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A program is created by first defining a task and then expressing it in a computer 
language that is appropriate for the application. The specification is then converted 
into a coded program that can be directly executed by the machine on which the task 
is to be performed, usually in numerous steps. Machine language refers to the coded 
program, whereas problem-oriented languages refer to languages that are ideal for 
original formulation. C, Python, and C++ are only a few of the many problem-solving 
languages that have been invented.
Computers come with a variety of programs that are meant to help users do jobs and 
improve system performance. The operating system (OS), which is a collection of 
programs, is as crucial to the operation of a computer system as its hardware. Current 
technology allows some operating features to be built into a computer’s central 
processing unit as fixed programs (introduced by client orders) at the time of production. 
The operating system may have control over user programs during execution, such as 
when a time-sharing monitor suspends one program and activates another, or when 
a user program is begun or terminated, such as when a scheduling software chooses 
which user program will be executed next. Certain operating-system programs, on the 
other hand, run as stand-alone modules to make the programming process easier. While 
translators (assemblers or compilers) convert an entire program from one language 
to another, interpreters execute a program sequentially. Interpreters translate at each 
step and debuggers execute a program piecemeal and monitor various circumstances, 
allowing the program to check whether the program’s operation is correct or not.
This book aims to help the student understand computer programming by presenting 
the fundamentals of computer hardware and software, computer programs, operating 
systems, major programming languages, and an introduction to Windows operating 
systems.
Chapter 1 introduces the readers to the fundamentals of computers and computer 
programs. Chapter 2 deals with the classification of computer programs. Chapter 3 
discusses the fundamentals of programming languages. Chapters 4 and 5 introduce the 
readers to two major languages: Python and C language.

PREFACE



Chapter 6 illustrates the idea of dynamic programming and its uses. Chapter 7 focuses 
on the fundamentals of different operating systems. Finally, Chapter 8 deals with the 
timeline of Windows with a focus on its features.
We have not hesitated to be prescriptive: to claim that accumulated experience shows 
that certain constructs are to be preferred, and others to be avoided or at least used 
with caution Of course, any book on programming languages should not be taken as a 
reference manual for any particular language. The book equips you with insights so that 
you can learn to analyze languages and not to study the peculiarities of any language in 
depth. Nor is the book a guide to the choice of a language for any particular project. The 
goal is to supply the student with the conceptual tools needed to make such a decision.
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1.1. INTRODUCTION
Take a look at various different approaches people utilize computers. 
In school, students employ computers for sending emails, looking for 
articles, taking online classes, and writing papers. Computers are used in 
the workplace to analyze data, generate presentations, perform business 
transactions, interact with clients and coworkers, and drive machinery in 
industrial plants, among other things. People use computers at home to pay 
bills, shop online, communicate with family and friends, and play video 
games. Car navigation systems, iPods®, cell phones, and a variety of 
other devices are all computer devices. Computers have nearly unlimited 
applications in our daily lives (Liu, 2020).

Because computers can be programmed, they can do a wide range of 
tasks. This means that computers are not meant to make a single task but 
rather to perform any task that their programs instruct them to perform. A 
program is a set of instructions afterward a computer to complete a task. 
Figure 1.1, for example, depicts interfaces from two widely used programs: 
Adobe Photoshop and Microsoft Word. Microsoft Word is a word processing 
tool that lets you use your computer to generate, modify, and print documents. 
Adobe Photoshop is a visual image editing tool that lets you work with 
photos captured with your digital camera (Feurzeig et al., 1970).

The term “software” refers to computer programs. The software on 
a computer is critical since it uses everything the machine does. All the 
software we employ to make our computers usable is created by people 
who work as software developers or programmers. A programmer, also 
known as a software developer, is a person who has completed the necessary 
training and acquired the necessary abilities to design, create, and test 
computer programs. Computer programming is an interesting and fulfilling 
professional path (Knuth and Pardo, 1980). Programmers are employed in 
a wide range of fields today, including business, medical, agricultural, law 
enforcement, government, academia, entertainment, and many more.
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Figure 1.1. An image editing software and a text processing program.

Source: https://www.fiverr.com/broewnis/convert-adobe-photoshop-to-micro-
soft-word.

Python is the programming language that is used in this book to expose 
you to the basic ideas of computer programming. Before we can begin to 
explore those notions, you must first understand some fundamental principles 
about computers and how they function. This chapter will provide you with a 
firm basis of understanding that you will be able to draw on throughout your 
computer science studies. First, we will go through the physical components 
that are often used in the construction of computers. Following that, we will 
see how computers store data and run programs. Ultimately, we will get a 
brief overview of the Python programming language and the software that 
you will need to create Python programs (Horn et al., 2009).

The physical devices that make up a computer are referred to as the 
computer’s hardware in this context. Software is the term used to describe 
the programs that operate on a computer.

1.2. HARDWARE
In computing, the phrase “hardware” indicates all the physical components 
or devices that make up a computer’s structure. A computer is not a separate 
device but rather a collection of devices that all operate at the same time to 
form a system. Each device in a computer is like the different instruments 
in a symphony orchestra in that each device has a specific function (Tejada 
et al., 2001).

For anyone who has done any computer shopping, you have probably 
seen sales narratives listing elements like microprocessors, memory, 
graphics cards, video displays, hard disc drives, etc. Microprocessors, 
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memory, and hard disc drives are just a few of the components that can be 
found in a computer. Without prior computer knowledge or at least a buddy 
who is knowledgeable about computers, it may be difficult to comprehend 
what each of these separate components performs on its own. As shown 
in Figure 1.2, a distinctive computer system is comprised of the following 
major components (So and Brodersen, 2008):

• CPU;
• Secondary storage devices;
• Main memory;
• Output devices;
• Input devices.

Figure 1.2. Components of a typical computer system.

Source: https://www.tutorialsmate.com/2020/04/computer-fundamentals-tuto-
rial.html.

Let us take a deeper look at each of these elements individually.

1.2.1. The CPU
When a computer is engaged in the duties that a program has instructed it to 
execute, we refer to this as the computer running or executing the program 
in question. The central processing unit, sometimes known as the CPU, is 
the portion of a computer that is responsible for running programs. The CPU 
(central processing unit) is the most significant component in a computer 
since it is responsible for running software on the computer (Henning, 2000).
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Computer processing units (CPUs) were massive devices constructed 
of mechanical and electrical components like vacuum tubes and switches in 
the early days of computing. Figure 1.3 depicts an example of such a gadget. 
In this picture we can see the ENIAC computer, which dates to the 1940s, 
being used by the two women seen. When the ENIAC was created in 1945, 
it was used to calculate weaponry ballistic tables for the United States Army. 
It is widely regarded as the world’s first programmable electronic computer 
by many. This machine, which was essentially comprised of a single large 
CPU, stood 8 feet tall, measured 100 feet in length, and weighed 30 tons 
(Zhu et al., 2021).

CPUs are little chips that are referred to as microprocessors. A 
photographic depiction of a lab technician carrying a new microprocessor is 
seen in Figure 1.4. Microprocessors, along with being significantly smaller 
than the old-fashioned electromechanical CPUs found in initial computers, 
are also significantly more effective.

Figure 1.3. The ENIAC computer.

Source: https://www.indiatimes.com/technology/news/eniac-75-years-old-
world-1st-programmable-digital-computer-534387.html.
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Figure 1.4. A lab technician holds a modern microprocessor.

Source: https://www.fool.com/investing/2021/01/15/why-intels-competitive-
edge-is-crumbling/.

1.2.2. Main Memory
Consider main memory to be the computer’s work area. This is where the 
computer keeps a program and the data that the program is working with 
while it is executing. Let us say you are writing an essay for one of your 
classes and you are using a word processing tool. Both the word processing 
program and the essay are saved in the main memory while you do this 
(Abali et al., 2021).

RAM, or Random-access memory, is the term for main memory. The 
CPU can instantly gain access to data stored in any arbitrary position in 
RAM, hence the name. RAM is a sort of unstable memory that is only 
employed for short-term storage as a program is executing. The contents in 
RAM are removed when the computer is shut off. RAM is stored in chips 
inside your computer, such as the ones depicted in Figure 1.5.
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Figure 1.5. Memory chips (photo courtesy of IBM corporation).

Source: https://www.indiamart.com/proddetail/ram-memory-chip-2686040191.
html.

1.2.3. Secondary Storage Devices
Secondary storage is a sort of memory that can keep data for a long time even 
if the computer is turned off. Normally, programs are stored in secondary 
memory and transferred into main memory only when needed. Vital data is 
also stored in secondary storage, like word processing documents, salary 
data, and inventory records (Babad et al., 1976).

The disc drive is the most popular form of secondary storage device. A 
disc drive saves data by imprinting it magnetically onto a circular disc. A disc 
drive is usually installed inside the casing of most computers. External disc 
drives are also accessible, which link to one of the computer’s communication 
ports. External hard drives can be employed to make backup copies of vital 
files or to transfer data from one computer to another (Summer, 1967).

Aside from external disc drives, a variety of devices have been 
developed for copying and transporting data between computers. Floppy 
disc drives have been popular for a long time. A floppy disc drive saves 
information on a tiny floppy disc that may be removed. Floppy discs, on the 
other hand, have several drawbacks. They can only store a limited amount of 
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data, are sluggish to obtain data, and are potentially untrustworthy. Recently, 
the usage of floppy disc drives has decreased considerably in support of 
more advanced devices such USB drives. USB drives are small devices that 
connect to a computer’s USB interface and be seen as a disc drive to the 
operating system (OS). These drives, on the other hand, do not contain a 
disc. They keep data in flash memory, which is a unique sort of memory. 
USB drives often called flash drives or memory sticks, are affordable, 
dependable, and small enough to fit in your pouch (Babad et al., 1976).

For data storage, optical media such as DVD and CD are common. 
Data is encrypted as a sequence of pits on the disc surface rather than being 
recorded magnetically. A laser is used in DVD and CD drives to identify the 
pits and hence read the encoded data. Visual discs can carry a lot of data, and 
since recordable DVD and CD players are now popular, they are a handy 
way to make backup copies of your data (Chismar and Kriebel, 1982).

1.2.4. Input Devices
Input refers to any information that a computer receives from people or 
from additional devices. An input device is an element that takes data and 
provides it to a computer and is defined as follows: The keyboard, scanner, 
mouse, digital camera, and microphone are all examples of common input 
devices. Additionally, optical drives and disc drives can both be thought 
input devices since programs and data are regained from and encumbered 
into the computer’s memory through them (Radwin et al., 1990).

1.2.5. Output Devices
Any data that a computer generates for people or for other devices is referred 
to as output. It might be anything from a sales report to a catalog of names to 
a graphic image. The data is transferred to an output device, which prepares 
and describes it in a visually appealing manner. Video screens and printers 
are two common types of output devices. Since the system transfers data 
to disc drives and CD recorders so that it may be saved, they can also be 
termed output devices (Burdea et al., 1996).

1.3. SOFTWARE
Software is required for a computer to function properly. Everything that a 
computer performs, from the moment the power switch is turned on up to 
the moment the system is shut off, is controlled by software. Application 
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software and system software are the two broad categories of software that 
may be found in most computer systems. Most computer programs may be 
classified into one of these two types (Bazeley, 2006).

1.3.1. System Software
System software is a term that refers to the programs that control and 
manage a computer’s fundamental activities. The following categories of 
applications are commonly found in system software:

•	 Operating Systems (OSs): On a computer, an OS is a basic set 
of applications. The OS maintains all the computer’s connected 
components, allows it to be stored to and accessed from storage 
devices, and permits other programs to function on the computer. 
Figure 1.6 depicts four prominent OSs: Windows Vista, Windows 
XP, Linux, and Mac OS X (Yan et al., 2010).

Figure 1.6. Screens from the Fedora Linux operating systems, Mac OS X, and 
Windows Vista.

Source: https://www.dmxzone.com/go/16325/os-smackdown-linux-vs-mac-os-
x-vs-win-vista-vs-win-xp/.



Key Dynamics in Computer Programming10

•	 Utility Programs: A utility program accomplishes a specific duty 
that improves the computer’s performance or protects data. Virus 
scanners, file compression programs, and data backup programs 
are examples of utility programs.

•	 Software Development Tools: The applications that programmers 
employ to create, edit, and test software are known as software 
development tools. Programs that belong under this category 
include assemblers, compilers, and interpreters.

1.3.2. Application Software
Application software refers to programs that make a computer helpful for 
daily tasks. These are the programs that most people use to consume most of 
their time on their computers. Figure 1.1 depicts screens from two regularly 
employed applications: Adobe Photoshop, a word processing program, and 
Microsoft Word, an image editing program, as shown at the start of this 
chapter. Spreadsheet programs, email programs, web browsers, and game 
programs are all examples of application software (Aerts et al., 2004).

1.4. HOW DO COMPUTERS STORE DATA?
All data stored in a computer is transformed to 0s and 1s sequences. The 
memory of a computer is divided into bytes, which are little storage units. 
A single byte of memory is just adequate to store a small integer or a single 
letter of the alphabet. A computer needs a lot of bytes to do anything useful. 
Most today’s computers have millions, if not billions, of bits of memory.

Individually byte is distributed into eight bits, which are smaller storage 
spaces. The word “bit” refers to a binary digit. Bits are typically thought 
of by computer scientists as small switches that may be turned on or off. 
Bits, on the other hand, are not “switches” in the traditional sense. Bits are 
microscopic electrical elements that can store a negative or positive charge 
in most computer systems. A positive charge is thought of as a switch that is 
turned on, and a negative charge is thought of as a switch that is turned off 
by computer scientists. Figure 1.7 depicts how a computer engineer might 
conceptualize a bit of memory: as a set of switches, each of which can be 
flicked to the off or on state (Lehmann and Deutsch, 1995).
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Figure 1.7. Byte as eight switches.

Source: https://www.pearsonhighered.com/assets/samplechap-
ter/0/3/2/1/0321537114.pdf.

When a byte of data is gathered, the computer turns the eight bits of the 
byte into an off/on display that contains all the data. For instance, in Figure 
1.8, the pattern on the left depicts how the numeral 77 would be kept in 
a byte, whereas the design on the right depicts how the letter A would be 
collected in a byte. We will go through how these shapes are created in more 
detail below.

Figure 1.8. The number 77 and the letter ‘A’ have different bit patterns.

Source: https://www.pearsonhighered.com/assets/samplechap-
ter/0/3/2/1/0321537114.pdf.

1.4.1. Storing Numbers
A bit can only be employed to represent numbers in a very reduced number 
of situations. Because of the way bits work, they can represent one of two 
different values depending on whether they are turned on or off. Bits are 
used to represent numbers in computer systems. A bit that is turned off 
indicates the number 0, and a bit that is turned on indicates the number 1 
in computer systems. This is a wonderful match for the binary numbering 
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system, as you can see. In the binary numbering system, all numeric 
numbers are represented as a series of 0s and 1s. This is known as the binary 
representation of numbers. A number written in binary format is shown 
below as an illustration (Amit et al., 1985):
10011101

Every digit in a binary number has a value associated with it based on 
its place in the number. As illustrated in Figure 1.9, the position values are 
as follows: 20, 21, 22, 23, and so on, starting with the rightmost digit and 
working your way left. Figure 1.10 depicts the same diagram as in Figure 
1.9, but with the position values determined. The position values are as 
follows: 1, 2, 4, 8, and so on, starting with the rightmost digit and working 
your way left (Grinko et al., 1995).

Figure 1.9. Binary digit values are expressed as powers of two.

Figure 1.10. Binary digits and their values.

To find the amount of a binary number, just add all the 1s’ position 
values. The position values of the 1s in the binary number 10011101, for 
example, are 1, 4, 8, 16, and 128. Figure 1.11 depicts this. Each of these 
position values adds up to 157. As a result, the binary number 10011101 has 
a value of 157.



Fundamentals of Computers and Programming 13

Figure 1.11. Determining the value of 10011101.

Figure 1.12 depicts how the number 157 is stored in a byte of memory. A 
bit in the on position represents each 1, and a bit in the off position represents 
each 0.

Figure 1.12. The bit pattern for 157.

What happens if you need to save a number that is greater than 255 
characters? The solution is straightforward: utilize more than one byte. 
Consider the following scenario: we want to combine two bytes. This gives 
us a total of 16 bits. The standing values of those 16 bits would be 20, 21, 
22, 23, and so on, all the way up to 215, depending on the bit position. As 
illustrated in Figure 1.13, the largest value that may be collected in two 
bytes is 65,535, which is the maximum possible value. If you need to hold a 
number that is larger than this, you will need to allocate more bytes (Okabe 
et al., 1984).
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Figure 1.13. A huge number is represented by two bytes.

1.4.2. Storing Characters
A character is transformed to a numeric code before being stored in memory. 
The numerical code is then stored as a binary number in memory.

To display characters in computer memory, several coding methods have 
been created over time. The ASCII has historically been the most important 
of these coding schemes. The ASCII character set is made up of 128 numeric 
codes that signify punctuation marks, English letters, and other symbols. 
The ASCII code for the capital letter A, for example, is 65. The number 65 
is stored in memory when you input a capital A on your computer keyboard. 
Figure 1.14 depicts this (Boonkrong and Somboonpattanakit, 2016).

Figure 1.14. The number 65 is associated with the letter A in memory.

If you are curious, uppercase B has the ASCII code 66; uppercase C has 
the ASCII value 67, and so on. All the ASCII codes and the characters they 
represent are listed in Appendix C.

In the early 1960s, the ASCII character set was created, and it was 
subsequently accepted by nearly every computer manufacturer. However, 
ASCII is limiting since it only defines codes for 128 characters. In the early 
1990s, the Unicode character set was created to address this issue. Unicode 
is a large encoding method that is comparable with ASCII but also capable 
of representing characters in a wide range of languages. Unicode is rapidly 
grown to be the de facto traditional character set in the computer industry 
(Melot and Tarascon, 2013).
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1.4.3. Advanced Number Storage
You learned about numerals and how they were stored in memory previously. 
Maybe it appeared to you while reading that the binary numbering system 
can only be employed to express integer numbers starting with 0. The simple 
binary numbering approach we examined cannot express negative integers 
or real values (such as 3.14159) (Wang et al., 2015).

Negative and real numbers can be stored in memory by computers, 
but they must use encoding systems in addition to the binary numbering 
system to do so. Two’s complement is used to encode negative integers, and 
floating-point notation is used to encode real numbers. You do not require 
to understand how these encoding methods operate; all you need to know 
is that they are employed to convert negative and real integers to binary 
(Greenhalgh et al., 1997).

1.4.4. Other Types of Data
The term “digital device” is frequently employed to explain computers. 
Whatever works with binary numbers is referred to as digital. A digital device 
is any device that operates with binary data, and digital data is anything that 
is collected in binary. We have looked at how characters and numbers are 
stored in binary in this part; however, computers can also operate with a 
variety of additional digital data.

Consider the photos you capture with your digital camera, for example. 
Pixels are small colored specks that make up these pictures. An image 
element is referred to as a pixel. Every pixel in a picture is transformed to a 
numeric code that describes the pixel’s color, as illustrated in Figure 1.15. 
The numeric code is stored as a binary number in memory (Logan et al., 
2012).

Figure 1.15. The binary format is used to store digital images.
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The music that you listen to in iTunes, on your CD player, iPod, or MP3 
device is also digitally encoded in some way. Samples are little bits of a 
digital song that are divided up into smaller portions. It is possible to store 
each sample in memory because each sample is transformed into a binary 
number. When a song is broken down into samples, the more closely it 
resembles the original music when it is played again. Approximately 44,000 
samples per second are used to create CD-quality music (Iudici and Faccio, 
2014).

1.5. HOW A PROGRAM WORKS?
The central processing unit (CPU) of a computer can just read guidelines 
that are expressed in machine language. Since it is extremely challenging 
for individuals to design full programs in machine language, additional 
programming languages have been developed to alleviate this difficulty.

We previously explained that the central processing unit is a highly 
significant part of a computer since it is the element of the computer that 
is responsible for running programs. The central processing unit (CPU) 
is sometimes referred to as the “computer’s brain,” and it is regarded as 
“clever.” Even though these are typical analogies, it is important to recognize 
that the CPU is not a mind, and it is not intelligent. The central processing 
unit (CPU) is an electrical device that is intended to perform certain tasks. 
The CPU is specifically intended to conduct tasks such as the ones listed 
below (Faccio et al., 1979):

• Taking a chunk of data from the main memory and reading it;
• Adding two values;
• Taking one number and subtracting it from another;
• Multiplying two numbers;
• Multiplying one integer by another;
• Transferring information from one memory place to another;
• Trying to figure out if one number is the same as another.
The CPU makes simple actions on data. The CPU, on the other hand, 

accomplishes nothing on its own. It must be instructed what to do, and that 
is what a program is for. A program is nothing more than a set of guidelines 
that tell the CPU what to do (Card et al., 2018).
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Every instruction in a program is an order to the CPU to carry out a 
certain task. Here is an example of a command that may be found in a 
program:

10110000
This is just a sequence of 1s and 0s to you and me. This, on the other 

hand, is a command to conduct an operation on a CPU. Since CPUs just 
understand machine language instructions, it is written in 0s and 1s. Machine 
language guidelines always have an inherent binary structure.

For any operation that a CPU is capable of, machine language instruction 
exists. For instance, there are instructions for adding integers deducting one 
number from another. The instruction set of a CPU refers to the whole set of 
instructions that it can perform (Slavin, 2008).

The machine language command that was previously displayed is only 
one of several. However, for the computer to accomplish anything useful, it 
needs a lot more than one instruction. Since these operations that a CPU can 
execute are so simple, a meaningful job can only be completed if the CPU 
makes many of them. If you need your computer to estimate the extent of 
interest you will earn this year from your savings account, for example, the 
CPU will have to execute a significant number of guidelines in the correct 
order. Thousands, if not millions, of machine language instructions, can be 
found in a single program (Olson, 2004).

A secondary storage device, like a disc drive, is usually employed to 
store programs. When you install software on your computer, the executable 
file is typically downloaded from a website to your computer’s hard drive.

A program can be kept on a secondary storage device like a disc drive, 
but it must be transferred into RAM, or main memory, every time the 
processor performs it. Let us say you have a word processing application on 
your computer’s hard drive. To run the software, double-click the program’s 
icon with your mouse. The software is transferred from the disc into the 
main memory because of this. The CPU of the machine then runs the main 
memory copy of the application. This procedure is depicted in Figure 1.16 
(Davenport, 1999).
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Figure 1.16. After copying a program into the main memory, it is run.

The fetch-decode-execute cycle is the process that a CPU goes across 
as it executes the instructions of a program. This cycle, which is made up of 
three phases, is frequent for each program instruction. The steps are (Eckert, 
1987):

•	 Fetch: A program is a set of instructions written in machine 
language. The next instruction is read from memory into the CPU 
in the first phase of the cycle.

•	 Decode: It is a binary number that signifies the command to the 
computer’s central processing unit (CPU) to conduct a certain 
task. When the CPU decodes an instruction that has just been 
retrieved from memory, it may identify which operation it should 
do.

•	 Get Data and Execute: The operation is performed, or executed, 
as the final stage in the cycle. These processes are depicted in 
Figure 1.17.

Figure 1.17. The cycle of fetch-decode-execute.

Source: https://www.pinterest.com/pin/438115869999300657/.
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1.5.1. From Machine Language to Assembly Language
Only programs written in machine language can be executed by computers. 
A program can include dozens or even millions of binary instructions, 
as previously said, and developing such a program would be extremely 
laborious and time-consuming. It would also be difficult to program in 
machine language since inserting a 0 or 1 in the wrong location will result in 
an error (Ahmed et al., 2010).

While a computer’s CPU can just comprehend machine language, 
writing programs in that language is impracticable. As a result, assembly 
language was created as an alternative to machine language in the early days 
of computing. Assembly language employs mnemonics, which are short 
phrases that replace binary digits in instructions. In assemblage language, 
for example, the mnemonic add usually means to add numbers, Mul usually 
means to multiply numbers, and mov usually means to transfer a value 
to a memory address. When writing a program in assembly language, a 
programmer can utilize short mnemonics instead of binary integers (Graham 
and Ingerman, 1965).

The CPU, on the other hand, cannot run assembly language programs. 
Because the CPU can only read machine language, an assembly program is 
needed to convert an assembly language program to machine code. Figure 
1.18 depicts this procedure. The CPU may then run the machine language 
program that the assembler has built (Feldman, 1979).

Figure 1.18. An assembler converts a program written in assembly language 
into a machine language program.

Source: https://www.educba.com/assembly-language-vs-machine-language/.
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1.5.2. High-Level Languages
Assembly language eliminates the need for binary machine language 
guidelines, but it is still not devoid of its drawbacks. Assembly language is 
essentially a straight replacement for a machine language and it necessitates a 
thorough understanding of the CPU. Even the simplest program in assembly 
language necessitates the writing of a huge number of instructions. Assembly 
language is referred to as a low-level language (Halang and Stoyenko, 1990).

The 1950s saw the emergence of a new generation of programming 
languages known as high-level languages. A high-level language enables you 
to write powerful and complicated programs without having to understand 
how the CPU works or write a huge number of low-level instructions. 
Furthermore, most high-level languages employ simple terms. For instance, 
in COBOL, a programmer might write the following command to show the 
message. On the computer screen, hello world!

DISPLAY “Hello, world.”
Python is a high-level programming language that will be used 

throughout this book. The message Hello world would be shown in Python 
with the following instruction: ‘Hello world!’ print (Kennedy et al., 2004).

In assembly language, doing the same thing would take multiple 
instructions and a thorough understanding of how the CPU interacts with 
the computer’s output device is necessary to have when writing an assembly 
language program. As this instance shows, high-level languages permit 
programmers to focus on the goals they need their programs to do rather 
than the intricacies of how the CPU will execute such programs.

Thousands of high-level languages have been developed since the 
1950s. Several of the best languages are included in Table 1.1.

Table 1.1. Programming Languages (Classen et al., 2011)

Language Description

Ada Ada was developed in the 1970s mainly for use by the United States 
Department of Defense. Countess Ada Lovelace, a significant and im-
portant person in the world of computers, is honored by the language’s 
name.

BASIC All-purpose for beginners Symbolic Instruction Code is a speech known 
that was created in the early 1960s with the goal of being easy to learn 
for novices. There are many multiple variations of BASIC available 
today.
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FORTRAN The first high-level programming language was TRANslator. It was cre-
ated in the 1950s to handle complicated mathematical operations.

COBOL The common commercial-oriented language (CBOL) was developed in 
the 1950s for business applications.

Pascal Pascal was established in 1970 with the intention of being used to teach 
programming. Blaise Pascal, a mathematician, physicist, and philoso-
pher, was honored with the language’s name.

C and C++ Bell Laboratories produced the strong general-purpose languages C 
and C++ (pronounced “c plus plus”). The C and C++ programming 
languages were established in 1972 and 1983, respectively.

C# The letter “c sharp” is pronounced as “c sharp.” This programming lan-
guage was developed by Microsoft in the year 2000 for the purpose of 
developing applications that run on the Microsoft.NET framework.

Java Sun Microsystems developed Java in the early 1990s and released it to 
the public. It may be employed to create applications that run on a single 
computer or that operate across the Internet via a web server, among 
other things.

JavaScript JavaScript, which was developed in the 1990s, is a scripting language 
that may be employed in online pages. Even though its name, JavaScript 
is not linked to the Java programming language.

Python Python, the programming language that we will be using in this book, 
is a general-objective programming language that was developed in the 
early 1990s. It has gained popularity in both corporate and educational 
applications in recent years.

Ruby Ruby is a common-purpose programming language that was developed 
in the 1990s. It is based on the C programming language. It is becoming 
increasingly popular as a programming language for applications that 
operate on web servers.

Visual Basic Visual basic is a software development environment developed and pro-
gramming language by Microsoft that enables programmers to construct 
Windows-based programs in a short period of time. The first version of 
VB was developed in the early 1990s.

1.5.3. Key Words, Operators, and Syntax: An Overview
Each high-level language has its specific set of specified terms that should 
be used by the programmer while writing a program. Keywords or reserved 
words are the terms that make up a high-level programming language. Each 
keyword has a distinct meaning and cannot be utilized for anything else. 
You saw an example of a Python statement that prints a message on the 
screen using the keyword print previously. Many of the Python important 
words are shown in Table 1.2 (Rutherford, 1999).
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Table 1.2. The Python Keywords

exec class raise in –

elif as or global with

del and not from while

else assert pass if yield
except break print import –
for def try lambda –
finally continue return is –

Programming languages feature operators that perform numerous actions 
on data in addition to keywords. All programming languages, for example, 
contain math operators that do arithmetic. The + sign is an operator that adds 
an additional integer in Python and most other languages. The following 
adds 12 and 75 to the total:

75 + 12
There are many more hands in the Python language, most of which 

you will understand as you read this book. Aside from important terms and 
operators, every language has its particular syntax, which is a collection of 
guidelines that should be observed to the letter while constructing a program. 
Syntax rules specify how important words, operators, and punctuation 
characters should be employed in a program. When studying a programming 
language, it is necessary to master the grammar rules for that language. 
Statements are the specific instructions used to build a program in a high-
level programming language. A programming statement can be made up of 
punctuation, operators, keywords, and other programming components that 
are organized in the correct order to complete a task (Ertl and Gregg, 2003).

1.5.4. Compilers and Interpreters
Programs created in a high-level language must be translated language since 
the CPU only understands machine language instructions. The programmer 
will use either a compiler or an interpreter to translate a program depending 
on the language it was written in (Tanenbaum et al., 1983).

A compiler is a program that converts a program written in a high-level 
language into a machine language program. After that, the machine language 
program may be run whenever it is required (Figure 1.19). Compiling and 
executing are two distinct operations, as depicted in the diagram.
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Figure 1.19. Compiling and running a high-level application.

Source: https://tutorials.one/computer-science-engineering/.

The interpreter in the Python language is a software that both interprets 
and implements the guidelines in a high-level language program. Each 
individual instruction in the program is read by the interpreter, which 
transforms it to machine language guidelines and then performs them 
instantly. This procedure is repeated for each of the program’s instructions. 
Figure 1.20 illustrates this method. Interpreters seldom generate separate 
machine language programs since they mix translation and execution 
(Danvy, 2008).

Figure 1.20. Using an interpreter to run a high-level program.

Source: https://slideplayer.com/slide/7417033/.

Source code refers to the statements that a programmer gives in a high-
level language. Typically, a programmer writes the code for a program 
into a text editor and then saves it to the computer’s disc. The programmer 
then uses an interpreter or a compiler to convert the code into a machine 
language program that can be executed. However, if the code has a syntactic 
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issue, it will not be translated. A syntax error occurs when a crucial word 
is misspelled, a punctuation character is missing, or an operator is used 
incorrectly. When this occurs, the interpreter or compiler generates an error 
message identifying a syntactic mistake in the program. The programmer 
fixes the problem and then tries to translate the program again (Rossum, 
2007).

1.6. USING PYTHON
The Python translator can run Python programs saved in files or perform 
Python statements input at the keyboard interactively. IDLE, an integrated 
development environment for Python, makes the process of developing, 
running, and testing programs easier (Sanner, 1999).

1.6.1. Installing Python
Before you can test any of the programs in this book or develop your own 
programs, you must first ensure that Python is installed and configured 
correctly on your machine. If you work in a computer lab, this has most likely 
already been done. If you have your personal computer, you may install 
Python from the included CD by following the instructions in Appendix A 
(Rossum and Boer, 1991).

1.6.2. The Python Interpreter
Python is an interpreted language. The Python interpreter is one of the 
components installed when you connect the Python language to your 
computer. The Python interpreter is software that reads and executes Python 
programming commands (Uieda et al., 2010).

The interpreter has two modes of operation: interactive and script. The 
interpreter pauses for you to write Python statements on the keyboard in 
interactive mode. The interpreter executes a statement after you write it and 
then waits for you to type another. The interpreter examines the contents of 
the file containing Python statements in script mode. A Python program or a 
Python script is the name for such a file. As it reads the Python program, the 
interpreter performs each statement (Mészárosová, 2015).
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1.6.3. Interactive Mode
Once Python is installed and configured on your machine, you may start 
the interpreter in collaborative mode by running the following control at the 
OS’s command prompt:

Python
If you are using Windows, you may also go to the Start menu and choose All 
Programs. You should notice a software group called Python 2.5 or something 
like that. There should be a Python item in this program group (command 
line). This menu option launches the Python interpreter in interactive mode 
when you click it (Frydenberg and Xu, 2019).

When you start the Python interpreter in interactive mode, you will see 
something like this in the console window:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit
(Intel)] on win32

Type “help,” “copyright,” “credits” or “license” for more information. 
>>>

The >>> you see is a prompt from the interpreter, indicating that it 
is waiting for you to input a Python statement. Let’s give it a go. A print 
statement, which enables a message to be shown on the screen, is one of the 
most basic statements you may make in Python. The following sentence, for 
example, causes the notice to appear. Python programming is entertaining! 
to be exhibited:

print ‘Python programming is fun!’
It’s worth noting that we’ve written Python programming is enjoyable 

following the word print. Between a pair of single-quote marks, quotation 
marks are required, but they will not be used.

Shown. They merely indicate the start and finish of the text we want to 
show. Here’s how you’d enter this print statement at the interpreter’s prompt:

>>> print ‘Python programming is fun!’
When you press the Enter key after inputting the sentence, the Python 

interpreter runs it, as illustrated above:
>>> print ‘Python programming is fun!’ [ENTER] Python programming is 
fun!
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>>>
The >>> prompt occurs after the message has been shown, indicating 

that the translator is waiting for you to enter another statement. Let’s look 
at another scenario. We’ve entered two print statements in the following 
example session.
>>> print ‘To be or not to be’ [ENTER]
To be or not to be
>>> print ‘That is the question.’ [ENTER] That is the question.
>>>

The interpreter will display a message if you input a sentence improperly 
in interactive mode. This will help you learn Python by allowing you to use 
interactive mode. You may test out new sections of the Python language in 
interactive mode and get instant feedback from the interpreter as you learn 
them.

On a Windows machine, press Ctrl-Z subsequently Enter to exit the 
Python interpreter in interactive mode. Ctrl-D on a Mac, Linux, or UNIX 
computer (Chaudhury et al., 2010).

1.6.4. Writing Python Programs and Running Them in Script 
Mode
The statements you type in interactive mode are not preserved as a program, 
even though they are valuable for testing code. They are simply carried 
out, and the results are shown on the screen. You store a series of Python 
statements in a file if you wish to save them as a program. Then you utilize 
the Python translator in script mode to run the application (Newville, 2011).

Let’s say you want to develop a Python program that shows the three 
lines of text below:

Nudge nudge
Wink wink
Know what I mean?
To write the program, create a file with the following statements using a 

simple text editor such as Notepad:
print ‘Nudge nudge’ print ‘Wink wink’ print ‘Know what I mean?’

When you save a Python program, you give it a name that ends in.py, 
indicating that it is a Python program. For instance, you may save the 
previously demonstrated program as test.py. To launch the application, 
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navigate to the list where the file is saved and enter the subsequent command 
from the OS command prompt (Price and Barnes, 2015):

Python test.py
This switches the Python translator to script mode and affects the 

statements in test.py to be executed. The Python interpreter terminates after 
the program is completed.

1.6.5. The IDLE Programming Environment
The preceding sections explained how to use the OS command line to launch 
the Python interpreter in interactive or script mode (Figure 1.21) (Puckette, 
1991).

Figure 1.21. A typical computer program.

Source: https://www.softwaretestinghelp.com/basics-of-computer-program-
ming/.

During the installation of the Python programming language, an 
application entitled IDLE, which is named after the Python programming 
language, will be automatically installed. IDL (Integrated Development 
Environment) is an acronym that holds for Integrated Development 
Environment. When you start IDLE, the window seen in Figure 1.22. You’ll 
see that the >>> timely displays in the IDLE window, which indicates that 
the translator is now operating in collaborative mode. Python statements can 
be typed into this prompt, and the results will be shown in the IDLE window 
(Swinehart et al., 1986).

IDLE also has a developed-in text editor that includes features that are 
specially designed to assist you in the development of Python applications. 
In the IDLE editor, for example, code may be “colorized” so that key phrases 
and other sections of a program are shown in different hues. This contributes 
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to making programs easier to understand. Create programs, save, and run 
them with IDLE’s program-writing environment. A brief introduction to 
IDLE is provided in Appendix B, which also guides you all through the 
process of writing, saving, and running a Python program (Stroud et al., 
1988).

Figure 1.22. IDLE programming.

Source: https://web.mit.edu/6.s189/www/handouts/GettingStarted.html.
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2.1. INTRODUCTION
A computer program is a set of instructions written in a programming language 
that a computer may perform or understand in imperative programming. A 
computer program is a collection of instructions in declarative programming.

Source code is the human-readable version of a computer program. 
As computers may only execute their native machine instructions, source 
code requires the execution of another computer program. As a result, 
utilizing the language’s compiler, source code can be converted to machine 
instructions. (An assembler is used to convert machine language programs.) 
An executable is a name given to the generated file. Instead, source code 
can run in the interpreter of the language. The Java programming language 
generates an intermediate form that is subsequently processed by a Java 
interpreter (Wilson and Leslie, 2001).

If the operating system (OS) receives a request to run the executable, 
it loads it into memory and initiates a procedure to carry out the request 
(Silberschatz and Abraham, 1994). The central processing unit (CPU) would 
be switched to this procedure so that it may fetch and decode every machine 
instruction before executing them. As soon as the source code is required 
for implementation, the OS loads the relevant interpreter into memory and 
begins the execution of the procedure. The interpreter then puts the source 
code into memory, where it may be translated and executed one statement 
at a time by the processor (Tanenbaum and Andrew, 1990). Compared to 
launching an executable, running the source code is more time-consuming. 
In addition, the interpreter should be installed on the PC in question.

It is possible to make advances in the development of software as an 
outcome of advancements in computer hardware. Throughout the history 
of hardware, the work of computer programming has undergone significant 
transformations.

Charles Babbage had been motivated via Jacquard’s loom to create the 
Analytical Engine in 1837 (McCartney and Scott, 1999). The names of the 
calculating device’s elements had been taken from the textile industry. The 
yarn had been carried from the shop to be processed in the textile business. 
The gadget contained a “store,” or memory, that could keep 1,000 numbers, 
each with 50 decimal digits (Tanenbaum and Andrew, 1990). Numbers 
were transported from the “storage” to the “mill” for processing. Two sets 
of perforated cards were used to program it. One set is for the operation’s 
direction, while the other is for the input variables (McCartney and Scott, 
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1999; Bromley and Allan, 1998). Consequently, after spending over 
£17,000 of the British government’s money, the thousands of cogged gears 
and wheels were never completely functional (Figure 2.1) (Tanenbaum and 
Andrew, 1990).

Figure 2.1. Analytical engine of Lovelace.

Source: https://www.csmonitor.com/Technology/2012/1210/Ada-Lovelace-
What-did-the-first-computer-program-do.

Charles Babbage commissioned Ada Lovelace to write information on 
the Analytical Engine (1843) (Fuegi and Francis, 2003). The explanation 
included Note G, which described in detail how to use the Analytical Engine 
to compute Bernoulli numbers. Certain historians consider this note to be 
the world’s first computer program (Tanenbaum and Andrew, 1990).

2.1.1. Universal Turing Machine
Alan Turing proposed the Universal Turing System in 1936, which is a 
theoretical device that may mimic any calculation that may be done on 
a Turing complete computer machine (Rosen and Kenneth, 1991). It has 
an endlessly long write or red tape and is a finite-state machine. While 
performing an algorithm, the machine may move the tape back and forth, 
altering its contents. The machine begins in the initial state, proceeds through 
a series of phases, and finally comes to a rest when it reaches the halt state 
(Figure 2.2) (Linz and Peter, 1990).
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Figure 2.2. Universal Turing machine.

Source: https://www.wikiwand.com/en/Universal_Turing_machine.

2.1.2. Relay-Based Computers
It was Konrad Zuse who created the Z3 computer in 1941, which was a 
programmable and digital computer. Zuse first became acquainted with 
the “Babbage Engine” in 1939, when seeking to file a German patent 
application for it. The Analytical Engine was in base-10, which made it 
simple to understand. Zuse realized that constructing a binary machine 
was a simple process. Telephone relays are 2-position switches that are 
either closed or open in nature (Stair and Ralph, 2003). The Z3 contained 
around 2,600 relays, with 1,800 dedicated to memory, 600 dedicated to 
arithmetic, and two hundred dedicated to the keyboard, punch tape reader, 
and display, among other things. The circuits enabled the creation of a 
floating-point computer with nine instructions. The Z3 was programmed 
using a customized keyboard and punch tape that was built specifically for 
it. Manual input had been accomplished using a calculator-style keyboard 
that supported decimal integers. The input was translated to binary by the 
machine, and the results were transmitted through a series of calculating 
modules. The result had been translated back to decimal and presented on 
a display panel at the bottom of the screen (Figure 2.3) (Weiss and Mark, 
1994; Bach and Maurice, 1986).
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Figure 2.3. Zuse Z3 replica on display at Deutsches Museum in Munich.

Source: https://en.wikipedia.org/wiki/Computer_program.

Its successor, the Z4, had been created at the same time. (Z3 was 
destroyed by an airstrike on April 6, 1945). The Z4 was first produced in 
1950 at the Federal Technical Institute in Zurich.

The Harvard Mark I was a programmable and digital computer created 
via IBM in 1944 (Stroustrup and Bjarne, 2013). The computer had 7 main 
units and supported twenty-three signed integer digits (Elgot et al., 1982):

• The machine’s activities were directed by a single unit;
• One unit contained 60 dial switches for configuring the application 

constants;
• Multiplication and division were done with a single unit;
• One unit did addition and subtraction and stored the intermediate 

results in 72 registers;
• Interpolation was utilized to compute logarithmic functions with 

a single unit;
• Interpolation was utilized to compute trigonometric functions by 

using a single unit;
• The machine’s output medium was either a typewriter printer or 

a punched card printer, and one unit was employed to direct it.
Harvard’s Mark I was 3,304 relays and 530 miles of wire on my system. 

The input was given by two punched tape readers (Kernighan et al., 1988). 
The directions were typed in by one of the readers. Howard H. Aiken 
compiled a codebook that listed all of the known algorithms. A programmer 
punched the coded commands onto a tape from this book. The data to be 
processed was entered by the other reader.
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Harvard’s Mark IBM’s 2 additional relay-based machines succeeded me 
(Koren, 2018):

• The Harvard Mark II, for example;
• The electronic selective sequence calculator (SSEC). Until 

August 1952, the SSEC was in operation.

2.1.3. ENIAC
Between July 1943 and the fall of 1945, the computer (ENIAC) and Electronic 
Numerical Integrator was created. It had been a Turing complete, general-
purpose computer with circuits made out of 17,468 vacuum tubes (Haigh et al., 
2016). It had been essentially a collection of Pascalines that had been linked 
together. Its 40 units weighed thirty tones, took up 1,800 square feet (167 m2), 
and used $650 in power each hour (in 1940s money). There were 20 base-10 
accumulators in it. It took up to 2 months to program the ENIAC. 3 function 
tables had to be moved to constant function panels since they had been on 
wheels (Kerrisk and Michael, 2010; Weik, 1961). Heavy black wires had been 
utilized to link function tables to function panels. Every function table had 728 
knobs that rotated. Setting some of the 3,000 switches on the ENIAC was also 
part of the programming process. It took a week to debug a program. It operated 
at Aberdeen Proving Ground from 1947 to 1955, computing hydrogen bomb 
characteristics, forecasting weather patterns, and providing firing tables for 
artillery cannon aiming (Figure 2.4) (Jones et al., 2012).

Figure 2.4. Glenn A. Beck is changing a tube in ENIAC.

Source: https://commons.wikimedia.org/wiki/File:ENIAC-changing_a_tube.
jpg.

2.1.4. Stored-Program Computers
A stored-program computer loads its commands into memory the same way 
it loads its data into memory instead of plugging in connections and flicking 
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switches. As a consequence, the computer was able to be programmed 
rapidly and do computations at a high rate. The ENIAC was designed by 
Presper Eckert and John Mauchly. In a 3-page document dated February 
1944, the 2 engineers introduced the stored-program notion. Dr John von 
Neumann started working on the project of ENIAC in September 1944 
(Huang et al., 2017). Von Neumann released the first draft of the report 
on EDVAC on June 30 1945, that likened the computer’s architecture with 
those of the human brain. Von Neumann architecture was the name given 
to the design. In 1949, the design had been utilized to build the EDSAC 
and EDVAC computers at the same time (McCartney and Scott, 1999). 
In 1961, the Burroughs B5000 was designed expressly for use with the 
Algol 60 programming language. The hardware included circuits to help 
with the compilation process (Tanenbaum and Andrew, 1990). The IBM 
System/360 had been a series of 6 computers released in 1964, each with 
the identical command set architecture. The Model thirty was the tiniest 
and most affordable. Customers might advance their applications while 
keeping the same software. The most expensive model was the Model 
75. Multiprogramming was available on all System/360 models, allowing 
numerous processes to be stored in memory at the same time. Another 
process may compute while the first was waiting for input/output. Every 
model was supposed to be programmed in PL/1, according to IBM. COBOL, 
Fortran, and ALGOL programmers were assembled into a committee. The 
goal was to create a language that will replace Fortran and Cobol by being 
comprehensive, simple to utilize, and extendible. As a result, the language 
grew in size and complexity and it required a long time to build (Figure 2.5) 
(Wilson and Leslie, 2001).

Figure 2.5. On a data general nova 3 from the mid-1970s, there are switches 
for manual input.

Source: https://en.wikipedia.org/wiki/Data_General_Nova.
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Up to the 1970s, computers used front-panel switches for manual 
programming (Gordon and Michael, 1996) For reference, the computer 
program had been written on paper. A series of on/off settings had been 
utilized to indicate a command. An execution button was pushed when the 
setup was completed. After that, the procedure was repeated. Punched cards 
or paper tape was also used to automatically input computer programs. The 
beginning address was set through switches once the medium was loaded, 
and the execution button was hit (Schach and Stephen, 1990).

2.1.5. Very Large-Scale Integration
The VLSI circuit was a big breakthrough in software development (1964) 
(Tan et al., 2003). After World War II, bipolar junction transistors (the late 
1950s) and point-contact transistors (1947) put on a circuit board superseded 
tube-based technology. In the 1960s, the aircraft sector adopted the integrated 
circuit chip (Figure 2.6) (Silberschatz and Abraham, 1994).

Figure 2.6. A VLSI integrated-circuit die.

Source: https://en.wikipedia.org/wiki/Very_Large_Scale_Integration.

Robert Noyce, a co-founder of Intel (1968) and Fairchild Semiconductor 
(1957), improved the field-effect transistor manufacturing technology 
(1963). The objective is to change a semiconductor junction’s electrical 
resistance and conductivity. The Siemens technique has been the first one 
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which transforms naturally existing silicate minerals into polysilicon rods 
(Lacamera and Daniele, 2018). The rods are subsequently transformed 
into a monocrystalline silicon boule crystal by the Czochralski technique. 
To make a capacitor, wafer substrate, the crystal is finely cut (Kernighan 
and Brian, 1984). The planar photolithography technique then integrates 
unipolar transistors, and resistors onto the wafer to create a matrix of MOS 
transistors. In integrated circuit chips, the MOS transistor is the fundamental 
component (Haviland and Keith, 1987).

Initially, the purpose of integrated circuit chips was determined during 
production. Controlling the flow of electricity shifted to programming a 
read-only memory (ROM) matrix in the 1960s (ROM). A 2-D arrangement 
of fuses resembled the matrix. The unnecessary connections were burned off 
during the embedding of instructions into the matrix (Tolpygo et al., 2016). 
Because there were several connections, firmware programmers created 
computer software to manage the burning on a separate chip. Programmable 
ROM was the name of the technology. The Intel 4,004 microprocessor was 
born in 1971 after Intel implemented the computer program on the chip 
(Figure 2.7).

Figure 2.7. IBM’s system/360 (1964) CPU was not a microprocessor.

Source: https://www.quora.com/Was-the-IBM-System-360-mainframe-comput-
er-built-with-all-transistors-or-did-it-utilize-integrated-circuits.
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The central processing unit (CPU) and microprocessor are now 
synonyms. But CPUs precede microprocessors. It used circuit boards with 
discrete components on ceramic substrates, for example as in the IBM 
System/360 (1964).

2.1.6. Sac State 8008
The Intel 4004 was a four-bit microprocessor that powered the Busicom 
calculator. Intel launched the Intel 8008, an eight-bit CPU, 5 months after 
it was first launched. The Sac State 8008 was the firstt microcomputer built 
with the Intel 8008 and directed by Bill Pentz (1972). It was created to store 
patient medical records. The computer had a disc OS that could operate a 
three-megabyte Memorex hard disc drive. It included a single console with 
a keyboard and color display (Figure 2.8) (Lee, 2000).

Figure 2.8. Sacramento State University’s Intel 8008 microcomputer (1972) is 
shown by an artist.

Source: https://www.researchgate.net/figure/The-3D-reconstruction-of-the-
Sac-State-8008-microcomputer-circa-1972-73-credit-Ryan_fig1_303697288.

IBM’s basic assembly language (BAL) was used to program the disc OS. 
A BASIC interpreter was used to program the medical records application. 
The computer, on the other hand, had been an evolutionary dead-end due to 
its exorbitant cost. It was also designed for a particular purpose in a public 
university laboratory (Damer, 2011). Despite this, the effort aided in the 
creation of the Intel 8080 instruction set (1974).
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2.1.7. x86 Series
When Intel updated the Intel 8080 to the Intel 8086 in 1978, the contemporary 
software development environment started. Intel modified the Intel 8086 to 
produce the Intel 8088 at a lower cost (Seiler et al., 2008). When IBM joined 
the personal computer market, they chose the Intel 8088 (1981) (Figure 2.9).

Figure 2.9. The original IBM personal computer (1981) utilized an Intel 8088 
microprocessor.

Source: https://www.pcmag.com/news/project-chess-the-story-behind-the-
original-ibm-pc.

Intel’s microprocessor development accelerated as customer demand for 
personal computers (PC) grew. The x86 series refers to the development 
sequence. The x86 assembly language is a set of computer instructions 
that are backwards compatible. Machine commands stored in older 
microprocessors were carried over to newer microprocessors. Customers 
were allowed to buy the latest computers without needing to buy the latest 
application software as a result of this. The following are the primary types 
of instructions (Draper and Ingraham, 1968):

• Random-access memory instructions for setting and accessing 
integers and strings;

• Instructions for performing elementary arithmetic operations on 
integers using the integer arithmetic logic unit (ALU);

• Floating-point ALU commands for performing real-number 
arithmetic operations;

• Use call stack commands to allocate interface and memory with 
functions by pushing and popping words;
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• SIMD (multiple data, single instruction) instructions boost 
performance when many processors are used to running a similar 
algorithm upon an arrangement of data.

2.1.8. Programming Environment
VLSI circuits allowed the programming environment to evolve from a 
computer terminal to a graphical user interface (GUI) computer (till the 
1990s). Programmers were confined to a single shell operating in a command-
line environment on computer terminals. The editing of Full-screen source 
code using a text-based user interface became feasible in the 1970s. The 
objective is to program in the language of programming, regardless of the 
technology accessible (Figure 2.10) (Zinnat, 2021).

Figure 2.10. The DEC VT100 (1978) was an extensively utilized computer 
terminal.

Source: https://en.wikipedia.org/wiki/Computer_terminal.

2.2. SOFTWARE SYSTEMS
The properties of software systems, as well as their link to other aspects of 
software engineering environments, are discussed in further detail in the 
sections that follow. There are several classifications for software systems 
based on the way the tasks to be completed and the software system interact 
with one another (Nimmer et al., 1987).



Classification of Computer Programs 49

2.2.1. Domain-Independent Software
The independence of the job to be executed and the class of jobs that may 
be executed are two characteristics of domain-based software (Zhang et al., 
2003). The work is unaffected by the passage of time. Domain-agnostic 
software may be divided into two subtypes/LEH80/, /MABU87/:

• Specifiable systems (S-type); and
• Programmable systems (P-type).
In P-type systems, the criteria may be precisely described, and an 

implementation that precisely meets the criteria can be realized. The 
choosing of one of many good solutions is the procedure of development. 
Numeric and arranging procedures are instances of P-type systems.

A precise job specification may be supplied in the case of S-type systems, 
but only an estimated implementation is available. During the development 
phase, a solution must be identified that is as near to the original specifications 
as feasible. Game playing systems and various mathematics problems are 
instances of S-type systems. Chess algorithms are programmed with a 
specific goal in mind: “win each game.” Moreover, we are aware that this 
program does not occur. All chess systems strive to meet the “Always win” 
condition as closely as possible (Atkins et al., 2011).

The definition, design, and implementation of a program may be done 
in that sequence to build domain-independent software. Before the design 
operations begin, the specification can be finished. Only comprehensive 
specifications are allowed using the specification techniques. Specification 
tools may verify if a specification is comprehensive.

In typical software development, domain-independent activities are 
uncommon. Usually, requirements alter or aren’t understood. A software 
system’s needs might vary on its own. The work to be completed is better 
understood after the establishment of a software system. New needs emerge, 
or the priority of existing requirements shifts. As a result, domain-dependent 
(DD) software systems emerge (Fleischmann, 1994).

2.2.2. Domain Dependent Software
The key feature of DD software is that its needs change over time. This 
occurs either because of the tasks to be accomplished change or as the 
system’s presence has an impact on the real-world environment in a way 
/MABU87/. DD software systems are referred to as evolutionary systems 
in /MABU87/ and /LEH80/ (Hutson, 1997). According to /GlEDD84/ DD-
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systems are classified as either DD-software experimental (DDEX) or DD-
software embedded (DDEM) systems. DDEX the development of the system 
is classified via an inherent ambiguity regarding the range of activities to 
be completed. Investigations into physical or economic phenomena are 
instances of this sort of software. DDEX software may lead to the design of 
software for a variety of sectors or applications, such as an economic model 
for usage in a management information system (Figure 2.11).

Figure 2.11. Domain-dependent software systems.

Source: https://link.springer.com/chapter/10.1007/978-3-642-78612-
9_3?noAccess=true.

The connection between the class of jobs to be completed and the 
program is a feature of DDEM software. The program may modify the 
application area and, as a result, the expression of the work to be completed. 
Software engineering systems, office automation systems, consecutive 
generations of large-scale OS and factory control systems are instances 
of DDEM software. The diagram below depicts how a software system is 
dependent on its surroundings and how it alters its environment (Bar-Sinai 
et al., 2018).

Adequate life cycles and strategies should be used to construct 
domain-based software systems. Life cycles that begin with insufficient 
criteria and end with the design and execution of an unfinished system 
must be employed. The development procedure then moves on to a phase 
of requirement formulation. Then the design of the 2nd stage is prepared 
and implemented the 2nd stage, and so forth. This software development 
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strategy also necessitates that the method of the specification allows for 
the declaration of partial criteria (Noldus, 1991). To survive the frequent 
changes, the design and design technique should be adaptable.

2.3. GENERAL BEHAVIOR OF SOFTWARE SYSTEMS
The software has two primary characteristics that may greatly enhance the 
complexity of a system (Riddle, 1979):

• Time limitations; and
• Requirements for fault tolerance.
Because these factors can impact the software engineering environment 

and methodologies, specific methods must be employed to build a system 
that takes these factors into account (Hayes-Roth et al., 1995).

2.3.1. Limitation of Time
The nature of the activity requires software systems to reply in a certain 
period. The following system types may be distinguished as they correspond 
to growing time requirements (Shen and Yu, 2018).

2.3.1.1. Requirements for Non-Real-Time
Batch systems are an instance of software systems with no time constraints. 
When a batch system completes a task, it takes the input, calculates the 
conclusions, and outputs the results.

2.3.1.2. Requirements for Weak Real-Time
Dialog systems are an instance of software systems with low time 
requirements. The environment is represented by humans in this illustration. 
Queries are entered in, and the system must respond promptly. Long reaction 
times are irritating for users, but they are seldom fatal (Piteira et al., 2013).

2.3.1.3. Hard Real-Time Requirements
A hard real-time system should adhere to strict time constraints to function 
properly. Procedure control systems and communication are instances of 
hard real-time systems (Moser et al., 1996).
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2.3.2. Communication Systems
Many computers may be linked together to form a network that sends and 
receives data packets. A computer’s environment is made up of all the other 
computers with which it is linked. By delivering information packets to other 
computers in the network, a computer may connect with its surroundings. 
Communication rules (also known as communication protocols) can require 
the receiver to send back an acknowledgement packet to certify that a data 
packet has reached its destination (Rullan, 1997). The sender of the data 
package considers that the receiver is not operating or that the packet was 
lost in the network if the return packet does not come within a specific 
amount of time. In communication protocols, time-outs are critical. This 
is the sole way to determine if a computer in a network is unavailable. If 
a computer does not respond within a certain amount of time, the sender 
thinks that the receiver is down. This instance demonstrates the significance 
of time restrictions in communication systems (Lee and Lee, 2004).

2.3.3. Process Control Systems
When a computer system controls a technical procedure, like an assembly 
line, the software in the computer intermingles with the technical system. As 
a result of this interaction, two significant real-time needs emerge:

• The control system must do certain actions at a specific moment; 
and

• Within the technical procedure, the control system must react to 
stochastically occurring occurrences.

The system should provide a specific reaction time for both needs; 
otherwise, the effects might be devastating (Luus, 1975).

A technique of specification should allow for the declaration of temporal 
constraints. Simulators may be used to get a preliminary sense of whether 
a system would work as expected. The specification approaches that are 
very successful when specifying editors, maybe entirely ineffective when 
specifying communication systems.

2.3.4. System Reliability
According to /RALETR78/, system dependability is connected to how well 
a system performs the required service. The fault intolerance technique and 
the fault tolerance technique are 2 ways to build highly dependable systems. 
Fault intolerance comprises all known strategies for ensuring that software 
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contains no flaws, like requirements descriptions, proving, breakthroughs, 
and testing. Moreover, experience has shown that such procedures may 
only help to decrease problems and never ensure their removal. In software 
engineering, the fault intolerance approach is commonly employed (Kuo 
and Prasad, 2000). Fault tolerance strategies include approaches that provide 
an adequate service despite the presence of problems that remain after 
the usage of fault intolerant procedures. To replace broken components, 
redundant parts are inserted into a system. These items are not required to 
perform the stated service in the absence of problems. To be fault-tolerant, 
a software system must make the required design decisions and employ 
acceptable procedures. The necessity for fault tolerance while building a 
software system may greatly enhance its complexity. To build fault-tolerant 
systems, effective techniques for specifying the kind and degree of fault 
tolerance must be used. These techniques should be implemented in the 
software engineering environment (Martin-Löf, 1982).

2.4. PROGRAM TYPES
The application’s type, the computer system to be utilized, and eventually 
the programmer’s individual preference all influence whether a parallel or 
sequential program is designed. Because the methodologies for generating 
sequential and parallel programs are so dissimilar, a decision should be 
finalized before commencing program development, as well as the software 
engineering environment that is appropriate for the style of programming 
being employed (Turski et al., 1978).

2.4.1. Sequential Programs
Sequential programs are defined through a sequence of statements connected 
by a single control thread. A sequential program is run by a single procedure 
from the user’s perspective; while there can be latent parallelisms like vector 
or array computing (that is not taken into account here). Only the output/
input behavior is considered in sequential programs (Isard et al., 2007). The 
relationship between a program’s starting and terminating states is known 
as input/output behavior. Sequential programming has been used to create a 
lot of commercial and technical software. Editors and compilers for PC are 
common instances.
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2.4.2. Parallel or Concurrent Programs
Concurrent or parallel programs are made up of a series of statements linked 
via various control threads. The computer system and the criteria determine 
whether a sequential or concurrent program should be built (Gregory, 1987).

The hardware system or compilers usually hide fine-grain parallelism. 
The compiler divides a sequential program into multiple concurrent 
procedures. A multiprocessor system runs several procedures in parallel. 
Processor pipelines may run one statement whilst transferring the next 
statement from memory to the processor. Fine-grain parallelism has little 
impact on software engineering methodologies since it is masked by hardware 
design or compilers (Chandy et al., 1991). This is not to be confused with 
structural parallelism. In certain situations, structural parallelism is quite 
important. The communication software systems and process control, in 
particular, are modeled as systems of concurrent procedures are discussed 
in this chapter. Specific description and programming approaches must be 
employed to implement systems of this kind. This chapter’s major focus is 
on programming approaches. In the following chapter, we go through these 
strategies in great depth (Hwang et al., 1984).

2.5. COMPUTER ARCHITECTURE
The CPUs and memory are the most important parts of a computer. The 
relationships among such components may be used to differentiate various 
kinds of computer systems (Sommer et al., 2013).

2.5.1. Centralized Computer Systems
There is just one CPU in such systems that have accessibility to the memory 
(shown in Figure 2.12) (Thota et al., 2018).

Figure 2.12. Structure of centralized computer system.

Source: https://link.springer.com/chapter/10.1007/978-3-642-78612-
9_3?noAccess=true.
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2.5.2. Multiprocessor Systems
A single memory is shared by multiple processors (shown in Figure 2.13) 
(Iqbal et al., 2010).

Figure 2.13. Structure of a multiprocessor system.

Source: https://zitoc.com/multiprocessor-system/.

2.5.3. Distributed Systems
A distributed system can be very complex to define precisely. Several 
disputed definitions may be discovered such as /NEHM88b/, /ENSL78/, /
SLKR87/. In the following section, we use the following definition from 
/BSTA88/: Multiple independent processors, each with their primary 
memory, make up a physically dispersed system. Every communication in a 
distributed system is performed through messages that are exchanged over a 
messaging transportation system (Figure 2.14) (Agha, 1985).

Figure 2.14. A distributed system’s structure.

Source: https://www.researchgate.net/figure/Distributed-System-Structure_
fig2_287975451.
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2.5.4. Distributed Multiprocessor Systems
A message transit system connects numerous multiprocessor systems to 
form a distributed multiprocessor system (Figure 2.15) (Kuhl et al., 1980).

Figure 2.15. A distributed multiprocessor system’s structure.

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main119.html.

Tools like pre-compilers and compilers may hide the system architecture 
and the program kind. It is only necessary to note a system’s unique design 
in software development if it is to be utilized explicitly. As previously said, 
developing a distributed system that works on distributed system architecture 
necessitates the use of unique methodologies (Agha, 1985). We presume that 
a developer is aware that he must construct a distributed software system. 
In this approach, he may make explicit usage of the benefits of distributed 
systems (Robins et al., 2003).

2.6. EXAMPLES
To demonstrate the categories introduced in the preceding sections, 
many software systems are studied. A compiler, an editor, a rapid Fourier 
transformation, a flight reservation system, chess software, a flight control 
system, and a physical model are all detailed in Table 2.1 (Hasselbring et al., 
2006). Some characteristics may be included in the software, but they are 
not required. Optional qualities are highlighted in Table 2.1 by a question 
mark, for example, an editor may be fault-tolerant but does not have to be. 
A flight reservation system, for example, may function on a distributed or 
centralized system, including a distributed database system (Park et al., 
1997; Liskov, 1972).
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Table 2.1. Properties of Compiler, an Editor, a Chess Program, a Fast Fourier 
Transformation, a Physical Model, a Flight Reservation System, and a Flight 
Control System

2.7. DISCUSSION
We recognize that the classifications presented in the preceding sections 
cannot be complete, but they do cover a broad range of software systems. 
Artificial intelligence (AI) is one topic that isn’t fully addressed. AI 
necessitates knowledge, yet because the information is vast, difficult to 
identify precisely, and continually changing, it necessitates the adoption of 
unique ways to express it. It is feasible to address AI issues without applying 
AI techniques, such as theorem proving and natural language comprehension; 
likewise, such solutions are unlikely to be particularly successful. AI 
systems are now implemented in PROLOG or LISP. Such languages may 
be classified as sequential, but it doesn’t tell us anything about the jobs 
they’re supposed to execute. This demonstrates that our software taxonomy 
is merely 1st step toward expressing the complexity of a software system; 
yet, we believe it may be useful in conventional software fields.
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3.1. INTRODUCTION
A competent programmer may develop good software in every language, 
just as a good pilot may fly every plane. A passenger plane has been built 
for luxury, security, and economic feasibility; a military plane is built for 
performance and mission capabilities, and an ultralight plane is built for 
cheap cost and ease of operation. Once it is asserted that the well-designed 
system may be implemented equally effective in every language, the function 
of language in programming is lowered in favor of software tools and 
methodologies; not only reduced but completely rejected (Sammet, 1972). 
However, programming languages are more than simply a tool; they provide 
the raw resources for software, which is what we spend the majority of our 
time looking at on our computers. The programming language is among the 
most essential, if not the most essential, aspects that manipulate the overall 
quality of a software system. However, several programmers are illiterate. 
He is enamored with his “native” programming language although is unable 
to examine and compare language structures, as well as comprehend the 
benefits and drawbacks of current languages and concepts. “Language L1 is 
more effective (or efficient) as compared to language L2,” for example, is a 
statement that frequently demonstrates conceptual ambiguity (Rosen, 1971).

Because of this lack of understanding, there are 2 important difficulties 
in software that must be addressed. For starters, there is an extreme 
conservatism when it comes to the selection of programming languages. 
However, despite the rapid advancements in computer technology and the 
sophistication of current software systems, the vast majority of programming 
has still been performed in languages that had been invented about 1970, if 
not before that. Comprehensive programming language study is never put to 
the test in the real world, and software developers are forced to depend on 
instruments and approaches to balance for outmoded programming language 
technology. It’s like if airlines will deny experimenting with jet planes on 
the basis that a traditional propeller aircraft is completely able to transport 
passengers from point A to point B just as efficiently (Sammet, 1991).

In addition, language structures are employed arbitrarily, with no or 
little concern for the security or effectiveness of the system. This results in 
faulty software that may not be sustained, and also inefficiencies that are 
rectified through assembly language coding instead of by improvement of 
the programming paradigms and algorithms themselves (King, 1992).

It is solely for the aim of bridging the gap in the level of abstraction 
among the actual world and hardware that programming languages have 
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been created. An inevitability exists between greater levels of abstraction 
which are simpler to comprehend and secure for usage on the one hand 
and relatively low levels of abstraction which are more adaptable and may 
frequently be implemented more effectively on the other hand. To create or 
adopt a programming language, one must first determine the proper degree 
of abstraction to use. It is not unusual that various programmers like various 
levels of abstraction, or that a certain language can be suitable for one project 
but not for the next. A programmer must be well-versed in the efficiency and 
safety implications of every construct in a particular programming language 
in which they are working (Mészárosová, 2015).

3.2. PURPOSE OF PROGRAMMING LANGUAGES
When learning the latest programming language, the question that comes to 
mind most often is : “What may such language “do?”

We have been inadvertently evaluating the modern language to certain 
other languages. The solution is straightforward: all languages are capable of 
performing similar calculations! The reasoning for this response is outlined 
in the following section. There should be other principal causes of many 
programming languages whether they may all perform similar calculations 
(Heim et al., 2020).

Let’s begin with a few definitions:
“A program is a set of secret code that describes how to do a calculation. A 
programming language is a collection of rules that describe which symbol 
sequencing make up a program as well as what calculation it does” —(Kip-
er et al., 1997).

It’s worth noting that the definition makes no mention of the term 
computer! Languages and p Program are mathematical objects that are fully 
formal. Furthermore, many consumers are more curious about programs as 
compared in other mathematical objects like groups, whereas a program is a 
series of symbols that may be used to control a computer’s execution. While 
studying the theory of programming is highly recommended, this course 
would primarily focus on the study of programs since they are performed on 
a computer (Davison et al., 2009).

These are fairly broad concepts that must be construed as widely as 
possible. For instance, most advanced word processors contain a feature 
that allows you to “catch” a series of keystrokes and save them as a macro, 
allowing you to run the entire sequence with a single keystroke. Since the 
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sequence of keystrokes indicates a computation, and the software handbook 
would clearly describe the macro language: how to terminate, launch, and 
identify a macro definition, this is unquestionably a program (Atkinson and 
Buneman, 1987).

To address the issue posed at the beginning of this section, we must first 
return to primitive digital computers, that are similar to the rudimentary 
calculators utilized through your grocer nowadays in that the calculation 
performed by these computers is “wired-in” and it may not be modified.

The revelation (attributed to John von Neumann) that the definition of 
the calculation, the program, may be accumulated in the computer almost as 
readily as the data utilized in the computation had been the most important 
early achievement in computers. As a result, the stored-program computer 
becomes a basic-purpose computing machine, and we may alter the program 
simply via inserting the punched card, changing the plugboard of wiring, 
linking to a phone line, or adding a diskette (Figure 3.1) (Davison et al., 
2009).

Figure 3.1. Main programming languages.

Source: https://www.bmc.com/blogs/programming-languages/.
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Because computers are binary processors that only recognize zeros and 
ones, maintaining programs in them is mathematically simple but difficult 
in practice, because every command must be recorded as binary digits (bits) 
that may be shown electronically or mechanically. The symbolic assembler 
had been the one of the first software tools developed to solve this issue. 
An assembler analyzes an assembly language program that represents 
every instruction like a symbol and converts it to a binary form appropriate 
for computer execution. For instance, consider the following instruction 
(Ahmed et al., 2014):
load R3,54

Its meaning is far more comprehensible than the corresponding string 
of bits: “load register 3 having the information in memory location 54.” 
Believe this or not, the phrase “automated programming” initially applied 
to assemblers, which chose the correct bit sequence for every symbol 
automatically. Pascal and C are more advanced as compared to assemblers 
since they “automatically” select registers and addresses, as well as 
“automatically” select instruction orders to construct arithmetic expressions 
and loops (Antolík and Davison, 2013).

We’re now able to respond to the question posed at the start of this 
section.

A programming language is a method for abstraction. It allows a 
programmer to abstractly express a computation and then have a program 
(typically referred to as an interpreter, compiler, or assembler) execute the 
specification in the exact format required for computer performance.

It may also see why there are various programming languages: there are 
two distinct types of issues can necessitate various abstraction levels, and 
various programmers can have various opinions about how abstraction must 
be accomplished. A “C” programmer has been quite pleased to operate at 
an abstraction level that necessitates the definition of calculations utilizing 
indices and arrays, but a report author likes to “program” utilizing a language 
made up of word-processor functions (Vella et al., 2014).

The degrees of abstraction in computer hardware may be seen clearly. 
Separate components like resistors and transistors were linked directly 
at first. Then simple plug-in modules and smaller-scale ICs were used. 
Currently, whole computers may be manufactured from only a few chips, 
every one of which has many components. No computer specialist would 
try to construct a “perfect” circuit from single parts if a group of chips that 
could be changed to fulfill the same function existed (Flatt et al., 1999).
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The idea of abstraction generates a universal truth—more information 
is lost as the abstraction level rises. While writing a program in C, you 
lose the capability to describe register allocation that you had in assembly 
language; when writing in Prolog, you lose the capability to express random 
connected structures utilizing pointers that you had in C. There’s a natural 
conflict between desiring the freedom of expressing the calculation in detail 
and seeking for a succinct, unambiguous, and trustworthy description of 
a calculation in a higher-level abstraction. A lower-level description will 
always be more precise and optimum than an abstraction (Wasserman and 
Prenner, 1979).

Starting with “common” programming languages such as FORTRAN, 
Pascal, C, and the Pascal-like features of Ada, we would cover languages at 
3° of abstraction in this chapter. Finally, in Part IV, we’ll look at languages 
like C++ and Ada, which allow programmers to create high-level abstractions 
from simple statements. Ultimately, we’ll talk about logical and functional 
programming languages, which operate at even high abstraction levels 
(Fourment and Gillings, 2008).

3.3. IMPERATIVE LANGUAGES

3.3.1. FORTRAN
FORTRAN was the 1st language of programming that advanced substantially 
beyond assembly code. It had been created via an IBM team has led by 
John Backus in the 1950s to give an abstract manner of defining scientific 
calculations. FORTRAN faced stiff resistance for the same reasons that 
all succeeding ideas for high-level abstractions did: many programmers 
thought that a compiler might not create optimum code when compared to 
hand-coded assembly language (Figure 3.2) (Ottenstein et al., 1990).
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Figure 3.2. Windows Fortran compiler suite.

Source: https://www.absoft.com/products/windows-fortran-compiler-suite/.

FORTRAN, like other early programming languages, had severe flaws, 
both in terms of language construction and support for module organizing 
notions and current data. In retrospect, Backus remarked, “Which as it 
had been known already, we just built up the language whenever we went 
alongside.” We didn’t see design of language as a challenging task, but 
rather as a straightforward prolog to the main challenge: creating an effective 
compiler (Cann, 1992).

Nonetheless, the benefits of abstraction rapidly won over so many 
programmers: fast and reliable design, as well as reduced machine reliance 
due to the abstraction of register and machine instructions. FORTRAN 
had become the standard language in research and engineering as most 
early computers had been focused on scientific issues, and it is only now 
being supplanted by newer languages. FORTRAN has been extensively 
modernized (in 1966, 1977, 1990) to meet the needs of current software 
development (Burgess and Saidi, 1996).
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3.3.2. COBOL and PL/I
The COBOL programming language had been created for commercial data 
processing in the 1950s. A group comprised of members from the United 
States Defense Department, commercial entities, computer manufacturers 
and like insurance firms drafted the phrase. COBOL had been aimed to 
be a temporary solution until an improved design might be developed; 
rather than, the language just like described quickly had become the 
widely used language in its sector (much like FORTRAN in science), and 
for the same reason: it gives a better resource of expressing calculations 
which are common in its area. The requirement to perform relatively basic 
computations on large numbers of complicated data records characterizes 
business data processing, and COBOL’s data structuring abilities greatly 
outstrip that of algorithmic languages such as C or FORTRAN (Figure 3.3) 
(Lorenzen, 1981).

Figure 3.3. Code colorization for PL/I and COBOL.

Source: https://marketplace.visualstudio.com/items?itemName=bitlang.cobol.

Afterwards, IBM developed PL/I as a worldwide language that included 
the characteristics of COBOL, Algol, and FORTRAN. On several IBM 
systems, PL/I have supplanted COBOL and FORTRAN, however, this huge 
language had never been generally supported outside of IBM, particularly 
on the microcomputers and minicomputers that are becoming incredibly 
common in the processing of data firms (Heller and Logemann, 1966).
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3.3.3. Algol and Its Descendants
Algol has had the most effect on the language design of all the earlier 
programming languages. It was created through an international team for 
generic and scientific purposes, but due to FORTRAN’s strong backing from 
major computer manufacturers, it never gained mainstream acceptance. The 
initial version of Algol had been released in 1958, and the updated version, 
Algol 60, had been widely utilized in computer science research and was 
installed on a large number of computers, particularly in Europe. Algol 68, 
a 3rd version of the language, was significant among language theorists but 
was never extensively used (Figure 3.4) (Wijngaarcien et al., 1977).

Figure 3.4. Sample syntax of Algol language.

Source: https://slideplayer.com/slide/2368014/.

Jovial, which is utilized through the Air Force of United States for real-
time systems, and Simula, one of the earliest simulation languages, are 2 
prominent languages that had been evolved from Algol. Pascal, invented 
through Niklaus Wirth in the late 1960s, is possibly the most renowned 
descendant of Algol. Pascal had been born out of a desire to build a language 
that might be utilized to teach concepts such as type checking and type 
declarations (McCusker, 2003).

Pascal has one major benefit and one major shortcoming as a practical 
language. Because the first Pascal compiler had been written in Pascal, 
it was simple to transfer to any machine. The language spread swiftly, 
particularly among the microcomputers and minicomputers that were being 
developed at the time. Regrettably, the Pascal programming language is 
just excessively limited. The standard language has no way of breaking a 
program into modules on distinct files, therefore it can’t be utilized to write 
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programs with more than a few thousand lines. Although practical Pascal 
compilers enable module deconstruction, there is no standard mechanism; 
therefore, huge applications are not portable (Valverde and Solé, 2015).

Wirth realized the need for modules in every practical language and 
created the Modula language as a result. Modula has a famous option to 
non-standard Pascal dialects (currently in version 3 with support for object-
oriented programming (OOP)) (Ginsburg and Rose, 1963).

Dennis Ritchie of Bell Laboratories created the C programming language 
in the starts of 1970s as an implementation language for the operating system 
(OS) of UNIX. As higher-level languages had been deemed wasteful, OSs 
had been usually developed in assembly code. By providing data structures 
and structured control statements (records and arrays), the C abstracts away 
the complexities of assembly language programming whilst retaining all of 
the flexibility of lower-level programming in assembly language (bit-level 
operations and pointers) (Reddy, 2002).

UNIX soon became the choice system in research and academic 
institutions because it had been freely available to universities and had 
been designed in a portable language instead of raw assembly code. When 
modern computers and programs came out of these universities and into the 
commercial sphere, they brought UNIX and C with them.

Because harmful constructs aren’t examined via the compiler, C is 
supposed to be as versatile as assembly language. The difficulty is that 
this flexibility makes it very simple to develop programs with cryptic 
problems. When it is used correctly on tiny programs, the C is a precise 
language, but when utilized on huge software systems produced via teams 
of varied abilities, it may cause major problems. Several of the hazards of 
constructions in C would be discussed, as well as how to avoid key mistakes 
(Yang et al., 2006).

The American National Standards Institute (ANSI) standardized the C 
programming language in 1989, and the International Standards Organization 
(ISO) approved virtually the same standard a year later. The C in this book 
refers to ANSI C rather than older versions of the language.

3.3.4. C++
Bjarne Stroustrup, also of Bell Laboratories, created the C++ language in 
the 1980s, expanding C to incorporate OOP features comparable to that 
of the Simula language. Furthermore, C++ corrects numerous errors in C 
and must be utilized instead of C in tiny applications where object-oriented 
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capabilities aren’t required. When updating a C-based system, C++ is the 
natural language to utilize (Figure 3.5) (Ishikawa et al., 1996).

Figure 3.5. Salient features of C++.

Source: https://www.educba.com/features-of-c-plus-plus/.

Please keep in mind that C++ is a dynamic language, thus your reference 
compiler or manual cannot be completely up to date.

3.3.5. Ada
The US Department of Defense decided to standardize on a single 
programming language in 1977, mostly to keep money on training and on 
the expense of sustaining program creation environments for every system of 
military, according to the official history. Following an evaluation of current 
languages, they decided to request the development of a novel language that 
would be dependent upon a competent existing language, like the Pascal 
programming language. Ultimately, one of the proposals for a language had 
been selected and named Ada, and a standard had been established in 1983. 
Ada is exceptional in various ways (Sward et al., 2003):

• A single team created and developed the majority of programming 
languages (Pascal, C, FORTRAN, etc.), and they had been only 
standardized after being widely used. All of the unintentional 
mistakes made by the original teams had been included in the 
standard for the sake of compatibility. Ada was exposed to 
extensive study and criticism before being standardized.
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• Most programming languages were first built on one computer 
and had been substantially impacted through the oddities of that 
computer before being standardized. Ada had been created to 
facilitate the creation of portable applications.

• In addition, Ada broadens the scope of programming languages 
through allowing the handling of error and concurrent 
programming, both of which have previously been reserved for 
(non-standard) OS functions (Figure 3.6).

Figure 3.6. The object-oriented paradigm of Ada language.

Source: https://peakd.com/ada-lang/@xinta/learning-ada-5-object-oriented-
paradigm.

Although its technological superiority and the benefits of early 
standardization, Ada has been unable to gain general acceptance exterior 
of military and larger-scale applications (like commercial aviation and 
transportation by rail). Ada has a repute for being a tough language. It has 
been because the language covers several areas of programming those other 
languages (such as Pascal and C) leave to the OS, therefore there is just 
more to learn. In addition, better, and affordable educational development 
settings weren’t readily accessible. Ada is becoming more widely utilized in 



Fundamentals of Programming Languages 77

the academic curriculum, although as a “primary” language, thanks to the 
availability of free compilers and solid introductory textbooks (Hutcheon 
and Wellings, 1988).

3.3.6. Ada 95
A new standard for the Ada language is issued exactly 12 years after the 
initial standard for the Ada language was finalized in 1983. The latest 
version, dubbed Ada 95, fixes a few flaws in the previous version. The most 
significant addition is support for real OOP, including inheritance, which had 
been left out of Ada 83 due to perceived inefficiency. Annexes to the Ada 
95 standard define standard (although optional) additions for information 
systems, real-time systems, secure systems, numeric’s, and distributed 
systems (Bailes, 1992).

If the subject is exclusive to single version: “Ada 95” or “Ada 83,” 
the name “Ada” would be used in this text. Because the actual year of 
standardization was unknown during development, Ada 95 had been referred 
to as Ada 9X in the literature.

3.4. DATA-ORIENTED LANGUAGES
Many notable languages had been conceived and implemented in the initial 
days of programming, all of which shared one feature: every language had a 
chosen data structure and a comprehensive operations set for that structure. 
Such languages allowed programmers to develop sophisticated programs 
that would have been impossible to write in languages like FORTRAN, 
which only handled computer text. We’ll look at a few of such languages in 
more detail in the subsections that follow (Denning, 1978).

3.4.1. Lisp
The linked list is the most fundamental data structure in Lisp. Significant 
work on artificial intelligence (AI) had been done in Lisp, which had been 
created for study in computation theory. Because the language was so vital, 
machines were created and built specifically to run Lisp applications (Figure 
3.7) (Murphree and Fenves, 1970).
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Figure 3.7. Artificial intelligence utilizing lisp programming.

Source: https://www.electroniclinic.com/artificial-intelligence-using-lisp-pro-
gramming-examples/.

The growth of numerous dialects when the language had been 
implemented on various devices was one issue with the language. 
Subsequently, the Common Lisp programming language had been created 
to allow applications to be transferred from one machine to another. CLOS, 
a prominent dialect of Lisp that allows OOP, is now a famous dialect.

Cdr(L) and car (L), which remove the tail and head of a list L, 
correspondingly, and cons(E, L), which builds a fresh list from a component 
E and an old list L, are the 3 basic Lisp operations. Functions to processing 
lists comprising non-numeric data may be constructed utilizing these 
techniques; these functions will be exceedingly complex to implement in 
FORTRAN (Rajaraman, 2014).

Lisp is a long-lived programming language that has been in use for 
about a quarter-century. Just FORTRAN has a longer history amongst 
active programming languages. Both languages have met the programming 
requirements.



Fundamentals of Programming Languages 79

FORTRAN for scientific and technical calculation and Lisp for AI are 
two prominent areas of application. These 2 fields are still vital, and their 
programmers are so dedicated to such 2 languages that FORTRAN and Lisp 
may stay in usage for another quarter-century.

AI research, as one might assume given its aims, creates a slew of 
serious programming issues. This rash of difficulties has spawned new 
languages in different programming cultures. Likewise, controlling, and 
isolating traffic inside work modules by the development of language is a 
valuable organizational approach in any extremely big programming effort. 
As one reaches the limits of the system wherein, we humans interact more 
frequently, such languages start to become less rudimentary (Adeli and 
Paek, 1986).

As a result, these systems have several copies of complicated language-
processing functions. Because Lisp’s semantics and syntax are so basic, 
parsing might be considered a trivial process. As a result, parsing technology 
plays essentially no part in Lisp programs, and the development of language 
processors is seldom a hindrance to the rate at which big Lisp systems 
expand and evolve. Ultimately, it is the freedom and burden that all Lisp 
programmers bear because of the simplicity of syntax and semantics. There 
is no way to write a Lisp program larger than several lines without using 
discretionary functions (Swift and Mize, 1995).

3.4.2. APL
The APL programming language arose from a mathematical notation for 
describing computations. Matrices and vectors are the most fundamental 
data structures. Operations are performed directly on them without the use 
of loops. As a result, when compared to equivalent programs written in 
other languages, the programs are extremely brief. One issue with APL is 
that it retains a huge number of mathematical signs from basic formalism. 
This necessitates the usage of a particular terminal, making it impossible 
to test with APL with no investing in expensive hardware; newer graphical 
user interfaces (GUIs) that employ fonts of software have eliminated such 
difficulty, hastening APL’s adoption (Figure 3.8) (McIntyre, 1991).
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Figure 3.8. Sample syntax of APL language.

Source: https://computerhistory.org/blog/the-apl-programming-language-
source-code/.

3.4.3. Snobol, Icon
Numbers were almost solely dealt with in earlier languages. Snobol (and 
its descendant Icon) are appropriate for work in disciplines like natural 
language processing since its core data structure is the string. Snobol’s main 
operation is to match a pattern to a string, with the string being deconstructed 
into substrings as a result of the match. Expression assessment is the 
most fundamental process in Icon, although expressions can encompass 
complicated string manipulations (Jeffery et al., 2016).
The find(s1, s2) is a useful predefined function in Icon that looks for 
instances of the string s1 in the string s2. Find produces a list of all spots in 
s2 where s1 appears, unlike an equivalent function in C:
line:= 0 # Initialize line counter
while s:= read() { # Read until end of file every col:= find(“the”, s) do
 # Generate column positions
write(line, “ ”, col) # Write (line,col) of “the”
line:= line + 1}

The column and line numbers of all locations of the string “the” in 
a file would be written by this application. If the search fails to identify 
an occurrence, the expression’s computation is ended. The keyword each 
compels the function to be evaluated again as long as this is effective.
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Icon expressions may be described on csets, that are sets of characters, 
as well as strings, that are sequences of characters. Thus:

vowels:= ‘aeiou’
It assigns a value to the variable vowel, which is the set of letters shown. 

This is utilized in methods such as up to (vowels,s), which returns the longest 
beginning order of vowels in s, and several (vowels,s), that returns the order 
of positions of vowels in s.

Bal is very complicated function that works similar up to which it creates 
orders of locations that are balanced in terms of bracketing characters:

bal(‘+–*/,’ ‘([,’ ‘)],’ s)
This expression might be utilized to construct balanced arithmetic sub-

strings in a compiler. Given the string “x+(y[u/v]–1)*z,” The indices relating 
to the sub-strings would be generated by the above equation:

x x + (y[u/v] – 1)
The 1st sub-string has been balanced since this end with “+” and has no 

bracketing characters; the 2nd sub-string is balanced since it ends with “*” 
and has square brackets properly contained within parentheses.

Backtracking may be utilized to resume the search from previous 
generators if an expression fails. Except for those that begin in column 1, 
the following software prints the appearances of vowels:

line:= 0 # Initialize line counter
while s:= read() { # Read until end of file every col:= (up to(vowels, 

line) >1) do
 # Generate column positions
write(line, “ ”, col) # Write (line,col) of vowel
line:= line + 1}
The function ‘find’ creates an index, which is subsequently checked 

via “¿.” If the experiment is not successful (do not state “if the outcome 
is false”), the program goes back to the generator function and requests a 
newer index.

The icon is a useful language for applications that need to manipulate 
strings in a complicated way. The majority of the explicit calculation 
using indices is abstracted away, resulting in highly compact programs 
as compared to standard languages meant for numerical or programming 
of systems. The icon is also intriguing as of the built-in generation and 
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backtracking mechanisms, that provide an additional degree of control 
abstraction (Kennedy and Schwartz, 1975).

3.4.4. SETL
The set is the most fundamental data structure in SETL. SETL may be 
utilized to generate generalized programs that are highly abstract and hence 
very brief because sets have been the most generic mathematical structure 
by which all mathematical structures have been created. In the sense that 
mathematical descriptions may be directly executed, the programs are 
similar to logic programming. Set theory notation is utilized: {x | p(x)}, 
which denotes the set of all x for whom the logical expression p(x) is true. 
A mathematical specification of the prime numbers set, for instance, maybe 
phrased as follows:
{n | ¬∃m[(2 ≤ m ≤ n – 1)∧(n mod m = 0)]}

This formula is written as follows: the set of integers such that no number 
m among 2 and n – 1 divides n without leaving a remainder.

We simply interpret the description into a one-line SETL program to 
print all primes in the range 2 to 100:

print({n in {2.100} — not exists m in {2.n–1} — (n mod m) = 0});
Essentially, all such languages approach creation from a mathematical 

standpoint, asking how may an understanding theory be executed, instead 
of from an engineering standpoint, asking how may instructions be given 
to the memory and CPU. These sophisticated programming languages are 
extremely beneficial for tough programming jobs when it has been critical 
to concentrate on the issue rather than on lower-level aspects such as syntax 
and semantics (Dubinsky, 1995).

Data-oriented languages are not very much famous as compared to 
they once were, owing to competition from new language approaches 
like functional and logical programming, as well as the ability to integrate 
these data-oriented processes into regular languages such As C++ and Ada 
utilizing object-oriented approaches. Nonetheless, the languages are both 
technically fascinating and extremely useful for the programming tasks for 
which they had been created. Students must try to learn at least one of such 
languages since they expand their understanding of how a programming 
language might be organized (Grove et al., 1997).
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3.5. OBJECT-ORIENTED LANGUAGES
OOP is a way of arranging programs that involves recognizing real-world 
or other objects and then building modules that comprise all the information 
and readable statements required to show a certain class of objects. There 
is a clear separation inside such a module between the class’s abstract 
characteristics that are exposed for usage through other objects and the 
execution that is concealed so that it may be changed with no impact on the 
remaining system (Figure 3.9) (Blanchet, 1999).

Figure 3.9. Main concepts in object-oriented programming.

Source: https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/.

Simula, the 1st OOP language, had been developed by K. Nygaard 
and O.J. Dahl in the 1960s for the simulation of system: every sub-system 
participating in the simulation had been written as an object. Because every 
subsystem might have several instances, a class may be created to describe 
every subsystem, and objects of this type may then be allocated (Ferber, 
1989).

With the Smalltalk programming language, the Xerox Palo Alto 
Research Center promoted OOP. The same research gave birth to today’s 
popular windowing systems, and one of Smalltalk’s biggest advantages is 
that it is not just a language, although an entire programming environment. 
Smalltalk’s technological breakthrough was to demonstrate that a language 
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may be created using simply objects and classes as structural structures, 
negating the necessity to bring these notions into a “normal” language.

Operation dispatching, Allocation, and type checking are dynamic (run-
time) rather than static (static) in such pioneering object-oriented languages, 
which has hampered widespread acceptance of OOP (compile-time). Without 
getting into specifics, the effect is that programs written in such languages 
have a memory and time overhead that may be exorbitant in several kinds of 
systems. Furthermore, static sort checking is increasingly seen as critical for 
the development of trustworthy software. As a result, Ada 83 only included 
a portion of the language features needed for OOP (Snyder, 1986).

C++ demonstrated that the full OOP machinery can be implemented in 
a way that is compatible with type-checking and static allocation, as well as 
fixed overhead for dispatching; the dynamic needs of OOP are only utilized 
as required. Ada 95’s OOP support was built on concepts comparable to 
those present in C++.

To get these benefits, although, it is not required to splice OOP support 
onto current languages. The Eiffel language is comparable to Smalltalk in 
that classes and objects are the sole way to structure code, and it is alike 
to Ada 95 and C++ in that it has been statically type-checked and object 
execution may be dynamic or static depending on the situation. Eiffel is a 
fantastic choice for a first programming language because of its simplicity 
in comparison to “hybrids” and complete support for OOP. Java is both a 
programming language and a framework for creating network software. The 
syntax is similar to C++, but the semantics are significantly different since, 
such as Eiffel, this is a “pure” OO language that needs robust type checking 
(America and Linden, 1990).

We will go through OOP language support in Java, C++, and Ada 95 in 
great depth. A brief introduction of Eiffel would also demonstrate what a 
“pure” OOP language looks like.

3.6. NON-IMPERATIVE LANGUAGES
All the programming languages that we have covered having one thing in 
common: the assignment statement, that instructs the computer to transfer 
information from one location to another, is their fundamental statement. 
This is a rather modest degree of abstraction when compared to the number 
of abstractions required to address the issues we wish to tackle through the 
use of computing. Modern programming languages prefer to define an issue 
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and then leave it to the computer to find out how to resolve it, instead of 
detailing in greater depth how to transfer information from one location to 
another (Kumar and Wyatt, 1995).

Newer software packages are composed of computer languages that are 
quite abstract. It is possible to define a sequence of database structures and 
screens using an application generator, as well as the generator will then 
automatically generate the lower-level instructions required to implement 
the program. Similarly, simulation programs, desktop publishing software, 
spreadsheets, and other similar applications provide substantial abstraction 
programming capabilities. However, one downside of this form of software 
is that it is typically restricted in terms of the kinds of applications that 
may be readily programmed. In the perspective that you may customize the 
package to run the program you require simply by the supply of descriptions 
as parameters, it seems logical that they are referred to as parameterized 
programs (Figure 3.10) (Raihany and Rabbianty, 2021).

Figure 3.10. Programming language paradigms.

Source: https://www.learncomputerscienceonline.com/computer-program-
ming/.

Another way to express a computation in abstract programming is to use 
logical implications, functions, equations, or any other formalism. Because 
mathematical formalisms are employed, these languages are truly basic-
purpose programming languages that are not restricted to a single application 
domain. The compiler does not convert the program into machine code; 
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alternatively, it tries to resolve a mathematical problem, the answer of which 
is regarded as the program’s outcome. Such programs may be an order of 
magnitude less than typical programs since loops, pointers, indices, and other 
details are taken out. The fundamental issue with descriptive programming 
is that computational operations like I/O to a screen or disc do not fit well 
with the paradigm, necessitating the use of standard programming tools 
(Aguado and Pine, 2002).

There are two non-imperative language formalisms that we will explore 
programming may be divided into two types of programming:

•	 Functional Programming: Programming that is depending 
upon the mathematical principles of pure functions, such as log 
and sin, which do not reconfigure their environments, in contrast 
to so-called functions in an ordinary language such as C, which 
may have drawbacks;

•	 Logic Programming: Programs are demonstrated as formulas 
in mathematical logic, and the “compiler” tries to interpret the 
logical reasoning of such formulas to resolve issues.

Programs written in an abstract, non-imperative language may not aspire 
to be as effective as hand-coded C programs. However, this is not the case. 
When a software system should search through enormous volumes of data or 
resolve issues whose answer may not be explicitly specified, non-imperative 
languages should be used instead of imperative ones. Pattern matching 
(genetics, vision), Language processing (style checking, translation), and 
optimization of the process are all instances of AI (scheduling). It is expected 
that these languages would become more popular as implementation methods 
improve and it becomes increasingly hard to construct dependable software 
systems in traditional programming languages (Jones, 2004).

It is strongly suggested that students learn to program in logical and 
functional programming languages as their 1st programming languages 
so that they learn how to work at high degrees of abstraction from the 
beginning as compared if they had been introduced to programming through 
C or Pascal.

3.7. STANDARDIZATION
The significance of standardization cannot be overstated. Programs may be 
translated from one machine to another if a standard for the language exists 



Fundamentals of Programming Languages 87

and compilers follow it. If you are building software that will work on a 
variety of systems, you should follow a set of guidelines. However, keeping 
track of dozens or even hundreds of computer-specific elements would make 
your maintenance duty incredibly difficult (Rao et al., 2021).

For most of the languages covered here, standards are available (or are 
in the works). Regrettably, the standards had been submitted years after 
the languages gained popularity and therefore should maintain computer-
specific peculiarities from premature executions. The language of Ada 
is unique in that the standards (1983 and 1995) had been developed and 
assessed concurrently with the language’s design and execution. Moreover, 
the standard is maintained, allowing compilers to be compared primarily on 
cost and performance instead of standard conformance. Other languages’ 
compilers can feature a mode that warns you if you use a non-standard 
construct. If these constructions are required, they must be contained in a 
small number of well-documented modules (Patel et al., 2022).

3.8. COMPUTABILITY
Logicians researched abstract principles of computing in the 1930s, long 
before digital computers had been conceived. Both Alan Turing and Alonzo 
Church created exceedingly basic models of computing (referred to as 
Turing machines and Lambda calculus, correspondingly), and subsequently 
established the Church-Turing Thesis (Kari and Thierrin, 1996):

In one of these models, you may do any useful calculation.
Turing machines are relatively basic; there are only two data declarations 

in C syntax:
char tape[…]; int current = 0;
Wherein the tape has the ability to go on forever. A program is made up 

of every number of statements of the following format:
L17: if (tape[current] == ‘g’) {tape[current++] = ‘j’; go to L43;}
A Turing machine’s statement is executed by the following stages:
• Read and inspect the current character on the tape’s current cell;
• Replace the character with a different one (optional);
• Increase or decrease the current cell’s pointer.
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4.1. INTRODUCTION
Computers, in their innate machine language, can understand 0s and 1s. 
All your computer’s executable programs are made up of these 1s and 0s 
that inform your computer simply what to do. Humans, on the other hand, 
are terrible at communicating with 0s and 1s (Van Rossum, 2003). Things 
would go extremely slowly if we had to write our instructions to computers 
in this fashion all the time, and we would have a lot of disgruntled computer 
programmers, to say the least (Zhang, 2015). Fortunately, there are two 
typical ways that programmers may use to avoid having to write their 
instructions in 0s and 1s to a computer:

• Compiled languages; and
• Interpreted languages.
Compiled languages allow programmers to build programs in a 

programming language that is easily understandable by humans (Ekmekci 
et al., 2016). An executable file is created by converting this program into 
a series of zeros and ones, which is known as an executable file, which the 
computer can read and comprehend (Liang, 2013; Fangohr, 2015). It is 
through this executable file that the computer can function. If one wants to 
make changes to the way their program operates, they must first make the 
necessary modifications to the program and then recompile (retranslate) the 
program in order to produce an updated executable file that the computer can 
recognize and use (Figure 4.1) (Nosrati, 2011; Linge and Langtangen, 2020).

Figure 4.1. Applications of Python programming.

Source: https://www.javatpoint.com/python-applications.
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An interpreted language differs from a traditional language in that, instead 
of performing all the translation rapidly, the compiler first converts a few of 
this code written in a human-understandable language to an unstructured 
format, and then this form is “interpreted” into a sequence of 1s and 0s 
that the machine comprehends and can instantly execute. As a result, both 
translation and execution are taking place at the same time (Bogdanchikov 
et al., 2013).

Python is a programming language that is interpreted. IDLE is a common 
Python programming environment in which students frequently create 
python applications. It provides students with two distinct ways to build 
and run Python applications in this environment (Pajankar, 2017). Because 
Python is an interpreted language, students have the option of writing a 
single line of python code and seeing the outcomes right away. On the other 
hand, students can go to a different window, enter all their controls in this 
window first, and then run their program to see how it functions. The first way 
allows students to view the outcomes of their assertions in real-time while 
they are being processed. The second method is more conventional in that it 
involves first constructing a whole program before compiling it and viewing 
its results of it. The first strategy is beneficial when it comes to learning. 
Students, on the other hand, must eventually construct their programs using 
the second way as a starting point (Van Rossum, 2007; Lakshminarayanan 
and Prabhakaran, 2020). Figure 4.2 will be presented to you when you open 
IDLE (Version 3.2.2) for the first time.

Figure 4.2. Python shell window.

Source: https://zbook.org/read/2752b_-python-chapter-1-introduction-to-pro-
gramming-in-python-.html.
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4.2. OUTPUT: PRINT STATEMENT

4.2.1. Print Statement: Basic Form
The prompt (>>>) asks the user to type a python line that will be interpreted. 
A print statement is the simplest basic line of code for displaying a result 
(Figure 4.3) (Taori and Dasararaju, 2019). Consider the following scenario:
>>> print(“Hello World!”)
The following output will appear when you hit enter from the IDLE editor:
Hello World!
Just look at the following:
>>> print(Hello World)
The following error will appear as IDLE response:
SyntaxError: invalid syntax

Figure 4.3. Python print window.

Source: https://computercorner.ca/python-print-function/.

The syntax rules of programming languages are quite rigorous. The 
difference between programming languages and English is that even if a 
grammatical rule is violated, most people yet grasp the substance of the 
message; however, in programming languages, if the tiniest rule is shattered, 
the interpreter cannot offset by repairing the error (Radenski, 2006; Kadiyala, 
and Kumar, 2017). Instead, the interpreter generates an error message that 
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informs the programmer of the problem that has occurred. As a result, the 
message itself is not very useful in this situation because it is not very 
detailed. In certain circumstances, the error messages are more precise than 
they are here. When comparing the two statements, it is easy to see that the 
only thing that separates them is the absence of a pair of double quotes in 
the second one (which worked). This is the syntax error that was committed 
previously (Kadiyala and Kumar, 2018).

Having established the correct syntax of the print statement in Python, 
we can now present it informally:

print(‘string expression’) is a function that prints a string expression.
The term “print” is used first, followed by a pair of enclosing parentheses 

to complete the sentence (). It is necessary to supply a proper string expression 
within the parentheses.

The string literal is the first class of string expression we will study. For 
the purposes of this definition, “literal” means “according to or involving, 
or consisting of in, or consisting of the fundamental or exact meaning of 
the word; neither metaphorical nor figurative.” Literal simply refers to the 
concept of “constant” in programming (Srinath, 2017). A literal expression 
is one that does not have the ability to modify its value. String literals in 
Python, along with many other programming languages, are denoted by a 
pair of double quotes that match exactly. With a few exceptions, everything 
included within the double quotes is regarded as a series of characters, or a 
string, in the exact same manner as it was written (Tanganelli et al., 2015; 
Kadiyala and Kumar, 2018).

Consequently, the importance of print (“Hello World!”) in Python is 
just to print out precisely what is included within the double quotes of that 
phrase. First, try printing out numerous texts that you have written yourself 
before continuing.

4.2.2. Print Statement: Escape Sequences
You may discover certain restrictions after playing with the print statement. 
Try printing a message on numerous lines employing a statement with a 
single print, like the following:

Python is chill!
After entering “Python” in the center of the print statement, one option 

is to physically hit the enter key. Unfortunately, this results in the mistake:
SyntaxError: EOL as scanning string literal
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The term “end of the line” refers to the end of a process. Because the 
entire Python statements should fit on a single line, the interpreter was 
waiting to read, represented by the second double quotation, ahead of the 
close of the line. The interpreter understood the string literal had not been 
finished when it reached the close of the line, which also signified the close 
of the statement (Cai et al., 2005; Nagpal and Gabrani, 2019).

To “correct” this problem, we will need a mechanism to tell the translator 
that we want to go on to the next line without typing the enter key. Python, 
like several other programming languages, has broken sequences to cope 
with the problems. A code for a character that should not be interpreted 
accurately is an avoid sequence (Holkner and Harland, 2009; Saabith et 
al., 2019). The evade sequence for the latest line character, for example, 
is n. When these two characters appear in a string literal in such order, 
the interpreter understands not to display a backslash and an. Instead, it 
recognizes these two characters as the code for a different line character 
when they are combined (Manaswi et al., 2018; Kumar and Panda, 2019). 
Therefore, to print out.

Python is fun!
print(“Python\nis\nfun!”)
Now there is a list of frequently employed escape sequences:

Character Escape Sequence
Single-quote \’
Double quote \”
Backslash \\
Tab \t

The remainder of the information is available in Python’s online 
documentation.

As a result, one method of printing the following is as follows:
Joe says, “Hi!”
is as follows:
print(“Joe says, \”Hi!\”“)

4.2.3. Second Way to Denote a String Literal in Python
Python varies from other languages in that it offers two methods for 
specifying string literals. Rather than using double quotes to begin and finish 
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a literal string, single quotes can be used instead. Either option is acceptable 
(van Rossum, 1995; De Pra et al., 2018). As a result, the above message may 
be written out more easily as follows:
print(‘Joe says, “Hi!”‘)

The python interpreter understands from the start of the statement that 
the programmer is employing single quotes to signify the end and start of 
the string literal, so it may regard the double-quote it finds as a double quote 
rather than the string’s end (Nosrati, 2011).

4.2.4. Automatic Newlines between Prints
When we use IDLE, we are usually obliged to get the outcomes of a single 
line of code right away. Various genuine computer programs, on the other 
hand, entail arranging a series of instructions ahead of time and then seeing 
the outcomes of all those instructions running deprived of having to write in 
separately novel commands one by one as the program runs (Agarwal and 
Agarwal, 2006).

We will be able to examine the impact of running two print statements in 
a row using this method. To do so, just click on the “File” menu in IDLE’s 
main window and pick the first option, “New Window.” A single empty 
window will appear after this option (Agarwal and Agarwal, 2008). Type the 
subsequent into the window from here:

print(“Hello “) print(“World!”)
Once you have done so, navigate to the “File” menu in the new tab and 

select the option “Save As.” Select the directory in which you want to store 
this file and type a name in the box labeled “File Name” in the dialog box 
that appears (van Rossum and de Boer, 1991). Something simple like hello.
py will do the trick. Even though the file type is already displayed below, 
make sure to include the.py extension. This will make sure that the IDLE 
editor’s emphasis will be visible when you open it. As soon as you have 
saved the file, you will be able to execute and understand it. Select “Run 
Module” from the “Run” menu on the main menu bar (Kuhlman, 2009; 
Kelly, 2019). Following this procedure, you will see the following output:

Hello
World!
Python, by default, inserts a delimiter character between each print 

statement, which has resulted in the above situation (Milliken, 2020). While 
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this is typically beneficial, there will be instances in which the programmer 
does not need the program to necessarily move to the next line of code 
(Van Rossum et al., 1995; Taori and Dasararaju, 2019). This automated 
functionality can be turned off by including the following code in the print 
statement:
print(“Hello,” end = ““) print(“World!”)

With the comma following the literal string, we are informing the print 
assertion that we have additional evidence for it to consider. To be more 
specific, we are requesting that our print be terminated with nothing rather 
than with the standard newline character. Keep in mind that we may put 
any string in the interior of the double quotes following the equal sign, and 
anything we identify will be written at the conclusion of the print statement 
that we are now running. The second print does not follow the same 
specification as the first, resulting in the newline character being written 
after the exclamation point in this situation (Watkiss, 2020; Khoirom et al., 
2020).

There are various peculiarities to basic printing that need to be considered, 
but for now, this should be enough. Additional printing regulations will be 
implemented if needed.

4.2.5. String Operators (+, *)
The Python programming language also has two operators for string 
chain: string chain (+) and frequent string chain (*). When two strings are 
concatenated together, it is merely the effect of inserting one string behind 
another. For instance, the chain of the words “pie” and “apple” results in the 
phrase “apple pie.” A chain of the similar text more than once is just a function 
that repeats the similar string a specified number of times. For instance, in 
Python, multiplying “ahh” by four results in the string “ahhahhahhahh.”

It is important to note that these operators are also valid for numbers 
and that they are defined in a distinct way for numbers. Overloading is the 
word used to describe the practice of using two separate definitions for the 
same thing in a programming language (Van Rossum et al., 2001; Hall and 
Stacey, 2009). Because of this, the Plus sign in Python is congested and may 
be used to denote two distinct meanings. (This is a regular occurrence in 
English.) When it comes to signing anything, the verb “to sign” can indicate 
either to write one’s signature or to transmit an idea using sign language. 
By examining the two objects that are being “added,” the computer chooses 
which of the two meanings to employ (Craven, 2016). Python does string 
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concatenation if both input elements are strings as well. If both variables 
are numbers, Python adds them together. Python generates an error if one 
of the items is a string and the other is a number. If, on the other hand, 
you want to do repeated string concatenation, one of the two objects being 
multiplied must be a string, and the other must be a non-negative integer. 
Normal multiplication happens if both items are numbers. If both items are 
strings, an error occurs if both things are numbers (Hunt, 2019; Bynum et 
al., 2021). The subsequent instances explain these rules:
print(“Happy “+”Anniversary!”) print(4 + 5) print(“4 + 5”) print(“4”+”5”) 
print(4*5) print(4*”5”) print(“4”*5) print(“I won’t be available.\n”*3)
If we save this segment as a.py file and execute it, we get the following 
results:
Happy Anniversary!
9
4 + 5
45
20
555
4444
I won’t be available.
I won’t be available.
I won’t be available.

The following statements each cause an error:
print(4+”5”) print(“4”+5) print(“you”*”me”)
The errors are as follows:
TypeError: can’t multiply sequence by non-int of type ‘str’
TypeError: unsupported operand type(s) for +: ‘int’ and ‘str’
TypeError: can’t convert ‘int’ object to str implicitly
The interpreter alerts you to the fact that a type error has arisen in each 

circumstance. For the second item, it was anticipating a number in the first 
statement, a string in the second statement, and another number in the third 
statement.
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4.3. ARITHMETIC EXPRESSIONS: A FIRST LOOK

4.3.1. Standard Operators (+, –, *, /)
Arithmetic computations are one of the most common procedures included 
in all computer programmers. These are used as parts of entire statements 
but understanding the principles of arithmetic expressions generally is vital 
so that we can figure out exactly how the Python interpreter evaluates every 
expression (Ekmekci et al., 2016). By inputting any arithmetic phrase into 
the interpreter, we may quickly examine its value:
>>> 3+4
7
>>> 17–6
11
>>> 2 + 3*4
14
>>> (2 + 3)*4
20
>>> 3 + 11/4
5.75

In a Python application, none of these expressions would ever be used 
as a full line. The samples provided here are solely for educational purposes. 
We will learn how to use arithmetic expressions in Python scripts very soon 
(Alzahrani et al., 2018; Schäfer, 2021).

The four operators are given, multiplication (*), subtraction (–), and 
addition (+), all function in the same way they did in elementary school. 
Division and multiplication take precedence over subtraction and addition, 
as seen in the examples above, and parenthesis can be used to specify 
the order in which operations should be performed (Dubois et al., 1996; 
Tateosian, 2015).

4.4. VARIABLES IN PYTHON

4.4.1. The Idea of a Variable
One of the reasons computers programmers are so effective is that they can 
do computations with a variety of numbers while still following a similar set 
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of instructions. The usage of variables is one method of accomplishing this. 
Instead of computing 5*5, if we could compute side*side for any value of 
side, we would be able to measure the area of any square rather than the area 
of a square with side 5. Variables are simple to utilize in Python. You may 
insert the name of the variable in your code whenever you wish to utilize 
it (Donat, 2014; Hunt, 2019). The one drawback is that when you initially 
make a variable, it lacks a well-defined value, so you cannot utilize it in a 
framework that requires one.

The simplest approach to introduce a variable is to use an assignment 
statement, as seen below:

>>> side = 5
The variable produced is called side, and the line above assigns the 

value 5 to it (Figure 4.4). The following is a representation of memory at 
this moment in time:

If we go along with this statement:
>>> area = side*side
In memory, then our picture is as follows:

Figure 4.4. Two Python variables referencing the same object.

Source: https://python-course.eu/python-tutorial/data-types-and-variables.
php.
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Let us look at what is going on. An assignment statement is any statement 
that has a variable to the left of a single equal sign and an expression to the 
right of that equal sign (Subero, 2020; Rajagopalan, 2021). An assignment 
statement’s objective is to assign a value to a variable. It operates in a two-
step procedure:

• To use the current values of the variables, evaluate the present 
value of the expression on the right;

• Alter the value of the left-hand variable to this value.
As a result, the side was equal to 5 in the statement above at the time it 

was performed. As a result, side*side was calculated to be 25. The area box 
was then replaced with the value 25.

4.4.2. Printing Out the Value of a Variable
Obviously, we do not FIND OUT any indication that the variables are these 
two values when we run these two lines in IDLE. To do so, we will want 
to understand that in Python how to print the value of a variable. The most 
straightforward method is as follows:
>>> print(side)
5
>>> print(area)
25

It is worth noting that we do not use double quotes in these prints. If we 
had done the following, we would have:
>>> print(“area”) area
>>> print(“side”) side

Rather than the values of the relevant variables, the words in concern 
would have been printed. What we observe here is that anything between 
double quotes is displayed as is, except for escape sequences, which do not 
alter. To print the value of a variable, new construction must be used (Hajja 
et al., 2019; Elumalai, 2021).

“What if we want to publish a variable’s value as well as some text in 
the same print?” is another logical question that occurs. We can achieve 
this in Python by using commas to separate each thing we want to print, as 
demonstrated below:
>>> print(“The area of a square with side,”side,”is,”area)
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A square with five sides has a 25-square-foot size.
While reading the text above, you will see that Python automatically 

included a space between each item indicated in print (there are four things 
total) even though we did not specifically include a space in the output. This 
is the default configuration in Python, and it is often quite beneficial in many 
situations (Tang et al., 2014; Nanjekye, 2017). But what if we wanted to put 
a semicolon directly after the number 25 in the above statement? A space 
would be added between the number 5 and period if we placed a comma 
after the area and the string.”“ after it.

4.4.3. Increment Statement
Take into account the statement that comes after the first two statements in 
the preceding section, which is a little unclear at first:

>>> side = side + 1
The mathematical concept of a variable equaling itself plus one is 

known as the equality theorem. This assertion, on the other hand, is not a 
contradiction in programming. As a result of following the guidelines, we 
can observe that side is identical at the time of the present assessment. As a 
result, the right-hand side of the assignment statement is equal to 5 plus 1, 
which is equal to 6. The next step is to alter the value of the variable on the 
left to this number, which is 6 (Izaac and Wang, 2018; Pajankar, 2022). The 
image that corresponds to this sentence is as follows:

Execute the following line to demonstrate that this is really what 
happened:
>>> print(“area =,”area,”side =,”side) area = 6 side = 25

One important point to note is that the area is STILL 25. After the side 
was updated, it did not magically transform to 36. Python only runs the 
instructions that are passed to it. As a result, if we were to recalculate the 
area of a square having side 6, we would have to do it.

If we execute the following lines of code again after switching sides, we 
will get the same result:
>>> area = side*side
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>>> print(area)
36

Since we expressly reassessed side*side and placed this new value in 
return into the variable area, we can see that area has now changed to 36.

4.4.4. Rules for Naming a Variable
It goes without saying that a variable cannot be called anything. As an 
alternative, Python contains criteria for determining which names are 
applicable for variables and which names are not. To be more specific, the 
only characters that can be used in a variable name are letters, numerals, and 
the underscore(“_”). Moreover, the names of variables must not begin with 
a number (Meulemans et al., 2015; Gerrard, 2016).

Generally, while it is not compulsory, it is regarded excellent 
programming type to name variables in a way that is related to the function 
that the variable performs. As seen in the preceding instance, the variables 
area and side both describe the type of data that has been saved in those 
variables. If the variables were labeled b and a, for example, somebody else 
who was reading the code would have a much harder time determining what 
the function was doing (Rashed et al., 2012; Rawat, 2020). Whether it is 
out of laziness or for other reasons, many new programmers fall into the 
practice of designing short variable names that are unrelated to the function 
of the variable in question. These programmers do not have much trouble 
with little programmers, but when dealing with bigger programmers, it may 
be quite difficult to hunt out errors if the role of a variable is not instantly 
obvious (Figure 4.5) (Oliphant, 2007; Chapman and Stolee, 2016).

Figure 4.5. Variable naming rules for Python.

Source: https://www.slideshare.net/p3infotech_solutions/python-program-
ming-essentials-m5-variables.
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4.4.5. Two Program Examples
We can create a standalone program using the above set of statements by 
typing the subsequent in a separate tab and saving it as a python program:
# Joe Clark
# 9/10/2019
# The area of a square may be calculated using Python.
side = 5 area = side*side
print(“The area of a square with side,”side,”is,”area)
When you run this program, you will get the following results:
A square with 5 sides has a 25-square-foot size.

4.4.6. Comments
Others find it difficult to read large chunks of code. Programmers frequently 
include comments in their code to assist others. A comment is a section 
of code that the interpreter ignores but that anyone viewing the code may 
see. It provides some fundamental information to the reader. At the start of 
each program, a header comment is added. It contains information about the 
file’s author(s), the date it was created/edited, and the program’s purpose. 
In Python, the pound sign (#) is used to indicate a comment. The translator 
treats all text after the pound symbol on a line as a comment (Tateosian, 
2015; Poole, 2017).

4.5. ARITHMETIC EXPRESSIONS IN PYTHON
We utilized arithmetic statements on the right-hand side of the assignment 
declaration in the two examples in the preceding section (equal sign). So 
that there is no misunderstanding, Python provides its own set of rules for 
evaluating these expressions. Until now, we have only shown that division 
and multiplication take preference over subtraction and addition, as is 
commonly taught in elementary school math (Pilgrim and Willison, 2009; 
Rak-Amnouykit et al., 2020). Moreover, parentheses have priority over 
everything else and can also be employed to “force” the order in which 
operations are assessed, as seen in the previous line of code:
total_price = item_price*(1+tax_rate/100)

Before multiplying, we analyze the values of the parenthesis in this 
equation. We do division first when analyzing the content of the parenthesis 
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since it takes priority over addition. For instance, if the tax rate is 7, we 
divide 7 by 100 to get 0.07, which we then multiply by 1 to obtain 1.07. The 
present value of item price is then multiplied by 1.07, and the total price is 
allocated (Meurer et al., 2017; Lukasczyk et al., 2020).

Python additionally gives us with three more operators:
• %, for modulus;
• **, for exponentiation;
• //, for integer division.
Further subsections explain how each of these operators works, as well 

as the order in which they should be used.

4.5.1. Exponentiation (**)
Because the caret sign () is commonly associated with multiplications on 
best calculators that children employ in grade school, many pupils learn to 
associate it with exponentiation initially. Mostly programming languages, 
however, the caret symbol is either not specified or denotes rather other than 
involution (Bergstra et al., 2010; Hamrick et al., 2013).

Exponentiation is not defined by an operator in some computer languages, 
although it is in Python. The operator is only intended to be used with real 
numbers. Here are a few examples of how it may be used:
>>> 2 ** 3
8
>>> 3 ** 5
243
>>> 4 ** 10
1048576
>>> 25 **.5
5.0
>>> 2 ** –3
0.125
>>> 9999 ** 0
1
>>> –5 ** –3
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–0.008
>>> –5 ** 3
–125
>>> 1.6743 ** 2.3233
3.311554089370817

When both operands of a multiplications operation are integers, and the 
result is also an integer, the result is stated as one. The response will be written 
as a real number with decimals if both operands are integers; however, the 
answer is not. If an exponent b is –ve, ab is described as 1/a–b, as shown in 
the instances above (Vanhoenacker and Sandra, 2006; Furduescu, 2019).

4.5.2. Integer Division (/ /)
/ is a second division operator in Python that does integer division. The 
result of an integer division operation; in particular, is always an integer. 
The highest number of whole times b divides into an is defined as a/b in 
particular. Here are a few instances of integer division being used to evalu-
ate expressions:
>>> 25//4
6
>>> 13//6
2
>>> 100//4
25
>>> 99//100
0
>>> –17//18
–1
>>> –1//10000000
–1
>>> –99999999//99999999
–1
>>> –25//4 –7
>>> –13//6 –3



Key Dynamics in Computer Programming112

>>> –12//6 –2
>>> –11//6
–2
>>> 0//5
0

Please keep in mind that Python approaches this operation in a different 
way than several other programming languages and in a different way 
than most people’s instinctive understanding of integer division. When the 
majority of people see –13/6, they are likely to conclude that this is quite 
near to –2, and hence that the answer should be –2, which is incorrect. In 
contrast, if we look at the technical definition of integer division in Python, 
we can see that –2 is more than –13/6, which is about –2.166667, and that 
the highest integer less than or equal to this figure is –3.166667 (Gálvez et 
al., 2009; Munier et al., 2019).

In addition, the definition of integer division in Python does not need that 
the two numbers that are being divided be integers in order for the division 
to take place. Consequently, integer division procedures are permitted even 
for values that are not in the integer range. Think the following examples:
>>> 6.0 // 3.0
2.0
>>> 2.4 // 2.5 0.0
>>> 6.6 //.02
330.0
>>> –45.3 // –11.2
4.0
>>> 45.3 // –11.2
–5.0

Because this Python feature is infrequently utilized, no more information 
will be provided at this time.

4.5.3. Modulus Operator (%)
The modulus operator, which is indicated by the percent sign (%), is likely to 
be unfamiliar to individuals who have never coded before. When it comes to 
mathematics, the modulus is normally identified just for integers. In Python, 
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on the other hand, the modulus operator is provided for both real numbers 
and integers, as opposed to other programming languages. It is possible that 
the result will be an integer if both integers are operands; otherwise, the 
answer will be a real number (Henry et al., 1984; Reas and Fry, 2006).

To put it another way: logically, the modulus operator determines the 
residual in a division, whereas integer division calculates the proportion in a 
division. Another way of thinking about modulus is that it is just the amount 
of remaining when two integers are divided by each other. Positive integers 
in Python are represented correctly by the intuitionistic notion given above. 
Negative numbers, on the other hand, are a different matter (Bielak, 1993; 
Nakhle and Harfouche, 2021).

The formal description of a % b is as observes:
a % b assesses to a – (a // b)*b.
The full number of times b splits into an is represented by a / b. As 

a result, we are searching for the total number of times b enters a and 
subtracting that many multiples of b from a to get the “leftover.”

Here are several traditional mod examples that only use non-negative 
values:
>>> 17 % 3
2
>>> 37 % 4
1
>>> 17 % 9
8
>>> 0 % 17
0
>>> 98 % 7
0
>>> 199 % 200
199

In these cases, we can see that if the first value is ever smaller than 
the second value, the operation’s answer is just the first value because the 
second value divides it 0 times. In the remaining cases, we can see that we 
can get the solution by simply subtracting the proper number of multiples of 
the second number (Iyengar et al., 2011; Kopec, 2014).
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Negative integers, on the other hand, must be plugged into the formal 
definition rather than relying on instinct. Consider the following examples:
>>> 25 % –6
–5
>>> –25 % –6
–1
>>> –25 % 6
5
>>> –48 % 8
0
>>> –48 % –6
0
>>> –47 % 6
1
>>> –47 % 8
1
>>> –47 % –8
–7

The essential problem that determines the first two outcomes is that the 
two integer divisions 25/–6 and –25/–6 have different answers. The first 
yields a score of –5, whereas the second yields a score of 4. As a result, we 
compute –6 × –5 = 30, from which we remove 5 to get 25. For the second, 
we multiply –6 × 4 to get – 24, then remove 1 to get –25.

Examine if you can use the description provided to understand each of 
the other responses listed directly above.

The modulus operator is also provided for real numbers in Python, with 
a similar definition as before. Here are some instances of its use:
>>> 12.4 % 6.1
0.20000000000000018
>>> 3.4 % 3.5 3.4
>>> 6.6 %.02
7.216449660063518e–16
>>> –45.3 % –11.2
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–0.5
>>> 45.3 % –11.2
–10.7

Looking at the third and first cases, we can see that the result provided 
by Python is somewhat different from what we would have expected. 
The first is expected to be just 0.2, and the third is expected to be zero. 
Sadly, a large quantity of real numbers is not correctly kept in the computer 
(Jackowska-Strumiłło et al., 2013; Jun Zhao et al., 2013). In fact, this is true 
in all computer programming languages. Because of this, there are some 
minor round-off mistakes in computations using real numbers every now 
and again. Round-off errors are represented by the numbers 1 and 8 at the 
very end of the number, on the right-hand side of the number. It is worth 
noting that the last component of the third example is simply the number 
10–16 multiplied by the previously revealed number; therefore, the entire 
section written indicates the round-off error, which is still negligible since 
it is < 10–15. If we do not require extreme accuracy in our calculations, we 
may live with the little inaccuracies created by real number computations 
performed on a standard computer. The more sophisticated the calculations 
are, the higher the possibility of a mistake cascading to other computations 
(Chapman and Chang, 2000). However, for the sake of this discussion, we 
will just believe that our real number of solutions is “near sufficient” to our 
requirements (Kuhlman, 2009; Chen et al., 2019).

4.6. READING USER INPUT IN PYTHON

4.6.1. Input Statement
Python creates reading user input relatively simple. Python, in particular, 
ensures that the user is always presented with a prompt to add data. Consider 
the example given below.
>>> name = input(“How are you?\n”)

How are you?
Fine

>>> print(“Nice to meet you, “name.,”“ sep=““) Nice to meet you, Joe.
By doing so, rather than the print constantly publishing a similar name, 

it will print the name that the user has typed into the text box. The important 
thing to remember is that the input speech read in what the user provided, 
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and then the assignment declaration, which had the equal sign, allocated 
this value to the variable name. After that, we were free to use any name we 
wanted, aware that the value given by the user would be saved (Liang, 2013; 
Derezińska and Hałas, 2014).

It was difficult to expand upon our prior algorithms, which computed 
the price of an item with tax and the surface area of a square, so they 
constantly computed the same price and area. The user’s input would make 
our software far more effective if we enabled them to enter the necessary 
numbers so that our program could assess the information, THEY were keen 
on (Xu et al., 2021).

Before we get into the specific changes that must be done to these 
programmers for them to accept user input, we should briefly discuss the 
input function. It always returns a string representation of whatever data 
it has received from the user. If the user submits an invalid number, like 
“79,” the input statement will return “79” because of the invalid number. If 
you want to be literal, this is a string that is the letter “7” subsequently the 
character “9,” rather than the number “79.” As a result, we require a technique 
for converting the text “79” into the number 79. This is accomplished by the 
use of a function that transforms its input into a new type (Goldbaum et al., 
2018; Ortin and Escalada, 2021). The int function can be used to convert a 
string into an integer:
>>> age = int(input(“What is your name, “+name+”?\n”))
What is your name? Joe
>>> print(“Your name is ”,name,”. You are ”,age,” years old.”, sep=““) Your 
name is Simone. You are 22 years old.

We had to utilize the int function to convert the string returned by the 
input function keen on an integer in this example. The variable age was then 
assigned to this. As a result, age saves an integer rather than a string.

You will notice that rather than commas, which we originally used while 
learning the print statement, plus signs, which denote string concatenation, 
were used to prompt Simone. This is because, whereas the print statement 
accepts multiple things separated by commas, the input statement only accepts 
a single string. As a result, we were obliged to use string concatenation to 
generate a single string (Ade-Ibijola, 2018; Verstraelen et al., 2021). We 
were enabled to concatenate the variable name with the remainder of the 
message since it is a string. If we had struggled to feed the input function 
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distinct items divided by commas, we would have received the following 
error notice:
>>> age = int(input(“What is your name, ”,name,”?\n”))

Traceback (most recent call last): File “<pyshell#13>”, line 1, in 
<module> age = int(input(“What is your name, ”,name,”?\n”)) TypeError: 
input estimated at most 1 arguments, got 3

The final line of IDLE’s yield explains what happened. The input function 
assumes one parameter, or piece of information, however we supplied it 
three, because commas are used to divide bits of information (arguments) 
passed to it.

4.7. EXAMPLES OF PROGRAMS USING THE INPUT() 
STATEMENT

4.7.1. Making More General Programs
Our examples have all involved writing programmers that performed 
extremely precise computations, and we have only been able to do it in one 
case. Consider the case in which we only discovered the area of a single 
unique square or the price of a single item with tax. Because not all the 
products we purchase will be the same price, this is not useful (Hedges et 
al., 2019; Sundnes, 2020).

When it comes to pricing questions, it would be wonderful if the same 
application could answer them all. This is where we can benefit from user 
feedback. Rather than being compelled to assign a variable to a certain value, 
we may merely ask the user to input a number and then set a variable to that 
value, enabling the user to determine the computation that takes place in the 
program (Zhu et al., 2018). Here is a version of the software that estimates 
the area of a square that has been modified to accept user feedback:
# Joe Clark
# 9/10/2019
# Python Program to determine the area of a square – using user input.
side = int(input(“Please put the side of your square.\n”)) area = side*side
print(“The area of a square with side,”side,”is,”area)
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4.7.2. Temperature Conversion Example
Though most people in the United States measure temperature using the 
Fahrenheit scale, many other people utilize the Celsius system. When a user 
enters a temperature of Celsius, our application will automatically convert 
the temperature to Fahrenheit. As an example, consider the following 
formula for conversion:
F = 1.8C + 32
Here is the program:
# Joe Clark
# 9/10/2019
# Convert Celsius to Fahrenheit with this program.
temp_cel = float(input(“Put the temperature in Celsius.\n”)) temp_fahr = 
1.8*temp_cel + 32;
print(temp_cel,”degrees Celsius =,”temp_fahr,”degrees Fahrenheit.”)
Here is an example of the software in action:
>>>
Put the temperature in Celsius.
37
37.0 degrees Celsius = 98.60000000000001 degrees Fahrenheit.
>>>

4.7.3.	Fuel	Efficiency	Example
Consider the subsequent problem:

You have decided to go on a road trip. The odometer reading on your 
car’s dashboard is visible when you fill up your petrol tank. Later in the 
journey, you can check how much petrol is left in the tank as well as the 
mileage on the odometer (O’Boyle et al., 2008; Zandbergen, 2013). We 
want to figure out how many miles we can travel before we have to stop 
for petrol again based on all this information. To account for the possibility 
of making a mistake, we would want to arrive at our destination several 
kilometers before our gasoline would run out. However, for the sake of 
simplicity, we will simply compute when we anticipate running out of petrol 
in this program if we maintain a constant fuel efficiency while driving the 
car (Robitaille et al., 2013; Li and García, 2021).
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This challenge is a little more difficult to solve than the preceding 
problems. It is preferable to step back and think about the issue, sketching 
out what variables we want to utilize and how we want to solve it rather than 
instantly entering the IDLE window.

When we look at the issue statement, we can see that we need to get the 
subsequent information from the user:

• Initial odometer reading;
• Gas tank size;
• At the halfway point, the odometer reads;
• How much is gas left at the intersection?
The difference between variables 3 and 1 reflects the distance traveled, 

whereas the difference between variables 2 and 4 shows the quantity of gas 
consumed during the time period under consideration. The result of dividing 
the former by the latter will be our fuel economy, expressed in miles per 
gallon. Because we know how several gallons of petrol is left in the tank, we 
can multiply that figure by our fuel efficiency to determine how much longer 
we can continue driving on it (Mukha and Liefvendahl, 2018).

4.8. MATH CLASS
In designing computer programs, some variables and functions that are 
often connected with mathematics are valuable. These are part of the math 
library in Python. Many supplementary libraries containing functions 
to aid the programmer are widespread in Python and practically all other 
programming languages (Roberts et al., 2010; Sasso et al., 2021). In order 
to utilize a library in Python, an import statement must be included at the top 
of the file. We just added the code to import the math library:
import math

At the start of our python file.
Let us have a look at some of the functions and constants in the Python 

math library:
math.pi is a rough approximation of the circumference to diameter ratio of a 
circle. math.e – an estimate of the natural logarithm’s base.
math.ceil(x) – Returns the smallest integer > or equal to it, as a float. math.
fabs(x) – Returns the absolute value of x. math.factorial(x) – Returns x 
factorial, which is 1 * 2 * 3 *… *x. math.floor(x) – Returns the greatest 
integer less than or equal to x as a float.
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math.exp(x) – Returns ex. math.log(x) – Returns ln x. math.log(x, base) – 
Returns logbasex. math.sqrt(x) – Returns the square root of x.
math.cos(x) – Returns the cosine of x radians. math.sin(x) – Returns the sine 
of x radians. math.tan(x) – Returns the tangent of x radians.

To call these functions, we must put “math.” previously the name of every 
function, as seen in the list above. To avoid confusion with other functions 
having the same name, we need to identify which library the function comes 
from (Krause and Lindemann, 2014; Guo et al., 2020).

Let us have a look at a handful of Python scripts that use the math 
package.

4.8.1. Circle Area and Circumference Example
The area of a circle (A = πr2) is a common formula given to all geometry 
students. We will ask the user to enter a circle’s radius and print out the 
associated circumference (C = 2πr) and area in this software. In our 
computations, we will utilize the value of pi from the math library.
(C = 2πr)
# Joe Clark
# 9/10/2019
# Estimates the circumference and area of a circle, given its radius.
import math
radius = int(input(“What is the radius of your circle?\n”))
area = math.pi*(radius**2) circumference = 2*math.pi*radius
print(“The area of your circle is ”,area,”.“,sep=““)
print(“The circumference of your circle is ”,circumference,”.“,sep=““)
The running of this program is given:
>>>
What is the radius of your circle?
5
The area of your circle is 78.53981633974483.
The circumference of your circle is 31.41592653589793.
>>>
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4.8.2. Koolaid Example Revisited
The most challenging aspect of the Koolaid program was accurately 
estimating the number of cups we needed to sell in order to fulfill our profit 
target. With the following line of code, we avoided an “off by one mistake:

num_cups = (target + profit_per_cup – 1) // profit_per_cup
If you think about it, what we actually wanted to do was divide the 

variable’s aim and profit per cup on a regular basis, but we only wanted to 
take the maximum value! For example, if we were required to sell 7.25 cups 
to meet our objective, we would be unable to do it (Gorgolewski et al., 2011; 
Langtangen, 2016). We just need to sell the entire cup to make a total of 8 
cups! Now that we know how to use the math library, we can update this line 
of code to make it much more understandable, as seen below:
num_cups = int(math.ceil(target/profit_per_cup))

4.8.3. Number of Possible Meals
Several restaurants boast about how many different meal options they have. 
Usually, this just means that they can select a specific quantity of products 
from a larger batch for the “meal.” The number of means to pick k things out 
of n is, which is interpreted as “n choose k” in mathematics. The formula for 
calculating a mixture is as follows:

Let us imagine that a combo meal includes a number of appetizer options 
out of a total. We will ask the user to input the four values below:

• The maximum number of appetizers that can be served;
• The number of appetizers that can be included in the combination 

is limited;
• Total possible number of entrees; and
• The combo’s maximum number of entrees.
In order to compute both of the necessary combinations, we may make 

use of the factorial function. In order to achieve our final answer, we can 
merely add the results of both calculations together to get our final answer. 
This is because each conceivable option of appetizers can be matched with 
each possible choice of entrees (VanderPlas et al., 2018). For example, a 
two-dimensional framework with the rows labeled by all appetizers and the 
columns labeled by all entrees may be used to represent this.

In this instance, we will make one last change to our program before we 
are finished. For several programming languages, code begins by performing 
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from a function called the main function. While it is not required in Python, 
it is a good practice to get into the habit of identifying a function main in 
any programming language. It will be beneficial when transferring to other 
programming languages, and as the python programs, you develop become 
longer than a few lines, having the main function will be handy from an 
organizational standpoint. This may be included in your program by simply 
including the subsequent line just before your program’s guidelines:
def main():

Python necessitates constant indenting; therefore, every statement within 
the main function must be indented as well. Four spaces or a tab are used 
to indicate a normal indentation. Following the completion of your code in 
main, you must invoke the function mainly because all you have done so far 
has been to declare the function (Combrisson et al., 2017). However, just 
because a function is defined does not imply that it will be used. It is only 
utilized if and when it is requested. The following is an example of how to 
invoke the function main:
main()
Putting this all together, we have the subsequent program:
# Joe Clark
# 9/10/2019
# Analyzes the number of possible combo meals. import math
# Several languages define a function main, which starts execution. def 
main():
# Get the user information. numapps = int(input(“How many total appetizers 
are there?\n”)) yourapps = int(input(“How many of those do you get to 
choose?\n”)) numentrees = int(input(“How many total entrees are there?\n”)) 
yourentrees = int(input(“How many of those do you get to choose?\n”))
#Calculate the combinations of appetizers and entrees.
appcombos = (math.factorial(numapps)/math.factorial(yourapps)
/math.factorial(numapps-yourapps)) entreecombos = (math.
factorial(numentrees)/math.factorial(yourentrees) /math.
factorial(numentrees-yourentrees))
# Output the final answer.
print(“You can order,” int(appcombos*entreecombos), “different meals.”)
#Call main!
main()
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A single line of code that spans two lines is another new feature in this 
application. This happens with both the app combos and entree combos’ 
assignment statements. An extra set of parentheses is needed to persuade 
Python to understand that the whole expression goes on a single line. There 
are various ways to signal that many lines of code correspond to a single line 
of code, but this is the recommended one:
appcombos = math.factorial(numapps)/math.factorial(yourapps) \
/math.factorial(numapps-yourapps)
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5.1. INTRODUCTION
C is a common programming language that may be used to create programs 
for a wide range of purposes, including operating systems (OSs), numerical 
computation, and graphical applications. With just 32 keywords, it is a little 
language. It supports both “high-level” structured programming tools like 
looping, decision making, and statement grouping, along with “low-level” 
capabilities like manipulating addresses and bytes (Embree et al., 1991; 
Rajon, 2016).

Because C is a tiny language, it can be explained in a short amount 
of time and learned rapidly. A programmer may fairly expect to know, 
comprehend, and utilize the complete language on a regular basis (Figure 
5.1) (Mészárosová, 2015).

Figure 5.1. Fundamentals of C data types.

Source: https://talentcode.blogspot.com/2020/04/fundamentals-of-c-program-
ming.html.

As a result, C is able to maintain its small size by offering just the most 
basic functions inside the language itself and by omitting several of the 
higher-level elements that are often found in other languages. In contrast 
to other programming languages, C does not include any operations that 
interact with composite objects such as arrays or lists. Aside from the static 
declaration of local variables and the stack-allocation of those variables, 
there are no memory management features. In addition, there are no input/
output capabilities, like writing to a file or printing to the screen on the 
computer (Vogel-Heuser et al., 2014).

A large portion of C functionality is provided by software routines known 
as functions. An extensive standard library of functions is provided with 
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the language to facilitate the execution of routinely performed activities. 
Take, for instance, the standard function printf(), which outputs text to the 
screen (or more properly, to standard output, which is usually the screen). 
In this work, the standard library will be utilized extensively; thus, it is 
crucial to avoid developing your own code when a suitable and accessible 
implementation already exists in the standard library (Oliveira et al., 2013; 
Qian and Lau, 2017).

5.2. A FIRST PROGRAM
A C program, no matter how big or little, is made up of variables and 
functions. Variables hold values utilized during the computation, and 
statements indicate the computational processes to be performed.

The program that follows is the standard first program taught in beginning 
C courses and textbooks (Figure 5.2).

Figure 5.2. The first program in C.

Source: https://freecomputerbooks.com/C-Programming-Language-and-Soft-
ware-Design.html.

Comments in C begin with a /* and end with a */. They are not nestable 
and can span numerous lines. For instance,

/* this makes an effort to nest two comments /* results in just one 
comment, ending here: */ and the residual text is a syntax error. */

A typical library header file is included. Libraries provide the majority 
of C’s functionality. Header files include information such as function 
definitions and macros that are required to utilize these libraries.

The entry-point function for all C programs is main(). There are two 
types of this function:
int main(void)
int main(int argc, char *argv[])
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The first accepts no parameters, whereas the second takes command-line 
inputs from the program’s execution environment—typically a command 
shell. The function returns an integer value (i.e., an integer).

The brackets define the function block’s boundaries. When a function is 
finished, the program returns to the function that is called it. The program 
stops when main() is called, and control passes to the environment in 
which the program was run. The program’s exit status to the environment 
is indicated by the integer return value of main(), with 0 indicating regular 
termination (Mardan, 2014).

This program just has one statement: a call to the printf() function in the 
standard library, which outputs a character string to standard output. Note 
that printf() is a function supplied by the standard library, not a part of the 
C language. The typical library is a set of functions that must be present 
on all ISO C-compliant computers. The printf() method accepts only one 
argument in this case: the string constant “Hello World!” The n at the end of 
the string is an escape character that indicates the beginning of a new line. 
Escape characters are used to indicate characters that are difficult to type or 
are not visible. Ultimately, a semicolon marks the end of the sentence (;). 
In most cases, C is a free-form language, with program meaning intact by 
whitespace. As a result, statements are finished rather than by a new line 
(Chan et al., 1992; Kenner et al., 2010).

5.3. VARIANTS OF HELLO WORLD
The output from the subsequent program is equal to that produced by the 
previous example. A further line is not automatically created with every 
call to printf(), and succeeding strings are merely adjoined together till the 
escape character (n) is encountered, as demonstrated (Figure 5.3).

Figure 5.3. Hello word version 2.

Source: https://www.getfreeebooks.com/an-introduction-to-the-c-program-
ming-language-and-software-design/.
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“Hello, World!” is also printed by the following software. But rather than 
publishing the entire string at once, it prints each character as it is received. 
A number of new ideas are introduced as a result of this exercise: identifiers, 
variables, types, pointers, the 0 (NUL) escape character, array subscripts, 
increment operators, logical operators, whereas loops, and text formatting, 
among others (Backus, 2003).

This may appear to be a lot, but do not be concerned; you are not required 
to grasp everything right once, and everything will be discussed in greater 
detail in the following chapters. At this point, it is sufficient to comprehend 
the fundamental structure of the code: an index argument, a loop, a string, 
and a print statement (Figure 5.4) (McMillan, 2018).

Figure 5.4. Hello word version 3.

Source: https://freecomputerbooks.com/C-Programming-Language-and-Soft-
ware-Design.html.

Before they may be utilized, all variables must be defined. They must be 
defined before any statements at the head of a block. When declared, they 
can be started by an expression or a constant.

The variable with the identifier I is of the type int, which is an integer 
with a value of zero. The identifier str refers to a variable of type char *, 
which is a character pointer. The characters in a string constant are referred 
to as str in this example.

A while-loop repeats through the string, printing each character one by 
one. The loop continues to run as long as the expression (str[i]!= ‘0’) is non-
zero. NOT EQUAL TO is the meaning of the operator!=. The i-th character 
in a string is referred to as str[i] (where str[0] is ‘H’). The escape letter ‘0’ 
specifies that all string constants be indirectly ended with a NUL character 
(Caprile and Tonella, 1999; Dimovski et al., 2021).
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While the loop expression is TRUE, the while-loop runs the following 
sentence. The printf() function accepts two inputs in this case: a format 
string “ percent c” and a constraint str[i++], then outputs the i-th character 
of str. The post-increment operator is the expression i++, which returns the 
value of I and then increases it to I = I + 1.

This version of the program, unlike earlier versions, provides an exact 
return statement indicating the program’s exit status.

•	 Style Note: Take note of the structuring style employed in the 
sample code throughout this text, especially the indentation. 
Indentation is an important part of designing readable C programs. 
Indentation is not important to the compiler, although it does 
make the program simpler to understand for programmers (Wang 
et al., 2014; Medeiros et al., 2015).

5.4. A NUMERICAL EXAMPLE
This program makes use of a number of variables. These have to be stated 
at the beginning of a block, first before statements are written. Variables are 
defined by their types, which in this case are int and float, respectively.

Please keep in mind that the * at the beginning of line 10 is not essential 
and is just used for cosmetic purposes.

The three integer variables are initialized in the program by the first 
three statements in the program (Figure 5.5).

Figure 5.5. Fahrenheit to Celsius conversion table.

Source: https://codecondo.com/20-ways-to-learn-c-programming-for-free/c-
programming-language-and-software-design-by-tim-bailey/.
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In this step, we initialize the floating-point variable fahr. Take note of the 
fact that the two variables are of a distinct type. For types that are compatible 
with one another, the compiler conducts automated type conversion 
(Schilling, 1995, Duff, 2015).

The while-loop is activated whenever the expression (fahr = upper) 
evaluates to FALSE. The operator = denotes that something is < or = 
something else. This loop performs a compound statement encased in 
braces, which corresponds to the three statements on the first and second 
lines of code (Austin et al., 1994).

The printf() command, in this case, is made up of two variables and a 
format string, Celsius, and fahr, that are used to display the results. With two 
conversion specifiers, percent 3.0f and percent 6.1f, and tab and newline, 
two escape characters, the format string can be easily read. For example, 
the conversion specifier percent 6.1f formats a floating-point number by 
providing space for at least six digits and printing one digit just after the 
decimal point, and printing one digit after the decimal point (Westerståhl, 
1985; Kimura and Tanaka-Ishii, 2014).
+= generates an expression that is equal to the expression fahr = fahr plus 
step.

•	 Style Note: In order to make the code more understandable, 
comments should be utilized. They should explain the goal 
of the algorithm and point out intricacies in the method. They 
should refrain from repeating code slang. It is possible to 
significantly minimize the number of comments necessary to 
make understandable code by carefully selecting identifiers.

5.5. ANOTHER VERSION OF THE CONVERSION  
TABLE EXAMPLE
This version of the exchange table example yields the same results as the 
first but adds symbolic constants and a for-loop (Figure 5.6).
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Figure 5.6. Fahrenheit to Celsius conversion table with symbolic constants.

Source: http://www.freebookcenter.net/programming-books-download/An-
Introduction-to-the-C-Programming-Language-and-Software-Design-(PDF-
158P).html.

Names for numerical constants are known as symbolic constants. These 
are defined using #define, and they allow us to avoid having numbers pollute 
our code. Magic numbers are numbers that are strewn about in code and 
should be avoided at all costs (Feldmann et al., 1998; Ferreira, 2003).

Two semicolons divide the three components of the for-loop (;). The 
first modifies the loop, the second verify the condition, and the third is 
an expression that is run after every loop iteration. The real conversion 
expression is contained within the printf() statement; an expression can be 
employed everywhere a variable can be used (Gravley and Lakhotia, 1996).

•	 Style Note: Multi-word names should be written like this, 
and variables should always start with a lowercase letter. To 
distinguish them from variables, symbolic constants should 
always be written in UPPERCASE.

5.6. IDENTIFIERS
Identifiers (variable names, function names, and so on) are case-sensitive 
and made up of letters and numbers. An identifier’s initial character must be 
a letter, including underscore ().

The C programming language features 32 reserved keywords that cannot 
be employed as identifiers (e.g., int, while, etc.). Furthermore, avoiding 
redefining identifiers employed against the C standard library is a smart idea 
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(Ambriola et al., 1985; Giannotti et al., 1987).
•	 Style Note: For variable names, use lowercase, while for 

symbolic constants, use uppercase. External variable names 
should be longer and more informative than local variable names. 
Variable names can start with an underscore (_). However, this 
is discouraged because such names are reserved for library 
implements by convention.

5.7. TYPES
C is a typed programming language. Every variable has a type that specifies 
what values it may signify, how its data is kept in memory, and what actions 
it can execute. The type system lets the compiler catch type-disparity issues 
by compelling the programmer to explicitly declare a type for all variables 
and interfaces, therefore preventing a large source of faults (Miné, 2006; 
Majumdar and Xu, 2007).

In the C programming language, there are three main types: characters, 
integers, and floating-point numbers.

The numerical kinds are available in a variety of sizes. A collection of 
C types and their generally Works Data Types may be found in Table 5.1.

Table 5.1. C Data Types and Their Normal Sizes

Int Generally, the natural word size for an OS or machine
Char Usually 8-bits (1 byte)
Long int At least 32-bits

Short int As a minimum of 16-bits
Float Generally, 32-bits
Long double Generally, at least 64-bits
Double Usually 64-bits

Sizes may differ from one platform to the next. Almost every modern 
processor represents an integer with a minimum of 32 bits, and several 
increasingly utilize 64 bits. In general, the size of an int indicates a machine’s 
natural word size, the indigenous size with which the CPU processes data 
and instructions (Lahiri et al., 2012; Irlbeck, 2015).

The standard simply says that a short int must be as a minimum of 16 
bits and a long int must be at least 32 bits in size, and



Key Dynamics in Computer Programming142

short int ≤ int ≤ long int
Except for that, the standard states nothing concerning the size of floating-
point numbers.
float ≤ double ≤ long double.
Below is a program that prints the range of values for various data formats. 
In standard headers limitations, parameters like INT MIN can be found 
float.h (Figure 5.7).

Figure 5.7. Code for looking at range limits of types.

Source: http://www.freebookcenter.net/programming-books-download/An-
Introduction-to-the-C-Programming-Language-and-Software-Design-(PDF-
158P).html.

•	 Note: The size of the operator can be used to determine the size 
of a type in characters. This operator is not a function, despite its 
appearance. It is a keyword. It yields a size t unsigned integer, 
which is specified in the stddef.h header file (Figure 5.8).

Figure 5.8. Code for printing size of various types.

Source: https://www.getfreeebooks.com/an-introduction-to-the-c-program-
ming-language-and-software-design/.
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Since they change the size of a fundamental int type, the keywords short 
and long are known as type qualifiers. Note the difference between long and 
short when employed alone, as in short x.

short a; and long a; are the equivalents of long int and short int. Unsigned, 
signed, volatile, and const are other types of qualifiers. The qualifiers 
unsigned and signed can be applied to any integer type, including char. 
A signed type can hold negative values; the sign-bit is the number’s most 
significant bit (MSB), and the value is usually stored in 2’s complement 
binary. A 16-bit signed short, for example, may signify the integers 32,768 
to 32,767, but a 16-bit unsigned short can express the numbers 0 to 65,535 
(Ball and Rajamani, 2001; Alturki, 2017).

•	 Note: By default, integer types are signed. Plain chars, on the 
other hand, are either unsigned or signed by default, depending 
on the computer.

The qualifier const indicates that the variable to which it references is 
immutable.
const int DoesNotChange = 5;

DoesNotChange = 6; /* Error: will not compile */
The qualifier volatile is used to refer to variables whose value may vary 

in a way that is outside the power of the program’s usual operations. This 
is important for things like multi-threaded programming or interacting with 
hardware, which are issues that are outside the range of this document. 
The volatile qualifier is not appropriate to standard-compliant C programs, 
and as a result, it will not be discussed in any further detail in this chapter 
(McMillan, 1993; Yang and Seger, 2003).

Furthermore, there is a type called void, which denotes a type that has 
“no value” associated with it. In functions that do not take any arguments, 
it is used as an argument, and in functions that return no value, it is used as 
a return type.

5.8. CONSTANTS
Different types and presentations of constants exist. This section gives 
examples of various constant types. First, the type of the integer constant 
1234 is int. The suffix L, 1234L, is added to a long int constant. A U, 1234U, 
denotes an unsigned int, while UL denotes an unsigned long (Bryant et al., 
2002; Ringenburg and Grossman, 2005).
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In addition to decimal values, integer constants can be given using a 
hexadecimal or octal values. A 0 precedes octal numerals, and a 0 precedes 
hex numbers. As a result, 1234 is the decimal equal of 02,322 and 0x4D2. It 
is vital to keep in mind that these three constants all embody a similar thing 
(0101 1101 0010 in binary)—for instance, the subsequent code.

It is worth noting that C lacks a direct binary representation. The hex 
form, on the other hand, is particularly helpful in reality since it divides 
binary into four-bit chunks.

After an integer, a decimal point is used to specify floating-point 
constants. For instance, 1. and 1.3 are double types, 3.14f and 2.f is float 
types, and 7.L is a long double type. The scientific notation may also be used 
to write floating-point values, like 1.65e-2. At compilation time, constant 
expressions like 3+7+9.2 are assessed and swapped with a single constant 
value, 19.2. Constant expressions have no runtime above as a result (Jayaram 
and Prasad, 2011; Trudel et al., 2012).

Single quotes are used to provide character constants such as ‘a,’ ‘n,’ 
and ‘7.’ Character constants are notable since they are of the int type rather 
than the char type. On a 32-bit computer, size of (‘Z’) will equal four, not 
one. The ASCII character set correlates the integers 0 to 127 with particular 
characters.

Certain characters are specified via an “escape sequence” since they 
cannot be rendered directly. It is crucial to remember that these escape 
characters are, however, single characters. The following is a list of important 
escape characters: 0 stands for null, t for tab, n for newline, b for backslash, 
v for vertical tab, b for backspace, “ for double quotes, and ‘ for single 
quotes (Shahriar and Zulkernine, 2008; Boudjema et al., 2018).

Quotes are used to separate string constants like “This is a string.” A 
termination ‘0’ character is implicitly attached to them. As a result, the 
aforementioned string constant would have the subsequent character 
sequence in memory: This is a string of zero characters (Brooks, 1999; 
Vedala and Kumar, 2012).

Ø Note: It is crucial to understand the difference between a character 
constant and a NUL ending string constant. The latter is made 
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up of two X0 characters concatenated together. Similarly, size of 
(‘X’) on a 32-bit computer is four, but sizeof(“X”) is two.

5.9. SYMBOLIC CONSTANTS
Symbolic constants are names that characterize constant values from the 
above-mentioned collection of constant kinds. For instance,

#define TRACK_SIZE (16*BLOCK_SIZE)
#define BLOCK_SIZE 100
#define HELLO “Hello World\n”
#define EXP 2.7183

A symbolic constant is comparable to a direct sentence with the constant 
it specifies everywhere it occurs in the code. printf(HELLO); for example, 
produces the string Hello World. The use of symbolic constants rather than 
direct constant values minimizes the spread of “magic numbers”—numerical 
constants strewn across the code. This is critical since magic numbers are 
susceptible to errors and provide a significant challenge when trying to make 
code modifications. Symbolic constants store constants in one location so 
that changes may be made quickly and safely (Radzi et al., 2016).

•	 Note: The #define symbol is a preprocessor command, similar 
to the #include a symbol for file inclusion. As a result, it follows 
a distinct set of rules than the fundamental C language. It is 
important to note that the # must be the first character on a line 
and not indented.

An Enum, which is a list of constant integer values, is another type of 
symbolic constant.

For instance, Enum Boolean TRUE, FALSE; The enumeration tag 
Boolean identifies the enumeration list’s “type,” allowing a variable of that 
type to be specified.

Enum Boolean x = FALSE;
If an enumeration list is described, not including an exact tag, it believes 

the type int. For instance,
Enum { GREEN =2, RED, BLUE, YELLOW=4, BLACK }; int y = 

BLUE;
By default, the value of an enumeration list begins at zero and increases 

by one for each successive item. Non-specified members are every > the 
preceding member, and list members can be provided explicit integer values.
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•	 Style Note: Uppercase names are provided to symbolic constants 
and identifiers as a matter of convention. This distinguishes them 
from variables and functions, which should always start with a 
lowercase letter, according to the convention. Const-qualified 
variables operate as constants. Hence, they should be named in 
uppercase or have the initial letter capitalized (Thomas, 1953; 
Ventura et al., 2015).

5.10. PRINTF CONVERSION SPECIFIERS
The standard function printf() makes it easy to output formatted text. It uses 
several formatting operators and conversion specifiers to combine numerical 
values of any type into a character string (Figure 5.9) (Joseph, 2018).

Figure 5.9. Display (printf) code in C.

Source: https://www.getfreeebooks.com/an-introduction-to-the-c-program-
ming-language-and-software-design/.

•	 Important: A conversion specifier and the variable it refers to 
must be of the same type. If they are not, the software will either 
crash or output junk. printf(“percent f,” 52); / is an example. * 
Integer value with floating-point specifier */
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6.1. INTRODUCTION
Dynamic programming is an optimization approach that transforms a complex 
problem into a sequence of simpler problems. The essential characteristic 
of dynamic programming is the multistage nature of the optimization 
procedure. More so than the optimization techniques described previously, 
dynamic programming provides a general framework for analyzing many 
problem types. Within this framework a variety of optimization techniques 
can be employed to solve particular aspects of a more general formulation. 
Usually, creativity is required before we can recognize that a particular 
problem can be cast effectively as a dynamic program; and often subtle 
insights are necessary to restructure the formulation so that it can be solved 
effectively (Amini et al., 1990; Osman et al., 2005).

We begin by providing a general insight into the dynamic programming 
approach by treating a simple example in some detail. We then give a 
formal characterization of dynamic programming under certainty, followed 
by an in-depth example dealing with optimal capacity expansion. Other 
topics covered in the chapter include the discounting of future returns, 
the relationship between dynamic-programming problems and shortest 
paths in networks, an example of a continuous-state-space problem, and 
an introduction to dynamic programming under uncertainty (Powell et al., 
2002; Momoh, 2009).

6.2. AN ELEMENTARY EXAMPLE
In order to introduce the dynamic-programming approach to solving 
multistage problems, in this section we analyze a simple example. Figure 
6.1 represents a street map connecting homes and downtown parking lots 
for a group of commuters in a model city. The arcs correspond to streets 
and the nodes correspond to intersections (Birge and Louveaux, 2011; Rust, 
2008). The network has been designed in a diamond pattern so that every 
commuter must traverse five streets in driving from home to downtown. 
The design characteristics and traffic pattern are such that the total time 
spent by any commuter between intersections is independent of the route 
taken (Held et al., 1962; Bellman et al., 2015). However, substantial delays, 
are experienced by the commuters in the intersections. The lengths of these 
delays in minutes, are indicated by the numbers within the nodes. We would 
like to minimize the total delay any commuter can incur in the intersections 
while driving from his home to downtown. Figure 6.2 provides a compact 
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tabular representation for the problem that is convenient for discussing 
its solution by dynamic programming. In this figure, boxes correspond 
to intersections in the network. In going from home to downtown, any 
commuter must move from left to right through this diagram, moving at 
each stage only to an adjacent box in the next column to the right (Snyder et 
al., 1987; Ulmer et al., 2019). We will refer to the “stages to go,” meaning 
the number of intersections left to traverse, not counting the intersection that 
the commuter is currently in.

A naive approach to solving the problem would be to enumerate all 150 
paths through the diagram, selecting the path that gives the smallest delay. 
Dynamic programming reduces the number of computations by moving 
systematically from one side to the other, building the best solution as it 
goes (Sali and Blundell, 1990).

Suppose that we move backward through the diagram from right to left. 
If we are in any intersection (box) with no further intersections to go, we 
have no decision to make and simply incur the delay corresponding to that 
intersection (Barto et al., 1995; Huan and Marzouk, 2016). The last column 
in Figure 6.2 summarizes the delays with no (zero) intersections to go.

Figure 6.1. Street map with intersection delays.

Source: https://www.researchgate.net/figure/Street-map-with-intersection-de-
lays-Taken-from-30_fig4_330557459.
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Figure 6.2. Compact representation of the network.

Source: https://www.researchgate.net/publication/330557459_Testing_Time-
of-Use_and_Subscription_based_grid_tariff_structures_using_a_Prosumer_
model.

Our first decision (from right to left) occurs with one stage, or intersection, 
left to go. If for example, we are in the intersection corresponding to the 
highlighted box in Figure 6.2, we incur a delay of three minutes in this 
intersection and a delay of either eight or two minutes in the last intersection, 
depending upon whether we move up or down. Therefore, the smallest 
possible delay, or optimal solution, in this intersection is 3+2 = 5 minutes (Li 
et al., 2014; Jamal et al., 2014). Similarly, we can consider each intersection 
(box) in this column in turn and compute the smallest total delay as a result of 
being in each intersection. The solution is given by the bold-faced numbers 
in Figure 6.3. The arrows indicate the optimal decision, up or down, in any 
intersection with one stage, or one intersection, to go (Sen and Head, 1997; 
Guo et al., 2019).

Note that the numbers in bold-faced type in Figure 6.3 completely 
summarize, for decision-making purposes, the total delays over the last 
two columns. Although the original numbers in the last two columns have 
been used to determine the bold-faced numbers, whenever we are making 
decisions to the left of these columns, we need only know the bold-faced 
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numbers. In an intersection, say the topmost with one stage to go, we know 
that our (optimal) remaining delay, including the delay in this intersection, 
is five minutes. The bold-faced numbers summarize all delays from this 
point on. For decision-making to the left of the bold-faced numbers, the last 
column can be ignored (Yagar and Han, 1994; Kappelman and Sinha, 2021).

With this in mind, let us back up one more column, or stage, and 
compute the optimal solution in each intersection with two intersections to 
go (Battigalli and Siniscalchi, 2002; Dayan and Daw, 2008). For example, in 
the bottom-most intersection, which is highlighted in Figure 6.3, we incur a 
delay of two minutes in the intersection, plus four or six additional minutes, 
depending upon whether we move up or down. To minimize delay, we move 
up and incur a total delay in this intersection and all remaining intersections 
of 2 + 4 = 6 minutes. The remaining computations in this column are 
summarized in Figure 6.4, where the bold-faced numbers reflect the optimal 
total delays in each intersection with two stages, or two intersections, to go 
(Van Damme, 1989; Hauk et al., 2002).

Once we have computed the optimal delays in each intersection with 
two stages to go, we can again move back one column and determine the 
optimal delays and the optimal decisions with three intersections to go. 
In the same way, we can continue to move back one stage at a time, and 
compute the optimal delays and decisions with four and five intersections to 
go, respectively. Figure 6.5 summarizes these calculations (Al-Najjar, 1995; 
Flint et al., 2010).

Figure 6.5(c) shows the optimal solution to the problem. The least 
possible delay through the network is 18 minutes. To follow the least-cost 
route, a commuter has to start at the second intersection from the bottom. 
According to the optimal decisions, or arrows, in the diagram, we see that 
he should next move down to the bottom-most intersection in column 4. His 
following decisions should be up, down, up, down, arriving finally at the 
bottom-most intersection in the last column (Hansen and Zilberstein, 2001; 
Kraft et al., 2013).
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Figure 6.3. Decisions and delays with one intersection to go.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

Figure 6.4. Decisions and delays with two intersections to go.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

• However, the commuters are probably not free to arbitrarily choose 
the intersection they wish to start from. We can assume that their 
homes are adjacent to only one of the leftmost intersections, and 
therefore each commuter’s starting point is fixed. This assumption 
does not cause any difficulty since we have, in fact, determined 
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the routes of minimum delay from the downtown parking lots 
to all the commuter’s homes (De Moor, 1994; Giegerich, 2000). 
Note that this assumes that commuters do not care in which 
downtown lot they park. Instead of solving the minimum-delay 
problem for only a particular commuter, we have embedded the 
problem of the particular commuter in the more general problem 
of finding the minimum-delay paths from all homes to the group 
of downtown parking lots. For example, Figure 6.5 also indicates 
that the commuter starting at the topmost intersection incurs a 
delay of 22 minutes if he follows his optimal policy of down, 
up, up, down, and then down. He presumably parks in a lot 
close to the second intersection from the top in the last column. 
Finally, note that three of the intersections in the last column are 
not entered by any commuter. The analysis has determined the 
minimum-delay paths from each of the commuter’s homes to the 
group of downtown parking lots, not to each particular parking 
lot (Karp et al., 1967; Huang, 2008).

Using dynamic programming, we have solved this minimum-delay 
problem sequentially by keeping track of how many intersections, or stages, 
there were to go. In dynamic-programming terminology, each point where 
decisions are made is usually called a stage of the decision-making process. 
At any stage, we need only know which intersection we are in to be able to 
make subsequent decisions. Our subsequent decisions do not depend upon 
how we arrived at the particular intersection (Neuneier, 1995; Greene et 
al., 2020). Information that summarizes the knowledge required about the 
problem in order to make the current decisions, such as the intersection we 
are in at a particular stage, is called a state of the decision-making process 
(Giegerich, 2000; Höner et al., 2014).

In terms of these notions, our solution to the minimum-delay problem 
involved the following intuitive idea, usually referred to as the principle of 
optimality.

Any optimal policy has the property that, whatever the current state and 
decision, the remaining decisions must constitute an optimal policy with 
regard to the state resulting from the current decision.

To make this principle more concrete, we can define the optimal-value 
function in the context of the minimum-delay problem.
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vn(sn) = Optimal value (minimum delay) over the current and subsequent 
stages (intersections), given that we are in state sn (in a particular intersection) 
with n stages (intersections) to go.

The optimal-value function at each stage in the decision-making process 
is given by the appropriate column of Figure 6.5(c).

Figure 6.5. Charts of optimal delays and decisions.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

We can write down a recursive relationship for computing the optimal-
value function by recognizing that, at each stage, the decision in a particular 
state is determined simply by choosing the minimum total delay (Curtis, 
1997; Sauthoff, 2010). If we number the states at each stage as sn = 1 (bottom 
intersection) up to sn = 6 (top intersection), then:
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 (1)
where; tn(sn) is the delay time in intersection sn at stage n.

The columns of Figure 6.5(c) are then determined by starting at the right 
while successively applying Eq. (1):
v0(s0) = t0(s0) (s0 = 1, 2, …, 6)     (2)

Corresponding to this optimal-value function is an optimal-decision 
function, which is simply a list giving the optimal decision for each state at 
every stage. For this example, the optimal decisions are given by the arrows 
leaving each box in every column of Figure 6.5(c).

The method of computation illustrated above is called backward 
induction, since it starts at the right and moves back one stage at a time. 
Its analog, forward induction, which is also possible, starts at the left and 
moves forward one stage at a time (Boutilier et al., 1999; Shin et al., 2019). 
The spirit of the calculations is identical but the interpretation is somewhat 
different. The optimal-value function for forward induction is defined by:
un(sn) = Optimal value (minimum delay) over the current and completed 
stages (intersections), given that we are in state sn (in a particular intersection) 
with n stages (intersections) to go.

The recursive relationship for forward induction on the minimum-delay 
problem is:

where; the stages are numbered in terms of intersections to go. The 
computations are carried out by setting and successively applying Eqn. (3):
u5(s5) = t5(s5) (s5 = 1, 2, …, 6) (4)

The calculations for forward induction are given in Figure 6.6. When 
performing forward induction, the stages are usually numbered in terms of 
the number of stages completed (rather than the number of stages to go). 
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However, in order to make a comparison between the two approaches easier, 
we have avoided using the “stages completed” numbering.

The columns of Figure 6.6(f) give the optimal-value function at each 
stage for the minimum-delay problem, computed by forward induction. 
This figure gives the minimum delays from each downtown parking lot to 
the group of homes of the commuters. Therefore, this approach will only 
guarantee finding the minimum delay path from the downtown parking 
lots to one of the commuters’ homes (Rust, 1989; Dorigo et al., 1999). The 
method, in fact, finds the minimum-delay path to a particular origin only 
if that origin may be reached from a downtown parking lot by a backward 
sequence of arrows in Figure 6.6(f).

If we select the minimum-delay path in Figure 6.6(f), lasting 18 minutes, 
and follow the arrows backward, we discover that this path leads to the 
intersection second from the bottom in the first column. This is the same 
minimum-delay path determined by backward induction in Figure 6.5(c).

Figure 6.6. Solution by forward induction.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.
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Forward induction determined the minimum-delay paths from each 
individual parking lot to the group of homes, while backward induction 
determined the minimum-delay paths from each individual home to the group 
of downtown parking lots. The minimum-delay path between the two groups 
is guaranteed to be the same in each case but, in general, the remaining paths 
determined may be different. Therefore, when using dynamic programming, 
it is necessary to think about whether forward or backward induction is best 
suited to the problem you want to solve (Eckstein et al., 1989; Arnold et al., 
1993).

6.3. FORMALIZING THE  
DYNAMIC-PROGRAMMING APPROACH
The elementary example presented in the previous section illustrates the 
three most important characteristics of dynamic-programming problems.

6.3.1. Stages
The essential feature of the dynamic-programming approach is the structuring 
of optimization problems into multiple stages, which are solved sequentially 
one stage at a time. Although each one-stage problem is solved as an ordinary 
optimization problem, its solution helps to define the characteristics of the 
next one-stage problem in the sequence (Bush et al., 2000; Westphal et al., 
2003).

Often, the stages represent different time periods in the problem’s 
planning horizon. For example, the problem of determining the level of 
inventory of a single commodity can be stated as a dynamic program. The 
decision variable is the amount to order at the beginning of each month; 
the objective is to minimize the total ordering and inventory-carrying costs; 
the basic constraint requires that the demand for the product be satisfied. If 
we can order only at the beginning of each month and we want an optimal 
ordering policy for the coming year, we could decompose the problem into 
12 stages, each representing the ordering decision at the beginning of the 
corresponding month (Boutilier et al., 2000; Lewis et al., 2013).

Sometimes the stages do not have time implications. For example, 
in the simple situation presented in the preceding section, the problem of 
determining the routes of minimum delay from the homes of the commuters 
to the downtown parking lots was formulated as a dynamic program. The 
decision variable was whether to choose up or down in any intersection, and 



Key Dynamics in Computer Programming164

the stages of the process were defined to be the number of intersections to 
go. Problems that can be formulated as dynamic programs with stages that 
do not have time implications are often difficult to recognize (Mitten, 1974; 
Powell, 2010).

6.3.2. States
Associated with each stage of the optimization problem are the states of 
the process. The states reflect the information required to fully assess the 
consequences that the current decision has upon future actions. In the 
inventory problem given in this section, each stage has only one variable 
describing the state: the inventory level on hand of the single commodity 
(Barnett et al., 2004; Johannesson et al., 2007). The minimum-delay problem 
also has one state variable: the intersection a commuter is in at a particular 
stage.

The specification of the states of the system is perhaps the most critical 
design parameter of the dynamic programming model (Hunt, 1963; Sutton 
et al., 1992). There are no set rules for doing this. In fact, for the most part, 
this is an art often requiring creativity and subtle insight about the problem 
being studied. The essential properties that should motivate the selection of 
states are:

• The states should convey enough information to make future 
decisions without regard to how the process reached the current 
state; and

• The number of state variables should be small, since the 
computational effort associated with the dynamic-programming 
approach is prohibitively expensive when there are more than 
two, or possibly three, state variables involved in the model 
formulation.

This last feature considerably limits the applicability of dynamic 
programming in practice.

6.3.3. Recursive Optimization
The final general characteristic of the dynamic-programming approach is 
the development of a recursive optimization procedure, which builds to a 
solution of the overall N-stage problem by first solving a one-stage problem 
and sequentially including one stage at a time and solving one-stage problems 
until the overall optimum has been found. This procedure can be based on a 



Dynamic Programming 165

backward induction process, where the first stage to be analyzed is the final 
stage of the problem and problems are solved moving back one stage at a 
time until all stages are included. Alternatively, the recursive procedure can 
be based on a forward induction process, where the first stage to be solved 
is the initial stage of the problem and problems are solved moving forward 
one stage at a time, until all stages are included (Cohen, 1981; Goguen et 
al., 1992). In certain problem settings, only one of these induction processes 
can be applied (e.g., only backward induction is allowed in most problems 
involving uncertainties).

The basis of the recursive optimization procedure is the so-called 
principle of optimality, which has already been stated: an optimal policy 
has the property that, whatever the current state and decision, the remaining 
decisions must constitute an optimal policy with regard to the state resulting 
from the current decision (Nolan et al., 1972; Gratton et al., 2008).

6.3.4. General Discussion
In what follows, we will formalize the ideas presented thus far. Suppose we 
have a multistage decision process where the return (or cost) for a particular 
stage is:
fn(dn,sn)       (5)
where; dn is a permissible decision that may be chosen from the set Dn; and 
sn is the state of the process with n stages to go. Normally, the set of feasible 
decisions, Dn, available at a given stage depends upon the state of the process 
at that stage, sn, and could be written formally as Dn(sn). To simplify our 
presentation, we will denote the set of feasible decisions simply as Dn. Now, 
suppose that there is a total of N stages in the process and we continue to 
think of n as the number of stages remaining in the process. Necessarily, this 
view implies a finite number of stages in the decision process and therefore 
a specific horizon for a problem involving time. Further, we assume that 
the state sn of the system with n stages to go is a full description of the 
system for decision-making purposes and that knowledge of prior states is 
unnecessary. The next state of the process depends entirely on the current 
state of the process and the current decision taken (Gelfand et al., 1991; Pil 
et al., 1996). That is, we can define a transition function such that, given 
sn, the state of the process with n stages to go, the subsequent state of the 
process with (n – 1) stages to go is given by:
sn–1 = tn(dn,sn)      (6)



Key Dynamics in Computer Programming166

where; dn is the decision chosen for the current stage and state. Note that 
there is no uncertainty as to what the next state will be, once the current 
state and current decision are known. In Section 6.7, we will extend these 
concepts to include uncertainty in the formulation.

Our multistage decision process can be described by the diagram given 
in Figure 6.7. Given the current state sn which is a complete description of 
the system for decision-making purposes with n stages to go, we want to 
choose the decision dn that will maximize the total return over the remaining 
stages. The decision dn, which must be chosen from a set Dn of permissible 
decisions, produces a return at this stage of fn(dn,sn) and results in a new state 
sn–1 with (n – 1) stages to go. The new state at the beginning of the next stage 
is determined by the transition function sn–1 = tn(dn,sn), and the new state is 
a complete description of the system for decision-making purposes with (n 
– 1) stages to go. Note that the stage returns are independent of one another 
(El Karoui et al., 2001; Ordonez, 2009).

In order to illustrate these rather abstract notions, consider a simple 
inventory example. In this case, the state sn of the system is the inventory 
level In with n months to go in the planning horizon. The decision dn is the 
amount On to order this month. The resulting inventory level In–1 with (n – 1) 
months to go is given by the usual inventory-balance relationship:
In–1 = In + On – Rn

Figure 6.7. Multistage decision process.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

where; Rn is the demand requirement this month. Thus, formally, the 
transition function with n stages to go is defined to be:
In–1 = tn(In, On) = In + On – Rn.
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The objective to be minimized is the total ordering and inventory-
carrying costs, which is the sum of the one-stage costs Cn(In, On).

6.4. OPTIMAL CAPACITY EXPANSION
In this section, we further illustrate the dynamic-programming approach 
by solving a problem of optimal capacity expansion in the electric power 
industry (Kunz and Pradhan, 1994; Sun et al., 2017).

Suppose that a regional electric power company is planning a large 
investment in nuclear power plants over the next few years. A total of eight 
nuclear power plants must be built over the next six years because of both 
increasing demand in the region and the energy crisis, which has forced 
the closing of certain of their antiquated fossil fuel plants. Suppose that, 
for a first approximation, we assume that demand for electric power in 
the region is known with certainty and that we must satisfy the minimum 
levels of cumulative demand indicated in Table 6.1. The demand here has 
been converted into equivalent numbers of nuclear power plants required 
by the end of each year. Due to the extremely adverse public reaction and 
subsequent difficulties with the public utilities commission, the power 
company has decided at least to meet this minimum-demand schedule (Basri 
and Jacobs, 2003; Pavoni et al., 2018).

The building of nuclear power plants takes approximately one year. In 
addition to a cost directly associated with the construction of a plant, there is 
a common cost of $1.5 million incurred when any plants are constructed in 
any year, independent of the number of plants constructed. This common cost 
results from contract preparation and certification of the impact statement 
for the Environmental Protection Agency. In any given year, at most three 
plants can be constructed. The cost of construction per plant is given in 
Table 6.1 for each year in the planning horizon. These costs are currently 
increasing due to the elimination of an investment tax credit designed to 
speed investment in nuclear power. However, new technology should be 
available by 1984, which will tend to bring the costs down, even given the 
elimination of the investment tax credit (Jacobs et al., 2006).

We can structure this problem as a dynamic program by defining the 
state of the system in terms of the cumulative capacity attained by the end 
of a particular year. Currently, we have no plants under construction, and 
by the end of each year in the planning horizon we must have completed a 
number of plants equal to or greater than the cumulative demand. Further, 
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it is assumed that there is no need ever to construct more than eight plants. 
Figure 6.8 provides a graph depicting the allowable capacity (states) over 
time. Any node of this graph is completely described by the corresponding 
year number and level of cumulative capacity, say the node (n, p). Note 
that we have chosen to measure time in terms of years to go in the planning 
horizon (Bradford et al., 1971; Wu et al., 2004).

Table 6.1. Demand and Cost per Plant ($ × 1000) 

Year Cumulative Demand (in number of 
plants)

Cost per Plant ($ × 1000)

1981 1 5,400
1982 2 5,600
1983 4 5,800
1984 6 5,700
1985 7 5,500
1986 8 5,200

Figure 6.8. Allowable capacity (states) for each stage.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.
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The cost of traversing any upward-sloping arc is the common cost of $1.5 
million plus the plant costs, which depend upon the year of construction and 
whether 1, 2, or 3 plants are completed. Measured in thousands of dollars, 
these costs are:
1500 + cnxn

where; cn is the cost per plant in the year n; and xn is the number of plants 
constructed. The cost for traversing any horizontal arc is zero, since these 
arcs correspond to a situation in which no plant is constructed in the current 
year (Megiddo, 1984).

Rather than simply developing the optimal-value function in equation 
form, as we have done previously, we will perform the identical calculations 
in Scheme form to highlight the dynamic-programming methodology. To 
begin, we label the final state zero or, equivalently define the “stage-zero” 
optimal-value function to be zero for all possible states at stage zero. We will 
define a state as the cumulative total number of plants completed (Kaplan 
et al., 1975; Gil et al., 2014). Since the only permissible final state is to 
construct the entire cumulative demand of eight plants, we have s0 = 8 and,
v0(8) = 0.

Now we can proceed recursively to determine the optimal-value function 
with one stage remaining. Since the demand data requires 7 plants by 1985, 
with one year to go the only permissible states are to have completed 7 or 8 
plants. We can describe the situation by Scheme 1.

The dashes indicate that the particular combination of current state 
and decision results in a state that is not permissible. In this table there are 
no choices, since, if we have not already completed eight plants, we will 
construct one more to meet the demand. The cost of constructing the one 
additional plant is the $1,500 common cost plus the $5,200 cost per plant, 
for a total of $6,700. (All costs are measured in thousands of dollars.) The 
column headed d  gives the optimal decision function, which specifies 
the optimal number of plants to construct, given the current state of the 
system (Bickel, 1978; Ahmed et al., 2003).

Now let us consider what action we should take with two years (stages) 
to go. Scheme 2 indicates the possible costs of each state:
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If we have already completed eight plants with two years to go, then 
clearly, we will not construct any more. If we have already completed seven 
plants with two years to go, then we can either construct the one plant we 
need this year or postpone its construction. Constructing the plant now costs 
$1,500 in common costs plus $5,500 in variable costs, and results in state 
8 with one year to go (Sherali et al., 1982; Schapire et al., 1999). Since the 
cost of state 8 with one year to go is zero, the total cost over the last two 
years is $7,000. On the other hand, delaying construction costs zero this year 
and results in state 7 with one year to go. Since the cost of state 7 with one 
year to go is $6,700, the total cost over the last two years is $6,700. If we 
arrive at the point where we have two years to go and have completed seven 
plants, it pays to delay the production of the last plant needed. In a similar 
way, we can determine that the optimal decision when in state 6 with two 
years to go is to construct two plants during the next year (Myerson, 1982; 
Guimaraes et al., 2010).

To make sure that these ideas are firmly understood, we will determine 
the optimal-value function and optimal decision with three years to go. 
Consider Scheme 3 for three years to go:
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Now suppose that, with three years to go, we have completed five plants. 
We need to construct at least one plant this year in order to meet demand. 
In fact, we can construct either 1, 2, or 3 plants. If we construct one plant, it 
costs $1,500 in common costs plus $5,700 in plant costs, and results in state 
6 with two years to go (Shier, 1979). Since the minimum cost following the 
optimal policy for the remaining two years is then $12,500, our total cost for 
three years would be $19,700. If we construct two plants, it costs the $1,500 
in common costs plus $11,400 in plant costs and results in state 7 with two 
years to go. Since the minimum cost following the optimal policy for the 
remaining two years is then $6,700, our total cost for three years would be 
$19,600. Finally, if we construct three plants, it costs the $1,500 in common 
costs plus $17,100 in plant costs and results in state 8 with two years to 
go (Shier, 1976; Sung et al., 2000). Since the minimum cost following the 
optimal policy for the remaining two years is then zero, our total cost for 
three years would be $18,600.

Hence, the optimal decision, having completed five plants (being in 
state 5) with three years (stages) to go, is to construct three plants this year. 
The remaining Schemes for the entire dynamic-programming solution are 
determined in a similar manner (see Figure 6.9).

Figure 6.9. Tables to complete power-plant example.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.
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Since we start the construction process with no plants (i.e., in state 0) with 
six years (stages) to go, we can proceed to determine the optimal sequence 
of decisions by considering the Schemes in the reverse order (Azevedo et 
al., 1993; Hamed, 2010). With six years to go it is optimal to construct three 
plants, resulting in state 3 with five years to go. It is then optimal to construct 
three plants, resulting in state 6 with four years to go, and so forth. The 
optimal policy is then shown in the tabulation below:

Years to Go Construct Resulting State
6 3 3
5 3 6
4 0 6
3 0 6
2 2 8
1 0 8

Hence, from Scheme 6, the total cost of the policy is $48.8 million.

6.5. DISCOUNTING FUTURE RETURNS
In the example on optimal capacity expansion presented in the previous 
section, a very legitimate objection might be raised that the present value 
of money should have been taken into account in finding the optimal 
construction schedule. The issue here is simply that a dollar received today 
is clearly worth more than a dollar received one year from now, since the 
dollar received today could be invested to yield some additional return over 
the intervening year. It turns out that dynamic programming is extremely 
well suited to take this into account (Hu, 1968; Chan et al., 2001).

We will define, in the usual way, the one-period discount factor β as the 
present value of one dollar received one period from now. In terms of interest 
rates, if the interest rate for the period were i, then one dollar invested now 
would accumulate to (1 + i) at the end of one period. To see the relationship 
between the discount factor β and the interest rate i, we ask the question 
“How much must be invested now to yield one dollar one period from now?” 
This amount is clearly the present value of a dollar received one period from 
now, so that β(1 + i) = 1 determines the relationship between β and i, namely, 
β = 1/(1 + i). If we invest one dollar now for n periods at an interest rate per 
period of i, then the accumulated value at the end of n periods, assuming the 
interest is compounded, is (1 + i)n. Therefore, the present value of one dollar 
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received n periods from now is 1/(1 + i)n or, equivalently, βn (Murdoch et al., 
1998; Rezaee et al., 2012).

The concept of discounting can be incorporated into the dynamic-
programming framework very easily since we often have a return per period 
(stage) that we may wish to discount by the per-period discount factor 
(Tierney, 1996; Tao et al., 2006).

6.6. SHORTEST PATHS IN A NETWORK
Although we have not emphasized this fact, dynamic-programming, and 
shortest-path problems are very similar. In fact, as illustrated by Figures 
6.1 and 6.8, our previous examples of dynamic programming can both be 
interpreted as shortest-path problems.

In Figure 6.8, we wish to move through the network from the starting 
node (initial state) at stage 6, with no plants yet constructed, to the end 
node (final state) at stage 0 with eight plants constructed. Every path in the 
network specifies a strategy indicating how many new plants to construct 
each year (Johansson et al., 1999; Sharma et al., 2019).

Since the cost of a strategy sums the cost at each stage, the total cost 
corresponds to the “length” of a path from the starting to end nodes. The 
minimum-cost strategy then is just the shortest path.

Figure 6.10 illustrates a shortest-path network for the minimum-delay 
problem. The numbers next to the arcs are delay times. An end node 
representing the group of downtown parking lots has been added. This 
emphasizes the fact that we have assumed that the commuters do not care 
in which lot they park. A start node has also been added to illustrate that the 
dynamic-programming solution by backward induction finds the shortest 
path from the end node to the start node. In fact, it finds the shortest paths 
from the end node to all nodes in the network, thereby solving the minimum-
delay problem for each commuter. On the other hand, the dynamic-
programming solution by forward induction finds the shortest path from the 
start node to the end node. Although the shortest path will be the same for 
both methods, forward induction will not solve the minimum-delay problem 
for all commuters, since the commuters are not indifferent to which home 
they arrive (Wang et al., 2002; Dexter et al., 2021).

To complete the equivalence that we have suggested between dynamic 
programming and shortest paths, we next show how shortest-path problems 
can be solved by dynamic programming. Actually, several different dynamic-
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programming solutions can be given, depending upon the structure of the 
network under study. As a general rule, the more structured the network, the 
more efficient the algorithm that can be developed (Simon, 1956; Cristobal et 
al., 2009) To illustrate this point we give two separate algorithms applicable 
to the following types of networks:

•	 Acyclic Networks: These networks contain no directed cycles. 
That is, we cannot start from any node and follow the arcs in their 
given directions to return to the same node.

•	 Networks without Negative Cycles: These networks may 
contain cycles, but the distance around any cycle (i.e., the sum of 
the lengths of its arcs) must be nonnegative.

In the first case, to take advantage of the acyclic structure of the network, 
we order the nodes so that, if the network contains the arc i–j, then i > j. 
To obtain such an ordering, begin with the terminal node, which can be 
thought of as having only entering arcs, and number it “one.” Then ignore 
that node and the incident arcs, and number any node that has only incoming 
arcs as the next node. Since the network is acyclic, there must be such a 
node. (Otherwise, from any node, we can move along an arc to another node 
(Huang et al., 1994; Rust, 1996). Starting from any node and continuing to 
move away from any node encountered, we eventually would revisit a node, 
determining a cycle, contradicting the acyclic assumption).

Figure 6.10. Shortest-path network for minimum-delay problem.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.
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By ignoring the numbered nodes and their incident arcs, the procedure is 
continued until all nodes are numbered (Sahinidis, 2004; Silva et al., 2020).

We can apply the dynamic-programming approach by viewing each 
node as a stage, using either backward induction to consider the nodes in 
ascending order, or forward induction to consider the nodes in reverse order 
(Bertsekas et al., 1995; Berg et al., 2017). For backward induction, vn will be 
interpreted as the longest distance from node n to the end node. Setting v1 = 
0, dynamic programming determines v2, v3, …, vN in order, by the recursion
vn = Max[dnj + vj] j < n
where; dnj is the given distance on arc n–j. The results of this procedure are 
given as node labels in Figure 6.11 for the critical-path example.

Figure 6.11. Finding the longest path in an acyclic network.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

For a shortest-path problem, we use minimization instead of 
maximization. Note that the algorithm finds the longest (shortest) paths 
from every node to the end node. If we want only the longest path to the start 
node, we can terminate the procedure once the start node has been labeled. 
Finally, we could have found the longest distances from the start node to all 
other nodes by labeling the nodes in the reverse order, beginning with the 
start node (Figure 6.12) (Sahinidis, 2004; Topaloglu et al., 2006).
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Figure 6.12. Shortest paths in a network without negative cycles.

Source: https://www.ime.unicamp.br/~andreani/MS515/capitulo7.pdf.

A more complicated algorithm must be given for the more general 
problem of finding the shortest path between two nodes, say nodes 1 and N, 
in a network without negative cycles. In this case, we can devise a dynamic-
programming algorithm based upon a value function defined as follows:

vn(j) = Shortest distance from node 1 to node j along paths using at most 
n intermediate nodes.

By definition, then:
v0(j) = d1j for j = 2, 3, …, N
the length d1j of arc 1–j since no intermediate nodes are used. The 

dynamic-programming recursion is:
vn(j) = Min {dij + vn–1(i)} 1 ≤ j ≤ N   (7)

which uses the principle of optimality: that any path from node 1 to node 
j, using at most n intermediate nodes, arrives at node j from node i along 
arc i–j after using the shortest path with at most (n – 1) intermediate nodes 
from node j to node i. We allow i = j in the recursion and take djj = 0, since 
the optimal path using at most n intermediate nodes may coincide with the 
optimal path with length vn–1(j) using at most (n – 1) intermediate nodes.

The algorithm computes the shortest path from node 1 to every other 
node in the network. It terminates when vn(j) = vn–1(j) for every node j, since 
computations in Eqn. (7) will be repeated at every stage from n on. Because 
no path (without cycles) uses any more than (N – 1) intermediate nodes, 
where N is the total number of nodes, the algorithm terminates after at most 
(N – 1) steps (Xu et al., 2013; Gaggero et al., 2014).
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6.7. CONTINUOUS STATE-SPACE PROBLEMS
Until now we have dealt only with problems that have had a finite number 
of states associated with each stage. Since we also have assumed a finite 
number of stages, these problems have been identical to finding the shortest 
path through a network with special structure. Since the development of the 
fundamental recursive relationship of dynamic programming did not depend 
on having a finite number of states at each stage, here we introduce an 
example that has a continuous state space and show that the same procedures 
still apply (Genc et al., 2007; Machemehl et al., 2014).

Suppose that some governmental agency is attempting to perform cost/
benefit analysis on its programs in order to determine which programs 
should receive funding for the next fiscal year. The agency has managed to 
put together the information in Table 6.2. The benefits of each program have 
been converted into equivalent tax savings to the public, and the programs 
have been listed by decreasing benefit-to-cost ratio (Dai et al., 2012; Keles 
et al., 2022). The agency has taken the position that there will be no partial 
funding of programs. Either a program will be funded at the indicated level 
or it will not be considered for this budget cycle. Suppose that the agency is 
fairly sure of receiving a budget of $34 million from the state legislature if 
it makes a good case that the money is being used effectively (Geramifard 
et al., 2013; Mohammad et al., 2016). Further, suppose that there is some 
possibility that the budget will be as high as $42 million. How can the agency 
make the most effective use of its funds at either possible budget level?

Table 6.2. Cost/Benefit Information by Program

Program Expected	Benefit Expected Cost Benefit/Cost
A $59.2 M $2.8 M 21.1
B 31.4 1.7 18.4
C 15.7 1.0 15.7
D 30.0 3.2 9.4
E 105.1 15.2 6.9
F 11.6 2.4 4.8
G 67.3 16.0 4.2
H 2.3 0.7 3.3
I 23.2 9.4 2.5
J 18.4 10.1 1.8

$364.2 M $62.5 M
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We should point out that mathematically this problem is an integer program. 
If bj is the benefit of the jth program and cj is the cost of that program, then 
an integer-programming formulation of the agency’s budgeting problem is 
determined easily (Dantzig, 2004; Webster et al., 2012).

For any budget level, for example, $4.0 M, we merely consider the two 
possible decisions: either funding program C (x3 = 1) or not (x3 = 0). If we 
fund program C, then we obtain a benefit of $15.7 M while consuming $1.0 
M of our own budget. The remaining $3.0 M of our budget is then optimally 
allocated to the remaining programs, producing a benefit of $59.2 M, which 
we obtain from the optimal-value function with the first two programs 
included. If we do not fund program C, then the entire amount of $4.0 M is 
optimally allocated to the remaining two programs, producing a benefit of 
$59.2. Hence, we should clearly fund program C if our budget allocation is 
$4.0 M. Optimal decisions taken for other budget levels are determined in a 
similar manner (Aldasoro et al., 2015; Xie et al., 2017).

Although it is straightforward to continue the recursive calculation of 
the optimal-value function for succeeding stages, we will not do so since 
the number of ranges that need to be reported rapidly becomes rather large 
(Chadès et al., 2014; Liu et al., 2019). The general recursive relationship 
that determines the optimal-value function at each stage is given by:
vn(Bn) = Max [cnxn + vn–1 (Bn – cnxn)]
subject to:
xn = 0 or 1.
The calculation is initialized by observing that:
v0(B0) = 0
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for all possible values of B0. Note that the state transition function is simply:
Bn – 1 = tn(xn, Bn) = Bn – cnxn.
We can again illustrate the usual principle of optimality: Given budget 

Bn at stage n, whatever decision is made with regard to funding the nth 
program, the remaining budget must be allocated optimally among the first 
(n – 1) programs. If these calculations were carried to completion, resulting 
in v10(B10) and d , then the problem would be solved for all possible 
budget levels, not just $3.4 M, and $4.2 M (Lee et al., 2006; Seuken and 
Zilberstein, 2007).

Although this example has a continuous state space, a finite number of 
ranges can be constructed because of the zero–one nature of the decision 
variables. In fact, all breaks in the range of the state space either are the 
breaks from the previous stage, or they result from adding the cost of the new 
program to the breaks in the previous range. This is not a general property 
of continuous state space problems, and in most cases such ranges cannot be 
determined. Usually, what is done for continuous state space problems is that 
they are converted into discrete state problems by defining an appropriate 
grid on the continuous state space. The optimal-value function is then 
computed only for the points on the grid. For our cost/benefit example, the 
total budget must be between zero and $62.5 M, which provides a range on 
the state space, although at any stage a tighter upper limit on this range is 
determined by the sum of the budgets of the first n programs. An appropriate 
grid would consist of increments of $0.1 M over the limits of the range at 
each stage, since this is the accuracy with which the program costs have 
been estimated. The difference between problems with continuous state 
spaces and those with discrete state spaces essentially then disappears for 
computational purposes (Gannon, 1974; Vogstad and Kristoffersen, 2010).

6.8. DYNAMIC PROGRAMMING UNDER  
UNCERTAINTY
Up to this point we have considered exclusively problems with deterministic 
behavior. In a deterministic dynamic-programming process, if the system 
is in state sn with n stages to go and decision dn is selected from the set of 
permissible decisions for this stage and state, then the stage return fn(dn,sn) 
and the state of the system at the next stage, given by sn–1 = tn(dn,sn), are both 
known with certainty.
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This deterministic process can be represented by means of the decision 
tree in Figure 6.13. As one can observe, given the current state, a specific 
decision leads with complete certainty to a particular state at the next stage. 
The stage returns are also known with certainty and are associated with the 
branches of the tree (Bar-Shalom, 1981; Alterovitz et al., 2008).

Figure 6.13. Decision tree for deterministic dynamic programming.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.

When uncertainty is present in a dynamic-programming problem, 
a specific decision for a given state and stage of the process does not, by 
itself, determine the state of the system at the next stage. Furthermore, this 
decision may not even determine the return for the current stage. Rather, in 
dynamic programming under uncertainty, given the state of the system sn 
with n stages to go and the current decision dn, an uncertain event occurs 
which is determined by a random variable e˜n whose outcome en is not under 
the control of the decision maker (Zhang et al., 2019; Liu et al., 2020).

The outcomes of the random variable are governed by a probability 
distribution, pn(en|dn,sn), which may be the same for every stage or may be 
conditional on the stage, the state at the current stage, and even the decision 
at the current stage.
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Figure 6.14 depicts dynamic programming under uncertainty as a 
decision tree, where squares represent states where decisions have to be 
made and circles represent uncertain events whose outcomes are not under 
the control of the decision maker. These diagrams can be quite useful in 
analyzing decisions under uncertainty if the number of possible states is 
not too large. The decision tree provides a pictorial representation of the 
sequence of decisions, outcomes, and resulting states, in the order in 
which the decisions must be made and the outcomes become known to the 
decision maker. Unlike deterministic dynamic programming wherein the 
optimal decisions at each stage can be specified at the outset, in dynamic 
programming under uncertainty, the optimal decision at each stage can 
be selected only after we know the outcome of the uncertain event at the 
previous stage. At the outset, all that can be specified is a set of decisions 
that would be made contingent on the outcome of a sequence of uncertain 
events (Huang et al., 2011; Ji et al., 2018).

Figure 6.14. Decision tree for dynamic programming under uncertainty.

Source: http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf.
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In dynamic programming under uncertainty, since the stage returns and 
resulting stage may both be uncertain at each stage, we cannot simply optimize 
the sum of the stage-return functions. Rather, we must optimize the expected 
return over the stages of the problem, taking into account the sequence in 
which decisions can be made and the outcomes of uncertain events become 
known to the decision maker. In this situation, backward induction can be 
applied to determine the optimal strategy, but forward induction cannot. The 
difficulty with forward induction is that it is impossible to assign values 
to states at the next stage that are independent of the uncertain evolution 
of the process from that future state on. With backward induction, on the 
other hand, no such difficulties arise since the states with zero stages to go 
are evaluated first, and then the states with one stage to go are evaluated 
by computing the expected value of any decision and choosing optimally 
(Barto et al., 1995; Shuai et al., 2018).

We start the backward induction process by computing the optimal-
value function at stage 0. This amounts to determining the value of ending 
in each possible stage with 0 stages to go. This determination may involve 
an optimization problem or the value of the assets held at the horizon. Next, 
we compute the optimal-value function at the previous stage. To do this, 
we first compute the expected value of each uncertain event, weighting the 
stage return plus the value of the resulting state for each outcome by the 
probability of each outcome. Then, for each state at the previous stage, we 
select the decision that has the maximum (or minimum) expected value. Once 
the optimal-value function for stage 1 has been determined, we continue in 
a similar manner to determine the optimal-value functions at prior stages by 
backward induction (Powell et al., 2005; Firdausiyah et al., 2019).

We can make these ideas more concrete by considering a simple example. 
A manager is in charge of the replenishment decisions during the next two 
months for the inventory of a fairly expensive item. The production cost 
of the item is $1,000/unit, and its selling price is $2,000/unit. There is an 
inventory-carrying cost of $100/unit per month on each unit left over at the 
end of the month. We assume there is no setup cost associated with running 
a production order, and further that the production process has a short lead 
time; therefore, any amount produced during a given month is available 
to satisfy the demand during that month. At the present time, there is no 
inventory on hand. Any inventory left at the end of the next two months has 
to be disposed of at a salvage value of $500/unit.
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The demand for the item is uncertain, but its probability distribution is 
identical for each of the coming two months. The probability distribution of 
the demand is as follows:

Demand Probability
0 0.25
1 0.40
2 0.20
3 0.15

The issue to be resolved is how many units to produce during the first 
month and, depending on the actual demand in the first month, how many 
units to produce during the second month. Since demand is uncertain, the 
inventory at the end of each month is also uncertain. In fact, demand could 
exceed the available units on hand in any month, in which case all excess 
demand results in lost sales. Consequently, our production decision must find 
the proper balance between production costs, lost sales, and final inventory 
salvage value (Costa and Kariniotakis, 2007).

The states for this type of problem are usually represented by the 
inventory level In at the beginning of each month. Moreover, the problem is 
characterized as a two-stage problem, since there are two months involved 
in the inventory-replenishment decision. To determine the optimal-value 
function, let:

vn(In) = Maximum contribution, given that we have In units of inventory 
with n stages to go.

We initiate the backward induction procedure by determining the 
optimal-value function with 0 stages to go. Since the salvage value is $500/
unit, we have:

I0 v0(I0)

0 0
1 500
2 1,000
3 1,500

To compute the optimal-value function with one stage to go, we need to 
determine, for each inventory level (state), the corresponding contribution 
associated with each possible production amount (decision) and level of 
sales (outcome). For each inventory level, we select the production amount 
that maximizes the expected contribution.
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Table 6.3 provides all the necessary detailed computations to determine 
the optimal-value function with one stage to go. Column 1 gives the state 
(inventory level) of the process with one stage to go. Column 2 gives the 
possible decisions (amount to produce) for each state, and, since demand 
cannot be greater than three, the amount produced is at most three. Column 3 
gives the possible outcomes for the uncertain level of sales for each decision 
and current state, and column 4 gives the probability of each of these possible 
outcomes. Note that, in any period, it is impossible to sell more than the 
supply, which is the sum of the inventory currently on hand plus the amount 
produced. Hence, the probability distribution of sales differs from that of 
demand since, whenever demand exceeds supply, the entire supply is sold 
and the excess demand is lost. Column 5 is the resulting state, given that we 
currently have I1 on hand, produce d1, and sell s1. The transition function in 
general is just:
I˜n–1 = In + dn – s˜n
where; the tildes (∼) indicate that the level of sales is uncertain and, hence, 
the resulting state is also uncertain. Columns 6, 7, and 8 reflect the revenue 
and costs for each state, decision, and sales level, and column 9 reflects the 
value of being in the resulting state at the next stage. Column 10 merely 
weights the sum of columns 6 through 9 by the probability of their occurring, 
which is an intermediate calculation in determining the expected value of 
making a particular decision, given the current state. Column 11 is then just 
this expected value; and the asterisk indicates the optimal decision for each 
possible state.

Table 6.3. Computation of Optimal-Value Function with One Stage to Go

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

State 
I1

Produce 
d1

Sell 
s1

Probability 
( =

Resulting 
State 

Production 
Cost

Sales 
Revenue

Inventory 
Cost

V0(I0) Probability 
× $

Expected 
Contribu-
tion

0 0 0 1. 0 0 0 0 0 0 0

1 0
1

0.25
0.75

1
0

–1,000
–1,000

0
2,000 –100 0 500

0 –150 750 600

2
0
1
2

0.25
0.40
0.35

2
1
0

–2,000
–2,000
–2,000

0
2,000
4,000

–200
–100 0

1,000
500
0

–300 160
700

560

3

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–3,000
–3,000
–3,000
–3,000

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

–450
–80
280
450

200
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1 0 0
1

0.25
0.75

1
0

0
0

0
2,000 –100 0 500

0
100
1,500 1600

1
0
1
2

0.25
0.40
0.35

2
1
0

–1,000
–1,000
–1,000

0
2,000
4,000

–200
–100 0

1,000
500
0

–50
560
1,050

1,560

2

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–2,000
–2,000
–2,000
–2,000

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

–200 320
480
600

1,200

2 0
0
1
2

0.25
0.40
0.35

2
1
0

0
0
0

0
2,000
4,000

–200
–100 0

1,000
500
0

200
960
1,400

2,560

1

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–1,000
–1,000
–1,000
–1,000

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

50
720
680
750

2,200

3 0

0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

0
0
0
0

0
2,000
4,000
6,000

–300
–200
–100 0

1,500
1,000
500
0

300
1,120
880
900

3,200

The resulting optimal-value function and the corresponding optimal-
decision function are determined directly from Table 6.3 and are the 
following:

I1 v1(I1) d
0 600 1
1 1,600 0
2 2,560 0
3 3,200 0

Next, we need to compute the optimal-value function with two stages 
to go. However, since we have assumed that there is no initial inventory on 
hand, it is not necessary to describe the optimal-value function for every 
possible state, but only for I2 = 0. Table 6.4 is similar to Table 6.3 and gives 
the detailed computations required to evaluate the optimal-value function 
for this case.
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Table 6.4. Computation of Optimal-Value Function with Two Stages to Go, I2 
= 0 Only

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

State 
I2

Produce 
d2

Sell 
s2

Probability 
( =

Resulting 
State 

Production 
Cost

Sales 
Revenue

Inventory 
Cost

v1(I1) Probability 
× $

Expected 
Contribu-
tion

0 0 0 1. 0 0 0 0 650 650 650

1 0
1

0.25
0.75

1
0

–1,000
–1,000

0
2,000

0
0

1,600. 
600.

150
1,200 135

2 0
1
2

0.25
0.40
0.35

2
1
0

–2,000
–2,000
–2,000

0
2,000
4,000

–200
–100 0

2,560
1,600
600

90
600
910

1,600

3 0
1
2
3

0.25
0.40
0.20
0.15

3
2
1
0

–3,000
–3,000
–3,000
–3,000

0
2,000
4,000
6,000

–300
–200
–100 0

3,200
2,560
1,600. 
600.

–25
544
500
540

1,559

The optimal-value function and the corresponding decision function for 
I2 = 0 are taken directly from Table 6.4 and are the following:

I2 v2(I2) d
0 1,600 2

The optimal strategy can be summarized by the decision tree given 
in Figure 6.14. The expected contribution determined by the dynamic-
programming solution corresponds to weighting the contribution of every 
path in this tree by the probability that this path occurs (Kreps and Porteus, 
1979). The decision tree in Figure 6.14 emphasizes the contingent nature of 
the optimal strategy determined by dynamic programming under uncertainty 
(Deisenroth et al., 2009).
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7.1. INTRODUCTION
An operating system (OS) is a collection of programs that manage the 
execution of application software and serve as a link between a computer’s 
consumer and its hardware. The OS is software that both maintains computer 
hardware and offers an environment in which application applications may 
execute (Eager et al., 2016).

Windows/NT, Windows, MacOS, and OS/2 are instances of OSs.
The operating system goals are as follows (Hughes, 2000):
• To design the computer system user-friendly and simple to 

operate;
• To make the most use of computer hardware;
• To run user applications and make it simpler to solve user issues.
Application programs, OSs, hardware, and users are the 4 elements that 

make up a computer system. Figure 7.1 depicts an abstract representation of 
system elements (Dandamudi, 2003).

•	 Users: These can be thought of as machines, people, or other 
computers.

•	 Hardware: This includes memory, CPU, and input/output 
devices.

•	 Application Programs: This includes database systems, 
compilers, and web browsers, which help users solve their 
computer challenges.

•	 Operating System (OS): It offers the mechanism for appropriate 
usage of hardware in computer system operations.

Figure 7.1. Computer system.

Source: https://www.slideshare.net/SHIKHAGAUTAM4/3-basic-organization-
of-a-computer.
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7.2. COMPUTER SYSTEM ORGANIZATION

7.2.1. Computer-System Operation
A typical computer system is made up of one or many CPUs and multiple 
device controllers which are all linked via a general bus that allows access 
to shared memory and other resources (Figure 7.2) (Robey, 1981). It is the 
responsibility of each device controller to oversee one particular type of 
equipment (for instance, video displays, audio devices, disc drives). The 
device controllers and the CPU are capable of running in parallel, with each 
fighting for memory cycles. A memory controller is in charge of coordinating 
access to the shared memory to guarantee that it is used in an orderly manner 
(Estrin, 1960).

Figure 7.2. A modern computer system.

Source: https://429151971640327878.weebly.com/blog/12-computer-system-
organization.

When a computer is first turned on or restarted, it has to execute an 
initial software to get it up and running. This first software, often known as 
a bootstrap program, is usually rather simple (Musina et al., 2017). For the 
most part, firmware is included within the computer hardware, and is saved 
in read-only memory (ROM) or electronically erasable programmable read-
only memory (EEPROM). From the registers of CPU to the device controllers 
to the contents of the RAM, it configures and configures everything about 
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the system. The bootstrap software should understand how to load the OS 
and begin running it. To achieve this, the bootstrap software must identify 
and load the OS kernel into memory. After that, the OS launches the first 
procedure, like “init,” and waits for anything to happen (Austin et al., 2002).

7.2.2. Storage Structure
Computer programs should be stored in primary memory (commonly 
known as RAM). The only significant storage location that the CPU may 
access directly is primary memory. It creates a list of memory words. Every 
word has a unique address. A series of load or store instructions to specified 
memory locations are used to accomplish interaction. The instruction of load 
copies a word from primary memory to an interior register in the Central 
Processing Unit, while the store instruction copies the contents of a register 
to primary memory (Cardenas, 1973).

The cycle of instruction-execution comprises:
• Retrieves an instruction from memory and places it in the 

register of instruction. In addition, the register of PC should be 
incremented;

• Interpret the instruction, which can result in the retrieval of 
operands from memory and storage in an interior register;

• Run the command and accumulate the output in memory.
For the following 2 causes, the programs and data have not yet remained 

in the primary memory indefinitely (Murphy et al., 1972):
• The primary memory is a volatile storage medium that eliminates 

its data when the power is switched off or the device is damaged;
• Main RAM is typically insufficient to hold all required programs. 

Data is stored indefinitely.
As a result, many computer systems include secondary storage like an 

extension of primary memory to permanently store vast amounts of data.
A computer system’s diverse storage systems may be arranged in 

a hierarchy (Figure 7.3). Size, speed, volatility, and cost are the key 
distinctions between the different storage methods. Higher levels are more 
costly, although they are also quicker (Rosenblum et al., 1992).
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Figure 7.3. Storage device hierarchy.

7.2.3. Input/Output Structure
A computer system is composed of a large number of device controllers and 
CPUs that are all connected by an ordinary bus (Estrin, 1960). In addition to 
managing peripheral devices, the device controller has been responsible of 
transmitting data among these devices and the onboard buffer storage. Many 
OS give a device driver for each device controller (Figure 7.4).

Figure 7.4. Structure of input/output diagnosis module.

To initiate an Input/output operation, the device driver must first load 
the proper registers inside the device controller. The data of such registers 
are examined by the device controller to identify which action to take 
place. The controller initiates the transmit of data from the device to its 
local buffer by triggering the transfer (Ritchie, 1984). Once a data transfer 
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has been completed, the device controller notifies the device driver through 
an interrupt that the operation has been completed successfully. Control 
is subsequently transferred back to the OS via the device driver. Other 
procedures are completed by returning status information from the device 
driver.

Direct memory access (DMA) is utilized to transfer large amounts of 
data. After configuring the Input/output device’s buffers, counters, and 
pointers, the device controller transmits a whole block of data straight to or 
from its buffer storage to memory, without the need for the CPU to intervene. 
When using high-speed devices, just one interrupt is created every block to 
notify the device driver that the operation is finished, as opposed to one 
interrupt per byte when using lower-speed devices (Haber et al., 1990).

7.3. COMPUTER SYSTEM STRUCTURE
As per the processors quantity utilized, there have been many types for the 
construction a computer system (Robey, 1981):

•	 Single-Processor System: Only 1 Central Processing Unit is 
utilized to perform instructions.
– There are two or many processors share a bus, physical 

memory, clock, and peripheral devices in a multiprocessor 
system. Multiprocessors give the benefits as follow:

– Enhance the throughput;
– The economic scale (lower cost);
– Enhance the reliability level.

•	 Clustered System: A clustered system is comprised of a number 
of computer systems that have been connected together by a local 
area network.

7.4. OPERATING SYSTEM (OS) HISTORY
Throughout the years, OSs have evolved. The history of OS is seen in the 
table and Figure 7.5 (Silberschatz et al., 1991).
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Figure 7.5. History of operating systems.

Source: https://www.abhishekshukla.com/windows-operating-system/history-
evolution-windows-os-operating/.

7.5. OPERATING SYSTEM (OS) FUNCTIONS
The OS executes a variety of tasks, including (Figure 7.6) (Stallings, 2003):

• User interface implementation;
• User-to-user HW sharing;
• Permitting people to share data;
• Avoiding consumers from causing problems for each other;
• Allocating sources to users;
• Streamlining Input/output operations;
• Getting back on track after making a mistake;
• Keeping track of source storage;
• Making parallel processes easier;
• Data organization for safe and quick accessibility;
• Managing network communications is number eleven.
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Figure 7.6. Operating system functions.

Source: https://electricalfundablog.com/operating-system-os-functions-types-
resource-management/.

7.6. OPERATING SYSTEM (OS) CATEGORIES
The main types of current OSs can be divided into three groups depending 
upon the type of interaction that occurs among the user and the computer 
which are discussed in subsections (Figure 7.7) (Agarwal et al., 1988).

Figure 7.7. Kinds of operating systems.

Source: https://www.slideserve.com/arleen/operating-systems-for-wireless-
sensor-networks-in-space.
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7.6.1. Batch System
Users submit work on a normal basis (such as monthly, weekly, and daily) 
to a central location in this form of OS, and the user of this type of system 
does not interface directly with the computer system. Jobs with comparable 
requirements had been grouped and ran through the computer like a group to 
speed up the processing (Litzkow et al., 1990). As a result, the programmer 
will hand over control of the programs to the operator. Every job’s output 
will be sent to the relevant programmer. The main duty of this kind was to 
automatically hand over control from one job to another (Figure 7.8).

Figure 7.8. A batch operating system is depicted in the diagram.

Source: https://www.techtud.com/short-notes/batch-operating-system.

Batch system drawbacks are given below (Brown et al., 1991):
• From the user’s perspective, the turnaround time might be 

lengthy;
• The program is hard to debug.

7.6.2. Time-Sharing System
This sort of OS allows for an online connection among the consumer and 
the system, in which the consumer offers direct commands and receives 
an intermediary response; hence, it is referred to as an interactive system 
(Ritchie et al., 1978).
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The time-sharing technology allows several users to share the computer 
system at the same time. The Central Processing Unit is swiftly multiplexed 
between various applications stored in memory and on storage. A program 
moved back and forth between memory and the disc (Figure 7.9) (Ritchie 
et al., 1981).

Figure 7.9. Time-sharing OS’s process state diagram.

Source: https://www.slideshare.net/KadianAman/aman-singh.

The CPU optimum time is reduced by using a time-sharing mechanism. 
The drawback is a little more complicated.

7.6.3. Real-Time OS
A real-time OS is distinguished by its ability to respond quickly. It ensures 
that time-sensitive jobs are executed on time. For every function to be done 
on the computer, this kind should have a defined maximum time restriction. 
Real-time systems have been utilized when there have been tight time limits 
on the operation of a processor or the data flow, and real-time systems may 
also be used as a control device in a specific application when strict time 
constraints are required (Figure 7.10) (Clark et al., 1992).

Figure 7.10. The schematic diagram for the real-time operating system.

Source: https://www.polytechnichub.com/rtos-real-time-operating-system/.
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This sort of system is exemplified by the airline reservation system.

7.7. THE PERFORMANCE DEVELOPMENT OF OS

7.7.1.	Online	and	Offline	Operation
For every Input/output device, a separate function called a device controller 
was built. Certain Input/output devices are designed to work either online 
(when linked to the CPU) or off-line (when not connected to the processor) 
(A control unit is in charge of them) (Figures 7.11 and 7.12) (Seltzer et al., 
1997).

Figure 7.11. Off-line UPS topology.

Source: https://www.datacenterdynamics.com/en/opinions/ups-terminology-
101-online-and-offline-ups-topologies/.

Figure 7.12. Online UPS topology.

Source: https://www.datacenterdynamics.com/en/opinions/ups-terminology-
101-online-and-offline-ups-topologies/.
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7.7.2. Buffering
A buffer is a major storage space used to retain data during input/output 
transfers (Hildebrand, 1992). The data are deposited in the buffer via an 
Input/output channel on input, and the data can be accessible by the CPU 
once the transfer is complete. Single or double buffing is possible.

7.7.3. Spooling (Simultaneously Peripheral Operation Online)
Spooling makes advantage of the disc as a massive buffer. Since devices 
access data at varying speeds, spooling is essential. The buffer serves as a 
holding area for data until the slower device catches up (Lange et al., 2010). 
Spooling permits you to overlap the calculation of one task with the input/
output of another.

7.7.4. Multiprogramming
Multiple programs have been retained in primary memory at the identical 
time in multiprogramming, and the CPU switches among them, ensuring 
that the Central Processing Unit is constantly executing a program. The OS 
starts by running one program from memory; if this application requires a 
delay, like an input/output activity, the OS switches to a different program. 
Multiprogramming makes the CPU work harder. Multiprogramming 
systems create an environment where in the different system resources are 
properly used, but they do not allow for the interaction of consumer with the 
computer (Christopher et al., 1993).

• Benefits:
– Excessive central processing unit usage;
– It looks that numerous programs are given central processing 

unit time virtually at the same time.
• Drawbacks:

– There is a need for CPU scheduling;
– Memory management is essential to support several jobs in 

memory.

7.7.5. Parallel System
It should be noted that the system contains greater than one CPU. Such 
processors communicate with one another through the computer bus, the 
clock, the memory, and the input/output devices (Plagemann et al., 2000). 
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The benefit is that capacity may be increased (the number of programs 
finished in unit time).

7.7.6. Distributed System
Spread the processing among many physical processors. It entails using 
a communication link to join two or more separate computer systems. As 
a result, every Central Processing Unit has its OS and local memory, and 
processors connect via a variety of communication channels, like higher-
speed buses or landlines (Figure 7.13) (Kronenberg et al., 1986).

Figure 7.13. Diagram of distributed systems.

Source: https://www.researchgate.net/figure/The-block-diagram-of-the-distrib-
uted-system_fig5_4351563.

Benefits of distributed systems:
•	 Sharing of Resources: You may share printers and files.
•	 Increased Calculation Speed: A job may be divided so each 

processor may work on a portion of it at the same time, which is 
known as load sharing.

•	 Reliability: If one CPU fails, the other CPUs will continue to 
work normally.

• Electronic mail, ftp, and other forms of communication (Jo et al., 
2014).

7.7.7. Personal Computer
Personal computers (PC) are computer systems that are only used by one 
person. Multi-user and multitasking capabilities were not available in 
personal computer OS (Corral et al., 2012). Rather than increasing input/
output and CPU usage, the purpose of personal computer OS was to enhance 
user convenience and response. Apple Macintosh and Microsoft Windows 
are two examples.
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7.8. OPERATING SYSTEM (OS) SERVICE
An OS is a software platform that delivers services to applications and their 
users. The OS provides the following services (Gligor, 1984):

1. Input/Output Operation: Input/output refers to every file or 
Input/output device. While operating, the software may require 
any Input/output device. As a result, the OS should be capable to 
deliver the necessary Input/output.

2. Program Execution: The OS executes and loads a program into 
memory. The software should be capable to terminate its opera-
tion in one of two ways: abnormally and normally.

3. Communication: For a while, data flow between two processes 
is necessary. Both procedures take place on the similar computer 
or separate machines linked by a computer network.

4. Manipulation of File System: The program must be able to 
write or read files. The OS allows the software to work with 
files.

5. Detection of Errors: Errors might arise in the CPU, input/out-
put devices, or memory hardware. The OS must be continually 
aware of potential faults. It must take the necessary steps to 
guarantee that computing is accurate and reliable.

6. Communication can be accomplished in ways (Wentzlaff et al., 
2009):

i. A common memory;
ii. Message transmission.

7.9. OPERATING SYSTEM (OS) OPERATIONS
A multi-user OS allows for more effective system operations (Peter et al., 
2015):

•	 Allocation of Resources: For running the work at the same time.
•	 Accountancy: Account billing and use statistics are handled by 

accounting.
•	 Security: Make sure that accessibility to the resources of the 

system is restricted.
Interrupt-driven are the lifeblood of today’s OS. An OS would sit quietly, 

waiting for anything to occur when there are no operations to run, no input/
output devices to serve, and no consumers to reply to. The appearance of an 
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interrupt or a trap nearly always signals the start of an occasion (Hansen, 
1973). A trap is a software-generated interrupt that is triggered by either an 
error (such as division by zero or incorrect memory access) or a particular 
request from a user program to execute an OS service. Separate pieces 
of code in the OS determine what action must be taken for every sort of 
interrupt. An interrupt service procedure is included, which is in charge of 
dealing with the interruption.

Because the OS and users share the computer systems software and 
hardware sources, we must ensure that a bug in a user application only 
affects the one program that had been executing. Because of the sharing, 
a flaw in one application might harm multiple processes (Wentzlaff et al., 
2009). One OS should be constructed in such a way that an inaccurate (or 
malicious) application may not force other programs to run wrongly.

7.9.1. Dual-Mode Operation
We need to be capable to tell the difference between OS code and consumer-
specified code. The strategy is to split the 2 operating modes: user mode and 
kernel mode (known as privileged mode, system mode, or supervisor mode). 
The mode bit is known as a mode bit added to the computer’s hardware that 
indicates the present mode: user (1) or kernel (0) (Saha et al., 2003). A dual-
mode operation gives us the ability to defend the OS from rogue consumers, 
as well as rogue consumers from each other.

System calls allow consumer software to request that the OS do duties 
that are reserved for the OS on its behalf (Figure 7.14).

Figure 7.14. Dual mode operations in operating system.

Source: https://www.geeksforgeeks.org/dual-mode-operations-os/.
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7.9.2. Protection CPU
The OS should have control over the CPU to make sure that it remains 
stable. To avoid a consumer application becoming caught in an infinite loop 
or failing to invoke system services and never surrendering control to the 
OS, we should block them from doing so (Zhang et al., 2011). We may 
utilize a timer to help us attain this aim. Using a timer, you may force the 
computer to shut down after a defined variable or fixed length of time.

7.10. OPERATING SYSTEM (OS) COMPONENTS
The elements of OS are discussed in subsections.

7.10.1. Process Management
In a multi-programming environment, the OS determines which processes 
receive processor time and for how long. The OS is in charge of the following 
procedure management activities (Fassino et al., 2002):

• Procedures that are paused and resumed;
• Both consumer and system procedures can be created and deleted;
• Providing techniques for dealing with deadlocks;
• Providing communication tools for processes;
• Providing synchronization methods for processes.

7.10.2. Memory Management
The main memory consists of a vast arrangement of words or bytes, each 
with its address. In terms of memory, the OS is in charge of the following 
tasks (Anderson et al., 1991):

• Monitoring of which bits of memory are being utilized and from 
whom at any given time;

• Determining which operations (or sections of operations) and 
data should be moved into and out of the memory;

• Assigning and reassigning memory space as required.

7.10.3. File System Management
The OS is responsible for the given below file management activities 
(Comer, 2011):
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• File creation and deletion;
• Organizing files by creating and removing folders;
• Providing primitives for working with directories and files;
• File mapping to secondary storage;
• Using a stable (nonvolatile) storage medium to back up files.

7.10.4. Secondary Storage Management
OS In terms of disc management, the OS supports the following features 
(Chen et al., 1994):

• Controlling the amount of free space available;
• Allocation of storage;
• Scheduling on the hard drive.

7.10.5. System Call and System Program
System calls are used to connect a running program to the OS. The consumer 
may not perform privileged instructions; instead, the consumer must ask 
the OS to do so via system calls. Traps are used to implement system calls 
(Anderson et al., 1991).

Through the trap, the OS gets control, changes to kernel mode, conducts 
service, then switches back to user mode and returns control to the user.

The graphic shows an instance of how the OS uses system calls to read 
information from one file and transfer it to the next file. This amount of the 
data has never been seen by the programmer (Mullender et al., 1990):

Obtain the name  of the input file 
Write prompt on the screen
Accept input
Obtain output filename
Write prompt on the screen
Example system call sequence
Accept input
Open the input file
If the file does not exist, abort
Create output file
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If the file exists, abort
Loop:  Read from input file
Write to the output file
Until reading fail
Close output file
Write completion message on the screen
Terminate normally
Consumers do not have to design their environment for program 

development (compilers, editors) or program execution (shells) since system 
programs give fundamental services.

7.10.6. Protection and Security
Protection A method that regulates the access of programs or consumers to 
both systems is referred to as protection. The security system should be able 
to (Wulf et al., 1974):

• Differentiate between authorized and unauthorized consumers;
• Specify the control that will be implemented;
• Establish a mechanism for enforcing the rules.
Security precautions are in charge of protecting a computer system from 

both external and internal threats.
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8.1. INTRODUCTION
Whatever comes to mind when you consider the history of Windows? Logos 
that are instantly recognizable? Changing the Start menu’s appearance? The 
advent of Live Tiles? All of this and much more is included in the past 
of Microsoft’s main operating system (OS). Windows has seen several 
reincarnations during the last 35 years (Rushinek and Rushinek, 1997). 
Here we examine 14 different Windows version because they all represent 
significant milestones in the history of computers (Inglot and Liu, 2014; 
Rajesh et al., 2015). Before we get in to Windows history, it is worth 
considering the status of computing prior to Windows.

8.2. MS-DOS AND WHAT CAME BEFORE
Windows may appear to have been around for a long time, nonetheless 
it hasn’t. Microsoft’s original OS was not Windows. In reality, before 
Windows, PCs ran on a different OS called MS-DOS. Despite as the initial 
edition of Windows, browsing your PC with MS-DOS took time, needed 
guide text command input, and no permit for multitasking (the capability to 
run multiple programs at once) (Laric, 1995; Akbal et al., 2016).

At minimum in 1985, Windows wasn’t so many a fresh OS as this was a 
response to the problems which an OS like MS-DOS brought. Windows 1.0 
was designed as a graphical user interface (GUI) to run on top of MS-DOS, 
making it simpler to browse PCs running MS-DOS – it’s simpler to focus 
on a screen and press an icon to start a program than it is to write numerous 
instructions to do the same activity.

However, Windows wasn’t the primary GUI to address concerns such as 
needing to browse through text instructions. Apple and Xerox were the first 
two firms to get there. Apple produced “the first marketable computers with 
a GUI” in 1983, according to Wired. It was dubbed the Lisa. The Lisa was 
the very first commercialized computer with a GUI, although it wasn’t the 
oldest computer with a GUI ever. Xerox released the first one in 1981, and 
that it was named as the Star (Huxford, 1993; Ma et al., 2002).

Despite being three or four years later to the GUI party, Microsoft 
was capable to sell its initial windows version at a far lower cost than its 
competitors, providing it a substantial advantage. The development of 
Windows is discussed in further sections.
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8.3. WINDOWS 1.0
Windows 1.0 emerged in 1985 as a GUI to be utilized in combination with 
MS-DOS. The implementation of Windows 1.0 as a GUI ensured that MS-
DOS users no longer had to physically type text instructions only to execute 
simple operations. They could now do jobs and peruse their own files 
simply by picking and pressing on menus. The ionic Windows 1.0 cost $99 
at the time of its debut and presented numerous computer users to pull-down 
icons, menus, and conversation boxes per Microsoft. It also had the capacity 
to multifunction apps and “transfer data across programs,” which was a first 
for a Microsoft OS (Figure 8.1) (Harris, 1999; Hamadani et al., 2011).

Figure 8.1. Windows 1.0 image.

Source: https://winworldpc.com/product/windows-10/101.

Don’t be fooled by Windows 1.0’s bare-bones appearance: the OS 
also had Windows Paint, Windows Write, a calendar, a clock, a notepad, a 
cardfile, a file manager, a terminal app, as well as a game named Reversi, 
according to The Verge.

8.4. WINDOWS 2.0
It wasn’t much till Microsoft launched a follow-up to its first GUI-enhanced 
OS. Windows 2.0 was introduced after two years in 1987, by the technology 
business. This version of Windows contained noteworthy features such as 
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overlapped windows, resizable windows, shortcut keys, and VGA graphics 
capabilities. Word and Excel’s first Windows versions were also released 
with Windows 2.0 (Figure 8.2) (Archibugi and Pietrobelli, 2003; Lin and 
Vincent, 2012).

Figure 8.2. Windows 2.0 image.

Source: https://winworldpc.com/product/windows-20/20.

8.5. WINDOWS 3.0
Microsoft’s next great achievement was the launch of Windows 3.0. 
This windows version is largely regarded as the beginning of Windows’ 
international prominence as a desktop OS. In 1990, Microsoft released 
Windows 3.0, which supported 256 colors. More crucially, as PCMag 
points out, it had “multitasking DOS apps,” that may have led to Windows’ 
popularity boom. An additional important aspect of Windows 3.0 is, this 
is the form in which the famous desktop game Solitaire initially appeared 
(Figure 8.3) (Smith, 1996; Uzunboylu et al., 2011).
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Figure 8.3. Windows 3.0 image.

Source: https://winworldpc.com/product/windows-3/30.

8.6. WINDOWS 3.1
Two years later, some other new version of OS occurred, this time bringing 
Windows to its best-known versions, 3.1. Although the fraction in its 
designation implies that it was a slight improvement to 3.0, but it was not. 
Rather than that, Windows 3.1 introduced a number of critical new features 
in 1992, including compatibility for TrueType fonts, a capability to drag 
and drop icons, and capability for OLE composite files (files that join 
components from various plans). Additionally, A Guardian reports that it is 
the first variety of Windows to be issued on CD-ROM (Figure 8.4) (Scoville, 
1993; Lee et al., 2011).
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Figure 8.4. Windows 3.1 image.

Source: https://winworldpc.com/product/windows-3/31.

8.7. WINDOWS 95
You’re definitely thinking about Windows 95 when you consider the most 
famous version of Windows. That is due to that it was like a radical leaving 
artistically from earlier forms of Windows, and it set a quality for what 
we’ve arise to know from Windows OS. Windows 95 was released in 1995, 
as its name indicates. It was the oldest 32-bit version of Windows (prior 
editions had been 16-bit), and this included a number of new characteristics 
that would go down in history (Campbell, 1991; Nolze and Kraus, 1998). 
The taskbar, the Start menu, lengthy file names, and plug-and-play features 
are among them (at which marginal gadgets only required to be linked to 
a PC for work correctly). Internet Explorer, Microsoft’s web browser, was 
also introduced with Windows 95 (Figure 8.5) (Campbell, 1992).
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Figure 8.5. Image of Windows 95.

Source: https://microsoft.fandom.com/wiki/Windows_95.

Another noteworthy function? However, Windows 95 still operated with 
MS-DOS, dissimilar its forerunner, it didn’t have to delay for the computer 
to boot into DOS first, as PCMag points out. This was the first moment 
Windows was permitted to boot straight from the hard drive (Barney, 1994).

8.8. WINDOWS 98
This is the Windows version with a title that corresponds to year this was 
introduced. If Windows 95 (finally) gave us Internet Explorer, Windows 98 
tightened the web browser’s hold on Microsoft’s OS. This form of Windows 
not one included Internet Explorer 4.01, nonetheless also a bevy of additional 
internet-related apps and features, like Microsoft Chat, the Web Publishing 
Wizard. and Microsoft Outlook (Figure 8.6).
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Figure 8.6. Screenshot of Windows 98.

Source: https://microsoft.fandom.com/wiki/Windows_98.

Windows 98 also included expanded compatibility for USB drives and 
Macromedia apps (Shockwave and Flash).

8.9. WINDOWS 2000
Windows 2000 placed a strong emphasis on accessible, introducing plenty 
of new features to the OS, like StickyKeys, an elevated design, Microsoft 
Magnifier, an on-screen keyboard, and Microsoft Narrator, a screen reader 
(Figure 8.7) (Ho et al., 2001; Pfeiffer et al., 2003).

Figure 8.7. Image of Windows 2000.

Source: https://microsoft.fandom.com/wiki/Windows_2000.
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Additionally, Windows 2000 had a Multilingual User Interface that 
let users to select the languages in which their presentation will be shown. 
Users of Windows 2000 have a range of language options, such as Arabic, 
Japanese, and Greek (Guo et al., 2010; Prentice et al., 2013).

8.10. WINDOWS ME
“ME” stands for “Millennium Edition” in Windows ME. It also was called 
“The Mistake Edition,” which was a less favorable title. When Windows 
ME was released in 2000, it was given the moniker because “customers had 
issues downloading it, enabling it to start, getting it to operate with other 
software or hardware, and having it to quit operating” (Figure 8.8).

Figure 8.8. Image of Windows ME.

Source: https://microsoft.fandom.com/wiki/Windows_Me.

Even after its terrible start, this still handled in order to provide us 
with a valuable device (Chau and Hui, 1998). System restores, a recovery 
characteristic which, if your computer is turned up having issues because of 
poorly executed installation of a program or upgrade, can eliminate some 
these updated information and rebuild your computer to the way it was 
formerly the infringing update screwed with it. System Restore, in classic 
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Mistake Edition manner, had its own challenges to work out before becoming 
genuinely fantastic. For example, it occasionally messed up the restoration 
by reinstalling items such as viruses that had already been deleted (Dong, 
1999; Zhang et al., 2016).

8.11. WINDOWS XP
Windows XP was introduced in 2001 and is largely regarded as one of 
Microsoft’s best Windows OSs. The OS was available in two versions: 
Home and Professional. However, the Professional was designed for usage 
in business environments, while Home was designed for personal use. Share 
of XP’s success, according to TechRadar, may be ascribed to the fact that it 
was released at the same time as a surge in PC sales, thus for numerous new 
operators, “Windows XP was what arrived with their oldest computer.”

The popularity of XP may be followed back to the OS itself. And besides, 
since it lasted 13 years till Microsoft withdrew support for it in 2014, there 
must have been something appealing about its design. Because it is actually 
meant to be consumer-friendly, it has achieved some commercial success. 
Bright colors, a bright green Start button, and configurable theme tune were 
lastly included with this windows version, giving it a warm and appealing 
design. It also included additional features including as native CD ripping 
software, desktop search, remote desktop, and (soon) enhanced security 
(Figure 8.9) (Sullivan, 1996; Dong, 1999).

Figure 8.9. Windows XP image.

Source: https://microsoft.fandom.com/wiki/Windows_XP.
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8.12. WINDOWS VISTA
Regrettably, Vista was yet another critically derided windows edition. When 
Vista was introduced in 2007, one of the primary criticisms was which its 
afresh developed design interface (dubbed Aero Glass) did not always work 
very well along first hardware or specific graphics drivers on newer PCs. 
Other critiques leveled against Vista were its poor presentation, exorbitant 
pricing, excessive system resource consumption, and, whereas the User 
Account Control function-maintained users secure, the continuous dialog 
boxes presented by the program were vexing (Figure 8.10) (Uslan and Su, 
1997; Cota-Robles and Held, 1999).

Figure 8.10. Screenshot of Windows Vista.

Source: https://www.digitaltrends.com/computing/the-history-of-windows/.

Vista attempted to do too much, too quickly, and was burnt as a result. 
Although it included numerous valuable functions, such as DirectX 10, 
Windows Defender, (for PC gaming), Windows DVD Maker, and speech 
recognition, it was not without flaws (Gratze et al., 1998).

8.13. WINDOWS 7
Microsoft released Windows 7, a new windows version, 2 years later. 
Microsoft needed to develop for Vista’s shortcomings, and Windows 7 did 
exactly that. Windows 7 is more simplified than Vista, and it essentially 
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removes numerous functionalities from preceding windows versions, 
especially Vista. In truth, Microsoft did not have at least 4 Vista apps in 
Windows 7: Windows Movie Maker, Windows Photo Gallery, Windows 
Mail and Windows Calendar (Lio and Nghiem, 2004).

Handwriting recognition, improved overall speed, interactive thumbnails 
preview for reduced program windows, a desktop slideshow function, 
Windows Media Player 12, and Internet Explorer 9, were all included in 
Windows 7 (Figure 8.11) (Bolosky et al., 2000).

Figure 8.11. Windows 7 image.

Source: https://www.digitaltrends.com/computing/the-history-of-windows/.

8.14. WINDOWS 8
Visually, Windows 8 was a sea change from its forerunners. It’s time to 
discuss the tiled display screen. The Start screen had slates dubbed Live 
Tiles that served as dynamic app shortcuts, allowing you to start your apps 
while simultaneously displaying mini-updates about them (like the quantity 
of unread messages). The Start screen was intended for replacing the Start 
menu. In this configuration, Windows 8 retains the classic Windows desktop, 
which is where applications are executed (Figure 8.12) (Westerlund and 
Danielsson, 2001; Naik, 2004).
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Figure 8.12. Screenshot of Windows 8.

Source: https://news.microsoft.com/accessing-system-commands/.

While not everyone was delighted with Windows 8’s tablet-centric 
redesign, it provided several more features like the option to USB 3.0 
connectivity, login with a Microsoft account, a real lock screen (visually 
comparable to a phone home screen), and Xbox Live integration (Warner, 
2001; Swift et al., 2002).

8.15. WINDOWS 8.1
Consumers were not pleased with the startling Windows 8 Start screen and 
the disappearance of the Start menu. In response, Microsoft introduced 
Windows 8.1 as a free update to report customer concerns about its 
predecessor (Figure 8.13) (Sechrest and Fortin, 2001; Ganapathi et al., 
2006).
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Figure 8.13. Windows 8.1 image.

Source: https://news.microsoft.com/windows-8-1-preview-lock-screen/.

Microsoft made certain changes in Windows 8.1, such as adding a real 
Start button to the toolbar and allowing users to get the desktop immediately 
afterward signing in (in its place of actuality received by the dreaded Start 
screen). Microsoft didn’t waste any time in releasing this patched-up version 
of Windows: Windows 8 was introduced in 2012, followed by Windows 8.1 
in 2013.

8.16. WINDOWS 10
Windows 10 was released in 2015 and is the latest version of Microsoft’s 
OS. Once it launched, it was clear that Microsoft sought to improve its usage 
of Live Tiles instead of completely eliminate them. It harmed the following 
in Windows 10: It replaced Windows 8’s hated Start screen with a wider 
Start menu that makes usage of Live Tiles and other types of program icons. 
It was successful (Bickel et al., 2002; Stiegler et al., 2006).

Additionally, according to the Verge, the 2015 edition of Windows 10 
introduced Cortana, a native digital personal helper; the capability to convert 
among tablet and desktop modes; and a new online browser (Microsoft 
Edge).

Since its introduction in 2015, Windows 10 has also gotten quite 
frequent upgrades. They are referred to as feature updates and occur each six 
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months. They are always accessible for free via Windows Update. Indeed, 
the following function is not that far away: Windows 10 20H1 is scheduled 
for release in the spring of 2020, maybe around May. This update is likely to 
bring a revamped Cortana experience and the capability to restore Windows 
“simply selecting the choice to Cloud downloading Windows, in the absence 
of having to produce installation discs” (Figure 8.14).

Figure 8.14. Windows 10 image.

Source: https://www.digitaltrends.com/computing/the-history-of-windows/.

8.17. WINDOWS 11
Windows always has been to serve as a platform for global innovation. It 
has served as the backbone of multinational enterprises and as a platform for 
scrappy initiatives to become household names. Windows gave birth to and 
raised the web. It’s where most of us sent our first mail, started playing our 
first PC game, and coded our first line. Windows is the platform on which 
over a trillion people these days rely to create, connect, learn, and succeed.

We don’t take the responsibility of creating for several individuals 
casually. We moved from adapting the PC into our living to irritating to 
integrate our entire life into the PC over the last 18 months, which has 
resulted in an extraordinary shift in the way, we use our PCs. Our gadgets 
were not just where we went for conferences, classes, and to get tasks 
completed; they were also where we went out and played games with mates, 
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obsessively watch our favorite programs, and, maybe most importantly, 
communicate with each other. We ended up digitally reproducing the 
workplace conversation, hallway banter, exercises, happy hours, and holiday 
festivities (Bird et al., 2009; Zimmermann et al., 2010).

The transition in PC that we saw and felt was quite profound — from 
somewhat utilitarian and useful towards something emotional and personal. 
It is what motivated us to create the next iteration of Windows. To offer a 
familiar environment in which you may create, study, play, and, most highly, 
interact in novel ways (Whitehouse, 2007).

Nowadays, I am honored and pleased to present you Windows 11, the 
OS to bring you nearer to the things you care about.

8.17.1. Redesigned for Productivity, Creativity, and Ease
We’ve optimized experiences of user and design in order to boost your 
production and stimulate your originality. This is contemporary, bright, 
spotless, and lovely. Everything, from the fresh Start sign and toolbar to the 
sounds, fonts, as well as icons, was designed with the aim of tapping you 
in command and instilling a sense of comfort and serenity (Figure 8.15) 
(Hargreaves et al., 2008; Narayan et al., 2009).

Figure 8.15. Perfect interface design.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.
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We centered Start and made it humbler to immediately locate what 
you’re observing for. Begin leverages the web and Microsoft 365 to show 
your new files irrespective of the stage or device on which you were reading 
them formerly, even if it was an Android or iOS gadget.

Windows is all about allowing you to work perfectly as you choose, 
with many windows and the capability to link programs together. Snap 
Groups, Desktops, and Snap Layouts, are all new in Windows 11 and give 
another more adaptive approach to multitasking and keep at the top of just 
what people require to get accomplished. These are new tools that will help 
you manage your windows and maximize your screen display so you can 
view just what you want from a visually appealing layout. You may also 
build various Desktops for different aspects of your life and configure them 
to your preferences — for example, a Desktop for working, gaming, and 
education (Figures 8.16 and 8.17) (Ray and Schultz, 2007; Li et al., 2008).

Figure 8.16. Multiple window flexibility.

Source: https://www.techrepublic.com/article/windows-11-cheat-sheet-every-
thing-you-need-to-know/.
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Figure 8.17. Windows 11 removes the complexity and replaces it with simplic-
ity.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.

8.17.2. Fast Connectivity
Another crucial component of putting you closer to your passion is getting you 
nearer to your loved ones. The previous 18 months have influenced how we 
develop meaningful digital interactions with individuals. Even as we begin to 
move to more personal engagement, we want to keep it simple for individuals 
to stay connected regardless of their location. And we don’t want your device 
or platform to be a hindrance (Figure 8.18) (Narayan et al., 2009).

Figure 8.18. A more efficient method of communicating with the individuals 
you care about.

Source: https://www.techrepublic.com/article/windows-11-cheat-sheet-every-
thing-you-need-to-know/.
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We’re delighted to debut Chat from Microsoft Teams embedded into 
the toolbar in Windows 11. Today, you can link directly with most of your 
in-person contacts by text, chat, audio, or video, regardless of their device 
or platform, Android, iOS or on Windows. If the individual on the other end 
does not have the Teams app, you still can communicate with them using 
two-way SMS (Purcell and Lang, 2008; Zhang et al., 2010).

Additionally, Windows 11 provides a more usual approach to engage 
with friends and family via Teams, letting you to rapidly mute and unmute a 
conversation or begin displaying right from the toolbar.

8.17.3. Perfect for Gaming
If you want to play video games, Windows 11 is the software platform for 
you. Gaming has always been essential to the Windows philosophy. A lots 
people across the globe now play the game on Windows to have fun and 
engage with their friends and family. Windows 11 makes full use of your 
system’s capabilities, putting cutting-edge gaming technologies to work for 
you. DirectX 12 Ultimate allows spectacular, comprehensive visuals at high 
speeds; DirectStorage enables fast loading and more realistic gaming envi-
ronments; and Auto HDR enables a larger, more varied spectrum of colors 
for a really intriguing visual experience. Our dedication to device support 
has not changed – Windows 11 supports all of your preferred PC gaming 
fittings and peripherals. With Xbox Game Pass for Desktop or Ultimate, 
players get access to hundreds of high-quality PC games, with new titles 
published on a constant schedule, and that is just as simple to discovery 
people to play with, whether on a PC or a console (Figure 8.19) (Thomas et 
al., 2013; Eterovic‐Soric et al., 2017).

Figure 8.19. Offering the best possible PC gaming experiences.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.
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8.17.4. Faster to Get Information
Widgets, a new personalized feed powered by AI and Microsoft Edge’s 
best online performance, bring you closer to the information and news you 
care about faster in Windows 11. Even when we’re at our most focused and 
creative, we need pauses to check in with the outside world or recharge 
our brains. These days, we constantly check our phones for news, weather, 
and notifications. Your PC may now provide a similarly personalized 
experience. When you open your personalized feed, it slips over your screen 
like such a pane of glass, enabling you to continue to work uninterrupted. 
Widgets also provide producers and publishers more space inside Windows 
to deliver customized content. Our objective is to create a vibrant pipeline 
that benefits both customers and artists for both major companies and local 
creators (Figure 8.20) (Lallie and Briggs, 2011; Chien et al., 2014).

Figure 8.20. Obtaining knowledge in a more expedient manner.

Source: https://www.techrepublic.com/article/windows-11-cheat-sheet-every-
thing-you-need-to-know/.

8.17.5. Microsoft Store
The latest Windows Store provides access to programs and content for 
viewing, producing, gaming, studying, and learning. It has been optimized 
for performance and boasts a completely new interface that is both simple 
to use and lovely to look at. Not only will we supply you with more apps 
than previous, but we’ll also offer all content — apps, games, television 
shows, and movies – easier to locate and discover via curated stories and 
categories. We’re excited to announce the upcoming addition of a number of 
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premier first- and third-party apps to the Microsoft Store, such as Microsoft 
Teams, Visual Studio, Disney+, Adobe Creative Cloud, Zoom, and Canva 
– which all deliver fantastic experiences that entertain, inspire, and connect 
you. When you download an app from the App Store, you could be certain 
that it has already been properly vetted for security and family safety (Figure 
8.21) (Talebi et al., 2012).

Figure 8.21. A latest Microsoft Store which combines your favorite programs 
and entertainment together in one place.

Source: https://blogs.windows.com/windowsexperience/2021/06/24/introduc-
ing-windows-11/.

8.17.6. Android Apps on PC
We’re also excited to announce that for the first time we’ll be introducing 
Android apps to Windows. Beginning later this year, customers will be able 
to find Android applications in the Microsoft Store and install them from 
the Amazon Appstore – picture shooting and publishing a TikTok video or 
utilizing Khan Academy Children for virtual learning directly from your 
PC. In the next months, we’ll have more to say about this event. We are 
excited about our collaboration with Amazon and Intel, which will make use 
of Intel Bridge technology (Figure 8.22) (Odell and Chandrasekaran, 2012; 
Corregedor and Von Solms, 2013).
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Figure 8.22. Android applications on a PC.

Source: https://www.pcmag.com/how-to/how-to-run-android-apps-in-win-
dows-11.

8.17.7. Creating a More Open Ecosystem Unlocking New  
Opportunity for Developers and Creators
We are taking steps to increase the openness of the Microsoft Store in order 
to create additional commercial opportunities for creators and programmers. 
We’re enabling developers and independent software vendors (ISVs) to 
bring their apps to the platform, regardless of whether they’re developed as 
a Win32, universal windows app (UWP), or progressive web app (PWA), 
any other app framework, therefore boosting their reach and engagement. 
Furthermore, we’re launching a progressive change to our revenue sharing 
practices, enabling developers to now bring their own commerce to our 
Store and keep 100% of the proceeds – Microsoft takes no share. With a 
competitive 85/15 revenue split, app developers may continue to use our 
commerce. We believe that promoting a more open environment helps our 
customers in the long term by giving them with secure, frictionless access 
to the apps, games, movies, programs, and online content that they want and 
need (Khatri, 2015).

8.17.8. Faster, More Secure and Familiar for IT
For IT professionals, Windows 11 is based on the same stable, well-matched, 
and recognizable Windows 10 foundation. You’ll propose, make, and install 
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Windows 11 in the same way that you do now with Windows 10. Updating 
to Windows 11 will be similar to updating to Windows 10. As you incorpo-
rate Windows 11 into your estate, the same organization practices you have 
nowadays – such as Microsoft Endpoint Manager, cloud setup, Windows 
Update for Business, and Autopilot – will support your future environment.
We are dedicated to app availability, which is a major design principle of 
Windows 11, just as we were with Windows 10. With App Assure, a service 
to help clients with 150 or more users address any app difficulties they may 
have at no additional cost, we stand by our guarantee that your apps will 
operate on Windows 11 (Mehreen and Aslam, 2015).

Windows 11 is also safe by default, with newly constructed security 
mechanisms that provide security from the chips to the cloud while allowing 
for increased efficiency and new experiences. To safeguard data and access 
across devices, Windows 11 has a Zero Trust-ready OS. We’ve worked very 
closely with our OEM and silicon suppliers to enhance security baselines 
in response to the changing threat landscape and the emerging hybrid work 
environment (Venčkauskas et al., 2015).

The Microsoft 365 blog has further information on Windows 11 as a 
computer system for mixed work and learning.

8.17.9. It Is a Great Time to Buy a PC
We’ve been working very closely with our device and semiconductor 
partners since the beginning of Windows 11 development to ensure 
seamless integration of software and hardware. That co-engineering starts 
with silicon innovation. From AMD and the extraordinary graphical depth 
provided by Ryzen processors to Intel’s 11th generation and Evo Processors, 
to Qualcomm’s AI capabilities, 5G, and Arm support, the creativity of our 
silicon suppliers ties together all the best of Windows 11 with the world’s 
greatest hardware ecosystem.

And, in collaboration with Dell, HP, Lenovo, Samsung, Surface, and 
others, we’ve worked to guarantee that most PCs* available today are ready 
for Windows 11 – across a range of form factors and price ranges.

We’ve worked together to optimize Windows 11 not only for speed and 
accuracy, but also to take benefit of new touch, inking, and voice interactions.

When using Windows 11 on a laptop without even a keyboard, we’ve 
improved the touch experience by introducing more space between taskbar 
icons, larger touch targets, and subtle visual clues to enable resizing and 
dragging windows simpler, and also gestures. We’re also allowing haptics 
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to make utilizing your pen much more engaging and immersive, letting you 
to feel and hear the sensations as you click, edit, or doodle. Finally, we’ve 
made improvements to voice typing. Windows 11 recognizes what you say 
really well; it can dynamically capitalize for you and has voice commands. 
This is a terrific option for whenever you want to avoid typing and instead 
voice your thoughts (Hofmeester and Wolfe, 2012; Gao et al., 2013).

Beginning this Christmas season, Windows 11 will be offered as a free 
update for qualified Windows 10 PCs and for new PCs. Visit Windows.com 
and download the PC Health Check app to see if your existing Windows 10 
PC is capable for the free upgrading to Windows 11. We’re also collaborating 
with our store teams to ensure that Windows 10 PCs purchased today are 
prepared for the Windows 11 upgrade. The free upgrade will begin rolling 
out to compatible Windows 10 PCs this Christmas season and will continue 
until 2022. And, starting next week, we’ll start sharing an early copy of 
Windows 11 with the Windows Insider Program — this is a dedicated group 
of Windows lovers whose feedback we value.

8.18. THE FUTURE OF WINDOWS
We’re not saying Windows 11 will never come, and it’s been five years 
since Windows 10 launched, and Microsoft is content with putting out new 
feature upgrades every six months for the current version of its OS. Plus, 
it’s not as though such feature upgrades deprive Windows 10 customers of 
new functionality and design improvements. They occur two times a year 
and frequently include a huge list of issue patches, new toolkit, and cosmetic 
tweaks to the game’s design — especially if they really do contain an unusual 
issue (Singh and Singh, 2017).

Even if Windows 11 does not materialize, this does not imply that 
Windows’ long history of adaptation and creativity must come to a stop. 
Windows, particularly in current years, has evolved into something more 
than a desktop OS. Consider Windows Core OS. The Windows OS brand’s 
future may lay with Core OS, which would be planned to be a stand-alone 
OS (just not an upgrade to Windows 10). Core OS is projected to become 
the flagship OS for smaller devices like as phones, tablets, and Chromebook 
such as laptops, having distinct Core OS versions for each kind of device. It 
is likely that the evolution of Windows will simply include the development 
of distinct (but it’s still linked) OSs to meet the demands of an increasingly 
mobile society (Singh and Singh, 2016).
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8.19. MAIN FEATURES OF MICROSOFT WINDOWS
Microsoft Windows comes with a variety of tools and programs to help you 
get through your computer and Windows. Click a link below to read much 
more about capabilities featured with Microsoft Windows.

8.19.1. Control Panel
The Control Panel is a set of tools that will assist you in configuring and 
manage services on your desktop. You can modify printer, video, audio, 
mouse, keyboard, time, and date, user profiles, installed apps, network 
connections, energy saver choices, and other settings.

The Control Panel in Windows 10 is found in the Menu bar, under 
Windows System. The Control Panel can also be launched from the Run 
box. Enter control by pressing Windows key + R. Alternatively, you may 
use the Windows key, type Control Center, and then hit Enter. Many Control 
Panel options are also available in the Windows 10 Options menu (Figure 
8.23).

Figure 8.23. Display of the control panel.

Source: https://answers.microsoft.com/en-us/windows/forum/all/where-is-dis-
play-control-panel-in-windows-build/ce8fcc12-f3c2-4940-800c-ed95053cff00.
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8.19.2. Cortana
Cortana is a voice-activated virtual assistant that debuted with Windows 
10. Cortana is a virtual assistant that can respond to questions, explore 
your computer or the Internet, schedule appointments and reminders, make 
online purchases, and much more. Cortana is comparable to other voice-
activated services like Siri, Alexa, or Google Assistant, with the additional 
advantage of being able to search your computer’s information (Cheng et 
al., 2016; Đuranec et al., 2019). In Windows 10, click Windows key+S to 
open Cortana (Figure 8.24).

Figure 8.24. Cortana interface.

Source: https://cdn.windowsreport.com/wp-content/uploads/2020/06/How-to-
block-Cortana-from-starting-in-Windows-10.jpg.

8.19.3. Desktop
The desktop is a critical component of Windows’ standard GUI. It is a 
container for apps, files, and documents, all of which show as icons. Your 
desktop is constantly running in the background, alongside any other apps 
you may be using.

When you turn on your desktop and sign in to Microsoft for the first 
time, the desktop backdrop, icons, and taskbar are shown. From this point, 
you may access your computer’s installed apps via the Start menu whether 
by double-clicking any program shortcuts on your desktop.

At any moment, you may access your desktop by hitting Windows 
key+D to minimize any currently active apps (Lazarescu et al., 2004; Fadhil 
et al., 2016).
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8.19.4. Device Manager
A computer’s hardware devices are listed in the Device Manager. The Device 
Manager allows users to check what hardware is connected, examine, and 
upgrade hardware drivers, and remove hardware. The Device Manager may 
be accessed via the Power User Activities Menu (Windows key+X, plus 
enter M) (Figure 8.25).

Figure 8.25. Device manager interface.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.5. Disk Cleanup
The Disk Cleanup tool assists in increasing your computer’s available disc 
space by deleting temporary or unwanted data. Disk Cleanup improves your 
computer’s speed and frees up space on your hard drive for downloads, 
documents, and programs (Figure 8.26) (Blackman et al., 1989; Bangalee 
et al., 2012).

Figure 8.26. Disk clean-up display.

Source: https://www.computerhope.com/issues/ch001967.htm.
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Disk Cleanup may be accessed using the File Explorer.Start an Explorer 
window by pressing Windows key+E:

• Locate this system or My Computer on window’s left side and 
choose it by pressing once;

• Right-click any disc on your desktop on the right side (C, for 
example);

• Click on properties;
• Select disk cleanup from the general menu.

8.19.6. Event Viewer
The Event Viewer is a system administrator application that shows 
problems and significant occurrences on your computer. It assists you in 
troubleshooting sophisticated issues with your Windows PC (Embree et al., 
1991; Rajon, 2016). The Power User Tasks Panel (Windows key+X, then V) 
may be accessed through the Event Viewer (Figure 8.27).

Figure 8.27. Display of the event viewer.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.7. File Explorer
The File Explorer, sometimes known as Windows Explorer, gives a graphical 
representation of the files and directories on your computer. You may view 
the data of your SSD, hard disks, and removable drives attached to your 
computer. The File Explorer allows users to find for files and directories and 
then open, rename, or remove them.

Press Windows key+E to launch a new File Manager window. You may 
open several Explorer windows concurrently, which is useful for seeing 
numerous directories at once or copying/moving data between them (Figure 
8.28).
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Figure 8.28. File explorer display.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.8. Internet Browser
One of the most crucial programs on your computer is your web browser. It 
may be used to search the Internet for information, read online sites, shop for 
and purchase items, watch films, play video games, and more. The standard 
browsing in Windows 10 is Microsoft Edge. Prior window’s version from 
Windows 95 through Windows 8.1, contained Internet Explorer as the 
default browser. In Windows 10, visit the Menu bar and scroll to the bottom 
to Microsoft Edge to launch a new Edge web browser.

8.19.9. Microsoft Paint
Microsoft Paint, which has been included with Windows from November 
1985, is a straightforward image editor for creating, viewing, and editing 
digital images. It has basic capability for drawing and painting images, 
resizing, and rotating photos, and saving images in a variety of file kinds.

To start Microsoft Paint in any version of Windows, hold down the 
Windows key and enter mspaint (Dehnert and Stepanov, 2000; Mészárosová, 
2015). Additionally, it is accessible through the Start menu: in Windows 10, 
it is featured in Windows Accessories, Paint.

8.19.10. Notepad
Notepad is a straightforward text editor. It allows you to make, examine, and 
alter text files. For example, you may use Notepad to create a batch file or 
an HTML web page.
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Notepad may be found in the Menu bar under Windows peripherals in 
Windows 10. Notepad may be launched from the Run box in all windows 
versions by pressing Windows key+R, typing notepad, then pressing Enter.

8.19.11.	Notification	Area
The notification area, alternatively referred to as the settings menu, shows the 
date and time as well as icons for programs that are launched by Windows. 
Additionally, it displays the status of your Internet access and a loudspeaker 
icon for volume adjustment (Figure 8.29).

Figure 8.29. Display of notification area.

Source: https://www.computerhope.com/issues/ch001967.htm.

8.19.12. Power User Tasks Menu
The Power User Tasks Menu, which is included in Windows 8 and Windows 
10, allows easy access to useful and crucial Windows tools. You may access 
the Control Panel, Device Manager, File Explorer, Task Manager, and other 
programs through this menu. Press Windows key+X or right-click the Menu 
button icon to launch the Power User Tasks Menu.

8.19.13. Registry Editor
The Registry Editor enables you to see and change the Windows system 
registry. The Registry Editor can be used by computer experts to resolve 
issues with the Windows pc or installed software (Figure 8.30).
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Figure 8.30. Registry editor application.

Source: https://asmwsoft.com/registry-editor-tool.html.

The Registry Editor is available in the Start menu, under Windows 
Administrative Tools, in Windows 10. Additionally, you may launch it by 
clicking the Windows key and entering regedit, followed by pressing Enter.

Changing things to the register might result in your programs or system 
becoming unresponsive. Avoid editing the registry unless you are certain of 
what you are doing, and always backup your registry before making changes 
by transferring it to a file (Vogel-Heuser et al., 2014).

8.19.14. Settings
Settings, which is included in Windows 8 and Windows 10, allows you to 
customize various elements of Windows. You may customize the desktop 
backdrop, power settings, and external device choices, among other things.

In Windows 10, click Windows key+I to launch Settings. Alternatively, 
enter the Start menu and select the Gear icon.

8.19.15. Start and Start Menu
The Start menu displays a list among all installed apps and tools on your 
computer. You may access it by pressing Start just on taskbar’s left side. By 
tapping the Windows key on the keyboard, you may access the Start menu.

8.19.16. System Information
The System Information tool displays information about the computer’s 
hardware and OS. Information regarding your computer’s hardware, such as 
the CPU, RAM, video card, and sound card, can be found. You can also see 



Key Dynamics in Computer Programming252

and change configuration settings, device drivers, applications, and other 
things (Figure 8.31) (Oliveira et al., 2013).

Figure 8.31. System information window.

Source: https://www.computerhope.com/jargon/s/sysinfo.html.

System Information may be found in the Menu bar, in Windows 
Administrative Tools, in Windows 10. You may also open it by pressing 
Windows key+R, typing msinfo32, and pressing Enter in the Run box.

8.19.17. Taskbar
The Windows taskbar displays open programs and a Rapid Launch section 
for quick access to certain apps. The alert area is located to the right of the 
toolbar and displays the date and time, as well as any background processes.

8.19.18. Task Manager
The Task Manager displays a list of all the programs that are now operating 
on your computer. You may sort by CPU, RAM, and disc I/O use to discover 
how many of your system components each program (job) uses. If a 
program is stuck or not reacting, you may stop the process by right-clicking 
it in Taskbar and forcing it to close. Ctrl+Shift+Esc will bring up the Task 
Management at any moment (Figure 8.32).
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Figure 8.32. Task manager window.

Source: https://windowsground.com/what-is-task-manager-in-windows-10/.

8.19.19. Windows Search Box
The Windows search box provides an easy method to find documents, 
images, videos, and programs. Cortana is also integrated into the search bar 
in Windows 10. The function made its debut in Windows Vista.

By default, the search box is located on your taskbar. If you also don’t see 
the search box in Windows 10, click right on the toolbar and choose Taskbar 
settings. Ascertain that the option Use tiny taskbar buttons is disabled. Then, 
click right the taskbar again and choose Cortana, Show search box from the 
context menu (Qian and Lau, 2017).
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