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references.

I would like to thank all the contributing authors for their patience and excellent work. 
The process of editing started in June 2005. Each chapter has been blindly reviewed by 
at least two reviewers (more than 50% of the chapters received three reviews or more). I 
would like to thank the reviewers for their time and valuable contribution to the quality 
of the book.  

Finally, a special thank you goes to my parents, my wife, my son, my daughter, and all 
my family. They all have been of great support for this project. 

Mohamed Ibnkahla
Queen’s University

Kingston, Ontario, Canada

© 2009 by Taylor & Francis Group, LLC



xi

Editor

Dr. Mohamed Ibnkahla earned an engineering degree in electronics in 1992, an M.Sc. 
degree in signal and image processing in 1992, a Ph.D. degree in signal processing in 
1996, and the Habilitation à Diriger des Recherches degree in 1998, all from the National 
Polytechnic Institute of Toulouse (INPT), Toulouse, France.

Dr. Ibnkahla is currently an associate professor in the Department of Electrical and 
Computer Engineering, Queen’s University, Kingston, Canada. He previously held an 
assistant professor position at INPT (1996–1999) and Queen’s University (2000–2004).

Since 1996, Dr. Ibnkahla has been involved in several research programs, includ-
ing the European Advanced Communications Technologies and Services (ACTS), and 
the Canadian Institute for Telecommunications Research (CITR). His current research 
is supported by industry and government agencies such as the Ontario Centers of 
Excellence (OCE), the Natural Sciences and Engineering Research Council of Canada 
(NSERC), the Ontario Ministry of Natural Resources, and the Ontario Ministry of 
Research and Innovation.

He is currently leading multidisciplinary projects designing, implementing and 
deploying wireless sensor networks for various applications in Canada. Among these 
applications are natural resources management, ecosystem and forest monitoring, spe-
cies at risk tracking and protection, and precision agriculture.

Dr. Ibnkahla has published a significant number of journal papers, book chapters, 
technical reports, and conference papers in the areas of signal processing and wireless 
communications. He has supervised more than 40 graduate students and postdoctoral 
fellows. He has given tutorials in the area of signal processing and wireless commu-
nications in several conferences, including IEEE Global Communications Conference 
(GLOBECOM, 2007) and IEEE International Conference in Acoustics, Speech and Sig-
nal Processing (ICASSP, 2008).

Dr. Ibnkahla received the INPT Leopold Escande Medal for the year 1997, France, 
for his research contributions in signal processing; the Prime Minister’s Research Excel-
lence Award (PREA), Ontario, Canada in 2000, for his contributions in wireless mobile 
communications; and the Favorite Professor Award, Queen’s University in 2004 for his 
excellence in teaching.

© 2009 by Taylor & Francis Group, LLC



xiii

Contributors

Sofiène Affes
INRS-EMT
University of Quebec
Montreal, Quebec, Canada

Al-Mukhtar Al-Hinai
Department of Electrical and Computer 

Engineering
Queen’s University
Kingston, Ontario, Canada

Mohamed-Slim Alouini
Department of Electrical and Computer 

Engineering
Texas A&M University (TAMU)-Qatar
Education City, Doha, Qatar

Moeness G. Amin
Center for Advanced Communications
College of Engineering
Villanova University
Villanova, Pennsylvania

Hüseyin Arslan
University of South Florida
Tampa, Florida

Bo-Yu Chang
National Tsing Hua University
Hsinchu, Taiwan

Alex B. Gershman
Darmstadt University of Technology
Darmstadt, Germany

Dennis L. Goeckel
Department of Electrical and Computer 

Engineering
University of Massachusetts
Amherst, Massachusetts

Philip K. F. Hölzenspies
University of Twente
Enschede, The Netherlands

Y.-W. Peter Hong
National Tsing Hua University
Hsinchu, Taiwan

Anders Høst-Madsen
Department of Electrical Engineering
University of Hawaii
Honolulu, Hawaii

Mohamed Ibnkahla
Department of Electrical and Computer 

Engineering
Queen’s University
Kingston, Ontario, Canada

M. A. Khalighi
Institut Fresnel, UMR CNRS 6133
École Centrale Marseille
Marseille, France

Il-Min Kim
Department of Electrical and Computer 

Engineering
Queen’s University
Kingston, Ontario, Canada

Young-Chai Ko
School of Electrical Engineering
Korea University
Seoul, Korea

André B. J. Kokkeler
University of Twente
Enschede, The Netherlands

© 2009 by Taylor & Francis Group, LLC



xiv Contributors

Chun-Kuang Lin
National Tsing Hua University
Hsinchu, Taiwan

Richard K. Martin
Department of Electrical and Computer 

Engineering
Air Force Institute of Technology
Wright-Patterson AFB, Ohio

Haewoon Nam
Motorola, Inc.
Austin, Texas

Kyoung-Lae Noh
Department of Electrical and Computer 

Engineering
Texas A&M University
College Station, Texas

N. Prayongpun
GIPSA-Lab, UMR CNRS 5216
Département Images et Signal
ENSIEG, Domaine Universitaire
Saint Martin d’Hères, France

Khalid Qaraqe
Department of Electrical and Computer 

Engineering
Texas A&M University
College Station, Texas

K. Raoof
GIPSA-Lab, UMR CNRS 5216
Département Images et Signal
ENSIEG, Domaine Universitaire
Saint Martin d’Hères, France

Gerard K. Rauwerda
University of Twente
Enschede, The Netherlands

Erchin Serpedin
Department of Electrical and Computer 

Engineering
Texas A&M University
College Station, Texas

Besma Smida
Harvard University
Cambridge, Massachusetts

Gerard J. M. Smit
University of Twente
Enschede, The Netherlands

Vladimir Stanković
Department of Electronic and Electrical 

Engineering
University of Strathclyde
Glasgow, United Kingdom

Jitendra K. Tugnait
Department of Electrical and Computer 

Engineering
Auburn University
Auburn, Alabama

Shu-Hsien Wang
National Tsing Hua University
Hsinchu, Taiwan

Pascal T. Wolkotte
University of Twente
Enschede, The Netherlands

Yik-Chung Wu
Department of Electrical and Electronic 

Engineering
The University of Hong Kong
Hong Kong

Zixiang Xiong
Department of Electrical and Computer 

Engineering
Texas A&M University
College Station, Texas

Hong-Chuan Yang
Department of Electrical and Computer 

Engineering
University of Victoria
Greater Victoria, British Columbia, Canada

Zhihang Yi
Department of Electrical and Computer 

Engineering
Queen’s University
Kingston, Ontario, Canada

Qiwei Zhang
University of Twente
Enschede, The Netherlands

© 2009 by Taylor & Francis Group, LLC



1

1
Adaptation 

Techniques and 
Enabling Parameter 

Estimation 
Algorithms 
for Wireless 

Communications 
Systems

1.1 Introduction .............................................................. 2
1.2 Overview of Adaptation Schemes .......................... 3

Link and Transmitter Adaptation  •  Adaptive 
System Resource Allocation  •  Receiver Adaptation

1.3 Parameter Measurements ........................................ 7
Channel Selectivity Estimation  •  Channel 
Quality Measurements

1.4 Applications of Adaptive Algorithms: Case 
Studies....................................................................... 16
Examples for Adaptive Receiver Algorithms  •   
Examples for Link Adaptation and Adaptive 
Resource Allocation

1.5 Future Research for Adaptation ........................... 26
1.6 Conclusion ...............................................................28
Acknowledgment ............................................................... 29
References ........................................................................... 29

Hüseyin Arslan
University of South Florida

© 2009 by Taylor & Francis Group, LLC



2 Adaptive Signal Processing in Wireless Communications

1.1  Introduction

Wireless communications systems have evolved substantially over the last two decades. 
The explosive growth of the wireless communication market is expected to continue 
in the future, as the demand for all types of wireless services is increasing. There is no 
doubt that the second generation of cellular wireless communications systems was a suc-
cess. However, these systems were designed to provide good coverage for voice services 
so that a minimum required signal quality can be ensured over the coverage area. If the 
received signal quality is well above the minimum required level, the receivers do not 
exploit this. The speech quality does not improve much, as the quality is mostly domi-
nated by the speech coder. On the other hand, if the signal quality is below the minimum 
required level, a call drop will be observed. Therefore, such a design requires the use 
of strong forward error correction (FEC) schemes, low-order modulations, and many 
other redundancies at the transmission and reception. In essence, the mobile receivers 
and transmitters are designed for the worst-case channel and received signal conditions. 
As a result, many users experience unnecessarily high signal quality from which they 
cannot benefit. While reliable communication is achieved, the system resources are not 
used efficiently.

New generations of wireless mobile radio systems aim to provide higher data rates 
and a wide variety of applications (like video, data, etc.) to mobile users while serving as 
many users as possible. However, this goal must be achieved under spectrum and power 
constraints. Given the high price of spectrum and its scarcity, the systems must provide 
higher system capacity and performance through better use of the available resources. 
Therefore, adaptation techniques have been becoming popular for optimizing mobile 
radio system transmission and reception at the physical layer as well as at the higher 
layers of the protocol stack.

Traditional system designs focus on allocating fixed resources to the user. Adaptive 
design methodologies typically identify the user’s requirements and then allocate just 
enough resources, thus enabling more efficient utilization of system resources and con-
sequently increasing capacity. Adaptive channel allocation and adaptive cell assignment 
algorithms have been studied since the early days of cellular systems. As the demand in 
wireless access for speech and data has increased, link and system adaptation algorithms 
have become more important.

For a given average transmit power, adaptation allows the users to experience bet-
ter signal qualities. Adaptation reduces the average interference observed from other 
users, as they do not transmit extra power unnecessarily. As a result, the received signal 
quality will be improved over a large portion of the coverage area. These higher-quality 
signal levels can be exploited to provide increased data rates through rate adaptation. 
For a desired received signal quality, this might also translate into less transmit power, 
leading to improved power efficiency for longer battery life. On the other hand, for a 
desired minimum signal quality, this might lead to an increased coverage area or bet-
ter frequency reuse. In addition, adaptive receiver designs allow the receiver to work 
with reduced signal quality values; i.e., a desired bit-error-rate (BER) or frame-error-
rate (FER) performance can be achieved with a lower signal quality. Adaptive receiv-
ers can also enable reduced average computational complexities for the same quality of 
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Adaptation Techniques and Enabling Parameter Estimation Algorithms 3

service, which again implies less power consumption. As can be seen, adaptation algo-
rithms lead to improved performance, increased capacity, lower power consumption, 
increased radio coverage area, and eventually better overall wireless communications 
system design.

Many adaptation schemes require a form of measurement (or estimation) of various 
quantities (parameters) that might change over time. These estimates are then used to 
trigger or perform a multitude of functions, like the adaptation of the transmission and 
reception. For example, Doppler spread and delay spread estimations, signal-to-noise 
ratio (SNR) estimation, channel estimation, BER estimation, cyclic redundancy check 
(CRC) information, and received signal strength measurement are some of the com-
monly used measurements for adaptive algorithms. As the interest in the adaptation 
schemes increases, so does the research on improved (fast and accurate) parameter esti-
mation techniques.

In this chapter, an overview of commonly used adaptation techniques and their appli-
cations for wireless mobile radio systems is given. Some of the commonly used param-
eters and their estimation using baseband signal processing techniques are explained 
in detail. Also, the current and future research issues regarding the improved param-
eter estimation and extensive use of adaptation techniques are discussed throughout 
the chapter. Note that there has been a significant amount of research on adaptation 
of wireless communications systems. This chapter is not intended to cover all these 
developments, but rather, it is intended to provide the readers an overview and con-
ceptual understanding of adaptation techniques and related parameter estimation algo-
rithms. More emphasis is given on signal processing perspectives of the adaptation of 
wireless communications systems.

1.2  Overview of Adaptation Schemes

In wireless mobile communications systems, information is transmitted through a radio 
channel. Unlike other guided media, the radio channel is highly dynamic. The transmit-
ted signal reaches the receiver by undergoing many effects, corrupting the signal, and 
often placing limitations on the performance of the system.

Figure 1.1 illustrates a wireless communications system that includes some of the 
effects of the radio channel. The received signal strength varies depending on the dis-
tance relative to the transmitter, shadowing caused by large obstructions, and fading 
due to reflection, diffraction, and scattering. Mobility of the transmitter, receiver, or 
scattering objects causes the channel to change over time. Moreover, the interference 
conditions in the system change rapidly. Most important of all, the radio channel is 
highly random and the statistical characteristics of the channel are environment depen-
dent. In addition to these changes, the traffic load, type of services, and mobile user 
characteristics and requirements might also vary in time. Adaptive techniques can be 
used to address all of these changing conditions.

The adaptation strategy can be different depending on the application and ser-
vices. Constant BER constraint for a given fixed transmission bandwidth and constant 
throughput constraint are two of the most popular criteria for adaptation. In constant 
BER, a desired average or instantaneous BER is defined to satisfy the acceptable quality 
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4 Adaptive Signal Processing in Wireless Communications

of service. Then the system is adapted to the varying channel and interference condi-
tions so that the BER is maintained below the target value. In order to ensure this for 
all types of channel and interference conditions, the system changes power, modula-
tion order, coding rate, spreading factor, etc. Note that this changes the throughput as 
the channel quality changes. On the other hand, for the constant throughput case, the 
adaptations are done to make sure that the effective throughput is constant, where the 
BER might change.

In general, it is possible to classify the adaptation algorithms as link and transmitter 
adaptation, adaptation of system resource allocation, and receiver adaptation. In the fol-
lowing sections, brief discussions of these adaptation techniques will be given.

1.2.1  Link and Transmitter Adaptation

A reliable link must ensure that the receiver is able to capture and reproduce the trans-
mitted information bits. Therefore, the target link quality must be maintained all the 
time in spite of the changes in the channel and interference conditions. As mentioned 
earlier, one way to achieve this is to design the system for the worst-case scenario so that 
the target link quality can always be achieved.

If the transmitter sends more power for a specific user, the user benefits from it by 
having a better link quality, but the level of interference for the other users increases 
accordingly. On the other hand, if the user does not receive enough power, a reliable link 

t3t2t1

Time

t3

t2

t1

Mobile user
Receiver

Noise

Interferers

Local scatterers

Transmitter

Remote reflections

Remote reflections

FIgure 1.1 Illustration of some of the effects of a radio channel. Local scatterers cause fading; 
remote reflectors cause multipath and time dispersion, leading to ISI; mobility of the user or scatter-
ers causes a time-varying channel; reuse of frequencies and adjacent carriers cause interference.
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Adaptation Techniques and Enabling Parameter Estimation Algorithms 5

cannot be established. In order to establish a reliable link while minimizing interfer-
ence to other users, the transmitter should continuously control the transmitted power 
level. Power control is a simple form of adaptation that compensates for the variation of 
the received signal level due to path loss, shadowing, and sometimes fading. Numerous 
studies on power control schemes have been performed for various radio communica-

(CDMA) systems, signals having widely different power levels at the receiver cause 
strong signals to swamp out weaker ones in a phenomenon known as the near–far effect. 
Power control mitigates the near–far problem by controlling the transmitted power.

It is possible to trade off power for bandwidth efficiency; i.e., a desired BER (or FER) can 
be achieved by increasing the power level or by reducing the bandwidth efficiency. One 
way of establishing a reliable link is to add redundancy to the information bits through 
FEC techniques. With no other changes, this would normally reduce the information 
rate (or bandwidth efficiency) of the communication. In the same way, high-quality 
links can be obtained by transmitting the signals with spectrally less efficient modula-
tion schemes, like binary phase shift keying (BPSK) and quaternary PSK (QPSK). On 
the other hand, new-generation wireless systems aim for higher data rates made possible 
through spectrally efficient higher-order modulations. Therefore, a reliable link with 
higher information rates can be accomplished by continuously controlling the coding 
and modulation levels. Higher modulation orders with less powerful coding rates are 
assigned to users that experience good link qualities, so that the excess signal quality 
can be used to obtain higher data rates. Recent designs have exploited this with adaptive 
modulation techniques that change the order of the modulation [1, 2], as well as with 
adaptive coding schemes that change the coding rate [3, 4]. For example, the Enhanced 
General Packet Radio Service (EGPRS) standard introduces both Gaussian minimum 
shift keying (GMSK) and 8-PSK modulations with different coding rates through link 
adaptation and hybrid automatic repeat request (ARQ) [5]. The channel quality is esti-
mated at the receiver, and the information is passed to the transmitter through appro-
priately defined messages. The transmitter adapts the coding and modulation based on 
this channel quality feedback. Similarly, variable spreading and coding techniques are 
present in third-generation CDMA-based systems [3], cdma2000 and wideband CDMA 
(WCDMA, or Universal Mobile Telecommunications System [UMTS]). Higher data 
rates can be achieved by changing the spreading factor and coding rate, depending on 
the perceived communication link qualities.

Adaptive antennas and adaptive beam-forming techniques have also been studied 
extensively to increase the capacity and to improve the performance of wireless com-
munications systems [6]. The adaptive antenna systems shape the radiation pattern in 
such a way that the information is transmitted (for example, from a base station) directly 
to the mobile user in narrow beams. This reduces the probability of another user expe-
riencing interference in the network, resulting in improved link quality, which can also 
be translated into increased network capacity. Although adaptive beam forming is an 
excellent way to utilize multiple-antenna systems to enhance the link quality, recently 
different flavors of the usage of multiantenna systems have gained significant interest. 
Space-time processing and multiple-input multiple-output (MIMO) antenna systems 
are some new developments that will allow further usage of multiple-antenna systems in 
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6 Adaptive Signal Processing in Wireless Communications

wireless communications. Adaptive implementation of these technologies is important 
for successful and efficient integration of them into wireless communications systems.

1.2.2  Adaptive System Resource Allocation

In addition to physical link adaptation, system resources can also be allocated adap-
tively to reduce the interference and to improve the overall system quality. This includes 
adaptive power control, adaptive channel allocation, adaptive cell assignment, adaptive 
resource scheduling, adaptive spectrum management, congestion, handoff (mobility), 
admission, and load control strategies. Adaptive system resource allocation considers 
the current traffic load, as well as the channel and interference conditions. For example, 
the system could assign more resources to the mobiles that have better link quality to 
increase the throughput. Alternatively, the system could assign the resources to the user 
in such a way that the user experiences better quality for the current traffic condition.

Adaptive channel allocation and adaptive cell assignment in hierarchical cellular sys-
tems have been studied since the early days of cellular systems. Adaptive channel allocation 
increases the system capacity through efficient channel utilization and decreased proba-
bility of blocked calls [7]. Unlike fixed channel allocation, where the channels are assigned 
to the cells permanently and the assignment is done based on the worst-case scenario, in 
adaptive channel assignment, a common pool of channels is shared by many cells, and the 
channels are assigned with regard to the interference and traffic conditions.

Adaptive cell assignment can increase capacity without increasing the handoff rate. 
The cells can be assigned to the users depending on their mobility level. Fast-moving 
mobiles can be assigned to larger umbrella cells (to reduce the number of handoffs), 
while slow-moving mobiles are assigned to microcells (to increase capacity) [8].

Recently, research on increasing the average throughput of the system through water-
filling-based resource allocation has gained significant interest [9–11]. The main idea is 
to allocate more resources to the users that experience better link quality, resulting in 
very efficient use of the available resources. The high-data-rate (HDR) system, which 
is based on a best-effort radio packet protocol, uses a water-filling-based approach in 
allocating system resources. Algorithms that deal with compromising the throughput 
to achieve fairness have also been studied [10, 11].

1.2.3  Receiver Adaptation

Digital wireless communication receiver performance is related to the required value of 
the signal-to-interference-plus-noise ratio (SINR) so that the BER (or FER) performance 
can be kept below a certain threshold for reliable communication. For a given com-
plexity, if receiver A requires lower SINR than receiver B to satisfy the same error rate, 
receiver A is considered to perform better than receiver B.

Receiver adaptation techniques can increase the performance of the receiver, hence 
reducing the minimum required SINR. As mentioned before, this can be used to 
increase the coverage area for a fixed transmitted power, or it can be used to reduce the 
transmitted power requirement for a given coverage area. Moreover, receiver adaptation 
can reduce the average receiver complexity and the power drain from the battery for 
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the same quality of service. In order to satisfy the desired BER performance, instead of 
running a computationally complex algorithm for all channel conditions, the receiver 
can choose the most appropriate algorithm given the system and channel conditions.

Advanced baseband signal processing techniques play a significant role in receiver 
adaptation. Baseband algorithms used for time and frequency synchronization, baseband 
filtering, channel estimation and tracking, demodulation and equalization, interference 
cancellation, soft information calculation, antenna selection and combining, decoding, 
etc., can be made adaptive depending on the channel and interference conditions.

Conventional receiver algorithms are designed for the worst-case channel and inter-
ferer conditions. For example, the channel estimation and tracking algorithms assume 
the worst-case mobile speed; the channel equalizers assume the worst-case channel dis-
persion; the interference cancellation algorithms assume that the interferer is always 
active and constant; and so on. Adaptive receiver design measures the current channel 
and interferer conditions and tunes the specific receiver function that is most appropri-
ate for the current conditions. For example, a specific demodulation technique may work 
well in some channel conditions, but might not provide good performance in others. 
Hence, a receiver might include a variety of demodulators that are individually tuned to 
a set of channel classes. If the receiver could demodulate the data reliably with a simpler 
and less complex receiver algorithm under the given conditions, then it is desired to use 
that algorithm for demodulation.

1.3  Parameter Measurements

Many adaptation techniques require estimation of various quantities like channel selec-
tivity, link quality, network load and congestion, etc. Here, we focus more on physical 
layer measurements from a digital signal processing perspective. As discussed earlier, 
link quality measures have many applications for various adaptation strategies. In addi-
tion, information on channel selectivity in time, frequency, and space is very useful for 
adaptation of wireless communications systems. In this section, these important param-
eters and their estimation techniques will be discussed.

1.3.1  Channel Selectivity Estimation

In wireless communications, the transmitted signal reaches the receiver through a num-
ber of different paths. Multipath propagation causes the signal to be spread in time, fre-
quency, and angle. These spreads, which are related to the selectivity of the channel, have 
significant implications on the received signal. A channel is considered to be selective if 
it varies as a function of time, frequency, or space. The information on the variation of 
the channel in time, frequency, and space is very crucial in adaptation of wireless com-
munications systems.

1.3.1.1  Time Selectivity Measure: Doppler Spread

Doppler shift is the frequency shift experienced by the radio signal when either the 
transmitter or receiver is in motion, and Doppler spread is a measure of the spectral 

© 2009 by Taylor & Francis Group, LLC
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broadening caused by the temporal rate of change of the mobile radio channel. There-
fore, time-selective fading and Doppler spread are directly related. The coherence time of 
the channel can be used to characterize the time variation of the time-selective channel. 
It represents the statistical measure of the time window over which the two signal com-
ponents have strong correlation, and it is inversely proportional to the Doppler spread. 
Figure 1.2 shows the effect of mobile speed on channel variation and channel correlation 
in time, as well as the corresponding Doppler spread values in frequency domain.

In an adaptive receiver, Doppler information can be used to improve performance 
or reduce complexity. For example, in channel estimation algorithms, whether using 
channel trackers or channel interpolators, instead of fixing the tracker or interpolation 
parameters for the worst-case Doppler spread value (as commonly done in practice), 
the parameters can be optimized adaptively based on Doppler spread information [12, 
13]. Similarly, Doppler information could be used to control the receiver or transmitter 
adaptively for different mobile speeds, like variable coding and interleaving schemes 
[14]. Also, radio network control algorithms, such as handoff, cell assignment, and chan-
nel allocation in cellular systems, can utilize the Doppler information [8]. For example, 
as will be described later, in a hierarchical cell structure, the users are assigned to cells 
based on their speeds (mobility).

Doppler spread estimation has been studied for several applications in wireless 
mobile radio systems. Correlation and variation of channel estimates as well as cor-
relation and variation of the signal envelope have been used for Doppler spread estima-
tion [12]. One simple method for Doppler spread estimation is to use differentials of the 
complex channel estimates [15]. The differentials of the channel estimates are very noisy, 
which require low-pass filtering. The bandwidth of the low-pass filter is also a function 
of the Doppler estimate. Therefore, such approaches require adaptive receivers that con-
tinuously change the filter bandwidth depending on the previously obtained Doppler 
value. A Doppler estimation scheme based on the autocorrelation of complex channel 
estimates is described in [16]. Also, a maximum likelihood estimation-based approach, 
given the channel autocorrelation estimate, is utilized for Doppler spread estimation in 
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[17]. Channel autocorrelation is calculated using the channel estimates over the known 
field of the transmitted data.

Instead of using channel estimates, the received signal can also be used directly in 
estimating Doppler spread information. In [18], the Doppler frequency is extracted 
from the samples of the received signal envelope. Doppler information is calculated as 
a function of the squared deviation of the signal envelope. Similarly, in [19] the mobile 
speed is estimated as a function of the deviation of the averaged signal envelope in flat 
fading channels. For dispersive channels, pattern recognition, using the variation of 
pattern mean, can be used to quantify the deviation of signal envelope. In [20], the fil-
tered received signal is used to calculate the channel autocorrelation values over each 
slot. Then, the autocorrelation estimate is used for identification of high- and low-speed 
mobiles. In [21], multiple antennas are exploited, where a linear relation between the 
switching rate of the antenna branches and Doppler frequency is given. Also, the level 
crossing rate of the average signal level has been used in estimating velocity [22, 23].

1.3.1.2  Frequency Selectivity Measure: Delay Spread

The multipath signals that reach the receiver have different delays as the paths that the 
signals travel through have different lengths. When the relative path delays are on the 
order of a symbol period or more, images of different transmitted symbols arrive at 
the same time, causing intersymbol interference (ISI). Delay spread is one of the most 
commonly used parameters that describes the time dispersiveness of the channel, and 
it is related to frequency selectivity of the channel. The frequency selectivity can be 
described in terms of coherence bandwidth, which is a measure of range of frequen-
cies over which the two frequency components have a strong correlation. The coherence 
bandwidth is inversely proportional to the delay spread [24]. Figure 1.3 shows the effect 
of time dispersion on channel frequency variation and channel frequency correlation, as 
well as the corresponding power delay profiles.
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Like time selectivity, the information about the frequency selectivity of the channel 
can be very useful for improving the performance of adaptive wireless radio systems. For 
example, in a time division multiple-access (TDMA)-based Global System for Mobile 
Communications (GSM), the number of channel taps needed for equalization might 
vary depending on channel dispersion. Instead of fixing the number of channel taps for 
the worst-case channel condition, we can change them adaptively [25], allowing simpler 
receivers with reduced battery consumption and improved performance. Similarly, in 
[26], a TDMA receiver with adaptive demodulator is proposed, using the measurement 
about the dispersiveness of the channel. Dispersion estimation can also be used for other 
parts of transmitters and receivers. For example, in frequency domain channel estima-
tion using channel interpolators, instead of fixing the interpolation parameters for the 
worst expected channel dispersion, we can change the parameters adaptively depending 
on the dispersion information [27].

Although dispersion estimation can be very useful for many wireless communica-
tions systems, it is particularly crucial for orthogonal frequency division multiplexing 
(OFDM)-based wireless communications systems. OFDM, which is a multicarrier mod-
ulation technique, handles the ISI problem due to high-bit-rate communication by split-
ting the high-rate symbol stream into several lower-rate streams and transmitting them 
on different orthogonal carriers. The OFDM symbols with increased duration might 
still be affected by the previous OFDM symbols due to multipath dispersion. Cyclic pre-
fix extension of the OFDM symbol avoids ISI from the previous OFDM symbols if the 
cyclic prefix length is greater than the maximum excess delay of the channel. Since the 
maximum excess delay depends on the radio environment, the cyclic prefix length needs 
to be designed for the worst-case channel condition. This makes the cyclic prefix a sig-
nificant portion of the transmitted data, thereby reducing spectral efficiency. One way 
to increase spectral efficiency is to adapt the length of the cyclic prefix depending on the 
radio environment [28]. The adaptation requires estimation of maximum excess delay 
of the radio channel, which is also related to the frequency selectivity of the channel. In 
HiperLAN2, which is a wireless local area network (WLAN) standard, a cyclic prefix 
duration of 800 ns, which is sufficient to allow good performance for channels with delay 
spread up to 250 ns, is used. Optionally, a short cyclic prefix with 400 ns duration may 
be used for short-range indoor applications. Delay spread estimation allows adaptation 
of these various options to optimize the spectral efficiency. Other OFDM parameters 
that could be changed adaptively using the knowledge of the dispersion include OFDM 
symbol duration and OFDM subcarrier bandwidth.

Characterization of the frequency selectivity of the radio channel is studied in [29–31] 
using the level crossing rate (LCR) of the channel in frequency domain. Frequency 
domain LCR gives the average number of crossings per Hertz at which the measured 
amplitude crosses a threshold level. An analytical expression between LCR and the time 
domain parameters corresponding to a specific multipath power delay profile (PDP) 
is given. LCR is very sensitive to noise, which increases the number of level crossings 
and severely deteriorates the performance of the LCR measurement [31]. Filtering the 
channel frequency response reduces the noise effect, but finding the appropriate filter 
parameters is an issue. If the filter is not designed properly, one might end up smoothing 
the actual variation of frequency domain channel response. In [27], instantaneous root 
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mean square (rms) delay spread, which provides information about local (small-scale) 
channel dispersion, is obtained by estimating the channel impulse response (CIR) in the 
time domain. The detected symbols in the frequency domain are used to regenerate the 
time domain signal through inverse fast Fourier transform (IFFT). This signal is then 
used to correlate the actual received signal to obtain CIR, which is then used for delay 
spread estimation. Since the detected symbols are random, they might not have good 
autocorrelation properties, which can be a problem, especially when the number of car-
riers is low. In addition, the use of detected symbols for correlating the received samples 
to obtain CIR provides poor results for low SNR values. In [28], the delay spread is also 
calculated from the instantaneous time domain CIR, wherein the CIR is obtained by 
taking IFFT of the frequency domain channel estimate. Channel frequency selectiv-
ity and delay spread information are calculated using the channel frequency correla-
tion estimates in [24, 32]. An analytical expression between delay spread and coherence 
bandwidth is also given.

The level of time dispersion can be obtained by using known training sequences and a 
maximum likelihood-based algorithm. The channel can be modeled with different levels 
of dispersion. Using these various channel models, the corresponding channel estimates 
and the residual error can be calculated. From these residual error terms, a decision can 
be made about the level of dispersion. Note that when the channel is overmodeled, the 
residual error also becomes smaller. Hence, it is not necessarily true that the model that 
provides the smaller residual error is the most suitable one. The most appropriate model 
can be found by several information criteria algorithms, like Bayesian information cri-
teria (BIC) or Akaike information criteria (AIC) [33].

1.3.1.3  Spatial Selectivity Measure: Angle Spread

Angle spread is a measure of how multipath signals are arriving (or departing) with 
respect to the mean arrival (departure) angle. Therefore, angle spread refers to the 
spread of angles of arrival (or departure) of the multipaths at the receiving (transmit-
ting) antenna array [34]. Angle spread is related to the spatial selectivity of the channel, 
which is measured by coherence distance. Like coherence time and frequency, coherence 
distance provides the measure of the maximum spatial separation over which the signal 
amplitudes have strong correlation, and it is inversely proportional to angular spread, 
i.e., the larger the angle spread, the shorter the coherence distance. Figure 1.4 shows 
the effect of local scattering on angle of arrival. The local scattering in the vicinity of 
Receiver-2 results in larger angular spreads, as the received signals come from many 
different directions due to a richer local scattering environment. For a given receiver 
antenna spacing, this leads to less antenna correlations between the received antenna 
elements than in Receiver-1. Note that although the angular spread is described inde-
pendent of the other channel selectivity values for the sake of simplicity, in reality the 
angle of arrival can be related to the path delay. The multipath components that arrive 
at the receiver earlier (with shorter delays) are expected to have similar angles of arrival 
(lower angle spread values).

Compared to time and frequency selectivity, spatial selectivity has not been stud-
ied widely in the past. However, recently there has been a significant amount of work 
in multiantenna systems. With the widespread application of multiantenna systems, it 
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is expected that the need for understanding spatial selectivity and related parameter 
estimation techniques will gain momentum. Spatial selectivity will especially be useful 
when the requirement for placing antennas close to each other increases, as in the case 
of multiple antennas at the mobile units.

Spatial correlation between multiple-antenna elements is related to the spatial selec-
tivity, antenna distance, mutual coupling between antenna elements, antenna patterns, 
etc. [35, 36]. Spatial correlation has significant effects on multiantenna systems. Full 
capacity and performance gains of multiantenna systems can only be achieved with low 
antenna correlation values. However, when this is not possible, maximum capacity can 
be achieved by employing efficient adaptation techniques. Adaptive power allocation is 
one way to exploit the knowledge of the spatial correlation to improve the performance 
of multiantenna systems [37]. Similarly, adaptive modulation and coding, which employs 
different modulation and coding schemes across multiantenna elements depending on 
the channel correlation, is possible [38, 39]. In MIMO systems, adaptive power alloca-
tion has been studied by using the knowledge of channel matrix estimate and eigenvalue 
analysis [40, 41].

1.3.2  Channel Quality Measurements

Channel quality estimation is by far the most important measurement that can be used 
in adaptive receivers and transmitters [3]. Different ways of measuring the quality of 
radio channel are possible, and many of these measurements are done in the physical 
layer using baseband signal processing techniques. In most of the adaptation algorithms, 
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the target quality measure is the FER or BER, as these are closely related to higher-level 
quality-of-service parameters like speech and video quality. However, reliable mea-
surement of these qualities requires many measurements, and this causes delays in the 
adaptation as the process could be very long. Therefore, other types of channel quality 
measurements that are related to these might be preferred. When the received signal 
is impaired only by white Gaussian noise, analytical expressions can be found relating 
the BER to other measurements. For other impairment cases, like colored interferers, 
numerical calculations and computer simulations that relate these measurements to 
BER can be performed. Therefore, depending on the system, a channel quality is related 
to the BER. Then, for a target BER (or FER), a required signal quality threshold can be 
calculated to be used with the adaptation algorithm.

The measurements can be performed at various points of a receiver, depending on the 
complexity, reliability, and delay requirements. There are trade-offs in achieving these 
requirements at the same time. Figure 1.5 shows a simple example where some of these 
measurements can take place. In the following sections, these measurements will be 
discussed briefly.

1.3.2.1  Measures before Demodulation

Received signal strength (RSS) estimation provides a simple indication of the fading and 
path loss, and provides the information about how strong the signal is at the receiver front 
end. If the received signal strength is stronger than the threshold value, then the link is 
considered to be good. Measuring the signal strength of the available radio channels 
can be used as part of the scanning and intelligent roaming process in cellular systems. 
Also, other adaptation algorithms, like power control and handoff, can use this infor-
mation. The RSS measurement is simply done by reading samples from a channel and 
averaging them [42]. Compared to other measurements, RSS estimation is simple and 
computationally less complex, as it does not require the processing and demodulation of 
the received samples. However, the received signal includes noise, interference, and other 
channel impairments. Therefore, receiving a good signal strength does not tell much 
about the channel and signal quality. Instead, it gives an indication of whether a strong 

Sound quality
Video quality

Speech or
video

decoder

FER 
CRC 

Channel
decoder

SNR
SIR
SINR
Channel estimation
Noise power estimation

RSSI 

Receiver RF
front end

BER 

Demodulator 

FIgure 1.5 A simple wireless receiver that shows the estimation points of commonly used 
parameters.

© 2009 by Taylor & Francis Group, LLC



14 Adaptive Signal Processing in Wireless Communications

signal is present in the channel of interest. For the measurement of RSS, the transmitter 
might send a pilot signal continuously, as in the WCDMA cellular system, or a link layer 
beacon can be transmitted at discrete time intervals, as in IEEE 802.11 WLANs.

Since the received signal power fluctuates rapidly due to fading, in order to obtain 
reliable estimates, the signal needs to be averaged over a time window to compensate for 
short-term fluctuations. The averaging window size depends on the system, application, 
variation of the channel, etc. For example, if multiple receiver antennas are involved at 
the receiver, the window can be shorter than that for a single-antenna receiver.

1.3.2.2  Measures during and after Demodulation

The signal-to-interference ratio (SIR), SNR, and SINR are the most common ways of 
measuring the channel quality during (or just after) the demodulation of the received 
signal. SIR (or SNR or SINR) provides information on how strong the desired signal is 
compared to the interferer (or noise or interference plus noise). Most wireless commu-
nications systems are interference limited; therefore, SIR and SINR are more commonly 
used. Compared to RSS, these measurements provide more accurate and reliable esti-
mates at the expense of computational complexity and with additional delay.

There are many adaptation schemes where these measurements can be exploited. 
Link adaptation (adaptive modulation and coding, rate adaptation, etc.), adaptive chan-
nel assignment, power control, adaptive channel estimation, and adaptive demodulation 
are only a few of many applications.

SIR estimation can be employed by estimating signal power and interference power 
separately and then taking the ratio of these two. In many new-generation wireless 
communications systems, coherent detection, which requires estimation of channel 
parameters, is employed. These channel parameter estimates can also be used to calcu-
late the signal power. The training (or pilot) sequences can be used to obtain the estimate 
of SIR. Instead of the training sequences, the data symbols can also be used for this pur-
pose. For example, in [43], where SNR information is used as a channel quality indicator 
for rate adaptation, the cumulative Euclidean metric corresponding to the decoded trel-
lis path is exploited for channel quality information. Another method for channel quality 
measurement is the use of the difference between the maximum likelihood decoder met-
rics for the best path and second-best path, as described in [44]. In a sense, in this tech-
nique, some sort of soft information is used for the channel quality indicator. However, 
this approach does not tell much about the strength of the interferer or the desired signal. 
There are several other ways of SNR measurement that are based on subspace projection 
techniques. These approaches can be found in [45] and in the references cited therein.

Often, in obtaining the estimates, the impairment (noise or interference) is assumed 
to be white and Gaussian distributed to simplify the estimation process. However, in 
wireless communications systems, the impairment might be caused by a strong inter-
ferer, which is colored. For example, in OFDM systems, where the channel bandwidth is 
wide and the interference is not constant over the whole band, it is very likely that some 
part of the spectrum is affected more by the interferer than the other parts. Figure 1.6 
shows the OFDM frequency spectrum and two types of noise over this spectrum: col-
ored and white. Hence, when the impairment is colored, estimates that take the color of 
the impairment into account might be needed [46].
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Note that since both the desired signal’s channel and interferer conditions change 
rapidly, depending on the application, both short-term and long-term estimates are 
desirable. Long-term estimates provide information on long-term fading statistics due 
to shadowing and lognormal fading as well as average interference conditions. On the 
other hand, short-term estimates provide measurements of instantaneous channel and 
interference conditions. Applications like adaptive channel assignment and handoff 
prefer long-term statistics, whereas applications like adaptive demodulation, adaptive 
interference cancellation, etc., prefer short-term statistics.

For some applications, a direct measure of channel quality from channel estimates 
would be sufficient for adaptation. As mentioned above, channel estimates only provide 
information about the desired signal’s power. It is a much more reliable estimate than 
RSS information, as it does not include the other impairments as part of the desired 
signal power. However, it is less reliable than SNR (or SINR) estimates, since it does not 
provide information about the noise or interference powers with respect to the desired 
signal’s power.

Channel estimation for wireless communications systems has a very rich history. A 
significant amount of work has been done for various systems. In many systems, known 
information (like pilot symbols, pilot channels, pilot tones, training sequences, etc.) is 
transmitted along with the unknown data to help the channel estimation process. Blind 
channel estimation techniques that do not require known information transmission 
have also been studied extensively. For details on channel estimation for wireless com-
munications systems, refer to [47, 48] and the references listed therein.

1.3.2.3  Measures after Channel Decoding

Channel quality measurements can also be based on postprocessing of the data (after 
demodulation and decoding). BER, symbol error rate (SER), FER, and CRC information 
are some of the examples of the measurements in this category. BER (or FER) is the ratio 
of the bits (or frames) that have errors relative to the total number of bits (or frames) 
received during the transmission. The CRC indicates the quality of a frame, which can 
be calculated using parity check bits through a known cyclic generator polynomial. FER 
can be obtained by averaging the CRC information over a number of frames. In order to 
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FIgure 1.6 Representation of OFDM frequency channel response and noise spectrum. Spec-
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calculate the BER, the receiver needs to know the actual transmitted bits, which is not 
possible in practice. Instead, BER can be calculated by comparing the bits before and after 
the decoder. Assuming that the decoder corrects the bit errors that appear before decod-
ing, this difference can be related to BER. Note that the comparison makes sense only if 
the frame is error-free (good frame), which is obtained from the CRC information.

As mentioned earlier, although these estimates provide excellent link quality mea-
sures, reliable estimates of these parameters require observations over a large number 
of frames. Especially for low BER and FER measurements, extremely long transmission 
intervals will be needed. Therefore, for some applications these measures might not be 
appropriate. Note also that these measurements provide information about the actual 
operating condition of the receiver. For example, for a given RSS or SINR measure, 
two different receivers that have different performances will have different BER or FER 
measurements. Therefore, BER and FER measurements also provide information on the 
receiver capability as well as the link quality.

1.3.2.4  Measures after Speech or Video Decoding

The speech and video quality, the delays on data reception, and network congestion are 
some of the parameters that are related to the user’s perception. Essentially, these are 
the ultimate quality measures that need to be used for adaptive algorithms. However, 
these parameters are not easy to measure, and in many cases, real-time measurement 
might not be possible. On the other hand, these measures are often related to the other 
measures mentioned above. For example, speech quality for a given speech coder can 
be related to FER of a specific system under certain assumptions [49]. However, as dis-
cussed in [49], some frame errors cause more audible damage than others. Therefore, it 
is still desired to find ways to measure the speech quality more reliably (and timely) and 
adapt the system parameters accordingly. Speech (or video) quality measures that take 
the human perception of the speech (or video) into account are highly desirable.

Perceptual speech quality measurements have been studied in the past. Both subjective 
and objective measurements are available [50]. Subjective measurements are obtained 
from a group of people who rate the quality of the speech after listening to the original 
and received speech. Then a mean opinion score (MOS) is obtained from their feedback. 
Although these measurements reflect the exact human perception that is desired for 
adaptation, they are not suitable for adaptation purposes because the measurements are 
not obtained in real time. On the other hand, the objective measurements can be imple-
mented at the receiver in real time [51]. However, these measurements require a sample 
of the original speech at the receiver to compare the received voice with the original, 
undistorted voice. Therefore, they are also not applicable for many scenarios.

1.4  Applications of Adaptive Algorithms: Case Studies

1.4.1  Examples for Adaptive Receiver Algorithms

In this section, some representative examples for adaptive receiver algorithms will be 
discussed briefly. These algorithms can be employed in both base stations and mobile 
terminals, as well as in many other wireless receivers.
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1.4.1.1  Channel Estimation with A Priori Information

Channel estimation is an integral part of standard adaptive receiver designs used in dig-
ital wireless communications systems. For conventional, coherent receivers, the effect 
of the channel on the transmitted signal must be estimated to recover the transmitted 
information. As long as the receiver estimates what the channel did to the transmitted 
signal, it can accurately recover the information sent.

The estimation of time-varying channel parameters is often based on an approximate 
underlying model of the radio channel. In fading environments, the coefficients of a 
channel model exhibit typical trends or quasi-periodic behavior in time, frequency, and 
space. The ability to track channel variation depends on how fast the channel changes in 
time, frequency, and space. As mentioned before, this is related to Doppler spread (time 
variation), delay spread (frequency variation), and angle spread (space variation). By uti-
lizing a priori information about the channel variation, adaptive algorithms with larger 
memories can be designed without sacrificing tracking capability [15]. In contrast to the 
algorithms that do not exploit this information, adaptive algorithms provide a means of 
extrapolation of the channel coefficients in time, frequency, and space [13, 52]. For exam-
ple, in [53], the step size of a simple least mean square (LMS) channel tracker is changed 
using the Doppler spread information. Similarly, the window size of a sliding window 
(moving average filtering)-based channel tracking algorithm can be adapted depending 
on Doppler spread and SNR information [54]. Wiener filtering, which is one of the most 
popular techniques for channel estimation using interpolation, is an excellent example 
in exploiting a priori information, as the optimal Wiener filter design requires knowl-
edge of Doppler spread and noise power. In most conventional Wiener filtering designs, 
the worst-case expected Doppler spread values are used, degrading the performance of 
the algorithm for other Doppler spread values [55]. Recently, two-dimensional interpo-
lation using Wiener filtering for OFDM-based wireless communications systems gained 
significant interest [28]. In this case, both Doppler spread and delay spread information, 
as well as noise variance estimates, can be used to optimize the channel tracker perfor-
mance. Although we have mentioned a few examples, the usage of a priori information 
in channel estimation has been considered by many other authors. Further information 
can be found in [47, 48].

Figure 1.7 shows a simple coherent receiver structure with an adaptive channel 
tracker. The receiver includes a parameter measurement block that estimates the neces-
sary parameters for the adaptation of the channel tracker. The necessary parameters 
can be estimated using the received signal and the output of the detector as described 
before. The detector requires the channel estimates that can be obtained from the chan-
nel tracker.

1.4.1.2  Adaptive Channel Length Truncation for Equalization

Time dispersion in wireless systems can cause ISI, which degrades the performance, often 
severely. Equalization is a technique used to counter the effects of ISI. In the Telecom-
munications Industry Association/Electronics Industry Association/Interim Standard 
136 (TIA/EIA/IS-136, or simply IS-136) system, the channel can be assumed to be flat 
(nondispersive) with respect to the symbol duration most of the time. Equalization does 
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not help much in nondispersive environments, and in fact hurts performance by trying 
to model dispersion that does not exist. However, in hilly terrain channel conditions, the 
channel is dispersive and requires equalization. Therefore, to design the receiver for the 
worst-case condition, equalization needs to be used for all the geographical conditions 
unnecessarily, resulting in a loss due to the mismatch of the implemented receiver to 
the fading scenario. An adaptive receiver, on the other hand, can have an algorithm that 
measures the dispersiveness of the channel and uses the appropriate demodulator based 
on the measurement [26]. This also results in conserving battery power.

In another cellular communications system, GSM, the symbol duration is relatively 
short compared to that in IS-136. Also, the pulse shaping itself introduces intentional ISI, 
so that equalization is required even in nondispersive channels. However, the number of 
channel taps needed for equalization might vary depending on the dispersion (the geo-
graphical area). Instead of fixing the number of channel taps for the worst-case condition, 
the number can be made adaptive [25], allowing simpler receivers with reduced battery 
consumption and improved performance. Again, the point emphasized here is to avoid 
overmodeling the signal. Figure 1.8 shows a simple example of an adaptive receiver that 
measures the level of dispersion and adapts the equalizer number of taps accordingly.

Known symbols

Adaptive
equalizer

Received signal
Detected
symbols

Dispersion
estimation

FIgure 1.8 An adaptive receiver that uses the delay spread (time dispersion) estimate to adjust 
the equalizer.

Parameter
estimation

Received signal

Channel 
estimator

Detector
Detected symbols

Decision directed modeTraining or pilot mode

FIgure 1.7 A simple adaptive channel estimation receiver.
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1.4.1.3  Adaptive Interference Cancellation Receivers

The impairment sources in wireless mobile radio systems are numerous. Co-channel 
interference, which is caused by the reuse of carrier frequencies in nearby cells, is one 
of the major contributors. Another major interference source is adjacent channel inter-
ference, which is caused by the spectral overlap between adjacent channel users. Also, 
thermal noise and other impairment sources that are commonly modeled as additive 
white Gaussian noise (AWGN) degrade the performance of a receiver. The statistics of 
these disturbance sources are different. Conventional receivers commonly assume that 
the impairment at the receiver is white, which causes performance loss if the actual 
impairment is colored. By exploiting the statistics of the impairments, better receivers 
can be designed. For example, interference whitening is one such technique that partially 
suppresses the interference and optimizes the demodulator performance. However, at 
any given time, the kind of disturbance that is dominant at the receiver is not known 
before. In order to achieve the best possible performance in all situations, the receiver 
should estimate the possible disturbance source and adapt the receiver to the second-
order statistics of the impairment. Such an adaptive receiver described in [56] improves 
the performance of the maximum likelihood–based receiver.

The interference can also be suppressed by employing interference cancellation tech-
niques in the receivers. For example, joint demodulation (JD) of co-channel signals is 
a powerful technique for cancelling co-channel interference. In [57], it was shown that 
the capacity of the IS-136 system can be increased significantly by using a JD receiver. 
However, the JD receiver given in [57] works well only when there is a single dominant 
interferer, the mobile speed is low, and the channel is nondispersive. Otherwise, the 
conventional single-user demodulator (CD) works better than joint demodulation at the 
targeted operating SINR level. A simple and efficient solution to the above problem is an 
adaptive receiver that adapts the detector to the system conditions. Figure 1.9 illustrates 

Filter 

Rx signal

Joint
acquisition

Joint
demodulation

Conventional
demodulation

Conventional
acquisition

Conventional detector

Control
unit

Joint detector

Rx samples

Desired user data

FIgure 1.9 Example for adaptive interference cancellation receiver. A complex joint demodulation 
and a less complex single-user demodulation used adaptively based on the measured parameters.
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the schematic of such an adaptive receiver. It contains the conventional detector, the 
joint detector, and a control unit to control the two detectors. For each slot, the control 
unit determines which of the two demodulators to use to recover the data symbols of 
the desired user. The control unit makes this decision on the basis of certain informa-
tion obtained from conventional and joint acquisitions. The demodulator selected by 
the control unit outputs an estimate for the data symbols of the desired user. The details 
regarding the two demodulators can be found in [58].

The choice for the demodulator can be based on several criteria. Ideally, one would 
like to know the SNR, SIR, dominant interferer ratio (I1/I – I1, where I1 is the dominant 
interferer and I is the total impairment, including the dominant interferer), and extent 
of ISI present in the system, among other parameters. Although these quantities are 
not generally available at the receiver, they can be estimated. For example, carrier and 
dominant interferer powers are estimated by averaging the corresponding channel tap 
strengths over multiple slots. The unmodeled impairment power is estimated from the 
accumulated Euclidean distance metric during the acquisition process (joint or conven-
tional) over the training sequence of the desired signal.

1.4.1.4  Adaptive Soft Information Generation and Decoding

In digital wireless communications systems, forward error correction encoding is 
commonly used to provide a robust communication link. At the receiver, the decoder 
performance is optimized when the demodulator provides soft information for the 
encoded bits. The better soft information generation schemes require knowledge of the 
noise covariance, and often the noise covariance changes across the interleaving length. 
Therefore, a receiver should continuously measure the noise covariance and use these 
estimates for the improvement of soft bit values.

1.4.2  Examples for Link Adaptation and Adaptive  
Resource Allocation

In this section, some examples for adaptation of radio link and adaptive resource alloca-
tion will be discussed briefly. Examples in this area are numerous, and there has been a 
significant amount of research in this area.

1.4.2.1  Adaptive Power Control

Power control has a long and rich history in wireless communications systems [59–61]. 
Specifically, for CDMA-based cellular systems, adaptive power control has a significant 
role, as the performance and capacity of the CDMA systems are normally interference 
limited. Without power control, an interfering transmitter that is closer to the receiver 
than the desired signal’s transmitter will cause a significant degradation, and this phe-
nomenon is commonly referred to as the near–far problem. Power control handles this 
problem by adaptively controlling the user’s power depending on the link quality and 
desired quality of service (QoS). As a result, the interference observed by other users 
due to this user will be less, which in turn reduces the average interference observed at 
the receivers. This results in a high-capacity system with improved battery life for the 
mobile terminals.
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In voice-dominated cellular systems, the objective of the power control was mainly 
to maintain the minimal (target) link quality at a constant level for individual users. 
The data rates for all users are constant in this case, and each user experiences roughly 
the same quality of service. While this was appropriate for voice, recently, with the 
increased demand for multimedia services and high-speed data access, different objec-
tives and cost functions to optimize the use of power resources have been developed. In 
mixed-traffic environments, the cost function for each service will be different, leading 
to different power allocation strategies [62]. Use of constant power along with variable 
coding, modulation, and spreading that adapts the data rate to the channel variations 
is one objective that some new-generation wireless systems have been adopting (rate 
control or rate adaptation) [43]. Also, water-filling types of power assignments, which 
assign more power to the users that have favorable channels, are being studied exten-
sively [63].

In adaptive power control mechanisms, estimation of the link quality parameters is 
the key factor. Typical parameters used for adaptation include SIR, FER, and RSS. Dop-
pler spread estimate can also be used to adjust the adaptation rate. Depending on the 
adaptation rate, power control can be classified as fast power control and slow power con-
trol. Fast power control compensates the changes in power level due to Rayleigh fading 
(small-scale fading), while slow power control is used for lognormal fading (shadowing) 
and path loss. The parameters that are used for them can also be different. For example, 
for fast power control, instantaneous SIR, SNR, SINR, and RSS can be more suitable 
than FER and BER, which might better suit slow power control. As mentioned in the 
parameter estimation section, parameter selection depends on the delay, complexity, 
and accuracy requirements. The estimation errors and delays, between measurements 
and adaptation of power, limit the efficient application of power control schemes. There-
fore, more accurate and practical algorithms that estimate and predict the parameters to 
be used in adaptation are needed.

1.4.2.2  Adaptive Modulation and Channel Coding

Given the high price of spectrum and its scarcity, it is in the interest of operators to 
continue evolving their networks toward higher capacity and quality. Adaptive modula-
tion and coding provide a framework to adjust modulation level and FEC coding rate 
depending on the link quality. Higher-order modulations (HOMs) allow more bits to 
be transmitted for a given symbol rate. On the other hand, HOM is less power efficient, 
requiring higher energy per bit for a given BER. Therefore, HOMs should be used only 
when the link quality is high, as they are less robust to channel impairments. Similarly, 
strong FEC and interleaving provide robustness against channel impairments at the 
expense of lower data rate and spectral efficiency, suggesting adaptation of coding rate 
based on the link quality. Figure 1.10 illustrates the capacity gain that can be achieved 
by employing adaptive modulation only. First, the BER performances of different modu-
lations as a function of SNR are given in Figure 1.10(a). As can be seen, a desired BER 
can be achieved with low-order modulations for lower SNRs. Higher-order modulations 
need better link quality (higher SNRs) in order to obtain the same BER performance. 
Figure 1.10(b) shows the spectral efficiencies of different uncoded modulations, where 
an arbitrary packet size of 200 bits is used. Notice that the optimal spectral efficiency for 
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FIgure 1.10 llustration of the BER and spectral efficiency of several modulation options. (a) 
BER plots of different modulations as a function of SNR. (b) Spectral efficiency of different modu-
lation as a function of SNR.
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different SNR regions can be obtained through the use of different modulations depend-
ing on the SNR.

Link adaptation using adaptive coding and modulation is deployed in some of the 
new-generation wireless communications systems. For example, EGPRS, which is the 
evolution of the second-generation GSM, employs two different modulation options 
(GMSK and 8-PSK) along with different coding rates, resulting in nine different modu-
lation/coding options, as shown in Table 1.1 [5, 43]. In addition, EGPRS introduces the 
use of a type II hybrid ARQ system, commonly known within the specification as incre-
mental redundancy. In link adaptation, the link quality is measured regularly and the 
most appropriate modulation and coding scheme is assigned for the next transmission 
interval. On the other hand, in the incremental redundancy scheme, information is first 
sent with low coding power (high coding rate). This results in a high bit rate if decoding 
is successful with this rate. However, if decoding fails with such a high rate, additional 
coded bits (redundancy) should be sent so that the transmitted bits can be decoded suc-
cessfully. However, sending extra coded bits incrementally reduces the resulting bit rate 
and introduces undesired extra delay. Therefore, the initial code rate and modulation for 
the incremental redundancy scheme should be based on measurements of the link qual-
ity, instead of starting with any arbitrary rate [5]. As a result, by combining incremental 
redundancy with adaptive initial code rate, lower delays with lower memory require-
ments, and high data rates can be achieved. The different initial code rates are obtained 
by puncturing a different number of bits from a common convolution code (rate 1/3). 
Incremental redundancy operation is enabled by puncturing a different set of bits each 
time a block is retransmitted, whereby the code rate is gradually decreased toward one-
third for every new transmission of the block.

Recent studies introduce new modulation and coding options together with other 
capacity enhancement techniques to further increase the data rate and throughput of 
EGPRS [64, 65]. Higher-order modulations like 16-QAM and 64-QAM are being pro-
posed along with some more coding options to optimize the performance.*

* 16-QAM and64-QAM stand for 16-level and 64-level quadrature amplitude modulation, 
respectively.

Table 1.1 EGPRS Modulation and Coding 
Schemes and Peak Data Rates

Scheme Modulation
Maximum Rate 
per Slot (kb/s) Code Rate

MCS-1 GMSK  8.8 0.53
MCS-2 GMSK 11.2 0.66
MCS-3 GMSK 14.8 0.80
MCS-4 GMSK 17.6 1.00
MCS-5 8-PSK 22.4 0.37
MCS-7 8-PSK 44.8 0.76
MCS-6 8-PSK 29.6 0.49
MCS-8 8-PSK 54.5 0.92
MCS-9 8-PSK 59.2 1.00
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Adaptive modulation and coding are also successfully employed for new-generation 
WLAN systems. HiperLAN2 and IEEE 802.11a, both of which use OFDM technology 
at the physical layer, allow four different modulation options (BPSK, QPSK, 16-QAM, 
and 64-QAM) with different coding rates. The coding rates are obtained with different 
puncturing patterns to a mother convolutional code, resulting in eight different modu-
lation and coding options [66]. Similar to link adaptation in EGPRS, an appropriate 
modulation and coding scheme is used depending on the link quality. Therefore, a data 
rate ranging from 6 to 54 Mbit/s can be obtained by using various modes. BPSK, QPSK, 
and 16-QAM are used as mandatory modulation formats, whereas 64-QAM is applied 
as an optional mode.

Although only a couple of cases are given above, adaptive modulation and coding 
have attracted many new-generation wireless standards to consider them as options 
to increase the data rates, and there has been a significant amount of research in this 
area. Especially in conjunction with the advanced receiver algorithms that reduce the 
required SINR to lower values, the better link quality values can be exploited to increase 
the data rates further. Combining adaptive modulation with multiantenna transmitter 
and MIMO schemes based on the feedback-related channel estimates, channel quality, 
channel correlation, etc., is one of these interesting research areas. Based on the channel 
feedback information, the modulation type on multiantenna transmitters can be varied. 
Similarly, adapting the source coding with the channel coding or modulation is another 
interesting area of focus for link adaptation. For example, adaptive multirate (AMR) 
codec allows changing of the compression rate of speech depending on the link quality, 
as in GSM AMR. For weak link conditions, where heavy FEC is required, AMR has the 
ability to decrease the codec rate (more speech compression) to allocate more bits for 
FEC [49].

1.4.2.3  Adaptive Cell and Frequency Assignment

As mentioned before, radio spectrum is very expensive and limited. Efficient use of 
radio spectrum is very important to maximize the system capacity. The introduction of 
cellular technology was a major step toward efficient usage of finite spectrum through a 
concept called frequency reuse. The capacity of cellular systems is interference limited, 
dominated by co-channel interference (CCI) and adjacent channel interference (ACI). 
Early cellular systems aimed to avoid these major interference sources by designing 
systems for the worst-case interference conditions along with fixed channel allocation. 
This is often achieved by employing higher-frequency reuse and by allowing enough 
carrier spacing between adjacent channels. Both of these reduce the spectral efficiency. 
Later, more efficient spectrum usage strategies were developed that dynamically assign 
frequencies relative to current interference, propagation, and traffic conditions. In tra-
ditional cellular system designs, the allocation of frequency channels to cells is fixed, 
which means that each cell can use only a set of frequencies. Even if the other cells are 
not fully loaded, the cell that does not have any available frequency (fully loaded cell) 
cannot take advantage of it. In dynamic channel allocation, all the channels belong to a 
global pool and the channels are assigned according to a cost function that considers the 
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CCI and ACI [67]. As a result, for nonuniform traffic conditions, the available channels 
can be used more efficiently.

Resource utilization has also evolved by employing a concept called hierarchical cel-
lular structures (HCSs) [68]. The use of HCS has become a major component in third-
generation mobile systems such as UMTS and IMT-2000. In an HCS, various cell sizes 
are deployed and small cell clusters are overlaid by larger cells. For example, Figure 1.11 
shows a two-layer (e.g., microcell and macrocell) hierarchical system. Microcells increase 
capacity within a coverage area, but radio resource management becomes more diffi-
cult. The number of handoffs per cell is increased by an order of magnitude, and the 
time available to make a handoff is decreased. HCSs handle this by assigning cells to 
the mobiles depending on their speeds (Doppler spread estimate). For example, in the 
two-layer structure given in Figure 1.11, low-speed mobiles are assigned to microcells, 
whereas high-speed mobiles are assigned to macrocells. Hence, the macrocell-microcell 
overlay architecture provides a balance between maximizing the capacity per unit area 
and minimizing the number of handoffs [69]. As a result, the risk of call dropping is 
reduced, and there are other benefits, like lower handover delays, reduced switching load, 
and increased QoS. The HCS can be more than two layers (multilayer HCS). For example, 
picocellular layers can also be included in multilayer HCS. Similarly, communication 
satellite beams can overlay all the terrestrial layers at the highest hierarchical level.

Recently, dynamic allocation and multitiered design strategies are further general-
ized to take power control, cell handoff, traffic classes (like multimedia), and user pri-
orities into account. Also, there are several studies toward combining link adaptation 
schemes with adaptive resource allocation. For example, adaptive modulation (and cod-
ing) can be combined with dynamic channel allocation. Similarly, adaptive modulation 
(and coding) can be combined with handover algorithms to introduce more intelligent 
handover strategies. All these developments require more sophisticated adaptation of 
the network, and they are based on many parameter measurements.

Overlay macrocell
Microcell 

High speed user

Slow 
speed 
user

FIgure 1.11 Illustration of two-layer hierarchical cell structure. High-speed mobiles are 
assigned to large cells, and low-speed mobiles are assigned to smaller cells.
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1.5  Future Research for Adaptation

Most of the techniques and issues that were described in the previous sections still need 
further research for the development of more efficient adaptation and parameter esti-
mation algorithms. At the same time, there is a significant amount of effort in evolving 
current wireless communications systems to provide higher data rates, higher capacity, 
and better performance. New technologies are being introduced to accommodate these 
goals, like multicarrier wireless communications, MIMO, and ultrawideband (UWB). 
Adaptation techniques will be a significant factor in efficient and successful deployment 
of these technologies.

UWB is a promising technology for future data communications systems, high-
accuracy (indoor) geolocation devices, sensor applications, etc. Any signal that occupies 
more than 500 MHz of bandwidth and meets the spectrum mask requirements enforced 
by spectrum regulation agencies is considered a UWB signal [70]. For example, in the 
United States, the Federal Communications Commission (FCC) has allocated 7.5 GHz 
of spectrum (between 3.1 and 10.6 GHz) for unlicensed use of UWB devices. One of 
the most popular UWB systems, which is based on impulse radio (IR), utilizes car-
rierless transmission with very low-power spectral density. IR-based UWB techniques 
are based on the transmission of nanosecond-level short pulses that generate extremely 
wide spectrums. This results in a covert noise-like signal in a radio channel. Note that 
within the transmission band of UWB, other technologies also coexist. For example, the 
OFDM-based WLAN technology at the 5 GHz U-NII band is a big concern for UWB 
signals, as it might create significant interference for UWB signals. In order to provide 
robustness against narrowband interference, adaptive implementation of UWB systems 
is very important. For this purpose, several strategies have been developed recently. 
Multiband UWB is one of the techniques proposed to reduce the effect of narrowband 
interference. In such techniques, the whole 7.5 GHz bandwidth is divided into several 
narrower bands that are still wider than 500 MHz. The information is transmitted in 
these bands depending on the narrowband interference situation. Several versions of 
multiband schemes are available, some of which can be found in [70]. Estimations of the 
existence and level of narrowband interference are interesting research topics that fall 
under the parameter estimation algorithms described before.

The wide bandwidth of UWB offers a capacity much higher than the current narrow-
band systems. Short-range data transmission rates of over 500 Mbps have been theoreti-
cally shown [71, 72]. However, these high data rates are only possible with excellent signal 
quality values and for short-range communications. High data rates can be traded off 
with longer ranges and for lower link quality values. Depending on the link quality and 
distance between transmitter and receiver, the rate can be changed through adaptation 
of the processing gain. UWB achieves processing gain due to pulse repetition, i.e., trans-
mitting more than one pulse within a bit. For example, by transmitting 100 pulses per 
bit, a processing gain of 20 dB is obtained. Additional processing gain is obtained due 
to the low duty cycle, which is the ratio of the pulse repetition interval and the pulse 
width. Adaptation of processing gain is a research topic that needs to be explored for 
UWB systems. Similarly, multiple-access capability of UWB systems, which is primarily 

© 2009 by Taylor & Francis Group, LLC



Adaptation Techniques and Enabling Parameter Estimation Algorithms 27

determined by the processing gain, needs to be explored. Adaptive multiaccess code 
design depending on delay spread of the channel is one of the interesting research areas. 
Also, adaptive multiuser detection techniques need to be studied for cancelling multi-
access interference. In summary, adaptation algorithms and related parameter estima-
tion techniques for jointly optimizing the multiaccess capability, power consumption, 
data rate, and range of UWB systems are needed.

Adaptation of multicarrier systems has already gained some momentum. In multicar-
rier systems, the transmission bandwidth is much wider than the coherence bandwidth 
of the channel, resulting in frequency-selective fading channels. Therefore, different 
carriers experience different channel qualities. This leads to adaptation of each subcar-
rier individually. Adaptive bit/power loading can be used as an effective tool to get the 
highest capacity from a multicarrier system provided that the transmitter has the link 
quality information for each carrier. For example, adaptation of the modulation level 
for OFDM-based multicarrier systems has been studied recently [73]. The modulation 
level on different carriers can be changed depending on the link quality observed at the 
carriers. Transmitting different modulations on each carrier requires a large overhead 
for signaling. Therefore, approaches that group the neighboring carriers into subsets 
and use the same modulation in each subset are preferred. The signaling can also be 
avoided in time division duplexing (TDD) systems under certain assumptions. Unlike 
frequency division duplexing (FDD) systems, where the channels on the downlink and 
uplink are different, in TDD systems, using the assumption of the reciprocal and slowly 
varying channel, the transmitter and receiver can be assumed to experience the same 
channel response. Therefore, this might eliminate the need for signaling of the channel 
state information to the transmitter, if the channel estimates are used as the link quality 
measures. However, in this case, the receiver needs to know which modulation is used 
at the transmitter for each group. Blind modulation detection techniques can be used 
for this purpose [74]. Note that although the channels could be the same, the interfer-
ences observed in the transmitter and receiver are not necessarily the same. Therefore, 
the observed link qualities would be different at each end. Issues like these need to be 
studied further for successful implementation of adaptation techniques in multicarrier 
systems. Multicarrier CDMA (MC-CDMA), which combines OFDM modulation with 
CDMA-type multiple accessing, is a technology that is being pushed for fourth-gener-
ation cellular networks. The previous adaptation algorithms proposed for CDMA and 
OFDM technologies need to be revisited and optimized, and new adaptation algorithms 
need to be developed for MC-CDMA.

MIMO and multiantenna systems bring about a new dimension to wireless chan-
nels. The spatial dimension will be used in future communications systems for further 
improvement of the bandwidth and power efficiency. However, this dimension and 
the related parameter estimates need to be understood better. Research on param-
eter estimation for fast and accurate calculation of spatial selectivity, angular spread, 
antenna correlation, etc., is needed. Also, further research is required on the effect of 
mutual coupling between antenna elements, the effect of near-field scatterers on antenna 
patterns and antenna correlations, the exploitation of pattern selectivity when the spa-
tial selectivity is not enough, and the generation of a desired pattern selectivity between 
antenna elements adaptively.

© 2009 by Taylor & Francis Group, LLC



28 Adaptive Signal Processing in Wireless Communications

As described earlier, MIMO systems, which employ multiple-transmit and multi-
ple-receive antennas, can provide huge capacity and improved performance gains by 
exploiting spatial selectivity of the channel. However, these gains, in reality, depend 
heavily on the statistical properties of the channel and the correlations between antenna 
elements. Among the factors that affect the antenna correlation are the characteristics 
of the scattering environment. Therefore, an optimal way of using multiple-antenna sys-
tems depends on the situation awareness. If the transmitter knows the instantaneous 
channel gains (the MIMO channel matrix), it can adapt the transmission to maximize 
the capacity of the MIMO system [40, 41]. Similarly, the instantaneous antenna correla-
tion values can be exploited to adapt the transmission. In many cases, estimating the 
perfect instantaneous channel state and antenna correlation information and feeding 
this information back to the transmitter might not be possible. This is the case especially 
when the mobility is high. Instead, other parameter measures like partial (statistical) 
channel information, average channel selectivity, or angular spread would be useful for 
adapting the transmitter and receiver. Advanced signal processing techniques to calcu-
late this partial channel and correlation information are needed.

Most of the previous adaptation techniques take place in physical and medium access 
control (MAC) layers. Future-generation wireless systems will also allow adaptive strat-
egies at the higher networking layers. The higher layers will be more aware of the situa-
tion in lower layers. Cross-layer optimization algorithms and cost functions that involve 
many layers will be developed. This will also create the need for the development of new 
adaptation parameters and algorithms for the estimation of these parameters.

Current wireless communications systems are based on layered protocol design, 
and each layer is often designed and operated independently. For example, the chan-
nel variation is addressed by adapting the link in the physical or MAC layer using sig-
nal processing techniques as described before. The traffic load and delays are adapted 
by changing the routing tables, by adaptive channel and cell assignment techniques. 
The layered structure and adaptation of layers locally (and independently) simplify the 
network design. But the performance and capacity of the network is suboptimal, espe-
cially for addressing the requirements of future multimedia wireless services. The future 
applications will have different data rate, delay, power, and QoS requirements. Cross-
layer adaptation could address these requirements by jointly optimizing multidimen-
sional cost functions that involve all protocol layers [75–77]. As a result, networks with 
improved end-to-end performance subject to constraints in link quality and available 
network resources can be obtained, while being aware of application trade-offs.

1.6  Conclusion

Recently, the use of adaptation algorithms for better utilization of the available 
resources, like power and spectrum, has grown significantly. Several adaptation strate-
gies to increase performance, data rate, capacity, and QoS of wireless communications 
systems have been introduced. Many of these adaptation techniques depend on accurate 
estimation of the various parameters. Therefore, further research on efficient parameter 
estimation techniques is still needed.
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There is a significant amount of work needed for the evolution of the current wire-
less communications systems to accommodate the future demands. Ultrawideband, 
MIMO, and multicarrier wireless communications are some of the technologies that are 
being studied extensively. All of them have a common point: their capability to adapt the 
changing radio channel conditions. Adaptation of multicarrier communications and 
MIMO schemes has already gained some momentum. Adaptation algorithms for UWB 
still need to be explored. The flexibility of UWB makes it very attractive for employing 
successful adaptation schemes.
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2.1  Introduction

Propagation of signals through wireless channels (indoors or outdoors) results in the 
transmitted signal arriving at the receiver through multiple paths. These paths arise due 
to reflection, refraction, or diffraction in the channel. Multipath propagation results 
in a received signal that is a superposition of several delayed and scaled copies of the 
transmitted signal giving rise to frequency-selective fading. Frequency-selective fading 
(defined as changes in the received signal level in time) is caused by destructive interfer-
ence among multiple propagation paths. The environment around the transmitter and 
the receiver can change over time, particularly in a mobile setting, leading to variations 
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in the channel response with time. This gives rise to time-selective fading. Also, the 
channels may have a dominant path (direct path in line-of-sight channels) in addition 
to several secondary paths, or they may be characterized as having multiple “random” 
paths with no single dominant path.

Multipath propagation leads to intersymbol interference (ISI) at the receiver, which in 
turn may lead to high error rates in symbol detection. Equalizers are designed to com-
pensate for these channel distortions. One may directly design an equalizer given the 
received signal, or one may first estimate the channel impulse response and then design 
an equalizer based on the estimated channel. After some processing (matched filtering, 
for instance), the continuous-time received signals are sampled at the baud (symbol) or 
higher (fractional) rate before processing them for channel estimation or equalization. 
It is therefore convenient to work with a baseband-equivalent discrete-time channel 
model. Depending upon the sampling rate, one has either a single-input single-output 
(SISO) (baud-rate sampling) or a single-input multiple-output (SIMO) (fractional sam-
pling), complex discrete-time-equivalent baseband channel.

In this chapter, we present a review of various approaches to channel estimation 
for wireless mobile systems. Since approaches to channel estimation depend upon the 
underlying channel model, we also review various approaches to channel modeling. In 
section 2.2 we present the relevant channel models, including time-variant and time-
invariant models. In section 2.3 various channel estimation methods suitable for block-
by-block tracking are presented. In section 2.4 adaptive channel estimation approaches 
are reviewed. In section 2.5 we illustrate some of the reviewed approaches via two simu-
lation examples to conclude the chapter.

Notation: Superscripts H, *, T, and † denote the complex conjugate transpose, complex 
conjugation, transpose, and Moore-Penrose pseudo-inverse operations, respectively. 
δ(·) is the Kronecker delta function and IN is the N × N identity matrix. The symbol ⊗ 
denotes the Kronecker product, and tr(a) is the trace of a square matrix a. The (n,m)th 
entry of a matrix C is denoted by [C]n,m.

2.2  Wireless Channel Models

2.2.1  Time-Variant (Doubly Selective) Channels

Consider a time-varying (e.g., mobile wireless) channel (linear system) with complex 
baseband, continuous-time, received signal x(t) and transmitted complex baseband, 
 continuous-time information signal s(t) (with symbol interval Ts seconds) related by [42]

 x t h t s t d w t( ) ( ) ( ) ( )= ; − +
−∞

∞∫  τ τ τ , (2.1)

where h t( );τ  is the time-varying impulse response of the channel denoting the response 
of the channel at time t to a unit impulse input at time t – τ, and w(t) is the additive noise 
(typically white Gaussian). A delay Doppler spread function H( f ;τ) is defined as the 
Fourier transform of h t( );τ  [2, 42]:
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 H f h t exp dtj ft( ) ( ); = ;
−∞

∞
−∫τ τ π 2 . (2.2)

If  |H( f ;τ)| ≈ 0 for |τ | > τd, then τd is called the (multipath) delay spread of the channel. 
If |H( f ;τ)| ≈ 0 for | f | > fd, then fd is called the Doppler spread of the channel. Equation 
(2.1) is the most general form of a mobile channel discussed in this chapter.

In order to capture the complexity of the physical interactions characterizing the 
transmission through a real channel, h t( );τ  is typically modeled as a two-dimensional 
zero-mean random process. If h t( );τ  is wide-sense stationary in variable t, and h t( );τ1  
is uncorrelated with h t( );τ2  for τ1 ≠ τ2 and any t, one obtains the well-known wide-sense 
stationary uncorrelated scattering (WSSUS) channel [2, 42, section 14].

In this chapter we will confine our attention to deterministic modeling of h t( );τ , 
which may be thought of as capturing realizations of the underlying random process.

2.2.1.1  Tapped Delay Line Model

We now consider a discrete-time channel model. If a linear modulation scheme is used, 
the baseband transmitted signal can be represented as

 s t s k g t kT
k

T s( ) ( ) ( )= −
=−∞

∞

∑ , (2.3)

where {s(k)} is the information sequence and gT(t) is the transmit (low-pass) filter (typi-
cally a root raised cosine filter). Therefore, the baseband signal incident at the receiver 
is given by

 x t s k h t g t kT d w t
k

T s( ) ( ) ( ) ( ) (= ; − − +
=−∞

∞

−∞

∞∑ ∫  α α α )).  (2.4)

After filtering with a receive filter with impulse response gR(t), the received baseband 
signal is given by

 y t s k g t h g k
k

R T( ) ( ) ( ) ( ) (= − ; −
=−∞

∞

−∞

∞

−∞

∞∑ ∫ ∫ β β α β TT d d v ts − +α α β) ( ), (2.5)

where 

 v t g w t dR( ) ( ) ( ) .= −∫ τ τ τ

If the continuous-time signal y(t) is sampled once every Ts seconds, we obtain the 
 discrete-time sequence
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 y n y t s k h n n k v nt nT

k l
s

( ) ( ) ( ) ( ) ( ):= | = ; − + ==

=−∞

∞

=

∑
−−∞

∞

∑ ; − +h n l s n l v n( ) ( ) ( ) , (2.6)

where h(n;l) is the (effective) channel response at time n to a unit input at time n – l and

 h n n k g nT h g kTR s T s( ) ( ) ( ) (; − := − ; − −
−∞

∞

−∞

∞∫ ∫ β β α β αα α β)d d .  (2.7)

Note that the noise sequence {v(n)} in (2.6) is no longer necessarily white; it can be 
whitened by further time-invariant linear filtering (see [42]). Henceforth, we assume 
that a whitening filter has been applied to y(n), but with an abuse of notation, we will still 
use (2.6). For a causal system, h(n;l) = 0 for l < 0 (∀n), and for a finite-length channel of 
maximum length TsL, h(n;l) = 0 for l > L (∀n). In this case we modify (2.6) as (recall the 
noise whitening filter)

 y n h n l s n l v n
l

L

( ) ( ) ( ) ( )= ; − + .
=

∑
0

 (2.8)

The model (2.6) represents a time- and frequency-selective linear channel. A tapped 
delay line structure for this model is shown in Figure 2.1. For a slowly (compared to the 
baud-rate) time-varying system, one often simplifies (2.8) to a time-invariant system as

 y n h l s n l v n
l

L

( ) ( ) ( ) ( )= − +
=

∑
0

, (2.9)

where h(l) = h(0;l) is the time-invariant channel response to a unit input at time 0. The 
model (2.9) represents a frequency-selective linear channel with no time selectivity. It is 
the most commonly used model for receiver design.

Suppose that h(n;l) = h(n)δ(l,0) where δ(l,0) is the Kronecker delta located at 0, i.e., 
δ(l,0) = 1 for l = 0 and δ(l,0) = 0 for l ≠ 0. Then we have the time-selective and frequency-
non-selective channel whose output is given by

s(n) s(n−2)
z−1z−1z−1 s(n−L)

× × × ×
h(n; 0) h(n; 1) h(n; 2) h(n; L)

+ + + +

v(n)

y(n)

FIgure 2.1 Tapped delay line model of frequency- and time-selective channel with finite 
impulse response. z–1 represents a unit (symbol duration) delay.
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 y n h n s n v n( ) ( ) ( ) ( )= + .  (2.10)

Finally, a time-non-selective and frequency-non-selective channel is modeled as

 y n hs n v n( ) ( ) ( )= + , (2.11)

where h is a random variable (or a constant).

2.2.1.2  Autoregressive (AR) Models

It is possible to accurately represent a WSSUS channel by a large-order AR model; see 
[34] and references therein. However, it is far more common to use a first-order AR 
model (AR (1)) given by [34, 35]

 h n l h n l w nc c;( ) = − ;( )+ ( ),α 1  (2.12)

where αc is the AR coefficient, and the driving noise wc(n) is zero-mean complex Gauss-
ian with variance σwc

2  and statistically independent of h(n – 1;l). Assume that h(n;l) is 
also zero-mean complex Gaussian with variance σh

2 . Then [35]

 α
σc

h

E h n l h n l= ;( ) − ;( ){ },∗1 1
2

 (2.13)

 σ σ αwc h c
2 2 2

1= −





 .  (2.14)

2.2.1.3  Basis Expansion Models

Recently, basis expansion models (BEMs) have been widely investigated to represent dou-
bly selective channels in wireless applications [3, 13, 36, 46, 61], where the time-varying 
taps are expressed as superpositions of time-varying basis functions in modeling Dop-
pler effects, weighted by time-invariant coefficients. Candidate basis functions include 
complex exponential (Fourier) functions [13, 36], polynomials [3], discrete prolate sphe-
roidal sequences [61], etc. In contrast to AR models that describe temporal variation 
on a symbol-by-symbol update basis, a BEM depicts the evolution of the channel over 
a period (block) of time. Intuitively, the coefficients of the BEM approximation should 
evolve much more slowly in time than the channel, and hence are more convenient to 
track in a fast-fading environment.

Suppose that we include the effects of transmit and receive filters in the time-variant 
impulse response h(t;τ) in (2.1). Suppose that this channel has a delay spread τd and a 
Doppler spread fd. Consider the k th block of data consisting of an observation window of 
TB symbols where the baud-rate data samples in the block are indexed as n = nk, nk + 1, 
…, nk + TB – 1, nk := (k – 1)TB. If 2fdτd < 1 (underspread channel), the complex exponential 
basis expansion model (CE-BEM) representation of h(n;l) in (2.6) is given by
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 h n l h l e n n n n T
q

Q

q
j n

k k k B
q( ) ( ); = , = , + , , + − ,

=

∑
1

1 1ω   (2.15)

where one chooses (l = 0, 1, …, L, and K is an integer)

 T KT KB:= , ≥ ,1  (2.16)

 Q f TTd s≥ + ,



2 1  (2.17)

 ω π
q T

q Q q Q:= − +( )



, = , , , ,2 1 2 1 2   (2.18)

 L Td s:= .



τ /  (2.19)

The BEM coefficients hq(l) remain invariant during this block, but are allowed to 
change at the next block, and the Fourier basis functions {e jωqn} (q = 1, 2, …, Q) are com-
mon for each block. If the delay spread τd and the Doppler spread fd of the channel (or at 
least their upper bounds) are known, one can infer the basis functions of the CE-BEM 
[36]. Treating the basis functions as known, estimation of a time-varying process is 
reduced to estimating the invariant coefficients over a block of length TB symbols. Note 
that the BEM period is T = KTB, whereas the block size is TB symbols. If K > 1 (e.g., K = 2 
or K = 3), then the Doppler spectrum is said to be oversampled [32] compared to the case 
K = 1, where the Doppler spectrum is said to be critically sampled. In [13, 36] only K = 1 
(henceforth called CE-BEM) is considered, whereas [32] considers K ≥ 2 (henceforth 
called oversampled CE-BEM).

CE-BEM has a finite impulse response (FIR) structure in both time and frequency 
domains [46]. This unique time-frequency duality makes it a widely used model depict-
ing the temporal variations of wireless channels. For K = 1, the rectangular window 
of this truncated discrete Fourier transform (DFT)-based model introduces spectral 
leakage [43]. The energy at each individual frequency leaks to the full-frequency range, 
resulting in significant amplitude and phase distortion at the beginning and the end of 
the observation window [61]. To mitigate this leakage, the oversampled CE-BEM with 
K = 2 or 3 has been considered in [32].

Equation (2.15) applies to single-input single-output systems—one user and one 
receiver with symbol-rate sampling. It is easily modified to handle multiuser, multiple-
transmit and -receive antennas, and higher-than-symbol-rate sampling—the basic rep-
resentation remains essentially unchanged.

The representation h(n;l) in (2.15) is a special case of a more general representation:

 h n l h l n
q

Q

q q( ) ( ) ( ); =
=

∑
1

φ , (2.20)
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where { ( )}φq q
Qn =1  are a set of orthogonal basis functions (over the time interval under 

consideration). Examples include wavelet-based expansions as in [37], polynomial bases 
as in [3], and other possibilities [40].

In discrete prolate spheroidal BEM (DPS-BEM), the i th DPS vector ui := [ui(0), …, 
ui(TB – 1)]T (called Slepian sequence in [61], which is a time-windowed [infinite] DPS 
sequence) is the i th eigenvector of a matrix C [48]: Cui = λiui, where 

 n m

d sn m f T

n m,
  =

−( )





−( )





C
sin 2π

π

is the (n,m)th entry of C and λ1 ≥ λ2 ≥ … ≥ λTB are the eigenvalues of C. The Slepian 
sequences {uq(n)} are orthonormal over the finite time interval [0,TB – 1]. The modeling 
error of the CE-BEM can result in a noticeable floor in BER curves [18]. The polynomial 
basis functions are neither time limited nor band limited, and their square bias varies 
heavily over the range of Doppler spread considered in [61]. DPS sequences are a good 
alternative as a basis set to approximate band-limited channels alleviating the spectral 
leakage of CE-BEM [61]. The (infinite) DPS sequences have their maximum energy con-
centration in an interval with length T while being band limited to [–fdTs, fdTs], where 
u1(n) is the unique sequence that is band limited and most time concentrated, u2(n) is 
the next sequence having maximum energy concentration among the DPS sequences 
orthogonal to u1(n), and so on [48].

Figure 2.2 shows the channel modeling errors resulting from (critically sampled) 
CE-BEM, DPS-BEM, and oversampled CE-BEM (K = 2 or 3) when the underlying chan-
nel is a one-tap time-selective channel following Jakes’ spectrum [22]. The results are 
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FIgure 2.2 Channel modeling error for one-tap Jakes’ channel, TB = 400, TS = 25 µs.
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based on Monte Carlo averaging over one thousand runs with TB = 400, Ts = 25 µs and 
varying Doppler spreads. (The results were obtained following the procedure in [61].) For 
a fixed value of Q, DPS-BEM provides the best fit, whereas CE-BEM (no oversampling) 
yields minor improvements with increasing Q. On the other hand, the basis functions in 
oversampled CE-BEM are not mutually orthogonal, leading to “analytical” difficulties. 
It is interesting to note that there exists a vast literature based on CE-BEM (no oversam-
pling) where the large modeling errors are completely ignored and it is assumed that 
physical channel is accurately described by CE-BEM for both analysis and simulations; 
see, e.g., [1, 24–26, 31, 36, 45].

2.2.2  Time-Invariant Channels

After some processing (matched filtering, for instance), the continuous-time received 
signals are sampled at the baud (symbol) or higher (fractional) rate before being pro-
cessed for channel estimation or equalization. It is therefore convenient to work with an 
equivalent baseband discrete-time white noise channel model [42, section 10.1]. For a 
baud-rate sampled system, the equivalent baseband channel model is given by

 y n h l s n l v n
l

L

( ) ( ) ( ) ( )= − +
=

∑
0

, (2.21)

where {v(n)} is a white Gaussian noise sequence with variance σ2; {s(n)} is the zero-mean, 
independent and identically distributed (i.i.d.), information (symbol) sequence, possi-
bly complex, taking values from a finite set; {h(l)} is an FIR linear filter (with possibly 
complex coefficients) that represents the equivalent channel, including the effects of the 
noise whitening filter; and {y(n)} is the (possibly complex) equivalent baseband received 
signal. A tapped delay line structure for this model is shown in Figure 2.3.

The model (2.21) results in a single-input single-output (SISO) complex discrete-time 
baseband-equivalent channel model. The output sequence {y(n)} in (2.21) is discrete-
time stationary. When there is excess channel bandwidth [bandwidth > 1

2 ×  (baud rate)], 
baud-rate sampling is below the Nyquist rate, leading to aliasing and, depending upon 
the symbol timing phase, in certain cases, causing deep spectral notches in the sampled, 
aliased channel transfer function [15]. Linear equalizers designed on the basis of the 

s(n) s(n−2)
z−1z−1z−1 s(n−L)

× × × ×h(0) h(1) h(2) h(L)

+ + + +

v(n)

y(n)

FIgure 2.3 Tapped delay line model of the frequency-selective but time-non-selective baud-
rate channel.
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baud-rate sampled channel response are quite sensitive to symbol timing errors. Ini-
tially, in the trained case, fractional sampling was investigated to “robustify” the equal-
izer performance against timing errors. The model (2.21) does not apply to fractionally 
spaced samples, i.e., when the sampling interval is a fraction of the symbol duration. 
The fractionally sampled digital communications signal is a cyclostationary signal [9] 
that may be represented as a vector stationary sequence using a time series representa-
tion (TSR) [9, section 12.6]. Suppose that we sample at N times the baud rate with signal 
samples spaced Ts/N seconds apart where Ts is the symbol duration. Then a TSR for the 
sampled signal is given by

 y n h l s n l v n i Ni

l

L

i i( ) ( ) ( ) ( ) ( )= − + ; = , , , ,
=

∑
0

1 2  (2.22)

where now we have N samples every symbol period, indexed by i. Notice, however, that 
the information sequence s(n) is still one sample per symbol. It is assumed that the signal 
incident at the receiver is first passed through a receive filter whose transfer function 
equals the square root of a raised cosine pulse, and that the receive filter is matched to the 
transmit filter. The noise sequence in (2.22) is the result of the fractional-rate sampling 
of a continuous-time filtered white Gaussian noise process. Therefore, the sampled noise 
sequence is white at the symbol rate, but correlated at the fractional rate. Stack N con-
secutive received samples in the nth symbol duration to form an N vector y(n) satisfying

 y h v( ) ( ) ( ) ( )n l s n l n
l

L

= − + ,
=

∑
0

 (2.23)

where h(n) is the vector impulse response of the SIMO-equivalent channel model given 
by

 h( ) ( ) ( ) ( )n h n h n h n
T

N=  ,1 2   (2.24)

and y(n) and v(n) are defined similarly. A block diagram of model (2.22) is shown in 
Figure 2.4.

2.3  Channel Estimation

We first consider three types of channel estimators within the framework of maximizing 
the likelihood function. (Unless otherwise noted, the underlying channel model is given 
by the time-invariant model (2.23).) In general, one of the most effective and popular 
parameter estimation algorithms is the maximum likelihood (ML) method. The class of 
maximum likelihood estimators are optimal asymptotically.
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Let us consider the N vector channel model given in (2.23). Suppose that we have 
collected M samples of the observation Y = [y(TB – 1), …, yT(0)]T. We then have the fol-
lowing linear model:
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 (2.25)

where IN is a N × N identity matrix, s and V are vectors consisting of samples of the input 
sequence {s(n)} and noise {v(n)}, respectively, H is the vector of the channel parameters, 
and a block Hankel matrix has identical block entries on its block antidiagonals.

Let θ be the vector of unknown parameters that may include the channel parameters 
H and possibly the entire or part of the input vector s. Given the probability space that 
describes jointly the noise vector W and possibly the input data vector s, we can then 
obtain, in principle, the probability density function (pdf) of the observation Y. As a 
function of the unknown parameter θ, the pdf of the observation f (Y|θ) is referred to as 
the likelihood function. The maximum likelihood estimator is defined by the following 
optimization:

 θ θ
θ

 = | ,
∈

argmax ( )
Θ

f Y  (2.26)

where Θ defines the domain of the optimization.
While the ML estimator is conceptually simple, and it usually has good performance 

when the sample size is sufficiently large, the implementation of the ML estimator is 
sometimes computationally intensive. Furthermore, the optimization of the likelihood 

s(n)
i.i.d.

{h2(n)} +
y2(n)

v2(n)

{h1(n)} +
y1(n)

v1(n)

{hN(n)} +
yN(n)

vN(n)

FIgure 2.4 Block diagram of the fractionally sampled (N × baud-rate) frequency-selective but 
time-non-selective channel.
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function in (2.26) is often hampered by the existence of local maxima. Therefore, it is 
desirable that effective initialization techniques are used in conjunction with the ML 
estimation.

2.3.1  Training-Based Channel Estimation

The training-based channel estimation assumes the availability of the input vector s (as 
training symbols) and its corresponding observation vector Y. When the noise samples 
are zero mean, white Gaussian, i.e., v is a zero-mean Gaussian random vector with cova-
riance σv

2ITBN, the ML estimator defined in (2.26), with θ = H, is given by

 ˆ argmin ( ) ( ) ,†H T H T
H

= − =Y Ys s
2

 (2.27)

where T †(s) is the Moore-Penrose pseudo-inverse of the T(s) defined in (2.25). This is also 
the classical linear least squares estimator, which can be implemented recursively, and 
it turns out to be the best (in terms of having minimum mean square error) among all 
unbiased estimators, and it is the most efficient in the sense that it achieves the Cramer-
Rao lower bound. Various adaptive implementations can be found in [42].

2.3.1.1  Time-Variant Channels

In case of general time-varying channels represented by (2.8), a simple generalization of 
[4] (see also [36]) is to use a periodic Kronecker delta function sequence as training:

 s n n jP
j

( ) ( )= − .∑δ  (2.28)

With (2.28) as input to model (2.8), one obtains

 y n h n n jP v n
j

( ) ( ) ( )= ; − +∑ , (2.29)

so that if P > L, we have for 0 ≤ i ≤ L,

 y kP i h kP i i v kP i
j

( ) ( ) ( )+ = + ; + + .∑  (2.30)

Therefore, one may take the estimate of h(kP;i) as

 (̂ ) ( ) ( ) ( )h kP i y kP i h kP i i v kP i; = + = + ; + + .  (2.31)

For time samples between kP (k is an integer), linear interpolation may be used to obtain 
channel estimates.
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If we use a CE-BEM representation (2.20), then one directly estimates the time-
invariant parameters hq(l). From (2.8) and (2.20) we have

 y n h l n s n l v n
l

L

q

Q

q q( ) ( ) ( ) ( ) ( )= − +
= =

∑∑
0 1
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Collecting TB samples of the observations Y = [y(TB – 1), …, y(0)]T we have the linear 
model
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Now we have a model similar to (2.25) with a solution similar to (2.27).

2.3.2  Blind Channel Estimation

2.3.2.1  Combined Channel and Symbol Estimation

The simultaneous estimation of the input vector and the channel appears to be ill-posed; 
how is it possible that the channel and its input can be distinguished using only the 
observation? The key in blind channel estimation is the utilization of qualitative infor-
mation about the channel and the input. To this end, we consider two different types of 
maximum likelihood techniques based on different models of the input sequence.

2.3.2.1.1  Stochastic Maximum Likelihood Estimation

While the input vector s is unknown, it may be modeled as a random vector with a 
known distribution. In such a case, the likelihood function of the unknown parameter 
θ = H can be obtained by

 f Y f Y f d( ) ( ) ( ) ,| = | ,∫H Hs s s  (2.35)
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where f (s) is the marginal pdf of the input vector and f (Y|s,H) is the likelihood function 
when the input is known. Assume, for example, that the input data symbol s(k) takes, 
with equal probability, a finite number of values. Consequently, the input data vector s 
also takes values from the signal set {s1, …, sK}. The likelihood function of the channel 
parameters is then given by

 f Y f Y C
Y

i

K

i i

i

K

( ) ( ) ( )| = | , = = −
= =

∑ ∑H H
1 1

s s sProb exp
−−












T H( )
,

si
2

22σ
 (2.36)

where C is a constant, Y2 := YHY, YH is the complex conjugate transpose of the complex 
vector Y, and the stochastic maximum likelihood estimator is given by

 ˆ argmin
( )

H
T H

H
= −

−










.
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∑
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2

22
exp

s

σ
 (2.37)

The maximization of the likelihood function defined in (2.35) is in general difficult 
because f (Y|θ) is nonconvex. The expectation-maximization (EM) algorithm can be 
applied to transform the complicated optimization to a sequence of quadratic optimiza-
tions. Kaleh and Vallet [23] first applied the EM algorithm to the equalization of com-
munication channels with input sequence having the finite alphabet property. By using a 
hidden Markov model (HMM), they developed a batch (off-line) procedure that includes 
the so-called forward and backward recursions. Unfortunately, the complexity of this 
algorithm increases exponentially with the channel memory.

To relax the memory requirements and facilitate channel tracking, on-line sequential 
approaches have been proposed in [28] for input with finite alphabet properties under an 
HMM formulation. Given the appropriate regularity conditions and a good initializa-
tion guess, it can be shown that these algorithms converge to the true channel value.

2.3.2.1.2  Deterministic Maximum Likelihood Estimation

The deterministic ML approach assumes no statistical model for the input sequence {s(k)}. 
In other words, both the channel vector H and the input source vector s are parameters 
to be estimated. When the noise is zero-mean Gaussian with covariance σv T NB

2I , the ML 
estimates can be obtained by the nonlinear least squares optimization

 { ˆ ˆ} argmin ( )H T H, = − .s sY
2

 (2.38)

The joint minimization of the likelihood function with respect to both the channel 
and the source parameter spaces is difficult. Fortunately, the observation vector Y is lin-
ear in both the channel and the input parameters individually. In particular, we have
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 Y V F V= + = +T H H( ) ( )s s , (2.39)

where
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is the the so-called filtering matrix. We therefore have a separable nonlinear least squares 
problem that can be solved sequentially:

 ˆ ˆ argmin min ( )H T H
H

,{ } = −{ }s s
s

Y
2

 (2.41)

 = −{ }.argmin min ( )
H

H
s

sY F
2

 (2.42)

If we are only interested in estimating the channel, the above minimization can be 
rewritten as

 ˆ argmin ( ( ) ( )) argm†

( )

H H F H
H

= − =
H

P

F YI  
2

iin ( )
H

P H Y
2
,  (2.43)

where P(H) is a projection transform of Y into the orthogonal complement of the range 
space of F(H), or the noise subspace of the observation, and F †(H) denotes the pseudo-
inverse of F(H). Discussions of algorithms of this type can be found in [50].

Similar to the HMM for the statistical maximum likelihood approach, the finite 
alphabet properties of the input sequence can also be incorporated into the determin-
istic maximum likelihood methods. These algorithms, first proposed by Seshadri [47] 
and Ghosh and Weber [12], iterate between estimates of the channel and the input. At 
iteration k, with an initial guess of the channel H(k), the algorithm estimates the input 
sequence s(k) and the channel H(k+1) for the next iteration by

 s s
s

( ) ( )argmin ( )k kY= −
∈S

F H
2

 (2.44)

 H T H( ) ( )argmin ( )k

H

kY+ = − ,1
2

s  (2.45)

where S is the (discrete) domain of s. The optimization in (2.45) is a linear least squares 
problem, whereas the optimization in (2.44) can be achieved by using the Viterbi 
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algorithm [42]. Seshadri [47] presented blind trellis search techniques. Reduced-state 
sequence estimation was proposed in [12]. Raheli et al. proposed a per-survivor process-
ing technique in [44].

The convergence of such approaches is not guaranteed in general. Interesting exam-
ples have been provided in [5] where two different combinations of H and s lead to the 
same cost:

 Y −T H( ) .s
2

2.3.2.2  The Methods of Moments

Although the ML channel estimator discussed in section 2.3.2.1 usually provides better 
performance, the computation complexity and the existence of local optima are the two 
major difficulties. Therefore, simpler approaches have also been investigated.

2.3.2.2.1  SISO Channel Estimation

For baud-rate data, second-order statistics of the data do not carry enough informa-
tion to allow estimation of the channel impulse response as a typical channel is non-
minimum phase. On the other hand, higher-order statistics (in particular, fourth-order 
cumulants) of the baud-rate (or fractional-rate) data can be exploited to yield the chan-
nel estimates to within a scale factor.

Given the mathematical model (2.21), there are two broad classes of direct approaches 
to channel estimation, the distinguishing feature among them being the choice of the 
optimization criterion. All of the approaches involve (more or less) a least squares error 
measure. The error definition differs, however, as follows:

Fitting error•  : Match the model-based higher-order (typically fourth-order) 
statistics to the estimated (data-based) statistics in a least squares sense to 
estimate the channel impulse response, as in [54] and [55], for example. This 
approach allows consideration of noisy observations. In general, it results in a 
nonlinear optimization problem. It requires availability of a good initial guess 
to prevent convergence to a local minimum. It yields estimates of the channel 
impulse response.
Equation error•  : This is based on minimizing an “equation error” in some equa-
tion that is satisfied ideally. The approaches of [17] and [60] (among others) fall 
in this category. In general, this class of approaches results in a closed-form 
solution for the channel impulse response so that a global extremum is always 
guaranteed provided that the channel length (order) is known. These approaches 
may also provide good initial guesses for the nonlinear fitting error approaches. 
Quite a few of these approaches fail if the channel length is unknown.

Further details may be found in [14, 52, 56] and references therein.

2.3.2.2.2  SIMO Channel Estimation

Here we will concentrate upon second-order statistical methods, but first a few com-
ments regarding indirect SIMO channel estimation. As noted in section 2.1, linear 
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equalizers designed on the basis of the baud-rate sampled received signal (see Figure 2.5 
for a block diagram) are quite sensitive to symbol timing errors [15]. Therefore, fraction-
ally spaced linear equalizers (typically with twice the baud-rate sampling: oversampling 
by a factor of two) are quite widely used to mitigate sensitivity to symbol timing errors. 
A fractionally spaced equalizer (FSE) in the linear transversal structure has the output

 ˆ( ) ( ) ( ) ,s k c n y k n
n N

N

i

N

i i

e

e

= −














=− =

∑ ∑
1

 (2.46)

where { ( )}c ni n N
n N

e
e

=−
=  are the (2Ne + 1) tap weight coefficients of the i th subequalizer. Note 

that the FSE outputs data at the symbol rate. Similar to the SISO case, various crite-
ria and cost functions exist to design the linear equalizers in both batch and recursive 
(adaptive) form.

Linear equalizers do not perform well when the underlying channels have deep spec-
tral nulls in the passband. Several nonlinear equalizers have been developed to deal with 
such channels. Two effective approaches are:

Decision feedback equalizer •  (DFE) is a nonlinear equalizer that employs previ-
ously detected symbols to eliminate the ISI due to the previously detected sym-
bols on the current symbol to be detected. The use of the previously detected 
symbols makes the equalizer output a nonlinear function of the data. DFE can 
be symbol spaced or fractionally spaced. 
Maximum likelihood sequence detector •  estimates the information sequence to 
maximize the joint probability of the received sequence conditioned on the 
information sequence.

A detailed discussion may be found in [42].
Returning to the second-order statistical methods, for single-input multiple-output 

vector channels the autocorrelation function of the observation is sufficient for the iden-
tification of the channel impulse response up to an unknown constant [51, 53], provided 
that the various subchannels have no common zeros. This observation led to a number 
of techniques under both statistical and deterministic assumptions of the input sequence 
[50]. By exploiting the multichannel aspects of the channel, many of these techniques 
lead to a constrained quadratic optimization:

y(k + Ne) y(k + Ne − 2)

c(–Ne + 2)c(–Ne + 1)c(–Ne)

z−1z−1z−1 y(k − Ne)

× × × ×c(Ne)

+ + +
(k)

FIgure 2.5 Structure of a baud-rate linear transversal equalizer.
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 ˆ argmin ( )H H H
H

=
|| ||=1

HQ Y , (2.47)

where Q(Y) is a positive definite matrix constructed from the observation. Asymptoti-
cally (as either the sample size increases to infinity or the noise variance approaches 
zero), these estimates converge to true channel parameters.

2.3.3  Semiblind Approaches

Semiblind approaches utilize a combination of training-based and blind approaches. 
Here we present a brief discussion about the idea and refer the reader to a recent survey 
[7] for details. The objective of semiblind channel estimation (and equalization) is to 
exploit the information used by blind methods as well as the information exploited by 
the training-based methods. Semiblind channel estimation assumes additional knowl-
edge of the input sequence. Specifically, part of the input data vector is known. Both 
the statistical and deterministic maximum likelihood estimators remain the same 
except that the likelihood function needs to be modified to incorporate the knowledge 
of the input. However, semiblind channel estimation may offer significant performance 
improvement over either the blind or the training-based methods, as demonstrated in 
the evaluation of the Cramer-Rao lower bound in [7].

There are many generalizations of blind channel estimation techniques to incorpo-
rate known symbols. In [6], Cirpan and Tsatsanis extended the approach of Kaleh and 
Vallet by restricting the transition of the hidden Markov model. In [30], knowledge of 
the known symbol is used to avoid the local maxima in the maximization of the likeli-
hood function. A popular approach is to combine the objective function used to derive 
the blind channel estimator with the least squares cost in the training-based channel 
estimation. For example, a weighted linear combination of the cost for blind channel 
estimator and that for the training-based estimator can be used [16, 29, 33].

2.3.4  Superimposed Training-Based Approaches

In the superimposed training (hidden pilots)-based approach, one takes

 s n b n c n( ) ( ) ( )= + , (2.48)

where {b(n)} is the information sequence and {c(n)} is a nonrandom periodic training 
(pilot) sequence. Exploitation of the periodicity of {c(n)} allows identification of the 
channel without allocating any explicit time slots for training, unlike traditional train-
ing methods. There is no loss in data transmission rate. On the other hand, some useful 
power is wasted in superimposed training that could have otherwise been allocated to 
the information sequence. This lowers the effective signal-to-noise ratio (SNR) for the 
information sequence and affects the bit error rate (BER) at the receiver.

Superimposed training-based approaches have been discussed in [19, 20] and [38] for 
SISO systems. A block transmission method has been proposed in [10] and [11] where 
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a data-dependent component is added to the superimposed training such that interfer-
ence due to data (information sequence) is greatly reduced in channel estimation at the 
receiver. This method is applicable to time-invariant channels only, and it requires “data 
blocking” for block transmissions and insertion of a cyclic prefix in each data block. Its 
extension to a class of time-variant channels is given in [59]. The UTRA specification 
for third-generation (3G) systems [21] allows for a spread pilot (superimposed) sequence 
in the base station’s common pilot channel, suitable for downlinks. Periodic superim-
posed training for channel estimation via first-order statistics for SISO systems has been 
discussed in [39, 41, 57, 58, 63]. In [8], performance bounds for training and superim-
posed training-based semiblind SISO channel estimation for time-varying flat fading 
channels have been discussed.

Suppose that the superimposed training sequence c(n) = c(n + mP) ∀m,n is a non-
random periodic sequence with period P. Since c(n) is P periodic, we have

 c n c e n m P
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Suppose that we use the Slepian (DPS) sequences uq(n) (≡ϕq(n)) in the BEM. Then, by 
(2.20) and (2.49),
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It follows that
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α , (2.51)

where {e(n)} is a zero-mean random sequence.
Define the cost function
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Choose dmq’s to minimize J. We must have
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1 0 1 D  ,  (2.56)

 H h h H Hl

TT
Q
T HH

L
Hl l:= ( ), , ( )



 , := , ,






1 0 H  ,  (2.57)

 C := , ,( )⊗ .−






diag c cP NQ0 1 V I  (2.58)

By the definition of dmq in (2.56), it then follows that

 CH D= .  (2.59)

It is shown in [57] that if P ≥ L + 1, rank(C) = NQ(L + 1). Hence, we can determine the 
hq(l)’s uniquely by using the estimates of dmq’s.

Define D̂ as in (2.56) with dmq replaced with d̂mq, and similarly define G as in (2.56) 
with dmq replaced with gmq. Then (2.54) leads to

 NΨ ⊗( ) =I D̂ G , (2.60)

where the entries of the PQ × PQ matrix Ψ are (m,m′ = 0, 1; …, P – 1, q,q′ = 1, 2, …, Q)
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mQ q m Q q

n
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+ , ′ + ′
=

−

′
−  = ( ) ( )∑ ′Ψ

0

1
α α(( ) .n  (2.61)

The estimate of D is given by

 D̂ G= ⊗( ) .−Ψ 1
NI  (2.62)

By (2.59) and (2.78) we have the channel coefficient estimate

 ˆ ˆ†H C D C C C G= = ( ) ⊗( ) .
− −1 1H H

NΨ I  (2.63)

The channel estimate is acquired by regenerating the DPS-BEM:

 ˆ ˆh hn l l u n
q

Q

q q;( ) = ( ) ( ).
=

∑
1

 (2.64)

remark 1: Using the fact that the (infinite) DPS sequences are band limited to the nor-
malized frequency range [–fdTs, fdTs], the time-limited DPS sequences, obtained by rec-
tangular windowing over 0 ≤ n ≤ T – 1, approximately satisfy

 
n

T

q q
j nu n u n e m m q qm m

=

−

′
−∑ ( ) ( ) ≈ ′−( ) ′−(′( )

0

1
α α δ δ )),  (2.65)

if fdTs  1/P and T are multiples of P or if T is large, so that Ψ ≈ IPQ. An estimate d̂mq  of 
dmq, following (2.54) and (2.65), is given as

 d̂ ymq

n

T

q
j nn u n e m= ( ) ( ) .

=

−
−∑

0

1
α  (2.66)

The estimation of the channel coefficients (2.63) is then given by

 ˆ ˆH C C C D= ( ) .
−1H H  (2.67)

remark 2: As noted in [57], if the mean of the noise v(n) is unknown, say

 E nv m( ){ } = ,  (2.68)
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one should omit the first row (corresponding to α0) of V in (2.55) (denote the resulting 
matrix by Ṽ), and block D0 from D in (2.56) (denote the resulting matrix by D̃). Define

   C diag c cP NQ:= { }( )⊗ .−1 1 V I  (2.69)

Then we have C̃H = D̃  and

 ˆ ( )
ˆ

H C C C D= ,−   H H1  (2.70)

where D̂̃ follows from D̃ by using estimate (2.66). For identifiability, we now need P ≥ L + 
2. All our subsequent results hold true if appropriate substitutions are used.

2.4  Adaptive Channel Estimation

2.4.1  Block-Adaptive Channel Estimation Using CE-BEM

Here we summarize the time-multiplexed training approach of [36]. In [36] each trans-
mitted block of symbols { ( )}s n n

TB
=

−
0

1  is segmented into P subblocks of time-multiplexed 
training and information symbols. Each subblock is of equal-length lb symbols with ld 
information symbols and lt training symbols (lb = ld + lt). If s denotes a column vector 
composed of { ( )}s n n

TB
=

−
0

1, then s is arranged as

 s b c b c b c:= − −











TT T T T
P
T

P
T

0 0 1 1 1 1
 ,  (2.71)

where bp (p = 1, 0, … P – 1) is a column of ld information symbols and cp is a column of 
lt training symbols. We clearly have TB = Plb. Given (2.69) and CE-BEM (2.15), [36] has 
shown that (2.77) is an optimum structure for K = 1 with lt = 2L + 1, P ≥ Q, and

 c p

T

L
T

L
T:= , > .







0 0γ γ 0  (2.72)

Thus, given a transmission block of size TB, (2L + 1)P symbols have to be devoted to 
training and the remaining TB – (2L + 1)P are available for information symbols.

Let np := plb + ld + L (p = 0, 1, … P – 1) denote the location of (nonzero) γ ’s in the 
optimum cp’s in the P subblocks. Then by design, received signal (assuming timing 
synchronization)

 y n l h n l l v n lp p p( ) ( ) ( )+ = + ; + +γ  (2.73)

for l = 0, 1, …, L. Using (2.15) in these y(np + l)’s, one can uniquely solve for hq(l)’s via a 
least squares approach. The channel estimates are given by the CE-BEM (2.15) using the 
estimated BEM coefficients.
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2.4.2  Adaptive Channel Estimation via Subblock Tracking

Suppose that we collect the received signal over a time interval of T symbols. We wish to 
estimate the time-variant channel using a channel model and time-multiplexed training 
(such as that discussed in section 2.4.1 and [36]), and subsequently using the estimated 
channel, estimate the information symbols. For CE-BEM, if we choose T as the block 
size, then in general the Q value will be very high, requiring estimation of a large num-
ber of parameters, thereby degrading the channel estimation performance. If we divide 
T into blocks of size TB, and then fit CE-BEM block by block, we need smaller Q; how-
ever, estimation of hq(l)’s is now based on a shorter observation size of TB symbols, which 
might also degrade channel estimation performance. Thus, one has to strike a balance 
between estimation variance and block size. Such considerations do not apply to the AR 
channel model fitting. In the sequel, we propose a novel subblock tracking approach to 
CE-BEM channel estimation where we update estimates of hq(l)’s every subblock based 
on all of the past training symbols.

By exploiting the invariance of the coefficients of CE-BEM over each block, hence each 
of the P subblocks per block of length TB symbols, we seek subblock-wise tracking of the 
BEM coefficients of the doubly selective channel. Consider two overlapping blocks that 
differ by just one subblock: blocks with n = m, m + 1, …, m + TB – 1, where m = m0 for the 
past block and m = m0 + lb for the current block. If the two blocks overlap so significantly, 
one would expect the BEM coefficients to vary only a little from the past block to the 
current overlapping block. Therefore, rather than estimate hq(l)’s anew with every non-
overlapping block, as in section 2.4.1 and [36], we propose to track the BEM coefficients 
subblock by subblock using a first-order AR model for their variations.

Stack the channel coefficients in (2.15) into vectors

 hl

T

Qh l h l h l:= ( ) ( ) ( )



 ,1 2   (2.74)

 h h h h:= 









TT T
L
T

0 1   (2.75)

of size Q and M := Q(L + 1), respectively. The coefficient vector in (2.75) for the pth sub-
block (p = 0, 1, …) will be denoted by h(p). We assume that the BEM coefficients over 
each subblock are Markovian: a simplified model is given by the first-order AR process, 
i.e.,

 h h wp p p( ) = −( )+ ( )α 1 , (2.76)

where α is the AR coefficient, and the driving noise vector w(p) is zero-mean com-
plex Gaussian with variance σw M

2 I . If the channel is stationary and coefficients 
hq(l) are independent (as assumed in [36]), then by (2.76), σ σ αw h Q2 2 21= −( | | )/  with 
σh E h n l h n l2 := ; ;∗{ ( ) ( )}. Since the coefficients evolve slowly, we have α ≈ 1 (but α < 1 for 
tracking).
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Under this formulation we do not have a strict definition of the block size TB because, 
although we still use (2.15) for any n, we allow hq(l)’s to change subblock by subblock 
based on the training symbols.

2.4.2.1  Subblock Tracking Using Kalman Filtering

Define ε(n) := [e–jω1n e–jω2n … e–jωQn]T. If at time n the pth subblock is being received, by 
(2.63), (2.15)–(2.19), and (2.74) and (2.75), the received signal can be written as

 y n n n p v nT H

L( ) = ( ) ⊗ ( )



 ( )+ ( )+s I h1 ε , (2.77)

where s(n) := [s(n) s(n – 1) … s(n – L)]T. Treating (2.76) and (2.77) as the state and the 
measurement equations, respectively, Kalman filtering can be applied to track the coeffi-
cient vector h(p) for each subblock.

We will employ the time-multiplexed training scheme proposed in [36] (see section 
2.4.1), where each subblock (of equal-length lb symbols) consists of a data session (of 
length ld symbols) and a succeeding training session (of length lb = 2L + 1 symbols). 
Using (2.73), at time np + l (p = 0, 1, … and l = 0, 1, …, L)

 y n l E n l p v n lp
H

p l p+( ) = +( ) ( )+ +( ).γ h  (2.78)

We intend to use only training sessions for subblock-wise channel tracking. Defining
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by (2.78), we have

 y h vp p p p( ) = ( ) ( )+ ( ).γΨ  (2.79)

Using this optimal training scheme, the measurement equation (2.77) is now simpli-
fied as (2.79). We have obtained a linear discrete-time system represented by (2.76) and 
(2.79). Kalman filtering is applied to track the channel BEM coefficients via the follow-
ing steps [49]:
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 1. Initialization:

 ĥ r I− |−( ) = , − |−( ) = ;1 1 0 1 1 2
M h w Mσ

 2. Kalman recursion for p = 0, 1, …

Time update:• 

 

ˆ ˆh h

r r

p p p p

p p p ph h

| −( ) = − | −( ),

| −( ) = − | −

1 1 1

1 1
2

α

α 11 2( )+ ;σw MI

Kalman gain:• 

 
r r I

K r

η γ σp p p p p

p p

h
H

v L

h

( ) = ( ) | −( ) ( )+ ,

( ) =

+
2 2

11Ψ Ψ

|| −( ) ( ) ( );−p p pH1 1Ψ rη

Measurement update:• 

 

ˆ ˆ ˆh h K y hp p p p p p p p p|( ) = | −( )+ ( ) ( )− ( ) | −( )
1 1γΨ


,

|( ) = − ( ) ( )



 | −( )r I K rh hp p p p p pγ Ψ 1 ,

 where ĥ(p|m) is the estimate of h(p) given the observations {y(0), y(1), …, 
y(m)}, and rh(p|m) is the error covariance matrix of ĥ(p|m), defined as

 r h h h hh p m E p m p p m p|( ) := |( )− ( )



 |( )− ( )


ˆ ˆ 










.
H

Now we generate the channel for the entire pth subblock by the estimate ĥ(p|p) via the 
CE-BEM (2.15) as

 (̂ ) ˆh n l n p pH
l; = ( ) |( )ε h  (2.80)

for n = plb, plb + 1, …, (p + 1)lb – 1. The definition of ĥl(p|p) is similar to (2.74).
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2.4.2.2  Kalman Detector for Equalization

The channel estimate given by (2.80) is fed into an equalizer for symbol detection. 
Another Kalman filter, together with a quantizer, acts as the symbol detector at the 
receiver end. The state and the measurement equations are now given by

 s sd dn n s n s n( ) = −( )+ ( )+ ( ),Φ Γ Γ1   (2.81)

 y n n n v nd
T

d( ) = ( ) ( )+ ( ),h s  (2.82)

where

 

sd

T
n s n s n s n d

s n E s n

( ) := ( ) −( ) −( )



 ,

( ) := ( ){ }

1 

,, ( ) := ( ) − ( ),

:= ,


















s n s n s n

d
T

d d

Φ 0 0
0I

ΓΓ := ,

( ) := ;( ) ;( )











T

d
T

d

T
n h n h n h n

1 0

0 1 h ˆ ˆ ˆ ;;( ) −












L d L0 ,

where integer d ≥ L; it will also be the equalization delay. Assume data symbols are zero 
mean and white. If s(n) is a data symbol, we have s(n) = 0, s̃(n) = s(n); if s(n) is a training 
symbol, s(n) = s(n), s(n) = 0. Details of Kalman filtering of the system described by (2.81) 
and (2.82) can be found in [34].

2.4.3  Symbol-Adaptive Joint Channel Estimation  
and Data Detection

Representative approaches in this category are [27, 34] and references therein. A Gauss-
Markov model for channel variations (typically an autoregressive model) is coupled 
with a state-space model for received data to form an augmented state-space model with 
nonlinear measurement equation. This results in a nonlinear state estimation problem. 
In [27] a finite-length minimum mean square error (MMSE) DFE is used during non-
data-aided periods to generate hard decisions. Reference [34] presents a low-complexity 
turbo equalization receiver for coded signals where a nonlinear Kalman filtering–based 
adaptive equalizer is coupled with a soft-in soft-out decoder. These approaches work well 
so long as the channel does not fade too fast.
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2.5  Simulation Examples

In this section we present two simulation examples to illustrate some of the approaches 
to channel estimation. In both examples a random time- and frequency-selective Ray-
leigh fading channel is considered. We take L = 2 (three taps) in (2.63), and h(n;l) are 
zero-mean complex Gaussian with variance σh L2 1 1= +/( ).  For different l’s, h(n;l)’s are 
mutually independent and satisfy Jakes’ model [22]. To this end, we simulated each sin-
gle tap following [62] (with a correction in the appendix of [61]).

We consider a communication system with carrier frequency of 2 GHz, data rate of 
40 kBd (kilo-Bauds), therefore Ts = 25 μs, and a varying Doppler spread fd in the range 
of 0 to 400 HZ, or the normalized Doppler spread fdTs from 0 to 0.01 (corresponding 
to a maximum mobile velocity from 0 to 216 km/h). The additive noise was zero-mean 
complex white Gaussian. The (receiver) SNR refers to the average energy per symbol 
over one-sided noise spectral density. The time-multiplexed training scheme of [36] 
described in section 2.4.1 is adopted, where during data sessions the information 
sequence is modulated by binary phase-shift keying (BPSK) with unit power. The train-
ing session is described by (2.72) with γ = +2 1L  so that the average symbol power of 
training sessions is equal to that of data sessions.

We evaluate the performance of various approaches by considering the normal-
ized channel mean square error (NCMSE) and the bit error rate (BER). The NCMSE is 
defined as

 NCMSE: =
;( )− ;

= =

−

=
∑ ∑ ∑

i

M

n

T

l

L
i ir

n l n
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n l
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L
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= =
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=
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1 0

1
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2
h( )

,

where h(i)(n;l) is the true channel and ĥ(i)(n;l) is the estimated channel at the i th run, 
among total Mr runs.

2.5.1  Example 1

Here we consider block-adaptive channel estimation and restrict our attention to a 
single block. We compare superimposed training-based approaches with time-multi-
plexed training-based approaches. The superimposed training sequence was picked as 
a periodic repetition of a length 7 m-sequence (maximal length pseudo-random binary 
sequence) {1,–1,–1,1,1,1,–1}. In the simulations, the average transmitted power σc

2 in c(n) 
was 0.3 of the power in b(n), leading to a training-to-information power ratio TIR := 
σc

2/ σb
2 = β/(1 – β) = 0.3. We consider both critically sampled CE-BEM and DPS-BEM for 

channel modeling. For comparison, we consider a CE- or DPS-BEM-based periodically 
placed time-multiplexed training with zero padding, following the design of [36]. We 
took a training subblock of size 2L + 1 = 5 symbols with the recommended structure 

 0 0 2 1 0 02 2, , +( ) + , ,{ }







L b cσ σ ,
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which follows an information data block of length 18 leading to a subblock of 23 sym-
bols. This subblock was repeated over a record length of 418 symbols with a total of 
16 subblocks. Thus, the training-to-information bit and power ratios are both 0.3 (the 
amplitude of the single nonzero training bit was picked to achieve this power ratio).

The results of our simulation averaged over five hundred runs are shown in Figures 2.6, 

superimposed training schemes (denoted as SI in the figures), including the first-order 
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FIgure 2.6 BER versus SNR for fd = 100 Hz.
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FIgure 2.7 MSE versus SNR for fd = 100 Hz.
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 statistics-based estimator (denoted as step 1 in the figures), and the DML approach after 
one, two, and three iterations (denoted as 1st iter., 2nd iter., and 3rd iter. in the figures), 
and TM training approaches (denoted as TM in the figures). From the four figures, we 
can see that after iterations, superimposed training-based estimation and detection per-
formances improve a lot, because the information data that are viewed as interference 
by the first-order statistics-based estimator are now exploited to enhance the channel 
estimation for the next iteration. Therefore, the self-interference is effectively removed 
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FIgure 2.8 BER versus SNR for fd = 200 Hz.
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FIgure 2.9 MSE versus SNR for fd = 200 Hz.
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after iterations. The DML approach provides comparable error performance with TM 
training, but at a higher data transmission rate. The valuable bandwidth resources can 
thus be saved.

2.5.2  Example 2

Here we consider adaptive channel estimation at block-, subblock-, and symbol-adaptive lev-
els using time-multiplexed training. Four estimation and tracking schemes are compared:

 1. The block-adaptive channel estimation in [36] (see section 2.4.1). We consider two 
models corresponding to T = 200 and 400, respectively, so that Q = 5 and 9 by 
(2.17). In the figures, this scheme is denoted by BA.

 2. The channel tracking scheme in [35] using the first-order AR model, where the 
time-varying channel is assumed to follow (2.12). Channel tracking is performed 
at training sessions only. For data sessions, the receiver updates the channel via 
h(n;l) = αch(n – 1;l). We assume that only the upper bound of the Doppler spread 
is known. Then by (2.13) and (2.14) and Jakes’ model, αc = J0(2πfdTs) = 0.999 for 
fdTs = 0.01, where J0(·) denotes the zero-th Bessel function of the first kind. This 
scheme is denoted by AR(1)-KF in the figures.

 3. We also compare the approach of joint channel estimation and data detection via 
extended Kalman filtering in [34]. For fairness, the Turbo equalization procedure 
in [34] is omitted. The AR parameter of the channel also follows (2.13) and (2.14), 
as suggested by [34]. This scheme is denoted by Joint-KF.

 4. Our proposed subblock-wise tracking using CE-BEM, which is denoted by 
SUBBLOCK. We also take T = 200 and 400 for two different settings of CE-BEM, 
and Q = 5 and 9 correspondingly.

The BERs for the schemes of BA, AR(1)-KF, and SUBBLOCK are evaluated by employ-
ing the Kalman detector described in section 2.4.2.2 with delay d = 5, using the channel 
estimates obtained by each scheme. In each run, a symbol sequence of length 5,000 is 
generated and fed into a random doubly selective channel. The first two hundred symbols 
are discarded in evaluations. All the simulation results are based on five hundred runs.

In Figures 2.10 and 2.11, the performances of the four schemes over different Dop-
pler spreads fd are compared. We set SNR = 20 dB, lt = 2L + 1 = 5, and ld = 15 symbols, 
so that 25% of the transmitted symbols are dedicated to training. For the BA scheme, 
we use the oversampled CE-BEM with TB = T/2 and K = 2 in order to suppress spectral 
leakage. For our SUBBLOCK scheme, we take α = 0.99 for T = 200, and α = 0.995 for T = 
400. Since more unknown parameters (BEM coefficients) are involved in SUBBLOCK, 
and therefore result in higher estimation variance, SUBBLOCK is slightly inferior to 
AR(1)-KF for slow-fading channels. As fd increases, SUBBLOCK gradually outperforms 
the other three schemes, since the time variations of the channel have been well cap-
tured in CE-BEM. For the BA scheme, more basis functions do not necessarily translate 
into better performance since estimation variance also increases, whereas this strategy 
can well improve the performance of SUBBLOCK since all past data are implicitly uti-
lized in Kalman filtering–based subblock tracking. Figures 2.12 and 2.13 compare the 
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four schemes under different SNRs: results similar to those in Figures 2.10 and 2.11 are 
observed.

In Figures 2.14 and 2.15, longer data sessions are used to represent a more efficient 
transmission scenario, where we take ld = 35 symbols (12.5% symbols are now devoted 
to training sessions). We now let α = 0.94 for T = 200, and α = 0.97 for T = 400 for 
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FIgure 2.10 NCMSE versus fd for SNR = 20 dB, ld = 15, lt = 5, lc = 5, lb = 5, TB = T/K, and 
K = 2.
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FIgure 2.11 BER versus fd for SNR = 20 dB, ld = 15, lt = 5, lb = 20, TB = T/K, and K = 2.
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SUBBLOCK. For the BA scheme, an oversampled CE-BEM is not possible for T = 200, 
and we take TB = T for the two models. Comparing Figure 2.14 with Figure 2.12, we 
observe that the spectral leakage has worsened the channel estimation in BA (note the 
floors of the two BA curves in Figure 2.14), and thus the curves for symbol detection. 
Our SUBBLOCK maintains a satisfactory performance, while the performances of the 
schemes of AR(1)-KF and Joint-KF have severely deteriorated.
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2.6  Conclusions

A review of various approaches to adaptive channel estimation for wireless mobile 
systems was presented. Emphasis was on linear baseband-equivalent models with a 
tapped delay line structure, and both time-invariant and time-variant (doubly-selective) 
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models were discussed. Emphasis was on basis expansion modeling for time-variant 
channels where the basis functions are related to the physical parameters of the channel 
(such as Doppler and delay spreads). Channel modeling was followed by a discussion of 
various approaches to channel estimation, including training-based approaches, blind 
approaches, semiblind approaches and superimposed training-based approaches, and 
various approaches to channel adaptation. In the training-based approach a sequence 
known to the receiver is transmitted in the acquisition mode. In blind approaches no 
such sequence is available (or used), and the channel is estimated based solely on the 
noisy received signal exploiting the statistical and other properties of the information 
sequence. Semiblind approaches utilize a combination of training-based and blind 
approaches. In the superimposed training-based approaches a periodic (nonrandom) 
training sequence is arithmetically added (superimposed) at a low power to the infor-
mation sequence at the transmitter before modulation and transmission. Channel 
adaptaion can be at the block level suitable for block transmissions, or the symbol-by-
symbol level suitable for serial transmissions. Some of the approaches were illustrated 
via simulations.
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3.1  Introduction

The main goal of modern communications systems is to make universal high-speed 
access to information a reality. Under nearly any realizable scenario, the end user in 
such a system is free of tethers, thus making robust high-speed data transfer across the 
wireless channel a topic of extreme importance. However, the wireless channel presents 
a number of challenges. In particular, the wireless signal experiences [55]:

 1. Path loss: The signal attenuates with distance from the transmitter.
 2. Shadowing: Large objects between the transmitter and receiver can obstruct the 

radio signal.
 3. Multipath fading: Reflections from objects in the environment can add construc-

tively or destructively at the receiver.
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Since all three of these effects change with time or position, they cannot be known at the 
time that the system is designed. Thus, if no form of adaptation is performed while the 
system is operating, the system must be designed to in some sense deal with the worst 
case, which can be very expensive in terms of system resources. For example, if all users 
in a cellular system have to assume worst-case path loss and shadowing (e.g., behind a 
large building at the very edge of the cell) regardless of their location, they will trans-
mit at maximum power, thus maximizing battery usage and the interference to other 
users. Therefore, wireless system adaptation has been a topic of critical interest in recent 
years.

Wireless link adaptation can be defined as shown in Figure 3.1: any altering of the 
parameters at the transmitter based on information about the current link state. Note that 
link state will be defined very generally; in particular, in addition to wireless channel con-
ditions (path loss, shadowing, multipath fading), user data requirements will be included 
in the definition. Methods of adaptation can be classified by the type of adaptation per-
formed (power, code rate, modulation, etc.) and the timescale of that adaptation.

The timescale of the adaptation depends on the link state phenomena for which mea-
surements are provided to the adaptation algorithm. User data rate requirements, path 
loss, and shadowing change at a timescale that is long relative to the symbol rate. This 
makes measurements of such phenomena relatively robust [26, 64], particularly at high 
signal-to-noise ratios (SNRs), and has resulted in widespread penetration into current 
and pending systems of slow adaptations, such as power control [45, 66, 68] and data 
rate adaptation through variable spreading, code rate, or code aggregation [46]. Thus, 
throughout this chapter, it will be largely assumed that the measurements of the path 
loss and shadowing are accurate and known at both the transmitter and receiver, thus 
yielding a wireless system with a known given average received signal power but experi-
encing variable multipath fading.

Multipath fading is caused by the arrival at the receiver of many signal reflections, the 
superposition of which causes the instantaneous received signal power to vary widely 
[57, chapter 4] as described in section 3.2. Since significant nulls can occur, this signal 
fading is one of the most difficult problems to deal with in wireless communications 
systems. In particular, when the received power drops too low, a burst of bit errors can 
occur, and such bursts tend to dominate the error probability—even if the occurrence 

Encoder/Modulator
s(t)(bi)

X

Channel Receiver

FIgure 3.1 General adaptation framework: The transmitter sets parameters based on –X̂, which 
contains information about the channel state, while forming the transmitted signal s(t) from the 
information bit sequence (bi). Note that –X̂ can take many forms: path loss/shadowing estimates 
[47, 68, 70], number of errors corrected in previous packets [54, 55], explicit multipath fading 
estimates [31, 32], etc.
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of such system power drops is relatively unlikely. This results in a significantly higher 
required average received SNR for a given level of performance relative to systems oper-
ating over additive white Gaussian noise (AWGN) channels [53, p. 820]. However, unlike 
the effects of path loss and shadowing, which vary slowly and thus limit the ability of the 
system designer to average their effects over time, multipath fading varies relatively rap-
idly with time, position, and frequency. Thus, in many scenarios, well-designed systems 
achieve diversity, allowing them to average effectively over the effects of the multipath 
fading and thus significantly reduce its impact [53, p. 821]—even if there is no channel 
knowledge at the transmitter. For many systems, such nonadaptive solutions come at the 
cost of system latency or complexity, which motivates the consideration of transmission 
schemes that employ measurements of the multipath fading values.

Since this chapter will largely focus on the design of techniques for adaptation based 
on measurements of the multipath fading, it is important to understand the applicabil-
ity of such adaptation. Thus, the gains from having knowledge of the channel at the 
transmitter will be a key topic discussed, and as motivated in the previous paragraph, it 
is often a question of the system complexity and latency allowable. To make this more 
concrete, consider the simple information theoretic example drawn from [16, p. 188], 
which is shown in Figure 3.2. First, to see how this represents a fading channel, consider 
a binary transmission system for which there are essentially no errors when the signal 
is transmitted over an AWGN channel (i.e., no fading); a simple example is coherently 
detected binary phase-shift keying (BPSK) with a relatively high SNR [53, p. 820]. Now 
assume that a BPSK system is operating over a discrete-valued fading channel described 
as follows. First, the state of the channel is independent for separate channel uses, which 
implies that a deep interleaver [53, p. 467] is employed. For a given channel use:

 1. With probability p, the transmitted signal is multiplied by zero (hence disappears).
 2. With probability 1 – p, the transmitted signal is multiplied by α = 1/(1 – p) (hence 

amplified, which keeps the average received SNR identical to the AWGN case).

Assuming that channel state information (CSI), which throughout this paper will be 
the value of the multiplicative factor (in this case 0 or α), is available at the receiver, this 
yields the model shown in Figure 3.2. Consider signaling over the channel shown in 

0 0

?

11
1– p

1– p

p

p

FIgure 3.2 The binary erasure channel [16, p. 188] to represent a discrete-valued fading chan-
nel with channel state information available at the receiver.
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Figure 3.2 with and without channel state information at the transmitter. With CSI at 
the transmitter, transmission is halted when α = 0 and a single bit is transmitted when-
ever α = 1/(1 – p). Thus, with a very simple receiver identical to that for the BPSK system 
operating over the AWGN channel, the system reliably transmits 1 – p information bits 
per channel use. Next, consider the case where there does not exist channel state infor-
mation at the transmitter. Using information theoretic results [16, p. 188], the capacity 
of the channel without transmitter CSI is still 1 – p information bits per channel use, but 
now it requires very long code words and the typical sequence decoding employed for 
the achievability statement of Shannon’s capacity [59]. This simple example captures the 
key idea to adaptive signaling in response to the multipath fading in many cases—it will 
often not make sense from a Shannon capacity, but it can greatly simplify system design 
in practical systems [30].

Thus, adaptation in response to transmitter knowledge of the multipath fading has 
the promise of greatly simplifying the system design or, for a fixed system complexity, 
has the promise of greatly improving system performance (such as average data rate) 
[31, 32]. However, it is the very property that makes adaptation fruitful that also com-
plicates its implementation; in particular, adaptation can be exploited because of the 
time-varying nature of user needs, path loss, shadowing, and multipath fading. But 
this time-varying nature makes that adaptation difficult; in particular, although changes 
in user needs and path loss generally happen over a long enough timescale that they can 
be reliably estimated, the time-varying nature of the shadowing [66] and the multipath 
fading [24, 27] make channel measurements outdated by the time they are ready to be 
used. In other words, the channel has changed since the measurements were performed, 
and thus the utility of such measurements in representing the current state of the chan-
nel can be questioned. This will be particularly exacerbated, of course, in systems that 
seek to adapt to the multipath fading [48].

The consideration of the design of signaling schemes that employ inherently outdated 
or noisy measurements is best done by carefully considering the channel characteristics 
conditioned on the measurements available. Naturally, if the support of the probability 
density function of the conditional channel given the measurements is very narrow, 
indicating that the system is fairly certain of the channel value, one can design coded 
modulation structures and rules for adapting those structures based on the assumption 
that the channel is fully known [31, 32] and suffer only mild degradations. However, 
such schemes can be very sensitive, even if the probability density function only shows a 
little spread around the estimated value [24, 27]. In such cases, not only must the rules of 
adaptation consider such spread, but the spread often will affect the types of coding and 
modulation structures that are effective, as demonstrated in section 3.3.3.

This chapter is organized as follows. In section 3.2, the system model that will be 
used throughout this work is presented. Section 3.3 provides a detailed derivation of the 
key issues in adaptive signaling using the simplest case of a system where there is only 
a single antenna employed at each the transmitter and receiver. Section 3.4 discusses 
recent extensions of these results to systems with multiple antennas at the transmitter 
and receiver, and section 3.5 presents conclusions and avenues for future work in the 
field.
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3.2  Adaptive System Model

3.2.1  Model for a Wireless Link

The transmitted signal in a wireless communications system is affected by three factors: 
path loss, shadowing, and multipath fading. In complex baseband notation [53], the sig-
nal r(t) that is received when the signal s(t) is transmitted can be written as

 r t L t X t s t n t( ) = ( ) ( ) ( )+ ( ) ,  (3.1)

where L(t) is a real-valued random process that represents the combined effect of the 
path loss and shadowing, X(t) is a complex random process representing the effect of 
the multipath fading, and n(t) is a stationary complex Gaussian random process with 
(two-sided) power spectral density SN(  f  ) = N0/2, representing additive noise. In equa-
tion (3.1), the fading has been assumed to be frequency-non-selective [53, p. 816]; this 
is appropriate for a narrowband single-carrier system or a single subcarrier of a wide-
band orthogonal frequency division multiplexing (OFDM) system [6, 71]. Extensions of 
the concepts presented in this chapter to frequency-selective channels are conceptually 
straightforward, although such channels offer inherent natural diversity with little sys-
tem latency, and hence often reduce the gain available through adaptive signaling.

Understanding the characteristics of the processes L(t) and X(t) in equation (3.1) is 
crucial in determining methods of adaptation based on such. The random process L(t) 
is caused by path loss, which is determined by the distance the receiver is from the trans-
mitter, and shadowing, which is determined by the existence of large objects between 
the transmitter and receiver. For a stationary user, the path loss and shadowing are gen-
erally modeled as constant, despite the fact that it could be argued that the movement 
of large objects can affect the shadowing. For a user in motion, the shadowing will be 
the more variable of the two effects, and the distance over which it is highly correlated 
can be roughly modeled as 100 m in a macrocellular suburban environment [35]. For a 
user at walking speed (say, 2 m/s), this implies that the shadowing correlation time is on 
the order of 50 s; for a user in a vehicle (say, 88 km/h), this implies that the shadowing 
correlation time is on the order of 4 s. This suggests that it is quite plausible to make 
estimates of the path loss and shadowing and to employ such in wireless communica-
tions systems. In fact, this is very often done in current and next-generation cellular 
system implementations [48]. Also, since L(t) varies at a relatively long timescale, it will 
be assumed throughout the remainder of this chapter that it is measured accurately and 
known at the transmitter and receiver.

In contrast, consider the random process X(t), which represents the multipath fading. 
In a wireless environment, the signal s(t) is reflected to the receiver from many objects. 
Because the propagation distance is different for each of these reflections, the reflected 
signals will arrive at slightly different times at the receiver. For a narrowband system, 
which has a relatively long symbol interval, there will not be appreciable intersymbol 
interference (ISI) [53, p. 817]. However, because of the large carrier frequencies typi-
cally employed in modern wireless communications systems, even a small difference in 
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arrival times for two paths can result in a large phase difference between those paths. For 
example, a path-length difference of only 1 ft results in the signal being delayed by 1 ns, 
which causes a full 2π rotation in phase when the carrier frequency is 1 GHz. Hence, 
the phase of any given arriving path is generally modeled as uniformly distributed. 
Since the process X(t) is caused by the sum of very many roughly independent paths, 
projected onto each of the in-phase (real) and quadrature (imaginary) components, the 
central limit theorem [52, p. 214] motivates its modeling as a complex Gaussian random 
process [3].

By considering the genesis of the multipath fading as described above, it is easy to 
observe that the phase of a given path will change greatly for each movement of the 
reflecting object, the receiver, or the transmitter by one wavelength. Hence, even with 
only walking speed mobility (say, 2 m/s), a system with a 1 GHz carrier will yield a pro-
cess X(t) that changes independently six times per second (or, as commonly stated, with 
a 6 Hz Doppler frequency) [51, 56], which makes adaptation challenging, since feedback 
of the channel characteristics provided to the transmitter at some delay must accurately 
model the current channel fading for adaptation to be effective. Note that this problem 
will be exacerbated at higher mobilities and higher carrier frequencies.

Mathematically, X(t) = XR(t) + jXI(t) will be assumed to be a zero-mean stationary 
Gaussian random process with an autocorrelation function of the real part XR(t) (or 
imaginary part XI(t)) defined as

 R E X t X t E X X tX R R I I( ) ( ) ( ) ( ) ,τ τ τ= + = + 

and the real part XR(t) and imaginary part XI(t) will be assumed to be independent of 
one another. The zero-mean assumption implies that a line-of-sight path is not pres-
ent, which corresponds to the most pessimistic case—Rayleigh fading. Throughout this 
chapter, the popular Jakes model [41] will generally be adopted, which is characterized 
by RX(τ) = J0(2τfdτ), where J0(·) is the zero-order Bessel function of the first kind and fd 
is the Doppler frequency, which is defined as the number of wavelengths of motion of 
an object per second. It will be assumed that although the Doppler frequency might be 
large, it will not approach the symbol rate, and thus the channel X(t) can be assumed 
to be constant over the support of a single signaling pulse p(t), which is termed the 
slowly fading assumption in most digital communications texts [53, p. 816]. We hasten 
to emphasize, however, that the use of the word slow in this context is with reference to 
the symbol interval—not the amount of time between channel estimation and signal 
transmission, where even such “slow” multipath fading can have a significant effect.

3.2.2  Adaptation in Response to Path Loss/Shadowing

There are many forms of adaptation currently employed in response to path loss/ 
shadowing in wireless communications systems. In fact, even the base station selection 
process, where a mobile generally decides to associate with the base station from which 
it sees the largest average received signal strength, can be viewed as a form of adaptation. 
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Such adaptations will be called “slow” adaptations throughout this work, and they will 
be characterized by schemes that adapt the transmitter at an interval on the order of (at 
least) many (hundreds of) symbols. A good tutorial on slow adaptations, particularly in 
current standards, is provided in [48].

First, consider wireless system adaptations that adapt depending on user needs. In 
particular, one of the key features of third-generation cellular systems is supporting 
users with high data rates. This is often done by simply allocating more of the time/
bandwidth/code space to the users. For example, in Enhanced Data Rates for GSM Evo-
lution (EDGE) systems, which are built on a time-division multiple-access (TDMA) 
framework, users with high-data-rate needs are allocated more time slots. In the code-
division multiple-access (CDMA)-based IS-95 Revision B, high-data-rate users are allo-
cated multiple spreading codes, which is termed code aggregation [48].

Next, consider adaptations based on the current channel conditions for a given user. 
In fixed-rate systems, such as first- and second-generation cellular telephone systems, 
where the rate of the vocoder is generally fixed, the key is to adapt the system such that 
acceptable performance is maintained at this fixed rate. The transmission technology 
and channel assumptions fix a minimum average received SNR γ0 required for accept-
able operation—the goal of adaptation is to maintain γ0, which can be done by adapting 
the transmitted power in response to measurements of the path loss and shadowing. 
Methods of performing such adaptation include channel inversion, where the trans-
mitted power is set proportional to the channel loss, and truncated channel inversion 
[e.g., 17, 66]. Truncated channel inversion is defined by a threshold L0, which breaks the 
policy into two cases:

 1. L(t0) ≥ L0: The transmitted power is set to γ0/L(t0), which results in an average 
received SNR of γ0.

 2. L(t0) < L0: The transmitted power is set to zero, which results in an outage.

Using this policy, the required average received SNR (and no more) is obtained when-
ever possible, but excessive power is not wasted by inverting the channel when there are 
large losses on the channel.

Outside of current standards, the setting of the rate (coding, modulation, spreading 
factor) of the system to the current average received SNR has clearly emerged as a criti-
cal topic. In particular, turbo codes [4] and low-density parity-check (LDPC) codes [23, 
46] are approaching channel capacities on a variety of channels. Thus, assuming enough 
receiver complexity for the decoding of such codes and enough latency to allow perfect 
interleaving of the coded symbols, the rate of nearly error-free systems should approach 
the Shannon capacity [59] of the independent and identically distributed (IID) discrete-
time Rayleigh fading channel, defined by:

 Y X ni i i i= +α ,

where Yi is the received sequence, αi is the IID sequence of Rayleigh channel fading val-
ues, Xi is the transmitted sequence, and ni is the noise sequence. The Shannon capacity for 
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such a channel without CSI at the transmitter is shown as the lower curve in Figure 3.3, 
where the SNR on the horizontal axis is the average received SNR (i.e., the SNR after the 
path loss and lognormal shadowing are considered). The only requirement for the highly 
efficient operation of such a system is the knowledge of this average received SNR at the 
transmitter so that the rate of the transmitter can be set appropriately, and this can be 
obtained by feedback of the path loss and shadowing. We emphasize that approaching 
the curves in Figure 3.3 still requires high decoding complexity and significant latency, 
which motivate whether adaptation with the additional knowledge of the values of the 
multipath fading can improve on the performance in Figure 3.3 in terms of performance 
versus system complexity.

3.2.3  Analytic Model for Fine-Scale Adaptation

The main portion of this chapter will be dedicated to the design and analysis of adap-
tive systems that use explicit measurements of the multipath fading to perform system 
adaptation. This is a topic that was considered in the 1970s [11, 37, 38] and then became 
popular again in the early 1990s [e.g., 1, 6, 14, 29, 30, 65].

A block diagram of the typically employed system is shown in Figure 3.4. Given the 
model shown in Figure 3.4 and channel model given in section 3.2.1, the key to design-
ing adaptive signaling systems is considering signaling for the conditional channel for 
the symbol of interest (call it sk) given the outdated measurement –X̂ = (X̂(t – τ1), X̂(t – τ2), 
…, X̂(t – τN))T . It will be assumed that a measurement X̂(t – τi) is equal to the true value 
X(t – τi) plus additive Gaussian noise of variance 
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FIgure 3.3 The Shannon capacity of an independent and identically distributed Rayleigh fad-
ing channel, assuming (1) perfect CSI available only at the receiver, and (2) perfect CSI available 
at both the transmitter and receiver [28]. Note that the gain in Shannon capacity resulting from 
having perfect CSI available only at the transmitter is only slight, as discussed in section 3.3.1.
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in each of the in-phase and quadrature components. For example, such would be the 
case in an adaptive system employing pilot symbol–assisted modulation (PSAM) [12] 
with a pilot symbol energy of Ep [7, 24].

Note that the model in Figure 3.4 captures the critical issue of delay in the feedback 
path from the receiver to the transmitter, since the most recent estimate is assumed to 
have been made τ1 seconds ago. In other words, the “outdated” nature of the estimates 
takes into account this key implementation issue in adaptive communications systems.

Denoting Y as the magnitude of the fading that multiplies sk in the matched filter 
output for the kth symbol and using the fact that linear functionals of a Gaussian random 
process are jointly Gaussian, Y is Rician when conditioned on the vector –X̂, with prob-
ability density function [25]
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where I0(·) is the zero-order modified Bessel function. Using the assumption that X(t) 
can be assumed constant over the support of p(t) and normalizing the fading such 
that E[(XR(kTs))2] = E[XI(kTs))2] = 1 (note that this simplification will make the average 
received energy twice that provided by simply the path loss and shadowing, which will 
be accounted for below), the noncentrality parameter in equation (3.2) is given by
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where IN is an N by N identity matrix. The (m, n)th element of Σx, the N by N autocorrela-
tion matrix of the in-phase component of –X̂ when the channel estimates are noiseless, 

Transmitter
s(t) r(t)

r(t) = X(t)s(t) + n(t)

(bi) (bi)

X = (X(t–τN), . . . , X(t–τ2),  X(t–τ1))T

Channel Receiver

FIgure 3.4 A block diagram of the system, where (bi) is the sequence of information bits to be 
transmitted across the channel, s(t) = Σ∞

k=–∞  sk  p(t – kTs) is the transmitted signal, r(t) is the received 
signal, n(t) is additive white Gaussian noise, –X̂ is the vector of outdated channel measurements, 
and (b̂i) is the sequence of information bit estimates output from the receiver.
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is given by Rx(τN–m+1 – τN–n+1), and the correlation vector of the in-phase component of –X̂ 
with the in-phase component of the fading of interest is given by ρ, where ρi = Rx(τN–i+1). 
The parameter σ2 in equation (3.2) is the mean square error of a minimum mean square 
error (MMSE) estimator [72, p. 54] of the in-phase (or quadrature) fading of interest, 
and is given by

 σ ρ σ ρ2 2 1
1= − +( )∈

−T
x NIΣ . (3.4)

Understanding the Rician density in equation (3.2) and the expression for the Rician 
noncentrality parameter s in equation (3.3) is key to designing effective adaptive coded 
modulation schemes. In particular, for s = 0, the Rician probability density function 
in equation (3.2) is equivalent to a Rayleigh probability density function, indicating 
that coded modulation structures designed for Rayleigh fading channels are pertinent 
for application when s is small; likewise, as s → ∞, the (properly normalized) Rician 
density function approaches a delta function, thus indicating that the effective channel 
approaches an AWGN channel. Since coded modulation schemes for Rayleigh fading 
channels differ greatly from AWGN schemes, the interpretation of equation (3.3) is used 
extensively in the design of structures, as demonstrated in section 3.3.3.

There is one limitation to directly employing the result in equation (3.2). In particular, 
it presumes that the autocorrelation function RX(τ) of the random process X(t) is known 
at the transmitter; however, this autocorrelation function can vary greatly in wireless 
systems [51, p. 88–89]. Thus, it must generally be estimated [18, 19], either implicitly or 
explicitly, or uncertainties in it must be worked into system design [24, 27]. To address 
both possibilities in one framework, the autocorrelation function will be assumed to lie 
in some uncertainty class R, which matches the approach taken in [27] directly. If it can 
be accurately estimated through techniques as described in [18, 19], this class can be 
shrunk accordingly (in the limit to a single autocorrelation function).

Thus, given the model for the system measurements and the measurements of the 
autocorrelation function, one should be able to ascertain (1) how much predictor error σ2 
will generally be in the system, and (2) what is the uncertainty class R over which some 
sort of robustness will be maintained. Understanding both of these for a given system 
configuration will be the key to understanding the design of the coded modulation. In 
particular, the former will allow the choice of the coded modulation structure, while the 
latter will allow one to design on that structure.

3.3  Adaptivity in Single-Input Single-Output Systems

3.3.1  Information Theoretic Bounds

Before considering the derivation of practical signaling schemes that adapt to the mul-
tipath fading, it is instructive to consider the improvement in Shannon capacity that is 
available when CSI is made available to the transmitter. Assume that the sequence of 
zero-mean complex Gaussian channel fading coefficients affecting the transmitted sym-
bols forms an IID sequence; in other words, an IID Rayleigh fading channel is assumed. 
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If the criterion is to maximize the average data rate under an average power constraint, 
Goldsmith [30] has demonstrated that the information theoretic capacity when perfect 
CSI is available at both the transmitter and receiver is achieved with variable-power 
Gaussian codebooks, where the power depends on the current value of the channel fad-
ing. A comparison of the Shannon capacity when perfect CSI is available at both the 
transmitter and receiver with the capacity when CSI is available only at the receiver is 
shown in Figure 3.3. Note that, somewhat surprisingly, the gain in channel capacity is 
only slight. However, as with the example of the erasure channel in section 3.1, it should 
be remembered that this assumes very long code words and large decoding complexi-
ties. In particular, the minimum distance of the codes becomes very large, and since IID 
Rayleigh fading is assumed, the diversity achieved by a given code is very large—even for 
the case of CSI only at the receiver.

The analysis in the previous paragraph and Figure 3.3 applies to the Shannon capacity 
[59], which is generally appropriate if the average rate of a system is being considered. 
Recently, however, there has been significant interest in whether a system can transmit 
a fixed amount of information within a given time constraint—such approaches lead to 
measures such as the outage capacity [22] or the delay-limited capacity [36]. Such analy-
ses are generally still done under the assumption of infinite-length code words, which 
are required for the random coding arguments invoked, but now under the assumption 
that a given code word will only see some small number of fades. Thus, in essence, this 
yields a view at system operation in a diversity-limited context. The metric is based on 
the probability that the system experiences a set of fading values for which it can com-
municate at the desired rate. In contrast to Figure 3.3, such analyses [8, 49] have dem-
onstrated the significant gains possible when knowledge of the channel fading values 
is provided to the transmitter in addition to the receiver. This has motivated work in 
the design of practical adaptation schemes that focus on outage probability [43]. These 
results lead to the preliminary conclusion that the gain from having estimates of the 
channel fading at the transmitter is highly reliant on the decoder complexity and system 
latency allowed.

3.3.2  Design for Uncoded Systems

In this section, adaptive uncoded modulation will be designed. Unlike coded schemes, 
where the design is complicated by memory in the trellis and questions about the proper 
structure, uncoded schemes present a simple framework to demonstrate many of the 
key issues.

As described in section 3.2.3, there is a key issue of robustness to uncertainties in 
the autocorrelation function RX(τ), which can be captured by designing for an uncer-
tainty class R that shrinks to a single point when the autocorrelation is known or can 
be accurately estimated. If the class R is a single point as is often considered for predic-
tion-based methods [18, 19, 44, 45], the application of equation (3.2) is identical regard-
less of the number of outdated estimates N employed. This is observed by noting that, 
for a vector of random variables drawn as samples from a stationary Gaussian random 
process, (1) the marginal probability density function is independent of the sampling 
time, and (2) the conditional probability density function for any one of the variables is 
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Gaussian when conditioned on the others, with variance given by σ2 in equation (3.4). 
Thus, given the predicted value and σ2, the choice of the signal set is independent of N. 
Hence, when the autocorrelation function RX(τ) is known exactly, the design for N = 1 
with the appropriate σ2 is sufficient to characterize performance of a given scheme.

When R is made larger to capture uncertainties in the knowledge of RX(τ), the design 
becomes greatly complicated [26]. Thus, robust design with general R with only a single 
outdated estimate (N = 1) will be considered; however, we hasten to note that, per the 
previous paragraph, designing adaptive coded modulation for known RX(τ) and any N 
is a simplification of this case.

Since the case N = 1 will be considered, the quantity ρ = RX(τ1), which, since XR(t) and 
XI(t) are normalized to have unit energy, is the correlation coefficient of the in-phase (or 
quadrature) components of the multipath fading process between the time of channel 
estimation and the time of data transmission, will be important. Assuming that the 
estimates are noiseless (σ2

∈ = 0) implies that σ2 = 1 – ρ2, and it is observed that the mean 
square prediction error increases rapidly with decreasing correlation between the esti-
mate and the current value, as expected. Throughout much of this chapter, systems will 
be designed for a given ρ, which captures the amount of information in the channel 
estimate about the current fading value. A conversion to mean square predictor error, if 
desired, can be obtained by the transformation ρ σ= −1 2 .

Designing robustly using a single outdate estimate requires performance to be guar-
anteed for all ρ ∈ [ρmin,1], where ρmin is the minimum value of RX(τ1).

3.3.2.1  Design Rules

The design rules for uncoded systems have been well established by a number of authors 
[7, 27, 31]. The signal sets considered in this section will be 0-QAM (quadrature ampli-
tude modulation) (no data transmitted), 2-QAM, 4-QAM, 16-QAM, and 64-QAM 
with two-dimensional Gray mapping, although the extension to any set of signal sets is 
immediate.

Following [27], let Pb be the target bit error probability for the system, which operates 
at the average received SNR Es/N0, where Es is the average received energy per QAM 
symbol. For now, it will be assumed that the average energy Es is not varied over time; 
energy adaptation will be discussed in detail below. Specification of the adaptive trans-
mitter requires finding M

~
(h), ∀h, where M

~
(h) is the number of signals in the QAM signal 

set employed when |X̂(kTs – τ1)| = h. If M
~

(h) is chosen such that Pb is maintained for 
each h,

  M h M P h PM
E
N b

s( ) max sup
min

= : , ,( ) ≤







≤ ≤ρ ρ
ρ

1 0 
, (3.5)

where P~M(Es/N0,h,ρ) is defined as the bit error probability of the M-QAM signal set at 
average received SNR Es/N0 when RX(τ1) = ρ and |X̂(kTs – τ1)| = h. Assume that maximum 
likelihood symbol detection, given the current channel fading amplitude, is employed 
on the samples of the matched filter output at the receiver. A tight approximation to the 
bit error rate of M-QAM modulations is given by [31]
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which will be employed for all M for much of the design work for uncoded systems. If 
errors in channel estimation at the receiver are considered, the right side of equation 
(3.6) will increase, of course, but it will often fit into the same functional form [7], which 
is convenient, since the same optimization will apply. Using equation (3.6) yields
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where the second line is obtained by substituting equation (3.2) and equation (3.6) into 
the first line and evaluating the expectation over Y using [34, 6.614.3].

From equation (3.5), equation (3.7) must be evaluated at its supremum on ρ ∈ [ρmin, 1]. 
Since the right side of equation (3.7) is a continuous function on this closed interval, it 
achieves its maximum on this interval at a point that will be denoted ρ∗. The following 
solution is found by standard calculus techniques. Let
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The worst-case autocorrelation is then given by
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The signal set is specified using equations (3.7) and (3.8) in 
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Note that M
~

(h) is nondecreasing in h. Thus, the adaptive scheme can be specified by 
the values hm, m = 2, 4, 16, 64, where hm is defined as the threshold such that for h ≥ hm, 
m-QAM can be employed.

The discrete nature of the set of rates for any finite collection of signal sets hurts the 
performance of the system; in particular, for all h such that hm  < h < hm+1, the estimate 
is better than that required to use m-QAM but not good enough to use (m + 1)-QAM. 
Energy adaptation provides a means to solve this problem [31]. Rather than employing 
the method of [31], an alternate method, which is analogous to truncated channel inver-
sion and the power pruning of [20], is described here. The advantage of this method is 
that, with very little loss of optimality, it is easily extended to coded modulation struc-
tures, where the overall optimization problem of [31] is not easily framed when channel 
prediction is not perfect [27]. Once a signal set has been chosen, the system is essentially 
a fixed-rate system; thus, the goal changes from maximizing average rate to attempting 
to allow communication at this fixed rate with the least amount of power. Thus, after the 
signal set is chosen, equations (3.7) and (3.8) are used to decide the minimum energy 
required to maintain Pb given the channel estimate h, and this energy is employed rather 
than the average energy. Any excess energy is put into a “bank” on which successive 
symbols can draw.

3.3.2.2  Numerical Results

As discussed in section 3.3.1, systems with a significant amount of decoding complexity 
and allowable latency only have the potential for a small amount of improvement when 
CSI is provided to the transmitter. As might be expected, uncoded systems, which have 
the least decoder complexity and essentially no latency, benefit the most when transmitter 
CSI is available. In particular, uncoded systems operating over frequency-non- selective 
Rayleigh fading channels perform very poorly, because they do not achieve diversity. 
Because of this, coherently decoded quadrature phase-shift keying (QPSK) with only 
receiver CSI requires an SNR of 34 dB to achieve a bit error rate of 10–4 on a frequency-
non-selective Rayleigh fading channel [53, p. 829], whereas the same technique requires 
an SNR of less than 10 dB to achieve the same bit error rate on an AWGN channel. The 
reason for this discrepancy is that the QPSK system operating over the Rayleigh fading 
channel is extremely susceptible to deep signal fades. Although the occurrence of such is 
relatively uncommon, the error rate during a bad fade can be orders of magnitude above 
that occurring when the average received SNR is observed, and thus these bad fades 
dominate the error rate.

In adaptive signaling, CSI is available at the transmitter. Arguably, the greatest utility of 
such information is that signaling can be avoided when bad fades are present. In particular, 
with perfect transmitter CSI [31], average rates in excess of 2 bits per symbol are possible 
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at bit error rates of 10–5 for average received SNRs under 20 dB. Thus, there is a significant 
gain in system performance when transmitter CSI is available in uncoded systems.

However, as pointed out in [24, 27], the assumption of perfect CSI is dangerous when 
channel estimates are outdated or noisy, as would be the case with realistic delay in the 
feedback path from the receiver to the transmitter. In particular, the conditional den-
sity function given in equation (3.2) becomes Rician (rather than a delta function), and 
hence the conditional channel acts like a fading channel. For example, for the example 
described in section 3.3.2.1, adaptive signaling assuming perfect channel estimation can 
miss its target bit error rate by two orders of magnitude—even for the relatively high 
correlation coefficients of ρ = 0.96. In this case, bad predictions, which are relatively 
uncommon, lead to instantaneous error rates that are orders of magnitude above the 
target and thus dominate system performance. Using the design method of equation 
(3.2) reveals that there are still significant gains in adaptive signaling versus nonadap-
tive signaling when transmitter CSI is not perfect—even when the correlation coeffi-
cient drops as low as ρ = 0.96. We conclude from this section that adaptive signaling is 
particularly effective for simple, low-latency systems such as adaptive uncoded QAM 
systems [24, 27].

3.3.3  Coded Modulation Structures

As discussed in section 3.2.3, the conditional channel given an outdated measurement 
can vary from almost Rayleigh to almost AWGN—depending on both the channel 
estimate and the mean square prediction error σ2. For small σ2, the conditional chan-
nel is nearly always Rician with a large noncentrality component [53, p. 811] (hence 
approaching AWGN), whereas for large σ2, the channel often approaches Rayleigh. It is 
well known that coded modulation structures optimized for AWGN channels [e.g., 63] 
are not well matched to Rayleigh channels [58]. Thus, the characterization of the mean 
square prediction error in a given system determines the types of coded modulation 
structures to be employed.

For systems where the mean square prediction error is anticipated to be nearly zero, 
coded modulation structures designed for the AWGN channel can be employed without 
interleaving [31]. For systems with a moderate amount of channel prediction error, struc-
tures designed for a Rayleigh fading channel can have aspects of structures designed for 
an AWGN channel embedded in them [27]. Finally, for adaptive systems where the mean 
square prediction error is expected to be large, adaptive bit-interleaved coded modula-
tion (BICM) [50] is preferable. These three types of structures are presented below.

3.3.3.1  Coding Structures with (Nearly) Perfect Prediction

If the current channel fading X(t) is known accurately at the transmitter (i.e., σ2, the 
prediction error of an MMSE predictor, is small), the effective channel given the out-
dated estimate is roughly AWGN. Thus, coding structures designed for AWGN chan-
nels [63] should be employed [32]. In particular, a base trellis-coded modulation scheme 
[63] tuned to the average received SNR can be selected, and then uncoded bits can be 
added or deleted based on the channel estimate. This structure is shown in Figure 3.5. As 
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described in the legend to Figure 3.5, the interleaver can be removed in this case, since 
the Euclidean distance between two possible paths at the receiver can be precisely con-
trolled. This structure allows symbol-by-symbol adaptation (unlike changing the rate 
of a convolutional encoder) and, because parallel branches are generally effective when 
communicating over AWGN channels, is an efficient coding structure over a wide range 
of instantaneous rates of the system.

3.3.3.2  Coding Structures with Moderate Prediction Error Statistics

When there is a moderate amount of predictor error power (i.e., moderate values of σ2), 
the use of uncoded bits can be detrimental, since there will be a high number of chan-
nels that are not strongly Rician per equation (3.2), and it is well known that the use of 
uncoded bits on fading channels is problematic, per section 3.3.2.2. However, note that 
the channels become more Rician as the predicted value increases. This is fortuitous, 
because it allows the retention of the adaptive coded modulation structure shown in 
Figure 3.5, except that the base convolutional code is chosen to have no parallel branches 
[27]. Thus, when the estimate is small (and the channel nearly Rayleigh), a code appro-
priate for such a fading channel is employed [58]. When the channel estimate is large 
(and thus the channel strongly Rician), the structure in Figure 3.5 adds uncoded bits, 
which are appropriate in such a situation.

3.3.3.3  Coding Structures with Large Prediction Error Statistics

When there is a significant amount of prediction error (i.e., large values of σ2), the use of 
parallel branches (i.e., uncoded bits) is not possible under almost any channel measure-
ment, since from equation (3.2) it can be seen that the channel will be nearly Rayleigh 
with very high probability. Thus, symbol-by-symbol rate adaptation is desirable, but 
parallel branches are not allowable. A structure that allows such was presented in [50] 
and is shown in Figure 3.6. Note that the instantaneous rate is adapted, but all bits are 
coded, and thus the scheme retains diversity (in this case, against bad predictions) equal 
to the minimum Hamming distance of the convolutional code.

Choose
signal set

Choose
signal

(n, k1)
Convolutional

code

Encoder 

(bi) (sk)

X 

Interleaver 

FIgure 3.5 The adaptive trellis coding diagram—to be employed when performing adaptive 
signaling with low to moderate prediction errors. When the prediction error is low, the interleaver 
can be removed.
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3.3.4  Designing with a Given Coded Modulation Structure

3.3.4.1  Design Rules

Unlike uncoded systems, which do not possess memory, and thus allow simple symbol-
by-symbol adaptation, as demonstrated in section 3.3.2.1, the memory in coded modu-
lation schemes complicates design. The main techniques that have been developed for 
coded modulation systems are described in [27] and [32]. Since the techniques in the 
later work of [27] include those in [32], the techniques of [27] will be briefly described. 
In particular, it is important to protect both the coded and uncoded information bits. 
This is done by maintaining the intersubset and intrasubset differences, which, roughly 
stated (see [27] for details), is the pairwise error probability between the two signal 
points in different and the same subsets [63], respectively. When the prediction error 
power is small, the intrasubset and intersubset differences for the coded modulation 
structures described by Figure 3.5 can be maintained by simply preserving the received 
Euclidean distance between adjacent points in the signal set [32]. When the prediction 
error power is moderate, the intersubset and intrasubset differences must be maintained 
separately [27]. For the adaptive BICM structure of Figure 3.6, there are only intersubset 
differences to be maintained [50].

3.3.4.2  Performance Results

As demonstrated in sections 3.3.1 and 3.3.2.2, the gains when CSI is available at the 
transmitter should decrease as system decoding complexity and latency are increased. 
Thus, it is anticipated that the gains described in this section will be smaller than those 
shown in section 3.3.2.2, and this is indeed observed. In particular, nonadaptive systems 
employing coded modulation and interleaving over frequency-non-selective Rayleigh 
fading channels have an enormous potential for gain, as evidenced by the vast difference 
between the performance of nonadaptive uncoded systems [53, p. 829] and the channel 
capacity shown in Figure 3.3. In contrast, adaptive signaling schemes with perfect pre-
diction are signaling for a channel that is conditionally AWGN, which implies that the 
gains between uncoded systems [31] and channel capacity (see Figure 3.3) for systems 
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FIgure 3.6 The adaptive bit-interleaved coded modulation scheme—to be employed when 
performing adaptive signaling with relatively frequent large prediction errors.
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with CSI at the transmitter are not so vast; in fact, they are similar to those attainable 
for AWGN channels [32].

The performance loss when perfect channel predictions are not available at the trans-
mitter can be mitigated by employing the techniques of sections 3.3.3.2 and 3.3.3.3. 
Doing such with eight-state trellis codes provides gains over nonadaptive schemes that 
are on the order of 25 to 75% in data rate [27, 50], which, as expected, do not match the 
exorbitant gains seen in the uncoded case. One would expect the gains to decrease even 
further for more complicated codes and, in the complexity/latency limit, almost disap-
pear as prescribed by Figure 3.3.

3.4  Adaptivity in Multiantenna Systems

Wireless systems employing multiple antennas at the transmitter or receiver have dem-
onstrated both the theoretical [21, 62] and practical [21] ability to greatly increase system 
capacities far beyond those previously imagined. In particular, the disparate fading values 
between different pairs of antennas in multiple-input multiple-output (MIMO) systems 
lead to a large increase in the number of degrees of freedom of the system, and capacities 
can even dwarf those attainable for the AWGN channel at the same average transmitted 
SNR—even if channel state information is not available at the transmitter [21, 62].

Throughout this section, a multiple-antenna system will be referred to as an (M, N) 
system if it employs M transmit and N receive antennas. The system model generally 
employed for a narrowband MIMO system is given by

 Y HX Z= + ,  (3.9)

where X is an M × 1 vector whose j th component represents the signal transmitted by 
the j th antenna. Similarly, the received signal and received noise are represented by N × 
1 complex vectors, Y and Z, respectively. Generally, it is assumed that the entries of the 
N × M matrix H, whose entry (i, j) represents the fading from transmitter j to receiver i, 
are identically distributed zero-mean jointly complex Gaussian random variables. For 
many of the early results, the entries of H were considered to be independent [21, 62], 
although the impact of correlation of the entries has been widely considered in recent 
years [13, 60, 67].

First, a review of recent information theoretic results for systems that employ some 
form of channel information at the transmitter is considered. Although this topic is 
relatively new, single-user MIMO information theory has progressed very rapidly, and 
interesting results in multiuser MIMO information theory are starting to appear. Next, 
work concerned with the adaptation of practical structures built on equation (3.9) with 
knowledge of the values of H at the transmitter is considered.

3.4.1  Information Theoretic Considerations

An excellent recent tutorial of information theoretic considerations for MIMO systems, 
including adaptation-based ones on transmitter knowledge of the channel, can be found 
in [33].
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3.4.1.1  MIMO Single-User Systems

It was established in early work on MIMO systems [62] that the Shannon capacity of 
an (N, N) MIMO system operating over a block-fading channel with CSI available at 
the transmitter and receiver is obtained by decomposing the channel into its eigen-
modes, and then performing water filling [16, p. 349] on the eigenmodes based on the 
corresponding eigenvalues, where an eigenvalue indicates the SNR of the corresponding 
eigenmode. The system takes the convenient form of a single codebook designed for the 
AWGN channel followed by a beamformer that is adapted to each block [5].

As noted throughout this work, the assumption of perfect channel state information 
at the transmitter is problematic on wireless communication channels due to their time-
varying nature. This is particularly true in the case of MIMO channels, since there are 
far more numerous coefficients to estimate than in the single-input single-output case. 
There has been a recent set of papers [40, 42, 61, 64] that consider the Shannon capacity 
of MIMO systems when there is mean and covariance feedback. The results in [40, 42, 
61, 64] demonstrate the trade-offs in Shannon capacity associated with having channel 
state information available at the transmitter; in particular, they generalize the results 
in [62] and reveal when Shannon capacity can be obtained by beamforming—only a 
scalar codebook followed by a beamformer [33] rather than vector coding. In all cases, 
the Shannon capacity with knowledge of the channel at the transmitter only grows lin-
early with the number of antennas—only the leading constant and the simplicity of the 
system are possibly improved [2, 21], thus echoing the result of section 3.3 with respect 
to gains in ergodic capacity when CSI is available at the transmitter.

In [5], information theoretic measures based on the notion of outage are considered 
when there is perfect CSI available at both the transmitter and receiver. Recall that such 
measures (see section 3.3.1) attempt to capture the notion of system latency by limiting 
the number of fading blocks (and hence diversity) that a given code word experiences. In 
this case, a large number of antennas allows spatial diversity to be exploited, and in the 
limit, the effective channel can be made to look AWGN by employing a beamforming 
approach. Hence, an error control code designed for an AWGN channel concatenated 
with a beamformer is the optimal approach [5].

3.4.1.2  Multiuser MIMO Systems

The information theory of multiuser MIMO systems has only recently been explored. 
The most striking result in this context is the key gains that CSI at the transmitter 
[9, 10, 69] can provide, and this has generated a lot of interest in “dirty paper coding” 
methods [15]. In particular, unlike single-user MIMO systems, where generally only 
capacity-multiplying factors are improved or system complexity is decreased, CSI at the 
transmitter can allow the number of degrees of freedom to be increased [10, 33]. The 
facilitation of the penetration of such results into practical multiuser systems, where 
obtaining CSI at the transmitter can be complicated (and, at best, noisy and outdated), 
is an area that promises to be fruitful for research in the future.
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3.4.2  Adaptive Coded Modulation for MIMO Systems

As demonstrated in section 3.4.1, there has been significant recent work establishing 
information theoretic bounds and methods for achieving those bounds for MIMO sys-
tems. It is now incumbent upon the communication theory community to translate 
those gains into practice. In particular, it will be important to consider the nature of 
obtaining channel state information at the transmitter. If the CSI provided to the trans-
mitter is reliable and the channel is relatively constant over a long block, the path will 
be clear—standard scalar coding followed by beamforming matched to the current CSI. 
Code rate (and power) adaptation will only need to be done on a block-by-block basis. 
However, if the CSI is noisy or outdated, it will be interesting to consider whether the 
results of [40, 42, 61, 64] apply; that is, it will be interesting to consider the robustness of 
beamforming when practical coded modulation schemes are employed.

Recent work on adaptive coded modulation for multiple-antenna systems has fol-
lowed the basic tenets above. In particular, there has been some consideration about how 
to perform adaptation in practical systems in the MIMO environment. In [2], consider-
ation is given to a scheme that tracks the eigenspace of the system so that water-filling-
type schemes can be employed—the parallel channel idea of [62]. Recent papers [e.g., 
39] have considered different forms of adaptation—antenna selection, beamforming, 
and space-time coding. Because such papers generally rely on (nearly) perfect predic-
tion assumptions, there has been little consideration of the effects of imperfect chan-
nel state information in these works. Recent work [73] has considered the impact of 
imperfect channel state information. In particular, robustness under imperfect channel 
state information is obtained by adding an Alamouti scheme over an inner beamformer 
(which would be ideal with perfect channel state information), and the optimality of 
such is shown for a system needing to transmit two information bits across the channel. 
These papers represent the start of research in a very important area that will bring the 
information theoretic gains of section 3.4.1 to application.

3.5  Conclusions

Adaptive signaling, where the transmitted signal in a wireless system is adjusted 
based on channel state information available to the transmitter, has been an area of 
significant research interest for over a decade. For single-user systems, the gain from 
having channel state information at the transmitter is generally a reduction in complex-
ity and latency. Conversely, the gain of adaptive signaling is generally a function of the 
system complexity—large gains for very simple uncoded systems and almost no gain 
in the system Shannon capacity. However, for systems characterized by outage capac-
ity or those employing multiple antennas, channel state information at the transmitter 
can have a significant role, particularly in systems with multiple users. This indicates 
the importance of the design of practical adaptive coded modulation for multiple-input 
multiple-output systems. As in single-antenna systems, variability of the channel coeffi-
cients between the time of channel estimation and the time of data transmission is a key 
concern that will need to be addressed.
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4.1  Introduction

This chapter considers the principles of multiple-input multiple-output (MIMO) wire-
less communication systems as well as some recent accomplishments concerning their 
implementation. By employing multiple antennas at both transmitter and receiver, very 
high data rates can be achieved under the condition of deployment in a rich-scattering 
propagation medium. This interesting property of MIMO systems suggests their use 
in the future high-rate and high-quality wireless communication systems. Several con-
cepts in MIMO systems are reviewed in this chapter. We first consider MIMO channel 
models and recall the basic principles of MIMO structures and channel modeling. We 
next study the MIMO channel capacity and present the early developments in these 
systems concerning the information theory aspect. Iterative signal detection is consid-
ered next; it considers iterative techniques for space-time decoding. As the capacity is 
inversely proportional to the spatial channel correlation, MIMO antennas should be 
sufficiently separated, usually by several wavelengths. In order to minimize antennas’ 
deployment, we present advanced polarization diversity techniques for MIMO systems 
and explain how they can help to reduce the spatial correlation in order to achieve high 
transmission rates. We end the chapter by considering the application of MIMO systems 
in local area networks, as well as their potential in enhancing range, localization, and 
power efficiency of sensor networks.

4.2  MIMO Systems and Channel Models

In this section, we present briefly a general MIMO communication structure. The defi-
nition of MIMO channel is then described with some related characteristics of wireless 
communication channels. Some recent MIMO channel models are also reported.

4.2.1  MIMO Communication Systems

Using multiple antennas [1] at both transmitter and receiver permits the increasing of 
the data rate by creating multiple spatial channels. Multiple receiving antennas can also 
be used to combat fading without expanding the bandwidth of the transmitted signal. 
In particular, with MT transmitting and MR receiving antennas, it is possible to achieve 
an M-time capacity of a single transmitting and single receiving antenna configuration 
where M = min{MT, MR}. Figure 4.1 demonstrates a general system employing multiple 
transmitting and multiple receiving antennas to increase the data rate. A sequence of 
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input symbols is encoded by a space-time encoding function into an MT × 1 discrete-
time complex baseband sequence x[n] (n is a discrete-time index). The x[n] sequence is 
subsequently transformed by a pulse-shaping filter into an MT × 1 continuous-time com-
plex baseband sequence x(t), and then the baseband signal is modulated with a transmis-
sion carrier. The transmission channel H superposes the transmitted signal due to the 
distortions of environment. At the reception side, under the assumption of synchronous 
sampling, the received signal y(t) with additive noise is downconverted to baseband and 
sampled to produce a discrete-time signal sequence. Finally, the estimated symbols are 
decoded by the space-time decoding block.

If the channel is time invariant, the equivalent received signal at the receiving antenna 
with MT elements at the transmitter (Tx) and MR elements at the receiver (Rx) can be 
written as

 y x( ) ( ) ( )t t tl l

l

L

= − +
=

−

∑H τ η
0

1

. (4.1)

If the channel is time variant, the overall MIMO relation can be formulated as

 y x( ) ( , ) ( ) ( ) ,t t t t= − +∫ H τ τ η
τ

 (4.2)

where x(t) and y(t) represent the transmitted and received signals,

 x( ) [ ( ), ( ), , ( )] ,t x t x t x tM
T

T
= …1 2  (4.3)

 y( ) [ ( ), ( ), , ( )] ,t y t y t y tM
T

R
= …1 2  (4.4)

and L denotes the number of resolvable multipaths, τ is the propagation delay, H(t, τ) is 
the MR × MT time-variant channel matrix, Hl is the MR × MT channel matrix of resolv-
able path l, and finally, η(t) is an additive noise.

4.2.2  MIMO Channel Stationarity Definition

In wireless communication, a stochastic time-variant linear channel usually employs 
wide-sense stationarity uncorrelated scattering (WSSUS) for stationary property 
[2, 3]. This WSSUS channel expresses uncorrelated attenuation in both time-delay and 
 Doppler-shift domains. The quasi-WSSUS channel [2] is usually applied to real radio 
systems. It has the properties of a WSSUS channel for a limited bandwidth and for a 
limited time or within a limited environment. This kind of assumption is exceptionally 
useful in communication systems. For example, ergodic MIMO channel performance 
can be given by averaging the channel performances over many independent channel 
realizations considering that they have the same statistics.
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In many practical communication systems, the WSSUS property is not truly satis-
fied because of path loss, shadowing, and varying propagation conditions such as delay-
Doppler dispersion by band or time limitations at both Tx and Rx [4]. These effects cause 
the channel to be nonstationary, i.e., non-WSSUS.

4.2.3  Classification of MIMO Channel Models

Numerous MIMO channel models have already been proposed. They can be clas-
sified into physical and analytical models, as shown in Figure 4.2. On the one hand, 
the physical channel models focus on the characteristics of the environment and the 
electromagnetic wave propagation between the Tx and Rx, and consider the antenna 
configurations at both ends. On the other hand, the analytical models do not provide 
site-specific descriptions, as they do not take into account the wave propagation char-
acteristics. The model impulse response is mathematically generated and related to the 
statistical properties of the propagation environment. However, due to its simplicity, an 
analytical channel model is very useful for producing a MIMO channel matrix for dif-
ferent kinds of communication systems.

In the literature, the physical models are decomposed into deterministic models [5–8] 
and geometry-based stochastic models [9–13]. Deterministic models, such as ray tracing 
and recording impulse response models, start by creating an artificial environment, and 
the channel response is then calculated for simulation purposes. However, these meth-
ods have high computational complexity. Geometry-based stochastic channel models 
(GSCMs), on the other hand, calculate the channel response by taking into account the 
characteristic of wave propagation, both site-specific Tx-Rx environments, and the scat-
tering mechanisms. All parameters are statistically set to closely match the measured 
channel observation. By this approach, the channel response can be rapidly computed 
even for a multibounce scattering mechanism.

Analytical channel models can be further classified into correlation-based models, 
statistical cluster models, and propagation-based models. Correlation-based models 

MIMO channel
models

Physical models Analytical models

Deterministic
models

Geometry-based
stochastic channel

models

Correlation-
based models

Statistical
cluster models

Propagation-
based models
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contain the Tx-Rx channel correlation matrices. For example, the independent identi-
cally distributed (IID) model is proposed in the case of a rich-scattering environment 
with no spatial correlation [1, 14, 15]. The Kronecker model [16 –18] assumes that the 
channel correlation is a product of the correlations at the Tx and Rx sides. Statistical 
cluster models determine physical parameters in a random manner without referring to 
the geometry of a physical medium. For example, the Saleh-Valenzuela model [19] uses 
two exponentially decaying amplitudes varying in time and distance of the clusters, 
while increasing delay time with the assumptions that the direction of departure (DOD) 
and the angle of arrival (AOA) are independent and identically distributed. The other 
models are propagation based, such as keyhole channel models [20], finite scattered 
model [21], maximum entropy model [22], virtual channel representation [23], etc.

In addition to the discussed models, there are several organizations that have pro-
posed different MIMO channel models, such as COST 207, COST 231, COST 259 [24], 
COST 273 [25], 3GPP [26], and IEEE 802.16a, e.

4.3  MIMO Channel Capacity

At the end of the 1990s, pioneering works in Bell Laboratories showed for the first time 
that the use of multiple antennas at both sides of the transmission link can result in tre-
mendous channel capacities, provided that the propagation medium is rich scattering [1, 
14, 27–29]. This increase in capacity is obtained without any need for extra bandwidth 
or extra transmission power. Multipath propagation, previously regarded as an impedi-
ment to reliable communication, was shown to be exploitable for increasing the data 
throughput. In this section, we explain briefly how exploiting the spatial dimension can 
lead to an increase in the system spectral efficiency. Only single-user applications are 
considered. For more discussions and details, the reader is referred to [15] and the refer-
ences therein.

4.3.1  Capacity of a Fading Channel

Let us first recall the definition of the capacity for a fading channel. For a time-varying 
channel, the capacity C becomes a random variable whose instantaneous value depends 
on the channel realization [30]. In such a case, the Shannon capacity of the channel may 
even be zero. Indeed, if we choose a transmission rate for communication, there may be 
a nonzero probability that the channel realization is incapable of supporting it. The two 
most used definitions for the channel capacity are ergodic capacity and outage capacity. 
The ergodic capacity, Cerg, which is the expected value of C, is suitable for fast vary-
ing channels. The outage capacity, Cout, is usually used when considering packet-based 
transmission systems where the block-fading model properly describes the channel. If 
the preassumed channel capacity is too optimistic, i.e., larger than the instantaneous 
capacity, a channel outage may occur. The outage capacity, or more correctly, the capac-
ity versus outage, as seen from its name, is the channel capacity conditioned to an outage 
probability Pout. Obviously, there is a trade-off between the expected data throughput 
and the outage probability.

© 2009 by Taylor & Francis Group, LLC



100 Adaptive Signal Processing in Wireless Communications

In the expressions that we will provide in this section, C will denote the instantaneous 
channel capacity.

4.3.2  MIMO Capacity

We present the MIMO channel capacity for different cases of channel state information 
(CSI) at the transmitter (Tx) and receiver (Rx).

4.3.2.1  General Assumptions

The global scheme of the transmission link 
is shown in Figure 4.3. We denote by MT 
and MR the number of antennas at Tx and 
Rx, respectively. The communication chan-
nel includes the effect of transmit/receive 
antennas and the propagation medium. We 
neglect the effect of the antenna patterns 
and assume the far-field conditions; that is, 
dominant reflectors are assumed to be suffi-
ciently far from the Tx and Rx. We consider 
the simple case of a frequency-non-selective (flat) fading channel that is true for narrow-
band communications. This assumption is mostly valid in indoor applications [31, 32]. 
In the equivalent baseband representation, each subchannel is characterized by a com-
plex, circularly symmetric random variable that is assumed to be normalized in power. 
The entire MIMO channel is described by a channel matrix H of dimension (MR × MT). 
For instance, the entry Hij of H, characterizes the subchannel between the i th receive and 
the j th transmit antenna. Finally, we assume that the total transmit power at each sample 
time (corresponding to each channel use) is constrained to PT.

4.3.2.2  CSI Known to Rx but Unknown to Tx

This is the classical case that is usually considered in the literature. The channel is 
assumed to be known (e.g., perfectly estimated) at the Rx but unknown to the Tx. Since 
the Tx does not know the channel, it is logical to distribute the available power uni-
formly on the transmit antennas. In fact, this is the optimal way for power allotment 
over the MT antennas in this case. We denote by ρT the total average received signal-to-
noise ratio (SNR) at the receiver array ρT = PT/σn

2, where σn
2 is the variance of the additive 

white Gaussian complex noise. The MIMO channel capacity in units of bps/Hz is

 C
MM

T

T
R

= +








log det .†

2 I HHρ  (4.5)

Here IMR
 is the (MR × MR) identity matrix. Equation (4.5) can also be written in a different 

form if we consider the singular value decomposition of H:

 H U V= H H HΛ †  (4.6)
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where † denotes complex conjugate transpose, UH and VH are unitary matrices of dimen-
sions (MR × MR) and (MT × MT), respectively, and ΛH is an (MR × MT) matrix containing 
the singular values of H. Let us define M = min{MT, MR}. We denote these singular val-
ues by λH,i , i = 1, …, M. The MIMO capacity can be written in the following form:

 C
M MM

T

T
H H

T

T
H iR

= +








= +log det log†

,2 2 1I ρ ρ λΛ Λ 22

1











=

∑
i

M

.  (4.7)

4.3.2.3  CSI Known to Both Tx and Rx

This is the case when the estimated CSI at the Rx is provided for the Tx, which is practi-
cally feasible when the channel varies slowly in time. Providing the CSI for the Tx can 
be done using a (hopefully low-bandwidth) feedback channel or via the reverse link 
when the communication takes place in a duplex mode. We assume that CSI is provided 
perfectly and without any delay to the Tx. In this case, the Tx can allot the available 
power on the antennas in an optimal manner in order to achieve the maximum capacity 
[33]. This capacity is often called known CSI capacity or water-filling (WF) capacity. For 
this purpose, we should weight the transmitted symbols vector x by the matrix VH, and 
the received signal vector by the matrix U †

H [15, 34]. This can be regarded as an optimal 
beamforming solution. By this weighting, we can in fact consider an equivalent channel 
Heq between x and y:

 H U H Veq H H H= =† .Λ  (4.8)

In other words, the MIMO channel matrix H is decomposed into several parallel 
independent single-input single-output subchannels. The number of these subchannels 
is equal to rank(H), and their gain is given by the singular values of H. Let RX be the 
autocorrelation matrix of x, with eigenvalues λX,i, i = 1, …, M. The optimal WF solution 
consists in distributing the available power PT, optimally over the equivalent parallel 
subchannels, which results in [15, 35]

 λ ψ σ
λX i

n

H i

i M,
,

,     , ,= −










+
= …

2

2
1  (4.9)

where (s)+ = s if s > 0, and 0 otherwise. Also, ψ is a constant that is determined so as to 
satisfy the constraint on the total transmit power, 

 λX i
i

M

TP, .
=

∑ =
1

The WF solution imposes that we allocate more power to best subchannels and lower (or 
perhaps no) power to worse ones. Now, the WF capacity CWF is given by [15, 35]
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4.3.2.4  CSI Unknown to Both Tx and Rx

If the channel is not known to the Tx and the Rx, we can consider (4.5) as an upper bound 
on capacity. Let Δ be the coherence interval of the channel in units of channel uses. As 
Δ tends to infinity, the channel capacity approaches this upper bound, because with a 
greater Δ, tracking the channel variations becomes more possible for the Rx [36]. For 
the same reason, there is less difference between the capacity and the upper bound for 
higher SNR values. This difference becomes more considerable, however, for larger MT 
or MR [36]. For a fast varying channel, the capacity is far less than the Rx-perfect-knowl-
edge upper bound, because practically there is no possibility to estimate the channel at 
the Rx. For M > Δ, no increase is achieved in the MIMO capacity by an increase in M 
[36]. It is shown in [37] that at high SNR and for a rich-scattering propagation medium, 
the MIMO unknown CSI capacity increases linearly with M∗(1 – M∗/Δ), where 

 M M MT R
∗ =






















min , , .∆

2

4.3.3  Some Numerical Results

We present some numerical results, excluding the case where CSI is unknown to both 
the Tx and the Rx. We consider the outage capacity Cout for an outage probability of 
Pout = 0.01 and will refer to it simply as capacity. Let us first consider the case where CSI 
is known only to the Rx. We will call this case no-WF. Figure 4.4 contrasts the outage 
capacity of MIMO, single-input multiple-output (SIMO), and multiple-input single-
output (MISO) systems under the conditions of uncorrelated Rayleigh flat fading [38] 
and Pout = 0.01. SNR stands for ρT. For the MIMO system, we have MT = MR = M. Uncor-
related fading necessitates enough antenna spacings at the Tx and the Rx that depend, in 
turn, on the propagation conditions [39, 16]. The MIMO capacity increases linearly with 
M and is much more considerable than that of MISO and SIMO systems.

Now consider the case of known CSI at both the Tx and the Rx. For MR ≥ MT , the 
improvement in capacity by performing WF, which we call the WF gain, is consider-
able for low SNR and a large number of transmit antennas [33]. But this gain is much 
more considerable when MT > MR. For example, Figure 4.5 shows curves of no-WF and 
WF capacities for two cases of MR > MT = 4 and MT > MR = 4. Notice that the WF capac-
ity of an (MT, MR) system is equal to that of an (MR, MT) system. Also, the WF capacity 
of a MISO system is equal to that of the equivalent SIMO system.

The gain in capacity by WF is especially interesting for the case of correlated chan-
nels. For instance, for the case of Ricean fading [40, 41], curves of capacity versus the 
Ricean factor (RF) are presented in Figure 4.6, for a MIMO system with MT = MR = M 
and two cases of M = 2 and M = 4. RF represents the percentage of power received from 
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the line of sight (LOS) to the total received average power [41]. For relatively high RF that 
can be regarded as a more correlated channel, the WF gain is quite considerable.

4.4  Iterative Signal Detection

Signal detection is a crucial part of the transmission system. Among the various detec-
tion techniques proposed for the case of MIMO systems, there are iterative (also called 
turbo) detectors. This is what we are going to focus on in this section. In effect, since the 
invention of turbo-codes by Berrou and Glavieux [42], who proposed iterative decoding 
of parallel concatenated convolutional codes, the turbo principle has been applied to 
several problems in communications, such as channel equalization [43], channel esti-
mation [44], synchronization [45], multiuser detection [46, 47], and, of course, MIMO 
signal detection [48]. The turbo principle consists of the exchange of soft information 
between two different stages of the Rx, mostly including the soft channel decoder. In 
MIMO systems too, iterative processing has attracted special attention as it makes a 
good compromise between complexity and performance. Before presenting the basics 
of iterative detection, we have to present a brief introduction on space-time coding that 
is performed at the Tx. We mostly consider frequency-non-selective (flat) fading condi-
tions and single-carrier modulation.

4.4.1  Space-Time Coding and Decoding

An important aspect in the implementation of MIMO systems is to appropriately 
distribute redundancy in space and in time at the Tx, what is called space-time (ST) 
coding [49]. To date, there has been considerable work on this subject, and a variety 
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of ST schemes have been proposed for MIMO systems. The key criteria in the design 
of ST codes are the coding gain and the diversity gain. The first one aims at achieving 
high rate by capitalizing on the MIMO capacity, whereas the latter aims at profiting 
from the space diversity to reduce fading at the Rx. The two extreme schemes corre-
sponding to these criteria are respectively spatial multiplexing and transmit diversity. 
For instance, orthogonal space-time block codes (OSTBCs) [50, 51] aim at diversity gain 
and some coding rate; space-time trellis codes (STTCs) [52] and linear constellation 
precoding (LCP) [53] aim at both coding and diversity gain; spatial multiplexing or the 
V-BLAST architecture maximizes the coding rate [28]; and the more general family of 

No-WF

C ou
t (b

ps
/H

z)

MR

WF

3
4 5 6 7 8 9 10

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(a)

No-WF

C ou
t (b

ps
/H

z)

MT

WF

3
4 5 6 7 8 9 10

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

(b)

FIgure 4.5 WF and no-WF capacities of a MIMO system with MR > MT = 4 (left) and MT > 
MR = 4  (right), Rayleigh flat fading, SNR = 3 dB, Pout = 0.01.

© 2009 by Taylor & Francis Group, LLC



MIMO Systems 105

linear  dispersion (LD) codes [54], which maximize the mutual information between the 
Tx and the Rx, allow flexible rate-diversity trade-off.

Apart from the problem of code construction, one important criterion in the choice of 
the appropriate ST scheme could be its decoding complexity. ST orthogonal designs like 
OSTBCs offer full diversity and can be decoded using an optimal decoder with linear 
complexity. However, these schemes suffer from low rate, especially for a large number 
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of transmit antennas. Moreover, full-rate OSTBCs exist only for a restricted number of 
transmit antennas and modulations [50]. Nonorthogonal schemes, on the other hand, 
offer higher coding rates, but their optimal decoder becomes prohibitively complex for a 
large number of transmit antennas and large signal constellation sets. This is especially 
the case for STTC schemes that, although offering high rates and good diversity gains, 
are complex to decode and, moreover, suffer from long decoding delays.

For nonorthogonal schemes, instead of performing complex optimal decoding, we 
may use suboptimal decoding based on simple linear-algebraic techniques such as sphere 
decoding [55] or interference-cancelling-based decoding [28, 48]. For either solution, 
the Rx performance can be improved considerably by performing iterative detection.

4.4.1.1  ST Coding, Tx Scheme

In addition to using a special ST scheme, we usually perform channel coding at the 
Tx. Let us consider bit-interleaved coded modulation (BICM) [56] for which a typical 
scheme is shown in Figure 4.7. The advantage of BICM is its flexibility regarding the 
choice of the code and the bit-symbol mapping, as well as its conformity to iterative 
detection. In Figure 4.7, the binary data b are encoded by a channel code C, before being 
interleaved (the block Π). The output bits c are then mapped to symbols according to a 
given constellation set. We will mostly consider QAM modulation with B bits per sym-
bol. Power-normalized symbols s are next combined according to a given ST scheme and 
then transmitted on MT antennas.

4.4.2  General Formulation of LD Codes

Before talking about ST decoding, let us present the general formulation of the LD codes 
from [54] that can be equally used for other ST schemes as well. Let S of dimension 
(Q × 1) be the vector of data symbols prior to ST coding:

 S = … s s sQ
t

1 2, , , ,  (4.11)

where .t denotes transposition. By ST coding, these symbols are mapped into a (MT × T) 
matrix X, where T is the number of channel uses. We define the ST coding rate as RSTC = 
Q/T. Corresponding to an encoded matrix X, we receive the (MR × T) matrix Y. We sepa-
rate the R and F parts of the entries of S and X and stack them row-wise in vectors S of 
dimension (2Q × 1) and X of dimension (2MTT × 1), respectively. For instance,
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FIgure 4.7 Block diagram of the BICM transmission scheme.
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 S = ℜ{ } ℑ{ } … ℜ{ } ℑ{ }



s s s sQ Q

t

1 1   ,   ,      .  (4.12)

We have then X = F S, where the (2MTT × 2Q) matrix F depends on the actual ST 
scheme (see [54] for more details). Let the (MR × MT) matrix H represent our flat chan-
nel. Similar to X, we construct the (2MRT × 1) vector Y from Y. Vectors X and Y are then 
related through a (2MRT × 2MTT) matrix H:

 Y HX N= +  (4.13)

where N is the vector of real AWGN of zero mean and variance σn
2. Matrix H is com-

posed of (2T × 2T) segments Hij, i = 1, …, MR, j = 1, …, MT, described below:
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The (2 × 2) elements Hij are obtained from each entry Hij of the initial matrix H:

 Hij
ij ij

ij ij

H H

H H
=

ℜ{ } −ℑ{ }
ℑ{ } ℜ{ }













.  (4.15)

Now, we can describe the ST encoder and channel input/output relationship by consid-
ering an equivalent channel matrix Heq of dimension (2MRT × 2Q):

 Y HF S N H S N= + = +eq .  (4.16)

4.4.3  Iterative Detection for Nonorthogonal ST Schemes

We assume that Heq and σn
2 are known at the Rx. Having received the vector Y, we 

should extract from it the transmitted data S. As we perform channel coding together 
with ST coding, the idea of iterative detection comes to mind. Indeed, by profiting in 
this way from the channel coding gain, we can obtain a good performance after only a 
few iterations and approach the optimal ST decoder + channel decoder performance. 
This is, of course, the case for nonorthogonal ST schemes. In what follows, we explain 
the principle of iterative detection and explain in detail the ST decoding part.

The block diagram of such an Rx is shown in Figure 4.8. Soft-input soft-output sig-
nal detection and channel decoding are performed. For MIMO signal detection or ST 
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decoding, we can use the optimal maximum a posteriori (MAP) algorithm, or a sub-
optimal solution based on sphere decoding or interference cancelling, for example. In 
fact, the optimal MAP detector becomes too complex to implement in practice, espe-
cially for large Q or large signal constellations.

Soft channel decoding, on the other hand, can be done using the well-known forward-
backward algorithm [57], the soft-output Viterbi algorithm (SOVA) [58], or a simplifica-
tion of them [59]. For the final decision making on the transmitted data bits, we use the 
a posteriori probabilities at the decoder output. Like in any other turbo processing case, 
extrinsic information is exchanged between the two blocks of MIMO detector and chan-
nel decoder. In what follows, we explain the principle of MIMO detection based on 
MAP, sphere decoding, and soft interference cancelling, while focusing on the third 
approach.

4.4.3.1  MAP Signal Detection

We present here the formulation of the MAP detector based on probabilities. It can also 
be implemented using logarithmic likelihood ratios (LLRs). Remember the expression 
of Y from (4.16). The MIMO detector provides at its output extrinsic probabilities on the 
coded bits c. Let Q be the cardinality of S of size q  |Q| = 2BQ. Let also ci , i = 1, …,  BQ 
be the bits corresponding to a vector of symbols S ∈ Q. The extrinsic probability on the 
bit cj at the MIMO detector output, Pext

Det(cj), is calculated as follows [60]:

 P c Kj
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where K is the normalization factor satisfying Pext
Det(cj  = 1)  + Pext

Det(cj  = 0) = 1. The prob-
ability Pext

Dec(ci ) is in fact the a priori information on bit ci , fed back from the channel 
decoder. At the first iteration, where no a priori information is available on bits ci , Pext

Dec 
are set to 1/2. The summation in (4.17) is taken over the product of the conditional 
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channel likelihood (the exponential term) given a vector S, and the a priori probability 
on this symbol, i.e., the term Π Pext

Dec. In this latter term, we exclude the a priori probabil-
ity corresponding to the bit cj itself, so as to respect the exchange of extrinsic information 
between the channel decoder and the MIMO detector. Also, this term assumes indepen-
dent coded bits ci , which is true for random interleaving of large size.

4.4.3.2  Sphere Decoding

As it was seen, in the calculation of the extrinsic probabilities, the MAP detector consid-
ers the exhaustive list of all possibly transmitted symbol vectors. Hence, the complexity 
of the MAP detector grows exponentially with the number of transmit antennas MT and 
the number of bits per modulation symbol B. By sphere decoding, these probabilities 
are calculated based on a nonexhaustive list [55]. Corresponding to a vector Y, we only 
take into account those lattice points that are in a hypersphere of radius R around Y. The 
main detection tasks are then setting the radius R as well as determining which lattice 
points are within the sphere. In this way, the average complexity of the detector under 
flat fading conditions becomes polynomial (often subcubic) under high SNR [61]. At low 
SNR, however, the detector complexity can be very high. A drawback of this method is 
the time variability of the detector complexity, as it depends on SNR.

4.4.3.3  Parallel Interference Cancelling-Based Detection

The block diagram of the detector based on soft-parallel interference cancellation (soft-
PIC) is shown in Figure 4.9, where the detector soft outputs are considered in the form 
of LLR. Reformulation is trivial if we want to consider these soft outputs in the form of 
probability (like in Figure 4.8). We will refer to the corresponding receiver scheme as 
turbo-PIC. Soft-PIC is essentially composed of the three blocks of PIC detector, conver-
sion to LLR, and soft estimation of transmit symbols.

4.4.3.3.1  PIC Detector

In order to present general expressions for the detector, let us denote by γ̂p, p = 1, …, 2Q, 
the detected data at the PIC detector output, corresponding to the real or imaginary 
parts of sq, q = 1,  …, Q. At the first iteration, γ̂p are obtained via minimum mean square 
error (MMSE) filtering [48, 62, 63]:

FIgure 4.9 Block diagram of the soft-PIC detector.
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 ˆ ,† † †γ σp p p eq eq nh= = +( )−
W Y H H Y2 1

I  (4.18)

where Wp denotes the filter, hp is the pth column of Heq, and (.)† stands for transpose 
complex conjugate. Note that the entries of Heq are real values, and hence (.)† is equiva-
lent to transposition. From the second iteration, we can calculate soft estimates S̃ of 
the transmitted data using the soft decoder outputs. Using these estimates, we perform 
interference cancelling followed by a simple zero forcing (ZF) or MMSE filtering:

 ˆ ,    ˆ ˆ ,†Y Y H S W Yp p p p p p= − = γ  (4.19)

 ZF: MMSE:W Wp
p p

p p
p p nh h

h
h h

= =
+( )

1 1
2† †

,    
σ

hhp ,  (4.20)

where S̃p of dimension ((2Q – 1) × 1) is S̃ with its pth entry removed, and Hp of dimension 
(2MRT × (2Q – 1)) is the matrix H with its pth column removed. Notice that, compared 
to the exact MMSE filtering proposed in [48], (4.20) are simplified solutions that assume 
almost perfect estimation of data symbols and permit a considerable reduction of the 
computational complexity. Thanks to iterative processing, the performance loss due to 
this simplification would be negligible. In the results that we present later, we will con-
sider the simplified ZF solution.

4.4.3.3.2  Conversion to LLR

For QAM modulation with B (an even number) bits per symbol, we can attribute m = 
B/2 bits to the real and imaginary parts of each symbol. Let, for instance, the bit ci cor-
respond to the real (imaginary) part of the symbol sq. Let also a1,j and a0,j, j = 1, …, B/2 
denote the real (imaginary) part of the signal constellation points, corresponding to 
ci = 1 and ci = 0, respectively. Remember that the signal constellation points have nor-
malized average power. The LLR corresponding to ci is calculated as follows [62]:

 LLR i
p

p j
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=

− −( )
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where σp
2 is the variance of noise plus the residual interference (RI) that intervenes in the 

detection of γ̂p, and is assumed to be Gaussian. Note that as the detection is performed 
on blocks of Q complex symbols, or in other words, on blocks of 2Q real symbols in our 
model, the RI comes in fact from (2Q – 1) other real symbols in the corresponding chan-
nel use [64]. In LLR calculation, we need the variances σp

2. These variances can be cal-
culated analytically as shown in [46], or estimated at each iteration and for each one of 
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2Q real symbols, as done in [64]. To simplify the detector further, we may neglect the 
RI and take into account only the noise variance. For not too large signal constellation 
sizes, this simplification causes a negligible performance loss [65, 66].

4.4.3.3.3  Soft Estimation of Transmit Symbols

Each element γ̃p of the vector S̃ is obtained by taking a summation over all the possible 
values of the real part (or imaginary part) of the signal constellation, multiplied by the 
corresponding probability calculated using the soft decoder output [62, 63]. It is prefer-
able to use the a posteriori information from the decoder output rather than extrinsic 
information in the calculation of γ̃p. This has the advantage of permitting a better and 
faster convergence of the Rx.

4.4.3.4  Case Study

As we focus here on the turbo-PIC detector as the suboptimal solution, we just compare 
the performance of this detector with that of turbo-MAP. We consider the simplified 
implementation of soft-PIC based on ZF filtering given in (4.20). For this comparison, 
we consider the simple spatial multiplexing (V-BLAST) ST scheme and the case of four 
transmit antennas, MT = 4, while we take MR between 1 and 4. The Tx and Rx schemes 
correspond to Figures 4.7 and 4.8, respectively. We consider Gray bit/symbol mapping 
and random interleaving, as well as the Rayleigh flat quasi-static channel model. The 
nonrecursive and nonsystematic convolutional (NRNSC) channel code (5, 7)8 (in octal 
representation) is considered with rate Rc = 1/2. SNR is considered in the form of Eb/N0, 
where Eb is the average received energy per information bit and N0 is the unilateral noise 
power spectral density; Eb/N0 includes the Rx array gain, MR.

Curves of bit error rate (BER) versus Eb/N0 are given in Figure 4.10. In fact, the per-
formances of turbo-PIC and turbo-MAP are relatively close to each other for MR ≥ MT. 
Turbo-PIC can still be used for certain values of MR < MT, mostly for MR > MT/2 [63]. So, 
for these MR values where turbo-PIC converges properly, it would be preferred to turbo-
MAP due to its considerably lower complexity. Better performances are obtained for 
turbo-PIC if the variance of the RI is taken into account in LLR calculation [63].

4.4.4  Orthogonal versus Nonorthogonal ST Schemes

In practice, to attain a desired spectral efficiency, we should adopt the most appropriate 
scheme by fixing the degrees of freedom of the system, that is, the signal constellation, 
the channel coding rate, and the ST coding scheme. The answer to the question “What 
is the most suitable combination?” is not obvious for moderate to high spectral efficien-
cies. In effect, if a low spectral efficiency is required, an OSTBC scheme together with a 
powerful turbo-code would be a suitable solution, as the reduction in the overall coding 
rate is best invested in turbo channel codes [67]. To attain high spectral efficiencies with 
OSTBC schemes, however, we have to use large signal constellations and increase the 
channel coding rate by puncturing the encoder output bits. Use of larger signal constella-
tions complicates the tasks of synchronization and detection at the Rx and also results in 
a higher SNR required to attain a desired BER. On the other hand, puncturing results in 
a reduced channel code robustness against noise. Higher ST coding rates are offered 
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by nonorthogonal schemes, hence relaxing the conditions on signal constellation and 
channel coding. Here, a simple (suboptimal) iterative detector can be used for ST decod-
ing, as explained in the previous subsection, and we may approach the optimal detection 
performance after few iterations. Nevertheless, the detector remains more complex, as 
compared to the OSTBC case. However, this increased Rx complexity is quite justified; 
using such an appropriate nonorthogonal ST scheme and iterative detection, we obtain 
a considerable gain in performance with respect to OSTBC choice [64–66]. Results in 
[65, 66] have also confirmed that the gain obtained by using non orthogonal with respect 
to orthogonal schemes is still considerable, and even more important when channel esti-
mation errors are taken into account.

4.4.4.1  Case Study

We consider the case of a (2 × 2) MIMO system, Gray bit/symbol mapping and random 
interleaving, as well as the Rayleigh flat block-fading channel model with Nc = 32 inde-
pendent fades per frame. The number of channel 
uses corresponding to a frame is 768. The NRNSC 
channel code (133, 171)8 is considered with rate 
Rc = 1/2. The ST schemes we consider are shown 
in Table 4.1, where η is the spectral efficiency in 
units of bps/Hz. As the OSTBC scheme, we con-
sider the Alamouti code [51]. Using the formu-
lation of LD codes that we presented in section 
4.4.2, we have Q = T = 2, RSTC = 1, and
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FIgure 4.10 Comparison of turbo-PIC and turbo-MAP detectors, MT = 4, (5, 7)8 channel code, 
QPSK modulation, 64 channel uses per frame.

Table 4.1 Different ST Schemes for a 
(2 × 2) MIMO System with η = 2 bps/Hz

ST 
Scheme RSTC Modulation Rc

Alamouti 1 16-QAM 1/2
V-BLAST 2 QPSK 1/2
GLD 2 QPSK 1/2
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For the OSTBC case, the decoding is performed once using (4.18). We also consider two 
nonorthogonal schemes. The first one is the simple V-BLAST scheme described by X = 
[s1 s2]t, for which Q = 2, T = 1, and RSTC = 2. The second one is the optimized scheme pro-
posed in [68] and called Golden code, which we denote by GLD. For this code that offers 
full rate and full diversity with the property of nonvanishing determinant, we have Q = 
2, T = 2, and RSTC = 2:

 X =
+( ) +( )
+( ) +( )
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where

 θ α θ θ θ α θ γ= + = + − = − = + − = = −1 5
2

1 1 1 1 1 1, ( ), , ( ), .j j j

The factor 1/ 5  ensures normalized transmit power per channel use. For η = 2 bps/Hz, 
performance curves are shown in Figure 4.11, where again perfect channel knowledge 
is assumed at the Rx. For V-BLAST and GLD schemes, BER curves are shown for the 
second and fourth iterations, where almost full Rx convergence is attained. We see that, 
by using the V-BLAST scheme, we gain about 3.3 and 3.75 dB in SNR at BER = 10–4 after 
two and four iterations, respectively, compared to Alamouti coding. The corresponding 
gains by using GLD code are about 3.5 and 4.3 dB, respectively. We note that even when, 
for the reasons of complexity and latency, only two iterations are to be performed, the 
gain in SNR compared to the Alamouti scheme is still considerable.

4.5  Advanced Polarization Diversity Techniques  
for MIMO Systems

The initial research demonstrates that the MIMO channel capacity based on the uncor-
related channel model can be proportionally increased by increasing the number of 
antennas. However, in practice, the performance of the MIMO communication channel 
is affected by spatial correlation, which is dependent on antenna array configurations 
(such as radiation pattern, antenna spacing, and array geometry), and propagation chan-
nel characteristics, which are dependent on the environment (such as number of channel 
paths, distribution and properties of scatterers, angle spread, and cross-polarization dis-
crimination). Thus, the antenna arrays at Tx and Rx should be properly designed to 
reduce the spatial correlation effects and to improve the communication performance.

However, it is possible to reduce these effects by increasing antenna array spacing, but 
this solution is not always suitable in some wireless applications where the array size is 
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limited. Therefore, in order to eliminate the spatial correlation effects and remain with high 
transmission performance, there are essentially two diversity techniques, such as angular 
[69] and polarization diversity techniques [70]. For the pattern diversity technique, the 
radiation of antennas should be generated in a manner to isolate the radiation pattern. For 
polarization diversity techniques [71], the antennas are designed to radiate with orthogo-
nal radiation polarizations to create uncorrelated channels across different array elements. 
The polarization diversity techniques could be applied in point-to-point communication 
systems such as intermobile base station communications, mobile satellite communica-
tions, high-resolution localization systems, military communications, etc.

Finally, there are also other diversity techniques, such as multimode diversity [72], that 
exploit the difference of high-order modes to obtain low correlated channels across the 
modes and a combination of pattern and polarization diversity techniques [73, 74] that 
take together the advantages of orthogonal radiation patterns and polarizations.

4.5.1  Antennas

In practice, not only the propagation environment for the multiple antenna systems has 
an important role in determining the transmission performance, but also the proper 
implementation of the antennas plays a dominant role. For example, uniform linear 
arrays, uniform circular arrays, and cube antenna arrays give different performances 
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FIgure 4.11 (2 × 2) MIMO system, turbo-PIC detection, (133, 171)8 channel code, η = 2 bps/Hz, 
each frame contains 768 channel uses corresponding to 32 independent fades.
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in terms of channel capacity. Moreover, different array configurations produce differ-
ent correlation effects. In this part, we will analyze five types of antennas [75], x-, y-, 
and z-oriented dipole antennas, azimuth, and elevation isotropic antennas, applied to a 
uniform linear array.

The radiating patterns of the antennas are considered in the far-field case, and are 
also simplified by neglecting path loss and distance phase. Hence, these radiating pat-
terns are simply dependent on the azimuth and elevation angle direction as shown in 
Table 4.2. A general expression of radiation patterns is given by [75]

 E E E= ( ) + ( )θ φθ φ θ θ φ φ, , ,
 

 (4.24)

where Eθ(θ,ϕ) and Eϕ(θ,ϕ) are the amplitudes of polarization vector at the θ
→

- and 
ϕ
→

-directions, and x, y, and z are the antenna orientations. As different types of antennas 
are employed in this chapter, it is necessary to normalize the radiation pattern when 
comparing all channel performances. Thus, all radiation patterns of an antenna are nor-
malized by that of an isotropic antenna, and they can be written as
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where G is the antenna gain that is used for the computation of the channel matrix.

4.5.2  Cross-Polarization Discrimination

In wireless communications, due to the interactions of environment, such as diffractions, 
reflection, and refraction, the transmitted signals are generally not only attenuated but 
also depolarized. Depolarization is the change of the original state of the polarization of 
the electromagnetic wave propagated from the Tx.

Cross-polarization discrimination (XPD) is defined as the power ratio of the co-
polarization and cross-polarization components of the mean incident wave. The higher 
the XPD, the less energy that is coupled in the cross-polarized channel. Therefore, there 
are two transmission cases, azimuth transmission (χθ) and elevation transmission (χϕ), 
as follows:

Table 4.2 Patterns of Different Electric Dipoles

Ex Ey Ez Eϕ Eθ

Eθ(θ, ϕ) –cosθcosϕ –cosθcosϕ –sinθ 0 1
Eϕ(θ, ϕ) sinϕ –cosϕ 0 1 0
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where Eθϕ denotes the θ-polarized electric field, which is propagated from a Tx and 
received in the ϕ polarization. It has the same explanation for Eθθ, Eϕϕ, and Eϕθ. In the lit-
erature, some measurement campaigns have been carried out, and they concluded that 
the XPD depended on the physical obstacles, the distance between Tx and Rx, and the 
delay of multipath components of each environment [76]. Therefore, for simplicity, XPD 
can be approximated by a Gaussian statistical distribution with average μ and variance 
σ2 [77, 78]. For urban environments, the mean value of XPD can vary from 0 to 16 dB 
and the standard deviation can change from 3 to 9 dB.

4.5.3  Geometry-Based Stochastic Channel Models

We now focus on a useful model for simulation purposes, geometry-based stochastic 
modeling or geometric scattering modeling [10, 79, 80], which can be easily exploited to 
examine the performance of different antenna patterns and polarizations. This model is 
based on the assumption that scatterers around the Tx and Rx influence the direction of 
departure (DOD) and the direction of arrival (DOA), respectively, within transmit and 
receive scattering areas. Scatterers are randomly located according to a certain probabil-
ity distribution. In particular, the scatterers are used to represent the depolarization and 
attenuation mechanism of incident waves traveling from the transmitters.

In Figure 4.12, a scattering geometry is shown. A uniform linear array of z-oriented 
dipole antennas at both Tx and Rx is employed. The heights of Tx and Rx are the same 
level. Moreover, transmit and receive scatterers are uniformly distributed within an 
angular region defined by |ϕ + π/2| ≤ Δϕ/2 in elevation area and |θ + π/2| ≤ Δθ/2 in 
azimuth area. In order to determine one propagation path, from one transmit scatterer 
to one receive scatterer, we consider that there is a double depolarization mechanism 
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FIgure 4.12 Geometries of MIMO channel.
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replaced by one scattering matrix. One of the propagation path channels occurs when 
one of the transmit and one of the receive scatterers are randomly linked. To reduce the 
computational cost, a scatterer is used to generate only one propagation channel. Then 
the actual channel impulse response is established by a sum of propagation channels. 
We also assume that the channel coherence bandwidth is larger than the transmitted 
bandwidth of the signal. This channel is usually called frequency-non-selective or flat 
fading channel.

In case of far-field transmission without the line-of-sight channel, the flat fading 
transmission channel between antenna p at the Tx and antenna m at the Rx can be 
expressed as
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where t is time; f is frequency; Ns is the number of scatterers at the Rx and Tx; v→Rx and v→Rx 
are the velocity vectors of the Tx and Rx; k

→
′(i) and k

→(i) are the vectors of wave number in 
the direction of the i th transmit scatterer and the i th receive scatterer, where |k


(i)| = |k


′(i)| = 

2π/λ; Gθ
p(θi,ϕi) and Gϕ

p(θi,ϕi) are the gain in the θ
→

 and ϕ
→

 directions of the pth transmit 
antenna in the direction of the i th transmit scatterer; Gθ

m(θi,ϕi) and Gϕ
m(θi,ϕi) are the gain 

in the θ
→

 and ϕ
→

 directions of the mth receive antenna in the direction of the i th receive 
scatterer; am

(i) is the mth element of the local vector of the receive antenna, so that the local 
receive vector can be expressed as aRx

(i) = [1 exp {–jk
→

(i) · r→1} … exp{–jk
→

(i) · r→MR–1}]; ap
(i) is the 

pth element of the local vector of the transmit antenna, so that the local transmit vector 
can be expressed as aTx

(i) = [1 exp {–jk
→′(i) · r→′1} … exp{–jk

→′(i) · r→′MT –1}]; and S(i)
mp are a 2 × 2 scat-

tering matrix for the i th transmit scatterer and the i th receive scatterer for i = 1 … NS wave 
components. A scattering matrix contains the polarization mechanism as defined by
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where βmp
(ϕθ) denotes phase offset of the i th incident wave, which changes from ϕ

→
 directions 

to θ
→

 directions superposing on the m-p channel, and χθ and χϕ denote the ratio of the co-
polarized average received power to the cross-polarized average received power. In [77], 
after sufficiently reflecting the propagation signal between transmitters and receivers, 
the polarization state of the signal will be independent of the transmitted signals.

© 2009 by Taylor & Francis Group, LLC



118 Adaptive Signal Processing in Wireless Communications

4.5.4  Spatial Correlation and Angle Spread Effects

The consecutive MIMO systems based on the spatial diversity technique are directly 
influenced by the spatial correlation effect (or antenna correlation effect) [16]. This 
effect is drastically dependent on array configurations and environment characteristics. 
Therefore, the antenna arrays at both Tx and Rx should be properly designed or adapted 
to decrease spatial correlation effects.

As illustrated in Figure 4.13, the spatial correlation of a 2 × 2 uniform linear antenna 
array depends on the antenna spacing and the angle spread (AS). The general expression 
of spatial correlation [81] between two antenna elements can be written as

 ρ
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where ai is the local value of the i th transmit or receive antenna and aj is the local value 
of the j th transmit or receive antenna in the local vector. The scalar p(θ,ϕ) is the joint 
probability density function (pdf) of the angles of arrival for the receiving spatial cor-
relations or of the angles of departure for the transmitting spatial correlations.

When the narrow angle spread of incident fields occurs in the transmitting or receiv-
ing side, the separation between antennas should be expanded in order to reduce the 
spatial correlation problem, as shown in Figure 4.13. This shows the spatial correlation 
of 2 × 2 MIMO z-oriented antennas in the case of a uniform distribution of the angles 
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FIgure 4.13 Spatial correlation of uniform linear antenna array for single-polarized 
configuration.
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of arrival within a region. It demonstrates that the received signals become uncorrelated 
when the antenna spacing is sufficiently increased and the angle spread is quite wide. 
However, wide antenna spacing may preclude implementation in some applications 
where size is a limitation. The use of polarized antennas is promising low spatial cor-
relation. The spatial correlation is demonstrated in Figure 4.14, while the 2 × 2 polarized 
MIMO configuration employs a pair of y- and z-oriented dipole antennas at both Tx and 
Rx. The spatial correlation of dual-polarized MIMO is much lower than that of single-
polarized MIMO in all simulation scenarios.

Although there are only two diversity branches, the use of polarized antennas does 
allow the antenna elements to be collocated without the correlation effect. However, 
there is considerable interest in many diversity branches by applying a combination of 
the pattern and polarization diversity [74, 82].

4.5.5  Capacity of Polarized Channels

Antenna polarization diversity is very useful in MIMO systems for enhancing channel 
capacity. Indeed, employing polarization diversity can reduce the antenna array size and 
also the spatial correlation; then we can obtain a better capacity. That is why the multi-
polarized antennas become more and more interesting in MIMO transmission systems. 
In this section, MIMO systems are investigated to show the potential of using multi-
polarized antennas for differently oriented dipole antennas.

We assume that the channel state information (CSI) is perfectly known to the Rx but 
unknown to the Tx. This is in theory what happens to signals propagating through an 
urban and an indoor environment. In the case of a random channel model, the channel 
matrix (4.27) is stochastic, and then the capacity given by (4.5) is also random. In this 
situation, the ergodic capacity can be obtained by taking the expectation of capacity 
over all possible channel realizations.
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FIgure 4.14 Spatial correlation of uniform linear antenna array for dual-polarized configuration.
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Figure 4.15 demonstrates the 2 × 2 MIMO channel capacity of isotropic antennas with 
single polarization (a) and dual polarization (b). In this case, the single-polarization 
configuration exploits only the azimuth isotropic antenna, and the dual polarization 
configuration applies the azimuth and elevation isotropic antennas. The channel capac-
ity is examined in function of angular spread (AS) with twenty scatterers distributed 
around the Tx and Rx. As mentioned in the previous section, the XPD is defined for 
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FIgure 4.15 (2 × 2) MIMO channel capacity of isotropic antennas: (a) single-polarization con-
figuration and (b) dual-polarization configuration.
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the urban case by χθ and χϕ ~ N (0,  9). As shown in Figure 4.15a, the MIMO channel 
capacity increases as the angle spread increases at Tx and Rx for the same polarization 
antennas. In contrast, dual polarization improves the channel capacity due to the lower 
antenna correlation, as shown in Figure 4.15b. However, when the spatial correlation of 
the single-polarized antennas is lower, the channel capacity is proportional until 6.7 dB 
for AS > 80°. It should be noted that the MIMO channel capacity is significantly depen-
dent on the antenna correlation.

Figure 4.16 shows the difference between the triple-polarized and single-polarized 
channel capacities (ΔC = Ctriple–polar – Csingle–polar) of the 3 × 3 MIMO system versus the 
average XPD and AS. The propagation environment has the same conditions as the pre-
vious section. For the triple-polarization configuration, x-, y-, and z-oriented dipole 
antennas are employed. This can represent a combination of angular and polarization 
techniques. We found that for the triple-polarization case, the average power of the sub-
channel can be unfortunately lost when the angular spread is not large enough until 
covering all antennas. As seen in Figure 4.16, the single-polarized channel capacity can 
be superior to the triple-polarized channel capacity because single polarization has a low 
spatial correlation and triple polarization loses the subchannel power due to insufficient 
angular spread. However, generally speaking for most scenarios, triple polarizations can 
maintain a higher capacity with respect to the single-polarization case.

4.5.6  Impact of Depolarization Effect on MIMO Configurations

In this section, we investigate the impact of the depolarization effect on 4 × 4 MIMO sys-
tems with single- and dual-polarization configurations. While pattern and polarization 
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diversity techniques are employed, the special correlation effect can be reduced or elimi-
nated when there is no pattern interference. Nevertheless, the cross-polarization dis-
crimination (XPD) becomes the most important parameter because XPD represents the 
ratio of the co-polarized average received power to the cross-polarized average received 
power. Then, for a high XPD value, less energy is coupled between the cross-polarized 
wireless channels. At lower XPD and higher K-factor values [83], multipolarized antenna 
arrays can give high capacity. However, at higher XPD and lower spatial correlation, a 
single-polarized antenna array can provide even better results.

Figure 4.17 explains the difference between the dual-polarized and single-polarized 
channel capacity (ΔC = Cdual–polar – Csingle–polar) of 4 × 4 MIMO systems versus XPD and 
AS. Same angle spreads at Tx and Rx are considered in the simulation. For high XPD 
and sufficiently large angle spread, we can note that the MIMO channel capacity of the 
single-polarized antenna is superior to that of the dual-polarized antenna because of the 
subchannel power loss. The Frobenius norm of the MIMO channel is used to investigate 
the total channel power. It confirms that with a high XPD and low spatial correlation the 
average transmission power of single-polarized isotropic antenna arrays is HF ≈ MN, 
but that of dual-polarized isotropic antenna arrays is always HF ≈ MθNθ + MϕNϕ for 
high XPDs and  HF ≈ MθNϕ + MϕNθ for low XPDs.

Figure 4.18 shows the XPD impact on 4 × 4 MIMO systems with single- and dual-
polarization configurations. We employ four azimuth isotropic antennas for the single-
polarization configuration and two elevation and two azimuth isotropic antennas for the 
dual-polarization configurations, which are applied to a uniform linear antenna array with 
a λ/2 antenna separation. It shows that the channel power of single-polarization configura-
tion augments significantly with respect to XPD until HF = 4 × 4 = 16, while that of dual-
polarization configuration keeps around HF = 2 × 2 + 2 × 2 = 8.
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4.5.7  Adaptive MIMO Polarized-Antenna Selection  
Technique (AMPAS)

In the previous sections, we defined the scattering mechanisms that are used to represent 
not only the attenuation of traveling waves but also the polarization of the electromag-
netic wave. The achieved performance in capacity is calculated under the assumption 
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that the average received power is normalized and the channel attenuation is neglected. 
Subsequently, the variation of polarization is characterized only by the XPD effects.

As shown in Figure 4.17, this phenomenon affects directly the performance of non-
polarized MIMO systems. In the single-polarization communications case, low XPD 
causes higher losses in channel power; in other words, there is some sort of mismatch in 
polarization. That is why we will apply adaptive techniques to reduce this mismatch in 
the polarization of MIMO systems. This technique is called adaptive MIMO polarized-
antenna selection technique (AMPAS). The principle of this method is to choose properly 
the antenna polarizations that optimize the receiving signal power while minimizing 
fading correlation antenna effects. In Figure 4.19, an example of an adaptive polariza-
tion system employing four z-oriented dipoles at Tx and four pairs of y- and z-oriented 
dipoles at Rx is illustrated. Simulation results based on three-dimensional ray-tracing 
techniques show that the channel capacity obtained by an adaptive polarization increases 
7–13% in comparison to the single-polarization channel capacity.

Another example of an adaptive polarization system is based on the rotation of the 
antenna elements according to the polarization of traveling waves at Rx. The proposed 
MIMO system consists of P half-wavelength dipole antennas that are rotated against one 
another by the rotation angle γ = 180°/P with phase centers at the same point at both Tx 
and Rx.

Figure 4.20 demonstrates the obtained performances of 1 × 1 SISO, 1 × 2 SIMO, and 
2 × 2 MIMO communication systems while the receiving antenna is rotating on the y-z 
plane with χθ and χϕ ~ N(0,5). Performance can be better enhanced if polarization at 
the Rx is properly matched to that of incident waves. In contrast, it can be worse if they 
are not well matched, as shown in Figure 4.20a (at rotational angle (γ) ≈ 140°). Thus, 
for improving the MIMO channel capacity, the receiving antenna elements should be 
rotated to find maximum receiving signals while minimizing fading correlation antenna 
effects.

While the other systems employ only z-oriented dipoles at Tx and y- and z-oriented 
dipoles at Rx in the case of the same antenna position (b and c) and the λ/2-separated 
antenna elements (d), the rotations of two dipoles on plane y-z can provide different 
performances, as shown in Figure 4.20b–d. The channel performance is maximized 
in Figure 4.20b when the polarizations of receiving antennas are well matched, and 
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FIgure 4.19 Adaptive polarization technique (AMPAS) at Rx.
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is minimized if they are mismatched. In Figure 4.20c, when the antennas have been 
rotated to nearly the same position, high correlation is produced. Subsequently, the 
channel capacity is reduced even if the polarizations are correctly matched. However, 
it has better performance in the situation of polarization diversity when the antenna 
rotation has the difference of 90°. Moreover, we observe the MIMO capacity with spatial 
diversity as illustrated in Figure 4.20d, where the antenna correlation is reduced and the 
channel capacity is improved.

In order to achieve a better transmission performance, the polarized antenna selection 
can exploit together all diversity techniques, such as pattern, spatial, and polarization 
diversity. Pattern diversity should be employed when a large angle spread is detected. 
Spatial diversity could be exploited when a high antenna correlation is observed. 
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Polarization diversity should be used when a low XPD occurs. Therefore, the employed 
diversity should be properly selected according to the propagation environment.

4.6  MIMO Applications

4.6.1  Wireless LAN-Based MIMO

In this chapter it was shown that employing MIMO systems could achieve higher perfor-
mance in data transmission. MIMO signaling can increase network bandwidth, range, 
and reliability. Recently, many communication systems began to take advantage of this 
channel capacity enhancement, such as wireless local area network (WLAN) and wire-
less metropolitan area network (WMAN).

The IEEE 802.11 WLAN and IEEE 802.16 WMAN standards are based on orthogonal 
frequency division multiplexing (OFDM). OFDM is a multicarrier modulation system, 
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reducing the required bandwidth but keeping the modulated signals orthogonal so they 
do not interfere with each other. An important high-data-transmission-rate extension 
of these standards could be based on MIMO. An advantage of these systems is that they 
are principally deployed in indoor environments and suburban environments that are 
characterized by a rich multipath.

There are also some motivations in order to improve the performance and trans-
mission rate in MIMO-OFDM systems when the CSI is available at the transmitter. As 
mentioned in previous sections, the water-filling technique is used to optimize the dis-
tribution of the total transmit power over transmit antennas. Therefore, information 
symbols and power could be optimally allocated over space and frequency in MIMO-
OFDM communication.

The number of antennas utilized in a MIMO (WLAN) router, for example, can vary; a 
typical MIMO router contains three or four antennas. These systems are driving the need 
for the next broadband revolution focused on home networking. Such systems will cover 
next-generation game consoles, video on demand, HDTV, and other new products. These 
services are creating a more sophisticated home entertainment environment, together 
with a high level of quality of service (QoS) to facilitate multimedia connectivity.

The intelligence behind the antenna polarization is described as adaptive polariza-
tion. The router receives feedback from the client adapter and has the ability to focus the 
polarization of the signals. As signal travels between an access point and wireless card, it 
will bounce off of walls, ceilings, and any other obstacle, resulting in multiple reflections 
of the original signal arriving by different paths and different polarizations. By apply-
ing adaptive antenna polarization algorithms (AMPAS), these reflections can be used to 
improve the signal-to-noise ratio, instead of having just one copy of the original signal.

This adaptive transmitting feature provides a more reliable signal at extreme ranges. 
Moreover, MIMO can eliminate dead spots, delivering reliable whole-home coverage 
with all the speed you need for application in the future. Today, one can say, wireless is 
faster than leased wire systems.

Finally, MIMO networking has the potential to increase communications data rates 
by 10–20 times above those of current systems. Such systems will use multipath reflec-
tions to create parallel channels in the same frequency bandwidth, thereby increasing 
spectral efficiency. In the next section sensor networks will be discussed as an applica-
tion of a MIMO-based system.

4.6.2  MIMO for Cooperative Sensor Networks

A sensor network can be considered a self-contained circuit with its sensor and RF inter-
face, as shown in Figure 4.21. Recent hardware advances allow more signal processing 
functionality to be integrated into a single chip. For example, it is possible to integrate 
an RF transceiver, sensor interface, and baseband processors into one device that is as 
small as a piece of coin and can be used as a fully functional wireless sensor node. Such 
wireless nodes typically operate with small batteries; that is why these sensor nodes have 
limited power capabilities. In many scenarios, the wireless nodes must operate without 
battery replacement for many years. Consequently, minimizing the energy consumption 
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is a very important design consideration, and energy-efficient transmission schemes 
must be used for the data transfer in sensor networks.

In addition, because sensor nodes will be deployed in remote and oftentimes dangerous 
locations, their maintenance (in particular, battery replacement) will be unlikely [84].

Sensor networks are a new attraction for many potential applications, such as indus-
trial, military, geolocalization, surveillance, intrusion detection, and environmental 
monitoring [84, 85].

Robust communications between sensor nodes are highly demanded at low power. As 
was shown, MIMO communication promises performance enhancements over conven-
tional single-input single-output (SISO) technology without increasing the bandwidth 
consumed by the system or the total power radiated from a transmitter. MIMO technol-
ogy has promising characteristics that make it a serious candidate for sensor network 
communication technology. Signal processing techniques that use multiple transmit and 
receive antennas, such as space-time coding (ST coding), have been shown to increase 
transmission reliability.

In a surveillance application, the ability of sensor nodes to relay data is critical to the 
utility and effectiveness of the sensor network.

For a given node density, nodes are more likely to be out of range, thus inhibiting 
communication. In a situation such as this, the extended range of MIMO is of greater 
importance because it enables cohesion (the ability of the sensor nodes to form a com-
pletely connected network), which guarantees the success of the final application [86].

New protocols for target reporting and a procedure for target localization that con-
serve energy have recently been developed [86, 87]. In [88], the authors summarize and 
compare several routing MIMO technologies.

Mean path length provides a measurement of the impact of MIMO communications 
on a wireless sensor network. Mean path length provides a rough estimate of the amount 
of time and energy expended in a data transmission from one node to another in the 
network.

Most significant mean path length reduction is provided by MIMO in the low or mid 
range of node densities because the internode spacing is such that MIMO can reliably 
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form some links that SISO cannot. In the elongated region scenario this trend holds, 
though it is less apparent [89].

There is also an increasing need for mobile networks with distributed transmitters and 
receivers, typically referred to as mobile ad hoc networks (MANETs). There, transmitters 
and receivers do not pool their information together, either due to geographical disper-
siveness, the bandwidth and resource limitation, or due to security/privacy concerns.

Recognizing that multiple antennas at the transceivers provide inherent multiplexing 
capability due to their spatial selectivity, it is attractive to study MIMO communication 
in ad hoc networks with interference transmission.

Energy-efficient communication techniques typically focus on minimizing the trans-
mission energy only, which is reasonable in long-range applications where the transmis-
sion energy is dominant in the total energy consumption.

In cooperative sensor networks, we allow the cooperation among sensors for infor-
mation transmission or reception, so that energy consumption as well as transmission 
delays over some distance ranges can be reduced.

In conclusion, for the same throughput requirement, MIMO systems require less 
transmission energy than SISO systems. However, direct application of multiantenna 
techniques to sensor networks is impractical due to the limited physical size of a sensor 
node, which typically can only support a single antenna. If individual single-antenna 
nodes allowed cooperating on information transmission or reception, a cooperative 
MIMO system can be constructed such that energy-efficient MIMO schemes can be 
deployed [90]. Finally, MIMO can provide significant network performance improve-
ments in power consumption, latency, and network robustness.
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5.1  Introduction

Multiple-input multiple-output (MIMO) systems have been well looked at and investi-
gated as a means of increasing channel capacity. The MIMO concept can offer signifi-
cantly increased high data rate and capacity, with no additional bandwidth, when the 
channel exhibits rich scattering and its variations can be accurately tracked [1].

In order to achieve high data rates and fulfill the power requirement at the same time, 
MIMO communication systems may be equipped with high-power amplifiers (HPAs) 
[11, 14, 15, 18]. However, HPAs introduce nonlinearity to the system when operating near 
their nonlinear saturation regions [12]. This nonlinearity may restrict the communication 
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system to low-order modulation schemes. In addition to the nonlinear behavior of the 
HPAs, a further challenge lies in the variations of the wireless fading channel [5, 17, 18].

Therefore, to reach maximum throughput, knowledge of accurate and timely 
channel state information (CSI) is needed by the receiver for accurate detection and 
demodulation.

Modeling the channel time-varying parameters and the HPA nonlinearity [5, 12] is 
a highly challenging task, especially when both the nonlinearity and fading parameters 
are unknown.

The nonlinear MIMO channel studied in this chapter is depicted in Figure 5.1. It is 
composed of M inputs, M memoryless nonlinearities (representing the HPAs), a linear 
combiner H (representing the propagation channel), and L outputs (representing the 
receiving antennas).

The chapter proposes a block-oriented neural network (NN) approach [4, 6] to adap-
tively identify the overall MIMO input-output transfer function and characterize each 
component of the system (i.e., the memoryless nonlinearities and the linear combiner). 
The proposed NN model is composed of a set of memoryless NN blocks followed by an 
adaptive linear combiner. Each block in the adaptive system aims at identifying the cor-
responding block in the unknown MIMO system.

The chapter is organized as follows. Section 5.2 presents the system to be identified 
and the NN algorithm. Section 5.3 presents some applications and simulation results.

5.2  System Model and Neural Network Algorithm

5.2.1  System Model

The nonlinear MIMO channel is presented in Figure 5.1. The system is assumed to 
be composed of M zero-mean uncorrelated inputs xi(n), i = 1, …, M. Each input is 
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FIgure 5.1 Nonlinear MIMO system.
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non linearly transformed by a memoryless nonlinearity gi(.). The outputs of these non-
linearities are then linearly combined by an L × M matrix H = [hij].

The j th output of the MIMO channel can be expressed as

 y n h n g x n N nj ji i i

i

M

j( ) ( ) ( ( )) ( )= +
=

∑
1

, (5.1)

where Nj is a white noise.
The system input-output relationship can be expressed in a matrix form as
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 (5.2)

Matrix H is a propagation matrix [1] that may be time varying.
In our modeling approach, only the structure of the MIMO system is assumed known. 

That is, we know that the MIMO system is composed of linear memoryless blocks and a 
linear combining matrix, but we do not know what their values and behaviors are.

5.2.2  Neural Network Scheme

The neural network [2, 3, 5] used for modeling the nonlinear MIMO system is repre-
sented in Figure 5.2. It is composed of M neural network blocks. Each block k has a 
scalar input xk(n) (k = 1, …, M), N neurons, and a scalar output:

 NN n c f a x n b k Mk ki ki k ki

i

N

( ) ( ) ,     , , ,= +( ) = …
=

∑
1

1  (5.3)

where f is the NN activation function (a sigmoid transform). aki, cki, bki represent, respec-
tively, the input weight, bias term, and output weight of the i th neuron of the kth block. 
The output NNk of the kth block is connected to the j th output of the system through 
weight wjk. The system j th output is then expressed as

 s n w NN n j Lj jk k

k

M

( ) ( ),     , , .= =
=

∑
1

1  (5.4)

Weights wjk will be put in a matrix form: W = [wjk]; j = 1, …, L; k = 1, …, M.
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This can be expressed in a matrix form as
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By choosing this structure, our goal is to characterize each part of the unknown sys-
tem by the corresponding part in the modeling structure [4, 6]: each block NNk(.) would 
identify the corresponding nonlinearity gk(.), and matrix W would identify matrix H, to 
within a scaling factor for each transmitting antenna. The scaling factors can be deter-
mined by knowing the transmission antennas’ average powers.

5.2.3  Learning Algorithm

In supervised learning [2, 3, 8, 9, 13], the unknown MIMO system and the proposed 
NN model are fed with the same input vector (Figure 5.3). At each iteration, the NN 
parameters are updated so that to minimize a cost function, which is defined in this 
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FIgure 5.2 NN identification structure.
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chapter as the sum of the squared errors between the unknown system outputs and the 
corresponding outputs of the model:

 J n e nj

j

L

( ) ( )= ( )
=

∑ 2

1

, (5.6)

where ej(n) = yj(n) – sj(n).
A gradient descent approach is used in this chapter for the updating equations:
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FIgure 5.3 Adaptive system diagram.
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where μ is a small positive constant.
The adaptive system is initialized with a set of small random-weight values. The 

learning curve is defined as the evolution of the mean squared error (MSE) during the 
learning process. In modeling fixed (i.e., static) MIMO systems, the MSE error starts to 
decrease until the system reaches a steady state and only slight changes in the weights 
are observed. In that case, the learning process may be stopped. However, if the MIMO 
system is time varying, then the learning process should be maintained in order to keep 
tracking the time-varying parameters.

We have chosen to compare our results to the classical multilayer perceptron (MLP) 
[2]. The MLP is composed of M inputs, a number of nonlinear neurons in the first layer, 
followed by L linear combiners (Figure 5.4).

The MLP is trained using the backpropagation algorithm [2, 3]. It allows a black-
box modeling [8, 9, 13] of the unknown MIMO system, i.e., the modeling of the overall 
nonlinear MIMO input-output transfer function, without being able to characterize the 
different parts of the unknown system (i.e., the memoryless nonlinearities and the com-
bining matrix H).

For a fair comparison between the MLP structure and the proposed NN block struc-
ture, we will take the same total number of neurons in each scheme. Therefore, for the 
block structure, if we denote the number of neurons in each block by N, then the total 
number of neurons will be equal to MN. This structure will be compared to an MLP 
with MN neurons.

Table 5.1 compares the computational complexity of each algorithm:

FIgure 5.4 MLP structure.
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The number of sigmoid transforms is the same, since we have the same number of 
neurons in the two structures. However, the MLP requires much more multiplications 
and additions. This is because in the MLP structure, all inputs are connected to all first-
layer neurons (MN neurons in total), whereas in the block structure, each input is con-
nected to one block that is composed of N neurons only.

5.3  Applications and Simulation Results

5.3.1  Modeling and Identification of MIMO Transmitters with 
Nonlinear Amplifiers and RF Coupling Interference

In this section, we apply the proposed NN for modeling and identification of MIMO 
RF transmitters that are equipped with nonlinear HPAs. Figure 5.5 shows the coupling 
terms generated by RF interference [10, 16]. In this application, the unknown nonlinear 
HPA transfer functions to be identified are taken from a family of nonlinear functions 
of the form 

 g x x x
i i

i( ) exp ,= −







α β 2

2

where αi and βi are positive constants.
For the simulations presented in this section, we have taken the following parameters: 

M = L = 2, α1 = α2 = 1, β1 = 1, β2 = 2. For each output, the noise is taken as white Gauss-
ian with variance σi

2. For the simulation, the inputs were zero-mean white Gaussian 
processes with unit variance.

Local
oscilator

HPA 

HPA 

I/Q
data stream

I/Q
data stream

Coupling matrix

FIgure 5.5 Example of a two-dimensional MIMO RF transmitter, including the coupling 
matrix between antennas.

Table 5.1

Parameters
Sigmoid 

Transforms Multiplications Additions

Proposed NN M(3N + L) MN M(2N + L) M(2N + L + 1)
MLP MN(M + L + 1) MN MN(M + L) MN(M + L + 1)
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The coupling matrix simulated in this example was taken as

 H =










1 0 3
0 3 1

.
.

.

In this example, the proposed block-oriented NN scheme was composed of two blocks 
of N = 5 neurons each. The total number of neurons is then equal to 10. We have com-
pared this scheme to an MLP structure composed of ten neurons. The erf function has 
been taken for the activation function.

The complexity of the algorithms is displayed in Table 5.2.
As can be seen in the table, the number of multiplications and additions in the MLP 

structure is almost twice that of the proposed block structure.
We have tested both algorithms for a range of μ values belonging to the interval 

[10–5 10–2] under various initial conditions. The proposed block structure has always 
outperformed the MLP.

Figure 5.6 shows the learning curves for the block structure and the MLP for μ = 
0.005. The proposed approach shows lower MSE and faster convergence speed.
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FIgure 5.6 Smoothed MSE curves (an averaging window of 1,000 samples has been used). μ = 
0.005.

Table 5.2

Parameters
Sigmoid 

Transforms Multiplications Additions

Proposed NN 34 10 24 26
MLP 50 10 40 50
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Moreover, the block structure allows excellent characterization of each of the nonlin-
earities as well as the coupling matrix H, to within scaling factors. That is, NN1(x) has 
converged to γ1g1(x), NN2(x) has converged to γ2g2(x), and W has converged to

 

1 0

0 1
1

2

γ

γ



















× H ,

where γ1 and γ2 are real constants.
It is easy to show that if the output of block k (i.e., NNk(xk)) is multiplied by a given 

factor γk, and if the corresponding weights {wki}, i = 1, …, L are multiplied by the inverse 
of that factor, i.e., 1/γk, then the overall NN system transfer function remains unchanged 
(equation (5.5)). This reveals that the adaptive system has several equivalent stationary 
points. The values of γk can be determined if the amplifiers’ output average powers or 
operating points are given.

Figure 5.7 shows the transient behavior of matrix W weights (after normalization 
with the scaling factors). The scaling factors here were γ1 = –1.1246 and γ2 = –0.9319. 
 Figures 5.8 and 5.9 show that the memoryless nonlinearities have been successfully 
modeled by our NN approach.

5.3.2  Application to Fault Detection

In this section, the proposed scheme is applied to fault detection in nonlinear MIMO 
systems.

FIgure 5.7 Evolution of the weights (normalized) during the learning process.
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Here we consider the case studied in section 5.3.1 (modeling MIMO RF transmitters). 
We have simulated an abrupt change in g1(x). The change occurred during the learning 
process at the 12,500th iteration. g2(x) and the other parameters of the MIMO system 
were unchanged.

The learning curves are shown in Figure 5.10 for the block NN structure and MLP. 
As expected, the MSE error increases at the time of change, then decreases. Here again, 
the block NN structure performs better than the MLP. Figure 5.11 shows that the block 
structure has correctly detected and characterized the change in g1(x). g2(x) and H (not 
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FIgure 5.8 Unknown function g1(x) and normalized NN1(x).
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shown in the figure) were correctly identified as well. We have studied other MIMO sys-
tems with higher dimensions (3 × 3 and 4 × 4 systems) in which we simulated changes in 
more than one nonlinearity; the proposed NN model was always capable of character-
izing the changes.

On the other hand, the black-box MLP structure could not characterize the change. By 
looking at the MLP learning curve (Figure 5.10), one could only predict that “something 
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FIgure 5.10 Fault detection: learning curves.
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unusual” happened to the unknown system (or to the backpropagation algorithm) at 
iteration 12,500, without any further indication of what exactly happened during the 
learning process.

5.3.3  Tracking of Slowly Time-Varying Propagation Channels

This section deals with another application in which matrix H is slowly time varying.
In this application, we consider a multiple antenna transmitter/receiver system 

(Figure 5.1), with M = L = 2. The propagation channel H coefficients are modeled as 
slowly time-varying Ricean fading gains with a Ricean factor K = 5, and a normalized 
Doppler frequency of 0.0001.

Figure 5.12 shows the learning curves of the block structure and MLP. It can be 
noticed that the MSE errors here are higher than those of the static case studied in sec-
tion 5.3.1 (Figure 5.6). This is because of the fact that gradient descent algorithms do not 
provide excellent tracking capabilities in time-varying environments.

As shown in Figure 5.12, our approach is faster and yields lower MSE than the MLP. 
Moreover, the proposed structure allows good identification of the unknown non-
linearities (Figures 5.13 and 5.14). The time-varying coefficients were correctly tracked 
by matrix W. An illustration is made for w11(n) versus h11(n) (Figure 5.15).

5.3.4  Nonlinear MIMO Channel Receiver Design

This section applies the NN identification scheme to MIMO receiver design [17, 18]. 
A V-BLAST (Vertical Bell Laboratories Layered Space-Time) receiver is proposed. It 
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FIgure 5.12 Learning curves: time-varying case.
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consists of a NN MIMO channel estimator (NNCE) and a ZF V-BLAST (zero-forcing 
V-BLAST) detection algorithm [1, 7, 11]. The NNCE performs an online estimation of 
the nonlinear MIMO channel. The estimated channel state information (CSI) is pro-
vided to the ZF V-BLAST detection algorithm, which gives an estimation of the trans-
mitted symbols (Figure 5.16).
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FIgure 5.13 g1(x) and NN1(x) (normalized): time-varying case.
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The NNCE operation consists of two modes: training sequence (TS) mode and deci-
sion-directed (DD) mode. In the TS mode the amplitudes of the transmitted signals are 
used to train the NNCE. The TS mode continues until the NNCE is fully trained, then 
the NNCE switches to the DD mode. In the DD, the amplitudes of the detected signals 
(x̂k(n), k = 1, …, M) are used to train the NNCE.
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FIgure 5.15 Identification of the time-varying channel: h11(n) and normalized w11(n).

FIgure 5.16 NN-based V-BLAST receiver.

x1(n) 

x1(n)
hLM 

hLM 

hL2 

h11 g1(.) 

g1(.)

N2(n) 

y1(n) 

N1(n) 

yL(n) xM(n) 

TS mode
NNCE 

NN V-blast
receiver

Learning
algorithm

DD mode

∑ 

∑ 

 

x1(n)  

© 2009 by Taylor & Francis Group, LLC



Adaptive Modeling and Identification of Nonlinear MIMO Channels 149

Here the transmitted signals are 16-QAM modulated, and M = L = 2. The unknown 
propagation channel is modeled as time-varying Rician fading gains with a Rician fac-
tor K = 5 and normalized Doppler frequency of fD = 10–4. For the modeling and iden-
tification part, the noise is taken as white Gaussian with variance 0.001. However, for 
the detection part, the noise is varied depending on the channel signal-to-noise ratio 
(SNR). Each subnetwork in each block is composed of N = 5 neurons. It is assumed in the 
simulations that the HPA transmission powers are known to the receiver. The receiver 
is trained using a training sequence of fifty thousand transmitted symbols, after which 
the DD mode is activated.

Figure 5.17 shows the BER performance of our NN V-BLAST receiver. The proposed 
receiver achieves a bit error rate (BER) of 10–4 at an SNR of 29.2 dB. The NN V-BLAST 
receiver is compared to a least mean squares (LMS) tracker following a memoryless neural 
network (LMS-NN) equalizer [6]. It is composed of a linear combiner, W–1, acting as an 
inverter to the channel matrix H, and a NN structure, acting as an inverter to the channel 
nonlinearities. The general structure of the LMS-NN equalizer is shown in Figure 5.18. BER 
simulation results show that our NN V-BLAST receiver outperforms the LMS-NN equal-
izer in terms of BER. We can also see that the performance of the NN V-BLAST receiver is 
close to that of the ideal V-BLAST receiver, which assumes perfect channel knowledge. This 
should not be surprising, since the different parts of the channel have been well identified.

5.4  Conclusion

The chapter proposed an NN approach for modeling nonlinear MIMO channels com-
posed of a set of memoryless nonlinearities followed by a linear combining channel. We 
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FIgure 5.17 BER performance versus SNR.
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followed a block-oriented NN approach for the MIMO system modeling. The NN model 
allows excellent modeling and identification of the different parts of the unknown 
MIMO system; the learning process is being made by using the MIMO system input-
output data. The proposed approach outperforms the black-box MLP method in terms 
of computational complexity, convergence speed, and MSE performance. The proposed 
scheme has been successfully applied to tracking of slowly time-varying MIMO chan-
nels, detection and characterization of changes in MIMO channels, and receiver design 
for nonlinear Rician MIMO channels.
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6.1  Introduction

Future wireless communication systems have to provide multimedia services to battery-
operated portable terminals. These systems must efficiently utilize the limited band-
width and power resources to enable high-data-rate high-reliability transmission over 
wireless fading channels. Adaptive modulation and diversity combining are two of 
the most important enabling techniques for future wireless communication systems. 
Adaptive modulation can achieve high spectral efficiency over wireless channels [1–3]. 
The basic idea of adaptive modulation is to match the modulation parameters, such as 
constellation size and coding rate, to the prevailing fading channel conditions while 
maintaining the instantaneous error rate below a target value. Usually, the modula-
tion mode is chosen based on the comparison results of received signal strength with 
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several predetermined thresholds. Diversity combining, on the other hand, can improve 
the reliability of wireless fading channels by appropriately combining differently faded 
information-bearing signals [4]. While adaptive modulation can certainly benefit from 
diversity combining through the improved channel quality, the design and analysis of 
these two techniques were usually carried out separately.

From a performance perspective, the optimal combining solution is the well-known 

is obtained by coherently summing up the optimally weighted signal replicas from all 
diversity paths. Meanwhile, the implementation complexity of MRC is high, especially 
when the number of diversity paths is large. Indeed, MRC not only requires the same 
number of RF chains as the number of available diversity paths, but also mandates the 
complete and simultaneous knowledge of the channel condition for each diversity path. 
To reduce the implementation complexity of the MRC diversity combiner, generalized 
selection combining (GSC) was proposed and extensively studied (see, for example, 
[6–11] and references therein). The receiver with GSC combines a fixed number of best 
diversity paths as per the rules of the optimal MRC scheme. As one can intuitively 
expect, diversity combining techniques such as MRC and GSC improve the spectral effi-
ciency of adaptive transmission systems by allowing a higher-order transmission mode. 
On the other hand, these combining schemes operate rather independently of the adap-
tive transmission system.

Recently, there has been a growing interest in adaptive combining schemes for pro-
cessing power-saving purposes [12–17]. The basic idea of these power-saving schemes is 
to use the diversity combiner resource adaptively in a way that the output signal satis-
fies a certain quality requirement. For example, minimum selection GSC (MS-GSC) 
was proposed by Kim et al. [12] as a power-saving implementation of the GSC scheme. 
With MS-GSC, the receiver combines the least number of best branches such that the 
combined SNR exceeds a certain predetermined threshold. It has been shown [13–15] 
that MS-GSC can save a considerable amount of processing power by keeping fewer 
branches active on average, while still providing nearly the same performance as MRC. 
Output-threshold MRC (OT-MRC) is another adaptive combining scheme [17], which 
can further reduce the number of path estimations by sequentially combining addi-
tional paths if necessary. It is interesting to note that both adaptive modulation and 
adaptive combining concepts utilize some predetermined threshold in their operation. 
Very recently, based on this observation, two joint adaptive modulation and diversity 
combining designs, where both the transmission mode and combiner structure are 
adaptively determined based on the fading channel condition, have been proposed and 
analyzed [18, 19].

We note at this point that both MRC- and GSC-based diversity combining schemes 
require the implementation of multiple RF chains. While this may not be an issue for 
conventional cellular or wireless LAN systems, it certainly becomes very challenging or 
even prohibitive for future generations of wireless personal area network (PAN) systems 
operating over 60 GHz bands with millimeter (MM)-wave technology, which are being 
currently standardized by the IEEE 802.15.3c group. Only until very recently, RF-CMOS 
technology was able to produce chips operating over the 60 GHz frequency range, but 
still with considerable high cost. On the other hand, implementing multiple MM-wave 
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antennas at the receiver is achievable at a reasonable price. In the resulting multiple 
antennas with a single RF chain receiver scenario, only traditional selection or switched 
combining schemes can be employed to explore the diversity benefit. In this chapter, we 
complement the previous work on joint adaptive transmission and diversity combining 
by extending the design and analysis in [18, 19] to the lower-complexity selection and 
switched combining schemes. The proposed joint design can also apply to a transmit 
diversity system to achieve high efficiency with low feedback load and no power spread-
ing loss.

The selection combining (SC) scheme [4, section 6.2] has much lower complexity than 
MRC. The receiver with SC uses only the best diversity paths of all available ones. This 
nevertheless requires the estimation and comparison of the quality indicators, such as 
the signal-to-noise ratio (SNR), of all diversity paths. With switched combining, where 
switch-and-stay combining (SSC) is the popular example [20–27], the complexity is fur-
ther reduced by eliminating the need for simultaneously checking the path quality of all 
diversity paths. In fact, SSC, where the combiner switches to the other branch only when 
the output SNR of the current branch is below a certain threshold, can be viewed as the 
origin of aforementioned adaptive combining schemes such as MS-GSC and OT-MRC. 
Recent applications (such as transmit diversity, for example) have also motivated studies 
of multibranch switch-and-examine combining (SEC) [28, 29]. In particular, with SEC, 
if the current path is not of acceptable quality, then the combiner switches and examines 
the quality of the next available path. This switching-and-examining process is repeated 
until either an acceptable path is found or all available diversity paths have been exam-
ined. In the latter case, the combiner either settles on the last examined path [28] or 
connects to the receiver the path with the best quality among all examined paths, and 
this SEC variant is known as SEC with post-examine selection (SECps) [29].

In this chapter, we study joint adaptive transmission and diversity combining with 
SC, SEC, and SECps schemes. We first examine the spectral efficiency benefit provided 
by the SC scheme for adaptive transmission systems. Then, capitalizing on the adap-
tive nature of switched combining, we develop more integrated joint designs based on 
the SEC and SECps schemes. In particular, the resulting system jointly selects the most 
appropriate transmission mode and diversity paths based on the current channel con-
ditions and the desired bit error rate (BER) requirement. Depending on the primary 
objective of the joint design, we arrive at a scheme that requires a minimum number of 
path estimations (termed as minimum estimation scheme) and a scheme with a high 
bandwidth efficiency (termed as bandwidth-efficient scheme), both of which satisfy the 
desired BER requirement. For both schemes under consideration, we quantify through 
accurate analysis their processing complexity (quantified in terms of average number 
of paths estimated), spectral efficiency (quantified in terms of average number of trans-
mitted bits/s/Hz), and performance (quantified in terms of average BER). Finally, some 
selected numerical examples are presented to illustrate the mathematical formalism.

The rest of this chapter is organized as follows. Section 6.2 contains the general 
description of the system and channel model under consideration. While section 6.3 
addresses the design and analysis of SC-based joint adaptive modulation and diver-
sity combining schemes, section 6.4 is dedicated to the operation and performance 
of switched combining–based schemes. Finally, section 6.5 provides some concluding 
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remarks. In all sections, selected numerical examples are provided together with some 
related discussions and interpretations.

6.2  System and Channel Models

In this section, we first present the adaptive modulation scheme adopted in this work. 
After discussing the discrete-time implementation model for the proposed transmission 
system, we introduce the block-fading channel model under consideration.

6.2.1  Adaptive Modulation

We adopt the constant-power variable-rate uncoded M-ary quadrature amplitude mod-
ulation (M-QAM) scheme studied in [2].* With this adaptive modulation scheme, the 
mode selection is solely based on the fading channel condition. In particular, the SNR 
range is divided into N regions and the constellation size M = 2n is used during the 
subsequent data burst transmission if the output SNR of diversity combiner ends up 
being in the nth region [γTn, γTn+1), where n = 2, 3, …, N. Note that in this case, n bits are 
carried by each symbol. The region boundaries, denoted by γTn, are determined such that 
the instantaneous BER for the chosen constellation is below a certain required value, 
denoted by BER0. More specifically, to meet a BER requirement of 0.1%, the thresholds 
can be set by solving the following equations:

 γT nn
= −BER 1 0 001( . ),  (6.1)

where BERn
–1(·) is the inverse BER expression. After applying a numerical method to 

solve (6.1) with the exact BER expression for square M-QAM given in [30], we obtain the 
exact Es /N0 values for the thresholds, γTn, for the instantaneous BER requirement of 10–2, 
10–3, and 10–4 cases, and these values are summarized in Table 6.1. Note that γT1 is equal 
to 0 or –∞ dB, while γTn+1 = +∞.

* Note that the design can be easily extended to include the coding scheme, in which case we should 
use the proper SNR thresholds for different modulation and coding scheme combinations.

Table 6.1 SNR Thresholds (Es/N0) at Each Modulation Level to Satisfy 1, 
0.1, and 0.01% Bit Error Rate for 2n-ary QAM, Respectively

n γTn (dB) for BER0 = 10–2 γTn (dB) for BER0 = 10–3 γTn (dB) for BER0 = 10–4

2  7.33  9.64 11.35
3 11.84 13.32 16.07
4 13.90 16.63 18.23
5 17.83 19.79 22.29
6 19.73 22.86 24.30
7 23.85 25.91 28.24
8 25.43 28.94 30.23
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6.2.2  System Model

In this work, we consider a receiver space diversity system as shown in Figure 6.1. In 
particular, L antennas are used at the receiver to create differently faded replicas of the 
transmitted signal. Because of the hardware complexity constraint that is imposed by 
MM-wave systems, we assume that the receiver can only process a single selected diver-
sity branch. We adopt a discrete-time implementation for the proposed transmission 
system. More specifically, short guard periods are periodically inserted into the trans-
mitted signal. During these guard periods, the receiver performs a series of operations, 
including diversity path estimations and their comparisons, in order to select the appro-
priate diversity branch and the suitable adaptive modulation mode to be used during 
the subsequent data burst reception. Once these decisions are made at the receiver, the 
adaptive modulation mode is fed back to the transmitter via an error-free reverse chan-
nel before the guard period ends. After that, the transmitter and receiver are configured 
accordingly throughout the subsequent data burst transmission.

6.2.3  Channel Model

We assume that the length of the guard period plus data burst is of the order of the chan-
nel coherence time, and therefore, the faded signal amplitude remains constant during 
each guard period–data burst pair and de-correlates after that. We also assume that 
the received signal on each antenna branch experiences an independent and identically 
distributed (i.i.d.) fading process. As such, the faded SNR, denoted by γi, i = 1, …, L, on 
each diversity branch shares a common probability density function (PDF) and cumu-
lative distribution function (CDF). In Table 6.2, we summarize the PDF, pγ(x), and the 
CDF, Fγ(x), of the received SNRs under three popular fading models: Rayleigh, Rice, and 
Nakagami-m. In Table 6.2, γ– is the average SNR, Γ(·) is the Gamma function [31, section 
8.31], I0(·) is the modified Bessel function of the first kind with zero order [31, section 
8.43], Γ(·,·) is the incomplete Gamma function [31, section 8.35], and Q1(·,·) is the first-
order Marcum Q-function [32].

6.3  Joint Adaptive Modulation  
and Selection Combining

In this section, we consider the analysis of a joint adaptive modulation and selection 
combining system. We first present the mode of operation of the transmission system 

Transmitter ... Receiver
2

L

1

Diversity
combiner

FIgure 6.1 Block diagram of a receiver space diversity system.
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during guard periods. The statistics of the received SNR for the SC-based joint design 
are then derived before this result is applied to the performance and spectral efficiency 
analysis.

6.3.1  Mode of Operation and Statistics

During each guard period, the receiver performs the following operations. First, the 
receiver estimates the faded SNR of each antenna branch and selects the best branch 
after proper comparisons. The combiner output SNR is then given by γc = max[γ1, γ2, …, 
γL]. After that, the receiver determines the appropriate modulation scheme by sequen-
tially comparing the output SNR γc with the threshold γTn, n = N, N – 1, …, 2. Whenever 
the receiver finds that the output SNR is smaller than γTn+1 but greater than γTn, it selects 
the modulation mode n for the subsequent data burst and feeds back that mode index to 
the transmitter. If the combined SNR of all L available branches is below γT2, the receiver 
may ask the transmitter to either (1) transmit using the lowest modulation mode, i.e., 
QPSK, in violation of the target instantaneous BER requirement (option 1), or (2) buf-
fer the data and wait until the next guard period for more favorable channel conditions 
(option 2). Note that option 1 is useful in supporting delay-sensitive traffic with hard 
delay constraint, especially when coupled with a powerful upper-layer error correction 
mechanism.

Based on the mode of operation described above, we can see that the received SNR, γc, 
of the SC-based scheme is the same as the output SNR of a traditional L branch selection 
combiner. In other words, the CDF of the received SNR, Fγc(·), is given by
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where Fγc
SC(·) denotes the CDF of the combined SNR with L branch SC, which is given for 

i.i.d. fading environment by

Table 6.2 Statistics of the Faded SNR for the Three Fading Models under 
Consideration

Model Rayleigh Rice/Nakagami-n Nakagami-m
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 F F
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Correspondingly, the PDF of the received SNR, pγc(·), is given by
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where U(·) is the Heaviside unit step function, δ(·) is the Dirac Delta function and pγc
SC(·)

denotes the PDF of the combined SNR with L branch SC, which is given for the i.i.d. 
fading environment by

 p L F p
c

SC L
γ γ γγ γ γ( ) ( ) ( ).= ( ) −1

 (6.5)

6.3.2  Performance and Efficiency Analysis

6.3.2.1  Average Spectral Efficiency

The average spectral efficiency of an adaptive modulation system can be calculated as 
[2, equation (33)]

 η=
=

∑n pn

n
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,
2

where pn is the probability that the nth constellation is used. For the SC-based system 
under consideration, it can be shown that pn is given by
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Therefore, the average spectral efficiency of the SC-based scheme is given by
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6.3.2.2  Average Error Rate

The average BER for an adaptive modulation system can be calculated as [2, equation (35)]

 BER n BERn

n

N

=
=

∑1

2
η

,  (6.8)

where BERn is the average error rate for constellation n, and which is given by

 BER BER p dn n
SC
c

Tn

Tn= +∫ ( ) ( ) ,γ γ γγ
γ

γ 1  (6.9)

where BERn(γ) is the conditional BER of the constellation n over an additive white 
Gaussian noise (AWGN) channel given that its SNR is equal to γ, which is given in [30] 
for uncoded M-QAM. Therefore, the average BER of the SC-based scheme under con-
sideration can be calculated as
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6.3.3  Numerical Examples

Figure 6.2 plots the average spectral efficiency of the SC-based scheme with both options 
and for different numbers of receive antennas L. As we can see, as the number of receive 
antennas increases, the average spectral efficiency of the system improves, but with 
diminishing gain. If we compare the average spectral efficiency of the two options with 
the same number of antennas, we can see that for a high-SNR region, both options have 
nearly the same spectral efficiency, whereas for a low-SNR region, option 1 offers higher 
efficiency than option 2. This is because when the channel condition is poor, option 2 
will buffer the data while option 1 continues transmission at the cost of violating the 
BER constraint.

The BER constraint violation can be immediately observed from Figure 6.3, where 
we plot the average error rate of the SC-based scheme with both options and different 
numbers of receive antenna L. The target BER is set to be 10–3 in this figure. We also 
observe that when the average SNR is greater than a certain value (10 dB for the L = 
4 case), the average BER of the SC-based scheme with option 1 will always be smaller 
than the target BER of 10–3. When the number of receive antennas increases, the SNR 
region where the BER constraint is satisfied with option 1 also increases. For option 2, 
however, more receive antennas will only lead to a better BER performance over the very 
high-SNR region.

(6.10)
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FIgure 6.2 Average spectral efficiency of the SC-based scheme for both options and different 
numbers of antennas L.
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FIgure 6.3 Average error rate of the SC-based scheme for both options and different numbers 
of antennas L.

© 2009 by Taylor & Francis Group, LLC



162 Adaptive Signal Processing in Wireless Communications

6.4  Joint Adaptive Modulation  
and Switched Combining

In this section, we design and analyze joint adaptive modulation and switched combin-
ing schemes. Note that switched combining schemes offer an even lower- complexity 
combining solution than SC since they involve less channel estimation and fewer 
and simpler comparisons. In what follows, we first present several switched combin-
ing schemes and then study two variants of the joint adaptive modulation and diver-
sity combining designs based on switched combining, namely, minimum estimation 
schemes and bandwidth-efficient schemes.

6.4.1  Switched Combining

6.4.1.1  SSC/SEC

Dual-branch SSC is one of the most widely studied switched combining schemes. With 
SSC, the receiver uses the current branch until it becomes unacceptable, and then it 
switches and stays on the other branch regardless of its quality. The branch acceptance 
is determined by comparing the SNR of the current branch with a preselected fixed 
threshold, denoted by γT , which can be implemented with a threshold detector. Note 
that the major complexity saving of SSC over SC is that SSC needs only the SNR estimate 
of the current path and a simpler comparison to reach the combining decision. Because 
the receiver simply stays on the switch-to branch irrespective of its quality, SSC cannot 
benefit from additional diversity paths.

In multibranch scenario, i.e., L > 2, we can generalize SSC in order to take advantage 
of the additional diversity paths, and this leads to the SEC scheme [28]. In this case, the 
receiver with SEC cyclically switches between the L antenna branches. Branch switching 
occurs only when the received SNR of the currently used branch is below the threshold 
γT, and as such, this branch becomes unacceptable. Unlike SSC, the receiver examines 
the received SNR of the switch-to branch and switches again if it is found unaccept-
able. The receiver will repeat this process until either it finds an acceptable branch or 
all L antenna branches have been examined. In the latter case, it uses the last examined 
antenna branch for the data reception. It can be seen that the SEC scheme retains the 
complexity advantage of less path estimation and simple comparison.

Based on the mode of operation of SSC/SEC, it can be shown that the CDF and PDF 
of the output SNR with L-SEC are given by [28]
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and

 p
F p

F
c

SEC
T

L

T

T

γ

γ γ

γ

γ
γ γ γ γ

γ
( )

( ),    ;
=

( )



 <

( )

−1





 ≥








 =

−∑ j

T
j

L
pγ γ γ γ( ),    ,

0

1
 (6.12)

respectively, where Fγ(·) and pγ(·) are the common CDF and PDF of received SNR per 
path. Note that when L = 2, (6.11) and (6.12) reduce to the CDF and PDF for dual-branch 
SSC, respectively.

6.4.1.2  SECps

We can further improve the performance of SSC/SEC by better exploiting the available 
channel estimates in the worst-case scenario for which no acceptable diversity path is 
found. Since all available diversity paths have been examined in this case, the receiver 
may use the strongest one among all these unacceptable paths, instead of randomly 
choosing the last unacceptable path, for data reception. We term the resulting scheme 
SECps [29]. In particular, the receiver with SECps tries to use an acceptable path by 
examining as many diversity paths as necessary, as is the case with SEC. When no 
acceptable path is found after examining all diversity paths, unlike conventional SEC, 
the receiver with SECps selects the best unacceptable path, i.e., the one with the highest 
SNR, for data reception.

More specifically, the receiver first estimates the SNR of the currently used diversity 
path, denoted by γ1, without loss of generality, and compares it with the threshold γT. If 
the current diversity path is acceptable (i.e., γ1 ≥ γT), then the receiver continues to use 
it for data reception (i.e., γc = γ1). Otherwise (i.e., γ1 < γT), the receiver tries to find an 
acceptable path by sequentially examining the other L – 1 diversity paths. This process 
is continued until either an acceptable path is found or all available diversity paths have 
been estimated. In the latter case, since all path SNRs are known, the receiver compares 
the estimate path SNRs and selects the one with the largest SNR for data reception. 
Compared to conventional SEC, SECps requires the additional complexity for the occa-
sional selection of the best path among all unacceptable paths. However, SECps takes 
full advantage of the available path estimates. In particular, by using the best unaccept-
able path instead of a randomly chosen one (usually the last one examined) as in SEC, 
SECps can deliver better performance than conventional SEC.

Based on the mode of operation of SECps, it can be shown that the CDF and PDF of 
the output SNR with L-SECps are given by [29]
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and
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respectively.

6.4.2  Minimum Estimation Schemes

6.4.2.1  Mode of Operation

The primary objective of the minimum estimation schemes based on switched combin-
ing is to minimize the number of path estimations for path selection at the receiver. 
Once this primary objective is met, this scheme tries to afford the largest possible spec-
tral efficiency while meeting the required target BER. Based on these objectives, the 
diversity combiner will perform just enough combining operations such that at least the 
lowest adaptive modulation mode, i.e., QPSK (M = 4), will exhibit an instantaneous BER 
smaller than the predetermined target value. In particular, the receiver tries to increase 
the output SNR Γ above the threshold for QPSK, i.e., γT2, by performing SSC/SEC or 
SECps diversity. The receiver will sequentially estimate the received SNR of each diver-
sity path and compare it with γT2. The first acceptable path, i.e., the one with SNR greater 
than γT2, will be used for data burst reception. Then, the receiver starts to determine the 
modulation mode to be used by checking in which interval the resulting output SNR 
falls. In particular, the receiver sequentially compares the output SNR with respect to 
the thresholds, γT3, γT4, …, γTN. Whenever the receiver finds that the output SNR is smaller 
than γTn+1 but greater than γTn, it selects the modulation mode n for the subsequent data 
burst and feeds back that particular modulation mode to the transmitter. If the received 
SNRs of all L available branches are below γT2, the receiver may ask the transmitter to 
either (1) transmit using the lowest modulation mode in violation of the target instan-
taneous BER requirement (option 1) or (2) buffer the data and wait until the next guard 
period for more favorable channel conditions (option 2). For option 1, the receiver will 
use the last unacceptable path for data reception for the case of SSC/SEC and the stron-
gest unacceptable path instead for the case of SECps.

6.4.2.2  Statistics of the Received SNR

Based on the mode of operation described above, we can see that the received SNR, Γ, of 
the minimum estimation scheme based on SSC/SEC is the same as the combined SNR 
of the SSC/SEC scheme with γT2 as the output threshold. In other words, the CDF of the 
received SNR, FΓ(·), of the SSC/SEC-based minimum estimation scheme is given by
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where Fγc
SEC(γT2)(·) denotes the CDF of the combined SNR with L branch SEC and using γT2 

as an output threshold, which is given for the i.i.d. fading environment in (6.11). Cor-
respondingly, the PDF of the received SNR, pΓ(·), is given by
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where pγc
SEC(γT2)(·) denotes the PDF of the combined SNR with L branch SSC/SEC and 

using γT2 as an output threshold, which is given for the i.i.d. fading environment by 
(6.12).

Similarly, the CDF and PDF of the received SNR, Γ, of the minimum estimation 
scheme based on SECps can be obtained as
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and
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respectively, where Fγc
SECps(γT2)(·) and pγc

SECps(γT2)(·) denote the CDF and PDF of the combined 
SNR with L branch SECps and γT2 as an output threshold, which is given for the i.i.d. 
fading environment by (6.13) and (6.14), respectively.

6.4.2.3  Performance and Efficiency Analysis

With the statistics of the received SNR Γ derived for minimum estimation schemes 
based on both SSC/SEC and SECps, we evaluate the performance and efficiency of the 
system. Following an approach similar to the one used for the SC-based schemes in the 
previous section, we obtain the average spectral efficiency of the SSC/SEC-based mini-
mum estimation scheme as
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The average BER of the SSC/SEC-based minimum estimation scheme can be similarly 
obtained as
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Similar results can be obtained for SECps-based schemas by using the CDF and PDF 
of the combined SNR with L branch SECps given in (6.13) and (6.14) instead, but these 
results are omitted here for conciseness.

The complexity saving of switched combining schemes over selection combining 
schemes manifests in the average number of path estimations. Note that SC always 
needs L path estimations, i.e., NE

SC = L. On the other hand, the receiver with SSC/SEC 
and SECps needs to estimate additional paths only if necessary. Whenever an acceptable 
path is found, the receiver stops path estimation. Therefore, the average number of path 
estimations needed with the SSC/SEC- or SECps-based minimum selection scheme is 
given by
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Therefore, the switched combining–based scheme requires less path estimations than 
the SC-based scheme on average, i.e.,

 N N NE
SEC

E
SECps

E
SC= ≤ .

6.4.3  Bandwidth-Efficient Schemes

6.4.3.1  Mode of Operation

The primary objective of the switched combining-based bandwidth-efficient scheme is 
to maximize the spectral efficiency. As such, the receiver with this scheme performs 
as many combining operations as needed so that the highest achievable modulation 
mode can be used while satisfying the instantaneous BER requirement. More specifi-
cally, the receiver tries first to increase the output SNR Γ above the threshold of highest 
modulation mode 2N-QAM, i.e., γTN, by performing SSC/SEC or SECps. The receiver will 
sequentially estimate the received SNR of each diversity path and compare it with γTN . 
Whenever a path with SNR greater than γTN is found, the receiver stops path estimation, 

(6.20)
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uses that path for data burst reception, and informs the transmitter to use 2N-QAM 
as the modulation mode for the subsequent data burst. If the received SNRs of all the 
available paths are below γTN, the receiver selects the modulation mode corresponding 
to the SNR interval in which the combined SNR falls. With SSC/SEC, the combined 
SNR is the SNR of the last unacceptable path, whereas with SECps, it is the SNR of 
the best unacceptable path. In particular, the receiver sequentially compares the output 
SNR with the thresholds, γTN–1, γTN–2, …, γT2. Whenever the receiver finds that the output 
SNR is smaller than γTN+1 but greater than γTn, it selects the modulation mode n for the 
subsequent data burst and feeds back this selected mode to the transmitter. If, in the 
worst case, the combined SNRs of all the available paths ends up being below γT2, the 
receiver has the same two termination options as for the minimum estimation scheme 
(i.e., to transmit using the lowest modulation mode [option 1] or to wait until the next 
guard period [option 2]).

6.4.3.2  Statistics of the Received SNR

Based on the mode of operation described above, we can see that the received SNR, Γ, of 
the bandwidth-efficient scheme is the same as the combined SNRs of SSC/SEC or SECps 
diversity with γTN as the output threshold. Therefore, the CDF of the received SNR of this 
bandwidth-efficient scheme based on SEC is given by
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where Fγc
SEC(γTN)(·) denotes the CDF of the combined SNR with L branch SEC and γTN as an 

output threshold. Correspondingly, the PDF of the received SNR is given by
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where pγc
SEC(γTN)(·) denotes the PDF of the combined SNR with L branch SEC and γTN as 

output threshold. The CDF and PDF of received SNR with the SECps-based bandwidth-
efficient scheme can be similarly obtained, but are omitted here for conciseness.

6.4.3.3  Performance and Efficiency Analysis

With the statistics of the received SNR at hand, we study the performance, efficiency, and 
complexity of the bandwidth-efficient scheme as we did for the minimum estimation. 
For conciseness, we just list the analytical results in what follows for the SSC/SEC-based 

© 2009 by Taylor & Francis Group, LLC



168 Adaptive Signal Processing in Wireless Communications

scheme, while noting that those for the SECps-based scheme can be easily obtained by 
using the appropriate CDF and PDF instead.

Average spectral efficiency:
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Average BER:
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Average number of path estimation:
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6.4.4  Numerical Examples

In this section, we examine the different design trade-offs involved in the joint adap-
tive modulation and switched combining schemes through several selected numerical 
examples.

Figure 6.4 plots the average spectral efficiency of the SEC-based minimum estima-
tion schemes. It is interesting to see that the average spectral efficiency of this scheme 
for both options and different numbers of receive antennas overlaps for the high-SNR 
region. This is because when the channel condition is favorable, the first path examined 
will always be acceptable and will be used for modulation mode selection. As a result, 
the system becomes equivalent to the no-diversity case. We also observe from Figure 6.4 
that over the low- to medium-SNR region, the system can benefit from an increasing 
number of receive antennas, while this benefit is more significant for option 2 than for 
option 1. Note that the probability of no transmission for option 2 is reduced when the 
number of receive antennas increases. Figure 6.4 also shows that option 1 has a consid-
erable spectral efficiency advantage over option 2 in the low-SNR region. This advantage 

(6.25)
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again comes at the cost of the violation of the BER constraint, as shown in Figure 6.5. In 
Figure 6.5, we plot the average error rate of the SEC-based minimum estimation scheme 
with both options and different numbers of receive antenna L. It is clear that option 1 
constantly violates the target BER requirement over the low- to medium-SNR region, 
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FIgure 6.4 Average spectral efficiency of SEC-based minimum estimation schemes for both 
options and different numbers of antennas L.
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FIgure 6.5 Average error rate of SEC-based minimum estimation schemes for both options 
and different numbers of antennas L.
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whereas option 2 always satisfies the requirement. We also notice from Figure 6.5 that 
while increasing the number of receive antennas can considerably alleviate the BER vio-
lation for option 1, it has nearly no effect on the BER performance of option 2.

We plot the average spectral efficiency of the SEC-based bandwidth-efficient schemes 
for both options and different numbers of antennas L in Figure 6.6. Unlike the mini-
mum estimation schemes, increasing the number of receive antennas has little effect on 
the spectral efficiency for either option over the low- to medium-SNR region, whereas 
option 1 has certain spectral advantage over option 2 for the same reason given earlier. 
For the high-SNR region, the spectral efficiency of both options converges and benefits 
considerably from the additional number of receive antennas. This is because when the 
channel condition is favorable, having more antennas will increase the chance of using 
the largest possible constellation size and, as such, increase spectral efficiency. On the 
other hand, when the channel condition is poor, the largest constellation is not fea-
sible, and based on the operation of the bandwidth-efficient scheme, the receiver will 
always choose constellation size based on the last examined path. As a result, the system 
becomes equivalent to the no-diversity case. Figure 6.7 shows the average BER of the 
SEC-based bandwidth-efficient schemes. As expected, option 1 violates the BER require-
ment over a large SNR range, while option 2 always satisfies the requirement. Again, 
increasing the number of antennas helps improve the BER performance of option 1 over 
the high-SNR region but affects little that of option 2.

It can be expected that the spectral efficiency of the SECps-based minimum estimation 
scheme is the same as that of the SEC-based scheme, and that the SECps-based scheme 
leads to an improved error performance for option 1 over the low-SNR region due to the 
occasional selection of the best unacceptable paths in the worst case. We omit the numeri-
cal examples of the SECps-based minimum estimation scheme for conciseness and focus 
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FIgure 6.6 Average spectral efficiency of SEC-based bandwidth-efficient schemes for both 
options and different numbers of antennas L.
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on those of the SECps-based bandwidth-efficient scheme here. From Figure 6.8, unlike 
the SEC-based bandwidth-efficient scheme, the spectral efficiency of the SECps-based 
scheme benefits from the increasing number of antennas over all SNR regions. Basi-
cally, when the largest constellation is not feasible, the SECps-based bandwidth-efficient 
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FIgure 6.7 Average error rate of SEC-based bandwidth-efficient schemes for both options and 
different numbers of antennas L.
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FIgure 6.8 Average spectral efficiency of SECps-based bandwidth-efficient schemes for both 
options.
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scheme can use a larger constellation than the SEC-based scheme since the best path is 
used in this case. Comparing Figures 6.2 and 6.8, we can conclude that the SECps-based 
bandwidth-efficient scheme achieves nearly the same spectral efficiency as the SC-based 
scheme. From Figure 6.9, we observe that similar to the SEC-based scheme, the BER per-
formance of the SECps-based bandwidth-efficient scheme with option 1 shows a more 
significant improvement than with option 2 when the number of antennas increases. 
But the difference is that now the BER improvement manifests over all the SNR region. 
In fact, the average BER performance of the SECps-based bandwidth-efficient scheme 
with option 1 is very similar to that of the SC-based scheme shown in Figure 6.3.

We now compare the performances and spectral efficiencies of different schemes in 
Figures 6.10 and 6.11, respectively, for a fixed number of receive antennas (L = 4). The 
target BER is set to 10–4 in these figures. In particular, the average BER performance of 
different schemes with option 1 is shown in Figure 6.10. Note that we use subscript 1 to 
denote the minimum estimation schemes based on SEC or SECps, and subscript N to 
denote the bandwidth-efficient schemes. It can be seen that the SECps-based bandwidth-
efficient scheme offers nearly the same error performance as the SC-based scheme. The 
complexity advantage of the SEC-based scheme comes at the cost of certain error per-
formance degradation. It is worth pointing out that for the high-SNR region, the aver-
age BER of the SEC-based bandwidth-efficient scheme becomes better than that of the 
SECps-based minimum estimation scheme. Figure 6.11 compares the average spectral 
efficiencies of different schemes with option 2. Again, the SECps-based bandwidth-
efficient scheme offers the same high spectral efficiency as the SC-based scheme. The 
SEC-based minimum estimation scheme shows a certain spectral advantage over the 
no-diversity case in the low-SNR region, whereas this advantage is more pronounced for 
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FIgure 6.9 Average error rate of SECps-based bandwidth-efficient schemes for both options.
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the SEC-based bandwidth-efficient scheme in the high-SNR region. Finally, it is inter-
esting to note that the spectral efficiencies of the SEC-based and SECps-based minimum 
estimation schemes for option 2 are exactly the same as one would intuit.
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Finally, we examine the average number of channel estimations required by switched 
combining–based joint designs in Figure 6.12. We use SEmax to denote the bandwidth-
efficient schemes and CEmin the minimum estimation schemes. As we can see, as the 
average SNR increases, the number of channel estimations for all cases decreases from 
L to 1. For the low- to medium-SNR range, the minimum estimation schemes always 
require much less channel estimation than the bandwidth-efficient scheme, especially 
when L is large. Both types of schemes require less than L channel estimations, which 
is required by the SC-based scheme, in the high-SNR region. Therefore, the complexity 
advantage of switched combining-based schemes is that on average, the system needs to 
perform less channel estimation for diversity path and modulation mode selection.

6.5  Concluding Remarks

In this chapter, we investigated the joint design of adaptive modulation and switched 
diversity combining. The proposed system selects the diversity path and modulation 
mode jointly based on the fading channel condition and target BER requirement. Both SC 
and different variants of switched combining schemes, including SSC, SEC, and SECps, 
were considered. For the switched combining-based systems, we took into account both 
minimum channel estimation and maximum spectral efficiency design objectives. For 
the resulting schemes, we accurately quantified the performance, spectral efficiency, 
and complexity. It is observed from the selected numerical examples that the SECps-
based bandwidth-efficient scheme can achieve nearly the same spectral efficiency and 
link reliability as SC–based schemes while requiring less path estimation on average. 
We also noticed that the SEC-based schemes offer different design trade-offs. With its 
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low implementation complexity, we believe that the proposed joint design can be readily 
applied to the emerging MM-wave-based WPAN systems.
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7.1  Introduction

Fading is one of the major impairments of wireless channels, and it has traditionally 
been seen as an obstacle to reliable data transmission. Considerable efforts have been 
devoted to combat fading and to send data more reliably over wireless channels. One of 
the key methods to mitigate fading is to implement diversity techniques in wireless com-
munication systems. There are several different ways to achieve the diversity: frequency 
diversity [1], time diversity [2], and spatial diversity [3–6].

Recently, a new type of diversity, so-called multiuser diversity, has received a 
lot of attention. Multiuser diversity exploits the fact that in a multiuser system with 
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independently varying channels, there is likely to be at least a single user whose channel 
is near its peak at any time, if the number of users is sufficiently large. By allowing only 
the user having the best channel to use the system resource at a given time, the total 
throughput of the entire system can be maximized. In [7], Knopp and Humblet focused 
on the uplink channel of a multiuser system. In order to maximize the total information-
 theoretic capacity of the system, they showed that the optimum strategy was to trans-
mit the signals of the user with the best channel at any time. Similar results were also 
obtained by studying the downlink channel from the base station to the mobile users [8]. 
In [9], the space-time coding was combined with multiuser diversity. In [10] and [11], the 
inter action between multiple-antenna diversity and multiuser diversity was discussed in 
detail. Furthermore, the multiuser diversity technique has been implemented in practi-
cal communication systems, such as the downlink of the IS-856 system [12].

In a multiuser system exploiting multiuser diversity, channel fading can be consid-
ered a source of randomization providing multiuser diversity, as opposed to an impair-
ment. Therefore, large multiuser diversity gain is achieved when the dynamic range of 
the channel fluctuation is large or the variation rate of the channel is fast. In practice, 
however, the channel fluctuation may not be large enough to provide satisfactory mul-
tiuser diversity. Furthermore, when the channel fading is slower than the delay con-
straint of a system or an application, the user cannot wait until its channel reaches the 
peak, and thus, the multiuser diversity gain may get smaller. Addressing these problems, 
in [13], Viswanath et al. proposed opportunistic beamforming, which artificially induced 
channel fluctuation when the fluctuation of the underlying physical channel was small 
or the fading was slow. They studied a system where the base station was equipped with 
multiple antennas and the same signal was transmitted from the antennas after being 
multiplied by pseudorandom weight coefficients. The phase and magnitude of each 
weight coefficient were changing in a controlled but pseudorandom fashion. By using a 
single pilot signal, the signal-to-noise ratio (SNR) of the overall equivalent channel was 
measured at every user and was fed back to the base station. Based on the SNR feedback, 
the base station picked the user with the best equivalent channel and the data only for 
this user were transmitted.

Over the past few years, many works have been devoted to extend the opportunistic 
beamforming technique. In [14], multiple weight coefficients were used at every time slot 
and the one producing the highest SNR was chosen. By doing this, better performance 
could be achieved at the expense of the increased feedback overhead. Opportunistic 
beamforming was combined with the water-filling method and extended to multiple-
input multiple-output systems in [15]. Furthermore, several new opportunistic schemes, 
including opportunistic cophasing and antenna selection, were proposed and their per-
formance was analyzed in [16].

Very recently, Kim et al. proposed an adaptive version of opportunistic beamforming 
in Ricean fading channels [17]. This new scheme improved the performance substan-
tially over Ricean fading channels without introducing multiple weight coefficients or 
increasing the feedback overhead. Unlike the opportunistic beamforming in [13], which 
generated the weight coefficients in a pseudorandom fashion, the improved opportunis-
tic beamforming generated the weight coefficients more intelligently by estimating the 
directions of arrival (DOAs) of the users.
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The outline of the rest of this chapter is as follows. In section 7.2, the fundamental idea 
and theories behind multiuser diversity are reviewed. In section 7.3, opportunistic beam-
forming [13] is presented in detail. In section 7.4, the adaptive version of opportunistic 
beamforming [17] is discussed. Finally, some conclusions are drawn in section 7.5.

7.2  Multiuser Diversity

In this section we present fundamental ideas and theories of multiuser diversity. We 
consider the downlink of a wireless communication system where the base station with 
a single antenna is communicating with M users. Let hk(t) denote the channel coefficient 
from the base station to the k th user at time slot t, ηk(t) the additive noise at the k th user at 
time slot t, and s(t) the transmitted signal from the base station at time slot t. At a given 
time slot t, the power of s(t) is P and ηk(t) are modeled by circularly symmetric complex 
Gaussian random variables with zero mean and variance ρk

2, i.e., ηk(t) ~ CN (0, ρk
2). The 

received signal rk(t) at the k th user at time slot t is given by

 r t h t s t tk k k( ) ( ) ( ) ( )= + .η  (7.1)

The instantaneous SNR γk(t) of the k th user is γk(t) = P|hk(t)|2/ρk
2. We define the sum 

capacity of this downlink channel as the maximum achievable sum of the long-term 
average data rate transmitted to all users. It has been shown that the sum capacity is 
achieved by transmitting to the user with the highest γk(t) at every time slot t [8].

In Figure 7.1, we compare the sum capacity of the downlink channel under Rayleigh 
fading and additive white Gaussian noise (AWGN) environments, which have the same 
average SNR. We note that, with more than two users, the sum capacity under the 
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Rayleigh fading environment is larger than that under the AWGN environment. This 
is due to multiuser diversity. Figure 7.2 gives more insight into how the dynamic range 
and the variation rate of the channel fluctuation affect the benefits of multiuser diversity. 
The figure demonstrates the total throughput of the downlink channel of the IS-856 sys-
tem under the following two environments: (1) fixed—users are stationary but there are 
objects moving around them, and (2) mobile—users move at a walking speed (3 km/h). 
Under both environments, the total throughput increases with the number of users, but 
the increase is more impressive in the mobile case. This is because the dynamic range 
and the variation rate of the channel fluctuation for the mobile case are larger than those 
for the fixed case.

In order to exploit multiuser diversity, every user needs to estimate its own instanta-
neous SNR γk(t) by a pilot signal and feed it back to the base station. On the other hand, 
the base station needs to properly schedule the transmission to all the users and adapt 
the data rate based on the instantaneous channel condition. This technique has been 
adopted in some communications systems, such as IS-856 [18].

In practical communication systems, two important problems must be solved before 
multiuser diversity is implemented: fairness and delay. If the fading statistics of the 
users’ channels are the same, transmitting data only to the user with the highest γk(t) 
not only maximizes the throughput of the system, but also maximizes the throughput 
of every user. In reality, however, the fading statistics are not symmetrical. For example, 
some users may have better average SNRs, because they are closer to the base station. 
Furthermore, practical systems usually have a delay constraint on every user. Thus, one 
user cannot wait for too long until the user’s instantaneous SNR becomes the highest 
among all the users.
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In order to solve the fairness and delay problem, the proportional fair scheduling algo-
rithm has been developed in [12]. In this algorithm, the k th user feeds back the requested 
data rate Rk(t) to the base station, where Rk(t) is the data rate the user can support at time 
slot t. The proportional fair scheduling algorithm also stores the average throughput 
Tk(t) of every user in a past window of length tc. At any time slot t, the proportional fair 
scheduling algorithm transmits data to the user with the largest

 R t
T t

k

k

( )
( )

.  (7.2)

In order to see how the proportional fair scheduling algorithm works, we consider a 
system with only two users. If the two users have identical fading statistics, the average 
throughput Tk(t) of each user will converge to the same value. Thus, the proportional 
fair scheduling algorithm just picks the user with the highest Rk(t), and it is fair for every 
user in the long term. It is possible that the first user’s channel is better than that of the 
second user on average. Always transmitting to the user with the highest Rk(t) implies 
that the first user will be served for most of the time and the second user will not be 
served in a resource fair manner. This problem is solved by using the proportional fair 
scheduling algorithm. Because the proportional fair scheduling algorithm selects the 
user based on Rk(t)/Tk(t), a user is selected when its instantaneous channel condition is 
high relative to its own average channel condition over the time scale tc. To an extreme 
case, if the second user is not served in the past window of length tc , T2(t) becomes zero 
and the base station will transmit data to the second user immediately.

7.3  Opportunistic Beamforming

As we have seen in section 7.2, the dynamic range and the variation rate of the chan-
nel fluctuation determine the performance gain of multiuser diversity. Thus, if one can 
induce larger and faster channel fluctuation, higher gain will be achieved. This can be 
realized by opportunistic beamforming [13]. In this scheme, N antennas are deployed at 
the base station and there are M users in the system. Let hn,k(t) denote the channel coef-
ficient from the nth antenna to the k th user at time slot t. The transmitted signal s(t) is first 
multiplied by a complex weight coefficient 

 w t t en n
j tn( ) ( ) ( )= α φ  

and then transmitted by the nth antenna, for n = 1, …, N. In order to satisfy the power 
constraint, it is assumed that 

 
n

N

n t
=

∑ =
1

1α ( ) . 
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Thus, the received signal rk(t) at the k th user is given by

 r t t e h t s tk

n

N

n
j t

n k
n( ) ( ) ( ) ( )( )=













 +

=

,∑
1

α φ ηηk t( ).  (7.3)

The overall equivalent channel gain h̃k(t) is

 k
n

N

n
j t

n kh t t e h tn ( ) ( ) ( )( )= ,
=

,∑
1

α φ  (7.4)

and the overall equivalent instantaneous SNR is

 k
k

k

t P h t



γ ( ) ( )= | | .

2

2ρ
 (7.5)

The power fraction αn(t) is modeled as samples of a random variable varying from 0 
to 1, and the artificial phase shift ϕn(t) is modeled as samples of a random variable uni-
formly distributed over [0,2π). At different transmit antennas, αn(t) and ϕn(t) are varying 
independently.

The k th user feeds the equivalent instantaneous SNR γ̃k(t) back to the base station, and 
the base station selects the user by using the proportional fair scheduling algorithm. 
Note that the k th user does not need to estimate hn,k(t). Actually, the existence of multiple 
antennas at the base station can be completely transparent to the users. Note that the 
dynamic range and the variation rate of the equivalent channel h̃k(t) can be controlled 
by wn(t).

The performance of opportunistic beamforming is demonstrated in Figure 7.3 under 
the same simulation environment as in Figure 7.2. Two antennas are deployed at the 
base stations and αn(t) = 1 2/  at any time slot t. It can be seen that the performance of 
the fixed case is considerably improved by using opportunistic beamforming. This is 
because the channel is changing faster and the dynamic range of the channel fluctuation 
is larger after the use of αn(t) and ϕn(t). In the following, the slow fading and fast fading 
environments are considered separately.

7.3.1  Slow Fading

In the slow fading environment, we assume that hn,k(t) = hn,k in a time slot t. If only one 
antenna is used at the base station, the SNR γn(t) of every user will remain constant at 
every time slot t, and hence, no multiuser diversity can be exploited. However, by using 
opportunistic beamforming, the equivalent channel h̃k(t) will vary in time and provide 
the opportunity for achieving multiuser diversity.
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For a particular user k, it is well known that coherent transmit beamforming can 
maximize γ̃n(t) by setting [13]

 αn
n k

n

N

n k

h

h
= | |

| |

,

=
,∑

2

1

2
, (7.6)

 φn n kh= − ,arg( ) , (7.7)

which is called the beamforming configuration. In this case, however, the base station 
needs to know hn,k, for n = 1, …, N, and hence, this amount of feedback information 
might be prohibitive. On the other hand, opportunistic beamforming selects the user 
when its equivalent SNR is at the peak. Therefore, opportunistic beamforming may 
achieve the performance of coherent transmit beamforming, while only requiring the 
feedback of γ̃k(t). This is confirmed by the following theorem.

Theorem 7.1

[13] “Suppose the slow fading states of the users are i.i.d and are discrete, and the joint 
stationary distribution of (α1(t), …, αN(t), ϕ1(t), …, ϕ2(t)) is the same as that of
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FIgure 7.3 Amplification in multiuser diversity gain with opportunistic beamforming in a 
fixed environment. (Reproduced from Viswanath et al., 2002. © 2002, IEEE. With permission.)
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for the slow fading state of any individual user k. Then, almost surely, we have

 lim ( )

M k
M

k
bfKT R

→∞
=  (7.9)

for all k. Tk
(M) is the average throughput of user k in a system with M users and Rk

bf is the 
instantaneous data rate that user k achieves when it is in the beamforming configuration, 
i.e. when its instantaneous SNR is 

 P hn k k
n

N

, .
2

1
ρ

=
∑ ”

Proof: See appendix A in [13].

When the number of users is sufficiently large, theorem 7.1 implies that, with very 
high probability, one user is selected when it is in its beamforming configuration and 
every user is allocated an equal amount of time. The stationary distributions of αn(t) and 
ϕn(t) required by this theorem are given in closed form in [13]. In a slow Rayleigh fading 
environment with ten antennas at the base station, the throughput of one specific user is 
given in Figure 7.4. The proportional fair scheduling algorithm is employed. One can see 
that the throughput converges to that of coherent transmit beamforming asymptotically 
with the number of users. Figure 7.5 demonstrates the total throughput of all users.

7.3.2  Fast Fading

We have seen that opportunistic beamforming can considerably improve the perfor-
mance when the underlying channels are slow fading. But if the underlying channels 
are already fast fading, can opportunistic beamforming improve the performance? The 
performance gain of opportunistic beamforming is from the randomization of αn(t) and 
ϕn(t), which makes the dynamic range of the channel fluctuation larger and the variation 
rate of the channel faster. Therefore, if the dynamic range of the equivalent channel h̃k(t) 
becomes larger after using opportunistic beamforming, the system will achieve better 
performance.

We first consider the independent Rayleigh fading environment, where hn,k(t) are i.i.d 
circularly symmetric complex Gaussian random variables with zero mean. In this case, 
it is easy to see from (7.4) that the distribution of h̃k(t) is exactly the same as that of 
the hn,k(t). The use of αn(t) and ϕn(t) neither makes the dynamic range of the channel 
fluctuation larger nor makes the variation rate of the channel faster. Therefore, in an 
independent fast Rayleigh fading environment, opportunistic beamforming is not able 
to improve the performance.

In contrast, when the underlying channels are Ricean fading channels, opportunis-
tic beamforming can bring considerable performance gain. The Ricean channel can be 
modeled as [19]
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Rayleigh fading at average SNR = 0 dB with the proportional fair scheduling algorithm. Perfor-
mance of coherent transmit beamforming for user 1 and scheduled at all times is plotted as a 
dotted line. There are ten antennas in this experiment. (Reproduced from Viswanath et al., 2002. 
© 2002, IEEE. With permission.)
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mit beamforming is also plotted. (Reproduced from Viswanath et al., 2002. © 2002, IEEE. With 
permission.)
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where Kk is the Ricean K-factor and θk is related to the DOA of the user. The first term in 
(7.10) denotes the line-of-sight (LOS) component of the channel. The second term is the 
diffused component and bnk(t) ~ C N (0, 1). Then the equivalent channel gain becomes
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It can be seen that the randomization of αn(t) and ϕn(t) will not change the dynamic 
range of the diffused term, which is the same as in the Rayleigh fading environment. 
However, the randomization of αn(t) and ϕn(t) induces the fluctuation of the LOS compo-
nent significantly, which leads to performance improvement. Therefore, if the LOS com-
ponent is more dominant than the diffused path, larger fluctuation will be created by 
opportunistic beamforming and more performance gain can be achieved. To an extreme 
case that Kk → ∞, the channel reduces to the slow fading case and opportunistic beam-
forming can improve the performance considerably, as we have seen in section 7.3.1. 
Figure 7.6 shows the total throughput for Ricean fading channels with Kk = 10. There is 
an impressive improvement in performance after using opportunistic beamforming. For 
comparison, the performance curve for the Rayleigh fading channels is plotted.
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FIgure 7.6 Total throughput as a function of the number of users under Ricean fading, with 
and without opportunistic beamforming. The power allocations αn(t) are uniformly distributed 
in [0, 1] and the phases θn(t) are uniform in [0,2π]. (Reproduced from Viswanath et al., 2002. © 
2002, IEEE. With permission.)
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7.4  Adaptive Opportunistic Beamforming 
in Ricean Channels

In section 7.3, it was indicated that the throughput of opportunistic beamforming con-
verged to that of coherent transmit beamforming, when the number of users was suf-
ficiently large. However, the number of users required grows exponentially with the 
number of antennas. For example, in Figure 7.4, the throughput is approximately 65% of 
coherent transmit beamforming even with one hundred users. In order to improve the 
throughput up to 90% of coherent transmit beamforming, the number of users must be 
increased up to about four hundred, which may not be a practical number of users in a 
cell. With a realistic number of users, the performance of opportunistic beamforming 
falls much lower than that of coherent transmit beamforming. This problem can be 
solved by the adaptive opportunistic beamforming proposed in [17] over Ricean chan-
nels. This section is devoted to presenting the adaptive opportunistic beamforming 
technique and its performance. In this section, we will refer to opportunistic beamform-
ing in [13] as conventional opportunistic beamforming in order to distinguish it from 
adaptive opportunistic beamforming.

7.4.1  Adaptive Opportunistic Beamforming

The downlink of a single cell is considered, where the number of users is M and each 
user has a single antenna. The base station is equipped with a linear antenna array with 
N elements. The fading channel is a Ricean channel modeled by (7.10). The parameter θk 
is related to the DOA Θk of the k th user as follows:

 θ π
k

kdf
c

= 2 0 cosΘ , (7.12)

where c is the speed of propagation of the plane wave, f0 is the carrier frequency of the 
transmitted signal, and d is the spacing between two antenna elements [4].

It is assumed that a mini-slot exists at the beginning of each time slot. Through the 
mini-slot, a known pilot signal sk(t) is transmitted from every antenna after being multi-
plied by a weight coefficient wn(t). When the transmission power is uniformly allocated 
to the N antenna elements, wn(t) is given by

 w t
N

jn tn ( ) exp( ( )).= 1 φ  (7.13)

The signal rk(t) received by the k th user during the mini-slot of time slot t is given by

 r t h t s t tk k k k( ) ( ) ( ) ( )= + η , (7.14)

where ηk(t) ~ C N (0,ρk
2). The overall equivalent channel h̃k(t) for user k is given by
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It is easy to show that Bk(t) ~ C N (0,σk
2), where σk

2 = 1/(1 + Kk).
Let Hk(t) denote the magnitude of h̃k(t):

 H t h t a jn t B tk k k
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k k( ) ( ) exp( ( ( ))) ( )= = + + .
=

∑

1

θ φ  (7.18)

Each user measures only Hk(t) and then determines the data rate Rk(t) at which the 
data can be reliably transmitted from the base station to the user with a predetermined 
SNR threshold. The determined rates Rk(t) for all the users are fed back to the base sta-
tion. The requested rate Rk(t) can be expressed as Rk(t) = f (Hk(t)), where f (·) is a non-
decreasing function, which can be assumed to be known at the base station. Hence, the 
values of Hk(t) are also assumed to be known at the base station in this section.

On the right-hand side of (7.18), the first term

 a jn tk
n

N

k
=

∑ +( )( )
1

exp ( )θ φ

is related to the LOS component and the second term Bk(t) to the diffused component. 
Let Gk(t) denote the magnitude of the LOS component:

 G t a jn tk

def

k k

n

N

( ) exp ( ) .= +( )( )
=

∑ θ φ
1

 (7.19)

Then one can easily see that Gk(t) is maximized with ϕ(t) = –θk and the maximum 
value is a Nk . Motivated by this observation, the following adaptive opportunistic 
beamforming algorithm is proposed to improve the performance [17]:
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1. As in the conventional opportunistic beamforming, the information on Hk(t), or 
equivalently Rk(t), is fed back to the base station.

2. The base station estimates the DOAs* of the users using the values of Hk(t).† The 
estimated DOA of user k is denoted by θ̂k, k = 1, …, M.

3. The base station conducts the proportional fair scheduling to choose a user. Let 
us assume that user k* is chosen.

4. When the base station transmits the data to user k* during a time slot excluding 
the mini-slot, the artificial phase shift ϕ(t) of the weight coefficient is set to –θ̂k* 
and this weight coefficient is multiplied to the transmitted data.

Note that this adaptive scheme forms the beams only in the directions where users 
really exist, as opposed to conventional opportunistic beamforming, which forms the 
beams blindly over the omnidirectional space. Therefore, the adaptive scheme can 
improve the performance without wasting resources such as time and power. In adap-
tive opportunistic beamforming, the LOS-related component of Hk(t), which is Gk(t), is 
maximized. Therefore, the performance heavily depends on the K-factors. Specifically, 
larger K-factors {Kk} result in larger performance improvement; smaller K-factors result 
in smaller improvement. In an extreme case where the K-factors are zero, which is the 
Rayleigh case, the adaptive scheme reduces to the conventional scheme because ϕ(t) is 
chosen as a sample of a random variable uniformly distributed over [0,2π).

The vital step of adaptive opportunistic beamforming is to estimate the DOA as accu-
rately as possible with the information available. In the previous publications, a number 
of algorithms for DOA estimation have been studied, such as the multiple signal classifi-
cation (MUSIC) method [20], Root-MUSIC [21], and the estimation of signal parameters 
via the rotational invariance technique [22] (also see [4] and the references therein). 
Those previous methods, however, are not applicable to the system considered, because 
the base station has only very limited channel information: the magnitude values Hk(t) 
of the equivalent channels. In the next section, a new and efficient DOA estimation 
algorithm requiring only Hk(t) values is proposed for use in adaptive opportunistic 
beamforming.

7.4.2  Estimation of Users’ DOAs

In this section, a maximum-likelihood (ML) estimator of {θk}M
k=1 is developed.‡ To this 

end, the probability density function (PDF) and cumulative density function (CDF) of 
Hk(t) are first derived in the following theorem:

* To be precise, Θk is the DOA of user k. However, since Θk is uniquely determined by θk , we simply 
refer to θk as the DOA of user k in this section.

† The DOAs must be estimated based only on Hk(t) values to ensure that the channel estimation 
algorithm of the receivers and the feedback overhead remain the same as in conventional oppor-
tunistic beamforming.

‡ Note that ML estimators can be asymptotically considered as minimum variance unbiased esti-
mators [23].
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Theorem 7.2

[17] “Let Ak(t) be defined as follows:
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Then the PDF pHk(t)(·) and CDF FHk(t)(·) of Hk(t) are given by
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where I0(·) is the modified Bessel function of order zero and Qm(·,·) is the Marcum 
Q-function.”

Proof: See appendix A in [17].

It is very interesting to see that (7.21) is exactly the same form as a Ricean distribution, 
except that Ak(t) is a summation of multiple cosine functions. When N = 1, (7.21) reduces 
to the well-known Ricean PDF. As in the conventional Ricean case, we define Ωk(t) to be 
the total power of (7.21) as follows:
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H t k k kt E H t A t
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= +2 2 2σ  (7.23)

Also, the K-factor of (7.21) can be defined as follows:
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It follows that (7.21) can be rewritten as
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The DOAs are estimated using the Hk(t) values during an estimation period P, which 
is defined to be a set of L mini-slots. Each estimation period is divided into Q subestima-
tion periods Pi, i = 1, …, Q, such that P = P1∪P2∪…∪PQ and Pi∩Pj = 0, i ≠ j. Each Pq 
is composed of Lq mini-slots with 

 L Lq
q

Q
=

=
∑

1
.

In subestimation period Pq, the artificial phase shift ϕ(t) of adaptive opportunistic 
beamforming is set to ϕq , i.e., ϕ(t) = ϕq  ∈[0,2π), for t ∈Pq,  q = 1, 2, …, Q.* For example, 
we can set ϕq = (q/Q)2π, for q  = 1,  2, …, Q. We define Ak,q, Ωk,q, and Kk,q as follows: Ak,q = 
Ak(t)|t∈Pq, Ωk,q = Ωk(t)|t∈Pq = A2

k,q + σk
2, and Kk,q = Kk(t)|t∈Pq.

Given σk and Ak,q at the base station, the ML estimation of θk is given by
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for k = 1, …, M. Taking logarithm, a simpler estimator is given by
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for k = 1, …, M. In order to reduce the computational complexity further at the loss of 
the ML optimality, suboptimum estimators may be considered. In particular, noting 
that Gk(t) is maximized when ϕq = –θk, an efficient and very simple suboptimum estima-
tor can be given by

 ˆ ,θ πk
SUB q Q= −( )∗ 2  (7.28)
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7.4.3  Estimation of K-Factors of the Physical Channels

In the proposed DOA estimation algorithms, it was assumed that the exact {Kk}M
k=1 

values were known at the base station. In practical systems, however, each user needs 

* Recall that in conventional opportunistic beamforming, ϕ(t) is randomly chosen from [0,2π). 
Also, note that the pilot overhead is the same for the adaptive and conventional schemes, because 
only one mini-slot of fixed length is used for pilot signaling in each time slot for both schemes.
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to estimate the K-factor and feed it back to the base station. Unfortunately, this may 
raise some problems, such as the change of the receiver of every user and the increased 
feedback overhead. These problems can be completely avoided if the base station can 
directly estimate {Kk} based on only Hk(t) values, which are already available at the base 
station. To this end, we first have the following theorem, which gives the relation between 
the K-factors {Kk} of the physical channels hn,k(t) and the K-factors {Kk,q} of (7.21).

Theorem 7.3

[17] “When ϕq = (q/Q)2π, q = 1, …, Q, the K-factors {Kk} of the physical channels hn,k(t) can 
be expressed by the K-factors (Kk,q} of (7.21) as follows:

 K
Q

k Mk Q k q

q
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= = …
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∑lim ,       , , .,
1 1

1

K ” (7.30)

Proof: See appendix D in [17].

Then the following theorem shows that {Kk,q} can be estimated only by using {Ωk,q} 
and {Hk(t)}:

Theorem 7.4

[17] “The K-factors {Kk,q} of (7.21) can be expressed in terms of Ωk,q = Eq[Hk
2(t)] and 

Eq[Hk
4(t)]:
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and Eq denotes the expectation with respect to Hk(t) for t∈Pq.”

Proof: See proof of theorem 6 in [17].

The final step is to estimate Ω2
k,q and Eq[Hk

4(t)] values in (7.32). They can be estimated 
as in the classical single-input single-output (SISO) systems. Let ħ(t) and L– denote the 
received signal envelope at time t and the total number of samples obtained in the SISO 
system, respectively. Then it is well known that 
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where Ω̂ML
k,q denotes the ML estimate of Ωk,q, which is given by
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It follows that the K-factors are estimated as follows:
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By analytically deriving the Cramer-Rao lower bound (CRLB) of the K-factors {Kk}M
k=1, it 

has been demonstrated that this is a good estimator [17].

7.4  Performance Evaluation

In this section, the performance of the ML estimator of DOAs, the Ricean K-factor esti-
mation algorithm, and the adaptive opportunistic beamforming scheme based on DOAs 
and the K-factor estimation are numerically evaluated.

7.4.1  ML Estimation of Users’ DOAs

In order to concentrate on the performance evaluation of the DOA estimation, the true 
values of the Ricean K-factor are assumed to be known at the base station. Figure 7.7 
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shows the square root of the CRLB and the standard deviation of the ML estimator of 
{θk}

M
k=1, when {θk}

M
k=1 are generated randomly from [0,2π) and ϕq = (q/Q)2π. One can see 

that the standard deviation of the DOA estimation algorithm is very close to the CRLB. 
This agrees with the theory that the proposed ML estimator of DOAs is asymptotically 
a minimum variance estimator.
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FIgure 7.7 Comparison of CRLB and the estimation variance of the ML estimator of {θk}M
k=1 

(a) N = 8, Kk = 5, M = 1, Lq = 10; (b) N = 8, Kk = 5, M = 1, Q = 10. (Reproduced from Kim et al., 2006. 
© 2006, IEEE. With permission.)
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7.4.2  PDF of maxk=1,…,M Hk(t)

We define HM(t) as follows: HM(t) def= maxk=1,…,M Hk(t). The PDFs of HM(t) of conventional 
and adaptive opportunistic beamforming algorithms are compared in Figure 7.8. It can 
be seen that adaptive opportunistic beamforming considerably shifts the range of HM(t) 
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FIgure 7.8 Comparison of the PDF of the maximum value Hk(t) of the equivalent channels in 
conventional and adaptive opportunistic beamforming: (a) Kk = 10, M = 5, N = 2; (b) Kk = 10, M = 
5, N = 8. (Reproduced from Kim et al., 2006. © 2006, IEEE. With permission.)
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toward +∞. This implies that the maximum channel gain exploited by multiuser diversity 
has increased significantly, and thus, the multiuser diversity gain can be notable. As can 
be seen from (7.18), adaptive opportunistic beamforming achieves more improvement 
when the number N of transmission antennas grows. This is because the value of Hk(t) 
increases with N when ϕ(t)  −θk, and in turn, the value of HM(t) increases with N.

7.4.3  Estimation of K-Factors of the Physical Channels

In order to evaluate the performance of the K-factor estimator, the estimation variance 
and the CRLB are compared in Figure 7.9 when ϕq = (q/Q)2π. One can see that the differ-
ence between the CRLB and the actual variance grows with the K-factor.* However, the 
difference itself is not very large. For example, when Kk = 10, the difference is approxi-
mately 2, and thus the standard deviation is approximately 1.4, which is 14% of the true 
Kk value. From the numerical results in the next section, it turns out that the effect of the 
K-factor estimation errors on the throughput performance is negligible.

7.4.4  Throughput

The final performance measure is the throughput obtained by different schemes. In slow 
fading channels, the length tc of the past window is tc = +∞, and hence, the propor-
tional fair scheduling algorithm converges to select the user with the highest Rk(t). The 

* In many previous K-factor estimators for SISO systems, the estimation variance also increases 
with the K-factor. For example, see [25].
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FIgure 7.9 Comparison of the CRLB and the estimation variance of the K-factor estimator of 
the physical channels hnk(t), N = 8, M = 1, Q = 50, Lq = 20. (Reproduced from Kim et al., 2006. © 
2006, IEEE. With permission.)
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throughput values of coherent beamforming, conventional opportunistic beamforming, 
and adaptive opportunistic beamforming are compared. Particularly, to see the impact 
of the K-factor estimation errors on the performance of adaptive opportunistic beam-
forming, the throughput is evaluated with exact K-factors and estimated K-factors. All 
throughput values obtained are normalized by the throughput of coherent transmit 
beamforming, which is the performance limit. The average SNR PHk

2(t)/ρk
2 of each user 

is set to 0 dB, where P is the transmission power.
Figure 7.10 shows that adaptive opportunistic beamforming considerably outper-

forms conventional opportunistic beamforming, and actually the performance is very 
close to that of coherent beamforming. In particular, even with the small number of 
users, the adaptive scheme performs very well. Also, the throughput degradation due 
to the K-factor estimation errors and the use of the suboptimum DOA estimator is neg-
ligible. This implies that the estimation of users’ DOAs is still very accurate with the 
errors of K-factor estimation, and the suboptimum DOA estimator is working very well 
at a very low complexity.

Figure 7.11 shows the impact of the number of antennas on the performance. As discussed 
before, the performance of conventional opportunistic beamforming heavily depends on 
the number of antennas, as it forms beams randomly and blindly. On the other hand, the 
adaptive scheme works much better than the conventional one with few antennas.

Finally, Figure 7.12 shows the effect of the K-factor on the performance. With smaller 
K-factor, the performance improvement diminishes. In the extreme case of K = 0, the 
conventional scheme and the adaptive scheme have the same performance, as expected. 

5 10 15 20 25 30 35 40

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of users, M

N
or

m
al

iz
ed

 to
ta

l t
hr

ou
gh

pu
t

Coherent beamforming
Conventional Opportunistic Beamforming
Adaptive Opportunistic Beamforming with Estimated K−Factors
Adaptive Opportunistic Beamforming with Exact K−Factors
Adaptive Opportunistic Beamforming with Exact K−Factors and
Suboptimum Estimator of DOAs

FIgure 7.10 Normalized total throughput in the slow Ricean fading channels, Kk = 10, N = 8, 
Q = 50, Lq = 20. (Reproduced from Kim et al., 2006. © 2006, IEEE. With permission.)

© 2009 by Taylor & Francis Group, LLC



198 Adaptive Signal Processing in Wireless Communications

On the other hand, as K grows, the performance improvement by the adaptive scheme 
becomes significant, because the diffused component Bk(t) in (7.15) can be neglected and 
the LOS component becomes more dominant.

2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of antennas, N

N
or

m
al

iz
ed

 to
ta

l t
hr

ou
gh

pu
t

Coherent Beamforming
Conventional Opportunistic Beamforming
Adaptive Opportunistic Beamforming with Estimated K−Factors
Adaptive Opportunistic Beamforming with Exact K−Factors

FIgure 7.11 Normalized total throughput in the slow Ricean fading channels, Kk = 10, M = 10, 
Q = 50, Lq = 20. (Reproduced from Kim et al., 2006. © 2006, IEEE. With permission.)

0 1 2 3 4 5 6 7 8 9 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K−factor

N
or

m
al

iz
ed

 to
ta

l t
hr

ou
gh

pu
t

Coherent Beamforming
Conventional Opportunistic Beamforming
Adaptive Opportunistic Beamforming with Exact K−Factor

FIgure 7.12 Normalized total throughput in the slow Ricean fading channels, M = 10, N = 4, Q 
= 50, Lq = 20. (Reproduced from Kim et al., 2006. © 2006, IEEE. With permission.)

© 2009 by Taylor & Francis Group, LLC



Adaptive Opportunistic Beamforming in Ricean Fading Channels 199

7.5  Conclusions

In the context of multiuser diversity, fading is seen as a resource that can be exploited, 
not an impediment that must be combated. In a multiuser system where every user has 
an independent fading channel, transmitting data only to the user with the best chan-
nel condition not only increases the throughput of the system but also increases the 
throughput of every user in the long term on average. The multiuser diversity technique 
has been adopted in practical systems, such as the downlink of the IS-856 system.

In order to achieve the higher multiuser diversity gain, the dynamic range of the 
channel fluctuation should be larger and the variation rate of the channel should be 
faster. When the underlying physical channels have small fluctuation and change slowly, 
opportunistic beamforming artificially induces the channel fluctuation by using some 
pseudorandom weight coefficients at the base station. By doing this, higher multiuser 
diversity can be achieved. However, this opportunistic beamforming requires a large 
number of users, especially with many transmit antennas at the base station.

Adaptive opportunistic beamforming can solve this problem very well in Ricean fad-
ing channels. The adaptive opportunistic beamforming algorithm generates the weight 
coefficients not randomly, but intelligently by estimating the DOAs of the users. That 
is, each beam is generated only in the direction where users really exist. This enables 
adaptive opportunistic beamforming to achieve excellent performance even with a small 
number of users.
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8.1  Introduction

Beamforming is a versatile approach to signal spatial filtering that has found numerous 
applications in diverse areas, including radar, sonar, wireless communications, geophys-
ics, speech and audio processing, ultrasonic imaging, biomedicine, radio astronomy, and 
other fields [1]. Early attempts of applying beamforming to wireless communications go 
back to the late 1970s and early 1980s [2–4]. During the last two decades, there has been 
a major trend to use multiantenna transceivers in wireless communication systems to 
facilitate the explosive growth of the number of users and meet their rapidly increasing 
demands for new high-data-rate services [5–20]. As a result, spatial division multiple 
access (SDMA) technology recently became one of the key concepts in third and higher 
generations of mobile communication systems. In particular, the receive (uplink) and 
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transmit (downlink) beamforming techniques used at multiantenna base stations (BSs) 
have been shown to enable efficient mitigation of multiuser interference and offer sub-
stantial improvements in system capacity and performance [6, 7, 14, 19].

In this chapter, we provide an overview of fundamentals and recent advances in the 
field of receive and transmit beamforming for multiantenna communication systems. 
The chapter is organized as follows. In section 8.2, the basic receive and transmit signal 
models are introduced. Section 8.3 is devoted to the receive beamforming problem and 
methods. In the same section, applications of receive adaptive beamforming to space-
time multiuser multiple-input multiple-output (MIMO) receivers are highlighted. The 
transmit beamforming problem and methods are overviewed in section 8.4, and conclu-
sions are given in section 8.5.

8.2  Basic Signal Models

Let us consider a receive (transmit) M-element BS array depicted in Figure 8.1, whose 
sensors are weighted by the weight vector w = [w1, w2, …, wM]T, where (·)T denotes the 
transpose. Assume that there are L single-antenna users with flat fading channels. 
The M × 1 uplink user channel vectors (hereafter referred to as user spatial signatures) 
are denoted by al, l = 1, …, L, while the M × 1 downlink channel vectors are denoted by 
hl, l = 1, …, L. Note that for each user, the uplink and downlink channel vectors may dif-
fer from each other because the difference 
in the uplink and downlink frequencies in 
the frequency division duplex (FDD) mode 
and channel variability in the time divi-
sion duplex (TDD) mode may violate the 
uplink-downlink reciprocity property [14]. 
In the sequel, we assume without any loss 
of generality that the first user is the user 
of interest.

8.2.1  The Uplink Case

In the uplink case, the baseband M × 1 complex signal vector received at the BS array 
can be written as

 x a n as n( ) ( ) ( ) ( ) ( )t s t t t t
l

L

l l= + = +
=

∑
1

, (8.1)

where sl(t) is the baseband receive signal waveform of the l th user, n(t) is the M × 1 vector 
of additive sensor noise, a  [a1, a2, …, aL], s(t)  [s1(t), s2(t), …, sL(t)]T, and t is the time 
index. The additive noise is assumed to be zero mean and spatially white, that is, its cor-
relation matrix is given by

w1 w2 w3 wM

FIgure 8.1 Receive/transmit beamformer.
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 E{ ( ) ( )}n n It tH = σ 2 , (8.2)

where I is the identity matrix, E{·} denotes the statistical expectation, and (·)H stands for 
the Hermitian transpose.

The baseband complex signal at the output of the receive beamformer can be written as

 y t t s t tH

l l

L

l
H

l
H( ) ( ) ( ) ( )= = + .

=

∑w x w a w n  (8.3)

8.2.2  The Downlink Case

Now, let us consider the transmit beamforming mode with single BS and the same signal 
sent to all users. The baseband signal received by the l th user can be expressed as

 z t s t n tl l
H

l( ) ( ) ( )= +h w , (8.4)

where s(t) is the transmit baseband signal, w is the BS weight vector, and nl(t) is additive 
noise at the l th user.

The latter model can be further extended to the case of K different BSs and L mobile 
users. Let wl be the weight vector used at the BS assigned to the l th user to transmit the 
baseband signal sl(t) to this user. Let us also define the BS cell site index c(l) as the index 
of the particular BS that is assigned to the l th user. Note that c(l) = c(m) if both the l th 
and mth users are assigned to the same BS, and c(l) ≠ c(m) if these users are assigned to 
different BSs. Using these notations, the vector of signals transmitted from the kth BS 
can be expressed as [14]

 x wk

i k

i it s t( ) ( )
( )

=
∈

∑
G

, (8.5)

where

 G( ) { ( ) }k i c i k : =  (8.6)

is the set of indices of all weight vectors that are used at the kth BS (or equivalently, the 
set of indices of all users that are assigned to this BS). Equation (8.5) implies that the kth 
BS transmits only to the users that are assigned to it rather than to all the users in the 
cellular network.

Using (8.5), the baseband signal received by the l th user can be modeled as [14]

 z t t n tl

k

K

l k
H

k l( ) ( ) ( )= +
=

,∑
1

h x , (8.7)

where hl,k is the downlink channel vector between the kth BS and the l th user.
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8.3  Receive Beamforming

The goal of receive beamforming is, given the knowledge of the spatial signature of the 
user of interest, to receive the signal of this user (hereafter referred to as the desired sig-
nal) with the maximal possible gain while suppressing the interfering users and noise 
as much as possible. The spatial signature of the user of interest has to be estimated in 
advance using, for example, traditional training-based techniques or blind approaches; 
see [21–25] and references therein.

8.3.1  Maximal Ratio Combining

The most traditional and simplest beamforming strategy, called maximal ratio combin-
ing (MRC), is to maximize the signal-to-noise ratio (SNR):

 SNR
E

E
=

















=
s t

t

H

H

H1 1

2

2

1
2

1
( )

( )

w a

w n

w aσ
22

2σ w wH  (8.8)

ignoring the effect of multiuser interference. Here, σl
2 is the power of the l th user, and as 

already mentioned before, the first user is assumed to be the user of interest.
From the Cauchy-Schwartz inequality it follows that the SNR in (8.8) is maximized with

 w aMRC = α 1 , (8.9)

where α is an arbitrary constant that does not affect the SNR value. It should be stressed 
that the MRC approach belongs to the class of nonadaptive (conventional) beamforming 
techniques because its weight vector does not depend on the received data.

It is well known that the MRC approach works acceptably well if

 σ σ1 1
2

1 2a a a i
H

i i … L, = , , ,  (8.10)

where · hereafter denotes the 2-norm of a vector or the Frobenius norm of a matrix. 
From (8.10), it follows that the MRC method can only be used when the users are spa-
tially well separated (so that a12  |a1

Hai|), and when the powers of interfering users, σi
2 

(i = 2, …, L), do not substantially exceed the power of the user of interest, σ1
2. However, 

if the power of one or more interfering users is substantially higher than that of the user 
of interest, then the MRC technique is not a proper approach anymore, and we have to 
resort to adaptive beamforming methods.

8.3.2  Minimum Variance Beamforming

The main idea of adaptive beamforming is to maximize the signal-to-interference-plus-
noise ratio (SINR) rather than the SNR. Therefore, in contrast to the MRC approach, the 
effect of multiuser interference is no longer ignored. The output SINR is given by
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 SINR s

i n

=
+

w r w
w r w

H

H , (8.11)

where rs is the correlation matrix of the desired signal component in (8.1), whereas ri+n 
is the correlation matrix of the interference and noise components. From (8.1) it follows 
that

 r a as = σ1
2

1 1
H , (8.12)

and, therefore, (8.11) can be rewritten as

 SINR
i n

= .
+

σ1
2

1

2
w a

w r w

H

H  (8.13)

To obtain the optimal weight vector that maximizes the SINR in (8.11), one can mini-
mize the output interference-plus-noise power while maintaining the distortionless 
array response to the desired signal [26, 27]:

 min
w

w r w w r wH H
i n ssubject to+ = .1  (8.14)

Taking into account (8.12), and therefore using (8.13) instead of (8.11), the problem 
of maximizing SINR under the distortionless response constraint can be rewritten in a 
simpler form [26]:

 min
w

w r w w aH H
i n subject to+ = .1 1  (8.15)

The beamforming problems (8.14) and (8.15) are commonly referred to as the mini-
mum variance (MV) problems. The solution to the general MV beamforming problem 
(8.14) is given by [27]

 w r ropt i n s= { }+
−P 1 ,  (8.16)

where P{·} stands for the principal eigenvector of a matrix. Note that this eigenvector 
should be normalized to enable the resulting weight vector to satisfy the distortion-
less response constraint in (8.14). However, it is clear from (8.11) that any rescaling of 
the weight vector by a complex nonzero constant does not alter the output SINR (8.11). 
Hence, the aforementioned normalization is immaterial.

The solution to the simplified problem (8.15) is given by

 w r aopt i n= +
−α 1

1, (8.17)

where α can be obtained from the distortionless response constraint in (8.15) and is 
equal to α = 1/a1

Hr–1
i+na1 [26]. Again, this constant is immaterial and therefore will be 

dropped in the sequel.
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8.3.2.1  The SMI Algorithm

In practical applications, the true matrix ri+n is unavailable but can be estimated from 
the receiver data* as [6, 26, 28]

 ˆ ( ) ( )r x x=
=

∑1

1
N

t t
t

N
H , (8.18)

where N is the number of snapshots available. The key idea of the sample matrix inver-
sion (SMI)-based version of the MV beamformer is to replace ri+n by (8.18) [28]. For the 
MV beamforming problems in (8.14) and (8.15), the SMI weight vectors are given by 
[26, 28]

 w r rMV s= −P{ ˆ },1  (8.19)

 w r aMV = −ˆ ,1
1  (8.20)

respectively.
The use of r̂ instead of ri+n in (8.19) or (8.20) is known to cause severe performance 

degradation in the case when the desired signal component is present in the beamformer 
snapshots used to estimate the sample correlation matrix (in the sequel, the latter case is 
referred to as the signal-present case as opposed to the signal-free case). Although in the 
signal-free case the output SINR of the SMI beamformer (8.20) rapidly converges to the 
optimal SINR value with increasing N [28], in the signal-present case this convergence 
becomes much slower [29], and the beamformer performance degrades severely even in 
the presence of small errors between the presumed and actual spatial signatures of the 
user of interest [27, 30]. Such signature errors can be caused by high user mobility and 
wireless channel variability, as well as by a limited amount of training symbols and the 
effect of multiuser interference that may prevent obtaining spatial signature estimates of 
acceptable quality. The effect of the beamformer performance degradation due to spatial 
signature errors is commonly known as signal self-nulling.

Another typical cause of the beamformer performance degradation in mobile com-
munications is a highly nonstationary behavior of the propagation channel and, in par-
ticular, high mobility of interfering users [31]. The effect of such nonstationarity on the 
performance of receive adaptive beamformers is that the array weights may not be able 
to adapt fast enough to compensate for the interfering user motion [30, 31]. This phe-
nomenon is usually referred to as interference undernulling.

* These data can be either information-bearing or training symbols. Therefore, there is no need 
to increase the amount of training data when using the SMI-based MV beamformers in multi-
antenna wireless communication systems.
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8.3.3  Robust Minimum Variance Beamforming

8.3.3.1  Linearly Constrained Minimum Variance Beamformer

A classic approach to prevent signal self-nulling and improve the robustness of MV 
beamforming against spatial signature errors is to use additional point or derivative 
mainlobe constraints [26, 32, 33].

In the case of point constraints, the sample version of the MV beamforming problem 
(8.15) is modified as [26]

 min ˆ
w

w rw C w fH Hsubject to = , (8.21)

where C is the M × P matrix of P constrained steering vectors in the neighborhood of the 
presumed spatial signature of the user of interest, and the P × 1 vector f = [1, 1, …, 1]T. 
In the case of derivative constraints, the problem can be formulated in the same way 
as in (8.21), but the matrix C and the vector f should be defined in a different way [26]. 
The multiple constraints given by the equation CH w = f in (8.21) help to stabilize the 
mainlobe area of the array beampattern, and therefore to prevent signal self-nulling 
effects. This approach is commonly referred to as linearly constrained minimum vari-
ance (LCMV) beamforming.

The solution to (8.21) is given by [26]

 w r C C r C fLCMV = ( ) .− −−ˆ ˆ1 11H  (8.22)

Although the LCMV beamformer is a popular technique in radar and sonar, its major 
shortcoming in wireless communications is that it requires exact knowledge of the array 
manifold, that is, it assumes the structure of the user-of-interest spatial signature to be 
known up to the signal direction-of-arrival parameters. In traditional array processing–
based source localization techniques, the simplest free-space propagation model is typi-
cally adopted, that is, the source spatial signatures are assumed to be plane waves. However, 
in wireless communications, the plane wave structure of the user spatial signatures may be 
distorted by multipath scattering effects [34], and it is rather difficult to precisely param-
eterize the spatial signature vectors in terms of directions-of-arrival (DOAs). This may 
limit the use of the LCMV beamforming approach in wireless communications.

8.3.3.2  Diagonally Loaded Minimum Variance Beamformer

A popular approach to improve the robustness of MV beamformers is the so-called 
diagonal loading technique, whose idea is to regularize the adaptive array weights by 
adding a quadratic penalty term to the objective function in (8.14) or (8.15) [35–37]. The 
sample version of such a modified objective function can be written as

 w rw w w w r I wH H Hˆ ( ˆ ) ,+ = +γ γ  (8.23)
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where γ is a fixed loading factor that penalizes high-norm realizations of the weight vec-
tor. Minimizing this objective function under the distortionless response constraints 
used in (8.14) and (8.15), the following SMI-based diagonally loaded minimum variance 
(DLMV) beamformers can be obtained [26, 27, 35, 36]:

 w r I rDLMV s= +{ }−P ( ˆ ) ,γ 1  (8.24)

 w r I aDLMV = + .−( ˆ )γ 1
1  (8.25)

From (8.24) and (8.25), it can be seen that the diagonal loading operation can be 
viewed as injecting an artificial amount of white noise into the main diagonal of the 
sample correlation matrix. This warrants that, even though in the small sample case r̂ 
may be singular, the diagonally loaded matrix r̂ + γI is always positive definite, and 
therefore invertible.

In addition to ensuring that the correlation matrix is invertible, the diagonal load-
ing approach is known to substantially improve the performance of the SMI-based MV 
beamformers (8.19) and (8.20) in the signal-present case. This improvement is especially 
pronounced in scenarios with mismatched spatial signature of the user of interest 
[30, 36, 38].

Despite the popularity of the DLMV beamforming technique, its applications may be 
limited by the fact that the optimal choice of the loading factor γ is scenario-dependent, 
and therefore, ad hoc choices of γ proposed in the literature [35–37] can lead to a drastic 
degradation of the beamformer performance.

8.3.3.3  Eigenspace-Based Beamformer

Another useful technique that helps to prevent signal self-nulling is the eigenspace-
based beamformer [29, 39]. The essence of this beamformer is to reduce the spatial 
signature errors by projecting the presumed signature onto the estimated signal-plus-
interference subspace obtained by means of the eigendecomposition of the sample cor-
relation matrix

 ˆ ˆ ˆ ˆ ˆ ˆ ˆr e e g g= +Λ ΓH H ,

where the M × L matrix ê contains the L signal-plus-interference subspace eigenvectors 
of r̂, and the L × L diagonal matrix Λ̂ contains the corresponding eigenvalues of this 
matrix. Similarly, the M × (M – L) matrix ĝ contains the (M – L) noise subspace eigen-
vectors of r̂, and the (M – L) × (M – L) diagonal matrix Γ̂ contains the corresponding 
eigenvalues. The total number of users is assumed to be known at the receiver and less 
than M. The weight vector of the eigenspace-based beamformer can be written as

 w r P aeeig 1= −ˆ ,ˆ
1  (8.26)

where P e e e e eeê
ˆ(ˆ ˆ ) ˆ ˆ ˆ= =−H H H1 is the orthogonal projection matrix onto the estimated 

signal-plus-interference subspace.
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If the number of users is low and their SNRs are high, the eigenspace-based beam-
former is known to provide a significant improvement of the robustness against spatial 
signature errors compared to the SMI-based MV beamformer [39]. However, the eigen-
space-based approach may degrade severely if the number of users is comparable with 
the number of BS antennas, or if the SNRs of some of the users are low. In the latter case, 
subspace swap effects may cause a severe performance degradation due to the errors in 
estimating the user spatial signature subspace [27]. This makes it very difficult to use the 
eigenspace-based beamformer in mobile communications where the number of users 
served may be comparable to the number of BS array sensors, and some user powers may 
be low due to near–far effects.

8.3.3.4  MV Beamformers with Data-Dependent Beampattern  
Null Constraints

In mobile communications, user spatial signatures can rapidly change in time because 
of the user mobility and channel variability effects. As has been mentioned before, this 
may cause interference undernulling and, as a result, lead to a substantial performance 
degradation of BS receive beamformers. To preserve the beamformer performance in 
nonstationary scenarios, the idea of artificially broadening the adaptive beampattern 
nulls in interferer directions can be used [31, 40–42], where either point or derivative 
data-dependent constraints can be exploited to specify the array beampattern in the 
adaptive null areas.

One such technique developed in [41] uses derivative data-driven constraints (DDCs). 
The essence of this approach is to replace the sample correlation matrix in the MV or 
DLMV beamformers by the following modified sample correlation matrix:

 modˆ ˆr b rb=
=

∑
p

P

p
p p

0

ζ , (8.27)

where b is an M × M diagonal matrix whose entries are determined by the known array 
geometry, P is the highest order of the data-dependent constraints, and ζp (p = 0, …, 
P, ζ0 = 1) determine a proper trade-off between the constraints of different orders. In 
practice, P = 1 has been demonstrated to suffice for providing a substantial robustness 
against interferer motion [41]. In the case P = 1, (8.27) can be rewritten in a simpler 
form:

 ˆ ˆ ˆ
modr r brb= +ζ , (8.28)

where ζ determines the required trade-off between the null depth and width. Under 
several mild conditions, the optimal value of ζ was shown to remain independent of 
the user parameters and can be straightforwardly obtained from the known BS array 
parameters [41].

Another approach to widen the adaptive beampattern nulls is based on data-driven 
point constraints [31, 40] and is commonly called the correlation matrix tapering (CMT) 
technique [42]. The essence of this technique is to replace the sample correlation matrix 
in the MV or DLMV beamformer by the so-called tapered sample correlation matrix:
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 ˆ ˆr r Ttap =  , (8.29)

where T is the M × M matrix taper and  denotes the Schur-Hadamard (element-wise) 
matrix product. Particular designs of matrix tapers are discussed in [31], [40], and [42].

An interesting link between the DDC and CMT approaches was found in [43], where 
it has been proven that the matrix (8.27) can be viewed as a tapered correlation matrix 
(8.29) with some particular choice of T. Hence, the DDC approach can be interpreted in 
terms of the CMT approach.

Although both the DDC and CMT approaches have been shown to provide excellent 
robustness against moving interferers with plane wavefronts, they may severely degrade 
when the wavefronts of the interferers deviate from the plane wavefront form [27]. This may 
essentially limit the application of these two approaches in wireless communications.

8.3.3.5  Worst-Case Minimum Variance Beamformers

All the previously discussed robust beamforming techniques use rather ad hoc ways 
to incorporate the robustness feature into the SMI-based MV beamforming scheme. 
Recently, more theoretically rigorous techniques have been proposed that improve the 
robustness of MV beamforming by means of worst-case performance optimization 
[38, 44 –46]. Such worst-case MV beamformers are discussed in this section.

The first worst-case robust MV (RMV) beamformer was developed in [38], where 
the mismatch

 δ  a a1 1−  (8.30)

between the actual spatial signature ã1 of the user of interest and its presumed version a1 
was assumed to be norm-bounded by some known constant ε, that is,

 ••δ•• ≤ ε. (8.31)

Equation (8.31) corresponds to the case when all possible mismatched spatial sig-
natures of the user of interest belong to a spherical uncertainty set. The essence of the 
approach proposed in [38] is to add robustness to the SMI-based MV beamforming 
problem by maximizing the output SINR for the worst-case spatial signature mismatch 
that satisfies (8.31). This is equivalent to minimizing the output beamformer power 
under the worst-case distortionless response constraint, which should be satisfied for 
all mismatched spatial signature vectors that belong to the spherical uncertainty set of 
(8.31). The latter problem can be written as the following modification of the sample MV 
problem [38]:

 min ˆ ( )
w

w rw w aH Hsubject to for all1 1+ ≥ ≤ .δ δ ε  (8.32)
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At first glance, the problem in (8.32) appears to be computationally intractable because 
it involves minimization of a quadratic function subject to infinitely many nonconvex 
quadratic constraints. However, it has been found in [38] that (8.32) can be converted to 
a much simpler form:

 min ˆ
w

w rw w a wH Hsubject to 1 1≥ +ε , (8.33)

where the constraint in (8.33) can be shown to hold with equality at the optimal point of 
(8.33). The problem in (8.33) belongs to the class of convex second-order cone program-
ming (SOCP) problems [47–49], which can be easily solved using efficient interior point 
methods [50] at complexity O(M3).

An alternative way to solve the problem in (8.33) is to resort to Newton-type algo-
rithms. Several approaches of that type (all with complexities O(M3)) are described in 
[46–52] to solve problem (8.33) and its extensions to the ellipsoidal uncertainty case 
[46, 52], and to a more general class of beamformers or multiuser detectors [44, 51, 52].

In [45], the RMV beamformer of (8.33) has been generalized to account for interferer 
nonstationarity in addition to the spatial signature errors. The essence of the approach 
of [45] is, in addition to modeling the uncertainty in the spatial signature vector, to 
model data nonstationarity by considering an uncertainty in the data matrix

 X x x[ ( ) ( )]1 , .… N  (8.34)

The sample correlation matrix can be expressed through the data matrix (8.34) as

 r̂ XX= .1
N

H  (8.35)

To take into account the nonstationarity of the array data, the so-called mismatch matrix

 Δx  X X−  (8.36)

was introduced in [45], where X
~

 and X stand for the actual and presumed data matrices, 
respectively. Here, X is the data matrix acquired by the beamformer, while the actual 
data matrix X

~
 may differ from X because of a nonstationary character of sensor array 

snapshots. That is, the data samples in X can become irrelevant at the time when the 
beamformer is used (and when the actual, yet unknown, data matrix is X

~
 rather than X). 

In such nonstationary scenarios, the actual sample correlation matrix is given by

   r̂ XX= =1 1
N N

H (X + Δx)(X + Δx)H. (8.37)
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To make the SMI-based MV beamformer jointly robust against both the interference 
nonstationarity and spatial signature error effects, the authors of [45] have exploited an 
idea similar to that in [38]. In particular, it has been assumed that the norms of both the 
spatial signature mismatch δ and the data matrix mismatch Δx are norm-bounded by 
some known constants ε and η as

 ••δ•• ≤ ε, (8.38)

 ••Δx•• ≤ η. (8.39)

Then, the problem in (8.32) can be extended as [45]

 min max
w || ||≤∆x η

(X + Δx)H w  ( )subject to for allw aH
1 1+ ≥ ≤δ δ ε  (8.40)

This problem has been converted in [45] to an equivalent form:

 min
w

X w w w a wH H+ ≥ + .η εsubject to 1 1  (8.41)

The problem in (8.41) belongs to the class of convex SOCP problems and, similar to 
(8.33), can be efficiently solved using standard interior point methods [50].

Another interesting approach to extend problem (8.32) to a more general class of prob-
lems and, at the same time, to turn the solution for the weight vector into a closed form 
has been developed in [44]. The authors of [44] have considered the so-called general-
rank signal case where the array response to the user of interest is characterized by the 
signal correlation matrix rs rather than the spatial signature a1, and then have relaxed 
the so-obtained problem to come up with a closed-form beamformer.

Following [44], let us consider the errors between the presumed and actual interfer-
ence-plus-noise and signal correlation matrices. These unknown error matrices can be 
expressed as

 Δs  r rs s− ,  (8.42)

 Δi+n  r ri+n i n− + ,  (8.43)

where rs and ri+n are the presumed signal and interference-plus-noise correlation matri-
ces, respectively, whereas r̃s and r̃ i+n are the actual values of these matrices. It should 
be stressed that the presumed value of the interference-plus-noise correlation matrix is 
given by the sample array correlation matrix, that is, ri+n = r̂ in (8.43).

In the case of nonzero mismatches Δs and Δi+n, equation (8.11) for the output SINR 
has to be rewritten as
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 SINR s

i+n

= .w r w
w r w

H

H


  (8.44)

In the spirit of [38], the approach of [44] assumes that the error matrices Δs and Δi+n are 
norm-bounded by known constants ε and γ, that is,

 ∆ ∆s i n≤ , ≤ .+ε γ  (8.45)

To provide robustness against errors in the signal and interference-plus-noise correla-
tion matrices, it has been suggested in [44] to obtain the beamformer weight vector by 
means of maximizing the worst-case output SINR:

 max min ( )
( ˆ )w

w r w
w r w∆ ∆

∆
∆s i n

s s

i n

for all
,

++

+
+

H

H
∆∆ ∆s i n≤ , ≤ .+ε γ  (8.46)

Clearly, (8.46) may be only an approximate (relaxed) version of the worst-case SINR 
optimization problem in the case when the worst-case values of the matrices Δs and Δi+n 
lead to the matrices rs + Δs and r̂ + Δi+n that are not positive semidefinite.* In other 
words, to warrant the strict equivalence of these two problems, the constraints

 rs + Δs  0, (8.47)

 r̂ + Δi+n  0 (8.48)

should be added to (8.46), where Q  0 for any matrix Q means that this matrix is pos-
itive semidefinite. The authors of [44], however, drop these two constraints with the 
motivation that they make the optimization problem much more complicated, and that 
ignoring them can only make the problem more conservative.

It has been shown in [44] that the worst-case error matrices Δs and Δi+n satisfying 
(8.45) are given by

 ∆s
WC = − ε ww

w

H

2
,  (8.49)

 ∆i n
WC
+ = γ ww

w

H

2
,  (8.50)

* Note that any correlation matrix must by definition be positive semidefinite.
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and therefore, the solution to the RMV beamforming problem (8.46) can be expressed as

 w r I r IRMV s= + −{ }.−P ( ˆ ) ( )γ ε1  (8.51)

From (8.49) and (8.51) it follows that, although ∆i n
WC
+  satisfies (8.48), the constraint (8.47) 

is always violated with ∆s
WC. Therefore, as expected, problem (8.46) is an approximate 

(conservative) version of the worst-case SINR optimization problem.
Taking into account that rs = σ1

2a1a1
H and absorbing σ1

2 in ε (that is, assuming without 
any loss of generality that σ1

2 = 1), equation (8.51) can be rewritten as

 w r I a a IRMV = + −{ }.−P ( ˆ ) ( )γ ε1
1 1

H  (8.52)

From (8.51) and (8.52) it can be seen that the approach of [44] is equivalent to a com-
bination of negative and positive diagonal loading. In the case of ε = 0, (8.51) and (8.52) 
simplify to the DLMV beamformer weight vectors (8.24) and (8.25), respectively.

An interesting interpretation of these two types of diagonal loading has been estab-
lished in [44], where it has been obtained that (8.51) can be interpreted as a generalization 
of the DLMV beamformer whose amount of positive diagonal loading is scenario-
 adaptive rather than fixed. Similar adaptive diagonal loading interpretation of the RMV 
beamformer (8.33) has been found in [38], where it has been shown that the amount of 
diagonal loading in the latter RMV beamformer is optimally matched to the uncertainty 
in the spatial signature of the user of interest.

Although the worst-case RMV beamformers are known to be very robust techniques, 
they might be overly conservative because the actual worst operational conditions may 
occur in practice with a very low probability. Thus, obtaining less conservative robust 
alternatives to the worst-case techniques is of significant interest. This motivated the 
authors of [53–55] to develop an alternative, more flexible approach to RMV beam-
forming that can provide the robustness against spatial signature errors with a certain 
selected probability (i.e., using soft probabilistic constraints rather than deterministic 
worst-case constraints). In particular, the probabilistically constrained counterpart of 
problem (8.32) can be written as [53]

 min ˆ ( ) ,
w

w rw w aH H psubject to Pr 1 1+ ≥{ } >δ  (8.53)

where δ is assumed to be a random vector drawn from some known distribution, Pr{·} 
is the probability operator whose explicit form can be obtained from the statistical 
assumptions on the steering vector error, and p is some preselected probability thresh-
old value. It can be seen that, in contrast to the hard constraint used in (8.32) (that 
requires the distortionless response to be maintained for all norm-bounded error vec-
tors in the uncertainty set), the soft constraint in (8.53) maintains the distortionless 
response only for the error vectors δ whose probability is high enough, while skipping 
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the distortionless response condition for those values of δ that are unlikely to occur. 
Therefore, the constraint in (8.53) can be interpreted as an outage probability constraint 
that maintains this probability acceptably low.* This makes the beamformer design in 
(8.53) more flexible than that in (8.32) because using soft constraints, more freedom is 
left for minimizing the objective function. Furthermore, the choice of the design param-
eter p in (8.53) is dictated by the quality-of-service (QoS) requirements (outage probabil-
ity), and therefore is easier to specify than the robustness parameter ε in (8.32).

Although the problem in (8.53) describes a potentially more attractive beamformer 
design than (8.32), the main challenge of using (8.53) is that this problem belongs to the 
class of chance programming problems [56] that are rather difficult to solve. To enable a 
practical solution, several approximations of (8.53) by deterministic convex optimiza-
tion problems have been considered in [53–55].

8.3.4  Extensions of Minimum Variance Beamforming 
to MIMO Communications

In this section, a useful extension of 
the theory of MV beamforming to 
the problem of designing multian-
tenna multiuser receivers for space-
time block-coded multiple-input 
multiple-output (MIMO) communi-
cations is considered. The problem of 
MIMO receiver design is generally more 
difficult that the receive beamformer 
design problem because in MIMO 
communications, both the receive BS 
antenna and mobile transmitters have 
multiple antennas, and the information 
symbols may be sent in different time 
slots through different antennas of each 
transmitter using some space-time code. The problem is to design a linear receiver that 
enables the decoding of each symbol of the user of interest while mitigating multiaccess 
interference (MAI) caused by the remaining users [57–60]. To illustrate the problem, a 
typical multiuser MIMO uplink scenario is shown in Figure 8.2.

Let us first consider a point-to-point flat block-fading MIMO system with Mt trans-
mit and Mr receive antennas. Assuming that the channel is used at the times 1, 2, …, T 
with the block length T, the input-output relationship for such a system can be written 
as [9, 10, 20]

 X gH N= + , (8.54)

* For the RMV beamforming problem (8.53), the outage probability is equal to 1 – p.

Tx 2

Tx L

Rx

Tx 1

H2

HL

H1

FIgure 8.2 Uplink multiuser MIMO scenario.
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where H is the Mt × Mr complex channel matrix, g is the T × Mt complex matrix of the 
transmitted signals, X is the T × Mr complex matrix of the received signals, and N is the 
T × Mr matrix of noise.

Let us denote complex information symbols prior to space-time encoding as s1, …, sJ 
and define the J × 1 symbol vector s  [s1, …, sJ]T. The T × Mt matrix g = g(s) is called an 
orthogonal space-time block code (OSTBC) if [16–18]:

All elements of •  g(s) are linear functions of the J complex variables s1, …, sJ and 
their complex conjugates.
For any •  s, it satisfies gH (s) g(s) = s2 I.

Assuming the OSTBC signaling, the matrix g(s) can be written as [16, 61, 62]

 g s C D( ) { } { }= +( )
=

∑
l

J

l l l ls s
1

Re Im , (8.55)

where Cl  g(el), Dl  g( jel), el is the J × 1 vector having one in the l th position and 
zeros elsewhere, and j  −1.  Using (8.55), the MIMO model (8.54) can be rewritten as 
[59, 62]

 X s N= +A , (8.56)

where the “underline” operator for any matrix P is defined as

 P 
vec Re
vec Im

{ ( )}
{ ( )}

P
P









 , (8.57)

vec{·} is the vectorization operator stacking all columns of a matrix on top of each other, 
and the 2 MrT × 2J real matrix A = A(H)  is given by

 A = , , , , ,



 .C H C H D H D H1 1… …J J  (8.58)

This matrix can be shown to satisfy the following orthogonality property (that, in 
turn, is due to the orthogonality property of the space-time code):

 A AT = .H I
2

 (8.59)

From (8.58), it can be seen that the matrix A in (8.56) captures both the effects of the 
OSTBC and the channel, while the vector s depends on the information symbols only. 
The columns of A can be viewed as spatio-temporal signatures that describe the receiver 
response to each entry of s (i.e., to real or imaginary parts of each information symbol). 
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Obviously, there is a strong similarity between the vectorized MIMO model in (8.56) 
and the beamforming snapshot model in (8.1).

The established similarity between the models (8.1) and (8.56) opens an avenue for 
extending MV beamforming techniques to MIMO communications. A linear MIMO 
space-time receiver can be expressed as [57, 59]

 ŝ W X= T , (8.60)

where ŝ  is the receiver estimate of the vector s, and W  [w1, w2, …, w2J] is the 2MrT × 2J 
matrix of the receiver weights. Note that each entry of s requires a separate weight vector 
for estimation and subsequent decoding. For example, the vector wl can be interpreted 
as the space-time receiver weight vector for the l th entry of s.

The MIMO receiver counterpart of the MRC technique is commonly referred to as the 
matched-filter (MF) receiver, and can be written as [59, 62]

 ŝ
H

X= .1
2
AT  (8.61)

The MF receiver (8.61) corresponds to the following weight matrix:

 W
H

MF = .1
2
A  (8.62)

When followed by the simple nearest-neighbor symbol-by-symbol decoder, this receiver 
is known to be equivalent to the maximum likelihood (ML) space-time decoder for the 
single-user (point-to-point) case [62].

In the multiuser case (when multiple multiantenna transmitters simultaneously com-
municate with a multiantenna receiver; see Figure 8.2), the models in (8.54) and (8.56) 
can be straightforwardly modified to account for multiple users. For example, if all the 
transmitters use the same OSTBC, (8.56) can be rewritten as [59]

 X s N= +
=

∑
l

L

l l

1

A , (8.63)

where sl is the J × 1 vector of information symbols of the l th user,

 
Al l J l l J l

l l l

… …= , , , , ,





, ,

C H C H D H D H

a a a

1 1

1 2 [ ,,2 J ] ,
 (8.64)

and Hl is the matrix channel between the l th user and the receiver.
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In the multiuser case, the MF receiver (8.62) is no longer the optimal ML decoder, 
and the complexity of the optimal ML decoding technique grows exponentially with 
the number of users. Therefore, in this case suboptimal but simple linear receivers are of 
particular interest [57, 59, 60].

As before, we assume without any loss of generality that the first transmitter is the user 
of interest. Then, using (8.60), we can express the output vector of a linear receiver as

 ˆ ,s W X1 = T  (8.65)

where for each user of interest, a separate matrix W should be used.
Given the matrix W, the information symbols of the user of interest can be estimated as

 ˆ [ ]ˆ ,s I I s1 1= , j  (8.66)

where the dimension of the identity matrices in (8.66) is J × J. Using the linear estimate 
(8.66), the l th information symbol can be detected as the nearest to the l th entry of the ŝ1 
signal constellation point.

Using the concept of MV beamforming, the receiver weight matrix W can be designed 
to maximally suppress interference while preserving a distortionless response toward the 
signal of the transmitter-of-interest. Specifically, for each entry of  s1 , the receiver output 
power has to be minimized while preserving the distortionless response for that particu-
lar entry of  s1 . This is equivalent to solving the following optimization problem [59]:

 min ˆ
w

w w a w
l

l
T

l l
T

l l …R subject to for all1 1 1 2, = = , , ,, 2J ,  (8.67)

where

 ˆ ( ) ( )R =
=

∑1

1
N

t t
t

N
TX X  (8.68)

is the sample estimate of the 2MrT × 2MrT correlation matrix R  E{X XT} of the vector-
ized data, and X(t) denotes the t th data block.

Taking into account that problem (8.67) can be solved independently for each l, the 
solution to (8.67) can be written as [59]

 w
a a

aMV,
,

−
,

−
,= , = , , , .l

l
T

l
l l … J1 1 2 2

1
1

1

1
1ˆ

ˆ
R

R  (8.69)

Although the MV receiver (8.69) is able to suppress MAI, it does not completely can-
cel self-interference that, for the l th entry of  s1 , is caused by entries of  s1 other than the 
l th one. Clearly, self-interference is treated in (8.67) in the same way as MAI. Thus, when 
the MAI component is strong, self-interference may not be sufficiently rejected. Note, 
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however, that complete cancellation of self-interference is a strongly desirable property. 
Otherwise, the symbol-by-symbol detector loses its optimality [59].

To ensure that the self-interference component is completely cancelled, the following 
additional zero-forcing constraints can be added to (8.67):

 a w1 0 1 2 2, = ≠ , , = , , , .l
T

m m l m l … Jfor all  (8.70)

Problem (8.67) with the additional constraints (8.70) can be expressed as

 min { ˆ }
W

W W W Itr subject toT TR A = , (8.71)

where tr{·} denotes the trace of a matrix.
The solution to (8.71) is given by [59]

 WMV = .− − −ˆ ( ˆ )R A A R A1 1 1T  (8.72)

Clearly, this MV receiver can be interpreted as a combination of the prewhitener R̂–1/2 
and decorrelator receiver R̂–1/2A(ATR̂–1A)–1. Furthermore, using the property (8.59), it 
can be seen that in the specific case of R̂ ∝ I, the MV receiver (8.72) simplifies to the MF 
receiver (8.62). The latter property is in agreement with the well-known fact that the MF 
receiver ignores the effect of MAI treating it as a white noise.

Several robust modifications of the MV receivers (8.69) and (8.72) have been con-
sidered in the literature to improve their robustness in the case of imperfect receive 
channel state information (CSI). In [59], diagonally loaded modifications of (8.69) and 
(8.72) have been developed. In [63], the approach of [38] has been used to design worst-
case optimization-based RMV receivers that explicitly account for norm-bounded CSI 
errors. For example, the following worst-case modification of (8.67) has been proposed 
in [63]:

 min ˆ min ( ˆ )
w

w w w a H
l

l
T

l k
T

lR subject to
|| || ≤

+
∆

∆
ε 1 ≥≥ = , ,1 1 2for all l … J ,  (8.73)

where, for the sake of clarity, the user-of-interest spatio-temporal signature al,1 is explic-
itly denoted as al(H1) to stress that it is a function of the user-of-interest channel H1. 
In (8.73), another version of this signature, al(Ĥ1 + Δ), is used, where Δ stands for the 
receive CSI error of the user-of-interest:

 ∆ H H1 1− ˆ , (8.74)

and H1 and Ĥ1 denote the actual and presumed (estimated) channel matrices of the user 
of interest, respectively. Similar to [38], it is assumed in (8.73) that the CSI error is norm-
bounded by some known constant ε, that is,
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 ∆ ≤ .ε  (8.75)

The essence of the RMV receiver design problem in (8.73) is to minimize the receiver 
output power while maintaining the distortionless response for the worst-case CSI errors.

It has been proved in [63] that for any OSTBC,

 ∆ = = ,…,δl l Jfor all 1 2 ,  (8.76)

where

 δl l l a H a H( ) ( ˆ )1 1−  (8.77)

is the error between the actual spatiotemporal signature al(H1) and its mismatched (pre-
sumed) value al(Ĥ1). Therefore, problem (8.73) can be rewritten as

 min ˆ min ( ( ˆ )
w

w w w a H
l l

l
T

l l
T

lR subject to
|| || ≤δ ε 1 ++ ≥ = , , .δl l … J) 1 1 2for all  (8.78)

This problem is mathematically equivalent to 2J decoupled RMV beamforming prob-
lems (8.32). Hence, using the results of [38], problem (8.78) can be reformulated as [63]

 min ˆ ( ˆ )
w

w w w a H w
l

l
T

l l
T

l lR subject to for al1 1≥ +ε ll l … J= , ,1 2 ,  (8.79)

where the constraint can be shown to be satisfied with equality. Similar to (8.33), the 
problem in (8.79) belongs to the class of standard SOCP problems and can be efficiently 
solved using either modern convex optimization tools [50] or Newton-type algorithms 
[46, 51, 52].

In addition to (8.79), one more RMV receiver has been developed in [63] as a robust 
extension of the MV receiver (8.72). The later RMV receiver enables better cancellation 
of self-interference and, as a result, offers an improved performance compared to (8.79).

Using the concept of probabilistically constrained RMV beamforming, several prom-
ising extensions of multiuser RMV MIMO receivers of [63] have been developed in [55, 
64–67] using soft (outage probability-based) rather that deterministic worst-case distor-
tionless response constraints. An interesting open problem is how to extend these receiver 
techniques to other than orthogonal space-time codes with higher transmission rates.

8.4  Transmit Beamforming

In wireless communications, there are two basic ways to use transmit antenna arrays: for 
space-time data encoding [8, 9, 16] and spatial data multiplexing (beamforming) [11, 14]. 
Although space-time coding techniques do not require any CSI at the transmitter, 
beamforming methods typically require an accurate knowledge of the transmit CSI. 
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Certain combinations of space-time coding and beamforming at the transmitter are 
also possible, that may require only partial CSI [68, 69].

In the sequel, we will consider the transmit beamforming problem that includes the 
following (related) cases:

 1. Unicasting. Different data streams should be delivered to different users.
 2. Broadcasting. The same data content should be delivered to all users.
 3. Multicasting. The same data content should be broadcasted to a selected group of 

users, but different data streams should be transmitted to different groups of users.

Clearly, the first two cases represent two extremes of the most general multicasting case. 
In particular, broadcasting and unicasting can be viewed as single-group multicasting 
and multicasting with single-user groups, respectively.

8.4.1  Unicast Transmit Beamforming

8.4.1.1  Traditional Techniques

Early formulations of the transmit beamforming problem were mostly developed in the 
context of voice services in a cellular mobile radio network, where from the operator 
perspective, the system should provide an acceptable QoS for each user and serve as 
many users as possible, while radiating as low power as possible [11, 14].

The QoS requirements can be set up in the form of the lowest admissible value of 
the received SINR at each mobile. Using (8.7), the receive SNR of the i th user can be 
expressed as [14]

 i
i
H

i c i i

i

m m i

L

m
H

i c m m

SINR =

+

,

= ; ≠

,∑
w r w

w r w

( )

( )σ 2

1

,,  (8.80)

where σi
2 is the noise power of the i th user, ri,c(m) is the correlation matrix of the downlink 

channel between the BS serving the mth mobile and the i th mobile, and the other param-
eters used in (8.80) have been defined in section 8.2.

The numerator of (8.80) represents the receive signal power at the i th mobile, whereas 
the denominator of (8.80) contains the noise and interference powers at the same mobile. 
The interference terms are given by the sum of powers of transmissions that are intended 
for other than the i th mobile but which are received by the i th mobile. Clearly, this is a 
crosstalk type of interference that should be avoided to guarantee an acceptable quality 
of the voice message.

Equation (8.80) views all channels as stochastic random vectors. This representation 
is suitable for the case of fast fading where the downlink channel vectors themselves are 
unavailable at the transmitter, and only their correlation matrices are known. In the 
opposite case of slow channel fading, it is more natural to view the downlink channels as 
deterministic vectors. In the latter case, the downlink channel correlation matrix is rank 
one and is given by ri,c(m) = hi,c(m)h

H
i,c(m). Then, (8.80) can be rewritten in a simpler form:
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The traditional approach to optimizing the beamformer weight vectors is to minimize 
the total transmit power under the constraints guaranteeing that an acceptable QoS is 
provided for each user. Mathematically, this problem can be expressed as [11, 14]

 min
{ }w

w w
l l

L

l

L

l
H

l i i
=

=

∑ ≥
1

1

subject to SINR forγ aall i … L= , ,1 ,  (8.82)

where γi is the minimum acceptable QoS for the i th user. This is a quadratic optimi-
zation problem with quadratic nonconvex constraints. Different algorithms have been 
proposed in the literature to solve (8.82). For example, the algorithms of [11] and [70] 
separate the problem into the following two subproblems: downlink power control and 
downlink beamforming with norm-one weight vectors. Using this representation of the 
problem at hand, the approaches of [11] and [70] propose to find the solution to (8.82) in 
an iterative way, by finding the optimal norm-one weight vectors for given power levels, 
and then updating the power levels based on these weight vectors.

Another powerful approach to solve (8.82) has been proposed in [71] (see also [14]) 
using convex optimization. The key idea of this approach is to reformulate problem 
(8.82) in a convex form as follows. Using the notation Wi  wiwi

H, problem (8.82) with 
the user SINRs (8.80) can be transformed to [14, 71]
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 (8.83)

where the last two constraints guarantee that the matrices Wi are Hermitian and posi-
tive semidefinite for all i = 1, …, L. Note that the last constraint can be viewed as a con-
vex relaxation of the nonconvex rank-one constraint rank {Wi} = 1.

The problem in (8.83) belongs to the class of convex semidefinite programming (SDP) 
problems, and therefore, it can be efficiently solved using modern convex optimization 
tools [50]. Moreover, it has been proved in [14] that for this problem, Wi  0 is exactly 
equivalent to rank {Wi} = 1, and therefore, the replacement of the latter constraint by the 
former one is not a relaxation but actually an equivalent reformulation of the problem. 
After obtaining the optimal values for Wi , i = 1, …, L, this property enables recovery of 
the optimal weight vectors wi, i = 1, …, L in a simple way, from the principal eigenvectors 
of Wi, i = 1, …, L.
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In the slow fading case, where the downlink channel vectors are available at the trans-
mitter and (8.81) can be used instead of (8.80), problem (8.82) can be rewritten in a 
SOCP form [14]:

min ( )
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w w w h
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L
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 (8.84)

The SOCP problem (8.84) has much less optimization variables than the SDP problem 
(8.83) and can be solved easier than the latter problem; see [14].

An interesting and practically relevant extension of the problems (8.81) and (8.82) is, 
in addition to optimizing the beamformer weight vectors, to maximize the number of 
admitted users under the condition that the problem remains feasible. Such an exten-
sion of the transmit beamforming approach of [11] has been proposed in [72–74], where 
two computationally efficient joint beamforming and user admission control techniques 
have been developed using SDP and SOCP convex optimization approaches.

Another recent trend in transmit beamforming is to maximize the system through-
put under certain power constraints rather than to minimize the total transmit power 
[75–79]. A growing interest in such types of transmit strategy is motivated by a higher 
emphasis of delay-tolerant high-rate packet data services for the third- and fourth-
 generation (3G and 4G) communication systems [79].

To illustrate the concept of sum-capacity maximization, let us consider the single-
cell multiuser model with the downlink user channels hl, l = 1, …, L (see section 8.2). 
The baseband signal to be sent to the l th user at time t is denoted as sl(t), while the signal 
received at the l th user is denoted as zl(t). Introducing the notations

 s( ) [ ( ) ( ) ( )] ,t s t s t … s tL
T 1 2, , ,  (8.85)

 z( ) [ ( ) ( ) ( )] ,t z t z t … z tL
T 1 2, , ,  (8.86)

 n( ) [ ( ) ( ) ( )] ,t n t n t … n tL
T 1 2, , ,  (8.87)

 H  [ ]h h h1 2, , ,… L
H , (8.88)

 W  [ ]w w w1 2, , ,… L , (8.89)

the receive signal model can be written as

 z s n( ) ( ) ( )t t t= + .HW  (8.90)
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The sum capacity of such a vector Gaussian channel z = Hy + n(t) with the total trans-
mit power constrained to P is given by [79]

 C
y

y
H= +{ }max log

r
I rdet H H , (8.91)

where ry  E{yyH} and the maximization in (8.91) is performed over positive semi-
definite matrices that satisfy the power constraint

 tr{ }r y ≤ .P  (8.92)

The SINR of the l th user can be written as
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l
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l l
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2

2
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σ
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Using (8.90)–(8.93), the transmit beamforming problem can be formulated as [79]

 max ( )
W

P
l

L

l

=

∑ + ≤ .
1

2
1log SINR subject to W  (8.94)

The essence of (8.94) is to maximize the total system throughput under the transmit 
power constraint. In simple words, the maximum in (8.94) is achieved by means of 
exploiting multiuser diversity that suggests always to transmit to the strongest-channel 
users. Several computationally efficient algorithms to solve (8.94) have been proposed in 
the literature; see [77–79] and references therein.

8.4.1.2  Robust Extensions

The idea of incorporating robustness against transmitter CSI errors in the downlink 
beamforming problem (8.82) has been discussed in [14] and [80]. This approach uses 
an idea related to that used in [44] for receive RMV beamforming. More specifically, 
the following upper and lower bounds on downlink channel correlation matrices are 
considered in [80]:

 r r ri c m i c m i c m, , ,( ) ( ) ( )
lower upper  , (8.95)

where

 r r I r ri c m i c m i c m i c m, , , ,= − , =( ) ( ) ( ) (
lower upperξ )) +ξI , (8.96)
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and ξ determines the bound on the norm of downlink correlation matrix errors. To 
account for the CSI mismatch, it is proposed in [14] and [80] to enforce the QoS con-
straints for all possible values of the downlink channel correlation matrices that satisfy 
(8.95). Using this approach, the robust modification of (8.83) can be expressed as
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Problem (8.97) is also a convex SDP problem that can be solved at the same complexity as 
(8.83). It can be interpreted as the worst-case modification of the nonrobust problem (8.83).

A much simpler yet suboptimal approach to robust unicast downlink beamform-
ing has been recently proposed in [81]. The essence of this technique is, following the 
ideas of the algorithms of [11], [70], and [82], to split the transmit beamforming problem 
into the power control and weight vector optimization subproblems, and then to uti-
lize simple decentralized algorithms for the weight vector optimization, while using a 
centralized worst-case optimization-based technique for adjusting the transmit powers. 
This approach has been shown in [81] to have a performance comparable to that of [80], 
while enjoying both a lower computational cost and a substantially reduced degree of 
the required cooperation between the network BSs compared to the algorithm of [80].

8.4.2  Broadcast Transmit Beamforming

The traditional broadcasting strategy is to radiate the transmitted power isotropically or 
using a fixed transmit beampattern. However, in such a case the transmit CSI about the 
user channels is ignored, and as a result, the users with weak channels can experience a 
severe QoS degradation. In future data broadcasting/multicasting applications, the CSI 
for all the intended users is likely to be available at the transmitter. Therefore, this CSI 
can be exploited to improve the performance with respect to the traditional broadcast-
ing scheme [83].

Let a single multiantenna transmitter with the weight vector w broadcast the signal 
s(t) to L single-antenna users whose channels hl , l = 1, …, L, are known at the transmit-
ter. The signal received at the l th user can be modeled as (8.4), and the received SNR at 
the l th user is given by

 l

H
l

l
SNR = .

w h
2

2σ
 (8.98)

The SNRs in (8.98) can be viewed as the user QoS values. Let γl be the minimum accept-
able QoS value for the l th user. Then, defining the normalized channel vectors

(8.97)
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 g h
l

l

l l

l … L
γ σ 2

1, = , , ,  (8.99)

the optimal broadcasting problem can be written as [83]

 min
w

w w w gH H
l l Lsubject to for all

2
1 1≥ = ,… .  (8.100)

According to (8.100), the optimal broadcast weight vector is designed by minimizing 
the total transmit power under the constraints that the minimum acceptable QoS is 
guaranteed for each user.

Unfortunately, the problem in (8.100) is NP-hard [83], and hence it cannot be solved 
in polynomial time. To obtain a reasonably simple approximate solution to (8.100), it 
has been proposed in [83] to reformulate this problem in terms of Z  wwH and Ql  
glgl

H as

 
min { } { }

Z
Z ZQ

Z

tr subject to tr for alll l … L≥ = , , ,1 1

HH = , =Z Zrank{ } ,1
 (8.101)

and then to replace the nonconvex constraint rank{Z} = 1 by its relaxed convex version 
Z  0.

The so-obtained problem is a convex SDP problem. However, in contrast to the prob-
lem in (8.83), the rank and semidefinite constraints on Z are not equivalent to each 
other; that is, the matrix Zopt obtained by solving the relaxed SDP problem is not rank 
one in general [83]. Therefore, to recover the optimal value of weight vector from Zopt, 
the so-called randomization approach was adopted in [83].

Another alternative broadcast beamforming problem setting in the case of fixed 
transmit power constraint is to maximize the minimum receiver SNR subject to this 
constraint. This problem can be written as [83]

 max min
w

w h w w
l

l

L
H

l l
H

=












≤

1

2
2σ subject to PP .  (8.102)

This problem can also be shown to be NP-hard, but it can be relaxed to a convex SDP 
form in nearly the same way as problem (8.100); see [83] for more details.

A useful worst-case design-based robust modification of problem (8.100) has been 
discussed in [84]. The authors of [84] have assumed the norm-bounded channel errors 
νl  g̃l – gl ; νl ≤ κ (with g̃l and gl  being the actual and presumed values of the normal-
ized channel vector, respectively), and modified problem (8.100) as

 min ( )
w

w w w gH H
l l l lsubject to for all+ ≥ ≤ , =ν ν

2
1 κ 11, , .… L  (8.103)
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A simple and elegant algorithm has been proposed in [84] to find an approximate solu-
tion to (8.103) using a properly rescaled weight vector of the original nonrobust problem 
(8.100) or its convex relaxed reformulation presented in [83]. Another robust technique 
that solves (8.103) has been developed in [85] using the convex SDP approach.

8.4.3  Multicast Transmit Beamforming

The multicast transmit beamforming problem is a natural, yet nontrivial, extension of 
the broadcast problem to the case when different data streams have to be transmitted to 
different groups of users.

Let us modify the broadcast scenario by assuming a total of I (1 ≤ I ≤ L) multicast 
groups {D1, …, DI}, where Di is the index set of receivers participating in the i th group 
[86, 87]. It will be assumed that no user can be shared by more than one group, that is, 
Di ∩ Dk = ∅ for any i ≠ k and D1 ∪ D2 ∪…∪ DI = {1, 2, …, L}, which also implies that 

 Di

i

I

L
=

∑ =
1

.

Using these conventions, the joint design of the transmit beamformers for multiple 
user groups amounts to minimizing the total transmit power subject to the QoS con-
straints [86]:
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where wi is the weight vector used for the i th group and, as before, γk and hk are the mini-
mal acceptable QoS and the downlink channel vector of the k th user.

Clearly, as (8.104) represents a generalization of (8.100), it it also NP-hard. Moreover, 
in contrast to (8.100), problem (8.104) can be infeasible due to crosstalk-type interfer-
ence between the user groups. Using an approach similar to that used in [83] for relaxing 
broadcast problem (8.100) to a convex form, the authors of [86] have derived a relaxation 
of (8.104) to the following convex SDP problem:
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 (8.105)

Similar to (8.101), problem (8.105) can be directly solved using available convex optimi-
zation tools [50].
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The authors of [86] also derived a convex optimization-based algorithm to solve the 
multicast generalization of the max-min fair beamforming problem (8.102). The design 
of robust worst-case multicast beamformers is currently an open problem.

8.5  Conclusions

An overview of adaptive beamforming methods for wireless multiantenna communica-
tions has been presented. Both the receive and transmit beamforming problems and 
techniques have been discussed in detail. As many popular recent approaches to receive 
and transmit beamforming are based on modern optimization theory, our chapter has 
a strong emphasis on convex optimization-based techniques. More details about using 
convex optimization methods in wireless communications can be found in the recent 
tutorial papers [48] and [49].

Acknowledgment

This work was supported by the German Research Foundation (DFG) under Grant GE 
1881/1-1.

References

 [1] B. D. Van Veen and K. M. Buckley. 1988. Beamforming: A versatile approach to 
spatial filtering. IEEE Acoust. Speech Signal Processing Mag. 5:4–24.

 [2] J. Mayhan. 1976. Nulling limitations for a multiple-beam antenna. IEEE Trans. 
Antennas Propagation 24:769–79.

 [3] R. T. Compton. 1978. An adaptive array in a spread spectrum communication 
system. Proc. IEEE 66:289–98.

 [4] J. Winters. 1982. Spread spectrum in a four-phase communication system employ-
ing adaptive antennas. IEEE Trans. Commun. 30:929–36.

 [5] G. J. Foschini. 1996. Layered space-time architecture for wireless communication 
in a fading environment when using multielement antennas. Bell Labs Tech. J. 
1:41–59.

 [6] L. C. Godara. 1997. Application of antenna arrays to mobile communications. II. 
Beam-forming and direction-of-arrival considerations. Proc. IEEE 85:1195–245.

 [7] T. S. Rapapport, ed. 1998. Smart antennas: Adaptive arrays, algorithms, and wire-
less position location. Piscataway, NJ: IEEE Press.

 [8] S. M. Alamouti. 1998. A simple transmit diversity technique for wireless commu-
nications. IEEE J. Selected Areas Commun. 45:1451–58.

 [9] V. Tarokh, N. Seshadri, and A. R. Calderbank. 1998. Space-time codes for high 
data rate wireless communication: Performance criterion and code construction. 
IEEE Trans. Inform. Theory 44:744–65.

 [10] I. E. Telatar. 1999. Capacity of multi-antenna Gaussian channels. Eur. Trans. Tele-
commun. 10:585–96.

© 2009 by Taylor & Francis Group, LLC



Adaptive Beamforming for Multiantenna Communications 229

 [11] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas. 1998. Transmit beamforming 
and power control for cellular wireless systems. IEEE J. Selected Areas Commun. 
16:1437–50.

 [12] S. Kapoor, D. J. Marchok, and Y.-F. Huang. 1999. Adaptive interference suppres-
sion in multiuser wireless OFDM systems using antenna arrays. IEEE Trans. Signal 
Processing 47:3381–91.

 [13] J. Razavilar, F. Rashid-Farrokhi, and K. J. R. Liu. 2000. Traffic improvements in 
wireless communication networks using antenna arrays. IEEE J. Selected Areas 
Commun. 18:458–71.

 [14] M. Bengtsson and B. Ottersten. 2001. Optimal and suboptimal transmit beam-
forming. In Handbook of antennas in wireless communications, ed. L. Godara. 
Boca Raton, FL: CRC Press, chapter 18.

 [15] C. Farsakh and J. A. Nossek. 1998. Spatial covariance based downlink beamform-
ing in an SDMA mobile radio system. IEEE Trans. Commun. 46:1497–506.

 [16] E. G. Larsson and P. Stoica. 2003. Space-time block coding for wireless communica-
tions. Cambridge, UK: Cambridge University Press.

 [17] A. Paulraj, R. Nabar, and D. Gore. 2003. Introduction to space-time wireless com-
munications. Cambridge, UK: Cambridge University Press.

 [18] A. B. Gershman and N. D. Sidiropoulos, eds. 2005. Space-time processing for 
MIMO communications. New York: John Wiley & Sons.

 [19] T. Kaiser, A. Boudroux, H. Boche, J. R. Fonollosa, J. B. Andersen, and W. Utschick, 
eds. 2005. Smart antennas—State-of-the-art. EURASIP Book Series on Signal Pro-
cessing and Communications. New York: Hindawi.

 [20] H. Bölcskei, D. Gesbert, C. B. Papadias, and A. J. van der Veen, eds. 2006. Space-
time wireless systems—From array processing to MIMO communications. Cam-
bridge, UK: Cambridge University Press.

 [21] S. S. Jeng, H. P. Lin, G. Xu, and W. J. Vogel. 1995. Measurements of spatial signa-
ture of an antenna array. In Proceedings of PIMRC’95, Toronto, vol. 2, pp. 669–72.

 [22] A. J. Weiss and B. Friedlander. 1996. Almost blind steering vector estimation using 
second-order moments. IEEE Trans. Signal Processing 44:1024–27.

 [23] A. L. Swindlehurst. 1998. Time delay and spatial signature estimation using known 
asynchronous signals. IEEE Trans. Signal Processing 46:449–62.

 [24] D. Astely, A. L. Swindlehurst, and B. Ottersten. 1999. Spatial signature estimation 
for uniform linear arrays with unknown receiver gains and phases. IEEE Trans. 
Signal Processing 47:2128–38.

 [25] Y. Rong, S. A. Vorobyov, A. B. Gershman, and N. D. Sidiropoulos. 2005. Blind spa-
tial signature estimation via time-varying user power loading and parallel factor 
analysis. IEEE Trans. Signal Processing 53:1697–710.

 [26] H. L. Van Trees. 2002. Optimum array processing. New York: Wiley.
 [27] A. B. Gershman. 2003. Robustness issues in adaptive beamforming and high-

 resolution direction finding. In High-resolution and robust signal processing, ed. 
Y. Hua, A. B. Gershman, and Q. Cheng. New York: Marcel Dekker.

 [28] I. S. Reed, J. D. Mallett, and L. E. Brennan. 1974. Rapid convergence rate in adap-
tive arrays. IEEE Trans. Aerospace Electronics Syst. 10:853–63.

© 2009 by Taylor & Francis Group, LLC



230 Adaptive Signal Processing in Wireless Communications

 [29] D. D. Feldman and L. J. Griffiths. 1994. A projection approach to robust adaptive 
beamforming. IEEE Trans. Signal Processing 42:867–76.

 [30] A. B. Gershman. 1999. Robust adaptive beamforming in sensor arrays. AEU Int. J. 
Electronics Commun. 53:305–14.

 [31] J. Riba, J. Goldberg, and G. Vazquez. 1997. Robust beamforming for interference 
rejection in mobile communications. IEEE Trans. Signal Processing 45:271–75.

 [32] S. P. Applebaum and D. J. Chapman. 1976. Adaptive arrays with main beam con-
straints. IEEE Trans. Antennas Propagation 24:650–62.

 [33] K. Takao, M. Fujita, and T. Nishi. 1976. An adaptive antenna array under direc-
tional constraint. IEEE Trans. Antennas Propagation 24:662–69.

 [34] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury. 2000. A stochastic model of the 
temporal and azimuthal dispersion seen at the base station in outdoor propagation 
environments. IEEE Trans. Vehicular Technol. 49:437–47.

 [35] Y. I. Abramovich. 1981. Controlled method for adaptive optimization of filters 
using the criterion of maximum SNR. Radio Eng. Electronic Physics 26:87–95.

 [36] H. Cox, R. M. Zeskind, and M. H. Owen. 1987. Robust adaptive beamforming. 
IEEE Trans. Acoust. Speech Signal Processing 35:1365–76.

 [37] B. D. Carlson. 1988. Covariance matrix estimation errors and diagonal loading in 
adaptive arrays. IEEE Trans. Aerospace Electronic Syst. 24:397–401.

 [38] S. Vorobyov, A. B. Gershman, and Z.-Q. Luo. 2003. Robust adaptive beamforming 
using worst-case performance optimization: A solution to the signal mismatch 
problem. IEEE Trans. Signal Processing 51:313–24.

 [39] L. Chang and C. C. Yeh. 1992. Performance of DMI and eigenspace-based beam-
formers. IEEE Trans. Antennas Propagation 40:1336–47.

 [40] R. J. Mailloux. 1995. Covariance matrix augmentation to produce adaptive array 
pattern troughs. IEE Electronics Lett. 31:771–72.

 [41] A. B. Gershman, U. Nickel, and J. F. Böhme. 1997. Adaptive beamforming algo-
rithms with robustness against jammer motion. IEEE Trans. Signal Processing 
45:1878–85.

 [42] J. R. Guerci. 2000. Theory and application of covariance matrix tapers to robust 
adaptive beamforming. IEEE Trans. Signal Processing 47:977–85.

 [43] M. A. Zatman. 2000. Comment on “Theory and application of covariance 
matrix tapers for robust adaptive beamforming.” IEEE Trans. Signal Processing 
48:1796–800.

 [44] S. Shahbazpanahi, A. B. Gershman, Z.-Q. Luo, and K. M. Wong. 2003. Robust 
adaptive beamforming for general-rank signal models. IEEE Trans. Signal Process-
ing 51:2257–69.

 [45] S. Vorobyov, A. B. Gershman, Z.-Q. Luo, and N. Ma. 2004. Adaptive beamforming 
with joint robustness against mismatched signal steering vector and interference 
nonstationarity. IEEE Signal Processing Lett. 11:108–11.

 [46] R. G. Lorenz and S. P. Boyd. 2005. Robust minimum variance beamforming. IEEE 
Trans. Signal Processing 53:1684–96.

 [47] M. Lobo, L. Vandenberghe, S. P. Boyd, and H. Lebret. 1998. Applications of sec-
ond-order cone programming. Lin. Algebra Appl. 284:193–228.

© 2009 by Taylor & Francis Group, LLC



Adaptive Beamforming for Multiantenna Communications 231

 [48] Z.-Q. Luo. 2003. Applications of convex optimization in signal processing and 
digital communication. Math. Programming 97B:177–207.

 [49] Z.-Q. Luo and W. Yu. 2006. An introduction to convex optimization for commu-
nications and signal processing. IEEE J. Selected Areas Commun. 24:1426–38.

 [50] J. F. Sturm. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over 
symmetric cones. Optim. Meth. Software 11/12:625–53.

 [51] K. Zarifi, S. Shahbazpanahi, A. B. Gershman, and Z.-Q. Luo. 2005. Robust blind 
multiuser detection based on the worst-case performance optimization of the 
MMSE receiver. IEEE Trans. Signal Processing 53:295–305.

 [52] P. Stoica and J. Li, eds. 2006. Robust adaptive beamforming. Hoboken, NJ: John 
Wiley & Sons.

 [53] Y. Rong, S. A. Vorobyov, and A. B. Gershman. 2005. Robust adaptive beamforming 
using probability-constrained optimization. In Proceedings of the IEEE Workshop 
on Statistical Signal Processing, Bordeaux, France, pp. 934–39.

 [54] S. A. Vorobyov, Y. Rong, and A. B. Gershman. 2006. Robust minimum variance 
adaptive beamformers and multiuser MIMO receivers: From worst-case to proba-
bilistically constrained designs. In Proceedings of ICASSP’06, Toulouse, France, 
vol. 5, pp. 977–80.

 [55] S. A. Vorobyov, A. B. Gershman, and Y. Rong. 2007. On the relationship between 
the worst-case optimization-based and probability-constrained approaches to 
robust adaptive beamforming. In Proceedings of ICASSP’07, Honolulu, HI, vol. 2, 
pp. 977–980.

 [56] A. Prékopa. 1995. Stochastic programming. Dordrecht, Netherlands: Kluwer Aca-
demic Publishers.

 [57] H. Li, X. Lu, and G. B. Giannakis. 2002. Capon multiuser receiver for CDMA sys-
tems with space-time coding. IEEE Trans. Signal Processing 50:1193 –204.

 [58] D. Reynolds, X. Wang, and H. V. Poor. 2002. Blind adaptive space-time multiuser 
detection with multiple transmitter and receiver antennas. IEEE Trans. Signal Pro-
cessing 50:1261–76.

 [59] S. Shahbazpanahi, M. Beheshti, A. B. Gershman, M. Gharavi-Alkhansari, and 
K. M. Wong. 2004. Minimum variance linear receivers for multiaccess MIMO 
wireless systems with space-time block coding. IEEE Trans. Signal Processing 
52:3306–13.

 [60] A. Nordio and G. Taricco. 2006. Linear receivers for the multiple-input multiple-
output multiple-access channel. IEEE Trans. Commun. 54:1446–56.

 [61] B. Hassibi and B. M. Hochwald. 2002. High-rate codes that are linear in space and 
time. IEEE Trans. Inform. Theory 48:1804–24.

 [62] M. Gharavi-Alkhansari and A. B. Gershman. 2005. Constellation space invariance 
of orthogonal space-time block codes. IEEE Trans. Inform. Theory 51:331–34.

 [63] Y. Rong, S. Shahbazpanahi, and A. B. Gershman. 2005. Robust linear receivers for 
space-time block coded multi-access MIMO systems with imperfect channel state 
information. IEEE Trans. Signal Processing 53:3081–90.

© 2009 by Taylor & Francis Group, LLC



232 Adaptive Signal Processing in Wireless Communications

 [64] Y. Rong, S. A. Vorobyov, and A. B. Gershman. 2004. A robust linear receiver 
for multi-access space-time block coded MIMO systems based on probability-
 constrained optimization. In Proceedings of IEEE VTC’04, Milan, Italy, vol. 1, 
pp. 118–22.

 [65] Y. Rong, S. A. Vorobyov, and A. B. Gershman. 2005. Robust linear receiver design 
for multi-access space-time block coded MIMO systems using stochastic optimi-
zation. In Proceedings of the IEEE Workshop on Statistical Signal Processing, Bor-
deaux, France, pp. 65–70.

 [66] R. Wang, H. Li, and T. Li. 2006. Robust multiuser detection for multicarrier CDMA 
systems. IEEE J. Selected Areas Commun. 24:673–83.

 [67] Y. Rong, S. A. Vorobyov, and A. B. Gershman. 2006. Robust linear receivers for 
multi-access space-time block coded MIMO systems: A probabilistically con-
strained approach. IEEE J. Selected Areas Commun. 24:1560–70.

 [68] G. Jöngren, M. Skoglund, and B. Ottersten. 2002. Combining beamforming and 
space-time block coding. IEEE Trans. Inform. Theory 48:611–27.

 [69] S. Zhou and G. B. Giannakis. 2002. Optimal transmitter eigen-beamforming and 
space-time block coding based on channel mean feedback. IEEE Trans. Signal Pro-
cessing 50:2599–613.

 [70] E. Visotsky and U. Madhow. 1999. Optimum beamforming using transmit antenna 
arrays. In Proceedings of IEEE VTC’99, Houston, TX, vol. 1, pp. 851–56.

 [71] M. Bengtsson and B. Ottersten. 1999. Optimal downlink beamforming using 
semidefinite optimization. In Proceedings of the 37th Annual Allerton Conference 
on Communications, Control, and Computing, pp. 987–96.

 [72] E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas. Submitted. Convex 
approximation techniques for joint multiuser downlink beamforming and admis-
sion control. IEEE Trans. Wireless Commun.

 [73] E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas. 2007. Joint multi-
user downlink beamforming and admission control: A semidefinite relaxation 
approach. In Proceedings of ICASSP’07, Honolulu, HI, vol. 3, pp. 585–588.

 [74] E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas. 2007. A second-order 
cone deflation approach to joint multiuser downlink beamforming and admission 
control. In Proceedings of the IEEE Workshop on Signal Processing Advances in 
Wireless Communications, Helsinki, Finland, pp. 1–5.

 [75] G. Caire and S. Shamai. 2003. On the achievable throughput of a multi-antenna 
Gaussian broadcast channel. IEEE Trans. Inform. Theory 49:1691–706.

 [76] S. Vishwanath, N. Jindal, and A. Goldsmith. 2003. Duality, achievable rates, and 
sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. Inform. 
Theory 49:2658–68.

 [77] Z. Tu and R. S. Blum. 2003. Multiuser diversity for a dirty paper approach. IEEE 
Commun. Lett. 7:370–72.

 [78] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt. 2004. Zero-forcing methods for 
downlink spatial multiplexing in multi-user MIMO channels. IEEE Trans. Signal 
Processing 52:461–71.

© 2009 by Taylor & Francis Group, LLC



Adaptive Beamforming for Multiantenna Communications 233

 [79] G. Dimić and N. D. Sidiropoulos. 2005. On downlink beamforming with greedy 
user selection: Performance analysis and a simple new algorithm. IEEE Trans. Sig-
nal Processing 53:3857–68.

 [80] M. Bengtsson. 2000. Robust and constrained downlink beamforming. In Proceed-
ings of EUSIPCO’00, Tampere, Finland, pp. 1433–36.

 [81] M. Biguesh, S. Shahbazpanahi, and A. B. Gershman. 2004. Robust downlink power 
control in wireless cellular systems. EURASIP J. Wireless Commun. Networking 
2:261–72.

 [82] H. Boche and M. Schubert. 2001. A new approach to power adjustment for spatial 
covariance based downlink beamforming. In Proceedings of ICASSP’01, Salt Lake 
City, UT, vol. 5, pp. 2957–60.

 [83] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo. 2006. Transmit beamforming 
for physical-layer multicasting. IEEE Trans. Signal Processing 54:2239–51.

 [84] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo. 2006. Convex transmit beam-
forming for downlink multicasting to multiple co-channel groups. In Proceedings 
of ICASSP’06, Toulouse, France, vol. 5, pp. 973–76.

 [85] I. Wajid, A. B. Gershman, S. A. Vorobyov, and Y. A. Karanouh. 2007. Robust multi-
antenna broadcasting with imperfect channel state information. In Proceedings of 
the IEEE Workshop on Computer Advances in Multi-Sensor Adaptive Processing, 
U.S. Virgin Islands.

 [86] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo. 2008. Submitted. Quality of ser-
vice and max-min fair transmit beamforming to multiple co-channel multicast 
groups. IEEE Trans. Signal Processing 56:1268–1279.

 [87] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo. 2005. Transmit beamforming to 
multiple co-channel multicast groups. In Proceedings of the IEEE Workshop on 
Computer Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 
pp. 109–12.

© 2009 by Taylor & Francis Group, LLC



235

Adaptive equalizers have been in use for about four decades. Since then, the applications 
and allowable complexity have changed dramatically, but the basic design approaches are 
largely unchanged. This chapter reviews common methodologies for designing trained 
and blind adaptive equalizers, including fast algorithms and slower, low-complexity 
algorithms. Application of these principles to modern wireless communication systems 
is demonstrated via discussion of popular equalizers for two newly popular modulation 
formats, multicarrier and ultrawideband communications. The chapter concludes with 
a discussion of the interaction of the adaptive equalizer with other adaptive blocks, such 
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as an adaptive carrier frequency offset estimator, an adaptive gain controller, and adap-
tive frequency-domain equalizers (for multicarrier systems).

9.1  Introduction and Historical Perspective

In this section we discuss the motivation for adaptive equalizers, including a discussion 
of notation. We then give a brief historical perspective, following the proposal of adaptive 
equalizers in the 1960s, to their heyday of research in the 1980s, through current research.

9.1.1  Equalizer Structure and Notation

Consider a single-input multiple-output (SIMO) wireless communication channel. This 
can be obtained via multiple sensors or oversampling by a factor of P at the receiver. The 
channel at sensor p or sampling subinterval p is often modeled as

 y n h n k x n k w np p
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where w(p)[n] is additive noise (typically white and Gaussian), the channel coefficient 
h(p)[n,k] gives the dependence of output n on input n-k, and L is the channel order. This is 
sometimes called the time-lag representation of the channel [1]. Throughout this chapter, 
we will use n to index the time value (or sample number or iteration) and k to index the 
lag, i.e., the dependence of the current output on the input that occurred k samples ago, 
and p will index the receive antennas (or oversampling subsequence). When abundance of 
indices permits, discrete time indices will be indicated in square brackets, element indices 
of a matrix or vector will be indicated as subscripts, and all other indices will be in super-
scripts with parentheses. Matrices and vectors will be in boldface. The superscripts (·)*, (·)T, 
and (·)H denote complex conjugate, matrix transpose, and Hermitian (conjugate transpose), 
respectively. All other superscripts are powers.
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Unless otherwise noted, we will use the channel model of (9.2), although we will dis-
cuss some recent work that features the more challenging model of (9.1). Ideally, the 
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channel is unity for a single value of the delay and zero otherwise, indicating a single 
propagation path from the transmitter to the receiver. However, realistically, there are 
multiple delayed and attenuated reflections, called multipath, leading to many other 
nonzero channel coefficients.

The goal of the receiver is to estimate the sequence x[n] from the sequence y[n]. There 
are various ways to do this. Optimally, one would estimate the entire sequence x[n] from 
the entire sequence y[n], and the maximum likelihood solution is called maximum 
likelihood sequence estimation (MLSE), which is typically implemented via the Viterbi 
algorithm [2]. However, MLSE is typically extremely complex (of the order AL, where A 
is the alphabet size of the transmitted signal). Thus, it is impractical for most wireless 
channels, which can span hundreds of samples, with A typically ranging from 4 to 64.

Equalization is a relatively low-complexity alternative to MLSE, although its perfor-
mance is suboptimal. Equalization is the act of processing the output of the commu-
nication channel with the goal of recovering the input, often in the form of a filtering 
operation. This can be a linear finite impulse response (FIR) filter, a linear infinite 
impulse response (IIR) filter, or a nonlinear decision-feedback equalizer (DFE). Other 
equalization techniques exist, but due to considerations of brevity, this chapter focuses 
on equalization via linear filtering, as it is the most popular approach, although we 
briefly discuss the DFE and its variants.

The linear equalizer of order N is modeled as
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Later in this chapter, we will discuss methods of designing f for various communi-
cation standards that are currently enjoying widespread popularity. First, however, we 
discuss the reasons for making f adaptive, and give a brief history of equalizer design.

9.1.2  Motivation for Adaptation

Although the entirety of this book deals with adaptive processing, there is need to spe-
cifically motivate adaptive equalization. In a wireless environment, the channel model 
is highly dependent on the physical location of the reflectors that lead to multipath. As 
objects move, the channel model must change accordingly. In particular, if either the 
transmitter or receiver is mobile, every channel coefficient will gradually change, and 
the equalizer must change accordingly.

There are two ways to deal with this changing environment. One could assume the 
channel is static over a short time window, and then compute the optimal equalizer for 
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that window via a batch processing algorithm [e.g., 3]. For each new block, a new equal-
izer could be computed from scratch, and that equalizer could be used to equalize the 
data in that particular block. Alternatively, an adaptive algorithm can recursively com-
pute the equalizer by tweaking the coefficient values from the previous time step. The 
former approach has the advantage of optimality when the channel truly is static and the 
window is large enough to average out the noise. However, the complexity can be very 
high, since optimal solutions generally require matrix inversions, computation of gener-
alized eigenvectors [3], or singular value decompositions [4], depending on the problem, 
and these must be repeated every block. The latter approach has the advantage of mak-
ing use of the solution from the previous time step, and the complexity is usually limited 
to computation of a matrix-vector multiply, or often only vector-vector and vector-scalar 
multiplies, and moreover, the complexity is evenly spread out over time (rather than as a 
lump sum at initialization). However, convergence to a good value often requires many 
more data samples than optimal batch processes. Thus, adaptive equalizers are by no 
means universally superior, but they are often preferred when computational power is at 
a premium and mobility is high, e.g., in a mobile handset.

9.1.3  History of Adaptive Equalizers

Adaptive equalizers, sometimes called automatic equalizers, have been in use since the 
1960s [5, 6]. Of particular note is the introduction of the least mean square (LMS) algo-
rithm, sometimes called the Widrow-Hoff algorithm [5, 7]. LMS is still used today as 
a benchmark for comparison of adaptive equalizers, due to its low complexity and its 
convergence to the minimum mean squared error (MMSE) equalizer for a static chan-
nel. Research on adaptive equalization became more widespread in the 1970s, motivated 
by the need to equalize the impulse responses of telephone lines [8–10]. This research 
focused on the comparison of different cost functions, and on hybrid equalizer structures, 
such as the combination of a partial equalizer and a reduced-complexity MLSE. However, 
this research typically assumed the availability of a sufficiently long training signal, which 
reduces the channel throughput, and is not even available in surveillance environments.

A “blind” (or “self-recovering”) equalizer is one that relies on known statistical prop-
erties of the transmitted signal, rather than on a training signal. A blind, adaptive equal-
izer was first introduced in 1975 in [11], which replaced the training signal in the LMS 
algorithm with the output of a decision device at the receiver. This idea was later termed 
decision direction (DD). However, it is dependent on the ability to make good decisions 
at initialization, which is not always the case. A more sophisticated blind equalizer, the 
constant modulus algorithm (CMA), was introduced in the early 1980s [12–14]. CMA 
assumes the transmitted data has a constant modulus, and the equalizer attempts to 
restore this property. However, CMA can be extended to non-constant modulus sources 
[15], in which case it may be viewed as a dispersion (or effective noise power)-minimizing 
algorithm. Despite the age of DD and CMA, most blind adaptive equalizers proposed 
more recently are rooted in these two algorithms. Exceptions often involve finding alter-
nate signal properties to restore.

Since the mid-1980s, adaptive equalizer research has focused less on development 
of new algorithms and more on either characterizing popular algorithms or tweaking 
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them for performance improvement or complexity reduction. Notable extensions for 
trained equalizers include application of nonlinearities to the data and error functions 
in the LMS algorithm [17], modifications to exploit sparsity in the equalizer [18], and 
consideration of alternate cost functions, such as the fourth power of the error instead 
of the square [19, 20], or hybrids of the two. Notable extensions for blind equalizers 
include the use of multiple moduli in CMA for higher-order constellations [21], and 
hybrid cost functions that retain the benefits of CMA but provide improved convergence 
speed [22].

In the past few years, there has been a surge of interest in algorithms that exploit the 
idea of CMA, but with a different contour in the constellation space. CMA tries to force 
the constellation points back onto a circular contour in the complex plane. Similarly, the 
square contour algorithm (SCA) [23], also called the constant square algorithm (CQA) 
[24], uses a square contour, which has a constant infinity norm (as opposed to the con-
stant 2-norm of a circle). This idea was generalized to include all possible norms on the 
complex plane in [24] and [25], leading to a plethora of possible algorithms, includ-
ing extended CMA (ECMA) [25] and the constant norm algorithm with an L6 norm 
(CNA-6) [24]. However, not all constellations are built on square or circle patterns; 
hence, [26] proposed the use of a more complicated cross-shaped contour, leading to the 
constant cross algorithm (CXA).

Further information on equalization of slowly time-varying channels can be obtained 
from a variety of survey papers. Qureshi’s paper [16] surveys early work in trained adap-
tive equalizers (pre-1985). Reviews of blind adaptive equalization algorithms can be 
found in [27] and [28]. One of the more popular “encyclopedias” of adaptive filter algo-
rithms is Haykin’s book [29].

Up until around 2000, almost all adaptive equalizers were designed for the case in 
which the channel was frequency selective but quasi-static. That is, the channel impulse 
response was assumed to be relatively constant and to approximately obey the model of 
(9.2), but it could drift over time. This allows a gradient-descent type of equalizer to keep 
up. In the past few years, interest has risen in equalization of channels that vary rapidly 
with respect to the symbol period [1, 30–33]. In such a case, the channel is both time and 
frequency selective, or doubly selective, and is modeled more appropriately by (9.1) than 
by (9.2). Such channels cannot be equalized by gradient-descent equalizers (trained or 
blind) since the update rule cannot keep up with the speed of the channel variations, and 
more complex methods of equalization are required. One possibility is to take the two-
dimensional Fourier transform of the channel convolution matrix, and then perform 
the equalization in this frequency domain. This is most appropriate for systems such 
as orthogonal frequency division multiplexing (OFDM), in which the data are already 
encoded in the frequency domain. For small amounts of time variation, MMSE symbol 
estimation can be performed by considering the interference from adjacent frequency 
bins due to the Doppler spread. The complexity can be kept manageable by ignoring the 
small interference coefficients at large Doppler spreads [31] or by windowing in the time 
domain to restrict the Doppler spread [1]. However, [1] and [31] were derived specifically 
in the context of OFDM, for which the frequency-domain input signal is discrete, so this 
approach is not applicable to other modulation schemes. A more general approach is to 
model both the channel and the equalizer in the time domain as matrices rather than 
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as vectors [30]. This explicitly accounts for the time variations in the model, and allows 
for far more degrees of freedom in the equalizer. The challenge then becomes accurately 
determining all of the channel coefficients from limited observable data, and of comput-
ing the equalizer with a moderate amount of complexity. These are difficult goals, and 
are the primary drawbacks of this approach [1], although this can be mitigated some-
what by explicitly exploiting the sparse structure of the channel matrix [33]. Another 
approach that requires less degrees of freedom is to use a basis expansion model (BEM) 
[32]. A BEM models the doubly selective channel using basis signals that allow for both 
time and frequency selectivity, by substituting

 h n k e h kp j qn N p q k

q Q
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into (9.1), where q indexes the Doppler spread and h(p,q,k) is the strength of Doppler com-
ponent q at lag k for receive antenna p. For each time instant, the channel is modeled 
as a sum of complex exponentials with different Doppler spreads; hence, the amount of 
Doppler that is modeled is controlled (as opposed to the matrix model of [30], which can 
in principle allow arbitrarily large Doppler). The equalizer can also be modeled using the 
BEM, and hence it is also effectively a time-varying filter.

This chapter covers adaptive equalizers, and the equalizers discussed above for doubly 
selective channels are not adaptive in the classical sense of a recursive update rule. How-
ever, they do perform equalization by explicitly accounting for the time variations in 
the channel model, which is the essence of adaptive equalization. As mobility becomes 
more pervasive in communications and as data rates are pushed higher, many adaptive 
equalizers may need to be recast in more complex forms, such as BEMs.

9.2  Adaptive Equalizer Algorithm Formulation

This section covers adaptive algorithm design approaches, in the context of traditional 
digital communication systems (later sections discuss emerging digital modulation for-
mats). We begin with a discussion of methods of trained and blind equalizer design, 
with a focus on the design philosophy rather than a specific algorithm. We then cover 
methods of improving algorithm performance, by either accelerating convergence or 
exploiting the sparse structure in wireless channels.

9.2.1  Trained Adaptive Algorithm Design Methodologies

Most trained adaptive equalizers take the form of a stochastic gradient descent of a cost 
function. By far, the most popular choice of cost function is the mean squared error 
(MSE), where the error is the difference of a desired signal d[n] and the filter output. 
However, the point at which the error is measured can vary from application to applica-
tion, leading to different algorithms.

In a traditional single-carrier communication system, the input-output relation is 
adequately modeled by (9.2) with no additional preprocessing at the transmitter. The 
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data sequence x[n] is in general complex valued and from a discrete signal constellation. 
When training (knowledge of x[n] for short, intermittent time intervals) is available, 
the desired signal in wireless communications is almost always a delayed version of the 
input, d[n] = x[n – Δ]. Then the error signal is
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The cost function to be minimized is
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with q = 2 leading to the MSE cost function, although q = 1 and q = 4 are sometimes 
encountered in the literature, leading to the mean absolute error (MAE) and mean 
fourth error (MFE) cost functions, respectively.

Computing a stochastic gradient descent of (9.6) requires computing the gradient 
with respect to f and removing the expectation. Then the new equalizer is additively 
adjusted in the direction of the negative gradient by a small step size μ,

 f f fn n J+  =   − ∇1 µ .  (9.7)

For q = 2, this leads to the LMS algorithm,

 f f yn n e n n+  =  +    1 µ * . (9.8)

Due to the vector structure of f and y[n], (9.8) accounts for the SIMO channel model. 
Similarly, q = 1 leads to the error sign LMS algorithm [34], and q = 4 leads to the least 
mean fourth (LMF) algorithm [19].

Almost all adaptive equalizers in the literature follow this same structure: a cost func-
tion is proposed (usually in the form of (9.6) or a hybrid of several such cost functions), 
and a stochastic gradient descent update is computed. In sections 9.3 and 9.4, we will 
talk about modifications that can be applied to most gradient descent algorithms to 
improve performance.

9.2.2  Blind Adaptive Algorithm Design Methodologies

The biggest challenge in adaptive equalization comes when training is unavailable. Even 
in standards that include training, there is typically a long interval of data between 
training symbols. If this is the case, the error signal of (9.5) cannot be computed for use 
in the cost function.

Blind algorithms often turn to known statistical properties of the source signal in lieu 
of training. For example, when the source data comes from a finite constellation, then 
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a pseudo-training signal can be formed from the nearest constellation point. Denoting 
Q{·} as the decision or quantization function that selects the nearest constellation point, 
an error signal and associated cost function can be computed as
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The associated stochastic gradient descent algorithm is called decision-directed LMS 
(DD-LMS). It is identical to (9.8) except for the new error signal. DD-LMS is commonly 
used due to its simplicity, but it is actually a member of a far broader class of algorithms, 
called Bussgang algorithms [35], which use the error signal

 e n g x n x n  =  { }−  ˆ ˆ ,  (9.10)

and MSE cost function (as in (9.9)), where g{·} is a nonlinear function that estimates the 
source signal from the equalizer output using Bayesian techniques.

If reliable decisions cannot be made due to excessive noise, an alternative is CMA. 
CMA uses the error signal and cost function

 e n x n  =   −ˆ ,
2

γ  (9.11)

and MSE cost function (as in (9.9)). If the transmitted signal is not constant modulus, 
CMA can still be used with a performance penalty, or the multiple modulus algorithm 
(MMA) can be used [21]. Table 9.1 compares the error signals, cost functions, and 
parameters of the most common trained and blind algorithms, from which most algo-
rithm variants are derived. Note that it is possible to manipulate the form of the CMA 
error term to show that it is a special case of the Bussgang algorithm, and hence some 
sources list it as such [29], but it is not really in the same spirit as other Bussgang algo-
rithms (i.e., it does not make a nonlinear estimation of the source symbol), and hence it 
is listed separately in Table 9.1.

In emerging communications standards, the properties exploited in this section are 
often not readily available. In this case, the algorithm designer must search for other 
properties. For example, known zero padding or redundancy (such as repetition) in the 
transmitted signal may be exploited. Sections 9.3 and 9.4 discuss specific examples in 
more detail.

9.2.3  Algorithm Acceleration Techniques

The primary drawback of LMS and particularly CMA is that they take a very large num-
ber of symbols to converge. Thus, much recent research has focused on accelerating 
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their convergence speed. There are techniques such as recursive least squares (RLS) that 
improve the speed at the cost of an increase in the number of computations (e.g., O{N2} 
per iteration for RLS, as opposed to O{N} per iteration for LMS). However, herein we 
focus on acceleration techniques that have only a minimal increase in computational 
overhead, as is appropriate for a mobile handset or any other wireless device with power 
and computational restrictions.

One type of acceleration technique is to exploit the fact that wireless channels are often 
very sparse. This is reflected in the fact that most wireless standards define “test chan-
nels” via ray models with only about four rays over the span of many symbol intervals.

One difficulty in exploiting sparsity comes from the fact that even when the chan-
nel impulse response is sparse, the corresponding equalizer is not necessarily sparse. 
This is shown in Figure 9.1, which plots the magnitudes of the impulse response coef-
ficients for (a) an example sparse channel, (b) the corresponding equalizer, which is only 

Table 9.1 A Comparison of Common Trained (T) and Blind (B) Adaptive Equalizer Errors, 
Costs, and Parameters, When the Algorithm Can Be Written as a Stochastic Gradient Descent

Error Signal
Cost 

Function Parameters
Cost 

Name
Algorithm 

Name Reference

T e[n] = x[n] – x̂[n] E e n
q

[ ]






q = 1 MAE Error sign 
LMS

[34]

T q = 2 MSE LMS [5]
T q = 4 MFE LMF [19]

B e[n] = g{x̂[n]} – x̂[n]

B g{x} = sign(x) E e n
q

[ ]






q = 2 Sato [11]

B g{x} = Q{x} E e n
q

[ ]






q = 2 DD DD-LMS [29]

B g{x} = Bayesian 
estimator of source

E e n
q

[ ]






q = 2 Bussgang [35]

B e[n] = |x̂[n]|p
l – γ E e n

q
[ ]







(p,q,l) = (1,1,2) [13]

B (p,q,l) = (2,2,2) CM CMA [13]
B (p,q,l) = (var,2,2) Godard Godard [12]
B (p,q,l) = (1,2,∞) SCA or 

CQA
[25]

B (p,q,l) = (2,2,4) ECMA [25]
B (p,q,l) = (2,2,6) CNA-6 [24]

Note: The delay Δ is omitted for simplicity. In each section of the table, the general form of the algo-
rithm is given in the first line, and the next few lines give more specific cases. The variables x[n], x̂[n], e[n] 
are the source signal, its estimate, and the error signal used by the equalizer, respectively.
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somewhat sparse, and (c) the resulting effective channel. This means there are several 
ways to exploit sparsity in adaptive equalization:

Form an adaptive equalizer that is only somewhat sparse, as in Figure 9.1(b).• 
Form an adaptive channel identifier that exploits sparsity, then periodically • 
use the current estimate to compute the equalizer.
Use an alternate equalizer structure that exploits sparsity, such as a partial • 
feedback equalizer (PFE) [36], as shown in Figure 9.2, and adapt it via an algo-
rithm that exploits sparsity.

We now discuss these adaptive algorithms for sparse linear filters (identifiers or 
equalizers).

An algorithmic paradigm that has received much attention recently due to its fast 
convergence for sparse adaptive filters is the use of proportionate adaptation [37], as 
proposed by Duttweiler [18]. The idea is to update large taps more quickly than small 
taps, since they are more important. The many small taps do little to reduce MSE, and if 
the filter is known a priori to be sparse, many of the small taps may actually be zero, and 
their updates are noise driven. Although recent advances in proportionate adaptation 
have been motivated by echo cancellation, the algorithms are equally applicable to wire-
less systems in which the channels or equalizers are known to be sparse, for example, 
digital television channels. As shown in [38], a histogram of measured channel coef-
ficients for digital television (U.S. standard) follows an inverse power law distribution, 
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FIgure 9.1 Even when a multipath channel is sparse, the corresponding linear equalizer need 
not be sparse. (a) Magnitudes of channel coefficients. (b) Magnitudes of zero-forcing equalizer 
coefficients. (c) Magnitudes of coefficients of resulting effective channel.
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whereas histograms of the coefficients of the feedforward and feedback filters in the 
optimal DFE follow decaying exponential distributions. Thus, the probability of a tap 
being large is very small.

The proportionate normalized LMS (PNLMS) algorithm [18] is the most widely ref-
erenced proportionate adaptation algorithm. The update rule, generalized from [18] to 
complex-valued signals, is
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where the error signal e(n) is as in (9.5), and the set of constants {ρ,δ,δ0} are called regu-
larizers, mollifiers, or biases, and serve to keep the numerator and the denominator of 
the update term from going to zero. Ignoring the mollifiers, the kth diagonal element 
of the matrix g[n] is the fraction of the 1-norm of the equalizer that occurs in filter 
tap k. Thus, the product μ g[n] can be thought of as a vector step size with an average 
value of μ, but whose elements are proportionate to the corresponding equalizer tap 
magnitudes.

Channel 

AWGN 

FFF 

PFBF 

FBF 

Decisions 

Equalizer Channel model

+ + 
– – 

FIgure 9.2 Block diagram of a partial feedback equalizer (PFE). The partial feedback filter 
(PFBF) cancels the sparse channel coefficients before the feedforward filter (FFF) smears them 
out, which cannot be done in a conventional DFE. Then the FFF and the feedback filter (FBF) 
operate as a normal DFE would. The PFBF can be long and sparse, allowing the FFF and FBF to 
be short.
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The denominator yT[n]g[n]y*[n] + δ normalizes by the (tap-weighted) power of the 
filter input, which essentially makes the scale of the update insensitive to the scale of the 
filter input signal, and this aspect of PNLMS is taken from the normalized LMS (NLMS) 
algorithm [29]. Note that PNLMS and its successors were originally developed for echo 
cancellation, for which this normalization term was needed. However, in this chapter, 
we discuss equalization; hence, the power of the input signal is less variable and the 
normalization term is not necessary. Thus, henceforth we omit it.

By weighting the update terms by the current tap magnitudes, PNLMS forces the large 
taps to converge quickly at the expense of the small taps. Since many of the small taps 
should be zero anyway, this mitigates the amount of misadjustment (jitter-induced excess 
MSE) [7] while still allowing the large (and thus more important) taps to converge quickly. 
Thus, NLMS is an adaptation rule that distributes the update strength equally across all 
taps whether they need it or not, whereas PNLMS is a “capitalist” adaptation rule that 
allows the rich (moderate, partially converged values) to get richer (large, converged val-
ues). The sparser the optimal filter is, the more the large taps can benefit from the mini-
mal adaptation of the small taps; hence, PNLMS is ideally suited to sparse channels.

Much recent literature has focused on analyzing and improving PNLMS. Deng and 
Doroslovački [39] have extended the idea of proportionate adaptation to find the optimal 
weighting function. That is, instead of populating the matrix g[n] with the normalized 
filter tap magnitudes, which is essentially a linear weight, they considered applying an 
arbitrary function to the filter taps before normalizing. They then computed the func-
tion that led to the fastest convergence, in terms of having all filter taps reach values 
within some small ε of their optimal values. They concluded that the optimal function 
was logarithmic rather than linear, so that the first three lines of (9.12) can be replaced 
by

 g
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where ε serves as a mollifier when filter taps are small. The resulting algorithm is called 
μ-law PNLMS (MPNLMS). The natural log can be replaced by a piecewise-linear func-
tion with a minimal effect on performance [39].

Another approach is to combine the advantages of NLMS and PNLMS. The simplest 
approach is to alternate between the two [40, 41]. A more sophisticated approach was 
presented in [42], in which an improved PNLMS (IPNLMS) algorithm was created that 
combines NLMS and PNLMS in every update, and does not require the true weight vec-
tors to be sparse. This is especially important for wireless equalization, since as stated 
above, sparse channels do not always lead to sparse equalizers. The motivation for IPN-
LMS is that the max function in (9.12) is very harsh, and that if the parameter estimates 
are inaccurate, the proportionality can amplify the error and have a detrimental effect 
on performance. Thus, they modify the weights in (9.12) to
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where ·1 is the 1-norm of a vector and α ∈[–1,1] is a user-defined weighting parameter. 
Observe that γ[n]1 = f[n]1; for α = –1 we get the NLMS algorithm, and for α = 1 we 
get the PNLMS algorithm.

Proportionate adaptation rules are compared in Figures 9.3 to 9.5. In Figure 9.3, 
NLMS, PNLMS, MPNLMS, and IPNLMS are compared for channel identification, in 
which just over half of the channel coefficients are zero, and most of the rest are small. 
In Figures 9.4 and 9.5, a similar comparison is made for equalization. The magnitudes 
of the optimal equalizer taps are presented in Figure 9.4, sorted for easy analysis of the 
level of sparsity, and the learning curves are presented in Figure 9.5. Observe that for 
both the identification problem and the equalization problem, all proportionate adapta-
tion algorithms see a performance gain. However, PNLMS and MPNLMS were origi-
nally developed for echo cancellation, in which as many as 90% of the channel taps may 
be essentially zero. In wireless identification or equalization, the optimal filters are not 
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FIgure 9.3 A demonstration of the convergence improvement of adaptive identification of 
wireless channels due to the use of proportionate adaptation. The algorithms considered are all 
in the normalized LMS family: NLMS [29], PNLMS [18], MPNLMS [39], and IPNLMS [42]. The 
channel had five of eleven nonzero taps, and thus was only somewhat sparse.
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FIgure 9.5 A demonstration of the convergence improvement of adaptive equalization of 
wireless channels due to the use of proportionate adaptation. The algorithms considered are all 
in the normalized LMS family: NLMS [29], PNLMS [18], MPNLMS [39], and IPNLMS [42]. The 
optimal equalizer tap magnitudes are shown in Figure 9.4.
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FIgure 9.4 The tap magnitudes of an optimal equalizer, sorted in descending order. Note that 
although there are no zero values, the equalizer is still somewhat sparse, since two-thirds of the 
values are below 10% of the peak value.
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nearly so sparse; hence, the gains are only on the order of a factor of 2 in convergence 
time. IPNLMS was designed to work for filters that are both sparse and nonsparse, and 
thus it outperforms the other algorithms in this case.

9.2.4  Complexity Reduction Techniques for Sparse  
Adaptive Equalizers

There are two benefits to a priori knowledge that the ideal filter is sparse. First, as dis-
cussed in the previous section, knowledge of sparsity can be incorporated into the 
adaptation rule to accelerate convergence of the important taps while suppressing 
(often advantageously) the adaptation of the less important taps. Second, the adapta-
tion rule itself can be implemented sparsely, saving computations. Adaptation rules 
that are themselves sparse are generally referred to as partial-update algorithms. Some-
times they may incur a performance penalty, but if the system truly is sparse, they may 
actually improve performance. Whether or not the true system is actually sparse, they 
will always reduce the computational load of the equalizer by a fixed, known amount. 
Hence, they are very attractive for implementation in adaptive equalizers in low-power 
battery-operated devices.

As the name implies, partial-update algorithms only update a subset of M of the equal-
izer coefficients (out of the total of N + 1 coefficients) at each iteration. The distinctions 
between different partial-update algorithms are primarily the number of taps updated 
per iteration and the method by which the taps to be updated are chosen. Computational 
complexity is reduced by roughly a factor of M/N, but the exact amount depends upon 
the algorithm that is being partially updated.

One approach is to simply cycle through the taps to be updated at each iteration, 
as in sequential or periodic partial-update LMS [43]. For this baseline approach, one 
would expect the algorithm to take N/M times longer to converge. More sophisticated 
partial-update algorithms attempt to choose the M taps to be updated such that the best 
update possible can be formed under this constraint. However, care must be taken to 
ensure that the computational burden of the tap selection mechanism does not begin to 
balance out the computational savings of the partial update. Max-NLMS [44] chooses a 
single tap to update at each iteration, chosen as the tap with largest corresponding input. 
M-max-NLMS [45] generalizes this to update the M taps with the M largest inputs. The 
rationale is that the taps with the largest inputs will have the largest innovations, since 
the updates in NLMS algorithms are proportionate to the tap inputs. Heuristically, the 
largest innovations should lead to the largest improvement in the cost function. By 
selecting the M taps that yield the best improvement to the cost function, the update 
term removes the least useful steps and focuses on the most useful steps. This mitigates 
the misadjustment due to adapting the unnecessary taps, which can improve the perfor-
mance of the algorithm, depending on how necessary or unnecessary each tap is. Since 
choosing the largest inputs only requires a small number of comparisons (essentially 
a subtraction operation each) and no multiplies, this selection criterion has very little 
complexity overhead.

All of these partial-update algorithms can be cast into the generic gradient descent 
form of
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where g[n] is a diagonal matrix of ones and zeros that turn on or off the updates to each 
coefficient. (For applications such as echo cancellation, an NLMS normalization term as 
in the denominator of (9.12) can be explicitly included, or it can be included implicitly 
by dividing the step size μ by the normalization term.) With this structure, the partial 
update of (9.15) has the same form as the proportionate update of (9.12), and in either 
case, μ g[n] effectively forms a vector step size.

Specific tap selection rules for (9.15) have the mathematical form
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Observe that max-NLMS and M-max-NLMS are better suited for equalization than 
channel identification when the application is digital communications. This is because 
digital communication channels often have inputs drawn from a constant modulus 
source (e.g., ±1 ± j), in which case all of the inputs to the channel model would have the 
same magnitude, and no selection could be made, whereas the equalizer inputs contain 
intersymbol interference and noise, with a wide range of magnitudes.

Other recent work has investigated extensions to M-max-NLMS that further reduce 
the complexity. Selective-block NLMS [46] is like M-max NLMS, but in terms of blocks of 
taps rather than individual taps. Similarly, the short-sort algorithm [47] recognizes that 
in many cases, the significant taps are grouped together. The algorithm identifies a con-
tiguous block of significant taps and always updates those, and performs M-max NLMS 
on the remaining taps, which reduces the sorting overhead. A slightly more sophisti-
cated approach is to monitor an activity measure for each tap [48] (instead of simply 
comparing input magnitudes), and then favor those taps when updating. Table 9.2 lists 
popular proportionate adaptation and partial update algorithms.

Proportionate adaptation rules and partial-update rules were explicitly designed to 
exploit sparsity in the filter impulse response. PNLMS and its variants and M-max-LMS 
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and its variants were primarily motivated by channel identification for acoustic echo 
cancellation, although they have been applied to wireless channels as well. If we wish to 
apply them to equalization of wireless channels, it makes sense to use an equalizer struc-
ture that preserves the sparsity of the channel in its own impulse response. Motivated 
primarily by complexity reduction, the PFE and several related equalizer structures have 
been recently proposed that satisfy this goal [36]. In the PFE, as shown in Figure 9.2, a 
partial feedback filter (PFBF) cancels the sparse channel coefficients before the feedfor-
ward filter (FFF) smears them out, which cannot be done in a conventional DFE. Then 
the FFF and the feedback filter (FBF) operate as a normal DFE would. The PFBF can be 
long and sparse, allowing the other filters to be short.

Table 9.2 Proportionate Adaptation (PA) and Partial-Update (PU) Algorithms that 
Can Be Written in the Form f[n] = f[n] + μ e[n]g[n]y*[n], with g[n] = diag[g[n]]

Type Name Value of g[n] Reference
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Note: The table lists the composition of the vector g[n] for each algorithm.
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9.3  Cyclic-Prefixed Communication Systems

Cyclic-prefixed systems come in two varieties: multicarrier and single-carrier cyclic 
prefixed. Multicarrier modulation is arguably the most popular choice of modulation 
format for communication standards that have emerged in the past decade. Exam-
ples include wireless local area networks (IEEE802.11a, HIPERLAN/2 in Europe, and 
MMAC in Japan), European Digital Video/Audio Broadcast (DVB/DAB), digital sub-
scriber loops (DSL), the terrestrial repeaters in Sirius and XM satellite radio, power line 
communications, and the proposed “multiband” standard for ultrawideband commu-
nications, among others.

Given that the signal structure of cyclic-prefixed modulation differs markedly from 
that of single-carrier modulation, it provides a good framework for demonstrating the 
principles of adaptive equalizer design. Moreover, adaptive equalizers for cyclic-prefixed 
systems are fairly recent research products, and are of interest in and of themselves. In 
this section, we first review the signal structure, and then discuss trained and blind 
adaptive equalizers. Emphasis is placed on design methodology rather than on the algo-
rithms themselves, since communications standards fall in and out of favor, but the 
design principles are equally applicable to other modulation formats.

The idea of cyclic-prefixed communications is to perform the equalization in the 
frequency domain. By considering a frequency-selective channel as a bank of parallel 
narrowband flat fading channels, equalization can be performed via a one-tap com-
plex scalar on each tone. The collection of these scalars is called a frequency-domain 
equalizer (FEQ). However, in order to use the fast Fourier transform (FFT) to convert 
between time and frequency domains, the signal is necessarily discrete in time and block 
processed. Thus, some additional mathematical tricks are required in order to equalize 
in the frequency domain. Specifically, element-wise multiplication of the channel and 
the input data in the frequency domain is equivalent to their circular convolution in the 
time domain, but multipath propagation as modeled by (9.2) is a linear convolution. In 
order to make the convolution appear periodic (equivalently, circular), the input signal 
is made periodic over a short duration. A cyclic prefix (CP) is inserted as an extension 
to the start of each transmitted block by making a copy of the last ν samples. Thus, for 
a block initially of length NFFT, the cyclically extended block of length N– = NFFT + ν is 
periodic with period NFFT. Provided that the channel order satisfies L ≤ ν , then the last 
NFFT outputs of each block will appear to be a periodic (circular) convolution of the 
channel and the original NFFT inputs of that block. Under this condition, equalization 
can be accomplished by taking an FFT, multiplying element-wise by the FEQ, and then 
taking an inverse FFT (IFFT) of the result. Since the FFT inherently induces block-based 
processing, this section uses the time index b to denote the block number, in addition to 
the previously introduced time index n that denotes the sample number.

Block diagrams of the two existing cyclic-prefixed systems are shown in Figure 9.6, 
namely, single-carrier cyclic-prefixed (SCCP) modulation (sometimes called single-car-
rier frequency-domain equalization [SC-FDE]) and OFDM. The distinction is that SCCP 
systems store the data in the time domain, so they follow the format discussed above, 
whereas multicarrier systems store the data in the frequency domain, so an additional 
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IFFT is needed before transmission and the final IFFT discussed above is redundant and 
thus omitted. Multicarrier systems are older, and thus far more common in both the 
technical literature and industry standards. However, their transmitted IFFT outputs 
follow a Gaussian distribution (via the central limit theorem). This means that multicar-
rier systems tend to have a high peak-to-average power ratio, whereas SCCP systems do 
not.

In general, the channel order L is unknown, which often causes problems for adaptive 
equalizers. In the case of cyclic-prefixed systems, the CP length ν must be set without 
knowledge of L, in which case the condition L ≤ ν may not be satisfied. Moreover, the CP 
introduces redundancy, reducing the data rate by a factor of NFFT/(NFFT + ν), so ν may 
be set small to keep the redundancy small even if the channel order may be larger than 
the maximum tolerable ν. Either way, the excess channel length induces interference 
and should be mitigated. This is often done via a channel-shortening equalizer (CSE). 
(Most literature refers to this as a time-domain equalizer [TEQ], but we avoid that term 
here since all the equalizers discussed in the previous sections also operate in the time 
domain, and the term CSE avoids confusion.) The CSE shortens the effective channel 
to the CP length, and then the FEQ can perform equalization. Like a standard equal-
izer, the CSE is modeled as in (9.3), and it is applied to the channel output as shown in 
Figure 9.6.

The next two sections discuss adaptive algorithms for the FEQ and CSE, in turn.

FIgure 9.6 Block diagrams of (a) single-carrier cyclic-prefixed (SCCP) modulation and (b) 
multicarrier modulation. (I)FFT denotes (inverse) fast Fourier transform, P/S denotes parallel-to-
serial conversion, and S/P the reverse.
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9.3.1  Adaptive FEQ Algorithms

Adaptation rules for the FEQ are easily formed as analogous to or generalizations of the 
commonly accepted adaptation rules for traditional equalizers, although there are some 
nuances due to modulation format. For the time being, we assume that the CSE is oper-
ating perfectly. The model of the remaining receiver processing of block b is
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b y b N y bN
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where Δ accounts for the propagation delay as in (9.5), F denotes the Fourier transform 
of size NFFT with inverse transform F–1 = FH, d is the FEQ as a length NFFT vector,  
denotes Hadamard (element-wise) multiplication, and Q{·} quantizes the output to the 
nearest constellation point.

First, consider trained adaptation rules. In many multicarrier standards, training is 
not available on every tone. For example, in DVB operating in 2K mode, the FFT size 
and number of subcarriers is 2,048. Of these, 1,705 are used and the rest are left null 
as a guard band, to mitigate adjacent channel interference. Of the used subcarriers, 45 
are continual pilot tones (transmitting a pseudo-random binary sequence as training). 
Also, of these 1,705, every third tone is used as a pilot, but only once every four sym-
bols, in alternating fashion [49]. This arrangement of pilots across time and frequency is 
shown in Figure 9.7. Thus, at best, every third coefficient of the channel in the frequency 
domain has training (and not all of them at once), which complicates trained adapta-
tion. This can be dealt with by assuming the channel coherence is high enough that the 
remaining coefficients can be interpolated.

On a subcarrier that has training, a simple one-tap LMS or RLS adaptation rule can 
be created. For time or frequency indices when training is unavailable, a simple one-tap 
DD-LMS or CMA adaptation rule can be implemented, or the FEQ value can be inter-
polated across time and frequency from indices where training is available.

Adaptation of the FEQ for SCCP systems is slightly more complicated, since the out-
puts of the FEQ are not expected to be finite alphabet until after the final IFFT. Also, 
since SCCP has not yet been deployed in an industry standard, there are no set formats 
for training availability. Instead of indexing the transmitted signal by block number and 
subcarrier number, an SCCP transmission can be indexed by block number and sample 
number within that block, and training could be staggered in some fashion. What is 
critical for a simple FEQ adaptation rule is that the output of the FEQ be comparable 
to some known data. Since the FEQ is in the frequency domain, this requires that an 

© 2009 by Taylor & Francis Group, LLC



Adaptive Equalization for Wireless Channels 255

entire time-domain block contain training for any given frequency coefficient to be 
considered known. In this case, a simple one-tap LMS or RLS adaptation rule can be 
implemented for each FEQ coefficient. Similarly, one-tap DD-LMS and CMA rules can 
be formed when training is not available. In vector form, the LMS, DD-LMS, and CMA 
FEQ updates for an SCCP system are [50]
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and the RLS FEQ update with forgetting factor ρ is
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−r P1 b b .

 (9.19)

Due to the diagonal structure of r, the RLS update requires only marginally more com-
putations and converges much faster than LMS [50]; hence it is preferable of the two.
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FIgure 9.7 Diagram of the continual and staggered pilot tones (training) in the European 
standard for Digital Video Broadcast. The column index k is the frequency or subcarrier index, 
and the row index b is the block or symbol index. Shaded circles represent training data. The con-
tinual pilots are not regularly spaced in frequency; the full list is available in [49].
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9.3.2  Adaptive CSE Algorithms

Now we return to the problem of CSE adaptation in cyclic-prefixed systems. As men-
tioned in the discussion of FEQ adaptation, training in multicarrier systems may be 
spread across time and frequency, and it may be allocated in the frequency domain. In 
order to train based on the equalizer output, we first assume that time-domain training 
is available, which is equivalent to assuming that training is available on all subcarriers 
in a given symbol. In this case, the obvious choice is to use an LMS-like equalization 
rule. However, this is complicated by the fact that the goal of the CSE is not to make 
the effective channel simply a delay, so we cannot form an error signal by comparing to 
the delayed training data as in (9.5). Instead, the goal of the CSE is to make the effective 
channel short, but (to a first-order approximation) we do not care about what shape the 
effective channel takes so long as it is short. Falconer and Magee [10] solved this problem 
in the context of CSE design in conjunction with MLSE by forming an additional filter, 
b, of length ν + 1, called the target impulse response (TIR). Then the CSE and TIR can 
each be adapted in turn by an LMS algorithm.

Mathematically, the error function and cost are
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where Falconer and Magee chose q = 2, corresponding to an LMS algorithm, yet others 
have considered q = 4, corresponding to an LMF algorithm [51]. Since the trivial setting 
b = 0, f = 0 permits a zero-cost solution, a constraint must be enforced, such as a unit-tap 
or unit-norm filter. Iterating through the adaptation of each filter and maintenance of 
the constraint, the MMSE adaptive CSE algorithm is
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The choice of a larger q will add factors in the first two lines, and the choice of an alter-
nate constraint will require a different projection in the third line of (9.21). For ν = 0, b 
becomes a scalar, and (9.21) reduces to the LMS algorithm for f alone.

The coupling of b and f, along with the constraint on b, makes formulation of an RLS 
adaptation rule more complicated than for a traditional equalization problem. Use of 
the unit-norm constraint leads to an optimal solution for b as an eigenvector rather than 
a least squares solution, and hence RLS does not apply. However, if a unit-tap constraint 
is used, the optimal b can be written as the solution to either a generalized eigen problem 
[52] or a least squares problem [50]. Although this constraint does lead to a suboptimal 

© 2009 by Taylor & Francis Group, LLC



Adaptive Equalization for Wireless Channels 257

MSE compared to the unit-norm constraint [52], it does permit the use of an RLS algo-
rithm operating on the concatenated parameter vector

 v w b b b b=



− +

T
i i

T
, ,..., , ,..., ,0 1 10 0 ν  (9.22)

where bi0
 is the tap that is constrained to unity. The full RLS algorithm is given in [50].

We will return to the issue of trained CSE adaptation in the case of training on inter-
mittent subcarriers momentarily. However, this requires a discussion of blind adapta-
tion first. Since the CSE output is not expected to be finite alphabet, DD and constant 
modulus methods cannot immediately be used. However, the FEQ output is expected 
to be finite alphabet. Thus, we have two options: form a blind cost at the FEQ output, 
and propagate its dependence on the CSE back through the FEQ and FFT; or apply the 
“property restoral” concept for development of alternate blind cost functions and algo-
rithms. We withhold the former discussion until section 9.5, since the FEQ is adaptive 
as well, which leads to a coupling of adaptive blocks. For now, we focus on properties of 
cyclic-prefixed systems that can be restored by the CSE.

A property common to both multicarrier and SCCP systems is the redundancy 
induced by the CP. This redundancy has been exploited for adaptive carrier frequency 
offset estimation [53, 54] as well as CSE adaptation [50]. To make use of this property, we 
form an error signal and cost function as
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along with a constraint (again, unit norm or unit tap) to avoid the trivial solution f = 
0. Due to the linearity of the error with respect to f, when q = 2 we get a simple LMS-
like update rule, although a periodic projection is required to enforce the constraint, as 
in (9.21). The resulting algorithm is called multicarrier equalization by restoration of 
redundancy (MERRY), and is given by
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More details and an RLS-like implementation are available in [50].
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Another property that can be exploited in multicarrier (but not SCCP) systems is 
the guard band in the frequency domain, which was mentioned in section 9.3.1. Often, 
the subcarriers on the band edges are left as zeros at the transmitter in order to limit 
adjacent channel interference. These are often referred to as null tones. If the channel is 
benign, then at the receiver, the null tones should also be zero. Thus, we can form a cost 
function as

 J E bj

j

=  






∈

∑ β y
2

null tones

,  (9.25)

where the weights βj would typically be all ones. This is very similar to a decision-directed 
algorithm, with only one valid constellation point (i.e., zero). The difference is that (9.25) 
is invariant to magnitude and phase distortion, since 0 · Aejθ = 0. Thus, the effects of the 
FEQ can be ignored, which would not be the case for a DD-LMS algorithm operating on 
the non-null tones. A gradient descent of (9.25) was proposed in [55] and further analyzed 
in [56], and it is sometimes referred to as the carrier nulling algorithm (CNA; not to be 
confused with the constant norm algorithm of the same acronym, discussed in the previ-
ous section). It also has an LMS-like structure, although with part of an FFT involved to 
relate the values on the null tones to the CSE output:
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where r is the N × L Toeplitz matrix:

 r =

−( ) + + +



 … −( ) + + + −



r b N r b N L1 1 1 1ν ν∆ ∆, ,

: :

rr bN r bN L+  … + − 

















∆ ∆, ,

,  (9.27)

and where Fnull is obtained by taking the rows of the FFT matrix indexed by the null tones, 
and Ynull is similarly obtained from the FFT output vector.

Now we can reconsider the case in which training is intermittently provided on some 
subcarriers. Let Snull, Spilot[b], and Sdata[b] be the sets of subcarriers containing null tones, 
pilot tones, or unknown data (respectively) during block b, with Snull∩ Spilot[b] ∩ Sdata[b]  = 
{0, …, N – 1}. Then we can form the semiblind cost function
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The weights βj control the relative use of the trained MSE term and the blind CNA and 
CMA terms. Note that a DD cost could be used instead of or in addition to the CMA 
cost.

A comparison of the learning curves of trained and blind adaptive CSE algorithms is 
shown in Figure 9.8. The simulated system had parameters consistent with IEEE 802.11a: 
an FFT size of 64 with 12 null tones, a CP of length 16, and complex baseband chan-
nels with Rayleigh-distributed taps and an approximately exponential delay profile. The 
SIMO channel model had one transmit antenna and two receive antennas. The perfor-
mance metric is the BER, and a combination of 4-ary quadrature amplitude modulation 
(QAM) per tone and differential encoding was used to remove the need for and effects 
of an adaptive FEQ.

(9.28)
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FIgure 9.8 A performance comparison of trained and blind adaptive channel-shortening 
equalizers. The algorithms are MMSE [10], MERRY [50], and CNA [55]. MERRY is shown with 
both a unit-norm and a unit-tap constraint (UNC, UTC), and since the difference is negligible, 
MMSE and CNA only use a UNC.
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The algorithms compared in Figure 9.8 are the adaptive MMSE algorithm [10], 
MERRY [50], and CNA [55, 56]. The optimal nonadaptive MMSE design with perfect 
channel state information (CSI) is also shown. In principle, all of these could use either a 
unit-norm or unit-tap constraint. Both are shown for the case of MERRY; however, since 
there is no appreciable difference, only a single constraint is shown for the remainder. 
Also, the blind algorithms can only update once per block (OFDM symbol), but the 
MMSE design can update as often as once per sample. For a fair comparison, the MMSE 
design was only updated once per block, so that the update complexity per symbol of the 
various algorithms would be comparable.

Observe that the various algorithms considered all had comparable learning rates for 
a given allowable complexity. However, the trained MMSE algorithm could in principle 
update N

–
 times more often (with a corresponding increase in complexity).

To recap, trained and blind adaptive equalizers for multicarrier systems can be 
designed using the same principles as more conventional communication systems. 
Trained algorithms are generally based on an MMSE framework, and blind algorithms 
are generally based on a property restoral framework. The unique aspects of adaptive 
algorithms in multicarrier systems include the need for an adaptive target impulse 
response for trained MMSE adaptation, the need for a constraint for most trained and 
blind adaptive algorithms, and the trade-offs associated with operating at the block rate 
versus the sample rate.

9.4  Ultrawideband Communication Systems

Like multicarrier systems, ultrawideband (UWB) systems have received much attention 
in recent literature due to the fact that their modulation format is very distinct from sin-
gle-carrier amplitude modulation formats, although it is not in as widespread implemen-
tation as multicarrier modulation. This section reviews UWB modulation and discusses 
the application of adaptive equalizer design principles to this modulation format.

A UWB system is often defined as one in which the bandwidth divided by the car-
rier frequency exceeds ¼. The idea is that a very large bandwidth is used, but the total 
power is moderate—hence the power per Hertz is on the order of the noise floor. This 
is akin to spread-spectrum modulation in its motivation, but the process of modulation 
differs. Presently, there are two popular formats of UWB in the literature: pulse position 
modulation (PPM) and a multiband format, much like OFDM. In this chapter, we focus 
on PPM, due to its implications for adaptive equalizer design.

In the PPM version of UWB, information is transmitted by very short, infrequent 
pulses. By transmitting an impulse-like pulse, the bandwidth is very large. In some 
cases, the need for RF hardware can be avoided completely, since an impulsive transmis-
sion can spread the data up to very high frequencies without upconversion. Thus, PPM 
UWB is sometimes called impulse radio.

Consider a PPM system that transmits one of M possible symbols each time slot. The 
time slot is divided into K = M/2 chips. A symbol consists of transmitting a +1 in one 
chip and zeros in the other K – 1 chips (so there are K of these to choose from), or 
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transmitting a –1 in one chip and zeros in the other K – 1 chips (so there are K of these 
as well). One bit of information is contained in the sign of the transmission, and the 
other log2(K) bits of information are contained in the position of the transmission. This 
means that like multicarrier modulation, the receiver must process the data in block 
format. After equalization and symbol (block) synchronization, blocks of K samples are 
parallelized and fed into a decision device, then a single decision is made to produce the 
estimate of the transmitted symbol.

9.4.1  Trained Adaptation

Since PPM operates on a block basis, the MSE cost function should be block based as 
well. Defining the actual and desired equalizer output for block b as
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the MSE cost function defined in [57] is
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Because z[b] is a vector of samples, it is formed by the multiplication of a matrix of 
equalizer inputs,
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and the equalizer, i.e., z[b] = YT[b]f. This means that an LMS-style gradient descent of 
(9.30) is not simply a vector update rule; rather, there is a matrix-vector product involved. 
Specifically, a trained, adaptive LMS equalizer for PPM systems takes the form [57, 58]

 f f Y z xb b b b b+  =   −     −  ( )1 µ .  (9.32)

Thus, the approach is similar to trained, adaptive equalization in traditional communi-
cation systems, but the inherent block structure introduces a slightly more complicated 
update rule, in terms of structure and computations.

An alternate approach would be to use a DFE. Trained zero-forcing DFE algorithms 
are discussed in [59, 60].
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9.4.2  Blind Adaptation

The simplest blind equalizer is DD-LMS. However, even DD-LMS has a slight twist in 
the case of PPM. The DD cost function and update rule are
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The twist is that the decision function Q{·} : K  K operates in vector form, rather 
than element-wise. The vector argument is considered in its entirety and is mapped to 
the nearest vector in the signal constellation [57, 58].

A variant of CMA can also be derived for PPM, which will be called linear transversal 
equalizer adaptation for biorthogonal modulation, blindly (LTBOMB). Like DD-LMS 
for PPM, the distinction from traditional adaptive algorithms lies in the block structure 
of PPM. The cost function and algorithm are [57, 58]
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However, as implied by the time indices, the algorithm only updates once per block, 
i.e., once every K chips. Again, note the matrix-vector structure of the update rule, as 
opposed to standard CMA, which uses a scalar times vector update rule.

An alternative to CMA for blind, adaptive equalization of traditional communication 
systems is the Shalvi-Weinstein algorithm (SWA) [61]. SWA is similar to CMA insofar as 
it looks at higher-order statistics of the equalizer output, but SWA attempts to maximize 
the magnitude of the kurtosis. In [58] and [62], the SWA philosophy is used to create a 
blind, adaptive equalizer for PPM, called the recovery of M-ary biorthogonal signals via 
p-norm equivalence (TROMBONE). The cost function and algorithm are
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where IK is the K × K identity matrix. The last line implements the constraint (similar 
to the MMSE, MERRY, and CNA algorithms for multicarrier systems) to constrain the 
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equalizer away from the trivial all-zero solution. As with the DD-LMS and CMA vari-
ants of (9.33) and (9.34), the SWA variant of (9.35) only updates once per block.

To recap, traditional methods of trained and blind adaptive equalizer design can be 
modified for use in PPM-based UWB systems. However, the cost functions and algo-
rithms must be modified to account for the block structure. The resulting algorithms 
only update once per block, they generally require matrix-vector products in the update 
term, as opposed to the more traditional scalar-vector products, and the decision func-
tion is a vector-to-vector mapping rather than a scalar-to-scalar mapping.

9.5  Interaction of Equalizer with Other  
Adaptive Blocks

Many equalizer designs are produced in isolation: the equalizer explicitly or implicitly 
assumes that all other adaptive blocks in the system are working perfectly. However, even 
in a simple single-carrier receiver, the signal amplitude, timing frequency/phase, equal-
izer, and carrier frequency/phase are all interdependent [15, Table 9.2). In newer modu-
lation formats with more or different blocks, there can be additional interdependence. 
We conclude this chapter with a discussion of the merits of joint analysis and design of 
the equalizer and other blocks in an adaptive receiver, though a full treatment of this 
subject is beyond the current state of the art.

One of the classical examples of this dependence is the dependence of an adaptive 
equalizer on accurate carrier frequency offset (CFO) estimation. For a trained, LMS 
algorithm, the equalizer inputs and outputs will not match their model if there is a 
residual CFO. At the same time, a trained CFO estimator needs ISI-free received data 
in order to form a good estimate. This can be a chicken-and-egg problem. However, the 
CMA equalizer uses a cost function that depends only on the magnitude of the equalizer 
output, and not the phase. In the presence of a residual CFO, the received data will have 
a linearly increasing additive phase, causing the signal constellation to spin about the 
origin. Since CMA does not care about the phase, it can remove the ISI even in the pres-
ence of the CFO-induced spinning. Then the CFO estimator can operate on the ISI-free 
equalizer output, and remove the CFO [15].

This method of delaying the need for CFO correction cannot be as easily incorporated 
into multicarrier systems, since as discussed in section 9.3, blind multicarrier equaliz-
ers do make use of a constant modulus cost function in the time domain. An alternate 
method of dealing with the coupling of an adaptive equalizer and another adaptive block 
is to jointly adapt the two. In the case of multicarrier equalization and CFO correction, 
the CNA, MERRY, and DD cost functions used for equalization can also be used to 
adjust the CFO [53, 54, 63, 64]. By forming a single cost function at the output of the two 
adaptive blocks in series, both algorithms may converge to their optimal setting [63].

As mentioned in section 9.3, in multicarrier systems, the CSE and FEQ must both 
be adapted simultaneously. Algorithms such as DD-LMS and CMA cannot directly be 
used for the CSE since the CSE output is not expected to be finite alphabet. However, the 
final FEQ output is. By forming a decision-directed or constant modulus cost at the FEQ 
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output, both the CSE and FEQ can adapt based on this cost. If the FEQ uses a relatively 
higher step size than the CSE, then the CSE will adapt slowly, and the FEQ will track it 
and quickly reach its best value for the current CSE setting. This concatenation of adap-
tive equalizers allows the use of traditional cost functions. The penalty is that the FEQ 
step size has an upper bound for stability, and the CSE step size must be much lower, 
so adaptation cannot be very swift. This need for step-size-based timescale separation 
is present for most coupled adaptive systems adapting over a single cost function, for 
example, the adaptive CSE and target response in the MMSE filter [10, 65].

9.6  Summary

This chapter has discussed the design of adaptive equalizers. We began with a historical 
perspective and a discussion of the need for an adaptive equalizer. We then discussed 
popular methods of creating adaptation rules, making them converge quickly, and reduc-
ing their computational load, all of which are necessary if the equalizer is part of a small 
wireless device. As specific examples of creating adaptation rules, we discussed recent 
literature on adaptive equalization in two currently popular communication standards, 
multicarrier and ultrawideband. We concluded with a discussion of the interaction of an 
adaptive equalizer and other adaptive blocks within the receiver.
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10.1  Motivation of the Chapter

One important challenge for future wireless networks is the design of appropriate trans-
ceivers that can reliably transmit high data rates at a high bandwidth efficiency. Multi-
carrier code division multiple access (MC-CDMA) systems in particular have received 
considerable attention, because they have the attractive feature of high spectral efficiency 
and because they can be easily implemented using fast Fourier transform (FFT) without 
significantly increasing the transmitter and receiver complexities [1, 2].

The multicarrier systems include different combinations of multicarrier modula-
tion (accomplished by orthogonal frequency division multiplex [OFDM]) and direct-
sequence code division multiple access (DS-CDMA). This combination provides both 
high-data-rate transmission and multiple access capabilities. An excellent overview of 
the different multicarrier CDMA systems is found in [2] and [3]. They can be divided 
into two categories of multicarrier CDMA: one combines multicarrier modulation with 
frequency-domain spreading, and the other transmits several DS-CDMA waveforms 
in parallel with the spreading operation performed in time. The transmitter proposed 
here belongs to the second group, and it can be divided into MC-DS-CDMA and multi-
tone (MT) CDMA, the difference between the two being the subcarrier frequency 
separation.

However promising, challenges remain before multicarrier CDMA can achieve its 
full potential. One open area is the design of transceivers that will enable the future 
upgrade of current wireless networks beyond the third generation (3G). Transceivers 
selected for early implementation need to achieve high spectrum efficiency in realistic 
propagation channels while being robust to imperfections such as time and frequency 
mismatch. Multicarrier CDMA, similar to other multicarrier schemes, is sensitive to the 
signal distortion generated by the imperfect frequency downconversion at the receiver 
due to local oscillator frequency offset. It has been found that carrier frequency offset 
(CFO) gives rise to a reduction of the useful signal power and to the intercarrier interfer-
ence (ICI) [5]. Furthermore, one of the major obstacles in detecting multicarrier CDMA 
signals is interference. The multiple access interference (MAI) and the intersymbol 
interference (ISI), which are inherited from conventional DS-CDMA, affect likewise the 
performance of multicarrier CDMA systems.

The subject of this work is the design of a new adaptive multicarrier CDMA space-
time receiver that provides solutions to these problems, with particular emphasis on the 
comparison of the MC-DS-CDMA– and MT-CDMA–air interface configurations. The 
proposed receiver, named MC-ISR* (multicarrier interference subspace rejection), will 
hence (1) perform blind channel identification and equalization as well as fast and accu-
rate joint synchronization in time and frequency, and (2) mitigate the full interference 
effect. In addition, the assessment of this new receiver is oriented toward an implemen-
tation in a future, real-world wireless system.

* This work was presented in part at the IEEE SPAWC 2005 and IEEE ISSPA 2005 conferences and 
accepted for publication in IEEE Transactions on Vehicular Technology [6].
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10.2  Overview of Multicarrier CDMA 
for Wireless Communications

In this section, we review concisely the class of multicarrier CDMA schemes, which have 
been discussed in the literature. Specifically, we discuss their parameters, spectral char-
acteristics, advantages, and disadvantages in terms of design and structure. For more 
detailed information on the different multicarrier CDMA schemes, the reader is referred 
to the excellent monographs by Hanzo et al. [3].

The multicarrier CDMA schemes are categorized mainly in two groups. One spreads 
the original data stream using a given spreading code, and then modulates a different 
subcarrier with each chip (i.e., the spreading is in the frequency domain), and the other 
spreads the serial-to-parallel (S/P) converted data streams using a given spreading code, 
and then modulates a different subcarrier with each of the data streams (spreading is in 
the time domain).

10.2.1  Frequency-Domain Spreading Multicarrier CDMA:  
FD-MC-CDMA

Figure 10.1a shows the spectrum of the multicarrier CDMA scheme associated with 
frequency-domain spreading [7–10]. We refer to this scheme as FD-MC-CDMA. The 
FD-MC-CDMA transmitter spreads the original data stream over Nc subcarriers using 
a given spreading code in the frequency domain. This scheme does not include serial-to-
parallel data conversion, and there exists no spreading modulation on each sub carrier. 
Therefore, the data rate on each of the Nc subcarriers is the same as the input data rate. 
However, by spreading each data bit across all of the Nc subcarriers, the fading effects 
of multipath channels are mitigated. In this FD-MC-CDMA system, the subcarrier 
frequencies are chosen to be orthogonal to each other, i.e., the subcarrier frequencies 
satisfy the following condition:

 f f
n i j

Ti j− =
−

,

where n ∈  and T is the symbol duration. Therefore, the minimum spacing ∆ between 
two adjacent subcarriers satisfies 1/T, which is a widely used assumption [7–10] and is 
also the case employed in Figure 10.1a. If no overlap is assumed, then the minimum 
spacing ∆ between two adjacent subcarriers is 2/T.

Yee et al. [7] have considered an FD-MC-CDMA system, in which the subcarriers’ 
frequency separation is higher than the coherence bandwidth of the channel, and there-
fore the individual subcarriers experience independent fading. As a result, the frequency 
diversity is maximized. This is the main advantage of the FD-MC-CDMA scheme over 
other multicarrier CDMA schemes [2]. However, this system may require a considerable 
transmission bandwidth. Besides that, a large delay spread per subcarrier would lessen 
this bandwidth requirement. But in a frequency-selective fading channel, different 
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subcarriers may encounter different amplitude attenuations and phase shifts, which can 
consequently destroy the orthogonality of the subcarriers.

10.2.2  Time-Domain Spreading Multicarrier CDMA:  
MC-DS-CDMA

In [11], a multicarrier DS-CDMA system named MC-DS-CDMA has been proposed. The 
MC-DS-CDMA transmitter spreads the serial-to-parallel converted data streams using 
a given spreading code in the time domain so that the resulting spectrum of each sub-
carrier can satisfy the orthogonality condition with the minimum frequency separation 
[11]. This scheme was originally proposed for an uplink communication system, because 
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FIgure 10.1 Spectra of different multicarrier CDMA schemes: (a) FD-MC-CDMA, (b) MC-
DS-CDMA, (c) MT-CDMA.
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this characteristic is effective for establishing a quasi-synchronous channel. In [12], 
Kondo and Milstein proposed a similar transmitter, except that band-limited subcar-
rier signals and larger subcarrier separation are employed. This scheme yields both fre-
quency diversity improvement and narrowband interference suppression. The spectrum 
of the MC-DS-CDMA signal with 50% overlap having three subcarriers is shown in 
Figure 10.1b. In the MC-DS-CDMA system, the subcarrier frequencies are usually cho-
sen to be orthogonal to each other after spreading, which can be formulated as

 f f
n i j

Ti j
c

− =
−

,

where n ∈  and Tc is the chip duration. Therefore, the minimum spacing Δ between two 
adjacent subcarriers satisfies 1/Tc.

Frequency diversity in MC-DS-CDMA systems can be achieved by repeating 
the transmitted signal in the frequency (F) domain with the aid of several subcarri-
ers [12–14]. Alternatively, in MC-DS-CDMA systems the F-domain repetition can be 
replaced by F-domain spreading [15] using a spreading code. One of the advantages of 
using F-domain spreading instead of F-domain repetition in MC-DS-CDMA systems 
is that frequency diversity can be achieved without reducing the maximum number of 
users supported by the system [15, 16]. The MC-DS-CDMA scheme can provide the fol-
lowing advantages [13]. First, the spreading processing gain is increased compared to 
the corresponding single-carrier DS-CDMA scheme. Second, the effect of multipath 
interference is mitigated because of DS spreading. Third, frequency/time diversity can 
be achieved. Finally, a longer chip duration may lead to more relaxed synchronization 
schemes.
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10.2.3  Time-Domain Spreading Multicarrier CDMA:  
MT-CDMA

The multitone CDMA (MT-CDMA) scheme was proposed by Vandendorpe in [17, 18]. 
The MT-CDMA transmitter spreads the serial-to-parallel converted data streams using 
a given spreading code in the time domain, so that the spectrum of each subcarrier prior 
to the spreading operation can satisfy the orthogonality condition with the minimum 
frequency separation [18]. Therefore, there exists a strong spectral overlap among the 
different subcarrier signals after DS spreading. The spectra associated with three sub-
carriers for an MT-CDMA signal are shown in Figure 10.1c. In an MT-CDMA system, 
the subcarrier frequencies are chosen to be orthogonal to each other with the minimum 
frequency separation before spreading, which can be formulated as

 f f
n i j
Ti j

MC
− =

−
,

where n ∈  and TMC is the symbol duration after S/P. It can be shown that the minimum 
spacing of the subcarrier frequencies is 1/TMC.

Unfortunately, the MT-CDMA scheme suffers from intercarrier interference because 
of the strong spectral overlap among the different subcarriers. However, the capability 
to use longer spreading codes results in the reduction of self-interference and multiple 
access interference, compared to the spreading codes assigned to a corresponding single-
carrier DS-CDMA scheme. The MT-CDMA scheme uses longer spreading codes than 
the corresponding single-carrier DS-CDMA scheme [2], where the relative code-length 
extension is in proportion to the number of subcarriers. Therefore, the MT-CDMA sys-
tem can accommodate more users. Simulation results will later show the advantages of 
MT-CDMA in increasing throughput and bandwidth efficiency.

10.2.4  Multicarrier CDMA Transmitter Selection

We had briefly outlined the features of a number of multicarrier CDMA systems, which 
have been studied in the literature. So far, many reports are dedicated to the BER perfor-
mance comparisons of DS-CDMA with multicarrier CDMA systems. These works show 
that all multicarrier CDMA schemes—MC-CDMA [19–21], MC-DS-CDMA [13, 14], 
and MT-CDMA [22]—outperform DS-CDMA.

In addition, it can be shown that there are trade-offs associated with each multicar-
rier CDMA scheme considered. Each technique has different benefits and drawbacks, 
depending on the intended applications [2, 14, 23]. Yang and Hanzo showed in [24] that 
MC-DS-CDMA has the highest degree of freedom in the family of CDMA schemes that 
can be beneficially exploited during the system design and reconfiguration procedures. 
The MC-DS-CDMA constitutes a trade-off between DS-CDMA and MC-CDMA in the 
context of the system’s architecture and performance. By employing multiple subcarri-
ers, MC-DS-CDMA typically requires lower-chip-rate spreading codes than DS-CDMA. 
It necessitates a lower number of subcarriers than MC-CDMA due to imposing DS 
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spreading on each subcarrier’s signal. Consequently, MC-DS-CDMA typically requires 
lower-rate signal processing than DS-CDMA and has lower worst-case peak-to-average 
power fluctuation than MC-CDMA.

Therefore, we will study the MC-DS-CDMA–air interface in this chapter. In addition, 
we broaden our analysis by considering the family of generalized MC-DS-CDMA trans-
ceivers, defined in [4]. This generalized scheme includes the subclasses of MT-CDMA 
and MC-DS-CDMA as special cases. Simulation results will later show the advantages of 
MT-CDMA in increasing throughput and bandwidth efficiency.

In the following sections, we will adopt this general view and simply refer to it as 
MC-CDMA in the remainder of the chapter unless otherwise required. We also assume 
the uplink of an asynchronous multicellular multicarrier CDMA system with C in-cell 
active users. For the sake of simplicity, we assume that all users use the same subcarriers 
and transmit with the same modulation at the same rate.

10.2.5  MC-CDMA Transmission Model

This section explains in more detail the MC-CDMA scheme adopted in this chapter. The 
block diagram of the MC-CDMA transmitter is shown in Figure 10.2. The input infor-
mation sequence of the uth user is first converted into Nc = 2K + 1 parallel* data sequences 
bu

–K,n, …, bu
0,n, …, bu

K,n, where n is the time index. The datum bu
K,n ∈CM is M-PSK modu-

lated and differentially† encoded at rate 1/TMC, where TMC = Nc × T is the symbol dura-
tion after S/P conversion, T is the symbol duration before S/P, and CM = {…, e j2πm/M, …}, 
m ∈{0, …, M – 1}. The resulting S/P converter output is then spread with a random 
spreading code cu(t) at a rate 1/Tc. The spreading factor, defined as the ratio between the 
chip rate and the symbol rate, is L = TMC/Tc. We write the spreading-code segment over 
the nth period TMC as

 c t c t T nTn
u

n
u

c MC

l

L

( ) = − −( )
=

−

∑ l, ,φ 1
0

1

 (10.1)

where cu
l,n = ±1 for l = 0, …, L – 1 is a random sequence of length L and ϕ(t) is the chip pulse. 

We consider square-root raised cosine chip pulses with roll-off factor β (see appendix). 
Closed-loop power control is taken into account at the transmitter by the amplification 
factor au(t). All the data are then modulated in baseband by the inverse discrete Fourier 
transform (IDFT) and summed to obtain the multicarrier signal. No guard interval is 
inserted. Indeed, the channel identification and equalization are achieved by MC-STAR 
(multicarrier spatiotemporal array receiver) [32], and simulation results have shown that 
the guard interval length does not affect the link-level performance. MC-STAR exploits 
the intrinsic channel diversity by combining and equalizing the multipath signals. We 

* We selected an odd number of subcarriers to have a central frequency, but the model can easily 
be rearranged to operate with an even number of subcarriers.

† We can also use pilot symbols for coherent modulation and detection [25], but that is beyond the 
scope of this chapter.
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hence eliminate the guard interval. Finally, the signal is transmitted after radio fre-
quency upconversion.

The modulated subcarriers are orthogonal over the symbol duration TMC. The fre-
quency corresponding to the k th subcarrier is fk = λ × k/TMC. The transmitter belongs to 
the family of MT-CDMA if λ is set to 1, and to the class of MC-DS-CDMA if λ is set to L 
(see resulting signal spectra in Figure 10.3). Indeed, in an MT-CDMA system, the sub-
carrier frequencies are chosen to be orthogonal harmonics with minimum frequency 
separation before spreading. By contrast, in MC-DS-CDMA, the subcarrier frequen-
cies are chosen to satisfy the orthogonality condition with minimum possible frequency 
after spreading. The transmitted signal of the uth user is given by
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FIgure 10.2 Block diagram of the MC-CDMA transmitter and receiver (pulse shape filtering 
is implemented at both transceiver ends).
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The transmitted signal’s bandwidth is

 BW
N

T T
c

MC c
=

−( )
+

+( )1 1λ β
.  (10.3)

10.2.6  Channel Model for Multicarrier Transmission

We consider an uplink transmission to M receiving antennas at the base station. The 
channel is assumed to be a slowly varying frequency-selective Rayleigh channel with 
delay spread Δτ. For each k th subcarrier of user u, the key channel parameter is the num-
ber of resolvable paths, Pk

u, which is given by

 P
Tk

u

c
=









+∆τ 1,  (10.4)

where Tc is the chip duration. In practice, the number of multipaths depends also on the 
choice of the noise threshold used to differentiate between the received multipath com-
ponents and the thermal noise. Typical delay-spread values are in the range of 0.4–4 μs 
in outdoor mobile radio channels, and the number of multipaths Pk

u varies between 
2 and 5 with 3.84 megachips per second (Mcps) resolution [26]. The M-dimensional 
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f1 f9

f1 f2 f5

f1 f2 f3

f3 f4

f1 f2 f7

f1 f2 f9

MT-CDMA MC-DS-CDMA

FIgure 10.3 Different configurations of MT-CDMA and MC-DS-CDMA spectra within the 
same bandwidth.
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complex low-pass equivalent vector representation of the impulse response experienced 
by subcarrier k of the uth user, for a receiver equipped with M antennas, is

 H t
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u k
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u e k p
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k p
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where ρk
u(t) and (ru)e(t) model the effects of shadowing and path loss, respectively, ru(t) 

is the distance from the uth user to the base station, and e is the path loss exponent. We 
assume their variations in time to be very slow, and hence nearly constant over several 
symbol durations. The M-dimensional complex vector Gu

k,p(t)* denotes the fading and 
the array response from the user to the antenna elements of the receiver, and τu

k,p(t) rep-
resents the propagation time delay along the pth path. We note here that the large-scale 
path loss that includes free-space path loss and shadowing is the same for all subcarriers 
of the same user. Moreover, the number of resolvable paths and their propagation time 
delays depend on the reflecting objects and scatterers and can be assumed equal for all 
subcarriers [28]. Therefore, we omit the index k from ρ, P, and τ (ρu

k = ρu, Pu
k = Pu, and 

τu
k,p = τu 

p) and reformulate equation (10.5) as
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A frequency-domain channel model for a multicarrier system can be characterized by 
the coherence bandwidth† [28]:

 Bc 
1

2π τ∆
.  (10.7)

When the frequency separation λ/TMC is less than BC, the MC-CDMA system is sub-
ject to correlated fading over different subcarriers. Fades across taps (multipaths) are 
mutually independent for the same carrier. However, fading for the same tap across 
different carriers is correlated. The envelope correlation coefficient between subcarrier k 
and subcarrier k′ for user u is [28]
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* We may characterize G u
k,p(t) in a space manifold parameterized by angles of arrivals [27]. 

However, a space characterization requires perfect antenna calibration and adequate sensor 
positioning.

† The coherence bandwidth is defined as the bandwidth over which the envelope correlation is 
above 0.5 [28].
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where E is the expectation function, G u
k,p,m(t) is the fading and the antenna response from 

user u to antenna m of the receiver along the pth path, E
~
 is the complete elliptic integral of 

the second kind, J0 is the zeroth-order Bessel function, and fD is the maximum Doppler 
frequency. We adopt the approach proposed in [29, 30] to generate correlated Rayleigh 
channels across subcarriers. We also assume that the received channel multipath com-
ponents across the M antennas are independent.

10.2.7  Received Signal

For a multicellular MC-CDMA system with C in-cell users and Nc = 2K + 1 carriers, the 
received signal is the superposition of signals from all users and all subcarriers. Hence, 
the M-dimensional observation vector received, after downconversion, by the antenna 
array can be expressed as follows:
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where ⊗ denotes time convolution and Δ f u models the carrier frequency offset (CFO), 
which is assumed equal for all subcarriers. This is a realistic assumption since there is 
only one oscillator per transmitter (see Figure 10.2). On the downlink, the CFO is even 
equal for all in-cell users (i.e., Δ f u = Δ f  ∀ u ∈{1, …, C}). The noise term N(t) includes the 
thermal noise received at the antennas as well as the out-cell interference. The contribu-
tion Xu

k,n(t) of the nth data symbol over the k th carrier of user u to the received vector X(t) 
is given by
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Along the pth path, G u
k,p(t) = ( M /G u

k,p(t))G u
k,p(t) is the propagation vector over the 

k th subcarrier of the uth user with norm M , and (εu
k,p)2(t) = G u

k,p(t)2/ΣPu
p=1G

u
k,p(t) is the 

fraction of the total received power on the k th subcarrier of user u:
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10.2.8  Interference Analysis

We define the matched-filtered observation vector of frame number n over a time inter-
val [0, TMC) as

 Y t
T

X nT t t t dtn
c

MC
D

( ) = + + ′( ) ′( ) ′∫1 φ
φ

,  (10.13)

where Dϕ denotes the temporal support* of ϕ(t). After sampling at a multiple of the 
chip rate, we frame the observation into overlapping blocks of constant length Np. The 
oversampling ratio ks is defined as the number of samples per chip. In DS-CDMA and 
MT-CDMA systems we need no more than one sample per chip (ks = 1). In contrast, in 
an MC-DS-CDMA system, a higher sampling frequency is necessary for the receiver. 
Indeed, the sampling frequency has to satisfy the Nyquist sampling theorem, which 
states that the sampling interval must be smaller than the inverse of the double-sided 
bandwidth of the sampled signals. Hence, the smallest number greater than the number 
of subcarriers Nc is an adequate oversampling ratio for MC-DS-CDMA. The resulting 
processing block duration TP = NP(Tc/ks) is equal to Tmax + Δτ. The processing period 
Tmax = LTc contains Nc carrier symbols targeted for detection. The frame overlap Δτ < 
Tmax, which is larger than the delay spread, allows multipath tracking [31]. Hence, we 
obtain the M × NP matched-filtered observation matrix:

 Yn n n c s n p c sY Y T k Y N T k= ( ) … −( )( )
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It can be expressed as
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where the baseband preprocessed thermal noise and the out-cell interference contribute 
Nn, and where symbol n′ of carrier k of user u contributes its observation matrix Yu

n′,k,n, 
obtained by

* For a rectangular pulse, Dϕ is [0, Tc ]. In practice, and as assumed in this chapter, it is the tempo-
ral support of a truncated square-root raised cosine, Dϕ = [–NsrcTc, NsrcTc], where Nsrc stands for 
the truncation span of the shaping pulse in chip samples around 0.
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As a result of the stationarity assumptions stated in section 10.2.6, Yu
n′,k,n(t) can be 

developed into
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where the spread channel vector without CFO Vu
n′,k,n(t) is obtained by
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and the spread channel vector is
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We assumed in the development of equation (10.18) that ψk(nTG + t + t′) is constant 
during the interval t′ ∈Dϕ. We also considered that the frequency offset is small com-
pared to the symbol rate (Δ f uTMC  1); thus, e j2πΔ f u(nTMC+t+t′)  e j2πΔ f unTMC for t′ ∈Dϕ and 
t ∈[0, TMC). Substituting equation (10.18) in equation (10.15) gives
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where ψu
k,n = ψu

k(nTMC). Due to asynchronism and multipath propagation, each user’s 
carrier observation matrix carries information from the current as well as the previous 
and future symbols of the corresponding user’s carrier. We therefore have
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Without loss of generality, let us focus on the detection of the nth symbol carried by 
the k th carrier of the desired user assigned index d ∈{1, … C}, i.e., bd

kd,nd. Using equation 
(10.22) and defining a vector V as a matrix V reshaped column-wise, we can rewrite the 
observation matrix for a desired user d with respect to its nth symbol of carrier k targeted 
for detection in the following simpler vector form:
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where su
k′,n′ = ψu

k′,nbu
k′,n′ and (ψu

k,n)2 are the n′ th signal component of the k′ th carrier of user 
u, and the received power of user u over carrier k, respectively. The total interference 
I d

k,n includes three types of interference: (1) the multiple access interference I d
MAI,k,n is 

the interference due to the Nc carriers from the other in-cell users u ≠ d; (2) the inter-
carrier interference I d

ICI,k,n is the interference due to the other carriers, k′ ≠ k, from 
the same user d; and (3) the intersymbol interference I d

ISI,k,n is the interference due to 
the same carrier k from the same user d. The noise vector N 

n, which comprises the pre-
processed thermal noise and the interference due to out-of-cell users, is assumed to be 
uncorrelated both in space and time with variance σN

2 .
In previous work [32], we proposed a receiver named MC-STAR. MC-STAR assumes 

the interference Id
k,n as another contribution to the noise N 

n.  Hence, the signal compo-
nent of the desired user’s carrier is extracted by spatiotemporal maximum ratio combin-
ing (MRC) as follows:
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where anywhere in the chapter the notation α̂ stands for an estimate of a given variable 
α, (.)H is the Hermitian operator, and W  d

MRC,k,n is the MRC beamformer. Equation (10.23) 

© 2009 by Taylor & Francis Group, LLC



Adaptive Multicarrier CDMA Space-Time Receivers 283

shows that the net interference increases with the number of interferers and subcarriers, 
which severely limits the capacity of the MC-CDMA system with simple MRC receivers. 
Therefore, in the next section, we shall use the data decomposition of equation (10.23) to 
formulate the interference suppression problem and propose a new MC-CDMA receiver 
with full interference suppression capabilities.

10.2.9  Multiuser Detection Techniques for MC-CDMA Systems

Conventional multicarrier CDMA detectors—such as the matched filter, the RAKE 
combiner, and the MC-STAR receiver—are optimized for detecting the signal of a sin-
gle desired user. RAKE combiners exploit the inherent multipath diversity in CDMA, 
since they essentially consist of matched filters for each resolvable path of the multipath 
channel. The outputs of these matched filters are then coherently combined according to 
a diversity combining technique, such as maximum ratio combining, equal gain com-
bining, or selection diversity combining [13, 54]. Unlike RAKE-type receivers, which 
assume perfect knowledge of the channel [3], we proposed in previous work a full space-
time receiver solution, named MC-STAR [43], that jointly implements adaptive chan-
nel identification and synchronization in both time and frequency.* These conventional 
single-user detectors are inefficient, because the interference is treated as noise and there 
is no utilization of the available knowledge about the mobile channel or the spreading 
sequences of the interferers.

In order to mitigate the problem of MAI, [33] proposed and analyzed the optimum 
multiuser detector for asynchronous Gaussian multiple access channels. This optimum 
detector significantly outperforms the conventional detector, and it is near–far resistant, 
but unfortunately its complexity grows exponentially with the number of interfering 
users. Following this work, numerous suboptimum multiuser detectors have been pro-
posed for a variety of channels, data modulation schemes, and transmission formats. 
Since MC-CDMA systems also contain a DS-CDMA component, traditional sub-
optimum multiuser detection techniques can be performed on each carrier with some 
form of adaptation. A variety of linear multiuser receivers have been investigated for 
MC-CDMA systems such as the minimum mean square error (MMSE) detector [34] and 
the combination of MMSE and the decorrelator detector [35]. Interference cancellation 
(IC) schemes constitute another variant of multiuser detection that has been applied to 
MC-CDMA systems. They can be broadly divided into two categories: parallel cancel-
lation (PIC) [37, 38] and successive cancellation (SIC) [36]. At each stage in the detector, 
the estimates of all the other users from the previous stage were used for reconstructing 
an estimate of the MAI, and this estimate was then subtracted from the interfered signal 
representing the wanted bit. A novel class of multicarrier multiuser detectors, referred 
to as subspace blind detectors, was proposed by [39] and [40], where only the spreading 
sequence and the delay of the desired user were known at the receiver. Based on this 
knowledge, a blind subspace tracking algorithm was developed for estimating the data 
of the desired user.

* MC-STAR is our starting receiver; hence, we will provide a short overview of this receiver in 
section 10.3.

© 2009 by Taylor & Francis Group, LLC



284 Adaptive Signal Processing in Wireless Communications

Most of these multiuser receivers have focused on multiple access interference while 
ignoring the ICI. In addition, important system design issues such as carrier frequency 
offset recovery (CFOR) have often been neglected. In multiuser detection, the CFO of 
one user not only degrades the detection of that user itself, but also makes the receiver 
based on the ideal carrier frequency acquisition no longer optimal, thus degrading the 
detection of the other users [41]. An alternative multiuser detection technique, denoted 
interference subspace rejection (ISR), has been proposed for DS-CDMA [42]. This tech-
nique offers different modes. Each mode characterizes the interference vector in a dif-
ferent way and accordingly suppresses it. The flexibility and robustness inherent to ISR 
make its exploitation in multicarrier systems of great interest.

10.3  Proposed Adaptive Multicarrier CDMA  
Receiver: MC-ISR

This section is dedicated to the description, performance analysis, and implementation 
of the proposed MC-ISR receiver [6]. After a short overview of MC-STAR [43], which is 
our starting single-user receiver, we will describe and evaluate the adaptive interference 
rejection procedure that characterizes the proposed MC-ISR receiver.

10.3.1  The General Concept of MC-STAR

The adaptive receiver MC-STAR implements joint space-time-frequency processing 
over the despread data to improve the spectrum efficiency of the MC-CDMA system. 
The adaptive blind channel identification and equalization as well as the acquisition 
and tracking of multipaths and CFO are carried out on each subcarrier. However, their 
modules are interconnected to ensure proper information exchange and joint processing 
over carriers.* Mathematical details of the different adaptive procedures and their con-
nections are provided in [43]. In this section, we explain the advantages of MC-STAR by 
describing the intermediate stages in our development that led to this receiver.

At the beginning, we extend original STAR, proposed for DS-CDMA [31], to a mul-
ticarrier system by placing STAR on each subcarrier. This extension requires a modi-
fication of the time-delay tracking procedure. Indeed, we introduce an intermediate 
transformation of the time response to reallow estimation of the multipath delays by 
simple linear regression.

Multi-carrier CDMA systems are very sensitive to the CFO. Therefore, we further 
introduce joint time-delay and frequency synchronization. The effect of the CFO on 
the performance of the spatiotemporal array receiver was not addressed in [31]. The 
space-time separation of the channel enables us to decouple time and carrier frequency 
synchronization. We can hence estimate the CFO by linear regression (LR) of the phase 
variation of each fading coefficient. Once an estimate of the carrier frequency offset 

* The complexity of MC-STAR, which is approximately the complexity of STAR multiplied by the 
number of subcarriers, can be assessed using the results established in [44]. The latter suggests 
that MC-STAR can be implemented today on a single FPGA.
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estimate ∆f is available by exploiting diversity in space, time, and frequency, we imple-
ment carrier frequency offset recovery (CFOR) in an adaptive closed-loop structure, 
where we feed back the estimate of the frequency offset to the input of the receiver. The 
CFOR reduces the time variations in the spatiotemporal propagation channel due to Δf 
to much weaker fluctuations due to the residual δf = Δf – ∆f. It results in much weaker 
identification errors and enables further reduction of the carrier frequency estimation 
error δf.

At this stage, the receiver still consists of independent modules on each subcarrier. The 
purpose of the last step is to improve the performance of the overall receiver by inter-
connecting these modules and performing joint multicarrier processing. We exploit the 
intercarrier correlation, intrinsic to a multicarrier system, as a type of frequency gain to 
improve the performance by joint multicarrier channel identification and synchroniza-
tion operations. Indeed, in the context of a multicarrier system, the adjacent subcarriers 
are exposed to correlated fading, especially if the delay spread of the channel is relatively 
low, resulting in relatively large coherence bandwidth. Hence, averaging the adjacent 
subcarrier channel parameters should improve the BER performance when transmit-
ting over such low-dispersive fading channels. Along this perspective, the parameters 
common to all subcarriers can be estimated more accurately by averaging their esti-
mates over all subcarriers. These parameters include the number of multipaths, their 
corresponding time delays, and the frequency offset. Other channel parameters, such 
as the channel fading coefficients, are correlated but not identical over all subcarriers. 
Therefore, combining them may not achieve the expected performance enhancement. 
We thus introduce a moving average technique over subcarriers with high correla-
tion. The fact that subcarriers are highly correlated implies similar or identical channel 
parameters over subcarriers. Yet, the noise is uncorrelated across subcarriers, and hence 
the similar/common parameters can be estimated more accurately by averaging their 
estimates over all subcarriers, yielding the so-called frequency gain. The variance of the 
resulting estimation error is lower than the variance of the estimation error without fre-
quency gain. Please bear in mind that we used the term frequency gain and not frequency 
diversity, which relies on the fact that the fading is different over different subcarriers.

10.3.2  Multicarrier Interference Subspace Rejection (MC-ISR)

Provided that an instantaneous estimate of the total interference Î dk,n = Î dMAI,k,n + Î dICI,k,n + 
Î dISI,k,n is made available at the receiver (see section 10.3.4), we can eliminate it and yet 
achieve distortionless response to the desired signal by imposing the following simple 
constraints to the combiner Wd

k,n:
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The first constraint guarantees a distortionless response to the desired signal, while 
the second directs a null to the total interference realization and thereby cancels it. 

© 2009 by Taylor & Francis Group, LLC



286 Adaptive Signal Processing in Wireless Communications

Exploiting the general framework developed in [42], the solution to the specific optimi-
zation problem in equation (10.25) is the MC-ISR combiner Wd

k,n given as follows:
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where NT = M × NP is the total space dimension and INT
 denotes an NT × NT identity 

matrix. First, we form the projector Pd
k,n orthogonal to the total interference realization. 

Second, we project the estimated response vector Û dn,k,n and normalize it to derive the 
combiner. We use this combiner instead of MRC (used by MC-STAR) to extract the nth 
signal component of the k th carrier of the desired user as

 ˆ ., ,s W Yk n
d

k n
d

n

H

=  (10.29)

Unlike most of the multiuser receivers proposed for MC-CDMA, which focus on 
multiple access interference while ignoring the intercarrier interference, MC-ISR fully 
suppresses the total interference resulting from MAI, ISI, and ICI by simple yet efficient 
nulling.* In addition, the interference suppression is made adaptive to track the current 
situation of the wireless channel and the interference. Simulation results will later show 
that ICI is not negligible and that full adaptive interference suppression is required to 
improve the MC-CDMA system performance.

10.3.3  Link/System-Level Performance Analysis

This section is dedicated to the performance analysis of the MC-ISR receiver based 
on the Gaussian assumption (GA). We exploit the analysis results of DS-CDMA ISR 
recently developed in [45] at the link level and extend them to MC-ISR. Additionally, we 
broaden the scope of the analysis to the system level.

10.3.3.1  Link-Level Performance

For the sake of simplicity, we assume temporarily perfect channel identification and 
perfect CFO estimation and recovery. Later in the simulations, we will use the channel 

* The formulation of MC-ISR can be extended to MMSE-type criteria [42].
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and CFO estimates provided by MC-STAR* [32]. The postcombined signal can be for-
mulated as

 ˆ , , , , , , ,s W Y sk n
d

k n
d

n k n
d

MAI k n
d

ICI k n
d

H

= = + + +δ δ δIISI k n
d

k n
d

nW N
H

, , , ,+  (10.30)

where δd
MAI,k,n, δd

ICI,k,n, and δd
ISI,k,n are the combining residuals of I d

MAI,k,n, I d
ICI,k,n, and I d

ISI,k,n, 
respectively. We assume here that the interference rejection residuals δd

MAI,k,n, δd
ICI,k,n, and 

δd
ISI,k,n are Gaussian random variables with zero mean. Hence, we only need to evaluate 

their variances. Note that the residuals would be null (i.e., δd
MAI,k,n = δd

ICI,k,n = δd
ISI,k,n = 0) 

if the reconstruction of the interference were perfect (i.e., Î d
k,n = I d

k,n), and hence ŝ d
k,n = 

sd
k,n + W dH

k,nNn would be corrupted only by the residual noise, which is Gaussian with zero 
mean and variance:

 Var W Nk n
d

n N

H

, ,






= κσ 2  (10.31)

where 

 κ =












= −
−

E W ML
MLk n

d
, ,

2 1
2

is a measure of the enhancement of the white noise compared to MRC (κ  = 1 for MRC) 
[45]. However, in practice the interference vector is reconstructed erroneously due to 
wrong tentative data decisions and power control errors, and hence ŝ d

k,n is further cor-
rupted by non-null residual interference rejection components. Therefore, we introduce 
the error indicating variables 

 ξk n
u

k n
u

k n
ub b, , ,

ˆ= ∗

and

 λ ψ ψ ψk n
u

k n
u

k n
u

k n
u

, , , ,
ˆ ˆ= ∗

2

where (.)∗ means complex conjugate. ξu
k,n models the symbol estimation error provided 

by MRC at the initial stage. λu
k,n characterizes the power control error. ξu

k,n and λu
k,n equal 1 

when the estimated data symbol and the power control are perfect; otherwise, they are 
complex numbers. Since

 Y s U b Un k n
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k n
u
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n k nb Uξ λ ψ uu
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u
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n k n
u

Y= ′ ′ ′ ′ ′ξ λ, , , ,
ˆ , †

* Simulations will show little deviation from analysis in the operating BER region.
† Here we assume perfect time and frequency synchronization.
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we can rewrite equation (10.23) as
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The signal after MC-ISR combining is then
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The MC-ISR combiner W d
k,n satisfies the optimization property in equation (10.25), 

and thus

 W I W I Ik n
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= 0  (10.34)

This result allows the derivation of the variance of the interference rejection residuals, 
as shown in the appendix. Let ψ–D

2 = E[(ψ–k
d)2] be the average power of the k th carrier of the 

desired user and ψ–I
2 be the average interference power on each interfering carrier. The 

variances of the residual I d
MAI,k,n can be written as

 Var δ ψ ς β χ β ρMAI k n
d I

kC
L, ,





 = −( ) ( )+ ( )



 +1 1

2

λλ ξρ κ−( ) ,  (10.35)

where ς(β) = 1 – β/4 and
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 K

 (10.36)

for MC-DS-CDMA (λ = L and fk = k/Tc) and
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for MT-CDMA (λ = L and fk = k/TMc). The expressions of 

 ρ ξ λ ξ λξ = 
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are derived for a Rayleigh fading channel with P paths to yield
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 (10.39)

where Srec is the symbol error rate in the previous MC-ISR stage, fD is the maximum 
Doppler frequency, and τPC is the power control feedback delay. The variances of the 
residuals I d

ICI,k,n and I d
ISI,k,n can be written as
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where δis = (P – 1)/P is a measure of the relative impact of the interference generated by 
the other paths on a given path of the desired user (for a Rayleigh fading channel with P 
equal paths). The SINR on the k th carrier can be estimated as

 SINR
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 (10.41)

Note that the SINR expression above applies to MRC as well by setting κ  = 1 and ρλ = 
ρξ = 0 in equations (10.35) and (10.40). Note also that in [46], we provide the variance of 
the interference for an MC-CDMA system with a rectangular pulse. In this chapter, we 
improve the analytical performance evaluation by deriving the variance of the interfer-
ence with a more practical band-limited square-root raised cosine waveform. The BER 
performance on the k th carrier is then given as follows:

 Pe
k

ISR k= ( )Ω SINR , ,  (10.42)

where Ω represents the single-user bound (SUB), which is classically defined as a con-
ditional Gaussian Q-function over ψD and ψI. When using this classical representation, 
the average BER is derived by first finding the probability density functions (pdfs) of ψD 
and ψI and then averaging over those pdfs. Since it is difficult to find a simple expression 
for the pdfs of ψD and ψI that takes into consideration antenna diversity, imperfect power 
control, and imperfect channel identification, we may consider an approximative pdf. 
In this analysis, we choose to simulate Ω without imposing any pdf approximation. For 
each multicarrier configuration, we run single-user and single-carrier link-level simula-
tions. We reproduced as much as possible most of the real-world operating conditions: 
time and frequency synchronization, imperfect power control, channel identification 
errors, antenna diversity, etc. These link-level simulations gave a realistic Ω : BER = 
Ω(SNR). The simulations will later consider a multiuser and multicarrier environment. 
The average BER performance of the MC-ISR receiver is given by

 P
K

Pe e
k

k K

K

=
+

=−

∑1
2 1

.  (10.43)

10.3.3.2  System-Level Performance

In order to compare the different MC-ISR configurations, the link-level curves pro-
vide a good picture of the performance of each system. But limiting comparisons to the 
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BER performance is not sufficient because the data rate is not equal for all configura-
tions. Hence, we translate the link-level results into system-level results in terms of total 
throughput under the following three assumptions: (1) all users are received with an 
equal average power (i.e., ψ–2

D and ψ–2
I) [4]; (2) all the cells have the same average load of 

C users per cell; and (3) the out-cell to in-cell interference ratio f is set to 0.6 [47]. Given 
these assumptions in an interference-limited system (thermal noise is low compared to 
interference), the link-level SIR at the base station antennas (ignoring ISI for simplicity) 
is

 SIR
C

L
C f

ISR

is

=
−( ) + ( ) + −( ) +

1

1 1 1α δ χ β ρ ρ κ λλ ξ

,  (10.44)
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(C – 1)α is the normalized variance of the residual MAI (u ≠ d), 1
L δisχ(β) (1 + ρλ – ρξ)κ– is 

the normalized variance of the residual ICI (k′ ≠ k and u = d), and C f γ is the normalized 
variance of the out-cell interference. Note that equation (10.44) is derived from equation 
(10.41) and the assumption of negligible thermal noise and ISI.

The maximum number of users that can access the system Cmax can be hence cal-
culated by the simple procedure illustrated in Table 10.1. After initialization, this pro-
cedure increments the capacity C, until the SIRISR given by equation (10.44) no longer 
exceeds the required SNRreq. The SRNreq is the required SNR, derived from link-level 
simulations, to meet a BER of 5% in order to achieve a QoS of 10–6 after channel decod-
ing. In step 2.2 of Table 10.1, we use the fact that the SIR expression applies to MRC by 
setting κ– = 1 and ρλ = ρξ = 0 in equation (10.44). In step 2.3, we evaluate the symbol error 
rate SMRC after the MRC stage as follows:

 SMRC MRC= ( )Ω SIR ,  (10.46)

where Ω represents the single-user bound (SUB). Note that multistage MC-ISR is con-
sidered in step 2.5. The total throughput is hence Tmax = Cmax × Rb = Cmax × Rs × log2(M) 
where Rb and Rs are the bit rate and symbol rate over all subcarriers, respectively.

10.3.4  MC-ISR Receiver Implementation

As mentioned in section 10.3.2, the proposed MC-ISR receiver requires accurate chan-
nel parameter estimates and data decisions to reconstruct the total interference Î dk,n and 
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null it reliably. Unlike previous works on interference suppression or multiuser detec-
tion [34, 38] that assume perfect knowledge of the channel, we propose here an adap-
tive receiver that uses runtime information about the channel and interference. Indeed, 
MC-ISR jointly implements channel identification and synchronization in both time 
and frequency, using MC-STAR [32], as well as signal combining with full interference 
suppression capabilities. Figure 10.2 shows the block diagram of the proposed receiver 
implementation, divided in four main modules. The first module is a preprocessor that 
downconverts the received signal to baseband, then passes it through the chip-matched 
filter before sampling and data block framing. The second module is a signal combiner 
that provides symbol estimates from the data observation, first by MRC in an initial 
iteration, then by MC-ISR in one or more iterative stages. The third module is an adap-
tive channel identifier and synchronizer from MC-STAR that implements closed-loop 
CFOR and estimates all the channel parameters (multipath time delays and their phases 

Table 10.1 Capacity Computation Procedure

1. Initialize capacity C = 0.
2. Start computation loop:
2.1 Increment capacity C = C + 1.
2.2 Compute the SIR with MRC:

 
SIR L

C fC
MRC

is
=

−( ) ( )+ ( )( )+ ( ) + ( )+ (1 ς β χ β χ β δ ς β χ β))( ) .
2.3 Compute the symbol error rate (SER) after MRC stage 

 
SMRC MRC= ( )Ω SIR

.
2.4 Compute ρλ and ρξ.
2.5 Compute the SIR:

 SIR
C

L
Cf

ISR

is
1

1

1 1 1
=

−( ) + ( ) + −( ) +α δ χ β ρ ρ κ γλ ξ

.

  If number of stages S > 1, start the loop; else go to 2.6.
    For s = 2 : S.
    Compute the symbol error rate (SER) after the s – 1 stage:

 S ISRISR ss−
= ( )−1 1Ω SIR

    Compute ρξ.
    Compute the SIR:

 SIR
C

L
Cf

ISRs

is

=
−( ) + ( ) + −( ) +

1

1 1 1α δ χ β ρ ρ κ γλ ξ

.

    End.
2.6 If SIRISRs  > SNRreq go to 2.1; else exit.
3. Decrement capacity C = C – 1.
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and amplitudes, received power, CFO). The fourth module is a null-constraint generator 
common to all in-cell users. It gathers the data decisions and channel parameter esti-
mates from the second and third modules dedicated to each in-cell user-carrier pair in 
order to reconstruct the total in-cell signal vector In. Then to each combiner, say of the 
desired user-carrier pair as illustrated in Figure 10.1b, it passes on the associated null 
constraint (i.e., I d

k,n = In – sd
k,nU d

n,k,n) calculated with the least computations by simple sub-
traction from In of the desired signal contribution from the corresponding user-carrier 
pair.

The implementation of an adaptive closed-loop CFOR* jointly with multicarrier and 
multiuser detection (here by MC-ISR) requires careful attention regarding the order in 
which these two tasks should be processed. Indeed, conventional operation of CFOR at 
an early processing stage† prior to interference suppression would require (on the uplink 
only) as many independently CFO-compensated observations and interference null con-
straints as received in-cell users, thereby resulting in a tremendous complexity increase. 
Here we develop an efficient post-interference-suppression CFOR scheme by splitting 
the MC-ISR combining operation of equation (10.29) into two steps, an observation-
cleaning projection and an MRC combining, and by inserting CFO compensation in 
between as follows:

 Y Yk n
d

k n
d

nΠ Π, , , ,=  (10.47)

 ∆ ∆f f fn

d

n

d

n

d  = +−1 δ ,  (10.48)

  
Y Y ek n

d
k n

d j f nTn
d

Π Π
∆

, , , , ,= − 2π  (10.49)

 ˆ ˆ ,, , , , ,V Vk n
d

k n
d

k n
d

Π ΠΠ=  (10.50)

 ˆ
ˆ

ˆ
.,

, , , ,

, ,

s
V Y

V
k n
d k n

d
k n

d

k n
d

H

= Π Π

Π


2

 (10.51)

The cleaning projection of equation (10.47) results in an almost interference-free 
observation Y d

∏,k,n and allows for CFO estimation and compensation in equations (10.48) 
and (10.49), respectively, using the CFOR module of the single-user MC-STAR (refer 
to [32] and [48] for details on how to estimate the CFO adjustment term in equation 
(10.49)), and for MRC combining in equation (10.51) using the projected estimate of the 

* In contrast to open-loop structures, closed-loop CFOR reduces the channel time variations and 
greatly improves their tracking [32].

† Usually CFOR is embedded in the RF chain or plugged to the preprocessor output.
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spread channel vector without CFO V ˆ d
∏,k,n. To the best of our knowledge, we are the first 

to report on and address this issue and to propose an efficient scheme for closed-loop 
CFOR in a multiuser detection context. It is important to mention here that if Δf u = 
Δf  ∀ u ∈{1, …, C} (i.e., downlink), then there is no need to estimate the CFO for the 
MC-ISR to null the in-cell interference. Indeed, the MC-ISR combiner W d

k,n satisfies the 
optimization property in equation (10.25). Thus, it is not affected by the CFO of other 
users, i.e.,

 W I e W Ik n
d

k n
d j fnT

k n
d

k n
dH

MC
H

, , , ,
ˆ         ˆ= ⇒0 2π∆ 




= 0.  (10.52)

Once the MC-ISR projection is performed in equation (10.47) after reconstruction of 
Î dk,n without CFO, we implement the same CFOR scheme implemented in part by equa-
tions (10.48) and (10.49). Hence, like the near–far resistant detector proposed in [41], the 
multiuser CFOR problem can be transformed on the downlink into a single-user CFOR 
problem, and conventional single-user methods can therefore be used to estimate the 
frequency offset.*

To validate the efficiency of the proposed CFOR strategy in a multicarrier and mul-
tiuser detection scheme on the uplink, we consider a multiuser DBPSK MT-CDMA sys-
tem with seven subcarriers, a spreading factor of 96, and five in-cell users (Nc = 7, L = 96, 
C = 5). We select the setup that will be introduced in section 10.4.1. The frequency offset 
normalized by the subcarrier separation (Δf  × TMC) is set to 0.005 (i.e., Δf  = 200 Hz).15 
Figure 10.4 shows the link-level results of MC-ISR with and without CFOR. Results sug-
gest that a CFO of 200 Hz has a serious impact on the performance of MC-CDMA, and 
that the link-level gain with the proposed CFOR is in the range of 1 dB at a BER of 5% 
before channel decoding. By comparing the link-level curves of MC-ISR with CFOR 
and MC-ISR without a frequency offset (i.e., CFO=0 Hz), we notice that CFOR compen-
sates almost completely the performance loss due to the frequency offset. These results 
confirm the need for and the efficiency of the proposed CFOR in a multicarrier and 
multiuser detection context.

10.4  Simulation Results

10.4.1  Simulation Setup

We consider an MC-CDMA system operating at a carrier of 1.9 GHz with maximum 
bandwidth of 5 MHz. We select a frequency offset Δf  of 200 Hz, the maximum error 
tolerated by 3G standards† (≡ 0.1 ppm) for the frequency mismatch between the mobile 
and the base station [49]. We assume a frequency-selective Rayleigh fading channel 
with Pu = P propagation paths with exponentially decreasing powers. The channel is 

* The study of the CFOR performance is provided in [43].
† We select Δf = 200 Hz to show that even CFO residuals below the maximum value tolerated by 

3G standards result in significant losses in performance.
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correlated across subcarriers and varying in time with Doppler shift fD. We suppose a 
low Doppler situation fD = 8.8 Hz unless otherwise mentioned. We consider that time 
delays vary linearly in time with a delay drift of 0.049 ppm. The receiver has M = 2 anten-
nas. We implement closed-loop power control operating at 1,600 Hz and adjusting the 
power in steps of ±0.25 dB. An error rate on the power control bit of 5% and a feedback 
delay of 0.625 ms are simulated. The simulation parameters common to all multicarrier 
system configurations are listed in Table 10.2.

Table 10.3 shows the parameters specific to each multicarrier CDMA configuration. 
We choose as a reference the 3G DS-CDMA (Nc = 1) system with spreading factor L = 32 
and a chip rate of 3.84 Mcps. We assume frequency-selective fading with P = 3 propaga-
tion paths. One of the features of MT-CDMA is that for a constant bandwidth the ratio 
between the spreading factor L and 2K = Nc – 1 is constant. We hence maintain the same 
chip rate (3.840 Mcps) by changing the spreading factor and the number of subcarriers, 
as shown in Figure 10.3. We consider four MT-CDMA configurations. Since they use 
the same chip rate, there are three paths in each MT-CDMA subcarrier. For a fair com-
parison among different configurations of MC-DS-CDMA, the bandwidth should be the 
same. By reducing the chip rate, we varied the number of subcarriers while maintaining 
the orthogonality between them, as illustrated in Figure 10.3. Due to the reduction in 
bandwidth, each subcarrier in MC-DS-CDMA has either two paths (i.e., P = 2) or one 
path (i.e., P = 1, frequency-non-selective fading) for Nc = 3 and Nc ≥ 5, respectively. The 
main performance criterion is the link-level SNR required per carrier to meet a BER of 
5% in order to achieve a QoS of BER = 10–6 after channel decoding and the resulting 
system-level throughput. The user’s data rate is calculated by summing the data rates 
over all subcarriers.

0 1 2 3 4 5 6 7 8
10−3

10−2

10−1

100

SNR in dB

BE
R

MC−ISR without CFOR
MC−ISR with CFOR
MC−ISR with CFO = 0 Hz

5 % 

FIgure 10.4 BER versus SNR for MT-CDMA MC-ISR, L = 96, Nc = 7, C = 5,  with and with-
out CFOR.
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10.4.2  Validation of the Performance Analysis

In this section, we investigate the accuracy of the analytical performance analysis in sec-
tion 10.3.3 under realistic channel conditions. Indeed, we do not assume perfect chan-
nel identification; instead, we use the channel estimate provided by MC-STAR [32]. We 
validate the Gaussian approximation (GA) of the residual interference by comparison 
with simulation results. Since the SUB (Ω) is not known explicitly in this case, it has 
been obtained from extensive simulations. We consider two configurations: DBPSK 
MT-CDMA (L=64, Nc = 3) and DBPSK MC-DS-CDMA (L=32, Nc = 3). Figure 10.5 
shows the link-level performances. It is seen, not surprisingly, that the GA is accurate 
in the presence of moderate background noise. The accuracy of GA increases at larger 
loads or at lower Doppler situations (speed of V = 5 kmph). Despite the realistic channel 
model employed and the channel estimate errors, there is a very good match between 
the analytical and simulation results for both MT-CDMA and MC-DS-CDMA in the 
target BER region (5%). This suggests that the analytical evaluation is accurate in a low 
Doppler situation.

10.4.3  Advantage of Full Interference Suppression

The imperfect frequency downconversion due to the instability of local oscillators 
combined with the multipath effect destructs the subcarriers’ orthogonality and hence 
causes ICI. In this section we evaluate the advantage of full interference suppression 
on the link-level performance of MC-CDMA. We plot the link-level performances of 
MT-CDMA (L = 64, Nc = 3, C = 8) and MC-DS-CDMA (L = 32,  Nc = 3, C = 8) with 
MC-MRC (i.e., multicarrier receiver with MRC combining) and MC-ISR in Figure 10.6. 
It is clear that MC-ISR performs better than MC-MRC. Indeed, in low Doppler (speed of 

Table 10.2 Simulation Parameters

Parameter Value Comment

BWmax 5 MHz Maximum bandwidth
M 2 Number of antennas
fc 1.9 GHz Central carrier frequency
fD 8.8 Hz Doppier frequency (5 kmph)
Δf 200 Hz Frequency offset
fPC 1,600 Hz Frequency of PC updating
ΔPC ±0.25 dB Power control adjustment
PCmin

max ±30 dB Power control stage

BERPC 5% Simulated PC bit error rate
δτ/δt 0.049 ppm Time-delay drift
Δτ 4 chips Delay spread
Lg 0 Guard interval length
Ns 2 Number of multistages
β 0.22 Roll-off factor
2Nsrc + 1 9 Number of pulse samples
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Table 10.3 Parameters of Each Multicarrier System Configuration

Parameter DS-CDMA MT-CDMA MC-DS-CDMA Comment

λ — 1 L Subcarrier spacing parameter

Nc 1 3 5 7 9 11 3 5 7 9 11 Number of subcarriers

L 32 64 128 192 256 320 32 32 32 32 32 Spreading factor

Rc in Mcps 3.840 3.840 1.4549 0.8975 0.6488 0.5081 0.4175 Chip rate

P 3 3 2 1 1 1 1 Number of paths per 
subcarrier

Rs in kbaud 120 180 150 140 135 132 136.4 140.2 141.9 142.9 143.5 Symbol rate over all 
subcarriers

Rb for DBPSK 
in kbps

120 180 150 140 135 132 136.4 140.2 141.9 142.9 143.5 Peak rate of DBPSK

Rb for D8PSK 
in kbps

360 540 450 420 405 396 409.2 420.6 425.7 428.7 430.5 Peak rate for D8PSK

BWnor 1 1.026 1 Bandwidth normalized vs. 
DS-CDMA
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V = 5 kmph) we report 1.85 and 2 dB gains in SNR for MT-CDMA and MC-DS-CDMA, 
respectively. Note that the SNR gains are more important in high Doppler situations 
(speed of V = 50 kmph). At a bit error rate of 5%, MC-ISR performs 5.5 and 3 dB better 
than MC-MRC for MT-CDMA and MC-DS-CDMA, respectively.

In order to evaluate the specific impact of ICI on the link-level performance, we com-
pare the BER curves of MT-CDMA (L = 64, Nc = 3, C = 8) MC-ISR with and without full 

−4 −2 0 2 4 6 8 10 12 1410−3
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10−1

100

SNR in dB
(b)
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SNR in dB
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10−1

100

BE
R

U = 30
U = 8
Analysis

U = 30
U = 8
Analysis

FIgure 10.5 Analytical and simulated BER of MC-ISR versus SNR in dB for (a) MT-CDMA, 
L = 64, Nc = 3, DBPSK, and (b) MC-DS-CDMA L = 32, Nc = 3, DBPSK.
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Figure 10.6 BER versus SNR in dB of MC-MRC and MC-ISR.
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interference suppression (i.e., with and without ICI suppression). Figure 10.7 shows that 
MC-ISR with full interference rejection is required to improve the system performance. 
Indeed, at a bit error rate of 5%, MC-ISR with full interference suppression performs 
1.2 dB better than MC-ISR with MAI suppression only. In order to capture in more 
detail the gains achieved by ICI suppression in MC-CDMA, we proceed in Figure 10.8 
to additional comparisons between the link-level BER performances of MC-ISR and 
MC-MRC in a single-user context (i.e., C = 1, no MAI, only ICI, and negligible ISI). Start-
ing from the reference situation of Figure 10.8a with L = 64, Nc = 7, and DBSPK where 
the reported SNR gain due to ICI suppression is about 0.5 dB, the results suggest that ICI 
suppression is even more advantageous at higher-rate transmissions, and increasingly so 
when we move to the scenarios of Figures 10.8b–d; i.e., when we increase the number of 
carriers to Nc = 11 (SNR gain is about 1 dB), reduce the processing gain to L = 32 (SNR 
gain is about 3 dB), or increase the modulation order to D8PSK (SNR gain far exceeds 5 
dB if not infinite), respectively. These results further confirm the benefits of ICI rejection 
in a full interference suppression scheme using MC-ISR.*

10.4.4  MT-CDMA, MC-DS-CDMA, and DS-CDMA  
Performance Comparison

This section is dedicated to the performance comparison of the proposed MC-ISR 
receiver with two potential next-generation multicarrier CDMA–air interface configu-
rations: MT-CDMA and MC-DS-CDMA. Single-carrier ISR [42] for 3G DS-CDMA–air 

* Simulation results performed in the framework of this contribution and reported in [50] show 
that the ICI rejection is even more beneficial in the case of one receiving antenna (M = 1).

0 1 2 3 4 5 6 7 8 9 1010−3
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R

MC−ISR (MAI Only)
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5% 

FIgure 10.7 BER versus SNR in dB of MT-CDMA MC-ISR, L = 64, Nc = 3, C = 8, with and 
without full interference suppression (i.e., with and without ICI suppression).
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interface is also considered as a reference. In addition, in order to provide a more detailed 
picture of the aggregate gain of the proposed MC-ISR receiver, we also compared its per-
formance with that of MC-MRC over the same two multicarrier CDMA–air interface 
configurations, as well as with that of single-carrier MRC over current 3G DS-CDMA. 
First, we derive the SNRreq from link-level simulations. Then, we translate the link-level 
results into system-level results using the procedure in Table 10.1. In Table 10.4, we pro-
vide the required SNR and the total throughput of DBPSK and D8PSK modulated data 
for DS-CDMA, MT-CDMA, and MC-DS-CDMA. For DBPSK modulation, we observe 
that we can improve the system performance by increasing the number of subcarriers. 
Indeed, the total throughput continues to increase despite the increase in the number 
of carriers. But a gain saturation is encountered as the number of subcarriers increases. 
Note, however, that the throughput increase is more important with MC-ISR due to ICI 
suppression. Table 10.4 also shows that MT-CDMA outperforms MC-DS-CDMA with 
DBPSK modulation because it uses longer spreading sequences and exploits the sub-
carrier correlation. Moreover, due to the reduced subcarrier bandwidth, MC-DS-CDMA 
has less frequency diversity, while MT-CDMA is better able to exploit path diversity, 
and hence achieves better performance. Note also that MC-DS-CDMA is more robust 
against ICI, but in applying MC-ISR, this advantage over MT-CDMA becomes obsolete 
and the performance gap between MT-CDMA and MC-DS-CDMA increases.

Next, we compare different configurations with D8PSK modulation. We notice a 
link-level deterioration for MT-CDMA as the number of subcarriers increases. Indeed, 
higher-order modulation is more sensitive to the residual ICI. MC-DS-CDMA is much 
less affected by this phenomenon because it is much more robust to ICI thanks to the 
higher subcarrier spacing. Therefore, with high-order modulation, MC-DS-CDMA out-
performs MT-CDMA when the number of subcarriers is high enough. We notice also that 
with the MC-MRC combiner, D8PSK MC-DS-CDMA outperforms D8PSK MT-CDMA 
even with a small number of subcarriers. It is clear, however, that D8PSK is less efficient 
than DBPSK modulation for all air interface configurations. In Table 10.4 we highlight 
the most spectrum-efficient MC-ISR–air interface configuration for each modulation. 
For both modulations MT-CDMA has the best link-level performance and the high-
est throughput (for a tested number of carriers less than or equal to 11). MT-CDMA 
with nine subcarriers and DBPSK modulation outperforms all other configurations and 
provides a throughput about 115% higher than that achievable with single-carrier MRC 
over a 3G DS-CDMA–air interface. The net benefits due to the proposed MC-ISR com-
biner and to the potential migration to a next-generation MT-CDMA–air interface are 
about 80 and 15%, respectively.

10.5  Conclusions

In this chapter we propose an adaptive multicarrier CDMA space-time receiver with 
full interference suppression capabilities named MC-ISR. First, we derived a complete 
model of the interference that takes into account MAI, ISI, and ICI in a multipath fading 
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Table 10.4 Required SNR and Maximum Throughput of DS-CDMA, MT-CDMA, and MC-CDMA for DBPSK and D8PSK (best 
performance values for each modulation are in bold)

MC-STAR Configuration DS-CDMA MT-CDMA MC-DS-CDMA

Nc 1 3 5 7 9 11 3 5 7 9 11

Modulation DBPSK

SNRreq in dB with MC-MRC 0.76 0.74 0.76 0.59 0.57 0.69 3.7 2.8 2.7 2.55 3

τmax in kbps with MC-MRC 2,040 2,160 2,100 2,240 2,295 2,244 1091.2 1402 1419 1,571.9 1,435

SNRreq in dB with MC-ISR 0.76 0.74 0.75 0.55 0.5 0.62 3.62 2.8 2.6 2.48 3

τmax in kbps with MC-ISR 3,600 3,960 4050 4,200 4,320 4,224 2,182.4 2,523.6 2,554.2 2,572.2 2,439.5

Modulation DSPSK

SNRreq in dB with MC-MRC 8.57 8 9.28 9 10 11 11 10.25 10.34 10.05 10.8

τmax in kbps with MC-MRC 1,080 1,080 900 840 810 792 818.4 841.2 851.4 857.4 861

SNRreq in dB with MC-ISR 8.57 7.86 8.8 8.9 9.4 10.5 10.94 10.25 10.2 10.02 10.8

τmax in kbps with MC-ISR 1,800 2,160 1,350 1,260 1,215 792 1,227.6 1,261.8 1,277.1 1,286.1 861
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channel with timing and frequency mismatch. Based on this model, we proposed a new 
adaptive multicarrier interference subspace rejection receiver. We incorporated the least 
complex and more practical ISR interference rejection mode to simultaneously suppress 
MAI, ISI, and ICI at the signal combining step. We also proposed a realistic implemen-
tation of the new MC-ISR receiver that includes an efficient strategy for carrier offset 
recovery in a multicarrier and multiuser detection scheme. MC-ISR supports both the 
MT-CDMA– and MC-DS-CDMA–air interfaces. Furthermore, the assessment of the 
new MC-ISR receiver was oriented toward an implementation in a future, real-world 
wireless system. Indeed, we analyzed the performance of MC-ISR in an unknown time-
varying Rayleigh channel with multipath, carrier offset, and cross-correlation between 
subcarrier channels and took into account all channel estimation errors. As another con-
tribution in this work, we derived a link/system-level performance analysis of MC-ISR 
based on the Gaussian assumption (GA) and validated it by simulations. Under realistic 
propagation conditions and in the presence of channel estimation errors, simulation 
results validated the performance analysis and confirmed the net advantage of the full 
interference suppression capabilities of MC-ISR. With two receiving antennas and nine 
MT-CDMA subcarriers in 5 MHz bandwidth, MC-ISR provides about 4,320 kbps at low 
mobility for DBPSK, i.e., an increase of 115% in throughput over current 3G DS-CDMA 
with MRC.

Appendix

Derivation of the Interference Variance after MC-ISR Combining

Our goal is to estimate the variances:
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Let us consider the general problem of deriving the variance of the sum of random 
complex variables. We first introduce the variables xα, α ∈{1, …, Nt} and ξα, α ∈{1, …, Nt}, 
with the following properties: E[ξα ξ∗

α′]  = Mξ, ∀α ≠ α′, E[ξα ξ∗
α] = Vξ, E[xα] = 0, and 

Var[ΣNt
α=1 xα] = 0. Then we assume that ξα and xα are independent. Thus, we derive the 

variance as follows:
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From Var[ΣNt
α=1 xα] = 0 we have
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Then, by substituting equation (10.55) in equation (10.54) we obtain
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Now we apply the same procedure to derive the variance of δd
MAI,k,n + δd

ICI,k,n + δd
ISI,k,n. 

We substitute ξα with ξu
k′,n′λ

u
k′,n and xα with  W dH

k,nŶ un′,k′n. The MC-ISR combiner W d
k,n satis-

fies the optimization property in equation (10.25); thus,
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Then,
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We consider E[W d
k,n2] = κ–, which is a measure of the enhancement of the white noise 

compared to the MRC combiner [45]. We also assume that the combiners W d
k,n and Ŷ un′,k′n 

Thus, we derive the variance of the residual interference as follows:
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In the developments of equation (10.59), we exploited the fact that we transmit different 
data sequences over distinct subcarriers for a given user, and hence assumed that the 
cross-correlation terms from different subcarriers are zero.

In the following, we will derive the values of Vξ and ρξ under the following three 
assumptions: (1) the error indicating variables ξu

k′,n′ and λu
k′,n are independent; (2) all the 

random sequence variables (ξu
k′,n′) and (λu

k′,n) are independent and identically distributed; 
and (3) E[λu

k′,n]. Given these assumptions we derive Vξ as follows:
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In order to evaluate Vξ, we exploit the expression of the variance of the power control 
error in [51]. Hence, ρλ varies with the maximum Doppler frequency fD (equation (10.51) 
in [51]), yielding:
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where τPC is the power control feedback delay. Below we derive the expectation
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If Srec  1, the value of ρξ can be derived as follows [45]:

 ρ πξ  1 1 2
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The interference I d
k,n is approximated as a Gaussian distributed random variable with 

zero mean. Only its variance needs to be evaluated to derive the variance of the residual 
interference in equation (10.59).

Derivation of the Interference Variance 
for Band-Limited MC-CDMA

The chip waveform has been noted to be an important system parameter for DS-CDMA 
and MC-DS-CDMA. Hence, the performances of DS-CDMA and MC-DS-CDMA with 
various time-limited and band-limited chip waveforms have been investigated. How-
ever, for all the MT-CDMA systems found in the literature, a time-limited waveform 
is generally employed [4, 18, 52, 53]. Since we consider a practical square-root raised 
cosine pulse, the focus of this appendix is to derive the variance of the interference of 
MC-CDMA (including MC-DS-CDMA and MT-CDMA) with a band-limited square-
root raised cosine waveform. Let G( f ) be the Fourier transform of the raised cosine 
filter:
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Let ψ–2
D = E[(ψk

d)2] be the average power of the k th carrier of the desired user and ψ–2
I be 

the average power on each interfering carrier (assumed equal for all u and all k). Using 
the general results in [54], one has
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It is easy to obtain ς(β) = 1 – β/4). To obtain χk(β), we need to consider the MC-DS-
CDMA and MT-CDMA systems separately. After mathematical evaluations of the inte-
gral, we obtain:
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for MC-DS-CDMA (λ = L and fk = k/Tc) and
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for MT-CDMA (λ = L and fk = k/TMc). The variances of the residual ICI and ISI interfer-
ences from the same user can be written as
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where δis = (P – 1)/P is a measure of the relative impact of the interference generated by 
the other paths on a given path of the desired user.
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11.1  Introduction

Multiple-input multiple-output (MIMO) systems [1–4] have been studied extensively 
in the literature to combat fading in wireless communication systems. By mounting 
multiple antennas on each communication terminal and by having them placed suf-
ficiently apart on the device, each user is able to gain access to multiple independent 
fading paths, which can be exploited to improve communication efficiency. With access 
to the independent fading paths, diversity and multiplexing gains [5] can be achieved 
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by transmitting the same message on different paths [2] or by exploiting the additional 
degrees of freedom to construct multiple parallel transmission channels [3]. The gains 
increase with the number of transmit and receive antennas. However, in practice, it is 
difficult to place multiple antennas on a single terminal while trying to maintain inde-
pendence among the different fading paths, not to mention the cost of the devices. This 
is especially true as the dimension of the devices decreases. For this reason, cooperative 
communications have been proposed to achieve MIMO gains without requiring mul-
tiple antennas on each terminal.

Cooperative communications [e.g., 6–12] allow users in the system to cooperate 
by relaying each other’s messages to the destination. With only one antenna on each 
device, the users may cooperatively form a distributed antenna array to emulate the 
spatial diversity and multiplexing gains in conventional MIMO systems. Most works in 
the literature on cooperative communications focus on the physical layer designs, such 
as the coding, modulation, and diversity-combining techniques. However, it is equally 
important to study the subject from a medium access control (MAC) layer perspective, 
in which case the system throughput and the efficiency of resource allocation are consid-
ered instead of the outage or error probabilities. In fact, the major drawback of coopera-
tive systems is the loss of bandwidth efficiency due to the need for interuser coordination 
since the antennas are deployed at distributed locations. That is, the messages exchanged 
for coordination occupy the bandwidth resources that otherwise could have been used 
for noncooperative transmissions. Therefore, MAC protocols designed for coopera-
tive systems, i.e., protocols that allocate the resources for cooperative transmissions or 
interuser coordination, may have a notable impact on the system performance. In this 
chapter, we provide a comprehensive survey of MAC protocols for cooperative random 
access networks. In contrast to most works in the literature, where a perfect centralized 
scheduling is usually assumed, we focus on the random access scenario where users 
decide locally when to transmit their own packets and when to cooperate.

Random access protocols allow users in the system to access the network without 
complex interactions with a centralized control. Essentially, users access the channel 
based only on some simple local rule whenever they have a packet to transmit and devise 
strategies to deal with interference or collisions after they occur. This is in contrast to 
centralized scheduling where collision and interference are prevented with the addi-
tional cost of communication overhead. Random access protocols are particularly use-
ful for cooperative systems that span over a large network, such as that of sensor and ad 
hoc networks, where centralized coordination may be costly. However, the advantages 
of cooperation are not evident in random access networks since no centralized control 
is available to coordinate their cooperative operations.

In this chapter, we shall discuss the use of cooperative transmissions in four differ-
ent random access systems: (1) the slotted ALOHA system [13, 14], (2) CSMA/CA in 
IEEE 802 legacy systems [15, 16], (3) the random access system with collision resolution 
[17, 18], and (4) the distributed ad hoc network [9, 19, 20]. Specifically, for the slotted 
ALOHA system, cooperative transmission and queuing schemes have been proposed in 
[13, 14] where each user is allowed to record the packet transmitted by its partners if the 
partner failed in its previous transmission attempt. The user recording the packet may 
then relay the message to the destination in subsequent time slots. The queue stability is 
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used as the performance measure in these works. In [15, 16], similar cooperative relaying 
mechanisms have also been considered for the IEEE 802 legacy system. These schemes 
exploit the benefits of cooperative relaying, but do not consider the receiver’s ability to 
perform signal combining. In [18], the authors proposed advanced signal processing 
methods to resolve collision resolution at the destination by modeling the problem as 
a multiuser detection or source separation problem. The performance of this scheme 
is further enhanced with cooperative relaying as proposed in [17]. Furthermore, in 
[9, 19, 20], cooperation is used to facilitate the broadcasting operations in large-scale dis-
tributed ad hoc networks. Specifically, with users cooperatively relaying the same signal 
(i.e., broadcasting), the aggregate signal arriving at each receiver can be simply treated 
as a multipath signal and exploited through diversity-combining techniques. Through 
these discussions, we demonstrate that, in random access networks, cooperation can be 
performed opportunistically rather than being fully coordinated.

11.2  Fundamentals of Cooperative Communications

The basic operations of a cooperative communication system can be described with the 
canonical two-user example illustrated in Figure 11.1. Suppose we have two users, user 1 
and user 2, that are transmitting to the common destination D. At any instant in time, 
one of the users will serve as the source, while the other user cooperates by relaying the 
message from the source to the destination. As a result, the destination receives two 
packets encoded from the same message, one directly from the source and the other 
from the relay. The destination fails to decode the message only if the channels on both 
paths are unreliable at the time of transmission.

Based on relaying, many cooperation schemes have been proposed in the literature, 
such as amplify-and-forward (AF), decode-and-forward (DF) [7], coded cooperation 
[10, 21], quantize-and-forward, compress-and-forward [22], etc. The most intuitive and 
widely applied methods are the AF and DF schemes. In the AF scheme, the users, which 
play the role of the relays, simply amplify the signal that they receive without explicitly 
decoding the messages. On the other hand, in the DF scheme, the relays first decode 
and retransmit either a repetition of the original message or a re-encoded message to 
improve the coding efficiency. If the message is re-encoded (with forward error correc-
tion capabilities), this scheme is then referred to as the coded cooperation scheme. All 
of these methods can be employed with the addition of distributed space-time coding or 

User 2

User 1

γ1
Destination

γ2

FIgure 11.1 Cooperative communications with two users and one destination.
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antenna selection techniques. Moreover, when the channel state information (CSI) can 
be further exploited at the transmitters, methods such as power allocation, precoding, 
or transmit beamforming can also be applied [11]. Details of these methods can be found 
in [6–11] and the references therein.

These cooperation methods can be easily extended to a network with N > 2 number 
of users. One approach is to divide the network into cooperating pairs that cooperate 
according to the mechanics shown in Figure 11.1. Another approach is to have, at each 
instant in time, one user serve as the source while the remaining users relay coopera-
tively the messages to the destination. In the first case, the cooperating pairs can be 
viewed as a super-user contributing a sum traffic to the network, while in the latter case, 
the relaying users effectively form a distributed antenna array possibly providing diver-
sity and multiplexing gains for the source [12], similar to that in conventional multiple-
antenna systems. Any combination of these two approaches can be taken as well.

Before each cooperative transmission, a coordination phase is required to synchro-
nize the participating users. Inevitably, additional bandwidth and power resources are 
consumed in this process, as compared to the conventional MIMO system. In fact, this 
is the main cause of inefficiency in cooperative systems, but is often overcome by the sig-
nificant gains in reliability and throughput. Two coordination methods are considered 
in the literature: coordination through direct interuser communication and coordina-
tion using feedback from the destination. In the first case, the users simply transmit 
their messages to each other and indicate the coding or modulation methods that should 
be used [7–9, 19, 23]. In the latter case, the feedback from destination is used to control 
and coordinate the messages transmitted by the users [15, 18, 24, 25].

In the past, most work on cooperative communications focused largely on the physical 
layer signal processing, such as the coding, modulation, diversity-combining schemes, 
power control, etc. A tutorial on these cooperative communication schemes can be 
found in [10, 11, 26]. However, most of the systems proposed in the literature assume 
strict synchronization between users or require a high degree of coordination, which is 
hard to achieve in practice. In the following, we provide examples of how cooperative 
communications can be applied to random access networks with reduced synchroniza-
tion requirements.

11.3  Cooperation in Slotted ALOHA Random  
Access Networks

In random access networks (RAN), the users’ transmissions are based only on simple 
local rules, with minimal interference from the central control. The lack of centralized 
control may result in collision between users and, in turn, reduce the system throughput. 
However, the simplicity, scalability, and robustness of random access protocols make 
RAN a favorable choice for low-traffic local area networks or multihop ad hoc networks. 
While cooperation is shown to be advantageous with perfect synchronization, it is not 
obvious whether cooperation can be helpful in random access networks and, if so, by 
how much. In fact, since the users behave in a decentralized manner, cooperation can 
only be achieved opportunistically in these scenarios. In this section, we study the effect 
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of cooperation on one of the most fundamental random access protocols—the slotted 
ALOHA system [27].

11.3.1  Slotted ALOHA in a Wireless Network

In this section, let us start by reviewing the conventional slotted ALOHA system before 
incorporating the concept of cooperation in later sections.

Consider a network with N users, denoted by the set U = {1, 2, …, N}, transmitting to 
an access point (AP) through the wireless fading channel, as shown in Figure 11.2. In the 
slotted ALOHA system, the time is divided into equal-length time slots with the dura-
tion equal to the transmission time of one packet. The beginning and ending of each 
time slot are synchronized for all users, and a transmission can only occur at the begin-
ning of a time slot. Let us assume, without loss of generality, that the length of each time 
slot is equal to 1 such that the transmission in the mth time slot occurs during the time 
t ∈[m,m+1). If a user, say user i, has a packet to transmit, it will transmit in the current 
time slot with probability pi, which is independent from all users and over all time slots. 
If more than one user is transmitting in the same time slot, a collision will occur and no 
packet will be successfully received at the AP.

In contrast to conventional slotted ALOHA systems, where a transmission is assumed 
to be successful as long as there is no collision, the transmission of a packet in a wireless 
system may fail due to channel fading. Suppose that the channel experienced by user 
i in the mth time slot is parameterized by the variable γi[m]. For example, γi[m] may be 
the signal-to-noise ratio (SNR) of the signal received at the AP corresponding to the 
transmission by user i in the mth time slot. Assume that γi[m] is independent and identi-
cally distributed (i.i.d.) over time with the distribution function Fγi

. Given that user i 
is the only user transmitting in the current time slot, the probability that the destina-
tion receives the packet correctly can be modeled by the probability Ψ(γi[m]), which is 
a function of the channel state. Let {Hi[m]}∞

m=0 be a sequence of i.i.d. Bernoulli random 
variables with probability ψi = eγi

[Ψ(γi[m])], where the event Hi[m] = 1 indicates the 
event of a successful transmission. After each time slot, the access point will feedback 
{0,1,e} information to the users, where 0 indicates an idle slot, 1 indicates a success, and 
e indicates an error, due to either collision or channel fading.

User 2 
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. . . . . 
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1 2 m m + 1 . . . . . . . . . . . . 
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FIgure 11.2 Illustration of the slotted ALOHA system.
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Suppose that the arrival of messages at each user, say user i, is modeled as a sequence 
of i.i.d. Bernoulli random variables, {Ai[m]}∞

m=0, with rate λi packets per time slot. Let 
Bi, i = 1, …, N, be the buffer at user i that stores the packets awaiting transmission and 
assume that there is no limit on the occupancy of the buffer. The number of packets in 
the buffer Bi at the beginning of the mth time slot is denoted by Qi[m], which is referred 
to as the queue state. Let {V

~
i[m]}∞

m=0 be a sequence of Bernoulli random variables with 
V
~

i[m] ∈{0,1} and probability pi = Pr(V
~

i[m] = 1), where V
~

i[m] = 1 indicates the event 
that user i attempts a transmission in the mth time slot regardless of whether it has a 
packet to transmit. The event that user i actually transmits is then denoted by Vi[m] = 
V
~

i[m] · χN(Qi[m]), where  is the set of natural numbers 1, 2, 3, …, and χE(x) is the indi-
cator function, defined as

 χE
E
E

( )x x
x

=
, ∈
, ∉ .






1
0

The evolution of the queue states can then be written as

 Q m Q m D m A m i Ni i i i[ ] ( [ ] [ ]) [ ]+ = − + , ∀ = , , ,+1 1  (11.1)

where 

 D m H mV m V j mi i i
j i

[ ] [ ] [ ] [ ]= −







≠
∏ 1

is the departure process and (x)+ = max{x,0}. It follows that Qi[m + 1] is independent of 
Qi[m – 1] if given the values of {Qi[m], ∀i}, and thus Q[m] = [Q1[m], …, QN[m]] for m = 0, 
1, 2, …, forms a discrete-time Markov chain.

In the discussions on MAC protocols, we are often concerned with the maximal stable 
throughput of the system, which is defined as the maximum arrival rate that each user 
can accommodate without causing the queues to become unstable.

Definition 11.1

The system is stable under the arrival rates (λ1, λ2, …, λN) if there exists a set of transmis-
sion probabilities p1, p2, …,  pN such that

 limPr{ [ ] } ( ) lim ( )
m i i x iQ m x G x G x i

→∞ →∞
< = = , ∀ .and 1

Our goal is then to characterize the possible values of arrival rates for which the sys-
tem remains stable, which is defined as the stability region of the system. However, find-
ing the stability region of the slotted ALOHA system has been a difficult task. Over the 
past 30 years, only the stability region of a two-user [27] or three-user [28] system has 
been completely characterized, although inner and outer bounds have been derived for 
the case where N > 3. In the following, we shall compare the two-user stability region of 
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the noncooperative and cooperative cases to illustrate the cooperative advantages in the 
slotted ALOHA system.

11.3.2  Stability Region of the Noncooperative Slotted  
ALOHA System

To derive the stability region of the slotted ALOHA system, Rao and Ephremides [27] 
proposed the use of an auxiliary hypothetical system that has the same arrival process 
and follows the same transmission policy as the original system, but is less likely to be 
stable. This system is called a dominant system. The stability region of the dominant sys-
tem may be easier to derive if it is set up properly, but is only guaranteed to be an inner 
bound of the true stability region. However, in certain cases, the stability region of both 
systems may actually coincide, as is the case in the following example. Even if they do 
not coincide, the dominant system still provides useful insights on the behavior of the 
original system.

A dominant system can be constructed by assuming that a subset of users in the net-
work are fully loaded, i.e., they always have a packet to transmit regardless of the actual 
queue state in the original system. Under this assumption, the departure rate of each 
user will be no larger than that in the original system since contention between users 
increases.

Interestingly, following the same procedures as in [27], we can show that the systems 
considered in the following satisfy the conditions of Loynes’ formulation, and thus, by 
applying Loynes’ theorem [29], we can say that the system is stable when the arrival rates 
λ1, …, λN are smaller than the service rates μ1,  …, μN, for a given set of transmission 
probabilities p1, …, pN, i.e., λi < μi for all i. The service rate of user i refers to the average 
number of user i ’s packets that can be served in each time slot. On the other hand, the 
system is unstable if there exists i such that λi > μi. In this case, our task reduces to find-
ing the departure rate of each system.

To derive the stability region of the two-user system, let us first consider the case where 
user 1 is fully loaded. In this case, a packet from user 2 can be successfully received at the 
base station if and only if the reception is successful, which occurs with probability ψ2, 
and user 1 does not transmit. Therefore, the service rate of user 2, which is a function of 
p1 and p2, is equal to μ1∗

2
 (p1, p2) = ψ2 p2(1 – p1). If user 2 transmits at a rate λ2 strictly less 

than the service rate μ1∗
2 (p1, p2), it follows from Little’s theorem [30] that the probability 

the buffer of user 2 is non-empty is equal to 

 λ
ψ

2

2 2 11p p( )
,

−

and the service rate of user 1 is equal to 

 µ ψ λ
ψ1

1
1 2 1 1

2

2 1

1
1

∗
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Hence, given p1 and p2, the stability region obtained by assuming that user 1 is fully 
loaded is given by

 R1
1 2 1 2 1 1

1
1 2 2 2

1∗ ∗ ∗
, = , : < , , <( ) ( ) ( ) (p p p p pλ λ λ µ λ µ 11 2,{ }.p )  (11.2)

For λ2 < ψ2p2(1 – p1), the bounds for λ1 are not only inner bounds, but in fact coincide 
with that of the true system. More specifically, when λ1 is greater than μ1∗

1 (p1, p2), user 1 
will be unstable in the dominant system and the queue length will go to infinity without 
emptying with finite probability, which means that there are sample paths that do not 
return to zero infinitely often. For such sample paths, the queue state will not return to 
zero after a certain time, in which case the dominant system and the original system 
will be identical. This shows that the original system will be unstable for these values of 
λ1 as well.

Similarly, by assuming that user 2 is fully loaded, the stability region can be expressed as

 R2
1 2 1 2 1 1

2
1 2 2 2

2∗ ∗ ∗
, = , : < , , <( ) ( ) ( ) (p p p p pλ λ λ µ λ µ 11 2,{ },p )  (11.3)

where μ2∗
1 (p1, p2) = ψ1p1(1 – p2) and 

 µ ψ λ
ψ2

2
1 2 2 2

1

1 2
1

1
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By taking the union of R1∗ (p1, p2) and R2∗ (p1, p2) for all possible transmission probabili-
ties, the stability region of the two-user slotted ALOHA system is given by

 R R R= , ,
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, ∈ ,
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The boundary of the stability region is plotted in Figure 11.3 for the cases where ψ1 = 
0.75 and ψ2 = 0.5 (solid curve) and ψ1 = ψ2 = 0.25 (dash-dotted curve). The case with no 
channel errors (dotted curve), ψ1 = ψ2 = 1, is also plotted as a reference.

11.3.3  Cooperation in a Two-User Slotted ALOHA System

In the conventional slotted ALOHA system, each user transmits independently of oth-
ers, and thus, the stable throughput of each user is limited by its local channel quality. 
It is possible that the users experiencing bad channels on average will be seriously back-
logged, while the others, i.e., the ones that experience good channels, have nothing to 
transmit. Intuitively, if the users are willing to cooperate, those that are more capable 
can help by relaying the messages from the less capable users and thereby increase their 
stable throughput.
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Let us consider a two-user slotted ALOHA system as shown in Figure 11.4. Follow-
ing the same mechanics as the slotted ALOHA system, we consider the simplest class 
of cooperation based on decode-and-forward relaying. In the cooperative system, each 
idle user (i.e., users that have no packet to transmit) will continuously listen for a trans-
mission from the other user and help by relaying the packet to the AP if the original 
transmission failed in its attempt to reach the AP. In order to do this, we assume that 
each user is equipped with an additional buffer, which will be used to store the messages 
transmitted by the other user. To distinguish from buffer Bi, we denote this buffer by CBi 
for user i and refer to it as the cooperative buffer. In this case, Bi will be called the source 
buffer. Under the half-duplex assumption, a user is able to receive the message from the 
other user only if it is not transmitting in the same time slot. Moreover, we assume that 
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FIgure 11.3 The two-user slotted ALOHA system without cooperation.
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FIgure 11.4 The two-user slotted ALOHA system with cooperation.
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the message will always be correctly received by the cooperating users as long as the 
transmission is collision-free. This basically assumes that the users are sufficiently close 
to each other.

Suppose that user 1 is transmitting a certain packet for the first time from its source 
buffer while user 2 remains silent. During this time slot, user 2 will be able to over-
hear the message transmitted by user 1 and record the message in its cooperative buffer 
(i.e., CB2). If an e feedback is received from the access point, the packet will remain at 
the head of line (HOL) and both users will be allowed to retransmit the packet in later 
time slots until one of them succeeds. When a transmission is eventually successful, i.e., 
a 1 feedback is received from the access point, the packet will be dropped from both 
users. Since no new packet is transmitted by the source user until the HOL packet is 
successfully transmitted, the length of the cooperative queue cannot exceed 1 and, thus, 
the stability of this queue will not be a concern. Let CQ1[m], CQ2[m] ∈{0, 1} and Q1[m], 
Q2[m] ∈{0, 1, 2, …} represent the number of packets stored in the buffers CB1, CB2, B1, 
and B2, respectively, at the beginning of the mth time slot.

Let pi be the transmission probability of user i and let Ai[m], Vi[m], V
~

i[m], and Hi[m] 
be as defined in the previous subsection. If user i decides to transmit in the current slot, 
and both Bi and CBi are nonempty, user i will choose the packet from Bi with probability 
qi, and CBi with probability q–i = 1 – qi. To incorporate this into the queue evolution equa-
tion, we introduce the new Bernoulli random process {Ui[m]}∞

m=0, where Pr{Ui[m] = 1} = 
qi and Ui[m] = 1 indicate the event that user i transmits a packet from Bi instead of CBi 
when both the buffers are nonempty. A packet from the source buffer Bi will be trans-
mitted either if (1) CBi is empty and Bi is not or if (2) Bi and CBi are both nonempty but 
user i chooses to transmit from Bi, i.e., Ui[m] = 1. Therefore, the event that a transmission 
attempt is made by a packet in Bi is represented with

 V m V m CQ m V m U mi
coop

i i i i[ ] [ ] ( [ ]) [ ] [ ]{ }= ⋅ + ⋅ ⋅χ χ0 N(( [ ]),CQ mi  (11.5)

where Vi[m] = V
~

i[m] · χ(Qi[m]). Notice that Vi
coop[m] = 1 if a packet is transmitted from 

Bi, and Vi
coop[m] = 0 otherwise. On the other hand, a packet from the cooperative buffer 

CBi is transmitted if user i attempts a transmission and the packet transmitted is not 
from Bi. Therefore, we have

 CV m V m Q m CQ mi
coop

i i i[ ] [ ][ ( [ ]) ( [ ]{ } { }= − ⋅ 1 0 0χ χ ))] [ ]− .V mi
coop  (11.6)

More specifically, a packet from the cooperative buffer is transmitted if CVi
coop[m] = 1; 

otherwise, CVi
coop[m] = 0. Since the successful transmission of a packet can be achieved 

either by the source itself or by the cooperating user, the departure process of user i is

 
D m V m H m V m CV mi i

coop
i j

coop
j
coop[ ] [ ] [ ]( [ ] [ ]= − −1 ))

                [ ] [ ]( [+ −CV m H m Vj
coop

j i
coop1 mm CV m i i ji

coop] [ ])− , = , ≠ .for and1 2
 (11.7)
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The evolution of the source queues is given in (11.1), while that of the cooperative queue is

  CQ m CQ m D m V m H mi i j j
coop

j[ ] ( [ ] [ ]) [ ]( [ ])+ = − + −+1 1 (( [ ]) ( [ ]){ }1 0− .V m CQ mi
coop

iχ  (11.8)

The queue states {CQ1[m],CQ2[m],Q1[m],Q2[m]}∞
m=0 form a discrete-time Markov chain.

11.3.4  Stability Region of the Two-User Cooperative Slotted  
ALOHA System

Due to the complex interactions among the four queues Q1[m], Q2[m], CQ1[m], and 
CQ2[m], the stability region of the cooperative system is difficult to obtain. However, 
we are able to derive an inner bound by analyzing a dominant system where we let both 
users be fully loaded, i.e., they always have a packet available for transmission. The sta-
bility region of this dominant system will be referred to as the fully loaded region in the 
following.

When the users are fully loaded, the packet in CBi will always be transmitted with 
probability q–i as long as it is nonempty, i.e., CQi[m] = 1. This is to say that when the users 
are fully loaded, the states of the cooperative buffers are independent of the states of 
the source buffers. In this case, {CQ1[m],CQ2[m]}∞

m=0 forms a finite-state Markov chain 
with four states: S0 = (0,0), S1 = (0,1), S2 = (1,0), and S3 = (1,1). For a given set of transmis-
sion probabilities p1, p2, q1, and q2, the Markov chain yields a steady-state distribution 
denoted by the probabilities π0, π1, π2, and π3, where πi is the steady-state probability of 
state Si. The service rates for users 1 and 2, respectively, are given by

 
µ π π ψ π1 1 2 1 2 1 3 2 2 1 2 21 1( ) ( ) ( ) [ (p p q q q p p, , , = + − + − + ππ ψ

µ π π

3 1 1 2 1

2 1 2 1 2 2 3 1

1) ] ( )

( ) ( )

q p p

p p q q q

− ,

, , , = + pp p q p p1 2 1 1 3 2 2 1 21 1 1( ) [ ( ) ] ( )− + − + − .ψ π π ψ

The stability region of the fully loaded system is

 R Rcoop

p p
q q

coop p=
, ∈ ,
, ∈ ,

( ) [ ]
( ) [ ]

(
1 2

2

1 2
2

0 1
0 1

1∪ ,, , , ,p q q2 1 2 )  (11.9)

where Rcoop (p1, p2, q1, q2) = {(λ1,λ2) : λ1 < μ1 (p1, p2, q1, q2), λ2 < μ2 (p1, p2, q1, q2)} is the fully 
loaded region given fixed values of p1, p2, q1, and q2. The region in (11.9) serves as an inner 
bound to the stability region of the cooperative slotted ALOHA system.

11.3.5  Cooperative Slotted ALOHA with Channel Awareness

The cooperation considered up to this point exploits the diversity gains to improve the 
throughput of the system. Since the same packet may be transmitted by both users in 
the network, the probability of success will not be limited by the local channel quality 
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of any single source. However, the performance can be further improved by exploiting 
knowledge of the local channel state information (CSI) at the users [13]. For example, if 
a user experiences bad channels, it should reduce its transmission probability to avoid 
collision with the other users. This is the subject of this section.

In a multiuser system, it is well known that, with knowledge of the CSI, the through-
put of the system can be increased by scheduling users with the best channel to transmit 
in each time slot. This advantage is referred to as multiuser diversity in the literature [31]. 
To exploit this in a random access system, one can adopt a channel-aware transmission 
control function, as proposed in [32, 33], that determines the transmission probability 
of each user based on its local channel state in each time slot. Specifically, instead of 
transmitting with a fixed transmission probability, we assume that each user, say user i, 
adjusts its transmission probability based on its local channel state γi[m] according to the 
function si(γi[m]). The average transmission probability is defined as 

 
p s dFi i i ii

= ∫ ( ) ( ),γ γγ

where Fγi
(γi) is the distribution function of the channel state γi .

Consider a cooperative network that consists of two users and assume that both users 
are fully loaded. Similar to the case without channel awareness, the cooperative queue 
states {CQ1[m],CQ2[m]}∞

m=0 form a four-state Markov chain where the stationary distri-
bution can also be derived. The service rates under the fully loaded assumption are given 
by
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π β

µ π π
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q p
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 (11.10)

for users 1 and 2, respectively, where βi = eγi
[si(γi)Ψ(γi)]. By Loynes’ theorem, the fully 

loaded region for fixed s1, s2, q1, and q2 is

  Rcoop CSI CSIs s q q, ,, , , = , <( ) {( )1 2 1 2 1 2 1 1λ λ λ µ: (( ) ( )}s s q q s s q qCSI1 2 1 2 2 2 1 2 1 2, , , , < , , , .,λ µ  (11.11)

For fixed s1(γ1), s2(γ2), we take the union of the regions in (11.11) over q1, q2 to obtain
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The region given above takes on the shape illustrated in Figure 11.5, where V1(s1,s2) = 
(V1,x(s1,s2), k(s1,s2) – V1,x(s1,s2)) and V2(s1,s2) = (k(s1,s2) – V2,y(s1,s2), V2,y(s1,s2)). The maximum 
service rate of user 1 is achieved by setting q1 = 1 and q2 = 0 (i.e., user 1 always transmits 
from the source buffer, and user 2 always transmits from the cooperative buffer), and simi-
larly for user 2. By taking the union of the pentagons in Figure 11.5 over all s1, s2, we obtain 
the fully loaded region for the cooperative channel-aware system.

11.3.6  Performance Comparisons

In Figure 11.6, we plot the boundaries of three regions: (1) the stability region of the 
conventional slotted ALOHA system, (2) the inner bound of the cooperative system, and 
(3) the inner bound of the cooperative system with channel-aware transmission control. 
We consider, as an example, the reception model where

 Ψ( )γ
γ γ

=
, ≥
, ,






1
0

if
otherwise

th

which says that the packet is perfectly received if the channel state exceeds a certain 
threshold γth and fails otherwise. For the case with channel awareness, we assume that 
the channel-aware transmission control functions si(·), for all i, are step functions such 
that the transmission probability is 1 if the local channel state exceeds a certain value, 
and 0 otherwise. This was shown to be optimal in [13, 32].

Figure 11.6(a) is plotted for the case where ψ1 = eγ1
[Ψ(γ1)] = 0.1 and ψ2 = eγ2

[Ψ(γ2)] = 
0.1, and Figure 11.6(b) is plotted for the case where ψ1 = 0.2 and ψ2 = 0.8. As shown in the 
figures, cooperation enlarges the stability region, especially when one of the users has a 
much better channel than the other. With cooperation, the user that on average experi-
ences a bad channel can utilize help from its partner to increase the throughput of its 
own packets. When both users experience bad channels, little advantage can be gained 
through pure cooperation, as shown in Figure 11.6(a). However, a significant gain is 

λ1 + λ2 = k(s1, s2)

λ2

λ1

V2(s1, s2)

V1(s1, s2)

FIgure 11.5 Stability region for given s1(γ1) and s2(γ 2).
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achieved when the users are able to adjust their transmission probabilities according 
to their local channel state. The channel-aware transmission control allows the users to 
exploit the multiuser diversity and increase the throughput of both cooperative users.

FIgure 11.6 The stability regions and fully loaded regions for the cases with and without 
cooperation and channel awareness.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

λ1

λ2

λ2

Without Cooperation
Cooperation without Channel−aware
Cooperation with Channel−aware

(a) ψ1 = 0.1 and ψ2 = 0.1

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ1

Without Cooperation
Cooperation without Channel−aware
Cooperation with Channel−aware

(b) ψ1 = 0.2 and ψ2 = 0.8

© 2009 by Taylor & Francis Group, LLC



Cooperative Communications in Random Access Networks 327

Although significant gains are already demonstrated in the above examples, it is 
worthwhile to notice that the form of cooperation discussed above does not utilize 
diversity-combining techniques at the AP. However, these techniques can be easily 
incorporated into our model to further improve the system performance. The analy-
sis of these systems is subject to future investigation. The discussions for the case of N 
users can be found in [34]. Furthermore, we can also consider the use of multiple-packet 
reception in the cooperative slotted ALOHA system. Readers are referred to [35] for 
detailed discussions.

11.4  Cooperation with CSMA/CA in IEEE 802  
Legacy Systems

Cooperation in its simplest form can be easily incorporated into the IEEE legacy systems. 
In fact, Liu, Tao, and Panwar [15] proposed a cooperative MAC protocol for wireless 
local area networks (WLANs) by making small changes to the IEEE 802.11b MAC. The 
idea is to use, in addition to the request-to-send and clear-to-send (RTS/CTS) messages, 
the helper request-to-send (HTS) message to help reserve the channel for the duration of 
the cooperative transmission and to coordinate the transmission between cooperating 
users.

There are two MAC operations in IEEE 802.11b: the distributed coordination function 
(DCF) and the point coordination function (PCF). The DCF is a contention-based method 
that provides asynchronous data transfers, and the PCF is a schedule-based method used 
to provide connection-oriented file transfers. Cooperation is less problematic in the latter 
case since a centralized control is used to schedule the users’ transmissions. The coop-
erative MAC protocol proposed in [15] is based on the contention-based method, where 
no centralized control from the access point is required, and therefore is suitable for 
the ad hoc scenario. The DCF is designed based on the Carrier Sensing Multiple Access 
with Collision Avoidance (CSMA/CA) protocol. In DCF, a user must first sense whether 
a transmission by a neighboring user is in progress before transmitting its own data, i.e., 
physical carrier sensing. However, this does not avoid the hidden terminal problem, that 
is, the event that a user in the vicinity of the destination is transmitting simultaneously 
with the source and interfering with the reception at the destination. To avoid this prob-
lem, RTS and CTS messages are broadcast by the source and the destination before the 
data packet is actually transmitted to inform the neighboring users that a transmission 
with a certain duration is to follow. This is referred to as virtual carrier sensing.

For example, suppose that user 1 intends to transmit a data packet to user 2, as shown 
in Figure 11.7. Before transmission of the packet, user 1 first senses (physically) whether 
the channel is idle. If it is, user 1 will send an RTS message to the destination (i.e., user 2), 
which will reserve the channel from its neighboring users for a duration indicated in 
the network allocation vector (NAV) of the RTS message. If the destination is ready 
to receive the packet, that is, no other user is transmitting in its vicinity, it will reply 
with a CTS message to confirm the transmission and to reserve the channel from users 
in its vicinity. With multi-rate modulation and coding schemes available in the IEEE 
802.11 standard, the users are able to adapt their transmission rates based on their local 
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channel quality. The time duration reserved by the RTS/CTS messages is then adjusted 
accordingly. When only a low data rate is achievable between two distant users, the 
transmission channel may be occupied for a long period of time but with low channel 
utilization, which significantly reduces the system throughput. To improve upon this, 
the source can ask a close-by user to relay the message to the destination, assuming 
that the source-relay and the relay-destination channels have sufficiently high transmis-
sion rates to reduce the total transmission time.

Cooperation can also be considered with slight modifications to the CSMA/CA pro-
tocol, as illustrated in Figure 11.8. In this case, each user is required to maintain a helper 
table that records the information about the potential helpers in its vicinity. The table 
contains four fields (e.g., see Figure 11.8(a)): the helper ID (i.e., MAC address), the time 
that a packet from the helper is last received, the rate between the helper and the desti-
nation (i.e., Rhd), and the rate between the source and the helper (i.e., Rsh). Before each 
transmission, the user searches this table for the best helper and determines whether 
cooperation is actually advantageous in its case.

For example, suppose that the source node (i.e., user 1) wants to transmit an N-bit 
packet to the destination node (i.e., user 2), as illustrated in Figure 11.8(b). With Rsd 
being the rate of the source-destination link and Rsr, Rrd the rate of the source-relay and 
relay-destination links, each user can compute the time that it takes for both direct and 
cooperative transmissions. Specifically, for direct transmission, the time that it takes is 
equal to N/Rsd, and for cooperative transmissions with relay r, the time is equal to 

 
N
R

N
Rsr rd

+








 .

Before each transmission, the source first computes the cooperative transmission time 
corresponding to each helper and selects the user with the shortest time as the potential 
helper. The source then compares this with the time required for direct transmission 
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FIgure 11.7 Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA).
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and requests help from another user only if relaying can speed up the transmission. In 
other words, user 1 selects user i to be the potential helper, where

 i N
R

N
Rr sr rd

= +








 ,argmin

and requests cooperation only if

 N
R

N
R

N
Rsi id sd

+








 > .

To inform the destination about the availability of the relay node and reserve the 
transmission time for the relay node, an additional HTS control message is exchanged 
among the source, relay, and destination. Specifically, when the source node decides to 
transmit cooperatively, it will include in the RTS packet the ID of the potential helper 
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FIgure 11.8 Illustration of the cooperative MAC protocol.
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and the corresponding rate indicated in the helper’s table. When the helper receives the 
message, it will check whether the rate indicated by the source is achievable. Inconsisten-
cies between the helper table and the actual achievable rate occur when the environment 
varies and the entries in the table become out of date. If the helper is able to cooperate, it 
will respond with an HTS message to notify the source and the destination that coopera-
tion is available and reserve the channel from its neighboring users. On the other hand, 
if the relay node is busy (due to its own transmission or because of the transmission of 
a neighbor), or it cannot achieve the rate requested by the source node, it will simply 
remain silent, and after a certain time-out period expires, the destination node will pro-
ceed and reply with a CTS message to reserve the channel for direct transmission.

As shown above, the concept of cooperation can be easily incorporated into the IEEE 
802.11 MAC with little changes to the original design. Several enhancement meth-
ods are also given in [15] to reduce the transmission overhead and increase the system 
throughput.

11.5  Cooperation-Enhanced Collision 
Resolution Methods

The essence of random access protocols is to enable users to access the channel in a 
distributed fashion and deal with the collision afterwards. In the cooperative MAC 
protocols introduced above, the advantages of relaying are exploited to combat fading in 
the wireless channel, allowing the users that experience bad channels to be helped by the 
users that experience good channels. However, these methods do not exploit the coop-
erative advantages in resolving the interference or collision at the destination. In this 
and the following sections, we show that, with cooperation among users and appropriate 
signal processing techniques at the destination, the mixture of signals that is received 
during collision can be utilized to enhance the detection performance. In particular, we 
describe in this section the system, proposed first by Tsatsanis et al. in [18] and then by 
Lin and Petropulu in [17], that utilizes the variations in channel gains of the multiple 
relaying paths to perform signal separation when collision occurs.

Consider a network of N nodes transmitting to an access point, similar to that shown 
in Figure 11.2. Conventionally, when more than one user is transmitting in the same 
time slot, a mixture of signals will be received at the destination, causing strong inter-
ference among each other. In this case, it is likely that no packet will be received suc-
cessfully, resulting in the so-called collision. The mixture of signals is usually discarded 
at the destination, and no information is extracted from the signals, which is clearly a 
waste of energy and bandwidth.

Due to this reason, Tsatsanis et al. [18] proposed a network-assisted collision resolu-
tion method. In this method, the destination records the mixture of signals whenever 
a collision occurs and enables the same set of colliding users to continue transmitting 
simultaneously in a certain number of subsequent time slots. Specifically, let xi[n] = 
[xi,1[n], …, xi,M[n]]T be the M-bit message transmitted by user i in the nth time slot, and let 
I[n] ⊂ {1, 2, …, N} be the set of users that are transmitting in the nth time slot. A collision 
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occurs when the cardinality of I[n] is greater than 1, i.e., |I[n]| > 1. The received signal 
at the destination is given by

 y x v[ ] [ [ ] [ ]] [ ] [ ]
[ ]

n y n y n h n nM
T

i n

i d i= , , = +
∈

,∑1 
I

[[ ]n

where hi,d[n] is the channel between user i and the destination in the nth time slot, and 
v[n] = [vn(1), …, vn(M)]T is the additive noise vector with i.i.d. elements. The channel is 
assumed to be static over each time slot, but varying rapidly over different time slots.

Suppose that the destination or access point is able to estimate accurately the number 
of users transmitting in the same time slot and, through the cyclic redundancy check 
(CRC), is also able to detect an error whenever it occurs. After each time slot, the destina-
tion sends a 0, 1, or e feedback, with 0 indicating that the channel was idle, 1 indicating 
that all packets transmitted in the time slot were correctly received, and e indicating that 
at least one packet was not correctly decoded. When an e feedback is received, the users 
that were originally transmitting in the time slot will retransmit their messages again in 
the next time slot. Therefore, a sequence of collisions will occur, as shown in Figure 11.9. 
Suppose that the retransmissions (and thus collisions) occur over K̂ consecutive time 
slots. Then, with I[n] = {i1, …, iK}, the destination receives the messages
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In the absence of noise, the messages X[n] can be decoded by solving the set of linear 
equations Y[n] = X[n]H[n], given that the rank of H[n] is greater than K. Assuming that 
the channel coefficients for all users and all time slots are continuous random variables, 
e.g., Rayleigh fading, the matrix H[n] will have full rank with probability 1. Therefore, 
in the noiseless case, we need only K̂ = K time slots in order to resolve the message of K 
users. Hence, there is no loss of throughput due to collision.

When noise is present, the maximum likelihood estimate of the message is given by

 ˆ[ ] argmin [ ] [ ]X X H
X

n n n
F

= − ⋅Y
2

, (11.14)
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FIgure 11.9 Network-assisted diversity for collision resolution.
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where ·2 represents the Frobenius norm. A suboptimal linear solution,

 ˆ[ ] [ ] [ ]X Y Hn n n= ⋅ ,−1  (11.15)

can also be used provided that H[n] is full rank.
However, when the channel varies slowly with respect to the time slot index n, one 

may need a large number of transmissions before the set of linear equations yield a 
reliable solution to the channel messages. To improve upon this, Lin and Petropulu 
[17] proposed the use of cooperative relaying to increase the variations of the channel 
gains in each transmission. Namely, upon collision, instead of asking the same users 
to retransmit continuously in consecutive time slots, the new strategy assigns a single 
node to transmit based on some predetermined order. The order can be determined, 
for example, by giving a unique index from 1 to N to each user upon deployment and 
allocating the retransmission time slot to the user that has an index equal to the time 
index m modulo N. The node that is assigned to transmit can be either one of the nodes 
participating in the collision, in which case it will simply retransmit its own message, or 
any other node in the network that amplifies and retransmits the mixture of signals that 
it overheard in the previous time slot. This period of repeated retransmissions is referred 
to as the cooperative transmission epoch (CTE). The CTE terminates when the receiver 
gains sufficient knowledge to recover the packets from all users. An illustration of this 
process is given in Figure 11.10.

Specifically, when a collision occurs in slot n, we assume that all users that are not 
involved in the collision will receive a mixture of signals similar to that at the destina-
tion. The signal received at user r is given by

 z x vr

i n

i r i rn h n n n[ ] [ ] [ ] [ ]
[ ]

= + ,
∈

,∑
I

where hi,r[n] is the channel coefficient between user i and user r during the nth time slot 
and vr[n] is the noise at user r. Upon collision, the system will enter the CTE, during 
which K̂ – 1 users, denoted by rn+1, …, rn+K̂–1, will be assigned to retransmit. Suppose that 
the retransmitting node rn+k belongs to the set I[n], then the user will simply transmit 
its own message and the signal received at the destination will be

 y v[ ] [ ] [ ] [ ]n k h n k n n krd r+ = + + + .x

1 2 n n + 1 . . . . . . . . . . . . 
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FIgure 11.10 Cooperative diversity for collision resolution.
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On the other hand, if rn+k ∉I[n], then it will amplify and forward the signal with 
amplifying gain equal to c[n + k], which is determined by the energy constraint at each 
node. The signal received at the destination is given by

 y z v[ ] [ ] [ ] [ ] [ ]n k h n k c n k n n krd r+ = + ⋅ + ⋅ + + .

With amplify-and-forward relaying, the signal can also be decomposed into a signal 
component and a noise component, and the channel coefficient of the signal will be 
equal to the product of the source-to-relay and the relay-to-destination channels. There-
fore, the detection methods given in (14.14) and (14.15) are equally applicable for this 
case.

By fully exploiting the signals that were received during collision, the system through-
put may increase dramatically due to significant improvements in bandwidth ineffi-
ciency. Significant gains in energy efficiency may also be observed since all signals are 
combined for detection at the receiver. This concept can be exploited in ad hoc networks 
as described in the following section.

11.6  Asynchronous Cooperation in Multihop  
Ad Hoc Networks

In ad hoc wireless networks, users communicate over multihop relaying paths with no 
predetermined network infrastructure. In fact, multihop relaying is basically a form of 
cooperative communications but does not exploit diversity-combining techniques at the 
destinations. That is, as the messages are transmitted over a multihop route, each user in 
the route utilizes for detection only the signal coming from the single closest transmit-
ter, even though the messages transmitted by all users in the same route are identical. 
The signals received from other users are essentially treated as interference. This can be 
improved upon by considering diversity combining at the destination, but must be done 
without the strict synchronization requirements that are prohibitive in large networks.

For network broadcasting applications, the opportunistic large arrays (OLA) system 
was proposed in [9, 19] to exploit the advantages of signal combining in cooperative 
multihop networks. The key idea is to treat the mixture of signals that arrive at unsyn-
chronized time instants as an artificial multipath signal and utilize existing techniques 
such as the RAKE receiver or equalizers to resolve the multipath signal [20].

Consider a network broadcasting scenario where we have one source node transmit-
ting a message to all other nodes in the network through multihop transmissions. At 
the beginning of the process, the source node first broadcasts its message through the 
wireless medium to all other users. Each user that is able to reliably decode the mes-
sage will then retransmit the same message, which is again heard by all other nodes 
in the network. The users that have not yet transmitted will then take the mixture of 
signals received from their upstream nodes and decode the message using standard 
RAKE receivers or equalizers [9, 20]. Given that the transmission energy is sufficiently 
high, these operations will trigger an avalanche of signals propagating through the net-
work. The intermediate nodes can either transmit a repetition of the decoded message 
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or simply amplify and forward the original signal. To reduce the effect of error or noise 
propagation, the reliability of the signal received at each node can be defined based on 
different criteria, such as the received SNR or the probability of error. The mechan-
ics of this system emulate the chanting of Olé! in a football stadium, where the signal 
first starts from a single source and propagates to the entire stadium as more and more 
people follow.

Suppose that there are N nodes in the network. Let us start by considering a symbol-
by-symbol relaying scheme described as follows. At the beginning of the network broad-
cast operation, the source node first transmits an M-ary symbol represented by one of 
the waveforms pm(t), m ∈{1, …,  M}, which has average energy normalized to 1, 
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M
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In the case where all the intermediate nodes are eventually able to correctly decode the 
message, but at different instants in time, the signal received at user i can be written as
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where ni(t) is the additive white Gaussian noise (AWGN) at the i th node with variance 
N0, τi,n(t) is the time that user n transmits plus the propagation delay between the i th 
node and the nth node, εn is the energy of the pulse transmitted by user n, and hi,n(t) 
is the channel fading coefficient between user i and user n. The relaying nodes act as 
active scatters that form the multipath signal si,m(t). Interestingly, this signal is unique 
for each user i due to the different channel gains and propagation delays experienced by 
the incoming signals. We refer to this as the network signature of user i given that the mth 
symbol was transmitted.

Assume that hi,n(t) and τi,n(t) are constant over the symbol duration Ts. Notice that 
Ts is proportional to the maximum delay spread of the signals si,m(t), for all i, which is 
denoted by Δτ. Specifically, we have
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is the average delay of the signals received at user i. With the symbol duration Ts ≈ Δτ, 
the rate Rs ≈ 1/Δτ is achieved without intersymbol interference. Nevertheless, a higher 
rate is achievable with the use of equalizers at the destination, which is shown in [20]. An 
example of the signature waveform is depicted in Figure 11.11.

The signal received at each user can be divided into two phases: the receive phase and 
the rest phase. In the receive phase, the user first accumulates the signal transmitted by 
its upstream nodes until the signal energy is sufficient to perform reliable detection. At 
this instant, the symbol is detected and retransmitted to other users in the network. This 
instant is called the firing instant. Once a user has transmitted, it will then shut down 
until the downstream signals fade away. This period of time is called the rest phase and is 
used to prevent an infinite feedback, which may cause the system to become unstable.

The operations described above can be demonstrated with a simple four-node exam-
ple, as shown in Figure 11.12. Assume node 1 is the source node and nodes 2–4 are the 
relays. We can see from the figure that node 2 will be the first to receive the signal from 
node 1. By the time user 2 accumulates sufficient signal energy for reliable detection, it 
will immediately retransmit the packet to nodes 3 and 4. By shutting down the receivers 
in the rest phase, the nodes that transmitted earlier in the symbol period will not receive 
signals from their downstream nodes.

Two main properties of OLA allow it to improve over the conventional multihop 
broadcasting scheme. The first property is its ability to combine the signals from all 
relays, including those that were transmitted from nodes that are located far away and 
were originally omitted in conventional networks. This enables a tremendous amount 
of energy savings, as detailed in [19]. Second, the simultaneously transmitting signals, 
which were originally treated as interference, are also combined for detection. Not only 
does this increase the energy efficiency, but it also reduces the network congestion and 
significantly decreases the broadcasting delay [see 9]. A specific equalizer design that 
performs the signal combining is proposed by Wei, Gofeckel, and Valenti in [20], where a 
random delay at the users is also proposed to increase the delay diversity of the system.

OLA provides a simple and efficient way to achieve broadcast communications in 
wireless networks. The system scales naturally to a large network since users are only 
required to follow a simple local rule. The integrate-and-fire mechanism at each user 
emulates the behavior of many biological networks, such as the flashing of fireflies, the 
firing of neurons, or even highway traffic patterns. These examples show that complex 
large-scale behaviors can result from the interaction between simple local mechanisms. 

Firing instant

Rest phaseReceived phase

Delay spread

Time 

Received signal

FIgure 11.11 Signal received by active nodes.
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Biological networks are widely believed to be near optimal as a result of elimination 
and evolution. It is interesting to see how the efficiency of communication systems can 
be improved by emulating these biological networks. Discussions on these issues can be 
found in [36, 37] and the references therein.

FIgure 11.12 Demonstration of the signal at nodes 2–4. (a) Node location; (b) OLA signals 
received at nodes  2–4.
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11.7  Conclusion

Cooperative communications is a promising technique that has been proposed to combat 
fading without requiring multiple antennas on each device. Most studies in the literature 
focus on the signal processing aspects in the physical layer while assuming strict syn-
chronization among the cooperating users. This strict synchronization requirement is 
perhaps the most difficult problem to overcome when realizing a cooperative network.

In this chapter, we studied the advantage of cooperative communications in a ran-
dom access scenario where the users transmit based only on simple local rules. Some 
efficiency will be lost inevitably due to the lack of coordination, but significant improve-
ments can be attained with cooperation. Two concepts have been repeatedly explored 
in this chapter: the user’s ability to relay the information from the other users and the 
diversity-combining technique at the destination. With proper design of the transmis-
sion protocol, these added functionalities may significantly improve the throughput 
of the system. In this chapter, these advantages have been exploited in (1) the slotted 
ALOHA system, (2) the CSMA/CA system, (3) the collision resolution, and (4) multihop 
ad hoc networks. These discussions highlight the importance of cross-layered consider-
ations when designing cooperative systems.
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12.1  Introduction

In this chapter we discuss methods for conveying information in a wireless network 
based on cooperation among network nodes. The methods are particulary suitable for 
decentralized wireless ad hoc networks where information is transmitted in multihops.

A wireless ad hoc network is a network without infrastructure and centralized control. 
It consists of a large number of possibly mobile nodes that communicate with each other 
over wireless links. Low cost and simple reconfiguration make ad hoc networks attractive 
in both commercial and military applications such as wireless local area network (LAN) 
(e.g., IEEE 802.11x) and metropolitan area network (MAN) (e.g., DARPA’s GLOMO), home 
networks (e.g., HomeRF), device networks (e.g., based on Bluetooth or ZigBee), and sensor 
networks (e.g., SmartDust, WINS).
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In contrast to a traditional infrastructure wireless network (e.g., a cellular network), 
where information is transmitted from one user to another via a control base station, an 
ad hoc network allows peer-to-peer communication from a sending node to a destina-
tion node. That is, the information can travel directly from a sending to receiving node 
in a single hop.

However, since wireless channels are often poor, single-hop routing requires either 
high transmission power, and consequently causes increased interference, or complex 
multiple access schemes. To achieve significant power savings and keep complexity low, 
information should be conveyed to a destination through multiple intermediate nodes. 
Whereas transmission over a single-hop channel has already been intensively studied 
and is well understood, cooperative communication in multinode networks is still an 
open research problem, which recently has received considerable attention, inspired by 
the papers [1, 2].

Communication over a wireless channel is limited by interference, fading, multipath, 
path loss, and shadowing. The main design challenge in ad hoc networks lies in devising 
communication methodologies in a decentralized manner, based on the knowledge of 
local conditions only, to overcome these limitations. An additional design issue has to 
do with the high dynamics of an ad hoc network, where nodes frequently join and leave 
the network.

One way of achieving high performance is to employ multiple transmitter and receiver 
antennas at nodes. This multiple antenna system increases the capacity and improves 
robustness to fading and interference by means of spatial diversity and data rate multi-
plexing [3, 4]. However, building multiple antennas at each node can be expensive, 
impractical, and often infeasible, especially for small and simple nodes such as those 
used in sensor networks.

Another recently proposed solution for achieving spatial diversity without requir-
ing multiple antennas at any node is cooperative diversity [1, 2]. It is based on grouping 
several nodes (each with only one antenna) together into a cluster to form a large trans-
mit or receive antenna array. Collaborative clusters are formed in an ad hoc fashion 
by negotiations among neighboring nodes without centralized control (see Figure 12.1). 
Cooperative diversity naturally arises in ad hoc networks as it enables great power sav-
ings with cheap, simple, and mobile nodes, while supporting decentralized routing and 
control algorithms. However, it is not limited to ad hoc networks, as it can be useful in 
infrastructure networks as well.

The simplest nontrivial setup is when the nodes form pairs, i.e., clusters of two. In 
a two-transmitter two-receiver cooperative channel, the two single-antenna transmit-
ters want to communicate messages to the two remote single-antenna receivers over 
the same wireless radio channel. In transmitter cooperation, the two transmitters first 
exchange their messages, and then start to act as a single two-antenna broadcast trans-
mitter. On the other hand, in receiver cooperation, the two receivers exchange their 
received signals and act as a single two-antenna multiple access receiver. In general, the 
two transmitters as well as the two receivers can collaborate among each other to form a 
virtual multiple-input multiple-output (MIMO) channel with two transmitter and two 
receiver antennas. The main goal of node cooperation is to achieve spatial diversity and 
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rate multiplexing (that is, to mimic a MIMO transceiver) without increasing the number 
of antennas at a single node.

The difference between a MIMO channel and a cooperative diversity channel is 
highlighted in Figure 12.2. In a two-antenna MIMO channel, a transmitter/receiver is 
equipped with two transmitting antennas. In a two-transmitter two-receiver cooperative 
diversity channel, two antennas at the transmitter/receiver side are physically separated; 
hence, a somewhat lower performance is expected. However, if the two transmitters/
receivers are closely located, then the performance of a well-designed cooperative diver-
sity system should be close to that of a MIMO system.

Tx Rx

Tx1

Tx2

Rx1

Rx2

FIgure 12.2 MIMO channel (up) versus cooperative diversity (down).

FIgure 12.1 A wireless network with cooperative diversity. Closely located transmitters form 
a transmitter cluster, whereas closely located receivers form a receiver cluster.
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Note that the concept of cooperative diversity can be extended to the case where mul-
tiple-antenna transceivers cooperate to build a virtual transceiver with a higher number 
of antennas. However, in this chapter we focus on the simplest scenario where each node 
is equipped with a single transceiver/receiver antenna.

This chapter is organized as follows. In the next section we give an information-
 theoretical model of two-transceiver two-receiver cooperative channels. In section 
12.3 we present the capacity bounds of the classic three-node relay channel [5], which 
is a building block of cooperative diversity, and cooperative channels. The next section 
focuses on recent advances made in practical code designs for the relay, transmitter, and 
receiver cooperative channels. The final section points to open challenges and opportu-
nities for future research.

12.2  Information-Theoretical Model

Consider the channel model depicted in Figure 12.3 (upper left), where the transmitter 
in node 1 wants to send message ω1 ∈{1, …, M1} to the receiver in node 3; likewise, the 
transmitter in node 2 intends to send message ω2 ∈{1, …, M2} to the receiver in node 4. 

Node 2  

Node 1  

Node 4  

Node 3  

Node 1  

Node 1  

Node 3  

c31 

c42 

c32 

c41 

c43 

c34 c12 

c21 

c43 = c34 = 0 

c21 = c12 = ∞ 

c 2
1 =

 c 1
2 =

 0
 

c 4
3 =

 c 3
4 =

 ∞
 

c21  = c12  = 0 

c43  = c34  = 0 

Node 2  

Node 1  

Node 2  

Node 4 

Node 3  

Node 4 

Node 3  

Two-transmitter two-receiver
cooperative channel

Two-transmitter MIMO
broadcast channel

Interference channel
Multiple access channel with

two receiver antennas

FIgure 12.3 The two-transmitter two-receiver cooperative channel (upper left) together with 
its three special cases: MIMO broadcast channel (upper right), multiple access channel (lower 
left), and interference channel (lower right).
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Specifically, node i (i = 1, 2, 3, 4) transmits a block xi[n] of N symbols at a time with n = 
1, …, N, while being subject to an average power constraint

 1

1

2

N
x n P

n

N

i i

=

∑| | ≤ .[ ]

The rate of the transmission from node i is then

 R M
Ni

i= .log

We assume that the channel between node i and node j is a Rayleigh flat-fading chan-
nel [6] with channel coefficient cij, which is an independent identically distributed (i.i.d.), 
complex, zero-mean, Gaussian random variable. The nodes can either be able to transmit 
and receive simultaneously in the same time slot or at the same frequency (full-duplex) 
or not, in which case the nodes transmit during one time slot, or at one frequency, and 
receive during the next time slot, or at another frequency (half-duplex).

At the symbol level, the received signals at nodes 1 and 2 are given by

 y n c x n z n1 12 2 1[ ] [ ] [ ]= +  (12.1)

and

 y n c x n z n2 21 1 2[ ] [ ] [ ]= + ,  (12.2)

respectively, and the signals received by nodes 3 and 4:

 y n c x n c x n c x n z n3 31 1 32 2 34 4 3[ ] [ ] [ ] [ ] [ ]= + + +  (12.3)

and

 y n c x n c x n c x n z n4 41 1 42 2 43 3 4[ ] [ ] [ ] [ ] [ ]= + + + ,  (12.4)

respectively, where zi, i = 1, …, 4, are i.i.d., circular, complex, zero-mean, additive, Gauss-
ian noises. Without loss of generality, we assume that the noises are of unit power and 
c31 = c42 = 1. In the transmitter cooperative channel, we set c43 = c34 = 0, and for receiver 
cooperation, c21 = c12 = 0.

If cooperation is perfect, then transmitter cooperation leads to a two-antenna MIMO 
broadcast channel [7] (c21,c12 → ∞ in the sense that the channel between the two transmit-
ters becomes an ideal noiseless channel with zero delay), receiver cooperation reduces to 
a two-user multiple access channel (MAC) [8] with two receiver antennas (c43,c34 → ∞), 
and the general setup with both transmitter and receiver cooperation becomes a single 
MIMO channel [3] with two transmitter and two receiver antennas (c21,c12,c43,c34 → ∞). 
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On the other hand, when cooperation is not allowed, i.e., c21 = c12 = c43 = c34 = 0, the 
channel degenerates to the interference channel [9]. Figure 12.3 depicts three of these 
four simplifications.

When we restrict the channels to be quasi-static, then all channel coefficients are 
constant during transmission of each block of N symbols. In the synchronous model of 
(12.1)–(12.4), we assume that the nodes are perfectly synchronized and have full chan-
nel state information (CSI), i.e., each node knows instantaneous values of all channel 
coefficients and their statistics. While it is relatively simple to achieve symbol/time 
synchronization between nodes, carrier synchronization, which requires phase-locking 
separated microwave oscillators, is challenging in practice. Therefore, we also consider 
the asynchronous model, where random phase offsets due to oscillator fluctuations are 
added to the transmitted signals. We include these random phases in the channel coeffi-
cients, so that the model stays the same as (12.1)–(12.4). Under the asynchronous model 
for receiver cooperation, the transmitters do not have any CSI, whereas the receivers 
need to know only the magnitudes of all channel coefficients, not their phases. Thus, 
receiver cooperation is suitable in the systems with simple transmitters. On the other 
hand, under the asynchronous model for transmitter cooperation, the transmitters 
must know the magnitudes of all channel coefficients.

We discuss the diversity and data rate gains achievable by node cooperation, while 
focusing on the high-signal-to-noise ratio (SNR) regime, where the data rates are mainly 
limited by interference. (In the low-SNR regime, the influence of channel noise prevails, 
and hence the gain from cooperation is reduced.) The diversity gain [10], defined as

 d Pe= − ,
→∞

lim log ( )
logSNR

SNR
SNR

shows how fast the probability of decoding error Pe decays with SNR. A higher d means 
lower Pe at the same SNR, and thus a more reliable system. The data rate gain is usu-
ally decoupled into a multiplexing gain and an additive gain. The multiplexing gain (or 
degree of freedom) [10] shows how fast the rate increases with SNR and is given by

 r R= ,
→∞

lim ( )
logSNR

SNR
SNR

where R(SNR) denotes the sum of data rates of transmitting nodes for a given SNR. The 
additive gain (or the high-SNR power offset) [11, 12] is a shift of the R(SNR) function 
from the origin at high SNRs, i.e.,

 a R r= − .
→∞

lim ( ) log( )
SNR

SNR SNR

If all the limits exist, then R(SNR) in the high-SNR regime can be approximated by a line 
of slope r and SNR offset a, i.e.,

 R r a( ) log( )SNR SNR≈ + .
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It is well known that perfect cooperation (a two-antenna MIMO transceiver) achieves 
a diversity gain of d = 2 and a multiplexing gain of r = 2 [3]. On the other hand, the 
interference channel (without node cooperation) in Figure 12.3 provides no diversity or 
multiplexing gain (i.e., d = 1 and r = 1).

12.3  Capacity Bounds

In this section, we first present capacity bounds for cooperative diversity, indicating a 
multiplexing gain of only 1 at high SNRs, which is a somewhat negative result. However, 
the main message is that node cooperation can provide a large additive gain and a diver-
sity gain of 2.

While the capacities of most point-to-point channels are known, this is not the case 
for wireless multinode channels. Indeed, we only know the capacities of the Gaussian 
MAC and the broadcast channel. For all other multinode channels, e.g., the relay and 
interference channels, capacities are known only in special cases. However, it is possible 
to obtain upper and lower bounds on the capacity, which are often very close, thereby 
practically indicating the capacity. A lower bound is the rate that can be attained by 
some coding scheme and is therefore an achievable rate. All rates higher than the upper 
bound cannot be achieved. If the lower and upper bounds overlap entirely, the complete 
rate region is known. However, if the two bounds do not overlap, the gap between them 
characterizes the unknown region.

There are two main ideas in obtaining achievable rates for cooperative channels. The 
first idea is based on nodes decoding messages from other nodes and re-encoding them. 
The second lies in exploiting the joint statistics between the data at cooperating nodes by 
means of coding with side information, i.e., Wyner-Ziv coding [13] or dirty-paper coding 
[14]. Specifically, it turns out that Wyner-Ziv coding achieves the capacity of receiver 
cooperation (asymptotically as the interference and SNR approach infinity), while dirty-
paper coding plays a major role in transmitter cooperation. Below we give a brief sum-
mary of coding with side information.

12.3.1  Coding with Side Information

Distributed source coding addresses separate compression and joint decompression of 
correlated sources [8]. Its foundation was laid by Slepian and Wolf [15], who defined the 
rate region for lossless compression of two correlated discrete sources showing a surpris-
ing result: separate encoding and joint decoding suffer no rate loss compared to the case 
when the sources are compressed jointly. The framework was extended and general-
ized in [16], where the problem of lossy compression under distortion constraints, called 
multiterminal source coding, was posed and the bounds given.

A special case of multiterminal source coding is source coding with side information 
at the decoder, or Wyner-Ziv coding (WZC). The WZC problem considers lossy com-
pression of source X under the distortion constraint when a correlated source S—called 
side information—is available at the decoder but not at the encoder (see Figure 12.4). 
This rate-distortion problem was first considered by Wyner and Ziv in [13], where the 
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minimum rate for compressing X was derived. In general, WZC incurs a rate loss when 
compared to the case with S, also available at the encoder. However, if the correlation 
between X and S is modeled as X = S + Z, with Z being an i.i.d., memoryless Gaussian 
random variable, independent of S, then there is no rate loss with WZC under the mean-
squared error (MSE) distortion measure.

The information-theoretical dual [17] of WZC is channel coding with side infor-
mation at the encoder, or Gelfand-Pinsker coding [18], where the encoder has perfect 
(noncausal) knowledge of the side information or CSI. The limits on the rate at which 
messages can be transmitted to a receiver are given in [18]. In general, there is a rate loss 
compared to the case when the receiver also knows noncausally the CSI, i.e., the encoder 
side information. However, when the channel is additive white Gaussian noise (AWGN), 
Gelfand-Pinsker coding does not suffer any rate loss. In this case we have the celebrated 
dirty-paper coding (DPC) problem [14], shown in Figure 12.4 (right), where the decoder 
can completely cancel out the effect of the interference caused by the side information.

Practical WZC and DPC both involve source-channel coding. WZC can be imple-
mented by first quantizing the source X, followed by Slepian-Wolf coding of the quan-
tized X with side information S at the decoder [19]. Using syndrome-based channel 
coding for compression, Slepian-Wolf coding here plays the role of conditional entropy 
coding. For DPC, source coding is needed to quantize the side information to satisfy the 
power constraint. In the meantime, the quantizer induces a constrained channel, for 
which practical channel codes can be designed to approach its capacity. Indeed, limit-
approaching code designs [20–22] have appeared for both WZC and DPC recently.

12.3.2  The Relay Channel

Since cooperative diversity is largely based on relaying messages, its information-
 theoretical foundation is built upon the landmark 1979 paper of Cover and El Gamal 
[23] on capacity bounds for relay channels. We thus start with the relay channel, give 
the theoretical bounds on its capacity, and describe proposed coding strategies in the 
Gaussian and Rayleigh flat-fading environments. Then we proceed with extensions to 
two-transmitter two-receiver cooperative channels.

The relay channel, introduced by van der Meulen in [5], is a three-node channel where 
the source communicates to the destination with the help of an intermediate relay node. 
It is shown in Figure 12.5. The source broadcasts encoded messages to the relay and 
destination. The relay processes the received information and forwards the resulting 
signal to the destination. The destination collects signals from both the source and relay 

X Encoder Decoder X   

Wyner–Ziv coding

Encoder Decoder X Y 

S 

m 

Dirty-paper coding

S 

m 

Z~N(0, σΖ
2) 

FIgure 12.4 Coding with side information. WZC refers to lossy source coding of X with 
decoder side information S, whereas DPC considers channel encoding of message m with encoder 
side information S over an AWGN channel.
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node before attempting to recover the information. The relay’s task is thus to facilitate 
decoding at the destination by means of spatial/temporal diversity; that is, it enables the 
message to be sent via different paths and in different time slots, so that the destination 
can improve decoding by exploiting two different independently corrupted looks of the 
same message.

The capacity for the general relay channel is still unknown, and we can only speak 
of the upper bound, above which reliable communication is not possible, and the lower 
bound, which can asymptotically be achieved with developed coding strategies; it is 
still unknown whether there exists a coding scheme that can operate in the uncertainty 
region between the two bounds.

Cover and El Gamal [23] derived upper and lower bounds on the capacity of the gen-
eral relay channel using random coding and converse arguments. These two bounds 
coincide only in a few special cases [24, 25] (e.g., the degraded Gaussian case [23]).

The wireless relay channel is shown in Figure 12.5, where crs, cds, and cdr denote chan-
nel coefficients. There are two setups in relaying: full-duplex and half-duplex. In the 
full-duplex setup, the relay is able to transmit and receive simultaneously on the same 
frequency. The capacity bounds are given by Cover and El Gamal [23], and efficient prac-
tical designs performed by Zhang and Duman [26]. Implementing full-duplex relay-
ing, however, is a microwave design challenge (e.g., due to the large difference in the 
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FIgure 12.5 The wireless relay channel. Decode-forward works better when the relay is close 
to the source, but compress-forward is preferred when the relay is close to the destination.
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transmitting and receiving signal power levels). A simpler setup is half-duplex relaying, 
in which the relay does not simultaneously receive and transmit. Half-duplex relaying 
[24, 27–30] can be implemented with lower complexity by using either time division, 
frequency division, or code division, which are equivalent from an information theory 
point of view [8]. In the following, we will focus on time-division half-duplex relaying 
and discuss both capacity bounds and practical designs.

In time-division relaying, a frame of length n is divided into two parts: a relay-receive 
period of length nα, 0 ≤ α ≤ 1, and a relay-transmit period of length n(1 – α). In the relay-
receive period, the source transmits a codeword xs1. The relay overhears this transmis-
sion, processes its received signal yr in some way, and transmits a codeword xr = fr (yr) in 
the relay-transmit period. While the relay transmits, the source simultaneously trans-
mits another codeword xs2. The codeword xs2 is not heard by the relay, as it is in transmit 
mode, and is therefore transmitted directly to the destination. One way to accomplish 
this is to split the message m ∈{1, …, M} into two parts, m1 and m2, at the source. Then, 
m1 is encoded into the nα-length codeword xs1(m1), and the remaining m2 is encoded into 
an n(1 – α)-length codeword xs2(m2). At the symbol level, the received signals at the relay 
and destination during the relay-receive period are

 y n c x m n z nr rs s rs[ ] ( )[ ] [ ]= +1 1  (12.5)

and

 y n c x m n z nd ds s ds1 1 1[ ] ( )[ ] [ ]= + ,  (12.6)

respectively, where zrs and zds are independent white Gaussian noises with unit 
power. During the relay-transmit period in the asynchronous case, the relay sends an 
n(1 – α)-length codeword xr(m1) to the destination, which receives

 y n c x m n c x m n z nd ds s dr r2 2 2 1[ ] ( )[ ] ( )[ ] [ ]= + + ,  (12.7)

where z is again a white Gaussian noise with unit power.
In the synchronous case, the system can additionally use the antennas at the source 

and the relay as a two-antenna transmit array. Suppose that the source is able to com-
pletely predict what the relay will send in the relay-transmit period; then the source can 
transmit the same signal with a phase shift calibrated so that the two signals add up 
coherently at the destination. The received signal is then

 y n c x m n c c A x m n zd ds s dr ds r2 2 2 1[ ] ( )[ ] ( ) ( )[ ] [= + + + nn],  (12.8)

where A is a complex constant subject to a power constraint and with such a phase that 
|cdr + cdsA| is maximized. If the source can only partially predict what the relay will 
transmit, it is still possible to take advantage of this partial coherency.

The optimum operation at the relay is not known, but several coding schemes have 
been proposed [2, 23, 25, 27] to obtain achievable bounds on the rate region. These 
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schemes can be classified into decode-forward and observe-forward [23], although hybrid 
schemes are also possible [23].

The main operation of decode-forward (DF) is full decoding at the relay node. Upon 
receiving yr, the relay node first decodes m1 and then re-encodes it before forwarding the 
resulting codeword xr(m1) to the destination during the relay-transmit period. It should 
be emphasized that the relay might use a different codebook than the source. In any 
case, the source can completely predict what the relay will transmit, and full coherency 
is therefore possible. The destination attempts to reconstruct message m by combin-
ing the signals received during the relay-receive and relay-transmit periods using either 
successive list decoding [8, 23], backward decoding [31], or decoding based on parallel 
Gaussian channel arguments [28], which all result in the same achievable rate region. 
Although DF can be very efficient in some scenarios [24, 25], since the relay must per-
fectly decode the source message, the achievable rates are bounded by the capacity of the 
channel between the source and the relay. That is, the capacity of the DF relay channel 
cannot be higher than that of the source-relay channel; hence, if the channel between the 
source and relay is poor, the relay is useless, and direct transmission from the source to 
the destination is a better option.

To alleviate this problem of DF, a class of observe-forward schemes has been pro-
posed, where the relay does not attempt to decode the signal from the source; it merely 
forwards a processed version of its received signal to the destination.

The simplest observe-forward scheme is amplify-forward (AF) [32], in which the relay, 
sticking to its rudimentary role, just amplifies the received signal before forwarding. 
A more sophisticated scheme is compress-forward (CF), which is rooted in the original 
work of Cover and El Gamal [23], where the relay compresses the signal it has received 
from the source within certain distortion. Since yr (received by the relay node) and yd1 
(received by the destination node) are independently corrupted versions of the same 
encoded message xs1(m1), they are correlated. Thus, the relay node can employ WZC [13] 
when compressing yr by treating yd1 as the decoder side information. The Wyner-Ziv 
compressed signal is then channel encoded to xr(m1) before being forwarded to the des-
tination, which recovers m2 and m1 using successive cancellation decoding that involves 
several steps. First, x̂r(m1) is reconstructed by assuming xs2(m2) as the noise, and then it 
is subtracted from yd2 before m2 is decoded. Second, to reconstruct m1, yr is estimated 
from x̂r(m1) using Wyner-Ziv decoding with yd1 as the decoder side information; maxi-
mum ratio combining on yd1 and the obtained estimate ŷr is then invoked to recover m1. 
CF based on WZC has higher computational complexity than DF, but it gives many rate 
points that are not achievable with any other coding strategies. It provides the best solu-
tion [23–25] when the relay is close to the destination node.

12.3.3  Capacity Bounds of the Gaussian Half-Duplex  
Relay Channel

In the flat-fading environment, channel coefficients vary in time. The upper and lower 
bounds on capacity can be computed by averaging over all channel realizations (with 
optimally allocated power). This average capacity is called ergodic capacity. The bounds 
on ergodic capacity for the full-duplex and half-duplex flat-fading relay channel are 
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given in [24]. However, in practice, it is more convenient to use outage capacity [33, 34]. 
Since in the fading channel case, the source does not know the exact value of chan-
nel coefficients (c = [csr,csd,crd]) for a particular channel realization, it cannot determine 
the maximum achievable rate; consequently, the sending rate R can be higher than the 
capacity of the instantaneous channel realization C(c), in which case the destination 
cannot decode. The probability of this event, P(R > C(c)), is called the outage proba-
bility. The outage capacity is then the maximum achievable rate with the outage prob-
ability less than a certain level p; it can be computed as the (1 – p) percentile of the rate 
for the specific value of c.

In the following, we summarize the outage capacity bounds of the Gaussian half-
duplex relay channel, which can also be used for computing the outage capacity of a 
wireless quasi-static flat-fading channel (as done in [24]). The bounds for the full-duplex 
Gaussian channel can be found in [8, 23, 24].

Under the assumption that the nodes are synchronized and have perfect CSI, i.e., 
each node knows instantaneous values of all channel coefficients and their statistics, an 
upper bound on the capacity of the Gaussian half-duplex relay channel (although chan-
nel coefficients are in general assumed to be complex, in this case they are positive real 
constants) is derived in [24, 27] and given by
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and Ps and Pr are the average source and relay power constraints, respectively. The 
parameter ρ reflects the correlation between the source and relay signals, and it can be 
written in closed form [24, 27]. It is clear from the bound above that the highest multi-
plexing gain r is 1. However, the full-diversity gain of 2 can be achieved with a simple 
AF scheme [2, 35].

The rate bound of DF is [24, 27]:

 R R RDF
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 (12.10)
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where
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and RDF2 = Cub2. The achievable rate with CF is [24]
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DF and CF give the best-known results on the achievable rates for the half-duplex 
relay channel (however, a hybrid approach may give a higher rate). Depending on the 
parameters, either DF or CF can be superior. Indeed, DF outperforms CF when the 
link between the source and relay is better than that between the relay and destination 
(e.g., when the relay is close to the source). On the other hand, CF provides higher rates 
when the link between the relay and destination is clean (e.g., when the relay is close to 
the destination). See Figure 12.5. We show in Figure 12.6 for one setup the rate bounds 
in (12.10) and (12.11), achievable with DF and CF, respectively, together with the upper 
bound given by (12.9) and the rate bound with multihop transmission, which is given 
by the minimum between the capacity at the source-relay link, 1

2 log(1 + |crs|2 Ps), and the 
capacity at the relay-destination link, 1

2 log(1 + |cdr|2 Pr). We plot the rate gain relative 
to direct transmission (i.e., no relaying) as a function of |crs|2. The increase in |crs|2 can 
be construed as the result of decreased distance between the source and the relay. It is 
seen from Figure 12.6 that CF outperforms DF for low |crs|2. When |crs|2 < |cds|2 = 0 dB, 
DF is worse than direct transmission. On the other hand, CF always outperforms direct 
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transmission. Thus, even if the link between the source and relay is poor, the relay can 
still help somewhat by using CF.

It is instructive to compare relay channel signaling with a traditional multihop ad hoc 
network, where physical layer communication and networking are typically separated. 
Such a comparison will show how cooperative diversity can help increase the perfor-
mance over traditional networking. In a traditional multihop network, the source trans-
mits a packet either directly to the destination or to the relay, which would decode it, 
re-encode it, and transmit it to the destination. Relay channel signaling improves upon 
this in several ways:

 1. The destination uses the signals from both the source and relay for decoding, as 
opposed to only one of them.

 2. The relay uses a different codebook for encoding in DF than the source, which is 
similar to using error-correcting codes rather than repetition coding.

 3. The relay can use soft information, as in CF, which resembles using soft decisions 
in decoding error-correcting codes rather than hard decisions.

 4. The source is allowed to transmit new information simultaneously with the relay’s 
transmission, which at high SNR brings a large increase in rate.

 5. In the synchronous case, the relay can use coherency to combine signals construc-
tively, achieving a gain similar to that in MIMO systems.

12.3.4  Receiver Cooperation

In receiver cooperation, two (closely located) single-antenna receivers cooperate to facil-
itate decoding messages from two remote single-antenna transmitters.
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FIgure 12.6 The multihop bound and the upper bound on the capacity together with the 
achievable bounds of DF and CF for the Gaussian half-duplex relay channel, assuming |cds|2 = 
0 dB, |cdr|2 = 10 dB, and Ps = Pr = 5 dB. The rate gain over direct transmission is shown as a func-
tion of |crs|2.
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The channel model is shown in Figure 12.3 (upper left) with c21 = c12 = 0, where node 1 
(node 2) wants to communicate to node 3 (node 4). We consider only the full-duplex case, 
i.e., nodes 3 and 4 can simultaneously transmit and receive. Since the cooperative chan-
nel can be viewed as a combination of the interference channel and the relay channel, 
its best achievable rate regions are obtained by combining DF or CF coding techniques 
for the relay channel with coding for the interference channel [9]. In receiver coopera-
tion, a receiver node processes the received information and forwards the result to the 
other receiver node to help decoding. Because the distance between the two receivers 
is expected to be much smaller than that between a transmitter and a receiver, CF with 
WZC provides the highest achievable rates. Indeed, from (12.2), the received signals in 
nodes 3 and 4 at time instants i and i + 1 are
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 (12.12)

In CF [36], the receiver in node 3 (or node 4) employs WZC to compress the signal 
y3[i] (or y4[i]) it has received, while assuming y4[i] (or y3[i]) as the decoder side informa-
tion, before passing the resulting codeword x3[i + 1] (or x4[i + 1]) to the collaborating 
receiver in node 4 (or node 3). Node 3 starts by decoding x4[i + 1] from y3[i + 1] while 
treating x1[i + 1] + c32x2[i + 1] as part of the Gaussian noise. In forward decoding, x4[i], 
recovered in the previous time instant, is Wyner-Ziv decoded using y3[i] as the decoder 
side information, resulting in an estimate of y4[i]. Next, the joint or individual decoding 
technique [9] proposed for the interference channel is employed to reconstruct x1[i] (and 
x2[i]) from the obtained estimates

 y i c x i x i c x i z i3 34 4 1 32 2 3[ ] ˆ [ ] [ ] [ ] [ ]− = + +

and

 4 43 3 41 1 2 4ˆ [ ] [ ] [ ] [ ] [ ]y i c x i c x i x i z i− = + + .

A similar procedure can be performed at node 4. Besides forward decoding, it is also 
feasible to employ backward decoding, where the decoder starts by decoding the previ-
ously received block of symbols and proceeding backwards. In [36], forward decoding is 
combined with either joint or individual decoding [9], and backward decoding is used 
with joint decoding, giving three different decoding choices. Since nodes 3 and 4 can 
use three different decoding methods each, there are nine possibilities, each providing a 
different rate bound. To obtain the best achievable CF rate bound, the maximum of all 
nine rate bounds should be taken.
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In a similar manner, DF can be extended to receiver cooperation. The DF strategy for 
receiver cooperation can be found in [36].

12.3.5  Capacity Bounds of the Gaussian Full-Duplex Receiver  
Cooperative Channel

In this section we summarize the results of [36], where the upper and lower bounds 
on capacity of receiver cooperation are derived for both CF and DF. The derived upper 
bounds are tighter than the standard max-flow-min-cut bound. It is given by:
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in the synchronous case. Note that we get a symmetric set of rate bounds if nodes 1 and 2 
are exchanged with nodes 3 and 4. Achievable (lower) rate bounds for CF and DF can be 
found in [36]. Figure 12.7 shows the sum-rate R1 + R2 as a function of the received SNR 
on the direct link between nodes 1 and 3. The received SNR at the link between nodes 3 
and 4 is 30 dB higher than that from the direct link—an indication that the cooperating 
nodes are close together. The average powers of all four nodes are the same. All channels 
are independent Rayleigh flat fading, meaning that each cji is an i.i.d. Gaussian random 
variable, and the results are averaged over simulated ensembles of channel realizations. 
For comparison purposes, the rate limits of the two-user MAC with two antennas at the 
receiver (with perfect cooperation) and the interference channel (without cooperation) 
are included.

It is seen from Figure 12.7 that receiver cooperation with CF gives an additive gain 
that can be up to 20 dB higher than no cooperation, CF always performs close to the 
upper bound, and there is no gain from synchronization. Interestingly, receiver coop-
eration performs close to using two receiver antennas at low and medium SNRs, thus 
providing a multiplexing gain of 2. However, at the high SNRs, the multiplexing gain 
drops to 1, and the rate gain over the noncooperative case boils down to a high additive 
gain.

We can see that, in the high-SNR regime, receiver cooperation gives a multiplexing 
gain of only r = 1, as opposed to the two-user MAC with two receiver antennas, which 
results in r = 2. However, the additive gain with receiver cooperation, which is upper 
bounded by
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can be very high. On the other hand, for |c41|,|c32| > 1 it is shown in [36] that CF with 
forward joint decoding gives an additive gain of
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Note that the gain in (12.14) is identical to that in (12.13) except for the log(1 + |c41|–2) 
and log(1 + |c32|–2) terms, which are small for large |c41| and |c32|. Thus, CF with WZC 
achieves capacity asymptotically as |c41|, |c32|, and the SNRs go to infinity. All other 
cooperative strategies (including DF) give no additional gain over that of no coopera-
tion, whose additive gain is
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FIgure 12.7 Bounds on the sum-rate R1 + R2 as a function of the received SNR from the direct 
link between nodes 1 and 3 for receiver cooperation. The received SNR at the link between nodes 
3 and 4 is 30 dB higher than that at the direct link. The average powers of all four nodes are the 
same.
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However, these strategies are useful in the medium- or low-SNR regimes. From (12.14) 
and (12.15) we see that the gain of receiver cooperation comes from the terms |c43|2 P3 
and |c34|2 P4, which depend on the channel between the two receivers. Since this channel 
is expected to be good (a node should cooperate with its “best neighbor”), this gain can 
be very high. An interesting conclusion from [36] is that the gain from exploiting full 
synchronization in receiver cooperation is very limited. Thus, in practice it is enough 
to resort to the asynchronous cooperation, which significantly saves the hardware cost. 
However, as pointed out in [37], optimal power allocation is essential in achieving the 
full additive gain.

12.3.6  Transmitter Cooperation

In transmitter cooperation, two (close) single-antenna transmitters collaborate in com-
municating to two (remote) single-antenna receivers. The channel model is depicted in 
Figure 12.3 (upper left) with c43 = c34 = 0. As in receiver cooperation, we restrict to the 
full-duplex case, where nodes 1 and 2 can simultaneously transmit and receive.

It is shown in [36, 37] that, in contrast to receiver cooperation, synchronization helps 
a lot when the transmitters cooperate. That is, if the two transmitters are synchronized, 
they can completely cancel out the interference using DPC.

The DPC technique was exploited in [7, 38] to find the capacity of the Gaussian MIMO 
broadcast channel. For the two-antenna broadcast channel with two receivers [7], the 
main idea is to decompose the MIMO channel into two interference channels and per-
form successive encoding, in which the message for the second receiver is dirty-paper 
encoded while assuming the previously encoded message for the first receiver is known 
interference (the side information). In this way, the second receiver can completely can-
cel out the interference from the signal for the first receiver. However, to achieve full 
capacity, the transmitter has to perform optimal channel decomposition using precod-
ing with the output vector x = b[u1 u2]T, where b is a 2 × 2 precoding matrix that has 
to satisfy the power constraint, and u1 and u2 are the encoded codewords (with unit 
power) intended for the first and second receivers, respectively, and obtained via succes-
sive dirty-paper encoding. Assuming a 2 × 2 channel matrix H and unit-power Gaussian 
noise, the achievable rates for the first and second receivers are 
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and R2 = log(1 + |s22|2), respectively, where sij are the entries of matrix S = Hb.
The coding strategy of [7] is extended to transmitter cooperation in [36, 39]. In 

[39], it is assumed that the channel between the two transmitters is orthogonal to the 
channels between the transmitters and receivers (which can be achieved by means of 
multiple access techniques). Thus, collaboration between the transmitters does not 
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cause interference at the receivers, which simplifies the code design. This orthogonality 
assumption is removed in [36], where a coding scheme that in each time instant exploits 
three DPCs is proposed.

We outline here a simplified (hence more practical) solution proposed in [40] based 
on one DPC (in conjunction with backward decoding). During the i th time instant, the 
transmitter in node j, j = 1, 2, sends

 x i A U i t U i U ij j j j j[ ] [ ] [ ] [ ]= ( )+ − , −(ω ω ω1 1
0

1 2
0

21 1 ))( )+ −( ) .t U ij 2 2
0

2 1ω [ ]

Here U2
0, U1, and U2 are Gaussian codebooks (e.g., standard channel codes in practice) 

of unit power that encode ω2[i – 1], ω1[i], and ω2[i], respectively. U1 and U2 are used for 
exchanging messages between the transmitters and appear as part of the background 
noise at the receivers. Assuming correct decoding of U1(ω1[i – 1]) and U2(ω2[i – 1]) in 
time instant i – 1, the two transmitters can now act as a single two-antenna broadcast 
transmitter, and the coding strategy of [7] described above can be applied. Thus, the 
unit-power codebook U1

0 can encode ω1[i – 1] using DPC with U2
0(ω2[i – 1]) as the side 

information. The scaling factors Ai and tij are selected to maximize the rate while satisfy-
ing the input power constraints.

In the asynchronous case, DPC cannot be exploited, and the resulting known achiev-
able rates are strictly below those in the synchronous case. However, so far there exist 
no upper bounds that actually prove that the gains cannot be obtained without synchro-
nization. Although it is possible to use CF based on WZC in transmitter cooperation, 
since the two transmitters are closely located, DPC always dominates. This is why WZC 
is not considered in this setup.

12.3.7  Capacity Bounds of the Gaussian Full-Duplex 
Transmitter Cooperative Channel

In this section we summarize the capacity bounds of the Gaussian full-duplex transmit-
ter cooperative channel. As in the case of receiver cooperation, we give only final results 
without derivations. All proofs can be found in [36].

Based on the argument exploited in [7] that the capacity region depends only on the 
marginal distribution of the noises at the receivers and not on their correlation, the fol-
lowing upper bounds on capacity are derived in [36]. For |c41| < 1, the upper bound is
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in the asynchronous case, and
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in the synchronous case, and the sum-rate bound R1 + R2 is an increasing function of R1. 
If |c41| > 1, the upper bound is
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in the synchronous case. There is also a symmetric set of rate bounds by exchanging 
nodes 1 and 2 with nodes 3 and 4.

Achievable bounds in asynchronous (without DPC) and synchronous systems (with 
three DPCs) can be found in [36]. The achievable bound for the scheme that used one 
DPC is given in [40]. Figure 12.8 shows the sum-rate bounds R1 + R2 as functions of the 
received SNR on the direct link between nodes 1 and 3. The simulation setup is similar 
to that for receiver cooperation with the received SNR at the cooperative link (between 
nodes 1 and 2) being 30 dB higher than that at the direct link, again indicating that the 
cooperating transmitters are close together.

The achievable bounds of the synchronous system with DPC are usually close to the 
upper bound, although noticeable gaps exist in certain SNR ranges. There is only a small 
performance loss if only one DPC is used instead of three. The additive gain compared to 
the noncooperative case is up to 15 dB in the high-SNR regime. Transmitter cooperation 
with DPC performs close to using two transmitter antennas at low and medium SNRs, 
giving a multiplexing gain of 2. However, at high SNRs, the multiplexing gain is only 1.

Similar to receiver cooperation, in the high-SNR regime, transmitter cooperation 
only gives a multiplexing gain of r = 1 (in contrast to the two-antenna broadcast chan-
nel, which results in r = 2). The additive gain can be high. For example, when |c41| < 1, in 
the synchronous case it is bounded by
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By exchanging nodes 1 and 2 with nodes 3 and 4, we get another symmetric rate bound. 
Besides the multiplexing gain of r = 1, DPC achieves a high-SNR additive gain of

 a c t t
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 (12.18)

Comparing (12.17) and (12.18), we see that the additive gain of using DPC is approxi-
mately equal to that from the upper bound when |t12|2 ≈ P1 and |t22|2 ≈ P2, which cor-
responds to the scenario with weak interference, i.e., |c41|,|c32|  1. In this case, the 
gain compared to no cooperation in (12.15) is min{log(|c12|),log(|c21|)}, which can be sig-
nificant, because the channel between the two transmitters is expected to be good. This 
is illustrated in Figure 12.9, which shows the high-SNR additive gain for a symmetric 
cooperative channel (|c41| = |c32|, |c21| = |c12|). Note that under strong interference, i.e., 
|c32|,|c41|  1, there is no gain from cooperation, which might seem somewhat surpris-
ing and is in contrast to receiver cooperation. For weak interference, on the other hand, 
there is a high gain from cooperation. This is true even when the link between the trans-
mitters is weak (|c21|2 = –6 dB in Figure 12.9), and it can be explained by the fact that 
there is no known signaling for the interference channel with weak interference, while 
cooperation can help in this scenario.
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FIgure 12.8 The bounds on the sum-rate R1 + R2 as a function of the received SNR at the direct 
link between nodes 1 and 3 for transmitter cooperation. The received SNR at the link between 
nodes 1 and 2 is 30 dB higher than that at the direct link. The average powers of all four nodes are 
the same. The upper bound is for the synchronous system.
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12.4  Practical Designs

In the previous section, we described coding methods that could lead to the highest rates 
while assuming ideal coding, signaling, and infinite block length. In this section we 
describe practical systems based on AF, DF, and CF for the relay and cooperative chan-
nels, with the focus on capacity-approaching code designs.

Efficient practical coding protocols for wireless relay channels appeared in [41], where, 
for AF and DF schemes, receivers based on maximum-likelihood and maximum SNR 
criteria were developed. The work was extended to wireless multirelay channels in [32], 
where space-time codes [3] with AF and DF are designed to enable simultaneous trans-
mission from all relays on the same channel without receive collision. It is further shown 
that the proposed schemes achieve the full-diversity gain. An AF space-time code for a 
single relay is proposed in [35]. Note that the works of [32, 35] only outline space-time 
code designs without practical implementation of channel codes.

Practical DF schemes for a half-duplex flat-fading relay channel based on distributed 
convolutional and turbo coding are proposed in [28]. The best scheme of [28] exploits 
a recursive systematic convolutional code at both the source and the relay. It results in a 
powerful distributed turbo code, which besides a spatial diversity gain of DF, achieves 
extra coding gain due to interleaving.

Extending their work on practical full-duplex relaying [26], Zhang and Duman [29] 
recently provided a DF design for half-duplex fading relay channels, where in a given 
time slot, the source and relay both transmit over the same channel, resulting in a high 
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(|c41| = |c32|, |c21| = |c12|), averaged over the relative phases of c41 and c32. The upper bound is for a 
synchronous system.

© 2009 by Taylor & Francis Group, LLC



Cooperative Diversity 363

rate gain at the price of receive collision. The design in [29] exploits turbo coding with 
binary phase shift keying (BPSK) modulation [6]. It is consistent with the optimal DF 
scheme for the half-duplex relay channel described in section 12.3.2, with the simpli-
fication that coefficient A in (12.8) is always set to zero. Decoding is based on parallel 
Gaussian channel arguments [28]. Similar to the MAC setting, the destination exploits a 
MAP detector to extract information from the received mixture signal. Recent work [42] 
on low-density parity-check (LDPC) code [43] design for the half-duplex relay channel 
based on DF also reported a similar loss of 1.2 dB to the theoretical limit.

The systems in [28, 29, 32, 35] demonstrate the great advantage of relaying as com-
pared to direct and multihop transmission. However, because these systems exploit AF 
or DF, they can approach the lower bound of DF at best, which is far away from the CF 
limit in many cases. Indeed, as shown in section 12.3.2, when the relay is close to the 
destination, CF gives rate points that are not achievable with any other coding strategies. 
Moreover, it was shown in [44] that CF achieves optimal diversity-multiplexing trade-off 
in half-duplex relay systems.

Practical CF code designs for the half-duplex relay channel recently appeared in 
[45–47]. The design of [45] is a quantize-forward scheme that does not exploit WZC at 
the relay. The design of [46] is based on WZC at the relay and uses scalar quantization 
and convolutional codes, but it does not exploit the limit-approaching CF scheme of [24], 
and no theoretical bounds or performance comparisons (to the bounds) were given.

A practical CF code design based on WZC for the half-duplex Gaussian relay channel, 
which closely follows the CF scheme outlined in section 12.3.2, is proposed in [47]. The 
scheme of [47] exploits BPSK modulation; hence, the signal to be compressed by WZC at 
the relay and the side information at the destination are not jointly Gaussian as assumed 
in section 12.3.2 and [36]. Instead, the source and the side information are Gaussian 
mixture generated from the BPSK modulation. Although the theoretical achievable 
rate of WZC for this model is yet unknown, a lower bound and an upper bound are 
derived in [47], which in the case when the relay is close to the destination are close to 
each other, indicating practically system capacity. The code design relies on practical 
WZC based on nested lattice quantization [48] followed by Slepian-Wolf coding [15] 
of the nested quantization index as a second stage of binning for further compression 
[49]. Thus,  Slepian-Wolf coding here plays the role of conditional entropy coding of the 
nested quantization indices (given the decoder side information).

Practical Slepian-Wolf coding is implemented via channel coding (see [19] for a review 
of channel code designs for Slepian-Wolf coding). Since the Slepian-Wolf compressed 
bitstream is to be transmitted over a noisy channel from the relay to the destination, 
channel coding is needed to protect them. This calls for distributed joint source-channel 
coding (DJSCC) [50], i.e., joint Slepian-Wolf compression and channel protection. In 
the practical implementation of [47], irregular repeat-accumulate (IRA) codes [51] were 
used by designing one multilayer code to take care of two channels: one is the physical 
noisy channel between the relay and the destination, and another is the “virtual” cor-
relation channel [19], which characterizes the correlation between the quantized source 
at the relay and the decoder side information at the destination.

In particular, the message m is split at the source into two parts, m1 and m2, which 
are protected independently by two different LDPC codes [43] and BPSK modulated 
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before being transmitted in two separate fractions of a time slot. The relay compresses 
its received signal using WZC and adds error protection against the noise (and inter-
ference) in the link between the relay and the destination. WZC and error protection are 
performed jointly using DJSCC; the resulting codeword xr(m1) is sent during the relay-
transmit period. The destination starts by recovering m2 using successive cancellation 
decoding: xr(m1) is first reconstructed using distributed joint source-channel decoding, 
and is then subtracted from yd2 (interference cancellation) so that m2 can be recovered 
with the first LDPC decoder having z as the only noise in the channel. The main idea 
behind distributed joint source-channel decoding is to view the system as transmitting 
the symbols over two channels—the first being the actual transmission channel (i.e., the 
MAC) with noise z + xs2(m2), which describes the distortion experienced by the parity-
check symbols of the IRA code, and the second being the virtual correlation channel 
[19] between yr and the side information yd1. The destination estimates ŷr by employing a 
conventional IRA decoder for these two parallel channels. Finally, m1 is recovered using 
maximum ratio combining (of ŷr and yd1 = cdsxs1(m1) + zds) and a second LDPC decoder 
for the direct transmission channel.

Figure 12.10 compares this CF design with the best practical DF design of [29] for the 
half-duplex Gaussian relay channel. Different theoretical bounds are also depicted (deri-
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FIgure 12.10 Half-duplex Gaussian relay channel. The average transmitting power from the 
source Ps is shown as a function of the distance d from the source to relay. The transmitting rate is 
0.5 and the average transmitting power from the relay is Pr = 70 dB. The relay is moving along the 
line from the source to destination. BPSK signaling is assumed.
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vations of the bounds in the BPSK case are not included here due to space limitations 
and interested readers are referred to [47] for details). The transmission rate is fixed at 
0.5 bit per channel use, and the average relay power is Pr = 70 dB.

It is assumed that the relay is located along a straight line from the source to the 
destination, which are 10 m apart. The channel coefficient of the link from sender i to 
receiver j (sender i could be the source or relay, and receiver j could be the relay or des-
tination) is cij

2 = Kodij
–n [28], where dij is the distance from sender i to receiver j, n is the 

path loss coefficient, Ko = (c/4πdo fc )2, c is the light speed, do is the free-space reference 
distance, and fc is the transmission frequency. The experimental setup is fixed with fc = 
2.4 GHz carrier frequency, path loss coefficient n = 3, and free-space reference distance 
do = 1 m.

Figure 12.10 shows the average source power Ps as a function of the distance d between 
the source and relay. The additive white Gaussian noises over the transmitting channels 
are all set to be with unit variance. It is seen that, when d > 8 m, CF outperforms DF 
theoretically, and the practical CF code of [47] is preferable to the practical DF code 
[29]. Note that when 7.5 m < d < 8 m, where DF is superior in theory, the CF scheme still 
performs better than the practical DF code.

The above practical WZC-based design can be extended to the case of the two-
receiver cooperative channel by following the CF coding strategy with forward individ-
ual decoding described in section 12.3.4. Each transmitter is equipped with one LDPC 
channel encoder, and each receiver performs one distributed joint source-channel 
encoding step and two channel decoding steps.

In contrast to the scarcity of WZC-based CF designs for receiver cooperation, there 
have been more code designs for transmitter cooperation. For example, since the pub-
lication of the work on user cooperation [1], several research groups [32, 52–55] have 
developed practical designs based on AF and DF for the wireless two-transmitter coop-
erative channel. A common characteristic of these designs is the avoidance of receive 
collision by transmitting signals over orthogonal channels, which simplifies the code 
design. Specifically, the two transmitters (or cooperative partners) send encoded mes-
sages over orthogonal channels during the first fraction of a time slot. Each transmitter 
decodes the signal it has received from its partner and, in the case of successful decoding, 
either re-encodes the recovered message using the partner’s codebook (repetition-based 
DF) or generates additional parity symbols out of a rate-compatible code (DF based on 
incremental redundancy). The resulting codewords are then forwarded over orthogonal 
channels to the receiver during the second fraction of a time slot. If a transmitter cannot 
successfully decode its partner’s message, it switches to either the noncooperative mode 
or AF. Orthogonal signaling is achieved by using time-, frequency-, or code-division or 
space-time coding.

A DF design based on incremental redundancy for a flat-fading transmitter coopera-
tive channel, dubbed coded cooperation, is proposed in [52, 53]. Two users, partners, 
first exchange their messages; then each user sends only additional redundancy bits for 
its partner message. That is, after successful decoding, the user transmits only additional 
protection bits of a rate-compatible code for the partner’s message, so that its overall 
code rate is decreased. In addition, whenever the partner’s message cannot be decoded, 
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the user switches to a noncooperative mode. A low-complexity implementation with 
rate-compatible punctured convolutional (RCPC) codes and a more complex design 
with space-time turbo coding (efficient on both slow and fast flat-fading channels) are 
given in [52] and [53], respectively.

A similar DF scheme, based on incremental redundancy, reported in [54] exploits 
convolutional codes optimized for two-transmitter cooperation in a Rayleigh flat-fading 
environment. The scheme is shown to be able to achieve the full-diversity gain.

Although the above DF schemes can provide the full-diversity gain, they do so at the 
expense of decreased rate gain. On the other hand, we know from section 12.3.6 that 
DPC provides the highest achievable rate over a transmitter cooperative channel. Practi-
cal DPC is exploited in [40] to design codes for a wireless two-transmitter cooperative 
channel. The scheme follows closely coding strategy outlined in section 12.3.6 based 
on one DPC only. The DPC scheme of [22] is used at the transmitters. It is based on 
trellis-coded quantization and turbo trellis-coded modulation. Punctured turbo trellis-
coded modulation is used to facilitate message exchanges between the two transmitters. 
Practical design results are shown in Figure 12.11, where the frame error rate against 
the SNR at the direct link between nodes 1 and 3 is shown. The figure indicates a loss of 
1.5 dB from the achievable bound at 2% frame error rate.
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FIgure 12.11 Simulation results obtained with the DPC-based scheme of [40] for transmitter 
cooperation, together with various theoretical bounds. The probability of frame error is shown 
versus the received SNR at the direct link. The rate constraints are fixed at R1

o  = R2
o = 1 bit/sample, 

and the received SNR at the link between nodes 1 and 2 is 30 dB higher than that at the direct link 
between nodes 1 and 3.
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12.5  Conclusions

Due to its low complexity and decentralized nature, cooperative diversity arises as a 
strong candidate for conveying information in emerging wireless ad hoc networks. This 
motivates research in determining its ultimate performance limit. For a two-transmitter 
two-receiver cooperative channel, the theory shows that, at least in the high-SNR regime, 
in contrast to a two-antenna MIMO system, cooperative diversity cannot achieve the 
full multiplexing gain of 2. Thus, there is a cost paid for having only one antenna at each 
node. This result indicates that in achieving the full multiplexing gain of 2, tight coordi-
nation among the transmit/receive antennas is necessary, which is possible only if they 
are placed together. However, cooperative diversity does offer high additive rate gains 
when compared to the noncooperation case, and the key in achieving these gains lies in 
coding with side information (e.g., DPC and WZC). In transmitter cooperation, syn-
chronization between the two transmitters is essential in obtaining high data rates; DF 
with DPC is the best coding strategy, coming very close to the upper limits if the inter-
ference is weak. Unfortunately, when the interference is strong, transmitter cooperation 
does not help (in the high-SNR regime). In contrast, receiver cooperation is beneficial in 
both weak and strong interference scenarios, and CF with WZC is the dominant coding 
strategy that asymptotically achieves the capacity as the interference and SNR approach 
infinity. More importantly, full synchronization between the nodes is not necessary for 
receiver cooperation. Interestingly, as pointed out in [37], optimal power allocation is 
crucial to realize the full performance gain of receiver cooperation, whereas it provides 
only a marginal gain in transmitter cooperation.

Owing to its promising application in wireless ad hoc networks, cooperative diversity 
has been studied intensively recently. Many problems are still open. For example, posed 
more than 30 years ago, the capacity of the simplest Gaussian relay channel—a building 
block of cooperative diversity—is still unknown. Recent achievements [38] in provid-
ing the full-capacity region for a Gaussian MIMO broadcast channel using DPC might 
inspire new ideas for solving this problem. The theoretical bounds reported so far are 
mainly for the full-duplex setups with up to four nodes, where either two transmitters or 
two receivers cooperate. Providing results for half-duplex cooperative channels should 
be a research priority. Treating an ad hoc network where the two transmitters and two 
receivers simultaneously cooperate is another possible research direction. Combining 
DPC and WZC could lead to the largest achievable rate region, but such a theoretical 
treatment is not straightforward. In addition, extensions to larger networks with more 
than four nodes that require cross-layer designs are very challenging because of the 
additional problem associated with selecting the best partner for cooperation. Also, con-
sidering cases where the relay has side information in the form of correlated source [56] 
or with multiantenna relaying [57] is of interest. Finally, exploiting network coding [58] 
for user cooperation [59] is a promising approach.

The reported practical designs still suffer performance loss compared to the theo-
retical limits. Closing this gap with better code designs while staying at acceptable 
complexity is an urgent research task. The practical designs proposed so far are only 
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for wireless relay and two-transmitter two-receiver cooperative channels. Substantial 
research efforts are needed to construct practical systems based on cooperative diversity 
for larger ad hoc networks.
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13.1  Introduction

With the help of recent technological advances in micro-electro-mechanical systems 
(MEMS) and wireless communications, low-cost, low-power, and multifunctional wire-
less sensing devices have been developed. When these devices are deployed over a wide 
geographical region, they can collect information about the environment and efficiently 
collaborate to process such information by forming a distributed communication net-
work, called the wireless sensor network (WSN). WSN is a special case of wireless ad 
hoc network, and assumes a multihop communication framework with no common 
infrastructure, where the sensors spontaneously cooperate to deliver information by 
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forwarding packets from a source to a destination. The feasibility of WSNs keeps growing 
rapidly, and WSNs have been regarded as fundamental infrastructures for future ubiq-
uitous communications due to a variety of promising potential applications: monitoring 
the health status of humans, animals, plants, and environment; control and instrumen-
tation of industrial machines and home appliances; homeland security; detection of 
chemical and biological threats and leaks; etc. [1, 2].

Time synchronization is a procedure for providing a common notion of time across 
a distributed system. It is crucial for WSNs in performing a number of fundamental 
operations, such as:

Data fusion: Data fusion is a main operation in all distributed networks for • 
processing and integrating in a meaningful way the collected data, and it 
requires some or all nodes in the network to share a common timescale.
Power management: Energy efficiency is a key designing factor for WSNs • 
since sensors are usually left unattended without any maintenance and bat-
tery replacement for their lifetimes after deployment. Most energy-saving 
operations strongly depend on time synchronization. For instance, the duty 
cycling (sleep and wake-up modes control) helps the nodes to save huge energy 
resources by spending minimal power during the sleep mode. Thus, network-
wide synchronization is essential for efficient duty cycling, and its performance 
is proportional to the synchronization accuracy.
Transmission scheduling: Many scheduling protocols require time synchroni-• 
zation. For example, the Time Division Multiple Access (TDMA) scheme, one 
of the most popular communications schemes for distributed networks, is only 
applicable to a synchronized network.

Moreover, many localization, security, and tracking protocols also demand the 
nodes to time stamp their messages and sensing events. Therefore, time synchroniza-
tion appears as one of the most important research challenges in the design of energy-
efficient WSNs.

In general, synchronization is considered a critical problem for distributed wireless ad 
hoc networks due to its decentralized nature and the timing uncertainties introduced by 
the imperfections in hardware oscillators and message delays in physical and Medium 
Access Control (MAC) layers. All these uncertainties cause the local clocks of different 
nodes to drift away from each other over the course of a time interval. In the context 
of the Internet (a kind of distributed network), time synchronization has been thor-
oughly studied and investigated. In the Internet, the Network Time Protocol (NTP) [3] is 
employed ubiquitously due to its diverse advantages, such as scalability, robustness, and 
self-configurability. Besides, NTP does not rely on GPS and is a software-based protocol. 
However, NTP presents a number of challenges when applied to WSNs due to the unique 
nature of sensor networks: limited power resources, wireless channel conditions, and 
dynamic topology caused by mobility and failure. Therefore, different types of synchro-
nization schemes have to be explicitly designed for WSN applications to cope with these 
challenges (see also the surveys in [4–9] for additional motivations in this direction).
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Research works on time synchronization in the context of WSN roughly began to appear 
in 2002, where [5], for the first time, pointed out NTP cannot be directly applied to WSN 
and described some important characteristics and design principles of time synchroniza-
tion in WSNs. In the same year and the next, two important time synchronization proto-
cols for WSNs were reported: Timing-sync Protocol for Sensor Networks (TPSN) [17] and 
Reference Broadcasting Synchronization (RBS) [18]. These two protocols set the stage for 
two fundamental approaches of time synchronization in WSNs. After that, many exten-
sions and generalizations of TPSN and RBS, and many different synchronization schemes 
based on other ideas, have been proposed in the literature. Notice that symbol timing 
synchronization in the physical layer, which is critical for accurate symbol detection at 
the receiver, is a different problem and is out of the scope of this chapter.

The purpose of this chapter is threefold. First, this chapter summarizes the funda-
mental features and theoretical results encountered in time synchronization of WSNs. 
Second, it represents the survey of existing time synchronization protocols for WSNs, 
focusing mainly on the signal processing aspects, the most recent developments in this 
field. Finally, this chapter discusses the need for adaptive time synchronization schemes 
for WSNs, analyzes the features of the recently reported adaptive time synchronization 
protocols, and proposes several research directions for improving their performance.

The rest of this chapter is organized as follows. In section 13.2, the general clock model 
for time synchronization is first introduced and analyzed. Some important features 
that have to be considered when designing time synchronization protocols for WSNs 
are presented. Additionally, various delay components in timing message delivery are 
categorized. Section 13.3 presents three general and fundamentally different time syn-
chronization approaches: sender-receiver, receiver-receiver, and receiver-only synchro-
nization. These basic approaches are analyzed and compared to illustrate the common 
and different characteristics in clock synchronization of WSNs. Section 13.4 categorizes 
and surveys the existing synchronization protocols and relates them to the results pre-
sented in section 13.3. In section 13.5, results concerning the importance and effective-
ness of adaptive time synchronization schemes are presented, and the most important 
adaptive synchronization protocols are introduced as well. Finally, section 13.6 summa-
rizes and concludes this chapter.

13.2  Signal Models for Time Synchronization

13.2.1  Definition of Clock

Every individual sensor in a network has its own clock. The counter in a sensor is 
increased in accordance with the zero-crossings or the edges of the periodic output sig-
nal of the local oscillator. When the counter reaches a certain threshold value, an inter-
rupt is created and delivered to the memory. The frequency of the oscillator and the 
threshold value determine the resolution of the clock. Ideally, the clock of a sensor node 
should be configured such that C(t) = t, where t stands for the ideal or reference time. 
However, due to the imperfections of the clock oscillator, the clock function of the i th 
node is modeled as
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 C t t ei ( ) = + ⋅ + ,θ θo s  (13.1)

where the parameters θo and θs are called clock offset (phase difference) and clock skew 
(frequency difference), respectively, and e stands for random noise.

Assuming the effect of random noise e is negligible, from (13.1), the clock relationship 
between two nodes, say node 1 and node 2, can be represented by

 C t C t1
12 12

2( ) ( )( ) ( )= + ⋅ ,θ θo s

where θo
(12) and θs

(12) are the relative clock offset and skew between node 1 and node 2, 
respectively. Thus, θo

(12) = 0 and θs
(12) = 1 when the two clocks are perfectly synchronized. 

Suppose there are L nodes in the network, then the global network-wide synchroniza-
tion is achieved when Ci(t) = Cj(t) for all i, j = 1, …, L.

Time synchronization in wireless sensor networks is a complicated problem due to 
the following reasons. First, every single oscillator has unique clock parameters regard-
less of its type. For instance, according to the data sheet of a typical crystal-quartz oscil-
lator commonly used in sensor networks, the frequency of a clock varies up to 40 ppm, 
which means clocks of different nodes can lose as much as 40 ms in a second. In other 
words, every single oscillator might assume a different skew parameter ranging from 
–20 to 20 ppm.

Notice that in general, the clock skew θs is a time-dependent random variable (RV) 
and there are two concepts used often in clock terminology regarding the nature of 
time-dependent randomness present in clock parameters. These concepts are referred to 
as short-term and long-term stabilities, respectively. For the oscillators currently used in 
sensor networks, all these parameters are almost constant for short-term time intervals 
[10]. Besides, the total power of the noise process is too small to be effective in short time 
spans [11]. Therefore, the parameters of a clock are assumed to be constants for the time 
period of interest.

As far as the long-term stability is concerned, the clock parameters are subject to 
change due to environmental or other external effects such as temperature, atmospheric 
pressure, voltage changes, and hardware aging [10]. Hence, in general, the relative clock 
offset keeps changing with time, which means that the network has to perform periodic 
time resynchronization to adjust the clock parameters.

13.2.2  Design Considerations

Time synchronization for conventional wired networks has been thoroughly studied 
and a plethora of synchronization protocols have been developed as surveyed in [1]. For 
wireless sensor networks, there are a number of unique and important factors to be con-
sidered when designing time synchronization protocols as listed below.

Energy consumption•  : Energy consumption is momentous in wireless sensor 
networks due to their limited and generally nonrechargeable power resources. 
Hence, the design of wireless sensor networks should be subjected to maintain-
ing minimal energy expenditure in each sensor node. Various types of power 
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control procedures, such as sleep/wake-up modes and dynamic routing con-
trols, are commonly considered in this regard. Time synchronization is one of 
the critical components contributing to energy consumption due to the highly 
energy consuming radio transmissions for achieving clock synchronization. 
Indeed, the energy consumption required for time synchronization of a node 
is approximately 17% of the total energy spent by a node [12]. Pottie and Kaiser 
showed in [13] that the radio frequency (RF) energy required to transmit 1 bit 
over 100 m (i.e., 3 J) is equivalent to the energy required to execute 3 million 
instructions. Therefore, developing efficient synchronization algorithms rep-
resents an ideal mechanism for trading computational energy for reduced (RF) 
communication energy. In the sequel, energy efficiency is the main concern in 
designing time synchronization protocols.
Latency•  : Latency in message delivery is a fundamental factor when designing 
communications networks. For networks based on multihop transmissions 
like wireless sensor networks, this is even more critical because the uncertainty 
in message delivery significantly increases as the number of hops increases. 
Besides, the effects of channel variations, mobility, and the ad hoc nature of 
wireless sensor networks make this problem more complex. Efficient localiza-
tion and time synchronization protocols are necessary for reducing the latency 
error and jitter.
Security and reliability•  : Network security has gained huge attention in recent 
years as the networks become more accessible and vulnerable due to the devel-
opment of sophisticated spying techniques and devices. Besides, unlike wired 
networks, far more frequent message losses occur in wireless networks because 
of the time-varying nature of wireless channels. Therefore, a mechanism to 
cope with message losses and malicious attacks in time synchronization will 
be necessary for wireless sensor networks.
Network topology changes•  : The performance of a time synchronization protocol 
is closely related to the network topology, i.e., it varies with the density and dis-
tribution of sensors in the network. Therefore, any shift in the location or scale of 
sensors incurs a network topology change, which requires at its turn a new self-
configuration. Mobility of the sensors and battery timeouts are the main reasons 
for this change. Hence, for dynamic sensor networks, time synchronization pro-
tocols should be able to adapt well to frequent network topology changes.
Scalability•  : Scalability is another important factor in the design of synchro-
nization protocols. The computational complexity of synchronization algo-
rithms becomes a critical problem as the number of sensors becomes very 
large. Besides, many other crucial MAC operations, such as multihop routing 
and network configuration, highly depend on the network scalability as well.

13.2.3  Delay Components in Timing Message Delivery

The main role of time synchronization in a distributed network is to ensure a common 
timescale for all the network nodes, and to provide the right temporal coordination 
among all the nodes engaged in a collaborative and distributed interaction with the 
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physical environment. Timing mismatch arises mainly from different setup times of 
nodes and time variations introduced by local oscillators running at different frequen-
cies. Environmental variations, such as temperature and aging, also drive local clock 
oscillators to run unpredictably. All these uncertainties cause the local clocks of differ-
ent nodes to drift away from each other over the course of a time interval.

Assume two nodes need to be synchronized. One of the nodes sends its current time 
to a neighboring node; if there is absolutely no delay in the message delivery, that neigh-
boring node can immediately know the difference between its clock and its neighbor’s 
clock. Unfortunately, in a real wireless network, various delays affect the message deliv-
ery, making time synchronization much more difficult than it seems to be. In general, 
a series of timing message transmissions is required to estimate the relative time offsets 
among nodes. In some sense, time synchronization in wireless sensor networks can be 
regarded as a process of removing the nondeterministic delays during timing message 
transmission over wireless channels.

There are a number of nondeterministic delays while transferring messages between 
nodes. Kopetz and Ochsenreiter for the first time analyzed the structure of message delays 
and characterized the delay components according to the process of message de livery 
[14]. The delay components in message delivery can be categorized as follows:

 1. Send time: The time spent in building the message at the application layer, includ-
ing other delays introduced by the operating system when processing the send 
request. The send time is nondeterministic and can be up to hundreds of milli-
seconds depending on the workload of the system.

 2. Access time: The time waiting for accessing the channel after reaching the MAC 
layer. This is the most significant factor and highly variable according to the spe-
cific MAC protocol. The access time is nondeterministic and varies from millisec-
onds up to seconds depending on the current network traffic.

 3. Transmission time: The time for transmitting a message at the physical layer. This 
delay can be estimated by the length of a message and the speed of radio in the 
medium and is in the order of tens of milliseconds.

 4. Propagation time: The actual time for a message to transmit from the sender to 
the receiver in a wireless channel. The propagation time is deterministic and less 
than 1 µs, which is almost negligible compared with the other delay components.

 5. Reception time: The time required for receiving a message at the physical layer, 
which is the same as the transmission time. In some cases, this delay has been 
categorized as a part of the receive time, to be presented next.

 6. Receive time: Time to construct and send the received message to the applica-
tion layer at the receiver. It is a corresponding component of the send time on the 
transmitter side and can be varied due to the variable delays introduced by the 
operating system.

Note that the time delay in message transmission is also dependent on other factors, 
such as hardware platform, error correction code, and modulation scheme. The esti-
mated time delay discussed above in each component is based on the Mica2 platform 
[15]. More detailed analysis can be found in [16].
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13.3  Fundamental Approaches  
to Time Synchronization

Time synchronization in wireless sensor networks can be achieved by transferring a 
group of timing messages to the target sensors. The timing messages contain the infor-
mation about the time stamps measured by the transmitting sensors. There exist two 
well-known approaches for time synchronization in wireless sensor networks, which are 
categorized as sender-receiver synchronization (SRS) and receiver-receiver synchroniza-
tion (RRS). SRS is based on the traditional model of two-way message exchanges between 
a pair of nodes. For RRS, the nodes to be synchronized first receive a beacon packet from 
a common sender, then compare their receiving time readings of the beacon packet to 
compute the relative clock offset. Most of the existing time synchronization protocols 
rely on one of these two approaches. For instance, the Network Time Protocol (NTP) [3] 
and the Timing-sync Protocol for Sensor Networks (TPSN) [17] adopt SRS since they 
depend on a series of pairwise synchronizations that assume two-way timing message 
exchanges. Notice also that the Reference Broadcast Synchronization (RBS) protocol 
[18] relies on RRS since it requires pairs of message exchanges among children nodes 
(except the reference) to compensate their relative clock offsets.

Recently, a new approach for time synchronization, called receiver-only synchroniza-
tion (ROS), was proposed. It aims at minimizing the number of required timing messages 
and energy consumption during synchronization while preserving a high level of accu-
racy [19]. This approach can be used to achieve network-wide synchronization with much 
less timing messages than other well-known existing protocols such as TPSN and RBS.

Next we will present and analyze each of these synchronization approaches and 
illustrate how the general design considerations can be resolved in them. For all these 
approaches, we only present the underlying signaling mechanisms for performing pair-
wise synchronization, i.e., synchronizing a pair of nodes, since network-wide synchro-
nization can be simply achieved by performing a group of pairwise synchronizations.

13.3.1  Sender-Receiver Synchronization

This approach is based on the classical two-way timing message exchange mechanism 
between two adjacent nodes. Consider a parent node P and one of its children nodes, 
node A, in Figure 13.1. The clock model for the two-way message exchange is depicted in 
Figure 13.2, where θo

(AP) denotes the clock offset between node A and node P and timing 
messages are assumed to be exchanged multiple (N) times [4, 17]. Here, the time stamps 
made during the i th message exchange T1,i

(A) and T4,i
(A) are measured by the local clock of 

node A, and T2,i
(P) and T3,i

(P) are measured by the local clock of node P, respectively. Node 
A transmits a synchronization packet, containing the value of time stamp T1,i

(A) to node 
P. Node P receives it at time T2,i

(P) and transmits an acknowledgment packet to node A 
at T3,i

(P). This packet contains the value of time stamps T1,i
(A), T2,i

(P), and T3,i
(P). Then, node A 

finally receives the packet at T4,i
(A).

As discussed before, packet delays can be characterized into several distinct compo-
nents: send, access, transmission, propagation, and receive times. These delay  components 
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are divided into two parts: the fixed portion d and the variable portion Xi. The variable 
portion of delays depends on various network parameters (e.g., network status, traf-
fic, etc.) and setup, and therefore no single delay model can be found to fit for every 
case. Thus far, several probability density function (PDF) models have been proposed 
for modeling random delays, the most widely deployed ones being Gaussian, Gamma, 
exponential, and Weibull PDFs [20, 21]. The Gaussian delay model is appropriate if the 
delays are thought to be the addition of numerous independent random processes. In 
[18], the chi-squared test showed that the variable portion of delays can be modeled as 
Gaussian distributed random variables (RVs) with 99.8% confidence. On the other hand, 
a single-server M/M/1 queue can fittingly represent the cumulative link delay for point-
to-point hypothetical reference connection, where the random delays are independently 
modeled as exponential RVs [22]. Thus, we assume the random portions of delays are 
either normal or exponentially distributed RVs.

FIgure 13.1 Sender-receiver synchronization and receiver-only synchronization.
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FIgure 13.2 Clock synchronization model of SRS (node P and node A) and ROS (node B).

T (P)

ˆ

Di
DN

Node A

Node P

Node B

(BP)

(AP)

o

o

ˆ

2,1

T (A)
1,1 T (A)

4,1

T (P)
2,1

T (B)
2,1

T (A)
1,i T (A)

4,i

T (P)
2,i

T (B)
2,i

T (A)
1,N

T (B)
2,N

T (A)
4,N

T (P)
2,N

T (P)
3,1 T (P)

2,i T (P)
3,i T (P)

2,N T (P)
3,N

B

A

P
Clock
offset

© 2009 by Taylor & Francis Group, LLC

(Node P and Node A)



Time Synchronization for Wireless Sensor Networks 381

13.3.1.1  Clock Offset Estimation

Suppose that the clock frequencies of two nodes remain equal during the synchroniza-
tion period, and both Xi

(AP) and Xi
(PA) are normal distributed RVs with mean μ and vari-

ance σ2/2. From Figure 13.2, T2,i
(P) and T4,i

(A) can be expressed as

 T T d Xi i i2 1, ,= + + + ,( ) ( ) ( ) ( ) ( )P A
o
AP AP APθ  (13.2)

 T T d Xi i i4 3, ,= + + + ,( ) ( ) ( ) ( ) ( )A P
o
PA PA PAθ  (13.3)

where θo
(PA) = –θo

(AP), d(AP), and Xi
(AP) denote the fixed and random portions of timing 

delays in the message transmissions from node A to node P, respectively. By defining the 
delays in uplink Ui  T2,i

(P) – T1,i
(A) and downlink Vi  T4,i

(A) – T3,i
(P), the i th delay observations 

corresponding to the i th timing message exchange are given by Ui = θo
(AP) + d (AP) + Xi

(AP) 
and Vi = θo

(PA) + d (PA) + Xi
(PA), respectively. Then, the likelihood function based on the 

observations {Ui}
N
i=1 and {Vi}

N
i=1 is given by
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where N is the number of message exchanges. Differentiating the log-likelihood func-
tion leads to
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The fixed portions of delays are mainly determined by the propagation delays, and 
both up- and downlink channels have the same distance. Thus, the fixed portions of 
delays d(AP) and d(PA) are assumed to be equal, and are denoted by d for the rest of this 
chapter. Indeed, the propagation delay is less than 1 µs for ranges under 300 m, hence 
almost negligible when compared to other dominant delay components whose ranges 
are about hundreds of milliseconds [16]. The maximum likelihood estimate (MLE) of 
clock offset is given by [25]

 
ˆ argmax ln

( )

( )θ θ
θ

o
(AP)

o
AP

o
AP

= ( )



= − .L U V

2  (13.4)

Thus, node A can be synchronized to the parent node P by simply taking the difference 
of the average delay observations U– and V–.

For exponential random delays Xi
(PA) and Xi

(AP) with the same mean λ, the likelihood 
function based on the observations {Ui}

N
i=1 and {Vi}

N
i=1 becomes
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 L eN
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where I(·) stands for the indicator function (i.e., I(·) is 1 whenever its inner condition 
holds, otherwise it is equal to 0). In [23], Jeske proved that the maximum likelihood 
estimator of θo

(AP) exists when d is unknown and exhibits the same form as the estimator 
proposed in [24], namely,

 ˆ min min
.θo

(AP) =
−

≤ ≤ ≤ ≤1 1

2
i N i i N iU V

 (13.5)

Notice from (13.4) and (13.5), it is clear that if only one round of message exchange is 
performed (N = 1), the MLE of clock offset for both exponential and Gaussian delay 
models becomes θ̂o

(AP) = (U – V)/2, which is exactly the same clock offset estimator 
adopted in [17].

13.3.1.2  Joint Clock Offset and Skew Estimation

The clock offset between two nodes generally keeps increasing due to the difference of 
clock parameters of each oscillator. Thus, a model with the same clock frequency is not 
sufficient for long-term synchronization. Indeed, applying the clock skew correction 
mechanism increases the synchronization accuracy and guarantees the long-term reli-
ability of synchronization.

Figure 13.3 shows the effect of clock offset (θo) and skew (θs) on timing message 
exchanges between two nodes. Without loss of generality, the reference time T1,1

(A) is set 
to be zero. Here, the time stamp at node P in the i th uplink message T2,i

(B) is given by

 
T T T d Xi i i i2 1 1, , ,= + + + +( ) ( ) ( ) ( ) ( ) ((P A

o
AP

s
AP Aθ θ AAP AP

s
AP A AP
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T d X
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i i1 1θ ++ ,θo
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 (13.6)

where the term θs
(AP)(T1,i

(A) + d + Xi
(AP)) is due to the effect of clock skew. Similarly, the time 

stamp at node P in the i th downlink message T3,i
(P) takes the equations

 
T T T d Xi i i i3 4 4, , ,= + + − −( ) ( ) ( ) ( ) ( ) ((P A

o
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s
AP Aθ θ PPA PA

s
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d X

T d X
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i i1 4θ ++ ,θo
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 (13.7)

where the term θs
(AP)(T4,i

(A) – d – Xi
(PA)) is again due to the effect of clock skew. For an easier 

illustration, we introduce the simplified notations θs  θs
(AP), θo  θo

(AP), T1,i  T1,i
(A), T4,i  

T4,i
(A), T2,i  T2,i

(P), T3,i  T3,i
(P), Xi  Xi

(AP), and Yi  Xi
(PA) in this section, respectively.

Assuming {Xi}
N
i=1 and {Yi}

N
i=1 are zero-mean independent Gaussian distributed RVs 

with variance σ2/2, then the joint PDF of X  {Xi}
N
i=1 and Y  {Yi}

N
i=1 is given by
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Further assuming that the fixed portion of delay d is known and θ′s  1/(1 + θs), then 
the log-likelihood function (ignoring irrelevant additive and multiplicative constants) for 
(θo,θ′s), based on observations {T1,i}

N
i=1, {T2,i}

N
i=1, {T3,i}

N
i=1, and {T4,i}

N
i=1, is given by

 ln ( ) ( )L T T d
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It has been shown in [25] that the values of θo and θs that maximize the above log-
likelihood function are given, respectively, by

 ˆ
( ) ( )

θo
ML i

N

i i

i

N

i i

i

T T T T

=

+ + −
=

, ,

=

, ,

=

∑ ∑
1

1 4

1

2
2

3
2

11

2 3

1

2 3

1

1

N

i i

i

N

i i

i

N

i

T T Q

T T T

∑

∑ ∑

, ,

=

, ,

=

,

+

+ +

( )

( ) ( TT NQi4 2, −

,

)

 (13.9)

 ˆ

( ) ( )

θs
ML i

N

i i

i

N

i iN T T T T

=

− + +
=

, ,

=

, ,∑ ∑2
1

1 4

1

2
2

3
2 −− +













+

=

, ,

=

, ,

∑

∑

Q T T

T T

i

N

i i

i

N

i i

1

2 3

1

1 4

( )

( )
ii

N

i i

i

N

i iT T T T NQ
=

, ,

=

, ,∑ ∑+ + −








1

2 3

1

1 4 2( ) ( ) 


+

+

+

− ,
=

, ,

=

, ,

∑

∑
i

N

i i

i

N

i i

T T

T T

1

2 3

1

1 4

1

( )

( )

 (13.10)

FIgure 13.3 Two-way timing message exchange model that assumes clock offset and skew.
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where 

 Q T T T T T T d
i

N

i i i i i i
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, , , , , ,∑ + + −( )
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1 2 3 4 2 3( ) .

Note that the joint MLE depends on the value of the fixed portion of delays d, which is 
assumed to be known in this section. Although estimating d is an achievable task, we 
do not consider d another unknown (nuisance) parameter due to the inherent highly 
nonlinear and complex operations required for estimating d.

The Cramer-Rao lower bound (CRB) for the vector parameter θ = [θo, θs]T can be 
derived from the 2 × 2 Fisher information matrix I(θ) by taking its inverse. From (13.6), 
the second-order derivatives of the log-likelihood function with respect to θo and θ′s are 
found as
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where (a) and (b) are due to Xi = θ′s(T2,i – θo) – (T1,i + d) and Yi = θ′s(θo – T3,i) + (T4,i – d), 
and 
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The CRB can be obtained by taking the [i,i]th element of the inverse of the Fisher infor-
mation matrix (i.e., var (θ̂i) ≥ [I–1(θ)]ii), and the inverse I–1(θ) is given by
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Consequently, the CRBs of the joint clock offset and skew estimator are given by
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In fact, finding the joint MLE of clock skew requires quite a number of computations 
as in (13.10), and the fixed portion of delays d must be known (or estimated), which 
might not be applicable for wireless sensor networks consisting of low-end terminals. 
In practice, it requires an additional estimation procedure, which might deteriorate the 
robustness of the joint MLE. To overcome this limitation, a family of robust and simple 
clock offset and skew estimators that do not require prior knowledge of d have been 
proposed in [25].

13.3.2  Receiver-Only Synchronization

Due to the power constraint, the communication range of a sensor is strictly limited 
to a (radio-geometrical) circle whose radius depends on the transmission power (see 
Figure 13.1). In this figure, every node within the checked area (e.g., node B) can receive 
messages from both node P and node A. Suppose that node P is a parent (or reference) 
node, and node P and node A perform a pairwise synchronization using two-way tim-
ing message exchanges [17]. Then, all the nodes in the common coverage region of node 
P and node A (checked region) can receive a series of synchronization messages contain-
ing the information about the time stamps of the pairwise synchronization. Using this 
information, node B can also be synchronized to the parent node, node P, with no extra 
timing message transmissions. This approach is called receiver-only synchronization 
(ROS). In general, all the sensor nodes lying within the checked area can be synchro-
nized by only receiving timing messages using ROS. Here, node P and node A can be 
regarded as super nodes since they provide synchronization beacons for all the nodes 
located in their vicinity.

In Figure 13.1, consider an arbitrary node, say node B, in the checked region. While 
node P and node A exchange time messages, node B can overhear these time messages. 
Hence, node B is capable of observing a set of time readings ({T2,i

(B)}N
i=1) at its local clock 

when it receives packets from node A, as depicted in Figure 13.2. Besides, node B can 
also receive the information about a set of time stamps {T2,i

(P)}N
i=1 obtained by receiving the 

packets transmitted by node P. Considering the effects of both clock offset and skew, the 
reception time at node P in the i th uplink message T2,i

(P) is given by

 T T T Ti i i2 1 1 1 1, , , ,= + + ⋅ −( ) ( ) ( ) ( ) ( )(P A
o
AP

s
AP Aθ θ (( ) ( ) ( ))A AP AP+ + ,d X i  (13.15)

where θs
(AP) stands for the relative clock skew between node A and node P. Likewise, the 

reception time at node B in the i th uplink message T2,i
(B) can be represented by

 T T T Ti i i2 1 1 1 1, , , ,= + + ⋅ −( ) ( ) ( ) ( ) ( )(B A
o
AB

s
AB Aθ θ (( ) ( ) ( ))A AB AB+ + ,d X i  (13.16)
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where θo
(AB) and θs

(AB) stand for the relative clock offset and skew between node A and 
node B, and d(AB) and Xi

(AB) denote the fixed and random portions of timing delays in the 
message transmission from node A to node B, respectively. Here, Xi

(AB) is assumed to be 
a normal distributed RV with mean μ and variance σ2/2.

The linear regression technique can be applied to synchronize node B and compen-
sate the effects of the relative clock skew between node P and node B. Subtracting (13.16) 
from (13.15) gives

 T T T Ti i i2 2 1 1 1, , , ,− = + ⋅ −( ) ( ) ( ) ( ) ( )(P B
o
BP

s
BP Aθ θ (( ) ( ) ( ) ( ) ( ))A AP AB AP AB+ − + − .d d X Xi i  (13.17)

Since d(AB) and d(AP) are fixed values and Xi
(AB) and Xi

(AP) are normal distributed RVs, the 
noise component can be defined by z[i]  μ′ + Xi

(AP) – Xi
(AB), where μ′  d(AP) – d(AB) and 

z[i] ~ N(μ′,σ2). Let x[i]  T2,i
(P) – T2,i

(B)– μ′ and w[i]  z[i] – μ′, then the set of observed data 
can be written in matrix notation as follows:

 x H w= + ,θ

where x = [x[1] x[2] … x[N]]T, w = [w[1] w[2] … w[N]]T, θ = [θo
(BP) θs

(BP)]T, and

 H =
− −, , , ,








T

NT T T T
1 1
0

1

1 2 1 1 1 1 1
( ) ( ) ( ) ( )A A A A















.

Note that the noise vector w ~ N(0,σ2I) and the matrix H is the observation matrix 
whose dimension is N × 2. From [26, theorem 3.2, p. 44], the minimum variance unbi-
ased (MVU) estimator for the relative clock offset and skew is given by θ̂ = g(x), where 
g(x) satisfies

 ∂ ;
∂

= − .ln ( ) ( )( ( ) )p x I g xθ
θ

θ θ  (13.18)

Since the noise vector w is zero mean and Gaussian distributed, from the results in [26, 
p. 85], the derivative of the log-likelihood function can be written as

 ∂ ;
∂

= − ,−ln ( ) [( ) ]p T
T Tx H H H H H xθ

θ σ
θ

2
1  (13.19)

where HTH is assumed to be invertible. Therefore, comparing (13.18) with (13.9) yields

 ˆ ( )θ = ,−H H H xT T1  (13.20)

 I H H( )θ
σ

= ,
T

2
 (13.21)
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where I(θ) is the Fisher information matrix. After some mathematical manipulations, 
the joint clock offset and skew estimator can be expressed as [19]
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where Di  T1,i
(A) – T1,1

(A). The Cramer-Rao lower bound (CRB) can be obtained by invert-
ing the Fisher information matrix I(θ). From (13.21), the Fisher information matrix is 
given by
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Then, inverting I(θ) yields
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Hence, from (13.23), the CRBs for the relative clock offset and skew become

 var o
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and

 var s
(BP)(ˆ )θ σ≥
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Notice further that the regularity conditions for the CRBs hold:
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Consequently, using the results in (13.22), node B can be synchronized to node P. 
Likewise, all the other nodes in the checked region in Figure 13.1 can be simultane-
ously synchronized to the parent node, node P, without any additional timing message 
transmissions, thus saving a significant amount of energy. Besides, there is no loss of 
synchronization accuracy when compared with other approaches [19].

13.3.3  Receiver-Receiver Synchronization

Receiver-receiver synchronization is an approach to synchronize a set of children nodes 
who receive the beacon messages from a common sender (a reference or parent node). 
Consider a parent (reference) node P and arbitrary nodes A and B, which locate within 
the communication range of the parent node in Figure 13.4. Suppose, in Figure 13.5 
both node A and node B receive the i th beacon from node P at time instants T2,i

(A) and T2,i
(B) 

of their local clocks, respectively. Nodes A and B record the arrival time of the broadcast 
packet according to their own timescales and then exchange their time stamps. Suppose 

Receiver–Receiver
synchronization

Parent node

Beacons 

B 

P A 

FIgure 13.4 Receiver-receiver synchronization.
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Xi
(PA) denotes the nondeterministic delay components (random portion of delays) and 

d(PA) denotes the deterministic delay component (propagation delay) from node P to 
node A; then T2,i

(A) can be written as

 T T d X Ti i i2 1 1, ,= + + + + ⋅( ) ( ) ( ) ( ) ( ) (A PA PA
o
PA

s
PAθ θ ,, ,− ,i T1 1)  (13.26)

where T1,i is the transmission time at the reference node, and θo
(PA) and θs

(PA) are the clock 
offset and skew of node A with respect to the reference node, respectively. Similarly, we 
can decompose the arrival time at node B as

 T T d X Ti i i2 1 1, ,= + + + + ⋅( ) ( ) ( ) ( ) ( ) (B PB PB
o
PB

s
PBθ θ ,, ,− ,i T1 1)  (13.27)

where d(PB), Xi
(PB), θo

(PB), and θs
(PB) stand for the propagation (fixed) delay, random por-

tion of delays, clock offset, and skew of node B with respect to the reference node, 
respectively.

Subtracting (13.27) from (13.26), we obtain

 T T T T di i i2 2 1 1 1, , , ,− = + ⋅ − +( ) ( ) ( ) ( ) ( )A B
o
BA

s
BAθ θ (( ) ( ) ( ) ( )PA PB PA PB− + −d X Xi i , (13.28)

where θo
(BA)  θo

(PA) – θo
(PB) and θs

(BA)  θs
(PA) – θs

(PB) are the relative clock offset and skew 
between node A and node B at the time they receive the i th broadcast packet from the 
reference node, respectively. Here, we assume these random portions of delays Xi

(PA) 
and Xi

(PB) are normal distributed RVs with mean μ and variance σ2/2. Indeed, (13.28) 
assumes exactly the same form as (13.17). Hence, the same steps can be applied to derive 
the joint clock offset and skew estimator for ROS. More specifically, let the noise compo-
nent z[i]  μ′ + Xi

(BA), where μ′  d(PA) – d(PB) and z[i] ~ N(μ′,σ2). Let us also define x[i]  
T2,i

(A) – T2,i
(B) – μ′ and w[i]  z[i] – μ′. Using similar steps as in ROS, it is straightforward to 

show that the same form of the joint clock offset and skew estimator (13.22) can also be 

FIgure 13.5 Clock synchronization model of RRS.
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applied to RRS. Consequently, there is no difference between ROS and RRS with regard 
to the accuracy of synchronization since the effects of random delays are the same. Like-
wise, the CRB for RRS can also be obtained using a similar procedure as in ROS. When 
there is no relative clock skew (θs

(BA) = 0), it is straightforward to show that the maximum 
likelihood estimator of the relative clock offset θ̂o

(BA) becomes

 ˆ ( ) ( )θo
(BA) A B= − ,

=

, ,








∑1

1

2 2N
T T

i

N

i i  (13.29)

which is the equivalent to the estimator presented in [18].
The main benefit of this approach is that all nondeterministic delay components on 

the transmitter side (send time and access time) are eliminated. Thus, a high degree of 
synchronization accuracy can be achieved using this approach.

13.4  Existing Time Synchronization Protocols

Thus far, a number of protocols have been suggested to solve the problem of time syn-
chronization in distributed networks. For general computer networks, NTP has been 
adopted as the standard time synchronization scheme of the Internet [3]. Although NTP 
was shown to perform well in computer networks, it is not directly applicable to wire-
less sensor networks due to the unique challenges sensor networks face: limited power 
resources, wireless channel conditions, dynamic topology changes, etc. (recall also the 
design considerations presented in section 13.2.2). NTP enjoys unlimited (or recharge-
able) energy resources and a relatively static topology in computer networks. However, 
these are not available in sensor networks. Therefore, different types of time synchroni-
zation protocols have been proposed to meet the design requirements of wireless sensor 
networks [2].

Ideally, a time synchronization protocol should be able to work optimally in terms 
of all design requirements of time synchronization, which are energy efficiency, scal-
ability, precision, security, reliability, and robustness to network dynamics. However, 
the complex nature of wireless sensor networks makes it very difficult to optimize the 
protocol with respect to all these requirements simultaneously. Due to the trade-offs 
in satisfying these requirements, each protocol is designed to put distinct emphases on 
different requirements.

Assuming various criteria, time synchronization protocols can be categorized into 
different classes:

Master-slave versus peer-to-peer• 
Master-slave•  : Where first a tree-like network hierarchy is arranged, and 
upon the completion of this arrangement only the connected nodes in the 
hierarchy synchronize with each other.
Peer-to-peer•  : Where any pair of nodes in the network can synchronize 
with each other.
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Clock correcting versus untethered clock• 
Clock correcting•  : Where the clock function in memory is modified after 
each run of the time synchronization process.
Untethered clock•  : Where every node maintains its own clock as it is, and 
keeps a time-translation table relating its clock to other nodes’ clocks. 
Thus, instead of updating its clock constantly, each node translates the 
time information in the data packets coming from other nodes to its own 
clock by using the time-translation table.

Synchronization approach• 
Sender-receiver•  : Where one of two nodes, which are synchronizing with 
each other, sends a time-stamp message while the other one receives it.
Receiver-receiver•  : Where a reference node transmits synchronization sig-
nals and two synchronizing nodes receive these signals and record the 
time of receptions (time stamps).
Receiver-only•  : Where a group of nodes can be simultaneously synchro-
nized by only listening to the message exchanges of a pair of nodes.

Pairwise synchronization versus network-wide synchronization• 
Pairwise synchronization•  : Where the protocols are primarily designed to 
synchronize two nodes, although they usually can be extended to handle 
synchronization of a group of nodes.
Network-wide synchronization•  : Where the protocols are primarily designed 
to synchronize a large number of nodes in the network.

Additional classifications can be found in [4]. In the following, we will summarize the 
existing time synchronization protocols based on the last category.

13.4.1  Pairwise Synchronization

13.4.1.1  Timing-Sync Protocol for Sensor Networks (TPSN)

TPSN [17] uses the two-way message exchange mechanism, as discussed in the sender-
receiver synchronization approach described in section 13.3.1, to achieve the synchroni-
zation between two nodes. With only one round of message exchanges, and without any 
statistical model on the variable delay components Xi

(AP) and Xi
(PA) in (13.2) and (13.3), a 

simple estimate for θo
(AP) is proposed in [17] as

 θ̂o
(AP) = − ,U Vi i

2
 (13.30)

where Ui  T2,i
(P) – T1,i

(A) and Vi  T4,i
(A) – T3,i

(P). Notice that in the original form of TPSN, it 
does not estimate clock skew; therefore, frequent application of TPSN is needed to keep 
the clock offset between two nodes under a certain limit.

13.4.1.2  Maximum Likelihood Estimation for Clock Offset Based  
on Two-Way Message Exchanges

Assume the clock offset θo
(AP) is constant for N rounds of message exchanges. If Xi

(AP) and 
Xi

(PA) in (13.2) and (13.3) are exponentially distributed with the same unknown mean λ, 
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and when d  d (AP) = d (PA) is unknown, it is proved in [23] that the ML estimator of θo
(AP) 

is given by

 ˆ min min
θo

(AP) =
−

.≤ ≤ ≤ ≤1 1

2
i N i i N iU V

 (13.31)

On the other hand, with Xi
(AP) and Xi

(PA) in (13.2) and (13.3) being modeled as indepen-
dent and normally distributed RVs with the same mean μ and variance σ2/2, the maxi-
mum likelihood (ML) estimate for θo

(AP) takes the equation (derived in section 13.3.1)

 θ̂o
(AP) =

−
.= =

∑ ∑1

1

1

1

2

N i

N

i N i

N

iU V
 (13.32)

Notice from (13.30)–(13.32), it is clear that if only one round of message exchange is 
performed, the TPSN presented in (13.30) is the ML estimator under both exponential 
and Gaussian delay models.

13.4.1.3  Joint Clock Offset and Skew Estimation Based on Two-Way  
Message Exchanges

When clock skew exists between two nodes, the clock offset between them will increase 
linearly, as shown in Figure 13.3. In order to establish long-term synchronization, it is 
more efficient to estimate jointly the clock offset and skew. In section 13.3.1, we derived 
the joint offset and skew ML estimators (see equations (13.9) and (13.10)), when the vari-
able delays Xi

(PA) and Xi
(AP) are modeled as independent Gaussian distributed RVs. When 

Xi
(PA) and Xi

(AP) are exponentially distributed RVs, the likelihood function for joint esti-
mation of the clock offset and skew is very complicated. However, a solution to this 
problem has been recently reported in [27].

Notice that the joint offset and skew ML estimators (equations (13.9) and (13.10)) 
under Gaussian delay assumption are quite complicated. Besides, there is no simple 
closed-form solution for the ML joint offset and skew estimation when the delays are 
exponentially distributed. For these reasons, a family of robust and simple clock offset 
and skew estimators, named maximum likelihood like estimators (MLLEs), has been 
proposed in [25].

13.4.1.4  Tiny-Sync and Mini-Sync

Tiny-sync and Mini-sync [28] are two lightweight clock synchronization protocols that 
also use the two-way message exchanges. Node A and node P exchange messages just 
like in Figure 13.3. The only difference here is that node P replies to node A immediately 
after receiving the message, i.e., T2,i

(P) = T3,i
(P). Assuming the clocks between node A and 

node P are linearly related, from (13.6) and (13.7) we have

 T T d Xi
i i

2
11

,
,

−
+

= + + ,
( ) ( )

( )
( ) ( )

P
o
AP

s
AP

A APθ
θ
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 T T d Xi
i i

2
41

,
,

−
+

= − − .
( ) ( )

( )
( ) ( )

P
o
AP

s
AP

A PAθ
θ

Since d, Xi
(AP), and Xi

(PA) are all nonnegative, defining θ′s  1/(1 + θs
(AP)) and θ′o  

θo
(AP)/(1 + θs

(AP)), we obtain

 T T Ti i i1 2 4, , ,≤ ′ + ′ ≤ .( ) ( ) ( )A
s

P
o

Aθ θ  (13.33)

The 3-tuple of time stamp (T1,i
(A), T2,i

(P), and T3,i
(A)) is called a data point. With N message 

exchanges, the goal is to find θ′o and θ′s such that they satisfy (13.33) for 1 ≤ i ≤ N. In gen-
eral, this is a linear programming problem and there are an infinite number of solutions 
for this problem [29]. Although more time stamps would generate tighter bounds on θ′o 
and θ′s, unfortunately, at the same time, the computational and storage requirements of 
the linear programming approach also increase. Thus, such an approach appears to be 
not suitable for implementation in wireless sensor nodes, which have strictly limited 
memory and computing resources.

Tiny-sync and Mini-sync tackle the problem as finding the best-fit line that lies 
between the bound sets defined by the data points. Based on the observation that not 
all data points are useful, Tiny-sync preserves only four constraints (the ones that yield 
the best bounds on the estimate) out of all data points. This results in a very efficient 
algorithm. However, it is shown by a counterexample [28] that this scheme does not 
always produce the optimal solution since some data points are considered useless and 
discarded at a certain time, a step that actually might provide a better bound if it is prop-
erly considered with another data point that is yet to come.

Mini-sync is an improved version of Tiny-sync in the sense that it finds the opti-
mal solution with increased complexity (but still with lesser complexity than the linear 
programming approach). Mini-sync basically uses an additional criterion to determine 
whether the data point can be safely discarded.

13.4.1.5  Reference Broadcast Synchronization (RBS)

RBS [18] is based on the RRS approach discussed in section 13.3.3. Let the time stamps 
recorded at node A and node B for receiving the i th common packet be denoted as T2,i

(A) 
and T2,i

(B), respectively. The estimate of the clock offset between node A and node B is 
proposed in [18] as

 ˆ ( ) ( )θo
(BA) A B= − ,

=

, ,








∑1

1

2 2N
T T

i

N

i i  (13.34)

where N stands for the total number of common packets received by node A and node B. 
We have shown in section 13.3.3 that the above estimator is actually the ML estimator 
for the clock offset, assuming the random portions of the delays in message deliveries 
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are Gaussian distributed RVs, and there is no clock skew. When there is a clock skew 
between node A and node B, least-squares linear regression is proposed in [18] to esti-
mate the clock skew.

The main advantage of RBS is that by comparing the time stamps of a common packet 
at two different nodes, it removes the largest sources of nondeterministic error (send 
time and access time) from the transmission path. Thus, RBS provides a high degree of 
synchronization accuracy. Note also that RBS can be applied to commodity hardware 
and existing software in sensor networks as it does not need access to the low levels of 
the operating system.

13.4.1.6  Clock Offset and Skew Estimation Based on Broadcast Clock

Under the setting that a sensor node observes and synchronizes to a broadcast clock, 
[30] derives the ML estimator for clock offset and skew with the broadcast message delay 
being modeled as uniformly distributed RVs. It is shown that the ML estimate in this 
case is generally not unique. Furthermore, the support of the likelihood function is not 
convex, which leaves out the possibility of taking the mean of all equally likely solu-
tions. This motivated [30] to consider the linear estimator for the clock offset and skew. 
Under the same setting, [31] derives the joint ML clock offset and skew estimator with 
the assumption that the broadcast message delays are modeled as exponentially dis-
tributed RVs. It is shown in [31] that a unique joint ML clock offset and skew estimate 
exists under certain conditions, as opposed to the case of uniformly distributed delay. 
Furthermore, the Gibbs sampler was introduced in [31] to further enhance the perfor-
mance of the joint ML estimator.

13.4.1.7  Flooding Time Synchronization Protocol (FTSP)

In [16], it is argued that if one can time-stamp the message at the MAC layer, this immedi-
ately eliminates three sources of delay uncertainties: transmit, access, and receive times. 
In this case, the main delivery delay comes from transmission and reception times at the 
radio chips (see section 13.2.3). These delays can be further decomposed into:

 1. Interrupt handling time, which is the delay between the radio chip raising and the 
microcontroller responding to an interrupt

 2. Encoding time, which is the time it takes for the radio chip to encode and trans-
form the message into a radio wave

 3. Decoding time, which is the time for the radio chip at the receiver to transform 
the radio wave back into binary data

 4. Byte alignment time, which is the delay at the receiver to synchronize with the 
byte boundary at the physical layer

FTSP [16] uses a single broadcasted message to establish synchronization points 
between sender and receivers, while eliminating the jitter of interrupt handling and 
encoding/decoding times by utilizing multiple MAC layer time stamps on both the 
sender and receiver sides. Furthermore, the skew of the clock between sender and 
receiver is estimated using multiple messages and linear regression.
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13.4.2  Network-Wide Synchronization

Until this point, we have only described the time synchronization between two neighboring 
sensor nodes. In this section, we will discuss protocols for network-wide synchronization.

13.4.2.1  Extension of TPSN

In order to establish a global timescale for all the nodes in the sensor field based on 
TPSN, [17] proposes to create a hierarchical structure (spanning tree) in the network 
(named level discovery phase) before pairwise synchronization is performed between 
adjacent levels (named synchronization phase). The level discovery phase consists of the 
following steps:

 1. Select a root node using an appropriate leader election algorithm and assign a 0 
level to the root node.

 2. The root node broadcasts a level discovery packet (LDP) containing the identity 
and level of the packet.

 3. Every node that receives an LDP assigns its level to a level greater (by one) than 
that of the received packet and sends a new level discovery packet attaching its 
own level (once being assigned a level, a node neglects future packets requesting 
level discovery to avoid flooding congestion).

 4. Repeat step 3 until every node in the network successfully assigns a level.

After the spanning tree is formed, the root node initiates the synchronization phase 
by synchronizing all the nodes in level 1. Next, the nodes in level 1 synchronize with 
the nodes in level 2, and so on, until all the nodes have been synchronized. Notice that 
the synchronization error of a node with respect to the root node is a nondecreasing 
function of the hop distance because the random signal errors over each hop add up. 
A number of different searching algorithms can be considered in the construction of 
the spanning tree. For instance, Van Greunen and Rabaey suggested some preliminary 
ideas on constructing spanning trees with low depth in order to improve the accuracy 
of synchronization [12].

13.4.2.2  Lightweight Time Synchronization (LTS)

Also based on two-way message exchanges, [12] proposes two network-wide synchroni-
zation protocols. The first one is called centralized multihop LTS, which is basically the 
same protocol as the extension of TPSN discussed above. The other one is called distrib-
uted multihop LTS. This distributed LTS algorithm moves the resynchronization from 
the root node to the nodes that need resynchronization. When a node A determines that 
it needs to be resynchronized, it will send a resynchronization request to the root node. 
In order for node A to resynchronize, all nodes along the routing path from the root 
node to node A will be synchronized in a pairwise fashion.

13.4.2.3  Extension of RBS

The RBS protocol discussed in the above subsection can only synchronize a set of nodes 
that lie within a single broadcast domain. In order to synchronize a large sensor network, 
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[18] proposes to use gateway nodes for converting time stamps from one neighborhood’s 
time base to another. The idea is illustrated in Figure 13.6. Nodes P1 and P2 send out 
synchronization beacons, and they create two overlapping neighborhoods, where node 
B lies in the overlapping area. Since node A and node B lie within the same neighbor-
hood, their clock relationship (i.e., clock offset and skew) can be established from node 
P1’s reference broadcast. Similarly, the clock relationship between node B and node C 
can be established from node P2’s reference broadcast. Therefore, the clock relationship 
between node A and node C can be computed with node B acting as a gateway.

13.4.2.4  Extension of FTSP

FTSP can be extended to network-wide synchronization in a straightforward manner. 
First, a root node, to which the whole network is being synchronized, is elected by the 
network. Nodes that are within the broadcast radius of the root node can receive time-
stamped messages from the root node. They then estimate the offset and skew of their 
own local clocks, thus synchronizing with the root node. The newly synchronized nodes 
can then broadcast synchronization messages to other nodes in the network. The advan-
tage of this flooding process is that it begins with the root node, and there is no need to 
have a level hierarchy, as opposed to TPSN.

13.4.2.5  Pairwise Broadcast Synchronization

Pairwise broadcast synchronization (PBS) employs both sender-receiver and receiver-
only synchronization approaches to achieve network-wide synchronization with high 
energy efficiency [19]. As discussed in section 13.3.2, in PBS a number of sensor nodes can 
be synchronized by only overhearing timing messages being exchanged between pairs 

FIgure 13.6 Extension of RBS to multihop.
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of nodes, which significantly reduces the overall energy consumption by decreasing the 
number of required timing messages in synchronization. PBS requires a much smaller 
number of timing messages than other existing protocols, such as RBS, TPSN, and FTSP, 
and its benefits remarkably increase as the sensors are more densely deployed.

Let NrbS, NTPSN, NFTSP, and NPbS denote the numbers of required timing messages for 
synchronization in RBS, TPSN, FTSP, and PBS, respectively. In TPSN, since every node 
in the network is connected to its parent node (except the root node), there are L – 1 
branches (edges) in a hierarchical tree, where L is the overall number of sensor nodes 
[17]. For TPSN, 2N timing messages are required in every pairwise synchronization, 
hence NTPSN = 2N(L – 1). This result can be applied to other level-based SRS protocols 
without loss of generality. For RBS, the reference node must broadcast the beacon packet 
N times. Besides, every sensor node must send time readings upon receiving the broad-
cast beacons of all the other nodes in the network to compensate relative clock offsets 
among each other [18]. Thus, NrbS = N + L(L – 1)/2, since the number of unique pairs in 
the network is L(L – 1)/2. In FTSP, each sensor node must send its timing messages once 
upon receiving the timing messages from another sensor due to its flood-based com-
munication procedure [16]. Hence, the number of required timing messages in FTSP 
becomes NFTSP = NL.

It is remarkable that the required numbers of timing messages for all the above-men-
tioned protocols are proportional to the number of sensors in the network L or its square 
L2. However, PBS needs only 2N timing messages in every synchronization period, 
i.e., NPbS = 2N, assuming all the nodes lie within a single broadcast neighborhood. 
Hence, NPbS does not depend on the number of sensors in the network, which incurs 
an enormous amount of energy savings. Moreover, this gain proportionally increases 
with respect to the scale of the network. Consequently, the benefit of PBS over RBS, 
TPSN, and FTSP is clear and huge in terms of energy savings with the cost of allocating 
two super nodes in the network. In case there exist other nodes located outside of the 
checked region in Figure 13.1, likewise RBS, the network could be divided into a number 
of separated groups (clusters), and they could be synchronized by additional pairwise 
synchronizations among the super nodes in different groups, i.e., global synchroniza-
tion can be achieved by a sequence of pairwise synchronizations among the super nodes. 
Here, diverse grouping and pair selection algorithms can be considered according to the 
type of the network. For instance, assuming the level hierarchy of the network is estab-
lished, there are groups of parents and children nodes, where a group consists of a parent 
and its children nodes. Here, every parent node can search the connectivity among its 
children nodes to select the best synchronization pairs that maximize the number of 
nodes performing ROS, i.e., minimizing the number of pairwise synchronizations. In 
fact, no network-wide connection search is required in this case because of its limited 
and known set of scanning nodes.

13.4.2.6  Time-Diffusion Synchronization Protocol (TDP)

TDP [32] is a protocol enabling the sensor network to reach an equilibrium time with 
the clocks of individual sensors within a small time deviation from the equilibrium 
time. The protocol can be understood as periodically applying three phases: (1) election 
of master/diffused leader nodes, (2) time-diffusion procedure, and (3) peer evaluation 
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procedure. It is shown analytically in [32] that the TDP enables the clocks in the whole 
network to converge to a unique value.

In the first phase, master nodes are elected in the sensor field. The election criteria 
include the quality of clock and the energy resources of a particular node. Referring to 
Figure 13.7, assume that node P is elected to be the master node (here we illustrate the 
concept with one master node, while in more complicated networks, more than one mas-
ter node might be possible). Node P then sends a number of time-stamped messages to its 
neighbors. Once the neighbors receive the messages, they self-determine if they would 
become diffused leader nodes, based on the results of the last round peer evaluation pro-
cedure (the third phase). In Figure 13.7, nodes A, B, and C are the elected diffused leader 
nodes. The elected diffused leader nodes respond to the master node, thus enabling the 
master node to measure the average and the standard deviation of the round-trip delay 
from its neighbors. At the same time, the diffused leader nodes start sending messages to 
their own neighbors to measure the mean and standard deviation of round-trip delay to 
their neighbors. The process is repeated until all the nodes have been covered.

In the second phase, the time information from the master node will be diffused 
(with the help of diffused leader nodes) to all the nodes in the network. The diffusion 
procedure takes place according to the following sequence of events. First, the master 
node sends a time-stamped message containing the standard deviation of the round-trip 
delay to its neighbors. Before transmission, the time stamp of the message is adjusted 
with half of the measured average round-trip delay (from the first phase) to account for 
the message delivery delay to its neighbors. Once the diffused leader nodes receive the 
time-stamped message, they set their clock according to the received time stamp and 
then broadcast their own time-stamped messages, containing their measured standard 
derivations of the round-trip times to their neighbors. Again, before transmission of 
the messages, the time stamps have to be adjusted with half of the measured average 
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FIgure 13.7 Time-diffusion synchronization protocol.
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round-trip delay to their neighbors. For nodes that are not diffused leaders, if they only 
receive a message from one diffused leader node (e.g., node D in Figure 13.7), they just set 
their clock according to the time stamp they received. For the nodes that have received 
more than one time-stamped message originating from different diffused leader nodes 
(e.g., node E in Figure 13.7), they will use the standard deviations as weightings (the 
smaller the deviation, the larger the weighting) to combine the clock values and set their 
clocks according to the result.

The purpose of the third phase is to allow the sensor nodes to evaluate the stability of 
their local clock. First, the elected master nodes broadcast a number of time-stamped 
messages. The neighbor nodes receiving these messages calculate the two-sample Allan 
variance [32] of the local clock from the clock of the master nodes and send back these 
calculated Allan variances to the master nodes. Then the master nodes compute the 
average of all the Allan variances they received and send the result back to their neigh-
bor nodes. By this procedure, all the neighbor nodes can evaluate the quality of their 
clocks with respect to those of their neighbors by comparing their calculated Allan vari-
ance with the average value. The above procedure is repeated, but with the elected dif-
fused leader nodes broadcasting the time-stamped messages.

13.4.2.7  Synchronous and Asynchronous Diffusion Algorithms

In [33], two diffusion algorithms are proposed. The first one is called rate-based synchro-
nous diffusion algorithm. The idea behind this algorithm is that in order for a network 
to achieve an equilibrium time, the clock at node i, denoted as ci , should be adjusted 
according to the differences between its clock and its neighbors’ clocks (assuming node i 
has exchanged clock readings with its neighbors). That is, the clock at node i should be 
set to 

 c r c ci
j i

ij i j− −
≠

∑ ( ),

where rij > 0 is the diffusion rate, rij = 0 if node i and node j cannot directly communicate, 
and the condition 

 
j i

ijr
≠

∑ ≤1  

is enforced. The above algorithm can also be formulated using matrix notation. For a 
group of n sensor nodes, let c t be the vector of length n containing the clock readings of 
all the sensor nodes at time t. The synchronous diffusion algorithm adjusts the clocks of 
different nodes using c t+1 = Rct, where
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and 

 r rii
j i

ij= −
≠

∑1 .

It is shown in [33] that if the second largest eigenvalue of r is smaller than 1, the syn-
chronous diffusion algorithm will converge, in the sense that all the elements in c t will 
be equal.

The synchronous diffusion algorithm requires all the nodes to operate in an ordered 
manner. In order to remove this constraint, [33] proposed another algorithm, named 
asynchronous diffusion algorithm. In this algorithm, each node asks its neighbors about 
their clock readings and computes the average value. Then the average value is sent back 
to the neighbors so they can update their clocks. This algorithm gives a very simple aver-
aging operation of a node over its neighbors, and the averaging operations by different 
nodes can be carried out at different times and in any order (thus the name asynchro-
nous). It is shown in [33] that the clocks of sensor nodes at a sensor network converge to 
the average value by using this asynchronous algorithm.

13.4.2.8  Protocols Based on Pulse Transmissions

Recently, synchronization schemes that operate exclusively at the physical layer by 
transmitting pulses instead of message packets have been proposed in [34] and [35]. In 
[34], inspired by the synchronously flashing fireflies, the time synchronization problem 
in sensor network is modeled using pulse coupled oscillators (PCOs). In this scheme, 
each node (say node j) in the sensor network is associated with an increasing monotonic 
state function xj(t) taking values from 0 to 1. If a node is isolated, the state function xj(t) 
increases from 0 to 1 smoothly as a function of time, and the node emits a pulse when 
the state function achieves the unit value (xj(t) = 1). After firing a pulse, the node imme-
diately resets its state to zero. This results in periodic emission of pulses with period T. 
If a node is not isolated, it can receive pulses from other nodes. When a node receives a 
pulse, its state variable changes as follows:

 x
x x

j
j j( )
( ) ( )

τ
τ ε τ ε+ =

+ , + <
,






,

if

otherwise

1

0
 (13.36)

where τ is the time the node receives a pulse and ε is the advancement of the clock 
phase. This means that a node receiving a pulse either emits the pulse at the same time 
or shortens the waiting time for the next round of emissions. With the assumption that 
after a node fires a pulse, it enters a short refractory period, during which no signal can 
be received from other nodes (to avoid infinite feedback), it can be shown that only when 
the nodes emit the pulse simultaneously will they be insensitive to coupling, and there-
fore achieve synchronization.

In [35], a cooperative technique that constructs a sequence of pulses with equi-
distance zero-crossings is developed. The basic idea of this scheme is as follows. Assume 
there is a leader node and it emits a sequence of pulses with equidistance zero-crossings. 
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The  surrounding nodes receive this pulse sequence, and based on the locations of 
the observed zero-crossings, the surrounding nodes predict when the next pulse will 
be transmitted. Then, these nodes emit pulses at their predicted times and an aggregate 
pulse sequence will be generated. It is shown in [35] that although the prediction at indi-
vidual nodes may not be perfect, under certain conditions on the pulse and in asymp-
totically dense networks, the zero-crossings of the aggregate waveform sequence will be 
at the same positions as the zero-crossings of the original waveform sequence emitted by 
the leader node due to spatial averaging. This aggregate pulse sequence will be heard by 
the nodes lying further away from the leader node, and these nodes perform prediction 
as described before and emit their pulses at their predicted times. The procedure will be 
continued until all the nodes are synchronized.

Notice that the synchronization algorithms discussed in this section only provide a 
unified ticking rhythm across sensor nodes, but not the synchronization of clock time. 
A good analog is a group of people clapping together to get a rhythm. However, there 
exist applications in which a unified rhythm is enough, e.g., in distributed beamform-
ing and reachback channel [36]. As another variation, a joint physical and network layer 
time synchronization scheme was proposed to overcome the effects of imperfect physi-
cal layer synchronization due to the nature of common wireless channels [37].

13.5  Adaptive Time Synchronization for WSNs

While all the above protocols in section 13.4 can achieve instantaneous synchronization 
among nodes, the timing of different nodes would drift apart as time passes; therefore, 
periodic resynchronization is needed to maintain long-term synchronization. Intuitively, 
less resynchronization needs less energy but leads to a larger synchronization error, while 
more frequent resynchronization leads to a smaller synchronization error but requires 
more energy. A natural question is what is the minimum resynchronization frequency 
(or equivalently, maximum resynchronization period) that can meet the desired syn-
chronization precision. Therefore, adaptive algorithms are necessary to dynamically 
determine the resynchronization period, number of beacons to be used in each round 
of synchronization, synchronization accuracy, and so on. In this section, we will review 
three existing adaptive time synchronization algorithms proposed in the literature.

13.5.1  Rate-Adaptive Time Synchronization (RATS)

Consider the case where node A sends time-stamped messages to node B periodically 
with period τ, and node B records the receiving times of the messages. Based on a num-
ber of data points (Ti

(A),Ti
(B)), where Ti

(A) and Ti
(B) are the time stamps made at node A and 

node B respectively, node B wants to determine the largest τ such that the synchroniza-
tion error is smaller than a certain limit. The rate-adaptive time synchronization [38] 
is an algorithm that determines the optimal τ adaptively. Its idea can be summarized 
using the flowchart shown in Figure 13.8. First, node B calculates the optimal number 
of data samples for model parameters (e.g., clock offset and skew) estimation based on 
the current value of τ. Next, node B takes the required number of data points (stored 
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in memory) and estimates the model parameters. Then, node B computes the predic-
tion error. Finally, using the calculated prediction error, node B adjusts the frequency 
of getting a new timing message from node A: If the prediction error is larger than the 
upper limit threshold Eu, then the timing message rate is not frequent enough from node 
A, and therefore τ should be decreased. On the other hand, if the prediction error is 
smaller than the lower limit threshold El, then there are fewer timing messages, and thus 
τ should be increased. Multiplicative increase and decrease strategies are used to enable 
fast convergence and quick response to the changing environment. After getting a new 
data point according to the new value of τ, the above process is repeated.

13.5.2  RBS-Based Adaptive Clock Synchronization

With the RBS setting, [39] extends the deterministic RBS protocol (discussed in sec-
tion 13.4.1) to an adaptive probabilistic synchronization algorithm, allowing trade-offs 
between synchronization accuracy and resource requirement. It is based on the observa-
tion that if the relative clock skew error between two nodes ε, after applying RBS with 
one broadcast message, is a Gaussian RV with zero mean and variance σ2, then the prob-
ability of error-free synchronization with N broadcast messages is given by

 Pr erf N
max

max| |ε ε ε
σ

<( ) =








 ,2  (13.37)

where εmax stands for the maximum specified (allowable) clock offset for communica-
tions, and 

 erf x t dt
x

( ) exp .1 2 2
0

2/ /π⋅ −( )∫
From the above equation, it is clear that the performance criterion is a probabilistic 
measure since there is always a possibility that the clock offset is greater than some limit 
εmax. However, one can reduce this probability to an arbitrarily small value by increasing 
N, the number of broadcasting messages in one round of RBS.

After application of RBS, we can bound the clock skew error with certain probability. 
However, since clocks from different nodes would drift apart as time passes, we need to 
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FIgure 13.8 Flowchart of RATS run at the node receiving time-stamped messages from 
another node.
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reapply RBS periodically. Reference [39] proposes a formula to determine the maximum 
time between resynchronization τmax as

 τ γ ε
ρmax = − − ,max max

maxd  (13.38)

where γmax denotes the maximum allowable clock skew at any time, ρ denotes the maxi-
mum drift of clock, and dmax is the maximum delay of time-stamp exchanges in RBS. 
With different synchronization precision requirements (specified by γmax), one can deter-
mine the required resynchronization period τmax.

13.5.3  Adaptive Multihop Time Synchronization

Adaptive multihop time synchronization (AMTS) [40] is based on a two-way message 
exchange mechanism similar to that used in TPSN. AMTS adaptively optimizes some 
crucial network parameters, such as the synchronization mode, the resynchronization 
period, and the number of beacons per pairwise synchronization, with respect to the 
current network status. AMTS consists of three functional phases:

Level discovery phase•  : The same as that in TPSN, and used for generating a 
hierarchical structure in the network.
Synchronization phase•  : Similar to the corresponding synchronization phase 
in TPSN. However, as opposed to TPSN, AMTS adjusts not only the current 
clock offset but also the clock skew to guarantee the long-term synchroniza-
tion, while TPSN only estimates the clock offset. Hence, AMTS requires far 
less frequent resynchronization.
Network evaluation phase•  : The reference node investigates the current status 
of network traffic in order to select the synchronization mode between always 
on (aO) (always maintain network-wide synchronization) and sensor initiated 
(SI) (synchronize only when it needs to). Besides, it optimizes the resynchroni-
zation period and the number of beacons per each pairwise synchronization.

The second and third phases (i.e., synchronization and the network evaluation phases) 
will be periodically repeated in order to minimize overall energy consumption with 
respect to the current network status. Since the level discovery procedure (section 13.4.2) 
and pairwise synchronization based on two-way message exchanges (section 13.3.1) have 
been detailed previously, we only focus on the network evaluation phase below.

13.5.3.1  Synchronization Mode Selection

The idea of selecting the synchronization mode between always on (aO) and sensor initi-
ated (SI) is based on the observation that when network traffic occurs rarely and syn-
chronization delay is not a critical problem, keeping all the sensor nodes synchronized 
all the time (aO mode) is not a good strategy since synchronization consumes a lot of 
energy. In addition, for some applications, the sensor clocks might be allowed to go out 
of synchronization unless sensing events happen. In this case, the SI mode, where only 
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nodes participating in a particular multihop data transmission synchronize with each 
other, is a better choice.

In order to determine whether aO or SI mode is to be used, the following network 
parameters are introduced in AMTS:

B•  : Number of branches (edges) in a spanning tree of the network. It can be 
obtained after the level discovery phase.
τ•  : Resynchronization period, i.e., the time between resynchronizations.
h• 
–
: Average of hops per unit time. In every sensing event, the destination node 

accumulates the number of hops that have occurred in that particular trans-
mission to its storage. During the synchronization phase, the reference node 
collects the information about the total number of hops occurred in the last 
synchronization period and determines the average number of hops per unit 
time (h

–
) in the network. This information indicates how busy the network traf-

fic is and can be included in timing messages with a small overhead.
δ• : Latency factor (0 ≤ δ ≤ 1) reflecting the amount of allowed delay in data 
transmission. Higher latency factor means less concern for network delays. For 
example, δ is set to be 0 for sensor networks requiring network synchroni-
zation all the time. On the other extreme, for delay-independent networks, δ 
should be close to 1.
N•  : Number of timing message exchanges per pairwise synchronization.

In the aO mode, the number of timing messages per unit time is given by M– = 2BN/τ, 
while in the SI mode, M– = 2h

–
N. To minimize the number of timing messages per unit 

time M–, the synchronization mode should be selected as follows:

 2 2BN hNδ
τ
≶
SI

aO

,  (13.39)

or equivalently,

 τ δ≶
SI

aO B
h

.  (13.40)

From (13.40), the synchronization mode changes from aO to SI when τ is smaller than 
Bδ/h

–
 and vice versa. In the SI mode, the reference node periodically inquires about the 

number of hops that occurred during the past time interval, and then it makes a deci-
sion whether or not to switch to the aO mode. Notice that AMTS is an iterative process, 
and the resynchronization period parameter in the mode selection will be from the last 
iteration of AMTS.

13.5.3.2  Determination of Resynchronization Period

As the resynchronization period τ increases, the network becomes more power efficient. 
Thus, τ should be chosen as large as possible. However, a too large value of τ induces a 
critical synchronization problem since the clock difference (offset) between nodes keeps 
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generally increasing with time. Hence, there exists a maximum resynchronization period 
(τmax) that is determined by the oscillator specifications and the accuracy of estimators.

Suppose that the clock timing mismatch ε between the two nodes is modeled as fol-
lows: ε = εo + εst, where t denotes the reference time and εo and εs stand for the clock offset 
and skew errors, respectively. In general, it is difficult to determine any specific math-
ematical model for either clock offset or skew errors. Herein, we model both clock offset 
and skew errors by normal distributions based on the experimental results reported in 
[17] and [18]:
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where εo,i and εs,i denote the clock skew and offset estimation errors after the i th message 
exchanges, respectively. Note that clock skew estimation is only available when there are 
multiple message exchanges. Hence, εs,1 stands for the clock skew error when no skew 
estimation occurred. Here, the maximum clock mismatch can be modeled as another 
normal distribution ε ~ N(0,σε

2), where σε
2 = σε

2
o,N + σε

2
s,N τ2

max, (t = τmax). Imposing the 
upper limit εmax for the clock error via the probabilistic measure,
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and Ps denotes the synchronization error probability for pairwise synchronization. 
Thus, σε can be determined when εmax and the maximum allowable Ps are fixed. For 
instance, when Ps is limited to 0.1% and εmax is 10 ms, then the standard deviation of 
clock mismatch (σε) has to be smaller than 3.04 ms.

The maximum resynchronization period with N beacons can be written as

 τ
σ σ
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 (13.41)

Based on the lower bounds and asymptotic performance of the estimators, one can eas-
ily infer closed-form expressions of the variances εo,N and εs,N in terms of the variances 
εo,1 and εs,2, respectively. From the lower bounds derived in [40], σε

2
o,N can be written with 

respect to N and σε
2
o,1 as
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Similarly, since the time differences between beacons are proportional to N and by far 
greater than the variance of delays, the following relationship can be obtained from the 
lower bound for the clock skew estimator derived in [25]:

 σ
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Therefore, for N ≥ 2, τ(N)
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Note that εs,1 can be obtained by the specifications of the crystal oscillator, and εo,1 and 
εs,2 can be determined by simple experimental tests. Therefore, the maximum resyn-
chronization period is proportional to the number of beacons, and performing clock 
skew estimation will significantly increase τ(N)

max since σεs,1  σεs,2.

13.5.3.3  Number of Beacons Required for Each Pairwise Synchronization

The goal of AMTS is to minimize the average number of message exchanges (M
—

). Hence, 
from (13.41), finding the optimal number of beacons (N) resumes to solving the follow-
ing optimization problem:

 ˆ argminN M
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where τ(N)
sync denotes the synchronization time with N beacons and will be estimated at 

the reference node for different N values when the network is first established. Once N is 
estimated from (13.43), τ(N)

max can be obtained from (13.42).
Simulation results in [40] show that AMTS requires far less timing messages than 

TPSN when there exist multiple numbers of beacon transmissions. Moreover, the gap 
between the average number of required timing messages between AMTS and TPSN 
significantly increases as N increases, and thus AMTP is by far more energy efficient than 
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TPSN for large N values. Moreover, the adaptive features in AMTS make it applicable to 
various different types of sensor network applications.

13.6  Conclusions

In recent years, huge attention has been paid to WSNs due to their capability of serv-
ing a variety of purposes. Time synchronization is a significant part in WSNs, and a 
number of fundamental operations, like data fusion, power management, and trans-
mission scheduling, require accurate time synchronization. Since the conventional time 
synchronization protocol for the Internet cannot be directly applied to WSNs, a number 
of synchronization protocols have been developed to meet the unique requirements of 
sensor network applications.

The importance of time synchronization also comes from the evolution of WSNs, 
which has been driven by technological advances in diverse areas. For instance, unlike 
the currently deployed WSNs, next-generation sensor networks may consist of dynamic 
mobile sensors or a mixture of static and dynamic sensors. In this scenario, far more 
sophisticated time synchronization protocols that efficiently deal with mobility of sen-
sors will be required. Indeed, as the network becomes more complicated, the role of time 
synchronization becomes much more important.

In this chapter, basic features and theoretical backgrounds of the time synchroni-
zation problem in WSNs have been introduced, and three different basic approaches 
are analyzed and compared to reveal the general ideas and characteristics of time syn-
chronization protocols in WSNs. In addition, a survey of existing time synchroniza-
tion protocols in the literature has been provided, including the most recent results. The 
material of this chapter is presented from a signal processing viewpoint, which makes 
it distinguishable from other existing surveys. Furthermore, we shed light on adaptive 
time synchronization schemes for WSNs because of their huge benefits and flexibility to 
topology changes. We believe that the analysis and summary in this chapter will assist 
researchers in this area to select and develop more powerful synchronization protocols 
tailored specifically to the needs of their applications.
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411

14.1  Antijam GPS Receiver Arrays

14.1.1  Interference Nulling

Four fundamental approaches based on spatial discrimination are commonly adopted 
in antijam Global Positioning Systems (GPS). The application of these approaches 
requires the GPS receiver to be equipped with an antenna array. The choice between 
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which approach to undertake depends on various parameters, including the number of 
available satellites in the field of view (FOV), the nature of the jamming environment, 
the antenna polarization characteristics, and the ability to utilize the satellite direction 
information. The four approaches, placed in broad categories, are:

Null-steering arrays: These antenna arrays adjust their reception pattern to have 
low gain in the direction of the interferences, without considering the GPS 
satellite direction of arrival (DOA). This is the case for the power inversion 
technique, also known as minimum variance [1]. The power inversion (PI) 
approach for jammer nulling may unintentionally allow satellite signals to be 
suppressed along with the jammer.

Beam-steering arrays: These arrays make full use of the GPS satellite DOA infor-
mation in the adaptive algorithm. They adjust the array reception pattern to 
have high gain in the direction of the GPS satellites and to form nulls in the 
direction of the interferers. This is the case of the minimum-variance dis-
tortionless response (MVDR) beamforming approach [2]. The MVDR-based 
interference nulling technique may inadvertently allow jammers to be passed 
on, along with the GPS signals, to the correlation loops of the receiver.

GPS signal-dependent arrays: These arrays utilize the GPS coarse/acquisition (C/A) 
temporal and periodic structure, and maximize the cross-correlation between 
the received signal and its one code-length delayed version. By this action, beams 
are formed toward the GPS satellites in the field of view and nulls are placed 
toward the jammers. This approach is known as a self-coherence antijamming 
GPS receiver [3]. It has a shortcoming of treating period jammers, which have 
the same fundamental period as the GPS code period, as desired signals.

Dual-polarized arrays: These arrays replace the circularly polarized GPS antennas 
by dual-polarized patch antennas. This approach requires a dual-feed dual-
polarized antenna array, and can implement either beam-steering or nulling 
arrays. Including the polarization diversity in GPS adaptive antenna arrays 
increases the maximum number of possible jammer cancellations and gives 
more flexibility in the choice of the optimality criteria that can be applied to 
reduce jammer contaminations [4, 5].

14.1.2  Interference Direction Estimation

Interference nulling can be pursued jointly with the equally important task of estimating 
the interference directions of arrival. The latter can be achieved by implementing high-
resolution subspace methods operating on the data covariance matrix, as is typically 
the case in commercial and military radar and communication receivers. Particular to 
navigation GPS receivers is the capability of providing simultaneous multiple beams, 
each oriented toward one satellite. For this reason, the sets of adaptive steering weights 
corresponding to the different satellites embed the interference spatial information and, 
as such, can be directly operated on by the eigndecomposition methods.

This chapter deals with interference nulling and DOA estimation for GPS receivers. 
Both tasks are performed prior to GPS signal dispreading, which is executed via the  
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correlation loops of the receiver, utilizing the signal, jamming, and noise relative power 
underlying satellite geolocation application, and incorporating the navigation receiver 
information on polarization and spatial signatures of the satellites. Although focused 
on GPS, the approaches presented are applicable to Global Navigation Satellite Systems 
(GNSS), including Galileo, GLONASS, and Beidou [6]. All GNSS share the same oper-
ating principle. The receiver position is computed based on the distances between the 
receiving antenna and a set of satellites, and the receiver determines these distances by 
measuring the propagation time of the signals transmitted by the satellites. This propa-
gation time can be obtained from the delay (referred to as pseudorange or code phase) of 
the complex envelope and from the carrier phase.

Dual-polarized beam-steering antenna array receivers are considered. We discuss the 
modeling and performance of optimum and adaptive antijam receivers implementing 
constrained minimization techniques.

14.2  Background

The Global Positioning System (GPS) is a satellite-based system used in localization and 
navigation for both military and civilian applications [7, 8]. It employs direct-sequence 
spread spectrum (DSSS) on two carriers, L1 at 1575.42 MHz and L2 at 1227.6 MHz. Each 
GPS satellite broadcasts a C/A code with chip rate at 1.023 Mchips/s or a precision (P) 
code at 10.23 Mchips/s. New navigation signal and code structures are considered, aim-
ing at improving receiver positioning and combating multipath [6].

Depending on the operating environment, the signal-to-noise ratio (SNR) at the GPS 
receivers can be as low as –30 dB. For a strong interference, the jammer-to-noise ratio 
(JNR) may exceed 30 dB, which will severely degrade the GPS performance and the 
code synchronization process. Although the spread spectrum modulation provides 
some antijamming protection to weak signals, a high power interference (e.g., more than 
5 dB above the noise) cannot be suppressed adequately by the spreading gain, causing 
inaccurate tracking and positioning errors. Many antijam mitigation techniques have 
been proposed, which are based on temporal processing [9–11], spectral-based process-
ing [12–14], subspace projection [15], and spatial signal processing [1, 16, 17]. Combina-
tions of the above techniques, such as time-frequency processing [18] and space-time 
processing [19, 20], provide superior jammer suppression compared to single-antenna 
or single-domain processing.

Adaptive techniques are commonly adopted for fast antijam implementations [21–30], 
and shown to be effective in spatial discriminations and interference nulling. The array 
response is continuously adjusted so that the interferers have low receiver gains. For 
spatial-only processing, each antenna is allocated a complex weight, which is adaptively 
chosen to minimize a desired cost function subject to satisfying a single or a set of desir-
able constraints. The two main types of adaptive antenna arrays are the nulling arrays 
[1, 4] and the beam-steering arrays [2]. In both arrays, interference cancellation can 
be achieved, irrespective of the signal temporal properties. It is noted that the MVDR 
method incorporates knowledge of the directions of arrival (DOAs) of the GPS signals 
to form beams toward the GPS satellites, while placing nulls toward the directions of 
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the interferers. Although this method provides significant cancellation of the interfer-
ence, it has high computational complexity, and its performance relies on accurate and 
prior knowledge of the DOAs of the desired signals. This knowledge is obtained from 
the navigation data and, therefore, could be difficult to acquire at “cold” start when the 
receiver has not yet acquired the signal and is already subjected to jamming. The power 
inversion method works in a different way. Because the GPS signals are typically –20 ~ 
–30 dB below the noise, the interferers are the dominant data components and, as such, 
are removed by suppressing the high-power-signal arrivals. In essence, the array weights 
are organized such that deep nulls are obtained at the directions of the high power sig-
nals, irrespective of their angular positions relative to the GPS DOAs. As the GPS signal 
directions are not taken into account in forming the array weights, it is possible that the 
GPS receiver array, in the power inversion method, nonintentionally offers a deep null 
or low gain toward one or more satellites in the field of view.

Equally important to jammer nulling is jammer direction estimation. High-reso-
lution direction-finding techniques are widely used for the interference DOA estima-
tion. These techniques are signal dependent and include the MVDR method as well as 
eigenstructure-based methods [31–35]. The latter include the multiple signal classifica-
tion (MUSIC) algorithm [31], estimation of signal parameters via rotational invariance 
techniques (ESPRIT) [36–38], and Pisarenko harmonic decomposition (PHD) [39]. The 
eigenstructure methods utilize the property that the noise subspace eigenvectors of 
the data covariance matrix are orthogonal to the signal vectors. The DOA estimates are 
extracted from a low-dimension subspace of the estimated data covariance matrix via 
standard eigendecomposition or singular value decomposition (SVD).

Two important features separate the multiantenna GPS receiver from other receivers 
used in different applications. First, the GPS signal is of extremely low power compared 
to noise and potential interference, which makes the desired signal negligible prior to 
dispreading. The latter removes the spreading PN C/A code and compresses the signal 
to a narrow bandwidth. Second, the GPS in utilizing the direction of the satellites in the 
FOV can implement simultaneous beamformers, each with an adaptive set of weights. 
The above two features apply independent of the navigation satellite system and trans-
parent to the navigation data signal structure [6].

Interference nulling and interference DOA estimation are typically two separate 
problems; each operates on the incoming data or the estimate of its covariance matrix. 
The two problems, however, can be jointly addressed by applying eigendecomposition to 
a matrix of the adaptive weights, rather than the covariance matrix. In this case, DOA 
estimation follows adaptive nulling and its accuracy, therefore, depends on the interfer-
ence cancellation performance of the receiver array.

We show that the interference subspace information is embedded in the weight matrix, 
and thereby, interference DOA can be obtained directly from the nulling weights. The 
columns of the adaptive weight matrix pertain to the beamformers corresponding to 
different satellites. Each beamformer weight vector attempts to minimize the output 
power subject to a unit-gain constraint, i.e., a single constraint MVDR. In essence, 
instead of obtaining the data spatial covariance matrix for DOA estimation, the signal 
and noise orthogonal subspaces can be directly provided from the eigendecomposition 
of the weight matrix. The beamformer weights can be obtained using the least mean 
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square (LMS) or other adaptive gradient algorithms [40, 41, 42]. The adaptive algorithms 
can be applied in baseband or instantaneous frequency (IF), and if required, the weights 
can even be adjusted using analog adaptive loops [43]. This approach was introduced in 
[43] and was referred to as concurrent adaptive nulling and localization (CANAL). The 
work in [43], however, is very sensitive to the noise power estimate, has not been applied 
to GPS, and did not consider a receiver with dual-polarized antennas.

Interference nulling and DOA estimation for GPS receivers can be pursued using 
dual-polarized antenna arrays. This improves the receiver capability for counteracting 
different types of the jammers, such as vertically polarized, horizontally polarized, and 
left-hand circularly polarized (LHCP) interferers. Further, the dual-polarized antenna 
array has around twice the number of degrees of freedom as its single-polarized antenna 
array counterpart.

14.3  GPS Receiver Model with Dual-Polarized  
Antenna Array

A GPS antenna array with N dual-polarized antennas is depicted in Figure 14.1. The 
dual-polarized antenna can be viewed as the linear combination of the vertical and hori-
zontal elements. At each antenna, two received signals corresponding to the vertical 
and horizontal polarizations are collected. Each signal is assigned a separate weight. In 
baseband processing, an adaptive beamformer with complex weights, operating on the 
in-phase and quadrature signal components, is applied to linearly combine the dual-
polarized antenna outputs.

Assume an N uniform linear array (ULA) with interelement spacing d. Consider D 
GPS signals incident on the array from the directions θ1, θ2, …, θD, and M interferers 
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FIgure 14.1 GPS receiver with dual-polarized antenna array.
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arrive from the directions φ1, φ2, …, φM. The channel is an additive white Gaussian noise 
(AWGN). We assume that the GPS signal is a direct line-of-sight signal with no reflection 
or diffraction components [44]. The kth data samples received at the horizontal element 
and the vertical element of the i th antenna are denoted as xiH(k) and xiV(k), respectively. 
Thus, the 2N-by-1 data vector x(k) is given by

 x( ) [ ( ) ( ) ( ) (k x k x k x k xH V NH NV= 1 1 … kk T)] ,  (14.1)

where (.)T denotes transpose. Let a D-by-1 vector sD(k)denote the D complex GPS signals 
at the kth sample,

 sD D
Tk s k s k s k( ) [ ( ), ( ), , ( )] .= …1 2  (14.2)

Similarly, the M-by-1 interference vector iM(k) represents the M complex interferers 
at the kth sample,

 iM M
Tk i k i k i k( ) [ ( ), ( ), , ( )] .= …1 2  (14.3)

Let aD(θ) denote the GPS signal 2N-by-D steering matrix,

 a a a aD D( ) ( ) ( ) ( ) ,θ θ θ θ= … 1 2  (14.4)

where a(θi) is the 2N-by-1 steering vector of the i th GPS signal incident on the antenna 
array from direction θi,

 a( ) [ ( ) ( ) ( ) ( )] ,θ θ θ θ θi H i V i NH i NV i
Ha a a a= …1 1  (14.5)

where (.)H denotes complex conjugate transpose. aI(φ) represents the interference 
2N-by-M steering matrix,

 a a a aI M( ) ( ) ( ) ( ) .ϕ ϕ ϕ ϕ= … 1 2  (14.6)

In the above equation, a(φi) represents the 2N-by-1 steering vector of the i th interference,

 a( ) [ ( ) ( ) ... ( ) ( )] .ϕ ϕ ϕ ϕ ϕi H i V i NH i NV i
Ha a a a= 1 1  (14.7)

In GPS, two binary phase shift keying (BPSK) codes are applied to the GPS informa-
tion symbols. The coarse acquisition (C/A) code is a repeating 1 MHz pseudo random 
noise (PRN) code (1,023 bits) transmitted with the carrier frequency L1 = 1,575.42 MHz 
by the satellite vehicles (SVs). The precise (P) code is a very long 10 MHz PRN code 
(7 days) transmitted with both L1 = 1,575.42 MHz and L2 = 1,227.60 MHz. Over one 
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navigation data symbol, the received GPS signal in the absence of noise and interference 
is given by

 s t Ag t j tcd( ) ( )exp [ ] ,= − +{ }γ ω φ  (14.8)

where A is the signal amplitude, g(t) is the ±1 valued C/A code, γ is the time delay of the 
original signal, ωc is the carrier frequency, and ϕ is the carrier phase. After downconver-
sion and phase tracking, the baseband signal is expressed as

 s t Ag t jdb ( ) ( )exp[ ( ˆ)]= − −γ φ φ , (14.9)

where ϕ̂ is the estimated carrier phase. The code replica, generated by the receiver, is 
therefore

 s t g tD( ) ( ˆ)= − γ , (14.10)

where γ̂  is the estimated time delay prior to processing through the GPS correlation 
loops. The received data vector x(k) is the superposition of the GPS signals, interferers, 
and AWGN noise, and can be expressed as

 x a s a i n( ) ( ) ( ) ( ) ( ) ( ),k k k kD D I M= + +θ ϕ  (14.11)

where the 2N-by-1 vector n(k) represents the AWGN noise at the 2N elements. The SNR 
of the GPS is in the vicinity of –20 dB, and the JNR is typically 20 dB. It is noted that 
with RHCP signals, aiV = –j aiH (i = 1, 2, …, N). In this case, assuming all the antennas are 
omnidirectional, the steering vectors a(θi) and a(φi)can be expressed as

 a( )
( )sin ( )sin

θ
π

λ
θ π

λ
θ

i
j d N j d N

j e jei= − … −
− −

1
2 1 2 1











H

,  (14.12)
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( )sin ( )sin

ϕ
π
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ϕ π

λ
ϕ

i
j d N j d N

j e jei= − … −
− −

1
2 1 2 1 ii

H











,  (14.13)

where λ is the wavelength. For a horizontally polarized interference, aiV = 0 (i = 1, 2, 
…, N), whereas for a vertically polarized interference, aiH = 0 (i = 1, 2, …, N), and for 
LHCP interference, aiV = j a1H (i = 1, 2, …, N). Let r represent the data spatial correlation 
matrix,

 r x x= E k kH[ ( ) ( )],  (14.14)
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where E[.] denotes statistical expectation. In practice, r is replaced by its time-average 
estimates, r̂, and can be expressed as

 ˆ ( ) ( ).R x x=
=

∑1

1
T

k kH

k

T

 (14.15)

Denote the 2N-by-1 complex beamformer weight vector for the N dual-polarized anten-
nas as

 w = …[ ] .w w w w w wH V H V NH NV
T

1 1 2 2  (14.16)

The corresponding antenna array output y(k) at the dual-polarized antenna array is 
given by

 y k kH( ) ( ).= w x  (14.17)

Equations (14.11)–(14.17) and the analyses hereafter are also valid and applicable to 
the European, Russian, and Chinese satellite navigation systems [6].

14.4  Single versus Multiple Antijam Beamformers

The minimum variance distortionless response (MVDR) technique is an efficient tool 
to mitigate interference without compromising the desired signals. The array weights 
are computed to form unit gains toward the DOAs of the GPS signals, and to place deep 
nulls toward the directions of the interferers. This is achieved by minimizing the output 
power subject to unit-gain constraints,

 min ,
w

H Hw rw C w fsubject to =  (14.18)

where the constraint matrix C represents the GPS steering matrix aD(θ). The optimal 
weights for the above constrained minimization problem can be obtained as [40]

 w r C C r C fopt
H= − − −1 1 1( ) ,  (14.19)

where f is a D-by-1 vector of unit values, f = [1 1 … 1]T. Applying the optimal weights 
to the received data vector x(k) yields the interference beamformer output

 y k kopt
H( ) ( ).= w x  (14.20)

It is noted that the power inversion method is a special case of equation (14.19), where 
the constraint matrix is a vector of zero values except the first element, which has a unit 
value. Also, f is a scalar equal to 1.
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In minimizing E{|y(k)|2}, the dual-polarized antenna array will attempt to reduce the 
output power of the interference, which could be horizontally polarized, vertically polar-
ized, right-hand circularly polarized (RHCP), or LHCP. Each antenna may act alone, by 
setting one of the two values of its corresponding complex weights to zero, or by forcing 
the two polarization weight components into a complex conjugation relationship. This 
would be clearly the case for cancelling any large number of horizontally polarized, 
vertically polarized, or LHCP interferers. The antenna may also act in conjunction with 
other receiver antennas, in which case the interference DOA plays a role in determining 
the weight values.

Since GPS signals are RHCP, the number of RHCP interferers that can be suppressed 
with N dual-polarized antennas is limited to N – D. The cancellation of a large or infinite 
number of horizontally polarized interferers is achieved by setting the weights of the 
horizontally polarized elements to zero. In this case, the total number of degrees of free-
dom is reduced to N, out of which N – D degrees can be used to cancel, through spatial 
nulling, N – D types of jammers, such as RHCP, LHCP, or vertically polarized interfer-
ers. Similarly, an infinite number of vertically polarized interferers can be cancelled 
along with a maximum of N – D RHCP, LHCP, or horizontally polarized interferers. 
Further, an infinite number of LHCP interferers can be cancelled by the RHCP antenna 
array, which can additionally cancel N – D RHCP, horizontally polarized, or vertically 
polarized interferers through spatial nulling.

It is noted, however, that depending on the number of dual-polarized antennas and 
the number of satellites in the field of view (FOV), D, one set of array weights may not be 
sufficient to cancel all interferers in dense jamming environments, even with the use of 
dual-polarized antenna array. This problem can be mitigated by using multiple MVDR 
beamformers, each corresponding to one satellite. In this case, several sets of weight 
vectors are applied; each weight vector is associated with one satellite and designed to 
satisfy a single unit-gain constraint. As a result, up to N – 1 RHCP interferers can be 
cancelled by the multiple beamformer approach, compared to only N – D interferers in 
the case of the single beamformer approach. In addition to increasing the number of 
degrees of freedom, another important advantage of the multiple MVDR beamform-
ers is in achieving regular array patterns. It is noted that in order to keep unit gain 
at all GPS satellite directions, a single MVDR beamformer will encounter difficulty 
suppressing the undesired signal, if it is close in angle to any one of the GPS satellites. 
With close angular separation between one satellite and one jammer position, the array 
response will be highly irregular, giving rise to several lobes in a random manner that 
makes the receiver vulnerable to newly borne interferers or on-off interferers with a long 
duty cycle. Insufficient interference cancellation compromises the receiver delay lock 
loops and provides undesirable tracking and positioning errors. With multiple MVDR 
beamformers, however, each of the D – 1 beamformer responses will null all interfer-
ers impinging on the GPS receiver, subject to the available degrees of freedom. Only 
the one response associated with the satellite that is aligned or close to an interference 
DOA will fail and provide an irregular pattern. In this respect, loss of acquisition, if it 
occurs, will be confined to only one satellite. With typically more than four satellites in 
the FOV, the loss of one satellite’s information is not detrimental to the receiver pseudo-
range estimate calculations. The multiple MVDR beamformers approach is shown in 
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the block diagram of Figure 14.2. The array response of each weight vector provides unit 
gain toward one direction of the GPS satellites and places nulls toward the directions of 
the interferers, irrespective of their temporal characteristics.

For the i th satellite, the 2N-by-1 optimum weight vector in the multiple MVDR beam 
receiver is denoted as

 w r c c r ci opt i i
H

i_ ( ),= − −1 1  (14.21)

where ci represents the steering vector toward the direction of the i th GPS signal. The 
corresponding array output is

 y k ki i opt
H( ) ( )._= w x  (14.22)

For illustration, we consider eight dual-polarized antennas. We compare the perfor-
mance of single versus multiple MVDR beamformers in various jamming environments. 
Figure 14.3 shows the RHCP array response and horizontally polarized array response 
for twelve interferers, each with JNR of 20 dB. Five RHCP interferers are incident on the 
array with angles [–65, –50, –30, 40, 65] degrees, along with seven horizontally polar-
ized interferers with angles [–80, –40, –15, 0, 30, 50, 80] degrees. Four GPS signals arrive 
from [–5, 5, 20, 27] degrees of elevation angles with an SNR of –20 dB. Figure 14.3(a) 
demonstrates that the single MVDR beamformer (solid curve) fails to cancel all five 
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FIgure 14.2 Block diagram of multiple MVDR beamforming.
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RHCP interferers, whereas the multiple MVDR beamforming method, due to the exis-
tence of a sufficient number of degrees of freedom, places deep nulls at all interferer 
DOAs. Figure 14.3(b) demonstrates that both single and multiple MVDR methods null 
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FIgure 14.3 (Top) RHCP array response with single and multiple MVDR methods with five 
RHCP and seven horizontally polarized interferences. (Bottom) Horizontally polarized array 
response with single and multiple MVDR methods with five RHCP and seven horizontally polar-
ized interferences.
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all the horizontally polarized interferers. In both cases, this is achieved by reducing the 
weights of the horizontally polarized antennas to approximately zero values. The weight 
vector values are given in Table 14.1. It is clear that while the horizontal weight at each 
antenna assumes a small value to suppress the horizontally polarized interferers, the 
vertical weights are organized as a beamformer to spatially cancel the vertical compo-
nents of the RHCP interferers and to receive the GPS signals with unit gain.

In the next example, one of the interferers arrives from the same direction as one of 
the GPS satellites, e.g., 27 degrees of elevation angle. In this case, the optimum antenna 
array has to maintain a unit gain toward this direction, while trying to null a very 
close interference. Figure 14.4 depicts the array responses at the eight dual-polarized 
antenna arrays when two 20 dB JNR interferers arrive from 50 and 27 degrees. In this 
case, the single MVDR method will maintain a unit gain at 27 degrees, permitting the 
non intentional GPS signal along with the interference to be received with equal sensi-
tivity. Further, the null placed by the beamformer at 50 degrees appears shallow, with 
only –10 dB depth, and as such, the respective jammer may not be fully suppressed. On 
the other hand, with the multiple MVDR beamforming method, only the beamformer 
toward 27 degrees acts similar to the single MVDR beamformer and fails to cancel the 
interference. The other three beamformers show regular array responses and success-
fully suppress the two interferers with approximately –30 dB null.

In space-time processing, where spatial and temporal processing are applied jointly 
or sequentially, jammers that escape the spatial nulling can be dealt with in the tem-
poral domain using excision filters [19, 40]. However, depending on the jammer signal 
characteristics, temporal and spatial filtering may not be able to provide proper jammer 
mitigation without compromising the desired signal.

Table 14.1 Weight Vector in Single and Multiple MVDR Methods

MVDR

Multiple Output Beamforming

Beam 1 Beam 2

W1H 0.0182 + 0.0395i –0.0013 + 0.0010i 0.0011 + 0.0019i
W1V 0.7563 – 0.2890i 0.0435 – 0.0011i 0.0831 – 0.0081i
W2H –0.0518 + 0.0866i –0.0010 – 0.0009i 0.0008 – 0.0006i
W2V 0.5980 – 0.0485i 0.1228 + 0.0152i 0.1466 – 0.0469i
W3H –0.0320 + 0.0181i 0.0013 – 0.0022i –0.0016 + 0.0029i
W3V 0.0921 + 0.2146i 0.1681 + 0.0541i 0.1335 – 0.0646i
W4H 0.0566 – 0.0037i 0.0028 + 0.0015i –0.0046 – 0.0041i
W4V –0.0948 + 0.1721i 0.1371 + 0.1086i 0.0906 – 0.0839i
W5H 0.0964 – 0.0094i –0.0028 + 0.0023i 0.0066 – 0.0027i
W5V –0.1696 + 0.0930i 0.0606 + 0.1661i 0.0521 – 0.1188i
W6H 0.0268 + 0.0249i –0.0015 – 0.0032i –0.0000 + 0.0079i
W6V –0.1854 – 0.1926i –0.0099 + 0.1735i 0.0256 – 0.1356i
W7H –0.0652 – 0.0562i 0.0030 – 0.0006i –0.0065 – 0.0023i
W7V –0.0871 – 0.2303i –0.0281 + 0.1067i –0.0131 – 0.1407i
W8H –0.0167 – 0.1025i –0.0004 + 0.0024i 0.0038 – 0.0030i
W8V 0.1837 + 0.0734i –0.0131 + 0.0330i –0.0267 – 0.0809i
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14.5  Combined Nulling and DOA Estimation

Interference DOA can be obtained using subspace methods such as the MUSIC algo-
rithm. Eigendecomposition is typically applied to the covariance matrix estimated from 
the data collected over an observation period,

 ˆ ,r u u= 1 1
HΣΣ1  (14.23)

where Σ1 is a 2N-by-2N matrix representing the eigenvalue diagonal matrix, and u1 is 
a unitary matrix whose columns represent the corresponding eigenvectors. The signal 
subspace is spanned by the eigenvectors associated with the dominant eigenvalues of r̂. 
The MUSIC spectrum is given by [31]

 P
a u u aMUSIC H

n n
H( )

( ) ( )
,θ

θ θ
= 1  (14.24)

where un is a matrix of the eigenvectors corresponding to the noise eigenvalues. The 
MUSIC algorithm as well as other eigenstructure methods require proper sampling 
of the data for covariance matrix estimation. These methods can be computationally 
demanding for GPS receivers, often call for large memory, and cannot be used effec-
tively in simple analog adaptive loops. An alternative way is to build on the fact that 
multiple beamformers produce different sets of weights, and each carries interference 
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FIgure 14.4 Array response performance at the eight RHCP antenna arrays with single and 
multiple MVDR methods with two RHCP interferers at 27 and 50 degrees.

© 2009 by Taylor & Francis Group, LLC



424 Adaptive Signal Processing in Wireless Communications

information. One may therefore proceed to estimate the interferer DOAs by applying 
subspace methods, such as the MUSIC technique, to a matrix made of the weight vectors 
corresponding to different satellites. These weights are already generated for interfer-
ence nulling purposes and can be obtained recursively through digital, or even analog, 
implementations. It is noted that this approach is different from beamspace MUSIC, 
where the covariance matrix of the beam data outputs is considered for eigendecomposi-
tion [45].

To elaborate on the combined cascade implementation of interference nulling and 
DOA estimation, we consider the optimum nulling weight matrix solution, given by

 W Wa opt= αα  (14.25)

where

 W r aa D= −1 ( ).θ  (14.26)

The 2N-by-D matrix Wopt = [w1_opt w2_opt … wD_opt] consists of the weight vectors in the 
multiple MVDR beamforming approach, and 

 αα = …








diag
D

1 1 1
1 2α α α

is a diagonal D-by-D matrix, where αi (i = 1, 2, …, D) is the output power at each beam-
former, αi = yi yi

*.
The spatial covariance matrix of the received data can be written as

 r xx a P a a P a I r r r= = + + = + +H
D s D

H
I I I

H
s I nσ 2 ,  (14.27)

where Ps = diag(Psi) (i = 1, 2, …, D) and PI = diag(PIi) (i = 1, 2, …, M) represent the diago-
nal power matrix of the GPS signals and the interferers, respectively. Due to the low 
power of the GPS signals, matrix rs is negligible compared to the interference and noise 
covariance matrix. Therefore, equation (14.27) can be simplified to

 r a P a I= +I I I
H σ 2 . (14.28)

The eigendecomposition of (14.28) is

 r e e= ΛΛ H ,  (14.29)

where Λ is the diagonal eigenvalue matrix, Λ = diag{σ1
2 … σM

2 σn
2 … σn

2}, and e is the 
corresponding eigenvector matrix. In the above equation, σi

2 (i = 1, 2, …, M) represents 
the i th significant eigenvalue, and σn

2 represents the noise eigenvalue. The first M col-
umns of e span the interference subspace, i.e.,
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 span spanM Mi i i e e e1 2 1 2... ... ,  =    (14.30)

where ei represents the i th column of e. If we adopt the approach in [43] for interference 
DOA estimation, then we define

 W a Wc D a= −1
2σ

θ( ) ,  (14.31)

where σ2 represents the power of the AWGN. Substituting equations (14.26) and (14.29) 
into (14.31), the cancellation weight vector for the k th satellite can be expressed as
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where I is the identity matrix. Typically,

 1 1
2 2

2 2

σ σ
σ σ

i
n , ,=

and equation (14.32) can be simplified to
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H
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i

i
H

k( ) ( )θ
σ

θ ii .  (14.33)

The above vector lies in the interference subspace. If D > M, then the columns of the 
cancellation weight matrix span the M interference subspace, i.e.,

 span spanM c c cDi i i w w w1 2 1 2…  = …  .  (14.34)

It is noted that if the interferers are LHCP, the eigenvectors of the covariance matrix 
in the presence of weak GPS signals are presented as LHCP. Accordingly, the coefficients 
ei

Hak(θ) in (14.33) become zero, and the corresponding weight vector wck becomes zero as 
well. As a result, the DOAs of the interferers cannot be estimated from Wa or Wc . This 
can be viewed as a drawback of using the adaptive weights for DOA estimation. If the 
interferers are RHCP, horizontally polarized, or vertically polarized, the above coeffi-
cients are nonzero, and equation (14.34) is valid.

If the exact order statistics are available, then one would generate the nulling weights, 
proceed with eigendecomposition of Wc, and obtain a corresponding MUSIC spectrum, 
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followed by peak finding and non-LHCP interference DOA estimation. This technique 
is known as concurrent adaptive nulling and localization (CANAL) [43] (although it 
performs nulling and localization in a sequential manner). In practice, however, only a 
short observation interval of the data is available, and as such, the noise perturbation 
and estimation inaccuracies will violate the interference subspace in equation (14.33), 
rendering equation (14.34) nonapplicable. For illustration, define 

 λ
σ σi

i

= −1 1
2 2

for i = 1, 2, …, M, and 

 λ
σ σj

nj

= −1 1
2 2

for j = M + 1, …, 2N, where σnj
2 represents the j th noise eigenvalue obtained from the 

estimated data covariance matrix r̂, and it is a perturbed version of σ2. If σ2 ≠ σnj
2 , then 

equation (14.32) can be rewritten as
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It is clear that the cancellation weight vector is a linear combination of all interference 
and the noise subspace vectors ei (i = 1, 2, …, 2N) pertaining to the spatial covariance 
matrix. Proceeding with the singular value decomposition (SVD) for Wc  yields

 W u Vc = ΣΣ ,  (14.36)

where u is a 2N-by-2N unitary matrix, V is a D-by-D unitary matrix, and Σ is a 2N-by-D 
diagonal matrix with singular values, γi, i = 1, …, D,

 ΣΣ=

…

…
…
…



























γ

γ

1 0 0
0 0
0 0
0 0
0 0
0 0

D .  (14.37)
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If Wc  is optimally calculated, and providing D > M, then its rank is M. However, with 
adaptive processing, the matrix rank is no longer M. In this way, the first D columns of 
u are the column subspace, containing the interference information (M < D), and the 
last 2N – D columns of u are the noise subspace. That is,

 a uk
H

i( )θ = 0 , (i = D + 1, …, 2N) (14.38)

for k = 1, …, M. The DOAs of the interferers can be obtained by searching the peaks of 
the CANAL spectrum

 P
H

i

i D

N( )
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.θ

θ

=

= +

∑
1

2

1

2

a u

 (14.39)

It is noteworthy that the rank of the cancellation weight matrix Wc  is min(D, N). That 
is, only up to D – 1 RHCP interferers can be considered, compared to N  – 1 by the MUSIC 
algorithm when operating on the data covariance matrix. By increasing D (D < N), the 
interference information will be further represented by a larger column subspace, pro-
ducing enhanced interference DOA estimation performance. Accordingly, it is desirable 
to add N – D beamformers to achieve a total number of N beamformers. For simplicity, 
we define the number of beamformers as L. If D < N, then the L beamformers consist of 
D beamformers toward the GPS directions and the L – D beamformers toward arbitrary 
directions. In this case, equation (14.26) can be expressed as

 W r Ta = −1 ( ),θ  (14.40)

and equation (14.31) becomes

 W T Wc a= −1
2σ

θ( ) .  (14.41)

Therefore, equation (14.39) is rewritten as

 P
H

i

i L

N( )

(

.θ

θ
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∑
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2

1

2

a )u

 (14.42)

The optimal performance will occur when L = N, and a maximum number of N – 1 
interference DOAs can be estimated.
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The multiple MVDR beamforming method can null a large number of different 
types of the interferers as presented in section 14.4. However, not all interferers can 
be considered with the CANAL method. For instance, if the interferers are LHCP, the 
inner product ei

H ak(θ) (i = 1, 2, …, M) corresponding to the i th signal subspace becomes 
zero. This is because ei is LHCP and ak(θ) is RHCP. The eigenvectors ej corresponding to 
the noise eigenvalues do not assume specific polarization. As a result, the cancellation 
weight vector wck no longer carries the interference DOA information, and is expressed 
as the linear combination of the noise subspace. Another important case occurs when 
the number of vertically polarized or horizontally polarized jammers exceeds the num-
ber of dual-polarized antennas N. In this case, the vertical elements or horizontal ele-
ments of the nulling weight matrix, respectively, will become zero, as this is the only 
option available to the array to suppress all jammers. The interferers’ DOAs cannot be 
estimated based on the zero weight values. In other words, for the interference DOA to 
be estimated from the cancellation weight matrix, the interferers must have been already 
suppressed by spatial nulling.

Several simulation results of the interference localization in GPS are presented. We 
examine the interference localization performance as a function of the number of look 
directions L. Assume eight dual-polarized antennas, uniform linear antenna array with 
the interelement spacing of a half wavelength, are employed. Four RHCP GPS signals 
arrive at –20, 0, 15, and 45 degrees of elevation angles with SNRs of –20 dB. The num-
ber of snapshots is set to 1,000. Eight look directions are considered. Eight beamform-
ers are formed, four of those toward the four GPS directions and the rest to –74, –55, 
60, and 85 degrees of elevation angle. The latter were arbitrarily chosen. Seven (M = 7) 
20 dB RHCP interferers incident on the GPS receiver from –40, –30, –10, 10, 35, 40, and 
70 degrees were generated. In Figure 14.5, the MUSIC spectrum and CANAL spectrum 
are presented and compared. The dashed line represents the spectrum with the CANAL 
approach applied to the cancellation weight matrix obtained in equation (14.41), and the 
solid line represents the spectrum with the MUSIC technique applied to the estimated 
data covariance matrix, presented by equation (14.24). Both techniques show seven clear 
peaks at the interferers’ directions.

If the number of beamformers L reduces to six, toward –74, –20, 0, 15, 45, and 60 
degrees, the rank of the cancellation matrix Wc  reduces to six, and subsequently, the 
maximum number of RHCP interferers that can be cancelled is six. The performance is 
shown in Figure 14.6. It is clear that in this case, the covariance matrix-based MUSIC 
algorithm can estimate the DOAs of the interferers, while the CANAL method fails, 
since M > L.

In order to examine the sensitivity of the choice of the noise subspace dimension on 
the CANAL performance, we assume two interferers arrive from –40 and 35 degrees. We 
use the same eight look directions as in the previous example. We choose the dominant 
singular vectors u1 and u2 to represent the interference subspace, instead of u1, u2, …, u8. 
The spectrum is shown in the solid curve in Figure 14.7. This figure demonstrates that 
the interference subspace is not properly captured in u1 and u2, but rather has a nonzero 
projection on all singular vectors u1, u2, …, u8. The example below further underscores 
the above point.
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FIgure 14.5 CANAL and MUSIC spectra with eight beamformers toward –74, –55, 60, 80, –20, 
0, 15, and 45 degrees, where seven jammers arrive from –40, –30, –10, 10, 35, 40, and 70 degrees.
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FIgure 14.6 CANAL and MUSIC spectra with six beamformers toward –74, 60, –20, 0, 15, and 
45 degrees, where seven jammers arrive from –40, –30, –10, 10, 35, 40, and 70 degrees.
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We examine, in Figure 14.8, the normalized eigenvalues of the estimated data covari-
ance matrix in the MUSIC technique as well as the normalized eigenvalues of the can-
cellation weight covariance matrix in the CANAL technique. The latter is obtained by 
the product WcWc

H. The solid line represents the eigenvalues in the MUSIC technique, 
where the first two eigenvalues are the interference eigenvalues, and the rest are small 
values representing the noise eigenvalues. The dotted line represents the eigenvalues in 
the CANAL technique. It is clear that the zero eigenvalues start from the eighth, and not 
from the third, entry, as expected in the ideal case.

In Figure 14.9, we compare the CANAL spectra under different numbers of MVDR 
beamformers, L. Two RHCP interferers arrive from –40 and 35 degrees of elevation 
angle with JNR of 20 dB. The number of beamformers is set to 5, 8, and 11. The number 
of dual-polarized antennas, N, is eight. The look directions for the three cases are the 
four GPS directions and other arbitrary directions, namely, [–20, 0, 15, 45, –55], [–20, 0, 
15, 45, –55, 60, –74, 85], and [–20, 0, 15, 45, –55, 60, –74, 85, –10, 20, 70] degrees, respec-
tively. It is clear that when L < N, the CANAL method estimates the interferer DOAs 
with poor resolution. On the other hand, when L > N, the rank of the cancellation matrix 
is N, and the CANAL spectrum performance will not be improved significantly.

In the next example, nine interferers arrive from [–40, 35, 70, –30, 40, –10, 10, 50, –60] 
degrees with JNR of 20 dB, and eight beamformers are formed toward the directions of 
85, –74, 60, –55, 45, –20, 0, and 15 degrees. The first interferer from –40 degrees is RHCP, 
and all the others are horizontally polarized. With eight antennas, the multiple MVDR 
method will suppress the eight horizontally polarized interferers by placing zero weight 
values at the horizontal elements of the nulling weight matrix, and cancel the RHCP 
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FIgure 14.7 CANAL spectra where the noise subspace is of dimension 2N – M and 2N – L 
with eight dual-polarized antennas. Two interferers are located at –40 and 40 degrees.
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FIgure 14.8 Eigenvalues of data covariance matrix and the cancellation weight covariance 
matrix in the MUSIC and CANAL techniques, respectively.

FIgure 14.9 CANAL spectra with five, eight, and eleven beamformers, where two interferers 
are from –40 and 35 degrees.
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interferer spatially using the MVDR method. The CANAL spectrum of the RHCP inter-
ferer and the horizontally polarized interferers are presented in Figure 14.10(a) and 
(b), respectively. The RHCP interferer is clearly located at –40 degrees. The CANAL 
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FIgure 14.10 (a) CANAL spectrum with one RHCP jammer and eight horizontally polarized 
jammers. (b) CANAL spectrum with one RHCP jammer and eight horizontally polarized jammers.
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spectrum for the horizontally polarized interferers shows random peaks. This demon-
strates that it fails to perform direction finding of the interferers that are suppressed by 
the array orthogonal dual-polarization property.

14.6  Constrained Adaptive Algorithm

In this section, we recall a simple adaptive algorithm (constrained LMS algorithm) and 
use it to provide the cancellation weight matrix without the need to estimate the data 
covariance matrix. The constraint LMS algorithm is based on the gradient-descent algo-
rithm. It iteratively adapts the weights of an antenna array to minimize the noise power 
at the output while retaining a unit response at the look directions. The multiple MVDR 
beamforming method solves for w according to

 min .
w

H Hw rw c wsubject to =1  (14.43)

Denote F = c(cHc)–1 and P = I – c(cHc)–1 cH. The weight vector can be recursively updated 
as [40]
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The constraint LMS algorithm at the k th time sample can be expressed as
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where μ is the adaptation step size. The output power of the antenna array is given by
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Details of the derivations of equations (14.44)–(14.46) can be found in [40]. The opti-
mum nulling weight vector in equation (14.25) then becomes

 w wai i out iP= _ .  (14.47)
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In the following examples, the interference localization performance based on adap-
tive cancellation weight vector using the constraint LMS algorithm is examined. We 
consider eight dual-polarized ULAs with interelement spacing of a half wavelength. The 
four RHCP GPS signals arrive from –20, 0, 15, and 45 degrees with SNRs of –20 dB. 
Eight look directions include the four GPS directions and the additional directions of 
–74, –55, 60, and 85 degrees. The number of snapshots is set to 4,000, and the step size is 
0.000005. In Figure 14.11, the CANAL spectrum is presented when one RHCP interferer 
arrives from –40 degrees with 20 dB JNR. It is evident that the directions of both the 
interferer and the GPS signals are presented by clear peaks, when applying the con-
straint LMS algorithm. This is the result of equation (14.35) and the mismatching of the 
true noise power value and the one offered implicitly by the converged weights. With 
this mismatch, the subtraction gives rise to the GPS signal subspace, which can no lon-
ger be ignored in the equation.

Figure 14.12 shows the output powers at the GPS receiver for each iteration with step 
sizes of 0.00005 and 0.000005. The output power is calculated by w1

H(k)rw1(k), where 
w1(k) represents the nulling weights of the first beamformer at the k th iteration. The 
dashed line represents the output power with step size of 0.00005, whereas the solid 
line represents the output power with step size of 0.000005. It is obvious that the LMS 
converges faster when increasing the step size. In Figure 14.13, the first weight at the 
first beamformer is presented. The dashed line represents the optimum weight value 
obtained by the covariance matrix, whereas the solid line represents the adaptive weight. 
It is clear that the adaptive weight converges to the optimum value.
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FIgure 14.11 CANAL spectrum by LMS algorithm with eight dual-polarized antenna arrays, 
when one RHCP interferer arrives at -40 degrees.
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each iteration.
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In the next example, we consider three RHCP interferers arriving from –40, 35, and 
70 degrees of elevation angle. We choose the dominant singular vectors u1, u2, and u3 
to represent the interference subspace, instead of u1, u2, …, u8. The CANAL spectrum 
is shown in Figure 14.14. When confining the subspace to dimension three, only the 
interference DOAs become visible.

In Figure 14.15, one horizontally polarized interferer arrives at –40 degrees with 20 dB 
JNR. We use the same GPS directions, look directions, and step size as in the previous exam-
ple. It is evident that the horizontally polarized interferer has a clear peak at –40 degrees.

14.7  An Alternative Cascade Processing Approach

It is evident from the examples provided in this section that the CANAL method is 
sensitive to subspace dimension and the cancellation weight perturbation. Instead of 
applying the cancellation weight matrix, the nulling weight matrix itself can be used to 
obtain the DOAs of the interference. The nulling weight matrix is expressed in equation 
(14.40) as

 W r Ta = −1 ( ).θ  (14.48)

The nulling weight vector for the k th look direction is
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FIgure 14.14 CANAL spectra by LMS algorithm where the noise subspace is of dimension 
2N – M and 2N – L with eight dual-polarized antennas. Three RHCP interferers arrive at –40, 35, 
and 70 degrees.
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For large JNR, σi
2  σn

2 and equation (14.49) can be simplified as
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where en and ej are long matrices representing the 2N-by-(2N – M) and 2N-by-M eigen-
vector matrices corresponding to the noise and the jammer eigenvalues, respectively. It 
is noted that the nulling weight matrix is orthogonal to the jammer subspace, and the 
MUSIC spectrum can be directly obtained as
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 (14.51)

If L = 1, then the problem simplifies to looking for peaks by displaying the inverse 
spectrum. If L > 1, the common nulls are emphasized, whereas spurious system nulls are 
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FIgure 14.15 CANAL spectrum, by LMS algorithm for one horizontally polarized interferer 
from –40 degrees.
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eliminated. In practice, however, the adaptive weights, at convergence, are perturbed, 
especially for low-power jammers and under fast convergence. The SVD of the nulling 
weight matrix can be expressed as

 W u Va a a a= ΣΣ ,  (14.52)

where ua is a 2N-by-2N unitary matrix, Va is an L-by-L unitary matrix, and Σa is a 
2N-by-L singular value matrix. The matrix uan of the first L – M singular vectors cor-
responding to the nonzero singular values in Σa is orthogonal to the jammers’ subspace, 
and the spectrum can be expressed as

 P
H

an i

i

L M( )

( )

.

_

θ

θ

=

=

−
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2
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 (14.53)

In the following examples, four RHCP GPS signals arrive at –20, 0, 15, and 45 degrees 
with SNR of –20 dB. The eight look directions considered are the four GPS directions 
and additional directions of –74, –55, 60, and 85 degrees. The number of snapshots 
is set to 4,000. The nulling weight matrix is adaptively obtained by the constraint LMS 
algorithm with the step size of 0.000005. In Figure 14.16, the spectrum with one RHCP 
jammer is examined. The jammer signal is incident on the array with –40 degrees of 

–100
–50

–45

–40

–35

–30

–25

–20

–15

–10

–5

0

–80 –60 –40 –20 0
Angle of arrival (degrees)

Po
w

er
 sp

ec
tr

um

20 40 60 80 100

FIgure 14.16 Spectrum based on the nulling weight matrix obtained by the LMS algorithm 
with eight dual-polarized antenna arrays, when one RHCP interferer arrives at –40 degrees.
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elevation angle and 20 dB JNR. The number of nonzero singular values is seven. The 
spectrum is obtained using equation (14.53).

Figure 14.17 compares the spectra based on the nulling weight matrix and the can-
cellation weight matrix for seven RHCP jammers, arriving from –40, 35, 70, –30, –45, 
–10, and 10 degrees. It is clear that the jammers can be properly localized if we apply the 
nulling weight matrix, whereas the cancellation weight matrix-based spectrum fails to 
exhibit the correct peaks at the jammer DOAs.

14.8  Summary

In this chapter, we addressed interference nulling and interference DOA estimation for 
GPS receivers with dual-polarized antenna arrays. It is shown that interference nulling 
can be achieved by invoking the orthogonal polarization properties of the array or by 
coherently combining the antenna outputs through optimum and adaptive weight val-
ues. For antijam GPS, the GPS receiver may be designed to employ one set of weights 
that forms one beamformer and places low gain toward the interference DOAs and 
unit gain toward satellites. It is shown that this approach has shortcomings, as it offers 
a limited number of degrees of freedom and provides poor nulling capabilities when 
the jammers and the satellites have close angular separations. Multiple weight vectors 
corresponding to multiple beamformers mitigate the aforementioned problems at the 
expense of increased receiver complexity. We have also presented a DOA estimation 
approach that operates on the adaptive weights rather than the estimated covariance 
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FIgure 14.17 Spectrum based on the nulling and cancellation weight matrix obtained by the 
LMS algorithm with eight dual-polarized antenna arrays for seven RHCP interferers.
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matrix. Two different techniques under this approach are represented. The first deals 
with cancellation weight vectors that span the interference subspace, and the other is 
based on the adaptive nulling weight vectors that are orthogonal to the interference 
subspace. We provided simulation results comparing the two techniques under various 
jamming environments and using different interference signal polarizations.
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15.1  Introduction

Within wireless communications, advances in digital processing are pushing system 
performance to higher levels, providing increasingly larger bandwidths and introducing 
more complex coding and modulation schemes. Increasingly larger parts of processing 
of both the radio access network (RAN) and user equipment (UE) are mapped onto digi-
tal computing devices. Looking at this mapping process, one can distinguish different 
classes of processes (or tasks) and different types of computing devices.

A classification of processing is general purpose (GP processing), domain specific (DS 
processing), and application specific (AS processing). GP processing is generally char-
acterized by a nonpredictable execution flow, whereas AS processing has a predictable 
execution flow. A characteristic of DS processing is that several similar tasks or algo-
rithms are to be executed on a single computing device.

Computing devices or processors are generally classified as general-purpose pro-
cessors (GPPs), digital signal processors (DSPs), reconfigurable processors (RPs), and 
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application-specific integrated circuits (ASICs). The ability to execute different types of 
processing for the different types of computing devices is indicated in Table 15.1.

GPPs are able to execute all types of processing. DSPs are processors that are tai-
lored toward the signal processing domain. This is a relatively broad application domain, 
and DSPs therefore resemble GPPs to a large extent; both GPPs and DSPs are typically 
von Neumann machines [48]. Reconfigurable processors can be adapted in such a way 
that different types of processing within a specific application domain can be executed. 
ASICs generally are only suited for AS processing.

When mapping computing tasks onto computing devices, performance criteria of 
computing devices are evaluated. Performance criteria are presented at the lower part 
of Table 15.1. In general, the performance criteria are power, area, and engineering 
efficiency and flexibility. Because ASICs basically have no control overhead, most dis-
sipated energy contributes to the execution of the tasks at hand. On the other hand, 
since GPPs are based on the von Neumann principle, substantial energy is dissipated for 
fetching and decoding instructions. From a power consumption perspective, this can 
be considered as overhead leading to low power efficiency. DSPs are also based on the 
von Neumann principle but are more power efficient. RPs show more ASIC-like behav-
ior and are therefore more power efficient than DSPs. Area efficiency relates to the area 
required on an integrated circuit (IC) for realizing a specific task. ASICs are far more 
area efficient than GPPs. Engineering efficiency refers to the relative engineering effort 
required to have the computing device executing the demanded processing. For GPPs 
and DSPs, in general, compilers are available to efficiently compile high-level sequential 
code into machine instructions. Compilers for mapping applications onto RPs are not 
yet as mature as for GPPs and DSPs. For ASICs, functionality can be specified by means 
of schematic capture or a hardware specification language. However, the trajectory from 
this specification to an integrated circuit is time-consuming, risky, and expensive. Flex-
ibility basically refers to the range of applications for which a computing device can be 
used. It is clear the GPP offers the most flexibility and ASIC the least.

Because of the diminishing feature size of integrated circuits, more and more func-
tionality can be packed into a single chip. This has led to the creation of heterogeneous 
system-on-chips (SoCs), where multiple processing cores of different types are intercon-
nected by means of a network-on-chip (NoC). An example can be found in [47].

Table 15.1 Overview of Types of Processing  
and Computing Devices

GPP DSP RP ASIC

GP processing * (*)
DS processing * * *
AS processing * * * *
Power efficiency – – – + ++
Area efficiency – – – + ++
Engineering efficiency ++ + – – –
Flexibility ++ + – – –
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The developments described above have their impact on wireless communications. 
If the RAN is considered, (chip) area and power consumption are not of utmost impor-
tance. Engineering efficiency is important because RAN equipment is sold in relatively 
low quantities. Flexibility is necessary in case new services have to be offered by the 
RAN. Therefore, its functionality is implemented in GPPs and DSPs as much as pos-
sible. For example, in UMTS base stations, chip-level processing is done by means of 
DSPs [54]. In UE, low power consumption has been the driving force, and large parts of 
functionality are traditionally implemented in ASICs. However, nonrecurrent engineer-
ing costs and flexibility become more and more important. This has led to a trend where, 
also in the UE, reconfigurable devices are becoming feasible.

In the remaining part of this chapter we will first discuss reconfigurable platforms 
since they are attractive for both RAN and UE. Second, the implementation of wireless 
communication applications on a reconfigurable platform will be described where we 
separately deal with licensed communication and a form of unlicensed communica-
tion called cognitive radio. Third, we zoom into the process of mapping applications 
onto a reconfigurable platform. Both the design time mapping and runtime mapping 
are discussed.

15.2  Reconfigurable Platforms

In [11], a definition of reconfigurable platforms is given: “Systems incorporating some 
form of hardware programmability—customizing how the hardware is used using a 
number of physical control points. These control points can then be changed periodi-
cally in order to execute different applications using the same hardware.” Based on this 
definition, reconfigurable platforms can consist of fine-grained or coarse-grained func-
tional units [45]. Fine-grained functional units implement a function on a single bit 
or a small number of bits, e.g., small lookup tables in a standard field programmable 
gate array (FPGA). Coarse-grained functional units are typically much larger and may 
consist of arithmetic and logic units (ALUs) and a significant amount of storage. Fine-
grained and coarse-grained reconfigurable devices are described separately.

For the wireless communications domain, conventional computing architectures 
will be replaced by reconfigurable multiprocessor system-on-chips (MP-SoCs). On 
MP-SoCs, several instances of a single type of processing device can be implemented. 
These types of MP-SoCs are referred to as homogeneous tiled architectures. MP-SoCs 
with several instances of a few different types of processing devices are referred to as 
heterogeneous tiled architectures. We will give examples of both types of architectures. 
To interconnect different processors on an MP-SoC, we use a NoC. NoCs are described 
at the end of this section.

15.2.1  Fine-Grained Reconfigurable Devices

Recent advances in reconfigurable devices are based on the success of FPGAs. Within 
an FPGA, static random access memory (SRAM) bits are connected to configuration 
points. For example, writing to these SRAM bits, routing structures are configured and 
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(de)multiplexers can be set. Routing structures and (de)multiplexers are used to inter-
connect the basic computational elements of an FPGA. The basic computational ele-
ments of two state-of-the-art FPGAs are presented in Figure 15.1.

The computational elements are from recent FPGA families of the two dominant 
manufacturers: the adaptive logic module (ALM) of the Stratix III family of Altera and 
the combination of a lookup table (LUT) and flipflop of the Virtex-5 family of Xilinx. 
The ALM has eight inputs, connected to a LUT. At most two single-bit functions can be 
realized by the LUT. Furthermore, two adders and two registers are available. The unit 
of a Virtex-5 device that is comparable to an ALM is a LUT-flipflop pair. The LUT has 
six inputs to which carry logic and a single register are added.

In Table 15.2 an overview of the characteristics of two devices out of the Stratix III 
and Virtex-5 families is given. These devices are the ones with the maximum number of 
LUTs within their family.

The numbers that are given for features of the devices cannot be compared directly. 
A slice within the Virtex-5 series consists of four six-input LUT-flipflop pairs. Further-
more, the basic element within a Virtex-5 DSP slice is an 18-by-25-bit multiplier. Mem-
ory is organized in block RAMs. ALMs of the Stratix III series are comparable with a 
LUT-flipflop pair of the Virtex-5 series. An ALM has eight inputs. The multipliers within 
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FIgure 15.1 Basic computational elements of two state-of-the-art FPGAs.
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the Stratix III device have two 18-bit input operands. Memory is organized in memory 
blocks. The frequencies given for both devices are the maximum internal clock speed.

Fine-grained reconfigurable devices are in principle only used in the RAN, for exam-
ple, in base stations. Fine-grained devices offer a large flexibility at the cost of a reduced 
(chip) area efficiency and power efficiency. Area and power are of less importance for the 
RAN but are of utmost importance in the UE. An example of a HiperLAN/2 base station 
implemented on an FPGA is given in [37]. Furthermore, there are numerous examples 
of the implementation of parts of UMTS transmitters and receivers on an FPGA. Recent 
examples can be found in [5], [7], [34], and [43]. FPGA-based platforms are also used for 
the design and analysis of communication systems. An example is the BEE2 platform 
[8]. This is a modular platform, consisting of multiple FPGAs used to speed up the emu-
lation and design of wireless communications systems.

15.2.2  Coarse-Grained Reconfigurable Devices

Within wireless communication systems, the computational data paths have path widths 
greater than a single bit, and for that reason, fine-grained architectures are much less 
efficient because of the routing area overhead. Coarse-grained architectures have word-
level data paths and are therefore more efficient. While the basic elements within FPGAs 
are slices or LUT-flipflop pairs, the basic elements within a coarse-grained architec-
ture are reconfigurable data path units (DPUs). Different coarse-grained reconfigurable 
devices distinguish themselves through the functionality provided by the DPUs and 
the structure of interconnections between different DPUs. A DPU can be as simple as 
a single arithmetic and logic unit (ALU) or relatively obese, containing multiple ALUs, 
multiple memories, and control/configuration logic. In case relatively small DPUs are 
used, FPGA-like structures interconnect the different DPUs. In case of multiple larger 
DPUs, usually a NoC interconnects different processors.

15.2.2.1  Coarse-Grained Reconfigurable Architectures

Recently, several word-level reconfigurable architectures have been proposed, very often 
in the context of a tiled architecture template. The Pleiades architecture [3] is a template 
to create an instance of a domain-specific processor. In the template, a control proces-
sor is surrounded by an array of heterogeneous autonomous special-purpose satellite 

Table 15.2 Characteristics of Two State-of-the-Art Fine-Grained 
Reconfigurable Devices

XilinxVirtex-5 XC5VLX330T AlteraStratix III EP3SC340

Slices
⇒ Number of LUTs

51,840
207,360

Adaptive logic modules
⇒ Number of LUTs

135,300
135,300

DSP slices
(18 × 25 bit multipliers)

192 Multipliers
(18 × 18 multipliers)

576

Clock frequency 550 MHz Clock frequency 600 MHz
Memory
In block RAM

11.664 Mbit Memory
In memory blocks

17.208 Mbit
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processors. All processors are interconnected via a reconfigurable communication net-
work. The adaptive computing machine by QuickSilver [25], is a heterogeneous system-
on-chip. Nodes with different flexibility (adaptive nodes, domain-specific [ASIC-like] 
nodes, and programmable nodes) can be interconnected by means of a mesh intercon-
nect. The XPP extreme processor platform [4] consists of clusters of computing elements 
and a packet-oriented communication network. A cluster consists of a set of parameter-
izable tiles. There are two types of tiles: memory tiles and ALU tiles. A memory tile has 
a capacity of 256 or 512 words. The word size can be either 16, 24, or 32 bits. The archi-
tecture uses a large number of processors, which makes the chip suitable for high-end 
applications. Silicon Hive provides reconfigurable accelerators designed according to a 
hierarchical approach. At the lowest level, the basic component is a VLIW-like process-
ing and storage element (PSE). At the next level, multiple PSEs form a cell. A cell is a 
processor, capable of executing complete algorithms. One level higher, multiple cells can 
be combined. The accelerators are to be integrated onto a SoC. The ADRES architecture 
template [6] consists of a tightly coupled VLIW processor and a coarse-grained recon-
figurable array. The reconfigurable array is intended to process computationally inten-
sive kernels of applications. The VLIW host processor uses parts of the reconfigurable 
array to execute its instructions. The host processor and reconfigurable array are there-
fore tightly coupled and share resources. This architecture is dedicated to applications 
that require tight control of data flow operations. A similar approach is used in the Chi-
maera architecture [24]. In this architecture, the reconfigurable part has direct access to 
the host processor’s register file. The Kilocore KC256 chip is a commercial version of the 
PipeRench chip [21]. The chips are characterized by a multicore computing kernel where 
cores can be cascaded to constitute multiple processing pipelines. Besides the configu-
rable ALU, a processing core only contains a register file and no memory. Configura-
tion and information data are stored in separate SRAMs. Because PipeRench is specially 
designed for pipelined applications, best performance is achieved when pipeline stages 
are identical or perfectly balanced. A specific coarse-grained reconfigurable architec-
ture, developed at the University of Twente, is the Montium processor. The Montium 
will be described in more detail below and will be used throughout this chapter in the 
examples of coarse-grained reconfigurable processors.

15.2.2.2  The Montium

The Montium is described in detail in [27], and in this section the general structure is 
discussed. A single Montium processing tile is depicted in Figure 15.2.

The lower part of Figure 15.2 shows the communication and configuration unit 
(CCU), which deals with the off-tile communication and configuration of the upper 
part, the reconfigurable tile processor (TP). The TP is the computing part that can be 
dynamically reconfigured to implement a particular algorithm. At first glance the TP 
has a VLIW structure. However, the control structure of the Montium is very different. 
For (energy) efficiency it is imperative to minimize the control overhead. This is, for 
example, accomplished by scheduling instructions statically at compile time. A relatively 
simple sequencer controls the entire tile processor. The sequencer selects configurable 
tile instructions that are stored in the instruction decoding block (see Figure 15.2).

© 2009 by Taylor & Francis Group, LLC



Reconfigurable Baseband Processing for Wireless Communications 449

Furthermore, there are multiple ALUs (ALU1 … ALU5) and multiple memories 
(M01 … M10). A single ALU has four inputs (A, B, C, D). Each input has a private input 
register file that can store up to four operands. The input register file cannot be bypassed, 
i.e., an operand is always read from an input register. Input registers can be written by 
various sources via a flexible interconnect. An ALU has two outputs (OUT1, OUT2), 
which are connected to the interconnect. The ALU is entirely combinational, and con-
sequently, there are no pipeline registers within the ALU. Neighboring ALUs can also 
communicate directly: the west output (W) of an ALU connects to the east input (E) of 
the ALU neighboring on the left.

The ALUs support both signed integer and signed fixed-point arithmetic. The five 
identical ALUs in a tile can exploit spatial concurrency to enhance performance. This 
parallelism demands a very high memory bandwidth, which is obtained by having ten 
local memories in parallel.

An address generation unit (AGU; not shown in Figure 15.2) accompanies each mem-
ory. The AGU can generate the typical memory access patterns found in common DSP 
algorithms, e.g., incremental, decremental, and bit-reversal addressing. It is also possible 
to use the memory as a lookup table for complicated functions that cannot be calculated 
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FIgure 15.2 The Montium tile processor and network interface.

© 2009 by Taylor & Francis Group, LLC



450 Adaptive Signal Processing in Wireless Communications

using an ALU such as sine or division with a single constant value. A memory can be 
used for both integer and fixed-point lookups.

The reconfigurable elements within the Montium are the sequencer, the instruction 
decoding block, and the AGUs. Their functionality can be changed at runtime. The 
Montium is programmed in two steps. In the first step, the AGUs are configured and 
a limited set of instructions is defined by configuring the instruction decoding block. 
The sequencer is then instructed to sequentially select the required instructions. A pre-
defined instruction set is available using an assembly type of mnemonics (Montium 
assembly). A compiler has been constructed to convert a Montium assembly program 
into configuration data for both the instruction decoding block and the sequencer.

15.2.2.2.1  Energy Consumption

Using power estimation tooling, the dynamic power consumption of a typical multiply-
accumulate (MAC) operation in the Montium is estimated to be about 0.5 mW/MHz, 
realized in 130 nm complementary metal oxide semiconductor (CMOS) technology. The 
area of a single Montium TP is about 2 mm2 in this technology [26].

15.2.3  Tiled Architecture

Tiled architectures are where relatively complex elements (tiles) are replicated on a sin-
gle integrated circuit (IC). The tiles are interconnected via an on-chip network. Tiled 
architectures are becoming increasingly popular because a tile has to be designed only 
once, after which it can be copied onto a single IC multiple times. By adding more tiles 
onto the chip, it is relatively easy to profit from diminishing feature sizes. The computa-
tion model, programming model, interconnection structure, and memory organization 
can stay the same. Below, the following prominent tiled architectures are discussed: the 
RAW processor [49], the cell processor [29], the Polaris processor [47], and the Tile64 
processor (see www.tilera.com). Furthermore, the Chameleon heterogeneous tiled 
architecture is introduced.

15.2.3.1  The RAW Processor

The RAW processor is one of the earliest tiled architectures. A RAW processor consists 
of a set of relatively simple tiles interconnected by a set of switches. Each tile contains 
instruction memory, data memories, an ALU, registers, configurable logic, and a pro-
grammable switch with an associated instruction memory. The general idea is that the 
internal hardware structure of both the tile and the switches is exposed to the compiler. 
This way there are two sets of control logic: operation control for the processor and 
sequencing routing instructions for the switches. A consequence is that the burden on 
the compiler is high, which leads to relatively long compile times. The configurable logic 
in each tile supports a few wide-word or many narrow-word operations and is coarser 
than FPGA-based processors.

15.2.3.2  The Cell Processor

The cell processor consists of eight replicas of a synergistic processor element (SPE) 
and a (single) power processor element (PPE) with a power core. An SPE consists of a 
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division multiple access (DMA) unit, a local store memory (256 KB), execution units, 
and memory and bus interface controllers. The PPE is accompanied by first- and second-
level caches. The nine cores are interconnected by a coherent on-chip bus. The SPEs 
and PPEs are SIMD processors where the element width of the SPE can range from 
2 × 64 bits to 128 × 1 bits.

15.2.3.3  Polaris

Intel has recently released information on an 80-tile, 1.28 TFLOPS processor in 65 nm 
CMOS. The tiles are arranged as a 10-by-8 mesh network. Each tile consist of a pro-
cessing engine connected to a five-port router that forwards packets between tiles. The 
PE contains two independent fully pipelined single-precision floating-point multiply-
accumulate units, 3 KB single-cycle instruction memory, and 2 KB data memory. The 
NoC connects the PEs using packet-based communication, and the router in each PE 
can send and receive packets from any of the other tiles on the network.

15.2.3.4  Tile64

Tile64 is a processor based on the mesh architecture, originally developed for the RAW 
machine. The chip consists of a grid of processor tiles arranged in a network, where each 
tile consists of a GPP, cache, and a nonblocking router that the tile uses to communicate 
with the other tiles on the chip. Each processor has a register file and three functional 
units: two integer ALUs and a load-store unit. A processor also has a split L1 cache and 
an L2 cache. When there is a miss in the L2 cache of a specific processor, the L2 caches of 
the other processors are searched for the data before external memory is consulted. This 
way, a large L3 cache is emulated. The delay that is caused by the on-chip mesh network 
is exposed to the programmer, and during compilation, the compiler takes the delays 
into account when scheduling different tasks on different tiles.

15.2.3.5  The Chameleon Tiled Architecture Template

Trends in wireless communications show that many standards with the same purpose 
coexist. On one hand, new standards are being developed, but on the other hand, revi-
sions of standards evolve quickly. Different contradicting requirements are identified for 
the platform that implements wireless communications systems:

High performance: Due to the increasing complexity of signal processing in • 
digital receivers, high-performance signal processors are needed.
Flexibility: Radio receivers need to switch quickly between different standards, • 
as they have to support a wide variety of standards. Within standards, fast 
switching between different configurations is required.
Low power: Portable receivers need to be very energy efficient because they are • 
battery powered.

To meet contradicting requirements for high performance, flexibility, and energy 
efficiency, a heterogeneous SoC template is designed. A heterogeneous SoC contains 
different types of processing parts, like general-purpose, fine-grained reconfigurable, 
coarse-grained reconfigurable, and dedicated hardware parts. Multiple processing parts 
are interconnected by means of the NoC. The idea behind a heterogeneous SoC is that 
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all parts of an algorithm can run on a processing part on which it can be implemented 
most efficiently. The ideas above translated into the definition of the Chameleon SoC 
template. This template is illustrated in Figure 15.3.

A Chameleon SoC that contains sixteen processing tiles is depicted. The black grid 
in the figure represents the NoC. The Chameleon SoC attempts to combine the best 
of all worlds: the performance and energy efficiency of ASICs, the bit-level flexibility 
of FPGAs, the domain-specific flexibility of the Montium and DSPs, and the general-
 purpose applicability of GPPs. Information exchange between the different tiles is real-
ized by means of the NoC.

15.2.4  Network-on-Chip

A key element within the Chameleon SoC template is the NoC. In a NoC, a processing 
tile is connected to a router. Routers of different processing tiles are interconnected. 
Communication between two processing tiles involves at least the two routers of the 
corresponding processing tiles, but other routers might be involved as well. A NoC that 
routes data items in a SoC has a higher bandwidth than an on-chip bus, as it supports 
multiple concurrent communications. The well-controlled electrical parameters of an 
on-chip interconnection network enable the use of high-performance circuits that result 
in significantly lower power dissipation, shorter propagation time, and higher band-
width than is possible with a bus (see also [52]). To describe the network traffic in a 
system, multiple types are identified [22]. According to the type of service required, the 
following types of traffic can be distinguished in the network:

Guaranteed throughput (GT) is the part of the traffic for which the network has • 
to give real-time guarantees (i.e., guaranteed bandwidth, bounded latency).
Best effort (BE) is the part of the traffic for which the network guarantees only • 
fairness but does not give any bandwidth and timing guarantees.
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FIgure 15.3 The Chameleon SoC template.
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Within wireless communications, most traffic is in the GT category. Besides the 
mainstream of GT communication, a minor part (assumed to be less than 5%) of BE 
communication is foreseen, e.g., control, interrupts, and configuration data.

Several NoC solutions have been proposed that use different techniques to provide 
guarantees. The Æthereal NoC [23] combines a global time division multiplexing (TDM) 
schedule to provide contention free (i.e., guaranteed throughput) routes to network 
streams. The best-effort streams are handled in the slack time of the schedule via worm-
hole routing. The Nostrum NoC [38] uses a TDM-related technique called temporally 
disjoint networks. Containers are used to route the GT traffic. A third packet-switched 
solution uses virtual channels and wormhole routing to provide guarantees [33]. Using 
deterministic local arbitration mechanisms (e.g., round-robin) results in a guaranteed 
throughput per virtual channel. Assigning a single stream of traffic per virtual channel 
will give network-wide guarantees.

The performance of this virtual channel network is illustrated by a HiperLAN/2 case 
study. For a 6 × 6 network running at 333 MHz, the processes of multiple HiperLAN/2 
receivers are placed on the processor tiles of the platform. Each process in the Hiper-
LAN/2 process graph sends GT traffic at a rate of 256 bytes (i.e., one OFDM symbol) 
per 4 µs. Extra BE messages are offered to the network to control the receivers and emu-
late other applications running on the system concurrently. Figure 15.4 shows how the 
latency of the GT and BE messages depends on the offered BE load.

For the GT traffic, the mean and maximal latency of packets are given. When the 
offered BE load is low, the latency of the GT packets is lower than the guaranteed (or 
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allowed) latency. The reason is that the GT traffic utilizes the bandwidth unused by the 
BE traffic. The latency of the GT packets is higher than the latency of the BE traffic 
because the GT packets are larger (256 bytes compared with 10 bytes for BE packets). 
With the increase of the BE load, the latency of the GT traffic increases too until the 
maximum delay reaches the limit. Further increase of the BE load increases the GT 
mean latency, but the GT maximum latency never exceeds the guaranteed latency.

Combining guaranteed traffic with best-effort traffic is hard [42]. When using dedi-
cated techniques for both types of traffic, it is possible to reduce the total area and 
power consumption. The reasons for reconsidering circuit switching are that the flex-
ibility of packet switching is not needed because a connection between two tiles will 
remain open for a long period (e.g., seconds or longer). Furthermore, large amounts of 
the traffic between tiles will need guaranteed throughput, which is easier to satisfy in a 
circuit-switched connection. Circuit switching also eases the implementation of asyn-
chronous communication techniques, because data and control can be separated and 
circuit switching has a minimal amount of control in the data path (e.g., no arbitration). 
This increases the energy efficiency per transported bit and the maximum throughput.

Further, scheduling communication streams over non-time-multiplexed channels is 
easier because, by definition, a stream will not have collisions with other communica-
tion streams. In contrast with this, the Æthereal [23] routers are using time- multiplexed 
channels, and therefore have large interaction between data streams and have to guar-
antee contention free paths. Determining the static time slots table for these systems 
requires considerable effort. Because data streams are physically separated in a cir-
cuit-switched NoC, collisions do not occur. Therefore, no buffering and arbitration is 
required in the individual router. An example of a circuit-switched NoC is described in 
[51]. The number of parallel physical channels between routers is increased to increase 
the amount of simultaneously active circuitries. This solution utilizes the huge amount 
of wire resources provided by current and future silicon technologies.

15.3  Applications

In this section, we will discuss the mapping onto a heterogeneous SoC of different 
licensed communication standards and the mapping of the emerging cognitive radio 
application. Concerning licensed communication standards, first the realization of a 
UMTS receiver is given. Next, realizations of an OFDM receiver are presented. Finally, 
several digital broadcasting systems are discussed.

15.3.1  Licensed Communications

15.3.1.1  UMTS Receiver on Reconfigurable Hardware

The Universal Mobile Telecommunications System (UMTS) standard, defined by 
European Telecommunication Standards Institute (ETSI) [2], is an example of a third-
generation (3G) mobile communication system. The communication system has an air 
interface that is based on direct-sequence code division multiple access (DS-CDMA) 
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[30]. The bit rate of UMTS at the physical level depends on the modulation type and the 
spreading factor (SF). Table 15.3 depicts the general characteristics of the UMTS com-
munication system. Figure 15.5 depicts the basic operation principle of CDMA.
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FIgure 15.5 The CDMA operation principle.

Table 15.3 Downlink UMTS Properties 
in the FDD Mode

Chip rate 3.84 Mcps
Chips per frame 38,400
Chips per slot 2,560
Slots per frame 15
Frame period 10 ms
Slot period 666.67 μs
Scrambling code length 38,400 chips
Scrambling code period 10 ms
SF 4–512
Symbol rate 7.5–960 ksps
Modulation QPSK, QAM-16
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We investigate the possibilities for implementing the digital signal processing func-
tionality of a UMTS receiver on the Chameleon SoC template (see Figure 15.3). We only 
focus on the downlink of the UMTS receiver at the mobile terminal in the FDD mode.

15.3.1.2  Rake Receiver Implementation

Figure 15.6 shows the baseband processing, performed in the WCDMA receiver using a 
Rake receiver with four so-called Rake fingers. This WCDMA receiver has been imple-
mented on an implemented platform, based on the Chameleon SoC template. This 
platform consists of four Montiums, two GPPs, and an FPGA part. Most of the com-
putationally intensive baseband functionality has been implemented in coarse-grained 
reconfigurable hardware (Montiums), whereas fine-grained reconfigurable hardware 
(FPGA part) and GPPs are supposed to be used for additional control functionality.

Figure 15.7 shows the functional blocks of the WCDMA receiver that are intended to 
be implemented in the tiles of the heterogeneous reconfigurable SoC.

The first receive filter is commonly implemented as a pulse-shape filter. This pulse-shape 
filter is implemented on Montium tile 1. The output streams of the pulse-shape filter are 

FIgure 15.6 Baseband processing in the Rake-based WCDMA receiver.
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the input for the Rake receiver, which has been implemented on Montium tile 2. Gener-
ated scrambling codes can be mapped efficiently on an FPGA. The three blocks, Montium 
tile 1, Montium tile 2, and FPGA, are controlled by a general-purpose processor.

15.3.1.2.1  Block versus Streaming Communication

Two different mechanisms to exchange data with a Montium can be distinguished: 
block mode and streaming mode. Some applications require all the input data to be 
stored in local memories before execution can be started. This operation mode is called 
block mode. The most important feature of this communication mode is that, during 
the data transfers, the Montium is halted to make sure the execution is not started until 
it is sure that the data are valid. In streaming mode, the Montium processes data while 
simultaneously performing data transfers.

The timing properties of the UMTS communication system concern both the data 
processing and the control part of the receiver. It seems natural that data processing is 
performed according to the streaming communication principle, while control-oriented 
functions are partly done according to the block communication. The implemented 
WCDMA receiver has been realized according to the streaming communication prin-
ciple because for block communication too many resources (memory for storing the 
scrambling code) are required during the baseband processing. According to Table 15.3 
the scrambling code sequence consists of 38,400 samples. Hence, if the WCDMA 
receiver operates in block mode, 38,400 samples have to be stored in the local memory 
of the Montium. Even when data would be processed on a slot basis instead of a frame 
basis, still 2,560 data samples would have to be stored in local memory. Therefore, we 
may conclude that the block communication principle in the WCDMA receiver is not 
efficient, since blocks are too large.

15.3.1.2.2  Communication Requirements

The implemented WCDMA receiver thus operates according to the streaming commu-
nication principle. The implemented receiver can process four individual paths of the 
received signal (see also Figure 15.6). Consequently, the receiver requires four complex-
number data streams for the four implemented fingers. All implemented fingers require 
the same scrambling code. The scrambling code can be generated using, e.g., an FPGA 
tile. The implemented receiver takes the complex-number scrambling code stream as 
an input. Before de-spreading starts, the appropriate spreading code is stored in the 
local memory of the Montium. The spreading code is stored in local memory because 
the code has a maximum length of 512 samples. Thus, a relatively small amount of data 
has to be stored in contrast to the scrambling code. Furthermore, the spreading code is 
assigned to a particular user in the UMTS communication system, and therefore, the 
spreading code will not change frequently. After de-spreading and before de-mapping, 
the received symbols of the individual signal paths are combined. During this combin-
ing phase, each symbol is scaled according to a complex-number coefficient before sum-
mation. These complex-number coefficients are provided by the channel estimator. The 
receiver outputs a bit stream with the received data. The characteristics of all the input 
and output streams are given in Table 15.4.
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15.3.1.2.3  Dynamic Reconfiguration

The complete Rake receiver is implemented in the Montium. This receiver includes 
the de-scrambling and de-spreading of four individual fingers, combining the results 
of the four fingers, and de-mapping (according to Figure 15.6). The configuration size of 
the complete Rake receiver in the Montium is only 858 bytes. Since two bytes per clock 
cycle can be loaded in the configuration memory, one Montium can be configured for 
Rake receiving in 429 clock cycles. With a configuration clock frequency of 100 MHz, 
a Rake receiver with four fingers can be configured in 4.29 µs.

In case the spreading code changes, and so the SF, only the new spreading code has 
to be loaded in the local memory of the Montium. Loading a particular spreading code 
into the local memory costs SF clock cycles; furthermore, one constant in the sequencer 
program (i.e., the loop counter) has to be changed.

The signal streams for the different fingers are buffered in local memories inside the 
Montium. When the delay of one of the paths changes, the buffering strategy of the local 
memories has to be changed (i.e., the AGU instructions are reconfigured). The buffering 
strategy of the memories is configured with 24 bytes. These 24 bytes can be reconfigured 
in twelve clock cycles. Consequently, the Rake receiver can update its complete path 
delay profile in 120 ns.

In total, for reconfiguring the number of fingers from, e.g., four to two, only 24 bytes 
have to be reconfigured in the configuration memory of the Montium. So, the Rake 
receiver can be reconfigured in 120 ns, which corresponds to twelve clock cycles. During 
this reconfiguration process from four to two fingers, the Montium sequencer program 
is changed as well as the ALU instructions.

15.3.1.2.4  Dynamic Power Consumption

Voltage and frequency scaling are important measures to control the dynamic power 
consumption of embedded systems. Because of the modular, regular structure of the 
Rake receiver, frequency scaling can easily be applied. The clock frequency of the Mon-
tium during Rake processing of four fingers is 20 MHz. Moreover, when the Rake 

Table 15.4 Signal Stream Characteristics of the Implemented 
WCDMA Receiver

Signal Stream Direction Data Rate (Msps)

Data finger 1 Complex input 3.84
Data finger 2 Complex input 3.84
Data finger 3 Complex input 3.84
Data finger 4 Complex input 3.84
Scrambling code Complex input 3.84
MRC coefficient finger 1 Complex input 3.84/SF
MRC coefficient finger 2 Complex input 3.84/SF
MRC coefficient finger 3 Complex input 3.84/SF
MRC coefficient finger 4 Complex input 3.84/SF
De-mapped bits Real output 3.84/SF
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receiver is reconfigured to process two fingers, the clock frequency of the Montium can 
be reduced to 10 MHz.

Table 15.5 summarizes the average power consumption figures for the implemented 
Rake receiver.

15.3.1.2.5  UMTS Performance Verification

The functional behavior of the implemented Rake receiver in the Montium has been 
verified by means of hardware/software co-simulations. Using a co-simulation environ-
ment, we can simulate the baseband functionality of the UMTS communication system 
in software (i.e., using Matlab and SaSUMTSSim [41]) and partly in hardware (i.e., using 
a VHDL simulator). SaSUMTSSim has been developed to evaluate the performance of 
the de-spreading and demodulation functions of the UMTS downlink [41].

The performance and functional behavior of the Montium-based Rake receiver have 
been evaluated under different propagation conditions. The propagation conditions for 
performance measurements in a multipath fading environment are defined in [1] for the 
UMTS communication system and are called cases. One of these cases, case 4, has been 
used to evaluate the Montium-based Rake receiver with four fingers.

Figure 15.8 shows the BER versus SNR performance for the Rake receiver with four 
fingers under case 4 conditions. The reception of one UMTS frame is simulated. The 
individual results of five simulation runs are given in Figure 15.8 for a reference Rake 
receiver (the SaSUMTSSim receiver) and for the Montium-based Rake receiver, which 
are labeled “Reference” and “textscMontium,” respectively. For both receivers, the aver-
age of the five simulation runs is presented as well. The simulation results show that the 
performance of the Montium-based Rake receiver and the SaSUMTSSim Rake receiver 
are almost equal. Only for bad channel conditions (i.e., low Ec/N0) does a small perfor-
mance gap arise. This gap is caused by saturation in the ALUs. Scaling the input data 
of the Montium reduces the effect of saturation. The effect of proper input scaling is 
depicted in Figure 15.9 by the additional simulation results (labeled “Additional input 
scaling, Montium”). In Figure 15.9, only the averaged simulation results are shown, not 
the five individual results as in Figure 15.8. The additional simulation results are obtained 
by more rigorously scaling the input data of the Montium in bad channel conditions.

15.3.1.3  OFDM Receiver on Reconfigurable Hardware

The concept of orthogonal frequency division multiplexing (OFDM) has been known 
since 1966 [9]; however, due to implementational complexity, it has only been adopted 
since the 1990s. Currently OFDM is widely used as a modulation technique in wire-
less communication systems. OFDM is a special multicarrier modulation technique that 

Table 15.5 Average Dynamic Power Consumption  
of the Montium Rake Receiver

Clock Frequency
Montium (MHz)

Dynamic Power Consumption
Montium (mW)

2 fingers 10  5
4 fingers 20 10
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utilizes multiple subcarriers within a single channel. The modulation technique divides 
the high-data-rate information into several parallel bit streams, and each of these bit 
streams modulates a separate subcarrier.

OFDM-based communication systems are all designed according to a generic frame-
work. Figure 15.10 shows the generic OFDM framework of an OFDM receiver. In this 
framework the characteristic properties are based on specific OFDM standards. This 
means that, for example, the number of subcarriers and the length of the guard interval 
may differ for different OFDM standards. The characteristics of an OFDM receiver for 
a single standard can even differ in the case where it has different modes defined. Char-
acteristics of some OFDM-based standards, HiperLAN/2, DAB, and DRM are summa-
rized in Table 15.6 [13–15].

15.3.1.4  OFDM Case Study: HiperLAN/2 Receiver Implementation

Parts of the baseband processing of a HiperLAN/2 receiver are implemented in the het-
erogeneous reconfigurable SoC of Figure 15.3. The coarse-grained Montium architecture 
[26, 28] is used as the target architecture for mapping the baseband DSP algorithms. The 
physical layer of the HiperLAN/2 receiver [13] is implemented on Montiums in combi-
nation with a GPP. Figure 15.11 shows the baseband processing blocks of the receiver 
that are implemented in the SoC. The solid arrows in Figure 15.11 indicate the data, 
which is processed in consecutive processing tiles. The input consists of data samples, 
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FIgure 15.8 The BER before error correction of the Rake-4 receiver under case 4 propagation 
conditions with ideal channel estimation (+ and × indicate individual simulation points).
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which form OFDM symbols. The output of the baseband processing part consists of 
encoded channel bits. The baseband processing functions are supported by a GPP, which 
is used for control purposes. The control streams between the processing tiles are shown 
as dashed arrows in Figure 15.11. The data streams between the processing tiles are 
mapped on channels of the NoC. The NoC provides the on-chip communication net-
work in the SoC.
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FIgure 15.9 The influence of additional input scaling on the average BER before error correc-
tion under case 4 propagation conditions (additional results to Figure 15.8).
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FIgure 15.10 Generic OFDM receiver framework.
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Irregular tasks, which are outside the algorithm domain of the Montium, are per-
formed in software on the GPP. The irregular processes in the HiperLAN/2 receiver are 
the channel estimation functions like frequency offset estimation and computation of 
equalization coefficients. Because of its relatively large coherence time, the channel esti-
mates have to be updated only once per MAC frame, i.e., once per 2 ms. Table 15.7 shows 
the results of partioning the receiver’s functionality over the Montium and the GPP.

The characteristics of the DSP kernels in the HiperLAN/2 receiver that are mapped on 
the tiled reconfigurable SoC (according to Figure 15.11) are summarized in Table 15.8. 

Control 

General purpose
processor

Freq. offset
correction

Montium Tile 3 

De-mapping Phase offset
correctionEqualization 

Inverse 
OFDM 

Montium Tile 1 

Prefix
removal

Montium Tile 2 

Montium Tile 4 

FIgure 15.11 HiperLAN/2 receiver mapped on a tiled reconfigurable SoC.

Table 15.6 Characteristics of Different OFDM Standards from [13–15]

Hiper 
LAN/2

DAB DRM

I II III IV A B C D

Bandwidth (MHz) 16.25 1.536 1.536 1.536 1.536 0.01 0.01 0.01 0.01
No. of carriers 

(FFT size), N
64 2,048 512 256 1 024 288 256 176 112

No. of 
modulated 
carriers, K

52 1,536 384 192 768 225 205 137 87

Symbol time, 
TOFDM

[μs] 4 1,246 312 156 623 26,667 26.667 20,000 16,667

Guard time, Tg [μs] 0.8 246 62 31 123 2,667 5,333 5.333 7.333
Useful time, T [μs] 3.2 1,000 250 125 500 24,000 21,333 14 667 9,333
Subcarrier 

spacing, Δ f
(kHz) 312.5 1.0 4.0 8.0 2.0 0.0417 0.0469 0.0682 0.1071
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The table shows the impact of the communication overhead in the NoC, which can be 
performed by streaming or block mode communication. Furthermore, the configura-
tion overhead of the DSP kernels implemented in the coarse-grained Montium is given.

15.3.1.4.1  Configuration

The configuration sizes of the Montium are small for the different functions (Table 15.8). 
Montium tile 3 (see Figure 15.11), on which the inverse OFDM is performed, requires the 
largest configuration. The configuration of tile 3 contains less than 1 kB of configuration 
data. The configuration data are written into the configuration memory of the Montium 
in 473 clock cycles, as every clock cycle 16 bits are written. So, tile 3 can be configured in 
4.73 µs, which is dominating the time to switch from receive to transmit mode. Notice 
that the maximum radio turnaround time* of the HiperLAN/2 communication system 

* The radio turnaround time indicates the time to switch from transmit to receive mode in a com-
munication transceiver, and vice versa.

Table 15.7 Reconfigurable Hardware/Software Partitioning  
of the HiperLAN/2 Functionality

Implemented 
in

Multiplies per 
MAC Frame

Additions per 
MAC Frame

Determine frequency offset Software 64 64
Determine equalizer coefficients Software 0 0
Frequency offset correction Montium 127,744 95,309
Inverse OFDM Montium 383,232 574,848
Equalizer, phase offset, de-mapper Montium 203,184 104,082

Table 15.8 Properties of the HiperLAN/2 Receiver Implementation

Frequency 
Offset 

Correction
Inverse 
OFDM

Equalizer, 
Phase Offset,  
De-Mapper

Execution time [Cycles]  67 204  110
Block mode
Communication time
(input + output) [Cycles] 128 116 <100
Minimum Montium + NoC clock 

streaming communication
[MHz]  17  51   28

Minimum Montium + NoC clock 
block communication

[MHz]  49  80   53

Minimum Montium clock with block 
communication (NoC @ 100 MHz)

[MHz]  25  72   37

Configuration size [Bytes] 274 946 576
Configuration time [Cycles] 137 473 288
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is 6 µs [12], so the Montium HiperLAN/2 implementation can be considered a real-time 
dynamically reconfigurable HiperLAN/2 system.

15.3.1.4.2  Frequency Scaling

Since the DSP kernels in the HiperLAN/2 receiver are mapped on different Montiums in 
the SoC architecture, frequency scaling can easily be applied. Frequency scaling in com-
bination with voltage scaling is an important means to control the power consumption 
of embedded systems. The idea of dynamic voltage scaling is to keep the supply voltage as 
low as possible. The maximum operating frequency is tightly coupled to the supply voltage 
level. This means that by downscaling the clock frequency of hardware, the supply voltage 
can be lowered as well, resulting in a quadratic decrease of the power consumption.

All DSP operations in the physical layer of the HiperLAN/2 communication system 
are performed on OFDM symbols. Every OFDM symbol has a time period of 4 µs. So, it 
should be ensured that every 4 µs a new OFDM symbol can be processed by the receiver.

Typically, the clock frequency of the NoC is fixed and the clock frequency of the tiles 
can be varied. In case of block mode communication and under the assumption that the 
clock frequency of the NoC is fixed at 100 MHz, the clock frequency of the Montium tile 
for frequency offset correction has to be at least 25 MHz.

In case of block mode communication, the clock frequency of the NoC is equal to 
the clock frequency of the reconfigurable processor tile and the clock frequency can be 
adapted, and the clock frequency of the entire SoC (i.e., processor tiles and NoC) can 
be scaled to its minimum value. The minimum clock frequency of the system would in 
this case be reduced to 49 MHz for frequency offset correction. However, this situation 
is fairly unlikely to happen because managing the adaptable clock frequency of the com-
mon NoC is rather complex.

Introducing the streaming communication mode variant of the DSP kernels in the 
HiperLAN/2 receiver provides a situation where the data processing and input and out-
put communication are performed in parallel. In this case the data words are processed 
immediately as they become available from the on-chip network, while previously pro-
cessed data are sent to the next stage of processing. Consequently, the communication 
time is not a bottleneck. For example, the data processing for frequency offset correction 
is performed during sixty-seven clock cycles, and because input and output are done 
simultaneously, communication is reduced to sixty-four clock cycles. Processing needs 
to complete in 4 µs. Hence, the minimum clock frequency of the Montium tile is 17 MHz 
for frequency correction. In case of streaming communication, the clock frequency of 
the NoC should be at least 17 MHz. Typically, the clock speed of the NoC is fixed to the 
maximum operating frequency of the processing tiles.

15.3.1.5  Digital Broadcasting Systems

Many digital replacements of current analog broadcasting systems are available now-
adays. It is expected that within a few years all analog broadcasting services will be 
switched off and replaced by digital standards like Digital Audio Broadcasting, Digital 
Video Broadcasting, and Digital Radio Mondiale [14–16]. For example, in the United 
States, television broadcasters have to switch from analog to digital before 2009. In the 
Netherlands, almost 98% coverage of DVB-T has been achieved and analog television 
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broadcast has been completely turned off. Additionally, 88% of the United Kingdom is 
already covered with DAB.

One common characteristic of the digital radio systems is that they all employ orthog-
onal frequency division multiplexing (OFDM). Although digital radio standards are all 
OFDM based, many differences exist. Characteristic OFDM properties vary between 
the different standards, but the characteristics of the OFDM receiver can even change 
within one standard, because different modes are defined (see Table 15.6). Moreover, for 
all digital radio standards different source coding techniques are applied, i.e., MPEG-1 
Layer 2 Audio Coding (MP2) or Advanced Audio Coding (AAC).

The identified DSP kernels in digital broadcasting receivers are based on the generic 
OFDM receiver framework (Figure 15.10). Mapping digital broadcasting receivers on 
the heterogeneous reconfigurable SoC can be done in a manner similar to the Hiper-
LAN/2 implementation approach. The DSP kernels in, e.g., the DAB, DRM, and DVB 
receiver are similar to those in the HiperLAN/2 receiver and can be mapped to the SoC 
in the same manner as in Figure 15.11.

15.3.1.5.1  Digital Audio Broadcasting

The Digital Audio Broadcasting standard has been in existence since the early 1980s. 
The standard was initiated to replace the analog FM radio services and has already been 
adapted by many countries all over the world. DAB is capable of delivering data and 
audio services to end users. Data services are performed via packet transfers.

Figure 15.12 depicts the basic DAB receiver structure. After frequency and gain cor-
rection (AFC/AGC) of the DAB signal, the received signal is OFDM demodulated by 
means of a fast Fourier transform (FFT) (referred to as inverse OFDM) and differential 
quadrature phase shift keying (QPSK) demodulation. Then, the FEC decoding is applied 
by means of deinterleaving and Viterbi decoding. In the last stage of the receiver, the 
user data are demultiplexed and source decoded using the MP2 codec to audio.

15.3.1.5.2  Digital Radio Mondiale

Digital Radio Mondiale (DRM), approved as an ETSI standard in 2001, is proposed to 
replace the analog AM radio service for frequencies below 30 MHz. The DRM system deliv-
ers near-FM quality sound over short-wave, medium-wave, and long-wave radio channels.

Figure 15.13 shows the basic structure of the DRM receiver. In the first stage of the 
receiver, the FFT is applied to the received OFDM signal. All separate OFDM carri-
ers are demodulated using the appropriate hierarchical constellation (BPSK, QPSK, 
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FIgure 15.12 DAB receiver structure.
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16-QAM [quadrature amplitude modulation], or 64-QAM). The multilevel coded data 
are decoded using an iterative Viterbi decoder approach. The last stage of the receiver 
comprises demultiplexing of the user data and decoding using the AAC codec to audio.

15.3.1.5.3  Digital Video Broadcasting

Digital Video Broadcasting–Handheld (DVB-H) is a new digital broadcast standard for 
the transmission of audio and video content to handheld terminals. DVB-H has been 
based on the standard for digital terrestrial television, Digital Video Broadcasting– 
Terrestrial (DVB-T). The DVB-H standard is similar to DVB-T, but it considers proper-
ties specific for mobile terminals that are portable, small, and battery powered.

In contrast to the digital audio counterparts, the DVB standard defines more robust 
forward error correction (FEC). DVB has been implemented with cascaded FEC; the 
convolutional inner coder is cascaded with an outer coder. The FEC outer coder is 
implemented using Reed-Solomon coding. Reed-Solomon proved to be a very powerful 
algorithm to solve (burst) errors. The inner decoder step is usually implemented by the 
Viterbi decoder. The outer decoding step, implemented by the Reed-Solomon decoder, 
should result in a quasi-error-free output, containing less than one uncorrected errone-
ous event per hour. The user data have to be decoded by the MPEG-2 codec to video (see 
Figure 15.14).

In future mobile platforms, one or more of these standards have to be supported. 
Therefore, reconfigurable multicore SoC architectures are needed to support all these 
and future OFDM standards.
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15.3.2  Cognitive Radio

In November 2002, the Federal Communications Commission (FCC) in the United 
States released a report [18] aimed at improving the management of spectrum resources 
in the United States. The report concluded that the current spectrum scarcity problem 
is largely due to the strict regulation on spectrum access. Spectrum measurements con-
ducted by the FCC indicated that only small portions of the spectrum are heavily used, 
while other frequency bands are either partially used or unoccupied most of the time. 
So, spectrum utilization can be improved by making it possible for an unlicensed user 
(secondary user) to access the spectrum that is not occupied by the licensed user (pri-
mary user). The unlicensed user has the awareness of the spectrum and adapts its trans-
mission accordingly on a noninterference basis. This spectrum access and awareness 
scheme is referred to as cognitive radio by the FCC.

The idea of cognitive radio was first presented by Joseph Mitola III in his paper [40], 
where he proposed that cognitive radio can enhance the personal wireless service by a 
radio knowledge representation language (RKRL). This language represents knowledge 
of radio at all aspects, from transmission to application scenarios, in such a way that 
automated reasoning about the needs of the user is supported. Cognitive radio thus is 
able to autonomously observe and learn the radio environment, generate plans, and even 
correct mistakes. A comprehensive conceptual architecture of cognitive radio was later 
presented in [31], where cognitive radio was thought to be a final point of the software-
defined radio platform evolution: a fully reconfigurable radio that changes its communi-
cation functions depending on network and user demands. Recently, cognitive radio has 
become a very hot topic due to its impact on future spectrum policy, which could fun-
damentally change the current status of radio communication. At the Berkeley Wireless 
Research Center (BWRC), a dedicated Cognitive Radio Research (CRR) project is in 
progress. Their motivation is to improve the spectrum utilization by opportunistic use 
of the spectrum, which is the same as the FCC’s initiative. Spectrum pooling is investi-
gated in [50]. The basic idea is that a secondary user can dynamically access the licensed 
band by switching on and off OFDM subcarriers to avoid interference to the licensed user 
(primary user). The cognitive radio project at Virginia Tech does not specifically aim to 
improve spectrum utilization. This project is based on the observation that cognitive 
radio distinguishes itself by awareness and learning. In [10], a genetic  algorithm-based 
cognitive engine is proposed to learn its environment and respond with an optimal 
adaptation. The European Union 6th Framework End-to-End Reconfigurability (E2R) 
project studies reconfigurability, software-defined radio, and cognitive radio. The key 
objective of the E2R project is to devise, develop, and test the architectural design of 
reconfigurable devices and supporting system functions for users, application and 
service providers, operators, and regulators in the context of heterogeneous systems. 
Although the project does not specifically address cognitive radio, dynamic spectrum 
allocation and evolution from software-defined radio to cognitive radio have been envi-
sioned. In parallel with the ongoing research projects around the world, international 
standardization organizations also have proposals to improve the spectrum utilization. 
An example is IEEE 802.22, which is a new standard for a cognitive point-to-point (P2P) 
air interface for spectrum sharing with television bands.
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The AAF project [53] focuses on spectrum awareness and access. The objective is to 
demonstrate a cognitive radio system to improve current emergency networks, which 
work in limited frequency bands. Each radio node works in an ad-hoc-based network. 
The node adopts the AAF protocol stack, which is consistent with the five-layer protocol 
reference model (physical layer, data link layer, network layer, transport layer, and appli-
cation layer). In the physical layer, free spectrum is discovered. Whenever free spectrum 
is found, the AAF system will create an infrastructure using this spectrum. In cognitive 
radio, the first step is to focus on identification of free resources in the frequency domain 
by spectrum sensing. An OFDM-based system can approach the Shannon capacity in 
a segmented spectrum; the capacity to nullify individual carriers poses interesting 
opportunities for cognition, as was also observed in [50]. Cognitive radio has to operate 
in multiple bands and under different channel conditions and supports various multi-
media services. A heterogeneous reconfigurable platform supports the reconfigurability 
of the physical layer of cognitive radio.

15.3.2.1  Spectrum Sensing

In order to identify the licensed user and locate unused spectrum, the system has to 
sense the spectrum. Spectrum sensing is not a new topic since a lot of research has been 
done in the area of signal detection and estimation. Three signal processing techniques 
are commonly used for signal detection: matched filtering, energy detection, and cyclo-
stationary feature detection.

Matched filtering is an optimal way for signal detection in communication systems. It 
correlates the received signal with a known signal pattern that maximizes the received 
signal-to-noise ratio. However, cognitive radio may not have prior knowledge of the 
licensed user signal, and strict timing and frequency synchronizations are required for 
coherent detection. Therefore, matched filtering is not an option for spectrum sensing.

In situations where not much knowledge concerning the signal is available, energy 
detection [46] is often used to determine the presence of the signal. It measures the 
signal power within a certain time interval and frequency band. The detection decision 
is based on a noise threshold. However, limitations for the energy detection are: (1) the 
decision threshold is subject to changing signal-to-noise ratios; (2) it cannot distinguish 
interference from signals; and (3) it is not effective for spectrum spreading signals whose 
power has been spread. Therefore, energy detection is not always adequate.

Cyclostationary feature detection [19] is used to extract signal features in the back-
ground of noise. Since the modulated signal can be modeled as a cyclostationary process 
in which a signal varies in time with certain periodicities, it contains spectral redun-
dancy information that can be exploited by analysis of the cyclic spectrum. The advan-
tages of cyclostationary feature detection over energy detection have been recognized 
in [20]. Within the AAF project, the focus is on energy detection and cyclostationary 
feature detection. A system-level architecture for spectrum sensing is presented in 
Figure 15.15. The detailed theory can be found in [46] and [19]. At system level, energy 
detection can be implemented as an FFT algorithm, which has a computational com-
plexity of O NN( log ),2 2 where N is the size of FFT. Cyclostationary feature detection is a 
combination of an FFT and spectral correlation, which has a computational complexity 
of O N NN( log )2

2 2+ . When a large N is used, the processing of cyclostationary feature 
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detection can be prohibitive in terms of performance and computational power. It means 
that building a dedicated cyclostationary feature detector is simply too expensive. There-
fore, cyclostationary feature detection is a complementary option when energy detection 
fails. So, energy detection can be switched to cyclostationary feature detection by turn-
ing on the spectral correlation functional module (see the dashed box in Figure 15.15). 
This option can be supported by a reconfigurable platform where the processing ele-
ments for spectral correlation can be switched on and off.

Based on the spectrum sensing result, an individual node needs to make a local deci-
sion on whether or not the band under consideration is empty. However, this local 
 decision may not be reliable due to fading and shadowing. Therefore, collaborative sens-
ing is proposed [39] to improve the quality of the licensed user detection.

15.3.2.2  OFDM-Based Baseband

The benefit of OFDM is that the high data rate of the whole system is transformed into 
relatively low-data-rate streams on each subcarrier that is more robust to intersymbol 
interference (ISI) caused by multipath delay spread. In the hardware design, an OFDM 
radio is also easy to integrate with spectrum sensing because both use FFT cores. The sys-
tem robustness and hardware resource sharing make OFDM a good choice for cognitive 
radio baseband systems. More importantly, an OFDM system can optimally approach 
the Shannon capacity in the segmented spectrum by adaptive resource allocation on 
each subcarrier, which includes adaptive bit loading and adaptive power loading [53]. In 
an OFDM-based cognitive radio system, information bits are loaded as different modu-
lation types onto each available subcarrier depending on the subcarrier’s signal-to-noise 
ratio, while the subcarriers currently not available to cognitive radio are switched off. 
Two optimization methods for the adaptive resource allocation can be used for cognitive 
radio: using the power constraint or using the data-rate constraint.

We could maximize the data rate of the system under a certain power constraint. It is 
formulated as follows:
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where R is the data rate, K is the number of the subcarriers, N0 is the noise power density, 
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A functional diagram of the system is presented in Figure 15.16. A bit allocation vector 
indicates how many bits are loaded on each subcarrier. The number of bits corresponds 
to the different modulation types used for each subcarrier. The bit allocation vector is 
determined by the spectrum occupancy information from spectrum sensing and the 
SNR of subchannels. The bit allocation vector is disseminated via a signaling channel so 
that both transmitter and receiver have the same information. The bit allocation vector 
does not change frequently, for instance, only after several frames. The basic idea is to 
load more bits on good subcarriers and zeros on carriers that cause interference to the 
licensed user or lead to poor transmissions.

15.3.2.3  Reconfigurable Physical Layer

As already foreseen by Mitola [31], a cognitive radio is the final point of software-defined 
radio platform evolution: a fully reconfigurable radio that changes its communication 
functions depending on network and user demands. His definition on reconfigurability 
is very broad, but we focus on the physical layer reconfigurability. We will discuss some 
possibilities for reconfiguration.

The proposed architecture for spectrum sensing is shown in Figure 15.15, where 
cyclostationary feature detection is used as a complementary option. This option has 
to be supported by a reconfigurable platform that can efficiently perform the spectrum 
correlation. In [35], a two-step methodology to analyze the mapping of cyclostation-
ary feature detection (CFD) onto a Montium-based multicore processing platform is 
proposed. In the first step, the tasks to be executed by each core are determined in a 
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structured way using techniques known from the design of array processors. In the sec-
ond step, the implementation of the tasks onto the Montium is analyzed. It is shown that 
calculating a 127 × 127 discrete spectral correlation function requires approximately 
140 µs on a system-on-chip (SoC) with 4 Montium cores. For energy detection, spec-
trum sensing can be done in different frequency resolutions with which the trade-offs 
between performance and computational power can be made. This can be achieved by a 
size-reconfigurable FFT on the Montium.

OFDM baseband processing for cognitive radio is a parameterizable OFDM process-
ing chain that is configured by a configuration manager (see Figure 15.17). By applying 
different parameter settings in each task, the OFDM system is adaptive to various chan-
nel conditions and provides various data rates.

Relevant parameters are shown in Table 15.9, but are not limited by this table and can 
be extended to add more flexibility to the system. The number of OFDM symbols per 
frame (Nsym) is limited by the channel coherence time, the time during which the chan-
nel characteristics are constant. The number of guard samples (Ng) is chosen to deal with 
different channel delay spreads. Generally not all data are used to carry user informa-
tion. A part of the data (e.g., pilots) is used to guarantee reliable transmissions. Different 
pilots are used for different purposes, such as channel estimation or phase offset estima-
tion. They can be placed in the preamble section prior to each frame or embedded in the 

Mod IFFT CP 
Add 

CP 
Rev FFT De-

Mod

1 0 0 4 0 
Bit allocation vector

RX TX 

Data channel

Signaling channel

FIgure 15.16 OFDM for cognitive radio.

Parameterizable OFDM processing chain

Configuration manager

Control and configuration
information

FIgure 15.17 OFDM for cognitive radio.
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OFDM symbol. Modulation modes (mod) indicate the modulation type for the OFDM 
samples that carry useful information. The modulation mode in one OFDM symbol can 
differ on a subcarrier basis. In the cognitive radio case, the modulation mode can be set 
to zero to nullify carriers.

15.4  Mapping Applications to Multicore Architectures

In the most general terms, spatial mapping is the allocation of spatial resources to 
applications. As such, spatial mapping is to space what scheduling is to time. In the 
context of a multiprocessor system-on-chip (MP-SoC), the spatial resources to allocate 
are tiles and interconnections between tiles. These tiles may be processors or memory 
(controllers). Although the allocation of columns of fabric inside an FPGA could also 
be described as a spatial mapping problem, the system-on-chip context is considerably 
more coarse grained.

Baseband processing applications in wireless communications are streaming applica-
tions. Such streaming applications can be decomposed into multiple communicating 
computational kernels. Most streaming applications have intuitive decompositions into 
chains of such kernels, which is illustrated by the fact that most standards contain block 
diagrams of the components that make up the entire application [e.g., 17]. This decom-
position can be as general as a Kahn process network (KPN) [32], or if more detailed 
information is available, some specialized form of a data flow graph (DFG).

A commonly used specialized DFG is the synchronous data flow graph (SDFG) [36]. 
The nodes of an SDFG are generally referred to as actors. The edges between actors are 
annotated with tokens. Tokens are an abstract notion of data that is communicated 
between two actors.

Actors are annotated for every incoming and outgoing edge. On incoming edges, the 
annotation is the number of tokens required on that specific input to fire the actor once, 
i.e., to execute the corresponding computational kernel. On outgoing edges, the annota-
tion is the number of tokens the actor will produce after firing. Actors in an SDFG are 
self-timed, i.e., there is no global arbitration of what actor fires when, but rather a simple 
local firing rule: an actor may fire when all incoming edges have at least as many tokens 
on them as annotated.

Table 15.9 The Parameter Set for the 
Parameterizable OFDM

B Bandwidth of OFDM system
Nsym Number of OFDM symbols per frame
Npreamble Preamble length per frame
N Number of OFDM samples per symbol
Ng Number of guard samples per symbol
Ndata Number of useful data per symbol
mod Modulation modes
tabpilot Table for pilot information
tabformat Table for format information
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Decomposing an application into actors and their (data) interdependence allows for 
more fine-grained resource management. Now, actors are the atomic units for which tiles 
need to be allocated. Whenever two different tiles are allocated to two inter dependent 
actors, the interactor communication requires services from the interconnect between 
the tiles of the MP-SoC. In other words, communication needs to be routed through the 
network-on-chip (NoC).

If a tile supports multitasking, it can be allocated to multiple actors. In order to 
guarantee nonfunctional properties of the application (e.g., throughput and latency), 
all multi tasking tiles must have deterministic schedulers. More formally, a tile’s sched-
uler must be a latency-rate server [44]. This guarantees an upper bound on the latency 
between the first request for service and the first service response and a lower bound on 
the throughput (rate) from that point onward, provided it is kept busy. This restriction 
on multitasking tiles makes it possible to make allocations to actors independent of each 
other (composability), i.e., when a tile is already allocated to an actor, allocating it to 
another actor does not influence the nonfunctional properties of the first (if the sum of 
the actors’ rate requirements do not exceed the rate of the scheduler).

To be able to perform the mapping of an application to tiles, a spatial mapping algo-
rithm needs:

A model of the application• 
A model of the (MP-SoC) platform• 
The constraints on the nonfunctional properties of the application• 
Data on the resource requirements of process implementations (e.g., time, • 
memory, and energy)

The constraints on the nonfunctional properties of the application can only be 
checked after it has been mapped. Thus, when a spatial mapping has been determined 
and latencies and throughputs of processes running on tiles are known, the constraints 
can be checked. A spatial mapping that lets the application meet its constraints on its 
nonfunctional properties is considered feasible.

15.4.1  Design Time Mapping

The spatial mapping of applications can be performed at design time, if all applications 
are known and the availability of the MP-SoC is guaranteed (what happens when this 
is not the case is described in section 15.4.2). This is a (quite often manual) optimiza-
tion problem, in which the best allocation of tiles to actors should be found. A valid 
solution must work for all possible user scenarios. When one application is already 
running on an MP-SoC and a user starts another, then—assuming the combination of 
applications is allowed—the new application should be runnable with the remaining 
resources.

For sufficiently small applications and MP-SoCs, exhaustive search techniques can 
be used to find optimal allocations for all possible scenarios. The mapping of slightly 
larger applications is generally tackled by heuristic search methods that try to direct the 
search for a solution, possibly missing the optimum, but yielding an acceptable result. 
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Very large applications or failed heuristic searches are often tackled with manual help 
from a designer.

There is no general method for spatial mapping to all kinds of MP-SoC, because what 
constitutes a good mapping depends heavily on the available resources of the MP-SoC 
and the resource demands of the application. For example, when the number of proces-
sors per NoC node (multiple processors can be connected to a single router) is relatively 
high, communication is likely to become a problem in the mapping. In such a case, 
searches generally start off with determining the minimum bandwidth clustering of the 
process graph into clusters that fit on a tile.

When using SDFGs, a great advantage of performing a spatial mapping at design 
time is that a so-called static-order schedule can be calculated for actors mapped onto 
the same tile. This means that the order in which the actors fire is known and the actors 
are ordered such that they fire in sequence. If a static-order schedule is found, the sched-
ule can be implemented by grouping the actors together and compiling them into a 
single piece of binary code for the tile, thereby eliminating the need for scheduling at 
runtime and the overhead it would induce.

It is worth noting that tiles of architectures that do not have support for multitasking 
can still be allocated to multiple actors, if such a static-order schedule can be found. This 
follows directly from the fact that actors in a static-order schedule can be compiled into 
a single binary executable.

15.4.2  Runtime Mapping

Performing the spatial mapping at runtime is necessary, whenever the application set 
is not known completely at design time. This happens for a wide variety of reasons; for 
example, when the platform allows the user to use software from any vendor, developed 
for that platform. When different software vendors produce software for the same plat-
form independently, no one knows the complete application set. Also, when the resource 
availability of the MP-SoC is not known beforehand, the spatial mapping must be found 
at runtime. This can happen when tiles can be broken (by wear or by faults in produc-
tion), or when applications are developed, not for a specific MP-SoC, but for a class of 
MP-SoCs that have the same types of tiles and the same type of interconnect, but in a 
different configuration. Runtime spatial mapping in this sense is inherently ad hoc, i.e., 
only when an application is started will the system know what resources are available.

When mapping to a heterogeneous MP-SoC, having multiple implementations of 
computational kernels for different types of tiles increases the options for the spatial 
map. Performance figures—(expected) worst-case execution time, energy consumption, 
etc.—of these implementations can be determined at design time. However, some fig-
ures of the applications simply cannot be determined at design time. Interprocess com-
munication parameters (e.g., estimated latency), for example, need to be determined at 
runtime, as these are dependent on the specific mapping of the communicating pro-
cesses. Likewise, it is only known at runtime on which tile a process will be executed 
and which processes are already running on this tile, so the actual execution time (often 
referred to as response time in the synchronous data flow world) of a process is only 
known at runtime.
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15.5  Conclusion

Future wireless communication devices will contain integrated circuits where multiple 
processing cores are implemented on one chip. These multiprocessor systems-on-chip 
(MP-SoC) will be heterogeneous; they will consist of multiple types of processing cores. 
Bit-level functions will be executed by FPGA-type processors, word-level functions by 
coarse-grained reconfigurable processors, and control-oriented functions by GPPs. In 
wireless communication systems, processing is dominated by word-level signal process-
ing that is efficiently implemented on coarse-grained reconfigurable processors. The 
Montium coarse-grained reconfigurable processor is an example of such a processor, 
enabling energy-efficient implementation of wireless communication receivers. This 
is illustrated for three classes of receiver baseband processing: UMTS Rake receivers, 
OFDM baseband processing (HiperLAN/2), and digital broadcasting receivers (DAB, 
DRM, and DVB). Furthermore, an MP-SoC, containing multiple Montiums, is a suit-
able platform for the implementation of cognitive radio (CR). The flexibility offered by 
coarse-grained reconfigurable processors supports the efficient implementation of new 
communication paradigms.

Because of the large number of transistors envisaged on future integrated circuits, a 
processing platform will not be fixed during its lifetime due to faults in production or 
wear. Furthermore, the applications are not fixed. Quality-of-service requirements and 
environmental conditions change, and cognitive radio has changing requirements by 
definition. Consequently, applications need to be mapped onto the processing platform 
at runtime.

Realizing that wireless communication applications are streaming applications 
explains the use of data flow graphs to model these applications. Data flow graphs natu-
rally fit platforms with multiple processing cores where nodes of the graph are mapped 
onto the processing cores and edges are mapped onto the interconnecting network-on-
chip. The use of data flow graphs supports the runtime mapping.
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