length
minor axis criterion fails with the average PDF for one or more test cells. On the
other hand, an All pass label indicates that the corresponding exclusion table does
not include any W¥s. Hence, all test cells may be approximated by the
corresponding kind of PDF. For the kinds of PDFs that can approximate
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the distribution of the CL patch the scale, shape, and location parameters are
averaged over all of the test cells in the CL patch to obtain an average PDF. PDFs
that cannot approximate a particular CL patch either because of failure to pass the
half length criterion or a not all pass label are labeled N/A to indicate not
applicable.

In order to evaluate the effectiveness of the proposed approach for the
partitioning of the surveillance volume, results obtained for the number of CL
patches, number of cells in each CL patch, and estimated CNR for each CL patch
are compared to the generated ones. On the other hand, because the CL patch
cells contain additive BN data, the PDF underlying a CL patch is not the PDF of
the generated CL data alone. In general, analytical expressions for the PDF of the
sum of BN and CL data are difficult to obtain. However, by using the Ozturk
algorithm on 1000 BN plus CL data points, a very accurate approximation is
obtained for the underlying PDF of the CL patch. Examples are now presented to
illustrate control by IPUS of the PDF approximation stage.

2.7.5.1. Example 1

Consider Tables 2.21-2.24 which summarize the results of steps one through five
of the PDF approximation strategy for the example of Section 2.6.5.1. Note that
CL patches one, two, and three can be approximated by any one of the three PDF
kinds, whereas, as indicated in Table 2.24, CL patch four can be approximated
only by the Weibull PDF. Tables 2.64—-2.67 summarize the results for step 6
of the PDF approximation strategy for the four CL patches identified thus far.
An exclusion table was generated for the allowable PDF kinds in each CL patch.
As shown in Tables 2.64-2.67, all of the PDF kinds are labeled All pass
indicating that none of the exclusion tables contained an W mark. Consequently,
average values for the parameters of all the allowable PDF kinds are also
tabulated in Tables 2.64-2.67.

Table 2.68 uses the results presented in Tables 2.20 and 2.64-2.67 to list
the best average PDF for each CL patch. Comparing the results in Tables 2.14
and 2.68, note that (1) regions for all four of the CL patches have been estimated,
(2) the sample CNRs for CL patches A, C, and D, as evaluated according to
Section 2.6.2.2, are within 1 dB of the generated values while that for CL patch B
is within 3.31 dB, (3) the number of cells included in CL patches A, B, C, and D

TABLE 2.64

Average PDFs for CL Patch 1 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location
w 1 All pass 2.05 3.14 0.64
L 3 All pass 0.19 7.27 —4.00
K 2 All pass 50.0 0.43 0.73
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TABLE 2.65

Average PDFs for CL Patch 2 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location
w 2 All pass 2.56 1.29 31.38
L 1 All pass 0.13 4.32 28.17
K 3 All pass 50.0 0.15 31.62
TABLE 2.66

Average PDFs for CL Patch 3 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location
w 2 All pass 1.96 15.52 —0.04
L 1 All pass 0.25 20.09 —30.09
K 3 All pass 33.28 2.96 0.08
TABLE 2.67

Average PDFs for CL Patch 4 (Example 1)

Average PDF Rank Exclusion Table Shape Scale Location
W 1 All pass 451 90.82 14.97
L N/A

K N/A

TABLE 2.68

Assessment Parameters of the Mapping and Indexing Stages (Example 1)

CL Number PDF Shape Scale Location
Patch (No.) CNR (dB) of Cells (Best) Parameter Parameter Parameter

A (1) 9.04 113 w 2.05 3.14 0.64
B (3) 23.31 1444 L 0.25 20.09 —30.09
CQ®) 30.63 151 L 0.13 4.32 28.17
D 4) 40.56 146 w 4.51 90.82 14.97
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FIGURE 2.98 Location of the locus end point for CL patch A (Example 1).

are close to the number of cells generated. In fact, a separate evaluation indicates
that 96.5, 98.3, 97.2, and 99.3% of the generated cells have been correctly
classified for CL patches A, B, C, and D, respectively.

With regard to the goodness of the PDF approximations, Figures 2.98,
2.100, 2.101, and 2.103 show the location in the approximation chart, indicated
by o, for the accurate approximation of the underlying CL patch PDF (i.e., PDF
corresponding to the sum of CL and BN in the patch) (Figure 2.104). These
were obtained by generating 1000 points for each CL patch. The results are
summarized in Table 2.69. Figures 2.99, 2.101, 2.103, and 2.105 show the PDFs
from Table 2.68 (solid lines) obtained by the mapping and indexing stages,
superimposed on the corresponding PDFs from Table 2.69 (dashed lines).

The comparison for CL patch A is given in Figure 2.99. Although the
best approximating PDF is Weibull while the underlying PDF is Lognormal,
the curves are reasonably close except for a small offset in their location.
Figure 2.101 shows the comparison for CL patch B. Here the best approximating
and underlying PDFs are Lognormal with shape parameters 0.25 and 0.27,
respectively. However, the scale and location parameters are not as closely

TABLE 2.69

Accurate Approximation of Underlying CL Patch PDFs (Example 1)

CL Patch PDF Distance Shape Scale Location (u, v)

A L 061x1072 0.16 933 —5.65 (—0.0213,0.3225)
B L 035x 107 027 2625 —1343  (—0.0416,0.3282)
C w 022Xx107% 217 0.87 3156 (—0.0296, 0.3382)
D SU-Johnson 079X 107> (40.0,40.0) 54.19 16451  (0.0223, 0.3379)
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FIGURE 2.99 PDF comparison for CL patch A (Example 1).

matched. This accounts for the discrepancy between the two curves. The results
for CL patch C are shown in Figure 2.103. As with CL patch A, the best
approximating PDF is Weibull while the underlying PDF is Lognormal. In this
case, the two curves differ substantially and a poor approximation has been made.
Finally, the comparison for CL patch D is shown in Figure 2.105. Although the
best approximating PDF is Weibull while the underlying PDF is SU-Johnson,
note that the curves are reasonably close except for a small offset in their height
and location.

The best approximating PDFs from Table 2.68 are superimposed on the
histograms for CL patches A, B, C, and D in Figures 2.106—-2.109, respectively.
Whether or not the best approximating PDFs are close to the underlying PDFs, note
that the best approximating PDFs nicely overlay the corresponding histograms.

0.5

0.4

0.3

>

0.2

0.1

PO e ~ \\
e AN S
27T memmmmmmmmbeen S ~,
- = U= S
«" -------- S~ ~, 3
Pt B Rt e ~ \
e JemT T immmmmmmmmmm W) TSl S \ %
0 Lo et W W W < . N
e e RKE=L-C N \
. . GL' ;T—_"‘"L S~ =~
/ K G K 34L ,T R FIRRN S o
K4 GKW / A S RSN Ny
; i A G AN AN X
' A l . Sl CUN . \
LAfr i Lo AN
Wrers ) H VR Ny
VT / o \ \ ol
(T4 / [ \ \ o
A R Voo
* \P K \ ¥
RS i Y %
“Pp i} N
WP C

u

FIGURE 2.100 Location of the locus end point for CL patch B (Example 1).
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FIGURE 2.101 PDF comparison for CL patch B (Example 1).

Relative to CL patch C, it is seen that the large amount of data with values above
33 are not representative of the underlying PDF shown in Figure 2.102. This
may be due to the inclusion in CL patch C of cells originating in CL patch D.

2.7.5.2. Example 2

Consider now Tables 2.29—-2.31 which summarize the results of steps 1-5 of the
PDF approximation strategy for the example of Section 2.6.5.2. Note that CL
patches one and three can be approximated by any one of the three PDF kinds,
whereas, as indicated in Table 2.30, CL patch two can be approximated only
by the Lognormal PDF. Tables 2.70—2.72 summarize the results for step 6 of
the PDF approximation strategy for the three CL patches identified thus far.
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FIGURE 2.102 Location of the locus end point for CL patch C (Example 1).
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FIGURE 2.103 PDF comparison for CL patch C (Example 1).

An exclusion table was generated for the allowable PDF kinds in each CL patch.
As shown in Tables 2.71 and 2.72, the Lognormal and K PDF kinds are labeled
not all pass for CL patches 2 and 3, respectively, indicating that the corres-
ponding exclusion tables contained one or more Ws and that the full length minor
axis criterion has failed when applied to the average PDFs obtained by averaging
over the parameters of all the test cells for the corresponding PDF kinds.
Consequently, a N/A label is posted for each of the Lognormal and K PDF
kinds in Tables 2.71 and 2.72, respectively. Average values for the parameters
of all the allowable PDF kinds labeled with an all pass are also tabulated in
Tables 2.70-2.72.

The exclusion table, corresponding to the lognormal entries in Table 2.30 for
CL patch 2, is shown in Table 2.73. The patterns of Ws and Ts in the table clearly
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FIGURE 2.104 Location of the locus end point for CL patch D (Example 1).
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FIGURE 2.105 PDF comparison for CL patch D (Example 1).

defines two different regions. One region consists of test cells numbered one and
77. The other region consists of the remaining test cells numbered 154, 231, and
308. This suggests the presence of at least two homogeneous subpatches in CL
patch two. In order to investigate whether more than two subpatches exist, three
more test cells are considered which are located in between the two cited regions.
The additional test cells are numbered 96, 115, and 134. Steps 1-5 of the PDF
approximation strategy for these cells are summarized in Table 2.74. The new
exclusion table, shown in Table 2.75 suggests that only two subpatches exist in
the CL patch. The overlapping that exists between the two regions is due to the
test cells located near the edges separating the two subpatches and whose
reference cells extend to both regions. The conclusion that CL patch two consists
of two subpatches is recognized by the IPUS program as a discrepancy.

0.9
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FIGURE 2.106 Histogram and best approximating PDF for CL patch A (Example 1).
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FIGURE 2.107 Histogram and best approximating PDF for CL patch B (Example 1).

Having detected the discrepancy, the diagnosis process in the IPUS control
initiates a search for the subpatches. Specifically, (1) test cells numbered one and
77 have their reference cells numbered one, while test cells numbered 154, 231,
308 have their reference cells numbered two, (2) all reference cells numbered
with one and two at the same time are declared as cells close to the boundary
separating the CL subpatches. Their reference cells defines the boundary region
where a test cell in one region has some of its reference cells extending to the
other region. When this step is completed, the subpatches and the boundary
region are defined as shown in Figure 2.110. Note that the CL patch now consists
of three different regions. The lower portion of the CL patch includes part of
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FIGURE 2.108 Histogram and best approximating PDF for CL patch C (Example 1).
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FIGURE 2.109 Histogram and best approximating PDF for CL patch D (Example 1).

TABLE 2.70

Average PDFs for CL Patch 1 (Example 2)

Average PDF Rank Exclusion Table Shape Scale Location
w 3 All pass 1.34 4.22 0.46
L 1 All pass 0.43 5.94 —2.20
K 1 All pass 8.11 2.06 —0.82
TABLE 2.71

Average PDFs for CL Patch 2 (Example 2)

Average PDF Rank Exclusion Table Shape Scale Location
w N/A N/A N/A N/A N/A

L 1 Not all pass N/A N/A N/A

K N/A N/A N/A N/A N/A
TABLE 2.72

Average PDFs for CL Patch 3 (Example 2)

Average PDF Rank Exclusion Table Shape Scale Location
W 2 All pass 1.03 2.49 0.90
L 3 All pass 0.61 3.15 —0.42
K 1 Not all pass N/A N/A N/A
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TABLE 2.73

Exclusion Table for the Example of Table 2.30

Cell No.

77

154
231
308

1

s e e 3

77

s e e 34

154

H a3 e e

231

H a3 e e

308

H a3 e e

TABLE 2.74

PDF Approximation for Test cells No. 96, 115, and 134, CL Patch 2

(Example 2)

Test Cell No. PDF Rank Distance Shape Scale Location (u, v)
96 w 2 057X 1072 T 0.91 1.56 1.29 (—0.0992, 0.3091)
L 6 021x107'T 0.68 1.87 0.52
K 1 041%x1072T 175 215 0.42
115 w 3 0.16x107'T 1.00 1.83 1.25 (—0.1045, 0.3327)
L 7 040x107'T 060 234 0.24
K 5 027x107'T 2.17 2.10 0.37
134 W 2 0.16 X 1072 T 1.04 1.97 1.28 (—0.0888, 0.3224)
L 5 023x107'T 0.59 2.45 0.27
K 4  010x107'T 308 1.86 0.31
TABLE 2.75
Exclusion Table for the Example of Tables 2.30 and 2.74 (Example 2)
Cell No. 1 77 96 115 134 154 231 308
1 T T T T T ¥ ) 0
77 T T T T T N0 v N0
96 T T T T T T T T
115 T T T T T T T T
134 T T T T T T T T
154 K% N4 T T T T T T
231 ¥ ¥ T T T T T T
308 v v T T T T T T
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FIGURE 2.110 Boundaries of the scene resulting from step 6 of the PDF approximation
stage (Example 2).

generated CL patch C while the upper portion includes part of generated CL
patch D. The in-between region contains cells from CL patches C and D. The
subpatches are relabeled two and four, as shown in Figure 2.110. It is found
that CL patch two contains 99 cells, CL patch four contains 183 cells, and the
boundary region contains 26 cells. Also, based on the 99 cells of CL patch two
and the 183 cells of CL patch four, the CNRs for CL patches two and four are
equal to 10.10 and 8.47 dB, respectively.

The PDF(s) of the CL subpatch regions are next approximated by considering
the average PDF(s) in test cells 1 and 77 for CL patch two and in test calls 154,
231, and 308 for CL patch four. In absence of additional information, the test
cells located in the boundary region are approximated either by the PDF of CL
patch two or the PDF of CL patch four. Tables 2.76 and 2.77 summarize the
results for step six of the PDF approximation for the subpatches numbered two
and four.

TABLE 2.76
Average PDFs for CL Patch 2 Using Test Cells Numbered 1 and 77
(Example 2)

Average PDF Rank Exclusion Table Shape Scale Location
W N/A N/A N/A N/A N/A
L 1 All pass 0.84 1.27 0.96
K N/A N/A N/A N/A N/A

© 2006 by Taylor & Francis Group, LLC



A New Approach to Radar Detection 159

TABLE 2.77

Average PDFs for CL Patch 4 Using Cells Numbered 154, 231, and 308

(Example 2)

Average PDF Rank

w
L 3
K

Exclusion Table Shape Scale Location
All pass 1.80 3.54 0.47
All pass 0.27 7.24 —3.85
All pass 33.97 0.76 0.26

Table 2.78 uses the results presented in Tables 2.25, 2.70, 2.72, 2.76, and 2.77
to list the best average PDF for each CL patch. Note that the L and K distributions
are listed as the best approximating PDFs for CL patch A because their rankings
were identical. Comparing the results in Tables 2.5 and 2.78 note that (1) regions
for all four of the CL patches have been estimated, (2) the sample CNRs for CL
patches B, C, and D, as evaluated according to Section 2.6.2.2, are within 1.5 dB
of the generated values while that for CL patch A is within 2.03 dB, (3) the
number of cells included in CL patches A and B are close to the number of
cells generated. In fact, a separate evaluation indicates that 98.7%, and 92.5%
of the generated cells have been correctly classified for CL patches A, and B,
respectively. Also, 63.3% and 99.1% of the generated cells have been correctly
classified for CL patches C, and D, respectively.

With regard to the goodness of the PDF approximations, Figures 2.111,
2.113, 2.115, and 2.117 show the location in the approximation chart, indicated
by o, for the accurate approximation of the underlying CL patch PDF
(i.e., PDF corresponding to the sum of CL and BN in the patch). These were
obtained by generating 1000 points for each CL patch. The results are
summarized in Table 2.79. Figures 2.112, 2.114, 2.116, and 2.118 show the
PDFs from Table 2.78 (solid lines) obtained by the mapping and indexing stages,
super-imposed on the corresponding PDFs from Table 2.79 (dashed lines).

Assessment Parameters of the Mapping and Indexing Stages (Example 2)

TABLE 2.78

CL
Patch (No.) CNR (dB)
A (1) 12.03
B (3) 8.65
CQ) 10.10
D 4) 8.47

Number PDF Shape Scale Location
of Cells (Best) Parameter Parameter Parameter
133 L 0.43 5.94 —2.20

K 8.11 2.06 —-0.82

622 W 1.03 2.49 0.90
99 L 0.84 1.27 0.96
183 W 1.80 3.54 0.47
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TABLE 2.79
Accurate Approximation of Underlying CL Patch PDFs (Example 2)
CL Patch PDF Distance Shape Scale Location (u, v)
A w 0.73x 1072 1.31 3.98 1.12 (—0.0733, 0.3364)
B L 030x 107" 049 3.67 -1.13 (—0.0840, 0.3297)
C SU-Johnson  0.11x107% (1.31, —0.7)  0.69 2.94 (—0.0555, 0.2590)
D w 033x1072 224 3.43 2.48 (—0.0278, 0.3345)
0.5
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FIGURE 2.111 Location of the locus end point for CL patch A (Example 2).
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FIGURE 2.112 PDF comparison for CL patch A (Example 2).
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FIGURE 2.113 Location of the locus end point for CL patch B (Example 2).

The comparison for CL patch A is given in Figure 2.112. Although the best
approximating PDF is Lognormal while the underlying PDF is Weibull, the
curves are reasonably close except for a difference in their heights. Figure 2.114
shows the comparison for CL patch B. In contrast to CL patch A, the best
approximating PDF is Weibull while the underlying PDF is Lognormal. Note that
the curves are reasonably close. However, a small offset in location is used to
compensate for a slight mismatch in shape. The results for CL patch C are shown
in Figure 2.116. The best approximating PDF is Lognormal while the underlying
PDF is SU-Johnson. In this case, the two curves differ substantially and a poor
approximation has been made. Had the SU-Johnson been included in the library
of allowable PDF kinds, a better approximating PDF would have been obtained.
Finally, the comparison for CL patch D is shown in Figure 2.118. Here the best

03} ]
0.25 * :;f)[rjr;itifnation (Table 2.79) .
02 Crabio 2.78)
Z o5
0.1
oosf N
0 2 4 6 8 = 10 12
X

FIGURE 2.114 PDF comparison for CL patch B (Example 2).
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FIGURE 2.115 Location of the locus end point for CL patch C (Example 2).

approximating and underlying PDFs are Weibull with scale parameters 3.54
and 3.43, respectively. However, the shape and location parameters are not close.
This accounts for the discrepancy between the two curves.

The best approximating PDFs from Table 2.78 are superimposed on the
histograms for CL patches A, B, C, and D in Figures 2.119-2.122, respectively.
Whether or not the best approximating PDFs are close to the underlying PDFs,
note that the best approximating PDFs nicely overlay the corresponding histo-
grams. Relative to CL patch D, it is seen that the large amount of data with values
below 2.5 are not representative of the underlying PDF shown in Figure 2.118.
This may be due to inclusion in CL patch D of cells originating in CL patch C,
as seen in Figure 2.110.
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“—— accurate approximation (Table 2.79)
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FIGURE 2.116 PDF comparison for CL patch C (Example 2).
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FIGURE 2.117 Location of the locus end point for CL patch D (Example 2).

2.7.5.3. Example 3

Finally, consider Tables 2.29-2.31 which summarize the results of steps 1-5
of the PDF approximation strategy for the example of Section 2.6.5.3. Note that
CL patch 2 can be approximated by any one of the three PDF kinds, whereas, as
indicated in Tables 2.29 and 2.31, CL patches one and three can be approximated
only by the Weibull and K PDFs. Tables 2.80—2.82 summarize the results for
step six of the PDF approximation strategy for the three CL patches identified
thus far. An exclusion table was generated for the allowable PDF kinds in each
CL patch. As Shown in Tables 2.80—2.82, all of the PDF kinds are labeled All
pass indicating that none of the exclusion tables contained an W mark.
Consequently, average values for the parameters of all the allowable PDF kinds

are also tabulated in Tables 2.80—-2.82.
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FIGURE 2.118 PDF comparison for CL patch D (Example 2).
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FIGURE 2.119 Histogram and best approximating PDF for CL patch A (Example 2).

Table 2.83 uses the results presented in Tables 2.32 and 2.80—2.82 to list the
best average PDF for each CL patch. Comparing the results in Tables 2.8 and 2.83
note that (1) regions for CL patches A and B have been estimated, whereas the
regions for the contiguous CL patches C and D have been approximated as a
single region, (2) the sample CNRs for CL patch A, as evaluated according to
Section 2.6.2.2, is within 1 dB of the generated values while that for CL patch B
is within 3.47 dB, (3) the number of cells included in CL patches A and B are
close to the number of cells generated. In fact, a separate evaluation indicates that
97.8% and 98.3% of the generated cells have been correctly classified for CL
patches A and B, respectively.

For this particular example, the PDF approximation strategy is not able to
recognize that more than one subpatch exists in CL patch 2. In order to evaluate
the severity of this result, we analyze the PDFs of CL patches C and D. As shown
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FIGURE 2.120 Histogram and best approximating PDF for CL patch B (Example 2).
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FIGURE 2.121 Histogram and best approximating PDF for CL patch C (Example 2).

in Figure 2.54(d,e), even though the data amplitude histograms of CL patches
C and D are different (CL patch C data amplitudes extend only from 3.1 to 3.25
whereas CL patch D data amplitudes extend from 2 to 3.75), they have the same
maximum located around 3.15. When BN is added to CL patches C and D, their
histograms become as shown in Figure 2.123(a,b), respectively. When BN data is
added, the data amplitudes of CL patches C and D extend over longer intervals
ranging from 3.1 to 5.4. Note, also, that the shapes of both histograms are very
similar. Thus, when BN data is added CL patches C and D can be approximated
by the same PDF. It is, therefore, concluded for this example that it is reasonable
to approximate CL patches C and D as a single CL patch (numbered 2).

With regard to the goodness of the PDF approximations, Figures 2.124,
2.126, 2.128, and 2.130 show the location in the approximation chart, indicated
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FIGURE 2.122 Histogram and best approximating PDF for CL patch D (Example 2).
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TABLE 2.80

Average PDFs for CL Patch 1 (Example 3)

Average PDF Rank Exclusion Table Shape Scale Location

w 1 All pass 2.16 3.86 —0.07

L N/A N/A N/A N/A N/A

K 2 All pass 50.0 0.49 0.43

TABLE 2.81

Average PDFs for CL Patch 2 (Example 3)

Average PDF Rank Exclusion Table Shape Scale Location

w 2 All pass 2.32 1.15 3.02

L 1 All pass 0.17 2.72 1.29

K 3 All pass 48.76 0.14 3.17

TABLE 2.82

Average PDFs for CL Patch 3 (Example 3)

Average PDF Rank Exclusion Table Shape Scale Location

w 2 All pass 1.74 4.53 0.84

L N/A N/A N/A N/A N/A

K 1 All pass 31.16 1.03 0.39

TABLE 2.83

Assessment Parameters of the Mapping and Indexing Stages (Example 3)

CL Patch CNR Number PDF Shape Scale Location
(No.) (dB) of Cells (Best) Parameter Parameter Parameter

A (1) 9.34 124 w 2.16 3.86 —0.07

B (3) 13.47 306 K 31.16 1.03 0.39

C+D (@) 10.63 341 L 0.17 2.72 1.29
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FIGURE 2.123 Data amplitude histograms including additive BN data (Example 3).

(a) CL patch C; (b) CL patch D.

Accurate Approximation of Underlying CL Patch PDFs (Example 3)

Shape

2.24
2.0
2.18

TABLE 2.84

Distance
CL Patch PDF (x107%
A w 0.33
B w 0.80
C w 0.19
D SU-Johnson 0.17

(2.97, —0.0094)

Scale

3.43
5.11
1.02
1.53

Location (u, v)
2.48 (—0.0278, 0.3345)
0.53 (—0.0353, 0.3485)
2.93 (—0.0292, 0.3384)
5.74 (—0.0098, 0.3156)

by o, for the accurate approximation of the underlying CL patch PDF (i.e., PDF
corresponding to the sum of CL and BN in the patch). These were obtained
by generating 1000 points for each CL patch. The results are summarized in
Table 2.84. Figures 2.125, 2.127, 2.129, and 2.131 show the PDFs from

0.5

0.4

0.3
>

0.2

0.1

-

-0.2 -0.15

-0.1 =005 O

u

0.05

0.1

0.15

FIGURE 2.124 Location of the locus end point for CL patch A (Example 3).
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FIGURE 2.125 PDF comparison for CL patch A (Example 3).

Table 2.83 (solid lines) obtained by the mapping and indexing stages,
superimposed on the corresponding PDFs from Table 2.84 (dashed lines).

The comparison for CL patch A is given in Figure 2.125. Here the best
approximating and underlying PDFs are Weibull with shape parameters 2.16
and 2.24 and scale parameters 3.86 and 3.43, respectively. However, location
parameters are not as closely matched. This accounts for the discrepancy between
the two curves. Figure 2.127 shows the comparison for CL patch B. Although
the best approximating PDF is K while the underlying PDF is Weibull, the curves
are reasonably close. The results for CL patch C, defined as part of CL patch 2,
are shown in Figure 2.129. The best approximating PDF is Lognormal while
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FIGURE 2.126 Location of the locus end point for CL patch B (Example 3).
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FIGURE 2.127 PDF comparison for CL patch B (Example 3).

the underlying PDF is Weibull. In this case, the two curves are reasonably close
except for a small offset in their location and height. Finally, the comparison for
CL patch D, defined as part of CL patch 2, is shown in Figure 2.131. The best
approximating PDF is Lognormal while the underlying PDF is SU-Johnson. The
two curves differ substantially and a poor approximation has been made. As
was the case in Example 2, had the SU-Johnson been included in the library of
allowable PDF kinds, a better approximating PDF would have been obtained.

The best approximating PDFs from Table 2.83 are superimposed on the
histograms for CL patches A, B, C, and D in Figures 2.132-2.135, respectively.
Whether or not the best approximating PDFs are close to the underlying
PDFs, note that the best approximating PDFs nicely overlay the corresponding
histograms.
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FIGURE 2.128 Location of the locus end point for CL patch C (Example 3).
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FIGURE 2.129 PDF comparison for CL patch C (Example 3).

2.7.6. CONCLUSION

In this chapter, expert system rules were developed to control the decisions

needed for operation of the mapping and indexing stages. Discrepancies were
determined which enable identification of the sources of distortions which in turn

enables reprocessing.

Using the results developed in this chapter the three examples begun in
Section 2.5.4 were completed. For Example one, in which the CNRs for CL

patches A, B, C, and D were 10, 20, 30, and 40 dB, respectively, it was possible
to identify and approximate all four CL regions. This was possible because of

the significant difference in amplitudes between the CL patches and the BN.
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FIGURE 2.130 Location of the locus end point for CL patch D (Example 3).
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FIGURE 2.131 PDF comparison for CL patch D (Example 3).

Example two had added complexity because the CNRs of the contiguous
CL patches C and D were identical. Even so, the indexing procedure was able
to recognize that CL patch two consisted of two CL subpatches. In addition,
the poor PDF approximation that can result with a limited library of PDFs
was demonstrated. Finally, Example three investigated the situation where, even
though the underlying PDFs of CL patches C and D were noticeably different,
the addition of BN resulted in similar histograms. As a result, CL patches C and
D were modeled as a single homogeneous CL patch. This example illustrates one
of the pitfalls that can arise with small amounts of random data.
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FIGURE 2.132 Histogram and best approximating PDF for CL patch A (Example 3).
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FIGURE 2.133 Histogram and best approximating PDF for CL patch B (Example 3).

2.8. CONCLUSION AND FUTURE RESEARCH

2.8.1. CONCLUSION

Current radars are typically designed on the assumption that the CL and BN are
Gaussian random processes. Such receivers are matched filters which maximize
signal-to-noise ratio by filtering to the extent possible the desired target returns
from the disturbance. When it is not possible to separate the CL from the target
by means of spatial or temporal filtering, the optimal Gaussian receiver performs
poorly.

However, it is known that an optimal nonGaussian receiver in a non
Gaussian environment can perform significantly better than the Gaussian receiver
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FIGURE 2.134 Histogram and best approximating PDF for CL patch C (Example 3).
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FIGURE 2.135 Histogram and Best Approximating PDF for CL patch D (Example 3).

in situations where the disturbance and target spectra completely overlap. The
major problem is that there are an infinite different nonGaussian probability
distributions and, in a practical situation, the environment is unknown.

This dissertation demonstrates, in conjuncture with an expert system, that
it is possible to partition a surveillance volume into CL and BN regions and to
approximate the underlying probability distribution of each region. This is highly
significant because real data is likely to be nonhomogeneous and nonstationary.
It is for this reason that optimal processors may not work well on real data.
The results obtained in this research provide an innovative approach to analyzing
and characterizing real data. Several computer generated examples are used to
demonstrate the proposed methods.

2.8.2. FUTURE RESEARCH

In this dissertation it was shown that the mapping and indexing stages have
potential for being able to successfully monitor a random environment. The
following problems were suggested by this research and remain to be addressed
to in the future:

e Measures should be developed to enable a qualitative performance
analysis of the proposed mapping and indexing procedures and the
rules to be used by IPUS.

o Criteria to guarantee convergence of the iteration process in the
mapping procedure should be developed.

o The IPUS control should be able not only to control individually the
mapping and indexing stages but also to interact backward between
these stages. Recall from Section 2.6.4.4 that outliers may exist in a
set of reference cells that may arise due to (1) misclassified BN cells
in a CL patch or misclassified CL cells in the BN, (2) cells having data
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values of low probability of occurrence, and (3) cells containing signals
from strong targets. Feedback between the indexing and mapping
stages should be introduced to account and correct for outliers.

e A strategy should be developed to enable handling of the next set
of data from the same environment to update the information of the
mapping and indexing stages without processing all the data but rather
by doing a series of checks.

e A detection strategy and expert system rules need to be developed for
the target detection stage presented in Section 2.2.

« Following the detection stage, a target tracking strategy needs to be
developed. Note, for example, that when a target is present in a given
cell, its presence in subsequent cells should be consistent with a
reasonable track.

o Environmental models based on collected real data and physical
considerations should be verified using the Ozturk algorithm in order
to gain confidence in these models.

o The Ozturk algorithm currently analyzes univariate random data. It is
proposed to extend the Ozturk algorithm to the multivariate random
data case.

o The trade off in computational complexity, for generating an average
approximating PDF for each CL patch or subpatch vs. using the Ozturk
algorithm once for all cells in a region, should be investigated.

o The effectiveness of using various image processing procedures found
in the literature>*?* for the mapping and indexing procedures should be
investigated.
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3.1. GAUSSIAN INTERFERENCE BACKGROUNDS
(M. RANGASWAMY, ]. H. MICHELS, AND B. HIMED)

3.1.1. INTRODUCTION

An important issue in space—time adaptive processing (STAP) for radar target
detection is the formation and inversion of the covariance matrix underlying the
clutter and interference. Typically, the unknown interference covariance matrix
is estimated from a set of independent identically distributed (iid) target-free
training data that is representative of the interference statistics in a cell under test.
Frequently, the training data is subject to contamination by discrete scatterers or
interfering targets. In either event, the training data becomes nonhomogeneous.
Consequently, it is not representative of the interference in the test cell. Estimates
of the covariance matrix from nonhomogeneous training data result in severely
undernulled clutter. Consequently, CFAR and detection performance suffer.
Significant performance improvement can be achieved by employing preproces-
sing to select representative training data.

Consideration has previously been given to the problem of target detection
using improved training strategies' ~* and to the impact of nonhomogeneity on
STAP performance.’® The distribution information of a class of multivariate
probability density functions (PDF) is succinctly determined through an
equivalent univariate PDF of a quadratic form.® An application of this result is
the nonhomogeneity detector (NHD) based on the generalized inner product
(GIP).! 3

Nonhomogeneity of the training data arises from a number of factors such as
contaminating targets, presence of strong discretes, and nonstationary reflectivity
properties of the scattering surface. In these scenarios, the test cell disturbance
covariance matrix, Ry, differs significantly from the estimated covariance matrix,
R formed using target-free disturbance realizations from adjacent reference cells.
If a large number of test cell data realizations are available, the underlying
nonhomogeneity is characterized via the eigenvalues of R™'R;."° However,
in radar applications, only a single realization of test cell data is usually available.
Consequently, the resulting estimate of Ry is singular. Hence, the empirically
formed GIP has been compared with a theoretical mean corresponding to
a “known” covariance matrix.' > Large deviations of the GIP mean from the
theoretical mean have been ascribed to nonhomogeneity of the training data. Such
an approach provides meaningful results in the limit of large training data size. In
practice, the amount of training data available for a given application is limited by
system considerations such as bandwidth and fast scanning arrays. Furthermore,
the inherent temporal and spatial nonstationarity of the interference precludes
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the collection of large amounts of training data. Consequently, the approach
of Refs.1 -5 can be misleading since it ignores finite data effects and the resulting
variability in the covariance matrix estimate.'! Specifically, we note that the
empirical GIP mean using an estimated covariance matrix with finite data can be
twice as large as the corresponding GIP mean for a known covariance matrix in
some instances. Consequently, such a scenario can easily lead to incorrect
classification of training data.

The normalized GIP, P’, admits a remarkably simple stochastic represen-
tation as the ratio of two statistically independent chi-square distributed
random variables."' Consequently, the normalized GIP follows a central-F
distribution.?~?*> The main result of this paper lies in exploiting these facts to
construct a formal goodness-of-fit test for selecting homogeneous training data
and its application to the performance of the adaptive matched filter (AMF)
test.'>~'* Other applications of the F-distribution can be found in Refs. 23—25.

Section 3.1.2 briefly reviews the GIP statistics for the case of a known
covariance matrix. In Section 3.1.3 we discuss the GIP statistics for the case of an
unknown covariance matrix. Section 3.1.4 introduces the NHD and derives
formal goodness-of-fit tests based on the GIP statistics described in Section 3.1.3.
The AMF test performance with and without training data contamination using
simulated and measured data is presented in Section 3.1.5. The AMF
performance is shown to degrade with contaminated training data. It is further
shown in Section 3.1.5 that the use of NHD preprocessing enables selection of
representative training data. Consequently, use of NHD preprocessing restores
the AMF test performance to case where there is no training data contamination.

3.1.2. GENERALIZED INNER PRODUCT STATISTICS: KNOWN
COVARIANCE MATRIX

Let X = [X}, X5, ..., X)/]T denote a complex random vector with zero mean and
known positive definite Hermitian covariance matrix R where T denotes
transpose. The quadratic form given by

0=XUR!X (3.1
has the important property'’

EQ =M (3.2)

where E denotes mean expected value.

This result is important in that it is independent of the PDF underlying X and
is only a function of the dimension of the random vector. If the PDF of X is
known, the corresponding PDF of Q can be readily derived. For Gaussian
distributed X, i.e., X~ CN(0, R), the PDF of Q is a chi-squared distribution with
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M complex degrees of freedom. More precisely the PDF of Q is given by

qM—l
- — =0

folg) = F(M)eXp( ? 4 (3.3)
0 Otherwise

where I{(-) is the Eulero—Gamma function.

The GIP based NHD calculates the quadratic form Q using an estimated
covariance matrix (formed from iid target free training data) and compares
its mean with M. Deviations from M have been attributed to nonhomogeneities
in the training data.' = In practice, the interference covariance matrix is formed
from a finite amount of training data. The statistical variability associated with
the data could introduce additional errors and thus, deviations of the GIP from M
cannot entirely be ascribed to the presence of nonhomogeneities. Consequently,
it is useful to work with the statistics of Q formed with an estimated covariance
matrix with finite sample support. The GIP PDF and moments are quite different
from those of Equation 3.2 and Equation 3.3 for the finite sample support
problem.

3.1.3. GENERALIZED INNER PRODUCT STATISTICS: UNKNOWN
COVARIANCE MATRIX

Let X~ CN(0, Ry) denote the random test data vector and Z denote a random data
matrix, whose columns Z;, k = 1,2, ..., Kareiid CN(0, R) target-free training data
vectors. For homogeneous (representative) training data, Rt = R. The sample
covariance matrix given by R=( /K )ZZ" is the maximum likelihood estimate of
the covariance matrix. Let

P=X"R'X (3.4)

We derive a canonical stochastic representation for the normalized GIP, P = P /K,
in terms of two statistically independent chi-squared distributed random variables
in Appendix A. Consequently, we have

R,

where R; and R, are statistically independent chi-squared distributed random
variables with PDFs given by

rjlwfl
exp(—ry) =0
fa =4 Ton TP 0 (3.6)
0 Otherwise
K—M
L R exp(—r) r =0
fr,(rn)=1 INK =M+ 1) (3.7)
0 Otherwise
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20-22

respectively. Consequently, P’ follows a central-F distribution given by
M1
/ (p) NL+M p : =0
fy@) =14 BM,L)1+p) (3.8)
0 Otherwise

where B(M,L) = [§s"'(1 — 9t ' dsand L=K — M + 1.

The statistical equivalence of P’ to the ratio of two independent chi-squared
distributed random variables is fascinating in that it permits rapid calculation
of the moments of P. More importantly, it is extremely useful in Monte Carlo
studies involving computer generation of P. For homogeneous training data, the
use of Equation 3.5 circumvents the need to explicitly generate the test data
vector X and the training data vectors used for covariance estimation. For large M
and perforce K, significant computational savings can be realized from the
method of Equation 3.5. It can be readily shown that

M

Var(P) = 05 = M (3.10)

(-0

where E(P) and Var(P) denote the mean and variance of P, respectively. Observe
that the moments of P formed from an estimated covariance matrix (sample
covariance matrix) with finite sample support deviate significantly from the
corresponding moments for the case of a known covariance matrix given by
Equation 3.1 and Equation 3.2. For example, with K = 2M, there is a 100%
deviation of the mean of Equation 3.9 from that of Equation 3.1. Therefore,
comparison of an empirically formed GIP with the theoretical mean of
Equation 3.1 provides misleading results in that a finite data effect is ascribed
to training data nonhomogeneity.

We then study the representation of Equation 3.5 in the limit of large K.
For this purpose, we consider the characteristic function of R,/K given by

EP) = 3.9)

. . T 1
d)&(]w):E[exp(—Jsz)]: . KM+l (3.11)
K (1+%)
K
For K— o0, limg_,. ¢r, (jo) =exp(—jw). Taking the inverse Fourier
Transform, we have K
lim fg, (r) = &(r — 1) 3.12)
K—»OO 7
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FIGURE 3.1 Normalized generalized inner product PDF.

Hence, for K — oo, R,/K becomes unity with probability one. Thus, the GIP
for this case is simply R; and hence, follows a Chi-squared distribution with
M complex degrees of freedom. Consequently, for K — oo, E(P) = 05 =M
corresponding to the known covariance matrix results. Consequently, the GIP
statistical representation given by Equation 3.5 provides additional insights on
the NHD. The numerator random variable corresponds to the GIP statistics for
known covariance matrix. The denominator random variable succinctly embeds
the deleterious effects of estimating the covariance matrix with finite sample
support. Deviation of the normalized GIP statistics from the PDF of Equation 3.8
can then be attributed to nonhomogeneity of the training data.

Figure 3.1 shows the PDF of P for several values of K with M = 8§ for
Gaussian interference statistics. Observe that the variance of P’ decreases with
increasing K. This is anticipated since R — R with probability one as K — .
Consequently, the statistics of P’ incur a dependence on K resulting from the use
of finite sample support in estimating the covariance matrix.

T T T
Gaussian interference
M=8
K=16 b
—— Theoretical PDF n
= Histogram 4

Number of occurences
4;
o
o
T

0 0.5 1 1.5 2 25 3 3.5
p

FIGURE 3.2 Empirical and theoretical generalized inner product PDF.
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The results presented in Figure 3.2 correspond to the case of homogeneous
training data. They show a comparison of the histogram of P’ obtained from
Monte Carlo realizations using simulated data with the theoretically predicted
PDF of P’ obtained from Equation 3.8. The results reveal good agreement
between the theoretical prediction and the empirically generated values.
The mean value of P, 15.957, obtained via 50,000 Monte Carlo realizations
compares well with the theoretical predicted value of 16.

3.1.4. NONHOMOGENEITY DETECTOR

We now present two methods for selecting homogeneous data from a set of
training data. The first method exploits the central-F distribution of P’ given by
Equation 3.8 to construct a formal goodness-of-fit test, while the second method
relies upon a comparison of empirically formed P’ with the theoretical mean
predicted by Equation 3.9 and discarding those realizations for which P’ deviates
significantly from the theoretical mean. More precisely, the difference between
the empirical realizations of P’ and the theoretically calculated mean value is
calculated for each realization of P'. This difference is then rank ordered and the
training data realizations corresponding to the least deviation from the theoretical
mean are retained for subsequent use in STAP algorithms. The cumulative
distribution function of P’ is given by

1
Pr(P =r=1- betainc(— M, L) (3.13a)
r+1
where betainc (x, m, n) is the incomplete beta function defined by

1

betainc (x, m, n) = j w1 — w)" ldw (3.13b)
0

The goodness-of-fit test consists of determining whether realizations of P’ formed
from a given set of training data are statistically consistent with the PDF of
Equation 3.1. For this purpose a suitable type-I error, «, is chosen. More
precisely, « is simply the probability of incorrectly rejecting the hypothesis that
a given realization of P’ is statistically consistent with the PDF of Equation 3.8.
Specifically, we seek a threshold, A such that

a=PiP'>N)=1—-Pr(P =)\ = betainc(ﬁ,M, L) (3.14)
A is determined from a numerical inversion of Equation 3.14. The goodness-of-
fit test consists of forming realizations of P’ from a set of training data and
rejecting those training data vectors for which P’ exceeds A. The second method
is based on comparing the realizations of P with the theoretically predicted
mean of P given by Equation 3.9 and retaining those realizations exhibiting
least deviation from the theoretically predicted mean of Equation 3.9. Examples
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FIGURE 3.3 Type-I error versus threshold.

that illustrate the two approaches are presented. For a given training data set, a
moving window approach is used to form realizations of P’. This approach is
suboptimal because it does not guarantee statistical independence of the
realizations of P'. However, we adopt this approach due to the limited training
data support. For the examples presented here, data from the MCARM
program'? corresponding to 16 pulses and 8 channels from acquisition “220” on
Flight 5, cycle “e” is used.

Figure 3.3 plots the type-I error (a) versus threshold for M = 64. Here
different values of K are chosen to illustrate the threshold behaviour. For each
value of «, A is determined from a numerical inversion of Equation 3.14 and
we observe an increase in A for a given K.

The plot in Figure 3.4 shows P’ and A corresponding to o =0.1 as a
function of range. A moving window approach is used to obtain P’ for each
range cell considered. Nonhomogeneity of the training data is seen in those

—— Normalized GIP
———. Threshold

Normalized GIP

200 250 300 350
Range bin index

FIGURE 3.4 Normalized generalized inner product versus range, a = 0.1.
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FIGURE 3.5 Normalized GIP versus range, simple normalization of GIP mean.

range cells for which P’ exceeds A. Figure 3.5 plots the normalized GIP as a
function of range. The normalized GIP theoretical mean obtained from
Equation 3.9 with a simple normalization is also shown. Values of the
normalized GIP exceeding the theoretical mean correspond to nonhomogeneous
training data realizations.

3.1.5. PERFORMANCE ANALYSIS OF THE ADAPTIVE
MATCHED FILTER TEST

In this section, we consider the performance analysis of the AMF test'>~'* in
nonhomogeneous training data. The AMF test is given by

ISR 'XI?

[SHR-1S| — TAMF G19

where S is the random spatio-temporal steering vector, X is the received random
data vector, R is the sample covariance matrix given by R = (1/K) SK 7,2 with
Z; denoting independent identically distributed training data and Apyg is a
threshold selected to obtain a desired probability of false alarm.

For the case of homogeneous training data, analytical expressions for the
probability of false alarm and probability of detection are given by Ref. 13

(Y flpdp
= 4[0 (I + Aamep)L (3.16)
& (L b f,(p)dp
Py=1-— Z) Ak G [ p ] P 3.17
¢ JO ,; ( k )p AMERH (1 + pAamr) J(1+ pAgnp)* ©-17)
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where
_ =p" e
fp(P)—m L=K—-M+1 (3.18)
k—1 xn
Gi(x) = exp(—x) Y — (3.19)
n=0 """

and “b” is related to the output signal-to-noise ratio (SNR). For K— oo,
the sample covariance matrix tends to the true clutter covariance matrix, R.
Consequently, the AMF test converges to the matched filter (optimal receiver in
Gaussian disturbance) for large K. The expressions for the matched filter Py, and
P4 are given by'?

P, = exp(—Ayr) (3.20)
o0 Ak
Py=exp(=A) > —[1 = Gl (3.21)
k=0 "*

where A is related to the output SNR and Ayr is the matched filter threshold.
Figure 3.6 presents P, versus output signal-to-interference plus noise ratio
(SINR). Relevant test parameters are reported in the plot. The matched filter (MF)
curve obtained from Equation 3.21 corresponds to the optimal performance in
Gaussian clutter. The P4 curve for the AMF operating in homogeneous Gaussian
clutter follows from Equation 3.17 and exhibits performance to within 3 dB of the
MF. The AMF performance operating in nonhomogeneous training data with and
without NHD preprocessing is carried out by Monte Carlo simulation. For this
example, the training data contained 30 high-amplitude, mainbeam discrete
targets located at various range cells and Doppler frequencies. Initial sample
support for NHD preprocessing is 6M. A sliding window approach is used to select

1 T T T T L

| M=64 i
0.9 k=128 )
0.8} Pjq=0.01 ,,<>" 4

| CNR=40dB

Probability of detection
o
(6]

7 |[=— MF

P -~ AMF (analytical)
- —o— AMF (discretes, with NHD) | |
-<-- AMF (discretes, no NHD)
1 1 1

0 2 4 6 8 10 12 14 16 18
Output SINR

FIGURE 3.6 Performance of the adaptive matched filter “with” and “without” nonhomo-
geneity detector.
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FIGURE 3.7 Generalized inner product versus range.

a subset consisting of 4M training data realizations. Each GIP value obtained at
a specific range cell is computed using R formed from 2M adjacent training data
vectors. Previously, we noted the suboptimality of this scheme. In practice, its use
is dictated by training data size limitations. In this manner 4M GIP values are
obtained. The NHD preprocessing used in this example is based on a comparison
of the empirical GIP with its theoretical mean value given by Equation 3.9. The
training data used in forming R after NHD processing is obtained by sorting the
GIP values and retaining K = 2M realizations corresponding to the smallest GIP
deviation from the theoretical mean of Equation 3.9. Observe that the AMF
performance in nonhomogenous clutter degrades severely. Also note that, for this
case, NHD preprocessing restores the AMF performance to its analytical value.
Figure 3.7 shows a plot of the GIP versus range prior to NHD preprocessing
for the simulated data used in carrying out the performance analysis of Figure 3.6.
Figure 3.8 shows a plot of the sorted absolute value of the difference between
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3001 b
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FIGURE 3.8 Absolute value of difference between GIP and theoretical GIP mean versus
range.
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FIGURE 3.9 Test statistic versus range.

the GIP and its theoretical mean versus range after NHD preprocessing for the
example in Figure 3.6. Observe the absence of discretes in the first K = 2M
range cells.

Figure 3.9 depicts performance using measured data from the MCARM
program.'® For this case, it is not possible to present performance in terms of
detection probability versus SINR. This is due to the fact that only one realization
of target present data is available. Hence, we present a plot of the detection test
statistic versus range. Since the AMF test statistic is an ad hoc estimate of
the output SINR, and since the probability of detection is a monotonically
increasing function of the output SINR, this is an acceptable performance metric.

Performance of the AMF without NHD processing degrades significantly in
nonhomogeneous clutter. Performance improvement is noted when the AMF is
employed in nonhomogeneous data with NHD preprocessing. Consequently, the
use of NHD affords moderate performance improvement of the AMF test in
nonhomogeneous clutter. The performance with measured data is characterized
by the ratio Wy, of the test statistic at the test cell to the mean of the test statistics
formed from adjacent cells, and also by the ratio ¥,, of the test statistic at the test
cell to the highest test statistic formed from adjacent cells. Table 3.1 shows these
values for the AMF test with and without NHD preprocessing.

TABLE 3.1

Adaptive Matched Filter Performance with Measured Data
Algorithm ¥, (dB) ¥, (dB)

AMF with NHD 13.25 5.68

AMF 11.83 3.38
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3.1.6. CONCLUSIONS

Section 3.1 has made several significant contributions. First, we provided
a statistical characterization of the GIP based NHD developed in Refs. 1-5.
We showed that the underlying GIP statistics deviate significantly when the
unknown covariance matrix is estimated using finite sample support. A canonical
representation for the GIP in terms of two statistically independent Chi-Square
distributed random variables and the resulting central-F distribution for
the normalized GIP were then used to construct goodness-of-fit tests, whose
performance is presented using both simulated and measured data. Application
of this method as a preprocessing method for training data selection in the AMF
algorithm was presented. Performance of the AMF in contaminated training data
degrades significantly. The use of our preprocessing method for training data
selection restores the AMF performance to within 3 dB of the optimal MF
performance. This fact is illustrated with simulated as well as measured data from
the MCARM program. Future work will undertake extensive performance
comparisons between covariance based STAP methods such as the AMF and the
normalized adaptive matched filter (NAMF)'® (with NHD preprocessing) and
model-based parametric STAP tests such as the parametric adaptive matched
filter (PAMF) 7, normalized parametric adaptive matched filter (N-PAMF)'® and
fast adaptive processors'® in nonhomogeneous interference backgrounds.

3.2. NONGAUSSIAN INTERFERENCE BACKGROUNDS
(M. RANGASWAMY)
3.2.1. INTRODUCTION

An important issue in space—time adaptive processing (STAP) for radar target
detection is the formation and inversion of the covariance matrix underlying the
disturbance. In practice, the unknown interference covariance matrix is estimated
from a set of iid target-free training data that is assumed to be representative of
the interference statistics in a cell under test. Frequently, the training data is
subject to contamination by discrete scatterers or interfering targets. In either
event, the training data becomes nonhomogeneous. As a result, it is not
representative of the interference in the test cell. Hence, standard estimates of the
covariance matrix from nonhomogeneous training data result in severely
undernulled clutter. Consequently, CFAR and detection performance suffer.
Significant performance improvement can be achieved by employing preproces-
sing to select representative training data.

Consideration has previously been given to the problem of target detection
using improved training strategies' ~> and to the impact of nonhomogeneity on
STAP performance.”™® Use of the nonhomogeneity detector (NHD) based on
the generalized inner product (GIP) measure for STAP problems involving
Gaussian interference scenarios has been addressed' ~**° and extended
significantly to include the effects of finite sample support used for covariance
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matrix estimation.'®'" However, the corresponding problem for nonGaussian
interference scenarios has received limited attention. This is due to the fact that
tractable models for correlated nonGaussian interference have become available
only in recent works.'*~ '

Nonhomogeneity of training data can occur due to environmental factors,
such as, the presence of strong discrete scatterers, dense target environments,
nonstationary reflectivity properties of the scanned area, and radar system
configurations like conformal arrays and bistatic geometries. A variety of robust
adaptive signal processing methods to combat specific types of nonhomogene-
ities have been developed.'>~"?

In Section 3.2, we concern ourselves with the problem of training data
nonhomogeneity caused by dense target environments and present the NHD for
nonGaussian interference scenarios. More specifically, two p-tuple random
vectors X, and X having covariance matrices R and R, respectively, are defined
to be nonhomogeneous if R; ' R, # vI, where I denotes the p X p identity matrix
and v is an arbitrary positive scale factor. In other words, the random vectors
are defined to be nonhomogeneous if they do not share the same covariance
structure.

In Section 3.2, we derive the NHD for nonGaussian interference scenarios,
which can be modeled by spherically invariant random processes (SIRP), and
present a statistical analysis of the resultant NHD test. Section 3.2.2 presents the
relevant mathematical preliminaries. In Section 3.2.3 we discuss the issues of
covariance matrix estimation using finite data as well as the use of a maximally
invariant test statistic for the NHD. Furthermore, we present a statistical analysis
of the NHD and show that a formal goodness-of-fit test can be constructed
for selecting homogeneous training data. The basis of our NHD strategy is
a characterization of the statistics pertaining to homogeneous SIRP clutter
scenarios and rejecting realizations departing from these statistics. Performance
analysis is discussed in Section 3.2.4. Also included therein is a performance
comparison with existing NHD tests. Conclusions and future research directions
are outlined in Section 3.2.5.

In general, the problem of nonhomogeneity detection for SIRPs is
complicated by the fact that the underlying SIRP covariance matrix and
characteristic PDF are unknown. Knowledge of the SIRP characteristic PDF
is assumed in this chapter as a first step towards addressing the problem. This
information can be gained from estimates of the first order PDF obtained from
experimental data using histogram or moment techniques.’® Significant
performance penalty is incurred if this information is unavailable. This fact
is illustrated through an example in Section 3.2.4.

The main contributions of this paper are summarized below:

1. Reduce the NHD problem for SIRP interference scenarios to one of
testing whether two data sets share a common covariance structure but
have different levels by proper use of the maximum likelihood estimate
of the covariance matrix.
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2. Provide a formal goodness-of-fit test using a scale invariant test
statistic.

3. Analytical expressions for the NHD PDF, which enable calculation
of the threshold setting for the NHD test.

4. Performance analysis of the NHD test using simulated and measured
radar data.

5. Performance comparison with existing NHD tests demonstrating
superior performance in both SIRP as well as Gaussian scenarios.

3.2.2. PRELIMINARIES

Let X = [X;X,...X,,]T denote a complex spherically invariant random vector
(SIRV) having zero mean, positive definite Hermitian covariance matrix R and
characteristic PDF f,(v). The PDF of X is given by*'

Fx@) = 7 MR hyy(g) (3.22)

where |-| denotes determinant and

g =X"R7IX, oy (W) = J: V_2Mexp(— Vﬁz) frndv  (3.23)

Every SIRV admits a representation of the form X = ZV,** where Z has
a complex-Gaussian PDF, CN(0, R), and V is a statistically independent random
variable with PDF f,(v). Consequently, the covariance matrix of X is given by
Ry = RE(V?). In practice, R and f(v) are unknown. For the purpose of this
paper, we assume knowledge of fy/(v) and treat the problem of nonhomogeneity
detection with respect to unknown R. Validity of the SIRP model for clutter
encountered in STAP applications has been extensively discussed.”

Previous works' ~*%~'"2* employed the GIP based NHD for Gaussian
interference scenarios. The GIP based method relies on the statistics of a quadratic
form given by O = X"R™'X where ~ denotes estimate and H denotes Hermitian.
This method can be used as an NHD test statistic in SIRV interference if a perfect
estimate of the covariance matrix can be obtained, which calls for an extremely
large sample support size (infinite sample support). However, in practice the
training data available in a given application is limited by system considerations
such as, the bandwidth, fast scanning arrays, and more fundamentally the
underlying spatio-temporal nonstationarity of the scenario. Thus, one is almost
always forced to work with finite sample support. Consequently, the covariance
matrix estimate for this problem can be obtained to within a constant of the sample
covariance matrix, which is the maximum likelihood estimate of the covariance
matrix underlying the Gaussian component of the SIRV. Typically, this constant
is unknown in practice. Hence, proposed goodness-of-fit tests®*%'° cannot be
properly implemented for this problem. On the other hand, proposed implemen-
tations of the NHD tests using the sample covariance matrix estimate for Rin SIRV
scenarios>*°~"**Jead to incorrect declaration of data nonhomogeneity. This fact
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is illustrated in the examples presented in Section 3.2.4. Therefore, we seek a scale
invariant test statistic for this problem.

3.2.3. NONHOMOGENEITY DETECTOR FOR NONGAUSSIAN
INTERFERENCE SCENARIOS

Let X ~ SIRV[0, R, f,(v)] denote the complex SIRV test data vector where R is
unknown. Further, let X;, i = 1,2,...K, denote iid complex SIRV[0, R, f,(v)]
training data. The first step in deriving the NHD for SIRVs involves obtaining the
maximum likelihood estimate of the underlying covariance matrix.

This estimate is then used in a test statistic that exhibits maximal invariance
with respect to the unknown scaling of the estimated covariance matrix.
The resulting test statistic takes the form of a NAMF, that has been extensively
analyzed in Ref. 25-27 and references therein. As noted previously, the basis
of our strategy to detect nonhomogeneity in the data is to first characterize the
NHD PDF in homogeneous SIRP clutter scenarios and use this information to
construct a formal goodness-of-fit test to reject data realizations that depart from
the said PDF.

3.2.3.1. Covariance Matrix Estimation

The unknown covariance matrix is estimated from representative SIRV training
data sharing the covariance structure of that of the test cell. Maximum likelihood
(ML) estimation of the covariance matrix for SIRVs was first considered in
Ref. 28. The work of Ref. 28 showed that covariance matrix estimation for SIRVs
can be treated in the framework of a complete—incomplete data problem and
pointed out that the maximum likelihood estimate of the covariance matrix is
a weighted sample matrix. Since the covariance matrix estimate cannot be
obtained in closed form, Refs. 28 and 29 use an iterative method known as the
expectation—maximization (EM) algorithm. More precisely, letx;,i = 1,2,..., K,
denote the realizations a given set of independent identically distributed training
data sharing the covariance matrix of the random variable test data vector X.
Refs. 28 and 29 show that the ML estimate of the covariance matrix is given by

L1 & H
R=— ; cixx ! (3.24)
where
h/zM(qi) ! 0hyp (W)
L= — h = ="~ =—h 3.25
Ci hiopy (4) , (W) I wm+2(W) ( )

and ¢; = xiHlAl_lx,-, i=1,2,...K. Since both sides of Equation 3.24 involve R
(the right hand side implicitly through c;), it is not possible to obtain the estimate
in closed form. Consequently, Ref. 28 used the EM algorithm to obtain an
iterative solution to the problem. We adopt the approach of Ref. 28 for obtaining
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the covariance matrix estimate in this work. A derivation of the covariance matrix
estimate is contained in Appendix B. We note therein that the EM algorithm
yields an estimate that is to within a multiplicative constant of the sample
covariance matrix, which is the ML estimate of the covariance matrix underlying
the Gaussian component of the SIRV. This fact was verified for all the simulated
data examples presented in Section 3.2.4 by examining the eigenvalues of the
estimated covariance matrix obtained at the convergence of the EM algorithm.
Details pertaining to the initial start and convergence properties of the EM
algorithm can be found in Ref. 28. The next step is to use this estimate in
a maximally invariant decision statistic for nonhomogeneity detection.

Recognizing the need to know the characteristic SIRV PDF, which may be
hard to obtain in some practical applications, the works of Refs. 30 and 31 propose
recursive covariance matrix estimators for the class of nonGaussian processes
where the random variable V of the SIRP model is treated as a deterministic but
unknown parameter. Strictly speaking, the nonGaussian model used in Refs. 30
and 31 departs from the SIRP model due to the treatment of V as a deterministic but
unknown scale factor. However, it serves a useful alternative model in some
instances.

3.2.3.2. Maximally Invariant NHD Test Statistic

The maximal invariant statistic for different scaling of test and training data
is given by*’

IsFR™IX[?
[sHR™1s][XHR'X]

Anamr = (3.26)

where s = (1/ VM N1 1...1 1T. For convenience, we use a simple choice for s by
designating it to be the first column of a normalized discrete Fourier transform
(DFT) matrix. However, in most STAP applications, the spatio-temporal steering
vector is a function of azimuthal angle and Doppler. Bearing in mind that we are
concerned about training data containing contaminating targets, which share the
same angle Doppler information as that of a desired target, the spatio-temporal
steering vector provides a logical choice for s.

The test statistic of Equation 3.26 has also been proposed as a suboptimal
method for adaptive radar target detection in compound-Gaussian clutter.>
Invariance properties of the test statistic of Equation 3.26 and its geometrical
representation have been studied in Ref. 25 and references therein for the case
of Gaussian interference statistics using a sample covariance matrix estimate.
In SIRP interference, however, each training data vector realization is scaled by
a different realization of V. Consequently, maximal invariance of the test statistic
of Equation 3.26 afforded by the sample covariance matrix estimate no longer
applies. This is due to the fact that the sample covariance matrix is no longer the
maximum likelihood estimate of the covariance matrix for SIRV scenarios.>
However, use of an estimated covariance matrix of the form of Equation 3.24
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restores the maximal invariance property of the test statistic of Equation 3.26.
The reason is that the resultant covariance matrix estimate is to within
a multiplicative constant of the sample covariance matrix. This behavior has been
verified for all the simulated data example presented in Section 3.2.4.
Consequently, we now have a case where the covariance matrix of the test and
training data share the same structure but have different unknown scaling. It has
been established in Ref. 25 that Axsuvp is the invariant test statistic for this
problem. Hence, the canonical representation for Ayamp in terms of five random
variables derived in Ref. 25 applies to this problem in a straightforward manner.
However, we emphasize that it is important to properly estimate the SIRV
covariance matrix in order to reduce the NHD problem to the case where test
and training data covariance matrices differ by an unknown scale factor. This calls
for knowledge of the first order SIRV characteristic PDF.

3.2.3.3. PDF and Moments of the NonGaussian NHD Test Statistic

Our comments in the concluding paragraph of Section 3.2.3.2 allow us to use the
canonical representation for Ayamp contained in Ref. 25 for Gaussian
interference scenarios. Consequently, the PDF of the NHD test statistic is
readily determined in terms of an equivalent random variable defined by

ANAMF
Ny = ——NAME__ (3.27)
d 1 - ANAMF

It has been shown in Refs. 25, 27 and 34 for Gaussian interference statistics that
A¢q admits a representation in terms of an F-distributed random variable, P, and
a beta-distributed loss factor, I'. Because of the fact that the NHD problem in
SIRV interference has been reduced to that of testing whether two data sets share
the same covariance structure with differing scale, the results of Refs. 25, 27 and
34 readily extend to the SIRV problem. More precisely, for the case where no
target is present in X, A, admits a representation of the form

P
The PDFs of P and I' are given by
fp= —E =L - M (329)
P (I4pet T BL+1,M—1) '
where L= K-M + 1, and
1
B(m,n) = J A = 0 dx (3.30)
0
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After a little bit of algebra, it follows that the PDF of Ayamr with no target
present in x is given by

(M LA = pfen = HFldy
fANAMF(r) - JO - ,Yr]L+1 (3.3D)

The mean of Ayamr is difficult to calculate analytically. Consequently, we work
with the mean of A, given by

K

to study the convergence properties in the limit of large K. The statistical
equivalence, of A, to the ratio of an F-distributed random variable and a beta-
distributed loss factor, permits rapid calculation of the moments of Aeq. Also, it
is extremely useful in Monte Carlo studies involving simulation of Ayamg-
For homogeneous training data, the use of Equation 3.28 circumvents the need to
explicitly generate the test data vector X and the training data vectors used for
covariance estimation. For large M and hence large K, significant computational
savings can be realized from the method of Equation 3.28. It is instructive to note
that the PDF of Ayavmr depends only on M and K, which are under the control of
a system designer, and not on nuisance parameters such as the true covariance
matrix underlying the interference scenario. Furthermore, for K — oo the
mean of Equation 3.32 converges to E(Aeq) = (1/(M — 2)), corresponding to
the mean of an F-distributed random variable. This is due to the fact that as
K — o0, the estimated covariance matrix approaches the true covariance matrix
with probability one and thus the loss factor takes on the value zero with
probability one.

3.2.3.4. Goodness-of-Fit Test

Since the PDF and mean of Ayaymr are known, a formal goodness-of-fit test can
be used for nonhomogeneity detection in nonGaussian interference scenarios.
The goodness-of-fit test can be formally cast in the form of the following
statistical hypothesis test:

Hy:  Anawmr 18 statistically consistent with the PDF of Equation 3.31
H;: Ayxamr is not statistically consistent with the PDF of Equation 3.31

For this purpose, we need to determine the type-I error given by
P, = P(Anaur > nlHy) = P[Aeq > % |H0] (3.33)
-
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Using Equations 3.27 and 3.29, it follows that the probability of error conditioned
on I'is given by

1

Pll'= —————
[1+d—ynil

(3.34)

where " = 11/(1 — 7). The unconditional type-I error probability is obtained by
taking the expectation of Equation 3.34 over I" and is given by

l &
PeJ' ASY) (3.35)

o [1+1 =7l

In Section 3.2.4 the type-I error is chosen to be 0.01. The threshold, 1",
is determined by a numerical inversion of Equation 3.35. The value of 7 follows
from the relationship 7 = 1*/(1 + n*). We then form empirical realizations
of Ayamr from each training data realization using a sliding window approach.
In this approach each training data vector is treated as a test cell data vector,
whose covariance matrix is estimated from neighboring cell data according
to Equation 3.24. We then test for statistical consistency of these realizations
of Axamr With the PDF of Equation 3.31. Realizations of Ayamr exceeding
7 correspond to nonhomogeneous training data. A desirable feature of P, is that it
depends only upon K and M and not on nuisance parameters such as the true
covariance matrix underlying the interference. Performance analysis of the NHD
method is presented in the next section.

3.2.4. PERFORMANCE ANALYSIS

Performance of the goodness-of-fit test with simulated and measured data
is presented here. Figure 3.10 shows the plot of the PDF of Ayayp with K as
a parameter. Observe that the variance of Ayaymp decreases with increasing K,
as increase of K provides better estimates of the covariance matrix estimate, and
when K — oo, the estimated covariance matrix approaches the true covariance
matrix to within a scale factor with probability one.

Figure 3.11 shows a plot of the Type-I error versus the threshold, 7, with K as
a parameter. For a given type-I error, the threshold decreases with increasing K,
in conformance with the results of Figure 3.10.

For convenience of analysis simulated data examples contained herein use

the K-distributed amplitude PDF given by'*'*?!
a+1 re
fR(r) = mKa,I(br) r= O7 b, a>0 (336)

where b and « are the distribution scale and shape parameters, respectively, K,(-)
is the modified Bessel function of the second kind of order v and I{(-) is the
Eulero—Gamma function. The K-distribution, which is a member of the class
of SIRPs,'? has been proposed as a model for impulsive clutter resulting from
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FIGURE 3.10 Ay PDF for K = 2M,3M,4M: M = 64.
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FIGURE 3.11 Agawmr type-I error probability vs. threshold: M = 64.

© 2006 by Taylor & Francis Group, LLC



196 Adaptive Antennas and Receivers

terrain and sea scatter.>>® Small values of « result in heavy-tails for the
PDF of Equation 3.36. The corresponding fv(v) and h,y,(-) are given by

i) = %(bvf“‘lexp(—w) 0<v <o

2b2M
Ia)

(3.37)

hop (W) = = (0\W)* MK oy (2b/w)
We generate 1024 realizations of a 64-tuple vector from the K-distributed SIRP
with @ = 0.5 having a prescribed covariance matrix according to the physical
model described in Ref. 37 using the approach of Ref. 13. No targets are added to
this data set. Starting from the midpoint (range bin 512), the data set is processed
symmetrically on either side using a sliding window. Each cell is treated as a test
cell (which may or may not contain contaminating targets). Two guard cells are
provided (one on each side of the test cell). One hundred and twenty-eight
training data realizations are collected by moving symmetrically on either side
of the guard cells for use in covariance matrix estimation. The covariance matrix
estimate is obtained using Equation 3.24. Ayamp given by Equation 3.26 is then
calculated for each test cell using the estimated covariance matrix and compared
to a threshold determined from Equation 3.35 for P, = 0.01. Relevant test
parameters are reported in the plots.

Figure 3.12 shows the performance of the goodness-of-fit test for simulated
homogeneous data from the K-distribution?' with shape parameter 0.5 using
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FIGURE 3.12 Anawmr versus range bin number for homogeneous K-distributed SIRV with
a=05M=064,K = 128.
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FIGURE 3.13 Normalized GIP (x!!S™!x/K) versus range bin number for homogeneous
K-distributed SIRV with a = 0.5, M = 64, K = 128 and threshold = 1.274.

the covariance estimate of Equation 3.24. The figure shows a plot of Ayamr as
a function of range. No realization of Ayavp exceeds 7, reflecting homogeneity
of the data. The experiment was repeated 1000 times and in all cases Anamr
did not exceed m confirming the homogeneity of the data.

Figure 3.13 shows the performance of the NHD test proposed in Refs. 10,11
and 24 based on comparing the normalized GIP, x"S™!x/K, with the
threshold setting determined according to Equation 3.25 in Ref. 24. Here S =
(1/K) Z,Kzl x;x!! is simply the sample covariance matrix. The data set used here is
the same as the data set used for the example in Figure 3.12. The normalized GIP
is formed using sliding window processing as described in Refs. 10, 11 and 24.
Figure 3.13 shows a plot of the normalized GIP as a function of range. Also
plotted is the threshold setting. From the plot it is evident that for almost all range
bins the normalized GIP exceeds the threshold, leading to the declaration of
nonhomogeneity, when in fact the data is homogeneous.

Figure 3.14 shows the performance of a second goodness-of-fit test proposed
in Refs. 10, 11 and 24, which compares the normalized GIP, XHS_lx/ K to
a theoretically calculated mean value obtained from Equation 3.6 of Ref. 24. The
data used for this example is the same as that used in the example of Figure 3.12.
Figure 3.14 shows a plot of the normalized GIP as a function of range. Also shown
is the theoretically calculated mean value. Again, we see that for almost all range
bins the normalized GIP exceeds the mean value causing an incorrect declaration
of data nonhomogeneity.
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FIGURE 3.14 Normalized GIP (x'S™!x/K) versus range bin number for homogeneous
K-distributed SIRV with a = 0.5, M = 64, K = 128 and normalized GIP mean = 1.

Figure 3.15 shows the performance of the NHD test proposed in Refs. 3, 4
and 9, which compares the GIP, x"'S™!x. to a theoretically specified mean value
of M. The data used for this example is the same as that used in the example
of Figure 3.12. Figure 3.15 shows a plot of the GIP as a function of range.
Also shown is the theoretically specified mean value. Again, we see that for
almost all range bins the GIP exceeds the mean value causing an incorrect
declaration of data nonhomogeneity. The incorrect declaration of nonhomo-
geneity is due to the fact that S is no longer the ML estimate of the covariance
matrix for SIRV interference scenarios. Similar results showing an even more
severe performance degradation in K-distributed clutter with a = 0.1 were
obtained. However, these results are not reported here for avoiding tediousness
of exposition. The experiments pertaining to Figure 3.13 to Figure 3.15 were
repeated 1000 times and all the trials exhibited performance consistent with that
reported in those figures.

Figure 3.16 shows the performance of the goodness-of-fit test developed
in this paper in K-distributed clutter with shape parameter 0.5. Synthetic targets
were injected at range bins 479 and 510 to cause the nonhomogeneity. Non-
homogeneity of the data is evident in those range bins where Ayavr exceeds 7.

Figure 3.17 shows the performance of the goodness-of-fit test in K-distributed
clutter with & = 0.1. Synthetic targets were injected at range bins 510 and 552
to cause the nonhomogeneity. Clearly Axamp €xceeds 7 for both of these range
bins and thus they are declared to be nonhomogeneous data sets.
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FIGURE 3.15 GIP (x"'S™!x) versus range bin number for homogeneous K-distributed
SIRV with @ = 0.5, M = 64, K = 128 and GIP mean = 64.
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FIGURE 3.16 Ayamr versus range bin number for nonhomogeneous K-distributed SIRV
with « = 0.5, M = 64, K = 128.
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FIGURE 3.17 Ayamr versus range bin number for nonhomogeneous K-distributed SIRV
with « = 0.1, M = 64, K = 128.

Figure 3.18 shows the results of the goodness-of-fit test using the covariance
matrix estimator proposed in Refs. 30 and 31. This estimator does not require
knowledge of the first order characteristic PDF of the SIRV and therefore
converges faster than the estimator of Equation 3.24, especially for small values
of a.. The data set used for this example is the same as that used for the example in
Figure 3.13. Although a peak in the test statistic is seen at range bin 479, it does
not exceed the threshold, while the peak is not seen for range bin 510. Therefore,
contaminating targets in range bins 479 and 510 are not detected. Furthermore,
the method erroneously reports the presence of a contaminating target at range
bin 573. This illustrates the importance of knowing the underlying characteristic
PDF to properly estimate the covariance matrix and use it in the NHD statistic.

The results contained in Figure 3.16 to Figure 3.18 were further validated
by using 1000 realizations of the experiment and averaging the results over
50 independent trials. In 997 out of the 1000 trials the NHD realizations
corresponding to bins 479 and 510 of Figure 3.16 exceeded the threshold.
For Figure 3.17, 984 times out of 1000 trials, the realizations corresponding to
range bins 510 and 552 exceeded the threshold. The corresponding number for
Figure 3.18 was 971. These findings are summarized in Table 3.2.

The examples reported in Figure 3.19 to Figure 3.21 make use of the MCARM
data of Ref. 3. The MCARM data consists of measured L-band radar data using
a Westinghouse radar mounted on the port-side of a BACI1-11 aircraft. The
relevant system parameters are summarized in Table 3.3. The MCARM data is a
common test bed for performance analysis and bench-marking of STAP
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FIGURE 3.18 Ayump versus range bin number for nonhomogeneous K-distributed SIRV
with @ = 0.5, M = 64, K = 128 and covariance matrix estimate of Refs. 30 and 31.

algorithms and is therefore considered in this paper. Further details pertaining to
the MCARM data can be found in Ref. 38. Figure 3.19 shows the results of the
goodness-of-fit test for the MCARM data using acquisition 220 on Flight 5, cycle
“e” for 8 channels and 16 pulses. The results of Refs. 3,39 and 40 using the
MCARM tend to confirm that the MCARM data is homogeneous for the most part.
Statistical analysis of the data indicates that the data is well-approximated by the
Gaussian distribution.® As a consequence, ¢; = (—Hhy,(g))/(hap(g;)) = 1 for this
case. Hence, the maximum likelihood estimate of the covariance matrix is simply
the sample covariance matrix. The test statistic, Ayamp, and the threshold, 7, are
plotted as a function of range. Nonhomogeneity of the data is evident in those bins
for which Agamp exceeds m. For the sake of comparison, Figure 3.20 and
Figure 3.21 show the performance of the NHD methods of Refs. 10, 11, 24 and

TABLE 3.2
Nonhomogeneity Detector Performance Summary

Figure Number  Range Bin Number  Number of Realizations ~ Number of Exceedences

3.16 510 1000 997
3.16 479 1000 997
3.17 510 1000 984
3.17 552 1000 984
3.18 573 1000 971
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FIGURE 3.19 Ajamr versus range bin number using MCARM data: M = 128, K = 256.
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FIGURE 3.20 Normalized GIP (x'!S™'x/K) versus range bin number using MCARM
data: M = 128, K = 256.
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FIGURE 3.21 GIP (x1S™'x) versus range bin number using MCARM data: M = 128,
K = 256.

Refs. 3,4, 9, respectively, using the same MCARM data set used in the example of
Figure 3.19. Figure 3.20 shows the results of the NHD test proposed in Refs. 10,11
and 24 based on comparing the normalized GIP, (x'S™!x/K) with the threshold
setting determined according to Equation 4.2 in Ref. 24. The MCARM data set is
processed in the same manner as described in the example of Figure 3.13.

TABLE 3.3
MCARM Data Parameters

Parameter Value
Transmit frequency 1240 MHz
Transmit beamwidth 6.7° Az., 10.4° El
Waveform 50.4 us LFM
Peak transmit power 20 kw
Pulse compression ratio 63
Platform altitude 10,000 ft
Platform velocity 100 m/s
Array configuration 11 X 11 planar array
Number of pulses 128
Pulse repetition frequency 2 kHz
Number of unambiguous range bins 630
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Figure 3.21 shows the performance of the NHD test proposed in Refs. 3, 4 and 9,
which compares the GIP, x"!S™!'x, to a theoretically specified mean value of M
using the MCARM data. The MCARM data set is processed in the same
manner as described in the example of Figure 3.15. It is seen from Figure 3.20 and
Figure 3.21 that a lot more declarations of nonhomogeneity result from the NHD
methods of Refs. 10, 11, 24 and Refs. 3, 4, 9, when in fact the MCARM data is
homogeneous. However, it may also be noted that the NHD method of Refs. 10,11
and 24 outperforms the GIP based method of Refs. 3, 4 and 9. Thus, the NHD
method of this paper outperforms competing techniques for Gaussian interference
scenarios as well.

3.2.5. CONCLUSION

This paper provides a statistical characterization of the NHD for nonGaussian
interference scenarios, which can be modeled as a spherically invariant random
process. A formal goodness-of-fit test based is derived. Performance analysis
of the method is considered in some detail using simulated as well as measured
data from the MCARM program. Performance comparison of the method with
other NHD techniques is also undertaken. The illustrative examples validate the
approach taken and confirm the superior performance of the technique of this
paper in both Gaussian and nonGaussian interference scenarios. Future work
would include extensive performance analysis using simulated and measured
data showing the resulting impact on STAP performance. The performance
of several STAP algorithms in Gaussian and nonGaussian interference scenarios
has been considered in Ref. 26. Future work will address performance of the
methods treated in Ref. 26 in conjunction with NHD processing described herein
to combat heterogeneous interference scenarios. Preliminary work (not reported
here) in this direction reveals that the estimator of Equation 3.24 is rather slow
to converge even for moderate system dimension. A related research direction
is the performance comparison of model-based parametric STAP methods
(which do not require NHD preprocessing) with sample covariance based STAP
methods employing NHD preprocessing in dense target environments. Analysis
in this direction is undertaken in Ref. 41.
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4.1. LITERATURE REVIEW
4.1.1. INTRODUCTION

In the analysis of random data, we encounter situations to check various
statistical models or “hypotheses” against the data. The usual situation is to test
or check a particular probability distribution for consistency in representing data
from a certain experiment. The hypothesis that this distribution is the right one is
called null hypothesis, often denoted by H,. This hypothesis may have emerged
from long experience associated with an experiment and it is necessary to see
whether the hypothesis is still correct when there has been some changes in
circumstances which call it into question. Alternatively, the hypothesis may be the
result of a theoretical analysis or a logical argument and the theory needs to be
verified.

A null hypothesis is ordinarily taken to be quite specific. In particular,
location, scale, and shape parameters associated with probability density function
(PDF) are specified along with the type of distribution. For example, the PDF
of the Weibull distribution changes as its shape parameter is changed. Therefore,
Weibull distribution having a different shape parameter from the Weibull distri-
bution of the null hypothesis is assumed to be different. All the other distributions,
taken together, define what is referred to as alternative hypothesis, denoted by H.
Therefore, a question that arises in the analysis of random data is: “If the null
hypothesis is not true, what are the suitable approximations to the underlying
distribution of the data?”

To answer this question, several tests have been proposed and used, with each
of these tests having their own strengths and weaknesses. Some may work well
for a particular set of density functions, but poorly for others. We focus our
attention on four of the most frequently used tests for analyzing random data.
Detailed discussions of these tests follow.

4.1.2. THE KOLMOGOROV-SMIRNOV TEST

This test is based on the idea of a “sample distribution function” — a statistic that
is the sample version of population distribution function.

Given a sample (x1, x5, ..., x,,) of size n, the sample distribution function F,(x)
is the cumulative distribution function (CDF) of a discrete PDF where the random
variable X assumes the values x1, x5, ..., x, with probability of 1/n. Consequently,
the CDF increases in steps of size 1/n at each sample value, rising from zero to
the left of the smallest x; to one at the largest x;.
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4.1.2.1. Example 1

Consider a sample'® of the following five observations.
2.22,-0.83,0.18,1.18,2.05

The sample distribution function is easily constructed after the sample values are
marked on the x-axis: starting at height zero for the values less than —0.83, the
CDF is increased successively by steps of height 1/5 at the ordered sample values
— 0.83, 0.18, 1.18, 2.05, and 2.22. The result is shown in Figure 4.1.

The Kolmogorov—Smirnov test statistic is defined as the maximum absolute
vertical deviation D,,, of sample distribution function, F,(x), from the CDF,
Fy(x), specified by the null hypothesis Hy. If the fit is good, D,, is expected to have
a small value. On the other hand, if the underlying distribution has a CDF
significantly different from F(x), it is expected that the fit will be poor and D,
will be large. Consequently, if values of D,, exceed a prespecified value, called
the acceptance limit, H; is rejected. Fortunately, the distribution of statistic D,,
depends only on the sample size and not on the shape of the distribution being
tested. The distribution of D, has been computed under the assumption that the
null hypothesis holds. Results of acceptance limits are given in Table 4.1'*'3 for
different sample sizes and for various preselected value of

a = Pr(reject HylH, true) 4.1

where « is called the significance level. For large values of n, asymptotic
formulae are given for acceptance limits. The test consists of the following steps:

0.6

F(x)

04 b

0.2 i

FIGURE 4.1 Sample distribution function (Example 1).
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TABLE 4.1
Acceptance Limits for the Kolmogorov—Smirnov Test

Significance Level

Sample Size (n) 0.20 0.15 0.10 0.05 0.01
1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.829
4 0.494 0.525 0.564 0.624 0.734
5 0.446 0.474 0.510 0.563 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.409 0.486

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.433

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.375

16 0.258 0.274 0.295 0.328 0.391

17 0.250 0.266 0.286 0.318 0.380

18 0.244 0.259 0.278 0.309 0.270

19 0.237 0.252 0.272 0.301 0.361

20 0.231 0.246 0.264 0.294 0.352

25 0.21 0.22 0.24 0.264 0.32

30 0.19 0.20 0.22 0.242 0.29

35 0.18 0.19 0.21 0.23 0.27

40 — — — 0.21 0.25

50 — — — 0.19 0.23

60 — — — 0.17 0.21

70 — — — 0.16 0.19

80 — — — 0.15 0.18

90 — — — 0.14 —

100 — 0.14 —

Asymptotic formula: ﬂ g g 1—36 g

i i i Ui U

(1) Plot F,(x) and Fy(x) in the coordinate axes.
(2) By inspection, determine the maximum vertical absolute deviation,
given by,

max

D, ="YX IF,(x) — Fy(») (4.2)
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(3) Select a significance level
a = Pr(reject HylH, true) (4.3)
(4) Accept H,, if D,, = K and reject otherwise.

Note that
1 — a = Pr(accept HylH, true) (4.4)

Let the CDF of D, be denoted by Fp, (x|Hy). It follows that
Pr(D, > KIHy)) =1 — FDn(K|H0) = 4.5)
Consequently, K is the 100(1 — «) percentile of Fp (xIHy).

4.1.2.2. Example 2

Let the null hypothesis Fy(x) be Gaussian with mean = 32 and standard
deviation = 1.8. Consider the following ten observations': 31.0, 31.4, 33.3,
33.4, 33.4, 33.5, 33.7, 34.4, 34.9, 36.2. The corresponding sample distribution
function F,(x), is sketched in Figure 4.2 along with the normal distribution whose
mean is 32 and whose standard deviation is 1.8. Assume the significance level
is chosen to be a = .05. From Figure 4.2 it is determined that the maximum
deviation D, between the two curves is 0.56. From Table 4.1 the acceptance
limit is K = .409. Because D, > K, H, is rejected.

Although the Kolmogorov—Smirnov test is found to perform quite well even
for small sample sizes, it has two principal disadvantages.

0.8

0.6

F(x)

0.2}

O Il Il Il Il Il Il
29 3 31 32 33 34 35 36 37 38

X

FIGURE 4.2 Sample distribution function (Example 2).
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1. To perform the test it is necessary to have a priori knowledge about the
data in order to be able to specify meaningful null hypotheses.

2. When the null distribution is rejected, no information is provided about
which distributions are suitable for approximating the underlying
distribution of the data.

4.1.3. THE CHI-SQUARE TEST

The chi-square (x?) test was originally developed for discrete random variables.
It is applied to the case of continuous random variables by making a discrete
approximation to the continuous probability density function. Because the
distribution of the statistic used becomes tractable only as the sample size
becomes infinite, the chi-square test should be employed only for large sample
sizes.

Consider a null hypothesis with PDF f;(x) and distribution function Fy(x), as
shown in Figure 4.3. Divide the x-axis into k contiguous intervals E;, E,, ..., E;
from left to right. Note that the ith interval, E;, consists of the set of points such
that

Fo(x)

E, E, E; E, Es Eq
a; a, ag a, ag

FIGURE 4.3 PDF and distribution function divided into intervals; (a) PDF,
(b) distribution function.
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where ay = —o0 and a; = +00. Consequently, a;_; and a; are the end points
of the ith interval, E;.
Define the probabilities

pi=PrX € E)
=Prig;_; =X =a; ) 4.6)
= (Fo(a;) — Fo(a;-1)); i=1,2,..k

Observe that p; is the area under fy(x) between x = @;_; and x = a;. Also,
k
dpi=1 4.7)
i=1

Now consider a random experiment consisting of n independent trials. Define
f; = (number of outcomes in E;)

According to the relative frequency concept,

Ji

p; = lim — (4.8)
n—o n
Note that
k
dfi=n (4.9)
i=1
To test whether the null hypothesis is statistically consistent with the data, the
statistic
= i (fi = np)’ “.10)
i=1 np;

is evaluated. The null hypothesis is rejected when y? exceeds a critical level M.
To determine M, the significance level

a = Pr(reject HylH, true) (4.11)
is specified. Observe that
a=Pr(x*>MH) =1 - F2(M)) 4.12)
where F, 2() denotes the distribution function of the X statistic. Since
Fo(M)=1-a (4.13)
M is the 100(1 — @) percentile of the y? statistic. M is also referred to as the

rejection limit. Values of M are tabulated in Table 4.2.'*'?
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TABLE 4.2

Percentiles of the Chi-Squared Distribution

Degrees of Freedom

—_
—_— O 0 0 NN N R W =

.01

.000
.020
115
297
554
.872
1.24
1.65
2.09
2.56
3.05
3.57
4.11
4.66
5.23
5.81

.025

.001
.051
216
484
.831
1.24
1.69
2.18
2.70
3.25
3.82
4.40
5.01
5.63
6.26
6.91

.05

.004
.103
352
711
1.15
1.64
2.17
2.73
3.33
3.94
4.57
5.23
5.89
6.57
7.26
7.96

.10

.016

211

.584
1.06
1.61
2.20
2.83
3.49
4.17
4.87
5.58
6.30
7.04
7.79
8.55
9.31

.70

1.07
2.41
3.66
4.88
6.06
7.23
8.38
9.52
10.7
11.8
12.9
14.0
15.1
16.2
17.3
18.4

.80

1.64
3.22
4.64
5.99
7.29
8.56
9.80
11.0
12.2
13.4
14.6
15.8
17.0
18.2
19.3
20.5

.90

2.71
4.61
6.25
7.78
9.24
10.6
12.0
13.4
14.7
16.0
17.3
18.5
19.8
21.1
223
235

.95

3.84
5.99
7.81
9.49
11.1
12.6
14.1
15.5
16.9
18.3
19.7
21.0
224
23.7
25.0
26.3

975

5.02

7.38

9.35
11.1
12.8
14.4
16.0
17.5
19.0
20.5
21.9
233
24.7
26.1
275
28.8

.99

6.63

9.21
11.3
13.3
15.1
16.8
18.5
20.1
21.7
23.2
24.7
26.2
27.7
29.1
30.6
32.0

rA%4
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6.41
7.01
7.63
8.26
8.90
9.54
10.2
10.9
11.5
12.2
12.9
13.6
14.3
15.0
22.1
29.7
37.5

7.56
8.23
891
9.59
10.3
11.0
11.7
124
13.1
13.8
14.6
153
16.0
16.8
244
323
40.5

8.67

9.39
10.1
10.9
11.6
12.3
13.1
13.8
14.6
15.4
16.2
16.9
17.7
18.5
26.5
34.8
43.2

10.1
10.9
11.7
12.4
13.2
14.0
14.8
15.7
16.5
17.3
18.1
18.9
19.8
20.6
29.0
37.7
46.5

19.5
20.6
21.7
22.8
239
24.9
26.0
27.1
28.2
29.2
30.3
31.4
325
335
442
54.7
65.2

21.6
22.8
239
25.0
26.2
27.3
28.4
29.6
30.7
31.8
329
34.0
35.1
36.2
473
58.2
69.0

24.8
26.0
272
28.4
29.6
30.8
32.0
33.2
344
35.6
36.7
379
39.1
40.3
51.8
63.2
74.4

27.6
28.9
30.1
314
32.7
339
352
36.4
37.7
389
40.1
41.3
42.6
43.8
55.8
67.5
79.1

30.2
315
329
342
355
36.8
38.1
39.4
40.6
419
43.2
445
45.7
47.0
59.3
71.4
83.3

33.4
34.8
36.2
37.6
389
403
41.6
43.0
443
45.6
47.0
483
49.6
50.9
63.7
76.2
88.4
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The exact distribution of the statistic x? is not simple and depends on the p,’s
in the null distribution (H,)) and the distribution under test. It was found that these
difficulties markedly disappear as the sample size n becomes large.'> The
distribution of y 2 under H, for large n is approximately one of the family of chi-
square distributions, depending on the number of intervals, k, but not on the
distribution under test. This family of distributions is characterized by the number
of degrees of freedom, defined to be k — 1. Various percentiles of the chi-square
distribution, for selected numbers of degrees of freedom, are given in Table 4.2.

4.1.3.1. Example 3

Table 4.3"3 gives 200 measurements of viscosity. The table gives frequencies f;
corresponding to the ten intervals. Data given in the table can be used to test the
hypothesis that the PDF from which they come is normal with mean 32 and
standard deviation 1.8. We select the significance level « to be 0.05, so that M
equals the 95th percentile of the y2 distribution. Table 4.3 shows that k, the
number of intervals, is ten. Consequently, the number of degrees of freedom given
by k — 1 equals nine. By extracting the 95th percentile of the y* distribution with
nine degrees of freedom from Table 4.2 it is seen that M = 16.9.

To illustrate the computations in Table 4.3, the entry for p, is obtained from
the normal distribution function by means of Equation 4.6. Hence,

Pr(30.05<X<31.15)= @(%) - @(W) =0.1791 (4.14)

where Fy(x)=®[(x—32)/1.8] and

X
(I)(x)ZJ L e gu—prx =y (4.15)
o \/2_7,

TABLE 4.3

Measurements of Viscosity (Example 3)

i Interval pi 200p; fi (f;— 200p,)* = z; z;/(200p)
1 <27.85 0.0105 2.10 3 0.81 0.3857
2 27.85-28.95 0.0346 6.92 7 0.0064 0.0009
3 28.95-30.05 0.0943 18.86 25 37.65 1.1996
4 30.05-31.15 0.1791 35.82 2 38.10 1.06
5 31.15-32.25 0.2388 4776 56 67.90 1.422
6 32.25-33.35 0.2161 4322 30 174.50 4.037
7 33.35-34.45 0.1399 27.98 22 35.80 1.279
8 34.45-35.55 0.0624 12.48 11 2.19 0.175
9 35.55-36.65 0.0195 3.90 3 0.81 0.208

10 >36.65 0.0048 0.96 1 0.0016 0.0017
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Values of @®(x) are obtained from a table for the standard normal distribution
function.

The statistic y? is obtained by summing the entries in the last column with the
result x> = 10.16. This does not exceed the 95th percentile of the chi-square
distribution with nine “degrees of freedom”, i.e., )(2 < M. The chi-square test,
therefore, calls for accepting the null distribution on the basis of given data.

Notice that the chi-square test does not test Fj(x) but only the p;’s. In
particular, the natural order of the intervals does not enter the test. Moreover, F
is not the only distribution function having the p;’s obtained from F. Despite
these minor objections, the chi-square test is frequently used in testing a
continuous distribution.

Like the Kolmogorov—Smirnov test, the chi-square test suffers from the same
disadvantages as mentioned earlier. In addition, it has one more disadvantage,
viz., it requires a large sample size to give accurate results.

4.1.4. QUANTILE-QUANTILE PLOT

A quantile—quantile (Q—Q) plot is a special plot or graphical technique which
can be performed to assess the marginal distribution of sample observations.
Consider a set of data of size n given by x;, x,, ..., x,,. Let the data be rank-ordered
such that x;y =< xp) = ... = x(,). For the jth ordered sample x;, define

i—1)2
Py = n

(4.16)

where the 1/2 is introduced as a “continuity correction”.'* Let F 'y(x) denote the
CDF of data. For large enough sample values of #, it then follows that

Fx(x¢j)) = PriX = x;)) = p(;) 4.17)

Denote the CDF of the null distribution by F(z). The quantile of Fj(z), denoted
by gy, is related to p;, by

Folqjy) = Pr(Z = q;y) = p(;) (4.18)
If the data comes from the same distribution as the null distribution, then
X(j) = 4 4.19)

and x ;) can be interpreted as an estimate of the sample quantile.
A Q-Q plot is generated using the following steps:

(1) Collect n data points xq,x,, ..., X,.
(2) Rank-order the data such that x;y = x) = ... = x().
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(3) Define

=z
p(j) = » 5 J= 1,2,...,”

(4) Evaluate the quantile g(;, defined by
Folqjy) = pjy; j=12,..n
(5) Plot the pair of points
Gy X)) j=12....n

When the data comes from the null distribution, the Q—Q plot is likely
to approximate a straight line through the origin at 45°.

4.1.4.1. Example 4

A sample'? of n = 10 observations gives the values tabulated in the 2nd column
of the Table 4.4. The sample mean and the sample variance are /i = .77 and
62 = 9414 respectively. The values of p¢jy are computed in the 3rd column.
Taking the normal distribution with mean 7/ and variance ¢? as the null
distribution, the corresponding quantiles ¢g; are evaluated in the 4th column.

For example, corresponding to pgy = .85

1.775 1 )
Fo(q) =Pr(Z=<1.775)= e @OTD/I88283, 085 (4.20)
o o \2mo?

Consequently, g, =1.775.

TABLE 4.4
Observation Table (Example 4)
Ordered Observations Probability Levels Standard Normal
j X Py =(=1/2)/n Quantiles qg;
1 —1.00 0.05 —0.826
2 —0.10 0.15 —0.235
3 0.16 0.25 0.116
4 0.41 0.35 0.396
5 0.62 0.45 0.649
6 0.80 0.55 0.891
7 1.26 0.65 1.144
8 1.54 0.75 1.424
9 1.71 0.85 1.755
10 2.30 0.95 2.366
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FIGURE 4.4 Q-Q plot (Example 4).

The Q-Q plot for the above data, which is a plot of the ordered data x;,
against the normal quantiles ¢(;), is shown in Figure 4.4. The pair of points
(g(j), Xj)) lie very nearly along a straight line at 45° and it is accepted that these
are normally distributed with mean = .77 and variance = .9414.

TABLE 4.5
Critical Points for the Q-Q Plot Correlation Coefficient Test for Normality

Significance Levels (@)

Sample Size (n) 0.01 0.05 0.10
5 0.8299 0.8788 0.9032
10 0.8801 0.9198 0.9351
15 0.9126 0.9389 0.9503
20 0.9269 0.9508 0.9604
25 0.9410 0.9591 0.9665
30 0.9479 0.9652 0.9715
35 0.9538 0.9682 0.9740
40 0.9599 0.9726 0.9771
45 0.9632 0.9749 0.9792
50 0.9671 0.9768 0.9809
55 0.9695 0.9787 0.9822
60 0.9720 0.9801 0.9836
75 0.9771 0.9838 0.9866
100 0.9822 0.9873 0.9895
150 0.9879 0.9913 0.9928
200 0.9905 0.9931 0.9942
300 0.9935 0.9953 0.9960
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The straightness of the Q—Q plot can be evaluated by calculating the
correlation coefficient of the points in the plot. The correlation coefficient
for the Q—Q plot is approximated by

Z (x(j) - ﬁl)(C](j) )
j=1

A~

rQ - n n
\jz Gy = ﬁi)zJZ (G = @°
=1 =1

4.21)

where g is the sample mean of the quantiles ¢q;); j=1,2,...,n. Formally,
we select the null hypothesis at a significance level a if 74 exceeds a critical
value denoted by M.'* The values of M have been evaluated for the normal
distribution and tabulated in Table 4.5'* for different sample sizes and
significance levels.

For the above example we select a = .10. Also, using the information from
Table 4.4, it is found that the mean of sample quantiles and standard normal
quantiles are, respectively, m = .77 and g = .768. Using Equation 4.21, we
find that the correlation coefficient, ?Q, is found to be 0.9943. Referring to
Table 4.5, we find that corresponding to n = 10 and o = .10, the critical point M
for the Q—Q plot correlation coefficient test for normality is 0.9351. Because
Fq > .9351, the hypothesis of normality is accepted.

4.1.5. PROBABILITY-PROBABILITY PLOT

The probability—probability (P—P) plot is another graphical technique that
is performed for random data analysis. Just as with the Q—Q plot we consider a
set of data of size n given by x|, x,,...,x,. The data is rank-ordered such that
X1y = X = ... = X(,. Proceeding in line with the Q-Q plot, define for the
Jjth ordered sample, x;,

j—1/2
n

where the 1/2 is introduced as a “continuity correction”.'* Let Fy(x) denotes the
CDF of the data. From the Q-Q plot we know that the r(;’s are the sample
quantiles. Denote the CDF of the null distribution by F(z). Then p,  is defined
to be the probability such that

Folx(j)) = Pr(Z = x(j)) = px, (4.23)

If the data comes from the same distribution as the null distribution, it is
likely that

Px;, =P (4.24)

and p(; can be interpreted as an estimate of the probability p, .
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A P-P plot is generated using the following steps:

(1) Collect n data points xy,Xo, ..., X,— 1, Xp-
(2) Rank-order the data such that x;) = xp) = ... = x,.
(3) Define

_Jji—12,

P = n ) j:172a"'7n

(4) Evaluate the probability p,  defined by

Folxj) =px,; J =121

(5) Plot the pair of points
(px<_f)’p(j)); j=12,....n

When the data comes from the null distribution, the P—P plot is likely
to approximate a straight line through the origin at 45°.

4.1.5.1. Example 5

We take the example used with the Q—Q plot and find the P—P plot of the given
data. The observations are tabulated in the 2nd column of Table 4.6. Values of p;,
are computed in the 2nd column. The sample mean and the sample variance are
M= .77 and 62 = 9414. Finally, taking the normal distribution with mean 7
and variance ¢* as the null distribution, the corresponding probabilities Py, are

TABLE 4.6
Observation Table (Example 5)
Ordered Observations Probability Levels Standard Normal
j X(j) PG = (j—1/2)/n Quantiles p,
1 —1.00 0.05 0.0342
2 —0.10 0.15 0.1853
3 0.16 0.25 0.2647
4 0.41 0.35 0.3553
5 0.62 0.45 0.4384
6 0.80 0.55 0.5124
7 1.26 0.65 0.6932
8 1.54 0.75 0.7864
9 1.71 0.85 0.8336
10 2.30 0.95 0.9424

© 2006 by Taylor & Francis Group, LLC



220 Adaptive Antennas and Receivers

—_

T
<&

T
<&

T
<&

Normal Probabilities P
© © 90 0 o0 o0 o0 o o
- D W s~ OO N O ©
T
3

1
-0.5 0 0.5 1 15 2 2.5
Ordered data X(j)

| o
-

FIGURE 4.5 P-P plot (Example 5).

evaluated in the 4th column. For example, corresponding to x7y = 1.26

1.26 1
Fy(xz) =Pr(Z = 1.26) = ﬁe‘“‘“”)z/ 188280, = 0.6932 (4.25)
o om

Consequently, p, = .6932

The PP for the above data, which is a plot of values p; against the normal
probabilities p, , is shown in Figure 4.5. The pair of points (p,py,) lies very
nearly along a straight line at 45° and we accept the notion that these are normally
distributed with mean = .77 and variance = .9414.

The straightness of the P—P plot can be evaluated by approximating the
correlation coefficient

> (pijy = P)py,, — Do)
Pp = —— (4.26)

le (PG — ﬁ)z\JZ (Px(j) - i)x)z
= =

where p and p, are the sample means of p(;, and Px,» respectively, with
j=1,2,...,n. Unfortunately, a table for the critical value M for different values
of the significance level «, was not found in the literature. If 7 is close to unity,
pgy and p, - are highly correlated and although a significance level cannot be
specified, it is likely that the data can be approximately with null distribution.
For this example,

#p = 0.9960 4.27)

Because 7p = 1, it is concluded that the data is statistically consistent with the
normal distribution having mean 72 = .77 and variance 62 = .9414.
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An attractive property of the Q—Q plot is that it is invariant to a linear
transformation. Specifically, the Q—Q plot of a linear function of x; is again
a straight line at 45°. However, this time the line need not pass through the origin.
P—P plots do not have this property. The main drawback of these plots is their
weak performances for small and moderate sample sizes. Also, generalization of
the Q—Q plot to multivariate distributions is not straightforward. On the other
hand P-P plots can be applied to the multivariate situation. Although a statistic
exists for evaluating the straightness of the Q—Q plot when the null distribution is
standard normal, this statistic is not readily available for other distributions.
Consequently, the Q—-Q and P-P plots do not readily offer a quantitative
goodness of fit test and the decision is mostly made on a subjective basis.

4.2. THE OZTURK ALGORITHM
4.2.1. INTRODUCTION

In testing a null hypothesis for a distributional assumption against an unspecified
alternative, no uniformly most powerful or optimal test” exists. Because of this,
various test procedures have been developed to assess these distributional
assumptions. Under certain conditions, (i.e., for a specified null hypothesis,
a specified sample size, and a predetermined level of significance) one test
procedure may be shown to be more powerful than the other existing procedures.
Besides, the power consideration of a given test, computational simplicity,
desirable distributional properties of the test statistic and the generality of test
procedure are some of the important properties to be considered.

Section 4.1 provided a brief overview of some of these tests. The x? test has
been widely used for assessing the distributional assumptions because of its
generality and computational simplicity.” However, the choice of class intervals
for computing the test statistic is arbitrary and the procedure can be used only for
large sample sizes. Q—Q plots and P—P plots are among the most widely used
graphical procedures for making assessment about the random data. But their
performances are weak for small and moderate sample sizes. Also, generaliz-
ations of Q—Q plots to the multivariate distributions are not simple.’®
As described in Refs. 9, 12, 13, and 17, the Kolmogorov—Smrinov test, which
is based on the empirical distribution function of the sample and the null
distribution, is also widely used. In fact, comparative studies have shown that, the
Kolmogorov—Smirnov statistic has higher power than the y? statistic for many
alternatives.” There are many other tests such as W test (by Shapiro and Wilk),
Anderson’s A test,2 Filliben’s correlation coefficient test,8 etc.

All these tests are goodness of fit tests. Within a certain confidence level,
these tests provide information whether a set of random data is statistically
consistent with a specified null distribution. However, if the specified distribution
is rejected, these tests give no clue about the alternative underlying distribution
of data. Thus, we need to have a priori knowledge about the random data to be
able to use these tests. In practice, a lot of times we have no a priori knowledge
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about the random signals. For example, the clutter PDF encountered in radar
signal processing, is not known a priori. Moreover, a lot of these tests require
a large number of observations to give accurate results. Obtaining many
observations may prove costly in a real-world situation. Consequently, a scheme
is necessary, that not only performs the Goodness of Fit test but also
approximates the PDF for small number of observations.

A new algorithm based on sample order statistics has been developed in
Refs. 1-3 and has been reported in Ref. 10 for univariate distribution
approximation. This algorithm has two modes of operation. In the 1st mode,
the algorithm performs a goodness of fit test. Specifically, the test determines, to a
desired confidence level, whether random data is statistically consistent with a
specified probability distribution. In the 2nd mode of operation, the algorithm
approximates the PDF underlying random data. In particular, by analyzing the
random data and without any a priori knowledge, the algorithm identifies, from a
stored library of PDFs, the density function which best approximates the data.
Estimates of location, scale, and shape parameters of the PDF are provided by the
algorithm. The algorithm is typically found to work well for observation sizes of
the order of 75 to 100.

In this chapter we present the Ozturk algorithm. It will be demonstrated
through examples that the algorithm can be used to test for any distributional
assumption (not limited to location-scale family) including univariate and
multivariate random variables.

4.2.2. DEFINITIONS

Let Fy(y) denote the PDF of a random variable Y. Consider the linear transforma-
tion defined by

The PDF of X is given by

1 X—a
= —fy| — 4.29
A= i “57) (4.29)
where a and B are defined to be the location and scale parameters of fy(x),
respectively. The mean u, and the variance o2 of the random variable x are given
by

we = Elx],  o2=E[x— m)’] (4.30)

where E is the expectation operator.

Although the mean and the variance are related to the location and scale
parameters, it may be noted that the location parameter is not the mean value and
the scale parameter is not the square root of the variance in general. However, for
a standard Gaussian PDF fy(y), for which the mean is zero and variance is unity,
the location parameter is the mean of X and the scale parameter is the standard
deviation (square root of the variance) of X.
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The coefficient of skewness a5, and the coefficient of kurtosis a,, of X are
defined to be

_ Elx— p)’] o, = Bl = p)"]
A M Ta
It is readily shown that a3 and o4 are invariant to the values of w, and o,. For a

PDF that is symmetric about the mean, a3 = 0. For the case of the Gaussian
distribution, a3 = 0 and «a, = 3.

(4.31)

as

4.2.3. THE OZTURK ALGORITHM

Any distribution or a family of distributions can be represented by a single point
or by a region on an az—ay plane, respectively, where «s is the coefficient of
skewness and a, is the coefficient of kurtosis (see for example Ref. 15, p. 14). A
set of random data can also be represented by a point whose coordinates are given
by the sample estimates of a3 and a,. Then the best candidate for the underlying
true distribution can be identified to be the nearest neighbor distribution on the
chart. Although such a chart, based on the coefficient of skewness and kurtosis,
provides a useful method of characterizing the distributions, its use is limited
because the moments of some distributions do not exist. Other drawbacks of this
approach are

1. Estimates of a3 and a4 are highly sensitive to extreme observations.
2. Estimates of these moments are highly biased for small sample sizes.*
3. The moment estimators are greatly affected by outliers.

This chapter introduces the Ozturk Algorithm which is a general graphical
technique that works in two specific modes:

1. In the first mode it performs a formal goodness of fit test for a specified
null distribution.

2. In its second mode it provides a graphical representation that gives
insight to the distribution which best approximates the data set and
provides a way of characterizing the data.

4.2.3.1. Goodness of Fit Test

The goodness of fit test is a complex algorithm that determines whether or not the
set of data samples provided to the algorithm are statistically consistent with
a specified distribution (the null hypothesis). Using the standard normal
distribution with zero mean and unit variance as the reference distribution, the
standardized sample order statistics are represented by a system of linked vectors.
The terminal point of the linked vectors, as well as the shape of their trajectories,
are used in determining whether or not to accept the null hypothesis. In its present
form the algorithm uses the standard Gaussian distribution as the reference
distribution. However, any other distribution could be used as the reference
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distribution. The null hypothesis is the distribution against which the sample data
is to be tested. Note that the reference distribution need not be the same as the null
distribution.

We begin by introducing several sample order statistics used in the algorithm
and thereafter proceed to explain the goodness of fit test procedure

Consider the following three sets of data size n where each corresponding
entry in sequential data sets is treated as a random variable:

1. A sample data set
X15X27X3a aXn

with mean and standard deviation given by w, and o,.
2. A null hypothesis data set

Zlsz,ZE}»-"»Zn

is generated from any available distribution against which the sample
set will be tested. The mean and standard deviation of this data set are
defined to be w, and o, respectively.

3. A reference distribution data set

W17 W27W3a"'a Wn

is generated from the standardized Gaussian distribution.

Let X;., = X,.,, = ... = X,,,, denote the ordered set of samples obtained by
ordering X;; i = 1,2, ..., n, where X, is the smallest data sample. Similarly, the
other two data sets are ordered resulting in the three ordered data sets

Xl:naXZ:mXS:nv -~~7Xn:n

Zl:n7 Z2:na Z3:nv ce Snin (432)

Wl:m W2:na W3:117 ceoy Wnin
Define
Xi:n - /j’x .

6,

where 4, = > X;/n is the sample mean and &, = S [(X; — u,)>/(n — 1)]"/? is the
sample standard deviation. These are the standardized order statistics of the
sample data. For the null hypothesis, a Monte Carlo simulation consisting of 2000
trials is utilized. The estimate of the expected values of the standardized ith order

statistic is defined as

Y., = i=1,2,....n (4.33)

A
Ti:n

1 2000 7y _ g
> Eine — A i=1,2,....n (4.34)

~ 2000 7 ’

k=1 g

where (Z;.,); denotes the ith order statistic from the kth Monte Carlo trial, and (i,
and &, denote the sample mean and sample standard deviation. Also, 7., is
defined as the estimate of the expected value of the ith order statistic of
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the reference distribution, the standardized Gaussian. Using 2000 Monte Carlo
trials.

2000
2OOOZ(vv,n>k, i=1,2,....m (4.35)

where (W,.,,); denotes the ith order statistic from the kth Monte Carlo trial of the
reference distribution. When the null hypothesis is the reference distribution,
the standardized Gaussian, then

A

Ty = Mgy (4.36)
The goodness of fit test proceeds by joining together two sets of n linked vectors,
one for the sample data and one for the null hypothesis. The ith linked vector
in each set is characterized by its length and orientation with respect to the
horizontal axis. For the sample data, the length of the ith vector g;, is obtained
from the magnitude of the ith standardized order statistic of the data, while its
angle or orientation, 6; is related to ;.,. More specifically, for the sample data

2
a;, = |an| s 0,' = Tr@(ﬁl,-;,,% ¢('x) \/_ J eXp( )dt (437)

n

¢, is the cumulative distribution of the standard Gaussian distribution. We define
the sample points O, in a two dimensional plane (U, V) by

ka(UkaVk); k= 1,2,...,1’1 (438)
where Uy = V; = 0 and

1 & 1 & ,
= EZIYi,nlcos(oi), V, = E;|Yi:n|sm(0i); k=1,2,...n (4.39)

Similarly, for the null hypothesis the length of the ith vector, b;, is obtained
from the magnitude of the ith standardized order statistic of the null data set.
Specifically, for the null data

bi = : ) 0i = Trd)(mi:n) (440)

Using the same two dimensional plane, we plot the sample points for the null
distribution defined by

Qo = Wor, Vor)s k=1,2,...,n (4.41)

where Uy, = Vyp = 0 and

1 & s 1 &
Uoe = 7 > IT;,lcos(6,), Vi = T ST, lsin(6);  k=1,2,...n (442)
i=1 i=1
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Note that the angle 0 remains the same for both sets of linked vectors. However,
the magnitude of the linked vector for the sample data is a; whereas, it is b; for the
null distribution. The angle 6; is solely dependent on the reference distribution
while the magnitude |Y;.,| and |7},| are solely dependent on sample data and null
data sets, respectively. In particular, for the ith sample-linked vector, a; is
dependent on the standardized ith order statistic of the sample data set whereas,
for the ith-linked vector of null hypothesis, b; is dependent on the estimate of the
expected value of the ith standardized order statistic of the Monte Carlo
simulation of null distribution.

Although Y;,, and T}, are ordered statistics from the smallest to the largest, it
may be noted that the magnitude of Y;., and YA“,-:,, are not. In fact, with increasing i,
Y,.,| and IT},,] begin large, decrease to approximately zero, and then increase
again.

The ith sample and null-linked vectors, respectively, are drawn by joining the
points (Q;, O;—;) and (Qo;, Qy;—1))- It should be noted that the O, and Qy,, given
in Equation 4.38 and Equation 4.41 represent the terminal points respectively, of
the linked vectors defined above. Figure 4.6 shows the two sets of linked vectors
obtained when the sample and null data sets are obtained from the Gaussian
distribution with n = 6 and n = 50. The solid curves in Figure 4.6 show the
linked vector for the sample distribution while the dashed curves show the ideal
linked vector for the null distribution. When the length n of the data set is large
(of the order of 50 points), the linked vector is a smooth arc, as seen in Figure 4.6.

For a typical set of ordered data samples, drawn from null distribution, it is
reasonable to expect that the sample-linked vectors would follow the null-linked
vectors closely. If the ordered set of samples is not from the null distribution, then
the sample-linked vectors are not expected to follow the path of the null-linked
vectors closely. Hence, the procedure provides visual information about how well
the ordered set of data fit the null distribution. However this is not an ad hoc
statistical procedure. As shall be seen later on, we do construct test statistics to
present a formal way of performing the goodness of fit test to determine whether
the data set is statistically consistent with the null hypothesis.

4.2.3.1.1. Properties of the Test Statistic Qo

An important property of the Q,, statistic is that it is invariant under linear
transformation. In particular, we consider the standardization used in Equation
4.33. Let S; = cX; + d where ¢ and d are constants. Let u, and o, denote the
mean and standard deviation of the samples, S;, respectively. Then, it is readily
shown that

Oy

‘Xi_/“Lx

Z‘Si_Ms
O

The invariance property follows as a consequence. The advantage of this property
is that the PDF of Q,, = (Uy,, Vy,) for a given sample set and reference
distribution depends only on the sample size n and is unaffected by the location
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FIGURE 4.6 Linked vectors Qx = (U, V;); (a) sampled data (solid line) and null
hypothesis (dashed line); (b) confidence ellipses.

and scale parameters. The distributional properties of this statistic for testing
normality is studied by Ozturk and Dudewicz in Ref. 3.

The exact sampling distribution of Q,, is usually difficult to obtain. However,
the empirical distribution of the test statistic O, was obtained via Monte Carlo
experimentation by Ozturk and Dudewicz in Ref. 3. Using the means, variances,
and coefficients of skewness and kurtosis of U, and V, based on 50,000 samples
for values of n from 3 till 100, they found that the distributions of Uy, and V,,
approach the normal distribution even for moderate sample sizes. The
distributional properties of the statistic Qgy, = (U, V;,) for testing normality
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is studied by Ozturk and Dudewicz in Ref. 3. Some of the empirical results
obtained by them for the statistic Q,, for standard normal distribution for
3 = n = 100 are given below.

E(U()n) =0

0.412921
E(Vy) = py ~ 0326601 + 212921 (4.43)
n

EUp, Vo) =0

0.02123  0.01765
Var(Uy,) = 02 = + —

n n
0.04427  0.0951 (4.44)

2

l

Var(Vy,) = o2

U

n n

Also, it was found empirically, for n > 10, that, Uy, and V,,, are approximately
bivariate normal.

An interesting property of this algorithm is that any one of the points Qg;
k=1,2,...,n, or a selected group of these points can be used as a test statistic to
establish a formal test. The algorithm in its present form proposes the general
statistic Qy, as the test statistic for testing the null hypothesis.

4.2.3.1.2. Basic Concept of the Confidence Contours

The algorithm provides quantitative information as to how consistent the sample
data set is with the null hypothesis distribution by the use of the confidence
contours. An example of these contours is shown in Figure 4.6. If the end point
of the sample data linked vector curve falls within one or more of these contours,
then the sample data set is said to be statistically consistent with the null
hypothesis at a confidence level based on the confidence contours. If the sample
data set is truly consistent with the null hypothesis, note that the sample-linked
vector is likely to closely follow the null-linked vector.

Now, consider the linked vector for the null hypothesis which is based on
the standardized expected values of order statistics, Z, for 2000 Monte Carlo
simulations. The test statistic Q,, found by computing the expected value of
2000 end points of the 2000 linked vectors provided by the Monte Carlo
simulation, is random. The coordinates of Q,,, Uy,, and V,,,, may or may not be
bivariate Gaussian.

When U, and Vj, are bivariate Gaussian, the confidence contours of null
hypothesis are readily determined. A three dimensional bell shaped bivariate
Gaussian curve is fitted to the 2000 end points arising from the Monte Carlo
simulation. The elliptical contours of this distribution are plotted for various
parameters of the significance level a (e.g., 0.01, 0.05, 0.1) where « is defined as
the conditional probability that Q,, falls outside the specified ellipse, given that
the data comes from the null distribution. (1 — «) is called the confidence level
and the corresponding contour is called the 100(1 — @)% confidence contour.

© 2006 by Taylor & Francis Group, LLC



A New Technique for Univariate Distribution Approximation 229

Note that (1 — «) is the conditional probability that the Q,, falls inside
the specified ellipse, given that the data comes from null distribution.

This could be done for any of the » points of the ordered statistic, Z, along the
null-linked vector. Thus, more than one set of confidence contours could be
created if there is more than one test statistic. Then, if the sample data is truly
consistent with null hypothesis, the sample data-linked vector is likely to pass
through a series of confidence contours, determined from the distributions of the
test statistics. However, it was found to be unnecessary to clutter-up the graphics
with so many contours since it can always be visually detected whether or not the
linked vectors are closely following the same trajectory. The option of using
more than one test statistic is provided in the algorithm.

Note that the average value of the test statistic, Q,,, of null distribution is at
the center of the contours. Thus, the closer the end point of the sample data
linked-vector is to the center of confidence contour, the more likely it is that the
sample data is coming from null hypothesis. As the significance level decreases,
the confidence level increases and the probability that Q, will fall within the
corresponding ellipse will also increase. This results in the fact that the size of the
confidence contours increases as the confidence level increases.

For a given sample size, n, the ith angle of any linked vector depends solely on
the reference distribution which remains unchanged throughout. Consequently,
for a given value of sample size, n, and for a given null hypothesis, values for the
magnitude and angle of the points (Uy, Vo) on the null-linked vector,
k=1,2,...,n, may be tabulated. This table, which is dependent on n and the
null hypothesis, could be stored and recalled when desired. This can significantly
reduce the computational requirements.

4.2.3.1.3. Determining Confidence Contours

As described earlier, the confidence contours are contours from the bivariate
PDF of the end point coordinates used to determine the test statistic Qy,. These
2000 end points are obtained from the Monte Carlo simulation. Plotting
confidence contours is usually not easy when the joint distribution is not
bivariate normal. Further, in order to analytically determine the confidence
contours, the joint PDF of U, and V,, must be known.* However, it is difficult
to analytically determine this joint PDF. Consequently, a normality transform-
ation is made on the end point coordinates Uy, and V, to obtain statistics
rou = U (Uy,) and ry, = »(V,,) where ¢ (-) and i), (-) are functions operating on
U,, and Vj,, respectively. A family of distributions called the Johnson System is
used to perform the transformation on Uy, and V, to obtain a bivariate normal
distribution.

The Johnson system of distributions is a flexible family of distributions
having four parameters. This system is used to summarize a set of data by
means of a mathematical function that will fit the data. The system proposed
by Johnson contains three families of distributions which are obtained by
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transformations of the form
R = v+ nfi(G; A, €); i=1,2,3 (4.45)

where R is a standard normal variable and G is the random variable on which the
transformation is performed. v, m, A, and € are four parameters of the Johnson
system of distributions. In particular, let

Rou = v1+Mfi(Upw: A1, €0) Roy = Vo +mofi(Vous Mo, €2); i=1,2,3  (4.46)

where f;; i=1,2,3 represent the following three functions suggested by Johnson:

flghe= sinh"(g . E) (4.47)

denotes the Sy distribution.

g€

fr(g: A €)= ln(—>, e=g=e+A (4.48)
Ate—g

denotes the Sy distribution, and

g€

f;(g;)\,e)zln( ), g>€ (4.49)

denotes the Sy distribution.

Note that fi(g;A,€), i=1,2,...,3, are single-valued monotonically
increasing functions for the allowed ranges of g. S is, in essence,
a three parameter distribution since the parameter A can be eliminated by
letting y* =y —mlnA so that r =9 "+ nln(g — €). Sy is a distribution
bounded on (€, € + A) and the Sy is an unbounded distribution. In a plot of
the 3rd and 4th order standardized moments where ,/aj is plotted vs. ay, the
chosen functions are such that the S distributions form a curve dividing the
({/a3, ay) plane in two regions. The Sg distributions lie in one of the regions and
the Sy lie in the other.

While using this system of transformations, the first step is to determine
which of the three families should be used for performing the normality
transformation. A possible procedure is to compute the sample estimate of the
standardized moments, viz., the coefficients of skewness and kurtosis and choose
the distribution depending on which of the two regions contains the computed
point. However, as described at the beginning of the chapter, this method has
major drawback. Consequently, another procedure is used to determine the
family of distributions and perform transformations. It is a simple selection rule,
which is a function of four percentiles to select one of the three families and to
give estimates of the parameters for all the families. It was developed by Slifker J.
and Shapiro S. in Ref. 4.

The idea of the selection rule is to try and find a property of the
transformation given in Equation 4.45 and use it to select an appropriate member
of the Johnson family to approximate a set of data. According to Slifker J. and
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Shapiro S., heuristically there must be some relationship concerning the distances
in the tails vs. distances in the central portion of the distribution, which could be
used to distinguish between bounded and unbounded cases. This led to the
following formalization.

Consider any one of the transformations described by Equation 4.45. Choose
any fixed value of r > 0 of a standard normal variate. Then the points *r and
*3r divide a horizontal axis into three intervals of equal length given by
(=3r,—r),(—r,r), (r,3r). Let g3,, g, g—,, and g_3, be the values corresponding
to 3r, r, —r and —3r, under the transformation given in Equation 4.45,
respectively. Let

m=gy—& l=g,-83 P=& & (4.50)

Because fi(g;A,€); i=1,2,...3, are single-valued monotonically increasing
functions for the allowed ranges of g, it is readily seen that m, [, and p are all
greater than zero. For a bounded symmetrical Johnson distribution, it was
hypothesized that the distances m and [/ between each of the outer and inner points
would be smaller than the distance p between the two inner points. The converse
would be true for the unbounded case. This led to the following more general
results:

)
(i) ﬂz > 1 for any Sy distribution;
p
.oml o
(if) — < 1 for any Sy distribution; 4.51)
p

l
(iii) ﬂz = 1 for any S; distribution.
p

These properties are proven in Appendix C and can be used to discriminate
among the three families.

4.2.3.1.3.1. Selection Procedure. The selection procedure consists of the
following steps:

1. Choose a fixed value of r > 0. This choice should be motivated by
the number of data points. In general, for moderate sized data sets,
a value of r less than one should be chosen.* Any choice of r greater
than one would make it difficult to estimate the percentile of *3r.
A typical choice is to use a value of r close to 0.5 such as 0.524. This
would make 3r = 1.572 and these points correspond to the 70th and
the 94.2th percentiles of the standard normal distribution, respectively.
However, the larger the number of data points, the larger the value of r
that can be selected. In the Ozturk algorithm r is chosen to be
0.775449.
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2. Determine from a table for the normal distribution the probability
P, =Pr(R = a), where a is taken to be either 3r, r, —r or —3r.
For example, if » = 0.5 then Py 5 = Pr(R = 0.5) = 0.6915.

3. Determine integer values of k, such that

1
ky — =
P, ~ 2 (4.52)
n
where
1
ky = [nPa + 5] (4.53)

[-] denotes the closest integer, and a = 3r, r, —r, —3r.

4. Obtain n observations of the random variable G, where G is related to
the random variable R through Equation 4.45. Order these observations
from the smallest to the largest and denote the kth ordered observation
by g*.

5. Let

8. =8" (4.54)

where a = 3r, r, —r, —3r. The connections between g,, k,, and P, are
explained in Appendix D.

6. From the values of g, obtained in step 5, compute the distances m, [,
and p according to Equation 4.50.

7. Use the criteria in Equation 4.51 to select the appropriate member of
the family of distributions.

Because the g'’s are continuous random variables, the probability is zero that
(ml/p*) = 1. Thus, choice of the S| distribution requires that ml/p* fall within
some small prespecified tolerance interval around one.

After completion of the selection process, the next step is to estimate
parameters of the distribution selected. Estimation of the parameters is
accomplished by using formulae given. These allow the estimates to be simply
calculated by means of a scientific hand calculator. The formulae for the
estimates are given, in terms of the chosen values of » and the computed values of
m, 1, and p. Derivations of these formulae are provided in Appendix C.

Note that the following formulae express the parameter values as functions of
m, I, and p which in turn are functions of g3,, g,, g—,, and g_s,. In practice, the
corresponding parameter estimates are computed based on the ordered sample
values, g;a = 3r,r, —r, —3r.

(i) Johnson Sy distribution

r=y+ nsinh”(%) (4.55)
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Parameter estimates for Johnson Sy, distribution

_ 2r ) =0
77_ 71[1(’,” l)]s (7] )
cosh ——+ -
2\p p
L_om
— 1 P p
Y = 7 sinh 1 7k
2(__—1)
pp
1/2 (4.56)
ozt
A= " ZPP — 7zs (A>0)
(Fer )
p P pp
(%)
_gr+g—r+ P P p
o 2 m
z(_+_)—z
p p
(ii) Johnson Sy distribution
g— €
= In[ —2—— 4.57
r y—i—nn()\_i_e_g) (4.57)

Parameter estimates for Johnson Sy distribution

0= i (>0
cosh1<%[(l + %)(l + %)] )
1/2
(7= 20+ 20+ 5) -4
y=nsinh71 n n ! ;
(-
m [
5 12 (4.58)
p[{<1 + %)(1 + 17’) - 2} —4]
A= 7P ;0 (m>0)
m [
{3-2)
€= 8 — 8-r A_’_ l m
N
m
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(iii) Johnson S} distribution

r=v +nln(g— e (4.59)

Parameter estimates for Johnson Sy distribution

2r
’T’:
lnﬂ
m_
_ .
Y =mnl (m 1/2 (4.60)
P
m
—+1
c— 8 t8&r PP
2 Zﬂ_l
P

Note that the values of the parameters above are presented in such a way as to
emphasize their dependences on the ratios m/p and [ /p for the Sy, distribution and
on p/m and p/I for the Sy distribution. For the Sy distribution, we see from
Equation 4.51 that (I/p) = (m/p)~". Thus, the formulae for the S, distribution
parameters are given solely in terms of the single ratio m/p.

Example. We consider a set of data representing the resistor values in a very
large-scale integrated (VLSI) circuit. The data and the observed frequencies are
shown in Table 4.7. We choose the value of r to be one. Thus, the four values
assumed by a are 43, 1, — 1, and — 3. From the table for the normal distribution,
the probabilities, P, = Pr(R = a), for a =3, 1, — 1, and —3 are found to be
0.9986, 0.8413, 0.1587, and 0.0014, respectively.

First, consider a = 3, for which P; = .9986. The value of the order number
ks is given by

ks = [nP3 + %] = [(9440)(0.9986) + 0.5] = 9427 4.61)

where [-] denotes the closest integer value. If the raw data were available, we
would simply let g5 equal to the 9427th ordered sample, g °***’. However, because
the raw data has been grouped into the intervals tabulated in Table 4.7, the value
of g °** is unknown. Consequently, interpolation is used to estimate a value for
g%,

Note that the 9427th ordered observation falls in the interval (16.25, 16.75).
The probabilities that the resistor values are less than or equal to 16.25 and
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TABLE 4.7
Resistor Values
Resistor Interval (in k<) Observed Frequencies
<9.25 —
9.25-9.75 1
9.75-10.25 7
10.25-10.75 18
10.75-11.25 36
11.25-12.25 70
11.75-12.25 115
12.25-12.75 199
12.75-13.25 437
13.25-13.75 929
13.75-14.25 1787
14.25-14.75 2294
14.75-15.25 2082
15.25-15.75 1129
15.75-16.25 275
16.25-16.75 55
16.75-17.25 6
>17.25 —
Total 9440

16.75 k{), respectively, are given by

9440 — 6 — 55
P =1625= ——— =0.
(G 6.25) 9440 0.9935
(4.62)
9440 — 6
= = — =
Pr(G = 16.75) 9440 0.9994
Thus, by the method of interpolation,
16.75 — 16.25 92T —16.25
1 (4.63)

0.9994 — 0.9935  0.9986 — 0.9935

The value of g ***” is found to be 16.25 + 0.439 = 16.689. Setting g5 equal to

g%, it follows that g3 = 16.689. Values of g, g_;, and g_5 are found in a

similar manner. In summary,
g3=16.689, g, =15242, g_;=13.581, g_3=10.409 (4.64)
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Consequently,
p=8 —&-1=1661
m=g;— g, = 1.447 (4.65)
l=g_1—g.3=3.172
yielding
ml
— = 1.664 (4.66)
p

Because the value of (ml/p?) is found to be significantly greater than 1, it is
decided from Equation 4.51 that an Sy distribution is appropriate for
transformation. The formulae given in Equation 4.56 are used to obtain the
parameter values. Thus,

2(1)
n= =2.333
cosh™![ £(0.871+1.910)]
1.910 — 0.871
y=2.333sinh*1[ 010 — 087 ]=1.402
2,/1.910(0.871) — 1
(4.67)
_ 2(1.661)/(1.910)(0.871) — 1 1585
(0.871+1.910 —2),/0.871+1.910+2
15.242 +13.581  1.661(1.910 — 0.871)
€= =15.516
2 2(1.910+0.871 —2)
The transformation equation, therefore, becomes
o g—15.516)
=1.4024+2.333sinh” [ &— 4.68
g + st ( 1.585 (4.68)

where r is a standard normal variable and g is a random variable corresponding
to the resistors values.

Once the transformation equations have been obtained for the end point
coordinates Uy, and V,,, they are applied to the end point data arising from the
2000 Monte Carlo simulations to generate the standard bivariate normal random
variables R, and R,, respectively. If a type j transformation, j = 1,2, 3, is used,
the original data is said to have a Johnson type j-distribution. In practice, U, and
Vo, need not have the same distributions (i.e., Uy, may be of type i whereas V),
may be of type j and i # j). An estimate of the correlation coefficient between
Ry, and Ry, is given by

p= (4.69)

A

(o

L 2000 (ROu; — ,iro“)(RoV,. - fzro\»)
1999 £ g

Tou
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where 4, , 4, , and &, ,d, are the sample means and variances of the 2000
transformed statistics R, and Ry, , respectively.
Because Ry, and R, are bivariate standard normal random variables, their

joint PDF can be written as

1 t
SroyRo, Fous Tov) = 211_4 mexﬁ’(_ E) 4.70)
where
1
r= 1- P (r(%u + rév = 2prouroy) “4.71)

Let t = t,. Then the equation

1
Io = 1_—ﬁ2(r(2)u + r(%v - zﬁrOurOV) (472)

is that of an ellipse in the ry,, ry, plane for which

1 o
SRy, Ro, (Fous Tov) = mexp(_z) (4.73)

Points that fall within the ellipse correspond to those points in the ry,, r, plane
for which

1 to
S Rous Roy (Tous Tow) = mexp(_ 5) (4.74)
Let « be defined as the probability that r(, and ry, fall outside the ellipse given
that the data comes from the null hypothesis. It follows that
a=Pr(T > 1) (4.75)

Note that the bivariate normal distribution is a special case of the spherically
invariant random vector (SIRV) where the characteristic PDF is given by
Ref. 11.

fi(s)=38(s — 1) (4.76)
The PDF of an N dimensional SIRV involves the same quadratic form ¢ that

arises in the N dimensional multivariate Gaussian PDF. For an SIRV,
Rangaswamy'' shows that the PDF of ¢ is

1
[ = ﬁt“N/”*”hN(t); 0=t=w “.77)
N2 &Y
()
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where hy(#) is a monotonically decreasing function given by

hy(t) = r s*Nexp(— 2—22 ) £(s)ds (4.78)

0

Substituting Equation 4.76 into Equation 4.78 results in
® N t t
h,(t) = s exp|l =55 |8(s — Dds =exp| — 4.79)
0 2s 2

For the bivariate case, N = 2. Consequently, Equation 4.77 reduces to

()= %exp(— %), 0=t=ow (4.80)
Hence,
a=Pr(T > ty) = Jm lexp(— £)dt = exp(— t—o) (4.81)
v 2 2 2

Consequently, 7o = —2 In(«). Thus Equation 4.72 becomes

1
ﬁ(réu + r(%v - 2ﬁr0ur0v) = =2 In(a) (4.82)
- P
The contour equation
Fou = 2Brouroy + 1oy = —2(1 = p*)n() (4.83)

which is the equation of an ellipse, and is used to determine the 100(1 — a)%
confidence contour. This is also shown in Refs. 15 and 16. When the statistics
Ry, and R, are uncorrelated, the correlation coefficient is zero and Equation
4.83 becomes

e, +re, = =2 In() (4.84)

which is the equation of a circle. Also Equation 4.83 degenerates into a line as
the correlation coefficient approaches * 1.

In the Ozturk Algorithm, an inverse Johnson Transformation is applied to the
points for the confidence ellipses. The locus of resulting points obtained, is then
plotted to obtain the corresponding confidence contours in the U-V plane.
Consequently, these confidence contours are not necessarily ellipsoidal.

The confidence contours are plotted for a given sample size n. These are then
used to make a visual as well as computational test of the null hypothesis. If the
terminal point, Q,,, of the sample data, falls inside the contour, the data is declared
as being consistent with the null hypothesis with confidence level (1 — «).
Otherwise the null hypothesis is rejected with a significance level «. Figure 4.7
shows the linked vectors and the confidence contours when the null distribution
is standard normal and the sample data size is 100. From the figure it is seen that
the sample data is statistically consistent with the null hypothesis at confidence
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FIGURE 4.7 Goodness of fit chart. Sample data (dashed line) consistent with null
hypothesis (dotted line). (90, 95, 99% confidence contours from the innermost to the
outermost, respectively.)

Goodness of Fit Chart
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FIGURE 4.8 Goodness of fit chart. Sample data (dashed line) not consistent with null
hypothesis (dotted line). (90, 95, 99% confidence contours from the innermost to the
outermost, respectively.)

level of 90%. Figure 4.8 shows a case where the sample data is not consistent
with the null hypothesis at a significance level of 1%.

4.2.3.2. Distribution Approximation

The distribution approximation procedure is simply an extension of the goodness
of fit test. Following a similar approach to that outlined in the section for

© 2006 by Taylor & Francis Group, LLC



240 Adaptive Antennas and Receivers

the goodness of fit test, random samples are generated from a library of different
univariate probability distributions. In the goodness of fit test, the statistic
Qon = Uy, Vo), given by Equation 4.42 was obtained for the null hypothesis
and for a specified n. For the distribution approximation we go one step further
and for each distribution taken from a library of distributions, we obtain the end
point statistic Q,, from Equation 4.39 for a given n and for various choices of the
shape parameter. Thus, depending on whether it has a shape parameter or not,
each distribution is represented by a point or a trajectory in a two dimensional
plane whose coordinates are U, and V,,. Figure 4.9 shows an example of such a
representation. The distributions which are plotted on the distribution
approximation chart are (1) Gaussian, (2) Uniform, (3) Exponential, (4) Laplace,
(5) Logistic, (6) Cauchy, (7) Extreme Value, (8) Gumbel type 2, (9) Gamma, (10)
Pareto, (11) Weibull, (12) Lognormal, (13) Student 7, (14) K distributed, (15)
Beta, and (16) SU Johnson. Tables 4.8 and 4.9 give the standard and the general
form respectively, of these distributions.

As mentioned before, the points on the linked vectors for various
distributions are computed using Equation 4.39. The magnitude for each point
on the linked vectors is computed from values averaged over 2000 Monte Carlo
simulations of the ordered statistic, Y;.,, obtained from Equation 4.33 while the
angles are computed from the reference distribution (standard Gaussian). The
confidence ellipses are computed only for null hypothesis used in the prior
goodness of fit test. Only the end point coordinates Q, of the linked vectors are
provided in the approximation chart. This is due to the fact that the plot would
become too cluttered to properly interpret the data if all the lined vectors for these
various distributions were provided in the graphics. Also, meaningful
information from the linked vectors is contained in the location of their end

0.5
0.45
0.4
0.35

> 03
0.25
0.2
0.15
0.1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
u

FIGURE 4.9 Distribution approximation chart: N = Normal, U = Uniform, C = Cauchy,
L = Lognormal, S = Logistic, A = Laplace, V = Extreme Value, T =T2 Gumbel,
G = Gamma, E = Negative Exponential, P = Pareto, K = K-Distributed, W = Weibull,
B = Beta, SU = SU Johnson.
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TABLE 4.8
Standard Forms of the PDF’s Used in the Approximation Chart
Distribution Standard Form fy (y)
2
Gaussian (\/ZTrB)flexp(—%) —0 <y<oo
Uniform 1 0<y<l1
Exponential exp(—y) 0<y<oo
Laplace 0.5 exp(—Iyl) —00<y<oo
Logistic exp(—y[1 +exp(—y)] 2 —o<y<oo
1
Cauchy s —00 <y<oo
(1 +y°)
Extreme Value (Type 1) exp(—y)exp[—exp(—y)] —oo <y < oo
Gumbel (Type 2) ¥ Y lexp(—y™7) —0<y<oo
1
Gamma mexp(—y)y“y’l a<y<o
Y
Pareto W y>1,v>0
Weibull vy lexp(—y”) y>0
log(»)}?
Lognormal Y _ dylog >0
+/2xy exp[ 2 Y
K-Distributi 2 (y)yl( >0
-Distribution Iy \2 71 Y
Beta Y =y 0<y<l
By * ’
-l 2
Johnson SU exp (sinh” ) = )
28 e
— o0 ) (o]
V2781 + 52 Y

points. Therefore, only the end points of all the linked vectors are provided in the
approximation chart, along with the confidence ellipse for the selected null
distribution.

For each distribution, such as Gaussian, which is uniquely specified by its
mean and variance (no shape parameters), there exists a single end point on the
approximation chart corresponding to the single unique-linked vector.

For distributions dependent on a single shape parameter, such as Weibull, the
end point of the of the linked vector will also be dependent on the shape
parameter. Therefore, a sequence of linked vectors must be computed in order to
obtain the trajectory on which the end point travels for varying shape parameter.
In a sense, the trajectory represents a family of PDFs, having the same
distribution but with different shape parameter values. For example, the trajectory
for the Weibull distribution is obtained by joining the end points for which the
shape parameters are 0.3, 0.4, 0.5, 0.6, 0.8, 1.1, 1.5, 2.0, 3.0, 5.0. As the shape
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TABLE 4.9
General Forms of the PDF’s Used in the Approximation Chart
Distribution General Form fx(x)
. 2
Gaussian (\/ﬂﬁ)*'exp(— (XZB;I) ) —00 < x < o0
Uniform 1 a<x<a+p
B
Exponential % exp(f & ; @) ) a<x< oo
Laplace Eex B (x—a)‘ TR <x<©
I R
_ B -2
Logistic ECXPI: - (xBa)][l+exp(— (xBa))] —oo < x < 00
Cauchy 1 > —00 < x < 00
x—a
TrB[l + 2 ]
Extreme Value (Type 1) %exp[— (o ;3 @) :Iexp[—@(p{— —a }] Co < x< o0
Gumbel (Type 2) (v/BIx — a)/p]*“‘exp[— G _ﬁj)iy ] a<x<ow >0, y>0

Gamma

Pareto

Weibull

Lognormal

K-Distribution

Beta

Johnson SU

/31*(01)6)(13[_(X;BCK)K()C;;CO)%1 a<x<oo
;(x—la)wl x>a+pB, y>0
B
5557 (5]
x—a\)?

o) s s

sl 7] 5]

m(%)w[h(";“)]m a<x<a+p
X a) 2

o (smh '( 252 ) y)

—00 < x <o
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parameter increases, note that the Weibull distribution approaches the Gaussian
distribution. This is shown in Figure 4.9. The representation of Figure 4.9 is
called an approximation chart.

Similarly, for a distribution dependent on two shape parameters, such as
Beta, a sequence of linked vectors must be computed in order to plot the
trajectories on which the end point travels for varying shape parameters. This is
performed by holding the 1st shape parameter constant and varying the 2nd shape
parameter to generate a trajectory, then changing the 1st shape parameter and
again holding it constant while varying the 2nd shape parameter, etc. until
a family of trajectories is produced which characterizes the distribution.

Thus, an approximation chart as that in Figure 4.9 can be produced. It is
apparent that this approximation chart provides a one-to-one graphical
representation for each PDF for a given n. Therefore, every point in the
approximation chart corresponds to a specific distribution. Thus, if the null
hypothesis in the goodness of fit test is rejected, then the distribution which
approximates the underlying PDF of the set of random data can be obtained by
comparing O, obtained for the samples, with the existing trajectories in the chart.
The end point or trajectory closest to the O, of the sample data is chosen as an
approximation to the PDF underlying the random data. This closest point or
trajectory is determined by projecting the sample point Q,, to neighboring points
or trajectories on the chart and selecting that point or trajectory whose
perpendicular distance from the sample point is the smallest. For example,
consider the situation of Figure 4.10. Let Q,, = (u,,,v,) denote the coordinates
of the sample point. Let (x1,y;) and (x,,y,) denote the coordinates of the points
A and B on the trajectory shown in Figure 4.10. The segment of the trajectory
between points A and B is assumed to be linear. Let (xy, y,) denote the coordinates
of the point of intersection of the straight line between A and B and the projection
of Q,, = (u,,v,) onto this straight line. The equation of the straight line between

FIGURE 4.10 Computation of distance between sample point and candidate distribution.
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the points A and B can be written as

y =y =mx —xp) (4.85)
where
Y27 N
m= 221
X2 T X

and (x,y) is a point on the line. Also, the equation of the straight line joining
(x0,¥0) and (u,, v,) is
1
YT Vn =T~ uy) (4.86)
m

where (x,y) is a point on the perpendicular. The coordinates (xg, yo) result from
letting x = xy and y = y, in Equation 4.85 and Equation 4.86. Their solution

yields
L w2 + tty, + mv,]
Xg = m* —m u, +my
0 m2 +1 V1 n n
(4.87)
1
Yo = mz—_H[M = mx; + myv, + mu,]

Finally, the perpendicular distance from the sample point onto the trajectory
between points A and B is

1
DzJW:ﬂM%—MM%+%1 (4.88)
where

= u, — Xy, Y=V, — (4.89)
The complete distribution approximation algorithm is summarized as follows.

1. Sort the samples X;, X5, ..., X, in increasing order.

2. Obtain the standardized order statistic Y;.,.

3. Compute U, and V, from Equation 4.39 for the library of PDFs
mentioned.

4. Obtain an approximation chart based on the sample size n and plot the
sample point Q, on this chart.

5. Compute the distance, D between the sample point Q,, and each of the
end points on the chart. Choose the PDF corresponding to the point or
trajectory which results in the smallest value for D as an approximation
to the PDF of the samples.

The approximation to the underlying PDF of the set of random data can be
improved by including as many distributions as possible in the approximation
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chart so as to fill as much of the space as possible with candidate distributions. It is
emphasized, however, that this procedure does not identify the underlying PDF.
It merely gives the best approximation to the distribution underlying the PDF of
the data from those available in the chart.

4.2.3.3. Parameter Estimation

Once the probability distribution of the samples is approximated, the next step is
to estimate its parameters. The method of distribution approximation discussed in
Section 4.2.3.2 lends itself for estimating the parameters of the approximated
distribution. We present the estimation procedure for the location, scale, and
shape parameters in this section.

4.2.3.3.1. Estimation of Location and Scale Parameters

Let f(x: a, B) denote a known distribution which approximates the PDF of the set
of random data, where « and @ are the location parameter and scale parameter,
respectively, of the approximating PDF. Let X;., denote the ordered statistics of
X from a sample of size n. Let S;,,, be defined by

S = 2in 2 (4.90)
B
Also, let
iy = E[S;.] (4.91)
Then
[Xin] = Bibiy + (4.92)
We consider the following statistics
Zcos(e) i To= D sin(0)X, (4.93)
i=1

where 6; is the angle defined in Equation 4.37. The expected values of T and T,
are

E[T\]1 =) cos(0)[Buin + o, E[T] = sin(6)[Bus, + ]  (4.94)
i=1 i=1

These can be written as

E[T|] = aa+ b, E[T;] = ca+dp (4.95)
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where

a=Y cos(6)  b=7) pcos(t)

~ ~ (4.96)
c=)sin()  d=) pusin(6)

i=1 i=1

Because the standardized Gaussian distribution is used as the reference
distribution for 6;, it can be shown that a = 0.' The estimates for 8 and « are
then given by

. E[BTl] 4= E[TZ]e_ ap (4.97)

For sufficiently large n (i.e., n > 50), suitable estimates for E[T;] and E[T;] are
E[T\] =Ty, ET,] =T, (4.98)

Estimates for b and d rely upon an estimates of u,., (., obtained from a Monte
Carlo simulation of S;,, where S;,, is generated from the known approximating
distribution f(x; 0, 1) having zero location and unity scale parameters. (;., is the
sample mean of S;, based upon 2000 Monte Carlo trials. Having (;,, the
estimates for b and d are given by

b= Hicos8),  d= [ysin(6) (4.99)
i=1 i=1

The scale and location parameters are then estimated by application of
Equation 4.97 and Equation 4.98.

4.2.3.3.2. Shape Parameter Estimation

In this section we present the approximate method used for estimating the shape
parameter of the approximating PDF. We first consider distributions with only
one shape parameter. Let y denote the shape parameter of the approximating
PDF. Since U,, and V,, are location and scale invariant, the point Q, depends only
on the sample size n and the shape parameter 7.

Recall that a point on the trajectories of the approximation chart is obtained
by averaging for a specified value of the shape parameter the results from a large
number of trials for U, and V,,. Consequently, for given values of n and vy the
coordinates of the corresponding points along the trajectory for a specified
distribution, can be characterized by

E(U,) = ¢i(n,y),  E(Vy) = ¢a(n,v) (4.100)

where the complete trajectory is obtained by repeating large number of trials for
U, and V, over a suitable range of y. On a given trial involving the random data,
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Q,=(U, V)

B=(ug, vg 7p)

FIGURE 4.11 Shape parameter estimation.

it is likely that the coordinates U, and V, obtained for the samples will not
coincide with any of the trajectories on the chart. The PDF underlying the random
data is approximated by selecting the distribution, corresponding to the point in
the trajectory, that falls closest to the sample point Q,,. The situation is illustrated
in Figure 4.11. Q, appears in the figure with coordinates (U,,, V,). The straight
line 7, denotes an approximation to a segment of the nearest trajectory which, in
general, is a curved segment between points A and B. A is that point on the actual
trajectory corresponding to the shape parameter y,. Its coordinates are (u,,v,).
Similarly, B is the point on the actual trajectory corresponding to the shape
parameter <yg. Its coordinates are (ug, vp). The slope of the straight line between
points A and B is

m= Y — VA (4.101)
Up — Uy

The equation for the straight line 7, is
v=v4 +mu — uy) (4.102)
Point C, with coordinates (i, v¢), is the perpendicular projection of Q, onto 7.

The straight line linking Q, and C has a slope equal to —1/m and an equation of
the form

1
v=V,— —u—-U,) (4.103)
m

Since C is a point common to both straight lines, it follows from Equation 4.102
and Equation 4.103 that

1
Uy + m(uc - MA) = Vn - %(uc - Un) (4104)
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Solution for uc results in

m(V, —vy) +muy + U,
Uc = 4.105
C m2 + 1 ( )
Let . denote the shape parameter corresponding to the point on the actual
trajectory closest to Q,. An approximation to <y, is then obtained by linear

interpolation on 7,. The result is

(v — va)(uc — uy)
(up — uy)

The accuracy of the procedure can be improved by employing a nonlinear

interpolation method. It must be emphasized that the location, scale, and shape

parameter estimation procedures presented in this section are approximate

methods.

The proposed estimation procedure can also be extended to the two shape
parameter case. In this case one needs to choose at least three points (i, v),
(4p,v,), and (us3,v3) and let the shape parameter values corresponding to these
three points be y;, y,, and -3, respectively. The points are chosen in such a way
that they form the three vertices of a triangle inside which falls the sample point
0,.' Again, by using a linear interpolation in the plane, an approximate solution
can be obtained for the parameter estimates.

Yo=Y+ (4.106)

4.3. SIMULATION RESULTS OF THE OZTURK ALGORITHM

For univariate cases, the power of the Ozturk Algorithm has been studied for
various distributions in Refs. 1-3. It was noted in Refs. 1-3 that the power of the
algorithm depends on the sample size n, type of the standardized statistic and the
null distribution. This algorithm has been found to compare favorably against all
the well known tests. Also, the algorithm has been put to use to test its
performance against different known distributions. Random data were generated
using computer simulations as given in Refs. 18,19. The goodness of fit as well
as the distribution approximation test was performed on these data using this
algorithm. In this chapter, a brief summary of some of the results obtained is
presented.
Data was generated from four different null distributions, viz.,

e Univariate Gaussian

o Weibull (Shape Parameter 1)

o Gamma (Shape Parameter 1)

o Lognormal (Shape Parameter 1)

The goodness of fit test results are tabulated and presented first. The results of

the distribution approximation are not easy to tabulate. We shall, therefore,
present the result of a single case for the purpose of illustration.
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4.3.1. GOODNESS OF FIT TEST RESULTS
4.3.1.1. The Univariate Gaussian Case

Data was generated from a Gaussian pseudo random number generator using
computer simulations. The data set represented a zero mean and unit variance
normal PDF. The following observations were noted.

o It was observed that a sample size of less than 40 is not advisable for
the goodness of fit test as it almost always shows that the data is
statistically consistent with any null. This is due to the fact that such a
small sample size could be used to represent any PDF.

e A sample size between 75 and 100 is found to be good enough to
accurately perform the goodness of fit test.

o For a sample size greater than 75 and when the null specified was
Gaussian, the goodness of fit test showed that the data was statistically
consistent with the null in almost all the cases. For other null
hypotheses which are not close to Gaussian in the approximation chart,
the goodness of fit test always showed that the data was statistically
inconsistent with the nulls. But for null hypotheses which are close to
Gaussian in the approximation chart, such as logistic, the goodness of
fit test comes up with statistical consistency almost always. This
vindicates the fact that the logistic PDF curve is very similar to the
Gaussian PDF curve.

Table 4.9 shows the results obtained for this case.

4.3.1.2. The Weibull Case

Data was generated from the Weibull PDF with shape parameter one and
the goodness of fit test was performed on it. The following observations were
noted.

o The goodness of fit test worked well for a sample size between 75 and
100. For a smaller sample size, the goodness of fit test is not advisable
since the results obtained were not accurate.

e When the null specified was Weibull with shape parameter two, the
goodness of fit test showed that the data was statistically inconsistent
with the null for a sample size greater than 75 in all the cases. This is
due to the fact that Weibull (Shape Parameter 1) is far away from
Weibull (Shape Parameter two) on the approximation chart.

Table 4.10 shows the results obtained for this case.
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TABLE 4.10
Result of the Ozturk Algorithm when Data Generated was Gaussian

Number of Cases of SC/

Sample Size (n) Data Generated From Null Distribution Total Number of Cases
5 Gaussian Gaussian 3/3
25 — — 3/3
40 — — 4/7
50 — — 4/7
75 — — 717
100 — — 7/8
125 — — 8/8
150 — — 8/8
25 — Uniform 2/5
40 — — 2/5
50 — — 1/5
75 — — 0/5
100 — — 0/5
150 — — 0/5
75 — Exponential 0/8
100 — — 0/8
150 — — 0/8
75 — Laplace 4/8
100 — — 2/8
150 — — 1/8
75 — Logistic 78
100 — — 7/8

SC, Statistical Consistency.

4.3.1.3. The Gamma Case

Data was generated from the Gamma PDF with shape parameter one and the
goodness of fit test was performed on it. Observations noted were almost the same
as those for the Weibull case. Again a sample size between 75 and 100 was
observed to have performed well in this case. The results for this case are
tabulated in Table 4.11.

4.3.1.4. The Lognormal Case

A Lognormal pseudo random number generator was used to generate random
data representing the Lognormal PDF with a shape parameter of one.
Observations noted for the goodness of fit test performance on this data were
noted.
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TABLE 4.11
Ozturk Algorithm Results when Data Generated was Weibull
with Shape Parameter One

Number of Cases of SC/

Sample Size (n) Data Generated From Null Distribution Total Number of Cases
5 Weibull (Sh. 1) Weibull (Sh. 1) 7/8
25 — — 7/9
40 - - 4/8
50 — — 5/8
75 — — 6/8
100 — — 8/8
150 — — 8/8
5 Weibull (Sh. 1) Weibull (Sh. 2) 718
25 — — 3/8
40 — — 2/8
50 — — 0/8
75 — — 0/9
100 — — 0/8
150 — — 0/8

SC, Statistical Consistency; Sh., Shape Parameter.

TABLE 4.12
Ozturk Algorithm Results when Data Generated was Gamma
with Shape Parameter One

Number of Cases of SC/

Sample Size (n) Data generated From Null Distribution Total Number of Cases
40 Gamma (Sh. 1) Gamma (Sh. 1) 5/7
50 — — 7/8
75 — — 7/9
100 — — 718
150 — — 8/8
50 Gamma (Sh. 1) Gamma (Sh. 5) 1/8
75 — — 0/8
100 — — 1/8

SC, Statistical Consistency; Sh., Shape Parameter.
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o A sample size between 50 and 75 was found to be sufficient to perform
the goodness of fit test accurately.

o This sample size gave very good results as far as the distribution
approximation was concerned. About 30 times out of 40 the Lognormal
PDF showed up in the five closest distributions that could be
approximated.

Table 4.12 shows the results of the goodness of fit test for this case.

In general, the goodness of fit test seemed to perform well for a sample size of
100. The confidence contours grow smaller when the sample size is increased. In
effect, we could hypothesize that for an infinite sample size the contours would
become a point in the two dimensional (U, V) plane. This is intuitively satisfying.

4.3.2. DISTRIBUTION APPROXIMATION TEST RESULTS

The distribution approximation test was performed for a number of cases. In fact,
it was performed for all the cases in which the goodness of fit test was performed.
As mentioned previously, since it is not very easy to tabulate the results of the
distribution approximation test for all these cases, results for a single test case are
presented below.

Data was generated from standard Gaussian distribution using a Gaussian
random number generator. A single test case consisting of 100 data points was
considered. Using standard Gaussian as the null distribution, the distribution
approximation test was performed on the data set. The 1st results of this test gave
the five closest PDF’s which the data could approximate. This result is shown in
Table 4.13.

TABLE 4.13
Ozturk Algorithm Results when Data Generated was Lognormal with Shape
Parameter One

Number of Cases of SC/

Sample Size (n)  Data generated From Null Distribution Total Number of Cases
40 Lognormal (Sh. 1) Lognormal (Sh. 1) 5/8
50 — — 7/8
75 — — 8/8
100 — — 8/8
150 — — 8/8
40 Lognormal (Sh. 1) Lognormal (Sh. 0.5) 0/9
50 — — 0/8
75 — — 0/8
100 — — 0/8

SC, Statistical Consistency; Sh., Shape Parameter.
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TABLE 4.14
Five Closest PDF’s Given by Distribution Approximation
Test for a Standard Gaussian Data Set

Distribution Number Distance Rank
21 0.23728 x 1077 1
22 0.89802 x 107% 2
20 0.23473 x 107 3
23 0.28047 x 107 4
5 0.47542 x 107 5

Distributions 20, 21, 22, and 23 are all SU-Johnson distributions with different
shape parameters, whereas distribution number five is a logistic distribution. Note
that the standard Gaussian was the 11th ranked PDF with a distance of
0.47879 x 10~ %, Estimates of the location, scale, and the shape parameters
given by the distribution approximation test for these distributions are given in
Table 4.14.

The approximation chart for this test case is shown in Figure 4.12. It is
obvious from the approximation chart that the PDF’s identified for this case are
very close to the Gaussian PDF. It is therefore concluded that even though this
data set has passed the goodness of fit test with standard Gaussian as the null,
they could also be approximated by the set of 5 PDF’s identified in Table 4.15.

0.5
0.45
0.4
0.35
> 03 '
0.25
0.2
0.15
0.1
-0.2 -0.15 -0.

FIGURE 4.12 Distribution approximation chart for a standard Gaussian data set: end
point of linked vectors for a standard Gaussian data set, N = Normal, U = Uniform,
C = Cauchy, L = Lognormal, S = Logistic, A = Laplace, V = Extreme Value, T = T2
Gumbel, G = Gamma, E = Negative Exponential, P = Pareto, K = K-Distributed,
W = Weibull, B = Beta, SU = SU Johnson.
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TABLE 4.15
Estimates of the Parameters of the Five Closest Distributions Chosen by the

Distribution Approximation Test for a Standard Gaussian Data Set

Shape (1) Shape (2)
Distribution Number Location Parameter  Scale Parameter Parameter Parameter

21 —0.23435 1.9774 2.4099 —-0.2
22 —0.14976 1.9392 2.3697 —0.1
20 —0.39697 1.9747 2.4310 -04
23 —0.058871 1.9437 2.3717 0.0
5 —0.06215 0.49795 0.0 0.0
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FIGURE 4.13 Histogram fitting (solid line is histogram plotted for the data; dotted line is
standard Gaussian); (a) dashed line is PDF number 21 of Table 4.15; (b) dashed line is PDF
number 22 of Table 4.15.
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FIGURE 4.14 Histogram fitting (solid line is histogram plotted for the data; dotted line is
standard Gaussian); (a) dashed line is PDF number 20 of Table 4.15, (b) dashed line is PDF
number 23 of Table 4.15.

In fact these are better approximations than standard Gaussian. This is shown by
histogram plots shown in Figures 4.13—4.15. In these plots the histogram of the
data is plotted along with the null hypothesis, which is the standard Gaussian, and
one of the five distributions, given by the distribution approximation test, on the
same coordinate axes. As is obvious from the figures there is very little to choose
amongst the five PDF’s approximated.

4.4. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

4.4.1. CONCLUSIONS

This thesis has discussed various techniques for analyzing random data. Two
areas were considered. The first area dealt with goodness of fit tests to determine
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FIGURE 4.15 Histogram fitting (solid line is histogram plotted for the data; dotted line is
standard Gaussian; dashed line is PDF number five of Table 4.15).

whether or not a set of random data is statistically consistent with a prespecified
probability distribution. After reviewing the Kolmogorov—Smirnov test, chi-
square test, Q—Q plots and P—P plots, a new test, called the Ozturk Algorithm,
was introduced. This test has an easily understood graphically presentation and
works well for sample sizes as small as 100. The second area dealt with
approximation of the underlying PDF of random data. Although the other tests
were not applicable to this second area, the goodness of fit test of the Ozturk
Algorithm was shown to lend itself to generation of a distribution approximation
chart from which approximations to the underlying PDF of the random data can
be obtained. Again, good results were observed for sample sizes as small as 100.
An analysis was provided for generating confidence contours when the random
data was nonGaussian. Simulated data was used to evaluate performance of the
Ozturk Algorithm and some of the results were presented.

4.4.2. SUGGESTIONS FOR FUTURE WORK

Several problems remain to be explored with the Ozturk Algorithm:

1. The Ozturk Algorithm works well for continuous probability density
functions. Generalizations of the Ozturk Algorithm to discrete case
should be explored.

2. Extension of the Ozturk Algorithm from univariate to multivariate
PDF’s should be considered. One possibility involves utilization of
quadratic forms of the data.”'!

3. Rangaswamy'' demonstrated that multivariate spherically invariant
random processes (SIRPs) can be approximated by means of their
quadratic forms. However, a probability distribution approximation
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chart for SIRPs which could be utilized by the Ozturk Algorithm
remains to be generated.

4. The univariate PDF’s currently included in the approximation chart are
unimodal. Extension to multimodal PDF’s should be explored.

5. When the number of data point is much greater than 100, the Ozturk
Algorithm requires considerable time to process the data. Ways should
be examined for making the algorithm more efficient. This includes
parallelization of the algorithm as well as processing the data in groups
of 100 and averaging the results.

6. Reduction of the Ozturk Algorithm to chip form should be investigated
for real-time applications.
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