

Key Dynamics in Computer
Programming

KEY DYNAMICS IN COMPUTER
PROGRAMMING

Edited by:

Adele Kuzmiakova

www.arclerpress.com

ARCLER
P r e s s

Key Dynamics in Computer Programming
Adele Kuzmiakova

Arcler Press
224 Shoreacres Road
Burlington, ON L7L 2H2
Canada
www.arclerpress.com
Email: orders@arclereducation.com

e-book Edition 2023

ISBN: 978-1-77469-638-5 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated and copyright remains with the original owners. Copyright for images and
other graphics remains with the original owners as indicated. A Wide variety of references are
listed. Reasonable efforts have been made to publish reliable data. Authors or Editors or Publish-
ers are not responsible for the accuracy of the information in the published chapters or conse-
quences of their use. The publisher assumes no responsibility for any damage or grievance to the
persons or property arising out of the use of any materials, instructions, methods or thoughts in
the book. The authors or editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

Arcler Press publishes wide variety of books and eBooks. For more information about
Arcler Press and its products, visit our website at www.arclerpress.com

© 2023 Arcler Press

ISBN: 978-1-77469-438-1 (Hardcover)

Adele Kuzmiakova is a machine learning engineer focusing on solving problems
in machine learning, deep learning, and computer vision. Adele currently works
as a senior machine learning engineer at Ifolor focusing on creating engaging
photo stories and products. Adele attended Cornell University in New York,
United States for her undergraduate studies. She studied engineering with a
focus on applied math. Some of the deep learning problems Adele worked on
include predicting air quality from public webcams, developing a real-time
human movement tracking, and using 3D computer vision to create 3D avatars
from selfies in order to bring online clothes shopping closer to reality. She is
also passionate about exchanging ideas and inspiring other people and acted
as a workshop organizer at Women in Data Science conference in Geneva,
Switzerland.

ABOUT THE EDITOR

List of Figures ..xi

List of Tables ..xv

List of Abbreviations ..xvii

Preface..xix

Chapter 1 Fundamentals of Computers and Programming ... 1

1.1. Introduction .. 2

1.2. Hardware ... 3

1.3. Software ... 8

1.4. How Do Computers Store Data? ... 10

1.5. How a Program Works? .. 16

1.6. Using Python .. 24

References ... 29

Chapter 2 Classification of Computer Programs .. 37

2.1. Introduction .. 38

2.2. Software Systems .. 48

2.3. General Behavior of Software Systems .. 51

2.4. Program Types .. 53

2.5. Computer Architecture .. 54

2.6. Examples .. 56

2.7. Discussion .. 57

References ... 58

Chapter 3 Fundamentals of Programming Languages .. 65

3.1. Introduction .. 66

3.2. Purpose of Programming Languages ... 67

3.3. Imperative Languages ... 70

3.4. Data-Oriented Languages ... 77

3.5. Object-Oriented Languages .. 83

TABLE OF CONTENTS

viii

3.6. Non-Imperative Languages ... 84

3.7. Standardization ... 86

3.8. Computability ... 87

References ... 88

Chapter 4 Introduction to Python Programming .. 95

4.1. Introduction .. 96

4.2. Output: Print Statement .. 98

4.3. Arithmetic Expressions: A First Look .. 104

4.4. Variables in Python ... 104

4.5. Arithmetic Expressions in Python .. 109

4.6. Reading User Input In Python ... 115

4.7. Examples of Programs Using The Input() Statement 117

4.8. Math Class .. 119

References ... 124

Chapter 5 Fundamentals of C Programming .. 133

5.1. Introduction .. 134

5.2. A First Program ... 135

5.3. Variants of Hello World ... 136

5.4. A Numerical Example ... 138

5.5. Another Version of the Conversion Table Example 139

5.6. Identifiers .. 140

5.7. Types .. 141

5.8. Constants .. 143

5.9. Symbolic Constants .. 145

5.10. Printf Conversion Specifiers .. 146

References ... 147

Chapter 6 Dynamic Programming ... 153

6.1. Introduction .. 154

6.2. An Elementary Example .. 154

6.3. Formalizing the Dynamic-Programming Approach 163

6.4. Optimal Capacity Expansion ... 167

6.5. Discounting Future Returns ... 172

6.6. Shortest Paths in a Network ... 173

ix

6.7. Continuous State-Space Problems ... 177

6.8. Dynamic Programming Under Uncertainty 179

References ... 187

Chapter 7 Fundamentals of Operating Systems ... 199

7.1. Introduction .. 200

7.2. Computer System Organization .. 201

7.3. Computer System Structure ... 204

7.4. Operating System (OS) History ... 204

7.5. Operating System (OS) Functions .. 205

7.6. Operating System (OS) Categories .. 206

7.7. The Performance Development of OS ... 209

7.8. Operating System (OS) Service ... 212

7.9. Operating System (OS) Operations ... 212

7.10. Operating System (OS) Components ... 214

References ... 217

Chapter 8 Timeline of Computer Windows and Its Features 221

8.1. Introduction .. 222

8.2. Ms-Dos And What Came Before ... 222

8.3. Windows 1.0 .. 223

8.4. Windows 2.0 .. 223

8.5. Windows 3.0 .. 224

8.6. Windows 3.1 .. 225

8.7. Windows 95 ... 226

8.8. Windows 98 ... 227

8.9. Windows 2000 ... 228

8.10. Windows Me .. 229

8.11. Windows Xp ... 230

8.12. Windows Vista .. 231

8.13. Windows 7 ... 231

8.14. Windows 8 ... 232

8.15. Windows 8.1 .. 233

8.16. Windows 10 ... 234

8.17. Windows 11 ... 235

8.18. The Future of Windows ... 244

8.19. Main Features of Microsoft Windows .. 245

References ... 254

 Index ... 261

Figure 1.1. An image editing software and a text processing program
Figure 1.2. Components of a typical computer system
Figure 1.3. The ENIAC computer
Figure 1.4. A lab technician holds a modern microprocessor
Figure 1.5. Memory chips (photo courtesy of IBM corporation)
Figure 1.6. Screens from the Fedora Linux operating systems, Mac OS X, and Windows
Vista
Figure 1.7. Byte as eight switches
Figure 1.8. The number 77 and the letter ‘A’ have different bit patterns
Figure 1.9. Binary digit values are expressed as powers of two
Figure 1.10. Binary digits and their values
Figure 1.11. Determining the value of 10011101
Figure 1.12. The bit pattern for 157
Figure 1.13. A huge number is represented by two bytes
Figure 1.14. The number 65 is associated with the letter A in memory
Figure 1.15. The binary format is used to store digital images
Figure 1.16. After copying a program into the main memory, it is run
Figure 1.17. The cycle of fetch-decode-execute
Figure 1.18. An assembler converts a program written in assembly language into a
machine language program
Figure 1.19. Compiling and running a high-level application
Figure 1.20. Using an interpreter to run a high-level program
Figure 1.21. A typical computer program
Figure 1.22. IDLE programming
Figure 2.1. Analytical engine of Lovelace
Figure 2.2. Universal Turing machine
Figure 2.3. Zuse Z3 replica on display at Deutsches Museum in Munich
Figure 2.4. Glenn A. Beck is changing a tube in ENIAC

LIST OF FIGURES

xii

Figure 2.5. On a data general nova 3 from the mid-1970s, there are switches for manual
input
Figure 2.6. A VLSI integrated-circuit die
Figure 2.7. IBM’s system/360 (1964) CPU was not a microprocessor
Figure 2.8. Sacramento State University’s Intel 8008 microcomputer (1972) is shown
by an artist
Figure 2.9. The original IBM personal computer (1981) utilized an Intel 8088
microprocessor
Figure 2.10. The DEC VT100 (1978) was an extensively utilized computer terminal
Figure 2.11. Domain dependent software systems
Figure 2.12. Structure of centralized computer system
Figure 2.13. Structure of a multiprocessor system
Figure 2.14. A distributed system’s structure
Figure 2.15. A distributed multiprocessor system’s structure
Figure 3.1. Main programming languages
Figure 3.2. Windows Fortran compiler suite
Figure 3.3. Code colorization for PL/I and COBOL
Figure 3.4. Sample syntax of Algol language
Figure 3.5. Salient features of C++
Figure 3.6. The object-oriented paradigm of Ada language
Figure 3.7. Artificial intelligence utilizing Lisp programming
Figure 3.8. Sample syntax of APL language
Figure 3.9. Main concepts in object-oriented programming
Figure 3.10. Programming language paradigms
Figure 4.1. Applications of Python programming
Figure 4.2. Python shell window
Figure 4.3. Python print window
Figure 4.4. Two Python variables referencing the same object
Figure 4.5. Variable naming rules for Python
Figure 5.1. Fundamentals of C data types
Figure 5.2. The first program in C
Figure 5.3. Hello word version 2
Figure 5.4. Hello word version 3
Figure 5.5. Fahrenheit to Celsius conversion table
Figure 5.6. Fahrenheit to Celsius conversion table with symbolic constants

xiii

Figure 5.7. Code for looking at range limits of types
Figure 5.8. Code for printing size of various types
Figure 5.9. Display (printf) code in C
Figure 6.1. Street map with intersection delays
Figure 6.2. Compact representation of the network
Figure 6.3. Decisions and delays with one intersection to go
Figure 6.4. Decisions and delays with two intersections to go
Figure 6.5. Charts of optimal delays and decisions
Figure 6.6. Solution by forward induction
Figure 6.7. Multistage decision process
Figure 6.8. Allowable capacity (states) for each stage
Figure 6.9. Tables to complete power-plant example
Figure 6.10. Shortest-path network for minimum-delay problem
Figure 6.11. Finding the longest path in an acyclic network
Figure 6.12. Shortest paths in a network without negative cycles
Figure 6.13. Decision tree for deterministic dynamic programming
Figure 6.14. Decision tree for dynamic programming under uncertainty
Figure 7.1. Computer system
Figure 7.2. A modern computer system
Figure 7.3. Storage device hierarchy
Figure 7.4. Structure of input/output diagnosis module
Figure 7.5. History of operating systems
Figure 7.6. Operating system functions
Figure 7.7. Kinds of operating systems
Figure 7.8. A batch operating system is depicted in the diagram
Figure 7.9. Time-sharing OS’s process state diagram
Figure 7.10. The schematic diagram for the real-time operating system
Figure 7.11. Off-line UPS topology
Figure 7.12. Online UPS topology
Figure 7.13. Diagram of distributed systems
Figure 7.14. Dual mode operations in operating system
Figure 8.1. Windows 1.0 image
Figure 8.2. Windows 2.0 image
Figure 8.3. Windows 3.0 image

Figure 8.4. Windows 3.1 image
Figure 8.5. Image of Windows 95
Figure 8.6. Screenshot of Windows 98
Figure 8.7. Image of Windows 2000
Figure 8.8. Image of Windows ME
Figure 8.9. Windows XP image
Figure 8.10. Screenshot of Windows Vista
Figure 8.11. Windows 7 image
Figure 8.12. Screenshot of Windows 8
Figure 8.13. Windows 8.1 image
Figure 8.14. Windows 10 image
Figure 8.15. Perfect interface design
Figure 8.16. Multiple window flexibility
Figure 8.17. Windows 11 removes the complexity and replaces it with simplicity
Figure 8.18. A more efficient method of communicating with the individuals you care
about
Figure 8.19. Offering the best possible PC gaming experiences
Figure 8.20. Obtaining knowledge in a more expedient manner
Figure 8.21. A latest Microsoft Store which combines your favorite programs and
entertainment together in one place
Figure 8.22. Android applications on a PC
Figure 8.23. Display of the control panel
Figure 8.24. Cortana interface
Figure 8.25. Device manager interface
Figure 8.26. Disk clean-up display
Figure 8.27. Display of the event viewer
Figure 8.28. File explorer display
Figure 8.29. Display of notification area
Figure 8.30. Registry editor application
Figure 8.31. System information window
Figure 8.32. Task manager window

xv

LIST OF TABLES

Table 1.1. Programming languages (Classen et al., 2011)
Table 1.2. The Python keywords
Table 2.1. Properties of compiler, an editor, a chess program, a fast Fourier transformation,
a physical model, a flight reservation system, and a flight control system
Table 5.1. C Data types and their normal sizes
Table 6.1. Demand and cost per plant ($ × 1000)
Table 6.2. Cost/benefit information by program
Table 6.3. Computation of optimal-value function with one stage to go
Table 6.4. Computation of optimal-value function with two stages to go, I2 = 0 only

xvii

LIST OF ABBREVIATIONS

AI artificial intelligence
ALU arithmetic logic unit
ANSI American National Standards Institute
BAL basic assembly language
CBOL common commercial-oriented language
CPUs computer processing units
DD domain-dependent
DDEX DD-software experimental
DMA direct memory access
EEPROM electronically erasable programmable read-only memory
GUI graphical user interface
ISO International Standards Organization
ISVs independent software vendors
MSB most significant bit
OOP object-oriented programming
OS operating system
PC personal computers
PWA progressive web app
ROM read-only memory
SSEC electronic selective sequence calculator
UWP universal windows app

A program is created by first defining a task and then expressing it in a computer
language that is appropriate for the application. The specification is then converted
into a coded program that can be directly executed by the machine on which the task
is to be performed, usually in numerous steps. Machine language refers to the coded
program, whereas problem-oriented languages refer to languages that are ideal for
original formulation. C, Python, and C++ are only a few of the many problem-solving
languages that have been invented.
Computers come with a variety of programs that are meant to help users do jobs and
improve system performance. The operating system (OS), which is a collection of
programs, is as crucial to the operation of a computer system as its hardware. Current
technology allows some operating features to be built into a computer’s central
processing unit as fixed programs (introduced by client orders) at the time of production.
The operating system may have control over user programs during execution, such as
when a time-sharing monitor suspends one program and activates another, or when
a user program is begun or terminated, such as when a scheduling software chooses
which user program will be executed next. Certain operating-system programs, on the
other hand, run as stand-alone modules to make the programming process easier. While
translators (assemblers or compilers) convert an entire program from one language
to another, interpreters execute a program sequentially. Interpreters translate at each
step and debuggers execute a program piecemeal and monitor various circumstances,
allowing the program to check whether the program’s operation is correct or not.
This book aims to help the student understand computer programming by presenting
the fundamentals of computer hardware and software, computer programs, operating
systems, major programming languages, and an introduction to Windows operating
systems.
Chapter 1 introduces the readers to the fundamentals of computers and computer
programs. Chapter 2 deals with the classification of computer programs. Chapter 3
discusses the fundamentals of programming languages. Chapters 4 and 5 introduce the
readers to two major languages: Python and C language.

PREFACE

Chapter 6 illustrates the idea of dynamic programming and its uses. Chapter 7 focuses
on the fundamentals of different operating systems. Finally, Chapter 8 deals with the
timeline of Windows with a focus on its features.
We have not hesitated to be prescriptive: to claim that accumulated experience shows
that certain constructs are to be preferred, and others to be avoided or at least used
with caution Of course, any book on programming languages should not be taken as a
reference manual for any particular language. The book equips you with insights so that
you can learn to analyze languages and not to study the peculiarities of any language in
depth. Nor is the book a guide to the choice of a language for any particular project. The
goal is to supply the student with the conceptual tools needed to make such a decision.

FUNDAMENTALS OF COMPUTERS
AND PROGRAMMING

1

CONTENTS
1.1. Introduction .. 2

1.2. Hardware ... 3

1.3. Software ... 8

1.4. How Do Computers Store Data? ... 10

1.5. How a Program Works? .. 16

1.6. Using Python .. 24

References ... 29

CHAPTER

Key Dynamics in Computer Programming2

1.1. INTRODUCTION
Take a look at various different approaches people utilize computers.
In school, students employ computers for sending emails, looking for
articles, taking online classes, and writing papers. Computers are used in
the workplace to analyze data, generate presentations, perform business
transactions, interact with clients and coworkers, and drive machinery in
industrial plants, among other things. People use computers at home to pay
bills, shop online, communicate with family and friends, and play video
games. Car navigation systems, iPods®, cell phones, and a variety of
other devices are all computer devices. Computers have nearly unlimited
applications in our daily lives (Liu, 2020).

Because computers can be programmed, they can do a wide range of
tasks. This means that computers are not meant to make a single task but
rather to perform any task that their programs instruct them to perform. A
program is a set of instructions afterward a computer to complete a task.
Figure 1.1, for example, depicts interfaces from two widely used programs:
Adobe Photoshop and Microsoft Word. Microsoft Word is a word processing
tool that lets you use your computer to generate, modify, and print documents.
Adobe Photoshop is a visual image editing tool that lets you work with
photos captured with your digital camera (Feurzeig et al., 1970).

The term “software” refers to computer programs. The software on
a computer is critical since it uses everything the machine does. All the
software we employ to make our computers usable is created by people
who work as software developers or programmers. A programmer, also
known as a software developer, is a person who has completed the necessary
training and acquired the necessary abilities to design, create, and test
computer programs. Computer programming is an interesting and fulfilling
professional path (Knuth and Pardo, 1980). Programmers are employed in
a wide range of fields today, including business, medical, agricultural, law
enforcement, government, academia, entertainment, and many more.

Fundamentals of Computers and Programming 3

Figure 1.1. An image editing software and a text processing program.

Source: https://www.fiverr.com/broewnis/convert-adobe-photoshop-to-micro-
soft-word.

Python is the programming language that is used in this book to expose
you to the basic ideas of computer programming. Before we can begin to
explore those notions, you must first understand some fundamental principles
about computers and how they function. This chapter will provide you with a
firm basis of understanding that you will be able to draw on throughout your
computer science studies. First, we will go through the physical components
that are often used in the construction of computers. Following that, we will
see how computers store data and run programs. Ultimately, we will get a
brief overview of the Python programming language and the software that
you will need to create Python programs (Horn et al., 2009).

The physical devices that make up a computer are referred to as the
computer’s hardware in this context. Software is the term used to describe
the programs that operate on a computer.

1.2. HARDWARE
In computing, the phrase “hardware” indicates all the physical components
or devices that make up a computer’s structure. A computer is not a separate
device but rather a collection of devices that all operate at the same time to
form a system. Each device in a computer is like the different instruments
in a symphony orchestra in that each device has a specific function (Tejada
et al., 2001).

For anyone who has done any computer shopping, you have probably
seen sales narratives listing elements like microprocessors, memory,
graphics cards, video displays, hard disc drives, etc. Microprocessors,

Key Dynamics in Computer Programming4

memory, and hard disc drives are just a few of the components that can be
found in a computer. Without prior computer knowledge or at least a buddy
who is knowledgeable about computers, it may be difficult to comprehend
what each of these separate components performs on its own. As shown
in Figure 1.2, a distinctive computer system is comprised of the following
major components (So and Brodersen, 2008):

• CPU;
• Secondary storage devices;
• Main memory;
• Output devices;
• Input devices.

Figure 1.2. Components of a typical computer system.

Source: https://www.tutorialsmate.com/2020/04/computer-fundamentals-tuto-
rial.html.

Let us take a deeper look at each of these elements individually.

1.2.1. The CPU
When a computer is engaged in the duties that a program has instructed it to
execute, we refer to this as the computer running or executing the program
in question. The central processing unit, sometimes known as the CPU, is
the portion of a computer that is responsible for running programs. The CPU
(central processing unit) is the most significant component in a computer
since it is responsible for running software on the computer (Henning, 2000).

Fundamentals of Computers and Programming 5

Computer processing units (CPUs) were massive devices constructed
of mechanical and electrical components like vacuum tubes and switches in
the early days of computing. Figure 1.3 depicts an example of such a gadget.
In this picture we can see the ENIAC computer, which dates to the 1940s,
being used by the two women seen. When the ENIAC was created in 1945,
it was used to calculate weaponry ballistic tables for the United States Army.
It is widely regarded as the world’s first programmable electronic computer
by many. This machine, which was essentially comprised of a single large
CPU, stood 8 feet tall, measured 100 feet in length, and weighed 30 tons
(Zhu et al., 2021).

CPUs are little chips that are referred to as microprocessors. A
photographic depiction of a lab technician carrying a new microprocessor is
seen in Figure 1.4. Microprocessors, along with being significantly smaller
than the old-fashioned electromechanical CPUs found in initial computers,
are also significantly more effective.

Figure 1.3. The ENIAC computer.

Source: https://www.indiatimes.com/technology/news/eniac-75-years-old-
world-1st-programmable-digital-computer-534387.html.

Key Dynamics in Computer Programming6

Figure 1.4. A lab technician holds a modern microprocessor.

Source: https://www.fool.com/investing/2021/01/15/why-intels-competitive-
edge-is-crumbling/.

1.2.2. Main Memory
Consider main memory to be the computer’s work area. This is where the
computer keeps a program and the data that the program is working with
while it is executing. Let us say you are writing an essay for one of your
classes and you are using a word processing tool. Both the word processing
program and the essay are saved in the main memory while you do this
(Abali et al., 2021).

RAM, or Random-access memory, is the term for main memory. The
CPU can instantly gain access to data stored in any arbitrary position in
RAM, hence the name. RAM is a sort of unstable memory that is only
employed for short-term storage as a program is executing. The contents in
RAM are removed when the computer is shut off. RAM is stored in chips
inside your computer, such as the ones depicted in Figure 1.5.

Fundamentals of Computers and Programming 7

Figure 1.5. Memory chips (photo courtesy of IBM corporation).

Source: https://www.indiamart.com/proddetail/ram-memory-chip-2686040191.
html.

1.2.3. Secondary Storage Devices
Secondary storage is a sort of memory that can keep data for a long time even
if the computer is turned off. Normally, programs are stored in secondary
memory and transferred into main memory only when needed. Vital data is
also stored in secondary storage, like word processing documents, salary
data, and inventory records (Babad et al., 1976).

The disc drive is the most popular form of secondary storage device. A
disc drive saves data by imprinting it magnetically onto a circular disc. A disc
drive is usually installed inside the casing of most computers. External disc
drives are also accessible, which link to one of the computer’s communication
ports. External hard drives can be employed to make backup copies of vital
files or to transfer data from one computer to another (Summer, 1967).

Aside from external disc drives, a variety of devices have been
developed for copying and transporting data between computers. Floppy
disc drives have been popular for a long time. A floppy disc drive saves
information on a tiny floppy disc that may be removed. Floppy discs, on the
other hand, have several drawbacks. They can only store a limited amount of

Key Dynamics in Computer Programming8

data, are sluggish to obtain data, and are potentially untrustworthy. Recently,
the usage of floppy disc drives has decreased considerably in support of
more advanced devices such USB drives. USB drives are small devices that
connect to a computer’s USB interface and be seen as a disc drive to the
operating system (OS). These drives, on the other hand, do not contain a
disc. They keep data in flash memory, which is a unique sort of memory.
USB drives often called flash drives or memory sticks, are affordable,
dependable, and small enough to fit in your pouch (Babad et al., 1976).

For data storage, optical media such as DVD and CD are common.
Data is encrypted as a sequence of pits on the disc surface rather than being
recorded magnetically. A laser is used in DVD and CD drives to identify the
pits and hence read the encoded data. Visual discs can carry a lot of data, and
since recordable DVD and CD players are now popular, they are a handy
way to make backup copies of your data (Chismar and Kriebel, 1982).

1.2.4. Input Devices
Input refers to any information that a computer receives from people or
from additional devices. An input device is an element that takes data and
provides it to a computer and is defined as follows: The keyboard, scanner,
mouse, digital camera, and microphone are all examples of common input
devices. Additionally, optical drives and disc drives can both be thought
input devices since programs and data are regained from and encumbered
into the computer’s memory through them (Radwin et al., 1990).

1.2.5. Output Devices
Any data that a computer generates for people or for other devices is referred
to as output. It might be anything from a sales report to a catalog of names to
a graphic image. The data is transferred to an output device, which prepares
and describes it in a visually appealing manner. Video screens and printers
are two common types of output devices. Since the system transfers data
to disc drives and CD recorders so that it may be saved, they can also be
termed output devices (Burdea et al., 1996).

1.3. SOFTWARE
Software is required for a computer to function properly. Everything that a
computer performs, from the moment the power switch is turned on up to
the moment the system is shut off, is controlled by software. Application

Fundamentals of Computers and Programming 9

software and system software are the two broad categories of software that
may be found in most computer systems. Most computer programs may be
classified into one of these two types (Bazeley, 2006).

1.3.1. System Software
System software is a term that refers to the programs that control and
manage a computer’s fundamental activities. The following categories of
applications are commonly found in system software:

•	 Operating Systems (OSs): On a computer, an OS is a basic set
of applications. The OS maintains all the computer’s connected
components, allows it to be stored to and accessed from storage
devices, and permits other programs to function on the computer.
Figure 1.6 depicts four prominent OSs: Windows Vista, Windows
XP, Linux, and Mac OS X (Yan et al., 2010).

Figure 1.6. Screens from the Fedora Linux operating systems, Mac OS X, and
Windows Vista.

Source: https://www.dmxzone.com/go/16325/os-smackdown-linux-vs-mac-os-
x-vs-win-vista-vs-win-xp/.

Key Dynamics in Computer Programming10

•	 Utility Programs: A utility program accomplishes a specific duty
that improves the computer’s performance or protects data. Virus
scanners, file compression programs, and data backup programs
are examples of utility programs.

•	 Software Development Tools: The applications that programmers
employ to create, edit, and test software are known as software
development tools. Programs that belong under this category
include assemblers, compilers, and interpreters.

1.3.2. Application Software
Application software refers to programs that make a computer helpful for
daily tasks. These are the programs that most people use to consume most of
their time on their computers. Figure 1.1 depicts screens from two regularly
employed applications: Adobe Photoshop, a word processing program, and
Microsoft Word, an image editing program, as shown at the start of this
chapter. Spreadsheet programs, email programs, web browsers, and game
programs are all examples of application software (Aerts et al., 2004).

1.4. HOW DO COMPUTERS STORE DATA?
All data stored in a computer is transformed to 0s and 1s sequences. The
memory of a computer is divided into bytes, which are little storage units.
A single byte of memory is just adequate to store a small integer or a single
letter of the alphabet. A computer needs a lot of bytes to do anything useful.
Most today’s computers have millions, if not billions, of bits of memory.

Individually byte is distributed into eight bits, which are smaller storage
spaces. The word “bit” refers to a binary digit. Bits are typically thought
of by computer scientists as small switches that may be turned on or off.
Bits, on the other hand, are not “switches” in the traditional sense. Bits are
microscopic electrical elements that can store a negative or positive charge
in most computer systems. A positive charge is thought of as a switch that is
turned on, and a negative charge is thought of as a switch that is turned off
by computer scientists. Figure 1.7 depicts how a computer engineer might
conceptualize a bit of memory: as a set of switches, each of which can be
flicked to the off or on state (Lehmann and Deutsch, 1995).

Fundamentals of Computers and Programming 11

Figure 1.7. Byte as eight switches.

Source: https://www.pearsonhighered.com/assets/samplechap-
ter/0/3/2/1/0321537114.pdf.

When a byte of data is gathered, the computer turns the eight bits of the
byte into an off/on display that contains all the data. For instance, in Figure
1.8, the pattern on the left depicts how the numeral 77 would be kept in
a byte, whereas the design on the right depicts how the letter A would be
collected in a byte. We will go through how these shapes are created in more
detail below.

Figure 1.8. The number 77 and the letter ‘A’ have different bit patterns.

Source: https://www.pearsonhighered.com/assets/samplechap-
ter/0/3/2/1/0321537114.pdf.

1.4.1. Storing Numbers
A bit can only be employed to represent numbers in a very reduced number
of situations. Because of the way bits work, they can represent one of two
different values depending on whether they are turned on or off. Bits are
used to represent numbers in computer systems. A bit that is turned off
indicates the number 0, and a bit that is turned on indicates the number 1
in computer systems. This is a wonderful match for the binary numbering

Key Dynamics in Computer Programming12

system, as you can see. In the binary numbering system, all numeric
numbers are represented as a series of 0s and 1s. This is known as the binary
representation of numbers. A number written in binary format is shown
below as an illustration (Amit et al., 1985):
10011101

Every digit in a binary number has a value associated with it based on
its place in the number. As illustrated in Figure 1.9, the position values are
as follows: 20, 21, 22, 23, and so on, starting with the rightmost digit and
working your way left. Figure 1.10 depicts the same diagram as in Figure
1.9, but with the position values determined. The position values are as
follows: 1, 2, 4, 8, and so on, starting with the rightmost digit and working
your way left (Grinko et al., 1995).

Figure 1.9. Binary digit values are expressed as powers of two.

Figure 1.10. Binary digits and their values.

To find the amount of a binary number, just add all the 1s’ position
values. The position values of the 1s in the binary number 10011101, for
example, are 1, 4, 8, 16, and 128. Figure 1.11 depicts this. Each of these
position values adds up to 157. As a result, the binary number 10011101 has
a value of 157.

Fundamentals of Computers and Programming 13

Figure 1.11. Determining the value of 10011101.

Figure 1.12 depicts how the number 157 is stored in a byte of memory. A
bit in the on position represents each 1, and a bit in the off position represents
each 0.

Figure 1.12. The bit pattern for 157.

What happens if you need to save a number that is greater than 255
characters? The solution is straightforward: utilize more than one byte.
Consider the following scenario: we want to combine two bytes. This gives
us a total of 16 bits. The standing values of those 16 bits would be 20, 21,
22, 23, and so on, all the way up to 215, depending on the bit position. As
illustrated in Figure 1.13, the largest value that may be collected in two
bytes is 65,535, which is the maximum possible value. If you need to hold a
number that is larger than this, you will need to allocate more bytes (Okabe
et al., 1984).

Key Dynamics in Computer Programming14

Figure 1.13. A huge number is represented by two bytes.

1.4.2. Storing Characters
A character is transformed to a numeric code before being stored in memory.
The numerical code is then stored as a binary number in memory.

To display characters in computer memory, several coding methods have
been created over time. The ASCII has historically been the most important
of these coding schemes. The ASCII character set is made up of 128 numeric
codes that signify punctuation marks, English letters, and other symbols.
The ASCII code for the capital letter A, for example, is 65. The number 65
is stored in memory when you input a capital A on your computer keyboard.
Figure 1.14 depicts this (Boonkrong and Somboonpattanakit, 2016).

Figure 1.14. The number 65 is associated with the letter A in memory.

If you are curious, uppercase B has the ASCII code 66; uppercase C has
the ASCII value 67, and so on. All the ASCII codes and the characters they
represent are listed in Appendix C.

In the early 1960s, the ASCII character set was created, and it was
subsequently accepted by nearly every computer manufacturer. However,
ASCII is limiting since it only defines codes for 128 characters. In the early
1990s, the Unicode character set was created to address this issue. Unicode
is a large encoding method that is comparable with ASCII but also capable
of representing characters in a wide range of languages. Unicode is rapidly
grown to be the de facto traditional character set in the computer industry
(Melot and Tarascon, 2013).

Fundamentals of Computers and Programming 15

1.4.3. Advanced Number Storage
You learned about numerals and how they were stored in memory previously.
Maybe it appeared to you while reading that the binary numbering system
can only be employed to express integer numbers starting with 0. The simple
binary numbering approach we examined cannot express negative integers
or real values (such as 3.14159) (Wang et al., 2015).

Negative and real numbers can be stored in memory by computers,
but they must use encoding systems in addition to the binary numbering
system to do so. Two’s complement is used to encode negative integers, and
floating-point notation is used to encode real numbers. You do not require
to understand how these encoding methods operate; all you need to know
is that they are employed to convert negative and real integers to binary
(Greenhalgh et al., 1997).

1.4.4. Other Types of Data
The term “digital device” is frequently employed to explain computers.
Whatever works with binary numbers is referred to as digital. A digital device
is any device that operates with binary data, and digital data is anything that
is collected in binary. We have looked at how characters and numbers are
stored in binary in this part; however, computers can also operate with a
variety of additional digital data.

Consider the photos you capture with your digital camera, for example.
Pixels are small colored specks that make up these pictures. An image
element is referred to as a pixel. Every pixel in a picture is transformed to a
numeric code that describes the pixel’s color, as illustrated in Figure 1.15.
The numeric code is stored as a binary number in memory (Logan et al.,
2012).

Figure 1.15. The binary format is used to store digital images.

Key Dynamics in Computer Programming16

The music that you listen to in iTunes, on your CD player, iPod, or MP3
device is also digitally encoded in some way. Samples are little bits of a
digital song that are divided up into smaller portions. It is possible to store
each sample in memory because each sample is transformed into a binary
number. When a song is broken down into samples, the more closely it
resembles the original music when it is played again. Approximately 44,000
samples per second are used to create CD-quality music (Iudici and Faccio,
2014).

1.5. HOW A PROGRAM WORKS?
The central processing unit (CPU) of a computer can just read guidelines
that are expressed in machine language. Since it is extremely challenging
for individuals to design full programs in machine language, additional
programming languages have been developed to alleviate this difficulty.

We previously explained that the central processing unit is a highly
significant part of a computer since it is the element of the computer that
is responsible for running programs. The central processing unit (CPU)
is sometimes referred to as the “computer’s brain,” and it is regarded as
“clever.” Even though these are typical analogies, it is important to recognize
that the CPU is not a mind, and it is not intelligent. The central processing
unit (CPU) is an electrical device that is intended to perform certain tasks.
The CPU is specifically intended to conduct tasks such as the ones listed
below (Faccio et al., 1979):

• Taking a chunk of data from the main memory and reading it;
• Adding two values;
• Taking one number and subtracting it from another;
• Multiplying two numbers;
• Multiplying one integer by another;
• Transferring information from one memory place to another;
• Trying to figure out if one number is the same as another.
The CPU makes simple actions on data. The CPU, on the other hand,

accomplishes nothing on its own. It must be instructed what to do, and that
is what a program is for. A program is nothing more than a set of guidelines
that tell the CPU what to do (Card et al., 2018).

Fundamentals of Computers and Programming 17

Every instruction in a program is an order to the CPU to carry out a
certain task. Here is an example of a command that may be found in a
program:

10110000
This is just a sequence of 1s and 0s to you and me. This, on the other

hand, is a command to conduct an operation on a CPU. Since CPUs just
understand machine language instructions, it is written in 0s and 1s. Machine
language guidelines always have an inherent binary structure.

For any operation that a CPU is capable of, machine language instruction
exists. For instance, there are instructions for adding integers deducting one
number from another. The instruction set of a CPU refers to the whole set of
instructions that it can perform (Slavin, 2008).

The machine language command that was previously displayed is only
one of several. However, for the computer to accomplish anything useful, it
needs a lot more than one instruction. Since these operations that a CPU can
execute are so simple, a meaningful job can only be completed if the CPU
makes many of them. If you need your computer to estimate the extent of
interest you will earn this year from your savings account, for example, the
CPU will have to execute a significant number of guidelines in the correct
order. Thousands, if not millions, of machine language instructions, can be
found in a single program (Olson, 2004).

A secondary storage device, like a disc drive, is usually employed to
store programs. When you install software on your computer, the executable
file is typically downloaded from a website to your computer’s hard drive.

A program can be kept on a secondary storage device like a disc drive,
but it must be transferred into RAM, or main memory, every time the
processor performs it. Let us say you have a word processing application on
your computer’s hard drive. To run the software, double-click the program’s
icon with your mouse. The software is transferred from the disc into the
main memory because of this. The CPU of the machine then runs the main
memory copy of the application. This procedure is depicted in Figure 1.16
(Davenport, 1999).

Key Dynamics in Computer Programming18

Figure 1.16. After copying a program into the main memory, it is run.

The fetch-decode-execute cycle is the process that a CPU goes across
as it executes the instructions of a program. This cycle, which is made up of
three phases, is frequent for each program instruction. The steps are (Eckert,
1987):

•	 Fetch: A program is a set of instructions written in machine
language. The next instruction is read from memory into the CPU
in the first phase of the cycle.

•	 Decode: It is a binary number that signifies the command to the
computer’s central processing unit (CPU) to conduct a certain
task. When the CPU decodes an instruction that has just been
retrieved from memory, it may identify which operation it should
do.

•	 Get Data and Execute: The operation is performed, or executed,
as the final stage in the cycle. These processes are depicted in
Figure 1.17.

Figure 1.17. The cycle of fetch-decode-execute.

Source: https://www.pinterest.com/pin/438115869999300657/.

Fundamentals of Computers and Programming 19

1.5.1. From Machine Language to Assembly Language
Only programs written in machine language can be executed by computers.
A program can include dozens or even millions of binary instructions,
as previously said, and developing such a program would be extremely
laborious and time-consuming. It would also be difficult to program in
machine language since inserting a 0 or 1 in the wrong location will result in
an error (Ahmed et al., 2010).

While a computer’s CPU can just comprehend machine language,
writing programs in that language is impracticable. As a result, assembly
language was created as an alternative to machine language in the early days
of computing. Assembly language employs mnemonics, which are short
phrases that replace binary digits in instructions. In assemblage language,
for example, the mnemonic add usually means to add numbers, Mul usually
means to multiply numbers, and mov usually means to transfer a value
to a memory address. When writing a program in assembly language, a
programmer can utilize short mnemonics instead of binary integers (Graham
and Ingerman, 1965).

The CPU, on the other hand, cannot run assembly language programs.
Because the CPU can only read machine language, an assembly program is
needed to convert an assembly language program to machine code. Figure
1.18 depicts this procedure. The CPU may then run the machine language
program that the assembler has built (Feldman, 1979).

Figure 1.18. An assembler converts a program written in assembly language
into a machine language program.

Source: https://www.educba.com/assembly-language-vs-machine-language/.

Key Dynamics in Computer Programming20

1.5.2. High-Level Languages
Assembly language eliminates the need for binary machine language
guidelines, but it is still not devoid of its drawbacks. Assembly language is
essentially a straight replacement for a machine language and it necessitates a
thorough understanding of the CPU. Even the simplest program in assembly
language necessitates the writing of a huge number of instructions. Assembly
language is referred to as a low-level language (Halang and Stoyenko, 1990).

The 1950s saw the emergence of a new generation of programming
languages known as high-level languages. A high-level language enables you
to write powerful and complicated programs without having to understand
how the CPU works or write a huge number of low-level instructions.
Furthermore, most high-level languages employ simple terms. For instance,
in COBOL, a programmer might write the following command to show the
message. On the computer screen, hello world!

DISPLAY “Hello, world.”
Python is a high-level programming language that will be used

throughout this book. The message Hello world would be shown in Python
with the following instruction: ‘Hello world!’ print (Kennedy et al., 2004).

In assembly language, doing the same thing would take multiple
instructions and a thorough understanding of how the CPU interacts with
the computer’s output device is necessary to have when writing an assembly
language program. As this instance shows, high-level languages permit
programmers to focus on the goals they need their programs to do rather
than the intricacies of how the CPU will execute such programs.

Thousands of high-level languages have been developed since the
1950s. Several of the best languages are included in Table 1.1.

Table 1.1. Programming Languages (Classen et al., 2011)

Language Description

Ada Ada was developed in the 1970s mainly for use by the United States
Department of Defense. Countess Ada Lovelace, a significant and im-
portant person in the world of computers, is honored by the language’s
name.

BASIC All-purpose for beginners Symbolic Instruction Code is a speech known
that was created in the early 1960s with the goal of being easy to learn
for novices. There are many multiple variations of BASIC available
today.

Fundamentals of Computers and Programming 21

FORTRAN The first high-level programming language was TRANslator. It was cre-
ated in the 1950s to handle complicated mathematical operations.

COBOL The common commercial-oriented language (CBOL) was developed in
the 1950s for business applications.

Pascal Pascal was established in 1970 with the intention of being used to teach
programming. Blaise Pascal, a mathematician, physicist, and philoso-
pher, was honored with the language’s name.

C and C++ Bell Laboratories produced the strong general-purpose languages C
and C++ (pronounced “c plus plus”). The C and C++ programming
languages were established in 1972 and 1983, respectively.

C# The letter “c sharp” is pronounced as “c sharp.” This programming lan-
guage was developed by Microsoft in the year 2000 for the purpose of
developing applications that run on the Microsoft.NET framework.

Java Sun Microsystems developed Java in the early 1990s and released it to
the public. It may be employed to create applications that run on a single
computer or that operate across the Internet via a web server, among
other things.

JavaScript JavaScript, which was developed in the 1990s, is a scripting language
that may be employed in online pages. Even though its name, JavaScript
is not linked to the Java programming language.

Python Python, the programming language that we will be using in this book,
is a general-objective programming language that was developed in the
early 1990s. It has gained popularity in both corporate and educational
applications in recent years.

Ruby Ruby is a common-purpose programming language that was developed
in the 1990s. It is based on the C programming language. It is becoming
increasingly popular as a programming language for applications that
operate on web servers.

Visual Basic Visual basic is a software development environment developed and pro-
gramming language by Microsoft that enables programmers to construct
Windows-based programs in a short period of time. The first version of
VB was developed in the early 1990s.

1.5.3. Key Words, Operators, and Syntax: An Overview
Each high-level language has its specific set of specified terms that should
be used by the programmer while writing a program. Keywords or reserved
words are the terms that make up a high-level programming language. Each
keyword has a distinct meaning and cannot be utilized for anything else.
You saw an example of a Python statement that prints a message on the
screen using the keyword print previously. Many of the Python important
words are shown in Table 1.2 (Rutherford, 1999).

Key Dynamics in Computer Programming22

Table 1.2. The Python Keywords

exec class raise in –

elif as or global with

del and not from while

else assert pass if yield
except break print import –
for def try lambda –
finally continue return is –

Programming languages feature operators that perform numerous actions
on data in addition to keywords. All programming languages, for example,
contain math operators that do arithmetic. The + sign is an operator that adds
an additional integer in Python and most other languages. The following
adds 12 and 75 to the total:

75 + 12
There are many more hands in the Python language, most of which

you will understand as you read this book. Aside from important terms and
operators, every language has its particular syntax, which is a collection of
guidelines that should be observed to the letter while constructing a program.
Syntax rules specify how important words, operators, and punctuation
characters should be employed in a program. When studying a programming
language, it is necessary to master the grammar rules for that language.
Statements are the specific instructions used to build a program in a high-
level programming language. A programming statement can be made up of
punctuation, operators, keywords, and other programming components that
are organized in the correct order to complete a task (Ertl and Gregg, 2003).

1.5.4. Compilers and Interpreters
Programs created in a high-level language must be translated language since
the CPU only understands machine language instructions. The programmer
will use either a compiler or an interpreter to translate a program depending
on the language it was written in (Tanenbaum et al., 1983).

A compiler is a program that converts a program written in a high-level
language into a machine language program. After that, the machine language
program may be run whenever it is required (Figure 1.19). Compiling and
executing are two distinct operations, as depicted in the diagram.

Fundamentals of Computers and Programming 23

Figure 1.19. Compiling and running a high-level application.

Source: https://tutorials.one/computer-science-engineering/.

The interpreter in the Python language is a software that both interprets
and implements the guidelines in a high-level language program. Each
individual instruction in the program is read by the interpreter, which
transforms it to machine language guidelines and then performs them
instantly. This procedure is repeated for each of the program’s instructions.
Figure 1.20 illustrates this method. Interpreters seldom generate separate
machine language programs since they mix translation and execution
(Danvy, 2008).

Figure 1.20. Using an interpreter to run a high-level program.

Source: https://slideplayer.com/slide/7417033/.

Source code refers to the statements that a programmer gives in a high-
level language. Typically, a programmer writes the code for a program
into a text editor and then saves it to the computer’s disc. The programmer
then uses an interpreter or a compiler to convert the code into a machine
language program that can be executed. However, if the code has a syntactic

Key Dynamics in Computer Programming24

issue, it will not be translated. A syntax error occurs when a crucial word
is misspelled, a punctuation character is missing, or an operator is used
incorrectly. When this occurs, the interpreter or compiler generates an error
message identifying a syntactic mistake in the program. The programmer
fixes the problem and then tries to translate the program again (Rossum,
2007).

1.6. USING PYTHON
The Python translator can run Python programs saved in files or perform
Python statements input at the keyboard interactively. IDLE, an integrated
development environment for Python, makes the process of developing,
running, and testing programs easier (Sanner, 1999).

1.6.1. Installing Python
Before you can test any of the programs in this book or develop your own
programs, you must first ensure that Python is installed and configured
correctly on your machine. If you work in a computer lab, this has most likely
already been done. If you have your personal computer, you may install
Python from the included CD by following the instructions in Appendix A
(Rossum and Boer, 1991).

1.6.2. The Python Interpreter
Python is an interpreted language. The Python interpreter is one of the
components installed when you connect the Python language to your
computer. The Python interpreter is software that reads and executes Python
programming commands (Uieda et al., 2010).

The interpreter has two modes of operation: interactive and script. The
interpreter pauses for you to write Python statements on the keyboard in
interactive mode. The interpreter executes a statement after you write it and
then waits for you to type another. The interpreter examines the contents of
the file containing Python statements in script mode. A Python program or a
Python script is the name for such a file. As it reads the Python program, the
interpreter performs each statement (Mészárosová, 2015).

Fundamentals of Computers and Programming 25

1.6.3. Interactive Mode
Once Python is installed and configured on your machine, you may start
the interpreter in collaborative mode by running the following control at the
OS’s command prompt:

Python
If you are using Windows, you may also go to the Start menu and choose All
Programs. You should notice a software group called Python 2.5 or something
like that. There should be a Python item in this program group (command
line). This menu option launches the Python interpreter in interactive mode
when you click it (Frydenberg and Xu, 2019).

When you start the Python interpreter in interactive mode, you will see
something like this in the console window:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit
(Intel)] on win32

Type “help,” “copyright,” “credits” or “license” for more information.
>>>

The >>> you see is a prompt from the interpreter, indicating that it
is waiting for you to input a Python statement. Let’s give it a go. A print
statement, which enables a message to be shown on the screen, is one of the
most basic statements you may make in Python. The following sentence, for
example, causes the notice to appear. Python programming is entertaining!
to be exhibited:

print ‘Python programming is fun!’
It’s worth noting that we’ve written Python programming is enjoyable

following the word print. Between a pair of single-quote marks, quotation
marks are required, but they will not be used.

Shown. They merely indicate the start and finish of the text we want to
show. Here’s how you’d enter this print statement at the interpreter’s prompt:

>>> print ‘Python programming is fun!’
When you press the Enter key after inputting the sentence, the Python

interpreter runs it, as illustrated above:
>>> print ‘Python programming is fun!’ [ENTER] Python programming is
fun!

Key Dynamics in Computer Programming26

>>>
The >>> prompt occurs after the message has been shown, indicating

that the translator is waiting for you to enter another statement. Let’s look
at another scenario. We’ve entered two print statements in the following
example session.
>>> print ‘To be or not to be’ [ENTER]
To be or not to be
>>> print ‘That is the question.’ [ENTER] That is the question.
>>>

The interpreter will display a message if you input a sentence improperly
in interactive mode. This will help you learn Python by allowing you to use
interactive mode. You may test out new sections of the Python language in
interactive mode and get instant feedback from the interpreter as you learn
them.

On a Windows machine, press Ctrl-Z subsequently Enter to exit the
Python interpreter in interactive mode. Ctrl-D on a Mac, Linux, or UNIX
computer (Chaudhury et al., 2010).

1.6.4. Writing Python Programs and Running Them in Script
Mode
The statements you type in interactive mode are not preserved as a program,
even though they are valuable for testing code. They are simply carried
out, and the results are shown on the screen. You store a series of Python
statements in a file if you wish to save them as a program. Then you utilize
the Python translator in script mode to run the application (Newville, 2011).

Let’s say you want to develop a Python program that shows the three
lines of text below:

Nudge nudge
Wink wink
Know what I mean?
To write the program, create a file with the following statements using a

simple text editor such as Notepad:
print ‘Nudge nudge’ print ‘Wink wink’ print ‘Know what I mean?’

When you save a Python program, you give it a name that ends in.py,
indicating that it is a Python program. For instance, you may save the
previously demonstrated program as test.py. To launch the application,

Fundamentals of Computers and Programming 27

navigate to the list where the file is saved and enter the subsequent command
from the OS command prompt (Price and Barnes, 2015):

Python test.py
This switches the Python translator to script mode and affects the

statements in test.py to be executed. The Python interpreter terminates after
the program is completed.

1.6.5. The IDLE Programming Environment
The preceding sections explained how to use the OS command line to launch
the Python interpreter in interactive or script mode (Figure 1.21) (Puckette,
1991).

Figure 1.21. A typical computer program.

Source: https://www.softwaretestinghelp.com/basics-of-computer-program-
ming/.

During the installation of the Python programming language, an
application entitled IDLE, which is named after the Python programming
language, will be automatically installed. IDL (Integrated Development
Environment) is an acronym that holds for Integrated Development
Environment. When you start IDLE, the window seen in Figure 1.22. You’ll
see that the >>> timely displays in the IDLE window, which indicates that
the translator is now operating in collaborative mode. Python statements can
be typed into this prompt, and the results will be shown in the IDLE window
(Swinehart et al., 1986).

IDLE also has a developed-in text editor that includes features that are
specially designed to assist you in the development of Python applications.
In the IDLE editor, for example, code may be “colorized” so that key phrases
and other sections of a program are shown in different hues. This contributes

Key Dynamics in Computer Programming28

to making programs easier to understand. Create programs, save, and run
them with IDLE’s program-writing environment. A brief introduction to
IDLE is provided in Appendix B, which also guides you all through the
process of writing, saving, and running a Python program (Stroud et al.,
1988).

Figure 1.22. IDLE programming.

Source: https://web.mit.edu/6.s189/www/handouts/GettingStarted.html.

Fundamentals of Computers and Programming 29

REFERENCES
1. Abali, B., Shen, X., Franke, H., Poff, D. E., & Smith, T. B., (2001).

Hardware compressed main memory: Operating system support and
performance evaluation. IEEE Transactions on Computers, 50(11),
1219–1233.

2. Aerts, A. T. M., Goossenaerts, J. B., Hammer, D. K., & Wortmann,
J. C., (2004). Architectures in context: On the evolution of business,
application software, and ICT platform architectures. Information &
Management, 41(6), 781–794.

3. Ahmed, A., Appel, A. W., Richards, C. D., Swadi, K. N., Tan, G.,
& Wang, D. C., (2010). Semantic foundations for typed assembly
languages. ACM Transactions on Programming Languages and
Systems (TOPLAS), 32(3), 1–67.

4. Amit, D. J., Gutfreund, H., & Sompolinsky, H., (1985). Storing infinite
numbers of patterns in a spin-glass model of neural networks. Physical
Review Letters, 55(14), 1530.

5. Aroca, R. V., Caurin, G., & Carlos-SP-Brasil, S., (2009). A real time
operating systems (RTOS) comparison. In: WSO-Workshop de Sistemas
Operacionais (Vol. 12, pp. 1–10).

6. Ashraf, M. U., Fouz, F., & Eassa, F. A., (2016). Empirical analysis of
HPC using different programming models. International Journal of
Modern Education & Computer Science, 8(6), 3–12.

7. Atkinson, M. P., & Buneman, O. P., (1987). Types and persistence in
database programming languages. ACM Computing Surveys (CSUR),
19(2), 105.

8. Babad, J. M., Balachandran, V., & Stohr, E. A., (1976). Management of
program storage in computers. Management Science, 23(4), 380–390.

9. Balsamo, S., Personè, V. D. N., & Inverardi, P., (2003). A review on
queueing network models with finite capacity queues for software
architectures performance prediction. Performance Evaluation, 51(2–
4), 269–288.

10. Bazeley, P., (2006). The contribution of computer software to
integrating qualitative and quantitative data and analyses. Research in
the Schools, 13(1), 64–74.

11. Ben-Akiva, M., De Palma, A., & Isam, K., (1991). Dynamic network
models and driver information systems. Transportation Research Part
A: General, 25(5), 251–266.

Key Dynamics in Computer Programming30

12. Boonkrong, S., & Somboonpattanakit, C., (2016). Dynamic salt
generation and placement for secure password storing. IAENG
International Journal of Computer Science, 43(1), 27–36.

13. Botha, C. P., (2006). Technical Report: DeVIDE—The Delft
Visualization and Image Processing Development Environment, 31,
1–49.

14. Burdea, G., Richard, P., & Coiffet, P., (1996). Multimodal virtual
reality: Input‐output devices, system integration, and human factors.
International Journal of Human‐Computer Interaction, 8(1), 5–24.

15. Burgess, C. J., & Saidi, M., (1996). The automatic generation of test
cases for optimizing Fortran compilers. Information and Software
Technology, 38(2), 111–119.

16. Card, D., Kluve, J., & Weber, A., (2018). What works? A meta-analysis
of recent active labor market program evaluations. Journal of the
European Economic Association, 16(3), 894–931.

17. Chaudhury, S., Lyskov, S., & Gray, J. J., (2010). PyRosetta: A script-
based interface for implementing molecular modeling algorithms using
Rosetta. Bioinformatics, 26(5), 689–691.

18. Chen, J. B., Endo, Y., Chan, K., Mazieres, D., Dias, A., Seltzer, M., &
Smith, M. D., (1995). The measured performance of personal computer
operating systems. ACM SIGOPS Operating Systems Review, 29(5),
299–313.

19. Chen, J. B., Endo, Y., Chan, K., Mazieres, D., Dias, A., Seltzer, M., &
Smith, M. D., (1996). The measured performance of personal computer
operating systems. ACM Transactions on Computer Systems (TOCS),
14(1), 3–40.

20. Chismar, W., & Kriebel, C. H., (1982). Notes II comment on modeling
the productivity of computer systems. Management Science (pre-
1986), 28(4), 446.

21. Classen, A., Boucher, Q., & Heymans, P., (2011). A text-based
approach to feature modeling: Syntax and semantics of TVL. Science
of Computer Programming, 76(12), 1130–1143.

22. Crookes, D., Benkrid, K., Bouridane, A., Alotaibi, K., & Benkrid,
A., (2000). Design and implementation of a high-level programming
environment for FPGA-based image processing. IEE Proceedings-
Vision, Image, and Signal Processing, 147(4), 377–384.

Fundamentals of Computers and Programming 31

23. Danvy, O., (2008). Defunctionalized interpreters for programming
languages. ACM SIGPLAN Notices, 43(9), 131–142.

24. Davenport, T. E., (1999). The federal clean lakes program works. Water
Science and Technology, 39(3), 149–156.

25. Denning, P. J., & Buzen, J. P., (1978). The operational analysis of
queueing network models. ACM Computing Surveys (CSUR), 10(3),
225–261.

26. Eckert, R. R., (1987). Kicking off a course in computer organization
and assembly/machine language programming. ACM SIGCSE Bulletin,
19(4), 2–9.

27. Ertl, M. A., & Gregg, D., (2003). The structure and performance of
efficient interpreters. Journal of Instruction-Level Parallelism, 5, 1–25.

28. Faccio, W. J., (1979). Stimulating and rewarding invention: How the
IBM awards program works. Research Management, 22(4), 24–27.

29. Feldman, J. A., (1979). High level programming for distributed
computing. Communications of the ACM, 22(6), 353–368.

30. Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C., (1970).
Programming-languages as a conceptual framework for teaching
mathematics. ACM SIGCUE Outlook, 4(2), 13–17.

31. Frydenberg, M., & Xu, J., (2019). Easy as py: A first course in python
with a taste of data analytics. Information Systems Education Journal,
17(4), 4.

32. Gilmore, D. J., & Green, T. R. G., (1984). Comprehension and recall
of miniature programs. International Journal of Man-Machine Studies,
21(1), 31–48.

33. Graham, G. S., (1978). Guest editor’s overview… queuing network
models of computer system performance. ACM Computing Surveys
(CSUR), 10(3), 219–224.

34. Graham, M. L., & Ingerman, P. Z., (1965). An assembly language for
reprogramming. Communications of the ACM, 8(12), 769–772.

35. Greenhalgh, T., (1997). How to read a paper: Statistics for the non-
statistician. I: Different types of data need different statistical tests.
BMJ, 315(7104), 364–366.

36. Grinko, I., Geerts, A., & Wisse, E., (1995). Experimental biliary fibrosis
correlates with increased numbers of fat-storing and Kupffer cells, and
portal endotoxemia. Journal of Hepatology, 23(4), 449–458.

Key Dynamics in Computer Programming32

37. Halang, W. A., & Stoyenko, A. D., (1990). Comparative evaluation of
high-level real-time programming languages. Real-Time Systems, 2(4),
365–382.

38. Heller, J., & Logemann, G. W., (1966). PL/I: A programming language
for humanities research. Computers and the Humanities, 2, 19–27.

39. Henning, J. L., (2000). SPEC CPU2000: Measuring CPU performance
in the new millennium. Computer, 33(7), 28–35.

40. Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J., (2009).
Comparing the use of tangible and graphical programming languages
for informal science education. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vol. 3, No. 1,
pp. 975–984).

41. Iudici, A., & Faccio, E., (2014). What program works with bullying in
school setting? Personal, social, and clinical implications of traditional
and innovative intervention programs. Procedia-Social and Behavioral
Sciences, 116, 4425–4429.

42. Kennedy, K., Koelbel, C., & Schreiber, R., (2004). Defining
and measuring the productivity of programming languages. The
International Journal of High Performance Computing Applications,
18(4), 441–448.

43. Knuth, D. E., & Pardo, L. T., (1980). The early development of
programming languages. A History of Computing in the Twentieth
Century, 2, 197–273.

44. Konstantinides, K., & Rasure, J. R., (1994). The Khoros software
development environment for image and signal processing. IEEE
Transactions on Image Processing, 3(3), 243–252.

45. Le Sage, T., Bindel, A., Conway, P. P., Justham, L. M., Slawson, S. E.,
& West, A. A., (2011). Embedded programming and real-time signal
processing of swimming strokes. Sports Engineering, 14(1), 1–14.

46. Lehmann, E. D., & Deutsch, T., (1995). Application of computers
in diabetes care a review. I. Computers for data collection and
interpretation. Medical Informatics, 20(4), 281–302.

47. Liu, H., (2020). Design and application of micro course in fundamentals
of computers. International Journal of Emerging Technologies in
Learning (iJET), 15(11), 17–28.

Fundamentals of Computers and Programming 33

48. Logan, B. E., (2012). Essential data and techniques for conducting
microbial fuel cell and other types of bioelectrochemical system
experiments. ChemSusChem, 5(6), 988–994.

49. Martinovic, G., Balen, J., & Cukic, B., (2012). Performance evaluation
of recent Windows operating systems. J. Univers. Comput. Sci., 18(2),
218–263.

50. Melot, B. C., & Tarascon, J. M., (2013). Design and preparation of
materials for advanced electrochemical storage. Accounts of Chemical
Research, 46(5), 1226–1238.

51. Mészárosová, E., (2015). Is python an appropriate programming
language for teaching programming in secondary schools? International
Journal of Information and Communication Technologies in Education,
4(2), 5–14.

52. Newville, M., (2001). IFEFFIT: Interactive XAFS analysis and FEFF
fitting. Journal of Synchrotron Radiation, 8(2), 322–324.

53. Okabe, T., Yorifuji, H., Yamada, E., & Takaku, F., (1984). Isolation and
characterization of vitamin-A-storing lung cells. Experimental Cell
Research, 154(1), 125–135.

54. Olson, D. R., (2004). The triumph of hope over experience in the search
for “what works”: A response to slavin. Educational Researcher, 33(1),
24–26.

55. Ottenstein, K. J., Ballance, R. A., & MacCabe, A. B., (1990). The
program dependence web: A representation supporting control-,
data-, and demand-driven interpretation of imperative languages. In:
Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation (Vol. 2, No. 1, pp. 257–271).

56. Price, T. W., & Barnes, T., (2015). Comparing textual and block
interfaces in a novice programming environment. In: Proceedings
of the Eleventh Annual International Conference on International
Computing Education Research (Vol. 2, No. 1, pp. 91–99).

57. Puckette, M., (1991). Combining event and signal processing in the
MAX graphical programming environment. Computer Music Journal,
15(3), 68–77.

58. Radwin, R. G., Vanderheiden, G. C., & Lin, M. L., (1990). A method
for evaluating head-controlled computer input devices using Fitts’ law.
Human Factors, 32(4), 423–438.

Key Dynamics in Computer Programming34

59. Rasure, J., Argiro, D., Sauer, T., & Williams, C., (1990). Visual
language and software development environment for image processing.
International Journal of Imaging Systems and Technology, 2(3), 183–
199.

60. Rutherford, T. F., (1999). Applied general equilibrium modeling
with MPSGE as a GAMS subsystem: An overview of the modeling
framework and syntax. Computational economics, 14(1), 1–46.

61. Sage, D., & Unser, M., (2003). Teaching image-processing programming
in java. IEEE Signal Processing Magazine, 20(6), 43–52.

62. Sanner, M. F., (1999). Python: A programming language for software
integration and development. J Mol Graph Model, 17(1), 57–61.

63. Slavin, R. E., (2008). Perspectives on evidence-based research in
education—What works? Issues in synthesizing educational program
evaluations. Educational Researcher, 37(1), 5–14.

64. So, H. K. H., & Brodersen, R., (2008). A unified hardware/software
runtime environment for FPGA-based reconfigurable computers
using BORPH. ACM Transactions on Embedded Computing Systems
(TECS), 7(2), 1–28.

65. Steere, D. C., Shor, M. H., Goel, A., Walpole, J., & Pu, C., (2000).
Control and modeling issues in computer operating systems: Resource
management for real-rate computer applications. In: Proceedings of
the 39th IEEE Conference on Decision and Control (Vol. 3, pp. 2212–
2221).

66. Stroud, C. E., Munoz, R. R., & Pierce, D. A., (1988). Behavioral model
synthesis with cones. IEEE Design & Test of Computers, 5(3), 22–30.

67. Summer, C. E., (1967). Critique of: “An overview of management
science and information systems.” Management Science, 13(12),
B-834.

68. Swift, J. A., & Mize, J. H., (1995). Out-of-control pattern recognition
and analysis for quality control charts using lisp-based systems.
Computers & Industrial Engineering, 28(1), 81–91.

69. Swinehart, D. C., Zellweger, P. T., Beach, R. J., & Hagmann, R. B.,
(1986). A structural view of the Cedar programming environment. ACM
Transactions on Programming Languages and Systems (TOPLAS),
8(4), 419–490.

Fundamentals of Computers and Programming 35

70. Tanenbaum, A. S., Van, S. H., Keizer, E. G., & Stevenson, J. W., (1983).
A practical tool kit for making portable compilers. Communications of
the ACM, 26(9), 654–660.

71. Tanimoto, S. L., (1990). VIVA: A visual language for image processing.
Journal of Visual Languages & Computing, 1(2), 127–139.

72. Tejada, J., Chudnovsky, E. M., Del Barco, E., Hernandez, J. M., &
Spiller, T. P., (2001). Magnetic qubits as hardware for quantum
computers. Nanotechnology, 12(2), 181.

73. Thomasian, A., & Bay, P. F., (1986). Analytic queueing network
models for parallel processing of task systems. IEEE Transactions on
Computers, 35(12), 1045–1054.

74. Ton, R. V. B. D. K., Mosterd, K. T. K. B., & Smeulders, A. W., (1994).
Scillmage: A multi-layered environment for use and development of
image processing software. Experimental Environments for Computer
Vision and Image Processing, 11, 107.

75. Trichina, E., (1999). Didactic instructional tool for topics in computer
science. ACM SIGCSE Bulletin, 31(3), 95–98.

76. Uieda, L., Ussami, N., & Braitenberg, C. F., (2010). Computation of
the gravity gradient tensor due to topographic masses using tesseroids.
Eos Trans. AGU, 91(26), 1–21.

77. Van, R. G., & De Boer, J., (1991). Interactively testing remote servers
using the python programming language. CWI Quarterly, 4(4), 283–
303.

78. Van, R. G., (2007). Python programming language. In: USENIX Annual
Technical Conference (Vol. 41, No. 1, pp. 1–36).

79. Vandersteen, G., Wambacq, P., Rolain, Y., Dobrovolný, P., Donnay, S.,
Engels, M., & Bolsens, I., (2000). A methodology for efficient high-
level dataflow simulation of mixed-signal front-ends of digital telecom
transceivers. In: Proceedings of the 37th Annual Design Automation
Conference (Vol. 4, pp. 440–445).

80. Walski, T. M., Brill, Jr. E. D., Gessler, J., Goulter, I. C., Jeppson, R.
M., Lansey, K., & Ormsbee, L., (1987). Battle of the network models:
Epilogue. Journal of Water Resources Planning and Management,
113(2), 191–203.

81. Wang, Y., Wei, H., Lu, Y., Wei, S., Wujcik, E. K., & Guo, Z., (2015).
Multifunctional carbon nanostructures for advanced energy storage
applications. Nanomaterials, 5(2), 755–777.

Key Dynamics in Computer Programming36

82. Wasserman, A. I., & Prenner, C. J., (1979). Toward a unified view
of database management, programming languages, and operating
systems—A tutorial. Information Systems, 4(2), 119–126.

83. Yan, K. K., Fang, G., Bhardwaj, N., Alexander, R. P., & Gerstein, M.,
(2010). Comparing genomes to computer operating systems in terms
of the topology and evolution of their regulatory control networks.
Proceedings of the National Academy of Sciences, 107(20), 9186–
9191.

84. Zhu, J., Luo, A., Li, G., Zhang, B., Wang, Y., Shan, G., & Liu, L.,
(2021). Jintide: Utilizing low-cost reconfigurable external monitors to
substantially enhance hardware security of large-scale CPU clusters.
IEEE Journal of Solid-State Circuits, 56(8), 2585–2601.

CLASSIFICATION OF COMPUTER
PROGRAMS

2

CONTENTS
2.1. Introduction .. 38

2.2. Software Systems .. 48

2.3. General Behavior of Software Systems .. 51

2.4. Program Types .. 53

2.5. Computer Architecture .. 54

2.6. Examples .. 56

2.7. Discussion .. 57

References ... 58

CHAPTER

Key Dynamics in Computer Programming38

2.1. INTRODUCTION
A computer program is a set of instructions written in a programming language
that a computer may perform or understand in imperative programming. A
computer program is a collection of instructions in declarative programming.

Source code is the human-readable version of a computer program.
As computers may only execute their native machine instructions, source
code requires the execution of another computer program. As a result,
utilizing the language’s compiler, source code can be converted to machine
instructions. (An assembler is used to convert machine language programs.)
An executable is a name given to the generated file. Instead, source code
can run in the interpreter of the language. The Java programming language
generates an intermediate form that is subsequently processed by a Java
interpreter (Wilson and Leslie, 2001).

If the operating system (OS) receives a request to run the executable,
it loads it into memory and initiates a procedure to carry out the request
(Silberschatz and Abraham, 1994). The central processing unit (CPU) would
be switched to this procedure so that it may fetch and decode every machine
instruction before executing them. As soon as the source code is required
for implementation, the OS loads the relevant interpreter into memory and
begins the execution of the procedure. The interpreter then puts the source
code into memory, where it may be translated and executed one statement
at a time by the processor (Tanenbaum and Andrew, 1990). Compared to
launching an executable, running the source code is more time-consuming.
In addition, the interpreter should be installed on the PC in question.

It is possible to make advances in the development of software as an
outcome of advancements in computer hardware. Throughout the history
of hardware, the work of computer programming has undergone significant
transformations.

Charles Babbage had been motivated via Jacquard’s loom to create the
Analytical Engine in 1837 (McCartney and Scott, 1999). The names of the
calculating device’s elements had been taken from the textile industry. The
yarn had been carried from the shop to be processed in the textile business.
The gadget contained a “store,” or memory, that could keep 1,000 numbers,
each with 50 decimal digits (Tanenbaum and Andrew, 1990). Numbers
were transported from the “storage” to the “mill” for processing. Two sets
of perforated cards were used to program it. One set is for the operation’s
direction, while the other is for the input variables (McCartney and Scott,

Classification of Computer Programs 39

1999; Bromley and Allan, 1998). Consequently, after spending over
£17,000 of the British government’s money, the thousands of cogged gears
and wheels were never completely functional (Figure 2.1) (Tanenbaum and
Andrew, 1990).

Figure 2.1. Analytical engine of Lovelace.

Source: https://www.csmonitor.com/Technology/2012/1210/Ada-Lovelace-
What-did-the-first-computer-program-do.

Charles Babbage commissioned Ada Lovelace to write information on
the Analytical Engine (1843) (Fuegi and Francis, 2003). The explanation
included Note G, which described in detail how to use the Analytical Engine
to compute Bernoulli numbers. Certain historians consider this note to be
the world’s first computer program (Tanenbaum and Andrew, 1990).

2.1.1. Universal Turing Machine
Alan Turing proposed the Universal Turing System in 1936, which is a
theoretical device that may mimic any calculation that may be done on
a Turing complete computer machine (Rosen and Kenneth, 1991). It has
an endlessly long write or red tape and is a finite-state machine. While
performing an algorithm, the machine may move the tape back and forth,
altering its contents. The machine begins in the initial state, proceeds through
a series of phases, and finally comes to a rest when it reaches the halt state
(Figure 2.2) (Linz and Peter, 1990).

Key Dynamics in Computer Programming40

Figure 2.2. Universal Turing machine.

Source: https://www.wikiwand.com/en/Universal_Turing_machine.

2.1.2. Relay-Based Computers
It was Konrad Zuse who created the Z3 computer in 1941, which was a
programmable and digital computer. Zuse first became acquainted with
the “Babbage Engine” in 1939, when seeking to file a German patent
application for it. The Analytical Engine was in base-10, which made it
simple to understand. Zuse realized that constructing a binary machine
was a simple process. Telephone relays are 2-position switches that are
either closed or open in nature (Stair and Ralph, 2003). The Z3 contained
around 2,600 relays, with 1,800 dedicated to memory, 600 dedicated to
arithmetic, and two hundred dedicated to the keyboard, punch tape reader,
and display, among other things. The circuits enabled the creation of a
floating-point computer with nine instructions. The Z3 was programmed
using a customized keyboard and punch tape that was built specifically for
it. Manual input had been accomplished using a calculator-style keyboard
that supported decimal integers. The input was translated to binary by the
machine, and the results were transmitted through a series of calculating
modules. The result had been translated back to decimal and presented on
a display panel at the bottom of the screen (Figure 2.3) (Weiss and Mark,
1994; Bach and Maurice, 1986).

Classification of Computer Programs 41

Figure 2.3. Zuse Z3 replica on display at Deutsches Museum in Munich.

Source: https://en.wikipedia.org/wiki/Computer_program.

Its successor, the Z4, had been created at the same time. (Z3 was
destroyed by an airstrike on April 6, 1945). The Z4 was first produced in
1950 at the Federal Technical Institute in Zurich.

The Harvard Mark I was a programmable and digital computer created
via IBM in 1944 (Stroustrup and Bjarne, 2013). The computer had 7 main
units and supported twenty-three signed integer digits (Elgot et al., 1982):

• The machine’s activities were directed by a single unit;
• One unit contained 60 dial switches for configuring the application

constants;
• Multiplication and division were done with a single unit;
• One unit did addition and subtraction and stored the intermediate

results in 72 registers;
• Interpolation was utilized to compute logarithmic functions with

a single unit;
• Interpolation was utilized to compute trigonometric functions by

using a single unit;
• The machine’s output medium was either a typewriter printer or

a punched card printer, and one unit was employed to direct it.
Harvard’s Mark I was 3,304 relays and 530 miles of wire on my system.

The input was given by two punched tape readers (Kernighan et al., 1988).
The directions were typed in by one of the readers. Howard H. Aiken
compiled a codebook that listed all of the known algorithms. A programmer
punched the coded commands onto a tape from this book. The data to be
processed was entered by the other reader.

Key Dynamics in Computer Programming42

Harvard’s Mark IBM’s 2 additional relay-based machines succeeded me
(Koren, 2018):

• The Harvard Mark II, for example;
• The electronic selective sequence calculator (SSEC). Until

August 1952, the SSEC was in operation.

2.1.3. ENIAC
Between July 1943 and the fall of 1945, the computer (ENIAC) and Electronic
Numerical Integrator was created. It had been a Turing complete, general-
purpose computer with circuits made out of 17,468 vacuum tubes (Haigh et al.,
2016). It had been essentially a collection of Pascalines that had been linked
together. Its 40 units weighed thirty tones, took up 1,800 square feet (167 m2),
and used $650 in power each hour (in 1940s money). There were 20 base-10
accumulators in it. It took up to 2 months to program the ENIAC. 3 function
tables had to be moved to constant function panels since they had been on
wheels (Kerrisk and Michael, 2010; Weik, 1961). Heavy black wires had been
utilized to link function tables to function panels. Every function table had 728
knobs that rotated. Setting some of the 3,000 switches on the ENIAC was also
part of the programming process. It took a week to debug a program. It operated
at Aberdeen Proving Ground from 1947 to 1955, computing hydrogen bomb
characteristics, forecasting weather patterns, and providing firing tables for
artillery cannon aiming (Figure 2.4) (Jones et al., 2012).

Figure 2.4. Glenn A. Beck is changing a tube in ENIAC.

Source: https://commons.wikimedia.org/wiki/File:ENIAC-changing_a_tube.
jpg.

2.1.4. Stored-Program Computers
A stored-program computer loads its commands into memory the same way
it loads its data into memory instead of plugging in connections and flicking

Classification of Computer Programs 43

switches. As a consequence, the computer was able to be programmed
rapidly and do computations at a high rate. The ENIAC was designed by
Presper Eckert and John Mauchly. In a 3-page document dated February
1944, the 2 engineers introduced the stored-program notion. Dr John von
Neumann started working on the project of ENIAC in September 1944
(Huang et al., 2017). Von Neumann released the first draft of the report
on EDVAC on June 30 1945, that likened the computer’s architecture with
those of the human brain. Von Neumann architecture was the name given
to the design. In 1949, the design had been utilized to build the EDSAC
and EDVAC computers at the same time (McCartney and Scott, 1999).
In 1961, the Burroughs B5000 was designed expressly for use with the
Algol 60 programming language. The hardware included circuits to help
with the compilation process (Tanenbaum and Andrew, 1990). The IBM
System/360 had been a series of 6 computers released in 1964, each with
the identical command set architecture. The Model thirty was the tiniest
and most affordable. Customers might advance their applications while
keeping the same software. The most expensive model was the Model
75. Multiprogramming was available on all System/360 models, allowing
numerous processes to be stored in memory at the same time. Another
process may compute while the first was waiting for input/output. Every
model was supposed to be programmed in PL/1, according to IBM. COBOL,
Fortran, and ALGOL programmers were assembled into a committee. The
goal was to create a language that will replace Fortran and Cobol by being
comprehensive, simple to utilize, and extendible. As a result, the language
grew in size and complexity and it required a long time to build (Figure 2.5)
(Wilson and Leslie, 2001).

Figure 2.5. On a data general nova 3 from the mid-1970s, there are switches
for manual input.

Source: https://en.wikipedia.org/wiki/Data_General_Nova.

Key Dynamics in Computer Programming44

Up to the 1970s, computers used front-panel switches for manual
programming (Gordon and Michael, 1996) For reference, the computer
program had been written on paper. A series of on/off settings had been
utilized to indicate a command. An execution button was pushed when the
setup was completed. After that, the procedure was repeated. Punched cards
or paper tape was also used to automatically input computer programs. The
beginning address was set through switches once the medium was loaded,
and the execution button was hit (Schach and Stephen, 1990).

2.1.5. Very Large-Scale Integration
The VLSI circuit was a big breakthrough in software development (1964)
(Tan et al., 2003). After World War II, bipolar junction transistors (the late
1950s) and point-contact transistors (1947) put on a circuit board superseded
tube-based technology. In the 1960s, the aircraft sector adopted the integrated
circuit chip (Figure 2.6) (Silberschatz and Abraham, 1994).

Figure 2.6. A VLSI integrated-circuit die.

Source: https://en.wikipedia.org/wiki/Very_Large_Scale_Integration.

Robert Noyce, a co-founder of Intel (1968) and Fairchild Semiconductor
(1957), improved the field-effect transistor manufacturing technology
(1963). The objective is to change a semiconductor junction’s electrical
resistance and conductivity. The Siemens technique has been the first one

Classification of Computer Programs 45

which transforms naturally existing silicate minerals into polysilicon rods
(Lacamera and Daniele, 2018). The rods are subsequently transformed
into a monocrystalline silicon boule crystal by the Czochralski technique.
To make a capacitor, wafer substrate, the crystal is finely cut (Kernighan
and Brian, 1984). The planar photolithography technique then integrates
unipolar transistors, and resistors onto the wafer to create a matrix of MOS
transistors. In integrated circuit chips, the MOS transistor is the fundamental
component (Haviland and Keith, 1987).

Initially, the purpose of integrated circuit chips was determined during
production. Controlling the flow of electricity shifted to programming a
read-only memory (ROM) matrix in the 1960s (ROM). A 2-D arrangement
of fuses resembled the matrix. The unnecessary connections were burned off
during the embedding of instructions into the matrix (Tolpygo et al., 2016).
Because there were several connections, firmware programmers created
computer software to manage the burning on a separate chip. Programmable
ROM was the name of the technology. The Intel 4,004 microprocessor was
born in 1971 after Intel implemented the computer program on the chip
(Figure 2.7).

Figure 2.7. IBM’s system/360 (1964) CPU was not a microprocessor.

Source: https://www.quora.com/Was-the-IBM-System-360-mainframe-comput-
er-built-with-all-transistors-or-did-it-utilize-integrated-circuits.

Key Dynamics in Computer Programming46

The central processing unit (CPU) and microprocessor are now
synonyms. But CPUs precede microprocessors. It used circuit boards with
discrete components on ceramic substrates, for example as in the IBM
System/360 (1964).

2.1.6. Sac State 8008
The Intel 4004 was a four-bit microprocessor that powered the Busicom
calculator. Intel launched the Intel 8008, an eight-bit CPU, 5 months after
it was first launched. The Sac State 8008 was the firstt microcomputer built
with the Intel 8008 and directed by Bill Pentz (1972). It was created to store
patient medical records. The computer had a disc OS that could operate a
three-megabyte Memorex hard disc drive. It included a single console with
a keyboard and color display (Figure 2.8) (Lee, 2000).

Figure 2.8. Sacramento State University’s Intel 8008 microcomputer (1972) is
shown by an artist.

Source: https://www.researchgate.net/figure/The-3D-reconstruction-of-the-
Sac-State-8008-microcomputer-circa-1972-73-credit-Ryan_fig1_303697288.

IBM’s basic assembly language (BAL) was used to program the disc OS.
A BASIC interpreter was used to program the medical records application.
The computer, on the other hand, had been an evolutionary dead-end due to
its exorbitant cost. It was also designed for a particular purpose in a public
university laboratory (Damer, 2011). Despite this, the effort aided in the
creation of the Intel 8080 instruction set (1974).

Classification of Computer Programs 47

2.1.7. x86 Series
When Intel updated the Intel 8080 to the Intel 8086 in 1978, the contemporary
software development environment started. Intel modified the Intel 8086 to
produce the Intel 8088 at a lower cost (Seiler et al., 2008). When IBM joined
the personal computer market, they chose the Intel 8088 (1981) (Figure 2.9).

Figure 2.9. The original IBM personal computer (1981) utilized an Intel 8088
microprocessor.

Source: https://www.pcmag.com/news/project-chess-the-story-behind-the-
original-ibm-pc.

Intel’s microprocessor development accelerated as customer demand for
personal computers (PC) grew. The x86 series refers to the development
sequence. The x86 assembly language is a set of computer instructions
that are backwards compatible. Machine commands stored in older
microprocessors were carried over to newer microprocessors. Customers
were allowed to buy the latest computers without needing to buy the latest
application software as a result of this. The following are the primary types
of instructions (Draper and Ingraham, 1968):

• Random-access memory instructions for setting and accessing
integers and strings;

• Instructions for performing elementary arithmetic operations on
integers using the integer arithmetic logic unit (ALU);

• Floating-point ALU commands for performing real-number
arithmetic operations;

• Use call stack commands to allocate interface and memory with
functions by pushing and popping words;

Key Dynamics in Computer Programming48

• SIMD (multiple data, single instruction) instructions boost
performance when many processors are used to running a similar
algorithm upon an arrangement of data.

2.1.8. Programming Environment
VLSI circuits allowed the programming environment to evolve from a
computer terminal to a graphical user interface (GUI) computer (till the
1990s). Programmers were confined to a single shell operating in a command-
line environment on computer terminals. The editing of Full-screen source
code using a text-based user interface became feasible in the 1970s. The
objective is to program in the language of programming, regardless of the
technology accessible (Figure 2.10) (Zinnat, 2021).

Figure 2.10. The DEC VT100 (1978) was an extensively utilized computer
terminal.

Source: https://en.wikipedia.org/wiki/Computer_terminal.

2.2. SOFTWARE SYSTEMS
The properties of software systems, as well as their link to other aspects of
software engineering environments, are discussed in further detail in the
sections that follow. There are several classifications for software systems
based on the way the tasks to be completed and the software system interact
with one another (Nimmer et al., 1987).

Classification of Computer Programs 49

2.2.1. Domain-Independent Software
The independence of the job to be executed and the class of jobs that may
be executed are two characteristics of domain-based software (Zhang et al.,
2003). The work is unaffected by the passage of time. Domain-agnostic
software may be divided into two subtypes/LEH80/, /MABU87/:

• Specifiable systems (S-type); and
• Programmable systems (P-type).
In P-type systems, the criteria may be precisely described, and an

implementation that precisely meets the criteria can be realized. The
choosing of one of many good solutions is the procedure of development.
Numeric and arranging procedures are instances of P-type systems.

A precise job specification may be supplied in the case of S-type systems,
but only an estimated implementation is available. During the development
phase, a solution must be identified that is as near to the original specifications
as feasible. Game playing systems and various mathematics problems are
instances of S-type systems. Chess algorithms are programmed with a
specific goal in mind: “win each game.” Moreover, we are aware that this
program does not occur. All chess systems strive to meet the “Always win”
condition as closely as possible (Atkins et al., 2011).

The definition, design, and implementation of a program may be done
in that sequence to build domain-independent software. Before the design
operations begin, the specification can be finished. Only comprehensive
specifications are allowed using the specification techniques. Specification
tools may verify if a specification is comprehensive.

In typical software development, domain-independent activities are
uncommon. Usually, requirements alter or aren’t understood. A software
system’s needs might vary on its own. The work to be completed is better
understood after the establishment of a software system. New needs emerge,
or the priority of existing requirements shifts. As a result, domain-dependent
(DD) software systems emerge (Fleischmann, 1994).

2.2.2. Domain Dependent Software
The key feature of DD software is that its needs change over time. This
occurs either because of the tasks to be accomplished change or as the
system’s presence has an impact on the real-world environment in a way
/MABU87/. DD software systems are referred to as evolutionary systems
in /MABU87/ and /LEH80/ (Hutson, 1997). According to /GlEDD84/ DD-

Key Dynamics in Computer Programming50

systems are classified as either DD-software experimental (DDEX) or DD-
software embedded (DDEM) systems. DDEX the development of the system
is classified via an inherent ambiguity regarding the range of activities to
be completed. Investigations into physical or economic phenomena are
instances of this sort of software. DDEX software may lead to the design of
software for a variety of sectors or applications, such as an economic model
for usage in a management information system (Figure 2.11).

Figure 2.11. Domain-dependent software systems.

Source: https://link.springer.com/chapter/10.1007/978-3-642-78612-
9_3?noAccess=true.

The connection between the class of jobs to be completed and the
program is a feature of DDEM software. The program may modify the
application area and, as a result, the expression of the work to be completed.
Software engineering systems, office automation systems, consecutive
generations of large-scale OS and factory control systems are instances
of DDEM software. The diagram below depicts how a software system is
dependent on its surroundings and how it alters its environment (Bar-Sinai
et al., 2018).

Adequate life cycles and strategies should be used to construct
domain-based software systems. Life cycles that begin with insufficient
criteria and end with the design and execution of an unfinished system
must be employed. The development procedure then moves on to a phase
of requirement formulation. Then the design of the 2nd stage is prepared
and implemented the 2nd stage, and so forth. This software development

Classification of Computer Programs 51

strategy also necessitates that the method of the specification allows for
the declaration of partial criteria (Noldus, 1991). To survive the frequent
changes, the design and design technique should be adaptable.

2.3. GENERAL BEHAVIOR OF SOFTWARE SYSTEMS
The software has two primary characteristics that may greatly enhance the
complexity of a system (Riddle, 1979):

• Time limitations; and
• Requirements for fault tolerance.
Because these factors can impact the software engineering environment

and methodologies, specific methods must be employed to build a system
that takes these factors into account (Hayes-Roth et al., 1995).

2.3.1. Limitation of Time
The nature of the activity requires software systems to reply in a certain
period. The following system types may be distinguished as they correspond
to growing time requirements (Shen and Yu, 2018).

2.3.1.1. Requirements for Non-Real-Time
Batch systems are an instance of software systems with no time constraints.
When a batch system completes a task, it takes the input, calculates the
conclusions, and outputs the results.

2.3.1.2. Requirements for Weak Real-Time
Dialog systems are an instance of software systems with low time
requirements. The environment is represented by humans in this illustration.
Queries are entered in, and the system must respond promptly. Long reaction
times are irritating for users, but they are seldom fatal (Piteira et al., 2013).

2.3.1.3. Hard Real-Time Requirements
A hard real-time system should adhere to strict time constraints to function
properly. Procedure control systems and communication are instances of
hard real-time systems (Moser et al., 1996).

Key Dynamics in Computer Programming52

2.3.2. Communication Systems
Many computers may be linked together to form a network that sends and
receives data packets. A computer’s environment is made up of all the other
computers with which it is linked. By delivering information packets to other
computers in the network, a computer may connect with its surroundings.
Communication rules (also known as communication protocols) can require
the receiver to send back an acknowledgement packet to certify that a data
packet has reached its destination (Rullan, 1997). The sender of the data
package considers that the receiver is not operating or that the packet was
lost in the network if the return packet does not come within a specific
amount of time. In communication protocols, time-outs are critical. This
is the sole way to determine if a computer in a network is unavailable. If
a computer does not respond within a certain amount of time, the sender
thinks that the receiver is down. This instance demonstrates the significance
of time restrictions in communication systems (Lee and Lee, 2004).

2.3.3. Process Control Systems
When a computer system controls a technical procedure, like an assembly
line, the software in the computer intermingles with the technical system. As
a result of this interaction, two significant real-time needs emerge:

• The control system must do certain actions at a specific moment;
and

• Within the technical procedure, the control system must react to
stochastically occurring occurrences.

The system should provide a specific reaction time for both needs;
otherwise, the effects might be devastating (Luus, 1975).

A technique of specification should allow for the declaration of temporal
constraints. Simulators may be used to get a preliminary sense of whether
a system would work as expected. The specification approaches that are
very successful when specifying editors, maybe entirely ineffective when
specifying communication systems.

2.3.4. System Reliability
According to /RALETR78/, system dependability is connected to how well
a system performs the required service. The fault intolerance technique and
the fault tolerance technique are 2 ways to build highly dependable systems.
Fault intolerance comprises all known strategies for ensuring that software

Classification of Computer Programs 53

contains no flaws, like requirements descriptions, proving, breakthroughs,
and testing. Moreover, experience has shown that such procedures may
only help to decrease problems and never ensure their removal. In software
engineering, the fault intolerance approach is commonly employed (Kuo
and Prasad, 2000). Fault tolerance strategies include approaches that provide
an adequate service despite the presence of problems that remain after
the usage of fault intolerant procedures. To replace broken components,
redundant parts are inserted into a system. These items are not required to
perform the stated service in the absence of problems. To be fault-tolerant,
a software system must make the required design decisions and employ
acceptable procedures. The necessity for fault tolerance while building a
software system may greatly enhance its complexity. To build fault-tolerant
systems, effective techniques for specifying the kind and degree of fault
tolerance must be used. These techniques should be implemented in the
software engineering environment (Martin-Löf, 1982).

2.4. PROGRAM TYPES
The application’s type, the computer system to be utilized, and eventually
the programmer’s individual preference all influence whether a parallel or
sequential program is designed. Because the methodologies for generating
sequential and parallel programs are so dissimilar, a decision should be
finalized before commencing program development, as well as the software
engineering environment that is appropriate for the style of programming
being employed (Turski et al., 1978).

2.4.1. Sequential Programs
Sequential programs are defined through a sequence of statements connected
by a single control thread. A sequential program is run by a single procedure
from the user’s perspective; while there can be latent parallelisms like vector
or array computing (that is not taken into account here). Only the output/
input behavior is considered in sequential programs (Isard et al., 2007). The
relationship between a program’s starting and terminating states is known
as input/output behavior. Sequential programming has been used to create a
lot of commercial and technical software. Editors and compilers for PC are
common instances.

Key Dynamics in Computer Programming54

2.4.2. Parallel or Concurrent Programs
Concurrent or parallel programs are made up of a series of statements linked
via various control threads. The computer system and the criteria determine
whether a sequential or concurrent program should be built (Gregory, 1987).

The hardware system or compilers usually hide fine-grain parallelism.
The compiler divides a sequential program into multiple concurrent
procedures. A multiprocessor system runs several procedures in parallel.
Processor pipelines may run one statement whilst transferring the next
statement from memory to the processor. Fine-grain parallelism has little
impact on software engineering methodologies since it is masked by hardware
design or compilers (Chandy et al., 1991). This is not to be confused with
structural parallelism. In certain situations, structural parallelism is quite
important. The communication software systems and process control, in
particular, are modeled as systems of concurrent procedures are discussed
in this chapter. Specific description and programming approaches must be
employed to implement systems of this kind. This chapter’s major focus is
on programming approaches. In the following chapter, we go through these
strategies in great depth (Hwang et al., 1984).

2.5. COMPUTER ARCHITECTURE
The CPUs and memory are the most important parts of a computer. The
relationships among such components may be used to differentiate various
kinds of computer systems (Sommer et al., 2013).

2.5.1. Centralized Computer Systems
There is just one CPU in such systems that have accessibility to the memory
(shown in Figure 2.12) (Thota et al., 2018).

Figure 2.12. Structure of centralized computer system.

Source: https://link.springer.com/chapter/10.1007/978-3-642-78612-
9_3?noAccess=true.

Classification of Computer Programs 55

2.5.2. Multiprocessor Systems
A single memory is shared by multiple processors (shown in Figure 2.13)
(Iqbal et al., 2010).

Figure 2.13. Structure of a multiprocessor system.

Source: https://zitoc.com/multiprocessor-system/.

2.5.3. Distributed Systems
A distributed system can be very complex to define precisely. Several
disputed definitions may be discovered such as /NEHM88b/, /ENSL78/, /
SLKR87/. In the following section, we use the following definition from
/BSTA88/: Multiple independent processors, each with their primary
memory, make up a physically dispersed system. Every communication in a
distributed system is performed through messages that are exchanged over a
messaging transportation system (Figure 2.14) (Agha, 1985).

Figure 2.14. A distributed system’s structure.

Source: https://www.researchgate.net/figure/Distributed-System-Structure_
fig2_287975451.

Key Dynamics in Computer Programming56

2.5.4. Distributed Multiprocessor Systems
A message transit system connects numerous multiprocessor systems to
form a distributed multiprocessor system (Figure 2.15) (Kuhl et al., 1980).

Figure 2.15. A distributed multiprocessor system’s structure.

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main119.html.

Tools like pre-compilers and compilers may hide the system architecture
and the program kind. It is only necessary to note a system’s unique design
in software development if it is to be utilized explicitly. As previously said,
developing a distributed system that works on distributed system architecture
necessitates the use of unique methodologies (Agha, 1985). We presume that
a developer is aware that he must construct a distributed software system.
In this approach, he may make explicit usage of the benefits of distributed
systems (Robins et al., 2003).

2.6. EXAMPLES
To demonstrate the categories introduced in the preceding sections,
many software systems are studied. A compiler, an editor, a rapid Fourier
transformation, a flight reservation system, chess software, a flight control
system, and a physical model are all detailed in Table 2.1 (Hasselbring et al.,
2006). Some characteristics may be included in the software, but they are
not required. Optional qualities are highlighted in Table 2.1 by a question
mark, for example, an editor may be fault-tolerant but does not have to be.
A flight reservation system, for example, may function on a distributed or
centralized system, including a distributed database system (Park et al.,
1997; Liskov, 1972).

Classification of Computer Programs 57

Table 2.1. Properties of Compiler, an Editor, a Chess Program, a Fast Fourier
Transformation, a Physical Model, a Flight Reservation System, and a Flight
Control System

2.7. DISCUSSION
We recognize that the classifications presented in the preceding sections
cannot be complete, but they do cover a broad range of software systems.
Artificial intelligence (AI) is one topic that isn’t fully addressed. AI
necessitates knowledge, yet because the information is vast, difficult to
identify precisely, and continually changing, it necessitates the adoption of
unique ways to express it. It is feasible to address AI issues without applying
AI techniques, such as theorem proving and natural language comprehension;
likewise, such solutions are unlikely to be particularly successful. AI
systems are now implemented in PROLOG or LISP. Such languages may
be classified as sequential, but it doesn’t tell us anything about the jobs
they’re supposed to execute. This demonstrates that our software taxonomy
is merely 1st step toward expressing the complexity of a software system;
yet, we believe it may be useful in conventional software fields.

Key Dynamics in Computer Programming58

REFERENCES
1. Agha, G. A., (1985). Actors: A Model of Concurrent Computation

in Distributed Systems (Vol. 1, p. 1–10). Massachusetts Inst of Tech
Cambridge Artificial Intelligence Lab.

2. Atkins, D., Neshatian, K., & Zhang, M., (2011). A domain-independent
genetic programming approach to automatic feature extraction
for image classification. In: 2011 IEEE Congress of Evolutionary
Computation (CEC) (pp. 238–245). IEEE.

3. Bach, M. J., (1986). The Design of the UNIX Operating System (p.
152). Prentice-Hall, Inc. ISBN 0-13-201799-7.

4. Bar-Sinai, M., Weiss, G., & Shmuel, R., (2018). BPjs: An extensible,
open infrastructure for behavioral programming research. In:
Proceedings of the 21st ACM/IEEE International Conference on Model-
Driven Engineering Languages and Systems: Companion Proceedings
(pp. 59–60).

5. Bromley, A. G., (1998). Charles Babbage’s analytical engine, 1838
(PDF). IEEE Annals of the History of Computing, 20(4), 29–45. doi:
10.1109/85.728228. S2CID 2285332.

6. Chandy, K. M., & Kesselman, C., (1991). Parallel programming in
2001. IEEE Software, 8(6), 11–20.

7. Damer, B., (2011). TIMELINES the DigiBarn computer museum: A
personal passion for personal computing. Interactions, 18(3), 72–74.

8. Draper, R. D., & Ingraham, L. L., (1968). A potentiometric study of
the flavin semiquinone equilibrium. Archives of Biochemistry and
Biophysics, 125(3), 802–808.

9. Elgot, C. C., & Robinson, A., (1982). Random-access stored-program
machines, an approach to programming languages. In: Selected Papers
(pp. 17–51). Springer, New York, NY.

10. Fleischmann, A., (1994). Classification of software system types. In:
Distributed Systems (pp. 35–44). Springer, Berlin, Heidelberg.

11. Fuegi, J., & Francis, J., (2003). Lovelace & Babbage and the creation
of the 1843 ‘notes.’ IEEE Annals of the History of Computing, 25(4),
16–26.

12. Gordon, M., (1996). From LCF to HOL: A Short History (Vol. 5, No.
2, pp. 5–12).

Classification of Computer Programs 59

13. Gregory, S., (1987). Parallel Logic Programming in PARLOG: The
Language and its Implementation (Vol. 1, pp. 1–15). Addison-Wesley
Longman Publishing Co., Inc.

14. Haigh, T., Priestley, P. M., Priestley, M., & Rope, C., (2016). ENIAC
in Action: Making and Remaking the Modern Computer (Vol. 1, pp.
1–20). MIT press.

15. Hasselbring, W., & Reussner, R., (2006). Toward trustworthy software
systems. Computer, 39(4), 91, 92.

16. Haviland, K., (1987). Unix System Programming (p. 121). Addison-
Wesley Publishing Company. ISBN 0-201-12919-1.

17. Hayes-Roth, B., Pfleger, K., Lalanda, P., Morignot, P., & Balabanovic,
M., (1995). A domain-specific software architecture for adaptive
intelligent systems. IEEE Transactions on Software Engineering,
21(4), 288–301.

18. Hennessy, J. L., & Patterson, D. A., (2011). Computer Architecture: A
Quantitative Approach (Vol. 1, p. 1–14). Elsevier.

19. Huang, J., Gharavi, H., Yan, H., & Xing, C. C., (2017). Network coding
in relay-based device-to-device communications. IEEE Network,
31(4), 102–107.

20. Hutson, L. J., (1997). A Representational Approach to Knowledge and
Multiple Skill Levels for Broad Classes of Computer-Generated Forces
(Vol. 1, p. 1–13). Air Force Inst of Tech Wright-Patterson AFB OH.

21. Hwang, K., & Faye, A., (1984). Computer Architecture and Parallel
Processing, 1, 1–17.

22. Iqbal, S. M. Z., Liang, Y., & Grahn, H., (2010). Parmibench-an open-
source benchmark for embedded multiprocessor systems. IEEE
Computer Architecture Letters, 9(2), 45–48.

23. Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D., (2007). Dryad:
Distributed data-parallel programs from sequential building blocks. In:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (pp. 59–72).

24. Kernighan, B. W., & Ritchie, D. M., (1988). The C Programming
Language (2nd edn., p. 31). Prentice-Hall. ISBN 0-13-110362-8.

25. Kernighan, B. W., (1984). The Unix Programming Environment (p.
201). Prentice-Hall. ISBN 0-13-937699-2.

26. Kerrisk, M., (2010). The Linux Programming Interface (p. 121). No
Starch Press. ISBN 978-1-59327-220-3.

Key Dynamics in Computer Programming60

27. Koren, I., (2018). Computer Arithmetic Algorithms (Vol. 3, No. 2, pp.
1–5). AK Peters/CRC Press.

28. Kuhl, J. G., & Reddy, S. M., (1980). Distributed fault tolerance for large
multiprocessor systems. In: Proceedings of the 7th Annual Symposium
on Computer Architecture (pp. 23–30).

29. Kuo, W., & Prasad, V. R., (2000). An annotated overview of system-
reliability optimization. IEEE Transactions on Reliability, 49(2), 176–
187.

30. Lacamera, D., (2018). Embedded Systems Architecture (p. 8). Packt.
ISBN 978-1-78883-250-2.

31. Lee, C. M., (2000). The Silicon Valley Edge: A Habitat for Innovation
and Entrepreneurship (Vol. 25, No. 3, pp. 2–8). Stanford University
Press.

32. Lee, J. M., & Lee, J. H., (2004). Approximate dynamic programming
strategies and their applicability for process control: A review and
future directions. International Journal of Control, Automation, and
Systems, 2(3), 263–278.

33. Linz & Peter (1990). An Introduction to Formal Languages and
Automata (p. 234). D. C. Heath and Company. ISBN 978-0-669-
17342-0.

34. Liskov, B. H., (1972). A design methodology for reliable software
systems. In: Proceedings of the 1972, Fall Joint Computer Conference,
Part I (pp. 191–199).

35. Luus, R., (1975). Optimization of system reliability by a new nonlinear
integer programming procedure. IEEE Transactions on Reliability,
24(1), 14–16.

36. Martin-Löf, P., (1982). Constructive mathematics and computer
programming. In: Studies in Logic and the Foundations of Mathematics
(Vol. 104, pp. 153–175). Elsevier.

37. McCartney, S., (1999). ENIAC: The Triumphs and Tragedies of the
World’s First Computer (p. 16). Walker and Company. ISBN 978-0-
8027-1348-3.

38. Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A., Budhia, R. K., &
Lingley-Papadopoulos, C. A., (1996). Totem: A fault-tolerant multicast
group communication system. Communications of the ACM, 39(4),
54–63.

Classification of Computer Programs 61

39. Nimmer, R. T., & Krauthaus, P., (1987). Classification of computer
software for legal protection: International perspectives. In: Int’l L.
(Vol. 21, p. 733).

40. Noldus, L. P. J. J., (1991). The observer: A software system for
collection and analysis of observational data. Behavior Research
Methods, Instruments, & Computers, 23(3), 415–429.

41. Park, G. L., Shirazi, B., & Marquis, J., (1997). DFRN: A new approach
for duplication-based scheduling for distributed memory multiprocessor
systems. In: Parallel Processing Symposium, International (pp. 150–
157). IEEE Computer Society.

42. Piteira, M., & Costa, C., (2013). Learning computer programming:
Study of difficulties in learning programming. In: Proceedings of the
2013 International Conference on Information Systems and Design of
Communication (pp. 75–80).

43. Riddle, W. E., (1979). An approach to software system behavior
description. Computer Languages, 4(1), 29–47.

44. Robins, A., Rountree, J., & Rountree, N., (2003). Learning and teaching
programming: A review and discussion. Computer Science Education,
13(2), 137–172.

45. Rosen, K. H., (1991). Discrete Mathematics and its Applications (p.
654). McGraw-Hill, Inc. ISBN 978-0-07-053744-6.

46. Rullan, A., (1997). Programmable logic controllers versus personal
computers for process control. Computers & Industrial Engineering,
33(1, 2), 421–424.

47. Russell, D. S., Hart, T. P., & Levin, M. (2021). Lisp (Programming
Language). (Vol. 1, pp. 1–13).

48. Schach, S. R., (1990). Software Engineering (p. 216). Aksen Associates
Incorporated Publishers. ISBN 0-256-08515-3.

49. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey,
P., & Hanrahan, P., (2008). Larrabee: A many-core x86 architecture for
visual computing. ACM Transactions on Graphics (TOG), 27(3), 1–15.

50. Shen, K., & Yu, W., (2018). Fractional programming for communication
systems—Part I: Power control and beamforming. IEEE Transactions
on Signal Processing, 66(10), 2616–2630.

51. Silberschatz, A., (1994). Operating System Concepts (4th edn., pp. 6,
98). Addison-Wesley. ISBN 978-0-201-50480-4.

Key Dynamics in Computer Programming62

52. Sommer, S., Camek, A., Becker, K., Buckl, C., Zirkler, A., Fiege, L.,
& Knoll, A., (2013). Race: A centralized platform computer-based
architecture for automotive applications. In: 2013 IEEE International
Electric Vehicle Conference (IEVC) (pp. 1–6). IEEE.

53. Stair, R. M., (2003). Principles of Information Systems (6th edn., p.
159). Thomson. ISBN 0–619-06489-7.

54. Stroustrup, B., (2013). The C++ Programming Language (4th edn., p.
40). Addison-Wesley. ISBN 978-0-321-56384-2.s.

55. Tan, S. D., & Shi, C. J., (2003). Efficient very large-scale integration
power/ground network sizing based on equivalent circuit modeling.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(3), 277–284.

56. Tanenbaum, A. S., (1990). Structured Computer Organization (3rd
edn., p. 32). Prentice-Hall. ISBN 978-0-13-854662-5.

57. Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., &
Priyan, M. K., (2018). Centralized fog computing security platform for
IoT and cloud in healthcare system. In: Fog Computing: Breakthroughs
in Research and Practice (pp. 365–378). IGI global.

58. Tolpygo, S. K., Bolkhovsky, V., Weir, T. J., Wynn, A., Oates, D. E.,
Johnson, L. M., & Gouker, M. A., (2016). Advanced fabrication
processes for superconducting very large-scale integrated circuits.
IEEE Transactions on Applied Superconductivity, 26(3), 1–10.

59. Turski, W. M., & Wasserman, A. I., (1978). Computer programming
methodology. ACM SIGSOFT Software Engineering Notes, 3(2), 20–
21.

60. Weik, M. H., (1961). The ENIAC story. Ordnance (3rd edn., Vol. 45,
No. 244, pp. 571–575).

61. Weiss, M. A., (1994). Data Structures and Algorithm Analysis in C++
(p. 29). Benjamin/Cummings Publishing Company, Inc. ISBN 0-8053-
5443-3.

62. Wilson, L. B., (2001). Comparative Programming Languages (3rd edn.,
pp. 7, 29). Addison-Wesley. ISBN 0-201-71012-9.

63. Zhang, M., Ciesielski, V. B., & Andreae, P., (2003). A domain-
independent Window approach to multiclass object detection using
genetic programming. EURASIP Journal on Advances in Signal
Processing, 2003(8), 1–19.

Classification of Computer Programs 63

64. Zinnat, S. B., (2021). Classification of Computer Programming Contest
Programs Based on Gender, Region, and Software Metrics (Vol. 1, p.
1–9). Doctoral dissertation, Lethbridge, Alta. University of Lethbridge,
Dept. of Mathematics and Computer Science.

FUNDAMENTALS OF PROGRAMMING
LANGUAGES

3

CONTENTS
3.1. Introduction .. 66

3.2. Purpose of Programming Languages ... 67

3.3. Imperative Languages ... 70

3.4. Data-Oriented Languages ... 77

3.5. Object-Oriented Languages .. 83

3.6. Non-Imperative Languages ... 84

3.7. Standardization ... 86

3.8. Computability ... 87

References ... 88

CHAPTER

Key Dynamics in Computer Programming66

3.1. INTRODUCTION
A competent programmer may develop good software in every language,
just as a good pilot may fly every plane. A passenger plane has been built
for luxury, security, and economic feasibility; a military plane is built for
performance and mission capabilities, and an ultralight plane is built for
cheap cost and ease of operation. Once it is asserted that the well-designed
system may be implemented equally effective in every language, the function
of language in programming is lowered in favor of software tools and
methodologies; not only reduced but completely rejected (Sammet, 1972).
However, programming languages are more than simply a tool; they provide
the raw resources for software, which is what we spend the majority of our
time looking at on our computers. The programming language is among the
most essential, if not the most essential, aspects that manipulate the overall
quality of a software system. However, several programmers are illiterate.
He is enamored with his “native” programming language although is unable
to examine and compare language structures, as well as comprehend the
benefits and drawbacks of current languages and concepts. “Language L1 is
more effective (or efficient) as compared to language L2,” for example, is a
statement that frequently demonstrates conceptual ambiguity (Rosen, 1971).

Because of this lack of understanding, there are 2 important difficulties
in software that must be addressed. For starters, there is an extreme
conservatism when it comes to the selection of programming languages.
However, despite the rapid advancements in computer technology and the
sophistication of current software systems, the vast majority of programming
has still been performed in languages that had been invented about 1970, if
not before that. Comprehensive programming language study is never put to
the test in the real world, and software developers are forced to depend on
instruments and approaches to balance for outmoded programming language
technology. It’s like if airlines will deny experimenting with jet planes on
the basis that a traditional propeller aircraft is completely able to transport
passengers from point A to point B just as efficiently (Sammet, 1991).

In addition, language structures are employed arbitrarily, with no or
little concern for the security or effectiveness of the system. This results in
faulty software that may not be sustained, and also inefficiencies that are
rectified through assembly language coding instead of by improvement of
the programming paradigms and algorithms themselves (King, 1992).

It is solely for the aim of bridging the gap in the level of abstraction
among the actual world and hardware that programming languages have

Fundamentals of Programming Languages 67

been created. An inevitability exists between greater levels of abstraction
which are simpler to comprehend and secure for usage on the one hand
and relatively low levels of abstraction which are more adaptable and may
frequently be implemented more effectively on the other hand. To create or
adopt a programming language, one must first determine the proper degree
of abstraction to use. It is not unusual that various programmers like various
levels of abstraction, or that a certain language can be suitable for one project
but not for the next. A programmer must be well-versed in the efficiency and
safety implications of every construct in a particular programming language
in which they are working (Mészárosová, 2015).

3.2. PURPOSE OF PROGRAMMING LANGUAGES
When learning the latest programming language, the question that comes to
mind most often is : “What may such language “do?”

We have been inadvertently evaluating the modern language to certain
other languages. The solution is straightforward: all languages are capable of
performing similar calculations! The reasoning for this response is outlined
in the following section. There should be other principal causes of many
programming languages whether they may all perform similar calculations
(Heim et al., 2020).

Let’s begin with a few definitions:
“A program is a set of secret code that describes how to do a calculation. A
programming language is a collection of rules that describe which symbol
sequencing make up a program as well as what calculation it does” —(Kip-
er et al., 1997).

It’s worth noting that the definition makes no mention of the term
computer! Languages and p Program are mathematical objects that are fully
formal. Furthermore, many consumers are more curious about programs as
compared in other mathematical objects like groups, whereas a program is a
series of symbols that may be used to control a computer’s execution. While
studying the theory of programming is highly recommended, this course
would primarily focus on the study of programs since they are performed on
a computer (Davison et al., 2009).

These are fairly broad concepts that must be construed as widely as
possible. For instance, most advanced word processors contain a feature
that allows you to “catch” a series of keystrokes and save them as a macro,
allowing you to run the entire sequence with a single keystroke. Since the

Key Dynamics in Computer Programming68

sequence of keystrokes indicates a computation, and the software handbook
would clearly describe the macro language: how to terminate, launch, and
identify a macro definition, this is unquestionably a program (Atkinson and
Buneman, 1987).

To address the issue posed at the beginning of this section, we must first
return to primitive digital computers, that are similar to the rudimentary
calculators utilized through your grocer nowadays in that the calculation
performed by these computers is “wired-in” and it may not be modified.

The revelation (attributed to John von Neumann) that the definition of
the calculation, the program, may be accumulated in the computer almost as
readily as the data utilized in the computation had been the most important
early achievement in computers. As a result, the stored-program computer
becomes a basic-purpose computing machine, and we may alter the program
simply via inserting the punched card, changing the plugboard of wiring,
linking to a phone line, or adding a diskette (Figure 3.1) (Davison et al.,
2009).

Figure 3.1. Main programming languages.

Source: https://www.bmc.com/blogs/programming-languages/.

Fundamentals of Programming Languages 69

Because computers are binary processors that only recognize zeros and
ones, maintaining programs in them is mathematically simple but difficult
in practice, because every command must be recorded as binary digits (bits)
that may be shown electronically or mechanically. The symbolic assembler
had been the one of the first software tools developed to solve this issue.
An assembler analyzes an assembly language program that represents
every instruction like a symbol and converts it to a binary form appropriate
for computer execution. For instance, consider the following instruction
(Ahmed et al., 2014):
load R3,54

Its meaning is far more comprehensible than the corresponding string
of bits: “load register 3 having the information in memory location 54.”
Believe this or not, the phrase “automated programming” initially applied
to assemblers, which chose the correct bit sequence for every symbol
automatically. Pascal and C are more advanced as compared to assemblers
since they “automatically” select registers and addresses, as well as
“automatically” select instruction orders to construct arithmetic expressions
and loops (Antolík and Davison, 2013).

We’re now able to respond to the question posed at the start of this
section.

A programming language is a method for abstraction. It allows a
programmer to abstractly express a computation and then have a program
(typically referred to as an interpreter, compiler, or assembler) execute the
specification in the exact format required for computer performance.

It may also see why there are various programming languages: there are
two distinct types of issues can necessitate various abstraction levels, and
various programmers can have various opinions about how abstraction must
be accomplished. A “C” programmer has been quite pleased to operate at
an abstraction level that necessitates the definition of calculations utilizing
indices and arrays, but a report author likes to “program” utilizing a language
made up of word-processor functions (Vella et al., 2014).

The degrees of abstraction in computer hardware may be seen clearly.
Separate components like resistors and transistors were linked directly
at first. Then simple plug-in modules and smaller-scale ICs were used.
Currently, whole computers may be manufactured from only a few chips,
every one of which has many components. No computer specialist would
try to construct a “perfect” circuit from single parts if a group of chips that
could be changed to fulfill the same function existed (Flatt et al., 1999).

Key Dynamics in Computer Programming70

The idea of abstraction generates a universal truth—more information
is lost as the abstraction level rises. While writing a program in C, you
lose the capability to describe register allocation that you had in assembly
language; when writing in Prolog, you lose the capability to express random
connected structures utilizing pointers that you had in C. There’s a natural
conflict between desiring the freedom of expressing the calculation in detail
and seeking for a succinct, unambiguous, and trustworthy description of
a calculation in a higher-level abstraction. A lower-level description will
always be more precise and optimum than an abstraction (Wasserman and
Prenner, 1979).

Starting with “common” programming languages such as FORTRAN,
Pascal, C, and the Pascal-like features of Ada, we would cover languages at
3° of abstraction in this chapter. Finally, in Part IV, we’ll look at languages
like C++ and Ada, which allow programmers to create high-level abstractions
from simple statements. Ultimately, we’ll talk about logical and functional
programming languages, which operate at even high abstraction levels
(Fourment and Gillings, 2008).

3.3. IMPERATIVE LANGUAGES

3.3.1. FORTRAN
FORTRAN was the 1st language of programming that advanced substantially
beyond assembly code. It had been created via an IBM team has led by
John Backus in the 1950s to give an abstract manner of defining scientific
calculations. FORTRAN faced stiff resistance for the same reasons that
all succeeding ideas for high-level abstractions did: many programmers
thought that a compiler might not create optimum code when compared to
hand-coded assembly language (Figure 3.2) (Ottenstein et al., 1990).

Fundamentals of Programming Languages 71

Figure 3.2. Windows Fortran compiler suite.

Source: https://www.absoft.com/products/windows-fortran-compiler-suite/.

FORTRAN, like other early programming languages, had severe flaws,
both in terms of language construction and support for module organizing
notions and current data. In retrospect, Backus remarked, “Which as it
had been known already, we just built up the language whenever we went
alongside.” We didn’t see design of language as a challenging task, but
rather as a straightforward prolog to the main challenge: creating an effective
compiler (Cann, 1992).

Nonetheless, the benefits of abstraction rapidly won over so many
programmers: fast and reliable design, as well as reduced machine reliance
due to the abstraction of register and machine instructions. FORTRAN
had become the standard language in research and engineering as most
early computers had been focused on scientific issues, and it is only now
being supplanted by newer languages. FORTRAN has been extensively
modernized (in 1966, 1977, 1990) to meet the needs of current software
development (Burgess and Saidi, 1996).

Key Dynamics in Computer Programming72

3.3.2. COBOL and PL/I
The COBOL programming language had been created for commercial data
processing in the 1950s. A group comprised of members from the United
States Defense Department, commercial entities, computer manufacturers
and like insurance firms drafted the phrase. COBOL had been aimed to
be a temporary solution until an improved design might be developed;
rather than, the language just like described quickly had become the
widely used language in its sector (much like FORTRAN in science), and
for the same reason: it gives a better resource of expressing calculations
which are common in its area. The requirement to perform relatively basic
computations on large numbers of complicated data records characterizes
business data processing, and COBOL’s data structuring abilities greatly
outstrip that of algorithmic languages such as C or FORTRAN (Figure 3.3)
(Lorenzen, 1981).

Figure 3.3. Code colorization for PL/I and COBOL.

Source: https://marketplace.visualstudio.com/items?itemName=bitlang.cobol.

Afterwards, IBM developed PL/I as a worldwide language that included
the characteristics of COBOL, Algol, and FORTRAN. On several IBM
systems, PL/I have supplanted COBOL and FORTRAN, however, this huge
language had never been generally supported outside of IBM, particularly
on the microcomputers and minicomputers that are becoming incredibly
common in the processing of data firms (Heller and Logemann, 1966).

Fundamentals of Programming Languages 73

3.3.3. Algol and Its Descendants
Algol has had the most effect on the language design of all the earlier
programming languages. It was created through an international team for
generic and scientific purposes, but due to FORTRAN’s strong backing from
major computer manufacturers, it never gained mainstream acceptance. The
initial version of Algol had been released in 1958, and the updated version,
Algol 60, had been widely utilized in computer science research and was
installed on a large number of computers, particularly in Europe. Algol 68,
a 3rd version of the language, was significant among language theorists but
was never extensively used (Figure 3.4) (Wijngaarcien et al., 1977).

Figure 3.4. Sample syntax of Algol language.

Source: https://slideplayer.com/slide/2368014/.

Jovial, which is utilized through the Air Force of United States for real-
time systems, and Simula, one of the earliest simulation languages, are 2
prominent languages that had been evolved from Algol. Pascal, invented
through Niklaus Wirth in the late 1960s, is possibly the most renowned
descendant of Algol. Pascal had been born out of a desire to build a language
that might be utilized to teach concepts such as type checking and type
declarations (McCusker, 2003).

Pascal has one major benefit and one major shortcoming as a practical
language. Because the first Pascal compiler had been written in Pascal,
it was simple to transfer to any machine. The language spread swiftly,
particularly among the microcomputers and minicomputers that were being
developed at the time. Regrettably, the Pascal programming language is
just excessively limited. The standard language has no way of breaking a
program into modules on distinct files, therefore it can’t be utilized to write

Key Dynamics in Computer Programming74

programs with more than a few thousand lines. Although practical Pascal
compilers enable module deconstruction, there is no standard mechanism;
therefore, huge applications are not portable (Valverde and Solé, 2015).

Wirth realized the need for modules in every practical language and
created the Modula language as a result. Modula has a famous option to
non-standard Pascal dialects (currently in version 3 with support for object-
oriented programming (OOP)) (Ginsburg and Rose, 1963).

Dennis Ritchie of Bell Laboratories created the C programming language
in the starts of 1970s as an implementation language for the operating system
(OS) of UNIX. As higher-level languages had been deemed wasteful, OSs
had been usually developed in assembly code. By providing data structures
and structured control statements (records and arrays), the C abstracts away
the complexities of assembly language programming whilst retaining all of
the flexibility of lower-level programming in assembly language (bit-level
operations and pointers) (Reddy, 2002).

UNIX soon became the choice system in research and academic
institutions because it had been freely available to universities and had
been designed in a portable language instead of raw assembly code. When
modern computers and programs came out of these universities and into the
commercial sphere, they brought UNIX and C with them.

Because harmful constructs aren’t examined via the compiler, C is
supposed to be as versatile as assembly language. The difficulty is that
this flexibility makes it very simple to develop programs with cryptic
problems. When it is used correctly on tiny programs, the C is a precise
language, but when utilized on huge software systems produced via teams
of varied abilities, it may cause major problems. Several of the hazards of
constructions in C would be discussed, as well as how to avoid key mistakes
(Yang et al., 2006).

The American National Standards Institute (ANSI) standardized the C
programming language in 1989, and the International Standards Organization
(ISO) approved virtually the same standard a year later. The C in this book
refers to ANSI C rather than older versions of the language.

3.3.4. C++
Bjarne Stroustrup, also of Bell Laboratories, created the C++ language in
the 1980s, expanding C to incorporate OOP features comparable to that
of the Simula language. Furthermore, C++ corrects numerous errors in C
and must be utilized instead of C in tiny applications where object-oriented

Fundamentals of Programming Languages 75

capabilities aren’t required. When updating a C-based system, C++ is the
natural language to utilize (Figure 3.5) (Ishikawa et al., 1996).

Figure 3.5. Salient features of C++.

Source: https://www.educba.com/features-of-c-plus-plus/.

Please keep in mind that C++ is a dynamic language, thus your reference
compiler or manual cannot be completely up to date.

3.3.5. Ada
The US Department of Defense decided to standardize on a single
programming language in 1977, mostly to keep money on training and on
the expense of sustaining program creation environments for every system of
military, according to the official history. Following an evaluation of current
languages, they decided to request the development of a novel language that
would be dependent upon a competent existing language, like the Pascal
programming language. Ultimately, one of the proposals for a language had
been selected and named Ada, and a standard had been established in 1983.
Ada is exceptional in various ways (Sward et al., 2003):

• A single team created and developed the majority of programming
languages (Pascal, C, FORTRAN, etc.), and they had been only
standardized after being widely used. All of the unintentional
mistakes made by the original teams had been included in the
standard for the sake of compatibility. Ada was exposed to
extensive study and criticism before being standardized.

Key Dynamics in Computer Programming76

• Most programming languages were first built on one computer
and had been substantially impacted through the oddities of that
computer before being standardized. Ada had been created to
facilitate the creation of portable applications.

• In addition, Ada broadens the scope of programming languages
through allowing the handling of error and concurrent
programming, both of which have previously been reserved for
(non-standard) OS functions (Figure 3.6).

Figure 3.6. The object-oriented paradigm of Ada language.

Source: https://peakd.com/ada-lang/@xinta/learning-ada-5-object-oriented-
paradigm.

Although its technological superiority and the benefits of early
standardization, Ada has been unable to gain general acceptance exterior
of military and larger-scale applications (like commercial aviation and
transportation by rail). Ada has a repute for being a tough language. It has
been because the language covers several areas of programming those other
languages (such as Pascal and C) leave to the OS, therefore there is just
more to learn. In addition, better, and affordable educational development
settings weren’t readily accessible. Ada is becoming more widely utilized in

Fundamentals of Programming Languages 77

the academic curriculum, although as a “primary” language, thanks to the
availability of free compilers and solid introductory textbooks (Hutcheon
and Wellings, 1988).

3.3.6. Ada 95
A new standard for the Ada language is issued exactly 12 years after the
initial standard for the Ada language was finalized in 1983. The latest
version, dubbed Ada 95, fixes a few flaws in the previous version. The most
significant addition is support for real OOP, including inheritance, which had
been left out of Ada 83 due to perceived inefficiency. Annexes to the Ada
95 standard define standard (although optional) additions for information
systems, real-time systems, secure systems, numeric’s, and distributed
systems (Bailes, 1992).

If the subject is exclusive to single version: “Ada 95” or “Ada 83,”
the name “Ada” would be used in this text. Because the actual year of
standardization was unknown during development, Ada 95 had been referred
to as Ada 9X in the literature.

3.4. DATA-ORIENTED LANGUAGES
Many notable languages had been conceived and implemented in the initial
days of programming, all of which shared one feature: every language had a
chosen data structure and a comprehensive operations set for that structure.
Such languages allowed programmers to develop sophisticated programs
that would have been impossible to write in languages like FORTRAN,
which only handled computer text. We’ll look at a few of such languages in
more detail in the subsections that follow (Denning, 1978).

3.4.1. Lisp
The linked list is the most fundamental data structure in Lisp. Significant
work on artificial intelligence (AI) had been done in Lisp, which had been
created for study in computation theory. Because the language was so vital,
machines were created and built specifically to run Lisp applications (Figure
3.7) (Murphree and Fenves, 1970).

Key Dynamics in Computer Programming78

Figure 3.7. Artificial intelligence utilizing lisp programming.

Source: https://www.electroniclinic.com/artificial-intelligence-using-lisp-pro-
gramming-examples/.

The growth of numerous dialects when the language had been
implemented on various devices was one issue with the language.
Subsequently, the Common Lisp programming language had been created
to allow applications to be transferred from one machine to another. CLOS,
a prominent dialect of Lisp that allows OOP, is now a famous dialect.

Cdr(L) and car (L), which remove the tail and head of a list L,
correspondingly, and cons(E, L), which builds a fresh list from a component
E and an old list L, are the 3 basic Lisp operations. Functions to processing
lists comprising non-numeric data may be constructed utilizing these
techniques; these functions will be exceedingly complex to implement in
FORTRAN (Rajaraman, 2014).

Lisp is a long-lived programming language that has been in use for
about a quarter-century. Just FORTRAN has a longer history amongst
active programming languages. Both languages have met the programming
requirements.

Fundamentals of Programming Languages 79

FORTRAN for scientific and technical calculation and Lisp for AI are
two prominent areas of application. These 2 fields are still vital, and their
programmers are so dedicated to such 2 languages that FORTRAN and Lisp
may stay in usage for another quarter-century.

AI research, as one might assume given its aims, creates a slew of
serious programming issues. This rash of difficulties has spawned new
languages in different programming cultures. Likewise, controlling, and
isolating traffic inside work modules by the development of language is a
valuable organizational approach in any extremely big programming effort.
As one reaches the limits of the system wherein, we humans interact more
frequently, such languages start to become less rudimentary (Adeli and
Paek, 1986).

As a result, these systems have several copies of complicated language-
processing functions. Because Lisp’s semantics and syntax are so basic,
parsing might be considered a trivial process. As a result, parsing technology
plays essentially no part in Lisp programs, and the development of language
processors is seldom a hindrance to the rate at which big Lisp systems
expand and evolve. Ultimately, it is the freedom and burden that all Lisp
programmers bear because of the simplicity of syntax and semantics. There
is no way to write a Lisp program larger than several lines without using
discretionary functions (Swift and Mize, 1995).

3.4.2. APL
The APL programming language arose from a mathematical notation for
describing computations. Matrices and vectors are the most fundamental
data structures. Operations are performed directly on them without the use
of loops. As a result, when compared to equivalent programs written in
other languages, the programs are extremely brief. One issue with APL is
that it retains a huge number of mathematical signs from basic formalism.
This necessitates the usage of a particular terminal, making it impossible
to test with APL with no investing in expensive hardware; newer graphical
user interfaces (GUIs) that employ fonts of software have eliminated such
difficulty, hastening APL’s adoption (Figure 3.8) (McIntyre, 1991).

Key Dynamics in Computer Programming80

Figure 3.8. Sample syntax of APL language.

Source: https://computerhistory.org/blog/the-apl-programming-language-
source-code/.

3.4.3. Snobol, Icon
Numbers were almost solely dealt with in earlier languages. Snobol (and
its descendant Icon) are appropriate for work in disciplines like natural
language processing since its core data structure is the string. Snobol’s main
operation is to match a pattern to a string, with the string being deconstructed
into substrings as a result of the match. Expression assessment is the
most fundamental process in Icon, although expressions can encompass
complicated string manipulations (Jeffery et al., 2016).
The find(s1, s2) is a useful predefined function in Icon that looks for
instances of the string s1 in the string s2. Find produces a list of all spots in
s2 where s1 appears, unlike an equivalent function in C:
line:= 0 # Initialize line counter
while s:= read() { # Read until end of file every col:= find(“the”, s) do
 # Generate column positions
write(line, “ ”, col) # Write (line,col) of “the”
line:= line + 1}

The column and line numbers of all locations of the string “the” in
a file would be written by this application. If the search fails to identify
an occurrence, the expression’s computation is ended. The keyword each
compels the function to be evaluated again as long as this is effective.

Fundamentals of Programming Languages 81

Icon expressions may be described on csets, that are sets of characters,
as well as strings, that are sequences of characters. Thus:

vowels:= ‘aeiou’
It assigns a value to the variable vowel, which is the set of letters shown.

This is utilized in methods such as up to (vowels,s), which returns the longest
beginning order of vowels in s, and several (vowels,s), that returns the order
of positions of vowels in s.

Bal is very complicated function that works similar up to which it creates
orders of locations that are balanced in terms of bracketing characters:

bal(‘+–*/,’ ‘([,’ ‘)],’ s)
This expression might be utilized to construct balanced arithmetic sub-

strings in a compiler. Given the string “x+(y[u/v]–1)*z,” The indices relating
to the sub-strings would be generated by the above equation:

x x + (y[u/v] – 1)
The 1st sub-string has been balanced since this end with “+” and has no

bracketing characters; the 2nd sub-string is balanced since it ends with “*”
and has square brackets properly contained within parentheses.

Backtracking may be utilized to resume the search from previous
generators if an expression fails. Except for those that begin in column 1,
the following software prints the appearances of vowels:

line:= 0 # Initialize line counter
while s:= read() { # Read until end of file every col:= (up to(vowels,

line) >1) do
 # Generate column positions
write(line, “ ”, col) # Write (line,col) of vowel
line:= line + 1}
The function ‘find’ creates an index, which is subsequently checked

via “¿.” If the experiment is not successful (do not state “if the outcome
is false”), the program goes back to the generator function and requests a
newer index.

The icon is a useful language for applications that need to manipulate
strings in a complicated way. The majority of the explicit calculation
using indices is abstracted away, resulting in highly compact programs
as compared to standard languages meant for numerical or programming
of systems. The icon is also intriguing as of the built-in generation and

Key Dynamics in Computer Programming82

backtracking mechanisms, that provide an additional degree of control
abstraction (Kennedy and Schwartz, 1975).

3.4.4. SETL
The set is the most fundamental data structure in SETL. SETL may be
utilized to generate generalized programs that are highly abstract and hence
very brief because sets have been the most generic mathematical structure
by which all mathematical structures have been created. In the sense that
mathematical descriptions may be directly executed, the programs are
similar to logic programming. Set theory notation is utilized: {x | p(x)},
which denotes the set of all x for whom the logical expression p(x) is true.
A mathematical specification of the prime numbers set, for instance, maybe
phrased as follows:
{n | ¬∃m[(2 ≤ m ≤ n – 1)∧(n mod m = 0)]}

This formula is written as follows: the set of integers such that no number
m among 2 and n – 1 divides n without leaving a remainder.

We simply interpret the description into a one-line SETL program to
print all primes in the range 2 to 100:

print({n in {2.100} — not exists m in {2.n–1} — (n mod m) = 0});
Essentially, all such languages approach creation from a mathematical

standpoint, asking how may an understanding theory be executed, instead
of from an engineering standpoint, asking how may instructions be given
to the memory and CPU. These sophisticated programming languages are
extremely beneficial for tough programming jobs when it has been critical
to concentrate on the issue rather than on lower-level aspects such as syntax
and semantics (Dubinsky, 1995).

Data-oriented languages are not very much famous as compared to
they once were, owing to competition from new language approaches
like functional and logical programming, as well as the ability to integrate
these data-oriented processes into regular languages such As C++ and Ada
utilizing object-oriented approaches. Nonetheless, the languages are both
technically fascinating and extremely useful for the programming tasks for
which they had been created. Students must try to learn at least one of such
languages since they expand their understanding of how a programming
language might be organized (Grove et al., 1997).

Fundamentals of Programming Languages 83

3.5. OBJECT-ORIENTED LANGUAGES
OOP is a way of arranging programs that involves recognizing real-world
or other objects and then building modules that comprise all the information
and readable statements required to show a certain class of objects. There
is a clear separation inside such a module between the class’s abstract
characteristics that are exposed for usage through other objects and the
execution that is concealed so that it may be changed with no impact on the
remaining system (Figure 3.9) (Blanchet, 1999).

Figure 3.9. Main concepts in object-oriented programming.

Source: https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/.

Simula, the 1st OOP language, had been developed by K. Nygaard
and O.J. Dahl in the 1960s for the simulation of system: every sub-system
participating in the simulation had been written as an object. Because every
subsystem might have several instances, a class may be created to describe
every subsystem, and objects of this type may then be allocated (Ferber,
1989).

With the Smalltalk programming language, the Xerox Palo Alto
Research Center promoted OOP. The same research gave birth to today’s
popular windowing systems, and one of Smalltalk’s biggest advantages is
that it is not just a language, although an entire programming environment.
Smalltalk’s technological breakthrough was to demonstrate that a language

Key Dynamics in Computer Programming84

may be created using simply objects and classes as structural structures,
negating the necessity to bring these notions into a “normal” language.

Operation dispatching, Allocation, and type checking are dynamic (run-
time) rather than static (static) in such pioneering object-oriented languages,
which has hampered widespread acceptance of OOP (compile-time). Without
getting into specifics, the effect is that programs written in such languages
have a memory and time overhead that may be exorbitant in several kinds of
systems. Furthermore, static sort checking is increasingly seen as critical for
the development of trustworthy software. As a result, Ada 83 only included
a portion of the language features needed for OOP (Snyder, 1986).

C++ demonstrated that the full OOP machinery can be implemented in
a way that is compatible with type-checking and static allocation, as well as
fixed overhead for dispatching; the dynamic needs of OOP are only utilized
as required. Ada 95’s OOP support was built on concepts comparable to
those present in C++.

To get these benefits, although, it is not required to splice OOP support
onto current languages. The Eiffel language is comparable to Smalltalk in
that classes and objects are the sole way to structure code, and it is alike
to Ada 95 and C++ in that it has been statically type-checked and object
execution may be dynamic or static depending on the situation. Eiffel is a
fantastic choice for a first programming language because of its simplicity
in comparison to “hybrids” and complete support for OOP. Java is both a
programming language and a framework for creating network software. The
syntax is similar to C++, but the semantics are significantly different since,
such as Eiffel, this is a “pure” OO language that needs robust type checking
(America and Linden, 1990).

We will go through OOP language support in Java, C++, and Ada 95 in
great depth. A brief introduction of Eiffel would also demonstrate what a
“pure” OOP language looks like.

3.6. NON-IMPERATIVE LANGUAGES
All the programming languages that we have covered having one thing in
common: the assignment statement, that instructs the computer to transfer
information from one location to another, is their fundamental statement.
This is a rather modest degree of abstraction when compared to the number
of abstractions required to address the issues we wish to tackle through the
use of computing. Modern programming languages prefer to define an issue

Fundamentals of Programming Languages 85

and then leave it to the computer to find out how to resolve it, instead of
detailing in greater depth how to transfer information from one location to
another (Kumar and Wyatt, 1995).

Newer software packages are composed of computer languages that are
quite abstract. It is possible to define a sequence of database structures and
screens using an application generator, as well as the generator will then
automatically generate the lower-level instructions required to implement
the program. Similarly, simulation programs, desktop publishing software,
spreadsheets, and other similar applications provide substantial abstraction
programming capabilities. However, one downside of this form of software
is that it is typically restricted in terms of the kinds of applications that
may be readily programmed. In the perspective that you may customize the
package to run the program you require simply by the supply of descriptions
as parameters, it seems logical that they are referred to as parameterized
programs (Figure 3.10) (Raihany and Rabbianty, 2021).

Figure 3.10. Programming language paradigms.

Source: https://www.learncomputerscienceonline.com/computer-program-
ming/.

Another way to express a computation in abstract programming is to use
logical implications, functions, equations, or any other formalism. Because
mathematical formalisms are employed, these languages are truly basic-
purpose programming languages that are not restricted to a single application
domain. The compiler does not convert the program into machine code;

Key Dynamics in Computer Programming86

alternatively, it tries to resolve a mathematical problem, the answer of which
is regarded as the program’s outcome. Such programs may be an order of
magnitude less than typical programs since loops, pointers, indices, and other
details are taken out. The fundamental issue with descriptive programming
is that computational operations like I/O to a screen or disc do not fit well
with the paradigm, necessitating the use of standard programming tools
(Aguado and Pine, 2002).

There are two non-imperative language formalisms that we will explore
programming may be divided into two types of programming:

•	 Functional Programming: Programming that is depending
upon the mathematical principles of pure functions, such as log
and sin, which do not reconfigure their environments, in contrast
to so-called functions in an ordinary language such as C, which
may have drawbacks;

•	 Logic Programming: Programs are demonstrated as formulas
in mathematical logic, and the “compiler” tries to interpret the
logical reasoning of such formulas to resolve issues.

Programs written in an abstract, non-imperative language may not aspire
to be as effective as hand-coded C programs. However, this is not the case.
When a software system should search through enormous volumes of data or
resolve issues whose answer may not be explicitly specified, non-imperative
languages should be used instead of imperative ones. Pattern matching
(genetics, vision), Language processing (style checking, translation), and
optimization of the process are all instances of AI (scheduling). It is expected
that these languages would become more popular as implementation methods
improve and it becomes increasingly hard to construct dependable software
systems in traditional programming languages (Jones, 2004).

It is strongly suggested that students learn to program in logical and
functional programming languages as their 1st programming languages
so that they learn how to work at high degrees of abstraction from the
beginning as compared if they had been introduced to programming through
C or Pascal.

3.7. STANDARDIZATION
The significance of standardization cannot be overstated. Programs may be
translated from one machine to another if a standard for the language exists

Fundamentals of Programming Languages 87

and compilers follow it. If you are building software that will work on a
variety of systems, you should follow a set of guidelines. However, keeping
track of dozens or even hundreds of computer-specific elements would make
your maintenance duty incredibly difficult (Rao et al., 2021).

For most of the languages covered here, standards are available (or are
in the works). Regrettably, the standards had been submitted years after
the languages gained popularity and therefore should maintain computer-
specific peculiarities from premature executions. The language of Ada
is unique in that the standards (1983 and 1995) had been developed and
assessed concurrently with the language’s design and execution. Moreover,
the standard is maintained, allowing compilers to be compared primarily on
cost and performance instead of standard conformance. Other languages’
compilers can feature a mode that warns you if you use a non-standard
construct. If these constructions are required, they must be contained in a
small number of well-documented modules (Patel et al., 2022).

3.8. COMPUTABILITY
Logicians researched abstract principles of computing in the 1930s, long
before digital computers had been conceived. Both Alan Turing and Alonzo
Church created exceedingly basic models of computing (referred to as
Turing machines and Lambda calculus, correspondingly), and subsequently
established the Church-Turing Thesis (Kari and Thierrin, 1996):

In one of these models, you may do any useful calculation.
Turing machines are relatively basic; there are only two data declarations

in C syntax:
char tape[…]; int current = 0;
Wherein the tape has the ability to go on forever. A program is made up

of every number of statements of the following format:
L17: if (tape[current] == ‘g’) {tape[current++] = ‘j’; go to L43;}
A Turing machine’s statement is executed by the following stages:
• Read and inspect the current character on the tape’s current cell;
• Replace the character with a different one (optional);
• Increase or decrease the current cell’s pointer.

Key Dynamics in Computer Programming88

REFERENCES
1. Adeli, H., & Paek, Y. J., (1986). Computer-aided design of structures

using LISP. Computers & Structures, 22(6), 939–956.
2. Aguado-Orea, J., & Pine, J. M., (2002). There is no evidence for a ‘no

overt subject’ stage in early child Spanish: A note on Grinstead (2000).
Journal of Child Language, 29(4), 865–874.

3. Ahmed, F. Y., Yusob, B., & Hamed, H. N. A., (2014). Computing with
spiking neuron networks a review. International Journal of Advances
in Soft Computing & its Applications, 6(1), 1–14.

4. Ali, M. S., Babar, M. A., Chen, L., & Stol, K. J., (2010). A systematic
review of comparative evidence of aspect-oriented programming.
Information and software Technology, 52(9), 871–887.

5. Alkhatib, G., (1992). The maintenance problem of application software:
An empirical analysis. Journal of Software Maintenance: Research
and Practice, 4(2), 83–104.

6. America, P., & Van, D. L. F., (1990). A parallel object-oriented language
with inheritance and subtyping. ACM SIGPLAN Notices, 25(10), 161–
168.

7. Antolík, J., & Davison, A. P., (2013). Integrated workflows for spiking
neuronal network simulations. Frontiers in Neuroinformatics, 7, 34.

8. Ashraf, M. U., Fouz, F., & Eassa, F. A., (2016). Empirical analysis of
HPC using different programming models. International Journal of
Modern Education & Computer Science, 8(6), 3–12.

9. Atkinson, M. P., & Buneman, O. P., (1987). Types and persistence in
database programming languages. ACM Computing Surveys (CSUR),
19(2), 105–170.

10. Bailes, P. A., (1992). Discovering functional programming through
imperative languages. Computer Science Education, 3(2), 87–110.

11. Bajre, P., & Khan, A., (2019). Developmental dyslexia in Hindi readers:
Is consistent sound‐symbol mapping an asset in reading? Evidence
from phonological and visuospatial working memory. Dyslexia, 25(4),
390–410.

12. Berger, U., (2002). Computability and totality in domains. Mathematical
Structures in Computer Science, 12(3), 281–294.

Fundamentals of Programming Languages 89

13. Berry, G., & Gonthier, G., (1992). The esterel synchronous programming
language: Design, semantics, implementation. Science of Computer
Programming, 19(2), 87–152.

14. Blackwell, A. F., Whitley, K. N., Good, J., & Petre, M., (2001).
Cognitive factors in programming with diagrams. Artificial Intelligence
Review, 15(1), 95–114.

15. Blanchet, B., (1999). Escape analysis for object-oriented languages:
Application to Java. ACM SIGPLAN Notices, 34(10), 20–34.

16. Borning, A., (1981). The programming language aspects of ThingLab,
a constraint-oriented simulation laboratory. ACM Transactions on
Programming Languages and Systems (TOPLAS), 3(4), 353–387.

17. Burgess, C. J., & Saidi, M., (1996). The automatic generation of test
cases for optimizing Fortran compilers. Information and Software
Technology, 38(2), 111–119.

18. Burnett, M. M., & Baker, M. J., (1994). A classification system for
visual programming languages. Journal of Visual Languages and
Computing, 5(3), 287–300.

19. Cann, D., (1992). Retire Fortran? a debate rekindled. Communications
of the ACM, 35(8), 81–89.

20. Cordy, J. R., (2004). TXL-a language for programming language tools
and applications. Electronic Notes in Theoretical Computer Science,
110, 3–31.

21. Davidsen, M. K., & Krogstie, J., (2010). A longitudinal study of
development and maintenance. Information and Software Technology,
52(7), 707–719.

22. Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E.,
Pecevski, D., & Yger, P., (2009). PyNN: A common interface for
neuronal network simulators. Frontiers in Neuroinformatics, 2, 11.

23. Davison, A. P., Hines, M., & Muller, E., (2009). Trends in programming
languages for neuroscience simulations. Frontiers in Neuroscience, 3,
36.

24. Denning, P. J., (1978). Operating systems principles for data flow
networks. Computer, 11(07), 86–96.

25. Dubinsky, E., (1995). ISETL: A programming language for learning
mathematics. Communications on Pure and Applied Mathematics,
48(9), 1027–1051.

Key Dynamics in Computer Programming90

26. Egli, H., & Constable, R. L., (1976). Computability concepts for
programming language semantics. Theoretical Computer Science,
2(2), 133–145.

27. Ferber, J., (1989). Computational reflection in class-based object-
oriented languages. ACM SIGPLAN Notices, 24(10), 317–326.

28. Fisher, D. A., (1978). DoD’s common programming language effort.
Computer, 11(3), 24–33.

29. Flatt, M., Findler, R. B., Krishnamurthi, S., & Felleisen, M., (1999).
Programming languages as operating systems (or revenge of the son of
the lisp machine). ACM SIGPLAN Notices, 34(9), 138–147.

30. Fourment, M., & Gillings, M. R., (2008). A comparison of common
programming languages used in bioinformatics. BMC Bioinformatics,
9(1), 1–9.

31. Ghannad, P., Lee, Y. C., Dimyadi, J., & Solihin, W., (2019). Automated
BIM data validation integrating open-standard schema with visual
programming language. Advanced Engineering Informatics, 40, 14–
28.

32. Gilmore, D. J., & Green, T. R. G., (1984). Comprehension and recall
of miniature programs. International Journal of Man-Machine Studies,
21(1), 31–48.

33. Ginsburg, S., & Rose, G. F., (1963). Some recursively unsolvable
problems in ALGOL-like languages. Journal of the ACM (JACM),
10(1), 29–47.

34. Green, T. R. G., & Petre, M., (1996). Usability analysis of visual
programming environments: A ‘cognitive dimensions’ framework.
Journal of Visual Languages & Computing, 7(2), 131–174.

35. Grove, D., DeFouw, G., Dean, J., & Chambers, C., (1997). Call graph
construction in object-oriented languages. In: Proceedings of the
12th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Vol. 3, pp. 108–124).

36. Hansen, P. B., (1975). The programming language concurrent pascal.
IEEE Transactions on Software Engineering, (2), 199–207.

37. Heim, B., Soeken, M., Marshall, S., Granade, C., Roetteler, M., Geller,
A., & Svore, K., (2020). Quantum programming languages. Nature
Reviews Physics, 2(12), 709–722.

38. Heller, J., & Logemann, G. W., (1966). PL/I: A programming language
for humanities research. Computers and the Humanities, 2, 19–27.

Fundamentals of Programming Languages 91

39. Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Morales, J. F.,
& Puebla, G., (2008). An overview of the ciao multiparadigm language
and program development environment and its design philosophy.
Concurrency, Graphs, and Models, 2, 209–237.

40. Hjelle, K. L., Halvorsen, L. S., & Overland, A., (2010). Heathland
development and relationship between humans and environment along
the coast of western Norway through time. Quaternary International,
220(1, 2), 133–146.

41. Holgeid, K. K., Krogstie, J., & Sjøberg, D. I., (2000). A study of
development and maintenance in Norway: Assessing the efficiency of
information systems support using functional maintenance. Information
and Software Technology, 42(10), 687–700.

42. Hutcheon, A. D., & Wellings, A. J., (1988). Supporting Ada in a
distributed environment. ACM SIGAda Ada Letters, 8(7), 113–117.

43. Ishikawa, Y., Hori, A., Sato, M., Matsuda, M., Nolte, J., Tezuka,
H., & Kubota, K., (1996). Design and implementation of metalevel
architecture in C++-MPC++ approach. In: Proceedings of Reflection
(Vol. 96, pp. 153–166).

44. Japaridze, G., (2003). Introduction to computability logic. Annals of
Pure and Applied Logic, 123(1–3), 1–99.

45. Jeffery, C., Thomas, P., Gaikaiwari, S., & Goettsche, J., (2016).
Integrating regular expressions and SNOBOL patterns into string
scanning: A unifying approach. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing (Vol. 3, pp. 1974–1979).

46. Jones, N. D., (2004). Transformation by interpreter specialization.
Science of Computer Programming, 52(1–3), 307–339.

47. Kaijanaho, A. J., (2014). The extent of empirical evidence that could
inform evidence-based design of programming languages: A systematic
mapping study. Jyväskylä Licentiate Theses in Computing, 2(18), 1–13.

48. Kari, L., & Thierrin, G., (1996). Contextual insertions/deletions and
computability. Information and Computation, 131(1), 47–61.

49. Kennedy, K., & Schwartz, J., (1975). An introduction to the set
theoretical language SETL. Computers & Mathematics with
Applications, 1(1), 97–119.

50. King, K. N., (1992). The evolution of the programming languages
course. In: Proceedings of the Twenty-Third SIGCSE Technical
Symposium on Computer Science Education (pp. 213–219).

Key Dynamics in Computer Programming92

51. Kiper, J. D., Howard, E., & Ames, C., (1997). Criteria for evaluation
of visual programming languages. Journal of Visual Languages &
Computing, 8(2), 175–192.

52. Krogstie, J., (1996). Use of methods and CASE-tools in Norway:
Results from a survey. Automated Software Engineering, 3(3), 347–
367.

53. Krogstie, J., Jahr, A., & Sjøberg, D. I., (2006). A longitudinal study
of development and maintenance in Norway: Report from the 2003
investigation. Information and Software Technology, 48(11), 993–
1005.

54. Kumar, D., & Wyatt, R., (1995). Undergraduate AI and its non-
imperative prerequisite. ACM SIGART Bulletin, 6(2), 11–13.

55. Lorenzen, T., (1981). The case for in class programming tests. ACM
SIGCSE Bulletin, 13(3), 35–37.

56. McCusker, G., (2003). On the semantics of the bad-variable constructor
in Algol-like languages. Electronic Notes in Theoretical Computer
Science, 83, 169–186.

57. McIntyre, D. B., (1991). Language as an intellectual tool: From
hieroglyphics to APL. IBM Systems Journal, 30(4), 554–581.

58. Mészárosová, E., (2015). Is python an appropriate programming
language for teaching programming in secondary schools. International
Journal of Information and Communication Technologies in Education,
4(2), 5–14.

59. Moot, R., & Retoré, C., (2019). Natural language semantics and
computability. Journal of Logic, Language, and Information, 28(2),
287–307.

60. Murphree, E. L., & Fenves, S. J., (1970). A technique for generating
interpretive translators for problem-oriented languages. BIT Numerical
Mathematics, 10(3), 310–323.

61. Ottenstein, K. J., Ballance, R. A., & MacCabe, A. B., (1990). The
program dependence web: A representation supporting control-,
data-, and demand-driven interpretation of imperative languages. In:
Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, 2(1), 257–271.

62. Palumbo, D. B., (1990). Programming language/problem-solving
research: A review of relevant issues. Review of Educational Research,
60(1), 65–89.

Fundamentals of Programming Languages 93

63. Patel, P., Torppa, M., Aro, M., Richardson, U., & Lyytinen, H., (2022).
Assessing the effectiveness of a game‐based phonics intervention for
first and second grade English language learners in India: A randomized
controlled trial. Journal of Computer Assisted Learning, 38(1), 76–89.

64. Persson, M., Bohlin, J., & Eklund, P., (2000). Development and
maintenance of guideline-based decision support for pharmacological
treatment of hypertension. Computer Methods and Programs in
Biomedicine, 61(3), 209–219.

65. Raihany, A., & Rabbianty, E. N., (2021). Pragmatic politeness of the
imperative speech used by the elementary school language teachers.
OKARA: Journal Bahasa dan Sastra, 15(1), 181–198.

66. Rajaraman, V., (2014). JohnMcCarthy—Father of artificial intelligence.
Resonance, 19(3), 198–207.

67. Rao, C., TA, S., Midha, R., Oberoi, G., Kar, B., Khan, M., & Singh,
N. C., (2021). Development and standardization of the DALI-DAB
(dyslexia assessment for languages of India – dyslexia assessment
battery). Annals of Dyslexia, 71(3), 439–457.

68. Reddy, U. S., (2002). Objects and classes in Algol-like languages.
Information and Computation, 172(1), 63–97.

69. Rosen, S., (1971). Programming languages: History and fundamentals
(Jean E. Sammet). SIAM Review, 13(1), 108.

70. Sammet, J. E., (1972). Programming languages: History and future.
Communications of the ACM, 15(7), 601–610.

71. Sammet, J. E., (1991). Some approaches to, and illustrations of,
programming language history. Annals of the History of Computing,
13(1), 33–50.

72. Sanner, M. F., (1999). Python: A programming language for software
integration and development. J Mol Graph Model, 17(1), 57–61.

73. Smith, D. C., Cypher, A., & Spohrer, J., (1994). KidSim: Programming
agents without a programming language. Communications of the ACM,
37(7), 54–67.

74. Snyder, A., (1986). Encapsulation and inheritance in object-oriented
programming languages. In: Conference Proceedings on Object-
Oriented Programming Systems, Languages, and Applications (Vol. 2,
No. 2, pp. 38–45).

Key Dynamics in Computer Programming94

75. Swanson, E. B., & Beath, C. M., (1990). Departmentalization in
software development and maintenance. Communications of the ACM,
33(6), 658–667.

76. Sward, R. E., Carlisle, M. C., Fagin, B. S., & Gibson, D. S., (2003). The
case for Ada at the USAF academy. In: Proceedings of the 2003 Annual
ACM SIGAda International Conference on Ada: The Engineering of
Correct and Reliable Software for Real-Time & Distributed Systems
Using Ada and Related Technologies (Vol. 3, No. 2, pp. 68–70).

77. Swift, J. A., & Mize, J. H., (1995). Out-of-control pattern recognition
and analysis for quality control charts using lisp-based systems.
Computers & Industrial Engineering, 28(1), 81–91.

78. Trichina, E., (1999). Didactic instructional tool for topics in computer
science. ACM SIGCSE Bulletin, 31(3), 95–98.

79. Valverde, S., & Solé, R. V., (2015). Punctuated equilibrium in the
large-scale evolution of programming languages. Journal of The Royal
Society Interface, 12(107), 20150249.

80. Van, W. A., Mailloux, B. J., Peck, J. E., Kostcr, C. H. A., Sintzoff,
M., Lindsey, C. H., & Fisker, R. G., (1977). Revised report on the
algorithmic language ALGOL 68. ACM SIGPLAN Notices, 12(5),
1–70.

81. Vella, M., Cannon, R. C., Crook, S., Davison, A. P., Ganapathy, G.,
Robinson, H. P., & Gleeson, P., (2014). libNeuroML and PyLEMS: Using
python to combine procedural and declarative modeling approaches in
computational neuroscience. Frontiers in Neuroinformatics, 8, 38.

82. Vinueza-Morales, M., Borrego, D., Galindo, J. A., & Benavides, D.,
(2020). Empirical evidence of the usage of programming languages
in the educational process. IEEE Transactions on Education, 64(3),
213–222.

83. Wasserman, A. I., & Prenner, C. J., (1979). Toward a unified view
of database management, programming languages, and operating
systems—A tutorial. Information Systems, 4(2), 119–126.

84. Yang, H., Torp-Smith, N., & Birkedal, L., (2006). Semantics of
separation-logic typing and higher-order frame rules for Algol-like
languages. Logical Methods in Computer Science, 2, 1–23.

INTRODUCTION TO PYTHON
PROGRAMMING

4

CONTENTS
4.1. Introduction .. 96

4.2. Output: Print Statement .. 98

4.3. Arithmetic Expressions: A First Look .. 104

4.4. Variables in Python ... 104

4.5. Arithmetic Expressions in Python .. 109

4.6. Reading User Input In Python ... 115

4.7. Examples of Programs Using The Input() Statement 117

4.8. Math Class .. 119

References ... 124

CHAPTER

Key Dynamics in Computer Programming96

4.1. INTRODUCTION
Computers, in their innate machine language, can understand 0s and 1s.
All your computer’s executable programs are made up of these 1s and 0s
that inform your computer simply what to do. Humans, on the other hand,
are terrible at communicating with 0s and 1s (Van Rossum, 2003). Things
would go extremely slowly if we had to write our instructions to computers
in this fashion all the time, and we would have a lot of disgruntled computer
programmers, to say the least (Zhang, 2015). Fortunately, there are two
typical ways that programmers may use to avoid having to write their
instructions in 0s and 1s to a computer:

• Compiled languages; and
• Interpreted languages.
Compiled languages allow programmers to build programs in a

programming language that is easily understandable by humans (Ekmekci
et al., 2016). An executable file is created by converting this program into
a series of zeros and ones, which is known as an executable file, which the
computer can read and comprehend (Liang, 2013; Fangohr, 2015). It is
through this executable file that the computer can function. If one wants to
make changes to the way their program operates, they must first make the
necessary modifications to the program and then recompile (retranslate) the
program in order to produce an updated executable file that the computer can
recognize and use (Figure 4.1) (Nosrati, 2011; Linge and Langtangen, 2020).

Figure 4.1. Applications of Python programming.

Source: https://www.javatpoint.com/python-applications.

Introduction to Python Programming 97

An interpreted language differs from a traditional language in that, instead
of performing all the translation rapidly, the compiler first converts a few of
this code written in a human-understandable language to an unstructured
format, and then this form is “interpreted” into a sequence of 1s and 0s
that the machine comprehends and can instantly execute. As a result, both
translation and execution are taking place at the same time (Bogdanchikov
et al., 2013).

Python is a programming language that is interpreted. IDLE is a common
Python programming environment in which students frequently create
python applications. It provides students with two distinct ways to build
and run Python applications in this environment (Pajankar, 2017). Because
Python is an interpreted language, students have the option of writing a
single line of python code and seeing the outcomes right away. On the other
hand, students can go to a different window, enter all their controls in this
window first, and then run their program to see how it functions. The first way
allows students to view the outcomes of their assertions in real-time while
they are being processed. The second method is more conventional in that it
involves first constructing a whole program before compiling it and viewing
its results of it. The first strategy is beneficial when it comes to learning.
Students, on the other hand, must eventually construct their programs using
the second way as a starting point (Van Rossum, 2007; Lakshminarayanan
and Prabhakaran, 2020). Figure 4.2 will be presented to you when you open
IDLE (Version 3.2.2) for the first time.

Figure 4.2. Python shell window.

Source: https://zbook.org/read/2752b_-python-chapter-1-introduction-to-pro-
gramming-in-python-.html.

Key Dynamics in Computer Programming98

4.2. OUTPUT: PRINT STATEMENT

4.2.1. Print Statement: Basic Form
The prompt (>>>) asks the user to type a python line that will be interpreted.
A print statement is the simplest basic line of code for displaying a result
(Figure 4.3) (Taori and Dasararaju, 2019). Consider the following scenario:
>>> print(“Hello World!”)
The following output will appear when you hit enter from the IDLE editor:
Hello World!
Just look at the following:
>>> print(Hello World)
The following error will appear as IDLE response:
SyntaxError: invalid syntax

Figure 4.3. Python print window.

Source: https://computercorner.ca/python-print-function/.

The syntax rules of programming languages are quite rigorous. The
difference between programming languages and English is that even if a
grammatical rule is violated, most people yet grasp the substance of the
message; however, in programming languages, if the tiniest rule is shattered,
the interpreter cannot offset by repairing the error (Radenski, 2006; Kadiyala,
and Kumar, 2017). Instead, the interpreter generates an error message that

Introduction to Python Programming 99

informs the programmer of the problem that has occurred. As a result, the
message itself is not very useful in this situation because it is not very
detailed. In certain circumstances, the error messages are more precise than
they are here. When comparing the two statements, it is easy to see that the
only thing that separates them is the absence of a pair of double quotes in
the second one (which worked). This is the syntax error that was committed
previously (Kadiyala and Kumar, 2018).

Having established the correct syntax of the print statement in Python,
we can now present it informally:

print(‘string expression’) is a function that prints a string expression.
The term “print” is used first, followed by a pair of enclosing parentheses

to complete the sentence (). It is necessary to supply a proper string expression
within the parentheses.

The string literal is the first class of string expression we will study. For
the purposes of this definition, “literal” means “according to or involving,
or consisting of in, or consisting of the fundamental or exact meaning of
the word; neither metaphorical nor figurative.” Literal simply refers to the
concept of “constant” in programming (Srinath, 2017). A literal expression
is one that does not have the ability to modify its value. String literals in
Python, along with many other programming languages, are denoted by a
pair of double quotes that match exactly. With a few exceptions, everything
included within the double quotes is regarded as a series of characters, or a
string, in the exact same manner as it was written (Tanganelli et al., 2015;
Kadiyala and Kumar, 2018).

Consequently, the importance of print (“Hello World!”) in Python is
just to print out precisely what is included within the double quotes of that
phrase. First, try printing out numerous texts that you have written yourself
before continuing.

4.2.2. Print Statement: Escape Sequences
You may discover certain restrictions after playing with the print statement.
Try printing a message on numerous lines employing a statement with a
single print, like the following:

Python is chill!
After entering “Python” in the center of the print statement, one option

is to physically hit the enter key. Unfortunately, this results in the mistake:
SyntaxError: EOL as scanning string literal

Key Dynamics in Computer Programming100

The term “end of the line” refers to the end of a process. Because the
entire Python statements should fit on a single line, the interpreter was
waiting to read, represented by the second double quotation, ahead of the
close of the line. The interpreter understood the string literal had not been
finished when it reached the close of the line, which also signified the close
of the statement (Cai et al., 2005; Nagpal and Gabrani, 2019).

To “correct” this problem, we will need a mechanism to tell the translator
that we want to go on to the next line without typing the enter key. Python,
like several other programming languages, has broken sequences to cope
with the problems. A code for a character that should not be interpreted
accurately is an avoid sequence (Holkner and Harland, 2009; Saabith et
al., 2019). The evade sequence for the latest line character, for example,
is n. When these two characters appear in a string literal in such order,
the interpreter understands not to display a backslash and an. Instead, it
recognizes these two characters as the code for a different line character
when they are combined (Manaswi et al., 2018; Kumar and Panda, 2019).
Therefore, to print out.

Python is fun!
print(“Python\nis\nfun!”)
Now there is a list of frequently employed escape sequences:

Character Escape Sequence
Single-quote \’
Double quote \”
Backslash \\
Tab \t

The remainder of the information is available in Python’s online
documentation.

As a result, one method of printing the following is as follows:
Joe says, “Hi!”
is as follows:
print(“Joe says, \”Hi!\”“)

4.2.3. Second Way to Denote a String Literal in Python
Python varies from other languages in that it offers two methods for
specifying string literals. Rather than using double quotes to begin and finish

Introduction to Python Programming 101

a literal string, single quotes can be used instead. Either option is acceptable
(van Rossum, 1995; De Pra et al., 2018). As a result, the above message may
be written out more easily as follows:
print(‘Joe says, “Hi!”‘)

The python interpreter understands from the start of the statement that
the programmer is employing single quotes to signify the end and start of
the string literal, so it may regard the double-quote it finds as a double quote
rather than the string’s end (Nosrati, 2011).

4.2.4. Automatic Newlines between Prints
When we use IDLE, we are usually obliged to get the outcomes of a single
line of code right away. Various genuine computer programs, on the other
hand, entail arranging a series of instructions ahead of time and then seeing
the outcomes of all those instructions running deprived of having to write in
separately novel commands one by one as the program runs (Agarwal and
Agarwal, 2006).

We will be able to examine the impact of running two print statements in
a row using this method. To do so, just click on the “File” menu in IDLE’s
main window and pick the first option, “New Window.” A single empty
window will appear after this option (Agarwal and Agarwal, 2008). Type the
subsequent into the window from here:

print(“Hello “) print(“World!”)
Once you have done so, navigate to the “File” menu in the new tab and

select the option “Save As.” Select the directory in which you want to store
this file and type a name in the box labeled “File Name” in the dialog box
that appears (van Rossum and de Boer, 1991). Something simple like hello.
py will do the trick. Even though the file type is already displayed below,
make sure to include the.py extension. This will make sure that the IDLE
editor’s emphasis will be visible when you open it. As soon as you have
saved the file, you will be able to execute and understand it. Select “Run
Module” from the “Run” menu on the main menu bar (Kuhlman, 2009;
Kelly, 2019). Following this procedure, you will see the following output:

Hello
World!
Python, by default, inserts a delimiter character between each print

statement, which has resulted in the above situation (Milliken, 2020). While

Key Dynamics in Computer Programming102

this is typically beneficial, there will be instances in which the programmer
does not need the program to necessarily move to the next line of code
(Van Rossum et al., 1995; Taori and Dasararaju, 2019). This automated
functionality can be turned off by including the following code in the print
statement:
print(“Hello,” end = ““) print(“World!”)

With the comma following the literal string, we are informing the print
assertion that we have additional evidence for it to consider. To be more
specific, we are requesting that our print be terminated with nothing rather
than with the standard newline character. Keep in mind that we may put
any string in the interior of the double quotes following the equal sign, and
anything we identify will be written at the conclusion of the print statement
that we are now running. The second print does not follow the same
specification as the first, resulting in the newline character being written
after the exclamation point in this situation (Watkiss, 2020; Khoirom et al.,
2020).

There are various peculiarities to basic printing that need to be considered,
but for now, this should be enough. Additional printing regulations will be
implemented if needed.

4.2.5. String Operators (+, *)
The Python programming language also has two operators for string
chain: string chain (+) and frequent string chain (*). When two strings are
concatenated together, it is merely the effect of inserting one string behind
another. For instance, the chain of the words “pie” and “apple” results in the
phrase “apple pie.” A chain of the similar text more than once is just a function
that repeats the similar string a specified number of times. For instance, in
Python, multiplying “ahh” by four results in the string “ahhahhahhahh.”

It is important to note that these operators are also valid for numbers
and that they are defined in a distinct way for numbers. Overloading is the
word used to describe the practice of using two separate definitions for the
same thing in a programming language (Van Rossum et al., 2001; Hall and
Stacey, 2009). Because of this, the Plus sign in Python is congested and may
be used to denote two distinct meanings. (This is a regular occurrence in
English.) When it comes to signing anything, the verb “to sign” can indicate
either to write one’s signature or to transmit an idea using sign language.
By examining the two objects that are being “added,” the computer chooses
which of the two meanings to employ (Craven, 2016). Python does string

Introduction to Python Programming 103

concatenation if both input elements are strings as well. If both variables
are numbers, Python adds them together. Python generates an error if one
of the items is a string and the other is a number. If, on the other hand,
you want to do repeated string concatenation, one of the two objects being
multiplied must be a string, and the other must be a non-negative integer.
Normal multiplication happens if both items are numbers. If both items are
strings, an error occurs if both things are numbers (Hunt, 2019; Bynum et
al., 2021). The subsequent instances explain these rules:
print(“Happy “+”Anniversary!”) print(4 + 5) print(“4 + 5”) print(“4”+”5”)
print(4*5) print(4*”5”) print(“4”*5) print(“I won’t be available.\n”*3)
If we save this segment as a.py file and execute it, we get the following
results:
Happy Anniversary!
9
4 + 5
45
20
555
4444
I won’t be available.
I won’t be available.
I won’t be available.

The following statements each cause an error:
print(4+”5”) print(“4”+5) print(“you”*”me”)
The errors are as follows:
TypeError: can’t multiply sequence by non-int of type ‘str’
TypeError: unsupported operand type(s) for +: ‘int’ and ‘str’
TypeError: can’t convert ‘int’ object to str implicitly
The interpreter alerts you to the fact that a type error has arisen in each

circumstance. For the second item, it was anticipating a number in the first
statement, a string in the second statement, and another number in the third
statement.

Key Dynamics in Computer Programming104

4.3. ARITHMETIC EXPRESSIONS: A FIRST LOOK

4.3.1. Standard Operators (+, –, *, /)
Arithmetic computations are one of the most common procedures included
in all computer programmers. These are used as parts of entire statements
but understanding the principles of arithmetic expressions generally is vital
so that we can figure out exactly how the Python interpreter evaluates every
expression (Ekmekci et al., 2016). By inputting any arithmetic phrase into
the interpreter, we may quickly examine its value:
>>> 3+4
7
>>> 17–6
11
>>> 2 + 3*4
14
>>> (2 + 3)*4
20
>>> 3 + 11/4
5.75

In a Python application, none of these expressions would ever be used
as a full line. The samples provided here are solely for educational purposes.
We will learn how to use arithmetic expressions in Python scripts very soon
(Alzahrani et al., 2018; Schäfer, 2021).

The four operators are given, multiplication (*), subtraction (–), and
addition (+), all function in the same way they did in elementary school.
Division and multiplication take precedence over subtraction and addition,
as seen in the examples above, and parenthesis can be used to specify
the order in which operations should be performed (Dubois et al., 1996;
Tateosian, 2015).

4.4. VARIABLES IN PYTHON

4.4.1. The Idea of a Variable
One of the reasons computers programmers are so effective is that they can
do computations with a variety of numbers while still following a similar set

Introduction to Python Programming 105

of instructions. The usage of variables is one method of accomplishing this.
Instead of computing 5*5, if we could compute side*side for any value of
side, we would be able to measure the area of any square rather than the area
of a square with side 5. Variables are simple to utilize in Python. You may
insert the name of the variable in your code whenever you wish to utilize
it (Donat, 2014; Hunt, 2019). The one drawback is that when you initially
make a variable, it lacks a well-defined value, so you cannot utilize it in a
framework that requires one.

The simplest approach to introduce a variable is to use an assignment
statement, as seen below:

>>> side = 5
The variable produced is called side, and the line above assigns the

value 5 to it (Figure 4.4). The following is a representation of memory at
this moment in time:

If we go along with this statement:
>>> area = side*side
In memory, then our picture is as follows:

Figure 4.4. Two Python variables referencing the same object.

Source: https://python-course.eu/python-tutorial/data-types-and-variables.
php.

Key Dynamics in Computer Programming106

Let us look at what is going on. An assignment statement is any statement
that has a variable to the left of a single equal sign and an expression to the
right of that equal sign (Subero, 2020; Rajagopalan, 2021). An assignment
statement’s objective is to assign a value to a variable. It operates in a two-
step procedure:

• To use the current values of the variables, evaluate the present
value of the expression on the right;

• Alter the value of the left-hand variable to this value.
As a result, the side was equal to 5 in the statement above at the time it

was performed. As a result, side*side was calculated to be 25. The area box
was then replaced with the value 25.

4.4.2. Printing Out the Value of a Variable
Obviously, we do not FIND OUT any indication that the variables are these
two values when we run these two lines in IDLE. To do so, we will want
to understand that in Python how to print the value of a variable. The most
straightforward method is as follows:
>>> print(side)
5
>>> print(area)
25

It is worth noting that we do not use double quotes in these prints. If we
had done the following, we would have:
>>> print(“area”) area
>>> print(“side”) side

Rather than the values of the relevant variables, the words in concern
would have been printed. What we observe here is that anything between
double quotes is displayed as is, except for escape sequences, which do not
alter. To print the value of a variable, new construction must be used (Hajja
et al., 2019; Elumalai, 2021).

“What if we want to publish a variable’s value as well as some text in
the same print?” is another logical question that occurs. We can achieve
this in Python by using commas to separate each thing we want to print, as
demonstrated below:
>>> print(“The area of a square with side,”side,”is,”area)

Introduction to Python Programming 107

A square with five sides has a 25-square-foot size.
While reading the text above, you will see that Python automatically

included a space between each item indicated in print (there are four things
total) even though we did not specifically include a space in the output. This
is the default configuration in Python, and it is often quite beneficial in many
situations (Tang et al., 2014; Nanjekye, 2017). But what if we wanted to put
a semicolon directly after the number 25 in the above statement? A space
would be added between the number 5 and period if we placed a comma
after the area and the string.”“ after it.

4.4.3. Increment Statement
Take into account the statement that comes after the first two statements in
the preceding section, which is a little unclear at first:

>>> side = side + 1
The mathematical concept of a variable equaling itself plus one is

known as the equality theorem. This assertion, on the other hand, is not a
contradiction in programming. As a result of following the guidelines, we
can observe that side is identical at the time of the present assessment. As a
result, the right-hand side of the assignment statement is equal to 5 plus 1,
which is equal to 6. The next step is to alter the value of the variable on the
left to this number, which is 6 (Izaac and Wang, 2018; Pajankar, 2022). The
image that corresponds to this sentence is as follows:

Execute the following line to demonstrate that this is really what
happened:
>>> print(“area =,”area,”side =,”side) area = 6 side = 25

One important point to note is that the area is STILL 25. After the side
was updated, it did not magically transform to 36. Python only runs the
instructions that are passed to it. As a result, if we were to recalculate the
area of a square having side 6, we would have to do it.

If we execute the following lines of code again after switching sides, we
will get the same result:
>>> area = side*side

Key Dynamics in Computer Programming108

>>> print(area)
36

Since we expressly reassessed side*side and placed this new value in
return into the variable area, we can see that area has now changed to 36.

4.4.4. Rules for Naming a Variable
It goes without saying that a variable cannot be called anything. As an
alternative, Python contains criteria for determining which names are
applicable for variables and which names are not. To be more specific, the
only characters that can be used in a variable name are letters, numerals, and
the underscore(“_”). Moreover, the names of variables must not begin with
a number (Meulemans et al., 2015; Gerrard, 2016).

Generally, while it is not compulsory, it is regarded excellent
programming type to name variables in a way that is related to the function
that the variable performs. As seen in the preceding instance, the variables
area and side both describe the type of data that has been saved in those
variables. If the variables were labeled b and a, for example, somebody else
who was reading the code would have a much harder time determining what
the function was doing (Rashed et al., 2012; Rawat, 2020). Whether it is
out of laziness or for other reasons, many new programmers fall into the
practice of designing short variable names that are unrelated to the function
of the variable in question. These programmers do not have much trouble
with little programmers, but when dealing with bigger programmers, it may
be quite difficult to hunt out errors if the role of a variable is not instantly
obvious (Figure 4.5) (Oliphant, 2007; Chapman and Stolee, 2016).

Figure 4.5. Variable naming rules for Python.

Source: https://www.slideshare.net/p3infotech_solutions/python-program-
ming-essentials-m5-variables.

Introduction to Python Programming 109

4.4.5. Two Program Examples
We can create a standalone program using the above set of statements by
typing the subsequent in a separate tab and saving it as a python program:
Joe Clark
9/10/2019
The area of a square may be calculated using Python.
side = 5 area = side*side
print(“The area of a square with side,”side,”is,”area)
When you run this program, you will get the following results:
A square with 5 sides has a 25-square-foot size.

4.4.6. Comments
Others find it difficult to read large chunks of code. Programmers frequently
include comments in their code to assist others. A comment is a section
of code that the interpreter ignores but that anyone viewing the code may
see. It provides some fundamental information to the reader. At the start of
each program, a header comment is added. It contains information about the
file’s author(s), the date it was created/edited, and the program’s purpose.
In Python, the pound sign (#) is used to indicate a comment. The translator
treats all text after the pound symbol on a line as a comment (Tateosian,
2015; Poole, 2017).

4.5. ARITHMETIC EXPRESSIONS IN PYTHON
We utilized arithmetic statements on the right-hand side of the assignment
declaration in the two examples in the preceding section (equal sign). So
that there is no misunderstanding, Python provides its own set of rules for
evaluating these expressions. Until now, we have only shown that division
and multiplication take preference over subtraction and addition, as is
commonly taught in elementary school math (Pilgrim and Willison, 2009;
Rak-Amnouykit et al., 2020). Moreover, parentheses have priority over
everything else and can also be employed to “force” the order in which
operations are assessed, as seen in the previous line of code:
total_price = item_price*(1+tax_rate/100)

Before multiplying, we analyze the values of the parenthesis in this
equation. We do division first when analyzing the content of the parenthesis

Key Dynamics in Computer Programming110

since it takes priority over addition. For instance, if the tax rate is 7, we
divide 7 by 100 to get 0.07, which we then multiply by 1 to obtain 1.07. The
present value of item price is then multiplied by 1.07, and the total price is
allocated (Meurer et al., 2017; Lukasczyk et al., 2020).

Python additionally gives us with three more operators:
• %, for modulus;
• **, for exponentiation;
• //, for integer division.
Further subsections explain how each of these operators works, as well

as the order in which they should be used.

4.5.1. Exponentiation (**)
Because the caret sign () is commonly associated with multiplications on
best calculators that children employ in grade school, many pupils learn to
associate it with exponentiation initially. Mostly programming languages,
however, the caret symbol is either not specified or denotes rather other than
involution (Bergstra et al., 2010; Hamrick et al., 2013).

Exponentiation is not defined by an operator in some computer languages,
although it is in Python. The operator is only intended to be used with real
numbers. Here are a few examples of how it may be used:
>>> 2 ** 3
8
>>> 3 ** 5
243
>>> 4 ** 10
1048576
>>> 25 **.5
5.0
>>> 2 ** –3
0.125
>>> 9999 ** 0
1
>>> –5 ** –3

Introduction to Python Programming 111

–0.008
>>> –5 ** 3
–125
>>> 1.6743 ** 2.3233
3.311554089370817

When both operands of a multiplications operation are integers, and the
result is also an integer, the result is stated as one. The response will be written
as a real number with decimals if both operands are integers; however, the
answer is not. If an exponent b is –ve, ab is described as 1/a–b, as shown in
the instances above (Vanhoenacker and Sandra, 2006; Furduescu, 2019).

4.5.2. Integer Division (/ /)
/ is a second division operator in Python that does integer division. The
result of an integer division operation; in particular, is always an integer.
The highest number of whole times b divides into an is defined as a/b in
particular. Here are a few instances of integer division being used to evalu-
ate expressions:
>>> 25//4
6
>>> 13//6
2
>>> 100//4
25
>>> 99//100
0
>>> –17//18
–1
>>> –1//10000000
–1
>>> –99999999//99999999
–1
>>> –25//4 –7
>>> –13//6 –3

Key Dynamics in Computer Programming112

>>> –12//6 –2
>>> –11//6
–2
>>> 0//5
0

Please keep in mind that Python approaches this operation in a different
way than several other programming languages and in a different way
than most people’s instinctive understanding of integer division. When the
majority of people see –13/6, they are likely to conclude that this is quite
near to –2, and hence that the answer should be –2, which is incorrect. In
contrast, if we look at the technical definition of integer division in Python,
we can see that –2 is more than –13/6, which is about –2.166667, and that
the highest integer less than or equal to this figure is –3.166667 (Gálvez et
al., 2009; Munier et al., 2019).

In addition, the definition of integer division in Python does not need that
the two numbers that are being divided be integers in order for the division
to take place. Consequently, integer division procedures are permitted even
for values that are not in the integer range. Think the following examples:
>>> 6.0 // 3.0
2.0
>>> 2.4 // 2.5 0.0
>>> 6.6 //.02
330.0
>>> –45.3 // –11.2
4.0
>>> 45.3 // –11.2
–5.0

Because this Python feature is infrequently utilized, no more information
will be provided at this time.

4.5.3. Modulus Operator (%)
The modulus operator, which is indicated by the percent sign (%), is likely to
be unfamiliar to individuals who have never coded before. When it comes to
mathematics, the modulus is normally identified just for integers. In Python,

Introduction to Python Programming 113

on the other hand, the modulus operator is provided for both real numbers
and integers, as opposed to other programming languages. It is possible that
the result will be an integer if both integers are operands; otherwise, the
answer will be a real number (Henry et al., 1984; Reas and Fry, 2006).

To put it another way: logically, the modulus operator determines the
residual in a division, whereas integer division calculates the proportion in a
division. Another way of thinking about modulus is that it is just the amount
of remaining when two integers are divided by each other. Positive integers
in Python are represented correctly by the intuitionistic notion given above.
Negative numbers, on the other hand, are a different matter (Bielak, 1993;
Nakhle and Harfouche, 2021).

The formal description of a % b is as observes:
a % b assesses to a – (a // b)*b.
The full number of times b splits into an is represented by a / b. As

a result, we are searching for the total number of times b enters a and
subtracting that many multiples of b from a to get the “leftover.”

Here are several traditional mod examples that only use non-negative
values:
>>> 17 % 3
2
>>> 37 % 4
1
>>> 17 % 9
8
>>> 0 % 17
0
>>> 98 % 7
0
>>> 199 % 200
199

In these cases, we can see that if the first value is ever smaller than
the second value, the operation’s answer is just the first value because the
second value divides it 0 times. In the remaining cases, we can see that we
can get the solution by simply subtracting the proper number of multiples of
the second number (Iyengar et al., 2011; Kopec, 2014).

Key Dynamics in Computer Programming114

Negative integers, on the other hand, must be plugged into the formal
definition rather than relying on instinct. Consider the following examples:
>>> 25 % –6
–5
>>> –25 % –6
–1
>>> –25 % 6
5
>>> –48 % 8
0
>>> –48 % –6
0
>>> –47 % 6
1
>>> –47 % 8
1
>>> –47 % –8
–7

The essential problem that determines the first two outcomes is that the
two integer divisions 25/–6 and –25/–6 have different answers. The first
yields a score of –5, whereas the second yields a score of 4. As a result, we
compute –6 × –5 = 30, from which we remove 5 to get 25. For the second,
we multiply –6 × 4 to get – 24, then remove 1 to get –25.

Examine if you can use the description provided to understand each of
the other responses listed directly above.

The modulus operator is also provided for real numbers in Python, with
a similar definition as before. Here are some instances of its use:
>>> 12.4 % 6.1
0.20000000000000018
>>> 3.4 % 3.5 3.4
>>> 6.6 %.02
7.216449660063518e–16
>>> –45.3 % –11.2

Introduction to Python Programming 115

–0.5
>>> 45.3 % –11.2
–10.7

Looking at the third and first cases, we can see that the result provided
by Python is somewhat different from what we would have expected.
The first is expected to be just 0.2, and the third is expected to be zero.
Sadly, a large quantity of real numbers is not correctly kept in the computer
(Jackowska-Strumiłło et al., 2013; Jun Zhao et al., 2013). In fact, this is true
in all computer programming languages. Because of this, there are some
minor round-off mistakes in computations using real numbers every now
and again. Round-off errors are represented by the numbers 1 and 8 at the
very end of the number, on the right-hand side of the number. It is worth
noting that the last component of the third example is simply the number
10–16 multiplied by the previously revealed number; therefore, the entire
section written indicates the round-off error, which is still negligible since
it is < 10–15. If we do not require extreme accuracy in our calculations, we
may live with the little inaccuracies created by real number computations
performed on a standard computer. The more sophisticated the calculations
are, the higher the possibility of a mistake cascading to other computations
(Chapman and Chang, 2000). However, for the sake of this discussion, we
will just believe that our real number of solutions is “near sufficient” to our
requirements (Kuhlman, 2009; Chen et al., 2019).

4.6. READING USER INPUT IN PYTHON

4.6.1. Input Statement
Python creates reading user input relatively simple. Python, in particular,
ensures that the user is always presented with a prompt to add data. Consider
the example given below.
>>> name = input(“How are you?\n”)

How are you?
Fine

>>> print(“Nice to meet you, “name.,”“ sep=““) Nice to meet you, Joe.
By doing so, rather than the print constantly publishing a similar name,

it will print the name that the user has typed into the text box. The important
thing to remember is that the input speech read in what the user provided,

Key Dynamics in Computer Programming116

and then the assignment declaration, which had the equal sign, allocated
this value to the variable name. After that, we were free to use any name we
wanted, aware that the value given by the user would be saved (Liang, 2013;
Derezińska and Hałas, 2014).

It was difficult to expand upon our prior algorithms, which computed
the price of an item with tax and the surface area of a square, so they
constantly computed the same price and area. The user’s input would make
our software far more effective if we enabled them to enter the necessary
numbers so that our program could assess the information, THEY were keen
on (Xu et al., 2021).

Before we get into the specific changes that must be done to these
programmers for them to accept user input, we should briefly discuss the
input function. It always returns a string representation of whatever data
it has received from the user. If the user submits an invalid number, like
“79,” the input statement will return “79” because of the invalid number. If
you want to be literal, this is a string that is the letter “7” subsequently the
character “9,” rather than the number “79.” As a result, we require a technique
for converting the text “79” into the number 79. This is accomplished by the
use of a function that transforms its input into a new type (Goldbaum et al.,
2018; Ortin and Escalada, 2021). The int function can be used to convert a
string into an integer:
>>> age = int(input(“What is your name, “+name+”?\n”))
What is your name? Joe
>>> print(“Your name is ”,name,”. You are ”,age,” years old.”, sep=““) Your
name is Simone. You are 22 years old.

We had to utilize the int function to convert the string returned by the
input function keen on an integer in this example. The variable age was then
assigned to this. As a result, age saves an integer rather than a string.

You will notice that rather than commas, which we originally used while
learning the print statement, plus signs, which denote string concatenation,
were used to prompt Simone. This is because, whereas the print statement
accepts multiple things separated by commas, the input statement only accepts
a single string. As a result, we were obliged to use string concatenation to
generate a single string (Ade-Ibijola, 2018; Verstraelen et al., 2021). We
were enabled to concatenate the variable name with the remainder of the
message since it is a string. If we had struggled to feed the input function

Introduction to Python Programming 117

distinct items divided by commas, we would have received the following
error notice:
>>> age = int(input(“What is your name, ”,name,”?\n”))

Traceback (most recent call last): File “<pyshell#13>”, line 1, in
<module> age = int(input(“What is your name, ”,name,”?\n”)) TypeError:
input estimated at most 1 arguments, got 3

The final line of IDLE’s yield explains what happened. The input function
assumes one parameter, or piece of information, however we supplied it
three, because commas are used to divide bits of information (arguments)
passed to it.

4.7. EXAMPLES OF PROGRAMS USING THE INPUT()
STATEMENT

4.7.1. Making More General Programs
Our examples have all involved writing programmers that performed
extremely precise computations, and we have only been able to do it in one
case. Consider the case in which we only discovered the area of a single
unique square or the price of a single item with tax. Because not all the
products we purchase will be the same price, this is not useful (Hedges et
al., 2019; Sundnes, 2020).

When it comes to pricing questions, it would be wonderful if the same
application could answer them all. This is where we can benefit from user
feedback. Rather than being compelled to assign a variable to a certain value,
we may merely ask the user to input a number and then set a variable to that
value, enabling the user to determine the computation that takes place in the
program (Zhu et al., 2018). Here is a version of the software that estimates
the area of a square that has been modified to accept user feedback:
Joe Clark
9/10/2019
Python Program to determine the area of a square – using user input.
side = int(input(“Please put the side of your square.\n”)) area = side*side
print(“The area of a square with side,”side,”is,”area)

Key Dynamics in Computer Programming118

4.7.2. Temperature Conversion Example
Though most people in the United States measure temperature using the
Fahrenheit scale, many other people utilize the Celsius system. When a user
enters a temperature of Celsius, our application will automatically convert
the temperature to Fahrenheit. As an example, consider the following
formula for conversion:
F = 1.8C + 32
Here is the program:
Joe Clark
9/10/2019
Convert Celsius to Fahrenheit with this program.
temp_cel = float(input(“Put the temperature in Celsius.\n”)) temp_fahr =
1.8*temp_cel + 32;
print(temp_cel,”degrees Celsius =,”temp_fahr,”degrees Fahrenheit.”)
Here is an example of the software in action:
>>>
Put the temperature in Celsius.
37
37.0 degrees Celsius = 98.60000000000001 degrees Fahrenheit.
>>>

4.7.3.	Fuel	Efficiency	Example
Consider the subsequent problem:

You have decided to go on a road trip. The odometer reading on your
car’s dashboard is visible when you fill up your petrol tank. Later in the
journey, you can check how much petrol is left in the tank as well as the
mileage on the odometer (O’Boyle et al., 2008; Zandbergen, 2013). We
want to figure out how many miles we can travel before we have to stop
for petrol again based on all this information. To account for the possibility
of making a mistake, we would want to arrive at our destination several
kilometers before our gasoline would run out. However, for the sake of
simplicity, we will simply compute when we anticipate running out of petrol
in this program if we maintain a constant fuel efficiency while driving the
car (Robitaille et al., 2013; Li and García, 2021).

Introduction to Python Programming 119

This challenge is a little more difficult to solve than the preceding
problems. It is preferable to step back and think about the issue, sketching
out what variables we want to utilize and how we want to solve it rather than
instantly entering the IDLE window.

When we look at the issue statement, we can see that we need to get the
subsequent information from the user:

• Initial odometer reading;
• Gas tank size;
• At the halfway point, the odometer reads;
• How much is gas left at the intersection?
The difference between variables 3 and 1 reflects the distance traveled,

whereas the difference between variables 2 and 4 shows the quantity of gas
consumed during the time period under consideration. The result of dividing
the former by the latter will be our fuel economy, expressed in miles per
gallon. Because we know how several gallons of petrol is left in the tank, we
can multiply that figure by our fuel efficiency to determine how much longer
we can continue driving on it (Mukha and Liefvendahl, 2018).

4.8. MATH CLASS
In designing computer programs, some variables and functions that are
often connected with mathematics are valuable. These are part of the math
library in Python. Many supplementary libraries containing functions
to aid the programmer are widespread in Python and practically all other
programming languages (Roberts et al., 2010; Sasso et al., 2021). In order
to utilize a library in Python, an import statement must be included at the top
of the file. We just added the code to import the math library:
import math

At the start of our python file.
Let us have a look at some of the functions and constants in the Python

math library:
math.pi is a rough approximation of the circumference to diameter ratio of a
circle. math.e – an estimate of the natural logarithm’s base.
math.ceil(x) – Returns the smallest integer > or equal to it, as a float. math.
fabs(x) – Returns the absolute value of x. math.factorial(x) – Returns x
factorial, which is 1 * 2 * 3 *… *x. math.floor(x) – Returns the greatest
integer less than or equal to x as a float.

Key Dynamics in Computer Programming120

math.exp(x) – Returns ex. math.log(x) – Returns ln x. math.log(x, base) –
Returns logbasex. math.sqrt(x) – Returns the square root of x.
math.cos(x) – Returns the cosine of x radians. math.sin(x) – Returns the sine
of x radians. math.tan(x) – Returns the tangent of x radians.

To call these functions, we must put “math.” previously the name of every
function, as seen in the list above. To avoid confusion with other functions
having the same name, we need to identify which library the function comes
from (Krause and Lindemann, 2014; Guo et al., 2020).

Let us have a look at a handful of Python scripts that use the math
package.

4.8.1. Circle Area and Circumference Example
The area of a circle (A = πr2) is a common formula given to all geometry
students. We will ask the user to enter a circle’s radius and print out the
associated circumference (C = 2πr) and area in this software. In our
computations, we will utilize the value of pi from the math library.
(C = 2πr)
Joe Clark
9/10/2019
Estimates the circumference and area of a circle, given its radius.
import math
radius = int(input(“What is the radius of your circle?\n”))
area = math.pi*(radius**2) circumference = 2*math.pi*radius
print(“The area of your circle is ”,area,”.“,sep=““)
print(“The circumference of your circle is ”,circumference,”.“,sep=““)
The running of this program is given:
>>>
What is the radius of your circle?
5
The area of your circle is 78.53981633974483.
The circumference of your circle is 31.41592653589793.
>>>

Introduction to Python Programming 121

4.8.2. Koolaid Example Revisited
The most challenging aspect of the Koolaid program was accurately
estimating the number of cups we needed to sell in order to fulfill our profit
target. With the following line of code, we avoided an “off by one mistake:

num_cups = (target + profit_per_cup – 1) // profit_per_cup
If you think about it, what we actually wanted to do was divide the

variable’s aim and profit per cup on a regular basis, but we only wanted to
take the maximum value! For example, if we were required to sell 7.25 cups
to meet our objective, we would be unable to do it (Gorgolewski et al., 2011;
Langtangen, 2016). We just need to sell the entire cup to make a total of 8
cups! Now that we know how to use the math library, we can update this line
of code to make it much more understandable, as seen below:
num_cups = int(math.ceil(target/profit_per_cup))

4.8.3. Number of Possible Meals
Several restaurants boast about how many different meal options they have.
Usually, this just means that they can select a specific quantity of products
from a larger batch for the “meal.” The number of means to pick k things out
of n is, which is interpreted as “n choose k” in mathematics. The formula for
calculating a mixture is as follows:

Let us imagine that a combo meal includes a number of appetizer options
out of a total. We will ask the user to input the four values below:

• The maximum number of appetizers that can be served;
• The number of appetizers that can be included in the combination

is limited;
• Total possible number of entrees; and
• The combo’s maximum number of entrees.
In order to compute both of the necessary combinations, we may make

use of the factorial function. In order to achieve our final answer, we can
merely add the results of both calculations together to get our final answer.
This is because each conceivable option of appetizers can be matched with
each possible choice of entrees (VanderPlas et al., 2018). For example, a
two-dimensional framework with the rows labeled by all appetizers and the
columns labeled by all entrees may be used to represent this.

In this instance, we will make one last change to our program before we
are finished. For several programming languages, code begins by performing

Key Dynamics in Computer Programming122

from a function called the main function. While it is not required in Python,
it is a good practice to get into the habit of identifying a function main in
any programming language. It will be beneficial when transferring to other
programming languages, and as the python programs, you develop become
longer than a few lines, having the main function will be handy from an
organizational standpoint. This may be included in your program by simply
including the subsequent line just before your program’s guidelines:
def main():

Python necessitates constant indenting; therefore, every statement within
the main function must be indented as well. Four spaces or a tab are used
to indicate a normal indentation. Following the completion of your code in
main, you must invoke the function mainly because all you have done so far
has been to declare the function (Combrisson et al., 2017). However, just
because a function is defined does not imply that it will be used. It is only
utilized if and when it is requested. The following is an example of how to
invoke the function main:
main()
Putting this all together, we have the subsequent program:
Joe Clark
9/10/2019
Analyzes the number of possible combo meals. import math
Several languages define a function main, which starts execution. def
main():
Get the user information. numapps = int(input(“How many total appetizers
are there?\n”)) yourapps = int(input(“How many of those do you get to
choose?\n”)) numentrees = int(input(“How many total entrees are there?\n”))
yourentrees = int(input(“How many of those do you get to choose?\n”))
#Calculate the combinations of appetizers and entrees.
appcombos = (math.factorial(numapps)/math.factorial(yourapps)
/math.factorial(numapps-yourapps)) entreecombos = (math.
factorial(numentrees)/math.factorial(yourentrees) /math.
factorial(numentrees-yourentrees))
Output the final answer.
print(“You can order,” int(appcombos*entreecombos), “different meals.”)
#Call main!
main()

Introduction to Python Programming 123

A single line of code that spans two lines is another new feature in this
application. This happens with both the app combos and entree combos’
assignment statements. An extra set of parentheses is needed to persuade
Python to understand that the whole expression goes on a single line. There
are various ways to signal that many lines of code correspond to a single line
of code, but this is the recommended one:
appcombos = math.factorial(numapps)/math.factorial(yourapps) \
/math.factorial(numapps-yourapps)

Key Dynamics in Computer Programming124

REFERENCES
1. Agarwal, K. K., & Agarwal, A., (2006). Simply python for CS 0.

Journal of Computing Sciences in Colleges, 21(4), 162–170.
2. Agarwal, K., Agarwal, A., & Celebi, M. E., (2008). Python puts a

squeeze on java for CS0 and beyond. Journal of Computing Sciences
in Colleges, 23(6), 49–57.

3. Alzahrani, N., Vahid, F., Edgcomb, A., Nguyen, K., & Lysecky, R.,
(2018). Python versus C++ an analysis of student struggle on small
coding exercises in introductory programming courses. In: Proceedings
of the 49th ACM Technical Symposium on Computer Science Education
(pp. 86–91).

4. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R.,
Desjardins, G., & Bengio, Y., (2010). Theano: A CPU and GPU math
compiler in python. In: Proc. 9th Python in Science Conf. (Vol. 1, pp.
3–10).

5. Bielak, R., (1993). Object oriented programming: The fundamentals.
ACM SIGPLAN Notices, 28(9), 13–14.

6. Bogdanchikov, A., Zhaparov, M., & Suliyev, R., (2013). Python to
learn programming. In: Journal of Physics: Conference Series (Vol.
423, No. 1, p. 012027). IOP Publishing.

7. Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson,
B. L., Siirola, J. D., & Woodruff, D. L., (2021). A brief python tutorial.
In: Pyomo—Optimization Modeling in Python (pp. 203–216). Springer,
Cham.

8. Cai, X., Langtangen, H. P., & Moe, H., (2005). On the performance
of the python programming language for serial and parallel scientific
computations. Scientific Programming, 13(1), 31–56.

9. Chapman, B., & Chang, J., (2000). Biopython: Python tools for
computational biology. ACM SIGBIO Newsletter, 20(2), 15–19.

10. Chapman, C., & Stolee, K. T., (2016). Exploring regular expression
usage and context in python. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis (pp. 282–293).

11. Chen, T., Hague, M., Lin, A. W., Rümmer, P., & Wu, Z., (2019). Decision
procedures for path feasibility of string-manipulating programs
with complex operations. Proceedings of the ACM on Programming
Languages, 3(POPL), 1–30.

Introduction to Python Programming 125

12. Combrisson, E., Vallat, R., Eichenlaub, J. B., O’Reilly, C., Lajnef, T.,
Guillot, A., & Jerbi, K., (2017). Sleep: An open-source python software
for visualization, analysis, and staging of sleep data. Frontiers in
Neuroinformatics, 11, 60.

13. Craven, P. V., (2016). Create a custom calculator. In: Program Arcade
Games (pp. 11–31). A press, Berkeley, CA.

14. De Pra, Y., Fontana, F., & Simonato, M., (2018). Development of
real-time audio applications using python. In: Proceedings of the XXII
Colloquium of Musical Informatics, Udine, Italy (pp. 22–23).

15. De-Ibijola, A., (2018). Syntactic generation of practice novice programs
in python. In: Annual Conference of the Southern African Computer
Lecturers’ Association (pp. 158–172). Springer, Cham.

16. Derezińska, A., & Hałas, K., (2014). Analysis of mutation operators
for the python language. In: Proceedings of the Ninth International
Conference on Dependability and Complex Systems DepCoS-
RELCOMEX (pp. 155–164). Brunów, Poland. Springer, Cham.

17. Donat, W., (2014). Introducing python. In: Learn Raspberry Pi
Programming with Python (pp. 31–50). A press, Berkeley, CA.

18. Dubois, P. F., Hinsen, K., & Hugunin, J., (1996). Numerical python.
Computers in Physics, 10(3), 262–267.

19. Ekmekci, B., McAnany, C. E., & Mura, C., (2016). An introduction
to programming for bioscientists: A python-based primer. PLoS
Computational Biology, 12(6), e1004867.

20. Elumalai, A., (2021). Python loves numbers. In: Introduction to Python
for Kids (pp. 39–58). Apress, Berkeley, CA.

21. Fangohr, H., (2015). Introduction to python for computational
science and engineering. Faculty of Engineering and the Environment
University of Southampton, 68.

22. Furduescu, B. A., (2019). Neuro-linguistic programming: History,
conception, fundamentals, and objectives. Valahian Journal of
Economic Studies, 10(1).

23. Gálvez, J., Guzmán, E., & Conejo, R., (2009). A blended e-learning
experience in a course of object oriented programming fundamentals.
Knowledge-Based Systems, 22(4), 279–286.

24. Gerrard, P., (2016). Input and output. In: Lean Python (pp. 35–41).
Apress, Berkeley, CA.

Key Dynamics in Computer Programming126

25. Goldbaum, N. J., ZuHone, J. A., Turk, M. J., Kowalik, K., & Rosen, A.
L., (2018). unyt: Handle, Manipulate, and Convert Data with Units in
Python. arXiv preprint arXiv:1806.02417.

26. Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko,
Y. O., Waskom, M. L., & Ghosh, S. S., (2011). Nipype: A flexible,
lightweight, and extensible neuroimaging data processing framework
in python. Frontiers in Neuroinformatics, 5, 13.

27. Guo, P. J., Markel, J. M., & Zhang, X., (2020). Learner sourcing at scale
to overcome expert blind spots for introductory programming: A three-
year deployment study on the python tutor website. In: Proceedings of
the Seventh ACM Conference on Learning@ Scale (pp. 301–304).

28. Hajja, A., Hunt, A. J., & McCauley, R., (2019). PolyPy: A web-platform
for generating quasi-random python code and gaining insights on
student learning. In: 2019 IEEE Frontiers in Education Conference
(FIE) (pp. 1–8). IEEE.

29. Hall, T., & Stacey, J. P., (2009). Variables and data types. Python 3 for
Absolute Beginners, 27–47.

30. Hamrick, T. R., & Hensel, R. A., (2013). Putting the fun in programming
fundamentals-robots make programs tangible. In: 2013 ASEE Annual
Conference & Exposition (pp. 23–1012).

31. Hedges, L. O., Mey, A. S., Laughton, C. A., Gervasio, F. L.,
Mulholland, A. J., Woods, C. J., & Michel, J., (2019). BioSimSpace:
An interoperable python framework for biomolecular simulation.
Journal of Open Source Software, 4(43), 1831.

32. Henry, R. C., Lewis, C. W., Hopke, P. K., & Williamson, H. J., (1984).
Review of receptor model fundamentals. Atmospheric Environment
(1967), 18(8), 1507–1515.

33. Holkner, A., & Harland, J., (2009). Evaluating the dynamic behavior of
python applications. In: Proceedings of the Thirty-Second Australasian
Conference on Computer Science (Vol. 91, pp. 19–28).

34. Hunt, J., (2019). A first python program. In: A Beginners Guide to
Python 3 Programming (pp. 23–31). Springer, Cham.

35. Hunt, J., (2019). Python modules and packages. In: A Beginners Guide
to Python 3 Programming (pp. 281–297). Springer, Cham.

36. Iyengar, S. S., Parameshwaran, N., Phoha, V. V., Balakrishnan, N., &
Okoye, C. D., (2011). Fundamentals of Sensor Network Programming:
Applications and Technology (Vol. 41, pp. 1–36). John Wiley & Sons.

Introduction to Python Programming 127

37. Izaac, J., & Wang, J., (2018). Python. In: Computational Quantum
Mechanics (pp. 83–162). Springer, Cham.

38. Jackowska-Strumiłło, L., Nowakowski, J., Strumiłło, P., & Tomczak,
P., (2013). Interactive question based learning methodology and
clickers: Fundamentals of computer science course case study. In: 2013
6th International Conference on Human System Interactions (HSI) (pp.
439–442). IEEE.

39. Jun, Z. Y., Ying, Z. C., & Wang, J., (2013). Innovative practices
teaching mode research of the fundamentals of computer. In: 2013
8th International Conference on Computer Science & Education (pp.
1154–1159). IEEE.

40. Kadiyala, A., & Kumar, A., (2017). Applications of python to evaluate
environmental data science problems. Environmental Progress &
Sustainable Energy, 36(6), 1580–1586.

41. Kadiyala, A., & Kumar, A., (2018). Applications of python to
evaluate the performance of decision tree‐based boosting algorithms.
Environmental Progress & Sustainable Energy, 37(2), 618–623.

42. Kadiyala, A., & Kumar, A., (2018). Applications of python to evaluate
the performance of bagging methods. Environmental Progress &
Sustainable Energy, 37(5), 1555–1559.

43. Kelly, S., (2019). Introducing python. In: Python, PyGame, and
Raspberry Pi Game Development (pp. 11–31). Apress, Berkeley, CA.

44. Khoirom, S., Sonia, M., Laikhuram, B., Laishram, J., & Singh, T. D.,
(2020). Comparative analysis of python and Java for beginners. Int.
Res. J. Eng. Technol., 7(8), 4384–4407.

45. Kopec, D., (2014). Some programming fundamentals. In: Dart for
Absolute Beginners (pp. 15–24). Apress, Berkeley, CA.

46. Krause, F., & Lindemann, O., (2014). Expyriment: A python library
for cognitive and neuroscientific experiments. Behavior Research
Methods, 46(2), 416–428.

47. Kuhlman, D., (2009). A Python Book: Beginning Python, Advanced
Python, and Python Exercises (pp. 1–227). Lutz: Dave Kuhlman.

48. Kumar, A., & Panda, S. P., (2019). A survey: How python pitches in
it-world. In: 2019 International Conference on Machine Learning, Big
Data, Cloud, and Parallel Computing (COMITCon) (pp. 248–251).
IEEE.

Key Dynamics in Computer Programming128

49. Lakshminarayanan, D., & Prabhakaran, S., (2020). A study on python
programming language. Dogo Rangsang Res. J., 10, 2347–7180.

50. Lamy, J. B., (2017). Owlready: Ontology-oriented programming in
python with automatic classification and high level constructs for
biomedical ontologies. Artificial Intelligence in Medicine, 80, 11–28.

51. Langtangen, H. P., (2016). User input and error handling. In: A Primer
on Scientific Programming with Python (pp. 149–225). Springer,
Berlin, Heidelberg.

52. Li, Z., & García, M. H., (2021). pyRiverBed: A python framework to
generate synthetic riverbed topography for constant-width meandering
rivers. Computers & Geosciences, 152, 104755.

53. Liang, Y. D., (2013). For introduction to programming using python.
Displays, 8(8), 8.

54. Linge, S., & Langtangen, H. P., (2020). Programming for Computations-
Python: A Gentle Introduction to Numerical Simulations with Python
3.6 (p. 332). Springer Nature.

55. Lukasczyk, S., Kroiß, F., & Fraser, G., (2020). Automated unit test
generation for python. In: International Symposium on Search-Based
Software Engineering (pp. 9–24). Springer, Cham.

56. Manaswi, N. K., Manaswi, N. K., & John, S., (2018). Deep Learning
with Applications Using Python (pp. 31–43). Bangalore, India: Apress.

57. Meulemans, J., Ward, T., & Knights, D., (2015). Syntax and semantics
of coding in python. In: Hydrocarbon and Lipid Microbiology Protocols
(pp. 135–154). Springer, Berlin, Heidelberg.

58. Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B.,
Rocklin, M., & Scopatz, A., (2017). SymPy: Symbolic computing in
python. Peer J. Computer Science, 3, e103.

59. Milliken, C. P., (2020). Python basics. In: Python Projects for Beginners
(pp. 21–46). Apress, Berkeley, CA.

60. Mukha, T., & Liefvendahl, M., (2018). Eddylicious: A python package
for turbulent inflow generation. SoftwareX, 7, 112–114.

61. Munier, N., Hontoria, E., & Jiménez-Sáez, F., (2019). Linear
programming fundamentals. In: Strategic Approach in Multi-Criteria
Decision Making (pp. 101–116). Springer, Cham.

62. Nagpal, A., & Gabrani, G., (2019). Python for data analytics, scientific,
and technical applications. In: 2019 Amity International Conference on
Artificial Intelligence (AICAI) (pp. 140–145). IEEE.

Introduction to Python Programming 129

63. Nakhle, F., & Harfouche, A. L., (2021). Ready, steady, Go AI: A
practical tutorial on fundamentals of artificial intelligence and its
applications in phenomics image analysis. Patterns, 2(9), 100323.

64. Nanjekye, J., (2017). Printing and backtick repr. In: Python 2 and 3
Compatibility (pp. 1–10). Apress, Berkeley, CA.

65. Nosrati, M., (2011). Python: An appropriate language for real world
programming. World Applied Programming, 1(2), 110–117.

66. O’Boyle, N. M., Morley, C., & Hutchison, G. R., (2008). Pybel: A
python wrapper for the OpenBabel cheminformatics toolkit. Chemistry
Central Journal, 2(1), 1–7.

67. Oliphant, T. E., (2007). Python for scientific computing. Computing in
Science & Engineering, 9(3), 10–20.

68. Ortin, F., & Escalada, J., (2021). Cnerator: A python application for the
controlled stochastic generation of standard C source code. SoftwareX,
15, 100711.

69. Pajankar, A., (2017). Introduction to python. In: Python Unit Test
Automation (pp. 1–17). Apress, Berkeley, CA.

70. Pajankar, A., (2022). Introduction to python 3. In: Hands-on Matplotlib
(pp. 1–28). Apress, Berkeley, CA.

71. Pilgrim, M., & Willison, S., (2009). Dive into Python 3 (Vol. 2, pp.
20–30). New York, NY, USA: Apress.

72. Poole, M., (2017). Extending the design of a blocks-based python
environment to support complex types. In: 2017 IEEE Blocks and
Beyond Workshop (B&B) (pp. 1–7). IEEE.

73. Radenski, A., (2006). “ Python first” a lab-based digital introduction to
computer science. ACM SIGCSE Bulletin, 38(3), 197–201.

74. Rajagopalan, G., (2021). Getting familiar with python. In: A Python
Data Analyst’s Toolkit (pp. 1–43). Apress, Berkeley, CA.

75. Rak-amnouykit, I., McCrevan, D., Milanova, A., Hirzel, M., & Dolby,
J., (2020). Python 3 types in the wild: A tale of two type systems. In:
Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages (pp. 57–70).

76. Rashed, M. G., & Ahsan, R., (2012). Python in computational science:
Applications and possibilities. International Journal of Computer
Applications, 46(20), 26–30.

Key Dynamics in Computer Programming130

77. Rawat, A., (2020). A review on python programming. International
Journal of Research in Engineering, Science, and Management, 3(12),
8–11.

78. Reas, C., & Fry, B., (2006). Processing: Programming for the media
arts. Ai & Society, 20(4), 526–538.

79. Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., & Halpin, P.
N., (2010). Marine geospatial ecology tools: An integrated framework
for ecological geoprocessing with ArcGIS, python, R, MATLAB, and
C++. Environmental Modeling & Software, 25(10), 1197–1207.

80. Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray,
E., Aldcroft, T., & Streicher, O., (2013). Astropy: A community python
package for astronomy. Astronomy & Astrophysics, 558, A33.

81. Saabith, A. S., Fareez, M. M. M., & Vinothraj, T., (2019). Python
current trend applications-an overview. International Journal of
Advance Engineering and Research Development, 6(10).

82. Sasso, A., Morgenstern, J., Musmann, F., & Arnrich, B., (2021).
Devicely: A python package for reading, time shifting and writing
sensor data. Journal of Open Source Software, 6(66), 3679.

83. Schäfer, C., (2021). The basic structure of a python program. In:
Quickstart Python (pp. 9–11). Springer, Wiesbaden.

84. Srinath, K. R., (2017). Python: The fastest growing programming
language. International Research Journal of Engineering and
Technology (IRJET), 4(12), 354–357.

85. Subero, A., (2021). Python programming. In: Programming
Microcontrollers with Python (pp. 107–125). Apress, Berkeley, CA.

86. Sundnes, J., (2020). User input and error handling. In: Introduction to
Scientific Programming with Python (pp. 57–80). Springer, Cham.

87. Tang, T., Rixner, S., & Warren, J., (2014). An environment for learning
interactive programming. In: Proceedings of the 45th ACM technical
symposium on Computer Science Education (pp. 671–676).

88. Tanganelli, G., Vallati, C., & Mingozzi, E., (2015). CoAPthon: Easy
development of CoAP-based IoT applications with python. In: 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT) (pp. 63–68).
IEEE.

89. Taori, P., & Dasararaju, H. K., (2019). Introduction to python. In:
Essentials of Business Analytics (pp. 917–944). Springer, Cham.

Introduction to Python Programming 131

90. Tateosian, L., (2015). Beginning python. In: Python for ArcGIS (pp.
13–35). Springer, Cham.

91. Tateosian, L., (2015). Python for ArcGIS (p. 544). Cham, Switzerland:
Springer.

92. van Rossum, G., & de Boer, J., (1991). Interactively testing remote
servers using the python programming language. CWi Quarterly, 4(4),
283–303.

93. Van, R. G., & Drake, Jr. F. L., (1995). Python Tutorial (Vol. 620, pp.
250–290). Amsterdam, The Netherlands: Centrum Voor Wiskunde en
Informatica.

94. Van, R. G., (2003). In: Drake, F. L., (ed.), An Introduction to Python (p.
115). Bristol: Network Theory Ltd.

95. Van, R. G., (2007). Python programming language. In: USENIX Annual
Technical Conference (Vol. 41, No. 1, pp. 1–36).

96. Van, R. G., Warsaw, B., & Coghlan, N., (2001). PEP 8-style guide for
python code. Python. Org., 1565.

97. VanderPlas, J., Granger, B. E., Heer, J., Moritz, D., Wongsuphasawat,
K., Satyanarayan, A., & Sievert, S., (2018). Altair: Interactive statistical
visualizations for python. Journal of Open Source Software, 3(32),
1057.

98. Vanhoenacker, G., & Sandra, P., (2006). Elevated temperature and
temperature programming in conventional liquid chromatography:
Fundamentals and applications. Journal of separation Science, 29(12),
1822–1835.

99. vanRossum, G., (1995). Python reference manual. Department of
Computer Science [CS], (R 9525).

100. Verstraelen, T., Adams, W., Pujal, L., Tehrani, A., Kelly, B. D.,
Macaya, L., & Heidar‐Zadeh, F., (2021). IOData: A python library for
reading, writing, and converting computational chemistry file formats
and generating input files. Journal of Computational Chemistry, 42(6),
458–464.

101. Watkiss, S., (2020). Getting started with python. In: Beginning Game
Programming with Pygame Zero (pp. 11–49). Apress, Berkeley, CA.

102. Xu, D., Liu, B., Feng, W., Ming, J., Zheng, Q., Li, J., & Yu, Q., (2021).
Boosting SMT solver performance on mixed-bitwise-arithmetic
expressions. In: Proceedings of the 42nd ACM SIGPLAN International

Key Dynamics in Computer Programming132

Conference on Programming Language Design and Implementation
(pp. 651–664).

103. Zandbergen, P. A., (2013). Python Scripting for ArcGIS (p. 358).
Redlands, CA: Esri press.

104. Zhang, Y., (2015). An introduction to python and computer programming.
In: An Introduction to Python and Computer Programming (pp. 1–11).
Springer, Singapore.

105. Zhu, M., McKenna, F., & Scott, M. H., (2018). OpenSeesPy: Python
library for the OpenSees finite element framework. SoftwareX, 7, 6–11.

FUNDAMENTALS OF C
PROGRAMMING

5

CONTENTS
5.1. Introduction .. 134

5.2. A First Program ... 135

5.3. Variants of Hello World ... 136

5.4. A Numerical Example ... 138

5.5. Another Version of the Conversion Table Example 139

5.6. Identifiers .. 140

5.7. Types .. 141

5.8. Constants .. 143

5.9. Symbolic Constants .. 145

5.10. Printf Conversion Specifiers .. 146

References ... 147

CHAPTER

Key Dynamics in Computer Programming134

5.1. INTRODUCTION
C is a common programming language that may be used to create programs
for a wide range of purposes, including operating systems (OSs), numerical
computation, and graphical applications. With just 32 keywords, it is a little
language. It supports both “high-level” structured programming tools like
looping, decision making, and statement grouping, along with “low-level”
capabilities like manipulating addresses and bytes (Embree et al., 1991;
Rajon, 2016).

Because C is a tiny language, it can be explained in a short amount
of time and learned rapidly. A programmer may fairly expect to know,
comprehend, and utilize the complete language on a regular basis (Figure
5.1) (Mészárosová, 2015).

Figure 5.1. Fundamentals of C data types.

Source: https://talentcode.blogspot.com/2020/04/fundamentals-of-c-program-
ming.html.

As a result, C is able to maintain its small size by offering just the most
basic functions inside the language itself and by omitting several of the
higher-level elements that are often found in other languages. In contrast
to other programming languages, C does not include any operations that
interact with composite objects such as arrays or lists. Aside from the static
declaration of local variables and the stack-allocation of those variables,
there are no memory management features. In addition, there are no input/
output capabilities, like writing to a file or printing to the screen on the
computer (Vogel-Heuser et al., 2014).

A large portion of C functionality is provided by software routines known
as functions. An extensive standard library of functions is provided with

Fundamentals of C Programming 135

the language to facilitate the execution of routinely performed activities.
Take, for instance, the standard function printf(), which outputs text to the
screen (or more properly, to standard output, which is usually the screen).
In this work, the standard library will be utilized extensively; thus, it is
crucial to avoid developing your own code when a suitable and accessible
implementation already exists in the standard library (Oliveira et al., 2013;
Qian and Lau, 2017).

5.2. A FIRST PROGRAM
A C program, no matter how big or little, is made up of variables and
functions. Variables hold values utilized during the computation, and
statements indicate the computational processes to be performed.

The program that follows is the standard first program taught in beginning
C courses and textbooks (Figure 5.2).

Figure 5.2. The first program in C.

Source: https://freecomputerbooks.com/C-Programming-Language-and-Soft-
ware-Design.html.

Comments in C begin with a /* and end with a */. They are not nestable
and can span numerous lines. For instance,

/* this makes an effort to nest two comments /* results in just one
comment, ending here: */ and the residual text is a syntax error. */

A typical library header file is included. Libraries provide the majority
of C’s functionality. Header files include information such as function
definitions and macros that are required to utilize these libraries.

The entry-point function for all C programs is main(). There are two
types of this function:
int main(void)
int main(int argc, char *argv[])

Key Dynamics in Computer Programming136

The first accepts no parameters, whereas the second takes command-line
inputs from the program’s execution environment—typically a command
shell. The function returns an integer value (i.e., an integer).

The brackets define the function block’s boundaries. When a function is
finished, the program returns to the function that is called it. The program
stops when main() is called, and control passes to the environment in
which the program was run. The program’s exit status to the environment
is indicated by the integer return value of main(), with 0 indicating regular
termination (Mardan, 2014).

This program just has one statement: a call to the printf() function in the
standard library, which outputs a character string to standard output. Note
that printf() is a function supplied by the standard library, not a part of the
C language. The typical library is a set of functions that must be present
on all ISO C-compliant computers. The printf() method accepts only one
argument in this case: the string constant “Hello World!” The n at the end of
the string is an escape character that indicates the beginning of a new line.
Escape characters are used to indicate characters that are difficult to type or
are not visible. Ultimately, a semicolon marks the end of the sentence (;).
In most cases, C is a free-form language, with program meaning intact by
whitespace. As a result, statements are finished rather than by a new line
(Chan et al., 1992; Kenner et al., 2010).

5.3. VARIANTS OF HELLO WORLD
The output from the subsequent program is equal to that produced by the
previous example. A further line is not automatically created with every
call to printf(), and succeeding strings are merely adjoined together till the
escape character (n) is encountered, as demonstrated (Figure 5.3).

Figure 5.3. Hello word version 2.

Source: https://www.getfreeebooks.com/an-introduction-to-the-c-program-
ming-language-and-software-design/.

Fundamentals of C Programming 137

“Hello, World!” is also printed by the following software. But rather than
publishing the entire string at once, it prints each character as it is received.
A number of new ideas are introduced as a result of this exercise: identifiers,
variables, types, pointers, the 0 (NUL) escape character, array subscripts,
increment operators, logical operators, whereas loops, and text formatting,
among others (Backus, 2003).

This may appear to be a lot, but do not be concerned; you are not required
to grasp everything right once, and everything will be discussed in greater
detail in the following chapters. At this point, it is sufficient to comprehend
the fundamental structure of the code: an index argument, a loop, a string,
and a print statement (Figure 5.4) (McMillan, 2018).

Figure 5.4. Hello word version 3.

Source: https://freecomputerbooks.com/C-Programming-Language-and-Soft-
ware-Design.html.

Before they may be utilized, all variables must be defined. They must be
defined before any statements at the head of a block. When declared, they
can be started by an expression or a constant.

The variable with the identifier I is of the type int, which is an integer
with a value of zero. The identifier str refers to a variable of type char *,
which is a character pointer. The characters in a string constant are referred
to as str in this example.

A while-loop repeats through the string, printing each character one by
one. The loop continues to run as long as the expression (str[i]!= ‘0’) is non-
zero. NOT EQUAL TO is the meaning of the operator!=. The i-th character
in a string is referred to as str[i] (where str[0] is ‘H’). The escape letter ‘0’
specifies that all string constants be indirectly ended with a NUL character
(Caprile and Tonella, 1999; Dimovski et al., 2021).

Key Dynamics in Computer Programming138

While the loop expression is TRUE, the while-loop runs the following
sentence. The printf() function accepts two inputs in this case: a format
string “ percent c” and a constraint str[i++], then outputs the i-th character
of str. The post-increment operator is the expression i++, which returns the
value of I and then increases it to I = I + 1.

This version of the program, unlike earlier versions, provides an exact
return statement indicating the program’s exit status.

•	 Style Note: Take note of the structuring style employed in the
sample code throughout this text, especially the indentation.
Indentation is an important part of designing readable C programs.
Indentation is not important to the compiler, although it does
make the program simpler to understand for programmers (Wang
et al., 2014; Medeiros et al., 2015).

5.4. A NUMERICAL EXAMPLE
This program makes use of a number of variables. These have to be stated
at the beginning of a block, first before statements are written. Variables are
defined by their types, which in this case are int and float, respectively.

Please keep in mind that the * at the beginning of line 10 is not essential
and is just used for cosmetic purposes.

The three integer variables are initialized in the program by the first
three statements in the program (Figure 5.5).

Figure 5.5. Fahrenheit to Celsius conversion table.

Source: https://codecondo.com/20-ways-to-learn-c-programming-for-free/c-
programming-language-and-software-design-by-tim-bailey/.

Fundamentals of C Programming 139

In this step, we initialize the floating-point variable fahr. Take note of the
fact that the two variables are of a distinct type. For types that are compatible
with one another, the compiler conducts automated type conversion
(Schilling, 1995, Duff, 2015).

The while-loop is activated whenever the expression (fahr = upper)
evaluates to FALSE. The operator = denotes that something is < or =
something else. This loop performs a compound statement encased in
braces, which corresponds to the three statements on the first and second
lines of code (Austin et al., 1994).

The printf() command, in this case, is made up of two variables and a
format string, Celsius, and fahr, that are used to display the results. With two
conversion specifiers, percent 3.0f and percent 6.1f, and tab and newline,
two escape characters, the format string can be easily read. For example,
the conversion specifier percent 6.1f formats a floating-point number by
providing space for at least six digits and printing one digit just after the
decimal point, and printing one digit after the decimal point (Westerståhl,
1985; Kimura and Tanaka-Ishii, 2014).
+= generates an expression that is equal to the expression fahr = fahr plus
step.

•	 Style Note: In order to make the code more understandable,
comments should be utilized. They should explain the goal
of the algorithm and point out intricacies in the method. They
should refrain from repeating code slang. It is possible to
significantly minimize the number of comments necessary to
make understandable code by carefully selecting identifiers.

5.5. ANOTHER VERSION OF THE CONVERSION
TABLE EXAMPLE
This version of the exchange table example yields the same results as the
first but adds symbolic constants and a for-loop (Figure 5.6).

Key Dynamics in Computer Programming140

Figure 5.6. Fahrenheit to Celsius conversion table with symbolic constants.

Source: http://www.freebookcenter.net/programming-books-download/An-
Introduction-to-the-C-Programming-Language-and-Software-Design-(PDF-
158P).html.

Names for numerical constants are known as symbolic constants. These
are defined using #define, and they allow us to avoid having numbers pollute
our code. Magic numbers are numbers that are strewn about in code and
should be avoided at all costs (Feldmann et al., 1998; Ferreira, 2003).

Two semicolons divide the three components of the for-loop (;). The
first modifies the loop, the second verify the condition, and the third is
an expression that is run after every loop iteration. The real conversion
expression is contained within the printf() statement; an expression can be
employed everywhere a variable can be used (Gravley and Lakhotia, 1996).

•	 Style Note: Multi-word names should be written like this,
and variables should always start with a lowercase letter. To
distinguish them from variables, symbolic constants should
always be written in UPPERCASE.

5.6. IDENTIFIERS
Identifiers (variable names, function names, and so on) are case-sensitive
and made up of letters and numbers. An identifier’s initial character must be
a letter, including underscore ().

The C programming language features 32 reserved keywords that cannot
be employed as identifiers (e.g., int, while, etc.). Furthermore, avoiding
redefining identifiers employed against the C standard library is a smart idea

Fundamentals of C Programming 141

(Ambriola et al., 1985; Giannotti et al., 1987).
•	 Style Note: For variable names, use lowercase, while for

symbolic constants, use uppercase. External variable names
should be longer and more informative than local variable names.
Variable names can start with an underscore (_). However, this
is discouraged because such names are reserved for library
implements by convention.

5.7. TYPES
C is a typed programming language. Every variable has a type that specifies
what values it may signify, how its data is kept in memory, and what actions
it can execute. The type system lets the compiler catch type-disparity issues
by compelling the programmer to explicitly declare a type for all variables
and interfaces, therefore preventing a large source of faults (Miné, 2006;
Majumdar and Xu, 2007).

In the C programming language, there are three main types: characters,
integers, and floating-point numbers.

The numerical kinds are available in a variety of sizes. A collection of
C types and their generally Works Data Types may be found in Table 5.1.

Table 5.1. C Data Types and Their Normal Sizes

Int Generally, the natural word size for an OS or machine
Char Usually 8-bits (1 byte)
Long int At least 32-bits

Short int As a minimum of 16-bits
Float Generally, 32-bits
Long double Generally, at least 64-bits
Double Usually 64-bits

Sizes may differ from one platform to the next. Almost every modern
processor represents an integer with a minimum of 32 bits, and several
increasingly utilize 64 bits. In general, the size of an int indicates a machine’s
natural word size, the indigenous size with which the CPU processes data
and instructions (Lahiri et al., 2012; Irlbeck, 2015).

The standard simply says that a short int must be as a minimum of 16
bits and a long int must be at least 32 bits in size, and

Key Dynamics in Computer Programming142

short int ≤ int ≤ long int
Except for that, the standard states nothing concerning the size of floating-
point numbers.
float ≤ double ≤ long double.
Below is a program that prints the range of values for various data formats.
In standard headers limitations, parameters like INT MIN can be found
float.h (Figure 5.7).

Figure 5.7. Code for looking at range limits of types.

Source: http://www.freebookcenter.net/programming-books-download/An-
Introduction-to-the-C-Programming-Language-and-Software-Design-(PDF-
158P).html.

•	 Note: The size of the operator can be used to determine the size
of a type in characters. This operator is not a function, despite its
appearance. It is a keyword. It yields a size t unsigned integer,
which is specified in the stddef.h header file (Figure 5.8).

Figure 5.8. Code for printing size of various types.

Source: https://www.getfreeebooks.com/an-introduction-to-the-c-program-
ming-language-and-software-design/.

Fundamentals of C Programming 143

Since they change the size of a fundamental int type, the keywords short
and long are known as type qualifiers. Note the difference between long and
short when employed alone, as in short x.

short a; and long a; are the equivalents of long int and short int. Unsigned,
signed, volatile, and const are other types of qualifiers. The qualifiers
unsigned and signed can be applied to any integer type, including char.
A signed type can hold negative values; the sign-bit is the number’s most
significant bit (MSB), and the value is usually stored in 2’s complement
binary. A 16-bit signed short, for example, may signify the integers 32,768
to 32,767, but a 16-bit unsigned short can express the numbers 0 to 65,535
(Ball and Rajamani, 2001; Alturki, 2017).

•	 Note: By default, integer types are signed. Plain chars, on the
other hand, are either unsigned or signed by default, depending
on the computer.

The qualifier const indicates that the variable to which it references is
immutable.
const int DoesNotChange = 5;

DoesNotChange = 6; /* Error: will not compile */
The qualifier volatile is used to refer to variables whose value may vary

in a way that is outside the power of the program’s usual operations. This
is important for things like multi-threaded programming or interacting with
hardware, which are issues that are outside the range of this document.
The volatile qualifier is not appropriate to standard-compliant C programs,
and as a result, it will not be discussed in any further detail in this chapter
(McMillan, 1993; Yang and Seger, 2003).

Furthermore, there is a type called void, which denotes a type that has
“no value” associated with it. In functions that do not take any arguments,
it is used as an argument, and in functions that return no value, it is used as
a return type.

5.8. CONSTANTS
Different types and presentations of constants exist. This section gives
examples of various constant types. First, the type of the integer constant
1234 is int. The suffix L, 1234L, is added to a long int constant. A U, 1234U,
denotes an unsigned int, while UL denotes an unsigned long (Bryant et al.,
2002; Ringenburg and Grossman, 2005).

Key Dynamics in Computer Programming144

In addition to decimal values, integer constants can be given using a
hexadecimal or octal values. A 0 precedes octal numerals, and a 0 precedes
hex numbers. As a result, 1234 is the decimal equal of 02,322 and 0x4D2. It
is vital to keep in mind that these three constants all embody a similar thing
(0101 1101 0010 in binary)—for instance, the subsequent code.

It is worth noting that C lacks a direct binary representation. The hex
form, on the other hand, is particularly helpful in reality since it divides
binary into four-bit chunks.

After an integer, a decimal point is used to specify floating-point
constants. For instance, 1. and 1.3 are double types, 3.14f and 2.f is float
types, and 7.L is a long double type. The scientific notation may also be used
to write floating-point values, like 1.65e-2. At compilation time, constant
expressions like 3+7+9.2 are assessed and swapped with a single constant
value, 19.2. Constant expressions have no runtime above as a result (Jayaram
and Prasad, 2011; Trudel et al., 2012).

Single quotes are used to provide character constants such as ‘a,’ ‘n,’
and ‘7.’ Character constants are notable since they are of the int type rather
than the char type. On a 32-bit computer, size of (‘Z’) will equal four, not
one. The ASCII character set correlates the integers 0 to 127 with particular
characters.

Certain characters are specified via an “escape sequence” since they
cannot be rendered directly. It is crucial to remember that these escape
characters are, however, single characters. The following is a list of important
escape characters: 0 stands for null, t for tab, n for newline, b for backslash,
v for vertical tab, b for backspace, “ for double quotes, and ‘ for single
quotes (Shahriar and Zulkernine, 2008; Boudjema et al., 2018).

Quotes are used to separate string constants like “This is a string.” A
termination ‘0’ character is implicitly attached to them. As a result, the
aforementioned string constant would have the subsequent character
sequence in memory: This is a string of zero characters (Brooks, 1999;
Vedala and Kumar, 2012).

Ø Note: It is crucial to understand the difference between a character
constant and a NUL ending string constant. The latter is made

Fundamentals of C Programming 145

up of two X0 characters concatenated together. Similarly, size of
(‘X’) on a 32-bit computer is four, but sizeof(“X”) is two.

5.9. SYMBOLIC CONSTANTS
Symbolic constants are names that characterize constant values from the
above-mentioned collection of constant kinds. For instance,

#define TRACK_SIZE (16*BLOCK_SIZE)
#define BLOCK_SIZE 100
#define HELLO “Hello World\n”
#define EXP 2.7183

A symbolic constant is comparable to a direct sentence with the constant
it specifies everywhere it occurs in the code. printf(HELLO); for example,
produces the string Hello World. The use of symbolic constants rather than
direct constant values minimizes the spread of “magic numbers”—numerical
constants strewn across the code. This is critical since magic numbers are
susceptible to errors and provide a significant challenge when trying to make
code modifications. Symbolic constants store constants in one location so
that changes may be made quickly and safely (Radzi et al., 2016).

•	 Note: The #define symbol is a preprocessor command, similar
to the #include a symbol for file inclusion. As a result, it follows
a distinct set of rules than the fundamental C language. It is
important to note that the # must be the first character on a line
and not indented.

An Enum, which is a list of constant integer values, is another type of
symbolic constant.

For instance, Enum Boolean TRUE, FALSE; The enumeration tag
Boolean identifies the enumeration list’s “type,” allowing a variable of that
type to be specified.

Enum Boolean x = FALSE;
If an enumeration list is described, not including an exact tag, it believes

the type int. For instance,
Enum { GREEN =2, RED, BLUE, YELLOW=4, BLACK }; int y =

BLUE;
By default, the value of an enumeration list begins at zero and increases

by one for each successive item. Non-specified members are every > the
preceding member, and list members can be provided explicit integer values.

Key Dynamics in Computer Programming146

•	 Style Note: Uppercase names are provided to symbolic constants
and identifiers as a matter of convention. This distinguishes them
from variables and functions, which should always start with a
lowercase letter, according to the convention. Const-qualified
variables operate as constants. Hence, they should be named in
uppercase or have the initial letter capitalized (Thomas, 1953;
Ventura et al., 2015).

5.10. PRINTF CONVERSION SPECIFIERS
The standard function printf() makes it easy to output formatted text. It uses
several formatting operators and conversion specifiers to combine numerical
values of any type into a character string (Figure 5.9) (Joseph, 2018).

Figure 5.9. Display (printf) code in C.

Source: https://www.getfreeebooks.com/an-introduction-to-the-c-program-
ming-language-and-software-design/.

•	 Important: A conversion specifier and the variable it refers to
must be of the same type. If they are not, the software will either
crash or output junk. printf(“percent f,” 52); / is an example. *
Integer value with floating-point specifier */

Fundamentals of C Programming 147

REFERENCES
1. Alturki, M. A., (2017). A symbolic rewriting semantics of the COMPASS

modeling language. In: 2017 IEEE International Conference on
Information Reuse and Integration (IRI) (pp. 283–290). IEEE.

2. Ambriola, V., Giannotti, F., Pedreschi, D., & Turini, F., (1985).
Symbolic semantics and program reduction. IEEE Transactions on
Software Engineering, (8), 784–794.

3. Austin, T. M., Breach, S. E., & Sohi, G. S., (1994). Efficient detection
of all pointer and array access errors. In: Proceedings of the ACM
SIGPLAN 1994 conference on Programming Language Design and
Implementation (pp. 290–301).

4. Backus, D. J. (2003). 2.9. 1 Obsolescence and Deletions 2.9. 2” Hello
World” Example 2.10 Fortran 95 2.10. 1 Conditional Compilation and
Varying Length Strings 2.11 Fortran 2003 (Vol. 3).

5. Ball, T., & Rajamani, S. K., (2001). Automatically validating temporal
safety properties of interfaces. In: International SPIN Workshop
on Model Checking of Software (pp. 102–122). Springer, Berlin,
Heidelberg.

6. Boudjema, E. H., Faure, C., Sassolas, M., & Mokdad, L., (2018).
Detection of security vulnerabilities in C language applications.
Security and Privacy, 1(1), e8.

7. Brooks, D. R., (1999). The basics of C programming. In: C
Programming: The Essentials for Engineers and Scientists (pp. 23–
69). Springer, New York, NY.

8. Bryant, R. E., Lahiri, S. K., & Seshia, S. A., (2002). Modeling and
verifying systems using a logic of counter arithmetic with lambda
expressions and uninterpreted functions. In: International Conference
on Computer Aided Verification (pp. 78–92). Springer, Berlin,
Heidelberg.

9. Caprile, C., & Tonella, P., (1999). Nomen est omen: Analyzing the
language of function identifiers. In: Sixth Working Conference on
Reverse Engineering (Cat. No. PR00303) (pp. 112–122). IEEE.

10. Chan, S. W., McOmish, F., Holmes, E. C., Dow, B., Peutherer, J. F.,
Follett, E., & Simmonds, P., (1992). Analysis of a new hepatitis C virus
type and its phylogenetic relationship to existing variants. Journal of
General Virology, 73(5), 1131–1141.

Key Dynamics in Computer Programming148

11. Dehnert, J. C., & Stepanov, A., (2000). Fundamentals of generic
programming. In: Generic Programming (pp. 1–11). Springer, Berlin,
Heidelberg.

12. Dimovski, A. S., Apel, S., & Legay, A., (2021). Program sketching
using lifted analysis for numerical program families. In: NASA Formal
Methods Symposium (pp. 95–112). Springer, Cham.

13. Duff, M. J., (2015). How fundamental are fundamental constants?
Contemporary Physics, 56(1), 35–47.

14. Embree, P. M., Kimble, B., & Bartram, J. F., (1991). C Language
Algorithms for Digital Signal Processing (pp. 15–20).

15. Feldmann, T., Kroll, P., & Stech, B., (1998). Mixing and decay
constants of pseudoscalar mesons. Physical Review D, 58(11), 114006.

16. Ferreira, C., (2003). Function finding and the creation of numerical
constants in gene expression programming. In: Advances in Soft
Computing (pp. 257–265). Springer, London.

17. Giannotti, F., Matteucci, A., Pedreschi, D., & Turini, F., (1987).
Symbolic evaluation with structural recursive symbolic constants.
Science of Computer Programming, 9(2), 161–177.

18. Gravley, J. M., & Lakhotia, A., (1996). Identifying enumeration types
modeled with symbolic constants. In: Proceedings of WCRE’96: 4th
Working Conference on Reverse Engineering (pp. 227–236). IEEE.

19. Irlbeck, M., (2015). Deconstructing dynamic symbolic execution.
Dependable Software Systems Engineering, 40, 26.

20. Jayaram, M. A., & Prasad, D. R., (2011). Programming in C Language
(Vol. 1, pp. 150–180). Sapna Book House (P) Ltd.

21. Joseph, L., (2018). Fundamentals of C++ for robotics programming.
In: Robot Operating System (ROS) for Absolute Beginners (pp. 55–94).
Apress, Berkeley, CA.

22. Kenner, A., Kästner, C., Haase, S., & Leich, T., (2010). Typechef:
Toward type checking# ifdef variability in c. In: Proceedings of the 2nd
International Workshop on Feature-Oriented Software Development
(pp. 25–32).

23. Kimura, D., & Tanaka-Ishii, K., (2014). Study on constants of natural
language texts. Information and Media Technologies, 9(4), 771–789.

24. Lahiri, S. K., Hawblitzel, C., Kawaguchi, M., & Rebêlo, H., (2012).
Symdiff: A language-agnostic semantic diff tool for imperative

Fundamentals of C Programming 149

programs. In: International Conference on Computer Aided Verification
(pp. 712–717). Springer, Berlin, Heidelberg.

25. Majumdar, R., & Xu, R. G., (2007). Directed test generation using
symbolic grammars. In: Proceedings of the Twenty-Second IEEE/ACM
international conference on Automated Software Engineering (pp.
134–143).

26. Mardan, A., (2014). Hello world example. In: Pro Express. JS (pp.
15–30). Apress, Berkeley, CA.

27. McMillan, K. L., (1993). The SMV system. In: Symbolic Model
Checking (pp. 61–85). Springer, Boston, MA.

28. McMillan, S., (2018). Making containers easier with HPC container
maker. In: Proceedings of the SIGHPC Systems Professionals Workshop
(HPCSYSPROS 2018), Dallas, TX, USA (Vol. 10, pp. 150–180).

29. Medeiros, F., Rodrigues, I., Ribeiro, M., Teixeira, L., & Gheyi,
R., (2015). An empirical study on configuration-related issues:
Investigating undeclared and unused identifiers. ACM SIGPLAN
Notices, 51(3), 35–44.

30. Mészárosová, E., (2015). Is python an appropriate programming
language for teaching programming in secondary schools. International
Journal of Information and Communication Technologies in Education,
4(2), 5–14.

31. Miné, A., (2006). Symbolic methods to enhance the precision of
numerical abstract domains. In: International Workshop on Verification,
Model Checking, and Abstract Interpretation (pp. 348–363). Springer,
Berlin, Heidelberg.

32. Oliveira, O. L., Monteiro, A. M., & Roman, N. T., (2013). Can natural
language be utilized in the learning of programming fundamentals? In:
2013 IEEE Frontiers in Education Conference (FIE) (pp. 1851–1856).
IEEE.

33. Qian, C., & Lau, K. K., (2017). Enumerative variability in software
product families. In: 2017 International Conference on Computational
Science and Computational Intelligence (CSCI) (pp. 957–962). IEEE.

34. Radzi, N. A. M., Ismail, A., Karunanithi, S., Weng, L. Y., Jern, K. P.,
Hock, G. C., & Krishnan, P. S., (2016). Integrating programming with
BeagleBone black for undergraduate’s “programming for engineers”
syllabus. In: 2016 IEEE 8th International Conference on Engineering
Education (ICEED) (pp. 12–15). IEEE.

Key Dynamics in Computer Programming150

35. Rajon, S. A., (2016). Fundamentals of Computer Programming with C
(Vol. 10, pp. 25–35). SA AHSAN RAJON.

36. Ringenburg, M. F., & Grossman, D., (2005). Preventing format-string
attacks via automatic and efficient dynamic checking. In: Proceedings
of the 12th ACM conference on Computer and Communications Security
(pp. 354–363).

37. Schilling, J. L., (1995). Dynamically-valued constants: An underused
language feature. ACM SIGPLAN Notices, 30(4), 13–20.

38. Shahriar, H., & Zulkernine, M., (2008). Mutation-based testing of
format string bugs. In: 2008 11th IEEE High Assurance Systems
Engineering Symposium (pp. 229–238). IEEE.

39. Shevlyakov, A. N., (2015). Algebraic geometry over Boolean algebras
in the language with constants. Journal of Mathematical Sciences,
206(6), 742–757.

40. Thomas, W. H., (1953). Fundamentals of digital computer programming.
Proceedings of the IRE, 41(10), 1245–1249.

41. Trudel, M., Furia, C. A., Nordio, M., Meyer, B., & Oriol, M., (2012).
C to OO translation: Beyond the easy stuff. In: 2012 19th Working
Conference on Reverse Engineering (pp. 19–28). IEEE.

42. Vedala, R., & Kumar, S. A., (2012). Automatic detection of printf format
string vulnerabilities in software applications using static analysis.
In: Proceedings of the CUBE International Information Technology
Conference (pp. 379–384).

43. Ventura, M., Ventura, J., Baker, C., Viklund, G., Roth, R., & Broughman,
J., (2015). Development of a video game that teaches the fundamentals
of computer programming. In: SoutheastCon 2015 (pp. 1–5). IEEE.

44. Vogel-Heuser, B., Rehberger, S., Frank, T., & Aicher, T., (2014).
Quality despite quantity—Teaching large heterogenous classes in C
programming and fundamentals in computer science. In: 2014 IEEE
Global Engineering Education Conference (EDUCON) (pp. 367–372).
IEEE.

45. Wang, Y., Wang, C., Li, X., Yun, S., & Song, M., (2014). How are
Identifiers Named in Open Source Software? About Popularity and
Consistency (pp. 4–9). arXiv preprint arXiv:1401.5300.

46. Westerståhl, D., (1985). Logical constants in quantifier languages.
Linguistics and Philosophy, 387–413.

Fundamentals of C Programming 151

47. Yang, J., & Seger, C. J., (2003). Introduction to generalized symbolic
trajectory evaluation. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 11(3), 345–353.

DYNAMIC PROGRAMMING

6

CONTENTS
6.1. Introduction .. 154

6.2. An Elementary Example .. 154

6.3. Formalizing the Dynamic-Programming Approach 163

6.4. Optimal Capacity Expansion ... 167

6.5. Discounting Future Returns ... 172

6.6. Shortest Paths in a Network ... 173

6.7. Continuous State-Space Problems ... 177

6.8. Dynamic Programming Under Uncertainty 179

References ... 187

CHAPTER

Key Dynamics in Computer Programming154

6.1. INTRODUCTION
Dynamic programming is an optimization approach that transforms a complex
problem into a sequence of simpler problems. The essential characteristic
of dynamic programming is the multistage nature of the optimization
procedure. More so than the optimization techniques described previously,
dynamic programming provides a general framework for analyzing many
problem types. Within this framework a variety of optimization techniques
can be employed to solve particular aspects of a more general formulation.
Usually, creativity is required before we can recognize that a particular
problem can be cast effectively as a dynamic program; and often subtle
insights are necessary to restructure the formulation so that it can be solved
effectively (Amini et al., 1990; Osman et al., 2005).

We begin by providing a general insight into the dynamic programming
approach by treating a simple example in some detail. We then give a
formal characterization of dynamic programming under certainty, followed
by an in-depth example dealing with optimal capacity expansion. Other
topics covered in the chapter include the discounting of future returns,
the relationship between dynamic-programming problems and shortest
paths in networks, an example of a continuous-state-space problem, and
an introduction to dynamic programming under uncertainty (Powell et al.,
2002; Momoh, 2009).

6.2. AN ELEMENTARY EXAMPLE
In order to introduce the dynamic-programming approach to solving
multistage problems, in this section we analyze a simple example. Figure
6.1 represents a street map connecting homes and downtown parking lots
for a group of commuters in a model city. The arcs correspond to streets
and the nodes correspond to intersections (Birge and Louveaux, 2011; Rust,
2008). The network has been designed in a diamond pattern so that every
commuter must traverse five streets in driving from home to downtown.
The design characteristics and traffic pattern are such that the total time
spent by any commuter between intersections is independent of the route
taken (Held et al., 1962; Bellman et al., 2015). However, substantial delays,
are experienced by the commuters in the intersections. The lengths of these
delays in minutes, are indicated by the numbers within the nodes. We would
like to minimize the total delay any commuter can incur in the intersections
while driving from his home to downtown. Figure 6.2 provides a compact

Dynamic Programming 155

tabular representation for the problem that is convenient for discussing
its solution by dynamic programming. In this figure, boxes correspond
to intersections in the network. In going from home to downtown, any
commuter must move from left to right through this diagram, moving at
each stage only to an adjacent box in the next column to the right (Snyder et
al., 1987; Ulmer et al., 2019). We will refer to the “stages to go,” meaning
the number of intersections left to traverse, not counting the intersection that
the commuter is currently in.

A naive approach to solving the problem would be to enumerate all 150
paths through the diagram, selecting the path that gives the smallest delay.
Dynamic programming reduces the number of computations by moving
systematically from one side to the other, building the best solution as it
goes (Sali and Blundell, 1990).

Suppose that we move backward through the diagram from right to left.
If we are in any intersection (box) with no further intersections to go, we
have no decision to make and simply incur the delay corresponding to that
intersection (Barto et al., 1995; Huan and Marzouk, 2016). The last column
in Figure 6.2 summarizes the delays with no (zero) intersections to go.

Figure 6.1. Street map with intersection delays.

Source: https://www.researchgate.net/figure/Street-map-with-intersection-de-
lays-Taken-from-30_fig4_330557459.

Key Dynamics in Computer Programming156

Figure 6.2. Compact representation of the network.

Source: https://www.researchgate.net/publication/330557459_Testing_Time-
of-Use_and_Subscription_based_grid_tariff_structures_using_a_Prosumer_
model.

Our first decision (from right to left) occurs with one stage, or intersection,
left to go. If for example, we are in the intersection corresponding to the
highlighted box in Figure 6.2, we incur a delay of three minutes in this
intersection and a delay of either eight or two minutes in the last intersection,
depending upon whether we move up or down. Therefore, the smallest
possible delay, or optimal solution, in this intersection is 3+2 = 5 minutes (Li
et al., 2014; Jamal et al., 2014). Similarly, we can consider each intersection
(box) in this column in turn and compute the smallest total delay as a result of
being in each intersection. The solution is given by the bold-faced numbers
in Figure 6.3. The arrows indicate the optimal decision, up or down, in any
intersection with one stage, or one intersection, to go (Sen and Head, 1997;
Guo et al., 2019).

Note that the numbers in bold-faced type in Figure 6.3 completely
summarize, for decision-making purposes, the total delays over the last
two columns. Although the original numbers in the last two columns have
been used to determine the bold-faced numbers, whenever we are making
decisions to the left of these columns, we need only know the bold-faced

Dynamic Programming 157

numbers. In an intersection, say the topmost with one stage to go, we know
that our (optimal) remaining delay, including the delay in this intersection,
is five minutes. The bold-faced numbers summarize all delays from this
point on. For decision-making to the left of the bold-faced numbers, the last
column can be ignored (Yagar and Han, 1994; Kappelman and Sinha, 2021).

With this in mind, let us back up one more column, or stage, and
compute the optimal solution in each intersection with two intersections to
go (Battigalli and Siniscalchi, 2002; Dayan and Daw, 2008). For example, in
the bottom-most intersection, which is highlighted in Figure 6.3, we incur a
delay of two minutes in the intersection, plus four or six additional minutes,
depending upon whether we move up or down. To minimize delay, we move
up and incur a total delay in this intersection and all remaining intersections
of 2 + 4 = 6 minutes. The remaining computations in this column are
summarized in Figure 6.4, where the bold-faced numbers reflect the optimal
total delays in each intersection with two stages, or two intersections, to go
(Van Damme, 1989; Hauk et al., 2002).

Once we have computed the optimal delays in each intersection with
two stages to go, we can again move back one column and determine the
optimal delays and the optimal decisions with three intersections to go.
In the same way, we can continue to move back one stage at a time, and
compute the optimal delays and decisions with four and five intersections to
go, respectively. Figure 6.5 summarizes these calculations (Al-Najjar, 1995;
Flint et al., 2010).

Figure 6.5(c) shows the optimal solution to the problem. The least
possible delay through the network is 18 minutes. To follow the least-cost
route, a commuter has to start at the second intersection from the bottom.
According to the optimal decisions, or arrows, in the diagram, we see that
he should next move down to the bottom-most intersection in column 4. His
following decisions should be up, down, up, down, arriving finally at the
bottom-most intersection in the last column (Hansen and Zilberstein, 2001;
Kraft et al., 2013).

Key Dynamics in Computer Programming158

Figure 6.3. Decisions and delays with one intersection to go.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

Figure 6.4. Decisions and delays with two intersections to go.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

• However, the commuters are probably not free to arbitrarily choose
the intersection they wish to start from. We can assume that their
homes are adjacent to only one of the leftmost intersections, and
therefore each commuter’s starting point is fixed. This assumption
does not cause any difficulty since we have, in fact, determined

Dynamic Programming 159

the routes of minimum delay from the downtown parking lots
to all the commuter’s homes (De Moor, 1994; Giegerich, 2000).
Note that this assumes that commuters do not care in which
downtown lot they park. Instead of solving the minimum-delay
problem for only a particular commuter, we have embedded the
problem of the particular commuter in the more general problem
of finding the minimum-delay paths from all homes to the group
of downtown parking lots. For example, Figure 6.5 also indicates
that the commuter starting at the topmost intersection incurs a
delay of 22 minutes if he follows his optimal policy of down,
up, up, down, and then down. He presumably parks in a lot
close to the second intersection from the top in the last column.
Finally, note that three of the intersections in the last column are
not entered by any commuter. The analysis has determined the
minimum-delay paths from each of the commuter’s homes to the
group of downtown parking lots, not to each particular parking
lot (Karp et al., 1967; Huang, 2008).

Using dynamic programming, we have solved this minimum-delay
problem sequentially by keeping track of how many intersections, or stages,
there were to go. In dynamic-programming terminology, each point where
decisions are made is usually called a stage of the decision-making process.
At any stage, we need only know which intersection we are in to be able to
make subsequent decisions. Our subsequent decisions do not depend upon
how we arrived at the particular intersection (Neuneier, 1995; Greene et
al., 2020). Information that summarizes the knowledge required about the
problem in order to make the current decisions, such as the intersection we
are in at a particular stage, is called a state of the decision-making process
(Giegerich, 2000; Höner et al., 2014).

In terms of these notions, our solution to the minimum-delay problem
involved the following intuitive idea, usually referred to as the principle of
optimality.

Any optimal policy has the property that, whatever the current state and
decision, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the current decision.

To make this principle more concrete, we can define the optimal-value
function in the context of the minimum-delay problem.

Key Dynamics in Computer Programming160

vn(sn) = Optimal value (minimum delay) over the current and subsequent
stages (intersections), given that we are in state sn (in a particular intersection)
with n stages (intersections) to go.

The optimal-value function at each stage in the decision-making process
is given by the appropriate column of Figure 6.5(c).

Figure 6.5. Charts of optimal delays and decisions.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

We can write down a recursive relationship for computing the optimal-
value function by recognizing that, at each stage, the decision in a particular
state is determined simply by choosing the minimum total delay (Curtis,
1997; Sauthoff, 2010). If we number the states at each stage as sn = 1 (bottom
intersection) up to sn = 6 (top intersection), then:

Dynamic Programming 161

 (1)
where; tn(sn) is the delay time in intersection sn at stage n.

The columns of Figure 6.5(c) are then determined by starting at the right
while successively applying Eq. (1):
v0(s0) = t0(s0) (s0 = 1, 2, …, 6) (2)

Corresponding to this optimal-value function is an optimal-decision
function, which is simply a list giving the optimal decision for each state at
every stage. For this example, the optimal decisions are given by the arrows
leaving each box in every column of Figure 6.5(c).

The method of computation illustrated above is called backward
induction, since it starts at the right and moves back one stage at a time.
Its analog, forward induction, which is also possible, starts at the left and
moves forward one stage at a time (Boutilier et al., 1999; Shin et al., 2019).
The spirit of the calculations is identical but the interpretation is somewhat
different. The optimal-value function for forward induction is defined by:
un(sn) = Optimal value (minimum delay) over the current and completed
stages (intersections), given that we are in state sn (in a particular intersection)
with n stages (intersections) to go.

The recursive relationship for forward induction on the minimum-delay
problem is:

where; the stages are numbered in terms of intersections to go. The
computations are carried out by setting and successively applying Eqn. (3):
u5(s5) = t5(s5) (s5 = 1, 2, …, 6) (4)

The calculations for forward induction are given in Figure 6.6. When
performing forward induction, the stages are usually numbered in terms of
the number of stages completed (rather than the number of stages to go).

Key Dynamics in Computer Programming162

However, in order to make a comparison between the two approaches easier,
we have avoided using the “stages completed” numbering.

The columns of Figure 6.6(f) give the optimal-value function at each
stage for the minimum-delay problem, computed by forward induction.
This figure gives the minimum delays from each downtown parking lot to
the group of homes of the commuters. Therefore, this approach will only
guarantee finding the minimum delay path from the downtown parking
lots to one of the commuters’ homes (Rust, 1989; Dorigo et al., 1999). The
method, in fact, finds the minimum-delay path to a particular origin only
if that origin may be reached from a downtown parking lot by a backward
sequence of arrows in Figure 6.6(f).

If we select the minimum-delay path in Figure 6.6(f), lasting 18 minutes,
and follow the arrows backward, we discover that this path leads to the
intersection second from the bottom in the first column. This is the same
minimum-delay path determined by backward induction in Figure 6.5(c).

Figure 6.6. Solution by forward induction.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

Dynamic Programming 163

Forward induction determined the minimum-delay paths from each
individual parking lot to the group of homes, while backward induction
determined the minimum-delay paths from each individual home to the group
of downtown parking lots. The minimum-delay path between the two groups
is guaranteed to be the same in each case but, in general, the remaining paths
determined may be different. Therefore, when using dynamic programming,
it is necessary to think about whether forward or backward induction is best
suited to the problem you want to solve (Eckstein et al., 1989; Arnold et al.,
1993).

6.3. FORMALIZING THE
DYNAMIC-PROGRAMMING APPROACH
The elementary example presented in the previous section illustrates the
three most important characteristics of dynamic-programming problems.

6.3.1. Stages
The essential feature of the dynamic-programming approach is the structuring
of optimization problems into multiple stages, which are solved sequentially
one stage at a time. Although each one-stage problem is solved as an ordinary
optimization problem, its solution helps to define the characteristics of the
next one-stage problem in the sequence (Bush et al., 2000; Westphal et al.,
2003).

Often, the stages represent different time periods in the problem’s
planning horizon. For example, the problem of determining the level of
inventory of a single commodity can be stated as a dynamic program. The
decision variable is the amount to order at the beginning of each month;
the objective is to minimize the total ordering and inventory-carrying costs;
the basic constraint requires that the demand for the product be satisfied. If
we can order only at the beginning of each month and we want an optimal
ordering policy for the coming year, we could decompose the problem into
12 stages, each representing the ordering decision at the beginning of the
corresponding month (Boutilier et al., 2000; Lewis et al., 2013).

Sometimes the stages do not have time implications. For example,
in the simple situation presented in the preceding section, the problem of
determining the routes of minimum delay from the homes of the commuters
to the downtown parking lots was formulated as a dynamic program. The
decision variable was whether to choose up or down in any intersection, and

Key Dynamics in Computer Programming164

the stages of the process were defined to be the number of intersections to
go. Problems that can be formulated as dynamic programs with stages that
do not have time implications are often difficult to recognize (Mitten, 1974;
Powell, 2010).

6.3.2. States
Associated with each stage of the optimization problem are the states of
the process. The states reflect the information required to fully assess the
consequences that the current decision has upon future actions. In the
inventory problem given in this section, each stage has only one variable
describing the state: the inventory level on hand of the single commodity
(Barnett et al., 2004; Johannesson et al., 2007). The minimum-delay problem
also has one state variable: the intersection a commuter is in at a particular
stage.

The specification of the states of the system is perhaps the most critical
design parameter of the dynamic programming model (Hunt, 1963; Sutton
et al., 1992). There are no set rules for doing this. In fact, for the most part,
this is an art often requiring creativity and subtle insight about the problem
being studied. The essential properties that should motivate the selection of
states are:

• The states should convey enough information to make future
decisions without regard to how the process reached the current
state; and

• The number of state variables should be small, since the
computational effort associated with the dynamic-programming
approach is prohibitively expensive when there are more than
two, or possibly three, state variables involved in the model
formulation.

This last feature considerably limits the applicability of dynamic
programming in practice.

6.3.3. Recursive Optimization
The final general characteristic of the dynamic-programming approach is
the development of a recursive optimization procedure, which builds to a
solution of the overall N-stage problem by first solving a one-stage problem
and sequentially including one stage at a time and solving one-stage problems
until the overall optimum has been found. This procedure can be based on a

Dynamic Programming 165

backward induction process, where the first stage to be analyzed is the final
stage of the problem and problems are solved moving back one stage at a
time until all stages are included. Alternatively, the recursive procedure can
be based on a forward induction process, where the first stage to be solved
is the initial stage of the problem and problems are solved moving forward
one stage at a time, until all stages are included (Cohen, 1981; Goguen et
al., 1992). In certain problem settings, only one of these induction processes
can be applied (e.g., only backward induction is allowed in most problems
involving uncertainties).

The basis of the recursive optimization procedure is the so-called
principle of optimality, which has already been stated: an optimal policy
has the property that, whatever the current state and decision, the remaining
decisions must constitute an optimal policy with regard to the state resulting
from the current decision (Nolan et al., 1972; Gratton et al., 2008).

6.3.4. General Discussion
In what follows, we will formalize the ideas presented thus far. Suppose we
have a multistage decision process where the return (or cost) for a particular
stage is:
fn(dn,sn) (5)
where; dn is a permissible decision that may be chosen from the set Dn; and
sn is the state of the process with n stages to go. Normally, the set of feasible
decisions, Dn, available at a given stage depends upon the state of the process
at that stage, sn, and could be written formally as Dn(sn). To simplify our
presentation, we will denote the set of feasible decisions simply as Dn. Now,
suppose that there is a total of N stages in the process and we continue to
think of n as the number of stages remaining in the process. Necessarily, this
view implies a finite number of stages in the decision process and therefore
a specific horizon for a problem involving time. Further, we assume that
the state sn of the system with n stages to go is a full description of the
system for decision-making purposes and that knowledge of prior states is
unnecessary. The next state of the process depends entirely on the current
state of the process and the current decision taken (Gelfand et al., 1991; Pil
et al., 1996). That is, we can define a transition function such that, given
sn, the state of the process with n stages to go, the subsequent state of the
process with (n – 1) stages to go is given by:
sn–1 = tn(dn,sn) (6)

Key Dynamics in Computer Programming166

where; dn is the decision chosen for the current stage and state. Note that
there is no uncertainty as to what the next state will be, once the current
state and current decision are known. In Section 6.7, we will extend these
concepts to include uncertainty in the formulation.

Our multistage decision process can be described by the diagram given
in Figure 6.7. Given the current state sn which is a complete description of
the system for decision-making purposes with n stages to go, we want to
choose the decision dn that will maximize the total return over the remaining
stages. The decision dn, which must be chosen from a set Dn of permissible
decisions, produces a return at this stage of fn(dn,sn) and results in a new state
sn–1 with (n – 1) stages to go. The new state at the beginning of the next stage
is determined by the transition function sn–1 = tn(dn,sn), and the new state is
a complete description of the system for decision-making purposes with (n
– 1) stages to go. Note that the stage returns are independent of one another
(El Karoui et al., 2001; Ordonez, 2009).

In order to illustrate these rather abstract notions, consider a simple
inventory example. In this case, the state sn of the system is the inventory
level In with n months to go in the planning horizon. The decision dn is the
amount On to order this month. The resulting inventory level In–1 with (n – 1)
months to go is given by the usual inventory-balance relationship:
In–1 = In + On – Rn

Figure 6.7. Multistage decision process.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

where; Rn is the demand requirement this month. Thus, formally, the
transition function with n stages to go is defined to be:
In–1 = tn(In, On) = In + On – Rn.

Dynamic Programming 167

The objective to be minimized is the total ordering and inventory-
carrying costs, which is the sum of the one-stage costs Cn(In, On).

6.4. OPTIMAL CAPACITY EXPANSION
In this section, we further illustrate the dynamic-programming approach
by solving a problem of optimal capacity expansion in the electric power
industry (Kunz and Pradhan, 1994; Sun et al., 2017).

Suppose that a regional electric power company is planning a large
investment in nuclear power plants over the next few years. A total of eight
nuclear power plants must be built over the next six years because of both
increasing demand in the region and the energy crisis, which has forced
the closing of certain of their antiquated fossil fuel plants. Suppose that,
for a first approximation, we assume that demand for electric power in
the region is known with certainty and that we must satisfy the minimum
levels of cumulative demand indicated in Table 6.1. The demand here has
been converted into equivalent numbers of nuclear power plants required
by the end of each year. Due to the extremely adverse public reaction and
subsequent difficulties with the public utilities commission, the power
company has decided at least to meet this minimum-demand schedule (Basri
and Jacobs, 2003; Pavoni et al., 2018).

The building of nuclear power plants takes approximately one year. In
addition to a cost directly associated with the construction of a plant, there is
a common cost of $1.5 million incurred when any plants are constructed in
any year, independent of the number of plants constructed. This common cost
results from contract preparation and certification of the impact statement
for the Environmental Protection Agency. In any given year, at most three
plants can be constructed. The cost of construction per plant is given in
Table 6.1 for each year in the planning horizon. These costs are currently
increasing due to the elimination of an investment tax credit designed to
speed investment in nuclear power. However, new technology should be
available by 1984, which will tend to bring the costs down, even given the
elimination of the investment tax credit (Jacobs et al., 2006).

We can structure this problem as a dynamic program by defining the
state of the system in terms of the cumulative capacity attained by the end
of a particular year. Currently, we have no plants under construction, and
by the end of each year in the planning horizon we must have completed a
number of plants equal to or greater than the cumulative demand. Further,

Key Dynamics in Computer Programming168

it is assumed that there is no need ever to construct more than eight plants.
Figure 6.8 provides a graph depicting the allowable capacity (states) over
time. Any node of this graph is completely described by the corresponding
year number and level of cumulative capacity, say the node (n, p). Note
that we have chosen to measure time in terms of years to go in the planning
horizon (Bradford et al., 1971; Wu et al., 2004).

Table 6.1. Demand and Cost per Plant ($ × 1000)

Year Cumulative Demand (in number of
plants)

Cost per Plant ($ × 1000)

1981 1 5,400
1982 2 5,600
1983 4 5,800
1984 6 5,700
1985 7 5,500
1986 8 5,200

Figure 6.8. Allowable capacity (states) for each stage.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

Dynamic Programming 169

The cost of traversing any upward-sloping arc is the common cost of $1.5
million plus the plant costs, which depend upon the year of construction and
whether 1, 2, or 3 plants are completed. Measured in thousands of dollars,
these costs are:
1500 + cnxn

where; cn is the cost per plant in the year n; and xn is the number of plants
constructed. The cost for traversing any horizontal arc is zero, since these
arcs correspond to a situation in which no plant is constructed in the current
year (Megiddo, 1984).

Rather than simply developing the optimal-value function in equation
form, as we have done previously, we will perform the identical calculations
in Scheme form to highlight the dynamic-programming methodology. To
begin, we label the final state zero or, equivalently define the “stage-zero”
optimal-value function to be zero for all possible states at stage zero. We will
define a state as the cumulative total number of plants completed (Kaplan
et al., 1975; Gil et al., 2014). Since the only permissible final state is to
construct the entire cumulative demand of eight plants, we have s0 = 8 and,
v0(8) = 0.

Now we can proceed recursively to determine the optimal-value function
with one stage remaining. Since the demand data requires 7 plants by 1985,
with one year to go the only permissible states are to have completed 7 or 8
plants. We can describe the situation by Scheme 1.

The dashes indicate that the particular combination of current state
and decision results in a state that is not permissible. In this table there are
no choices, since, if we have not already completed eight plants, we will
construct one more to meet the demand. The cost of constructing the one
additional plant is the $1,500 common cost plus the $5,200 cost per plant,
for a total of $6,700. (All costs are measured in thousands of dollars.) The
column headed d gives the optimal decision function, which specifies
the optimal number of plants to construct, given the current state of the
system (Bickel, 1978; Ahmed et al., 2003).

Now let us consider what action we should take with two years (stages)
to go. Scheme 2 indicates the possible costs of each state:

Key Dynamics in Computer Programming170

If we have already completed eight plants with two years to go, then
clearly, we will not construct any more. If we have already completed seven
plants with two years to go, then we can either construct the one plant we
need this year or postpone its construction. Constructing the plant now costs
$1,500 in common costs plus $5,500 in variable costs, and results in state
8 with one year to go (Sherali et al., 1982; Schapire et al., 1999). Since the
cost of state 8 with one year to go is zero, the total cost over the last two
years is $7,000. On the other hand, delaying construction costs zero this year
and results in state 7 with one year to go. Since the cost of state 7 with one
year to go is $6,700, the total cost over the last two years is $6,700. If we
arrive at the point where we have two years to go and have completed seven
plants, it pays to delay the production of the last plant needed. In a similar
way, we can determine that the optimal decision when in state 6 with two
years to go is to construct two plants during the next year (Myerson, 1982;
Guimaraes et al., 2010).

To make sure that these ideas are firmly understood, we will determine
the optimal-value function and optimal decision with three years to go.
Consider Scheme 3 for three years to go:

Dynamic Programming 171

Now suppose that, with three years to go, we have completed five plants.
We need to construct at least one plant this year in order to meet demand.
In fact, we can construct either 1, 2, or 3 plants. If we construct one plant, it
costs $1,500 in common costs plus $5,700 in plant costs, and results in state
6 with two years to go (Shier, 1979). Since the minimum cost following the
optimal policy for the remaining two years is then $12,500, our total cost for
three years would be $19,700. If we construct two plants, it costs the $1,500
in common costs plus $11,400 in plant costs and results in state 7 with two
years to go. Since the minimum cost following the optimal policy for the
remaining two years is then $6,700, our total cost for three years would be
$19,600. Finally, if we construct three plants, it costs the $1,500 in common
costs plus $17,100 in plant costs and results in state 8 with two years to
go (Shier, 1976; Sung et al., 2000). Since the minimum cost following the
optimal policy for the remaining two years is then zero, our total cost for
three years would be $18,600.

Hence, the optimal decision, having completed five plants (being in
state 5) with three years (stages) to go, is to construct three plants this year.
The remaining Schemes for the entire dynamic-programming solution are
determined in a similar manner (see Figure 6.9).

Figure 6.9. Tables to complete power-plant example.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

Key Dynamics in Computer Programming172

Since we start the construction process with no plants (i.e., in state 0) with
six years (stages) to go, we can proceed to determine the optimal sequence
of decisions by considering the Schemes in the reverse order (Azevedo et
al., 1993; Hamed, 2010). With six years to go it is optimal to construct three
plants, resulting in state 3 with five years to go. It is then optimal to construct
three plants, resulting in state 6 with four years to go, and so forth. The
optimal policy is then shown in the tabulation below:

Years to Go Construct Resulting State
6 3 3
5 3 6
4 0 6
3 0 6
2 2 8
1 0 8

Hence, from Scheme 6, the total cost of the policy is $48.8 million.

6.5. DISCOUNTING FUTURE RETURNS
In the example on optimal capacity expansion presented in the previous
section, a very legitimate objection might be raised that the present value
of money should have been taken into account in finding the optimal
construction schedule. The issue here is simply that a dollar received today
is clearly worth more than a dollar received one year from now, since the
dollar received today could be invested to yield some additional return over
the intervening year. It turns out that dynamic programming is extremely
well suited to take this into account (Hu, 1968; Chan et al., 2001).

We will define, in the usual way, the one-period discount factor β as the
present value of one dollar received one period from now. In terms of interest
rates, if the interest rate for the period were i, then one dollar invested now
would accumulate to (1 + i) at the end of one period. To see the relationship
between the discount factor β and the interest rate i, we ask the question
“How much must be invested now to yield one dollar one period from now?”
This amount is clearly the present value of a dollar received one period from
now, so that β(1 + i) = 1 determines the relationship between β and i, namely,
β = 1/(1 + i). If we invest one dollar now for n periods at an interest rate per
period of i, then the accumulated value at the end of n periods, assuming the
interest is compounded, is (1 + i)n. Therefore, the present value of one dollar

Dynamic Programming 173

received n periods from now is 1/(1 + i)n or, equivalently, βn (Murdoch et al.,
1998; Rezaee et al., 2012).

The concept of discounting can be incorporated into the dynamic-
programming framework very easily since we often have a return per period
(stage) that we may wish to discount by the per-period discount factor
(Tierney, 1996; Tao et al., 2006).

6.6. SHORTEST PATHS IN A NETWORK
Although we have not emphasized this fact, dynamic-programming, and
shortest-path problems are very similar. In fact, as illustrated by Figures
6.1 and 6.8, our previous examples of dynamic programming can both be
interpreted as shortest-path problems.

In Figure 6.8, we wish to move through the network from the starting
node (initial state) at stage 6, with no plants yet constructed, to the end
node (final state) at stage 0 with eight plants constructed. Every path in the
network specifies a strategy indicating how many new plants to construct
each year (Johansson et al., 1999; Sharma et al., 2019).

Since the cost of a strategy sums the cost at each stage, the total cost
corresponds to the “length” of a path from the starting to end nodes. The
minimum-cost strategy then is just the shortest path.

Figure 6.10 illustrates a shortest-path network for the minimum-delay
problem. The numbers next to the arcs are delay times. An end node
representing the group of downtown parking lots has been added. This
emphasizes the fact that we have assumed that the commuters do not care
in which lot they park. A start node has also been added to illustrate that the
dynamic-programming solution by backward induction finds the shortest
path from the end node to the start node. In fact, it finds the shortest paths
from the end node to all nodes in the network, thereby solving the minimum-
delay problem for each commuter. On the other hand, the dynamic-
programming solution by forward induction finds the shortest path from the
start node to the end node. Although the shortest path will be the same for
both methods, forward induction will not solve the minimum-delay problem
for all commuters, since the commuters are not indifferent to which home
they arrive (Wang et al., 2002; Dexter et al., 2021).

To complete the equivalence that we have suggested between dynamic
programming and shortest paths, we next show how shortest-path problems
can be solved by dynamic programming. Actually, several different dynamic-

Key Dynamics in Computer Programming174

programming solutions can be given, depending upon the structure of the
network under study. As a general rule, the more structured the network, the
more efficient the algorithm that can be developed (Simon, 1956; Cristobal et
al., 2009) To illustrate this point we give two separate algorithms applicable
to the following types of networks:

•	 Acyclic Networks: These networks contain no directed cycles.
That is, we cannot start from any node and follow the arcs in their
given directions to return to the same node.

•	 Networks without Negative Cycles: These networks may
contain cycles, but the distance around any cycle (i.e., the sum of
the lengths of its arcs) must be nonnegative.

In the first case, to take advantage of the acyclic structure of the network,
we order the nodes so that, if the network contains the arc i–j, then i > j.
To obtain such an ordering, begin with the terminal node, which can be
thought of as having only entering arcs, and number it “one.” Then ignore
that node and the incident arcs, and number any node that has only incoming
arcs as the next node. Since the network is acyclic, there must be such a
node. (Otherwise, from any node, we can move along an arc to another node
(Huang et al., 1994; Rust, 1996). Starting from any node and continuing to
move away from any node encountered, we eventually would revisit a node,
determining a cycle, contradicting the acyclic assumption).

Figure 6.10. Shortest-path network for minimum-delay problem.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

Dynamic Programming 175

By ignoring the numbered nodes and their incident arcs, the procedure is
continued until all nodes are numbered (Sahinidis, 2004; Silva et al., 2020).

We can apply the dynamic-programming approach by viewing each
node as a stage, using either backward induction to consider the nodes in
ascending order, or forward induction to consider the nodes in reverse order
(Bertsekas et al., 1995; Berg et al., 2017). For backward induction, vn will be
interpreted as the longest distance from node n to the end node. Setting v1 =
0, dynamic programming determines v2, v3, …, vN in order, by the recursion
vn = Max[dnj + vj] j < n
where; dnj is the given distance on arc n–j. The results of this procedure are
given as node labels in Figure 6.11 for the critical-path example.

Figure 6.11. Finding the longest path in an acyclic network.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

For a shortest-path problem, we use minimization instead of
maximization. Note that the algorithm finds the longest (shortest) paths
from every node to the end node. If we want only the longest path to the start
node, we can terminate the procedure once the start node has been labeled.
Finally, we could have found the longest distances from the start node to all
other nodes by labeling the nodes in the reverse order, beginning with the
start node (Figure 6.12) (Sahinidis, 2004; Topaloglu et al., 2006).

Key Dynamics in Computer Programming176

Figure 6.12. Shortest paths in a network without negative cycles.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

A more complicated algorithm must be given for the more general
problem of finding the shortest path between two nodes, say nodes 1 and N,
in a network without negative cycles. In this case, we can devise a dynamic-
programming algorithm based upon a value function defined as follows:

vn(j) = Shortest distance from node 1 to node j along paths using at most
n intermediate nodes.

By definition, then:
v0(j) = d1j for j = 2, 3, …, N
the length d1j of arc 1–j since no intermediate nodes are used. The

dynamic-programming recursion is:
vn(j) = Min {dij + vn–1(i)} 1 ≤ j ≤ N (7)

which uses the principle of optimality: that any path from node 1 to node
j, using at most n intermediate nodes, arrives at node j from node i along
arc i–j after using the shortest path with at most (n – 1) intermediate nodes
from node j to node i. We allow i = j in the recursion and take djj = 0, since
the optimal path using at most n intermediate nodes may coincide with the
optimal path with length vn–1(j) using at most (n – 1) intermediate nodes.

The algorithm computes the shortest path from node 1 to every other
node in the network. It terminates when vn(j) = vn–1(j) for every node j, since
computations in Eqn. (7) will be repeated at every stage from n on. Because
no path (without cycles) uses any more than (N – 1) intermediate nodes,
where N is the total number of nodes, the algorithm terminates after at most
(N – 1) steps (Xu et al., 2013; Gaggero et al., 2014).

Dynamic Programming 177

6.7. CONTINUOUS STATE-SPACE PROBLEMS
Until now we have dealt only with problems that have had a finite number
of states associated with each stage. Since we also have assumed a finite
number of stages, these problems have been identical to finding the shortest
path through a network with special structure. Since the development of the
fundamental recursive relationship of dynamic programming did not depend
on having a finite number of states at each stage, here we introduce an
example that has a continuous state space and show that the same procedures
still apply (Genc et al., 2007; Machemehl et al., 2014).

Suppose that some governmental agency is attempting to perform cost/
benefit analysis on its programs in order to determine which programs
should receive funding for the next fiscal year. The agency has managed to
put together the information in Table 6.2. The benefits of each program have
been converted into equivalent tax savings to the public, and the programs
have been listed by decreasing benefit-to-cost ratio (Dai et al., 2012; Keles
et al., 2022). The agency has taken the position that there will be no partial
funding of programs. Either a program will be funded at the indicated level
or it will not be considered for this budget cycle. Suppose that the agency is
fairly sure of receiving a budget of $34 million from the state legislature if
it makes a good case that the money is being used effectively (Geramifard
et al., 2013; Mohammad et al., 2016). Further, suppose that there is some
possibility that the budget will be as high as $42 million. How can the agency
make the most effective use of its funds at either possible budget level?

Table 6.2. Cost/Benefit Information by Program

Program Expected	Benefit Expected Cost Benefit/Cost
A $59.2 M $2.8 M 21.1
B 31.4 1.7 18.4
C 15.7 1.0 15.7
D 30.0 3.2 9.4
E 105.1 15.2 6.9
F 11.6 2.4 4.8
G 67.3 16.0 4.2
H 2.3 0.7 3.3
I 23.2 9.4 2.5
J 18.4 10.1 1.8

$364.2 M $62.5 M

Key Dynamics in Computer Programming178

We should point out that mathematically this problem is an integer program.
If bj is the benefit of the jth program and cj is the cost of that program, then
an integer-programming formulation of the agency’s budgeting problem is
determined easily (Dantzig, 2004; Webster et al., 2012).

For any budget level, for example, $4.0 M, we merely consider the two
possible decisions: either funding program C (x3 = 1) or not (x3 = 0). If we
fund program C, then we obtain a benefit of $15.7 M while consuming $1.0
M of our own budget. The remaining $3.0 M of our budget is then optimally
allocated to the remaining programs, producing a benefit of $59.2 M, which
we obtain from the optimal-value function with the first two programs
included. If we do not fund program C, then the entire amount of $4.0 M is
optimally allocated to the remaining two programs, producing a benefit of
$59.2. Hence, we should clearly fund program C if our budget allocation is
$4.0 M. Optimal decisions taken for other budget levels are determined in a
similar manner (Aldasoro et al., 2015; Xie et al., 2017).

Although it is straightforward to continue the recursive calculation of
the optimal-value function for succeeding stages, we will not do so since
the number of ranges that need to be reported rapidly becomes rather large
(Chadès et al., 2014; Liu et al., 2019). The general recursive relationship
that determines the optimal-value function at each stage is given by:
vn(Bn) = Max [cnxn + vn–1 (Bn – cnxn)]
subject to:
xn = 0 or 1.
The calculation is initialized by observing that:
v0(B0) = 0

Dynamic Programming 179

for all possible values of B0. Note that the state transition function is simply:
Bn – 1 = tn(xn, Bn) = Bn – cnxn.
We can again illustrate the usual principle of optimality: Given budget

Bn at stage n, whatever decision is made with regard to funding the nth
program, the remaining budget must be allocated optimally among the first
(n – 1) programs. If these calculations were carried to completion, resulting
in v10(B10) and d , then the problem would be solved for all possible
budget levels, not just $3.4 M, and $4.2 M (Lee et al., 2006; Seuken and
Zilberstein, 2007).

Although this example has a continuous state space, a finite number of
ranges can be constructed because of the zero–one nature of the decision
variables. In fact, all breaks in the range of the state space either are the
breaks from the previous stage, or they result from adding the cost of the new
program to the breaks in the previous range. This is not a general property
of continuous state space problems, and in most cases such ranges cannot be
determined. Usually, what is done for continuous state space problems is that
they are converted into discrete state problems by defining an appropriate
grid on the continuous state space. The optimal-value function is then
computed only for the points on the grid. For our cost/benefit example, the
total budget must be between zero and $62.5 M, which provides a range on
the state space, although at any stage a tighter upper limit on this range is
determined by the sum of the budgets of the first n programs. An appropriate
grid would consist of increments of $0.1 M over the limits of the range at
each stage, since this is the accuracy with which the program costs have
been estimated. The difference between problems with continuous state
spaces and those with discrete state spaces essentially then disappears for
computational purposes (Gannon, 1974; Vogstad and Kristoffersen, 2010).

6.8. DYNAMIC PROGRAMMING UNDER
UNCERTAINTY
Up to this point we have considered exclusively problems with deterministic
behavior. In a deterministic dynamic-programming process, if the system
is in state sn with n stages to go and decision dn is selected from the set of
permissible decisions for this stage and state, then the stage return fn(dn,sn)
and the state of the system at the next stage, given by sn–1 = tn(dn,sn), are both
known with certainty.

Key Dynamics in Computer Programming180

This deterministic process can be represented by means of the decision
tree in Figure 6.13. As one can observe, given the current state, a specific
decision leads with complete certainty to a particular state at the next stage.
The stage returns are also known with certainty and are associated with the
branches of the tree (Bar-Shalom, 1981; Alterovitz et al., 2008).

Figure 6.13. Decision tree for deterministic dynamic programming.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

When uncertainty is present in a dynamic-programming problem,
a specific decision for a given state and stage of the process does not, by
itself, determine the state of the system at the next stage. Furthermore, this
decision may not even determine the return for the current stage. Rather, in
dynamic programming under uncertainty, given the state of the system sn
with n stages to go and the current decision dn, an uncertain event occurs
which is determined by a random variable e˜n whose outcome en is not under
the control of the decision maker (Zhang et al., 2019; Liu et al., 2020).

The outcomes of the random variable are governed by a probability
distribution, pn(en|dn,sn), which may be the same for every stage or may be
conditional on the stage, the state at the current stage, and even the decision
at the current stage.

Dynamic Programming 181

Figure 6.14 depicts dynamic programming under uncertainty as a
decision tree, where squares represent states where decisions have to be
made and circles represent uncertain events whose outcomes are not under
the control of the decision maker. These diagrams can be quite useful in
analyzing decisions under uncertainty if the number of possible states is
not too large. The decision tree provides a pictorial representation of the
sequence of decisions, outcomes, and resulting states, in the order in
which the decisions must be made and the outcomes become known to the
decision maker. Unlike deterministic dynamic programming wherein the
optimal decisions at each stage can be specified at the outset, in dynamic
programming under uncertainty, the optimal decision at each stage can
be selected only after we know the outcome of the uncertain event at the
previous stage. At the outset, all that can be specified is a set of decisions
that would be made contingent on the outcome of a sequence of uncertain
events (Huang et al., 2011; Ji et al., 2018).

Figure 6.14. Decision tree for dynamic programming under uncertainty.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

Key Dynamics in Computer Programming182

In dynamic programming under uncertainty, since the stage returns and
resulting stage may both be uncertain at each stage, we cannot simply optimize
the sum of the stage-return functions. Rather, we must optimize the expected
return over the stages of the problem, taking into account the sequence in
which decisions can be made and the outcomes of uncertain events become
known to the decision maker. In this situation, backward induction can be
applied to determine the optimal strategy, but forward induction cannot. The
difficulty with forward induction is that it is impossible to assign values
to states at the next stage that are independent of the uncertain evolution
of the process from that future state on. With backward induction, on the
other hand, no such difficulties arise since the states with zero stages to go
are evaluated first, and then the states with one stage to go are evaluated
by computing the expected value of any decision and choosing optimally
(Barto et al., 1995; Shuai et al., 2018).

We start the backward induction process by computing the optimal-
value function at stage 0. This amounts to determining the value of ending
in each possible stage with 0 stages to go. This determination may involve
an optimization problem or the value of the assets held at the horizon. Next,
we compute the optimal-value function at the previous stage. To do this,
we first compute the expected value of each uncertain event, weighting the
stage return plus the value of the resulting state for each outcome by the
probability of each outcome. Then, for each state at the previous stage, we
select the decision that has the maximum (or minimum) expected value. Once
the optimal-value function for stage 1 has been determined, we continue in
a similar manner to determine the optimal-value functions at prior stages by
backward induction (Powell et al., 2005; Firdausiyah et al., 2019).

We can make these ideas more concrete by considering a simple example.
A manager is in charge of the replenishment decisions during the next two
months for the inventory of a fairly expensive item. The production cost
of the item is $1,000/unit, and its selling price is $2,000/unit. There is an
inventory-carrying cost of $100/unit per month on each unit left over at the
end of the month. We assume there is no setup cost associated with running
a production order, and further that the production process has a short lead
time; therefore, any amount produced during a given month is available
to satisfy the demand during that month. At the present time, there is no
inventory on hand. Any inventory left at the end of the next two months has
to be disposed of at a salvage value of $500/unit.

Dynamic Programming 183

The demand for the item is uncertain, but its probability distribution is
identical for each of the coming two months. The probability distribution of
the demand is as follows:

Demand Probability
0 0.25
1 0.40
2 0.20
3 0.15

The issue to be resolved is how many units to produce during the first
month and, depending on the actual demand in the first month, how many
units to produce during the second month. Since demand is uncertain, the
inventory at the end of each month is also uncertain. In fact, demand could
exceed the available units on hand in any month, in which case all excess
demand results in lost sales. Consequently, our production decision must find
the proper balance between production costs, lost sales, and final inventory
salvage value (Costa and Kariniotakis, 2007).

The states for this type of problem are usually represented by the
inventory level In at the beginning of each month. Moreover, the problem is
characterized as a two-stage problem, since there are two months involved
in the inventory-replenishment decision. To determine the optimal-value
function, let:

vn(In) = Maximum contribution, given that we have In units of inventory
with n stages to go.

We initiate the backward induction procedure by determining the
optimal-value function with 0 stages to go. Since the salvage value is $500/
unit, we have:

I0 v0(I0)

0 0
1 500
2 1,000
3 1,500

To compute the optimal-value function with one stage to go, we need to
determine, for each inventory level (state), the corresponding contribution
associated with each possible production amount (decision) and level of
sales (outcome). For each inventory level, we select the production amount
that maximizes the expected contribution.

Key Dynamics in Computer Programming184

Table 6.3 provides all the necessary detailed computations to determine
the optimal-value function with one stage to go. Column 1 gives the state
(inventory level) of the process with one stage to go. Column 2 gives the
possible decisions (amount to produce) for each state, and, since demand
cannot be greater than three, the amount produced is at most three. Column 3
gives the possible outcomes for the uncertain level of sales for each decision
and current state, and column 4 gives the probability of each of these possible
outcomes. Note that, in any period, it is impossible to sell more than the
supply, which is the sum of the inventory currently on hand plus the amount
produced. Hence, the probability distribution of sales differs from that of
demand since, whenever demand exceeds supply, the entire supply is sold
and the excess demand is lost. Column 5 is the resulting state, given that we
currently have I1 on hand, produce d1, and sell s1. The transition function in
general is just:
I˜n–1 = In + dn – s˜n
where; the tildes (∼) indicate that the level of sales is uncertain and, hence,
the resulting state is also uncertain. Columns 6, 7, and 8 reflect the revenue
and costs for each state, decision, and sales level, and column 9 reflects the
value of being in the resulting state at the next stage. Column 10 merely
weights the sum of columns 6 through 9 by the probability of their occurring,
which is an intermediate calculation in determining the expected value of
making a particular decision, given the current state. Column 11 is then just
this expected value; and the asterisk indicates the optimal decision for each
possible state.

Table 6.3. Computation of Optimal-Value Function with One Stage to Go

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

State
I1

Produce
d1

Sell
s1

Probability
(=

Resulting
State

Production
Cost

Sales
Revenue

Inventory
Cost

V0(I0) Probability
× $

Expected
Contribu-
tion

0 0 0 1. 0 0 0 0 0 0 0

1 0
1

0.25
0.75

1
0

–1,000
–1,000

0
2,000 –100 0 500

0 –150 750 600

2
0
1
2

0.25
0.40
0.35

2
1
0

–2,000
–2,000
–2,000

0
2,000
4,000

–200
–100 0

1,000
500
0

–300 160
700

560

3

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–3,000
–3,000
–3,000
–3,000

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

–450
–80
280
450

200

Dynamic Programming 185

1 0 0
1

0.25
0.75

1
0

0
0

0
2,000 –100 0 500

0
100
1,500 1600

1
0
1
2

0.25
0.40
0.35

2
1
0

–1,000
–1,000
–1,000

0
2,000
4,000

–200
–100 0

1,000
500
0

–50
560
1,050

1,560

2

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–2,000
–2,000
–2,000
–2,000

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

–200 320
480
600

1,200

2 0
0
1
2

0.25
0.40
0.35

2
1
0

0
0
0

0
2,000
4,000

–200
–100 0

1,000
500
0

200
960
1,400

2,560

1

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–1,000
–1,000
–1,000
–1,000

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

50
720
680
750

2,200

3 0

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

0
0
0
0

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

300
1,120
880
900

3,200

The resulting optimal-value function and the corresponding optimal-
decision function are determined directly from Table 6.3 and are the
following:

I1 v1(I1) d
0 600 1
1 1,600 0
2 2,560 0
3 3,200 0

Next, we need to compute the optimal-value function with two stages
to go. However, since we have assumed that there is no initial inventory on
hand, it is not necessary to describe the optimal-value function for every
possible state, but only for I2 = 0. Table 6.4 is similar to Table 6.3 and gives
the detailed computations required to evaluate the optimal-value function
for this case.

Key Dynamics in Computer Programming186

Table 6.4. Computation of Optimal-Value Function with Two Stages to Go, I2
= 0 Only

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

State
I2

Produce
d2

Sell
s2

Probability
(=

Resulting
State

Production
Cost

Sales
Revenue

Inventory
Cost

v1(I1) Probability
× $

Expected
Contribu-
tion

0 0 0 1. 0 0 0 0 650 650 650

1 0
1

0.25
0.75

1
0

–1,000
–1,000

0
2,000

0
0

1,600.
600.

150
1,200 135

2 0
1
2

0.25
0.40
0.35

2
1
0

–2,000
–2,000
–2,000

0
2,000
4,000

–200
–100 0

2,560
1,600
600

90
600
910

1,600

3 0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–3,000
–3,000
–3,000
–3,000

0
2,000
4,000
6,000

–300
–200
–100 0

3,200
2,560
1,600.
600.

–25
544
500
540

1,559

The optimal-value function and the corresponding decision function for
I2 = 0 are taken directly from Table 6.4 and are the following:

I2 v2(I2) d
0 1,600 2

The optimal strategy can be summarized by the decision tree given
in Figure 6.14. The expected contribution determined by the dynamic-
programming solution corresponds to weighting the contribution of every
path in this tree by the probability that this path occurs (Kreps and Porteus,
1979). The decision tree in Figure 6.14 emphasizes the contingent nature of
the optimal strategy determined by dynamic programming under uncertainty
(Deisenroth et al., 2009).

Dynamic Programming 187

REFERENCES
1. Ahmed, S., King, A. J., & Parija, G., (2003). A multi-stage stochastic

integer programming approach for capacity expansion under
uncertainty. Journal of Global Optimization, 26(1), 3–24.

2. Aldasoro, U., Escudero, L. F., Merino, M., Monge, J. F., & Pérez,
G., (2015). On parallelization of a stochastic dynamic programming
algorithm for solving large-scale mixed 0–1 problems under uncertainty.
Top, 23(3), 703–742.

3. Al-Najjar, N., (1995). A theory of forward induction in finitely repeated
games. Theory and Decision, 38(2), 173–193.

4. Alterovitz, R., Branicky, M., & Goldberg, K., (2008). Motion planning
under uncertainty for image-guided medical needle steering. The
International Journal of Robotics Research, 27(11, 12), 1361–1374.

5. Amini, A. A., Weymouth, T. E., & Jain, R. C., (1990). Using dynamic
programming for solving variational problems in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(9),
855–867.

6. Arnold, J., Shaw, S. W., & Pasternack, H. E. N. R. I., (1993). Efficient
target tracking using dynamic programming. IEEE transactions on
Aerospace and Electronic Systems, 29(1), 44–56.

7. Azevedo, J., Costa, M. E. O. S., Madeira, J. J. E. S., & Martins, E. Q.
V., (1993). An algorithm for the ranking of shortest paths. European
Journal of Operational Research, 69(1), 97–106.

8. Barnett, M., Leino, K. R. M., & Schulte, W., (2004). The spec#
programming system: An overview. In: International Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (pp. 49–69). Springer, Berlin, Heidelberg.

9. Bar-Shalom, Y., (1981). Stochastic dynamic programming: Caution
and probing. IEEE Transactions on Automatic Control, 26(5), 1184–
1195.

10. Barto, A. G., Bradtke, S. J., & Singh, S. P., (1995). Learning to act
using real-time dynamic programming. Artificial Intelligence, 72(1, 2),
81–138.

11. Basri, R., & Jacobs, D. W., (2003). Lambertian reflectance and linear
subspaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(2), 218–233.

Key Dynamics in Computer Programming188

12. Battigalli, P., & Siniscalchi, M., (2002). Strong belief and forward
induction reasoning. Journal of Economic Theory, 106(2), 356–391.

13. Bellman, R. E., & Dreyfus, S. E., (2015). Applied Dynamic
Programming (pp. 10–15). Princeton university press.

14. Berg, J. V. D., Patil, S., & Alterovitz, R., (2017). Motion planning
under uncertainty using differential dynamic programming in belief
space. In: Robotics Research (pp. 473–490). Springer, Cham.

15. Bertsekas, D. P., & Tsitsiklis, J. N., (1995). Neuro-dynamic
programming: An overview. In: Proceedings of 1995 34th IEEE
Conference on Decision and Control (Vol. 1, pp. 560–564). IEEE.

16. Bickel, T. C., (1978). The Optimal Capacity Expansion of a Chemical
Plant Via Nonlinear Integer Programming (Vol. 2, pp. 100–147). The
University of Texas at Austin.

17. Birge, J. R., & Louveaux, F., (2011). Introduction to Stochastic
Programming (pp. 1–10). Springer Science & Business Media.

18. Boutilier, C., Dean, T., & Hanks, S., (1999). Decision-theoretic
planning: Structural assumptions and computational leverage. Journal
of Artificial Intelligence Research, 11, 1–94.

19. Boutilier, C., Dearden, R., & Goldszmidt, M., (2000). Stochastic
dynamic programming with factored representations. Artificial
Intelligence, 121(1, 2), 49–107.

20. Bradford, D. F., & Oates, W. E., (1971). Towards a predictive theory
of intergovernmental grants. The American Economic Review, 61(2),
440–448.

21. Bush, W. R., Pincus, J. D., & Sielaff, D. J., (2000). A static analyzer
for finding dynamic programming errors. Software: Practice and
Experience, 30(7), 775–802.

22. Chadès, I., Chapron, G., Cros, M. J., Garcia, F., & Sabbadin, R., (2014).
MDPtoolbox: A multi‐platform toolbox to solve stochastic dynamic
programming problems. Ecography, 37(9), 916–920.

23. Chan, E. P., & Zhang, N., (2001). Finding shortest paths in large network
systems. In: Proceedings of the 9th ACM International Symposium on
Advances in Geographic Information Systems (pp. 160–166).

24. Cohen, J. R., (1981). Segmenting speech using dynamic programming.
The Journal of the Acoustical Society of America, 69(5), 1430–1438.

25. Costa, L. M., & Kariniotakis, G., (2007). A stochastic dynamic
programming model for optimal use of local energy resources in a

Dynamic Programming 189

market environment. In: 2007 IEEE Lausanne Power Tech (pp. 449–
454). IEEE.

26. Cristobal, M. P., Escudero, L. F., & Monge, J. F., (2009). On stochastic
dynamic programming for solving large-scale planning problems under
uncertainty. Computers & Operations Research, 36(8), 2418–2428.

27. Curtis, S., (1997). Dynamic programming: A different perspective. In:
Algorithmic Languages and Calculi (pp. 1–23). Springer, Boston, MA.

28. Dai, C., Li, Y. P., & Huang, G. H., (2012). An interval-parameter
chance-constrained dynamic programming approach for capacity
planning under uncertainty. Resources, Conservation, and Recycling,
62, 37–50.

29. Dantzig, G. B., (2004). Linear programming under uncertainty.
Management Science, 50(12_supplement), 1764–1769.

30. Dayan, P., & Daw, N. D., (2008). Decision theory, reinforcement
learning, and the brain. Cognitive, Affective, & Behavioral Neuroscience,
8(4), 429–453.

31. De Moor, O., (1994). Categories, relations, and dynamic programming.
Mathematical Structures in Computer Science, 4(1), 33–69.

32. Deisenroth, M. P., Rasmussen, C. E., & Peters, J., (2009). Gaussian
process dynamic programming. Neurocomputing, 72(7–9), 1508–1524.

33. Dexter, G., Bello, K., & Honorio, J., (2021). Inverse reinforcement
learning in a continuous state space with formal guarantees. Advances
in Neural Information Processing Systems, 34–40.

34. Dorigo, M., & Di Caro, G., (1999). Ant colony optimization: A new
meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470–1477).
IEEE.

35. Eckstein, Z., & Wolpin, K. I., (1989). The specification and estimation
of dynamic stochastic discrete choice models: A survey. The Journal of
Human Resources, 24(4), 562–598.

36. El Karoui, N., Peng, S., & Quenez, M. C., (2001). A dynamic maximum
principle for the optimization of recursive utilities under constraints.
Annals of Applied Probability, 664–693.

37. Firdausiyah, N., Taniguchi, E., & Qureshi, A. G., (2019). Modeling
city logistics using adaptive dynamic programming based multi-
agent simulation. Transportation Research Part E: Logistics and
Transportation Review, 125, 74–96.

Key Dynamics in Computer Programming190

38. Flint, A., Mei, C., Murray, D., & Reid, I., (2010). A dynamic
programming approach to reconstructing building interiors. In:
European Conference on Computer Vision (pp. 394–407). Springer,
Berlin, Heidelberg.

39. Gaggero, M., Gnecco, G., & Sanguineti, M., (2014). Approximate
dynamic programming for stochastic N-stage optimization with
application to optimal consumption under uncertainty. Computational
Optimization and Applications, 58(1), 31–85.

40. Gannon, C. A., (1974). Optimal intertemporal supply of a public facility
under uncertainty: A dynamic programming approach to the problem
of planning open space. Regional and Urban Economics, 4(1), 25–40.

41. Gelfand, S. B., & Mitter, S. K., (1991). Recursive stochastic algorithms
for global optimization in R^d. SIAM Journal on Control and
Optimization, 29(5), 999–1018.

42. Genc, T. S., Reynolds, S. S., & Sen, S., (2007). Dynamic oligopolistic
games under uncertainty: A stochastic programming approach. Journal
of Economic Dynamics and Control, 31(1), 55–80.

43. Geramifard, A., Walsh, T. J., Tellex, S., Chowdhary, G., Roy, N., &
How, J. P., (2013). A tutorial on linear function approximators for
dynamic programming and reinforcement learning. Foundations and
Trends® in Machine Learning, 6(4), 375–451.

44. Giegerich, R., & Meyer, C., (2002). Algebraic dynamic programming.
In: International Conference on Algebraic Methodology and Software
Technology (pp. 349–364). Springer, Berlin, Heidelberg.

45. Giegerich, R., (2000). A systematic approach to dynamic programming
in bioinformatics. Bioinformatics, 16(8), 665–677.

46. Giegerich, R., (2000). Explaining and controlling ambiguity in
dynamic programming. In: Annual Symposium on Combinatorial
Pattern Matching (pp. 46–59). Springer, Berlin, Heidelberg.

47. Gil, E., Aravena, I., & Cárdenas, R., (2014). Generation capacity
expansion planning under hydro uncertainty using stochastic mixed
integer programming and scenario reduction. IEEE Transactions on
Power Systems, 30(4), 1838–1847.

48. Goguen, J. A., & Burstall, R. M., (1992). Institutions: Abstract model
theory for specification and programming. Journal of the ACM (JACM),
39(1), 95–146.

Dynamic Programming 191

49. Gratton, S., Sartenaer, A., & Toint, P. L., (2008). Recursive trust-
region methods for multiscale nonlinear optimization. SIAM Journal
on Optimization, 19(1), 414–444.

50. Greene, M. L., Deptula, P., Nivison, S., & Dixon, W. E., (2020). Sparse
learning-based approximate dynamic programming with barrier
constraints. IEEE Control Systems Letters, 4(3), 743–748.

51. Guimaraes, P., & Portugal, P., (2010). A simple feasible procedure to fit
models with high-dimensional fixed effects. The Stata Journal, 10(4),
628–649.

52. Guo, Y., Ma, J., Xiong, C., Li, X., Zhou, F., & Hao, W., (2019). Joint
optimization of vehicle trajectories and intersection controllers with
connected automated vehicles: Combined dynamic programming
and shooting heuristic approach. Transportation Research Part C:
Emerging Technologies, 98, 54–72.

53. Hamed, A. Y., (2010). A genetic algorithm for finding the k shortest
paths in a network. Egyptian Informatics Journal, 11(2), 75–79.

54. Hansen, E. A., & Zilberstein, S., (2001). Monitoring and control of
anytime algorithms: A dynamic programming approach. Artificial
Intelligence, 126(1, 2), 139–157.

55. Hauk, E., & Hurkens, S., (2002). On forward induction and evolutionary
and strategic stability. Journal of Economic Theory, 106(1), 66–90.

56. Held, M., & Karp, R. M., (1962). A dynamic programming approach to
sequencing problems. Journal of the Society for Industrial and Applied
Mathematics, 10(1), 196–210.

57. Höner Zu, S. C., Prohaska, S. J., & Stadler, P. F., (2014). Dynamic
programming for set data types. In: Brazilian Symposium on
Bioinformatics (pp. 57–64). Springer, Cham.

58. Hu, T. C., (1968). A decomposition algorithm for shortest paths in a
network. Operations Research, 16(1), 91–102.

59. Huan, X., & Marzouk, Y. M., (2016). Sequential Bayesian Optimal
Experimental Design Via Approximate Dynamic Programming (pp.
1–25). arXiv preprint arXiv:1604.08320.

60. Huang, G. H., Baetz, B. W., & Patry, G. G., (1994). Grey dynamic
programming for waste-management planning under uncertainty.
Journal of Urban Planning and Development, 120(3), 132–156.

61. Huang, L., (2008). Advanced dynamic programming in semiring
and hypergraph frameworks. In: Coling 2008: Advanced Dynamic

Key Dynamics in Computer Programming192

Programming in Computational Linguistics: Theory, Algorithms, and
Applications-Tutorial Notes (pp. 1–18).

62. Huang, T., & Liu, D., (2011). Residential energy system control and
management using adaptive dynamic programming. In: The 2011
International Joint Conference on Neural Networks (pp. 119–124).
IEEE.

63. Hunt, J. A., (1963). The Optimization of Satellite Reconnaissance by
the Application of Dynamic Programming Techniques (Vol. 1, pp. 16–
29). MITRE CORP BEDFORD MA.

64. Jacobs, K., & Steck, D. A., (2006). A straightforward introduction
to continuous quantum measurement. Contemporary Physics, 47(5),
279–303.

65. Jamal, A., Tauhidur, R. M., Al-Ahmadi, H. M., Ullah, I., & Zahid, M.,
(2020). Intelligent intersection control for delay optimization: Using
meta-heuristic search algorithms. Sustainability, 12(5), 1896.

66. Ji, Y., Wang, J., Fang, X., & Zhang, H., (2018). Online optimal operation
of microgrid using approximate dynamic programming under uncertain
environment. In: 2018 37th Chinese Control Conference (CCC) (pp.
2235–2241). IEEE.

67. Johannesson, L., Asbogard, M., & Egardt, B., (2007). Assessing the
potential of predictive control for hybrid vehicle powertrains using
stochastic dynamic programming. IEEE Transactions on Intelligent
Transportation Systems, 8(1), 71–83.

68. Johansson, R., Verhaegen, M., & Chou, C. T., (1999). Stochastic theory
of continuous-time state-space identification. IEEE Transactions on
Signal Processing, 47(1), 41–51.

69. Kaplan, M. A., & Haimes, Y. Y., (1975). Dynamic programming for
optimal capacity expansion of wastewater treatment plants 1. JAWRA
Journal of the American Water Resources Association, 11(2), 278–293.

70. Kappelman, A. C., & Sinha, A. K., (2021). Optimal control in dynamic
food supply chains using big data. Computers & Operations Research,
126, 105117.

71. Karp, R. M., & Held, M., (1967). Finite-state processes and dynamic
programming. SIAM Journal on Applied Mathematics, 15(3), 693–718.

72. Keles, D., & Dehler-Holland, J., (2022). Evaluation of photovoltaic
storage systems on energy markets under uncertainty using stochastic
dynamic programming. Energy Economics, 105800.

Dynamic Programming 193

73. Kraft, H., & Steffensen, M., (2013). A dynamic programming approach
to constrained portfolios. European Journal of Operational Research,
229(2), 453–461.

74. Kreps, D. M., & Porteus, E. L., (1979). Dynamic choice theory and
dynamic programming. Econometrica: Journal of the Econometric
Society, 91–100.

75. Kunz, W., & Pradhan, D. K., (1994). Recursive learning: A new
implication technique for efficient solutions to CAD problems-test,
verification, and optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(9), 1143–1158.

76. Lee, J. H., & Lee, J. M., (2006). Approximate dynamic programming
based approach to process control and scheduling. Computers &
Chemical Engineering, 30(10–12), 1603–1618.

77. Lewis, F. L., & Liu, D., (2013). Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control (Vol. 17,
pp. 5–12). John Wiley & Sons.

78. Li, Z., Elefteriadou, L., & Ranka, S., (2014). Signal control
optimization for automated vehicles at isolated signalized intersections.
Transportation Research Part C: Emerging Technologies, 49, 1–18.

79. Liu, X., Wu, H., Wang, L., & Faqiry, M. N., (2020). Stochastic home
energy management system via approximate dynamic programming.
IET Energy Systems Integration, 2(4), 382–392.

80. Liu, Z., Zhou, Y., Huang, G., & Luo, B., (2019). Risk aversion based
inexact stochastic dynamic programming approach for water resources
management planning under uncertainty. Sustainability, 11(24), 6926.

81. Machemehl, R., Gemar, M., & Brown, L., (2014). A stochastic dynamic
programming approach for the equipment replacement optimization
under uncertainty. Journal of Transportation Systems Engineering and
Information Technology, 14(3), 76–84.

82. Megiddo, N., (1984). Linear programming in linear time when the
dimension is fixed. Journal of the ACM (JACM), 31(1), 114–127.

83. Mitten, L., (1974). Preference order dynamic programming.
Management Science, 21(1), 43–46.

84. Mohammadghasemi, M., Shahraki, J., & Sabohi, S. M., (2016).
Optimization Model of Hirmand River Basin Water Resources in the
Agricultural Sector Using Stochastic Dynamic Programming Under
Uncertainty Conditions (Vol. 3, pp. 150–177).

Key Dynamics in Computer Programming194

85. Momoh, J. A., (2009). Smart grid design for efficient and flexible
power networks operation and control. In: 2009 IEEE/PES Power
Systems Conference and Exposition (pp. 1–8). IEEE.

86. Murdoch, D. J., & Green, P. J., (1998). Exact sampling from a continuous
state space. Scandinavian Journal of Statistics, 25(3), 483–502.

87. Myerson, R. B., (1982). Optimal coordination mechanisms in
generalized principal-agent problems. Journal of Mathematical
Economics, 10(1), 67–81.

88. Neuneier, R., (1995). Optimal asset allocation using adaptive dynamic
programming. Advances in Neural Information Processing Systems, 8,
pp. 1–14.

89. Nolan, R. L., & Sovereign, M. G., (1972). A recursive optimization and
simulation approach to analysis with an application to transportation
systems. Management Science, 18(12), B-676.

90. Ordonez, C., (2009). Optimization of linear recursive queries in SQL.
IEEE Transactions on knowledge and Data Engineering, 22(2), 264–
277.

91. Osman, M. S., Abo-Sinna, M. A., & Mousa, A. A., (2005). An effective
genetic algorithm approach to multiobjective resource allocation
problems (MORAPs). Applied Mathematics and Computation, 163(2),
755–768.

92. Pavoni, N., Sleet, C., & Messner, M., (2018). The dual approach to
recursive optimization: Theory and examples. Econometrica, 86(1),
133–172.

93. Pil, A. C., & Asada, H. H., (1996). Integrated structure/control design
of mechatronic systems using a recursive experimental optimization
method. IEEE/ASME Transactions on Mechatronics, 1(3), 191–203.

94. Powell, W. B., (2010). Approximate dynamic programming-II:
Algorithms. Wiley Encyclopedia of Operations Research and
Management Science (Vol. 2).

95. Powell, W. B., George, A., Bouzaiene-Ayari, B., & Simao, H. P., (2005).
Approximate dynamic programming for high dimensional resource
allocation problems. In: Proceedings 2005 IEEE International Joint
Conference on Neural Networks (Vol. 5, pp. 2989–2994). IEEE.

96. Powell, W. B., Shapiro, J. A., & Simão, H. P., (2002). An adaptive
dynamic programming algorithm for the heterogeneous resource
allocation problem. Transportation Science, 36(2), 231–249.

Dynamic Programming 195

97. Rezaee, K., Abdulhai, B., & Abdelgawad, H., (2012). Application of
reinforcement learning with continuous state space to ramp metering in
real-world conditions. In: 2012 15th International IEEE Conference on
Intelligent Transportation Systems (pp. 1590–1595). IEEE.

98. Rust, J., (1989). 12 a dynamic programming model of retirement
behavior. The Economics of Aging, 359.

99. Rust, J., (1996). Numerical dynamic programming in economics.
Handbook of Computational Economics, 1, 619–729.

100. Rust, J., (2008). Dynamic programming. The New Palgrave Dictionary
of Economics, 1, 8–15.

101. Sahinidis, N. V., (2004). Optimization under uncertainty: State-of-the-
art and opportunities. Computers & Chemical Engineering, 28(6, 7),
971–983.

102. Sali, A., & Blundell, T. L., (1990). Definition of general topological
equivalence in protein structures: A procedure involving comparison of
properties and relationships through simulated annealing and dynamic
programming. Journal of Molecular Biology, 212(2), 403–428.

103. Sauthoff, G., (2010). Bellman’s GAP: A 2nd Generation Language and
System for Algebraic Dynamic Programming, 15–25).

104. Schapire, R. E., & Singer, Y., (1999). Improved boosting algorithms
using confidence-rated predictions. Machine Learning, 37(3), 297–
336.

105. Sen, S., & Head, K. L., (1997). Controlled optimization of phases at an
intersection. Transportation Science, 31(1), 5–17.

106. Seuken, S., & Zilberstein, S., (2007). Memory-bounded dynamic
programming for DEC-POMDPs. In: IJCAI (pp. 2009–2015).

107. Sharma, H., Jain, R., & Gupta, A., (2019). An empirical relative value
learning algorithm for non-parametric MDPs with continuous state
space. In: 2019 18th European Control Conference (ECC) (pp. 1368–
1373). IEEE.

108. Sherali, H. D., Soyster, A. L., Murphy, F. H., & Sen, S., (1982). Linear
programming based analysis of marginal cost pricing in electric utility
capacity expansion. European Journal of Operational Research, 11(4),
349–360.

109. Shier, D. R., (1976). Iterative methods for determining the k shortest
paths in a network. Networks, 6(3), 205–229.

Key Dynamics in Computer Programming196

110. Shier, D. R., (1979). On algorithms for finding the k shortest paths in a
network. Networks, 9(3), 195–214.

111. Shin, J., Badgwell, T. A., Liu, K. H., & Lee, J. H., (2019). Reinforcement
learning: Overview of recent progress and implications for process
control. Computers & Chemical Engineering, 127, 282–294.

112. Shuai, H., Fang, J., Ai, X., Tang, Y., Wen, J., & He, H., (2018).
Stochastic optimization of economic dispatch for microgrid based
on approximate dynamic programming. IEEE Transactions on Smart
Grid, 10(3), 2440–2452.

113. Silva, T. A., & De Souza, M. C., (2020). Surgical scheduling under
uncertainty by approximate dynamic programming. Omega, 95,
102066.

114. Simon, H. A., (1956). Dynamic programming under uncertainty with a
quadratic criterion function. Econometrica, Journal of the Econometric
Society, 74–81.

115. Snyder, W. L., Powell, H. D., & Rayburn, J. C., (1987). Dynamic
programming approach to unit commitment. IEEE Transactions on
Power Systems, 2(2), 339–348.

116. Sun, Y., Kirley, M., & Halgamuge, S. K., (2017). A recursive
decomposition method for large scale continuous optimization. IEEE
Transactions on Evolutionary Computation, 22(5), 647–661.

117. Sung, K., Bell, M. G., Seong, M., & Park, S., (2000). Shortest paths
in a network with time-dependent flow speeds. European Journal of
Operational Research, 121(1), 32–39.

118. Sutton, R. S., Barto, A. G., & Williams, R. J., (1992). Reinforcement
learning is direct adaptive optimal control. IEEE Control Systems
Magazine, 12(2), 19–22.

119. Tao, J. Y., & Li, D. S., (2006). Cooperative strategy learning in multi-
agent environment with continuous state space. In: 2006 International
Conference on Machine Learning and Cybernetics (pp. 2107–2111).
IEEE.

120. Tierney, L., (1996). Introduction to general state-space Markov chain
theory. Markov Chain Monte Carlo in Practice, 59–74.

121. Topaloglu, H., & Kunnumkal, S., (2006). Approximate dynamic
programming methods for an inventory allocation problem under
uncertainty. Naval Research Logistics (NRL), 53(8), 822–841.

Dynamic Programming 197

122. Ulmer, M. W., Goodson, J. C., Mattfeld, D. C., & Hennig, M., (2019).
Offline–online approximate dynamic programming for dynamic
vehicle routing with stochastic requests. Transportation Science, 53(1),
185–202.

123. Van, D. E., (1989). Stable equilibria and forward induction. Journal of
Economic Theory, 48(2), 476–496.

124. Vogstad, K., & Kristoffersen, T. K., (2010). Investment decisions
under uncertainty using stochastic dynamic programming: A case
study of wind power. In: Handbook of Power Systems I (pp. 331–341).
Springer, Berlin, Heidelberg.

125. Wang, C. L., & Xie, K. M., (2002). Convergence of a new evolutionary
computing algorithm in continuous state space. International Journal
of Computer Mathematics, 79(1), 27–37.

126. Webster, M., Santen, N., & Parpas, P., (2012). An approximate dynamic
programming framework for modeling global climate policy under
decision-dependent uncertainty. Computational Management Science,
9(3), 339–362.

127. Westphal, M. I., Pickett, M., Getz, W. M., & Possingham, H. P., (2003).
The use of stochastic dynamic programming in optimal landscape
reconstruction for metapopulations. Ecological Applications, 13(2),
543–555.

128. Wu, F., & Huberman, B. A., (2004). Finding communities in linear
time: A physics approach. The European Physical Journal B, 38(2),
331–338.

129. Xie, J., Wan, Y., & Lewis, F. L., (2017). Strategic air traffic flow
management under uncertainties using scalable sampling-based
dynamic programming and q-learning approaches. In: 2017 11th Asian
Control Conference (ASCC) (pp. 1116–1121). IEEE.

130. Xu, J., Zeng, Z., Han, B., & Lei, X., (2013). A dynamic programming-
based particle swarm optimization algorithm for an inventory
management problem under uncertainty. Engineering Optimization,
45(7), 851–880.

131. Yagar, S., & Han, B., (1994). A procedure for real-time signal control
that considers transit interference and priority. Transportation Research
Part B: Methodological, 28(4), 315–331.

132. Zhang, N., Leibowicz, B. D., & Hanasusanto, G. A., (2019). Optimal
residential battery storage operations using robust data-driven dynamic
programming. IEEE Transactions on Smart Grid, 11(2), 1771–1780.

FUNDAMENTALS OF OPERATING
SYSTEMS

7

CONTENTS
7.1. Introduction .. 200

7.2. Computer System Organization .. 201

7.3. Computer System Structure ... 204

7.4. Operating System (OS) History ... 204

7.5. Operating System (OS) Functions .. 205

7.6. Operating System (OS) Categories .. 206

7.7. The Performance Development of OS ... 209

7.8. Operating System (OS) Service ... 212

7.9. Operating System (OS) Operations ... 212

7.10. Operating System (OS) Components ... 214

References ... 217

CHAPTER

Key Dynamics in Computer Programming200

7.1. INTRODUCTION
An operating system (OS) is a collection of programs that manage the
execution of application software and serve as a link between a computer’s
consumer and its hardware. The OS is software that both maintains computer
hardware and offers an environment in which application applications may
execute (Eager et al., 2016).

Windows/NT, Windows, MacOS, and OS/2 are instances of OSs.
The operating system goals are as follows (Hughes, 2000):
• To design the computer system user-friendly and simple to

operate;
• To make the most use of computer hardware;
• To run user applications and make it simpler to solve user issues.
Application programs, OSs, hardware, and users are the 4 elements that

make up a computer system. Figure 7.1 depicts an abstract representation of
system elements (Dandamudi, 2003).

•	 Users: These can be thought of as machines, people, or other
computers.

•	 Hardware: This includes memory, CPU, and input/output
devices.

•	 Application Programs: This includes database systems,
compilers, and web browsers, which help users solve their
computer challenges.

•	 Operating System (OS): It offers the mechanism for appropriate
usage of hardware in computer system operations.

Figure 7.1. Computer system.

Source: https://www.slideshare.net/SHIKHAGAUTAM4/3-basic-organization-
of-a-computer.

Fundamentals of Operating Systems 201

7.2. COMPUTER SYSTEM ORGANIZATION

7.2.1. Computer-System Operation
A typical computer system is made up of one or many CPUs and multiple
device controllers which are all linked via a general bus that allows access
to shared memory and other resources (Figure 7.2) (Robey, 1981). It is the
responsibility of each device controller to oversee one particular type of
equipment (for instance, video displays, audio devices, disc drives). The
device controllers and the CPU are capable of running in parallel, with each
fighting for memory cycles. A memory controller is in charge of coordinating
access to the shared memory to guarantee that it is used in an orderly manner
(Estrin, 1960).

Figure 7.2. A modern computer system.

Source: https://429151971640327878.weebly.com/blog/12-computer-system-
organization.

When a computer is first turned on or restarted, it has to execute an
initial software to get it up and running. This first software, often known as
a bootstrap program, is usually rather simple (Musina et al., 2017). For the
most part, firmware is included within the computer hardware, and is saved
in read-only memory (ROM) or electronically erasable programmable read-
only memory (EEPROM). From the registers of CPU to the device controllers
to the contents of the RAM, it configures and configures everything about

Key Dynamics in Computer Programming202

the system. The bootstrap software should understand how to load the OS
and begin running it. To achieve this, the bootstrap software must identify
and load the OS kernel into memory. After that, the OS launches the first
procedure, like “init,” and waits for anything to happen (Austin et al., 2002).

7.2.2. Storage Structure
Computer programs should be stored in primary memory (commonly
known as RAM). The only significant storage location that the CPU may
access directly is primary memory. It creates a list of memory words. Every
word has a unique address. A series of load or store instructions to specified
memory locations are used to accomplish interaction. The instruction of load
copies a word from primary memory to an interior register in the Central
Processing Unit, while the store instruction copies the contents of a register
to primary memory (Cardenas, 1973).

The cycle of instruction-execution comprises:
• Retrieves an instruction from memory and places it in the

register of instruction. In addition, the register of PC should be
incremented;

• Interpret the instruction, which can result in the retrieval of
operands from memory and storage in an interior register;

• Run the command and accumulate the output in memory.
For the following 2 causes, the programs and data have not yet remained

in the primary memory indefinitely (Murphy et al., 1972):
• The primary memory is a volatile storage medium that eliminates

its data when the power is switched off or the device is damaged;
• Main RAM is typically insufficient to hold all required programs.

Data is stored indefinitely.
As a result, many computer systems include secondary storage like an

extension of primary memory to permanently store vast amounts of data.
A computer system’s diverse storage systems may be arranged in

a hierarchy (Figure 7.3). Size, speed, volatility, and cost are the key
distinctions between the different storage methods. Higher levels are more
costly, although they are also quicker (Rosenblum et al., 1992).

Fundamentals of Operating Systems 203

Figure 7.3. Storage device hierarchy.

7.2.3. Input/Output Structure
A computer system is composed of a large number of device controllers and
CPUs that are all connected by an ordinary bus (Estrin, 1960). In addition to
managing peripheral devices, the device controller has been responsible of
transmitting data among these devices and the onboard buffer storage. Many
OS give a device driver for each device controller (Figure 7.4).

Figure 7.4. Structure of input/output diagnosis module.

To initiate an Input/output operation, the device driver must first load
the proper registers inside the device controller. The data of such registers
are examined by the device controller to identify which action to take
place. The controller initiates the transmit of data from the device to its
local buffer by triggering the transfer (Ritchie, 1984). Once a data transfer

Key Dynamics in Computer Programming204

has been completed, the device controller notifies the device driver through
an interrupt that the operation has been completed successfully. Control
is subsequently transferred back to the OS via the device driver. Other
procedures are completed by returning status information from the device
driver.

Direct memory access (DMA) is utilized to transfer large amounts of
data. After configuring the Input/output device’s buffers, counters, and
pointers, the device controller transmits a whole block of data straight to or
from its buffer storage to memory, without the need for the CPU to intervene.
When using high-speed devices, just one interrupt is created every block to
notify the device driver that the operation is finished, as opposed to one
interrupt per byte when using lower-speed devices (Haber et al., 1990).

7.3. COMPUTER SYSTEM STRUCTURE
As per the processors quantity utilized, there have been many types for the
construction a computer system (Robey, 1981):

•	 Single-Processor System: Only 1 Central Processing Unit is
utilized to perform instructions.
– There are two or many processors share a bus, physical

memory, clock, and peripheral devices in a multiprocessor
system. Multiprocessors give the benefits as follow:

– Enhance the throughput;
– The economic scale (lower cost);
– Enhance the reliability level.

•	 Clustered System: A clustered system is comprised of a number
of computer systems that have been connected together by a local
area network.

7.4. OPERATING SYSTEM (OS) HISTORY
Throughout the years, OSs have evolved. The history of OS is seen in the
table and Figure 7.5 (Silberschatz et al., 1991).

Fundamentals of Operating Systems 205

Figure 7.5. History of operating systems.

Source: https://www.abhishekshukla.com/windows-operating-system/history-
evolution-windows-os-operating/.

7.5. OPERATING SYSTEM (OS) FUNCTIONS
The OS executes a variety of tasks, including (Figure 7.6) (Stallings, 2003):

• User interface implementation;
• User-to-user HW sharing;
• Permitting people to share data;
• Avoiding consumers from causing problems for each other;
• Allocating sources to users;
• Streamlining Input/output operations;
• Getting back on track after making a mistake;
• Keeping track of source storage;
• Making parallel processes easier;
• Data organization for safe and quick accessibility;
• Managing network communications is number eleven.

Key Dynamics in Computer Programming206

Figure 7.6. Operating system functions.

Source: https://electricalfundablog.com/operating-system-os-functions-types-
resource-management/.

7.6. OPERATING SYSTEM (OS) CATEGORIES
The main types of current OSs can be divided into three groups depending
upon the type of interaction that occurs among the user and the computer
which are discussed in subsections (Figure 7.7) (Agarwal et al., 1988).

Figure 7.7. Kinds of operating systems.

Source: https://www.slideserve.com/arleen/operating-systems-for-wireless-
sensor-networks-in-space.

Fundamentals of Operating Systems 207

7.6.1. Batch System
Users submit work on a normal basis (such as monthly, weekly, and daily)
to a central location in this form of OS, and the user of this type of system
does not interface directly with the computer system. Jobs with comparable
requirements had been grouped and ran through the computer like a group to
speed up the processing (Litzkow et al., 1990). As a result, the programmer
will hand over control of the programs to the operator. Every job’s output
will be sent to the relevant programmer. The main duty of this kind was to
automatically hand over control from one job to another (Figure 7.8).

Figure 7.8. A batch operating system is depicted in the diagram.

Source: https://www.techtud.com/short-notes/batch-operating-system.

Batch system drawbacks are given below (Brown et al., 1991):
• From the user’s perspective, the turnaround time might be

lengthy;
• The program is hard to debug.

7.6.2. Time-Sharing System
This sort of OS allows for an online connection among the consumer and
the system, in which the consumer offers direct commands and receives
an intermediary response; hence, it is referred to as an interactive system
(Ritchie et al., 1978).

Key Dynamics in Computer Programming208

The time-sharing technology allows several users to share the computer
system at the same time. The Central Processing Unit is swiftly multiplexed
between various applications stored in memory and on storage. A program
moved back and forth between memory and the disc (Figure 7.9) (Ritchie
et al., 1981).

Figure 7.9. Time-sharing OS’s process state diagram.

Source: https://www.slideshare.net/KadianAman/aman-singh.

The CPU optimum time is reduced by using a time-sharing mechanism.
The drawback is a little more complicated.

7.6.3. Real-Time OS
A real-time OS is distinguished by its ability to respond quickly. It ensures
that time-sensitive jobs are executed on time. For every function to be done
on the computer, this kind should have a defined maximum time restriction.
Real-time systems have been utilized when there have been tight time limits
on the operation of a processor or the data flow, and real-time systems may
also be used as a control device in a specific application when strict time
constraints are required (Figure 7.10) (Clark et al., 1992).

Figure 7.10. The schematic diagram for the real-time operating system.

Source: https://www.polytechnichub.com/rtos-real-time-operating-system/.

Fundamentals of Operating Systems 209

This sort of system is exemplified by the airline reservation system.

7.7. THE PERFORMANCE DEVELOPMENT OF OS

7.7.1.	Online	and	Offline	Operation
For every Input/output device, a separate function called a device controller
was built. Certain Input/output devices are designed to work either online
(when linked to the CPU) or off-line (when not connected to the processor)
(A control unit is in charge of them) (Figures 7.11 and 7.12) (Seltzer et al.,
1997).

Figure 7.11. Off-line UPS topology.

Source: https://www.datacenterdynamics.com/en/opinions/ups-terminology-
101-online-and-offline-ups-topologies/.

Figure 7.12. Online UPS topology.

Source: https://www.datacenterdynamics.com/en/opinions/ups-terminology-
101-online-and-offline-ups-topologies/.

Key Dynamics in Computer Programming210

7.7.2. Buffering
A buffer is a major storage space used to retain data during input/output
transfers (Hildebrand, 1992). The data are deposited in the buffer via an
Input/output channel on input, and the data can be accessible by the CPU
once the transfer is complete. Single or double buffing is possible.

7.7.3. Spooling (Simultaneously Peripheral Operation Online)
Spooling makes advantage of the disc as a massive buffer. Since devices
access data at varying speeds, spooling is essential. The buffer serves as a
holding area for data until the slower device catches up (Lange et al., 2010).
Spooling permits you to overlap the calculation of one task with the input/
output of another.

7.7.4. Multiprogramming
Multiple programs have been retained in primary memory at the identical
time in multiprogramming, and the CPU switches among them, ensuring
that the Central Processing Unit is constantly executing a program. The OS
starts by running one program from memory; if this application requires a
delay, like an input/output activity, the OS switches to a different program.
Multiprogramming makes the CPU work harder. Multiprogramming
systems create an environment where in the different system resources are
properly used, but they do not allow for the interaction of consumer with the
computer (Christopher et al., 1993).

• Benefits:
– Excessive central processing unit usage;
– It looks that numerous programs are given central processing

unit time virtually at the same time.
• Drawbacks:

– There is a need for CPU scheduling;
– Memory management is essential to support several jobs in

memory.

7.7.5. Parallel System
It should be noted that the system contains greater than one CPU. Such
processors communicate with one another through the computer bus, the
clock, the memory, and the input/output devices (Plagemann et al., 2000).

Fundamentals of Operating Systems 211

The benefit is that capacity may be increased (the number of programs
finished in unit time).

7.7.6. Distributed System
Spread the processing among many physical processors. It entails using
a communication link to join two or more separate computer systems. As
a result, every Central Processing Unit has its OS and local memory, and
processors connect via a variety of communication channels, like higher-
speed buses or landlines (Figure 7.13) (Kronenberg et al., 1986).

Figure 7.13. Diagram of distributed systems.

Source: https://www.researchgate.net/figure/The-block-diagram-of-the-distrib-
uted-system_fig5_4351563.

Benefits of distributed systems:
•	 Sharing of Resources: You may share printers and files.
•	 Increased Calculation Speed: A job may be divided so each

processor may work on a portion of it at the same time, which is
known as load sharing.

•	 Reliability: If one CPU fails, the other CPUs will continue to
work normally.

• Electronic mail, ftp, and other forms of communication (Jo et al.,
2014).

7.7.7. Personal Computer
Personal computers (PC) are computer systems that are only used by one
person. Multi-user and multitasking capabilities were not available in
personal computer OS (Corral et al., 2012). Rather than increasing input/
output and CPU usage, the purpose of personal computer OS was to enhance
user convenience and response. Apple Macintosh and Microsoft Windows
are two examples.

Key Dynamics in Computer Programming212

7.8. OPERATING SYSTEM (OS) SERVICE
An OS is a software platform that delivers services to applications and their
users. The OS provides the following services (Gligor, 1984):

1. Input/Output Operation: Input/output refers to every file or
Input/output device. While operating, the software may require
any Input/output device. As a result, the OS should be capable to
deliver the necessary Input/output.

2. Program Execution: The OS executes and loads a program into
memory. The software should be capable to terminate its opera-
tion in one of two ways: abnormally and normally.

3. Communication: For a while, data flow between two processes
is necessary. Both procedures take place on the similar computer
or separate machines linked by a computer network.

4. Manipulation of File System: The program must be able to
write or read files. The OS allows the software to work with
files.

5. Detection of Errors: Errors might arise in the CPU, input/out-
put devices, or memory hardware. The OS must be continually
aware of potential faults. It must take the necessary steps to
guarantee that computing is accurate and reliable.

6. Communication can be accomplished in ways (Wentzlaff et al.,
2009):

i. A common memory;
ii. Message transmission.

7.9. OPERATING SYSTEM (OS) OPERATIONS
A multi-user OS allows for more effective system operations (Peter et al.,
2015):

•	 Allocation of Resources: For running the work at the same time.
•	 Accountancy: Account billing and use statistics are handled by

accounting.
•	 Security: Make sure that accessibility to the resources of the

system is restricted.
Interrupt-driven are the lifeblood of today’s OS. An OS would sit quietly,

waiting for anything to occur when there are no operations to run, no input/
output devices to serve, and no consumers to reply to. The appearance of an

Fundamentals of Operating Systems 213

interrupt or a trap nearly always signals the start of an occasion (Hansen,
1973). A trap is a software-generated interrupt that is triggered by either an
error (such as division by zero or incorrect memory access) or a particular
request from a user program to execute an OS service. Separate pieces
of code in the OS determine what action must be taken for every sort of
interrupt. An interrupt service procedure is included, which is in charge of
dealing with the interruption.

Because the OS and users share the computer systems software and
hardware sources, we must ensure that a bug in a user application only
affects the one program that had been executing. Because of the sharing,
a flaw in one application might harm multiple processes (Wentzlaff et al.,
2009). One OS should be constructed in such a way that an inaccurate (or
malicious) application may not force other programs to run wrongly.

7.9.1. Dual-Mode Operation
We need to be capable to tell the difference between OS code and consumer-
specified code. The strategy is to split the 2 operating modes: user mode and
kernel mode (known as privileged mode, system mode, or supervisor mode).
The mode bit is known as a mode bit added to the computer’s hardware that
indicates the present mode: user (1) or kernel (0) (Saha et al., 2003). A dual-
mode operation gives us the ability to defend the OS from rogue consumers,
as well as rogue consumers from each other.

System calls allow consumer software to request that the OS do duties
that are reserved for the OS on its behalf (Figure 7.14).

Figure 7.14. Dual mode operations in operating system.

Source: https://www.geeksforgeeks.org/dual-mode-operations-os/.

Key Dynamics in Computer Programming214

7.9.2. Protection CPU
The OS should have control over the CPU to make sure that it remains
stable. To avoid a consumer application becoming caught in an infinite loop
or failing to invoke system services and never surrendering control to the
OS, we should block them from doing so (Zhang et al., 2011). We may
utilize a timer to help us attain this aim. Using a timer, you may force the
computer to shut down after a defined variable or fixed length of time.

7.10. OPERATING SYSTEM (OS) COMPONENTS
The elements of OS are discussed in subsections.

7.10.1. Process Management
In a multi-programming environment, the OS determines which processes
receive processor time and for how long. The OS is in charge of the following
procedure management activities (Fassino et al., 2002):

• Procedures that are paused and resumed;
• Both consumer and system procedures can be created and deleted;
• Providing techniques for dealing with deadlocks;
• Providing communication tools for processes;
• Providing synchronization methods for processes.

7.10.2. Memory Management
The main memory consists of a vast arrangement of words or bytes, each
with its address. In terms of memory, the OS is in charge of the following
tasks (Anderson et al., 1991):

• Monitoring of which bits of memory are being utilized and from
whom at any given time;

• Determining which operations (or sections of operations) and
data should be moved into and out of the memory;

• Assigning and reassigning memory space as required.

7.10.3. File System Management
The OS is responsible for the given below file management activities
(Comer, 2011):

Fundamentals of Operating Systems 215

• File creation and deletion;
• Organizing files by creating and removing folders;
• Providing primitives for working with directories and files;
• File mapping to secondary storage;
• Using a stable (nonvolatile) storage medium to back up files.

7.10.4. Secondary Storage Management
OS In terms of disc management, the OS supports the following features
(Chen et al., 1994):

• Controlling the amount of free space available;
• Allocation of storage;
• Scheduling on the hard drive.

7.10.5. System Call and System Program
System calls are used to connect a running program to the OS. The consumer
may not perform privileged instructions; instead, the consumer must ask
the OS to do so via system calls. Traps are used to implement system calls
(Anderson et al., 1991).

Through the trap, the OS gets control, changes to kernel mode, conducts
service, then switches back to user mode and returns control to the user.

The graphic shows an instance of how the OS uses system calls to read
information from one file and transfer it to the next file. This amount of the
data has never been seen by the programmer (Mullender et al., 1990):

Obtain the name of the input file
Write prompt on the screen
Accept input
Obtain output filename
Write prompt on the screen
Example system call sequence
Accept input
Open the input file
If the file does not exist, abort
Create output file

Key Dynamics in Computer Programming216

If the file exists, abort
Loop: Read from input file
Write to the output file
Until reading fail
Close output file
Write completion message on the screen
Terminate normally
Consumers do not have to design their environment for program

development (compilers, editors) or program execution (shells) since system
programs give fundamental services.

7.10.6. Protection and Security
Protection A method that regulates the access of programs or consumers to
both systems is referred to as protection. The security system should be able
to (Wulf et al., 1974):

• Differentiate between authorized and unauthorized consumers;
• Specify the control that will be implemented;
• Establish a mechanism for enforcing the rules.
Security precautions are in charge of protecting a computer system from

both external and internal threats.

Fundamentals of Operating Systems 217

REFERENCES
1. Agarwal, A., Hennessy, J., & Horowitz, M., (1988). Cache performance

of operating system and multiprogramming workloads. ACM
Transactions on Computer Systems (TOCS), 6(4), 393–431.

2. Anderson, T. E., Levy, H. M., Bershad, B. N., & Lazowska, E. D.,
(1991). The interaction of architecture and operating system design.
ACM SIGPLAN Notices, 26(4), 108–120.

3. Austin, T., Larson, E., & Ernst, D., (2002). SimpleScalar: An
infrastructure for computer system modeling. Computer, 35(2), 59–67.

4. Brown, K. A., & Mitchell, T. R., (1991). A comparison of just-in-time
and batch manufacturing: The role of performance obstacles. Academy
of management Journal, 34(4), 906–917.

5. Cardenas, A. F., (1973). Evaluation and selection of file organization—A
model and system. Communications of the ACM, 16(9), 540–548.

6. Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., & Patterson, D. A.,
(1994). RAID: High-performance, reliable secondary storage. ACM
Computing Surveys (CSUR), 26(2), 145–185.

7. Christopher, W. A., Procter, S. J., & Anderson, T. E., (1993). The nachos
instructional operating system. In: USENIX Winter (pp. 481–488).

8. Clark, R. K., Jensen, E. D., & Reynolds, F. D., (1992). An architectural
overview of the Alpha real-time distributed kernel. In: Proceedings of
the USENIX Workshop on Microkernels and other Kernel Architectures
(pp. 27–28).

9. Comer, D., (2011). Operating System Design: The Xinu Approach,
Linksys Version (Vol. 1, pp. 3–9). Chapman and Hall/CRC.

10. Corral, L., Sillitti, A., & Succi, (2012). Mobile multiplatform
development: An experiment for performance analysis. Procedia
Computer Science, 10, 736–743.

11. Creasy, R. J., (1981). The origin of the VM/370 time-sharing system.
IBM Journal of Research and Development, 25(5), 483–490.

12. Dandamudi, S. P., (2003). Fundamentals of Computer Organization
and Design (Vol. 7, p. 1–5). Berlin, Heidelberg: Springer.

13. Eager, B., & Lister, A., (2016). Fundamentals of Operating Systems
(Vol. 1, pp. 1–10). Macmillan International Higher Education.

Key Dynamics in Computer Programming218

14. Estrin, G., (1960). Organization of computer systems: The fixed plus
variable structure computer. In: Papers Presented at the May 3–5, 1960,
Western Joint IRE-AIEE-ACM Computer Conference, 5(3), 33–40.

15. Fassino, J. P., Stefani, J. B., Lawall, J., & Muller, G., (2002). Think:
A software framework for component-based operating system kernels.
In: 2002 USENIX Annual Technical Conference (USENIX ATC 02).

16. Gligor, V. D., (1984). A note on denial-of-service in operating systems.
IEEE Transactions on Software Engineering, (3), 320–324.

17. Haber, R., & Unbehauen, H., (1990). Structure identification of
nonlinear dynamic systems—a survey on input/output approaches.
Automatica, 26(4), 651–677.

18. Hansen, P. B., (1973). Operating System Principles (3rd edn., p. 4–9).
Prentice-Hall, Inc.

19. Hildebrand, D., (1992). An architectural overview of QNX. In:
USENIX Workshop on Microkernels and Other Kernel Architectures
(pp. 113–126).

20. Hughes, L., (2000). An applied approach to teaching the fundamentals
of operating systems. Computer Science Education, 10(1), 1–23.

21. Jo, K., Kim, J., Kim, D., Jang, C., & Sunwoo, M., (2014). Development
of autonomous car—Part I: Distributed system architecture and
development process. IEEE Transactions on Industrial Electronics,
61(12), 7131–7140.

22. Kronenberg, N. P., Levy, H. M., & Strecker, W. D., (1986). VAXcluster:
A closely-coupled distributed system. ACM Transactions on Computer
Systems (TOCS), 4(2), 130–146.

23. Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., &
Brightwell, R., (2010). Palacios and kitten: New high performance
operating systems for scalable virtualized and native supercomputing.
In: 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS) (pp. 1–12). IEEE.

24. Litzkow, M., & Livny, M., (1990). Experience with the condor
distributed batch system. In: IEEE Workshop on Experimental
Distributed Systems (pp. 97–101).

25. Mullender, S. J., Van, R. G., Tananbaum, A. S., Van, R. R., & Van,
S. H., (1990). Amoeba: A distributed operating system for the 1990s.
Computer, 23(5), 44–53.

Fundamentals of Operating Systems 219

26. Murphy, D. L. (1972). Storage organization and management in
TENEX. In: Proceedings of the December 5–7, 1972, Fall Joint
Computer Conference, Part I (pp. 23–32).

27. Musina, O., Putnik, P., Koubaa, M., Barba, F. J., Greiner, R., Granato,
D., & Roohinejad, S., (2017). Application of modern computer algebra
systems in food formulations and development: A case study. Trends in
Food Science & Technology, 64, 48–59.

28. Peter, S., Li, J., Zhang, I., Ports, D. R., Woos, D., Krishnamurthy, A., &
Roscoe, T., (2015). Arrakis: The operating system is the control plane.
ACM Transactions on Computer Systems (TOCS), 33(4), 1–30.

29. Plagemann, T., Goebel, V., Halvorsen, P., & Anshus, O., (2000).
Operating system support for multimedia systems. Computer
Communications, 23(3), 267–289.

30. Ritchie, D. M., & Thompson, K., (1978). The UNIX time‐sharing
system. Bell System Technical Journal, 57(6), 1905–1929.

31. Ritchie, D. M., (1984). The UNIX system: A stream input‐output
system. AT&T Bell Laboratories Technical Journal, 63(8), 1897–1910.

32. Robey, D., (1981). Computer information systems and organization
structure. Communications of the ACM, 24(10), 674–687.

33. Rosenblum, M., & Ousterhout, J. K., (1992). The design and
implementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS), 10(1), 26–52.

34. Saha, B. B., Koyama, S., Kashiwagi, T., Akisawa, A., Ng, K. C.,
& Chua, H. T., (2003). Waste heat driven dual-mode, multi-stage,
multi-bed regenerative adsorption system. International Journal of
Refrigeration, 26(7), 749–757.

35. Seltzer, M., & Small, C., (1997). Self-monitoring and self-adapting
operating systems. In: Proceedings. The Sixth Workshop on Hot Topics
in Operating Systems (Cat. No. 97TB100133) (pp. 124–129). IEEE.

36. Silberschatz, A., Peterson, J. L., & Galvin, P. B., (1991). Operating
System Concepts (Vol. 10, No. 3, pp. 2–8). Addison-Wesley Longman
Publishing Co., Inc.

37. Stallings & W. (2003). Computer organization and architecture:
Designing for performance. Pearson Education India, 25(4), 16–26.

38. Wentzlaff, D., & Agarwal, A., (2009). Factored operating systems (fos)
the case for a scalable operating system for multicores. ACM SIGOPS
Operating Systems Review, 43(2), 76–85.

Key Dynamics in Computer Programming220

39. Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., &
Pollack, F., (1974). Hydra: The kernel of a multiprocessor operating
system. Communications of the ACM, 17(6), 337–345.

40. Zhang, F., Chen, J., Chen, H., & Zang, B., (2011). Cloudvisor:
Retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (Vol. 23, pp. 203–216).

TIMELINE OF COMPUTER WINDOWS
AND ITS FEATURES

8

CONTENTS
8.1. Introduction .. 222

8.2. Ms-Dos And What Came Before ... 222

8.3. Windows 1.0 .. 223

8.4. Windows 2.0 .. 223

8.5. Windows 3.0 .. 224

8.6. Windows 3.1 .. 225

8.7. Windows 95 ... 226

8.8. Windows 98 ... 227

8.9. Windows 2000 ... 228

8.10. Windows Me .. 229

8.11. Windows Xp ... 230

8.12. Windows Vista .. 231

8.13. Windows 7 ... 231

8.14. Windows 8 ... 232

8.15. Windows 8.1 .. 233

8.16. Windows 10 ... 234

8.17. Windows 11 ... 235

8.18. The Future of Windows ... 244

8.19. Main Features of Microsoft Windows .. 245

References ... 254

CHAPTER

Key Dynamics in Computer Programming222

8.1. INTRODUCTION
Whatever comes to mind when you consider the history of Windows? Logos
that are instantly recognizable? Changing the Start menu’s appearance? The
advent of Live Tiles? All of this and much more is included in the past
of Microsoft’s main operating system (OS). Windows has seen several
reincarnations during the last 35 years (Rushinek and Rushinek, 1997).
Here we examine 14 different Windows version because they all represent
significant milestones in the history of computers (Inglot and Liu, 2014;
Rajesh et al., 2015). Before we get in to Windows history, it is worth
considering the status of computing prior to Windows.

8.2. MS-DOS AND WHAT CAME BEFORE
Windows may appear to have been around for a long time, nonetheless
it hasn’t. Microsoft’s original OS was not Windows. In reality, before
Windows, PCs ran on a different OS called MS-DOS. Despite as the initial
edition of Windows, browsing your PC with MS-DOS took time, needed
guide text command input, and no permit for multitasking (the capability to
run multiple programs at once) (Laric, 1995; Akbal et al., 2016).

At minimum in 1985, Windows wasn’t so many a fresh OS as this was a
response to the problems which an OS like MS-DOS brought. Windows 1.0
was designed as a graphical user interface (GUI) to run on top of MS-DOS,
making it simpler to browse PCs running MS-DOS – it’s simpler to focus
on a screen and press an icon to start a program than it is to write numerous
instructions to do the same activity.

However, Windows wasn’t the primary GUI to address concerns such as
needing to browse through text instructions. Apple and Xerox were the first
two firms to get there. Apple produced “the first marketable computers with
a GUI” in 1983, according to Wired. It was dubbed the Lisa. The Lisa was
the very first commercialized computer with a GUI, although it wasn’t the
oldest computer with a GUI ever. Xerox released the first one in 1981, and
that it was named as the Star (Huxford, 1993; Ma et al., 2002).

Despite being three or four years later to the GUI party, Microsoft
was capable to sell its initial windows version at a far lower cost than its
competitors, providing it a substantial advantage. The development of
Windows is discussed in further sections.

Timeline of Computer Windows and Its Features 223

8.3. WINDOWS 1.0
Windows 1.0 emerged in 1985 as a GUI to be utilized in combination with
MS-DOS. The implementation of Windows 1.0 as a GUI ensured that MS-
DOS users no longer had to physically type text instructions only to execute
simple operations. They could now do jobs and peruse their own files
simply by picking and pressing on menus. The ionic Windows 1.0 cost $99
at the time of its debut and presented numerous computer users to pull-down
icons, menus, and conversation boxes per Microsoft. It also had the capacity
to multifunction apps and “transfer data across programs,” which was a first
for a Microsoft OS (Figure 8.1) (Harris, 1999; Hamadani et al., 2011).

Figure 8.1. Windows 1.0 image.

Source: https://winworldpc.com/product/windows-10/101.

Don’t be fooled by Windows 1.0’s bare-bones appearance: the OS
also had Windows Paint, Windows Write, a calendar, a clock, a notepad, a
cardfile, a file manager, a terminal app, as well as a game named Reversi,
according to The Verge.

8.4. WINDOWS 2.0
It wasn’t much till Microsoft launched a follow-up to its first GUI-enhanced
OS. Windows 2.0 was introduced after two years in 1987, by the technology
business. This version of Windows contained noteworthy features such as

Key Dynamics in Computer Programming224

overlapped windows, resizable windows, shortcut keys, and VGA graphics
capabilities. Word and Excel’s first Windows versions were also released
with Windows 2.0 (Figure 8.2) (Archibugi and Pietrobelli, 2003; Lin and
Vincent, 2012).

Figure 8.2. Windows 2.0 image.

Source: https://winworldpc.com/product/windows-20/20.

8.5. WINDOWS 3.0
Microsoft’s next great achievement was the launch of Windows 3.0.
This windows version is largely regarded as the beginning of Windows’
international prominence as a desktop OS. In 1990, Microsoft released
Windows 3.0, which supported 256 colors. More crucially, as PCMag
points out, it had “multitasking DOS apps,” that may have led to Windows’
popularity boom. An additional important aspect of Windows 3.0 is, this
is the form in which the famous desktop game Solitaire initially appeared
(Figure 8.3) (Smith, 1996; Uzunboylu et al., 2011).

Timeline of Computer Windows and Its Features 225

Figure 8.3. Windows 3.0 image.

Source: https://winworldpc.com/product/windows-3/30.

8.6. WINDOWS 3.1
Two years later, some other new version of OS occurred, this time bringing
Windows to its best-known versions, 3.1. Although the fraction in its
designation implies that it was a slight improvement to 3.0, but it was not.
Rather than that, Windows 3.1 introduced a number of critical new features
in 1992, including compatibility for TrueType fonts, a capability to drag
and drop icons, and capability for OLE composite files (files that join
components from various plans). Additionally, A Guardian reports that it is
the first variety of Windows to be issued on CD-ROM (Figure 8.4) (Scoville,
1993; Lee et al., 2011).

Key Dynamics in Computer Programming226

Figure 8.4. Windows 3.1 image.

Source: https://winworldpc.com/product/windows-3/31.

8.7. WINDOWS 95
You’re definitely thinking about Windows 95 when you consider the most
famous version of Windows. That is due to that it was like a radical leaving
artistically from earlier forms of Windows, and it set a quality for what
we’ve arise to know from Windows OS. Windows 95 was released in 1995,
as its name indicates. It was the oldest 32-bit version of Windows (prior
editions had been 16-bit), and this included a number of new characteristics
that would go down in history (Campbell, 1991; Nolze and Kraus, 1998).
The taskbar, the Start menu, lengthy file names, and plug-and-play features
are among them (at which marginal gadgets only required to be linked to
a PC for work correctly). Internet Explorer, Microsoft’s web browser, was
also introduced with Windows 95 (Figure 8.5) (Campbell, 1992).

Timeline of Computer Windows and Its Features 227

Figure 8.5. Image of Windows 95.

Source: https://microsoft.fandom.com/wiki/Windows_95.

Another noteworthy function? However, Windows 95 still operated with
MS-DOS, dissimilar its forerunner, it didn’t have to delay for the computer
to boot into DOS first, as PCMag points out. This was the first moment
Windows was permitted to boot straight from the hard drive (Barney, 1994).

8.8. WINDOWS 98
This is the Windows version with a title that corresponds to year this was
introduced. If Windows 95 (finally) gave us Internet Explorer, Windows 98
tightened the web browser’s hold on Microsoft’s OS. This form of Windows
not one included Internet Explorer 4.01, nonetheless also a bevy of additional
internet-related apps and features, like Microsoft Chat, the Web Publishing
Wizard. and Microsoft Outlook (Figure 8.6).

Key Dynamics in Computer Programming228

Figure 8.6. Screenshot of Windows 98.

Source: https://microsoft.fandom.com/wiki/Windows_98.

Windows 98 also included expanded compatibility for USB drives and
Macromedia apps (Shockwave and Flash).

8.9. WINDOWS 2000
Windows 2000 placed a strong emphasis on accessible, introducing plenty
of new features to the OS, like StickyKeys, an elevated design, Microsoft
Magnifier, an on-screen keyboard, and Microsoft Narrator, a screen reader
(Figure 8.7) (Ho et al., 2001; Pfeiffer et al., 2003).

Figure 8.7. Image of Windows 2000.

Source: https://microsoft.fandom.com/wiki/Windows_2000.

Timeline of Computer Windows and Its Features 229

Additionally, Windows 2000 had a Multilingual User Interface that
let users to select the languages in which their presentation will be shown.
Users of Windows 2000 have a range of language options, such as Arabic,
Japanese, and Greek (Guo et al., 2010; Prentice et al., 2013).

8.10. WINDOWS ME
“ME” stands for “Millennium Edition” in Windows ME. It also was called
“The Mistake Edition,” which was a less favorable title. When Windows
ME was released in 2000, it was given the moniker because “customers had
issues downloading it, enabling it to start, getting it to operate with other
software or hardware, and having it to quit operating” (Figure 8.8).

Figure 8.8. Image of Windows ME.

Source: https://microsoft.fandom.com/wiki/Windows_Me.

Even after its terrible start, this still handled in order to provide us
with a valuable device (Chau and Hui, 1998). System restores, a recovery
characteristic which, if your computer is turned up having issues because of
poorly executed installation of a program or upgrade, can eliminate some
these updated information and rebuild your computer to the way it was
formerly the infringing update screwed with it. System Restore, in classic

Key Dynamics in Computer Programming230

Mistake Edition manner, had its own challenges to work out before becoming
genuinely fantastic. For example, it occasionally messed up the restoration
by reinstalling items such as viruses that had already been deleted (Dong,
1999; Zhang et al., 2016).

8.11. WINDOWS XP
Windows XP was introduced in 2001 and is largely regarded as one of
Microsoft’s best Windows OSs. The OS was available in two versions:
Home and Professional. However, the Professional was designed for usage
in business environments, while Home was designed for personal use. Share
of XP’s success, according to TechRadar, may be ascribed to the fact that it
was released at the same time as a surge in PC sales, thus for numerous new
operators, “Windows XP was what arrived with their oldest computer.”

The popularity of XP may be followed back to the OS itself. And besides,
since it lasted 13 years till Microsoft withdrew support for it in 2014, there
must have been something appealing about its design. Because it is actually
meant to be consumer-friendly, it has achieved some commercial success.
Bright colors, a bright green Start button, and configurable theme tune were
lastly included with this windows version, giving it a warm and appealing
design. It also included additional features including as native CD ripping
software, desktop search, remote desktop, and (soon) enhanced security
(Figure 8.9) (Sullivan, 1996; Dong, 1999).

Figure 8.9. Windows XP image.

Source: https://microsoft.fandom.com/wiki/Windows_XP.

Timeline of Computer Windows and Its Features 231

8.12. WINDOWS VISTA
Regrettably, Vista was yet another critically derided windows edition. When
Vista was introduced in 2007, one of the primary criticisms was which its
afresh developed design interface (dubbed Aero Glass) did not always work
very well along first hardware or specific graphics drivers on newer PCs.
Other critiques leveled against Vista were its poor presentation, exorbitant
pricing, excessive system resource consumption, and, whereas the User
Account Control function-maintained users secure, the continuous dialog
boxes presented by the program were vexing (Figure 8.10) (Uslan and Su,
1997; Cota-Robles and Held, 1999).

Figure 8.10. Screenshot of Windows Vista.

Source: https://www.digitaltrends.com/computing/the-history-of-windows/.

Vista attempted to do too much, too quickly, and was burnt as a result.
Although it included numerous valuable functions, such as DirectX 10,
Windows Defender, (for PC gaming), Windows DVD Maker, and speech
recognition, it was not without flaws (Gratze et al., 1998).

8.13. WINDOWS 7
Microsoft released Windows 7, a new windows version, 2 years later.
Microsoft needed to develop for Vista’s shortcomings, and Windows 7 did
exactly that. Windows 7 is more simplified than Vista, and it essentially

Key Dynamics in Computer Programming232

removes numerous functionalities from preceding windows versions,
especially Vista. In truth, Microsoft did not have at least 4 Vista apps in
Windows 7: Windows Movie Maker, Windows Photo Gallery, Windows
Mail and Windows Calendar (Lio and Nghiem, 2004).

Handwriting recognition, improved overall speed, interactive thumbnails
preview for reduced program windows, a desktop slideshow function,
Windows Media Player 12, and Internet Explorer 9, were all included in
Windows 7 (Figure 8.11) (Bolosky et al., 2000).

Figure 8.11. Windows 7 image.

Source: https://www.digitaltrends.com/computing/the-history-of-windows/.

8.14. WINDOWS 8
Visually, Windows 8 was a sea change from its forerunners. It’s time to
discuss the tiled display screen. The Start screen had slates dubbed Live
Tiles that served as dynamic app shortcuts, allowing you to start your apps
while simultaneously displaying mini-updates about them (like the quantity
of unread messages). The Start screen was intended for replacing the Start
menu. In this configuration, Windows 8 retains the classic Windows desktop,
which is where applications are executed (Figure 8.12) (Westerlund and
Danielsson, 2001; Naik, 2004).

Timeline of Computer Windows and Its Features 233

Figure 8.12. Screenshot of Windows 8.

Source: https://news.microsoft.com/accessing-system-commands/.

While not everyone was delighted with Windows 8’s tablet-centric
redesign, it provided several more features like the option to USB 3.0
connectivity, login with a Microsoft account, a real lock screen (visually
comparable to a phone home screen), and Xbox Live integration (Warner,
2001; Swift et al., 2002).

8.15. WINDOWS 8.1
Consumers were not pleased with the startling Windows 8 Start screen and
the disappearance of the Start menu. In response, Microsoft introduced
Windows 8.1 as a free update to report customer concerns about its
predecessor (Figure 8.13) (Sechrest and Fortin, 2001; Ganapathi et al.,
2006).

Key Dynamics in Computer Programming234

Figure 8.13. Windows 8.1 image.

Source: https://news.microsoft.com/windows-8-1-preview-lock-screen/.

Microsoft made certain changes in Windows 8.1, such as adding a real
Start button to the toolbar and allowing users to get the desktop immediately
afterward signing in (in its place of actuality received by the dreaded Start
screen). Microsoft didn’t waste any time in releasing this patched-up version
of Windows: Windows 8 was introduced in 2012, followed by Windows 8.1
in 2013.

8.16. WINDOWS 10
Windows 10 was released in 2015 and is the latest version of Microsoft’s
OS. Once it launched, it was clear that Microsoft sought to improve its usage
of Live Tiles instead of completely eliminate them. It harmed the following
in Windows 10: It replaced Windows 8’s hated Start screen with a wider
Start menu that makes usage of Live Tiles and other types of program icons.
It was successful (Bickel et al., 2002; Stiegler et al., 2006).

Additionally, according to the Verge, the 2015 edition of Windows 10
introduced Cortana, a native digital personal helper; the capability to convert
among tablet and desktop modes; and a new online browser (Microsoft
Edge).

Since its introduction in 2015, Windows 10 has also gotten quite
frequent upgrades. They are referred to as feature updates and occur each six

Timeline of Computer Windows and Its Features 235

months. They are always accessible for free via Windows Update. Indeed,
the following function is not that far away: Windows 10 20H1 is scheduled
for release in the spring of 2020, maybe around May. This update is likely to
bring a revamped Cortana experience and the capability to restore Windows
“simply selecting the choice to Cloud downloading Windows, in the absence
of having to produce installation discs” (Figure 8.14).

Figure 8.14. Windows 10 image.

Source: https://www.digitaltrends.com/computing/the-history-of-windows/.

8.17. WINDOWS 11
Windows always has been to serve as a platform for global innovation. It
has served as the backbone of multinational enterprises and as a platform for
scrappy initiatives to become household names. Windows gave birth to and
raised the web. It’s where most of us sent our first mail, started playing our
first PC game, and coded our first line. Windows is the platform on which
over a trillion people these days rely to create, connect, learn, and succeed.

We don’t take the responsibility of creating for several individuals
casually. We moved from adapting the PC into our living to irritating to
integrate our entire life into the PC over the last 18 months, which has
resulted in an extraordinary shift in the way, we use our PCs. Our gadgets
were not just where we went for conferences, classes, and to get tasks
completed; they were also where we went out and played games with mates,

Key Dynamics in Computer Programming236

obsessively watch our favorite programs, and, maybe most importantly,
communicate with each other. We ended up digitally reproducing the
workplace conversation, hallway banter, exercises, happy hours, and holiday
festivities (Bird et al., 2009; Zimmermann et al., 2010).

The transition in PC that we saw and felt was quite profound — from
somewhat utilitarian and useful towards something emotional and personal.
It is what motivated us to create the next iteration of Windows. To offer a
familiar environment in which you may create, study, play, and, most highly,
interact in novel ways (Whitehouse, 2007).

Nowadays, I am honored and pleased to present you Windows 11, the
OS to bring you nearer to the things you care about.

8.17.1. Redesigned for Productivity, Creativity, and Ease
We’ve optimized experiences of user and design in order to boost your
production and stimulate your originality. This is contemporary, bright,
spotless, and lovely. Everything, from the fresh Start sign and toolbar to the
sounds, fonts, as well as icons, was designed with the aim of tapping you
in command and instilling a sense of comfort and serenity (Figure 8.15)
(Hargreaves et al., 2008; Narayan et al., 2009).

Figure 8.15. Perfect interface design.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.

Timeline of Computer Windows and Its Features 237

We centered Start and made it humbler to immediately locate what
you’re observing for. Begin leverages the web and Microsoft 365 to show
your new files irrespective of the stage or device on which you were reading
them formerly, even if it was an Android or iOS gadget.

Windows is all about allowing you to work perfectly as you choose,
with many windows and the capability to link programs together. Snap
Groups, Desktops, and Snap Layouts, are all new in Windows 11 and give
another more adaptive approach to multitasking and keep at the top of just
what people require to get accomplished. These are new tools that will help
you manage your windows and maximize your screen display so you can
view just what you want from a visually appealing layout. You may also
build various Desktops for different aspects of your life and configure them
to your preferences — for example, a Desktop for working, gaming, and
education (Figures 8.16 and 8.17) (Ray and Schultz, 2007; Li et al., 2008).

Figure 8.16. Multiple window flexibility.

Source: https://www.techrepublic.com/article/windows-11-cheat-sheet-every-
thing-you-need-to-know/.

Key Dynamics in Computer Programming238

Figure 8.17. Windows 11 removes the complexity and replaces it with simplic-
ity.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.

8.17.2. Fast Connectivity
Another crucial component of putting you closer to your passion is getting you
nearer to your loved ones. The previous 18 months have influenced how we
develop meaningful digital interactions with individuals. Even as we begin to
move to more personal engagement, we want to keep it simple for individuals
to stay connected regardless of their location. And we don’t want your device
or platform to be a hindrance (Figure 8.18) (Narayan et al., 2009).

Figure 8.18. A more efficient method of communicating with the individuals
you care about.

Source: https://www.techrepublic.com/article/windows-11-cheat-sheet-every-
thing-you-need-to-know/.

Timeline of Computer Windows and Its Features 239

We’re delighted to debut Chat from Microsoft Teams embedded into
the toolbar in Windows 11. Today, you can link directly with most of your
in-person contacts by text, chat, audio, or video, regardless of their device
or platform, Android, iOS or on Windows. If the individual on the other end
does not have the Teams app, you still can communicate with them using
two-way SMS (Purcell and Lang, 2008; Zhang et al., 2010).

Additionally, Windows 11 provides a more usual approach to engage
with friends and family via Teams, letting you to rapidly mute and unmute a
conversation or begin displaying right from the toolbar.

8.17.3. Perfect for Gaming
If you want to play video games, Windows 11 is the software platform for
you. Gaming has always been essential to the Windows philosophy. A lots
people across the globe now play the game on Windows to have fun and
engage with their friends and family. Windows 11 makes full use of your
system’s capabilities, putting cutting-edge gaming technologies to work for
you. DirectX 12 Ultimate allows spectacular, comprehensive visuals at high
speeds; DirectStorage enables fast loading and more realistic gaming envi-
ronments; and Auto HDR enables a larger, more varied spectrum of colors
for a really intriguing visual experience. Our dedication to device support
has not changed – Windows 11 supports all of your preferred PC gaming
fittings and peripherals. With Xbox Game Pass for Desktop or Ultimate,
players get access to hundreds of high-quality PC games, with new titles
published on a constant schedule, and that is just as simple to discovery
people to play with, whether on a PC or a console (Figure 8.19) (Thomas et
al., 2013; Eterovic‐Soric et al., 2017).

Figure 8.19. Offering the best possible PC gaming experiences.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.

Key Dynamics in Computer Programming240

8.17.4. Faster to Get Information
Widgets, a new personalized feed powered by AI and Microsoft Edge’s
best online performance, bring you closer to the information and news you
care about faster in Windows 11. Even when we’re at our most focused and
creative, we need pauses to check in with the outside world or recharge
our brains. These days, we constantly check our phones for news, weather,
and notifications. Your PC may now provide a similarly personalized
experience. When you open your personalized feed, it slips over your screen
like such a pane of glass, enabling you to continue to work uninterrupted.
Widgets also provide producers and publishers more space inside Windows
to deliver customized content. Our objective is to create a vibrant pipeline
that benefits both customers and artists for both major companies and local
creators (Figure 8.20) (Lallie and Briggs, 2011; Chien et al., 2014).

Figure 8.20. Obtaining knowledge in a more expedient manner.

Source: https://www.techrepublic.com/article/windows-11-cheat-sheet-every-
thing-you-need-to-know/.

8.17.5. Microsoft Store
The latest Windows Store provides access to programs and content for
viewing, producing, gaming, studying, and learning. It has been optimized
for performance and boasts a completely new interface that is both simple
to use and lovely to look at. Not only will we supply you with more apps
than previous, but we’ll also offer all content — apps, games, television
shows, and movies – easier to locate and discover via curated stories and
categories. We’re excited to announce the upcoming addition of a number of

Timeline of Computer Windows and Its Features 241

premier first- and third-party apps to the Microsoft Store, such as Microsoft
Teams, Visual Studio, Disney+, Adobe Creative Cloud, Zoom, and Canva
– which all deliver fantastic experiences that entertain, inspire, and connect
you. When you download an app from the App Store, you could be certain
that it has already been properly vetted for security and family safety (Figure
8.21) (Talebi et al., 2012).

Figure 8.21. A latest Microsoft Store which combines your favorite programs
and entertainment together in one place.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.

8.17.6. Android Apps on PC
We’re also excited to announce that for the first time we’ll be introducing
Android apps to Windows. Beginning later this year, customers will be able
to find Android applications in the Microsoft Store and install them from
the Amazon Appstore – picture shooting and publishing a TikTok video or
utilizing Khan Academy Children for virtual learning directly from your
PC. In the next months, we’ll have more to say about this event. We are
excited about our collaboration with Amazon and Intel, which will make use
of Intel Bridge technology (Figure 8.22) (Odell and Chandrasekaran, 2012;
Corregedor and Von Solms, 2013).

Key Dynamics in Computer Programming242

Figure 8.22. Android applications on a PC.

Source: https://www.pcmag.com/how-to/how-to-run-android-apps-in-win-
dows-11.

8.17.7. Creating a More Open Ecosystem Unlocking New
Opportunity for Developers and Creators
We are taking steps to increase the openness of the Microsoft Store in order
to create additional commercial opportunities for creators and programmers.
We’re enabling developers and independent software vendors (ISVs) to
bring their apps to the platform, regardless of whether they’re developed as
a Win32, universal windows app (UWP), or progressive web app (PWA),
any other app framework, therefore boosting their reach and engagement.
Furthermore, we’re launching a progressive change to our revenue sharing
practices, enabling developers to now bring their own commerce to our
Store and keep 100% of the proceeds – Microsoft takes no share. With a
competitive 85/15 revenue split, app developers may continue to use our
commerce. We believe that promoting a more open environment helps our
customers in the long term by giving them with secure, frictionless access
to the apps, games, movies, programs, and online content that they want and
need (Khatri, 2015).

8.17.8. Faster, More Secure and Familiar for IT
For IT professionals, Windows 11 is based on the same stable, well-matched,
and recognizable Windows 10 foundation. You’ll propose, make, and install

Timeline of Computer Windows and Its Features 243

Windows 11 in the same way that you do now with Windows 10. Updating
to Windows 11 will be similar to updating to Windows 10. As you incorpo-
rate Windows 11 into your estate, the same organization practices you have
nowadays – such as Microsoft Endpoint Manager, cloud setup, Windows
Update for Business, and Autopilot – will support your future environment.
We are dedicated to app availability, which is a major design principle of
Windows 11, just as we were with Windows 10. With App Assure, a service
to help clients with 150 or more users address any app difficulties they may
have at no additional cost, we stand by our guarantee that your apps will
operate on Windows 11 (Mehreen and Aslam, 2015).

Windows 11 is also safe by default, with newly constructed security
mechanisms that provide security from the chips to the cloud while allowing
for increased efficiency and new experiences. To safeguard data and access
across devices, Windows 11 has a Zero Trust-ready OS. We’ve worked very
closely with our OEM and silicon suppliers to enhance security baselines
in response to the changing threat landscape and the emerging hybrid work
environment (Venčkauskas et al., 2015).

The Microsoft 365 blog has further information on Windows 11 as a
computer system for mixed work and learning.

8.17.9. It Is a Great Time to Buy a PC
We’ve been working very closely with our device and semiconductor
partners since the beginning of Windows 11 development to ensure
seamless integration of software and hardware. That co-engineering starts
with silicon innovation. From AMD and the extraordinary graphical depth
provided by Ryzen processors to Intel’s 11th generation and Evo Processors,
to Qualcomm’s AI capabilities, 5G, and Arm support, the creativity of our
silicon suppliers ties together all the best of Windows 11 with the world’s
greatest hardware ecosystem.

And, in collaboration with Dell, HP, Lenovo, Samsung, Surface, and
others, we’ve worked to guarantee that most PCs* available today are ready
for Windows 11 – across a range of form factors and price ranges.

We’ve worked together to optimize Windows 11 not only for speed and
accuracy, but also to take benefit of new touch, inking, and voice interactions.

When using Windows 11 on a laptop without even a keyboard, we’ve
improved the touch experience by introducing more space between taskbar
icons, larger touch targets, and subtle visual clues to enable resizing and
dragging windows simpler, and also gestures. We’re also allowing haptics

Key Dynamics in Computer Programming244

to make utilizing your pen much more engaging and immersive, letting you
to feel and hear the sensations as you click, edit, or doodle. Finally, we’ve
made improvements to voice typing. Windows 11 recognizes what you say
really well; it can dynamically capitalize for you and has voice commands.
This is a terrific option for whenever you want to avoid typing and instead
voice your thoughts (Hofmeester and Wolfe, 2012; Gao et al., 2013).

Beginning this Christmas season, Windows 11 will be offered as a free
update for qualified Windows 10 PCs and for new PCs. Visit Windows.com
and download the PC Health Check app to see if your existing Windows 10
PC is capable for the free upgrading to Windows 11. We’re also collaborating
with our store teams to ensure that Windows 10 PCs purchased today are
prepared for the Windows 11 upgrade. The free upgrade will begin rolling
out to compatible Windows 10 PCs this Christmas season and will continue
until 2022. And, starting next week, we’ll start sharing an early copy of
Windows 11 with the Windows Insider Program — this is a dedicated group
of Windows lovers whose feedback we value.

8.18. THE FUTURE OF WINDOWS
We’re not saying Windows 11 will never come, and it’s been five years
since Windows 10 launched, and Microsoft is content with putting out new
feature upgrades every six months for the current version of its OS. Plus,
it’s not as though such feature upgrades deprive Windows 10 customers of
new functionality and design improvements. They occur two times a year
and frequently include a huge list of issue patches, new toolkit, and cosmetic
tweaks to the game’s design — especially if they really do contain an unusual
issue (Singh and Singh, 2017).

Even if Windows 11 does not materialize, this does not imply that
Windows’ long history of adaptation and creativity must come to a stop.
Windows, particularly in current years, has evolved into something more
than a desktop OS. Consider Windows Core OS. The Windows OS brand’s
future may lay with Core OS, which would be planned to be a stand-alone
OS (just not an upgrade to Windows 10). Core OS is projected to become
the flagship OS for smaller devices like as phones, tablets, and Chromebook
such as laptops, having distinct Core OS versions for each kind of device. It
is likely that the evolution of Windows will simply include the development
of distinct (but it’s still linked) OSs to meet the demands of an increasingly
mobile society (Singh and Singh, 2016).

Timeline of Computer Windows and Its Features 245

8.19. MAIN FEATURES OF MICROSOFT WINDOWS
Microsoft Windows comes with a variety of tools and programs to help you
get through your computer and Windows. Click a link below to read much
more about capabilities featured with Microsoft Windows.

8.19.1. Control Panel
The Control Panel is a set of tools that will assist you in configuring and
manage services on your desktop. You can modify printer, video, audio,
mouse, keyboard, time, and date, user profiles, installed apps, network
connections, energy saver choices, and other settings.

The Control Panel in Windows 10 is found in the Menu bar, under
Windows System. The Control Panel can also be launched from the Run
box. Enter control by pressing Windows key + R. Alternatively, you may
use the Windows key, type Control Center, and then hit Enter. Many Control
Panel options are also available in the Windows 10 Options menu (Figure
8.23).

Figure 8.23. Display of the control panel.

Source: https://answers.microsoft.com/en-us/windows/forum/all/where-is-dis-
play-control-panel-in-windows-build/ce8fcc12-f3c2-4940-800c-ed95053cff00.

Key Dynamics in Computer Programming246

8.19.2. Cortana
Cortana is a voice-activated virtual assistant that debuted with Windows
10. Cortana is a virtual assistant that can respond to questions, explore
your computer or the Internet, schedule appointments and reminders, make
online purchases, and much more. Cortana is comparable to other voice-
activated services like Siri, Alexa, or Google Assistant, with the additional
advantage of being able to search your computer’s information (Cheng et
al., 2016; Đuranec et al., 2019). In Windows 10, click Windows key+S to
open Cortana (Figure 8.24).

Figure 8.24. Cortana interface.

Source: https://cdn.windowsreport.com/wp-content/uploads/2020/06/How-to-
block-Cortana-from-starting-in-Windows-10.jpg.

8.19.3. Desktop
The desktop is a critical component of Windows’ standard GUI. It is a
container for apps, files, and documents, all of which show as icons. Your
desktop is constantly running in the background, alongside any other apps
you may be using.

When you turn on your desktop and sign in to Microsoft for the first
time, the desktop backdrop, icons, and taskbar are shown. From this point,
you may access your computer’s installed apps via the Start menu whether
by double-clicking any program shortcuts on your desktop.

At any moment, you may access your desktop by hitting Windows
key+D to minimize any currently active apps (Lazarescu et al., 2004; Fadhil
et al., 2016).

Timeline of Computer Windows and Its Features 247

8.19.4. Device Manager
A computer’s hardware devices are listed in the Device Manager. The Device
Manager allows users to check what hardware is connected, examine, and
upgrade hardware drivers, and remove hardware. The Device Manager may
be accessed via the Power User Activities Menu (Windows key+X, plus
enter M) (Figure 8.25).

Figure 8.25. Device manager interface.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.5. Disk Cleanup
The Disk Cleanup tool assists in increasing your computer’s available disc
space by deleting temporary or unwanted data. Disk Cleanup improves your
computer’s speed and frees up space on your hard drive for downloads,
documents, and programs (Figure 8.26) (Blackman et al., 1989; Bangalee
et al., 2012).

Figure 8.26. Disk clean-up display.

Source: https://www.computerhope.com/issues/ch001967.htm.

Key Dynamics in Computer Programming248

Disk Cleanup may be accessed using the File Explorer.Start an Explorer
window by pressing Windows key+E:

• Locate this system or My Computer on window’s left side and
choose it by pressing once;

• Right-click any disc on your desktop on the right side (C, for
example);

• Click on properties;
• Select disk cleanup from the general menu.

8.19.6. Event Viewer
The Event Viewer is a system administrator application that shows
problems and significant occurrences on your computer. It assists you in
troubleshooting sophisticated issues with your Windows PC (Embree et al.,
1991; Rajon, 2016). The Power User Tasks Panel (Windows key+X, then V)
may be accessed through the Event Viewer (Figure 8.27).

Figure 8.27. Display of the event viewer.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.7. File Explorer
The File Explorer, sometimes known as Windows Explorer, gives a graphical
representation of the files and directories on your computer. You may view
the data of your SSD, hard disks, and removable drives attached to your
computer. The File Explorer allows users to find for files and directories and
then open, rename, or remove them.

Press Windows key+E to launch a new File Manager window. You may
open several Explorer windows concurrently, which is useful for seeing
numerous directories at once or copying/moving data between them (Figure
8.28).

Timeline of Computer Windows and Its Features 249

Figure 8.28. File explorer display.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.8. Internet Browser
One of the most crucial programs on your computer is your web browser. It
may be used to search the Internet for information, read online sites, shop for
and purchase items, watch films, play video games, and more. The standard
browsing in Windows 10 is Microsoft Edge. Prior window’s version from
Windows 95 through Windows 8.1, contained Internet Explorer as the
default browser. In Windows 10, visit the Menu bar and scroll to the bottom
to Microsoft Edge to launch a new Edge web browser.

8.19.9. Microsoft Paint
Microsoft Paint, which has been included with Windows from November
1985, is a straightforward image editor for creating, viewing, and editing
digital images. It has basic capability for drawing and painting images,
resizing, and rotating photos, and saving images in a variety of file kinds.

To start Microsoft Paint in any version of Windows, hold down the
Windows key and enter mspaint (Dehnert and Stepanov, 2000; Mészárosová,
2015). Additionally, it is accessible through the Start menu: in Windows 10,
it is featured in Windows Accessories, Paint.

8.19.10. Notepad
Notepad is a straightforward text editor. It allows you to make, examine, and
alter text files. For example, you may use Notepad to create a batch file or
an HTML web page.

Key Dynamics in Computer Programming250

Notepad may be found in the Menu bar under Windows peripherals in
Windows 10. Notepad may be launched from the Run box in all windows
versions by pressing Windows key+R, typing notepad, then pressing Enter.

8.19.11.	Notification	Area
The notification area, alternatively referred to as the settings menu, shows the
date and time as well as icons for programs that are launched by Windows.
Additionally, it displays the status of your Internet access and a loudspeaker
icon for volume adjustment (Figure 8.29).

Figure 8.29. Display of notification area.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.12. Power User Tasks Menu
The Power User Tasks Menu, which is included in Windows 8 and Windows
10, allows easy access to useful and crucial Windows tools. You may access
the Control Panel, Device Manager, File Explorer, Task Manager, and other
programs through this menu. Press Windows key+X or right-click the Menu
button icon to launch the Power User Tasks Menu.

8.19.13. Registry Editor
The Registry Editor enables you to see and change the Windows system
registry. The Registry Editor can be used by computer experts to resolve
issues with the Windows pc or installed software (Figure 8.30).

Timeline of Computer Windows and Its Features 251

Figure 8.30. Registry editor application.

Source: https://asmwsoft.com/registry-editor-tool.html.

The Registry Editor is available in the Start menu, under Windows
Administrative Tools, in Windows 10. Additionally, you may launch it by
clicking the Windows key and entering regedit, followed by pressing Enter.

Changing things to the register might result in your programs or system
becoming unresponsive. Avoid editing the registry unless you are certain of
what you are doing, and always backup your registry before making changes
by transferring it to a file (Vogel-Heuser et al., 2014).

8.19.14. Settings
Settings, which is included in Windows 8 and Windows 10, allows you to
customize various elements of Windows. You may customize the desktop
backdrop, power settings, and external device choices, among other things.

In Windows 10, click Windows key+I to launch Settings. Alternatively,
enter the Start menu and select the Gear icon.

8.19.15. Start and Start Menu
The Start menu displays a list among all installed apps and tools on your
computer. You may access it by pressing Start just on taskbar’s left side. By
tapping the Windows key on the keyboard, you may access the Start menu.

8.19.16. System Information
The System Information tool displays information about the computer’s
hardware and OS. Information regarding your computer’s hardware, such as
the CPU, RAM, video card, and sound card, can be found. You can also see

Key Dynamics in Computer Programming252

and change configuration settings, device drivers, applications, and other
things (Figure 8.31) (Oliveira et al., 2013).

Figure 8.31. System information window.

Source: https://www.computerhope.com/jargon/s/sysinfo.html.

System Information may be found in the Menu bar, in Windows
Administrative Tools, in Windows 10. You may also open it by pressing
Windows key+R, typing msinfo32, and pressing Enter in the Run box.

8.19.17. Taskbar
The Windows taskbar displays open programs and a Rapid Launch section
for quick access to certain apps. The alert area is located to the right of the
toolbar and displays the date and time, as well as any background processes.

8.19.18. Task Manager
The Task Manager displays a list of all the programs that are now operating
on your computer. You may sort by CPU, RAM, and disc I/O use to discover
how many of your system components each program (job) uses. If a
program is stuck or not reacting, you may stop the process by right-clicking
it in Taskbar and forcing it to close. Ctrl+Shift+Esc will bring up the Task
Management at any moment (Figure 8.32).

Timeline of Computer Windows and Its Features 253

Figure 8.32. Task manager window.

Source: https://windowsground.com/what-is-task-manager-in-windows-10/.

8.19.19. Windows Search Box
The Windows search box provides an easy method to find documents,
images, videos, and programs. Cortana is also integrated into the search bar
in Windows 10. The function made its debut in Windows Vista.

By default, the search box is located on your taskbar. If you also don’t see
the search box in Windows 10, click right on the toolbar and choose Taskbar
settings. Ascertain that the option Use tiny taskbar buttons is disabled. Then,
click right the taskbar again and choose Cortana, Show search box from the
context menu (Qian and Lau, 2017).

Key Dynamics in Computer Programming254

REFERENCES
1. Akbal, E., Günes, F., & Akbal, A., (2016). Digital forensic analyses of

web browser records. J. Softw., 11(7), 631–637.
2. Archibugi, D., & Pietrobelli, C., (2003). The globalization of

technology and its implications for developing countries: Windows of
opportunity or further burden? Technological Forecasting and Social
Change, 70(9), 861–883.

3. Bangalee, M. Z. I., Lin, S. Y., & Miau, J. J., (2012). Wind driven natural
ventilation through multiple Windows of a building: A computational
approach. Energy and Buildings, 45, 317–325.

4. Barney, D., (1994). CC: Mail for Windows 2.0 marred by security flaw.
InfoWorld, 16(6), 1–2.

5. Bickel, R., Cook, M., Haney, J., Kerr, M., Parker, D. C. T., & Parkes, U.
S. N. H., (2002). Guide to securing Microsoft Windows XP. National
Security Agency, 1–129.

6. Bird, C., Nagappan, N., Devanbu, P., Gall, H., & Murphy, B., (2009).
Does distributed development affect software quality? an empirical case
study of Windows vista. In: 2009 IEEE 31st International Conference
on Software Engineering (pp. 518–528). IEEE.

7. Blackman, C. F., Kinney, L. S., House, D. E., & Joines, W. T.,
(1989). Multiple power‐density Windows and their possible origin.
Bioelectromagnetics: Journal of the Bioelectromagnetics Society,
The Society for Physical Regulation in Biology and Medicine, The
European Bioelectromagnetics Association, 10(2), 115–128.

8. Bolosky, W. J., Corbin, S., Goebel, D., & Douceur, J. R., (2000). Single
instance storage in Windows 2000. In: Proceedings of the 4th USENIX
Windows Systems Symposium (pp. 13–24).

9. Campbell, G., (1991). Word for Windows 2.0: Getting better all the
time. PC World, 9(12), 91–92.

10. Campbell, G., (1992). Windows word processors. PC World, 10(4),
146–161.

11. Chau, P. Y., & Hui, K. L., (1998). Identifying early adopters of new IT
products: A case of Windows 95. Information & Management, 33(5),
225–230.

12. Cheng, Y., Jiang, C., & Shi, J., (2016). A fall detection system based
on SensorTag and Windows 10 IoT core. In: 2015 International

Timeline of Computer Windows and Its Features 255

Conference on Mechanical Science and Engineering (pp. 238–244).
Atlantis Press.

13. Chien, C. F., Lin, K. Y., & Yu, A. P. I., (2014). User-experience of tablet
operating system: An experimental investigation of Windows 8, iOS
6, and, android 4.2. Computers & Industrial Engineering, 73, 75–84.

14. Corregedor, M., & Von, S. S., (2013). Windows 8; 32 bit—Improved
security? In: 2013 Africon (pp. 1–5). IEEE.

15. Cota-Robles, E., & Held, J. P., (1999). A comparison of Windows
driver model latency performance on Windows NT and Windows 98.
In: OSDI (pp. 159–172).

16. Dehnert, J. C., & Stepanov, A., (2000). Fundamentals of generic
programming. In: Generic Programming (pp. 1–11). Springer, Berlin,
Heidelberg.

17. Dong, C., (1999). PowderX: Windows-95-based program for powder
x-ray diffraction data processing. Journal of Applied Crystallography,
32(4), 830–838.

18. Đuranec, A., Topolčić, D., Hausknecht, K., & Delija, D., (2019).
Investigating file use and knowledge with Windows 10 artifacts. In:
2019 42nd International Convention on Information and Communication
Technology, Electronics, and Microelectronics (MIPRO) (pp. 1213–
1218). IEEE.

19. Embree, P. M., Kimble, B., & Bartram, J. F., (1991). C Language
Algorithms for Digital Signal Processing, 15–20.

20. Eterovic‐Soric, B., Choo, K. K. R., Mubarak, S., & Ashman, H., (2017).
Windows 7 antiforensics: A review and a novel approach. Journal of
Forensic Sciences, 62(4), 1054–1070.

21. Fadhil, M. S., Alkawaz, M. H., Rehman, A., & Saba, T., (2016).
Writers identification based on multiple Windows features mining. 3D
Research, 7(1), 1–6.

22. Ganapathi, A., Ganapathi, V., & Patterson, D. A., (2006). Windows XP
kernel crash analysis. In: LISA (Vol. 6, pp. 49–159).

23. Gao, H., Jia, W., Liu, N., & Li, K., (2013). The hot-spots problem in
Windows 8 graphical password scheme. In: International Symposium
on Cyberspace Safety and Security (pp. 349–362). Springer, Cham.

24. Gratze, G., Fortin, J., Holler, A., Grasenick, K., Pfurtscheller, G.,
Wach, P., & Skrabal, F., (1998). A software package for non-invasive,
real-time beat-to-beat monitoring of stroke volume, blood pressure,

Key Dynamics in Computer Programming256

total peripheral resistance and for assessment of autonomic function
an updated and improved software version for Windows 95/NT and
the complete biosignal electronics (ECG, ICG, beat-to-beat, and
oscillometric blood pressure and pulse oxymetry) will be supplied
in a compact instrument by: CNSystems Medical Equipment Inc.
Heinrichstrasse 22 A-8010 Graz, Austria, Europe. Tel.: +43/316/3631-
0; Fax:+ 43/316. Computers in Biology and Medicine, 28(2), 121–142.

25. Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B., (2010).
Characterizing and predicting which bugs get fixed: An empirical
study of Microsoft Windows. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (Vol. 1, pp. 495–
504).

26. Hamadani, J. D., Tofail, F., Nermell, B., Gardner, R., Shiraji, S.,
Bottai, M., & Vahter, M., (2011). Critical Windows of exposure for
arsenic-associated impairment of cognitive function in pre-school girls
and boys: A population-based cohort study. International Journal of
Epidemiology, 40(6), 1593–1604.

27. Hargreaves, C., Chivers, H., & Titheridge, D., (2008). Windows vista
and digital investigations. Digital Investigation, 5(1, 2), 34–48.

28. Harris, D. C., (1999). Materials for Infrared Windows and Domes:
Properties and Performance (Vol. 158, pp. 25–40). SPIE press.

29. Ho, W. K., Ang, J. C., & Lim, A., (2001). A hybrid search algorithm for
the vehicle routing problem with time Windows. International Journal
on Artificial Intelligence Tools, 10(3), 431–449.

30. Hofmeester, K., & Wolfe, J., (2012). Self-revealing gestures: Teaching
new touch interactions in Windows 8. In: CHI’12 Extended Abstracts
on Human Factors in Computing Systems (pp. 815–828).

31. Huxford, D. C., (1993). Windows for workgroups. Journal of Financial
Planning, 6(2), 52.

32. Inglot, B., & Liu, L., (2014). Enhanced timeline analysis for digital
forensic investigations. Information Security Journal: A Global
Perspective, 23(1, 2), 32–44.

33. Khatri, Y., (2015). Forensic implications of system resource usage
monitor (SRUM) data in Windows 8. Digital Investigation, 12, 53–65.

34. Lallie, H. S., & Briggs, P. J., (2011). Windows 7 registry forensic
evidence created by three popular BitTorrent clients. Digital
Investigation, 7(3, 4), 127–134.

Timeline of Computer Windows and Its Features 257

35. Laric, M. V., (1995). Day-Timer organizer 1.0 for Windows. Journal of
Consumer Marketing, 12(3), 67–70.

36. Lazarescu, M. M., Venkatesh, S., & Bui, H. H., (2004). Using multiple
Windows to track concept drift. Intelligent Data Analysis, 8(1), 29–59.

37. Lee, T., Mitschke, K., Schill, M. E., & Tanasovski, T., (2011). Windows
PowerShell 2.0 Bible (Vol. 725, pp. 457–472). John Wiley & Sons.

38. Li, P. L., Ni, M., Xue, S., Mullally, J. P., Garzia, M., & Khambatti, M.,
(2008). Reliability assessment of mass-market software: Insights from
Windows vista®. In: 2008 19th International Symposium on Software
Reliability Engineering (ISSRE) (pp. 265–270). IEEE.

39. Lin, S. W., & Vincent, F. Y., (2012). A simulated annealing heuristic for
the team orienteering problem with time Windows. European Journal
of Operational Research, 217(1), 94–107.

40. Lio, P. A., & Nghiem, P., (2004). Interactive atlas of dermoscopy:
Giuseppe argenziano, MD, H. Peter Soyer, MD, Vincenzo De Giorgio,
MD, Domenico Piccolo, MD, Paolo Carli, MD, Mario Delfino, MD,
Angela Ferrari, MD, Rainer Hofmann-Wellenhof, MD, Daniela Massi,
MD, Giampiero Mazzocchetti, MD, Massimiliano Scalvenzi, MD, and
Ingrid H. Wolf, MD, Milan, Italy, 2000, Edra Medical Publishing and
New Media. $290.00. ISBN 88-86457-30-8. CD-ROM requirements
(minimum): Pentium 133 MHz, 32-Mb RAM, 24X CD-ROM drive,
800× 600 resolution. Journal of the American Academy of Dermatology,
50(5), 208, 807, 808.

41. Ma, X., Buffler, P. A., Gunier, R. B., Dahl, G., Smith, M. T., Reinier,
K., & Reynolds, P., (2002). Critical Windows of exposure to household
pesticides and risk of childhood leukemia. Environmental Health
Perspectives, 110(9), 955–960.

42. Mehreen, S., & Aslam, B., (2015). Windows 8 cloud storage analysis:
Dropbox forensics. In: 2015 12th International Bhurban Conference
on Applied Sciences and Technology (IBCAST) (pp. 312–317). IEEE.

43. Mészárosová, E., (2015). Is python an appropriate programming
language for teaching programming in secondary schools. International
Journal of Information and Communication Technologies in Education,
4(2), 5–14.

44. Naik, D. C., (2004). Inside Windows storage: Server storage
technologies for Windows 2000, Windows server 2003 and beyond.
Computing Reviews, 45(8), 468–469.

Key Dynamics in Computer Programming258

45. Narayan, S., Feng, T., Xu, X., & Ardham, S., (2009). Network
performance evaluation of wireless IEEE802. 11n encryption methods
on Windows vista and Windows server 2008 operating systems.
In: 2009 IFIP International Conference on Wireless and Optical
Communications Networks (pp. 1–5). IEEE.

46. Narayan, S., Shang, P., & Fan, N., (2009). Performance evaluation of
ipv4 and ipv6 on Windows vista and Linux ubuntu. In: 2009 International
Conference on Networks Security, Wireless Communications and
Trusted Computing (Vol. 1, pp. 653–656). IEEE.

47. Nolze, G., & Kraus, W., (1998). PowderCell 2.0 for Windows. Powder
Diffraction, 13(4), 256–259.

48. Odell, D., & Chandrasekaran, V., (2012). Enabling comfortable
thumb interaction in tablet computers: A Windows 8 case study. In:
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting (Vol. 56, No. 1, pp. 1907–1911). Sage CA: Los Angeles, CA:
SAGE Publications.

49. Oliveira, O. L., Monteiro, A. M., & Roman, N. T., (2013). Can natural
language be utilized in the learning of programming fundamentals? In:
2013 IEEE Frontiers in Education Conference (FIE) (pp. 1851–1856).
IEEE.

50. Pfeiffer, P., Scott, S. L., & Shukla, H., (2003). ORNL-RSH package
and Windows ‘03 PVM 3.4. In: European Parallel Virtual Machine/
Message Passing Interface Users’ Group Meeting (pp. 388–394).
Springer, Berlin, Heidelberg.

51. Prentice, A. M., Ward, K. A., Goldberg, G. R., Jarjou, L. M., Moore,
S. E., Fulford, A. J., & Prentice, A., (2013). Critical Windows for
nutritional interventions against stunting. The American of Clinical
Nutrition, 97(5), 911–918.

52. Purcell, D. M., & Lang, S. D., (2008). Forensic artifacts of Microsoft
Windows vista system. In: International Conference on Intelligence
and Security Informatics (pp. 304–319). Springer, Berlin, Heidelberg.

53. Qian, C., & Lau, K. K., (2017). Enumerative variability in software
product families. In: 2017 International Conference on Computational
Science and Computational Intelligence (CSCI) (pp. 957–962). IEEE.

54. Rajesh, B., Reddy, Y. J., & Reddy, B. D. K., (2015). A survey paper
on malicious computer worms. International Journal of Advanced
Research in Computer Science and Technology, 3(2), 161–167.

Timeline of Computer Windows and Its Features 259

55. Rajon, S. A., (2016). Fundamentals of Computer Programming with C
(Vol. 10, pp. 25–35). SA AHSAN RAJON.

56. Ray, E., & Schultz, E. E., (2007). An early look at Windows vista
security. Computer Fraud & Security, 2007(1), 4–7.

57. Rushinek, A., & Rushinek, S. F., (1997). Project management software
feature profitability: Windows, networks, mainframes, filtered task
diagrams, schedules, and calendars. Journal of Computer Information
Systems, 37(4), 48–55.

58. Scoville, R., (1993). 1-2-3 for Windows 2.0: Don’t count Lotus out. PC
World, 11(1), 149–149.

59. Sechrest, S., & Fortin, M., (2001). Windows XP Performance.
Microsoft, dated Jun, 1, 20.

60. Singh, B., & Singh, U., (2016). A forensic insight into Windows 10
jump lists. Digital Investigation, 17, 1–13.

61. Singh, B., & Singh, U., (2017). A forensic insight into Windows 10
Cortana search. Computers & Security, 66, 142–154.

62. Smith, W. R., (1996). HSC chemistry for Windows, 2.0. Journal of
Chemical Information and Computer Sciences, 36(1), 151, 152.

63. Stiegler, M., Karp, A. H., Yee, K. P., Close, T., & Miller, M. S., (2006).
Polaris: Virus-safe computing for Windows XP. Communications of
the ACM, 49(9), 83–88.

64. Sullivan, K., (1996). The Windows 95 user interface: A case study in
usability engineering. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 473–480).

65. Swift, M. M., Hopkins, A., Brundrett, P., Van, D. C., Garg, P., Chan, S.,
& Jensenworth, G., (2002). Improving the granularity of access control
for Windows 2000. ACM Transactions on Information and System
Security (TISSEC), 5(4), 398–437.

66. Talebi, J., Dehghantanha, A., & Mahmoud, R., (2012). Introducing
and analysis of the Windows 8 event log for forensic purposes. In:
Computational Forensics (pp. 145–162). Springer, Cham.

67. Thomas, S., Sherly, K. K., & Dija, S., (2013). Extraction of memory
forensic artifacts from Windows 7 ram image. In: 2013 IEEE Conference
on Information & Communication Technologies (pp. 937–942). IEEE.

68. Uslan, M. M., & Su, J. C., (1997). A review of two screen magnification
programs for Windows 95: Magnum 95 and LP-Windows. Journal of
Visual Impairment & Blindness, 91(5), 9–13.

Key Dynamics in Computer Programming260

69. Uzunboylu, H., Bicen, H., & Cavus, N., (2011). The efficient virtual
learning environment: A case study of web 2.0 tools and Windows live
spaces. Computers & Education, 56(3), 720–726.

70. Venčkauskas, A., Damaševičius, R., Jusas, N., Jusas, V., Maciulevičius,
S., Marcinkevičius, R., & Toldinas, J., (2015). Investigation of artifacts
left by BitTorrent client in Windows 8 registry. Science and Education,
3(2), 25–31.

71. Vogel-Heuser, B., Rehberger, S., Frank, T., & Aicher, T., (2014).
Quality despite quantity—Teaching large heterogeneous classes in C
programming and fundamentals in computer science. In: 2014 IEEE
Global Engineering Education Conference (EDUCON) (pp. 367–372).
IEEE.

72. Warner, P. D., (2001). Windows ME. The CPA Journal, 71(1), 64.
73. Westerlund, A., & Danielsson, J., (2001). Heimdal and Windows

2000 Kerberos-how to get them to play together. In: USENIX Annual
Technical Conference, FREENIX Track (pp. 267–272).

74. Whitehouse, O., (2007). An analysis of address space layout
randomization on Windows vista. Symantec Advanced Threat Research,
1–14.

75. Zhang, S., Wang, L., Zhang, R., & Guo, Q., (2010). Exploratory
study on memory analysis of Windows 7 operating system. In: 2010
3rd International Conference on Advanced Computer Theory and
Engineering (ICACTE) (Vol. 6, pp. V6–373). IEEE.

76. Zhang, W., Lu, L., Peng, J., & Song, A., (2016). Comparison of the
overall energy performance of semi-transparent photovoltaic Windows
and common energy-efficient Windows in Hong Kong. Energy and
Buildings, 128, 511–518.

77. Zimmermann, T., Nagappan, N., & Williams, L., (2010). Searching for
a needle in a haystack: Predicting security vulnerabilities for Windows
vista. In: 2010 Third International Conference on Software Testing,
Verification, and Validation (pp. 421–428). IEEE.

INDEX

A

Abstraction 66, 67, 69, 70, 71, 82,
84, 85, 86

Ada 70, 75, 76, 77, 82, 84, 87, 91,
94

Adobe Creative Cloud 241
Adobe Photoshop 2, 10
Algol 72, 73, 92, 93, 94
Algorithmic languages 72
American National Standards Insti-

tute (ANSI) 74
Apple 222
Application software 10, 200
Arithmetic logic unit (ALU) 47
Array subscripts 137
Artificial intelligence (AI) 57
Assemblers 10
Audio devices 201

B

Babbage Engine 40
Backward induction 161, 162, 163,

165, 173, 175, 182, 183
Basic assembly language (BAL) 46
Batch systems 51

Binary data 15
Binary number 12, 14, 15, 16, 18
Bits 10, 11
Bold-faced numbers 156, 157
Bootstrap program 201
Bootstrap software 202
Buffering 210
Bytes 10, 13, 14

C

C 69, 70, 72, 74, 75, 76, 80, 82, 84,
86, 87, 89, 90, 91, 92, 93, 94

C++ 70, 74, 75, 82, 84, 91
Canva 241
Central processing unit (CPU) 16,

18
Clustered system 204
COBOL programming language 72
Communication protocols 52
Compiled languages 96
Compilers 10, 30, 35
Computer devices 2
Computer processing units (CPUs)

5
Computer programming 2, 3
Control device 208
Control Panel 245, 250

Key Dynamics in Computer Programming262

Cortana 234, 235, 246, 253, 259
CPU (central processing unit) 4

D

Data backup programs 10
Data flow 208, 212
Data-oriented languages 82
DD-software embedded (DDEM)

50
DD-software embedded (DDEM)

systems 50
DD-software experimental (DDEX)

50
Decimal point 139, 144
decision-making process 159, 160
Device controller 201, 203, 204,

209
Device Manager 247, 250
Dialog systems 51
Digital camera 2, 8, 15
Digital data 15
Digital device 15
Direct memory access (DMA) 204
DirectX 10 231
Disc drive 7, 8, 17
Disk Cleanup 247, 248
Disney+ 241
Distributed multiprocessor system

56
Distributed system 55, 56
Domain-agnostic software 49
Domain-dependent (DD) software

49
Dynamic language 75
Dynamic programming 154, 155,

189, 191, 192, 195, 196
Dynamic-programming approach

154, 163, 164, 167, 175

E

Economic feasibility 66
Edge web browser 249
Electric power industry 167
Electronically erasable programma-

ble read-only memory (EE-
PROM) 201

Equality theorem 107
Error message 98
Escape characters 136
Event Viewer 248
Exponentiation 110

F

File compression programs 10
File Explorer 248, 250
Firmware 201
Floating-point 47
Floating-point numbers 141, 142
Floppy discs 7
FORTRAN 70, 71, 72, 73, 75, 77,

78, 79
Forward induction 161, 162, 165,

173, 175, 182, 187, 188, 191,
197

Functional Programming 86
Functions 134, 135, 136, 143, 146,

147

G

Grammatical rule 98
Graphical applications 134
Graphical user interface (GUI) 48

H

Hand-coded assembly language 70

Index 263

Handwriting recognition 232
Hard disc drives 3, 4
Hard real-time system 51
Hardware 3, 34, 35, 36
Header files 135

I

Increment operators 137
Independent software vendors

(ISVs) 242
Innate machine language 96
Input devices 4
Integer division 110, 111, 112, 113
Integer division operation 111
Intel 8080 46, 47
Intel 8086 47
International Standards Organiza-

tion (ISO) 74
Internet Browser 249
Internet Explorer 226, 227, 232, 249
Interpreted language 97
Interpreters 10, 31

L

Language processing 86
Linked list 77
Linux 9, 26
Lisp 77, 78, 79
Logical operators 137
Logic Programming 86
Luxury 66

M

Mac OS X 9
Macromedia apps 228
Macros 135
Main memory 6
Memory 3, 4, 6, 7, 8, 10, 13, 14, 15,

16, 17, 18, 19, 29

Memory controller 201
Microprocessors 3, 5
Microsoft account 233
Microsoft Chat 227
Microsoft Edge 234, 240, 249
Microsoft Magnifier 228
Microsoft Narrator 228
Microsoft Outlook 227
Microsoft Paint 249
Microsoft’s web browser 226
Microsoft Teams 239, 241
Microsoft Word 2, 10
Minimum-delay path 162, 163
Mistake Edition manner 230
Modulus operator 112, 113, 114
Most significant bit (MSB) 143
MS-DOS 222, 223, 227
Multilingual User Interface 229
Multiprogramming 43

N

Notepad 249, 250
Notification area 250
Numerical computation 134

O

Operating system (OS) 8
Optimal capacity expansion 154,

167, 172, 192
Optimal value 160, 161
optimal-value function 159, 160,

161, 162, 169, 170, 178, 179,
182, 183, 184, 185, 186

Ordinary language 86
Output devices 4
Overloading 102

Key Dynamics in Computer Programming264

P

Paper tape 44
Parallel programs 53, 54, 59
Pascal 69, 70, 73, 74, 75, 76, 86
Pattern matching 86
Personal computers (PC) 47, 211
Pixels 15
Power User Tasks Menu 250
Print statement 98, 99, 101, 102,

116
Program 2, 3, 4, 6, 10, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34

Programmable systems (P-type) 49
Programming language 3, 20, 21,

22, 27, 32, 33, 34, 35
Progressive web app (PWA) 242
Punched cards 44
Python 3, 20, 21, 22, 23, 24, 25, 26,

27, 34, 35
Python math library 119

Q

Qualifier volatile 143
Quotes 144

R

RAM, or Random-access memory 6
Read-only memory (ROM) 45
Real-time systems 208
Recursive optimization 164, 165,

194
Recursive optimization procedure

164, 165
Registry Editor 250, 251
Relay-Based Computers 40

S

Secondary storage devices 4
Security 66
Sequential programs 53
Settings 251
Shared memory 201
Software 2, 3, 4, 8, 9, 10, 17, 21, 23,

24, 25, 29, 32, 34, 35
Software engineering environments

48
Software systems 48, 49, 50, 51, 54,

56, 57, 59, 60
Source code 38
Specifiable systems (S-type) 49
Speech recognition 231
Spooling 210
Standard library 134, 135, 136, 140
Start menu 222, 226, 232, 233, 234,

246, 249, 251
StickyKeys 228
Switches 5, 10, 11, 27
Symbolic constants 139, 140, 141,

145, 146, 148
System calls 213, 215
System Information 251, 252
System Restore 229
System software 9

T

Task Manager 250, 252
Transition function 165, 166, 179,

184

U

Ultralight plane 66
Unicode 14
Universal Turing System 39
Universal windows app (UWP) 242
UNIX 74

Index 265

USB drives 228
Utility programs 10

V

Vacuum tubes 5
Variables 134, 135, 137, 138, 139,

140, 141, 143, 146
Very Large-Scale Integration 44
Video displays 201
Virus scanners 10
Visual Studio 241
void 135, 143

W

Web Publishing Wizard 227
while-loop 137, 138, 139
Windows 221, 222, 223, 224, 225,

226, 227, 228, 229, 230, 231,
232, 233, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243,
244, 245, 246, 247, 248, 249,
250, 251, 252, 253, 254, 255,
256, 257, 258, 259, 260

Windows 1.0 222, 223
Windows 2.0 223, 224, 254, 259
Windows 3.0 224, 225
Windows 3.1 225, 226
Windows 7 231, 232, 255, 256, 259,

260
Windows 8 232, 233, 234, 249, 250,

251, 255, 256, 257, 258, 259,
260

Windows 8.1 233, 234, 249
Windows 10 234, 235, 242, 243,

244, 245, 246, 249, 250, 251,
252, 253, 254, 255, 259

Windows 11 236, 237, 238, 239,
240, 242, 243, 244

Windows 95 226, 227, 249, 254,
256, 259

Windows 98 227, 228, 255
Windows 2000 228, 229, 254, 257,

259, 260
Windows Calendar 232
Windows Defender 231
Windows desktop 232
Windows DVD Maker 231
Windows Mail 232
Windows ME 229, 260
Windows Movie Maker 232
Windows Photo Gallery 232
Windows search box 253
Windows Vista 9, 231, 253
Windows XP 9, 230, 254, 255, 259

X

x86 assembly language 47
Xbox Live integration 233
Xerox 222

Z

Zoom 241

	Cover

	Title Page

	Copyright

	ABOUT THE EDITOR

	TABLE OF CONTENTS

	List of Figures
	List of Tables
	List of Abbreviations
	Preface
	Chapter 1 Fundamentals of Computers and Programming
	1.1. Introduction
	1.2. Hardware
	1.3. Software
	1.4. How Do Computers Store Data?
	1.5. How a Program Works?
	1.6. Using Python
	References

	Chapter 2 Classification of Computer Programs
	2.1. Introduction
	2.2. Software Systems
	2.3. General Behavior of Software Systems
	2.4. Program Types
	2.5. Computer Architecture
	2.6. Examples
	2.7. Discussion
	References

	Chapter 3 Fundamentals of Programming Languages
	3.1. Introduction
	3.2. Purpose of Programming Languages
	3.3. Imperative Languages
	3.4. Data-Oriented Languages
	3.5. Object-Oriented Languages
	3.6. Non-Imperative Languages
	3.7. Standardization
	3.8. Computability
	References

	Chapter 4 Introduction to Python Programming
	4.1. Introduction
	4.2. Output: Print Statement
	4.3. Arithmetic Expressions: A First Look
	4.4. Variables in Python
	4.5. Arithmetic Expressions in Python
	4.6. Reading User Input In Python
	4.7. Examples of Programs Using The Input() Statement
	4.8. Math Class
	References

	Chapter 5 Fundamentals of C Programming
	5.1. Introduction
	5.2. A First Program
	5.3. Variants of Hello World
	5.4. A Numerical Example
	5.5. Another Version of the Conversion Table Example
	5.6. Identifiers
	5.7. Types
	5.8. Constants
	5.9. Symbolic Constants
	5.10. Printf Conversion Specifiers
	References

	Chapter 6 Dynamic Programming
	6.1. Introduction
	6.2. An Elementary Example
	6.3. Formalizing the Dynamic-Programming Approach
	6.4. Optimal Capacity Expansion
	6.5. Discounting Future Returns
	6.6. Shortest Paths in a Network
	6.7. Continuous State-Space Problems
	6.8. Dynamic Programming Under Uncertainty
	References

	Chapter 7 Fundamentals of Operating Systems
	7.1. Introduction
	7.2. Computer System Organization
	7.3. Computer System Structure
	7.4. Operating System (OS) History
	7.5. Operating System (OS) Functions
	7.6. Operating System (OS) Categories
	7.7. The Performance Development of OS
	7.8. Operating System (OS) Service
	7.9. Operating System (OS) Operations
	7.10. Operating System (OS) Components
	References

	Chapter 8 Timeline of Computer Windows and Its Features
	8.1. Introduction
	8.2. Ms-Dos And What Came Before
	8.3. Windows 1.0
	8.4. Windows 2.0
	8.5. Windows 3.0
	8.6. Windows 3.1
	8.7. Windows 95
	8.8. Windows 98
	8.9. Windows 2000
	8.10. Windows Me
	8.11. Windows Xp
	8.12. Windows Vista
	8.13. Windows 7
	8.14. Windows 8
	8.15. Windows 8.1
	8.16. Windows 10
	8.17. Windows 11
	8.18. The Future of Windows
	8.19. Main Features of Microsoft Windows
	References

	Index
	Back Cover

